
Combining Dynamic Constrained
Many-Objective Optimization with DE to Solve

Constrained Optimization Problems

Xi Li1,2, Sanyou Zeng1(B), Liting Zhang1, and Guilin Zhang1

1 School of Computer Science, China University of Geosciences, Wuhan 430074,
Hubei, People’s Republic of China

1589441554@qq.com, sanyouzeng@gmail.com
2 School of Information Engineering, Shijiazhuang University of Economics,

Shijiazhuang 050031, Hebei, People’s Republic of China

Abstract. This paper proposes a dynamic constrained many-objective
optimization method for solving constrained optimization problems.
We first convert a constrained optimization problem (COP) into an
equivalent dynamic constrained many-objective optimization problem
(DCMOP), then present many-objective optimization evolutionary algo-
rithm with dynamic constraint handling mechanism, called MaDC, to
solve the DCMOP, thus the COP is addressed. MaDC uses DE as the
search engine, and reference-point-based nondominated sorting approach
to select individuals to construct next population. The effectiveness of
MaDC has been verified by comparing with peer algorithms.

Keywords: Constrained optimization problem · Many-objective opti-
mization · Dynamic constraint · DE · Reference points

1 Introduction

In science and engineering disciplines, it is common to encounter a large num-
ber of constrained optimization problems (COPs). During the past decades,
researchers have widely used evolutionary algorithms (EAs) to deal with COPs
[1–3], and made considerable achievements. In recent years, with the develop-
ment of the multi-objective and adaptive evolutionary theories and methodolo-
gies, more and more works are managed to add these fruits to solving constrained
problems.

Coello first used dominance-based selection strategy to deal with constraints
[4]. In [5] Coello and Mezura proposed a new version of the Niched-Pareto
Genetic Algorithm (NPGA). This approach uses dominance-based selection
scheme to assign fitness function value, and adopts an additional parameter
called Sr to control the diversity of the population. Venkatraman and Yen [6]
proposed genetic algorithm-based two-phase framework for solving COPs. In
the first phase the objective function is completely disregarded, and only the
constraints of the problem are focused on. In the second phase, the objective
c© Springer Science+Business Media Singapore 2016
K. Li et al. (Eds.): ISICA 2015, CCIS 575, pp. 64–73, 2016.
DOI: 10.1007/978-981-10-0356-1 7

Combining Dynamic Constrained Many-Objective Optimization 65

function and satisfaction of the constraints are treated as two objectives to
be simultaneously optimized. Hsieh [7] proposed an algorithm based on well-
known multi-objective evolutionary algorithm, NSGA-II. The procedure, used
as a hybrid constraint handling mechanism, combines ε-comparison method of
multi-objective optimization and penalty method of constraints-handling. Yong
Wang [8] presented hybrid constrained optimization EA (HCOEA), which effec-
tively combines multi-objective optimization with global and local search models.
In global model, Pareto-dominance-based tournament selection among parent
and offspring and similarity measuring by Euclidean distance among individ-
uals are used to promote population diversity; in the local model, a paral-
lel search in subpopulations is implemented to accelerate convergence. Penalty
function is a classical method used for solving COP, but the determination of
penalty parameters is a difficulty. Deb [9] proposed a hybrid algorithm which
combines bi-objective evolutionary approach with the penalty function method-
ology. The bi-objective approach provides a good estimate of the penalty parame-
ter, and the unconstrained penalty function approach being constructed using
provided penalty parameter generates the optimal solutions of overall hybrid
algorithm. Zeng and Li [10,11] used not only multi-objective optimization tech-
nology but also dynamic constraint mechanism for COPs. They first convert
COP to a dynamic constrained multi-objective optimization problem, then
adopt a dynamic constrained multi-objective optimization algorithm to solve the
problem.

