
Chapter 3
Game-Theoretic MAC-Layer Interference
Coordination with Orthogonal Channels

3.1 Introduction

In this chapter, we consider the problem of opportunistic spectrum access in a kind
of networks, where the users are spatially located and direct interaction/interference
only emerges between neighboring users [1–6]. We investigate this problem from a
perspective of interference minimization. Note that the commonly used interference
model in the literature is the PHY-layer interference models, in which the focus is
to minimize the amount of experienced interference [7]. In methodology, the PHY-
layer interference model is more suitable for wireless communication systems with
interference channel models, e.g., the code-division multiple access (CDMA) and
orthogonal frequency-division multiple access (OFDMA) systems. However, it may
not suitable for wireless communication systems with collision channel model, e.g.,
carrier sensing multiple access (CSMA). In particular, it was recently reported in
[8] that the traditional PHY-layer interference model is not applicable for collision
channels, e.g., in the 802.11b-based networks.

To capture the mutual interference behavior in multiple access control mecha-
nisms, this chapter considers a new interference metric, called the MAC-layer inter-
ference, which is defined as the number of neighboring users choosing the same
channel. Compared with the traditional PHY-layer interference model, the MAC-
layer interference essentially determines whether two users interfere with each other
or not. Based on this definition, we formulate aMAC-layer interferenceminimization
game, and then propose an uncoupled learning algorithm, called the binary log-linear
learning algorithm. It is proved that the learning algorithm asymptotically achieves
the optimal NE solution and minimizes the aggregate MAC-layer interference. Note
that the main analysis and results in this chapter were presented in [9].
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3.2 Motivation, Definition, and Discussion of MAC-Layer
Interference

3.2.1 Motivation and Definition

Due to the open attribute of wireless transmissions, mutual interference is unavoid-
able in multiuser wireless systems. In the literature, the commonly used model is the
PHY-layer interference model [7], in which the focus is to minimize the amount of
experienced interference. However, it is noted that the PHY-layer interference model
is more suitable for communication systems with interference channel models, e.g.,
CDMA and OFDMA systems, and not applicable for communication systems with
collision channel model, e.g., CSMA and Aloha.

Recently, the experimental results reported in [8] show that for wireless communi-
cation systems with CSMA, some interesting features can be observed. In particular,
let us consider two nodes (links), which are equipped with 802.11a/b/g cards. It is
emphasized here that the considered node (link) actually consists of a transmitter
and a receiver located closely [8]. The lognormal fading model is considered, as it
addresses the medium-scale path loss well. Specifically, the signal strength (RSS)
received at a link from the other link is

S = Pt d
−βeX , (3.1)

where Pt is the transmitting power, d is the physical distance between the two nodes,
β is the path loss exponent, and X is a Gaussian variable with zero-mean and variance
σ 2. Note that the lognormal fading is usually measured in the dB-spread form which
is characterized by σ = 0.1 log(10)σdB. As indicated by the empirical measurements
[10], the dB-spread of the lognormal fading typically ranges from 4 to 12 dB.

According to the principle of CSMA, a link can hear the transmission of the
other link if the received RSS is greater than a threshold Sth . In the experiment, we
set Pt = 1W, β = 2, σdB = 6dB, and Sth = 8.1633 × 10−6W. Denote s1 and s2 as
the achievable throughput of node1 and node2, respectively, when the other node is
inactive, and s ′

1 and s ′
2 as their achievable throughput when both nodes are active

simultaneously. Then, the relationship between the normalized ratio γ = s ′
1+s ′

2
s1+s2

and
the distance d is used to investigate the effect of interference on the throughput [8]. By
simulating 106 independent trials and then taking the expected value, we illustratively
present the simulation result in Fig. 3.1. Similar to the important observations shown
in [8], there are two interesting results:

• The throughput ratio sharply increases from 0.5 (severe interference) to 1 (almost
no interference) with a slight increase in the physical distance. As a result, it
can be divided into three regions, i.e., interference region, transitional region, and
non-interference region, as shown in the figure.
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Fig. 3.1 The effect of
mutual interference on the
normalized throughput ratio
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• The throughput ratio in both interference and non-interference regions does not
change with the distance, while increasing linearly with the distance in the transi-
tional region.

Some explanations from the perspective of interference are given below: (i) when
the two nodes are located in the interference region, only one node can transmit
successfully at a time, as they can hear the transmission of each other. In other words,
they interfere with each other; (ii) when located in the non-interference region, they
can transmit successfully and simultaneously as they do not hear transmission of
each other. In other words, there is no interference; and (iii) when located in the
transitional region, they can probabilistically hear each other due to the randomness
of channel fading. In other words, there exists probabilistic interference, which will
be discussed in the subsequent.

