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Abstract With climate change looming and the unsustainable supply of fossil
fuels, the development of renewable and clean energy is urgently required. An often
neglected source of clean energy is the organic material contained in waste and
wastewater. Millions of tons of solid organic waste and wastewater are generated
everyday worldwide. Instead of consuming energy, anaerobic digestion can be
applied to treat the generated waste, thus achieving the objective of waste treatment
for public health protection and also recovery of renewable methane for heat and
power purposes. In this chapter, the benefits of anaerobic digestion will be intro-
duced followed by a discussion on the mechanism and the typical design principles
of anaerobic digestion systems. Some of the recent advancement of anaerobic
digestion systems such as membrane bioreactors, fluidized bed reactors and
co-digestion systems will be presented in the subsequent sections. The state-of-
the-art molecular biological tools to monitor and diagnose the microbiology of
anaerobic digestion systems will also be discussed. Lastly, the future outlook
of anaerobic digestions will be addressed.
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Nomenclature

a.c. Acoustic chemometrics
ABR Anaerobic baffled reactor
ADM1 Anaerobic digestion model no. 1
AFBR Anaerobic fluidized bed reactor
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AnMBR Anaerobic membrane bioreactors
APBR Anaerobic packed bed reactor
ASBR Anaerobic sequencing batch reactor
CSTR Continuous stirred tank reactor
DGGE Denaturing gradient gel electrophoresis
EGSB Expanded granular sludge bed
EN Electronic nose
EPS Extracellular polymeric substances
ET Electronic tongue
FLU Fluorescence spectroscopic
FW Food waste
GC Gas chromatographic
HPLC High-performance liquid chromatographic
IR Infrared spectroscopic
IWA The international water association
LCFA Long-chain fatty acid
MS Mass spectrometry
NIR Near infrared spectroscopic
OFMSW Organic fraction municipal solid waste
PAT Process analytical technology
PCR Polymerase chain reaction
PFR Plug-flow reactor
qPCR Quantitative polymerase chain reaction
SHW Slaughterhouse waste
SRB Sulfate-reducing bacteria
TPAD Two-phase anaerobic digester
T-RFLP Terminal restriction-fragment length polymorphism
UAF Upflow anaerobic filter
UASB Upflow anaerobic sludge blanket
UV Ultraviolet spectroscopic
VFAs Volatile fatty acids
VIS Visual spectroscopic
VS Volatile solid
WWTP Wastewater treatment plant

1 Introduction

The development of anaerobic digestion technology started in the beginning of the
19th century, although aerobic treatment and tertiary treatment were the mainstream
treatment process after the Second World War. Nonetheless, anaerobic digestion of
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waste has been rapidly developed since the late 1960s and has been used to treat
industrial wastewater as well as domestic wastewater for decades (Stronach et al.
1986; Speece 1996).

From a report on solid waste management conducted by the World Bank in
2013, it was estimated that cities currently generate roughly 1.3 billion tonnes of
solid waste per year. With the current urbanization trends, this figure is expected to
reach 2.2 billion tonnes per year by 2025, accounting for an increase of 70 % from
the current level. Organic waste continues to be the largest component in municipal
solid waste. The accumulation of solid organic waste is thought to be reaching
critical levels in almost all regions of the world, becoming a pressing matter on
public health, environmental quality, quality of life, and economic development.
Anaerobic digestion can be considered as one of the oldest technologies for sta-
bilization of wastes. There is now a growing interest in this technology to produce
bioenergy as a result of increasing demand for energy coupled with the uncertainty
surrounding fossil fuels cost. Bioenergy plays an important role in promoting
renewable alternatives which is estimated to be the fourth largest energy resource in
the world (Chen and Lee 2014).

Anaerobic digestion of wastes covers many aspects. In this chapter, the funda-
mental aspects including basic principles, microbiological processes, regime and
limitation of anaerobic digestion on energy recovery will be introduced.
Operational parameters such as acidic and alkaline conditions, occurrence of
inhibitory compounds, together with the effect of temperature, are also considered.
The design of anaerobic digestion reactor including fundamental design principles,
performance enhancement by pretreatment, phase separation and co-digestion are
reviewed, with special attention to technological advancement for improved
methane recovery. Finally advanced molecular biological tools for system moni-
toring and the future outlook of anaerobic digestions will also be discussed.

1.1 Application of Anaerobic Digestion

Anaerobic digestion is applicable for a wide range of materials including municipal,
agricultural and industrial wastes, and plant residues (Kalra and Panwar 1986;
Gallert et al. 1998; Chen et al. 2008). It has a key role in residual waste stabilization
for downstream processing. Recently, two new application areas, namely energy
generation and production of value-added chemicals have drawn extensive interests
(Batstone and Virdis 2014). One of the possible value-added chemicals is the
production of volatile fatty acids (VFAs), which is a critical substrate for
microorganism involved in the production of biodegradable plastics (Cai et al.
2009) and bioenergy (Lee et al. 2014).
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1.2 Benefits of Anaerobic Digestion

Today, fossil fuels are the dominant energy sources meeting over 80 % of the world’s
energy demand in 2012 (International Energy Agency, France, 2013). The world
energy demand was 5.5 � 1020 J in 2010. It is predicted to increase to 6.6� 1020 J in
2020 and 8.6 � 1020 J in 2040 (Energy Information Administration, U.S. 2013).
Nevertheless, fossil fuels are non-renewable and their reserves are limited. Moreover,
tremendous amounts of greenhouse gases have been released from fossil fuel con-
sumption driving the incentives of international communities to develop and utilize
renewable energy. Of the renewable energy sources such as solar or wind power
production, bioenergy becomes increasingly competitive on its ownmerits, primarily
due to the extensive availability of biomass, biomass production technologies and
infrastructure, and biomass being the sole feedstock for liquid fuels production.
Biogas, a source of bioenergy, is a product of anaerobic digestion of organic sub-
strates, which is one of the oldest processes used for the waste treatment and stabi-
lization of sludge. The production of biogas through anaerobic digestion offers
significant advantages over other processes of waste treatment such as (i) producing
less residual solid generation in comparison to aerobic treatment, (ii) generating
bioenergy in the form of biogas, (iii) yielding a digestate produced with high
bioavailability as an improved fertilizer. The biogas formed is generally composed of
48–65 % methane, 36–41 % carbon dioxide, up to 17 % nitrogen, <1 % oxygen,
32–169 ppm hydrogen sulfide, and trace amounts of other gases (Rasi et al. 2007).
Carefully designed and engineered anaerobic digestion of organic waste is therefore
environmental beneficial in two ways:

(i) Generating of methane which is a kind of the greenhouse gases, in an enclosed
reactor to prevent it from entering the atmosphere directly.