In this paper, we convert the COP into the many-objective optimization
problem, there are m+1 objectives (m is the number of constraints) in a prob-
lem, in other words, each constraint function is converted into a violation objec-
tive function. So we can introduced many-objective optimization technique into
our method. Besides, we adopt dynamic constraint handling mechanism to deal
with constraints. The proposed many-objective optimization evolutionary algo-
rithm with dynamic constrained handling, MaDC, uses DE to generate offspring
and reference-point-based nondominated sorting approach to create next parent
population.

The rest of this paper is organized as follows. Section 2 introduces process
of converting a COP into an equivalent dynamic constrained many-objective
optimization problem (DCMOP). Section 3 describes implementation of MaDC
algorithm. Experiments and results are shown in Sect. 4 to test whether the
methodology is effective. Section 5 gives the conclusion.

2 Convert COP to DCMOP

This section first converts a COP into a constrained many-objective optimization
problem (CMOP) which is equivalent to the COP. Then the CMOP is converted
into a dynamic constrained many-objective optimization problem (DCMOP), a
series of CMOPs. In this way, the COP can be solved by solving the equivalent
DCMOP.

66 X. Li et al.

2.1 Convert COP to CMOP

Without loss of generality, minimization optimization is assumed unless specified
otherwise in this paper. A constrained optimization problem (COP) can be stated
as follows:

min y = f(x)
st : g(x) = (g1(x), g2(x), ..., gm(x)) ≤ 0
where x = (x1, x2, ..., xn) ∈ X

X = {x |l ≤ x ≤ u}
l = (l1, l2, ..., ln),u = (u1, u2, ..., un)

(1)

where x is the solution vector and X is the whole search space, l and u are the
lower bound and upper bound of the solution space, respectively, g(x) ≤ 0 is
the constraint and 0 is the constrained boundary. When an equality constraint
h(x) = 0 is involved in the COP, it is usually transformed into an inequality
constraint |h(x)| − ε ≤ 0, ε is a positive close-to-zero number, ε = 0.0001 in this
paper.

A solution x = (x1, x2, ..., xn) is feasible if it satisfies the constraints condi-
tions g(x) ≤ 0, otherwise it is infeasible. A feasible set SF of a COP is defined
as SF = {x |x ∈ X and x isfeasible}.

Now we would like to construct a constrained many-objective optimization
problem equivalent to the COP discussed above. This can be implemented by
converting the constraint function g(x) = (g1(x), g2(x), ..., gm(x)) to violation
objective function ϕ(x) = (ϕ1(x), ϕ2(x), ..., ϕm(x)) and inserting ϕ(x) into the
COP as additional objectives without deleting the constraints g(x) ≤ 0, i.e.,
a constrained many-objective optimization problem (CMOP) is constructed as
follow:

min y = (f(x), ϕ1(x), ϕ2(x), ..., ϕm(x))
st : g = g(x) = (g1(x), g2(x), ..., gm(x)) ≤ 0 (2)

where x = (x1, x2, ..., xn) is n dimension search vector, y , g are functions of
vector x , ϕi(x) (i = 1, 2, · · · ,m) is a violation objective function converted
from gi(x) , the conversion is stated as:

ϕi(x) = max{gi(x), 0}, i = 1, 2, · · · ,m (3)

so the COP is transformed CMOP with m+1 evolution objectives and m con-
straint conditions.

Obviously, the CMOP in Eq. (2) has the same feasible set and the same
optimal solutions as the COP in Eq. (1). Then the CMOP is equivalent to the
COP, and therefore, we could solve the COP by the way of solving the CMOP
by using a constrained many-objective optimization algorithm.

In multi-objective optimization, Pareto dominance is an essential relation
in comparing two solution individuals. Given two solutions x 1 and x 2, x 1 is
called Pareto dominates x 2 if and only if fi(x 1) ≤ fi(x 2) for every objective
index i, and fj(x 1) < fj(x 2) for at least one index j. A solution x ∗ is Pareto
optimal (non-dominated) solution if there is no solution x such that f(x)
Pareto dominates f(x ∗).

