
OCLS: A Simplified High-Level
Abstraction Based Framework
for Heterogeneous Systems

Shusen Wu, Xiaoshe Dong, Heng Chen and Bochao Dang

Abstract In contrast with the increasing popularity of heterogeneous systems,
programming on these systems remains complex and time-consuming. Developers
have to access heterogeneous processors through explicitly and error-prone oper-
ations provided by low-level approaches like OpenCL. We present OCLS (OpenCL
Simplified), a high-level abstraction based framework and its implementation as a
minimal library on the top of OpenCL. OCLS shields hardware details, simplifies
the development process and handles the environment configuration and data
movement implicitly. Its APIs act like ordinary functions and require little prior
training. OCLS thus reduces heterogeneous programming effort and relieves the
programmers of low-level programming. We evaluated OCLS across a set of dif-
ferent benchmarks. The size of benchmarks rewritten in OCLS reduced by an
average ratio of 35.4 %. In the experiment on both GPU and Intel MIC platforms
with data sets in different size, OCLS yielded better performance than original
OpenCL programs and showed a good stability and portability.

Keywords Heterogeneous programming � OpenCL � OCLS � Abstraction

1 Introduction

Heterogeneous systems employing different kinds of accelerators/co-processors are
continuously dominating the high performance computing area according to the
Top500 list [1]. With a 33.86PFlop/s peak performance, the Tianhe-2 supercom-
puter which uses Intel Xeon CPUs and Xeon Phi co-processors is currently the

S. Wu (&) � X. Dong � H. Chen � B. Dang
School of the Electronic and Information Engineering, Xi’an Jiaotong University,
Xi’an, Shaanxi, P. R. China
e-mail: wuss153@stu.xjtu.edu.cn

© Springer Science+Business Media Singapore 2016
J.J.(Jong Hyuk) Park et al. (eds.), Advances in Parallel and Distributed Computing
and Ubiquitous Services, Lecture Notes in Electrical Engineering 368,
DOI 10.1007/978-981-10-0068-3_7

57



fastest system worldwide. The cost-effectiveness, power-efficient and high perfor-
mance accelerators/co-processors have caused the shift from homogeneous pro-
gramming to heterogeneous programming. However, the state-of-art heterogeneous
programming methods [2, 3] could be disappointing.

The current de facto standard for heterogeneous computing is OpenCL [4]. With
vendor provided runtime support, OpenCL is available on a wide range of archi-
tectures. The theme of OpenCL programming is to offload parallel computations
(kernels) on devices. To archive that, applications have to start with device query
and environment configuration. Resource allocation on device, data transfer from
host to device and vice verse after the kernel execution are also needed. All the
operations above including kernel launch are done explicitly through the OpenCL
APIs. Programmers deal with hardware details which may limit the portability of
the program. This leads to tedious and error-prone code and makes heterogeneous
programming complex and difficult.

We present a high-level abstraction based framework called OCLS to simplify
the programming on heterogeneous systems. OCLS framework provides a single
virtual processor abstraction for all heterogeneous systems and hides the hardware
details for programmers through a library. The OCLS library encapsulates the
OpenCL APIs and realizes automatic environment configuration. Data movements
are handled at runtime implicitly with the help of a kernel data type defined in
OCLS. The OCLS framework enables programmers to carry out heterogeneous
computing in an ordinary program with little extra effort.

2 Related Works

OpenCL provides rich low-level APIs for heterogeneous programming. It builds a
solid foundation for high-level extensions. OpenACC [5] is a high-level directive
based approach currently targets at single device. It reduces the difficulty of pro-
gramming at the expense of performance and flexibility.

JSeriesCL [6] defines ParameterGPU class to simply the OpenCL execution and
using associated data and thread attributes to decide the size of work-groups and
work-items. Using it requires heavy prior training and the code has poor readability.

The SOCL [7] framework provides a unified OpenCL platform for multi-device
system. It ease the restrictions on platforms, contexts and command queues of
OpenCL without changing the development process.