(ii) Displacement of energy from fossil fuels by clean bioenergy.

2 Mechanism of Anaerobic Digestion

2.1 Basic Principles of Anaerobic Digestion

Biogas formation is governed by microorganisms and the metabolic activities in the
reactor. Typical anaerobic digestion of organic matters occurs in four steps, namely
hydrolysis, acidogenesis, acetogenesis and methanogenesis in which a consortium
of microorganisms including fermentative bacteria, acidogenic bacteria, acetogenic
bacteria and methanogens are responsible for biogas production from organic
materials such as carbohydrate, oils, fats and proteins. The carbohydrates, protein,
oils and fats are firstly hydrolyzed into monomeric sugars, amino acids and fatty
acids respectively by extracellular enzymes (amylase, lipase, proteolytic enzymes)
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produced by fermentative bacteria. Madigan proposed an approximate chemical
formula for the mixture of organic materials as C6H10O4 (Madigan et al. 2009).

The hydrolysis reaction can be written as:

C6H10O4 þ 2H2O ! C6H12O6 þH2 ð1Þ

In acidogenesis, the hydrolyzed organic compounds denoted as C6H12O6 are
utilized by acidogenic bacteria or acid forming bacteria, which are a group of fast
growing bacteria, and generate volatile fatty acids such as acetic acid, propionic
acid, butyric acid and valeric acid as well as carbon dioxide, water and hydrogen.
Generation of volatile fatty acids can be expressed as:

C6H12O6 , 2CH3CH2OHþ 2CO2 ð2Þ

C6H12O6 þ 2H2 , 2CH3CH2COOHþ 2H2O ð3Þ

In acetogenesis, the VFAs except acetic acid are utilized by acetogenic bacteria,
which are a group of slow growing bacteria, to produce acetic acid and hydrogen.
The acetogenesis can be written as:

CH3CH2COOHþ 2H2O , CH3COOHþCO2 þ 3H2 ð4Þ

Finally, methanogens utilize acetic acid, ethanol, methanol, hydrogen and car-
bon dioxide to form methane gas in methanogenesis. Methanogens utilizing acetic
acid to produce methane are known as acetotroph while those utilizing hydrogen
and carbon dioxide are known as hydrogenotroph. About 70 % of the methane are
produced stoichiometrically via the acetate pathway and 30 % are produced via the
hydrogen pathway (Siegrist et al. 2002; Madigan et al. 2009). The pathways for
methanogenesis can be expressed as:

2CH3CH2OHþCO2 , 2CH3COOHþCH4 ð5Þ

CH3COOHþCO2 , CH4 þ 2CO2 ð6Þ

CH3OHþH2 , CH4 þ 2CO2 ð7Þ

CO2 þ 4H2 , CH4 þ 2H2O ð8Þ

Figure 1 shows a scheme of the anaerobic digestion pathway, from long-chain
organic compounds including proteins, carbohydrates and lipids to the final products,
i.e., methane and carbon dioxide (Gujer and Zehnder 1983; Siegrist et al. 2002).

Methane production from anaerobic digestion process in waste treatment is
generally limited by the rate of hydrolysis of suspended organic matters. Efficient
pretreatment can enhance the ability of bacteria to access the suspended substrate
and increase the methane yield. The objective of implementing different types of
pretreatment in anaerobic digestion is to enhance the bioavailability of particular
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substrates so that enzymes can more efficiently hydrolyze the substrate. A number
of pretreatment methods are discussed in Sect. 4.1. The overall organic matter
stabilization can be improved through improvement from pretreatment technology.

Anaerobic digestion of waste is capable of recovering energy from a wide range
of feedstock from different sources such as agricultural sector, industrial sector and
municipal sector which needs to be (i) biodegradable, (ii) non-woody with low
proportion of lignocellulosic material, and (iii) balanced in macro and micro
nutrients (Kothari et al. 2014). Therefore, feedstock can range from readily
biodegradable wastewater to complex high-solid waste. In order to obtain a higher
yield of biogas, anaerobic co-digestion treatment, the simultaneous digestion of two
or more substrates, is a feasible option to overcome the drawbacks of single sub-
strate digestion and to improve the process efficiency. Figure 2 shows an overview
of various feedstock from different sources. The choice of feedstock is influenced
by various interrelated process factors such as reactor design and operation, quality
of products, source and mass flux, economic considerations, bacterial physiology
and specific purpose (Steffen et al. 2012).

Fig. 1 Scheme of biodegradation steps of complex matter in anaerobic digestion
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It should be noted that phase separation can be used for performance
enhancement by optimizing the reactor configuration for the different stages of
anaerobic processes in separate tanks whereby the conditions are optimized for
specific groups of bacteria. The improvement of energy recovery by co-digestion
and phase separation in anaerobic digestion are discussed in Sect. 4.2. Anaerobic
digestion involves different groups of microorganisms which are highly sensitive to
the environment. The operating parameters affecting anaerobic digestion are dis-
cussed in detail in Sect. 2.3.

Anaerobic digestion of waste serves the dual purpose of both energy recovery
and waste management. Recently, it has been widely applied to municipal solid
waste (MSW) to generate energy. Table 1 summarizes the high yield of methane
production from anaerobic digestion of municipal solid waste. It should be noted
that MSW is classified as a heterogeneous material in which the composition varies
widely according to regional differences, climate, extent of recycling, collection
frequency, season, cultural practices. Considering the biodegradability of OFMSW,
the potential of anaerobic digestion of OFMSW are high as well as the methane
yield, and co-digestion of MSW with sewage sludge is also becoming increasingly
attractive.

2.2 Microorganism and Microbiological Process

A wide variety of microbial communities have been reported to be involved in the
anaerobic digestion process (Fricke et al. 2007; Fantozzi and Buratti 2009). The
microbial population distribution is highly dependent on the substrate and product
concentration as well as on environmental conditions such as pH, temperature,
hydrogen concentration etc. However, knowledge of the microorganism and

Fig. 2 Categorization of various feedstock from different sources
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microbiological processes involved is revealed gradually through the use of modern
molecular techniques which complement traditional cultivation process and
microscopic identification techniques (Merkel et al. 1999). The development of the
modern molecular techniques on microorganisms in anaerobic digestion will be
discussed in Sect. 5. The types of microorganism in the four distinct stages of
anaerobic digestion are shown in Tables 2 and 3.

2.3 Operational Parameters Affecting Anaerobic Digestion

The ultimate methane production is influenced by a number of operational
parameters in the anaerobic digestion reactor such as temperature, type of feedstock,
pH level, retention time, C/N ratio, VFA concentration etc. Maximum methane
production takes place when optimum range of these operational parameters is
chosen. The optimum range of these parameters is reviewed in this section.