As the span of the transitional region d2 − d1 is relatively small, a simplified inter-
ference model can be used to analyze interference among the users. Specifically, if
the throughput ratio is less than a threshold, e.g., 0.95, mutual interference between
the two nodes exists, and no interference otherwise. Denote the distance correspond-
ing to the interference threshold as d0, d1 < d0 < d2. It motivates us to define the
following MAC-layer interference:

α =
{
1, x ≤ d0
0, x > d0,

(3.2)

where x is the distance between the two nodes. As a result, the normalized through-
put is approximately given by R = 1

1+α
, which provides a good approximation for

the measured results [8]. Therefore, although sacrificing a little accuracy, efficient
opportunistic spectrum access approaches can be developed using the MAC-layer
interference model.

An illustrative comparison of the PHY-layer and MAC-layer interference is pre-
sented in Fig. 3.2. In traditional models, the PHY-layer interference is a decreasing
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(a) (b)

Fig. 3.2 The illustrative comparison of the PHY-layer and MAC-layer interference models. a The
measured normalized throughput versus the distance between two links. b The comparison of the
proposed MAC-layer interference and traditional PHY-layer interference

function of the physical distance. It is noted from Fig. 3.2b that the PHY-layer inter-
ference model does not coincide with the measured results in the context of CSMA.
For instance, decreasing the distance of two nodes located in the interference region
definitely increases the PHY-layer interference for both; however, it does not lead to
decrease in the throughput. Again, the PHY-layer interference models are essentially
more suitable for interference channels, while the MAC-layer interference models
are more suitable for collision channels.

For multiuser systems, the normalized throughput of user n is given by 1
1+∑

m αmn
,

where αmn is the interference indicator between n and m. Then, the MAC-layer
interference experienced by user n in a multiuser system is defined as

In =
∑

m

αmn. (3.3)

3.2.2 Discussion on the Impact of Channel Fading

In this part, we discuss some issues related to channel fading, which is an important
attribute of wireless channel. Generally, the received signal strength (RSS) at a node
from the node is given by Pt x−βε, where Pt is the transmitting power, x is the physical
distance, β is the path loss exponent, and ε is the instantaneous random component of
the path loss [10], e.g., lognormal fading and Rayleigh fading. Generally, a link can
hear the transmission of the other link if the RSS is greater than a threshold. In the
following, we discuss the impact of channel fading on the MAC-layer interference
model in the three regions, respectively:

• In the interference region, the large-scale path loss component, i.e., Pt x−β , is
strong enough. Thus, one node can deterministically hear the transmission of the
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other node no matter what are the instantaneous realizations of channel fading. In
other words, the impact of channel fading is concealed by the strong large-scale
path loss component.

• In the transitional region, the large-scale path loss component is medium. Thus,
the received RSS is randomly fluctuating around the interference threshold. As a
result, one node can probabilistically hear the transmission of the other node.

• In the non-interference region, the large-scale path loss component is weak. Thus,
one node cannot hear transmission of the other node. In other words, the impact
of channel fading is eliminated by the far physical distance.

Remark 3.1 In order to address the interference model in the transitional region
more concisely, we can extend the binary interference model to a real-valued one. In
particular, an improved MAC-layer interference can be defined as follows:

α′ =
⎧⎨
⎩
1, x ≤ d1
x−d1

d2−d1 , d1 < x < d2
0, x ≥ d2

(3.4)

Note that α′ is (3.4) a continuous value ranging in [0, 1]. In particular, α′ = 1
and α′ = 0 correspond to the same meanings as those in (4.3), while 0 < α′ < 1
corresponds to the probabilistic interference in the transitional region. Similarly, the
normalized throughput of a node is then given by R = 1

1+α′ , which fits the measured
results well. The real-valued interference model is more precise than the binary
interference model characterized by (4.3), as it captures the randomness of channel
fading in the transitional region. For presentation of analysis, we only consider the
binary interference model in this chapter. Following similar methodology presented
in this chapter, the analysis of real-valued MAC-layer interference model can be
found in [12].

