
Chapter 2
Distributed Interference Mitigation
in Time-Varying Radio Environment

2.1 Introduction

Currently, most existing studies on the problem of interference mitigation, e.g.,
[1–10], have assumed that the interference channel gains are static. Based on such
an ideal assumption, there are several nongame theoretic [1, 9] and game-theoretic
[2–8, 10] interference mitigation approaches. However, the assumption of static
channels is not true since they are always time-varying in practice, which is the
inherent feature of wireless communications.

In this chapter, we consider a multiuser, multichannel opportunistic spectrum
access network, where the users choose orthogonal channels to mitigate mutual
interference [4, 5, 7–10]. The considered network is completed distributed, as there
is no centralized controller and no information exchange among users. To address
the time-varying nature of wireless communication, it is assumed that the channels
undergo block-fading. Block-fading means that the channel gains remain unchanged
in a slot but change randomly in the next slot, which is realistic and has been exten-
sively used in the past literature.

Following the similar ideas proposed in [6, 9, 10], in which the weighted aggre-
gate interference for static channels isminimized, the network utility in this chapter is
naturally extended to the expected weighted aggregate interference for time-varying
channels. As a result, the optimization objective is to find channel selection pro-
files that minimize this network utility in a distributed manner. Since the channel
selections of the users are distributed and autonomous, we formulate the problem of
opportunistic spectrum access as a noncooperative game. With the formulated game
model, we then propose a stochastic automata-based distributed learning algorithm,
which converges to pure strategy NE of the interference mitigation game in time-
varying environment. Note that the main analysis and results in this chapter were
presented in [11].
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2.2 System Model and Problem Formulation

2.2.1 System Model

We consider a distributed canonical wireless network consisting of multiple
autonomous users.Note that each user in canonical networks is not a single communi-
cation entity but a collection of multiple entities with intracommunications [12–14].
Generally, there is a leading entity choosing the operational channel and the belonged
members share the channel using some multiple access control mechanisms, e.g.,
TDMA or CSMA/CA. Examples of wireless canonical network are given by, e.g., a
WLAN access point with the serving clients [12] and a cluster head together with its
members [9]. A comprehensive review on canonical networks can be found in [9].
An illustrative example of the considered canonical networks is shown in Fig. 2.1.

Suppose that there areN users andM channels, and each user chooses one channel
for communication. Denote the user set as N = {1, . . . , N} and the channel set as
M = {1, . . . , M}. To capture the time-variation of channels, it is assumed that all the
channels undergo block-fading, i.e., the channel gains are block-fixed in a time slot
and change randomly in the next slot. Furthermore, each user chooses exactly one
channel for intra-communication at a time. When two users, say m and n, choose a
channel simultaneously, mutual interference emerges, the instantaneous interference
gain from users m to n in a specific slot can be expressed as:

ws
mn = (dmn)

−αεs
mn, (2.1)

where the superscript s denotes the selected channel, dmn is the physical distance
between m and n, α is the path loss exponent, and εs

mn is the instantaneous random
component of the path loss [15], e.g., Rayleigh fading. Due to fading in wireless
environment, the instantaneous random components between two users in each slot
are generally different. However, their expected values are assumed to be the same.
Therefore, we can denote the expected value of the random components between
any two users on a channel as ε̄s

mn = E[εs
mn] = E[εs

nm], ∀m, n ∈ N, ∀s ∈ M.

Fig. 2.1 An illustrative
example of canonical
networks
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Remark 2.1 The interference channel model characterized by (5.2) is very general,
since the instantaneous random components εs

mn can vary from slot to slot, from
channel to channel, and from user to user. Furthermore, the dynamics may be inde-
pendent or correlated. In addition, the expected value of random component ε̄s

mn can
also vary from channel to channel and from user to user. Thus, the analysis and results
obtained in this chapter suitable for several practical scenarios, and some examples
are given by: (i) when it is unit-constant, i.e., εs

mn = 1,∀m, n, s, it corresponds
to a scenario where only large-scale power-loss is considered, (ii) when it is log-
normal distribution, it corresponds to the medium-scale power-loss, and (iii) when
it is Rayleigh/Nakagami distribution, which means that multiple-path power-loss is
considered.

