Transient Analysis of an M/M/c Queue
Subject to Multiple Exponential Vacation
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Abstract In this paper, we consider an M/M/c queueing model subject to multiple
exponential vacation wherein arrivals occur according to a Poisson distribution and
the ¢ servers provide service according to an exponential distribution. When the
system is empty, all the ¢ servers go on a vacation and the vacation times are
assumed to follow exponential distribution. Further arrivals are allowed to join the
queue when servers are in vacation. Explicit analytical expressions for the time
dependent probabilities of the number in the system are presented using matrix
geometric method.

Keywords Transient analysis - Laplace transform - Matrix geometric method -
Multiple vacation

1 Introduction

Queueing system with multiple server is useful and important as it finds a wide
range of applications in computer system, communication networks, production
management, etc. For example, congestion in vehicular network pose a major threat
due to varied reasons like high mobility, short link lifetime and spectrum efficiency.
Therefore, cognitive radio (CR) plays a predominant role in the effective man-
agement of the available spectrum. More recently, Daniel et al. [1] proposed a multi
server queueing model design for CR vehicular traffic and showed its effectiveness
in terms of reducing the average waiting time for a vehicle or equivalently the
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optimal use of the available spectrum resource. Vijayalakshmi and Jyothsna [2]
presents the steady state analysis of a renewal input multiple working vacations
queue with balking, reneging and heterogeneous servers thereby obtaining the
various system performance measures like expected system length, expected
balking rate etc. Lin and Ke [3] discusses the multi-server system with single
working vacation and obtains the stationary probabilities using matrix geometric
method. Tian et al. [4] considers an M/M/c queue with multiple vacations and
obtains the conditional stochastic decompositions of the stationary queue length and
waiting time.

Parthasarathy [5] provided an explicit analytical expression for the time
dependent probabilities of the number in the system at time ¢ in terms of modified
Bessel function of first kind using generating function methodology for a multi
server queueing model. Recently, Al-seedy et al. [6] extended the results by
introducing the concept of balking and reneging in the multi server queueing model.
Using the similar technique as above, Ammar [7] obtains an explicit expression for
the transient system size probabilities for the queue with heterogeneous servers and
impatient behavior. In this paper, explicit analytical expressions for the stationary
probabilities of the number in the system for an M/M/c queueing model are pre-
sented using matrix geometric method. However, for the transient analog, the
system size probabilities are recursively obtained in the Laplace domain. As a
special case, when ¢ = 1, the transient probabilities in Laplace domain are seen to
coincide with the results of an M/M/I queueing model subject to multiple vacation.

2 Model Description

Consider an M/M/c queueing model subject to multiple exponential vacations.
Arrivals are assumed to follow Poisson distribution with parameter A. The ¢ servers
provide service according to an exponential distribution with parameter p. When
the system is empty, all the ‘c’ servers go on a vacation wherein the vacation times
follow exponential distribution with parameter 6. Further, arrivals are allowed to
join the queue during the vacation period. Let N(f) denote the number of customers
in the system at time #. Define J(f) = 1 when the server is busy and J(f) = 0 when the
server is on vacation at time, ¢. It is well known that {(J(¢), N(¢)), t = 0} is a Markov
process with state space Q = {(0,k)U(1,k),k=1,2, ...}. The state transition
diagram for the model is given in Fig. 1.

3 Stationary Analysis

This section presents explicit expressions for the stationary probabilities of the
above described model. Let 7y denote the stationary probability for the system to
be in state j with k customers. Define © = [my, 7y, 7, ...] where my = mpp and
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Fig. 1 State transition diagram

o = [Tok, Tix] k> 1, then the system of equations governing the state proba-
bilities under steady state are given by
Q=0 (3.1)
The infinitesimal generator Q is given by

s ™
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Expanding the matrix equation represented by Eq. (3.1) leads to

Ao +m By =0, (3.2)
moCo + mA| + 1By =0, (3.3)
1 C+mAr+m (B =0; 2<k<c-—1, (3.4)
and
i 1C+mA+n.. B=0, k>c. (3.3)

Lemma 1l If p = %ﬂ <landr= %HJ’ then the matrix quadratic equation

RB+RA+C =0 (3.6)

has the minimal non-negative solution given by

R (r i >> (3.7)
— cu(l-r) | . .
0 p

Proof Since B, A and C are all upper triangular matrices, we assume R has the

rooriz

same structure as R =
0 1))

) . Substituting R into R’B +RA + C = 0 leads

to

h— ”11(7"'1'0) =0,
rin0 — (A +cp)riz + cu(ririy + riorn) =0,
and

A— (AM+cu)rn+ cur§2 =0.

