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Preface

Dynamic spectrum access (DSA) is an efficient and promising approach to solve the
dilemma between spectrum shortage and waste, which is mainly caused by the
traditional static and pre-allocated spectrum access policies. The users in DSA
systems have the ability to sense the environment, learn from history information,
and then adjust their decisions in a smart and dynamic manner. Owing to the
intelligent spectrum decision manner and open transmission in wireless commu-
nications, interference coordination among the interactive users becomes the pri-
mary concern.

Game theory is a powerful tool to study the interactions among multiple
autonomous decision-makers. However, since it is a branch of applied mathematic,
some new challenges with regard to information constraints should be addressed
when it is applied to interference coordination for DSA systems. The purpose of
this book is to bridge game theory and practical interference mitigation approaches,
by taking into account the incomplete and dynamic information constraints in
wireless communication networks. It establishes a game-theoretic framework and
presents the cutting-edge technologies for distributed interference coordination.
With game-theoretic formulation and the designed distributed learning algorithms,
it provides insights on the interactions among the multiple decision-makers and the
converging stable states. Furthermore, some promising and novel interference
models are presented. We believe that it contains valuable knowledge, useful
methods and practical algorithms that can be considered in emerging 5G wireless
communication networks.

Many individuals have helped shape this book with their effort and time. We
would like to thank Jinglong Wang, Qihui Wu, Liang Shen, Zhiyong Du, Youming
Sun, Yuanhui Zhang and Yiwei Xu for their insightful contributions to this book.
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Finally, thanks to Wayne Hu and Ivy Gong for their valuable advice throughout the
production of this book.

This work was supported by the National Science Foundation of China under
Grant No. 61401508.

Nanjing, China Yuhua Xu
Toronto, Canada Alagan Anpalagan
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Chapter 1
Introduction

1.1 Interference Coordination in Dynamic Spectrum Access

1.1.1 Preliminaries

With the dramatically increasing demand in mobile traffic, the dilemma between
spectrum shortage and waste, which is mainly caused by the traditional static and
pre-allocated spectrum access policy, has became a serious problem facing the wire-
less communication systems. To solve this problem, dynamic spectrum access (DSA)
is an efficient and promising approach. In recent years, based on the development
of cognitive radio (CR) technology [1], in which the users have the ability to sense
the environment, learn from history information, and then adjust their decisions
in a smart and dynamic manner, DSA has drawn great attentions and can be used
in several application scenarios. For example, in the primary-secondary spectrum
access systems, the secondary users opportunistically access the channels which are
unoccupied by the primary users; in heterogeneous networks, the small cells access
the channels according to the spatial and temporary traffic distribution; in LTE-U
systems, the users also dynamically access the licensed and unlicensed channels.

In DSA systems, the users perform spectrum access in a distributed and auto-
nomous manner; furthermore, due to the feature of open transmission in wireless
communications, interference becomes the primary concern [2]. Here, the considered
interference metric is generalized. Specifically, it mainly includes: (i) The traditional
PHY-layer interference: the interference signal received from other transmitters. (ii)
The MAC-layer interference: in both time division multiple access (TDMA) and
carrier sensing multiple access (CSMA) schemes, a user cannot transmit when its
neighboring users are transmitting. In this scenario, the interference is different from
the traditional PHY-layer interference as it only cares about the number of interfer-
ing users but not about the received interference signal. To capture this effect, the
MAC-layer interference can be defined and analyzed. (iii) More generalized inter-
ference: we can generalize the interactions among the users when their objectives are

© The Author(s) 2016
Y. Xu and A. Anpalagan, Game-theoretic Interference Coordination
Approaches for Dynamic Spectrum Access, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-981-10-0024-9_1
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conflicting. In this book, we will analyze the above-mentioned interference metrics
in different scenarios.

1.1.2 Challenges and Problems

The key task in DSA systems is to choose the appropriate channels tomitigatemutual
interference among multiple users. To summarize, there are some new challenges
and problems:

1. Developing efficient distributed optimization approaches. In methodology, cen-
tralized optimization approaches have the following limitations: (i) they may
cause heavy communication overhead as global information of all the users is
required, and (ii) as the network scales up, the computational complexity becomes
huge and unacceptable. Thus, it is desirable to develop efficient distributed opti-
mization interference mitigation approaches.

2. Addressing the combinatorial nature of DSA problems. Generally, the decision
variables in DSA are discrete, i.e., choosing a channel from the available chan-
nel set. For such combinatorial optimization problems, the well-known convex
optimization approaches cannot be applied.

3. Coping with the incomplete and dynamic information constraints in wireless
environment. Information is key to decision [3]. Unfortunately, incomplete infor-
mation, e.g., a user only has its individual action-payoff information and partial
environment information, and dynamic information constraints, e.g., the channel
state is time-varying, cause challenges and new problems.

1.2 Game-Theoretic Solutions for Interference Coordination

Game theory [4] is a branch of applied mathematics, which provides efficient distrib-
uted approaches for solvingproblems involvingmultiple interactive decision-makers.
Although it was originally studied in economics, it has been extensively applied into
several application scenarios, e.g., biology [5], social activities [6], and engineer-
ing [7]. Since the pioneer work on applying game theory in power control [8, 9],
it has been regarded as an important optimization tool for wireless networks [10,
11]. Naturally, it is very suitable for solving wireless optimization problems which
are directly related to economic events and activities, e.g., spectrum auction [12–14]
and incentive mechanism [15]. More importantly, it can be applied to solve any other
involving multiple interactive users in wireless optimization problems, e.g., distrib-
uted power control [16], self-organizing networking [17], multiple access control
[18], and heterogeneous network selection [19].
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1.2.1 Motivation of Applying Game Models

In this book, we focus on developing game-theoretic interference coordination
approaches for DSA systems [21]. The motivation of using game models are sum-
marized as follows:

1. Game models provide a good and promising framework for distributed optimiza-
tion, as the players in game take actions distributively and autonomously. Fur-
thermore, the interactions among the players can be well analyzed and addressed
using game theory.

2. The combinatorial nature of DSA problems can be easily addressed. In game
models, the players choose actions from their available action set, which is always
discrete. In this sense, it is believed that gamemodels are very suitable for solving
combinatorial optimization problems.

3. The dynamic and incomplete constraints can be solved, via careful design of
repeated play in game models. Through repeated play, useful information can be
obtained to guide the players to take actions. As a result, incomplete and dynamic
information constraints can be addressed.

4. Smart and intelligent decision can be achieved. It is expected that learning is the
core of future wireless communications [20]. On one hand, the outcome of the
game is predicable and hence the performance can be improved. On the other
hand, through repeated play, the players can learn from the past information and
the feedback from the environment, adjust their behaviors, and finally achieve
desirable and stable outcomes.

1.2.2 A General Framework of Game-Theoretic Solutions

1.2.2.1 Basic Game Models

Generally, a noncooperative game is denoted as G = {N, An, un}, where
• N is the set of players. The player set can be defined flexibly. For example, in the
spectrum auction problems, players are the operators. In networkmanagement and
planning, the base stations with their serving clients are the players. In wireless
access problems, the mobile users are the players.

• An is the available action set of player n. In most scenarios, the available action is a
single decision variable, e.g., channel, time, power. However, it can also be defined
as a combination of multiple decision variables, e.g., joint channel selection and
power control, joint relay selection and power control.

• un is the utility function of n. Denote an ∈ An as the chosen action of player
n, and a−n as the chosen action profile of all players except n. Then, the utility
function is generally expressed as un(an, a−n). In some scenarios, the utility of a
user is only affected by the actions of neighboring users and hence the utility is
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then determined by un(an, aJn ), where Jn is the neighboring users and aJn is their
chosen actions.

In some application scenarios, the players may choose mixed strategies over
their available action sets. Formally, the mixed strategy of player n is denoted
as σn(an), an ∈ An , which corresponds to the probability of player n choosing
action an . The mixed strategy action space of player n is then given by �n ={
σn : ∑

an∈An
σn(an) = 1, 0 ≤ σn(an) ≤ 1

}
. Denote σ−n as the mixed strategy pro-

file of all the players except n, then the expected achievable utility function of player

n is determined by un(σn, σ−n) = ∑

a∈A

( ∏

k∈N
σk(ak)

)
un(a).

Since all the players in non-cooperative games are selfish and rational, i.e., they
all maximize their utilities, it is important to study the stable solutions of the game.
In the following, some important definitions are presented.

Definition 1.1 An action profile a∗ = (a∗
1 , . . . , a∗−n) is a pure strategy Nash equi-

librium (NE) if and only if no player can improve its utility by deviating the current
chosen action unilaterally, i.e.,

un(a
∗
n , a∗

−n) ≥ un(an, a∗
−n),∀n ∈ N ,∀an ∈ An, an �= a∗

n (1.1)

The concept of NEwas first coined by John. Nash [22], whowas awarded the 1994
Nobel Prize in Economics. It is the most important solution concept in game theory.
Based on NE, some other useful concepts of equilibria, e.g., correlated equilibrium
(CE) [23], evolutionary stable strategy (ESS) [24], and conjectural equilibrium [25],
are also extensively studied and used.

1.2.2.2 A General Framework of Game-Theoretic Solutions

For developing game-theoretic solutions for optimization problems in wireless com-
munications, a general framework is shown in Fig. 1.1. It is seen that there are two
key steps [26]: (i) game design and formulation, and (ii) distributed learning.