Combining Dynamic Constrained Many-Objective Optimization 67

2.2 Convert CMOP to DCMOP

Many-objective evolutionary algorithm (MOEA) in solving CMOP will face the
same difficulty of handling constraints as that of EA in solving COP. We know
that multi-objective evolutionary algorithm in solving a multi-objective opti-
mization problem (MOP) without constraints performs very well, if we can make
the CMOP look MOP without constraints and use MOEA to overcome, we will
obtain the optimal resolution. So, the key issue is to achieve a feasible population
all the time, which can be addressed by adopting dynamic constraint handling
technique.

First, the original constrained boundary 0 of the CMOP in Eq. (2) is largely
broadened to e(0) at the beginning. Then the broadened boundary e(0) shrinks
gradually back to 0. Each change of boundary is small enough so that the whole
population is always near feasible.

This process constructs a sequence of CMOPs {CMOP (s)}, s = 0, 1, 2, · · · , S,
i.e., a dynamic constrained many-objective optimization problem (DCMOP) as
follows:

COMP 0

{
min y = (f(x), ϕ1(x), ϕ2(x), ..., ϕm(x))

st : g(x) ≤ e(0)

COMP 1

{
min y = (f(x), ϕ1(x), ϕ2(x), ..., ϕm(x))

st : g(x) ≤ e(1)

............

COMPS

{
min y = (f(x), ϕ1(x), ϕ2(x), ..., ϕm(x))

st : g(x) ≤ e(S) = 0

(4)

where e(s) = (e(s)1 , e
(s)
2 , ..., e

(s)
m), s ∈ {0, 1, 2, · · · , S}, e(0) ≥ e(1) ≥ · · · ≥

e(S) = 0.
e(s) is called elastic constrained boundary, and s is called environment

state.
The initial boundary e(0) on the initial state s = 0 needs to enable initial

population P(0) feasible, It is set as e
(0)
i = max

x∈P(0)
{gi(x)}, gi(x) is the function

value of the ith constraint, i = 1, 2, ...,m. On the final state s = S, the boundary
goes back to 0, i.e., e(S) = 0. the boundary change on every environment state
is modelled as follow:

e
(s)
i = Aie

−(s
Bi

)2 − ε, i = 1, 2, · · · ,m (5)

Regarding to elastic constrained boundary, if a solution satisfies inequality g ≤
x , it is said to be e-feasible, otherwise, it is said to be e-infeasible. Obviously,
a feasible solution is e-feasible, while an e-feasible solution might by infeasible
or feasible.

Pareto-domination is defined without considering the constraints, see
Subsect. 2.2. An e-constrained Pareto-domination for the DCMOP Eq. (4) is
stated as follows:

68 X. Li et al.

Given two solutions:

– if both are e-feasible, the one which dominates the other at all objectives
(involve the original objective and the violation objectives) wins;

– if one is e-feasible and the other is e-infeasible, the e-feasible solution wins;
– if both are e-infeasible, the one which dominates the other at violation objec-

tives wins.

3 Algorithm Description

This section gives the implementation of many-objective optimization algorithm
with dynamic constraints (MaDC) for solving DCMOP.

Algorithm 1. Framework of MaDC
step 1 : Initiation

1.1 Initialize parent population P(0) = {x1, x2, ...xN}. Set global generation
counter t = 0.
1.2 Initialize elastic constrained boundary e = e(0). Set environment state s = 0.
1.3 Determine reference points Z.

step 2 : Change state
IF population is e-feasible THEN reduce boundary e = e(s+1), s = s + 1.

step 3 : Generate offspring population
Use DE to generate offspring population S(t) from P(t) and evaluate S(t).

step 4 : Generate next population
Use reference-point-based nondominated sorting approach to select individuals
from combined S(t) and P(t) to create next population P(t + 1).

step 5 : t = t + 1, IF s achieves final state S or t achieves MaxG, THEN goto Step
6, ELSE goto Step2.

step 6 : Output results.

