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Abstract— Brain event related potentials (ERP) have been 
used in developing brain computer interface (BCI) systems. 
P300 as a robust ERP has been utilized in BCI and clinical 
researches. A common P300-based BCI system consist of brain 
signal recording, pre-processing, P300 features extraction, and 
classification units. Achieving a high accuracy in detection of 
single-trial P300, using fast computational algorithms is the 
main challenge of designing these systems. However, there is 
trade-off between accuracy and computational time. In this 
study, various well-developed algorithms controlled by a rule-
based platform to optimize the detection algorithm. P300 fea-
ture extraction algorithms has been developed by using wave-
let transform techniques, while SVM with linear/Gaussian 
kernels and logistic regression applied as alternative super-
vised learning classifiers. Principle component analysis also 
was used for feature selection in order to speed up the classifi-
cation procedure. This optimization system make decision on 
selecting the proper P300 detection method via selecting the 
group of channels, feature extraction algorithm, number of 
selected principle components, and type of classifier. Control-
ler used cross validation data set to calculate the accuracy and 
ratio of computational time for each possible combination, and 
the optimized method was assessed using test data set. The 
results suggest that designing a P300-BCI system with the 
ability to select the proper method of detection can be utilized 
in different applications to benefit the user with a better per-
formance.  
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I. INTRODUCTION  

BCI systems are designed to transform brain electrophy-
siological signals into commands for computers. Brain 
computer interface (BCI) systems has been used excessively 
for research purposes and clinical diagnostics in the past 
decade [1].There have been various BCI systems based on 
different attributes of brain signals. However, event-related 
potential (ERP)-based BCI systems are known as effective 
systems in this field. P300 is a robust positive ERP which 
has been utilized in BCI systems and shows promising re-
sults in terms of accuracy and robustness [2]. P300 occurs 
as a response to rare task-relevant stimuli in a series of task 
irrelevant stimuli around 300 ms after stimuli [3]. Farwell 
and Donchin described P300-BCI system to communicate 

with computers without utilizing voluntary muscle activity 
[4], using oddball paradigm to evoke P300 component [5]. 
Oddball paradigm demonstrate a random sequence of de-
sired and undesired events, which is supposed to probe 
P300 during the novel desired stimuli. The aim of BCI de-
tection algorithm is to detect the target signals (carry P300) 
among non-targets.  

 

Table 1 Fig. 1 BCI system components, including data acquisition, signal 
processing and BCI application units. Brain signals are recorded using an 

EEG machine. Signal processing using is consist of Pre-prosessing, feature 
extraction, and classification blocks. BCI application includes translated 

command of brain and a paradigm for stimulating the brain. 

Typical P300-BCI system consists of three major blocks: 
(1) signal acquisition and pre-processing, (2) P300 features 
extraction, and (3) classification (Figure 1). There are chal-
lenges in developing components of this system; each unit 
of the system should be developed in order to optimize the 
performance of whole system. Designing an algorithm for 
providing noise and artifact free signals, accurate P300 
feature extraction and selection, and finally efficient classi-
fication of these features are the main criteria of a robust 
P300 detection method. However, when it comes to real 
time and online applications, processing time, number of 
channels, accuracy of single-trial detection, and complexity 
of the classifier are significance issues to be considered. 

This paper aims to utilize a rule-based controller for  
optimizing the single-trial P300 detection accuracy and 
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enhancement of processing time in real-time P300-BCI 
systems. This optimization platform evaluates the EEG 
recording channels and employs the proper algorithm for 
pre-processing, feature extraction, and classification units. 

II. P300-BCI SYSTEM 

A. Signal Acquisition 

Although various types of current scalp electroencepha-
logram (EEG) equipment record efficient signals using 
convenient and user-friendly electrodes; there are two sig-
nificant considerations about the recording signals and 
number of recording channels in a P300-BCI system. De-
veloping a P300-BCI system using large number of elec-
trodes cause user discomfort as well as longer processing 
time. Therefore, employing smaller subset of electrodes was 
suggested to reduce the processing time and increasing user 
comfort, while providing enough information for an accu-
rate detection of P300. Some studies aimed to define an 
optimal subset of electrodes applicable in P300-BCI sys-
tems, e.g. Krusienski et al, suggested 8-channel electrodes 
set (Fz, Cz, P3, Pz, P4, PO7, PO8, Oz) [6], and Motlagh et 
al, suggested five channels (C1, Cz, Cpz, Pz, Fcz) [7]. 