1. Game design and formulation. One needs to first identify the player set and
the corresponding available action set, and then define the utility functions of the
players. Defining utility function is very important since it inherently determines
the properties and achievable performance of the game-theoretic models. There
are three featured principles for defining utility function in wireless communica-
tions: (i) making the stable states optimal or near-optimal, which is the ultimate
purpose of optimization in wireless communications, (ii) addressing the inherent
features of wireless communications, e.g., channel fading, time-varying traffic,
and user mobility, and (iii) having clear physical meanings. That is, it should
explicitly be related to the optimization metrics in wireless communications, e.g.,
achievable throughput, interference, delay, or energy-efficiency.

2. Design of distributed learning. In pure game theory, it is always assumed that
the players can perfectly monitor the environment and the actions chosen by
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Fig. 1.1 The general framework of game-theoretic solutions for optimization problems in wireless
communications

other players. As a result, some efficient algorithms, e.g., best response [27] and
fictitious play [4], can be used to adjust their strategies toward stable solutions.
However, in the presence of incomplete and dynamic information constraints in
wireless communications, the task of achieving stable and desirable solutions is
challenging. Thus, efforts should be given to: (i) developing efficient distributed
learning algorithms which converge to stable solutions, e.g., NE, CE, and ESS,
and (ii) achieving desirable stable solutions, e.g., maximizing the throughput or
minimizing the interference.

Denote an(k) as the action of player n in the kth iteration, and a−n(k) as
the action profile of all other players except n. Due to the interactions (interfer-
ence, congestion or competition) among the multiuser players, the received payoff
rn(k) of each player is jointly determined by the action profile of all players, i.e.,
rn(k) = gn (an(k), a−n(k)), where the payoff function gn(·) may be determinate or
random. Generally, the players perform the following learning procedure to update
their actions:

an(k + 1) = F (an(k), a−n(k); rn(k), r−n(k)) , (1.2)

Since the action update of a player is based on the profiles of chosen action and
received payoff in the last iteration, the system evolution can be described as
{an(k), a−n(k)} → {rn(k), r−n(k)} → {an(k + 1), a−n(k + 1)}. Thus, the optimiza-
tion objective of the learning algorithm is to find a stable action profile to maximize
the system utility.
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Fig. 1.2 The illustrative diagram of distributed learning algorithms in games

As discussed before, the incomplete and dynamic information constraints may
pose some challenges. Specifically, (i) a player may not know the information about
all other players, (ii) the received payoff rn(k) may be random and time-varying.
Thus, the update rule needs to be carefully designed to guarantee the convergence
toward desirable solutions. In addition, the update rule given in (1.2) is coupled
since it needs to know information about others. To reduce the information exchange
among users, it is desirable to develop uncoupled learning algorithms, i.e.,

an(k + 1) = Fu (an(k), rn(k)) , (1.3)

where only the individual information of action and received payoff are needed. An
illustrative diagram of distributed learning in games is shown in Fig. 1.2.

1.3 Organization and Summary

In the following, we present the definition of exact potential game [27], which admits
promising properties and have been extensively used in wireless communication
networks [28]. Potential game admits several promising properties and the most
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Fig. 1.3 Summary of game-theoretic interference coordination approaches in this book

important two are [27]: (i) every potential game has at least one pure strategy NE,
(ii) the global or local maxima of the potential function correspond to a pure strategy
NE. Furthermore, there are several efficient distributed learning algorithms which
converges to NE of potential games in the presence of incomplete and dynamic
information constraints.

Definition 1.2 A game is a potential game (EPG) if there exists an exact potential
function φe : A1 × · · · × AN → R such that for all n ∈ N, all an ∈ An , and a′

n ∈ An ,

un(an, a−n) − un(a
′
n, a−n) = φe(an, a−n) − φe(a

′
n, a−n) (1.4)

That is, the change in the individual utility function caused by the unilateral action
change of an arbitrary user is the same with that in the exact potential function.
In this book, several potential game-based interference coordination approaches are
presented and analyzed, the summary of game-theoretic interference coordination
approaches in this work is shown Fig. 1.3. Specifically, the rest of this book is orga-
nized as follows.

• In Chap.2, an interference mitigation game with time-varying channels is formu-
lated and a stochastic learning automata-based algorithm is applied. The distinct
feature is that the channel gains are randomly changing, which is common in
practical wireless networks.

• In Chap.3, an MAC-layer interference mitigation game with orthogonal channels
is formulated and the binary log-linear learning algorithm is applied.

• In Chap.4, an MAC-layer interference mitigation game with partially overlap-
ping channels is formulated and the simultaneous log-linear learning algorithm is
applied.

• In Chap.5, a generalized interferencemitigation game for sequential channel sens-
ing and access is formulated and a modified stochastic learning automata-based
algorithm is applied. The distinct feature is that the active user set is time-varying.

• Finally, future direction and research issues are presented in Chap.6.

http://dx.doi.org/10.1007/978-981-10-0024-9_2
http://dx.doi.org/10.1007/978-981-10-0024-9_3
http://dx.doi.org/10.1007/978-981-10-0024-9_4
http://dx.doi.org/10.1007/978-981-10-0024-9_5
http://dx.doi.org/10.1007/978-981-10-0024-9_6
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Chapter 2
Distributed Interference Mitigation
in Time-Varying Radio Environment

2.1 Introduction

Currently, most existing studies on the problem of interference mitigation, e.g.,
[1–10], have assumed that the interference channel gains are static. Based on such
an ideal assumption, there are several nongame theoretic [1, 9] and game-theoretic
[2–8, 10] interference mitigation approaches. However, the assumption of static
channels is not true since they are always time-varying in practice, which is the
inherent feature of wireless communications.

In this chapter, we consider a multiuser, multichannel opportunistic spectrum
access network, where the users choose orthogonal channels to mitigate mutual
interference [4, 5, 7–10]. The considered network is completed distributed, as there
is no centralized controller and no information exchange among users. To address
the time-varying nature of wireless communication, it is assumed that the channels
undergo block-fading. Block-fading means that the channel gains remain unchanged
in a slot but change randomly in the next slot, which is realistic and has been exten-
sively used in the past literature.

Following the similar ideas proposed in [6, 9, 10], in which the weighted aggre-
gate interference for static channels isminimized, the network utility in this chapter is
naturally extended to the expected weighted aggregate interference for time-varying
channels. As a result, the optimization objective is to find channel selection pro-
files that minimize this network utility in a distributed manner. Since the channel
selections of the users are distributed and autonomous, we formulate the problem of
opportunistic spectrum access as a noncooperative game. With the formulated game
model, we then propose a stochastic automata-based distributed learning algorithm,
which converges to pure strategy NE of the interference mitigation game in time-
varying environment. Note that the main analysis and results in this chapter were
presented in [11].

© The Author(s) 2016
Y. Xu and A. Anpalagan, Game-theoretic Interference Coordination
Approaches for Dynamic Spectrum Access, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-981-10-0024-9_2
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2.2 System Model and Problem Formulation

2.2.1 System Model

We consider a distributed canonical wireless network consisting of multiple
autonomous users.Note that each user in canonical networks is not a single communi-
cation entity but a collection of multiple entities with intracommunications [12–14].
Generally, there is a leading entity choosing the operational channel and the belonged
members share the channel using some multiple access control mechanisms, e.g.,
TDMA or CSMA/CA. Examples of wireless canonical network are given by, e.g., a
WLAN access point with the serving clients [12] and a cluster head together with its
members [9]. A comprehensive review on canonical networks can be found in [9].
An illustrative example of the considered canonical networks is shown in Fig. 2.1.

Suppose that there areN users andM channels, and each user chooses one channel
for communication. Denote the user set as N = {1, . . . , N} and the channel set as
M = {1, . . . , M}. To capture the time-variation of channels, it is assumed that all the
channels undergo block-fading, i.e., the channel gains are block-fixed in a time slot
and change randomly in the next slot. Furthermore, each user chooses exactly one
channel for intra-communication at a time. When two users, say m and n, choose a
channel simultaneously, mutual interference emerges, the instantaneous interference
gain from users m to n in a specific slot can be expressed as:

ws
mn = (dmn)

−αεs
mn, (2.1)

where the superscript s denotes the selected channel, dmn is the physical distance
between m and n, α is the path loss exponent, and εs

mn is the instantaneous random
component of the path loss [15], e.g., Rayleigh fading. Due to fading in wireless
environment, the instantaneous random components between two users in each slot
are generally different. However, their expected values are assumed to be the same.
Therefore, we can denote the expected value of the random components between
any two users on a channel as ε̄s

mn = E[εs
mn] = E[εs

nm], ∀m, n ∈ N, ∀s ∈ M.

Fig. 2.1 An illustrative
example of canonical
networks
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Remark 2.1 The interference channel model characterized by (5.2) is very general,
since the instantaneous random components εs

mn can vary from slot to slot, from
channel to channel, and from user to user. Furthermore, the dynamics may be inde-
pendent or correlated. In addition, the expected value of random component ε̄s

mn can
also vary from channel to channel and from user to user. Thus, the analysis and results
obtained in this chapter suitable for several practical scenarios, and some examples
are given by: (i) when it is unit-constant, i.e., εs

mn = 1,∀m, n, s, it corresponds
to a scenario where only large-scale power-loss is considered, (ii) when it is log-
normal distribution, it corresponds to the medium-scale power-loss, and (iii) when
it is Rayleigh/Nakagami distribution, which means that multiple-path power-loss is
considered.