MaDC use DE to generate offspring, and reference-point-based nondomi-
nated sorting approach to create next population. Reference-point-based non-
dominated sorting approach is proposed in literature [12], it is an evolutionary
many- objective optimization technique of combining nondominated sorting and
reference-point-based selection strategy.

Note if the algorithm could not evolve to achieve an e-feasible population on
a certain state s, then it would iterate infinitely on this state. A maximal run
generation MaxG is set to abort the run.

The generation of offspring population in step 3 of Algorithm 1 is a combina-
tion of some genetic operators: affine mutation, crossover and uniform mutation.
The detail of genetic operators is as Algorithm 2:

Combining Dynamic Constrained Many-Objective Optimization 69

Algorithm 2. Generate offspring procedure
input : P(t), F , CR, Pm

output : Offspring population S(t)
step 1 : S(t) = Φ.
step 2 : For every individual xi ∈ P(t), i = 1, 2, 3, ..., N do:

2.1 Affine Mutation:
vi = xa + F(xb − xc)
xa, xb, xc ∈ P(t), a �= b �= c �= i, are selected randomly three individuals.
2.2 Crossover on xi = (xi1, xi2, · · · , xin) and vi = (vi1, vi2, · · · , vin) :

uij =

{
vij if rrnd < CR or j = jrnd

xij if rrnd ≥ CR or j �= jrnd

j = 1, 2, ..., n

jrnd = rndInt(1, n), rrnd = rndReal(0, 1)

2.3 Uniform Mutation on ui = (ui1, ui2, · · · , uin) :
Change uij = rndReal(0, 1) with probability Pm for j = 1, 2, ..., n.

step 3 : Add each ui(i = 1, 2, 3, ..., N) into S(t).
step 4 : Return S(t).

Algorithm 3 was given as the details of creating next parent population. It
uses reference-point-based nondominated sorting method to select individuals to
construct the next population.

Algorithm 3. Generate next population
input : Q(t), Z, N
output : N(t)
step 1 : N(t) = Φ. (F1,F2, · · ·) = Non-dominated-sort(Q(t)). i = 1.
step 2 : IF |N(t)| + |Fi| < N , THEN N(t) = N(t) ∪ Fi, i = i + 1, goto Step 2 ;

IF |N(t)| + |Fi| = N , THEN N(t) = N(t) ∪ Fi , goto Step 4 ;
IF |N(t)| + |Fi| > N , THEN goto Step 3.

step 3 : Select N − |N(t)| individuals from Fi and add them into N(t):
3.1 Associate each solution of N(t) with closest reference point by the perpendic-
ular distance, compute the niche count of each reference point.
3.2 Select randomly a point r which have smallest niche count.
3.3 Let Ir be a set of individuals associated with r, Ir ⊆ Fi. IF |Ir| = Φ, THEN
remove r from Z temporarily at this generation, goto 3.2 ;
ELSE: IF nichecount(r) = 0, THEN select the member s which has smallest per-
pendicular distance to r; IF nichecount(r) �= 0, THEN select a member s randomly
from Ir
3.4 Add the selected member s into N(t), nichecount(r)= nichecount(r)+1, Fi =
Fi \ s.
3.5 Repeat the selection above, until all N − |N(t)| individuals are chosen.

step 4 : Return N(t).

70 X. Li et al.

4 Experiments and Results

In this section, we apply our proposed methodology to a number of benchmark
problems proposed in Problem Definitions and Evaluation Criteria for the CEC
2006 Special Session on Constrained Real-Parameter Optimization [13], online
available: http://www.ntu.edu.sg/home/epnsugan/. The 24 test instances are
minimization problems. The detail of the test problems refers to [13].

