
Chapter 4
Toward Autonomous Intelligence: From
Active 3D Vision to Invariant Object
and Scene Learning, Recognition,
and Search

Stephen Grossberg

Abstract How do we learn what a visually seen object is? How do our brains learn
without supervision to link multiple views of the same object into an invariant
object category while our eyes scan a scene, even before we have a concept of the
object? Indeed, why do we not link together views of different objects when there is
no teacher to correct us? Why do not our eyes move around randomly? How do
they explore salient features of novel objects and thereby enable us to learn view-,
size-, and positionally invariant object categories? How do representations of a
scene remain binocularly fused as our eyes explore it? How do we solve the
Where’s Waldo problem and thereby efficiently search for desired objects in a
scene? This article summarizes the ARTSCAN and ARTSCENE families of neural
models, culminating in the 3D ARTSCAN Search model that clarifies how the brain
solves these problems in a unified way by coordinating processes of 3D vision and
figure-ground separation, spatial and object attention, object and scene category
learning, predictive remapping, and eye movement search. ARTSCAN illustrates
revolutionary new computational paradigms whereby the brain computes:
Complementary Computing clarifies the nature of brain specialization, and Laminar
Computing clarifies why all neocortical circuits exhibit a layered architecture.
ARTSCAN also provides unified explanations and simulations of brain and
behavioral data, and computer simulation benchmarks that support the model,
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which provides a blueprint for developing a new type of system for active vision
and autonomous learning, recognition, search, and robotics.
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Object attention � Category learning � View-invariance � Visual search � Predictive
remapping � Attentional shroud � Consciousness � Visual cortex � V3A �
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Parahippocampal cortex

4.1 Invariant Object Category Learning, Recognition,
and Search

The 3D ARTSCAN search model predicts how valued objects are learned, rec-
ognized, and searched with freely moving eyes in a three-dimensional (3D) scene
[2, 8, 11, 12, 15, 16, 18, 19]. Accomplishing this requires a synthesis of mecha-
nisms for spatial and object attention, invariant object category learning, predictive
remapping, reinforcement learning and motivation, and attentive visual search. This
synthesis provides functional explanations and predictions of interactions between
brain regions such as cortical areas V1, V2, V3a, V4, PPC, LIP, ITp, ITa, and PFC.
Such a competence is needed in a wide range of behaviors, including the recog-
nition of objects and scenes, visual-based navigation toward a goal object, classical
conditioning in response to recognized objects, and episodic learning of events that
include objects. The current article provides a conceptual overview of some of the
major new concepts and mechanisms that have been needed to achieve this com-
petence. Model equations, simulations, and data references can be found in the
archival articles. A few particularly salient data references are also included here.

4.2 ARTSCAN

One of the several basic problems for which solutions were offered in 3D
ARTSCAN search concerns how the brain is able to learn a view-invariant object
category. When the eyes freely scan a scene, they can foveate views of many
objects. How does the brain know how to associate only views that belong to the
same object with an emerging view-invariant object category, before a concept of
the object is known, and without any external supervision? In particular, suppose
that the eyes foveate a particular view of a teacup, leading to rapid learning of a
view-specific category, say in the posterior inferotemporal cortex (ITp). When these
ITp cells are activated, they also activate cells in the anterior inferotemporal cortex
(ITa) that will learn to represent the object from multiple views and will thus
become a view-invariant category. As the object view that is being inspected
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changes enough, a new view-specific category is learned, and the previous one is
inhibited to enable this to happen. Inhibiting the first view-specific category
eliminates the input to ITa that activated the cells there. Why do not these cells also
shut off? They must not shut off because all of the view-specific categories that are
learned while the object surface is scanned should be able to be associated with
them, thereby creating a view-invariant category.

