
Ant Colony Optimization Meta-heuristic
for Solving Real Travelling Salesman
Problem

Sourabh Joshi and Sarabjit Kaur

Abstract Ant colony optimisation is a population-based advanced approach for
finding the solution of difficult problems with the help of a bioinspired approach
from the behaviour of natural ants. The ant colony algorithm is a propelled opti-
misation method which is utilised to take care of combinatorial optimisation
problems. The significant features of this algorithm are the utilisation of a mixture
of preinformation and postinformation for organizing great solutions. The ant
colony algorithm is used in this paper for solving the travelling salesman problem
of the real set of data and getting the optimal results on graphs. This algorithm is an
meta-heuristic algorithm in which we used the 2-opt local search method for tour
construction and roulette wheel selection method for selection of nodes while
constructing the route. The results show that this algorithm can efficiently find the
optimal path of the hundred cities with minimum time and cost.

Keywords Ant colony algorithm � Metaheuristic � Genetic algorithm � Travelling
salesman problem

1 Introduction

Ant colony optimisation (ACO) is a bioinspired mechanism used in genetic pro-
gramming to solve complex probabilistic problems. ACO was invented in 1992 by
Marco Dorigo in his PhD thesis [1]. The ant colony optimisation algorithm is
widely used because of the use of positive feedback mechanism, heuristic proba-
bility, computing distributed numeric information, and other characteristics.
The ACO algorithms are used for solving the different problems of discrete
mathematics and operation search such as the quadratic assignment problem and
travelling salesman problem (TSP). In the ACO, we use a mixture of some advance

Sourabh Joshi (&) � Sarabjit Kaur
Department of CSE, CT Institute of Technology & Research,
Jalandhar 144002, India
e-mail: er.sourabhjoshi@gmail.com

© Springer Science+Business Media Singapore 2016
N.R. Shetty et al. (eds.), Emerging Research in Computing, Information,
Communication and Applications, DOI 10.1007/978-981-10-0287-8_5

55

and run-time knowledge for making decisions in the formula. TSP is a NP-hard
problem which can be developed to be an admissible solution for any other problem
that belongs to the NP-hard class [2]. In this paper roulette wheel selection is used,
which is the most democratic selection method where the selection of parents is
based upon their fitness. The better chromosomes are selected so that they can give
feasible results. The algorithm generates random numbers in the initial phase of tour
construction to select the city randomly based on probability of finding the city in
the search area [3]. The other sections of this paper are as follows; Sect. 2 gives
the background detail of TSP and explains the algorithm. Section 3 explains the
roulette selection which is used in the ACO framework and Sect. 4 describes the
implementation part with the test and results.

2 Ant Colony Optimisation for TSP

2.1 TSP

The problem of finding an optimal path between n number cities is known as
TSP. The TSP is a most significant problem first posed by the Irish mathematician
W. R. Hamilton in the nineteenth century [4]. This problem has also been intensely
studied in operations research and other areas since 1930. Formally, TSP can be
represented by a complete weighted graph, G = (V, E), in which V represents a set
of n vertices and E represents a set of bidirectional edges between Vi, Vj € V, and
minimize the vertices ∑ni = 0 Wi,j, where Wi,j is used to represent an edge weight
between two vertices Vi and Vj.

2.2 Ant Colony Optimisation

The ant colony meta-heuristic is an advanced approach for finding the solution of
difficult problems with the help of a bioinspired approach from the behaviour of
natural ants [5]. In ACO we use artificial ants which work similarly to natural ants
for searching a good solution of the optimisation problem, whereas applying the
ACO optimisation problem converts it into a weighted graph problem for finding
the best feasible path [6]. The ACO algorithm is divided into three main parts as
follows.

Tour Construction We start constructing our tour by placing ants at random
places (vertices) in our graph where each ant will decide which is the best path to
reach the next vertex by taking the next move based on the formula

56 Sourabh Joshi and Sarabjit Kaur

qkxy ¼
sxyðtÞ½ �a gxy½ �b

P
l2JkðxÞ

sxlðtÞ½ �a gxl½ �b if y 2 JkðxÞ

0 otherwise

8
<

:
ð1Þ

where ρ is the probability of the ant to move from one vertex to another. The
variable τ is used to represent the quantity of pheromone while searching for food,
and α is a heuristic constant which is used for finding the paths due to its greedy
approach [7]. This is the case where the inverted distance is 1/distance between the
city x and y and raised to the power of β is also a heuristic constant which describes
the speed of selecting paths by ants and everything calculated until it is divided by
the summations of every solution. The record of cities where the ant k passes is kept
in the tabu list (tabuk) [8].