In this study, dataset were obtained based on 10–20 sys-
tem using 19 EEG Channels (Fp1/2, F7/8, Fz, F3/4, T3/4, C3/4, 
Cz, T5/6, P3/4, Pz, O1/2) with average of A1/2 as reference dur-
ing the performance of an oddball paradigm. Nicolet EEG 
diagnostics system (Care Fusion Corporation, 3750 Torrey 
View Court, San Diego, CA 92130) was used to capture the 
EEG activities within the frequency band of 0.5-70Hz (with 
a sampling rate of 256 Hz). Before data collection, the im-
pedances of all the electrodes were monitored during the 
EEG recording, to verify its value to be under 5 kΩ, and the 
paradigm timing system and the EEG recorder were syn-
chronized. 

B. Pre-Processing 

EEG is highly susceptible to various forms and sources 
of noises, which present significant difficulties and chal-
lenges in analysis and interpretation of EEG data. Pre-
processing the data as the most essential step in develop-
ment of a reliable BCI system should be accurate and effi-
cient. In this study, an automated standard pre-processing 
steps was applied on the signals in the initial phase.  

Each channel’s signal band-pass filtered between 0.1-45 
Hz using slepian multitaper spectrum (MATLAB “pmtm” 
function) by applying four orthogonal tapers, (a combina-
tion of a high pass and low pass filter), in order to remove 
power line, high frequency noises and DC biases.   

Signal mean, standard deviation, skewness, kurtosis and 
median (five first cumulates of distribution) were calculated 

and stored. Signals data-points distribution from each chan-
nel shows an estimation of quality of EEG recording from 
that channel. Kolmogrov-smirnov test applied to estimate 
the distribution of the signal of each channel subsequently. 
The result of this test at a significant level of P൑0.05 shows 
whether the data distribution of signal is Gaussian or not; 
thus, each channel would be labeled based on the equation 
(1) criteria.  

ݎܾ݁݉ݑܰ ݈݄݁݊݊ܽܥ  ቄ1                  ܲ ݁ݑ݈ܽݒ ൑ ݁ݑ݈ܽݒ ܲ                  0.050 ൐ 0.05     (1) 

 
Channels with label “0” should be eliminated from the 

rest of the procedure. In order to have a uniform and stan-
dard procedure for detecting the EEG artifacts, all Gaussian 
signals were divided to epochs with duration of one-second 
period, and following steps were applied: 

Removing linear trend: During acquisition of EEG, re-
cording-induced current drifts and electrode movements 
cause occurrence of linear drifts in EEG trials. This type of 
artifacts was removed by fitting a straight line to the data-
points of the signal, and if the slope of the calculated line is 
more than 60 µv, then the epoch’s linear trend was removed.  

ICA decomposition: Independent component analysis 
(ICA) algorithm was used for removing the artifacts, eye-
movements and blinking using “runica infomax” in 
MATLAB. ICA decomposed the channels’ signals into 
independent signals ( based on orthogonality using singular 
value decomposition algorithm) as a common method for 
artifact removal and source localization of EEG signals (this 
method described in [8, 9]).  

ICA Reconstruction: After removing the artifactual in-
dependent components (IC), remaining signals was used for 
reconstruction of channels’ EEG. Then, ICA decomposition 
was applied again in order to guarantee the noise removal 
procedure.  

Windowing: Each signal should be synchronized with 
the stimuli onset timing of the paradigm; therefore, 256 
samples (1second) from the onset of the stimuli was se-
lected as a single trial.  

Training set labeling: Single-trial P300 detection algo-
rithm is based on a supervised learning classification. there-
fore 60% of the dataset were selected randomly as training 
set, and each trial of training set were labeled as target or 
non-target.  

C. Feature Extraction 

The major challenge in optimizing the performance  
of the P300-BCI is to enhance the real-time detection of 
P300. The process of real-time detection consists of an op-
timal P300 features extraction in order to employ a simpler 
classification algorithm to increase the processing speed  
in real-time applications. P300 like other event related  
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potentials has a very low amplitude (μv) compared to base-
line EEG signals (mv); this per se compromise the detection 
accuracy and cause a trade-off between detection speed and 
accuracy. Additionally, high signal-to-noise ratio (SNR) of 
EEG signals make this very challenging [10]. Various stu-
dies have been employed orthogonal linear transformation 
[11], blind source separation, wavelet transform [12, 7, 2, 
13-15] and other advanced techniques to overcome these 
challenges. The key point of established feature extraction 
techniques is to utilize most distinctive features to reduce 
the computational time.  