The ARTSCAN model [11] is the first model to be developed in the ARTSCAN
family. It proposed how view-invariant object categories can be learned and rec-
ognized as the eyes freely scans a 2D scene. In particular, ARTSCAN predicted that
the ITa cells are not inhibited because a parietal reset mechanism that could have
inhibited them is itself inhibited while the eyes scan the attended object surface. The
reset mechanism is predicted to be inhibited by an attentional shroud [24], or
form-fitting distribution of spatial attention, also in the parietal cortex. The shroud is
maintained by a surface-shroud resonance, or positive feedback loop, between
prestriate visual cortex (e.g., V4) and parietal cortex. This prediction implies that
when spatial attention shifts to another object so that its shroud collapses, the parietal
reset will briefly be disinhibited, leading to a transient reset burst that inhibits the
view-invariant object category. Then, the brain is ready to attend a new object and to
learn to recognize it. Experimental evidence for this predicted sequence of events
was reported by Chiu and Yantis [9] using fast event-related fMRI in humans. These
data provide an important experimental marker to further test this hypothesis.

The ARTSCAN circuit also clarifies how the eyes can scan multiple views of an
object before shifting spatial attention to another object [23], thereby enabling such a
view-invariant category to be learned. This explanation clarifies, in particular, why the
eyes do not gaze randomly around a scene. This scanning process uses feedback
between the object surface and its generative boundaries via surface contour feedback
signals. The surface contour feedback signals arise in the thin stripes of cortical areaV2.
They strengthen boundaries that are consistent with them in the pale stripes of cortical
area V2, while inhibiting spurious boundaries, and in so doing trigger offigure-ground
separation, so that spatial attention can focus on one object surface at a time.

A parallel branch of these surface contour signals play several additional
functional roles. These additional roles are made possible by the fact that surface
contour signals are computed by a contrast-enhancing on-center off-surround net-
work in response to successfully filled-in surface brightnesses and colors within
surface regions that are surrounded by closed boundaries. Only such surfaces can
enter conscious awareness. Because of the contrast-enhancing lateral inhibitory
process, surface contours have larger activities at high curvature points, which are
just the kinds of positions where salient features occur. Thus, the signals in this
parallel branch, which is predicted to pass through cortical area V3A [3], can be
used to command the eyes to look at the positions of salient features. This is
accomplished by contrast-enhancing the surface contour further to pick the most
active position at any time, and then iterating this process while spatial attention
remains focused on that object surface. These positions become the target positions
for eye movements on the object surface, and act as attention pointers [7] for where
the eyes will look next.
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In addition to activating saccadic eye movements via brain regions such as the
frontal eye fields and superior colliculus, a parallel branch of these positional
signals also acts to quickly update gain fields that keep the shroud, which is
computed in head-centered coordinates, stable during scanning eye movements to
different salient features on the object surface, so that the shroud can keep the reset
mechanism inhibited during these movements. These positional signals hereby
cause a predictive remapping [21] of the shroud in anticipation of where the eye
movement will go. A great deal of data have been explained and predicted by these
mechanisms, including data about the reaction time costs of moving the eyes to
positions outside an object versus to the positions inside it [1].

The surface-shroud resonance process has additional functions. One important
one concerns my prediction that all conscious percepts of visual qualia are surface
percepts that are part of surface-shroud resonances. This prediction reconciles two
earlier predictions; namely, that “all conscious states are resonant states” [13] and
“all conscious percepts of visual qualia are surface percepts” [14]. Together these
two predictions led to the question: What sort of resonance supports conscious
surface percepts of visual qualia? My answer is: a surface-shroud resonance. This
prediction enables the explanation of even more data, including clinical data about
how parietal neglect occurs; see Grossberg [16] for a review.

4.3 Positional ARTSCAN

The positional ARTSCAN, or pARTSCAN, model [8], further developed
ARTSCAN to explain how view-, position-, and size-invariant object categories
can be learned and recognized during free scanning of a 2D scene. These invari-
ances are not perfect if only because of the cortical magnification factor, and the
model can quantitatively simulate the invariance properties that are exhibited in
neurophysiological experiments on IT cells [18, 25].

