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Abstract In this paper, we consider an M/M/c queueing model subject to multiple
exponential vacation wherein arrivals occur according to a Poisson distribution and
the c servers provide service according to an exponential distribution. When the
system is empty, all the c servers go on a vacation and the vacation times are
assumed to follow exponential distribution. Further arrivals are allowed to join the
queue when servers are in vacation. Explicit analytical expressions for the time
dependent probabilities of the number in the system are presented using matrix
geometric method.

Keywords Transient analysis � Laplace transform � Matrix geometric method �
Multiple vacation

1 Introduction

Queueing system with multiple server is useful and important as it finds a wide
range of applications in computer system, communication networks, production
management, etc. For example, congestion in vehicular network pose a major threat
due to varied reasons like high mobility, short link lifetime and spectrum efficiency.
Therefore, cognitive radio (CR) plays a predominant role in the effective man-
agement of the available spectrum. More recently, Daniel et al. [1] proposed a multi
server queueing model design for CR vehicular traffic and showed its effectiveness
in terms of reducing the average waiting time for a vehicle or equivalently the
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optimal use of the available spectrum resource. Vijayalakshmi and Jyothsna [2]
presents the steady state analysis of a renewal input multiple working vacations
queue with balking, reneging and heterogeneous servers thereby obtaining the
various system performance measures like expected system length, expected
balking rate etc. Lin and Ke [3] discusses the multi-server system with single
working vacation and obtains the stationary probabilities using matrix geometric
method. Tian et al. [4] considers an M/M/c queue with multiple vacations and
obtains the conditional stochastic decompositions of the stationary queue length and
waiting time.

Parthasarathy [5] provided an explicit analytical expression for the time
dependent probabilities of the number in the system at time t in terms of modified
Bessel function of first kind using generating function methodology for a multi
server queueing model. Recently, Al-seedy et al. [6] extended the results by
introducing the concept of balking and reneging in the multi server queueing model.
Using the similar technique as above, Ammar [7] obtains an explicit expression for
the transient system size probabilities for the queue with heterogeneous servers and
impatient behavior. In this paper, explicit analytical expressions for the stationary
probabilities of the number in the system for an M/M/c queueing model are pre-
sented using matrix geometric method. However, for the transient analog, the
system size probabilities are recursively obtained in the Laplace domain. As a
special case, when c = 1, the transient probabilities in Laplace domain are seen to
coincide with the results of an M/M/1 queueing model subject to multiple vacation.

2 Model Description

Consider an M/M/c queueing model subject to multiple exponential vacations.
Arrivals are assumed to follow Poisson distribution with parameter λ. The c servers
provide service according to an exponential distribution with parameter l: When
the system is empty, all the ‘c’ servers go on a vacation wherein the vacation times
follow exponential distribution with parameter h. Further, arrivals are allowed to
join the queue during the vacation period. Let N(t) denote the number of customers
in the system at time t. Define J(t) = 1 when the server is busy and J(t) = 0 when the
server is on vacation at time, t. It is well known that {(J(t), N(t)), t ≥ 0} is a Markov
process with state space X ¼ fð0; kÞ [ ð1; kÞ; k ¼ 1; 2; . . .g: The state transition
diagram for the model is given in Fig. 1.

3 Stationary Analysis

This section presents explicit expressions for the stationary probabilities of the
above described model. Let pjk denote the stationary probability for the system to
be in state j with k customers. Define p ¼ ½p0; p1; p2; . . .] where p0 ¼ p00 and
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p0k ¼ p0k;p1k½ � k� 1; then the system of equations governing the state proba-
bilities under steady state are given by

pQ ¼ 0 ð3:1Þ

The infinitesimal generator Q is given by

where A0 ¼ �k, C0 ¼ k; 0ð Þ, B0 ¼ 0
l

� �
, Bk ¼ 0 0

0 kl

� �
k ¼ 2; 3; . . .c� 1;