4.1 Determination of Reference Points and Algorithm Parameters

The proposed algorithm uses a predefined set of reference points to ensure diver-
sity of many-objective optimization. We use determination method presented in
[12] that places points on a normalized hyper-planean (M − 1)-dimensional unit
simplex—which is equally inclined to all objective axes and has an intercept of
one on each axis. If p divisions are considered along each objective, the total
number of reference points (H) in an M -objective problem is given by:

H = Cp
M+p−1 (6)

For example, in a three-objective problem (M = 3), if six divisions (p = 6)
are chosen for each objective axis, H = 28 reference points will be created
[12]. When there are many objectives (M ≥ 5), one layer of reference points
is not appropriate. For eight-objective problems, even if we use p = 8 (to have
exactly one intermediate reference point), it requires 5040 reference points. To
avoid such a situation, we use two layers of reference points (boundary layer and
inside layer) in many-objective problems.

The population size N is set the number of reference points. Table 1 shows
the number of chosen reference points (H) and corresponding population sizes.

Table 1. Number of reference points and corresponding population size

M p of boun. p of insi. H popsize M p of boun. p of insi. H popsize

2 90 0 91 91 8 2 2 72 72

3 12 0 91 91 9 2 2 90 90

4 6 0 84 84 10 2 2 110 110

5 4 2 85 85 14 2 1 119 119

6 3 2 77 77 39 1 1 78 78

7 3 1 91 91 – – – – –

Other parameters are as follow:
Number of repeats: 25.
In the offspring generation procedure (Algorithm 2), the scaling factor F = 0.5,

crossover rate CR = 0.9, uniform mutation probability Pm = 0.01.

http://www.ntu.edu.sg/home/epnsugan/

Combining Dynamic Constrained Many-Objective Optimization 71

Table 2. Function values obtained by MADC, SAMO-DE, ECHT-EP2, DE-DPS,
HCOEA and DCMOEA

