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Abstract. With the popularity of multi-modal data on Web, cross
media retrieval has become a hot research topic. Existing cross modal
hash methods assume that there is a latent space shared by multi-modal
features, and embed the heterogeneous data into a joint abstraction space
by linear projections. However, these approaches are sensitive to the noise
of data, and unable to make use of unlabelled data and multi-modal data
with missing values in the real-world applications. To address these chal-
lenges, in this paper, we propose a novel Multi-modal Deep Learning
based Hashing (MDLH) algorithm. In particular, MDLH adopts deep
neural network to encode heterogeneous features into a compact com-
mon representation and learn the hash functions based on the common
representation. The parameters of the whole model are fine-tuned in
supervised training stage. Experiments on two standard datasets show
that our method achieves more effective results than other methods in
cross modal retrieval.

1 Introduction

As the popularity of social media in the Web 2.0, the amount of multi-modal data
increases dramatically in recent years. For example, photos are usually associ-
ated with captions and tags, videos contain visual and audio signals, and tweets
often consist of text, images and videos. At the same time, when users acquire
and search through the Internet, they also want to get a comprehensive result
consisting of multiple media types. The traditional information retrieval system
only uses text as query input, so most information systems provide the image and
video retrieval based on text queries. With the rapid development of the mobile
equipment such as telephone and flat computer, users may perform queries using
image, audio and videos other than text. There is an emerging need to retrieve
and search similar or relevant data entities from multiple modals. To make the
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system possible for handling large amount of multimedia data, hashing based
methods have attracted increasing attentions due to the advantages in reduc-
ing both the computational cost and storage. A lot of work extended uni-modal
hashing into multi-modal setting [23]. Cross modal hashing maps data of differ-
ent modalities into the hamming space, in which the distance of similar objects
to be small. In the hamming space, all data are represented as hash codes and
can be searched quickly even for the databases with millions of data. Most previ-
ous cross modal hashing methods follow the assumption that multi-modal data
used for training are available in all the multiple modals and contain the same
‘semantic object’. So these works can not make use of unlabeled data or multi-
modal data with missing values. In realistic applications, the data in the Internet
is typically very noisy and may have missing modals. For example, the image
and text of a tweet may contain different semantics at all. Furthermore, given a
system supporting cross modal retrieval including text, image and audio, if the
data generated by users only contain text and image, they cannot be used for
modeling relationship among the three modals. Most previous works represent
multi-modal data through clustering [25], dictionary learning [22], which build
the corresponding maps pair-wise. When a new modal is added to the system,
the relationship of the new modal with each existing modal has to be learned
again. To address these problems, in this paper we propose a Multi-modal Deep
Learning based Hashing (MDLH) algorithm, which learn the common feature
space of different modalities using deep neural network. The multi-modal deep
learning can learn compact and robust ‘semantic’ representation of multi-modal
data, which is able to handle the noise and the missing modals of the data. The
experiments on two realistic datasets show that the proposed method can realize
cross modal hashing effectively. The rest of the paper is organized as follows: In
Sect. 2, we review the related work. Section 3 elaborates the method proposed in
this paper. In Sect. 4, we demonstrate the use of our approach for cross modal
retrieval and the experimental results. Finally, we conclude the work in Sect. 5.

2 Related Work

The work involves with cross modal hashing and multi-modal deep learning,
which will be reviewed in the following subsections.

2.1 Cross Modal Hashing

Hashing index can be categories into uni-modal hashing, multi-modal hashing,
and cross modal hashing. In the work about uni-modal hashing, the most well
known methods are local sensitive hashing [5] and spectral hashing [20]. Multi-
modal hashing compares the multi-modal features of data, and returns the search
results of each modal. For example, when retrieving an image according to multi-
modal (color, SIFT, BOW) descriptors, the multi-modal hashing projects each
feature into the hamming space and combines the multiple results together. Cross
modal hashing focuses on analyzing the relationship between modalities and
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provides cross modal query. For example, given the color feature of an image as
the input, the system returns the results according to SIFT descriptor. Here the
modal means feature or media type. So cross modal means cross feature or cross
media. The existing uni-modal data hashing includes two steps: First, project the
original data into low-dimensional space. Then, quantize the new representation
into hash codes. Under the unsupervised situation, many embedding methods
have been proposed, such as random projection [5], spectral decomposition [20].
Similarly, multi-modal data hashing includes two steps with more restrictions.
Bronstein [3] proposed the first cross modal hashing model CMSSH. Given two
modals, CMSSH learned two groups of hash functions that made the similar
data (in different modals) have smaller distance in the hamming space while
dissimilar data (in different modals) have larger distance in the hamming space.
CMSSH kept the relationship between data in different modals but ignored the
similarity in same modal. Kumar [10] extended the spectral hashing into multi-
modal setting and proposed CVH, which minimized the distance of similar data
both in the same modal and the different modals. MLBE [23] used probability
generative model to represent the data, and the latent factors learned were used
as the hash codes. There is no independent restrict of hash codes so the hash
codes may have high redundancy. Yu [22] adopted dictionary learning to rep-
resent data in different modals, and learned the hash function based on sparse
codes. The dictionaries of different modals were connected through the coupled
dictionary space. IMVH [8] kept both intra similarity and inter similarity of the
data. Song et al. [17] proposed Inter-Media Hashing which used a set of corre-
sponding image and text as the inter media to learn the relations of multiple
modals.