3.3 System Model and Problem Formulation

3.3.1 Bilateral Interference Networks

Consider a wireless canonical network consisting of N secondary users, in which
each user represents a closely located pair of transmitter and receiver [1]. There are
M licensed channels owned by the primary users and can be opportunistically used
by the secondary users when not occupied. Due to the limited transmitting power of
the users, mutual interference only occurs among nearby users [3, 4]. As a result,
we can characterize the limited range of interference by an un-directional graph
G = (N,E), where N = {1, . . . , N } is the vertex set and E ⊂ N × N is the edge
set. Each vertex represents a user, and the edges correspond to the potential mutual
interference relationship among the users when transmitting on the same channel.

http://dx.doi.org/10.1007/978-981-10-0024-9_4
http://dx.doi.org/10.1007/978-981-10-0024-9_4
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(a) (b)

Fig. 3.3 An example of the BI-CRN with four licensed channels. Note that users 1 and 3 interfere
with each other when transmitting on the same channel, whereas user 1 will never interfere with
user 2 directly. a Deployment of the considered BI-CRN b The un-directional graph

Although the mutual interference is inherently determined by the received RSS, we
can use a distance-relevant interference model as analyzed above. Specifically, if the
distance between two usersm and n, denoted as Dmn , is less than a threshold D0, they
can interfere with each other when simultaneously transmitting on the same channel;
thus, m and n are connected by an edge, i.e., there is an edge emn = (m, n) ∈ E. For
simplicity of analysis, it is assumed that the interference is bilateral between any two
users, i.e., user m is also interfered by user n if it interferes with n. We call this kind
of networks bilateral interference cognitive radio networks (BI-CRNs).

The spectrum available opportunity is characterized by a channel availability vec-
tor Cn , n ∈ N. In particular, Cn = {Cn1, Cn2, . . . , CnM }, where Cnm = 1 implies that
channel m is available for user n, while Cnm = 0 means that it is occupied and not
available. Note that due to their different localizations, the spectrum opportunities
vary from user to user. For simplicity of analysis, it is assumed that spectrum sensing
is perfect. Furthermore, the spectrum opportunities are quasi-static in time. Note that
such an assumption holds in some realistic networks where the spectrum opportuni-
ties are slow-varying, e.g., IEEE 802.22 [11]. An illustrative example of a BI-CRN
with six users, two primary users, and four licensed channels is shown in Fig. 3.3.

3.3.2 MAC-Layer Interference Minimization

Due to hardware limitation, it is assumed that all the users can sense all channels
simultaneously but transmit on only one channel at a time [13]. Denote Jn as the
neighboring user set of user n, i.e.,



3.3 System Model and Problem Formulation 35

Jn = {i ∈ N : (i, n) ∈ E}, (3.5)

Suppose that user n chooses a channel an , an ∈ {1, . . . , M}, for transmission. Some
efficient distributed approaches such as CSMA and distributed TDMA can be
applied to coordinate the transmissions among neighboring and interfering users.
Thus, the individual achievable throughput of user n under channel selection profile
a = {a1, . . . , aN } can be expressed by

rn(a1, . . . , aN ) = f (cn + 1)Ran

cn + 1
, (3.6)

where f (k), 0 < f (k) ≤ 1, is the throughput loss function when there are k users
competing for a single channel [14], which is decreasing over k. Ran is the transmis-
sion rate of channel an , and cn is the number of neighboring users also choosing the
same channel with user n, i.e.,

cn =
∑
j∈Jn

δ(an, a j ), (3.7)

where δ(x, y) is the following indicator function:

δ(x, y) =
{
1, x = y
0, x �= y.

(3.8)

Therefore, the network throughput can be expressed as

R(a1, . . . , aN ) =
∑
n∈N

rn. (3.9)

As the decision variables (channel selection) are discrete, the problem of max-
imizing network throughput is a combinatorial problem on a graph and hence is
NP-hard. Motivated by the previous work on minimizing the aggregate PHY-layer
interference [7], we consider minimizing the MAC-layer interference in this chapter.
Note that theMAC-layer interference experienced by user n is then given by cn . From
the user side, it is desirable to minimize the value of cn , as minimizing cn implies
maximizing its individual achievable throughput. Thus, from the network side, it
is also desirable to minimize the lower aggregate MAC-layer interference. Based
on this consideration, we can quantitatively characterize the aggregate MAC-layer
interference experienced by all the users as follows:

Ig(a1, . . . , aN ) =
∑
n∈N

cn (3.10)
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Consequently, the optimization objective is to find an optimal channel selection aopt

such that the aggregate MAC-layer interference is minimized, i.e.,

P1 : aopt ∈ argmin Ig. (3.11)

Again, due to the higher-order of computational complexity, P1 is hard to resolve
even in a centralized manner, not to mention in a distributed manner. Furthermore,
the incomplete information constraint, i.e., lack of information about other users,
brings about more challenges and difficulties.

