
Chapter 1
Introduction

1.1 Interference Coordination in Dynamic Spectrum Access

1.1.1 Preliminaries

With the dramatically increasing demand in mobile traffic, the dilemma between
spectrum shortage and waste, which is mainly caused by the traditional static and
pre-allocated spectrum access policy, has became a serious problem facing the wire-
less communication systems. To solve this problem, dynamic spectrum access (DSA)
is an efficient and promising approach. In recent years, based on the development
of cognitive radio (CR) technology [1], in which the users have the ability to sense
the environment, learn from history information, and then adjust their decisions
in a smart and dynamic manner, DSA has drawn great attentions and can be used
in several application scenarios. For example, in the primary-secondary spectrum
access systems, the secondary users opportunistically access the channels which are
unoccupied by the primary users; in heterogeneous networks, the small cells access
the channels according to the spatial and temporary traffic distribution; in LTE-U
systems, the users also dynamically access the licensed and unlicensed channels.

In DSA systems, the users perform spectrum access in a distributed and auto-
nomous manner; furthermore, due to the feature of open transmission in wireless
communications, interference becomes the primary concern [2]. Here, the considered
interference metric is generalized. Specifically, it mainly includes: (i) The traditional
PHY-layer interference: the interference signal received from other transmitters. (ii)
The MAC-layer interference: in both time division multiple access (TDMA) and
carrier sensing multiple access (CSMA) schemes, a user cannot transmit when its
neighboring users are transmitting. In this scenario, the interference is different from
the traditional PHY-layer interference as it only cares about the number of interfer-
ing users but not about the received interference signal. To capture this effect, the
MAC-layer interference can be defined and analyzed. (iii) More generalized inter-
ference: we can generalize the interactions among the users when their objectives are
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2 1 Introduction

conflicting. In this book, we will analyze the above-mentioned interference metrics
in different scenarios.

1.1.2 Challenges and Problems

The key task in DSA systems is to choose the appropriate channels tomitigatemutual
interference among multiple users. To summarize, there are some new challenges
and problems:

1. Developing efficient distributed optimization approaches. In methodology, cen-
tralized optimization approaches have the following limitations: (i) they may
cause heavy communication overhead as global information of all the users is
required, and (ii) as the network scales up, the computational complexity becomes
huge and unacceptable. Thus, it is desirable to develop efficient distributed opti-
mization interference mitigation approaches.

2. Addressing the combinatorial nature of DSA problems. Generally, the decision
variables in DSA are discrete, i.e., choosing a channel from the available chan-
nel set. For such combinatorial optimization problems, the well-known convex
optimization approaches cannot be applied.

3. Coping with the incomplete and dynamic information constraints in wireless
environment. Information is key to decision [3]. Unfortunately, incomplete infor-
mation, e.g., a user only has its individual action-payoff information and partial
environment information, and dynamic information constraints, e.g., the channel
state is time-varying, cause challenges and new problems.

1.2 Game-Theoretic Solutions for Interference Coordination

Game theory [4] is a branch of applied mathematics, which provides efficient distrib-
uted approaches for solvingproblems involvingmultiple interactive decision-makers.
Although it was originally studied in economics, it has been extensively applied into
several application scenarios, e.g., biology [5], social activities [6], and engineer-
ing [7]. Since the pioneer work on applying game theory in power control [8, 9],
it has been regarded as an important optimization tool for wireless networks [10,
11]. Naturally, it is very suitable for solving wireless optimization problems which
are directly related to economic events and activities, e.g., spectrum auction [12–14]
and incentive mechanism [15]. More importantly, it can be applied to solve any other
involving multiple interactive users in wireless optimization problems, e.g., distrib-
uted power control [16], self-organizing networking [17], multiple access control
[18], and heterogeneous network selection [19].
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1.2.1 Motivation of Applying Game Models

In this book, we focus on developing game-theoretic interference coordination
approaches for DSA systems [21]. The motivation of using game models are sum-
marized as follows:

1. Game models provide a good and promising framework for distributed optimiza-
tion, as the players in game take actions distributively and autonomously. Fur-
thermore, the interactions among the players can be well analyzed and addressed
using game theory.

2. The combinatorial nature of DSA problems can be easily addressed. In game
models, the players choose actions from their available action set, which is always
discrete. In this sense, it is believed that gamemodels are very suitable for solving
combinatorial optimization problems.