C ¼ k 0
0 k

� �

Ak ¼ � kþ hð Þ h
0 �ðkþ klÞ

� �
k ¼ 1; 2. . .c� 1;B ¼ 0 0

0 cl

� �
,

A ¼ � kþ hð Þ h
0 �ðkþ clÞ

� �
:

Fig. 1 State transition diagram
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Expanding the matrix equation represented by Eq. (3.1) leads to

p0A0 þ p1B0 ¼ 0; ð3:2Þ

p0C0 þ p1A1 þ p2B2 ¼ 0; ð3:3Þ

pk�1Cþ pkAk þ pkþ 1Bkþ 1 ¼ 0; 2� k� c� 1; ð3:4Þ

and

pk�1Cþ pkAþ pkþ 1B ¼ 0; k� c: ð3:5Þ

Lemma 1 If q ¼ k
cl\1 and r ¼ k

kþ h ; then the matrix quadratic equation

R2BþRAþC ¼ 0 ð3:6Þ

has the minimal non-negative solution given by

R ¼ r hr
clð1�rÞ

0 q

� �
: ð3:7Þ

Proof Since B, A and C are all upper triangular matrices, we assume R has the

same structure as R ¼ r11 r12
0 r22

� �
: Substituting R into R2BþRAþC ¼ 0 leads

to

k� r11 kþ hð Þ ¼ 0;

r11h� kþ clð Þr12 þ cl r11r12 þ r12r22ð Þ ¼ 0;

and

k� kþ clð Þr22 þ clr222 ¼ 0:

On solving the above equations, it is seen that r11 ¼ k
kþ h ; r22 ¼ k

cl ; and r12 ¼
hr

clð1�rÞ : Hence, we obtain R ¼ r hr
clð1�rÞ

0 q

� �
: Observe that for k ¼ 1; 2; 3; . . .

Rk ¼ rk hr
clð1�rÞ

Pk�1

j¼0
qk�1�jr j

0 qk

0
@

1
A: ð3:8Þ
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Theorem 1 If q\1; then the stationary probabilities of the system state are given
by

p0k ¼ p00
k

kþ h

� �k

; k� 1;

p1k ¼ p00
1
k!

k
l

� �k

1þ
Xk�1

i¼1

i!
rl
k

� �i !( )
; 1� k� c� 1;

p1k ¼ p00
1
c!

k
l

� �c

1þ
Xc�1

i¼1

i!
rl
k

� �i !( )
þ p00r

c hr
clð1� rÞ

Xk�c�1

i¼0

qk�c�1�iri; k� c:

and p00 is found using the normalization condition.

Proof On substituting the corresponding matrices in Eq. (3.2), we get,
�kp00 þ lp11 ¼ 0; which yields p11 ¼ k

l p00. Similarly, substituting the corre-
sponding matrices in Eq. (3.3) yields

p00k� kþ hð Þp01 ¼ 0; hp01 � kþ lð Þp11 þ 2lp12 ¼ 0;

which simplifies to p01 ¼ rp00 and p12 ¼ p00 1
2!

k
l

� �2
1þ rl

k

� �� �� 	
: Also, substi-

tuting the corresponding matrices in Eq. (3.4), we get

kp0k�1 � kþ hð Þp0k ¼ 0; 2� k� c� 1;

and

kp1k�1 þ hp0k � kþ klð Þp1k þ kþ 1ð Þlp1kþ 1 ¼ 0; 2� k� c� 1:

Therefore, p0k ¼ rkp00; 1� k� c� 1 and p1k ¼ p00 1
k!

k
l

� �k
1þ Pk�1

i¼1

��
i! rl

k

� �iÞg: Assume, pk ¼ pcRk�c for k� c, then from Eq. (3.5) and using Eq. (3.8),

we get p0k ¼ rkp00; k� c and p1k ¼ p00 1
c!

k
l

� �c
1þ Pc�1

i¼1 i!
rl
k

� �i� �n o
þ p00rc hr

cl 1�rð ÞPk�c�1
i¼0 qk�c�1�iri;k� c: Hence all the stationary probabilities are expressed in

terms of p00 and p00 can be found using the normalization condition.