2.3.1 Temperature

Microorganisms in anaerobic digestion are very sensitive to temperature changes
which affect hydrogen and methane production, and the decomposition of organic
materials. There are three possible ranges of temperature in which the process can
be carried out (psychrophilic, mesophilic and thermophilic) as shown in Table 4.
Chae et al. studied the effects of temperature and temperature shock on the biogas
yield from anaerobic digestion (Chae et al. 2008) and reported that methane content
increased with increasing digestion temperature, but only to a small extent.
Temperature shocks from 35 °C to 30 °C and 30 °C to 32 °C led to a drop in the
biogas production rate. No lasting damage was observed from the digestion per-
formance after recovery.

Thermophilic anaerobic digesters often manifest chronically higher VFAs con-
centration than those found in mesophilic anaerobic digesters (Kim et al. 2002).
Therefore, the optimal conditions for anaerobic digestion to reduce energy con-
sumption may be thermophilic hydrolysis/acidogenesis and mesophilic methano-
geneis which is consistent with a two-phase anaerobic digestion process. This
arrangement uses a mesophilic reactor as a polishing stage, eliminating the draw-
backs of the thermophilic process. However, thermophilic conditions are applied in
most of the large-scale centralized biogas co-digesters (Kothari et al. 2014).
Digestion of organic urban wastes using thermophilic and mesophilic processes has
also been studied by researchers and they found that thermophilic process is a more
realistic and viable option as the added amount of heat required for thermophilic
operations can be offset by the higher gas production yields and rates (Parkin and
Owen 1986; De Baere 2000; Kim et al. 2002; Kuo and Lu 2004).
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2.3.2 Acidic and Alkaline Conditions

Methanogens are extremely sensitive to pH, while fermentative microorganisms are
generally less sensitive and can function in a wider range of pH between 4.0 and 8.5
(Hwang et al. 2004). A range of pH values suitable for anaerobic digestion has been
reported by various researchers, but the optimal pH for methanogenesis has been
found to be around 7.0 (Huber et al. 1982; Yang and Okos 1987; Khalid et al.
2011). The growth rate of fermentative bacteria is faster than those of methanogens,
leading to the accumulation of acids in the digesters. Two main strategies for
rectifying the low pH due to acid accumulation: (i) stopping the feed and allowing
enough time for the methanogenic population to reduce the concentration of VFAs
inside the system; and (ii) addition of bases to raise pH and provide additional
buffering capacity. Another strategy suggested by Shah is that drastic reduction of
pH could be prevented by the addition of another feed at a suitable ratio with the
main feed (Shah et al. 2015) as practices in co-digestion.

2.3.3 Inhibitory Compounds

It is desirable to control inhibitory or toxic materials to achieve higher efficiency or
a more economical operation of anaerobic digestion process performed by removal
of toxic materials from waste stream or by dilution of the waste to below the
toxicity threshold in the systems. Precipitation is commonly employed to remove
the toxic materials from the systems.

Ammonia toxicity
Ammonia is an essential nutrient for the growth of microorganisms involved in
anaerobic digestion but also acts as an inhibitor at high concentration. Fermentation
of nitrogen-containing materials such as urea and proteins releases ammonia-
nitrogen largely in the ionized form (NH4

+). The toxic unionized form (NH3)

Table 4 Classification of anaerobic digestion by operating temperature

Type Operating temperature Reference

Psychrophilic (or
cryophilic)

10–20 °C Sutter and Wellinger
(1987)

Mesophilic 30–40 °C Bolzonella et al. (2005),
Zhang et al. (2014)

Thermophilic 55–70 °C Buhr and Andrews
(1977)

Ambient/seasonal
temperature

Temperature changes in the surrounding
environment (Typically 15–25 °C)

Yusuf and Ify (2011)

Hyperthermophilic 65–70 °C Lee et al. (2009)
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increases with increasing pH in the system as the pKa value of ammonia is 9.3
(Koster and Lettinga 1984). Free ammonia is more toxic to methanogens than
ionized ammonium (NH4

+) because it is more readily diffusible through the cell
membrane, causing proton imbalance, and/or potassium (K+) deficiency, while
ionized ammonium may just inhibit the methane synthesizing enzyme directly
(Gerardi 2006). Another reason why ionized form of ammonia is less inhibitory
than the free form is that the hydroxide ion produced can react with carbon dioxide
to form bicarbonate, which increases the buffering capacity of the anaerobic reactor,
making the process less susceptible to pH fluctuations when the production rates of
acetogenic bacteria and methanogens differ.

Sulfide toxicity
A number of industrial wastes from petrochemical plants, tanneries, viscose rayon
factories and coal gasification for electricity production generate sulfate-containing
waste streams. Sulfidogens or sulfate-reducing bacteria (SRB) play a significant role
in anaerobic digestion, which reduce sulfate to sulfide in the reactor under certain
condition. Sulfide generated may be inhibitory to anaerobic digestion by (i) in-
hibiting methanogens, (ii) reducing rate of methanogenesis, and (iii) decreasing the
quantity of methane produced by competing for the available carbon and/or
hydrogen source. Inhibitory effect of sulfide in anaerobic digestion can be separated
into two parts: competition for substrates between sulfate-reducing bacteria and
methanogens directly and inhibition of methane formation by sulfide ions in the
system. Competition between sulfate-reducing bacteria and methanogens in
sulfate-containing waste streams for acetate as their common primary substrate can
significantly affect the methane production efficiency.

The optimum conditions for anaerobic metabolic activity proposed by researchers
are summarized in Table 5.

Table 5 Optimum conditions for anaerobic metabolic activity

Parameters Optimum conditions Reference

Temperature Mesophilic range (35–40 °C)
Thermophilic (50–65 °C)

Van Haandel and
Lettinga (1994)
Arsova (2010)

pH 6.3–7.8 Wang et al. (2012)

Carbon to nitrogen ratio (C/N
ratio)

25–30 Ghosh and Pohland
(1974)

Volatile fatty acid (VFA) 2000–3000 mg/L Eastman and
Ferguson (1981)

Organic loading rate (OLR) and
nutrient concentration

Varies according to the
substrate and inoculum

–
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3 Design of Anaerobic Digestion Processes

Anaerobic digestion composes a broad family of processes which can be classified
according to:

(a) their feedstock input mode: batch and continuous processes;
(b) single-step, double- or multiple steps; and
(c) geometry of the main treatment unit: vertical and horizontal unit.