2.2.2 Problem Formulation

Denote the chosen channel of user n in a slot as an, an ∈ M, then the instantaneous
achievable rate of user n is given by:

Rn = B log
(
1 + pnwan

nn

BN0 + In

)
, (2.2)

where B is the channel bandwidth, wan
nn = (dnn)

−αεan
nn is the intracommunication

channel gain of user n (the channel gain between the head and the serving clients),
pn is the transmitting power, N0 is the noise power spectrum density, and In is the
aggregate interference experienced by user n. For an action selection profile of all
the users a = {a1, . . . , aN }, In is random and can be expressed by:

In =
∑

m∈{N\n}
f (am, an)pmwan

mn, (2.3)

whereX\Y means thatY is excluded from the setX, and f (·) is the following indicator
function:

f (x, y) =
{
1, x = y
0, x �= y.

(2.4)

According to (2.2), the aggregate expected network rate achieved by all the users
can be expressed as:

Rsum =
∑
n∈N

E[Rn] (2.5)

http://dx.doi.org/10.1007/978-981-10-0024-9_5
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From theperspective of interferencemitigation,weconsider the expectedweighted
aggregate interference in the network, which is defined as:

U =
∑
n∈N

pnE[In] =
∑
n∈N

∑
m∈{N\n}

pmpnw̄an
mnf (am, an), (2.6)

where w̄an
mn = E[wan

mn] = (dmn)
−αε̄an

mn is the expected interference gain from user m
to user n in channel an.

Note that the considered network utility metric, i.e., the weighted aggregate inter-
ference, has been studied in previous studies [6, 9, 10]. In [6], it was shown that
such a network utility can balance the transmitting power and the experienced inter-
ference. Furthermore, it has been shown that with this network utility, near-optimal
network rate can be achieved in low SINR regime [9]. Existing studies were mainly
for static scenarios with fixed channel gains. In comparison, in order to address the
random and instantaneous fading components, i.e., εs

mn, in wireless environment, we
consider the expected version of weighted aggregate interference here. Therefore,
motivated by the previous researches on interferencemitigation rather thanmaximiz-
ing throughput directly, e.g., [4, 5, 9], the considered objective here is to minimize
the expected weighted aggregate interference, as specified by (2.6), i.e.,

(P1 :) aopt ∈ arg
a
min U (2.7)

2.3 Interference Mitigation Game in Time-Varying
Environment

As the decision variable (channel selection) is discrete, the interference mitigation
problem P1 is a combinatorial optimization problem. On the condition that all the
key parameters including pn, dmn and ε̄s

mn, ∀m, n ∈ N, s ∈ M are a priori known,
centralized approaches can be applied. However, if there is no centralized control
and these parameters are unknown, which is exactly the scenario considered in this
chapter, the task of solving P1 is challenging. In the following, we propose a game-
theoretic distributed approach in time-varying environment.

2.3.1 Game Model

The problem of distributed channel selection for interference mitigation in canon-
ical networks is formulated as a noncooperative game. Formally, the game is
denoted as Gc = [N, {An}n∈N, {un}n∈N], where N = {1, . . . , N} is the player set,
An = {1, . . . , M} is the available actions (channel) set for each player n, and un is the
utility function of player n. As the experienced interference is a random variable in
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each slot, we consider the following utility function, which is defined as the expected
experienced interference, i.e.,

un(an, a−n) = D − pnE[In] = D − ∑
m∈{N\n}

pnpmw̄an
mnf (am, an), (2.8)

where a−n is the channel selection profile of all the players except player n, In is
the experienced interference of player n, as specified by (2.3), and D is a predefined
positive constant which will be illustrated later. Then, the proposed interference
mitigation game is expressed as:

(G) : max
an∈An

un(an, a−n), ∀n ∈ N. (2.9)

2.3.2 Analysis of Nash Equilibrium

In the following,we analyze theNash equilibrium (NE)of the formulated interference
mitigation game and investigate its properties.

