
Partition-Based Frequent Closed
Pattern Miner

Anu Soni, Mukta Goel and Rohit Goel

Abstract Frequent closed pattern (FCP) mining has been an important step in data
mining research. This paper introduces an algorithm to deal with the problem of
finding out (FCP) from a given set of transactions. The miner works on a parallel
approach based on compact matrix division to partition the data set. To filter these
subtasks two methods are adopted (1) transaction set redundancy removal method
and (2) itemset redundancy removal method. Mining of filtered subtasks are done
separately. Consolidated result obtained from mining of these filtered independent
partitions show all FCPs present in transactions.

Keywords Frequent closed pattern � Mining algorithm � Parallel mining

1 Introduction

Frequent patterns (FP) are itemsets, substructures, or subsequences that appear in a
data set with occurrence more than or equal to a user-specified threshold. Frequent
patterns play a necessary role in showing interesting relationships among data such
associations, correlations, causality as well as it has its own importance in data
indexing, clustering, association-based classification, and other data mining tasks as
well [1, 2, 3]. However, the number of frequent patterns can be too large to handle
and if data is dense or low threshold frequency is used then this complication
become vanquish. To overcome this problem, a new term is introduced which is

A. Soni (&) � M. Goel � R. Goel
The Technological Institute of Textile and Sciences, Bhiwani, India
e-mail: anusunalia@gmail.com

M. Goel
e-mail: rishu.muk@gmail.com

R. Goel
e-mail: rohit_160@rediffmail.com

© Springer Science+Business Media Singapore 2016
S.C. Satapathy et al. (eds.), Proceedings of International Conference
on ICT for Sustainable Development, Advances in Intelligent Systems
and Computing 409, DOI 10.1007/978-981-10-0135-2_45

459



known as frequent closed patterns (FCP) [1, 4]. FCP is a pattern for which no
superset exists which has occurrence more than or equal to that pattern [1– 3, 5].
Some notable FCP mining schemes include APRIORI [1], PATTERN–
GROWTH APPROACH FOR FCP MINING [1], CLOSET+ [6], C-MINER [4],
D-miner [7], and SLIDING WINDOW BASED ALGORITHM. Despite the fact
that these algorithm work for small amount of data set well but when it comes to
handle large data set, either they work very inefficiently or they do not work. Here a
partition-based FCP miner is introduced that mine FCP from dense data effectively
and increasingly. This algorithm is different from previous ones because of the
following benefits: (1) it handles duplicacy in starting and does not let data go
duplicate in further processing, (2) it compresses and divides data based upon
compact matrix division strategy, and (3) it divide partitions mined independently
thus impose parallelism.

2 Related Work

There are a number of previous proposed actions which deals with FP mining. But
numbers of FPs are very large and difficult to handle. Thus procedures for FCP
mining came into existence because number of FCPs are less and easy to handle.
Few important algorithms proposed so far are PRIORI [1], PATTERN–
GROWTH APPROACH FOR FCP MINING [1], and CLOSET+ [6]. These
algorithms are good and able to find all FCPs, but these methods cannot work for
dense data set. FCP mining algorithm CARPENTER is designed to work with large
columns and small rows. CARPENTER combines the depth first with row enu-
meration strategy with some efficient search techniques, which results in a scheme
that performs traditional closed pattern (CP) mining. Another algorithm B-MINER
[4] is designed to divide the data with the help of base row projections technique
and then mined independently each divided pattern. C-MINER [4] also used same
strategy, but division is based upon compact matrix division method. Although
these two algorithms are quite good even in case of dense data, they do not handle
row duplicacy in starting, thus inefficient. D-miner [7] works for dense data set.
However, the efficiency of D-miner highly depends on the minimum number of the
data set’s rows/columns containing “0.” More the zero less is the efficiency. Thus,
when the data set has a relatively large number of rows and columns, D-miner loses
its beneficiation. Computational cost of data mining is very high, so a lot of
attempts are made to design parallel and distributed algorithms. A lot of extensions
are made of algorithms like APRIORI, ParEclet, etc., to convert them into parallel
algorithm but these are still very costly. Till now attempts to find a good parallel
algorithm for FCP mining is going on.

460 A. Soni et al.



3 Definitions

Key concepts used in frequent pattern mining are:-
Transaction
database

If there are n number of transactions and m are number of items
available then T = {t1, t2. . .tn} be a transaction database, here
each tj 2 T, 8 j = {1 …. n}

Itemset Each transaction consists of a set of items, say tj = {i1, i2, i3 .. . im}.
Pattern A set P � tj is called a pattern.
Pattern length Number of items contained in a pattern is called Pattern length.
Support Number of transactions in which a pattern appears is known as

support of pattern.
Frequent pattern A pattern P is defined as frequent pattern if its support is at least

equal to the minimum threshold.