2.2.2 Problem Formulation

Denote the chosen channel of user n in a slot as an, an ∈ M, then the instantaneous
achievable rate of user n is given by:

Rn = B log
(
1 + pnwan

nn

BN0 + In

)
, (2.2)

where B is the channel bandwidth, wan
nn = (dnn)

−αεan
nn is the intracommunication

channel gain of user n (the channel gain between the head and the serving clients),
pn is the transmitting power, N0 is the noise power spectrum density, and In is the
aggregate interference experienced by user n. For an action selection profile of all
the users a = {a1, . . . , aN }, In is random and can be expressed by:

In =
∑

m∈{N\n}
f (am, an)pmwan

mn, (2.3)

whereX\Y means thatY is excluded from the setX, and f (·) is the following indicator
function:

f (x, y) =
{
1, x = y
0, x �= y.

(2.4)

According to (2.2), the aggregate expected network rate achieved by all the users
can be expressed as:

Rsum =
∑

n∈N
E[Rn] (2.5)

http://dx.doi.org/10.1007/978-981-10-0024-9_5
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From theperspective of interferencemitigation,weconsider the expectedweighted
aggregate interference in the network, which is defined as:

U =
∑

n∈N
pnE[In] =

∑

n∈N

∑

m∈{N\n}
pmpnw̄an

mnf (am, an), (2.6)

where w̄an
mn = E[wan

mn] = (dmn)
−αε̄an

mn is the expected interference gain from user m
to user n in channel an.

Note that the considered network utility metric, i.e., the weighted aggregate inter-
ference, has been studied in previous studies [6, 9, 10]. In [6], it was shown that
such a network utility can balance the transmitting power and the experienced inter-
ference. Furthermore, it has been shown that with this network utility, near-optimal
network rate can be achieved in low SINR regime [9]. Existing studies were mainly
for static scenarios with fixed channel gains. In comparison, in order to address the
random and instantaneous fading components, i.e., εs

mn, in wireless environment, we
consider the expected version of weighted aggregate interference here. Therefore,
motivated by the previous researches on interferencemitigation rather thanmaximiz-
ing throughput directly, e.g., [4, 5, 9], the considered objective here is to minimize
the expected weighted aggregate interference, as specified by (2.6), i.e.,

(P1 :) aopt ∈ arg
a
min U (2.7)

2.3 Interference Mitigation Game in Time-Varying
Environment

As the decision variable (channel selection) is discrete, the interference mitigation
problem P1 is a combinatorial optimization problem. On the condition that all the
key parameters including pn, dmn and ε̄s

mn, ∀m, n ∈ N, s ∈ M are a priori known,
centralized approaches can be applied. However, if there is no centralized control
and these parameters are unknown, which is exactly the scenario considered in this
chapter, the task of solving P1 is challenging. In the following, we propose a game-
theoretic distributed approach in time-varying environment.

2.3.1 Game Model

The problem of distributed channel selection for interference mitigation in canon-
ical networks is formulated as a noncooperative game. Formally, the game is
denoted as Gc = [N, {An}n∈N, {un}n∈N], where N = {1, . . . , N} is the player set,
An = {1, . . . , M} is the available actions (channel) set for each player n, and un is the
utility function of player n. As the experienced interference is a random variable in
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each slot, we consider the following utility function, which is defined as the expected
experienced interference, i.e.,

un(an, a−n) = D − pnE[In] = D − ∑

m∈{N\n}
pnpmw̄an

mnf (am, an), (2.8)

where a−n is the channel selection profile of all the players except player n, In is
the experienced interference of player n, as specified by (2.3), and D is a predefined
positive constant which will be illustrated later. Then, the proposed interference
mitigation game is expressed as:

(G) : max
an∈An

un(an, a−n), ∀n ∈ N. (2.9)

2.3.2 Analysis of Nash Equilibrium

In the following,we analyze theNash equilibrium (NE)of the formulated interference
mitigation game and investigate its properties.

Theorem 2.1 The formulated interference mitigation game Gc is an exact potential
game which has at least a pure strategy NE point, and the optimal channel selection
that globally minimizes the expected weighted aggregate interference constitutes a
pure strategy NE point of G.

Proof Detailed lines for the proof are omitted here but can be found in [11]. In the
following, only the proof skeleton is presented. First, we construct the following
potential function:

Φ(an, a−n) = −1

2

∑

n∈N

∑

m∈{N\n}
pmpnw̄an

mnf (am, an), (2.10)

which immediately yields the following equation:

Φ(an, a−n) = −1

2
U(an, a−n), (2.11)

through which the network utility U(an, a−n), as specified by (2.6), is related to the
potential function. Then, after some mathematical manipulations, it can be verified
that the change in individual utility function caused by any player’s unilateral devi-
ation is the same as that in the potential function. Thus, according to the definition
given in Chap.1, it is known that G is an exact potential game with Φ serving as the
potential function. Therefore, Theorem 5.1 is proved. �

Theorem 5.1 characterizes the relationship between the interference mitigation
game G and the network utility in general network scenarios. For further investiga-
tion, the following three scenarios are considered [3]: (i) under-loaded scenario: the

http://dx.doi.org/10.1007/978-981-10-0024-9_1
http://dx.doi.org/10.1007/978-981-10-0024-9_5
http://dx.doi.org/10.1007/978-981-10-0024-9_5
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number of users is less than that of channels, i.e.,N < M, (ii) equally-loaded scenario:
the number of users is equal to that of channels, i.e., N = M, and (iii) over-loaded
scenario: the number of users is greater than that of channels, i.e., N > M. Then,
the properties for the three scenarios are characterized by the following propositions,
respectively.

Proposition 2.1 For both under-loaded or equally-loaded scenarios, any pure strat-
egy NE of the interference mitigation game G leads to an interference-free channel
selection profile.

Proof In the two scenarios, all pure strategy NE points correspond to orthogonal
channel selection profiles, i.e., a channel is selected by no more than one user. This
argument is due to the fact that no user is willing to deviate, as it experiences zero
interference. Therefore, any pure strategy NE point is optimal to P1, and makes the
network interference-free. Therefore, Proposition 2.1 is proved. �

Proposition 2.2 For the over-loaded scenario, there exists at least one pure strategy
NE point that minimizes the expected weighted aggregate interference.

Proof Multiple pure strategy NE points may exist in the over-loaded scenario but the
number of pure strategy NE is hard to obtain. However, according to Theorem 5.1,
there is at least one pure strategy NE minimizing the expected weighted aggregate
interference. Besides the optimal one, other pure strategy NE points only locally
minimize the expected weighted aggregate interference. �

Since the global optimality is not guaranteed in the over-loaded scenarios, it is
indispensable to study the performance of NE solutions. Generally, the concept of
price of anarchy (PoA) [16] is used to study the performance ratio between the worst
NE solution and the social optimum. However, as the PoA for the formulated game is
hard to derive, we get an upper bound instead. To begin with, the achievable expected
aggregate interference at a pure strategy NE a∗ = (a∗

1, . . . , a∗
N ) is given by:

UNE =
∑

n∈N
pnE[In] =

∑

n∈N

∑

m∈{N\n}
pmpnw̄

a∗
n

mnf (a∗
m, a∗

n). (2.12)

Proposition 2.3 If the values of the expected random components of all channels
are the same, i.e., ε̄s

mn = ε̄0mn, ∀m, n ∈ N, then the expected aggregate interference
of any pure strategy NE solution in an over-loaded scenario is upper bounded by
UNE ≤ U0/M, where

U0 =
∑

n∈N

∑

m∈{N\n}
pnpm(dmn)

−αε̄0mn (2.13)

can be regarded as the expected aggregate interference if all the players choose the
same channel.

Proof Refer to [11]. �

http://dx.doi.org/10.1007/978-981-10-0024-9_5
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Remark 2.2 Generally, U0 is the worst-case of the expected aggregate interference
of an arbitrary network. According to Proposition 2.3, we can see that increasing
the number of channels, i.e., M, would decrease the aggregate interference in the
network, which can be expected in any wireless networks.

2.4 Achieving NE Using Stochastic Learning Automata

With the interferencemitigation problem formulated as a potential game, the next task
is to develop distributed learning algorithm to achieve NE. Notably, we encounter
with the following incomplete and dynamic information constraints: (i) obtaining
information of other players is not feasible, and (ii) the interference channel gains
vary randomly from slot to slot. As a result, the commonly used learning algorithms
for potential games, e.g., best response dynamic [17], no-regret learning [4], fictitious
play [18], and spatial adaptive play [19], cannot be applied.Toovercome this problem,
we propose a stochastic learning automata [20]-based algorithm, which is simple and
completely distributed.

2.4.1 Algorithm Description

To begin with, the game is extended to a mixed strategy form. Specifically, the
mixed strategy for player n at iteration k is denoted by the probability distribution
qn(k) ∈ Δ(An),whereΔ(An) is the set of all possible probability distributions over the
action set An. In the stochastic learning automata algorithm, the game is played only
once in a slot. After each play, each player receives a random payoff, which is jointly
determined by action profiles of all the users and the instantaneous channel gains.
Based on the received payoffs, the players update theirmixed strategies using a simple
and distributed rule.An illustrative diagramof the stochastic learning automata-based
algorithm is shown in Fig. 2.2.