Theorem 2.1 The formulated interference mitigation game Gc is an exact potential
game which has at least a pure strategy NE point, and the optimal channel selection
that globally minimizes the expected weighted aggregate interference constitutes a
pure strategy NE point of G.

Proof Detailed lines for the proof are omitted here but can be found in [11]. In the
following, only the proof skeleton is presented. First, we construct the following
potential function:

Φ(an, a−n) = −1

2

∑
n∈N

∑
m∈{N\n}

pmpnw̄an
mnf (am, an), (2.10)

which immediately yields the following equation:

Φ(an, a−n) = −1

2
U(an, a−n), (2.11)

through which the network utility U(an, a−n), as specified by (2.6), is related to the
potential function. Then, after some mathematical manipulations, it can be verified
that the change in individual utility function caused by any player’s unilateral devi-
ation is the same as that in the potential function. Thus, according to the definition
given in Chap.1, it is known that G is an exact potential game with Φ serving as the
potential function. Therefore, Theorem 5.1 is proved. �

Theorem 5.1 characterizes the relationship between the interference mitigation
game G and the network utility in general network scenarios. For further investiga-
tion, the following three scenarios are considered [3]: (i) under-loaded scenario: the

http://dx.doi.org/10.1007/978-981-10-0024-9_1
http://dx.doi.org/10.1007/978-981-10-0024-9_5
http://dx.doi.org/10.1007/978-981-10-0024-9_5
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number of users is less than that of channels, i.e.,N < M, (ii) equally-loaded scenario:
the number of users is equal to that of channels, i.e., N = M, and (iii) over-loaded
scenario: the number of users is greater than that of channels, i.e., N > M. Then,
the properties for the three scenarios are characterized by the following propositions,
respectively.

Proposition 2.1 For both under-loaded or equally-loaded scenarios, any pure strat-
egy NE of the interference mitigation game G leads to an interference-free channel
selection profile.

Proof In the two scenarios, all pure strategy NE points correspond to orthogonal
channel selection profiles, i.e., a channel is selected by no more than one user. This
argument is due to the fact that no user is willing to deviate, as it experiences zero
interference. Therefore, any pure strategy NE point is optimal to P1, and makes the
network interference-free. Therefore, Proposition 2.1 is proved. �

Proposition 2.2 For the over-loaded scenario, there exists at least one pure strategy
NE point that minimizes the expected weighted aggregate interference.

Proof Multiple pure strategy NE points may exist in the over-loaded scenario but the
number of pure strategy NE is hard to obtain. However, according to Theorem 5.1,
there is at least one pure strategy NE minimizing the expected weighted aggregate
interference. Besides the optimal one, other pure strategy NE points only locally
minimize the expected weighted aggregate interference. �

Since the global optimality is not guaranteed in the over-loaded scenarios, it is
indispensable to study the performance of NE solutions. Generally, the concept of
price of anarchy (PoA) [16] is used to study the performance ratio between the worst
NE solution and the social optimum. However, as the PoA for the formulated game is
hard to derive, we get an upper bound instead. To begin with, the achievable expected
aggregate interference at a pure strategy NE a∗ = (a∗

1, . . . , a∗
N ) is given by:

UNE =
∑
n∈N

pnE[In] =
∑
n∈N

∑
m∈{N\n}

pmpnw̄
a∗

n
mnf (a∗

m, a∗
n). (2.12)

Proposition 2.3 If the values of the expected random components of all channels
are the same, i.e., ε̄s

mn = ε̄0mn, ∀m, n ∈ N, then the expected aggregate interference
of any pure strategy NE solution in an over-loaded scenario is upper bounded by
UNE ≤ U0/M, where

U0 =
∑
n∈N

∑
m∈{N\n}

pnpm(dmn)
−αε̄0mn (2.13)

can be regarded as the expected aggregate interference if all the players choose the
same channel.

Proof Refer to [11]. �

http://dx.doi.org/10.1007/978-981-10-0024-9_5
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Remark 2.2 Generally, U0 is the worst-case of the expected aggregate interference
of an arbitrary network. According to Proposition 2.3, we can see that increasing
the number of channels, i.e., M, would decrease the aggregate interference in the
network, which can be expected in any wireless networks.