pARTSCAN was able to learn these additional invariant properties by incor-
porating the fact that some IT cells exhibit persistent activities. It could then, in
addition, explain quite a bit of additional neurobiological data, notably the target
swapping data of Li and DiCarlo [22]. These data are conceptually important
because they demonstrate conditions under which an invariant object category in IT
can be readily recoded by swapping two objects during a saccadic eye movement to
the position of the first object. These results raise the question: Why is not such
“catastrophic forgetting” ubiquitous? pARTSCAN predicts that this recoding
occurs because the reset mechanism does not get activated when the targets are
rapidly swapped during an eye movement. This prediction can be tested by fusing
the Chiu and Yantis [9] and Li and DiCarlo [22] paradigms: Increase the inter-
stimulus interval between swapped objects and measure when a reset burst occurs.
When the interstimulus interval between swapped targets is large enough to cause
reset, recoding should not occur, or should at least be greatly attenuated.
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4.4 Distributed ARTSCAN

Why does not a scene appear black outside the region that is selected by a
surface-shroud resonance? The distributed ARTSCAN, or dARTSCAN, model was
developed to clarify this sort of issue during scanning of 2D scenes [12].
dARTSCAN supplements the slow attention of a surface-shroud resonance, which
has its source at surface representations in the What cortical stream, with the fast
attention that is activated by transients due to object change or motion via the
Where cortical stream. In addition, the spatial attentional representations of the
parietal cortex are extended to spatial attentional representations of the prefrontal
cortex that enables multimodal attention, notably simultaneous priming of multiple
regions in a scene, thereby spreading attention beyond the focal attention studied in
ARTSCAN and enabling faster switching of attention between objects.
dARTSCAN has been used to simulate a variety of additional challenging data
about spatial attention, including larger data sets about reaction time costs of
shifting spatial attention to a position outside an object versus to delete “the” one
inside it, attentional crowding, and useful-field-of-view tasks, including how video
game players can train themselves to have broader attentional spans and greater
situational awareness. Crowding is of particular interest due to the theoretical link
of the ARTSCAN models between spatial attention in the Where stream and object
recognition in the What stream. The model proposes how, when a given object
cannot form its own shroud, and is rather part of a single shroud that envelops
several nearby objects, then that object cannot be easily recognized.

4.5 ARTSCAN Search

The previous modeling variants are all consider issues related to object learning and
recognition. Correspondingly, they propose how Where cortical stream mecha-
nisms modulate What cortical stream mechanisms for this purpose. After learning
to recognize an object, it is important to be able to search for it in a scene, and to
thereby engage it through motor actions. Such a model needs What-to-Where
stream interactions in addition to Where-to-What stream interactions. The next
model clarifies how this happens by proposing a solution of the Where’s Waldo
problem. This ARTSCAN Search model suggests how either a cognitive prime in
prefrontal cortex, or a motivational source such as the amygdala, can drive a search
to determine the position of a valued object in a scene. At least two new design
problems must be solved to do this.

One problem concerns the fact that invariant object categories are insensitive to
the position of a target. Such invariance enables the brain to overcome the com-
binatorial explosion that would have occurred if every view, position, and size of an
object on the retina needed to generate its own representation for purposes of
recognition. In addition, it is much easier to motivationally amplify an invariant
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representation in the orbitofrontal cortex, using incentive motivational signals from
the amygdala, than it would have been to deal with myriad non-invariant object
representations. Once a valued invariant object representation is amplified, it can
win the competition for attention and thereby drive further processing. However,
because the invariant representation is insensitive to Waldo’s position, its activation
must somehow be able to activate representations that are sensitive to positions
which can drive eye, arm, and other movements toward Waldo. This problem is
solved in the model using the fact that ARTSCAN learns both view-specific object
categories and invariant object categories. The view-specific categories, which are
proposed to exist in ITp, are also sensitive to object position. Thus, somehow
invariant object categories in ITa need to be able to activate appropriate view- and
position-specific categories in ITp and, from there, positional representations of the
object in the frontal eye fields and parietal cortex.

However, such top-down signals are typically, without further processing,
priming signals that can sensitize or modulate the activity of target cells, but cannot,
by themselves, fully activate them. Such top-down priming signals are said to obey
the ART Matching Rule, and theorems have been proved showing how modulatory
top-down expectations that focus attention using the ART Matching Rule can led to
self-stabilized learning [4–6], thereby solving what I have called the stability-
plasticity dilemma [13]. In order to fully fire primed cells, a volitional signal from
the basal ganglia is also needed. Convergence of a top-down expectation with a
volitional signal converts the subliminal priming signals into signals that can vig-
orously fire their target cells and thereby activate a top-down cascade of processing
steps to locate Waldo.