Pheromone Update After construction of the tour, updating of residual informa-
tion is performed when all the ants finish their traversing. This is the formula:

sxyðtþ nÞ ¼ ð1�qÞ � sxyðtÞþDsxyðtÞ ð2Þ

where

DsxyðtÞ ¼
X

k¼1

mDskxyðtÞ ð3Þ

τ is the absolute pheromone amount which gets deposited for worker (ant) k on the
edge xy. ρ refers to the pheromone volatisation coefficient and (1 − ρ) represents the
delay of pheromone ranges 0–1 [9].

Terminating Condition If the terminating condition is satisfied (i.e., all the cities
are visited and no city is repeated), the circulation will stop. Compare all the best
solutions previously updated in the tabu list (tabuk) in every iteration and find the
optimal solution; otherwise empty the tabu list and continue the iteration.

2.3 Genetic Algorithm

A genetic algorithm approach is inspired from the chromosomes which are used to
solve complex problems [10]. They are used to handle the population of possible
solutions where each solution represents a chromosome containing an abstract
representation [11]. The genetic algorithm iteration has these phases:

Selection phase The selection process defines the fitness of randomly selected
individuals.
Reproduction This process uses both recombination and mutation for producing
new chromosomes.

Ant Colony Optimization Meta-heuristic for Solving Real … 57

Evaluation In this process evaluation is done on the basis of fitness of new
chromosomes.
Replacement In this process, old chromosomes are replaced by the new ones.

3 Roulette Wheel Selection

In the roulette wheel selection method [12], we use the random number generation
mechanism for selecting the best path. In the roulette wheel selection mechanism
the spinning of each segment is according to the probabilities of selecting parent
values with the most fitness having more probability to be chosen. The largest
segment is occupied by the fittest individual whereas in correspondence the smaller
segment is occupied by the least fit within the roulette wheel [13]. The circum-
ference of the roulette wheel is considered as the sum of all segments on the surface
of the wheel [14]. In this selection mechanism, selection is done by finding the
probability of individual K, P(Choice zK) as defined with the equation as

P Choice zKð Þ ¼ def fitness Kð Þ
P

njz; fitness jð Þ ð4Þ

Here’s some pseudo-code of the roulette wheel selection for computing fitness of
the individual.

4 Experiments and Results

4.1 Problem Formulation

The aim of this paper is to solve the TSP problem which is a NP-hard problem by
using the ACO meta-heuristic. NP problems are nondeterministic polynomial time
problems; the NP-complete problems are hard once whose solutions can deal with
any other NP problem in polynomial time. We can also find suboptimal solutions of
NP problems which may be found in polynomial time.

Algorithm: Roulette wheel Selection ()
r :=random number ,0 r ≤ ≤ 1 ;
Sum: 0;
For each individual K
{
 Sum: = sum +P (ChoicezK)
 If r <Sum;
 return;
}