2.4 Achieving NE Using Stochastic Learning Automata

With the interferencemitigation problem formulated as a potential game, the next task
is to develop distributed learning algorithm to achieve NE. Notably, we encounter
with the following incomplete and dynamic information constraints: (i) obtaining
information of other players is not feasible, and (ii) the interference channel gains
vary randomly from slot to slot. As a result, the commonly used learning algorithms
for potential games, e.g., best response dynamic [17], no-regret learning [4], fictitious
play [18], and spatial adaptive play [19], cannot be applied.Toovercome this problem,
we propose a stochastic learning automata [20]-based algorithm, which is simple and
completely distributed.

2.4.1 Algorithm Description

To begin with, the game is extended to a mixed strategy form. Specifically, the
mixed strategy for player n at iteration k is denoted by the probability distribution
qn(k) ∈ Δ(An),whereΔ(An) is the set of all possible probability distributions over the
action set An. In the stochastic learning automata algorithm, the game is played only
once in a slot. After each play, each player receives a random payoff, which is jointly
determined by action profiles of all the users and the instantaneous channel gains.
Based on the received payoffs, the players update theirmixed strategies using a simple
and distributed rule.An illustrative diagramof the stochastic learning automata-based
algorithm is shown in Fig. 2.2.

Suppose that at the kth slot, the channel selection profile of the users is a(k) =
{a1(k), . . . , aN (k)}. Then, the random payoff received by player n is as follows:

rn(k) = D −
∑

m∈{N\{n}}
pmpn(dmn)

−αεan(k)
mn f (am(k), an(k)), (2.14)

where f (·) is the indicator function specified by (3.8), and εan(k)
mn is the instantaneous

channel gain. The purpose of adding the predefined positive constant D to the payoff,
is to keep it positive. However, the received payoff may also be negative due to the
fluctuation of random channel fading. Thus, the following modified received payoff
is used in the distributed learning algorithm:

http://dx.doi.org/10.1007/978-981-10-0024-9_3
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Fig. 2.2 The schematic diagram of the stochastic automata learning-based channel selection
algorithm

Algorithm 1: the stochastic learning automata-based channel selection algorithm

Initialization: set k = 0 and the mixed strategy of each user as qns(k) = 1/|An|,∀n ∈ N,∀s ∈ M.
Loop for k = 1, 2, . . . ,
1. Accessing the channels: In the kth slot, user n access a channel an(k) according to its current
selection probability vector qn(k).
2. Measuring payoffs: The game is played once with the channel selection profile
{a1(k), · · · , aN (k)}, and then all the players measure the received payoffs rn(k) using (2.15). Note
that the payoff is random but can be directly measured by each user n [9].
3. Updating the mixed strategies: All the players update their mixed strategies using the following
rules:

qns(k + 1) = qns(k) + br̃n(k)(1 − qns(k)), s = an(k)

qns(k + 1) = qns(k) − br̃n(k)qns(k), s �= an(k),
(2.16)

where 0 < b < 1 is the learning step size, r̂n(k) is the normalized received payoff which is given
by:

r̃n(k) = rn(k)/D. (2.17)

End loop

rn(k) = max{rn(k), 0} (2.15)

The stochastic learning automata-based algorithm is described in Algorithm 1.
It is noted that the algorithm is online and fully distributed, as the users adjust the
channel selections from their action-payoff history.

The proposed stochastic learning automata-based algorithm is also called linear
reward-inaction (LR−I ), which is a special case of linear learning automata [20]. The
updating rules for linear learning automata are generally given by:

qn(k + 1) = qn(k) + bF
(
qn(k), an(k), rn(k)

)
, (2.18)
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where F(·, ·, ·) is a learning function that maps the current action and payoff to the
mixed strategy in the next iteration. Of course, other forms of update rules, e.g.,
linear reward-penalty and linear reward-ε-penalty [20], can also be used. The reason
of using LR−I is that it is simple and can be analyzed when being incorporated with
game theory, which will be discussed below. Also, it is noted from (2.18) that it is
only relying on the individual trial-payoff history of a player and does not need to
know any information of others. In fact, each user is not even aware of other users.