3.1 Design Principles of Anaerobic Digestion System

Reactors of anaerobic digestion often operates under heterogeneous system
whereby three phases namely: solid phase (sludge), liquid phase (wastewater) and
gaseous phase (biogas) present simultaneously. The oldest and simplest type of
anaerobic digester is not equipped with any mixing or heating, thus a long digestion
period of 30–60 days is required. Some degree of natural mixing occurs inside the
reaction tank due to bubbling of gas generated and thermal convection currents
created from the digestion processes. Due to the lack of proper mixing, stratification
usually occurs in four zones: (i) scum layer, (ii) supernatant layer, (iii) layer of
digesting biosolid and (iv) layer of digested biosolid. A schematic diagram of this
type of anaerobic digesters without mixing is given in Fig. 3. The accumulated
biosolid at the bottom of the reaction tank is periodically discarded.

Different variations of anaerobic digestion have evolved over the years to
improve the degradation performance including high-rate digestion and phase
separated digestion. Figure 4 shows the schematic diagram of a typical high-rate
digestion. The characteristic features of high-rate anaerobic digestion including

Fig. 3 Schematic diagram of
low rate anaerobic digestion
without mixing and heating

Recent Advances of Anaerobic Digestion for Energy Recovery 101



heating, auxiliary mixing, thickening and uniform feeding are introduced to the
reactor design to create a uniform environment for microbial growth in order to
improve stability and efficiency of biodegradation processes.

Determination of reaction tank volume is the first important consideration in
designing an anaerobic digestion system. Various methods have been used for
sizing of digestion tank including (i) per capita basis, (ii) solids loading, (iii) solids
retention time, (iv) volatile solids destruction and (v) gas production (Turovskiy and
Mathai 2006).

Anaerobic digestion reactors are mostly cylindrical or egg shaped. Vertical
cylindrical digestion tanks are widely used in the United States, with diameter from
6 to 38 m, typically made of concrete although steel tank design are also common
in smaller tank size. Tank floors are usually conical with slopes of varies between
1:3 and 1:6 to facilitate the accumulation and withdrawal of digested sludge from
the low point in the centre of the tank. Egg-shaped digestion tanks are originated in
Germany to eliminate grit accumulation by the steeply sloped bottom and to avoid
scum accumulation by small liquid surface area at the top.

Another variation in the design of anaerobic digestion processes is on the solid
content in the reactors. Content of solid in the reactor affects the reactor volume and
treatment process. The percentage of total solids in the digester can be categorized
into low solid content (LS) (<15 %), medium solid content (MS) (15–20 %) and
high solid content (HS) (20–40 %) (Fernández et al. 2008; Cao and Pawlowski
2012; Raposo et al. 2012). Wet systems are low solid AD which are applied to
liquid waste streams with total solids content typically less than 15 % while dry
systems are high solid AD which handle stackable feedstock with total solid con-
tents typically higher than 30 % without any addition of external liquids.

Fig. 4 Schematic diagram of high-rate anaerobic digestion
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Single-stage low solids (SSLS) wet anaerobic digestion processes have been
used for decades in the stabilization of sludge. The feedstock is conditioned to the
appropriate solid content (10–15 %) by adding process water in the wet anaerobic
digestion reactor with internal mixing to obtain homogeneity. The predominant
reactor of wet anaerobic digestion is continuously stirred tank reactor (CSTR) with
mechanical stirring to avoid stratification of the substrate inside the reactor. Short
circuiting may be experienced in CSTR. Large amount of water consumption is
needed to be mixed with the feedstock to obtain the low solid content, which can be
acquired from treated supernatant.

High solid anaerobic digestion has been claimed to be more advantageous than
low solid anaerobic digestion for several reasons, such as smaller reactor volumes,
lower energy requirement for heating, higher biogas yield from undiluted wastes
and less material handling (Duan et al. 2012). However, dry streams may suffer
some drawbacks. They usually require proper preconditioning of the feedstock
material, including substrate treatment and mixing with structure material, and
special loading and unloading techniques. The content inside the digester may not
be totally mixed, leading to lower methane yields than the wet systems. Different
types of single-stage high solids (SSHS) dry anaerobic digestion processes have
been developed and are in use commercially in Europe such as Dranco, Kompogas,
and Valorga processes. The Dranco process developed in Belgium is a true
dry-process for treatment of organic fraction of MSW, which is characterized by its
design of feeding from the top, collection of digested biosolid at the bottom of the
reactor and no internal mixing mechanism with total solid content at about 30–40 %
(Cho et al. 2013). The Kompogas process developed in Switzerland takes place in
plug flow in a horizontally cylindrical steel tank with total solid content at about
23 % (Hartmann and Ahring 2006). The Valorga process developed in France is a
semi-dry mesophilic process in which mixing of waste with recycled process water
takes place with total solid content of 30 % (Fernández et al. 2008). In additional to
the improvement of reactor tank design in anaerobic digestion, the technological
advancement in process design such as pretreatment, phase separation, co-digestion
and biomass immobilization are discussed in Sect. 4.

4 Technology Advancement for Improved Methane
Recovery

4.1 Pretreatment for Digestion Enhancement

Most researchers reported that the rate-limiting step for complex organic substrates
is the hydrolysis step in an anaerobic digestion process (Valo et al. 2004; Izumi et al.
2010; Rafique et al. 2010; Bordeleau and Droste 2011; Fdez-Guelfo et al. 2011; Ma
et al. 2011). Different pretreatments are utilized for anaerobic digestion such as
mechanical (ultrasound, high pressure and lysis), thermal (<100 °C, >100 °C),
chemical (ozonation, alkali, acids), microwave, ultrasonic, electric pulses, wet
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oxidation, freeze/thaw and biological treatment to increase the bioavailability of
complex organic matters to microbes. Pretreatment methods to improve performance
of anaerobic digestion have been the focus of many research studies over the last
30 years (Holm-Nielsen et al. 2009; Pilli et al. 2011) and the improvement of
anaerobic digestion in terms of increasing methane generation and solid reduction
are well known advantages of pretreatments.

The pretreatment effects are complex and generally linked to substrate charac-
teristics and pretreatment mechanisms. Carlsson et al. have examined the effect of
substrate pretreatment on anaerobic digestion (Carlsson et al. 2012), namely particle
size reduction, solubilization, formation of refractory compounds, biodegradability
enhancement and loss of organic materials for different substrate categories including
wastewater treatment plant (WWTP) residues, organic waste from households,
energy crops/plant residues, waste from food industry and manure. It is reported that
thermal and ultrasonic pretreatments are predominantly applied on anaerobic
digestion of WWTP residues, chemical and thermal pretreatment have been applied
to less frequently studied substrates such as energy crops/harvesting residues, organic
waste from food industry and manure, whereas mechanical and thermal pretreat-
ments are commonly applied to organic fraction of municipal solid waste (OFMSW).
Another focus on pretreatment methods is their ability to enhance anaerobic digestion
process in terms of efficiency, energy balance, environmental sustainability as well as
capital, operational and maintenance costs (Ariunbaatar et al. 2014).