Suppose that at the kth slot, the channel selection profile of the users is a(k) =
{a1(k), . . . , aN (k)}. Then, the random payoff received by player n is as follows:

rn(k) = D −
∑

m∈{N\{n}}
pmpn(dmn)

−αεan(k)
mn f (am(k), an(k)), (2.14)

where f (·) is the indicator function specified by (3.8), and εan(k)
mn is the instantaneous

channel gain. The purpose of adding the predefined positive constant D to the payoff,
is to keep it positive. However, the received payoff may also be negative due to the
fluctuation of random channel fading. Thus, the following modified received payoff
is used in the distributed learning algorithm:

http://dx.doi.org/10.1007/978-981-10-0024-9_3
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Fig. 2.2 The schematic diagram of the stochastic automata learning-based channel selection
algorithm

Algorithm 1: the stochastic learning automata-based channel selection algorithm

Initialization: set k = 0 and the mixed strategy of each user as qns(k) = 1/|An|,∀n ∈ N,∀s ∈ M.
Loop for k = 1, 2, . . . ,
1. Accessing the channels: In the kth slot, user n access a channel an(k) according to its current
selection probability vector qn(k).
2. Measuring payoffs: The game is played once with the channel selection profile
{a1(k), · · · , aN (k)}, and then all the players measure the received payoffs rn(k) using (2.15). Note
that the payoff is random but can be directly measured by each user n [9].
3. Updating the mixed strategies: All the players update their mixed strategies using the following
rules:

qns(k + 1) = qns(k) + br̃n(k)(1 − qns(k)), s = an(k)

qns(k + 1) = qns(k) − br̃n(k)qns(k), s �= an(k),
(2.16)

where 0 < b < 1 is the learning step size, r̂n(k) is the normalized received payoff which is given
by:

r̃n(k) = rn(k)/D. (2.17)

End loop

rn(k) = max{rn(k), 0} (2.15)

The stochastic learning automata-based algorithm is described in Algorithm 1.
It is noted that the algorithm is online and fully distributed, as the users adjust the
channel selections from their action-payoff history.

The proposed stochastic learning automata-based algorithm is also called linear
reward-inaction (LR−I ), which is a special case of linear learning automata [20]. The
updating rules for linear learning automata are generally given by:

qn(k + 1) = qn(k) + bF
(
qn(k), an(k), rn(k)

)
, (2.18)
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where F(·, ·, ·) is a learning function that maps the current action and payoff to the
mixed strategy in the next iteration. Of course, other forms of update rules, e.g.,
linear reward-penalty and linear reward-ε-penalty [20], can also be used. The reason
of using LR−I is that it is simple and can be analyzed when being incorporated with
game theory, which will be discussed below. Also, it is noted from (2.18) that it is
only relying on the individual trial-payoff history of a player and does not need to
know any information of others. In fact, each user is not even aware of other users.

2.4.2 Convergence Analysis

Using the method of stochastic approximation [21], the long-term behavior of the
mixed strategies of the users can be characterized by an ordinary differential equa-
tion. Specifically, the convergence of the stochastic learning automata algorithm is
characterized by the following theorem.

Theorem 2.2 With a sufficiently small step size b, the stochastic learning automata-
based learning algorithm asymptotically converges to a pure strategy NE point of an
exact potential game.

Proof Refer to Theorem 5 in [22]. �

Based on Theorem 2.2, the aggregate interference performance of the proposed
game-theoretic interference mitigation solutions are characterized by the following
propositions.

Proposition 2.4 In under-loaded or equally-loaded scenarios, the proposed game-
theoretic solution asymptotically converges to an optimal channel selection profile
that makes the network interference-free.

Proof This proposition can be proved by straightforwardly combining Theorem 2.2
and Proposition 2.1. �

Proposition 2.5 In an over-loaded scenario, the proposed game-theoretic solution
asymptotically converges a pure strategy channel selection profile and minimizes the
expected weighted aggregate interference globally or locally.

Proof According to Proposition 2.2, there is at least an optimal channel selection
minimizing the aggregate interference, and they may be other suboptimal solutions.
Thus, Proposition 2.5 is proved. �

Since there are various fading models, e.g., Rayleigh, Nakagami, and log-normal,
it is important to study the achievable performance for different fading models. The
following proposition reveals an interesting result.

Proposition 2.6 For a given distributed network, the achievable interference per-
formance of the proposed game-theoretic solution is determined by the expected
interference gain but not the specific fading model.
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Proof Based on (2.6), it is seen that the expected weighted aggregate interference
is jointly determined by user locations, the transmitting power, the final channel
selection profile, and the expected interference gain ε̄s

mn. Thus, for a given distributed
network, the achievable performance is only determined by the expected interference
gain but the specific fading model. �

According to Proposition 2.6, two fading models with the same expected fading
gain, e.g., Rayleigh and Nakagami, would lead to the same expected weighted aggre-
gate interference. Moreover, for a given fading model with unit-mean, the resulting
expected weighted aggregate interference would be equal to a nonfading scenario,
where only large-scale power-loss is considered.

The above analysis is for time-varying radio environment. As the static envi-
ronment is an extreme case of time-varying case, we can conclude that stochastic
learning automata-based algorithm also converges in static environment.

Proposition 2.7 In a static system with symmetrical interference channels, the pro-
posed game-theoretic solution also asymptotically converges to a pure strategy NE
point of the channel selection game.

Proof The experienced interference of a user in a static system is expressed as:

În =
∑

m∈{N\n}
f (am, an)pmŵan

mn, (2.19)

where ŵan
mn is the fixed interference gain from users m to n on channel an satisfying

ŵan
mn = ŵan

nm. Then the aggregate weighted interference in a static network is given by:

Û =
∑

n∈N
pnÎn =

∑

n∈N

∑

m∈{N\n}
pmpnŵan

mnf (am, an). (2.20)

Similarly, a static channel selection game Gc with the following utility function
can be defined:

ûn(an, a−n) = D − pnÎn. (2.21)

Using similar lines of proof for Theorem 5.1, it can be proved that the channel
selection game in static environment is also a potential game with potential func-
tion − 1

2 Û. Based on this result, we can prove this proposition following the same
methodology in Theorem 2.2. �

2.5 Simulation Results and Discussion

The simulation setting is similar to [9], in which the users are randomly located in
a 100m × 100m region. For presentation, the transmitting powers of all the users
are set assumed to be pn = 0 dBw,∀n ∈ N, the path loss exponent is α = 2,

http://dx.doi.org/10.1007/978-981-10-0024-9_5
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and the noise power as N0 = −130 dBw. For simplicity of analysis, the distance
between the transmitter and the receiver for each intracommunication is set to 1m,
i.e., dnn = 1,∀n ∈ N; The channel bandwidth is 1MHz. We consider three common
fading models: Rayleigh, Nakagami, and log-normal.

2.5.1 Convergence Behavior

2.5.1.1 Convergence Behavior in Dynamic Environment

In this part, we investigate the convergence with time-varying channel gains. Specif-
ically, we consider a network with three channels and five users. Rayleigh fading
with unitmean is considered. The positive constant used in the instantaneous received
payoff (5.8) and (2.14) is set toD = 0.005, and the step size of the learning algorithm
is set to b = 0.1.

The convergence behavior of three arbitrarily selected users is shown in Fig. 2.3.
Taking user 1 as an illustrative example, it chooses the channels with equal proba-
bilities at the beginning (q11 = 0.33, q12 = 0.33, q13 = 0.33), and finally chooses
channel 3 (q11 = 1, q12 = 0, q13 = 0) after 250 iterations. From the figure, the
channel selection probabilities of the users converge to pure strategy in about 100,
250, and 290 iterations, respectively. In addition, the evolution of number of the users
choosing different channels is shown in Fig. 2.4. It is noted that the number of users
selecting different channels keeps unchanged in about 250 iterations, which again
validates the convergence of the proposed game-theoretic interference mitigation
approach.

Fig. 2.3 The evolution of
channel selection
probabilities for three
arbitrarily selected users in
Rayleigh fading environment
(N = 5, M = 3, D = 0.005
and b = 0.1)
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Fig. 2.4 Evolution of the
number of users choosing the
channels in Rayleigh fading
environment
(N = 5, M = 3, D = 0.005
and b = 0.1)
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2.5.1.2 Convergence Behavior in Static Environment

In this part, we study the convergencewith static channel gains and compare it with an
existing static algorithm. There is an efficient distributed channel selection algorithm,
called GADIA, which is proposed by Babadi and Tarokh [9] and has been shown to
achieve good performance in static systems. According to Proposition 2.7, the learn-
ing algorithm in this chapter also converges in static environment. The convergence
comparison results of an arbitrary network topology with 20 users and five channels
are shown in Fig. 2.5. It is seen that the proposed learning algorithm also converges,
as the GADIA algorithm. However, the GADIA algorithm converges rapidly and
smoothly. The reasons are: (i) the GADIA algorithm measures the received inter-
ference on all channels before a user updates the channel selection strategy, and the

Fig. 2.5 Convergence
behavior comparison in
static environment
( N = 20, M = 5,
D = 0.005 and b = 0.1)
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updating procedure is implemented in a deterministic manner, i.e., only one user can
update action at a time, whereas (ii) the proposed learning algorithm only measures
the received interference on the current chosen channel and the update procedure is
implemented in a stochastic manner, i.e., all the users update their actions simulta-
neously.