In this study, two feature extraction algorithms were de-
signed based on wavelet transform (WT) properties: 

CWT: In the first approach, continuous WT (CWT) were 
applied on the trials using Mexican-hat wavelet (scales 30-
100). It was shown that this wavelet has a good similarity 
on scales of 30-100 with P300 component (this range of 
scale is associated with 0.6-2 Hz in frequency domain) [7]. 
In this method, each trial was swept by different scales of 
wavelet and their correlation was calculated for each time-
scale as similarity coefficients. Wavelet coefficients of a 
signal x (t) at time point p are defined as: 

׬  ,ݏሻ߮ሺݐሺݔ ,݌ ଶହ଺଴ݐሻ݀ݐ                   (2) 
 
Where s is the wavelet scale, t is trial data-points, and ߮ 

is the chosen wavelet (Mexican-hat). 
Then, CWT coefficients were averaged over different 

scales and extermum values of obtained vector was stored. 
It is assumed that the maximum of averaged curve has the 
amplitude of A0 that happens at time T0. The goal is to find 
the two local minimums, i.e., one just after A0 and another 
just before A0 with amplitudes of B1 and B2 respectively. 
Using “equations (3) and (4)”, and the obtained extermum 
properties, two heuristic features over averaged scales can 
be defined. “A” as the similarity amplitude and “T” as ratio 
of latency.  

ൌ ܣ                          ሺ0ܣ – Bଵሻ  ൅ ሺ0ܣ െ Bଶሻ                         ሺ3ሻ                                ܶ ൌ |ܶ0 െ 300| 300ൗ                                ሺ4ሻ 
 

For detecting P300 wave the amplitude of the peak fea-
ture should have "large" value and time difference feature 
should be as "small" as possible (zero is considered ideal). 
Therefor, A and T are two features to be extracted by apply-
ing CWT. This method was confirmed to provide robust 
features for single-trial P300 detection, although calculation 
of correlation and sweeping the signals for all scales in-
crease the processing time [7, 13]. 

(DC)WT: In the second approach, a combination of dis-
crete WT (DWT) and CWT was applied for providing more 

robust features. In this method, discrete wavelet transform 
was used for multi-resolution decomposition of signal into 
‘details’ and ‘approximation’ (high frequency and low fre-
quency) components. B-Splines wavelets were chosen as 
mother function in this study due to their high resemblance 
with brain evoked responses. Five levels of DWT trans-
formed the signals into 64–128 Hz, 32–64 Hz (gamma), 16–
32 Hz (beta), 8–16 Hz (alpha), 4–8 Hz (theta) and the last 
approximation giving the activity in the 0.1–4 Hz (delta). 
Since, each step of DWT decomposition divide the signal 
into two components by down-sampling, delta and theta 
band (0.1-8 Hz) contains 16 data points. These 16 data 
points were stored as DWT features.  

Thanks to low frequency of evoked potentials, delta and 
theta decompositions were used for reconstructing the sig-
nal and up-sampling. The reconstructed signal from delta 
and theta band results in a smooth signal 0-8 Hz. CWT as it 
explained earlier was applied on reconstructed signal and 
CWT and DWT features was stored (18 features).  

Final number of features in this method is these features 
multiple by the number of selected channels. Since, dealing 
with large number of features leads more computational 
time for classification; selected features should be reduced 
into lower dimensions using principle component analysis 
(PCA). PCA reduced the features dimensionality into lower 
orthogonal dimensions using Eigen vectors of features. The 
number of principle component should be chosen based on 
the percentage of variance that retained. The optimal per-
centage of retained variance is supposed to be 99%. The 
whole procedure of this approach is depicted in Figure 2. 

 

 

Fig. 2 Feature extraction methods designed based on two approaches. 
CWT and DWT features of each channel should transformed to a lower 

dimensions using PCA algorithm. The controller decide on the number of 
principle components (K) to be selected as the inputs of classifier. 

D. Classification 

Single-trial P300 detection requires accurate classification 
of extracted features. Numerous studies have attempted to 
enhance the classification algorithm by utilizing linear and 
nonlinear methods [16-18]. However, avoiding complex but 
reliable classifiers benefits the enhancement of computational 
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time. Logistic regression and support vector machine (SVM) 
(both linear and Gaussian kernels) were used as fast binary 
classifiers in this study. 