3.4 MAC-Layer Interference Minimization Game

Due to the nature of distributed decision-making, we formulate the problem of inter-
ference mitigation in BI-CRNs as a non-cooperative game. Different from the game
models in the last chapter, the formulated game in this chapter belongs to local inter-
action games (also known as graphical game) [1], in which the utility of a player
only depends on the actions its neighboring users.

3.4.1 Graphical Game Model

Formally, the formulated MAC-layer interference minimization game is denoted as
G = [N, {An}n∈N, {Jn}n∈N, {un}n∈N], where N = {1, . . . , N } is the set of players,
An = {m ∈ M : Cnm = 1} is the set of player n’s available actions (channels), Jn is
the neighboring set of player n, and un is its utility function. Generally, in global inter-
active games, the utility function of each player n is determined by u(an, a−n), where
an ∈ An is the chosen action of player n and a−n ∈ A1 ⊗ · · · An−1 ⊗ An+1 . . . AN

denotes the action profile all the players except n. However, due to the limited inter-
ference in the considered BI-CRNs, the achievable throughput of a player is only
determined by its own action as well as the action profile of its neighboring users.
Therefore, the utility function can be expressed as un(an, aJn ), where aJn is the action
profile of n’s neighboring set. In the MAC-layer interference mitigation game, the
utility function is defined as follows:

un(an, aJn ) = Ln − cn(an, aJn ), (3.12)

where cn(an, aJn ) ≡ cn(a1, . . . , aN ) is the MAC-layer interference experienced by n
and Ln is a positive constant satisfying Ln > |Jn|, where |X | denotes the
cardinality of set X . Therefore, the purpose of adding Ln in the utility function is
to keep the utility function positive, which makes the received payoffs compati-
ble with the proposed learning algorithms. Moreover, Ln can be determined by the
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users independently and autonomously. As each player in a non-cooperative game
maximizes its individual utility function, the proposed game can be expressed as

G : max
an∈An

un(an, aJn ),∀n ∈ N (3.13)

3.4.2 Analysis of Nash Equilibrium

In this part, we analyze the properties of Nash equilibrium (NE) of G in terms of
existence of NE and performance bounds.

Theorem 3.1 The formulated MAC-layer interference mitigation game G is an exact
potential game which has at least one pure strategy NE point.

Proof According to the definition of exact potential game presented in Chap.1 (See
Definition 1.2 therein), we need to prove that there is a potential function such that the
change in the utility function caused by the unilateral action deviation of an arbitrary
player is the same as that in the potential function. For the formulated MAC-layer
interference mitigation game, the following potential function is constructed:

Φ(an, a−n) = −1

2

∑
n∈N

cn(a1, . . . , aN ). (3.14)

Now, suppose that there is an arbitrary player n unilaterally changing its channel
selection from an to ān . Following the similar lines given in our previous work
[1, 2], it can be verified that the following equation always holds:

Φ(ān, a−n) − Φ(an, a−n) = un(ān, aJn ) − un(an, aJn ), (3.15)

which shows that theMAC-layer interferencemitigation gameG is an exact potential
game. Thus, Theorem 5.1 follows. �

As the users in the non-cooperative games are selfish, the NE solutions maybe
inefficient, which is known as tragedy of commons [15]. In the following, we
investigate the performance bounds of NE solutions of the MAC-layer interference
game. To begin with, the aggregate MAC-layer interference of a pure strategy NE
aNE = {a∗

1 , . . . , a∗
N } is given by

U (aNE) =
∑
n∈N

cn(a
∗
n , a∗

Jn
) (3.16)

Generally, the MAC-layer interference mitigation game G may have multiple pure
strategy NE points but the number is hard to calculate [16]. The following theorems
characterize the performance bounds of the game.

http://dx.doi.org/10.1007/978-981-10-0024-9_1
http://dx.doi.org/10.1007/978-981-10-0024-9_5
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Theorem 3.2 The aggregate MAC-layer interference of any pure strategy NE solu-
tion is bounded by U (aNE) ≤ ∑N

n=1
|Jn |
|An | , for any network topology and spectrum

opportunities.

Proof Refer to [9]. �

From Theorem 4.2, it is known that the larger number of available channels (|An|)
and smaller number of neighboring users (|Jn|) are preferable, as can be expected in
any multiuser multichannel networks. In particular, the performance bound can be
refined for some special kinds of systems.