2.5.2 Performance Evaluation

2.5.2.1 Performance Comparison for Different Solutions

In this part, the performance of the proposed stochastic automata-based learning
algorithm in terms of expected weighted aggregate interference is evaluated. Specif-
ically, we consider a network with five channels, and the number of users increases
from 2 to 30. The parameters in the learning algorithm are set as D = 0.005 and
b = 0.08. For comparison,we also consider the following three solutions: the random
selection scheme, the worst NE, and the best NE. In the random selection scheme,
each user randomly chooses a channel in each slot. Note that the random channel
selection seems to be an instinctive method, as the channel gains vary randomly from
slot to slot and there is no information exchange. The best (worst) NE are obtained
as follows: we run the learning algorithm 103 times and then choose the best (worst)
result, respectively. According to Theorem 5.1, the best NE is global minimum for
the expected weighted aggregate interference.

The comparison results of four solutions is shown in Fig. 2.6. By simulating 103

independent trials, the results are obtained by taking the expected value. Some impor-
tant conclusions can observed: (i) in the under-loaded and equally-loaded scenarios,
i.e.,N ≤ 5, the performance of the stochastic learning solution and is almost the same
with the best NE, which follows the fact that the global optimum is asymptotically

Fig. 2.6 Performance
evolution for a distributed
network involving in
Rayleigh fading environment
(D = 0.005, b = 0.08 and
M = 5)
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achieved, as characterized by Proposition 2.4, and (ii) in the over-loaded network
scenarios, i.e.,N > 5, there is a small performance gap between the learning solution
and the best NE. The reason is that the stochastic learning algorithmmay converge to
an optimal or a suboptimal solution, as characterized by Proposition 2.5, and hence
it averagely achieves near-optimal performance. In addition, it is seen that even the
worst NE results in less aggregate interference than the random selection scheme.
Due to incoordination of the random selection scheme, some channels are crowded
whereas others are unoccupied. In comparison, the users choose different channels
in pure strategy NE solution, which thus results in lower value of interference.

2.5.2.2 Performance Evaluation for Different Fading Parameters

The performance evaluation for different fading parameters is shown in Fig. 2.7. The
presenting results are obtained by simulating 20 topologies with 103 independent
trials and then taking the average values. No-fading implies that only large-scale
power-loss is considered and 0dB-mean is with unit-mean. From the figure, it can be
observed that the performance gap between No-fading and Rayleigh with 0dB-mean
is trivial. According to Proposition 2.6, their performance should be the same as the
expected channel gains are the same.Moreover, as themean value of Rayleigh fading
increases, e.g., increasing from 1 to 3dB, the caused interference increases as can be
expected.

2.5.2.3 Performance Evaluation for Different Fading Models

In this part, different fading models are considered. Specifically, the following well-
known models including Rayleigh, Nakagami, and Log-normal is considered:

Fig. 2.7 The comparison
results of expected aggregate
interference for different
Rayleigh fading parameters
(D = 0.005, b = 0.08 and
M = 5)
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• In Rayleighmodel, the channel gains are exponentially distributedwith unit-mean.
• In Nakagami model, the probability distribution function of the channel gains is
determined by f (x) = mmxm−1

Γ (m)
e−mx, x ≥ 0.

• In Log-normal model, the channel gains is modeled by a random variable eX ,
where X is a Gaussian variable with zero-mean and variance σ 2. Log-normal
fading is usually characterized in the dB-spread form which is related to σ , by
σ = 0.1 log(10)σdB. The dB-spread of Log-normal fading typically ranges from
4 to 12dB as indicated by the empirical measurements [15].

The comparison results of expected aggregate interference for different fading
models are shown in Fig. 2.8. The results are obtained by simulating 20 independent
topologies with 103 independent trials and then taking the average value. As all the
presented fading models are with unit-mean, the interference performance gap is
trivial, which directly follows the argument characterized by Proposition 2.6. Also,
the comparison results of expected normalized achievable throughput for different
fadingmodels are presented inFig. 2.9.As the number of users increases, the expected
normalized achievable rate decreases as expected. Some interesting observations are:
(i) Rayleigh fading outperforms Nakagami fading and Log-normal fading, and (ii)
the performance of Log-normal fading is almost the same with that of No-fading.
We think the reasons may be as follows: (i) multiuser diversity of Rayleigh fading
is stronger than those of other fading models, and (ii) the multiuser diversity of
Log-normal fading is weak.

Fig. 2.8 The comparison
results of expected aggregate
interference for different
fading models (D = 0.005
and b = 0.08)
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Fig. 2.9 The comparison
results of expected
normalized achievable
throughput for different
fading models (D = 0.005
and b = 0.08)
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2.6 Concluding Remarks

Compared with previous studies, the key difference in this chapter is that the channel
gains are time-varying. In another work [22], we have studied the opportunistic
spectrum access problem with time-varying spectrum opportunities, in which the
channel states (idle or occupied) change randomly from slot to slot. The stochastic
learning automata algorithm was also used therein and its convergence toward pure
strategy NE of potential games was rigorously proved. Note that the most promising
property of the stochastic learning automata is that the received payoff can be random
or deterministic. As a result, we believe that the methodology used in this chapter
provides an efficient approach for solving decision-making problems in time-varying
environment, which are common in practical wireless networks.
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Chapter 3
Game-Theoretic MAC-Layer Interference
Coordination with Orthogonal Channels

3.1 Introduction

In this chapter, we consider the problem of opportunistic spectrum access in a kind
of networks, where the users are spatially located and direct interaction/interference
only emerges between neighboring users [1–6]. We investigate this problem from a
perspective of interference minimization. Note that the commonly used interference
model in the literature is the PHY-layer interference models, in which the focus is
to minimize the amount of experienced interference [7]. In methodology, the PHY-
layer interference model is more suitable for wireless communication systems with
interference channel models, e.g., the code-division multiple access (CDMA) and
orthogonal frequency-division multiple access (OFDMA) systems. However, it may
not suitable for wireless communication systems with collision channel model, e.g.,
carrier sensing multiple access (CSMA). In particular, it was recently reported in
[8] that the traditional PHY-layer interference model is not applicable for collision
channels, e.g., in the 802.11b-based networks.

To capture the mutual interference behavior in multiple access control mecha-
nisms, this chapter considers a new interference metric, called the MAC-layer inter-
ference, which is defined as the number of neighboring users choosing the same
channel. Compared with the traditional PHY-layer interference model, the MAC-
layer interference essentially determines whether two users interfere with each other
or not. Based on this definition, we formulate aMAC-layer interferenceminimization
game, and then propose an uncoupled learning algorithm, called the binary log-linear
learning algorithm. It is proved that the learning algorithm asymptotically achieves
the optimal NE solution and minimizes the aggregate MAC-layer interference. Note
that the main analysis and results in this chapter were presented in [9].

© The Author(s) 2016
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3.2 Motivation, Definition, and Discussion of MAC-Layer
Interference

3.2.1 Motivation and Definition

Due to the open attribute of wireless transmissions, mutual interference is unavoid-
able in multiuser wireless systems. In the literature, the commonly used model is the
PHY-layer interference model [7], in which the focus is to minimize the amount of
experienced interference. However, it is noted that the PHY-layer interference model
is more suitable for communication systems with interference channel models, e.g.,
CDMA and OFDMA systems, and not applicable for communication systems with
collision channel model, e.g., CSMA and Aloha.

Recently, the experimental results reported in [8] show that for wireless communi-
cation systems with CSMA, some interesting features can be observed. In particular,
let us consider two nodes (links), which are equipped with 802.11a/b/g cards. It is
emphasized here that the considered node (link) actually consists of a transmitter
and a receiver located closely [8]. The lognormal fading model is considered, as it
addresses the medium-scale path loss well. Specifically, the signal strength (RSS)
received at a link from the other link is

S = Pt d
−βeX , (3.1)

where Pt is the transmitting power, d is the physical distance between the two nodes,
β is the path loss exponent, and X is a Gaussian variable with zero-mean and variance
σ 2. Note that the lognormal fading is usually measured in the dB-spread form which
is characterized by σ = 0.1 log(10)σdB. As indicated by the empirical measurements
[10], the dB-spread of the lognormal fading typically ranges from 4 to 12 dB.

According to the principle of CSMA, a link can hear the transmission of the
other link if the received RSS is greater than a threshold Sth . In the experiment, we
set Pt = 1W, β = 2, σdB = 6dB, and Sth = 8.1633 × 10−6W. Denote s1 and s2 as
the achievable throughput of node1 and node2, respectively, when the other node is
inactive, and s ′

1 and s ′
2 as their achievable throughput when both nodes are active

simultaneously. Then, the relationship between the normalized ratio γ = s ′
1+s ′

2
s1+s2

and
the distance d is used to investigate the effect of interference on the throughput [8]. By
simulating 106 independent trials and then taking the expected value, we illustratively
present the simulation result in Fig. 3.1. Similar to the important observations shown
in [8], there are two interesting results:

• The throughput ratio sharply increases from 0.5 (severe interference) to 1 (almost
no interference) with a slight increase in the physical distance. As a result, it
can be divided into three regions, i.e., interference region, transitional region, and
non-interference region, as shown in the figure.
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Fig. 3.1 The effect of
mutual interference on the
normalized throughput ratio
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• The throughput ratio in both interference and non-interference regions does not
change with the distance, while increasing linearly with the distance in the transi-
tional region.

Some explanations from the perspective of interference are given below: (i) when
the two nodes are located in the interference region, only one node can transmit
successfully at a time, as they can hear the transmission of each other. In other words,
they interfere with each other; (ii) when located in the non-interference region, they
can transmit successfully and simultaneously as they do not hear transmission of
each other. In other words, there is no interference; and (iii) when located in the
transitional region, they can probabilistically hear each other due to the randomness
of channel fading. In other words, there exists probabilistic interference, which will
be discussed in the subsequent.