4 Transient Analysis

This section provides an analytical expression for the time dependent probabilities
of the number in the system in Laplace domain, using matrix analytic method. Let
PjkðtÞ ¼ P JðtÞ ¼ j;NðtÞ ¼ kð Þ; j ¼ 0; 1; and k ¼ 0; 1; 2. . .. Using standard
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methods, the system of equations that governs the process f JðtÞ;NðtÞð Þ; t� 0g are
given by

P
0
00ðtÞ ¼ �kP00ðtÞþ lP11ðtÞ;

P
0
0kðtÞ ¼ �ðkþ hÞP0kðtÞþ kP0k�1ðtÞ; k� 1;

P
0
11ðtÞ ¼ �ðkþ lÞP11ðtÞþ 2lP12ðtÞþ hP01ðtÞ:

P
0
1kðtÞ ¼ �ðkþ klÞP1kðtÞþ kP1k�1ðtÞþ kþ 1ð ÞlP1kþ 1ðtÞþ hP0kðtÞ; 2� k� c� 1;

and

P
0
1kðtÞ ¼ �ðkþ clÞP1kðtÞþ kP1k�1ðtÞþ clP1kþ 1ðtÞþ hP0kðtÞ; k� c;

subject to the condition P00ð0Þ ¼ 1: Let P0ðtÞ ¼ P00ðtÞ;PkðtÞ ¼ P0kðtÞ;P1kðtÞ½ �;
k ¼ 1; 2; . . . Then, the above system of equations can be expressed in the matrix
form as

dPðtÞ
dt

¼ PðtÞQ;

where PðtÞ ¼ P0ðtÞ;P1ðtÞ;P2ðtÞ. . .. . .½ �: Let P̂jkðsÞ denote the Laplace transform of
PjkðtÞ for j ¼ 0; 1 and k ¼ 0; 1; 2; . . .. Taking Laplace Transform of the above
equation yields P̂ðsÞ Q� sI½ � ¼ �Pð0Þ which on expansion leads to

P̂0ðsÞ A0 � sð Þþ P̂1ðsÞB0 ¼ �1; ð4:1Þ

P̂0ðsÞC0 þ P̂1ðSÞ A1 � sIð Þþ P̂2ðsÞB2 ¼ 0; ð4:2Þ

P̂K�1ðsÞCþ P̂KðsÞ Ak � sIð Þþ P̂kþ 1ðsÞBkþ 1 ¼ 0; 2� k� c� 1; ð4:3Þ

and

P̂k�1ðsÞCþ P̂kðsÞ A� sIð Þþ P̂kþ 1ðsÞB ¼ 0; k� c ð4:4Þ

where I is the identity matrix of the corresponding order.

Lemma 2 The quadratic matrix equation

R2ðsÞBþRðsÞ A� sIð ÞþC ¼ 0 ð4:5Þ

has the minimal non-negative solution given by
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RðsÞ ¼ qðsÞ bcðsÞ
0 rcðsÞ

� �
ð4:6Þ

where qðsÞ ¼ k
sþ kþ h

; bcðsÞ ¼
hrcðsÞ

sþ kþ h� clrcðsÞ ; and

rcðsÞ ¼
sþ kþ clð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ kþ clð Þ2� 4kcl

q
2cl

:

Proof By an analysis similar to the proof of Lemma 1***, we assume R(s) as a
upper triangular matrix since B;A� sI and C are all upper triangular matrices.
Substituting R(s) into Eq. (4.5) and upon solving the corresponding equations leads
to Eq. (4.6). Observe that for k ¼ 1; 2; 3; . . .