Pro. Crit. MaDC SAMO-EA ECHT-EP2 DE-DPS HCOEA DCMOEA

g01 best −15.0000 −15.0000 −15.0000 −15.0000 −15.0000 −15.0000

Avg. −15.0000 −15.0000 −15.0000 −15.0000 −15.0000 −15.0000

g02 best −0.8036191 −0.8036191 −0.8036191 −0.8036190 −0.803241 −0.8036191

Avg. −0.8010908 −0.7987352 −0.7998220 −0.8036189 −0.801258 −0.7969470

g03 best −1.0005 −1.0005 −1.0005 −1.0005 −1.0005 −1.0005

Avg. −1.0005 −1.0005 −1.0005 −1.0005 −1.0005 −1.0005

g04 best −30665.5386 −30665.5386 −30665.5386 −30665.5386 −30665.5386 −30665.5386

Avg. −30665.5386 −30665.5386 −30665.5386 −30665.5386 −30665.5386 −30665.5386

g05 best 5126.4967 5126.497 5126.497 5126.497 5126.498 5126.498

Avg. 5126.4967 5126.497 5126.497 5126.497 5148.960 5126.498

g06 best −6961.8138 −6961.8138 −6961.8138 −6961.8138 −6961.8138 −6961.8138

Avg. −6961.8138 −6961.8138 −6961.8138 −6961.8126 −6961.8138 −6961.8138

g07 best 24.3062 24.3062 24.3062 24.3062 24.3062 24.3062

Avg. 24.3063 24.3096 24.3063 24.3062 24.307 24.3064

g08 best −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.095825

Avg. −0.095825 −0.095825 −0.095825 −0.095825 −0.095825 −0.093491

g09 best 680.630 680.630 680.630 680.630 680.630 680.630

Avg. 680.630 680.630 680.630 680.630 680.630 680.630

g10 best 7049.249 7049.249 7049.249 7049.248 7049.287 7049.248

Avg. 7049.304 7059.813 7049.249 7059.248 7049.525 7049.248

g11 best 0.7499 0.7499 0.7499 0.7499 0.750 0.75

Avg. 0.7499 0.7499 0.7499 0.7499 0.750 0.75

g12 best −1.000 −1.000 −1.000 −1.000 −1.000 −1.000

Avg. −1.000 −1.000 −1.000 −1.000 −1.000 −1.000

g13 best 0.05394 0.05394 0.05394 0.05394 0.05395 0.05395

Avg. 0.05394 0.05394 0.05394 0.81702 0.05395 0.05395

g14 best −47.76488 −47.76488 −47.7649 −47.76488 – –

Avg. −47.76395 −47.68115 −47.7648 −47.76488 – –

g15 best 961.71502 961.71502 961.71502 961.71502 – –

Avg. 961.71502 961.71502 961.71502 962.13142 – –

g16 best −1.905155 −1.905155 −1.905155 −1.905155 – –

Avg. −1.905155 −1.905155 −1.905155 −1.905155 – –

g17 best 8853.5338 8853.5397 8853.5397 8862.6287 – –

Avg. 8853.5338 8853.5397 8853.5397 8934.8675 – –

g18 best −0.866025 −0.866025 −0.866025 −0.866025 – –

Avg. −0.866024 −0.866024 −0.866025 −0.866025 – –

g19 best 32.65559 32.65559 32.6591 32.65559 – –

Avg. 32.65564 32.75734 32.6623 32.65559 – –

g21 best 193.72451 193.72451 193.7246 193.72451 – –

Avg. 193.72451 193.77137 193.7348 193.72451 – –

g23 best −400.0451 −396.1657 −398.9731 −400.0551 – –

Avg. −395.8492 −360.8176 −373.2178 −395.6745 – –

g24 best −5.508013 −5.508013 −5.508013 −5.508013 – –

Avg. −5.508013 −5.508013 −5.508013 −5.508013 – –

The ε in Eq. 5 was set to 0.000 000 1.
The number of environment changes was set S = 240000/N .
The maximal run generation MaxG = 10000, if a problem has no feasible

solutions or the algorithm could not find feasible solutions, the algorithm would

72 X. Li et al.

abort after evolving 10 000 generations. Problems g20 and g22 could not find
feasible solution.

4.2 Results and Comparison

The detailed results of MaDC are provided in Table 2, along with that of the
state-of-the-art algorithms such as: (1) self-adaptive multioperator differential
evolution (SAMO-DE) [14]; (2) ensemble of constraint handling techniques based
on evolutionary programming (ECHT-EP2) [15]; (3) differential evolution with
dynamic parameters selection (DE-DPS) [3]; (4) hybrid constrained optimization
evolutionary algorithm (HCOEA) [8]; (5) dynamic constrained multi-objective
evolutionary algorithm (DCMOEA) [10]. All algorithms solved 22 test problems,
except HCOEA and DCMOEA, in which only the 13 test problems were solved.

From Table 2, MaDC was able to obtain the optimal solutions for all prob-
lems except g23. The algorithm SAMO-DE, ECHT-EP2, DE-DPS were able to
obtain the optimal solutions for 20, 19, 20 problems, respectively. The algo-
rithm HCOEA and DEMOEA obtained the optimal solutions for 9, 12 out of
13 problems. In regard to the average results, MaDC is superior to SAMO-DE,
ECHT-EP2, DE-DPS, HCOEA and DEMOEA for eight, four, three, three, two
text problems, respectively. It can be seen that our proposed method performs
better than or is competitive to state-of-the-art algorithms.

5 Conclusion

In this paper, we have suggested a many-objective optimization algorithm with
dynamic constraint mechanism for solving constrained optimization problem. We
first construct an equivalent dynamic constrained many-objective optimization
problem to the COP, then adopt MaDC algorithm to solve the DCMOP, thus
the COP is solved. Dynamic technology is implemented by setting an elastic
boundary for the constrained problem, and the trade-off between the population
diversity and accuracy is mainly handled by reference-point-based nondominated
sorting method. The proposed algorithm is tested by a number of benchmark
problems. Experimental results show that it is competitive to state-of-the-art
algorithms referred in this paper. The future work should be: (1) Retaining
more feasible solutions to improve the performance of the algorithm in each
evolutionary generation by adopting other selection strategy; (2) Introducing
other better many-objective optimization technique in the algorithm; (3) Using
dynamic parameters selection mechanism in DE to speed up the convergence of
the algorithm; (4) To explore other candidates of the dynamic environment.