As the span of the transitional region d2 − d1 is relatively small, a simplified inter-
ference model can be used to analyze interference among the users. Specifically, if
the throughput ratio is less than a threshold, e.g., 0.95, mutual interference between
the two nodes exists, and no interference otherwise. Denote the distance correspond-
ing to the interference threshold as d0, d1 < d0 < d2. It motivates us to define the
following MAC-layer interference:

α =
{
1, x ≤ d0
0, x > d0,

(3.2)

where x is the distance between the two nodes. As a result, the normalized through-
put is approximately given by R = 1

1+α
, which provides a good approximation for

the measured results [8]. Therefore, although sacrificing a little accuracy, efficient
opportunistic spectrum access approaches can be developed using the MAC-layer
interference model.

An illustrative comparison of the PHY-layer and MAC-layer interference is pre-
sented in Fig. 3.2. In traditional models, the PHY-layer interference is a decreasing
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(a) (b)

Fig. 3.2 The illustrative comparison of the PHY-layer and MAC-layer interference models. a The
measured normalized throughput versus the distance between two links. b The comparison of the
proposed MAC-layer interference and traditional PHY-layer interference

function of the physical distance. It is noted from Fig. 3.2b that the PHY-layer inter-
ference model does not coincide with the measured results in the context of CSMA.
For instance, decreasing the distance of two nodes located in the interference region
definitely increases the PHY-layer interference for both; however, it does not lead to
decrease in the throughput. Again, the PHY-layer interference models are essentially
more suitable for interference channels, while the MAC-layer interference models
are more suitable for collision channels.

For multiuser systems, the normalized throughput of user n is given by 1
1+∑

m αmn
,

where αmn is the interference indicator between n and m. Then, the MAC-layer
interference experienced by user n in a multiuser system is defined as

In =
∑

m

αmn. (3.3)

3.2.2 Discussion on the Impact of Channel Fading

In this part, we discuss some issues related to channel fading, which is an important
attribute of wireless channel. Generally, the received signal strength (RSS) at a node
from the node is given by Pt x−βε, where Pt is the transmitting power, x is the physical
distance, β is the path loss exponent, and ε is the instantaneous random component of
the path loss [10], e.g., lognormal fading and Rayleigh fading. Generally, a link can
hear the transmission of the other link if the RSS is greater than a threshold. In the
following, we discuss the impact of channel fading on the MAC-layer interference
model in the three regions, respectively:

• In the interference region, the large-scale path loss component, i.e., Pt x−β , is
strong enough. Thus, one node can deterministically hear the transmission of the
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other node no matter what are the instantaneous realizations of channel fading. In
other words, the impact of channel fading is concealed by the strong large-scale
path loss component.

• In the transitional region, the large-scale path loss component is medium. Thus,
the received RSS is randomly fluctuating around the interference threshold. As a
result, one node can probabilistically hear the transmission of the other node.

• In the non-interference region, the large-scale path loss component is weak. Thus,
one node cannot hear transmission of the other node. In other words, the impact
of channel fading is eliminated by the far physical distance.

Remark 3.1 In order to address the interference model in the transitional region
more concisely, we can extend the binary interference model to a real-valued one. In
particular, an improved MAC-layer interference can be defined as follows:

α′ =
⎧
⎨

⎩

1, x ≤ d1
x−d1

d2−d1 , d1 < x < d2
0, x ≥ d2

(3.4)

Note that α′ is (3.4) a continuous value ranging in [0, 1]. In particular, α′ = 1
and α′ = 0 correspond to the same meanings as those in (4.3), while 0 < α′ < 1
corresponds to the probabilistic interference in the transitional region. Similarly, the
normalized throughput of a node is then given by R = 1

1+α′ , which fits the measured
results well. The real-valued interference model is more precise than the binary
interference model characterized by (4.3), as it captures the randomness of channel
fading in the transitional region. For presentation of analysis, we only consider the
binary interference model in this chapter. Following similar methodology presented
in this chapter, the analysis of real-valued MAC-layer interference model can be
found in [12].

3.3 System Model and Problem Formulation

3.3.1 Bilateral Interference Networks

Consider a wireless canonical network consisting of N secondary users, in which
each user represents a closely located pair of transmitter and receiver [1]. There are
M licensed channels owned by the primary users and can be opportunistically used
by the secondary users when not occupied. Due to the limited transmitting power of
the users, mutual interference only occurs among nearby users [3, 4]. As a result,
we can characterize the limited range of interference by an un-directional graph
G = (N,E), where N = {1, . . . , N } is the vertex set and E ⊂ N × N is the edge
set. Each vertex represents a user, and the edges correspond to the potential mutual
interference relationship among the users when transmitting on the same channel.

http://dx.doi.org/10.1007/978-981-10-0024-9_4
http://dx.doi.org/10.1007/978-981-10-0024-9_4


34 3 Game-Theoretic MAC-Layer Interference Coordination with Orthogonal Channels

(a) (b)

Fig. 3.3 An example of the BI-CRN with four licensed channels. Note that users 1 and 3 interfere
with each other when transmitting on the same channel, whereas user 1 will never interfere with
user 2 directly. a Deployment of the considered BI-CRN b The un-directional graph

Although the mutual interference is inherently determined by the received RSS, we
can use a distance-relevant interference model as analyzed above. Specifically, if the
distance between two usersm and n, denoted as Dmn , is less than a threshold D0, they
can interfere with each other when simultaneously transmitting on the same channel;
thus, m and n are connected by an edge, i.e., there is an edge emn = (m, n) ∈ E. For
simplicity of analysis, it is assumed that the interference is bilateral between any two
users, i.e., user m is also interfered by user n if it interferes with n. We call this kind
of networks bilateral interference cognitive radio networks (BI-CRNs).

The spectrum available opportunity is characterized by a channel availability vec-
tor Cn , n ∈ N. In particular, Cn = {Cn1, Cn2, . . . , CnM }, where Cnm = 1 implies that
channel m is available for user n, while Cnm = 0 means that it is occupied and not
available. Note that due to their different localizations, the spectrum opportunities
vary from user to user. For simplicity of analysis, it is assumed that spectrum sensing
is perfect. Furthermore, the spectrum opportunities are quasi-static in time. Note that
such an assumption holds in some realistic networks where the spectrum opportuni-
ties are slow-varying, e.g., IEEE 802.22 [11]. An illustrative example of a BI-CRN
with six users, two primary users, and four licensed channels is shown in Fig. 3.3.

3.3.2 MAC-Layer Interference Minimization

Due to hardware limitation, it is assumed that all the users can sense all channels
simultaneously but transmit on only one channel at a time [13]. Denote Jn as the
neighboring user set of user n, i.e.,
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Jn = {i ∈ N : (i, n) ∈ E}, (3.5)

Suppose that user n chooses a channel an , an ∈ {1, . . . , M}, for transmission. Some
efficient distributed approaches such as CSMA and distributed TDMA can be
applied to coordinate the transmissions among neighboring and interfering users.
Thus, the individual achievable throughput of user n under channel selection profile
a = {a1, . . . , aN } can be expressed by

rn(a1, . . . , aN ) = f (cn + 1)Ran

cn + 1
, (3.6)

where f (k), 0 < f (k) ≤ 1, is the throughput loss function when there are k users
competing for a single channel [14], which is decreasing over k. Ran is the transmis-
sion rate of channel an , and cn is the number of neighboring users also choosing the
same channel with user n, i.e.,

cn =
∑

j∈Jn

δ(an, a j ), (3.7)

where δ(x, y) is the following indicator function:

δ(x, y) =
{
1, x = y
0, x �= y.

(3.8)

Therefore, the network throughput can be expressed as

R(a1, . . . , aN ) =
∑

n∈N
rn. (3.9)

As the decision variables (channel selection) are discrete, the problem of max-
imizing network throughput is a combinatorial problem on a graph and hence is
NP-hard. Motivated by the previous work on minimizing the aggregate PHY-layer
interference [7], we consider minimizing the MAC-layer interference in this chapter.
Note that theMAC-layer interference experienced by user n is then given by cn . From
the user side, it is desirable to minimize the value of cn , as minimizing cn implies
maximizing its individual achievable throughput. Thus, from the network side, it
is also desirable to minimize the lower aggregate MAC-layer interference. Based
on this consideration, we can quantitatively characterize the aggregate MAC-layer
interference experienced by all the users as follows:

Ig(a1, . . . , aN ) =
∑

n∈N
cn (3.10)
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Consequently, the optimization objective is to find an optimal channel selection aopt

such that the aggregate MAC-layer interference is minimized, i.e.,

P1 : aopt ∈ argmin Ig. (3.11)

Again, due to the higher-order of computational complexity, P1 is hard to resolve
even in a centralized manner, not to mention in a distributed manner. Furthermore,
the incomplete information constraint, i.e., lack of information about other users,
brings about more challenges and difficulties.

3.4 MAC-Layer Interference Minimization Game

Due to the nature of distributed decision-making, we formulate the problem of inter-
ference mitigation in BI-CRNs as a non-cooperative game. Different from the game
models in the last chapter, the formulated game in this chapter belongs to local inter-
action games (also known as graphical game) [1], in which the utility of a player
only depends on the actions its neighboring users.