2.2 Multi-modal Deep Learning

Deep learning builds a layer network structure to simulate the human brain,
and learn representations for data from bottom to up. Each layer of the net-
work corresponds to a representation. Recently, deep learning is widely used
in many applications and achieves impressive results, including speech recogni-
tion [6], face recognition, image classification [9] and object recognition etc. The
representative deep learning including Deep Belief Networks [1], Auto Encoder,
Stacked Denoising Autoencoder, Deep Boltzmann Machine and Deep Energy
Model. Ngiam [12] used DBM to learn the cross modal representation of video
and audio data, and rebuilt the data of missed modality. Srivastava [18] proposed
a Deep Belief Network to learn representation of the multi-modal data. Sohn [16]
proposed an improved multi-modal deep learning model. These works focus on
solving the data rebuilding problem when part of the modality is missing. Our
work focuses on learning the relations between different modals and proposing a
semantic and common representation of multi-modal data. The work most sim-
ilar to ours is Wu [21], in which the deep learning is used to learn the optimal
combination of different modalities. Different from their work, we focus on learn-
ing a common representation of multi-modal data using deep neural network.
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3 The Multi-modal Deep Learning Based Hashing
Algorithm Methodology

In this section, we present the MDLH algorithm in detail. Figure 1 is the frame-
work of our method. First, the multi-modal features of multi-modal data are
extracted as inputs. Then, we use multi-modal deep learning method to learn
the common representation for them. Finally, the hash function of each modality
is used to map the data into the hamming space. In the following, the notations
and problem formulation are introduced first. Then, we give the model of the
multi-modal deep learning, followed by hashing function learning.

Multimodal Deep Learning Hash Function Learning
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Fig. 1. Framework of the multi-modal deep learning hashing

3.1 Notations and Problem Definition

Given a set of multi-modal data O = O!,...,0P,...,OM(p = 1...M) consist of N
data from M modalities, where O is the dataset in the p-th modal and of is the
i-th datum in OP. We use XP to represent the features of the p-th modal, and
D, is the dimension of the feature space. Denoted the shared representation of
multi-modal data is S, the projections are defined as:

fPXP— SP (1)
then, the data are mapped into hamming space using a linear projection:
g*: SP — HP (2)

The main idea of learning the hash functions goes as follows. Data of each individ-
ual modal are firstly converted into the representations for single modal, denoted
as BP, which preserves the intra similarity. Data of all modals represented by BP
are then mapped into a common space SP where the inter-similarity is preserved
to generate hash functions. Finally, values of hash functions are binarized into
hamming space. Given a set of multi-modal data O and the training dataset

T= (m?l,xj N k=1,.., K, where 2" O™, z;7€0™ are the features of o;"

and oznj separately. L;; = 1 if two data z; and z; belong to the same category
otherwise L;; = —1. The distance of the two data in the shared representation

is defined as: ,
d(@™,2;7) = 7" —s;7 ||, (3)
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We formulate the problem to the following optimal problem with the object
function:

K
min Y L d(xz 2"). 4
f kzz:l 9 ( 7 7 ) ()

3.2 Multi-modal Deep Learning

In this section, we describe the multi-modal feature learning model for the task of
shared representation learning, where the inputs are the features of each modal.
The multi-modal deep learning consists of two components: (1) feature learn-
ing for each single modal; (2) shared feature learning for multi-modal features.
Figure 2 is the deep neural network structure for the multi-modal deep learning.
The whole model is learned in three steps: First, the unlabeled data U of each
modal is used to pre-training the deep learning network using SDA (seeing 3.2.1).
Then, the multi-modal data O is represented using the SDA of each modal and
the outputs are inputted into RMB to learn the relationship between multiple
modals. Finally, the training data 7T is used to update the parameters of the
model.

shared representation
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Fig. 2. Multi-modal deep learning model