RkðsÞ ¼ qk sð Þ bðsÞPk�1

i¼0
qk�1�iðsÞricðsÞ

0 rkcðsÞ

0
@

1
A: ð4:7Þ

where R1ðsÞ ¼ RðsÞ and R 0ð Þ ¼ R:

Lemma 3 Let RkðsÞ ¼ qðsÞ kbkðsÞ
0 rkðsÞ

� �
; 1� k� c� 1;

where

qðsÞ ¼ k
sþ kþ h

; ð4:8Þ

bc�1ðsÞ ¼
hþ clbcðsÞ

sþ kþ hð Þðsþ kþðc� 1Þl� clrc sð ÞÞ ; ð4:9Þ

bkðsÞ ¼
hþðkþ 1Þklbkþ 1ðsÞ

sþ kþ hð Þðsþ kþ kl� kþ 1ð Þlrkþ 1 sð ÞÞ ; 1� k� c� 2; ð4:10Þ

and

rkðsÞ ¼ k
sþ kþ kl� kþ 1ð Þlrkþ 1ðsÞ ; 1� k� c� 1: ð4:11Þ

Then fRkðsÞ; 1� k� c� 1g are satisfied by the following recurrence relation

CþRkðsÞ Ak � sIð ÞþRkðsÞRkþ 1ðsÞBkþ 1 ¼ 0: ð4:12Þ

Transient Analysis of an M/M/c Queue … 557



Proof For n ¼ c� 1; let Rc�1 sð Þ ¼ qðsÞ kbc�1ðsÞ
0 rc�1ðsÞ

� �
: Then the recurrence

relation becomes CþRc�1ðsÞ Ac�1 � sIð ÞþRc�1ðsÞRcðsÞBc ¼ 0: Substituting the
corresponding matrices and upon simplification yields

k� kþ hþ sð ÞqðsÞ ¼ 0;

hqðsÞ � kbc�1ðsÞ kþ c� 1ð Þlþ sð Þþ clðkqðsÞbcðsÞþ kbc�1ðsÞrcðsÞ ¼ 0;

and

k� rc�1ðsÞ kþ c� 1ð Þlþ sð Þþ clrcðsÞrc�1ðsÞ ¼ 0;

which on solving leads to qðsÞ ¼ k
kþ hþ s ; bc�1ðsÞ ¼ hþ clbcðsÞ

kþ hþ sð Þ kþ c�1ð Þlþ s�clrcðsÞð Þ and

rc�1ðsÞ ¼ k
kþðc�1Þlþ s�clrcðsÞ :

Therefore,

Rc�1ðsÞ ¼
k

kþ hþ s
hþ clbcðsÞ

kþ hþ sð Þðkþðc�1Þlþ s�clrc sð ÞÞ
0 k

kþðc�1Þlþ s�clrcðsÞ

 !
ð4:13Þ

is completely determined. In general, assuming Rkþ 1ðsÞ ¼ qðsÞ kbkþ 1ðsÞ
0 rkþ 1ðsÞ

� �
; it

can be proved that RkðsÞ ¼ qðsÞ kbkðsÞ
0 rkðsÞ

� �
; satisfies Eq. (4.12). Consider

CþRkðsÞ Ak � sIð ÞþRkðsÞRkþ 1ðsÞBkþ 1 ¼ 0 substituting the corresponding
matrices and on simplification leads to

qðsÞ ¼ k
sþ kþ h

; rkðsÞ ¼ k
sþ kþ kl� kþ 1ð Þlrkþ 1ðsÞ ;

and

bkðsÞ ¼
hþðkþ 1Þlbkþ 1ðsÞk

sþ kþ hð Þðsþ kþ kl� kþ 1ð Þlrkþ 1ðsÞÞ :

Therefore Eqs. (4.8), (4.9), (4.10) and (4.11) are true for all n ¼ 1; 2; . . .; c� 1:
Having determined Rc�1ðsÞ in Eq. (4.13), from the matrix Eq. (4.12), we get

Rc�2ðsÞ ¼ qðsÞ kbc�2ðsÞ
0 rc�2ðsÞ

� �
where

qðsÞ ¼ k
sþ kþ h

; rc�2ðsÞ ¼ k
sþ kþðc� 2Þl� c� 1ð Þlrc�1ðsÞ ;
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and

bc�2ðsÞ ¼
hþðc� 1Þlbc�1ðsÞk

sþ kþ hð Þðsþ kþðc� 2Þl� c� 1ð Þlrc�1ðsÞÞ :

Similarly Rc�3ðsÞ;Rc�4ðsÞ; . . .R1ðsÞ can be recursively determined. Hence the
proof.