Proposition 3.1 If all the channels are available to each user, then the aggregate
MAC-layer interference at any NE solution is bounded by U (aNE) ≤ 2N

M .

Proof Since all the channels are available to each user, we have |An| = M,∀n ∈ N.
Thus, the following equation follows:

U(aNE) ≤
N∑

n=1

|Jn|
M

, (3.17)

which can be straightforwardly obtained by Theorem 4.2 directly. Moreover, it can
be verified that the following always holds for any network topology:

N∑
n=1

|Jn| = 2N (3.18)

Now, combining (3.18) and (3.17) proves this proposition. �

Theorem 3.3 The best pure strategy NE point of G is a global minimum of the
MAC-layer interference mitigation problem P1.

Proof According to (3.14), the potential function of the formulated game and
the aggregate MAC-layer interference are related by Φ(an, a−n) = − 1

2 Ig(an, a−n).
Thus, we have

aopt ∈ argmax Φ(an, a−n). (3.19)

which is obtained from (3.11). That is, any channel selection profile minimizing
the aggregate MAC-layer interference maximizes the potential function. Recalling
the important property of potential game, i.e., any global or local maximizer of the
potential function constitutes a pure strategy NE point [17], it is known that the best
pure strategy NE point is a global minimum of P1, which proves Theorem 3.3. �

The result shown in Theorem 3.3 is interesting and promising, since the global
optimality emerges as the result of distributed and selfish decisions via game design
and optimization.

http://dx.doi.org/10.1007/978-981-10-0024-9_4
http://dx.doi.org/10.1007/978-981-10-0024-9_4


3.5 The Binary Log-Linear Learning Algorithms for Achieving Best NE 39

Algorithm 2: the binary log-linear learning algorithm

Initialization: Let each player i randomly select a channel from its available channel set, i.e.,
ai (0) ∈ Ai , ∀i ∈ N.
Loop for k = 0, 1, 2, . . . ,
1. Player selection: Using the 802.11 DCF-like coordination mechanism, a player, say n, is ran-
domly selected in an autonomous manner. Then, all the users adhere to their channel selections in
an estimation period and the chosen user estimates its received utility un(k).
2. Exploration: Player n randomly chooses a channel m ∈ An, m �= an(k). Then, all the users
adhere to their selections in the subsequent estimation period and the chosen player estimates its
received utility in channel m, which is denoted as vm .
3. Updating channel selection: The chosen player n updates its channel selection strategy using
the following log-linear rule:

Pr[an(k + 1) = m] = exp{vmβ}
exp{vmβ} + exp{ûn(k)β}

Pr[an(k + 1) = an(k)] = exp{un(k)β}
exp{vmβ} + exp{ûn(k)β} ,

(3.20)

where β is a learning parameter. Meanwhile, all other players keep their selections unchanged, i.e.,
a−n(k + 1) = a−n(k).
End loop

3.5 The Binary Log-Linear Learning Algorithms
for Achieving Best NE

3.5.1 Algorithm Description

As the MAC-layer interference mitigation problem is now formulated as an exact
potential game, there are large number of learning algorithms to achieve pure strategy
NE, e.g., best response dynamic [17], spatial adaptive play [1], and fictitious play
[18]. However, these algorithms belong to coupled algorithms and hence need to
know information about other players. Although the stochastic automata learning
algorithm, which was applied in the last chapter, is uncoupled, it may converge to
a suboptimal solution. Thus, in this chapter, an uncoupled and optimal distributed
learning algorithm, called the binary log-linear learning algorithm, is applied to
achieve the best NE.

The binary log-linear learning algorithm is described in Algorithm 2. The key
idea is that only a player is randomly chosen to explores the channels. Based on the
explanation results, the player updates its selection using the log-linear rule. Some
practical concerns of Algorithm 1 are discussed as follows: (i) in the step of player
selection, the selection of an autonomous and random player can be achieved using
a 802.11 DCF-like contention mechanisms over a common control channel (CCC)
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[1, 19], and (ii) the following stop criterions can be used: (i) the maximum iteration
number is reached, and (ii) the variation of the achieved utility during a certain period
is trivial.