Feature Learning for Single Modal. The SDA (Stacked Denoising Autoen-
coder [19]) is adopted to pre-training the network, which adds noises into training
data based on autoencoder. Figure 3 is the process of a SDA. First, we construct
the noisy version of x through a stochastic mapping. Then the noisy version z’
is mapped through AE to a hidden representation y = ¢(z’), where y is used
to reconstruct a clean version of x by z = 1(y). Several DAs are stacked to
build a layer structure, where the output of the bottom layer is the input to
the higher layer. Once the encoding function is learned, encoding function is not
needed anymore. We use a non-linear one-layer neural network as the unit of
SDA, where the encode function is:

y = ¢(x) = sigmoid(Qx + 1) (5)
and decoding function is:

z = P(y) = sigmoid(Q'y +t) (6)



A Novel Cross Modal Hashing Algorithm 161

Fig. 3. Denoising Autoencoder

Multi-modal Feature Learning. After learned the representation of each
modality, we use RBM (Restricted Boltz-mann Machine [15]) to model the rela-
tions between different modals and learn the shared representation of them.
A Restricted Boltzmann Machine is an undirected graphical modal with sto-
chastic visible unit v and stochastic hidden unit h. Each visible unit connects to
each hidden unit, but no connections within hidden variables or visible variables.
The structure of the model is shown in Fig.4. The model defines the following
energy function E:

E(v,h;0) = —aTv —b"h —vTWh (7)

where 0 = {a,b, W} are the model parameters. The joint distribution over the
visible and hidden units is defined by:

1
p(v, h;0) = m%p(—E(Uv h; 0)) (8)
where Z(0) is a constant for normalization. The j-th hidden node is set to 1
with probability:

p(hjlv) = sigmoid(%(bj + WjTU)) (9)

We minimize the loss function between reconstructed data using the model and
original data, and learn the parameter following [7]. After obtaining the shared
representation s by the multi-modal deep learning model, we can compute the
derivation of the objection function with respect to s* and s;nj as follows:

i

K
6J mi; mj
95 ZZLij(si s ) (10)
3 k=1
aJ K o
5o =20 Lig(s” =87 (11)
i k=1

Then, we used online gradient descent [26] to update the parameter of the last
layer by:

W(—W—T]% (12)

b<—b—n% (13)

where the derivative are computed as follows:
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Fig. 4. Restricted Boltzmann Machine
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Finally, we adopt back propagation [14] to update the parameter in the other
layers of the network.

3.3 Hashing Function Learning

Let us denote the shared representation for a data is s, the linear transformation
to hash code is:
g(s) = sign(PTs) (16)

where P is the projection matrix, s is the shared representation of data. Denote
S = [S1, ..., SM] as the representation for all dataset. Since our representation
S is sparse, we follow the method in [22] to learn the projection matrix P by:

P=+vVMNA VY3 (17)

Algorithm 1. Multi-modal deep learning based cross modal hashing

Input:multi-modal data O,training data U, T’
Output:projection f? projection g

form=1: M

pretrainning the SDA for modality m
end

pretrainning the RBM

do

fork=1:K

(xi,x;) < T

update the parameter W, b

update the parameter in the lower layer using back propagation
end

. Untile object function convergence

. Compute P using equation(17)
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where M and N are the number of modal and the multi-modal data, V and
2] are the c largest eigenvalue and corresponding eigenvector of the matrix
A=288T A3 with A = diag(S). Algorithm 1 summarizes the multi-modal deep
learning based cross modal hashing. Given a new data, the hash code is gener-
ated by two steps: First, extract the feature of the data and use the multi-modal
deep learning to represent the data. Then, use the linear project function g to
compute the hash code of the data.

4 Experiments

We evaluate our method on two real-world datasets for cross modal similarity
search and analyse the results. In detail, the datasets consist of text and images,
and we use text as query to search similar images and image as query to search
similar texts. First, we introduce the dataset and the setting of the experiments.
Then we will show the results and compare the results with other methods.

4.1 Data Sets and Settings

Two datasets are used in our experiment: Wikipedia-Picture of the Day and
NUS-WIDE. All of them include two modals (pictures and text). Wikipedia [13]
includes 2866 multimedia documents collected from Wikipedia website, in which
each document includes one picture and at least 70 words. The dataset provides
the topic probability of each text on 10 categories (computed using LDA [2]).
Existing experiments used the topic probability as text features, which is too
sparse to be a suitable input to deep learning. So we extract the vector space
modal of each text as the feature. The feature of images use SIFT descriptor
[11] based on bag-of-visual word model, which quantizes the descriptors into
1,000 dimensional vectors. The NUS-WIDE dataset is a real-world image dataset
collected by Lab for Media Search in National University of Singapore [4]. It
includes 81 categories and 269,648 images. Each image corresponds to multiple
tags, and each image-text pair is annotated by at least one category. The image
is represented by 1000-dimensional bag-of-visual word of SIFT descriptors. And
the text corresponding to the image is represented by a 1000-dimensional vector
of tags.