3.4.1 Graphical Game Model

Formally, the formulated MAC-layer interference minimization game is denoted as
G = [N, {An}n∈N, {Jn}n∈N, {un}n∈N], where N = {1, . . . , N } is the set of players,
An = {m ∈ M : Cnm = 1} is the set of player n’s available actions (channels), Jn is
the neighboring set of player n, and un is its utility function. Generally, in global inter-
active games, the utility function of each player n is determined by u(an, a−n), where
an ∈ An is the chosen action of player n and a−n ∈ A1 ⊗ · · · An−1 ⊗ An+1 . . . AN

denotes the action profile all the players except n. However, due to the limited inter-
ference in the considered BI-CRNs, the achievable throughput of a player is only
determined by its own action as well as the action profile of its neighboring users.
Therefore, the utility function can be expressed as un(an, aJn ), where aJn is the action
profile of n’s neighboring set. In the MAC-layer interference mitigation game, the
utility function is defined as follows:

un(an, aJn ) = Ln − cn(an, aJn ), (3.12)

where cn(an, aJn ) ≡ cn(a1, . . . , aN ) is the MAC-layer interference experienced by n
and Ln is a positive constant satisfying Ln > |Jn|, where |X | denotes the
cardinality of set X . Therefore, the purpose of adding Ln in the utility function is
to keep the utility function positive, which makes the received payoffs compati-
ble with the proposed learning algorithms. Moreover, Ln can be determined by the
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users independently and autonomously. As each player in a non-cooperative game
maximizes its individual utility function, the proposed game can be expressed as

G : max
an∈An

un(an, aJn ),∀n ∈ N (3.13)

3.4.2 Analysis of Nash Equilibrium

In this part, we analyze the properties of Nash equilibrium (NE) of G in terms of
existence of NE and performance bounds.

Theorem 3.1 The formulated MAC-layer interference mitigation game G is an exact
potential game which has at least one pure strategy NE point.

Proof According to the definition of exact potential game presented in Chap.1 (See
Definition 1.2 therein), we need to prove that there is a potential function such that the
change in the utility function caused by the unilateral action deviation of an arbitrary
player is the same as that in the potential function. For the formulated MAC-layer
interference mitigation game, the following potential function is constructed:

Φ(an, a−n) = −1

2

∑

n∈N
cn(a1, . . . , aN ). (3.14)

Now, suppose that there is an arbitrary player n unilaterally changing its channel
selection from an to ān . Following the similar lines given in our previous work
[1, 2], it can be verified that the following equation always holds:

Φ(ān, a−n) − Φ(an, a−n) = un(ān, aJn ) − un(an, aJn ), (3.15)

which shows that theMAC-layer interferencemitigation gameG is an exact potential
game. Thus, Theorem 5.1 follows. �

As the users in the non-cooperative games are selfish, the NE solutions maybe
inefficient, which is known as tragedy of commons [15]. In the following, we
investigate the performance bounds of NE solutions of the MAC-layer interference
game. To begin with, the aggregate MAC-layer interference of a pure strategy NE
aNE = {a∗

1 , . . . , a∗
N } is given by

U (aNE) =
∑

n∈N
cn(a

∗
n , a∗

Jn
) (3.16)

Generally, the MAC-layer interference mitigation game G may have multiple pure
strategy NE points but the number is hard to calculate [16]. The following theorems
characterize the performance bounds of the game.

http://dx.doi.org/10.1007/978-981-10-0024-9_1
http://dx.doi.org/10.1007/978-981-10-0024-9_5
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Theorem 3.2 The aggregate MAC-layer interference of any pure strategy NE solu-
tion is bounded by U (aNE) ≤ ∑N

n=1
|Jn |
|An | , for any network topology and spectrum

opportunities.

Proof Refer to [9]. �

From Theorem 4.2, it is known that the larger number of available channels (|An|)
and smaller number of neighboring users (|Jn|) are preferable, as can be expected in
any multiuser multichannel networks. In particular, the performance bound can be
refined for some special kinds of systems.

Proposition 3.1 If all the channels are available to each user, then the aggregate
MAC-layer interference at any NE solution is bounded by U (aNE) ≤ 2N

M .

Proof Since all the channels are available to each user, we have |An| = M,∀n ∈ N.
Thus, the following equation follows:

U(aNE) ≤
N∑

n=1

|Jn|
M

, (3.17)

which can be straightforwardly obtained by Theorem 4.2 directly. Moreover, it can
be verified that the following always holds for any network topology:

N∑

n=1

|Jn| = 2N (3.18)

Now, combining (3.18) and (3.17) proves this proposition. �

Theorem 3.3 The best pure strategy NE point of G is a global minimum of the
MAC-layer interference mitigation problem P1.

Proof According to (3.14), the potential function of the formulated game and
the aggregate MAC-layer interference are related by Φ(an, a−n) = − 1

2 Ig(an, a−n).
Thus, we have

aopt ∈ argmax Φ(an, a−n). (3.19)

which is obtained from (3.11). That is, any channel selection profile minimizing
the aggregate MAC-layer interference maximizes the potential function. Recalling
the important property of potential game, i.e., any global or local maximizer of the
potential function constitutes a pure strategy NE point [17], it is known that the best
pure strategy NE point is a global minimum of P1, which proves Theorem 3.3. �

The result shown in Theorem 3.3 is interesting and promising, since the global
optimality emerges as the result of distributed and selfish decisions via game design
and optimization.

http://dx.doi.org/10.1007/978-981-10-0024-9_4
http://dx.doi.org/10.1007/978-981-10-0024-9_4
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Algorithm 2: the binary log-linear learning algorithm

Initialization: Let each player i randomly select a channel from its available channel set, i.e.,
ai (0) ∈ Ai , ∀i ∈ N.
Loop for k = 0, 1, 2, . . . ,
1. Player selection: Using the 802.11 DCF-like coordination mechanism, a player, say n, is ran-
domly selected in an autonomous manner. Then, all the users adhere to their channel selections in
an estimation period and the chosen user estimates its received utility un(k).
2. Exploration: Player n randomly chooses a channel m ∈ An, m �= an(k). Then, all the users
adhere to their selections in the subsequent estimation period and the chosen player estimates its
received utility in channel m, which is denoted as vm .
3. Updating channel selection: The chosen player n updates its channel selection strategy using
the following log-linear rule:

Pr[an(k + 1) = m] = exp{vmβ}
exp{vmβ} + exp{ûn(k)β}

Pr[an(k + 1) = an(k)] = exp{un(k)β}
exp{vmβ} + exp{ûn(k)β} ,

(3.20)

where β is a learning parameter. Meanwhile, all other players keep their selections unchanged, i.e.,
a−n(k + 1) = a−n(k).
End loop

3.5 The Binary Log-Linear Learning Algorithms
for Achieving Best NE

3.5.1 Algorithm Description

As the MAC-layer interference mitigation problem is now formulated as an exact
potential game, there are large number of learning algorithms to achieve pure strategy
NE, e.g., best response dynamic [17], spatial adaptive play [1], and fictitious play
[18]. However, these algorithms belong to coupled algorithms and hence need to
know information about other players. Although the stochastic automata learning
algorithm, which was applied in the last chapter, is uncoupled, it may converge to
a suboptimal solution. Thus, in this chapter, an uncoupled and optimal distributed
learning algorithm, called the binary log-linear learning algorithm, is applied to
achieve the best NE.

The binary log-linear learning algorithm is described in Algorithm 2. The key
idea is that only a player is randomly chosen to explores the channels. Based on the
explanation results, the player updates its selection using the log-linear rule. Some
practical concerns of Algorithm 1 are discussed as follows: (i) in the step of player
selection, the selection of an autonomous and random player can be achieved using
a 802.11 DCF-like contention mechanisms over a common control channel (CCC)
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[1, 19], and (ii) the following stop criterions can be used: (i) the maximum iteration
number is reached, and (ii) the variation of the achieved utility during a certain period
is trivial.

Note that the utility function, i.e., the experiencedMAC-layer interference, cannot
be measured directly by the users; we use the following simple method to estimate
the MAC-layer interference experienced by a user. Of course, other more practical
but also completed methods for estimating the number of competing users can also
be used, e.g., [23, 24]. The reason we use such a simple method is our focus in
designing game-theoretic distributed MAC-layer interference mitigation approach
but not the estimation algorithms. Specifically, suppose that there are total H slots
in each estimation period and Tn is the number of slots in which user n successfully
access the channel. As a result, the maximum-likelihood estimation (MLE) of the
MAC-layer interference experienced by user n can be calculated by

ŝn = H

Tn
− 1, (3.21)

which further implies that the MLE of the received payoff in an estimation period is
expressed as

ûn = Ln + 1 − H

Tn
(3.22)

Based on the above estimation approach, an illustrative diagram of the binary
log-linear learning algorithm for the formulated MAC-layer interference mitigation
game is shown in Fig. 3.4.

Fig. 3.4 The illustrative diagram of the binary log-linear learning algorithm for the formulated
MAC-layer interference mitigation game
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3.5.2 Convergence Analysis

Let A be the set of available channel profiles of all the players, i.e., A = A1 ⊗ · · · ⊗
AN , then the properties of the binary log-linear learning algorithm are characterized
by the following theorems.

Theorem 3.4 For the binary log-linear learning algorithm, the unique stationary
distribution μ(a) ∈ Δ(A) of any channel selection profile s ∈ A, ∀β > 0, is given
as

μ(a) = exp{βΦ(a)}
∑

s∈A exp{βΦ(s)} , (3.23)

where Φ(·) is the potential function given in (3.14).