On solving the above equations, it is seen that r; = > i@ S = ﬁ, and r;p =

or
Or__ Hence, we obtain R = (6 cn(})—r) ) Observe that for k =1,2,3,...

cu(1-r)

& or k=1 i
R = ai1=r) 2P . (3.8)

0 pX




Transient Analysis of an M/M/c Queue ... 555

Theorem 1 If p <1, then the stationary probabilities of the system state are given

and my is found using the normalization condition.

Proof On substituting the corresponding matrices in Eq. (3.2), we get,
—Amgo + pmyp = 0, which yields 7y :%HOO- Similarly, substituting the corre-
sponding matrices in Eq. (3.3) yields

TE()())V — (/L+0)TE01 = 0, 67’[01 - (/14’#)7{11 +2MTC]2 = 0,

2
which simplifies to 7 = rmgy and 7, = noo{% (2) -+ (%f‘))}- Also, substi-

tuting the corresponding matrices in Eq. (3.4), we get
Ingp—y — (A+0)mor = 0;2<k<c—1,

and

27’[1](,1 —|—07’C0k — (/1—|—ku)7r1k—|— (k+ 1)[17'[1](+1 = O,ZS]{SC — 1.

k
Therefore, 7o = r*rgy, | <k<c—1 and 17 = 7100{% (i) (1 + Zf:]l

i’ )} Assume, m; = m.R"¢ for k > ¢, then from Eq. (3.5) and using Eq. (3.8),
we get o, = }"kTE()();kZC and 7y, = 7'5()(){3 (ﬁ) (l + ZC 1 |(r.“) )} + moor© %

St prem-ipik > ¢. Hence all the stationary probabilities are expressed in
terms of 7y and moo can be found using the normalization condition.

4 Transient Analysis

This section provides an analytical expression for the time dependent probabilities
of the number in the system in Laplace domain, using matrix analytic method. Let

Py(t) =P(J(t) =j,N(t) =k),j=0,1; and k=0,1,2.... Using standard
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methods, the system of equations that governs the process {(J(z), N(z)),7> 0} are
given by

Poo(1) = —APoo(t) + P (1),

Py (1) = —(A+0)Po(t) + AP (1), k> 1,

P (1) = =(2+ P11 (1) +2uP1a(1) + OPoi (1).
Py (1) = —(Z+ k) Puc(t) + Pyt (1) + (k+ D)pPrys 1 (1) + 0Poi(1), 2 <k < e — 1,
and

/

Plk(t) = —(/1 +Cﬂ)P1k(l) + }uplkfl(l) +c,uP1k+1(t) + QP()k(l), k>c,

subject to the condition Pgo(0) = 1. Let Py(t) = Poo(t), Pr(t) = [Pox(2), P1x(2)],

k=1,2,... Then, the above system of equations can be expressed in the matrix
form as
dP(1)
——=P(1)Q,
2 =PQ
where P(t) = [Po(2), P1(2), P2(2). . .. .. . Let Py (s) denote the Laplace transform of

Pjy(t) for j=0,1 and k=0,1,2,.... Taking Laplace Transform of the above
equation yields P(s)[Q — sI] = fP(O) which on expansion leads to

Po(s)(Ag — 5) +Pi(s)By = —1, (4.1)
Py(s)Co + P (S)(A) — sI) + P5(s)B, = 0, (4.2)
Px_1()C +Py(s)(Ax — sI) + Py (s)Bry1 =0; 2<k<c—1, (4.3)
and
P 1 ()C 4 Pr(s)(A —sI) + Py 1 (s)B=0; k>c (4.4)

where I is the identity matrix of the corresponding order.

Lemma 2 The quadratic matrix equation
R*(s)B+R(s)(A—sI)+C =0 (4.5)

has the minimal non-negative solution given by
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o ,0(5) ﬁc(s)
ko= (1) ) o
Brc( )
where p(s) = S+;+9’ﬁf() s+ 440 —cur(s)’ e
(s 2ten) - \/(s+i+cﬂ> — den
re(s) = 2cu .

Proof By an analysis similar to the proof of Lemma 1*** we assume R(s) as a
upper triangular matrix since B,A — sI and C are all upper triangular matrices.
Substituting R(s) into Eq. (4.5) and upon solving the corresponding equations leads
to Eq. (4.6). Observe that for k = 1,2,3,...

R0) = <pk<s> Ob> pk-'-’<s>r;<s>). .
0 *(s)
where R!(s) = R(s) and R(0) = R.