Theorem 2 The Laplace transform of the transient state probability distribution
functions sequence, P̂kðsÞ are satisfied with the following relations.

P̂kðsÞ ¼ P̂c�1ðsÞRk�cþ 1ðsÞ; k� c ð4:14Þ

P̂kðsÞ ¼ P̂k�1ðsÞRkðsÞ ¼ R�
KðsÞe1P̂0ðsÞ; 1� k� c� 1 ð4:15Þ

where R�
KðsÞ ¼ RKðsÞRK�1ðsÞ. . .R1ðsÞ for k ¼ 1; 2. . .c� 1; e1 ¼ ð 1 0Þ and

P̂0ðsÞ ¼ s� A0 � e1R1ðsÞB0½ ��1.

Proof For k� c; substituting Eq. (4.14) in (4.4) leads to

P̂k�1ðsÞCþ P̂kðsÞ A� sIð Þþ P̂kþ 1ðsÞ ¼ P̂c�1ðsÞRk�cðsÞ CþRðsÞ A� sIð ÞþR2ðsÞB� �
¼ 0 fromLemma 2ð Þ:

Similarly for 2� k� c� 1; substituting Eq. (4.15) in Eq. (4.3) leads to

P̂k�1 sð ÞCþ P̂k sð Þ Ak � sIð Þþ P̂kþ 1ðsÞBkþ 1 ¼ P̂k�1ðsÞRk�2ðsÞCþ P̂k�1ðsÞRkðsÞ Ak � sIð Þþ P̂kðsÞRkþ 1 sð ÞBkþ 1

¼ P̂k�2 sð ÞRk�1ðsÞ CþRk sð Þ Ak � sIð ÞþRkðsÞRkþ 1ðsÞBkþ 1½ �
¼ 0 fromLemma 3ð Þ:

Also, substituting Eq. (4.15) in Eq. (4.2) and noting that C0 ¼ e1C yields

P̂0ðsÞC0 þ P̂1ðsÞ A1 � sIð Þþ P̂2ðsÞB2 ¼ P̂0ðsÞe1Cþ P̂0ðsÞe1R�
1ðsÞ A1 � sIð Þþ P̂0ðsÞe1R�

2ðsÞB2

¼ P̂0ðsÞe1 CþR1ðsÞ A1 � sIð ÞþR2ðsÞR1ðsÞB2½ �
¼ 0 ðfromLemma 3 for k¼ 1Þ:

Therefore, it is verified that P̂nðsÞ expressed by Eqs. (4.14) and (4.15) satisfies
the governing system of differential equations in the Laplace domain as represented
by Eqs. (4.2)–(4.4). Hence, from Eq. (4.1), we get

P̂0ðsÞ ¼ s� A0 � e1R1ðsÞB0½ ��1 ð4:16Þ

where A0;B0 are known and R1ðsÞ can be recursively determined from Lemma 3.
Thus, the transient state probabilities of the model under consideration are given by
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P̂kðsÞ ¼ P̂c�1ðsÞRk�cþ 1ðsÞ; k� c

P̂kðsÞ ¼ P̂k�1ðsÞRkðsÞ ¼ R�
KðsÞe1P̂0ðsÞ; 1� k� c� 1

where P̂0ðsÞ is given by Eq. (4.16), RkðsÞ for all k is given by Eq. (4.7) and R�
kðsÞ

for k ¼ 1; 2; . . . are recursively determined using Lemma 3.