4 Proposed Work

Here an algorithm is introduced which not only mine frequent pattern on the basis
of threshold will support, but also on basis of threshold pattern length. This algo-
rithm first takes transaction in which frequent pattern mining is performed. This
input is then converted into binary matrix such that transactions are represented by
rows, and items are represented by columns. Suppose if a transaction tj contains
item ik then cell cjk of matrix contains value “1” else it contains “0.” All rows of
matrix are scanned properly to find out identical rows in matrix; if there are any
identical rows present in matrix then they are collectively treated as a single row
rather than multiple rows. Now data of this binary matrix is compressed using
clustering. This compressed data is divided into various tasks using zero removal
principle. Now these divided tasks are scanned properly to check if there is any
duplicate subtasks exist, if exist then only one of them is taken. These subtasks are
mined independently. Result obtained from mining of every subtask is collected
together to produce overall result. Control of flow throughout the process in Flow
charts 1 and 2.

Working of algorithm

Suppose 9 transactions and 5 items are given in Table 1 and we have to find number
of FCPs to decide a market strategy for it.

Various steps involved in finding FCPs

Step 1 Conversion into binary matrix

First of all whole data is converted into a Boolean context. Binary conversion of
Table 1 is shown in Table 2.

Partition-Based Frequent Closed Pattern Miner 461



Start

Input 

Convert input into binary matrix

Generate subtasks and remove duplicate 

Mine subtasks independently

Check duplicacy in row

Compress data

Combine result

Output FCP

Remove duplicacy

End

Flowchart 1 Partitioned-based FCP-miners

data after redudancy removal

perform clustering of data

compress data on basis of zero removal principal 

start of compression

end of compression

Flowchart 2 Compression technique used

462 A. Soni et al.



Step 2 combine identical rows together

Rows which are exactly same are combined, i.e., multiple rows are considered as
one, so there is no need to process them differently throughout the process. Data set
after removal of duplicate rows is shown in Table 3.

Step 3 Perform rowwise clustering

Now rowwise clustering is performed. Any of the clustering techniques [8] can
applied, here those rows are clustered together in which at least half the number of
total items are similar. To represent a cluster, item wise ORing of all rows in a

Table 1 Sample data set TID List of items

t1 i1, i2, i5
t2 i2, i4
t3 i2, i3
t4 i1, i2, i4
t5 i1, i3
t6 i2, i3
t7 i1, i3
t8 i1, i2, i3, i5
t9 i1, i2, i3

Table 2 Binary data set r/c i1 i2 i3 i4 i5
t1 1 1 0 0 1

t2 0 1 0 1 0

t3 0 1 1 0 0

t4 1 1 0 1 0

t5 1 0 1 0 0

t6 0 1 1 0 0

t7 1 0 1 0 0

t8 1 1 1 0 1

t9 1 1 1 0 0

Table 3 Removal of
duplicate rows

C i1 i2 i3 i4 i5
t1 1 1 0 0 1

t2 0 1 0 1 0

t4 1 1 0 1 0

t8 1 1 1 0 1

t9 1 1 1 0 0

t3, t6 0 1 1 0 0

t5, t7 1 0 1 0 0

Partition-Based Frequent Closed Pattern Miner 463



cluster is taken, i.e., c(ta, tb,…..tz) = ta ˅ tb ˅…tz. After clustering of transactions in
Tables 3 and Table 4 is obtained.

Step 4 Generation of generators

If G represents generator, A indicates clusters, and B indicates itemset then G(A,B) is
said to be a generator. G(A,B) will take only those values for which A has 0 in Bth
column. For Table 3 generators are given by Table 5.

Sorting of generators on the basis of number of items

As generators are used to divide given task by removing useless zeros, we take
generator which has largest number of items, by which we are able to remove more
zeros in the starting. So sorting of generators is performed in descending order of
number of items, generators after sorting is completed.