4.1.1 Mechanical Pretreatment

Mechanical pretreatment is used to reduce both the particle size and crystallinity of
lignocellulosic materials through a combination of chipping, grinding or milling
processes, in order to increase the specific surface area and reduce the degree of
polymerization of substrate (Sun and Cheng 2002). Smaller particles increase the
surface area available to the microorganisms, resulting in increased bioavailability
to bacteria and improved anaerobic degradability. Particle size reduction can
accelerate the hydrolysis and acidogenesis processes as well as the production of
soluble organic materials such as VFAs, resulting in a higher organic loading in the
anaerobic digester. However excessive size reduction may result in higher solubi-
lization and in turn excessive VFAs accumulation, leading to a decrease in methane
production. The power requirement of mechanical pretreatment is relatively high
depending on the final particle size and the substrate characteristics. In particular,
the recalcitrant nature of cell walls of green waste makes mechanical pretreatment
energy intensive (Izumi et al. 2010).

Ultrasonic disintegration is one type of mechanical pretreatments in which
ultrasonic treatment acts to disrupt the cell structure and floc matrix of the substrate.
There are two key mechanisms associated with ultrasonic treatment: (i) cavitation,
which is favoured at a low frequency, and (ii) chemical reactions due to the for-
mation of free radicals at a high frequency (Carrère et al. 2010). According to the
studies by Show and co-workers, the optimal range of solid content for sonication
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lies between 2.3 and 3.2 % TS (Show et al. 2007). If the solid concentration of
feedstock is too high, increased viscosity hinders cavitation bubble formation. The
threshold specific energy ranges from 1000 to 16,000 kJ kg−1 TS with sludge as
substrate although biogas production increases with energy input (Salsabil et al.
2009).

4.1.2 Thermal-Alkaline Solubilization Pretreatment

Alkaline treatment is one commonly used chemical treatment in anaerobic digestion
in which there are two major reactions: (i) solvation and saphonication inducing
swelling of solids to increase the specific surface area of the substrate; followed by
(ii) simultaneous reactions of saponification and neutralization of various acids
formed by degradation of the particulates leading to an increase in COD solubi-
lization (Kim et al. 2003). Alkaline treatment is relatively effective in sludge
solubilization, with the order of efficacy being NaOH > KOH > Mg(OH)2 and
Ca(OH)2. Alkaline pretreatment by sodium hydroxide at relatively low dosage
levels is effective in solubilizing municipal waste activated sludge at ambient
temperature. Mouneimne et al. demonstrated that high concentration of Na+ and K+

may cause subsequent inhibition of anaerobic digestion (Mouneimne et al. 2003).
Alkaline treatment is normally combined with thermal treatment. Waste solubi-
lization and biodegradability improve with alkali dosage and temperature
(Kim et al. 2003) Thermal-alkaline pretreatment usually proceeds at temperature
lower than thermal hydrolysis alone and could result in a higher biogas production
with a higher methane content.

4.1.3 Oxidative Pretreatment (Ozonation)

Oxidative pretreatment by ozonation is another chemical pretreatment method. It is
the most widely used chemical method which does not lead to accumulation of salt
and no chemical residues remain in the systems as compared to other chemical
pretreatment methods (Carrère et al. 2010). Ozone is a strong oxidant which
decomposes into radicals and reacts with organic substrates directly and indirectly.
The direct reaction depends on the structure of the reactant whereas the indirect
reaction is based on the hydroxyl radicals. Several studies have shown an optimal
range of ozone dosage for the enhancement of anaerobic biodegradability such as
0.1 g O3 g

−1 COD (Weemaes et al. 2000), 0.2 g O3 g
−1 TSS (Yeom et al. 2002),

and 0.15 g O3 g
−1 TSS (Bougrier et al. 2007). Ozonation has been combined with

anaerobic digestion as a pretreatment (Weemaes et al. 2000; Yeom et al. 2002;
Bougrier et al. 2007) or post-treatment with recycling back to the anaerobic digester
(Battimelli et al. 2003; Goel et al. 2003).

Ariunbaatar et al. compared the efficiency of various pretreatment methods for
enhancing the anaerobic digestion of OFMSW and food waste (FW) in terms of
biogas production, VS reduction and COD solubilization as listed in Table 6.
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4.2 Phase Separation and Co-digestion of Anaerobic
Digestion

4.2.1 Phase Separation

The prospects of phased anaerobic digestion of waste are extremely promising to
achieve increased stability, higher loading capacities and greater process efficien-
cies than single-stage systems (Shuizhou and Zhou 2005). The advantages of
two-phase anaerobic digestion (TPAD) have been extensively documented (Ghosh
and Pohland 1974; Ghosh et al. 1985). Efficiency improvement of anaerobic
digestion can be brought about by either digester design modification or advanced
operating techniques.

Anaerobic digestion occurs in four steps, namely hydrolysis, acidogenesis,
acetogenesis and methanogenesis as discussed above. The degradation process of
organic matters in anaerobic digestion can be separated into two phases, (i) the
“acid fermentation” phase or acidogenesis, leading to the production of interme-
diate products predominated by volatile organic acids such as acetic acid, propionic
acid, butyric acid and valeric acid; and (ii) the “methane fermentation” phase or
methanogenesis, resulting in the conversion of the intermediate products to stable
end products mainly methane and carbon dioxide. The two phases in anaerobic
digestion differ in bacterial populations, digestion rate, environmental requirements,
degradation process and products. In two-phase anaerobic digestion system each
phase can be controlled at the best environmental conditions in separate reactor.

Recently, various reactor configurations and substrates are being applied to
two-phase anaerobic digestion as shown in Table 7. In order to accelerate the
acidogenesis and methanogenesis processes in TPAD, the two separate reactors
may be applied in various high rate anaerobic reactors such as upflow anaerobic
sludge blanket (UASB)—UASB system (Fongsatitkul et al. 1995), continuous
stirred tank reactor (CSTR)—upflow anaerobic filter (UAF) system (Held and
Wellacher 2002), hybrid reactor (Yalcin et al. 2008), CSTR—anaerobic fluidized
bed reactor (AFBR) system (Yu et al. 1999), two-phase plug-flow reactor
(PFR) (Liu and Ghosh 1997; Liu 1998), and anaerobic packed bed reactor (APBR)
(Tatara and Yamazawa 2004).

Two-phase anaerobic processes have been applied to treat many kinds of
wastewater and solid wastes from difference sources such as distillery (Shin et al.
1992), landfill leachate (Agdag and Sponza 2005), coffee (Kida et al. 1994), cheese
whey and dairy (Yilmazer and Yenigün 1999), starch (Demirel and Yenigün 2002),
fruit and vegetable solid (Yu et al. 1999; Pavan et al. 2000), food (Shin et al. 1992),
pulp and paper (Rintala and Puhakka 1994), olive mill (Borja et al. 1998), abattoir
(Banks and Wang 1999), dye (Talarposhti et al. 2001), primary and activated sludge
and solid (Bhattacharya et al. 1996).