Note that the utility function, i.e., the experiencedMAC-layer interference, cannot
be measured directly by the users; we use the following simple method to estimate
the MAC-layer interference experienced by a user. Of course, other more practical
but also completed methods for estimating the number of competing users can also
be used, e.g., [23, 24]. The reason we use such a simple method is our focus in
designing game-theoretic distributed MAC-layer interference mitigation approach
but not the estimation algorithms. Specifically, suppose that there are total H slots
in each estimation period and Tn is the number of slots in which user n successfully
access the channel. As a result, the maximum-likelihood estimation (MLE) of the
MAC-layer interference experienced by user n can be calculated by

ŝn = H

Tn
− 1, (3.21)

which further implies that the MLE of the received payoff in an estimation period is
expressed as

ûn = Ln + 1 − H

Tn
(3.22)

Based on the above estimation approach, an illustrative diagram of the binary
log-linear learning algorithm for the formulated MAC-layer interference mitigation
game is shown in Fig. 3.4.

Fig. 3.4 The illustrative diagram of the binary log-linear learning algorithm for the formulated
MAC-layer interference mitigation game
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3.5.2 Convergence Analysis

Let A be the set of available channel profiles of all the players, i.e., A = A1 ⊗ · · · ⊗
AN , then the properties of the binary log-linear learning algorithm are characterized
by the following theorems.

Theorem 3.4 For the binary log-linear learning algorithm, the unique stationary
distribution μ(a) ∈ Δ(A) of any channel selection profile s ∈ A, ∀β > 0, is given
as

μ(a) = exp{βΦ(a)}∑
s∈A exp{βΦ(s)} , (3.23)

where Φ(·) is the potential function given in (3.14).

Proof The proof follows the methodology presented in [1, 20–22]. Detailed lines
are not presented here and can be found in [9]. �

Theorem 3.5 With a sufficiently large β, the binary log-linear learning algorithm
asymptotically minimizes the aggregate MAC-layer interference Ig.

Proof Based on Theorem 3.4 and the similar lines for proof presented in our pre-
vious work [1] (see Theorem 4 therein), it can be proved that when β goes suffi-
ciently large, the binary log-linear algorithm asymptotically converges to a channel
selection profile that maximizes the potential function. Now, applying again the rela-
tionship between the potential function and the original optimization objective, i.e.,
Φ(a) = − 1

2 Ig(a), Theorem 3.5 can be obtained. �

3.6 Simulation Results and Discussion

In this section, simulation results are presented to validate the proposed game-
theoretic distributed channel selection solution for MAC-layer interference miti-
gation. Although the game formation and learning algorithm are only theoretically
analyzed for scenarios with no fading, it is shown by simulation results that the pro-
posed game-theoretic solution is also suitable for scenarios with fading. Also, it is
suitable for scenarios with both bilateral and unilateral interferences.

3.6.1 Scenario Setup

In the simulation study, the users are randomly located in a region. For simplicity,
it is assumed that the idle probabilities of all the channels are the same, which is
denoted as θ , 0 < θ < 1, and the spectrum opportunities are randomly generated
according to the idle probabilities independently. However, it should be pointed out
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that the spectrum opportunities are quasi-static, i.e., they vary slowly in time, or are
static during the convergence of the learning algorithm. Furthermore, we assume that
different channels support the same transmission rate R = 1Mbps for the users. The
users use a perfect CSMA/CA mechanism to share the idle channels. As a result,
the achievable throughput of a user is approximately determined by R

cn+1 , which is
obtained by setting the throughput loss function to be one, i.e., f (cn + 1) ≈ 1 in (4.7).

3.6.2 Scenario with No Fading

In this subsection, we consider scenarios with no fading, where only the large-scale
path loss is considered.The learningparameter in the payoff-based log-linear learning
algorithm is set to β = 10 + k/50, where k is the iteration number. In all simulations,
the estimation period is set to H = 100.

3.6.2.1 Convergence Behavior

In this part, the convergence behavior of the proposed learning algorithm is studied.
Specifically, we study a small network as shown in Fig. 3.5, which involves nine CR
users and three channels. A scenario with all channels being available for the users is
considered. In such a scenario, it provides with the same spectrum opportunities and
hence the expected convergence behavior of the learning algorithms can be studied
by taking independent trials and then taking the expected results. For the presented
network, the expected convergence behaviors of the proposed learning algorithm are
shown in Fig. 3.6, which are obtained by simulating 1000 independent trials and then
taking the average results. It is noted that the proposed learning algorithm converges

Fig. 3.5 The simulated
small network. (Each circle
represents a CR user, and the
dashed lines represent the
bilateral interferences
between the users)
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Fig. 3.6 The expected
convergence behaviors of the
proposed learning algorithms
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to the global optimum in about 400 iterations. The results validate the asymptotical
optimality of the proposed learning algorithm.