2.4.2 Convergence Analysis

Using the method of stochastic approximation [21], the long-term behavior of the
mixed strategies of the users can be characterized by an ordinary differential equa-
tion. Specifically, the convergence of the stochastic learning automata algorithm is
characterized by the following theorem.

Theorem 2.2 With a sufficiently small step size b, the stochastic learning automata-
based learning algorithm asymptotically converges to a pure strategy NE point of an
exact potential game.

Proof Refer to Theorem 5 in [22]. �

Based on Theorem 2.2, the aggregate interference performance of the proposed
game-theoretic interference mitigation solutions are characterized by the following
propositions.

Proposition 2.4 In under-loaded or equally-loaded scenarios, the proposed game-
theoretic solution asymptotically converges to an optimal channel selection profile
that makes the network interference-free.

Proof This proposition can be proved by straightforwardly combining Theorem 2.2
and Proposition 2.1. �

Proposition 2.5 In an over-loaded scenario, the proposed game-theoretic solution
asymptotically converges a pure strategy channel selection profile and minimizes the
expected weighted aggregate interference globally or locally.

Proof According to Proposition 2.2, there is at least an optimal channel selection
minimizing the aggregate interference, and they may be other suboptimal solutions.
Thus, Proposition 2.5 is proved. �

Since there are various fading models, e.g., Rayleigh, Nakagami, and log-normal,
it is important to study the achievable performance for different fading models. The
following proposition reveals an interesting result.

Proposition 2.6 For a given distributed network, the achievable interference per-
formance of the proposed game-theoretic solution is determined by the expected
interference gain but not the specific fading model.
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Proof Based on (2.6), it is seen that the expected weighted aggregate interference
is jointly determined by user locations, the transmitting power, the final channel
selection profile, and the expected interference gain ε̄s

mn. Thus, for a given distributed
network, the achievable performance is only determined by the expected interference
gain but the specific fading model. �

According to Proposition 2.6, two fading models with the same expected fading
gain, e.g., Rayleigh and Nakagami, would lead to the same expected weighted aggre-
gate interference. Moreover, for a given fading model with unit-mean, the resulting
expected weighted aggregate interference would be equal to a nonfading scenario,
where only large-scale power-loss is considered.

The above analysis is for time-varying radio environment. As the static envi-
ronment is an extreme case of time-varying case, we can conclude that stochastic
learning automata-based algorithm also converges in static environment.

Proposition 2.7 In a static system with symmetrical interference channels, the pro-
posed game-theoretic solution also asymptotically converges to a pure strategy NE
point of the channel selection game.

Proof The experienced interference of a user in a static system is expressed as:

În =
∑

m∈{N\n}
f (am, an)pmŵan

mn, (2.19)

where ŵan
mn is the fixed interference gain from users m to n on channel an satisfying

ŵan
mn = ŵan

nm. Then the aggregate weighted interference in a static network is given by:

Û =
∑
n∈N

pnÎn =
∑
n∈N

∑
m∈{N\n}

pmpnŵan
mnf (am, an). (2.20)

Similarly, a static channel selection game Gc with the following utility function
can be defined:

ûn(an, a−n) = D − pnÎn. (2.21)

Using similar lines of proof for Theorem 5.1, it can be proved that the channel
selection game in static environment is also a potential game with potential func-
tion − 1

2 Û. Based on this result, we can prove this proposition following the same
methodology in Theorem 2.2. �

2.5 Simulation Results and Discussion

The simulation setting is similar to [9], in which the users are randomly located in
a 100m × 100m region. For presentation, the transmitting powers of all the users
are set assumed to be pn = 0 dBw,∀n ∈ N, the path loss exponent is α = 2,

http://dx.doi.org/10.1007/978-981-10-0024-9_5
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and the noise power as N0 = −130 dBw. For simplicity of analysis, the distance
between the transmitter and the receiver for each intracommunication is set to 1m,
i.e., dnn = 1,∀n ∈ N; The channel bandwidth is 1MHz. We consider three common
fading models: Rayleigh, Nakagami, and log-normal.