Step 5 Partition into subtasks

With the help of generators, a binary tree is made. A node is represented by (cluster
set, itemset). Root node contains all clusters and items. Now generators are applied
one by one to generate left and right child. A left child derived from a node contains
all clusters and itemset which are in node except the clusters present in generator.
A right child derived from a node contains all clusters and itemset which are in node
except the items present in generator. Child having support or pattern length less
than threshold support or threshold pattern length are dropped. Minimum threshold
support is 2 and minimum pattern length threshold is 2. Tree generated using
Tables 4 and 6 is shown in Fig. 1. Here leaf nodes are represented by double

Table 4 Clustering r/c i1 i2 i3 i4 i5
c1(t1) 1 1 0 0 1

c2(t2, t4) 1 1 0 1 0

c3(t3, t5, t6, t7) 1 1 1 0 0

c4(t8, t9) 1 1 1 0 1

Table 5 Generators G(A, B)

G1(c1, i3i4)

G2(c2, i3i5)

G3(c3, i4i5)

G4(c4, i4)

Table 6 Sorted generators G(A, B)

G1(c1, i3i4)

G2(c2, i3i5)

G3(c3, i4i5)

G4(c4, i4)

464 A. Soni et al.



boundary rectangles. Subtasks obtained by this process are given in Table 7.
Sometimes, more than one subtasks contain the same clusters, but items contained
by them can be a superset of other and vice versa. This duplicacy need to be
handled in subtasks, otherwise they move through all process and make algorithm
inefficient. To make algorithm efficient, two strategies are used, and these are (1)
Transaction set redundancy removal method and (2) Itemset redundancy
removal method.

c1,i3i4 

c2,i3i5 c2,i3i5

c1c2c3c4 ,i1i2i3i4i5

c2c3c4,i1i2i3i4i5 c1c2c3c4,i1i2i5

c3c4,i1i2i3i4i5 c2c3c4,i1i2i4 c1c3c4,i1i2i c1c2c3c4,i1i2

c3,i4i c3,i4i c3,i4i c3,i4i5

c4 i1i2i3i4i5 c3c4,i1i2i c2c4,i1i2i4 c2c3c4,i1i c1c4,i1i2i c1c3c4,i1i x

c4,i4 c4,i4 c4,i4 c4,i4 c4,i4 c4,i

x c4,i1i2i3i x c2,i1i2i4 c2c4 i1i2 x xx

Fig. 1 Subtasks generators

Table 7 Subtasks Cluster, itemset

c4, i1i2i3i5
c3c4, i1i2i3
c2, i1i2i4
c2c4, i1i2
c2c3c4, i1i2
c1c4, i1i2i5
c1c3c4, i1i2
c1c2c3c4, i1i2

Partition-Based Frequent Closed Pattern Miner 465



Transaction set redundancy method (TRM) When two or more than two sub-
tasks contains exactly same cluster set but itemset contained by one of them is
superset of itemset contained by other subtasks then subtask containing superset of
itemset is considered and other are dropped. Table 7 do not contain such subtask, so
after applying TRM on Table 7 we get Table 8.

Itemset redundancy method (IRM)When two or more than two subtasks contains
exactly same itemset but cluster set contained by one of them is superset of cluster
set contained by other subtasks then subtask containing superset of cluster set is
considered and other are dropped. After applying IRM on Table 8 we get Table 9.

Table 8 Subtasks after TRM Cluster, itemset

c4, i1i2i3i5
c3c4, i1i2i3
c2, i1i2i4
c2c4, i1i2
c2c3c4, i1i2
c1c4, i1i2i5
c1c3c4, i1i2
c1c2c3c4, i1i2