In the following, the effect of the estimate interval H on the convergence of the
proposed learning algorithm is shown in Fig. 3.7. The results show that there is a
tradeoff between speed and performance with regard to the estimate interval H . It is
noted from the figure that larger H leads to higher estimation accuracy while leading
to relatively slower convergence speed, as can be expected. Thus, the choice of the
estimate period H is application-dependent in practice.

Fig. 3.7 The effect of the
estimate interval H on the
convergence of proposed
learning algorithm
(β = 10 + k/50)
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3.6.2.2 Throughput Performance

In this part, we compare the achievable throughput of five methods: throughput
maximization using exhaustive search (TMax-ES), random selection, interference
minimization using the proposed learning algorithm (Imin-Proposed), interference
minimization using spatial adaptive play (Imin-SAP) [1], and interferenceminimiza-
tion using best response (Imin-BR) [17]. In the TMax-ES approach, the aggregate
network throughput as characterized by (3.9) is directly maximized using an exhaus-
tive search method. In the random selection scheme, each user randomly chooses a
channel from its available channel set. In comparison, SAP and BR are two com-
monly coupled learning algorithms for potential games, which need the information
of other users. In addition, the SAP algorithm asymptotically converges to the global
maxima of the potential function, while the BR algorithm achieves its global or local
maxima randomly.

(i) Small networks For the small network (see Fig. 3.5), the comparison results of
the expected network throughput are shown in Fig. 3.8. It is noted from the figure
that the proposed learning algorithm achieves higher network throughput than the
BR algorithm and the random selection approach. Furthermore, the throughput gap
increases as the channel idle probability θ increases. The reason is that inNE solutions
of the game, the users are spread over different channels and hence there is less
interference (collision) among the users. Again, this result is due to the fact that all
pure strategy NE points of the game minimize the aggregate MAC-layer interference
globally or locally, as characterized by Theorems 5.1, 4.2, and 3.3.

It is noted that the proposed learning algorithm achieves the same performance
with that of Imin-SAP. The SAP algorithm is an efficient learning algorithm for
potential game, as it asymptotically maximizes the potential function [1], i.e., mini-
mizing the aggregate MAC-layer interference in the formulated MAC-layer interfer-
ence mitigation game. In comparison, the proposed learning algorithm does not need

Fig. 3.8 Companion results
of five channel selection
methods for the simulated
small network with no fading
(The learning parameter of
the learning algorithms is set
to β = 10 + k/50)
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Fig. 3.9 The simulated large
CRN
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any information about other players while the SAP needs information about other
players. In addition, although the proposed learning asymptotically minimizes the
aggregateMAC-layer interference, there is a throughput gap between Imin-Proposed
andTMax-ES. The reason is as follows: although a lower aggregateMAC-layer inter-
ference would lead to higher network throughput as can be expected, a quantitative
characterization between minimizing the MAC-layer interference and maximizing
the network throughput directly is hard to obtain. Even so, the proposed learning algo-
rithm is desirable for practical applications, as it achieves higher network throughput.

(ii) Large networks We consider a relatively large network as shown in Fig. 3.9,
which consists of 20 users and three channels. Figure3.10 shows the comparison
results of the expected network throughput of different solutions. Due to intolerable
complexity, the TMax-ES method cannot be applied in this scenario. It is noted that
the throughput performance of the proposed learning algorithm is very close to the
Imin-SAP approach. These results validate that the proposed learning algorithm is
also for large networks.

3.6.3 Scenario with Fading

As fading is common inwireless networks, we study the performance of the proposed
learning algorithm in scenarios with lognormal fading. The parameters are set as
follows: the transmitting power of all users is Pt = 1W, the path loss exponent is
β = 2, and the dB-spread is 6dB.Moreover, it is assumed that the detection threshold
of CSMA is 8.1633 × 10−6W. Simulation results show that the proposed learning
algorithm also converge for channels with lognormal fading. However, since their
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Fig. 3.10 Companion
results of four methods for
the simulated large network
with no fading
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convergence trend is similar to that presented in Fig. 3.6, it is not presented here in
order to avoid unnecessary repetition.

For the considered small and large networks, the comparison results for the achiev-
able network throughput are shown in Figs. 3.11 and 3.12, respectively. It is noted
that the proposed algorithm also achieves the same performance with that of Imin-
SAP, and outperforms both the BR approach and random selection approach. These
results validate the effectiveness of the proposed learning algorithm for scenarios
with fading.