Lemma 3 Let R (s) = (p(s) Aﬁk(s)) 1<k<c—1,

0 re(s)
where
)
p(s) = ST 0 (4.8)
_ 0+ cpp.(s)
Pt = XTG4 24 (e - D= ewne()’ (49)
B 0+ (k+ 1)Aufy .1 (s) B
B = T 06 it ki (kD)) L Skse—2 (410)
and
J
ri(s) = , 1<k<c—1. (4.11)

s+ A+kp— (k4 1)urici(s)
Then {Ri(s),1 <k <c — 1} are satisfied by the following recurrence relation

C+Rk(s)(Ak — SI) +Rk(S)Rk+1(S)Bk+1 =0. (412)
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Proof For n=c—1, let R._i(s) = (p E)S) Arﬁ C‘g?) Then the recurrence
c—1

relation becomes C+ R._i(s)(Ac—1 — sI) +R._1(s)R.(s)B. = 0. Substituting the
corresponding matrices and upon simplification yields

A= (A+0+s)p(s) =0,
Op(s) = APer () (A+ (¢ = D+ 5) + cu(2p(s)B(s) + ABo—1(s)re(s) = 0,

and
A—=Tec1(8)(A+ (c = Du+s) +cpre(s)re—1(s) = 0,

0+ cup.(s)

which on solving leads to p(s) = T??Jr? ,Be_i(s) = TTTTI0 T e Diraey) and
— 2
Fe—1 (S) T A+ (e—=u+s—cure(s)
Therefore,
- )9 . fﬂuﬁc(f)
_  (Z+0+s —1)uFs—cure(s
R._\(s) = +O+s (2+0+5)( +(ci Y+ s—cure(s)) (4.13)

A+ (=) p~+s—cprc(s)

is completely determined. In general, assuming Ry 1 1(s) = P() A (s) , it

0 rgals)

can be proved that Ry(s) = (p E)S) )f"(g“;) ), satisfies Eq. (4.12). Consider

k

C+Ri(s)(Ax — sI) + Ri(s)Ri 1 1(8)Bx+1 =0 substituting the corresponding
matrices and on simplification leads to
A A
§) =——F—F,1\§) = A ’
) = e s+ itk — (k4 Dpre 1 (s)

and

0+ (k+1)ufy 1 (s)A
(s+A+0)(s+A+ku— (k+Dures1(s))

Bi(s) =

Therefore Egs. (4.8), (4.9), (4.10) and (4.11) are true foralln =1,2,...,c — 1.
Having determined R._;(s) in Eq. (4.13), from the matrix Eq. (4.12), we get

Rco(s) = <p§)s) irlj‘_zz(g)) where

A A

P = oY) T S e D e D)’
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and

0+ (c = D (5)2
(4 2+ 0)(s+ 7+ (c = 2 — (c = Dre1(5))°

ﬁ672 (9) =

Similarly R._3(s),Rc—4(s),...Ri(s) can be recursively determined. Hence the
proof.

Theorem 2 The Laplace transform of the transient state probability distribution
functions sequence, i’k(s) are satisfied with the following relations.

Pi(s) =P (s)R<T1(s),k>c (4.14)
Pi(s) = Pr_1(s)Ri(s) = Ri(s)erPo(s), 1 <k <c—1 (4.15)

where Ry (s) = Rg(s)Rg—_1(s)...Ri(s) for k=1,2...c—1,e;=(1 0) and
Po(s) = [s — Ao — e1R; (s)Bo] .
Proof For k > c, substituting Eq. (4.14) in (4.4) leads to

Pi_1(5)C + Pi(s)(A — sI) + Py 1(s) = Pe_1 (s)R*“(s) [C + R(s)(A — sI) + R*(s)B]
= 0 (from Lemma?2).

Similarly for 2 <k <c¢ — 1, substituting Eq. (4.15) in Eq. (4.3) leads to
P 1(s)C+ Pi(s)(Ax — sI) 4+ Pry 1 (5)Bi s 1 = P 1 (s)Ri_2(s)C + Pr_1 (s)Ri(5) (Ax — sI) + Pi(s)Rp 1 1 (5)Bi 11

= P 5(5)Ri—1(5)[C + Ruc(s) (A — sI) + Rye(s) Ry 1 () By 1 1]
= 0 (from Lemma 3).

Also, substituting Eq. (4.15) in Eq. (4.2) and noting that Cy = e,C yields

Py(s)Co + Py (s)(A; — sI) + Py(s)By = Py(s)e1C + Po(s)e R} (s) (A, — sI) + Po(s)e R;(s)Ba
Py(s)e1[C+Ry(s)(A, — sI) + Ry(s)R, (s)Bs]
0 (from Lemma 3 for k= 1).