Phase separation of anaerobic process has a number of major advantages
(Shuizhou and Zhou 2005) including (i) isolation and optimization of potential
rate-limiting steps; (ii) improvement of reaction kinetics and stability through pH
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control, resistant to shock loading, selection of faster-growing microorganisms; and
(iii) potential for detoxification in first phase. However, application of phase sep-
aration of anaerobic digestion has encountered certain barriers such as (i) disruption
of syntrophic relationships; (ii) requirement of experience engineers and operators;
(iii) uncertainty of linkage between reactor configuration and substrate types which
determine the amenability of feedstock to two-phase anaerobic digestion.

4.2.2 Co-digestion

Mono-digestion (anaerobic digestion of a single substrate) usually suffers from its
limitations in the cases of (i) low organic loads of sewage sludge; (ii) low organic
loads and high nitrogen concentrations in animal manures; (iii) relatively high
concentration of heavy metals in organic fraction of municipal solid waste
(OFMSW); (iv) seasonal substrates such as crops and agro-industrial wastes;
(v) potential inhibitors of methanogenic activity in slaughterhouse waste
(SHW) such as the presence of high concentration of nitrogen and long-chain fatty
acids (LCFA). Anaerobic co-digestion, i.e., simultaneous digestion of two or more
substrates, is a feasible option to overcome the drawbacks of mono-digestion and to
improve economic feasibility of anaerobic digestion (Mata-Alvarez et al. 2014).

Researchers found that the improvement of methane production is mainly a
consequence of the increase in the organic loading rate (OLR) rather than syner-
gisms between the primary substrate and co-substrate (Mata-Alvarez et al. 2011).
Different kinds of mixtures can be considered and used in co-digestion as long as
the blend ratio and types of co-substrate favor synergisms, dilute inhibitory com-
pounds, optimize methane production and does not disrupt digestate quality.
Typically, the decisions on the ratio between the primary substrates and
co-substrates have been simplified to optimize the C/N ratio. The primary substrates
like animal manures are characterized by high buffer capacities and a low C/N ratio
while the co-substrates like agro-industrial waste and OFMSW are normally
characterized as a high C/N ratio and low buffer capacity (Astals et al. 2012; Wang
et al. 2012). However, the optimized combination in the mixture also requires
consideration of other parameters such as macro and micronutrients equilibrium,
pH and alkalinity, dilution of inhibitory compounds, amounts of biodegradable
organics and dry matter (Hartmann et al. 2002).

4.3 Biomass Retention

Reactors of anaerobic process can be categorized according to how the biomass is
retained in the system and the type of biomass in the system. Bacteria grow in the
reactor liquid as flocculent or granular sludge in suspended growth reactors.
Granular sludge exhibits higher activity rates and settling velocity that reduce the
reactor volume required and allowing higher organic loading rates to the systems.
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The most robust configurations for suspended growth anaerobic reactors are UASB
(upflow anaerobic sludge blanket) and EGSB (expanded granular sludge bed).

4.3.1 UASB System

With the widespread industrial application of UASB reactors, increasing attention is
focused on the granulation of anaerobic sludge (Fang 2000). Biomass is retained as
granular matrix or blanket as suspension in the reactors. The advantages of gran-
ulation includes the establishment of a regular, thick and well-built microbial
structure that is ready to operate with different transport phenomena, high biomass
retention time leading to a high loading rate and better removal efficiencies,
appropriate settleability, resistance to high OLR and toxicity shock (Speece 1996).
The operation of UASB reactors may be limited by a number of factors including
(i) inadequate retention of viable biomass for treating specific types of wastes that is
not able to cultivate granular sludge, (ii) granule disintegration or wash-out of
hollow granules, (iii) occurrence of fluffy granules, and (iv) scaling by inorganic
precipitate.

4.3.2 EGSB System

EGSB systems are not equipped with an internal settler as in the conventional
UASB, but with an advanced liquid-solid separation device. The main features of
the EGSB reactors are: (i) high design organic loading rates; (ii) very small surface
area; (iii) tall reactor system; and (iv) high upflow velocity. Engineering anaerobic
sludge granules is a new area of research that targets at expanding the catabolic
capabilities of the sludge.

4.3.3 Attached Growth Reactors

Attached growth reactors make use of either fixed film or carried media for the
bacteria to grow and attach. Attached-growth systems comprise of fixed-film
reactors and fluidized bed reactors involving immobilization of microbial biomass
on inert media. In fixed film processes, bacteria reside on static support surface such
as plastics rings, rocks, media modules or membrane modules. In fluidized bed
processes, suspended carrier media such as sand, provide attachment surfaces in the
reactors.

Hybrid anaerobic reactors are popular in recent development which take
advantages of both suspended and attached growth processes in a single reactor. An
example of hybrid anaerobic reactor design combine UASB as the lower section
and upflow anaerobic filter as the upper section in a single reactor (Abdullah et al.
2005). The advantages of hybrid anaerobic reactors include (i) development of
granular or flocculent sludge bed in the reactor, leading to an increased biomass
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inventory, (ii) suitability for treating wastes where granular sludge formation is
difficult, and (iii) increasing process stability and removal efficiency.

4.3.4 Membrane Bioreactors

Efficient liquid-solids separation is the basis of any anaerobic high-rate reactor
system for waste treatment. Anaerobic membrane bioreactors (AnMBRs) are
emerging alternatives for UASB reactors. With the presence of the inert supportive
media for bacterial growth, membrane bioreactors can achieve outstanding effluent
quality (<20 ppm organics), and COD and solid removal (up to 99 and 100 % for
domestic wastewater respectively) (Smith et al. 2012) with the advantages of
(i) possible operation at approximately infinite SRT to reach very low effluent
substrate concentrations, (ii) allowing the growth of slow-growing
micro-organisms, and (iii) possible treatment of recalcitrant compounds.
However, membrane bioreactors usually suffer the drawbacks of high pressure
physical separation causing disruption to microbial communities and subjected to
membrane fouling and scaling with typical precipitates such as calcium carbonate.