3. The dynamic and incomplete constraints can be solved, via careful design of
repeated play in game models. Through repeated play, useful information can be
obtained to guide the players to take actions. As a result, incomplete and dynamic
information constraints can be addressed.

4. Smart and intelligent decision can be achieved. It is expected that learning is the
core of future wireless communications [20]. On one hand, the outcome of the
game is predicable and hence the performance can be improved. On the other
hand, through repeated play, the players can learn from the past information and
the feedback from the environment, adjust their behaviors, and finally achieve
desirable and stable outcomes.

1.2.2 A General Framework of Game-Theoretic Solutions

1.2.2.1 Basic Game Models

Generally, a noncooperative game is denoted as G = {N, An, un}, where
• N is the set of players. The player set can be defined flexibly. For example, in the
spectrum auction problems, players are the operators. In networkmanagement and
planning, the base stations with their serving clients are the players. In wireless
access problems, the mobile users are the players.

• An is the available action set of player n. In most scenarios, the available action is a
single decision variable, e.g., channel, time, power. However, it can also be defined
as a combination of multiple decision variables, e.g., joint channel selection and
power control, joint relay selection and power control.

• un is the utility function of n. Denote an ∈ An as the chosen action of player
n, and a−n as the chosen action profile of all players except n. Then, the utility
function is generally expressed as un(an, a−n). In some scenarios, the utility of a
user is only affected by the actions of neighboring users and hence the utility is
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then determined by un(an, aJn ), where Jn is the neighboring users and aJn is their
chosen actions.

In some application scenarios, the players may choose mixed strategies over
their available action sets. Formally, the mixed strategy of player n is denoted
as σn(an), an ∈ An , which corresponds to the probability of player n choosing
action an . The mixed strategy action space of player n is then given by �n ={
σn : ∑

an∈An
σn(an) = 1, 0 ≤ σn(an) ≤ 1

}
. Denote σ−n as the mixed strategy pro-

file of all the players except n, then the expected achievable utility function of player

n is determined by un(σn, σ−n) = ∑

a∈A

( ∏

k∈N
σk(ak)

)
un(a).

Since all the players in non-cooperative games are selfish and rational, i.e., they
all maximize their utilities, it is important to study the stable solutions of the game.
In the following, some important definitions are presented.

Definition 1.1 An action profile a∗ = (a∗
1 , . . . , a∗−n) is a pure strategy Nash equi-

librium (NE) if and only if no player can improve its utility by deviating the current
chosen action unilaterally, i.e.,

un(a
∗
n , a∗

−n) ≥ un(an, a∗
−n),∀n ∈ N ,∀an ∈ An, an �= a∗

n (1.1)

The concept of NEwas first coined by John. Nash [22], whowas awarded the 1994
Nobel Prize in Economics. It is the most important solution concept in game theory.
Based on NE, some other useful concepts of equilibria, e.g., correlated equilibrium
(CE) [23], evolutionary stable strategy (ESS) [24], and conjectural equilibrium [25],
are also extensively studied and used.

1.2.2.2 A General Framework of Game-Theoretic Solutions

For developing game-theoretic solutions for optimization problems in wireless com-
munications, a general framework is shown in Fig. 1.1. It is seen that there are two
key steps [26]: (i) game design and formulation, and (ii) distributed learning.

1. Game design and formulation. One needs to first identify the player set and
the corresponding available action set, and then define the utility functions of the
players. Defining utility function is very important since it inherently determines
the properties and achievable performance of the game-theoretic models. There
are three featured principles for defining utility function in wireless communica-
tions: (i) making the stable states optimal or near-optimal, which is the ultimate
purpose of optimization in wireless communications, (ii) addressing the inherent
features of wireless communications, e.g., channel fading, time-varying traffic,
and user mobility, and (iii) having clear physical meanings. That is, it should
explicitly be related to the optimization metrics in wireless communications, e.g.,
achievable throughput, interference, delay, or energy-efficiency.