4.2 Evaluation Metric

We use mean Average Precision [23] as the evaluation metric for effectiveness
in our experiment. The evaluation metric has been widely used in literatures
[23,24]. The mAP evaluates the performance of similarity search, which the
larger value indicates better performance and the similar results have high ranks.
Given a query and R retrieved instances, the average precision is defined as:

AP = % S P(r)a(r) (18)
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where L is the number of relevance instances in the result. P(r) is the accuracy of
top r instances. §(r) is indicator function, which equals to 1 if the r-th instance
is relevant to the query or 0 otherwise. The mAP is the mean of all the APs
and we set R = 100 in our experiments.

4.3 Compared Methods

We compared our method with other four cross modal hash methods. They
are CMSSH, CVH, LSSH and IMVH. CMSSH [3] constructed two groups of
linear hash function to keep similarity relationship between different modalities.
CVH [10] extended uni-modality spectral hashing to multi-modal, and kept the
similarity relationship between different modal and in the same modal. LSSH [24]
adopted matrix factorization and sparse coding to map text and image into the
latent factor space separately. IMVH [8] kept the interior and exterior similarity,
and added the distinctive into data belongs to different categories. CMSSH and
CVH generate different hash codes for different modals, but they make sure that
the hash codes in the same modal have the same length.

4.4 Results

Results on Wiki Dataset. We select 90 % of the dataset as training data, 5 %
as unlabeled data and the rest as the query set for MDLH. Other methods use the
95% of the dataset (training data and unlabeled data for MDLH) as training
data and the rest as the query set. The mAP of our method and compared
methods on Wiki dataset are shown as Tablel. We can observe that MDLH
outperforms most of the methods on two cross modal similarity search tasks. The
results of existing work reported better performance on task ‘Text query Image’
than task ‘Image query Text’, because they used topics rather than words as the
text feature so the text queries are represented as the 10 topic, which simplify the
research problem. Furthermore, we report the Top-N precision curve of results
on Wiki dataset in Fig. 5, which reflects the change of precision with respect to
the number of retrieved instances.

Results on NUSE-WIDE Dataset. Some categories in NUSE-WIDE are
scarce, so we select 8 categories that contain more instances than the other cate-
gories. We select 90 % of the dataset as the training data, 5% as unlabeled data,
and 5% as the query data for MDLH. The mAP of all the methods on NUW-
WIDE dataset is shown in Table 2. The performance of all methods increased to
some degree on NUS-WIDE dataset.

Results on Noised Dataset. To evaluate the robustness to noise of each
method, we add noises into Wiki and NUS-WIDE datasets separately, and com-
pare the performance on the noise dataset. For Wiki and NUS-WIDE dataset, we
select a category randomly as the source of noise separately. Some pictures and
words from them are selected randomly as noise adding to the rest of the data.
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Table 1. The mAP of different methods on Wiki dataset

Task Method | Hash code length
16 32 64

Image query Text | CMSSH | 0.3183 |0.3275 | 0.2750
CVH 0.3140 | 0.3345 |0.2760
LSSH 0.3730 | 0.3940 |0.3887
IMVH 0.3812 |0.3921 |0.3879
MDLH |0.3919|0.3940 0.4030

Text query Image | CMSSH | 0.3321 | 0.3173 | 0.3147
CVH 0.3005 |0.3322 |0.3107
LSSH 0.3552 |0.3559 |0.3545
IMVH 0.3642 |0.3624 |0.3644
MDLH |0.3840|0.3729  0.3604

Table 2. The mAP of different methods on NUS-WIDE dataset

Task

Method

Hash code length

16

32

64

Image query Text

CMSSH

0.4405

0.4389

0.3934

CVH

0.3756

0.3729

0.3619

LSSH

0.4517

0.4437

0.4460

IMVH

0.4520

0.4489

0.4446

MDLH

0.4526

0.4537

0.4555

Text query Image

CMSSH

0.4113

0.3984

0.3722

CVH

0.3805

0.3629

0.3899

LSSH

0.4271

0.4178

0.4143

IMVH

0.4189

0.4250

0.4130

MDLH

0.4496

0.4478

0.4485
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Fig. 6. The mAP of different methods with and without noise

In Wiki dataset, we select 2 % of the text and one picture as noise each time. In
NUS-WIDE dataset, we select one tag as the noise. Figure 6 is the performance
before and after adding noises. It shows that our method is robust to noise than
other methods.

5 Conclusion

In this paper, we proposed a multi-modal deep learning based cross modal hash
learning method. The multi-modal deep learning is used to model the relation-
ship between multiple heterogeneous data and learn a shared representation of
the multi-modal data, which is robust to noise and easy to extend to multiple
modals. The experiments on two realistic dataset show that our method rep-
resenting the multi-modal features effectively. In future, we will focus on the
multi-modal deep learning for media types such as audio, video.
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