Fig. 3.11 Throughput
companion for the simulated
small network with
lognormal fading (Pt = 1W,
β = 2 and σdB = 6dB)
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Fig. 3.12 Throughput
companion for the simulated
large network with
lognormal fading (Pt = 1W,
β = 2 and σdB = 6dB)
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3.7 Extension to Unilateral Interference CRNs

The above presented analysis is for bilateral interference networks. However, we
would like to point out that there are some scenarios involving unilateral interference
relationships among the users, e.g., cognitive ad hoc networks. For those networks,
the mutual interference relationships can be characterized by a directional graph
rather than an undirected graph.We call this kind of networks, unilateral interference
cognitive radio networks (UI-CRNs).

3.7.1 System Model

To make it more practical, we then extend BI-CRNs to UI-CRNs in this section. For
the unilateral interference networks, a CR receiver suffers from interference from
other CR transmitters if the distance between them is less than a predefined threshold,
DI . For simplicity of analysis, we assume that the available spectrum opportunities
are identical for any CR transmitter and its dedicated receiver. Then, the hetero-
geneous spectrum opportunities are also characterized by the channel availability
vectors Cn , as discussed before.

The interference relationship is now characterized by a directional graph
Gd = (N,E). The graph Gd consists of a set of nodes which is exactly the CR user
setN , and a set of edges E ⊂ N

2. Denote each edge as an ordered pair (i, j); then,
if there is an edge from user i to j , i.e., (i, j) ∈ E , it means that the transmission of
node i interferes with node j when simultaneously transmitting on the same channel.
An example of the deployment for the considered unilateral interference cognitive
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(a) (b)

Fig. 3.13 An example of the considered UI-CRN with four CR links. (In such a network, the
interference is unilateral, e.g., CR link 1 does not interfere with link 2 but it is interfered by link 2.)
a Deployment of the considered UI-CRN b The interference graph

radio network is shown in Fig. 3.13a and the corresponding directional interference
graph is shown in Fig. 3.13b.

Following the same methodology used for BI-CRNs, similar definitions for
UI-CRNs can also be given. Then, a similar network collision minimization game
can be established accordingly. For reducing unnecessary repetition, they are not pre-
sented here. For UI-CRNs, the network-centric goal is also tominimize the aggregate
MAC-layer interference. However, due to the unilateral interference relationship, it
is no longer a potential game. This makes the analysis of the convergence of the
proposed uncoupled learning algorithms a formidable task and an open problem.

3.7.2 Simulation Results

Although there is a lack of theoretic analysis, as discussed above, we evaluate the
performance of the proposed uncoupled algorithms by simulation study. Specifically,
the deployment of the considered UI-CRN is shown in Fig. 3.14. For the considered
UI-CRN, the expected convergence behaviors of the proposed learning algorithm are
shown in Fig. 3.15. The results are obtained by simulating 1000 independent trials
and then taking the average. It is noted that it asymptotically converges to global
optimum in about 450 iterations.
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Fig. 3.14 An unilateral
interference CRN with nine
CR users (links) and three
licensed channels (Each
circle represents a CR link,
double arrows represent
bilateral interferences, and
single arrows represent
unilateral interferences)
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The comparison results of expected network throughput obtained using fivemeth-
ods (exhaustive search, random selection, the proposed algorithm, SAP, and BR) are
shown in Fig. 3.16. As for the UI-CRNs, it is also noted from the figure that the pro-
posed learning algorithm achieves higher network throughput than the BR algorithm
and the random selection approach. Also, it achieves almost the same throughput
with the SAP algorithm. Therefore, we claim that the proposed learning algorithms
are not only suitable for BI-CRNs, but also suitable for UI-CRNs, although it lacks
rigorous theoretical analysis.

Fig. 3.15 The convergence
behaviors of the two
algorithms for the simulated
UI-CRN (H = 200)
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Fig. 3.16 Companion
results of four channel
selection methods (For the
learning algorithms, we set
H = 200)
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3.8 Concluding Remarks

Compared with traditional PHY-layer interference model, e.g., the one considered
in Chap.2, the MAC-layer interference model in this chapter coincides with the
experiment results for collision channel models. Moreover, it admits mathematical
tractability as it only cares about whether two users interfere with each other or not.
Also, the binary log-linear learning algorithm can achieve the best NE of exact poten-
tial games. Thus, the results presented in this chapter provide efficient distributed
solutions for resource allocation problems over graph/network.
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