2.5.1 Convergence Behavior

2.5.1.1 Convergence Behavior in Dynamic Environment

In this part, we investigate the convergence with time-varying channel gains. Specif-
ically, we consider a network with three channels and five users. Rayleigh fading
with unitmean is considered. The positive constant used in the instantaneous received
payoff (5.8) and (2.14) is set toD = 0.005, and the step size of the learning algorithm
is set to b = 0.1.

The convergence behavior of three arbitrarily selected users is shown in Fig. 2.3.
Taking user 1 as an illustrative example, it chooses the channels with equal proba-
bilities at the beginning (q11 = 0.33, q12 = 0.33, q13 = 0.33), and finally chooses
channel 3 (q11 = 1, q12 = 0, q13 = 0) after 250 iterations. From the figure, the
channel selection probabilities of the users converge to pure strategy in about 100,
250, and 290 iterations, respectively. In addition, the evolution of number of the users
choosing different channels is shown in Fig. 2.4. It is noted that the number of users
selecting different channels keeps unchanged in about 250 iterations, which again
validates the convergence of the proposed game-theoretic interference mitigation
approach.

Fig. 2.3 The evolution of
channel selection
probabilities for three
arbitrarily selected users in
Rayleigh fading environment
(N = 5, M = 3, D = 0.005
and b = 0.1)
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Fig. 2.4 Evolution of the
number of users choosing the
channels in Rayleigh fading
environment
(N = 5, M = 3, D = 0.005
and b = 0.1)
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2.5.1.2 Convergence Behavior in Static Environment

In this part, we study the convergencewith static channel gains and compare it with an
existing static algorithm. There is an efficient distributed channel selection algorithm,
called GADIA, which is proposed by Babadi and Tarokh [9] and has been shown to
achieve good performance in static systems. According to Proposition 2.7, the learn-
ing algorithm in this chapter also converges in static environment. The convergence
comparison results of an arbitrary network topology with 20 users and five channels
are shown in Fig. 2.5. It is seen that the proposed learning algorithm also converges,
as the GADIA algorithm. However, the GADIA algorithm converges rapidly and
smoothly. The reasons are: (i) the GADIA algorithm measures the received inter-
ference on all channels before a user updates the channel selection strategy, and the

Fig. 2.5 Convergence
behavior comparison in
static environment
( N = 20, M = 5,
D = 0.005 and b = 0.1)
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updating procedure is implemented in a deterministic manner, i.e., only one user can
update action at a time, whereas (ii) the proposed learning algorithm only measures
the received interference on the current chosen channel and the update procedure is
implemented in a stochastic manner, i.e., all the users update their actions simulta-
neously.

2.5.2 Performance Evaluation

2.5.2.1 Performance Comparison for Different Solutions

In this part, the performance of the proposed stochastic automata-based learning
algorithm in terms of expected weighted aggregate interference is evaluated. Specif-
ically, we consider a network with five channels, and the number of users increases
from 2 to 30. The parameters in the learning algorithm are set as D = 0.005 and
b = 0.08. For comparison,we also consider the following three solutions: the random
selection scheme, the worst NE, and the best NE. In the random selection scheme,
each user randomly chooses a channel in each slot. Note that the random channel
selection seems to be an instinctive method, as the channel gains vary randomly from
slot to slot and there is no information exchange. The best (worst) NE are obtained
as follows: we run the learning algorithm 103 times and then choose the best (worst)
result, respectively. According to Theorem 5.1, the best NE is global minimum for
the expected weighted aggregate interference.