Therefore, it is verified that Pn(s) expressed by Eqs. (4.14) and (4.15) satisfies
the governing system of differential equations in the Laplace domain as represented
by Eqgs. (4.2)—(4.4). Hence, from Eq. (4.1), we get

Py(s) = [s — Ao — e 1R, (s)By] ' (4.16)

where A, By are known and R, (s) can be recursively determined from Lemma 3.
Thus, the transient state probabilities of the model under consideration are given by
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~
-
—~
=
N

Il

P (s)R"H1(s),k>c

Pi(s) = Pi_1(s)Ri(s) = R (s)e1Po(s); 1 <k <c—1

where Py(s) is given by Eq. (4.16), R¥(s) for all k is given by Eq. (4.7) and R} (s)
for k =1,2,... are recursively determined using Lemma 3.

Remark When ¢ = 1, the model reduces to the transient analysis of an M/M/1
queue subject to multiple exponential vacation. Accordingly, the above solution

reduces Py (s) = Py(s)e R¥(s), for k> 1, which on simplification yields

Poi(s) = Poo(5)p"(s) (4.17)
and
A ~ k_l . .
Pui(s) = Poo(s)B.(s) Y P (s)ri(s) (4.18)
=0

. . k
for k > 1. On simplification, Eq. (4.17) reduces to Py (s) = Poo(s) (wiﬁ) k>1
which is seen to coincide with the equation below (23) obtained by Sudhesh and
Raj [8]. When k = 1, Eq. (4.18) reduces to Py(s) = Poo(s)p.(s) =

i’oo(s)¢ which on simplification reduces to f’lk(s) =

(s 7+ 0) (1- 229

POO(S)C% Zl( s ) (p —VFP 2_“2> which is seen to coincide with the Eq. (25)

s+i+0 o
obtained by Sudhesh and Raj [8].

5 Numerical Illustrations

This section illustrates the behaviour of time dependent state probabilities of the
system during busy and vacation states for varying values of k. Figure 2 depicts the
variation of the functional state probabilities against time for
c=3,2=1,u=2and 0 = 0.5. Since the system is assumed to be initially in
vacation state, the curves for Py4(¢) (k = 1, 2, 3, 4, 5) begins at 0. The value of
Py () decreases with increase in. It is seen that P 4(¢) increases with time and
converges to the corresponding steady state probabilities, 7 ¢ as  tends to infinity.
The values of m;x,k =1,2,3,4,5 are depicted in the figure. Figure 3 depicts the
variation of  probabilities of functional state against time for
=3,A=1,u=2and0 = 0.5. Since the system is assumed to be initially in
vacation state, the curve for Py (#) begins at 1. The value of Py () decreases with
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Fig. 2 Variation of 0.14
probabilities of busy state of = 012 0.1215
against time t -
0
£ 04 :
H
S 0.08f 1
2 0.0709
3
& 0.06f 1
0
®
&» 004 0.0298 |
>
2  o.02f 0.0108 g,0169
m ‘
0

Fig. 3 Variation of
probabilities vacation state
against time t

Ok

0.2429 |

0.0482  0.0720 0.1619

T 0.1080 |

Vacation State Probabilities P (t)

increase in. It is seen that Po(7)(k = 0,1,2,3,4) converges to the corresponding
steady state probabilities, my; as ¢ tends to infinity. The values of my, k =
0,1,2,3,4 are depicted in the figure.

Figures 4 and 5 depicts the variations the probability for the system to be in
vacation state and functional state respectively against time for varying values of ¢
and the same choice of the other parameter values. Mathematically

Polt) = P(J(t) = 0) = iPOk(t) and Py (1) = P(J(f) = 1) = iplk(;)
k=0 k=1

Since the system is assumed to be initially in vacation state, the curve or Py(z)
begins at 1 and that of P, () begins at 0. The value of Py(¢) decreases with increase
in time and the that of increase with increase in time and converges to the corre-
sponding steady state value. Observe that when ¢ = 1, the model reduces to that of
an M/M/I queue subject to multiple exponential vacation.
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Fig. 4 Variation of vacation state probability for varying values of ¢
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Fig. 5 Variation of functional state probability for varying values of ¢

6 Conclusion

Queueing system with multiple server plays a vital role owing of their applications
in computer system, communication network, production management etc.,. In
particular, M/M/c queue subject to vacation is of a great interest in view of their real
time applications. Extensive work on both the steady state and transient analysis of
M/IM/c queueing model and its variations are done by many authors. This paper is
the first of its kind to present the transient analysis of multi server model subject to
multiple exponential vacation. Explicit solution for the state probabilities are pre-
sented in the stationary regime, however due to the complexity of the problem, the
transient solution are presented in the Laplace domain using matrix analytic
method.
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