58 Sourabh Joshi and Sarabjit Kaur

Table 1 100 cities on which optimisation is performed

S. no. Cities S. no. Cities

1. Saharanpur–Shamli 51. Varanasi–Chanauli

2. Shamli–Muzaffar Nagar 52. Chandauli–Sasaram

3. Muzaffar Nagar–Bijnor 53. Sasasram–Aurangabad

4. Bijnor–Meerut 54. Aurangabad–Gava

5. Meerut–Baghpat 55. Gava–Nawada

6. Baghpat–Gaziabad 56. Nawada–Shiekhpura

7. Gaziabad–Noida 57. Shiekhpura–Lakhisarai

8. Noida–Hapur 58. Lakhisarai–Munger

9. Hapur–Bulandshahar 59. Munger–Khagaria

10. Bulandshahar–Aligarh 60. Khagaria–Katihar

11. Aligarh–Hathras 61. Katihar–Purnia

12. Hatras–Mathura 62. Purnia–Araria

13. Mathura–Agra 63. Araria–Supaul

14. Agra–Firozabad 64. Supaul–Madhepura

15. Firozabad–Etah 65. Madhepura–Saharsa

16. Etah–Mainpuri 66. Saharsa–Samastipur

17. Mainpuri–Etawah 67. Samastipur–Darbhanga

18. Etawah–Auraiya 68. Darbhanga–Madhubani

19. Auraiya–Akbarpur 69. Madhubani–Sitamarhi

20. Akbarpur–Orai 70. Sitamarhi–Muzzafarpur

21. Orai–Jhansi 71. Muzzafarpur–Hajipur

22. Jhansi–Lalitpur 72. Hajipur–Chhapra

23. Lalitpur–Datia 73. Chhapra–Siwan

24. Datia–Shivpuri 74. Siwan–Gopalganj

25. Shivpuri–Badarwas 75. Gopalganj–Gorakhpur

26. Badarwas–Guna 76. Gorakhpur–Khalilabad

27. Guna–Rajgarh 77. Khalilabad–Basti

28. Rajgarh–Shajapur 78. Basti–Faizabad

29. Shajapur–Ujjain 79. Faizabad–Bora Banki

30. Ujjain–Dewas 80. Bora Banki–Lukhnow

31. Dewas–Indore 81. Lukhnow–Hardoi

32. Indore–Dhar 82. Hardoi–Sitapur

33. Dhar–Jhabua 83. Sitapur–Shahjahanpur

34. Jhabua–Alirajpur 84. Shahjahanpur–Kashganj

35. Alirajpur–Barwani 85. Kashganj–Budaun

36. Barwani–Khargane 86. Budaun–Bareilly

37. Khargane–Khandwa 87. Bareilly–Pilibhit

38. Khandwa–Harda 88. Pilibhit–Rampur

39. Harda–Betul 89. Rampur–Rudrapur

40. Betul–Chhindwara 90. Rudrapur–Nainital
(continued)

Ant Colony Optimization Meta-heuristic for Solving Real … 59

4.2 Experimental Setup

While going for the implementation part, we solve the NP problem taking an
example of a travelling salesman problem in which a travelling salesman wants to
visit 100 different cities by driving through roads, starting and ending his trip at
home. This algorithm is performed in MATLAB®. The results show the graphical
output of 100 cities of different states in India and generate the optimal solution
with respect to iterative time and iterative best cost.

4.3 Experimental Results

While performing the experiment to solve TSP we have to define the starting and
ending nodes of our round trip so that we can easily calculate the distance of the
round trip. In this real-life example we collect the data of 100 cities which a trav-
elling salesman has to visit by defining “Saharanpur” as the starting and ending node
of our round trip as shown in Table 1. In the table we describe the number of cities
[15] and their respective names [16]. As defined in our problem the salesperson has
to visit 100 cities for delivering products following a shortest route where the
salesperson has to visit each city exactly once. In our results the salesperson visits all
100 cities defined in the table with the optimal distance of 6435.302 km.

In the ant colony algorithm we take these parameters’ values as α = 1, β = 5,
Q = 10, C = 100, ρ = 0.65, and λ = 0.15. In this TSP problem we take 100 different
locations with their geocoordinate values in the input file and set input type as geo.
Figure 1 shows the output path of the optimised route which is then drawn on the
map of India. Figure 2 shows the states it covers and Fig. 3 shows the graph of the
number of iterations with respect to the cost of the optimal path calculated.

Table 1 (continued)

S. no. Cities S. no. Cities

41. Chhindwara–Seoni 91. Nainital–Almora

42. Seoni–Balaghat 92. Almora–Bageshwar

43. Balaghat–Mandla 93. Bageshwar–Chamoli

44. Mandla–Dindori 94. Chamoli–Rudraprayag

45. Dindori–Shahdol 95. Rudraprayag–Pauri

46. Shahdol–Umaria 96. Pauri–Dehradun

47. Umaria–Katni 97. Dehradun–Ambala

48. Katni–Rewa 98. ambala–yamunanagar

49. Rewa–Mirzapur 99. Yamunanagar–Sirmaur

50. Mirzapur–Varanasi 100. Sirmaur–Saharnpur

60 Sourabh Joshi and Sarabjit Kaur

Fig. 1 The output path of the optimised route which is then drawn on the map of India

Fig. 2 The states it covers

Ant Colony Optimization Meta-heuristic for Solving Real … 61

5 Conclusion

We concluded from the proposed work that the roulette wheel selection method is
an efficient selection method which is used in the ant colony optimisation
(ACO) algorithm for finding the optimal route of the travelling salesman problem.
The results also revealed that the roulette-based selection explores the search space
and visits the 100 cities with the lowest iterative cost with respect to iterative time
for the defined tour. Future work could be evaluated by using the variable neigh-
bourhood search heuristic in the ACO framework with the combination of different
selection strategies such as the tournament-based selection strategy and rank-based
selection strategy for the travelling salesman problem and its variants.