4.4 Reactor Configuration

Reactor configurations of anaerobic digester can be divided into conventional
anaerobic digesters and high-rate anaerobic digesters. The first conventional
anaerobic digester was used in 1881 to liquefy the solid components of sewage. In
1955, anaerobic contact process was developed to treat soluble organics and dilute
wastewaters (Hassan et al. 2013). A variety of new bioreactor designs have been
developed in recent years which facilitate a significantly high rate of reaction for the
treatment of waste (Bouallagui et al. 2003; Mumme et al. 2010; Xing et al. 2010).
High rate anaerobic reactors include completely mixed anaerobic digester, anaer-
obic contact process, anaerobic sequencing batch reactor (ASBR), anaerobic packed
bed or anaerobic filter, anaerobic fluidized bed and expanded bed reactors, upflow
anaerobic sludge blanket (UASB) reactor and anaerobic baffled reactors
(ABR) (Barker et al. 1999). Through the development of innovative high-rate
reactor designs, anaerobic treatment can now challenge the cost of aerobic treatment
for many wastewater treatment applications (Malina Junior and Pohland 1992).
Ward et al. reported that an anaerobic bioreactor should be designed in a way that
allows a continuously high and sustainable organic loading rate with a short
hydraulic retention time and has the ability to produce the maximum level of
methane (Ward et al. 2008). Reactors can be classified into the following categories
(i) batch and continuous process, (ii) single-phase, and (iii) multi-phase reactors.
Reactor shape must also take into consideration, both mixing and heat transfer.

In addition to basic reactor design, mixing of the contents in anaerobic digesters
are required to ensure efficient transfer of particulate organic material for active
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microbial biomass, to release gas bubbles trapped in the reactors and to prevent
sedimentation of denser particulate materials. The mixing pattern may be inter-
mittent, which is determined by the type of reactor, type of agitator used and the
total solid contents of the feedstock (Burton and Turner 2003). Recirculation of
biogas in the reactor or hydraulic mixing by recirculation of digestate with pump is
commonly used to prevent the need of moving parts within the reactors. A certain
degree of mixing is necessary but excessive mixing conditions can reduce biogas
production (Gomez et al. 2006). It has been postulated that propionate-oxidizing
bacteria and methanogenic archaea live in close proximity in granules with H2 and
formate as electron carriers. Excessive agitation can disrupt the granule structure,
reducing the rate of oxidation of fatty acids and leading to digester instability
(McMahon et al. 2001). Extracellular polymeric substances (EPS) are a combina-
tion of proteins and carbohydrates which are responsible for the formation of
granules (Liu et al. 2004). An increase in mixing decreased the amount of EPS
found, suggesting that minimal mixing produced larger anaerobic granules as
greater quantities of EPS are required to maintain the granule structure (Ong et al.
2002). Mixing with biomass support media could be an important area in opti-
mizing reactor configuration of anaerobic digester. Biomass support media provides
an anchorage for the granular microbial communities and allows a high-shear type
of mixing to increase solubility of COD without disruption to the microbial
communities.

4.5 Process Control and Monitoring

Despite decades of academic and industrial research efforts, the complex anaerobic
digestion processes are far from being understood in detail. Many anaerobic
digestion plants are merely relying on a few simple-to-measure parameters mainly
due to the conservative design of the over-sized reactors to guarantee process
robustness, which gives a poor indication of the state of the biological process.
Furthermore, unintentional organic loading, accidental addition of toxic substrates,
process interruptions and lack of raw material quality control are believed to be one
of the main limitations for effective process operation (Hjort-Gregersen et al. 1996;
Holm-Nielsen et al. 2008; Nielsen and Angelidaki 2008; Kaparaju et al. 2009a, b).
Introducing reliable monitoring and control technology would allow anaerobic
digestion plants to be operated closer to their effective capacity limit instead of
wasting reactor volume due to conservative design rules.

Process Analytical Technologies (PAT) is one of the recent advances in process
monitoring in anaerobic digestion which allows complex bioconversion processes
to be monitored and deciphered to a new level of reliability and effectiveness using
spectroscopic and electrochemical measurement principles together with chemo-
metric multivariate data analysis. Research efforts has been put in reviewing the
potential application of PAT, Theory of Sampling (TOS) and chemometric data
analysis within the field of anaerobic digestion monitoring (Madsen et al. 2011).
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The use of multivariate sensor technologies and electrochemical arrays is encour-
aged as many studies have shown promising results in both laboratory-scale and
pilot-scale. Many authors have suggested VFAs as control parameters as these acids
are indicative of the activity of methanogenic consortia. A number of analytical
methods have been developed for quantification of relevant VFAs for anaerobic
digestion process monitoring. Short-chained VFAs commonly present in sample
matrices such as manure and wastewater sludge are listed in Table 8 (Hill and
Holmberg 1988; Christiansen et al. 1995; Nielsen et al. 2007). The application of
numerous monitoring techniques for quantifying these parameters has been reported
in the literature. An overview of available techniques is provided in Table 9.

4.6 Mathematical Models

Two most widely used models for anaerobic digestion are the Anaerobic Digestion
Model no. 1 (ADM1) developed by a task group for the International Water
Association (IWA) and Siegriest Model (Siegrist et al. 2002). The two models are

Table 8 Short-chained VFAs in sample matrices of manure and wastewater sludge

IUPAC nomenclature Formula CAS# MW (Da) bp (°C) pKa

Ethanoic acid CH3COOH 64-19-7 60.1 117.9 4.76

Propanoic acid CH3CH2COOH 79-09-4 74.1 141.2 4.87

n-Butanoic acid CH3CH2CH2COOH 107-92-6 88.1 163.8 4.83

2-Methylpropanoic acid CH3CHCH3COOH 79-31-2 88.1 154.5 4.84

n-Pentanoic acid CH3(CH2)3COOH 109-52-4 102.1 186.1 4.83

2-Methylbutanoic acid CH3CH2CHCH3COOH 116-53-0 102.1 177 4.80

3-Methylbutanoic acid CH3CHCH3CH2COOH 503-74-2 102.1 176.5 4.77

Table 9 Four main classes of reviewed analytical modalities collectively known as PAT in AD
process monitoring

Main class Reviewed analytical modalities

Spectroscopic Fluorescence (FLU) Peck and Chynoweth (1992), Infrared (IR) Steyer
et al. (2002), Near Infrared (NIR) Nordberg et al. (2000), Hannsson et al.
(2002), Holm-Nielsen et al. (2007), Holm-Nielsen et al. (2008), Raman,
Visual (VIS), Ultraviolet (UV) Redondo et al. (2008), Rudnitskaya and
Legin (2008), Buczkowska et al. (2010)

Electro-chemical pH, Redox potential, Electronic tongue (ET), Electronic nose (EN)

Chromatographic GC, GC headspace, HPLC Pind et al. (2003), Boe et al. (2005), Diamantis
et al. (2006)

Other Acoustic chemometrics (a.c.) Nacke et al. (2005), Mass spectrometry
(MS), Microwaves Lomborg et al. (2009), Titration Feitkenhauer et al.
(2002), Lahav and Morgan (2004)
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constructed with different approaches: Siegriest model parameters are based on
experiments, whereas the ADM1 uses review consensus (Batstone 2006).