The Skeleton computing language (SkelCL) [8] is a high-level extension of
OpenCL for multi-GPU system. It introduces parallel container data types and
parallel skeletons to realize automatic data distribution and parallel computation.
Although it’s powerful, it has a limited scope of applications. It’s learning cost
could be high.

58 S. Wu et al.



The VirtCL [9] framework provides a single high-level abstraction for multiple
devices. It implements a front-end library instead of the OpenCL APIs. Since the
VirtCL is presented to solve the problems of memory inconsistency and device
contention, its library only partly conceals the OpenCL programming details.

3 OCLS Framework

3.1 OCLS Abstraction Layer

The initial motivation of OCLS is to reduce the difficulties to exploit the massively
parallel computing capability of heterogeneous system. Application developers
demand a high-level abstraction as they are suffering from low-level programming.
OCLS provides a unified abstraction layer between programmers and heteroge-
neous systems and implements such abstraction on the top of OpenCL as illustrated
in Fig. 1. For programmers, they are interacting with a virtual processor through
OCLS library. There is little difference from programming on a multi-core pro-
cessor except that the parallel scale can be several orders of magnitude higher. They
will concentrate on designing and implementing parallel algorithms into kernels and
call the OCLS APIs to execute them. The execution is controlled by the parameters
passed to the API function. All the details of low-level programming on various
heterogeneous processors are handled implicitly. With C compatible library and
OpenCL kernel language, OCLS integrates heterogeneous programming into
ordinary programs.

Fig. 1 OCLS abstraction
layer

OCLS: A Simplified High-Level Abstraction … 59



3.2 OCLS Library

The OCLS library consists of four primary functions and three assistant functions. It
encapsulates OpenCL APIs and minimizes the development process of OpenCL.
The four primary functions indicates the procedures in OCLS programming: ini-
tialization, kernel execution, execution finalization and termination.

The ocl_Init() function queries all available platforms and devices and selects a
best device to initialize the environment configuration. It then compile the kernel
source for execution. If the kernel source is stored in kernel files, call the assistant
function prog_Src() to read them in ahead of ocl_Init(). It takes the kernel compile
option as parameter and just need to be called once.

Programmers use the ocl_Runkernel() function to launch a kernel. They just give
the name of the kernel and specify the execution scale (NDRange in OpenCL)
along with the kernel parameters. ocl_Runkernel() then creates the kernel, set the
kernel arguments and run it on the selected device.

The ocl_Finkernel() function finalizes the kernel execution. It sets a synchro-
nization point and automatically handles the data movement. It should be called
before the subsequent calculations using the results and need not to be paired with
ocl_Runkernel().

The ocl_End() function terminates the OCLS programming by releasing allo-
cated memory space on both the host and the device. The shared OpenCL objects
like context, program and kernel created earlier are also purged.

3.3 Kernel Data Type and Data Movement

OCLS creates a new kernel data type ocl_kdata. It consists of a pointer to the
original data, the device side memory object, a data size variable and the I/O type
variable. The I/O type includes five predefined value: NORMAL, TEMP, IN, OUT
and INOUT which indicates the relationship between the kernel execution and data.

All the parameters of the kernel should be created in ocl_kdata type and ini-
tialized using assistant function wrapper(). The data pointer, data size and I/O type
are specified by programmer when calling wrapper(), the device memory object is
managed implicitly according to the I/O type. The NORMAL type states that the
parameter is a regular variable. Others indicate device side memory allocation. IN
and INOUT types state the parameter as the input data to the kernel, a implicitly
data transfer from host to device is incurred. Device to host data movements are
handled by ocl_Finkernel() after kernel execution on the data with OUT and
INOUT type.

60 S. Wu et al.



Kernel execution often needs extra memory space for intermediate results. Those
parameters are stated as TEMP type. OCLS also provide assistant function
flush_Data() for user controlled random data transfer for sake of flexibility.

3.4 Runtime Data Structures

OCLS introduces several data structures at runtime to provide convenience and
eliminate redundant operations.

The parallel capacity refers to the product of the compute units amount and
clock frequency of a device. It’s the criterion that OCLS uses to select the best
device.

