
Near Lossless Image Compression Using
Block Division Byte Compression
and Block Optimization

Debashis Chakraborty, Shouvik Saha and Tanay Mukherjee

Abstract Although lossless techniques should be preferred over lossy techniques it
is not always the case. This is because lossy techniques tend to decrease the overall
computational time. The method described below proposes a near lossless tech-
nique that works on the spatial domain and utilizes a few properties of pixel values
to reduce significantly the bit representation size of the pixel values. This algorithm
utilizes a new difference concept by dividing the pixel values into groups and using
a fixed value for each block to be used as a difference factor. This algorithm also
approaches compression by merging the red, green, and blue components into a
single component with one third the size. The algorithm provides a level of com-
pression that remains stable irrespective of the size or dimensions of the image
while leaving an acceptable range of (30–50) PSNR that is also stable.

Keywords Pixel values � Block division � Byte compression � Block optimiza-
tion � PSNR

1 Introduction

The technique by which redundant data are filtered out of an image and a lot of
unnecessary space is saved in a limited amount of available storage is known as
image compression. There are two common forms of image compression: lossy
image compression and lossless image compression [1–6]. The lossless techniques
of image compression are used in situation where even a small amount of noise

Debashis Chakraborty (&) � Shouvik Saha � Tanay Mukherjee
Department of CSE, St. Thomas’ College of Engineering and Technology,
Kolkata 700023, India
e-mail: sunnydeba@gmail.com

Shouvik Saha
e-mail: sahajoy90@gmail.com

Tanay Mukherjee
e-mail: tanay.online@hotmail.com

© Springer Science+Business Media Singapore 2016
N.R. Shetty et al. (eds.), Emerging Research in Computing, Information,
Communication and Applications, DOI 10.1007/978-981-10-0287-8_9

95



cannot be tolerated and the exact information without any disruption is needed.
Lossy techniques are more commonly used as they do not require the precision of
the lossless techniques but work nearly as well. The values of the adjacent pixels of
an image do not vary in a large manner so we can coordinate these into a single
value. If the image is separated into different spatial blocks according to the pixel
values the loss due to the compaction of the adjacent pixel can also be reduced.
A novel compression/decompression algorithm is depicted in this paper, which
exploits the pixel domain of an image and reduces the redundancy by working in
small domains and preserving them. The proposed method provides us with
advantages such as fast encoding, high ratio of compression, and simple encoding.

2 Algorithm Strategy

The image is loaded into a matrix of the same size. After loading the image the
pixels are divided into 32 different groups according to their values. The groups are
found by dividing the pixel values by 8 and the remainders form the new pixel
values. The range of these groups or blocks are 0–7, 8–15,…, 248–255. As seen
from the division of blocks, the max value for any new pixel is 7. Hence, each of
the red, green, and blue values is turned into 3-bit values at the most.

An example of this approach is shown in Fig. 1.
Byte compression is applied on these values keeping the red and green values

intact and reducing the blue value into 2 bits, thus the 3-byte pixel data are reduced
to a single byte. The block compression technique is further applied using 4 × 4
blocks for achieving a better compression.

The decompression is done in the opposite method. At first block decompression
is applied regenerating the image matrix to its original size before the compression

Fig. 1 Block compression.

96 Debashis Chakraborty et al.



is applied. The red, green, and blue are extracted from the bytes and associated with
their representative blocks, that is, 0–31 to get the 8-bit values of red, green, and
blue for each pixel thus generating the decompressed image.

3 Byte Compression/Decompression

Byte compression [7, 8] is a technique that reduces the space of a color image by
storing the 3-byte RGB components into 2 bytes. The red component is reduced to
5 bits by left shifting by 3 places; the green component is also treated accordingly
and the blue component is reduced to 6 bits. Thus the total size of the RGB
components is reduced to 16 bits from the previous size of 24 bits. The technique
used here is similar but somewhat different. Here the red component and the green
component are of 3 bits each. The blue component is left shifted by one bit. This
3-bit red component, 3-bit green component, and 2-bit blue component are merged
to form a single 8-bit value that is substituted in place of the original RGB values.
Thus the same data that were previously stored in 3 bytes are now stored in 1 byte.

The strategy taken is shown in Fig. 2.