Lyberatos and Skiadas (1999) gave an extensive review on modelling for
anaerobic digestion. They pointed out that some important factors describing the
behavior of anaerobic digesters should be evaluated and taken into account from a
modelling point of view including digester startup conditions, degree of acclimation
to the feedstock, hydraulic loading, organic loading, biogas production per unit
volume, concentration of inhibitors, availability of nutrients, cation concentrations,
types and concentration of solids in the feedstock. Anaerobic digestion is a complex
system of biochemical and physical processes. Due to its complexity, it has tra-
ditionally been treated as a black box system and optimization has been based on
experience or trial-and-error methods. As experiments of anaerobic digestion are
expensive and time-consuming, modelling can provide a useful tool for process
understanding and optimization (Kothari et al. 2014).

5 Advanced Molecular Biological Tools for System
Monitoring

Anaerobic digestion is carried out by a mixture of different Bacteria and Archaea
living in a microbial community. The microbial community is generally considered
complex as hundreds of different types of organisms are involved in the process and
these organisms are also interacting among themselves. In order to optimize the yield
of biogas and for trouble shooting purposes in case of a process upset, a compre-
hensive view on the composition and metabolic functions of the organisms in the
system is warranted. In the past decade, a number of advanced molecular tools
targeting the DNA, RNA and proteins of microbial cells have become available to
provide detailed biological information on the microbial community and it is now
possible to move beyond the traditional ‘black box’ approaches of operating an
anaerobic digester. An overview of these tools is described in this section.

5.1 Low-throughput Methods

Given the high microbial diversity present in anaerobic digestion, culture-dependent
methods to analyze a microbial community are not practical and not feasible. Hence,
culture-independent methods are required. In the 1990s and early 2000s, polymerase
chain reaction (PCR) targeting the 16S rRNA gene of Bacteria and Archaea with
universal primers followed by clone library and Sanger sequencing was a popular
method to identify the organisms present in anaerobic digesters (Chouari et al.
2005). Typically, a few hundred clones are randomly picked and sequenced as the
method is labor intensive and expensive. Because a relatively small number of
clones can be analyzed, clone library method can only capture the dominant
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populations and the organisms that are present at a low relative abundance are
usually not captured. Other methods that are suitable to identify the dominant
populations include terminal restriction-fragment length polymorphism (T-RFLP)
(Ike et al. 2010) and chemical or temperature denaturing gradient gel electrophoresis
(DGGE) (Bialek et al. 2012). The aforementioned methods are semi-quantitative
where the relative proportion of the taxa is determined. When absolute quantification
is required to determine the concentration of a specific population in an anaerobic
digester, quantitative PCR (qPCR) can be applied and qPCR has the advantage that
the quantification range spans a few orders of magnitude, making it possible to
quantify the low and high abundant organisms such as different methanogens
(Goberna et al. 2010). The application of these molecular methods to a single sample
can provide a snapshot of the microbial community, but when multiple samples at
different time points and under different conditions are analyzed, the shift in com-
position of the microbial community can be revealed.

5.2 High-throughput Methods

The advent of sequencing technology in the past few years has revolutionized the
ability to analyze microbial communities, providing both breadth and depth in
coverage of information. Furthermore, the cost per DNA base has decreased and
robotic instruments have automated many procedures in the lab, making the analysis
less labor intensive. First, it was the emergence of the next-generation sequencing
platforms by 454 Life Sciences that can generate a few hundred million bases per run
and long read length up to 450 bp. Later, the sequencers developed by Illumina
(Solexa) have further increased throughput to as much as a few hundreds gigabases
per run with a shorter read length (*125 bp). With the Illumina platforms, the
number of reads that can be obtained per sample to analyze the composition and
structure of a microbial community can range from a few thousands to tens of
thousands, which is substantially more than a clone library analysis (Sundberg et al.
2013). With this sequencing depth, both the dominant and minor members of the
community can be identified, which represents substantial improvement over pre-
vious methods as the minor members could also be functionally important. In
addition to targeting the 16S rRNA gene, high-throughput sequencing has also been
applied to analyze functional genes such as the methyl coenzyme M reductase
(mcrA) gene that is ubiquitously present in all methanogens for catalyzing the last
step of methane generation (Ellis et al. 2012; Wilkins et al. 2015).

Targeting taxonomic and/or functional genes as biomarkers can identify the
organisms present. However, in order to determine the metabolic functions of these
organisms, shotgun metagenomic sequencing of the microbial community can be
performed to determine the gene content present in these organisms. Hampered by
the lower throughput of previous sequencing platforms, a gene-centric approach
was usually taken in early metagenomic studies where the goal is to simply identify
the metabolic functions present (Li et al. 2013; Wong et al. 2013). Recently, with
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the increase in the throughput of sequencers, acquiring a substantial quantity of
reads per sample is possible, enabling a genome-centric approach in metagenomic
sequencing where genes are placed in a genomic framework (Sekiguchi et al. 2015).
A genome-centric approach offers the advantages that the metabolic capability of an
organism and its interactions with other members in the community can be better
deciphered.

Building on the metagenomic sequencing results, two complementary approa-
ches, namely metatranscriptomics and metaproteomics, can be further applied to
query the dynamics and expression of genes under different conditions in anaerobic
digesters. Metatranscriptomics make use of high-throughput sequencing to analyze
the expressed RNA (Zakrzewski et al. 2012), while metaproteomics utilize
advanced mass-spectrometry to analyze the expressed proteins (Hanreich et al.
2013; Lü et al. 2014). Metagenomics are useful to determine what organisms are
present and what biochemical functions these organisms possess. However, under
what conditions these organisms are active and what metabolic functions are exe-
cuted cannot be easily interpreted from the metagenomic data. Therefore, meta-
transcriptomics and metaproteomics are useful tools to provide detailed information
on the activity of the organisms in a digester. The combination of metagenomics,
metatranscriptomics and metaproteomics is generally referred to as ‘omics’ meth-
ods and these innovative molecular biology tools can help microbiologists and
engineers to better diagnose anaerobic digesters.

6 Future Outlook

Climate change, waste treatment and renewable energy are pressing issues facing
society in the 21st century. Anaerobic digestion of organic materials can address all
these issues simultaneously. Given that anaerobic digestion is a mature technology,
the deployment of this technology in large centralized scale or small decentralized
scale is expected to gain widespread use in the near future. Further optimization and
enhancement of the engineering coupled with knowledge in the microbiology will
certainly further improve the robustness and performance of anaerobic digestion.
Without a doubt, the outlook of anaerobic digestion is promising and this tech-
nology will play an important role in our society.
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