2. Design of distributed learning. In pure game theory, it is always assumed that
the players can perfectly monitor the environment and the actions chosen by
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Fig. 1.1 The general framework of game-theoretic solutions for optimization problems in wireless
communications

other players. As a result, some efficient algorithms, e.g., best response [27] and
fictitious play [4], can be used to adjust their strategies toward stable solutions.
However, in the presence of incomplete and dynamic information constraints in
wireless communications, the task of achieving stable and desirable solutions is
challenging. Thus, efforts should be given to: (i) developing efficient distributed
learning algorithms which converge to stable solutions, e.g., NE, CE, and ESS,
and (ii) achieving desirable stable solutions, e.g., maximizing the throughput or
minimizing the interference.

Denote an(k) as the action of player n in the kth iteration, and a−n(k) as
the action profile of all other players except n. Due to the interactions (interfer-
ence, congestion or competition) among the multiuser players, the received payoff
rn(k) of each player is jointly determined by the action profile of all players, i.e.,
rn(k) = gn (an(k), a−n(k)), where the payoff function gn(·) may be determinate or
random. Generally, the players perform the following learning procedure to update
their actions:

an(k + 1) = F (an(k), a−n(k); rn(k), r−n(k)) , (1.2)

Since the action update of a player is based on the profiles of chosen action and
received payoff in the last iteration, the system evolution can be described as
{an(k), a−n(k)} → {rn(k), r−n(k)} → {an(k + 1), a−n(k + 1)}. Thus, the optimiza-
tion objective of the learning algorithm is to find a stable action profile to maximize
the system utility.
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Fig. 1.2 The illustrative diagram of distributed learning algorithms in games

As discussed before, the incomplete and dynamic information constraints may
pose some challenges. Specifically, (i) a player may not know the information about
all other players, (ii) the received payoff rn(k) may be random and time-varying.
Thus, the update rule needs to be carefully designed to guarantee the convergence
toward desirable solutions. In addition, the update rule given in (1.2) is coupled
since it needs to know information about others. To reduce the information exchange
among users, it is desirable to develop uncoupled learning algorithms, i.e.,

an(k + 1) = Fu (an(k), rn(k)) , (1.3)

where only the individual information of action and received payoff are needed. An
illustrative diagram of distributed learning in games is shown in Fig. 1.2.

1.3 Organization and Summary

In the following, we present the definition of exact potential game [27], which admits
promising properties and have been extensively used in wireless communication
networks [28]. Potential game admits several promising properties and the most
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Fig. 1.3 Summary of game-theoretic interference coordination approaches in this book

important two are [27]: (i) every potential game has at least one pure strategy NE,
(ii) the global or local maxima of the potential function correspond to a pure strategy
NE. Furthermore, there are several efficient distributed learning algorithms which
converges to NE of potential games in the presence of incomplete and dynamic
information constraints.

Definition 1.2 A game is a potential game (EPG) if there exists an exact potential
function φe : A1 × · · · × AN → R such that for all n ∈ N, all an ∈ An , and a′

n ∈ An ,

un(an, a−n) − un(a
′
n, a−n) = φe(an, a−n) − φe(a

′
n, a−n) (1.4)

That is, the change in the individual utility function caused by the unilateral action
change of an arbitrary user is the same with that in the exact potential function.
In this book, several potential game-based interference coordination approaches are
presented and analyzed, the summary of game-theoretic interference coordination
approaches in this work is shown Fig. 1.3. Specifically, the rest of this book is orga-
nized as follows.

• In Chap.2, an interference mitigation game with time-varying channels is formu-
lated and a stochastic learning automata-based algorithm is applied. The distinct
feature is that the channel gains are randomly changing, which is common in
practical wireless networks.

• In Chap.3, an MAC-layer interference mitigation game with orthogonal channels
is formulated and the binary log-linear learning algorithm is applied.

• In Chap.4, an MAC-layer interference mitigation game with partially overlap-
ping channels is formulated and the simultaneous log-linear learning algorithm is
applied.

• In Chap.5, a generalized interferencemitigation game for sequential channel sens-
ing and access is formulated and a modified stochastic learning automata-based
algorithm is applied. The distinct feature is that the active user set is time-varying.

• Finally, future direction and research issues are presented in Chap.6.

http://dx.doi.org/10.1007/978-981-10-0024-9_2
http://dx.doi.org/10.1007/978-981-10-0024-9_3
http://dx.doi.org/10.1007/978-981-10-0024-9_4
http://dx.doi.org/10.1007/978-981-10-0024-9_5
http://dx.doi.org/10.1007/978-981-10-0024-9_6
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