Selected principle components and trials label of training 
dataset would be used in these three supervised classifica-
tion algorithms (logistic regression, SVM with linear kernel, 
and SVM with Gaussian kernel).  

 

 
Fig. 3 Flowchart of rule-based controller of P300-BCI system.  

The user will choose the criteria for accuracy and computational time  
based on the application and system would be modified. 

E. Controller 

The aim of controlling the single-trial P300 detection al-
gorithm is to choose the best procedure for detecting P300 
accurately in minimum time. In this study, 60% of the data 
was selected randomly for training, 20 % for cross valida-
tion, the rest of data (20 %) as test dataset, and a rule-based 
controller was chosen for selecting the best combination of 
the algorithms in order to fulfill the accuracy and computa-
tional time conditions. This controller can decide on number 
of selected channels (NC), feature extraction algorithm 
(FE), number of selected features based on PCA output 
(FS), and selecting the type of classifier (CS). In this step, 
training and cross-validation set were used to evaluate each 
possible combination of parameters. However, there are 
huge number of different possibility for NC and calculation 
of all possible combinations is impossible. Therefore, a 
certain set of well-studied channels was used (Table 1 
shows some of the outputs of this part).  

There are five different level for each method, namely 
very low, low, normal, high, and very high. Computational 
time was normalized between 0-1, and 0.2 as threshold of  
 

each level (0-0.2 very low, 0.2-0.4 low, 0.4-0.6 normal, 0.6-
0.8 high, and 0.8-1 very high). Accuracy percentage of 
cross validation set was divided to 50-65% very low, 65-
75% low, 75-85% normal, 85-90% high, and 90-100% as 
very high. The controller aims to maintain the system to 
perform in a condition which user can define (e.g. very low 
computational time and high or standard accuracy percen-
tage), shown as user condition (UC). 

The system start with using Cz channel signals, CWT 
method of feature extraction and using just one principle 
component and logistic regression (the fastest method). The 
rule-based controller works as follow: 

Step 1. If the accuracy is lower than UC, then other clas-
sifiers would be evaluated, and the one with highest accura-
cy is selected. 

Step 2. If the accuracy is lower than UC, increase the 
number of K (number of principle components) that 99% 
variance retained. 

Step 3. If the accuracy is lower than UC, evaluate both 
feature extraction methods and select the most accurate 
algorithm. 

Step 4. If the accuracy is lower than UC, evaluate the 
second set of channels. 

Step 5. Repeat steps 1-4 until the UC condition for accu-
racy percentage is provided. 

In this system, accuracy percentage condition has priority 
over the computational time; therefore, after fulfilling the 
accuracy criterion, the computational time would be eva-
luated using all possible methods without changing the 
number of channels and the fastest method would be cho-
sen; then, the UC condition for accuracy percentage should 
be reassessed. By defining the method, system use test data-
set to evaluate the system again and results would be shown 
to the user and waiting for confirmation or new set of crite-
ria. The flowchart of this system is depicted in Figure 3.  

Table 2 Accuracy (A) and normalized computational time (NCT) for some 
of the possible combinations.   

NC FE FS CS A% NCT

Cz 2 3 LR 68.23 0.21 

Cz, Pz 1 3 SVML 66.12 0.16 

Pz 2 3 SVMG 73.29 0.19 

C1 1 3 SVMG 61.19 0.18 

Cpz 1 3 SVML 54.49 0.11 

Fcz 2 3 LR 60.10 0.16 

C1,Cz 2 2 SVMG 65.12 0.21 

Cz, Pz, Fcz 2 2 SVMG 75.45 0.25 

5 1 2 SVML 86.28 0.35 

8 1 2 SVML 89.36 0.54 

19 2 3 LR 96.38 0.96 
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III. CONCLUSIONS  

The P300-BCI appears to be the most commonly used 
BCI system. Despite its popularity among researchers, it is 
apparent that many P300-BCI systems must be improved 
before they can be considered as an alternative communica-
tion device for individuals. In this paper, a rule-based con-
troller system was applied to optimize the accuracy and 
processing time of single-trial P300-BCI system.  

The accuracy of each set of data would be compared to 
select the smallest set of channels providing fastest compu-
tation and highest possible accuracy. Once the sub-group of 
channels selected, the system can be work in test condition 
using less number of channels. This controlling system can 
provide a better performance of a typical BCI system in 
various applications. Future work is focus on testing this 
system in various applications and compare it with current 
systems using fuzzy controllers and other soft computing 
methods for a better modification.  
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