4 Block Compression/Decompression

In this technique the image is thought of as a cluster or collection of various
n × n blocks. These n × n blocks, which are also known as masks, are replaced with
their mean of average value to get a compressed and smaller image. The value of n is
the main determinant in this type of compression with a higher value of n resulting in
better compression but affecting the value of PSNR in a negative way. In the time of
decompression each value of the compressed image matrix forms an n × n matrix of
its own while repeating the same value. This way the decompression algorithm
generates the decompressed image with the original dimensions [7, 9, 10].

Fig. 2 Byte compression.

Near Lossless Image Compression Using Block Division Byte … 97



5 PSNR

PSNR [3–5] is commonly calculated with the help of mean squared error (MSE).
MSE is defined as

MSE ¼ 1
m � n

Xm�1

i¼0

Xn�1

j¼0

½Iði; jÞ � Kði; jÞ�2 ð1Þ

The PSNR (in dB) is defined as:

PSNR ¼ 10 � log10
MAX2

i

MSE

� �

¼ 20 � log10
MAXiffiffiffiffiffiffiffiffiffiffi
MSE

p
� �

¼ 20 � log10ðMAXIÞ � 10 � log10ðMSEÞ

ð2Þ

where MAX is the maximum intensity value present in the image, mostly equal to
255 for grayscale images, and I denotes a single color image on a neutral back-
ground with dimensions m × n and K denotes I with noise added to it.

The compression of an image is calculated as

Compression% ¼ actual file size� compressed file sizeð Þ=actual file sizeð Þ � 100
ð3Þ

6 Proposed Algorithm

The algorithm takes any colored image as input. This algorithm provides a very
high compression ratio by compressing the image into a really small size.

Algorithm for Encoding

Step 1: Read the given image.
Step 2: Minimize the pixel value.

• Divide the image into groups by dividing each pixel value by 8.
• For each pixel value divided by 8 find the remainder and store it in

place of the old pixel value.

Step 3: Byte compression.

• Left shift the blue component to get it into 2 bits.
• Merge the red, blue, and green components into a single 8-bit value and

store it in place of the three components.

98 Debashis Chakraborty et al.



Step 4: Block compression using 4 × 4 blocks.

• Take a 4 × 4 block from the matrix.
• Calculate the average of these 16 values.
• Replace the entire block with this average value.

Algorithm for Decoding

Step 1: Read the compressed image.
Step 2: Block decompression.

• Read a pixel from the image.
• Create a 4 × 4 block with each value being the same as that of the pixel

read.
• Replace the single pixel with this 4 × 4 block.

Step 3: Byte decompression.

• Read a single value from the new matrix.
• Convert the value into binary.
• Divide the binary value into three parts with bits 1–3 being the first

part, bits 4–6 being the second part, and the remainder as the third part.
• Convert the first part into decimal and store as the new red component,

the second part into decimal and store as the new green component, and
the third part into decimal and store as the new blue component.

Step 4: Extraction of the actual pixel values.

• Take a pixel value and check to which group it belongs.
• Multiply the group number by 8 and add the pixel value to it.
• Store this value as the decompressed pixel value.
• Continue this for all components.

7 Experimental Results

This proposed algorithm for compression/decompression of images is implemented
using MATLAB®. The images for input are taken as .ppm images. The testing is
done using images of different dimensions and sizes giving us an idea of the
robustness of this algorithm. Table 1 shows the comparison between the resulting
image on decompression by the proposed algorithm, the image in its original
quality, and the image in .jpeg format. Table 2 is a tabulated structure to compare
the compression ratio between the proposed algorithm and the JPEG algorithm. The
ideal PSNR ranges from 30 to 50 dB; the PSNR of the decompressed images is also
calculated and shown in Table 2 to see whether they fall in the given range.