Remark When c = 1, the model reduces to the transient analysis of an M/M/1
queue subject to multiple exponential vacation. Accordingly, the above solution
reduces P̂kðsÞ ¼ P̂0ðsÞe1RkðsÞ; for k� 1; which on simplification yields

P̂0kðsÞ ¼ P̂00ðsÞqkðsÞ ð4:17Þ

and

P̂1kðsÞ ¼ P̂00ðsÞbcðsÞ
Xk�1

i¼0

qk�1�iðsÞricðsÞ ð4:18Þ

for k� 1. On simplification, Eq. (4.17) reduces to P̂0kðsÞ ¼ P̂00ðsÞ k
sþ kþ h

� �k
; k� 1

which is seen to coincide with the equation below (23) obtained by Sudhesh and

Raj [8]. When k = 1, Eq. (4.18) reduces to P̂1kðsÞ ¼ P̂00ðsÞbcðsÞ ¼

P̂00ðsÞ h rcðsÞ
sþ kþ hð Þ 1� cl rcðsÞ

sþ kþ hð Þ which on simplification reduces to P̂1kðsÞ ¼

P̂00ðsÞ h
cl

P/
m¼1

k
b

sþ kþ h

� �m
p�

ffiffiffiffiffiffiffiffiffi
p2�a2

p
a

� �m

which is seen to coincide with the Eq. (25)

obtained by Sudhesh and Raj [8].

5 Numerical Illustrations

This section illustrates the behaviour of time dependent state probabilities of the
system during busy and vacation states for varying values of k. Figure 2 depicts the
variation of the functional state probabilities against time for
c ¼ 3; k ¼ 1; l ¼ 2 and h ¼ 0:5. Since the system is assumed to be initially in
vacation state, the curves for P1;kðtÞ (k = 1, 2, 3, 4, 5) begins at 0. The value of
P1;kðtÞ decreases with increase in. It is seen that P1;kðtÞ increases with time and
converges to the corresponding steady state probabilities, p1;k as t tends to infinity.
The values of p1;k; k ¼ 1; 2; 3; 4; 5 are depicted in the figure. Figure 3 depicts the
variation of probabilities of functional state against time for
¼ 3; k ¼ 1; l ¼ 2 and h ¼ 0:5. Since the system is assumed to be initially in
vacation state, the curve for P0;0ðtÞ begins at 1. The value of P0;kðtÞ decreases with
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increase in. It is seen that P0;kðtÞ k ¼ 0; 1; 2; 3; 4ð Þ converges to the corresponding
steady state probabilities, p0;k as t tends to infinity. The values of p0;k; k ¼
0; 1; 2; 3; 4 are depicted in the figure.

Figures 4 and 5 depicts the variations the probability for the system to be in
vacation state and functional state respectively against time for varying values of c
and the same choice of the other parameter values. Mathematically

P0ðtÞ ¼ P JðtÞ ¼ 0ð Þ ¼
X1
k¼0

P0kðtÞ andP1ðtÞ ¼ P JðtÞ ¼ 1ð Þ ¼
X1
k¼1

P1kðtÞ

Since the system is assumed to be initially in vacation state, the curve or P0ðtÞ
begins at 1 and that of P1ðtÞ begins at 0. The value of P0ðtÞ decreases with increase
in time and the that of increase with increase in time and converges to the corre-
sponding steady state value. Observe that when c = 1, the model reduces to that of
an M/M/1 queue subject to multiple exponential vacation.

Fig. 3 Variation of
probabilities vacation state
against time t

Fig. 2 Variation of
probabilities of busy state of
against time t
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6 Conclusion

Queueing system with multiple server plays a vital role owing of their applications
in computer system, communication network, production management etc.,. In
particular, M/M/c queue subject to vacation is of a great interest in view of their real
time applications. Extensive work on both the steady state and transient analysis of
M/M/c queueing model and its variations are done by many authors. This paper is
the first of its kind to present the transient analysis of multi server model subject to
multiple exponential vacation. Explicit solution for the state probabilities are pre-
sented in the stationary regime, however due to the complexity of the problem, the
transient solution are presented in the Laplace domain using matrix analytic
method.
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