The ARTSCAN Search model was shown, by computer simulations, to be
competent to find Waldo in a scene composed of realistic CalTech 101 object
images, even when the model computations use the cortical magnification factor.
The model can also simulate all the data that other variants of ARTSCAN can.
However, without further mechanisms, this model cannot quantitatively simulate
more challenging data about object search, notably data in which iterative learning
about scenic context can drive a more efficient search. Such a search is said to be
contextually cued [10].

4.6 ARTSCENE and ARTSCENE Search

The ARTSCENE Search model [20] can do this. ARTSCENE Search builds upon
the ARTSCENE model [17], which clarifies how the gist of a scene can be learned,
and how gist may be refined by attention shifts that learn finer features of a scene.
In ARTSCENE, gist is computed as a coarse texture category, and finer scenic
features are finer texture categories. All these categories vote to predict scene types
in a database of natural scenes.
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The ARTSCENE Search model additionally proposes how sequential object and
spatial contexts can be used to accumulate evidence about a scene that can be used
to efficiently search for desired goal objects in it. Such a contextually cued search
clarifies why, for example, after seeing several kitchen appliances, such as a stove,
microwave, and sink, one is more likely to expect to see a refrigerator than a jungle,
and also where to look to find that refrigerator in a familiar kitchen. Such a search
requires that the brain uses object and spatial working memories and plans to
determine where next to look. To achieve this competence, the ARTSCENE Search
model simulates how temporal cortex, parietal cortex, perirhinal cortex, parahip-
pocampal cortex, and prefrontal cortex all contribute to contextually cued memory
and search. The model can quantitatively simulate many of the key properties of the
rich psychophysical database about contextually cued search.

4.7 3D ARTSCAN

All of the above model variants consider learning, recognition, and/or search with
freely moving eyes in a 2D scene. How does the brain accomplish this in a 3D
scene? A key fact motivates how this is done by the 3D ARTSCAN model [19].
This fact concerns what happens when we fuse a Julesz binocular stereogram or
Magic Eye autostereogram. It may take a few seconds before the images that are
received by each of our eyes can binocularly fuse into a percept of a scene in depth.
However, after fusion occurs, our eyes can move across the scene without breaking
fusion, even though all the image features are received by different retinal positions
after each eye movement. This property, which is dramatically illustrated by
stereograms but which we take for granted during daily life, shows that the fused
representations are not computed in retinal coordinates. Rather, they are computed
in head-centered coordinates that remain invariant under eye movements.

In ARTSCAN, gain fields were needed to rapidly update the head-centered
coordinates of a shroud so that it could maintain inhibition of the parietal reset
mechanism during eye movements that scan salient features on an object. The 3D
ARTSCAN model shows that additional gain fields are needed to rapidly update,
and predictively remap, head-centered representations of binocularly fused per-
ceptual boundaries so that they do not collapse every time the eyes move. The
model also shows how these invariant boundaries can maintain the 3D surface
percepts that we consciously see, even though these surface percepts are computed
in retinotopic coordinates, as is obvious every time our eyes move and the con-
scious percept of each object in a scene shifts in the opposite direction. The 3D
ARTSCAN model was also tested on CalTech 101 object images, and was shown
capable of simulating various psychophysical data, notably the reaction time costs
of shifting attention outside versus inside an object.
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4.8 3D ARTSCAN Search and Autonomous Adaptive
Mobile Robots

Taken together, these models embody a 3D ARTSCAN search model that clarifies
how our brains can learn, invariantly recognize, and search for a valued goal object
in a 3D scene. This model family has explained and predicted a wealth of psy-
chological and neurobiological data about this topic, as can be reviewed in the
archival articles. It can also be used as a blueprint for a future generation of
increasingly autonomous adaptive mobile robots.
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