Acknowledgment. This work was supported by the National Natural Science
Foundation of China and other foundations(No.s: 61271140, 61203306, 2012001202,
61305086).

Combining Dynamic Constrained Many-Objective Optimization 73

References

1. Mezura-Montes, E., Coello, C.A.C.: Constraint handling in nature-inspired numer-
ical optimization: Past, present and future. Swarm Evol. Comput. 1(4), 173–194
(2011)

2. Kramer, O.: A review of constraint-handling techniques for evolution strategies.
In: Applied Computational Intelligence and Soft Computing, vol. 2010 (2010)

3. Sarker, R.A., Elsayed, S.M., Ray, T.: Differential evolution with dynamic parame-
ters selection for optimization problem. IEEE Trans. Evol. Comput. 18(5), 689–707
(2014)

4. Coello, C.A.C.: Constraint-handling using an evolutionary multi-objective opti-
mization technique. Civil Eng. Environ. Syst. 17, 319–346 (2000)

5. Coello, C.A.C., Mezura-Montes, E.: Constraint-handling in genetic algorithms
through the use of dominance-based tournament election. Adv. Eng. Inform. 16(3),
193–203 (2002)

6. Venkatraman, S., Yen, G.G.: A generic framework for constrained optimization
using genetic algorithms’. IEEE Trans. Evol. Comput. 9(4), 424–435 (2005)

7. Hsieh, M., Chiang, T., Fu, L.: A hybrid constraint handling mechanism with dif-
ferential evolution for constrained multiobjective optimization. In: IEEE Congress
on Evolutionary Computation, pp. 1785–1792 (2011)

8. Wang, Y., Cai, Z., Guo, G., Zhou, Y.: Multiobjective optimization and hybrid
evolutionary algorithm to solve constrained optimization problems. IEEE Trans.
Syst. Man Cybern. 37(3), 560–575 (2007)

9. Deb, K., Datta, R.: A fast and accurate solution of constrained optimization prob-
lems using a hybrid bi-objective and penalty function approach. In: IEEE Congress
on Evolutionary Computation, pp. 165–172 (2010)

10. Zeng, S., Chen, S., Zhao, J., Zhou, A., Li, Z., Jing, H.: Dynamic constrained multi-
objective model for solving constrained optimization problem. In: IEEE Congress
on Evolutionary Computation, pp. 2041–2046 (2011)

11. Li, X., Zeng, S., Qin, S., Liu, K.: Constrained optimization problem solved by
dynamic constrained NSGA-III multiobjective optimizational techniques. In: IEEE
Congress on Evolutionary Computation, pp. 2923–2928 (2015)

12. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using
reference-point-based nondominated sorting approach, part i: solving problems
with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)

13. Liang, J.J., Runarsson, T.P., Mezura-Montes, E., Clerc, M., Suganthan, P.N.,
Coello, C.A.C., Deb, K.: Problem definitions and evaluation criteria for the
CEC2006 special session on constrained real-parameter optimization (2006).
http://www.ntu.edu.sg/home/epnsugan/

14. Elsayed, S.M., Sarker, R.A., Essam, D.L.: Multi-operator based evolutionary algo-
rithms for solving constrained optimization problems. Comput. Oper. Res. 38(12),
1877–1896 (2011)

15. Mallipeddi, R., Suganthan, P.N.: Ensemble of constraint handling techniques. IEEE
Trans. Evol. Comput. 14(4), 561–579 (2010)

http://www.ntu.edu.sg/home/epnsugan/

	Combining Dynamic Constrained Many-Objective Optimization with DE to Solve Constrained Optimization Problems
	1 Introduction
	2 Convert COP to DCMOP
	2.1 Convert COP to CMOP
	2.2 Convert CMOP to DCMOP

	3 Algorithm Description
	4 Experiments and Results
	4.1 Determination of Reference Points and Algorithm Parameters
	4.2 Results and Comparison

	5 Conclusion
	References