After the kernel execution, kernel data with OUT or INOUT type is automati-
cally pushed into a shared output stack. A ocl_Finkernel() function called later
empties the stack and copies the results back.

The same kernel will be created in every call to function ocl_Runkernel() If it is
launched repetitively. It also affects the output stack. A history pointer is introduced
to solve this problem by recording the last executed kernel. If the same kernel is
launched, ocl_Runkernel() will skip the kernel creation and pushing operations.

A buffer list is used to indicate the location of each buffer in device memory.
When a buffer is created in wrapper(), a pointer to the buffer is added to the tail of
the buffer list. When calling ocl_End(), it frees allocated memory space according
to the list.

4 Case Study

An example of implementing the same vector addition algorithm in both OCLS and
OpenCL is presented to demonstrate the use of OCLS and its advantages.
Algorithm 1 show the kernel source code of vector addition which is used for both
Algorithm 2 and 3. The initialization of the three integer vectors A, B and C with a
same size specified by a variable datasize is omitted.

Algorithm 2 and 3 both archive the function of executing vector addition on a
device in parallel. But the original OpenCL program has to specify the device type
explicitly which limits its portability and needs an extra 29 lines in source code to
accomplish the same task. It omits all the error handling which is done implicitly in
OCLS and the readfile() function used to read in kernel file is also undefined. The
example shows that using OCLS can reduce the programming effort significantly
with user-friendly APIs and gives a brief look at the portability and reliability of
OCLS.

OCLS: A Simplified High-Level Abstraction … 61



5 Evaluation

All of the evaluations were conducted on both a GPU server with two Xeon E5520
CPUs, 12G RAM and four NVIDIA Tesla C1060 GPUs running CUDA 6.5 [10]
and CentOS 6.5 with linux Linux 2.6.32-431 kernel and a Intel MIC server with
two Xeon E5-2670 CPUs, 64G RAM and two Xeon Phi 7110P co-processors
running Intel OpenCL runtime 14.2 with MPSS 3.3.4 and Red Hat Enterprise Linux
Server 6.3 with linux 2.6.32-279 kernel. The OpenCL version on both platform is
OpenCL 1.2. The benchmarks we used were collected from the Parboil benchmark
suite [11]. The benchmarks and corresponding data sets are shown in Table 1.

62 S. Wu et al.



5.1 Code Size Comparison

All the benchmarks were rewrote using OCLS without any changes or optimization
to the algorithm. Figure 2a shows the source code size of the benchmark and OCLS
programs. Figure 2b shows the normalized source code size comparison. The
reduction in coda size is related to the program feature since OCLS only reduces the
code of parallel relevant parts. Benchmark cutcp spends much effort on data pro-
cessing and serial computing thus produces the lowest reduction ratio. OCLS
archives an average 8.97 KB reduction in code size. The average reduction ratio is
35.4 %.

5.2 Performance

The OpenCL programs in Parboil benchmark suite target GPU. It needs some
manual modification in environment configuration to get them run on MIC plat-
form. However, benchmark cutcp kept failing on GPU due to the OpenCL
implementation issues in CUDA, it was removed during the GPU test. Benchmark
histo incurred hardware exception and segmentation fault during the MIC test, the
program returned with incorrect result. However, the OCLS version of histo ran
properly.

Table 1 Benchmarks and data sets

Benchmark Problem size (small) Problem size (large)

bfs 270,926 nodes 1,000,000 nodes

cutcp 5943 atoms –

histo 996 w × 1040 h 20 iterations –

lbm 2.16 × 106 cells 100 iterations –

mri-q 32768 pixels using 3072 samples 262144 pixels using 2048 samples

sgemm Matrix size: 128 × 96 96 × 160 Matrix size: 1024 × 992 992 × 1056

stencil Grid size: 128 × 128 × 32 Grid size: 512 × 512 × 64

(a) (b)

Fig. 2 Source code size comparison (base original OpenCL program)

OCLS: A Simplified High-Level Abstraction … 63



Although OCLS introduces overhead in device querying and extra data struc-
tures creation, it eliminates redundant operations introduced by encapsulation with
the runtime data structures and avoids unnecessary data transfer in original
benchmark program. It yields better performance on both GPU and MIC as shown
in Fig. 3. Benchmark cutcp, histo, lbm, mri-q used small data set. Benchmark bfs,
sgemm, stencil used large data set.