References

1. Escario, J.B., Jimenez, J.F., Giron-sierra, J.M.: Ant Colony Extended: Experiments on the
Travelling Salesman Problem (2014)

2. Adham, M.T., Bentley, P.J.: An artificial ecosystem algorithm applied to the travelling
salesman problem. In: Proceedings of the 2014 conference companion on Genetic and
evolutionary computation companion—GECCO Comp ’14, pp. 155–156 (2014)

3. Wei, X., Han, L., Hong, L.: A modified ant colony algorithm for traveling salesman problem.
IJCCC 9(5), 633–643 (2014)

4. Yu, Y., Chen, Y., Li, T.: A new design of genetic algorithm for solving TSP. Comput. Sci.
Optim. (CSO) (2011)

Fig. 3 The graph of the number of iterations with respect to the cost of the optimal path calculated

62 Sourabh Joshi and Sarabjit Kaur

5. O’Neill, M., Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming.
In: Genetic Programming and Evolvable Machines, Mar 2008

6. Science, C., Engineering, S.: An approach to combinatorial problems by mapreduce based ant
colony optimization. 4(1), 1009–1014 (2014)

7. Jing, S., Yan-ping, B., Hong-ping, H., Jin-na, L.: Using the Improved Ant Colony Algorithm
to Solve the Chinese TSP. In: 2014 International Conference on Future Computer and
Communication Engineering (ICFCCE 2014) (2014)

8. Dorigo, M., Stutzle, T.: Ant Colony Optimization: Overview and Recent Advances‖,
Technical Report No. TR/IRIDIA/2009-013, pp. 1–32 (2009)

9. Runka, A.: Evolving an Edge Selection Formula for Ant Colony Optimization. 08 July 2009
10. Xu, S., Wang, Y., Huang, A.: Application of imperialist competitive algorithm on solving the

traveling salesman problem. Algorithms 7, 229–242 (2014)
11. Mavrovouniotis, M.: Ant colony optimization with self-adaptive evaporation rate in dynamic

environments. no. CCI. In: Oliver, R., Rickard, N. (eds.) Efficiently Vectorized Code for
Population Based optimization Algorithms. 28 Mar 2013

12. Wei, X.: Parameters analysis for basic ant colony optimization algorithm in TSP. 7(4),
159–170 (2014)

13. Meşecan, İ., Bucak, İ.Ö., Asilkan, Ö.: Searching for the shortest path through group
processing for TSP. Math. Comput. Appl. 16, 53–65 (2011)

14. Noraini, M.R., Geragthy, J.: Genetic Algorithm Performance With Different Selection
Strategies in Solving TSP, (WCE 2011). London, U.K

15. Kanoh, H., Ochiai, J., Kameda, Y.: Pheromone trail initialization with local optimal solutions
in ant colony optimization. Int. J. Knowl.-Based Intell. Eng. Syst. 18, 11–21 (2014)

16. Orld, R.E.A.L., Roblems, D.E.P., Rea, W.I.D.E.A., Etwork, R.O.A.D.N.: Hybrid Ant Colony
Optimization for on Real Time and Predicted Traffic In, pp. 379–389 (2014)

Ant Colony Optimization Meta-heuristic for Solving Real … 63

	5 Ant Colony Optimization Meta-heuristic for Solving Real Travelling Salesman Problem
	Abstract
	1 Introduction
	2 Ant Colony Optimisation for TSP
	2.1 TSP
	2.2 Ant Colony Optimisation
	2.3 Genetic Algorithm

	3 Roulette Wheel Selection
	4 Experiments and Results
	4.1 Problem Formulation
	4.2 Experimental Setup
	4.3 Experimental Results

	5 Conclusion
	References