Table 9 Subtasks considered

Subtasks Cluster involve Column set Item set Support No. of items involve

s1 c4 i1i2i3i5 t8t9 2 4

s2 c3c4 i1i2i3 t3t5t6t7t8t9 6 3

s3 c2 i1i2i4 t2t4 2 3

s4 c1c2c3c4 i1i2 t1t2t3t4t5t6t7t8t9 9 2

s5 c1c4 i1i2i5 t1t8t9 3 3

t8t9,i1i2i3i5

t9,i5 

t8t9,i1i2i3x

Fig. 2 Mined tree of subtask s1

466 A. Soni et al.



t2t4,i1i2i4

t2,i1

t2t4, i1i2i4 t2t4,i1i2i4

Fig. 3 Mined tree of s3

t1t8t9,i1i2i5

t9,i5

t1t8,i1i2i5 t1t8t9,i1i2

Fig. 4 Mined tree of subtask s5

t3t5t6t7t8t9,i1i2i3

t3, i1

t5t6t7t8t9,t1t2t3 t3t5t6t7t8t9, i2i3

t5, i2 t5, i2

t6t7t8t9, i1i2i3 t5t6t7t8t9, i1i3 t3t6t7t8t9, i2i3 x

t6,i1 t6,i1 t7,i2

t7t8t9,i1i2i3 t6t7t8t9,i2i3 t5t7t8t9,i1i3 x t3t6t8t9,i2i3 x

t7,i2 t7,i2

t8t9,i1i2i3 t7t8t9,i1i3 t6t8t9,i2i3 x

Fig. 5 Mined tree of subtask s2

Partition-Based Frequent Closed Pattern Miner 467



Step 6 mining of subtasks

Now these subtasks are mined independently. To mined subtask a binary tree is
created. Root node of binary tree is subtask itself. Left and right node of tree is
generated with the help of generator. If node is (T,I) such that T is set of trans-
actions and I is set of items, then generator contains those rows and items for which
row contain 0 value at corresponding item if rows contained in node has variance in
value at that item position. Left child generated from a node contains all rows and
items which are in node except row contained in generator. Right child generates
from a node contains all rows and items which are in node except items contained
in generator. Child having support or pattern length less than threshold support or
threshold pattern length are dropped. Mined tree obtained from all subtasks are
given by Figs. 2, 3, 4, 5 and 6.

Here leaf nodes of these mined trees represent all FCPs in corresponding
transactions. FCPs obtained from these mined trees are given in Table 10.

t1t2t3t4t5t6t7t8t9,i1i2

t2, i1

t1t3t4t5t6t7t8t9,i1i2 x

t3,i1

t1t4t5t6t7t8t9, i1i2 x

t6,i1

t1t4t5t7t8t9 i1i2 x

t5,i2

t1t4t7t8t9i1i2 x

t7,i2

t1t4t8t9,i1i2 x

Fig. 6 Mined tree of subtask s4

468 A. Soni et al.



5 Results

Result can be obtained from Table 10 by removing duplicate FCPs. FCPs obtained
after removal of duplicate FCPs are given in Table 11.

6 Conclusion

In this paper, partition-based FCP miner is proposed which handle identical rows as
one row in the beginning. The key idea is to compress data and partition it into
various subtasks. These subtasks are filtered using TRM and IRM. Mining of
filtered subtasks is done independently and parallely. This algorithm facilitates
parallel mining even in case of dense data set with high efficiency. Transaction wise
results are obtained which use efficiently in market strategy designing.

Table 10 FCPs generated Row set FCP

t1t4t8t9 i1, i2
t8t9 i1i2i3
t7t8t9 i1i3
t6t8t9 i2i3
t5t7t8t9 i1i3
t6t8t9 i2i3
t2t4 i2i4
t1t8 i1i2i5
t1t8t9 i1i2
t8t9 i1i2i3

Table 11 Results Resultant row set FCP

t8t9 i1i2i3
t1t4t8t9 i1i2
t5t7t8t9 i1i3
t6t8t9 i2i3
t2t4 i2i4
t1t8 i1i2i5

Partition-Based Frequent Closed Pattern Miner 469



References

1. Han, J., & Kamber, M. Data mining concept and techniques, 3rd edition.
2. Mannila, H., Toivonen, H., & Verkamo, A. I. (1994). Efficient algorithms for discovering

association rules. In Proceedings of the 12th National Conference on Artificial Intelligence
(AAAI ’94) Workshop Knowledge Discovery in Databases (KDD ’94) (pp. 181–192), 1994.

3. Zaki, M., Parthasarathy, S., Ogihara, M., & Li, W. (1997). New algorithms for fast discovery of
association rules. In Proceedings of the Third International Conference on Knowledge
Discovery and Data Mining (KDD ’97) (pp. 283–286), 1997.

4. Ji, L., Tan, K. L. Member, IEEE Computer Society, & Tung, A. K. H. (2007). Compressed
hierarchical mining of frequent closed patterns from dense data sets. IEEE Transactions on
Knowledge and Data Engineering, 19(9), September 2007.

5. Han, J., Cheng, H., Xin, D., & Yan, X. (2007). Frequent pattern mining: Current status and
future directions. Received: 22 June 2006/ Accepted: 8 November 2006/ Published online: 27
January 2007, Springer Science + Business Media, LLC 2007.

6. Wang, J., Han, J., & Pei, J. (2003). CLOSET+: Searching for the best strategies for mining
frequent closed itemsets. In Proceedings of the Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD ’03) (pp. 236–245), 2003.

7. Besson, J., Robardet, C., & Boulicaut, J.-F. (2004). Constraint-based mining of formal concepts
in transactional data. In Proceedings of the Eighth Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD’04) (pp. 615–624), 2004.

8. Soni, A., Goel, M., & Goel, R. (2015). Comparative study of various clustering techniques. In
Proceedings of the National Conference on Innovative Trends in Computer Science
Engineering (KDD ’94) (pp. 148–150), 2015.

470 A. Soni et al.


	45 Partition-Based Frequent Closed Pattern Miner
	Abstract
	1 Introduction
	2 Related Work
	3 Definitions
	4 Proposed Work
	5 Results
	6 Conclusion
	References