Near Lossless Image Compression Using Block Division Byte … 99



8 Conclusion

The proposed algorithm is a robust and effective compression algorithm for digital
images. Although being lossy in nature it shows its effectiveness as it provides
simple implementation, and a higher compression ratio than JPEG images in most

Table 1 Comparison of decompressed images

Lenna.ppm Mandrill.ppm Peppers.ppm Barbara.ppm

Image in its
original quality

Decompressed
image by
proposed method

Decompressed
image by JPEG
algorithm

Table 2 Comparison of compression ratios with PSNR of images

Original
image

Original
image size (in
kB)

Compressed size by
proposed algorithm
(% compression)

Compressed size
by JPEG algorithm
(% compression)

PSNR by
proposed
algorithm
(in dB)

Lenna.ppm 11,342 64.0 kB
(99.43 %)

129 kB
(98.86 %)

34.31

Mandrill.ppm 4450 25.0 kB
(99.44 %)

59.0 kB
(98.67 %)

34.39

Peppers.ppm 6609 39.0 kB
(99.41 %)

86.9 kB
(98.68 %)

34.45

Barbara.ppm 2785 16.0 kB
(99.42 %)

50.2 kB
(98.20 %)

34.36

Castle.ppm 2475 14.0 kB
(99.43 %)

33.9 kB
(98.63 %)

34.25

Satellite.ppm 1228 7.82 kB
(99.36 %)

47.7 kB
(96.12 %)

34.46

Parrot.ppm 4794 29.3 kB
(99.39 %)

89 kB
(98.14 %)

34.35

Lemon.ppm 6750 42.7 kB
(99.37 %)

116 kB
(98.28 %)

34.34

100 Debashis Chakraborty et al.



cases. This algorithm is applicable to color images of different dimensions and sizes
giving it a much larger domain in which it can be used. With the recent trend of
various multimedia applications and cross-platform media exchange, this algorithm
can prove to be really useful to the ever-expanding universe of Internet and media
exchange.

References

1. Salomon, D.: Data compression the complete reference, 3rd edn. Springer Press, Heidelberg
2. Saffor, A., Ng, K.-H., Ramli, A.R.: A comparative study of image compression between Jpeg

and wavelet. Malaysian J. Comput. Sci. 14(1), 39–45 (2001)
3. Pennebaker, W., Mitchell, J.: JPEG-still image data compression standards. Van Nostrand

Reinhold (1993)
4. Padmaja, G.M., Nirupama, P.: Analysis of various image compression techniques.

ARPN J. Sci. Technol. 2(4) (2012)
5. Acharya, T., Tsai, P.-S.: JPEG2000 Standard for Image Compression
6. http://en.wikipedia.org/wiki/Lossy_compression
7. Banerjee, A., Halder, A.: An efficient dynamic image compression algorithm based on block

optimization, byte compression and run-length encoding along Y-axis. In: International
Conference on Science and Information Technology (ICCSIT), (2010)

8. Ghosh, A., Chakraborty, D.: A lossy image compression by shrinking of repeating intensities
in alternate dimensions and reducing bits for storage. In: ERCICA-2014, Bangalore, India,
pp. 415–420

9. Halder, A, Dey, S., Mukherjee, S., Banerjee, A.: An efficient image compression algorithm
based on block optimization and byte compression. In: ICISA-2010, Chennai, Tamilnadu,
India (2010)

10. Das, N., Chakraborty, D.: An efficient compression for almost dual colored image using
K-means clustering and block compression. In: ERCICA-2014, Bangalore, India, pp. 410–414

Authors Biography

Mr. Debashis Chakraborty is an Assistant Professor in the
Department of Computer Science and Engineering, St. Thomas’
College of Engineering and Technology, Kolkata, West Bengal,
India. He has authored or coauthored about 17 conference papers
in the area of data and image compression.

Near Lossless Image Compression Using Block Division Byte … 101

http://en.wikipedia.org/wiki/Lossy_compression


Mr. Shouvik Saha is pursuing a B. Tech degree in Computer
Science and Engineering from St. Thomas’ College of Engineering
and Technology, Kolkata, West Bengal, India. This paper is part of
the final-year project on data and image compression under the
guidance of Mr. Chakraborty.

Mr. Tanay Mukherjee is pursuing a B. Tech degree in Computer
Science and Engineering from St. Thomas’ College of Engineering
and Technology, Kolkata, West Bengal, India. This paper is part of
the final-year project on data and image compression under the
guidance of Mr. Chakraborty.

102 Debashis Chakraborty et al.


	9 Near Lossless Image Compression Using Block Division Byte Compression and Block Optimization
	Abstract
	1 Introduction
	2 Algorithm Strategy
	3 Byte Compression/Decompression
	4 Block Compression/Decompression
	5 PSNR
	6 Proposed Algorithm
	7 Experimental Results
	8 Conclusion
	References