The comparison results of four solutions is shown in Fig. 2.6. By simulating 103

independent trials, the results are obtained by taking the expected value. Some impor-
tant conclusions can observed: (i) in the under-loaded and equally-loaded scenarios,
i.e.,N ≤ 5, the performance of the stochastic learning solution and is almost the same
with the best NE, which follows the fact that the global optimum is asymptotically

Fig. 2.6 Performance
evolution for a distributed
network involving in
Rayleigh fading environment
(D = 0.005, b = 0.08 and
M = 5)
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achieved, as characterized by Proposition 2.4, and (ii) in the over-loaded network
scenarios, i.e.,N > 5, there is a small performance gap between the learning solution
and the best NE. The reason is that the stochastic learning algorithmmay converge to
an optimal or a suboptimal solution, as characterized by Proposition 2.5, and hence
it averagely achieves near-optimal performance. In addition, it is seen that even the
worst NE results in less aggregate interference than the random selection scheme.
Due to incoordination of the random selection scheme, some channels are crowded
whereas others are unoccupied. In comparison, the users choose different channels
in pure strategy NE solution, which thus results in lower value of interference.

2.5.2.2 Performance Evaluation for Different Fading Parameters

The performance evaluation for different fading parameters is shown in Fig. 2.7. The
presenting results are obtained by simulating 20 topologies with 103 independent
trials and then taking the average values. No-fading implies that only large-scale
power-loss is considered and 0dB-mean is with unit-mean. From the figure, it can be
observed that the performance gap between No-fading and Rayleigh with 0dB-mean
is trivial. According to Proposition 2.6, their performance should be the same as the
expected channel gains are the same.Moreover, as themean value of Rayleigh fading
increases, e.g., increasing from 1 to 3dB, the caused interference increases as can be
expected.

2.5.2.3 Performance Evaluation for Different Fading Models

In this part, different fading models are considered. Specifically, the following well-
known models including Rayleigh, Nakagami, and Log-normal is considered:

Fig. 2.7 The comparison
results of expected aggregate
interference for different
Rayleigh fading parameters
(D = 0.005, b = 0.08 and
M = 5)
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• In Rayleighmodel, the channel gains are exponentially distributedwith unit-mean.
• In Nakagami model, the probability distribution function of the channel gains is
determined by f (x) = mmxm−1

Γ (m)
e−mx, x ≥ 0.

• In Log-normal model, the channel gains is modeled by a random variable eX ,
where X is a Gaussian variable with zero-mean and variance σ 2. Log-normal
fading is usually characterized in the dB-spread form which is related to σ , by
σ = 0.1 log(10)σdB. The dB-spread of Log-normal fading typically ranges from
4 to 12dB as indicated by the empirical measurements [15].

The comparison results of expected aggregate interference for different fading
models are shown in Fig. 2.8. The results are obtained by simulating 20 independent
topologies with 103 independent trials and then taking the average value. As all the
presented fading models are with unit-mean, the interference performance gap is
trivial, which directly follows the argument characterized by Proposition 2.6. Also,
the comparison results of expected normalized achievable throughput for different
fadingmodels are presented inFig. 2.9.As the number of users increases, the expected
normalized achievable rate decreases as expected. Some interesting observations are:
(i) Rayleigh fading outperforms Nakagami fading and Log-normal fading, and (ii)
the performance of Log-normal fading is almost the same with that of No-fading.
We think the reasons may be as follows: (i) multiuser diversity of Rayleigh fading
is stronger than those of other fading models, and (ii) the multiuser diversity of
Log-normal fading is weak.

Fig. 2.8 The comparison
results of expected aggregate
interference for different
fading models (D = 0.005
and b = 0.08)
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Fig. 2.9 The comparison
results of expected
normalized achievable
throughput for different
fading models (D = 0.005
and b = 0.08)
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2.6 Concluding Remarks

Compared with previous studies, the key difference in this chapter is that the channel
gains are time-varying. In another work [22], we have studied the opportunistic
spectrum access problem with time-varying spectrum opportunities, in which the
channel states (idle or occupied) change randomly from slot to slot. The stochastic
learning automata algorithm was also used therein and its convergence toward pure
strategy NE of potential games was rigorously proved. Note that the most promising
property of the stochastic learning automata is that the received payoff can be random
or deterministic. As a result, we believe that the methodology used in this chapter
provides an efficient approach for solving decision-making problems in time-varying
environment, which are common in practical wireless networks.
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