5.3 Stability

We also evaluated the stability of OCLS programs using different size data sets
provided by the benchmark suite. Figure 4 illustrates the test result. We can see that
the performance of OCLS is always better than original OpenCL programs. The
trend in the execution time changes of OCLS follow that of OpenCL. OCLS
performed as stable as OpenCl with different problem size and kept its advantages.
It’s also very interesting to find the differences between GPU and MIC of their
behavior with different data size and application.

(a) (b)

Fig. 3 Normalized execution time comparison

Fig. 4 Execution time with different data sets (-s: small, -l: large) on GPU and MIC (-g: GPU,
-m: MIC)

64 S. Wu et al.



6 Conclusion

We have proposed a simplified high-level programming framework called OCLS
for heterogeneous system. It allows programmer to exploit the massively parallel
computing capability of various heterogeneous processors in an ordinary program
without concerning the hardware details. This is archived through the OCLS library
which encapsulates the OpenCL APIs. The OCLS library minimizes the develop-
ment process and realizes automatic environment configuration and data movement.
The comparison with original OpenCL programs shows that using OCLS can
reduce the amount of code and the programming effort significantly. In the
experimental evaluation on GPU and MIC with different data size, OCLS showed a
stable and better performance than the benchmarks. The experiments also
demonstrated the portability and stability of OCLS.

Acknowledgments This work is supported by the National Natural Science Foundation of China
(NSFC) under Grant No.61173039, and the National High Technology Research and Development
Program (863 Program) of China under Grant No. 2012AA010904.

References

1. Top500.org. http://www.top500.org/
2. Javier Diaz, Camelia Munoz-Caro, Alfonso N (2012) A survey of parallel programming

models and tools in the multi and many-core era. IEEE Trans Parallel Distrib Syst 23(8):1369–
1386

3. Brodtkorb Andre R, Christopher Dyken, Hagen Trond R et al (2010) State-of-the-art in
heterogeneous computing. Sci Program 18:1–33

4. The OpenCL specification. https://www.khronos.org/opencl/
5. OpenACC–directives for accelerators. http://www.openacc-standard.org/
6. de Souza Rosa Gomes R, Figueiredo JM, Martins CA et al (2014) A framework for

automating the configuration of OpenCL. Environ Model Softw 53:81–86
7. Henry S, Denis A, Barthou D, Counilh M-C, Namyst R (2014) Toward OpenCL automatic

multi-device support. In: Euro-Par 2014, LNCS, vol 8632. Springer, Heidelberg, pp 776–787
8. Steuwer M, Gorlatch S (2014) SkelCL: a high-level extension of OpenCL for multi-GPU

systems. J Supercomput 69:25–33
9. You Y-P, Wu H-J, Tsai Y-N et al (2015) VirtCL: a framework for OpenCL device abstraction

and management. In: 20th ACM SIGPLAN symposium on principles and practice of parallel
programming. ACM, New York, pp 161–172

10. CUDA toolkit. https://developer.nvidia.com/cuda-toolkit
11. Parboil Benchmarks. http://impact.crhc.illinois.edu/Parboil/parboil.aspx

OCLS: A Simplified High-Level Abstraction … 65

http://www.top500.org/
https://www.khronos.org/opencl/
http://www.openacc-standard.org/
https://developer.nvidia.com/cuda-toolkit
http://impact.crhc.illinois.edu/Parboil/parboil.aspx

	7 OCLS: A Simplified High-Level Abstraction Based Framework for Heterogeneous Systems
	Abstract
	1 Introduction
	2 Related Works
	3 OCLS Framework
	3.1 OCLS Abstraction Layer
	3.2 OCLS Library
	3.3 Kernel Data Type and Data Movement
	3.4 Runtime Data Structures

	4 Case Study
	5 Evaluation
	5.1 Code Size Comparison
	5.2 Performance
	5.3 Stability

	6 Conclusion
	Acknowledgments
	References