Proof The proof follows the methodology presented in [1, 20–22]. Detailed lines
are not presented here and can be found in [9]. �

Theorem 3.5 With a sufficiently large β, the binary log-linear learning algorithm
asymptotically minimizes the aggregate MAC-layer interference Ig.

Proof Based on Theorem 3.4 and the similar lines for proof presented in our pre-
vious work [1] (see Theorem 4 therein), it can be proved that when β goes suffi-
ciently large, the binary log-linear algorithm asymptotically converges to a channel
selection profile that maximizes the potential function. Now, applying again the rela-
tionship between the potential function and the original optimization objective, i.e.,
Φ(a) = − 1

2 Ig(a), Theorem 3.5 can be obtained. �

3.6 Simulation Results and Discussion

In this section, simulation results are presented to validate the proposed game-
theoretic distributed channel selection solution for MAC-layer interference miti-
gation. Although the game formation and learning algorithm are only theoretically
analyzed for scenarios with no fading, it is shown by simulation results that the pro-
posed game-theoretic solution is also suitable for scenarios with fading. Also, it is
suitable for scenarios with both bilateral and unilateral interferences.

3.6.1 Scenario Setup

In the simulation study, the users are randomly located in a region. For simplicity,
it is assumed that the idle probabilities of all the channels are the same, which is
denoted as θ , 0 < θ < 1, and the spectrum opportunities are randomly generated
according to the idle probabilities independently. However, it should be pointed out
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that the spectrum opportunities are quasi-static, i.e., they vary slowly in time, or are
static during the convergence of the learning algorithm. Furthermore, we assume that
different channels support the same transmission rate R = 1Mbps for the users. The
users use a perfect CSMA/CA mechanism to share the idle channels. As a result,
the achievable throughput of a user is approximately determined by R

cn+1 , which is
obtained by setting the throughput loss function to be one, i.e., f (cn + 1) ≈ 1 in (4.7).

3.6.2 Scenario with No Fading

In this subsection, we consider scenarios with no fading, where only the large-scale
path loss is considered.The learningparameter in the payoff-based log-linear learning
algorithm is set to β = 10 + k/50, where k is the iteration number. In all simulations,
the estimation period is set to H = 100.

3.6.2.1 Convergence Behavior

In this part, the convergence behavior of the proposed learning algorithm is studied.
Specifically, we study a small network as shown in Fig. 3.5, which involves nine CR
users and three channels. A scenario with all channels being available for the users is
considered. In such a scenario, it provides with the same spectrum opportunities and
hence the expected convergence behavior of the learning algorithms can be studied
by taking independent trials and then taking the expected results. For the presented
network, the expected convergence behaviors of the proposed learning algorithm are
shown in Fig. 3.6, which are obtained by simulating 1000 independent trials and then
taking the average results. It is noted that the proposed learning algorithm converges

Fig. 3.5 The simulated
small network. (Each circle
represents a CR user, and the
dashed lines represent the
bilateral interferences
between the users)
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Fig. 3.6 The expected
convergence behaviors of the
proposed learning algorithms
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to the global optimum in about 400 iterations. The results validate the asymptotical
optimality of the proposed learning algorithm.

In the following, the effect of the estimate interval H on the convergence of the
proposed learning algorithm is shown in Fig. 3.7. The results show that there is a
tradeoff between speed and performance with regard to the estimate interval H . It is
noted from the figure that larger H leads to higher estimation accuracy while leading
to relatively slower convergence speed, as can be expected. Thus, the choice of the
estimate period H is application-dependent in practice.

Fig. 3.7 The effect of the
estimate interval H on the
convergence of proposed
learning algorithm
(β = 10 + k/50)
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3.6.2.2 Throughput Performance

In this part, we compare the achievable throughput of five methods: throughput
maximization using exhaustive search (TMax-ES), random selection, interference
minimization using the proposed learning algorithm (Imin-Proposed), interference
minimization using spatial adaptive play (Imin-SAP) [1], and interferenceminimiza-
tion using best response (Imin-BR) [17]. In the TMax-ES approach, the aggregate
network throughput as characterized by (3.9) is directly maximized using an exhaus-
tive search method. In the random selection scheme, each user randomly chooses a
channel from its available channel set. In comparison, SAP and BR are two com-
monly coupled learning algorithms for potential games, which need the information
of other users. In addition, the SAP algorithm asymptotically converges to the global
maxima of the potential function, while the BR algorithm achieves its global or local
maxima randomly.

(i) Small networks For the small network (see Fig. 3.5), the comparison results of
the expected network throughput are shown in Fig. 3.8. It is noted from the figure
that the proposed learning algorithm achieves higher network throughput than the
BR algorithm and the random selection approach. Furthermore, the throughput gap
increases as the channel idle probability θ increases. The reason is that inNE solutions
of the game, the users are spread over different channels and hence there is less
interference (collision) among the users. Again, this result is due to the fact that all
pure strategy NE points of the game minimize the aggregate MAC-layer interference
globally or locally, as characterized by Theorems 5.1, 4.2, and 3.3.

It is noted that the proposed learning algorithm achieves the same performance
with that of Imin-SAP. The SAP algorithm is an efficient learning algorithm for
potential game, as it asymptotically maximizes the potential function [1], i.e., mini-
mizing the aggregate MAC-layer interference in the formulated MAC-layer interfer-
ence mitigation game. In comparison, the proposed learning algorithm does not need

Fig. 3.8 Companion results
of five channel selection
methods for the simulated
small network with no fading
(The learning parameter of
the learning algorithms is set
to β = 10 + k/50)
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Fig. 3.9 The simulated large
CRN
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any information about other players while the SAP needs information about other
players. In addition, although the proposed learning asymptotically minimizes the
aggregateMAC-layer interference, there is a throughput gap between Imin-Proposed
andTMax-ES. The reason is as follows: although a lower aggregateMAC-layer inter-
ference would lead to higher network throughput as can be expected, a quantitative
characterization between minimizing the MAC-layer interference and maximizing
the network throughput directly is hard to obtain. Even so, the proposed learning algo-
rithm is desirable for practical applications, as it achieves higher network throughput.

(ii) Large networks We consider a relatively large network as shown in Fig. 3.9,
which consists of 20 users and three channels. Figure3.10 shows the comparison
results of the expected network throughput of different solutions. Due to intolerable
complexity, the TMax-ES method cannot be applied in this scenario. It is noted that
the throughput performance of the proposed learning algorithm is very close to the
Imin-SAP approach. These results validate that the proposed learning algorithm is
also for large networks.

3.6.3 Scenario with Fading

As fading is common inwireless networks, we study the performance of the proposed
learning algorithm in scenarios with lognormal fading. The parameters are set as
follows: the transmitting power of all users is Pt = 1W, the path loss exponent is
β = 2, and the dB-spread is 6dB.Moreover, it is assumed that the detection threshold
of CSMA is 8.1633 × 10−6W. Simulation results show that the proposed learning
algorithm also converge for channels with lognormal fading. However, since their
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Fig. 3.10 Companion
results of four methods for
the simulated large network
with no fading
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convergence trend is similar to that presented in Fig. 3.6, it is not presented here in
order to avoid unnecessary repetition.

For the considered small and large networks, the comparison results for the achiev-
able network throughput are shown in Figs. 3.11 and 3.12, respectively. It is noted
that the proposed algorithm also achieves the same performance with that of Imin-
SAP, and outperforms both the BR approach and random selection approach. These
results validate the effectiveness of the proposed learning algorithm for scenarios
with fading.

Fig. 3.11 Throughput
companion for the simulated
small network with
lognormal fading (Pt = 1W,
β = 2 and σdB = 6dB)
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Fig. 3.12 Throughput
companion for the simulated
large network with
lognormal fading (Pt = 1W,
β = 2 and σdB = 6dB)
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3.7 Extension to Unilateral Interference CRNs

The above presented analysis is for bilateral interference networks. However, we
would like to point out that there are some scenarios involving unilateral interference
relationships among the users, e.g., cognitive ad hoc networks. For those networks,
the mutual interference relationships can be characterized by a directional graph
rather than an undirected graph.We call this kind of networks, unilateral interference
cognitive radio networks (UI-CRNs).

3.7.1 System Model

To make it more practical, we then extend BI-CRNs to UI-CRNs in this section. For
the unilateral interference networks, a CR receiver suffers from interference from
other CR transmitters if the distance between them is less than a predefined threshold,
DI . For simplicity of analysis, we assume that the available spectrum opportunities
are identical for any CR transmitter and its dedicated receiver. Then, the hetero-
geneous spectrum opportunities are also characterized by the channel availability
vectors Cn , as discussed before.

The interference relationship is now characterized by a directional graph
Gd = (N,E). The graph Gd consists of a set of nodes which is exactly the CR user
setN , and a set of edges E ⊂ N

2. Denote each edge as an ordered pair (i, j); then,
if there is an edge from user i to j , i.e., (i, j) ∈ E , it means that the transmission of
node i interferes with node j when simultaneously transmitting on the same channel.
An example of the deployment for the considered unilateral interference cognitive
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(a) (b)

Fig. 3.13 An example of the considered UI-CRN with four CR links. (In such a network, the
interference is unilateral, e.g., CR link 1 does not interfere with link 2 but it is interfered by link 2.)
a Deployment of the considered UI-CRN b The interference graph

radio network is shown in Fig. 3.13a and the corresponding directional interference
graph is shown in Fig. 3.13b.

Following the same methodology used for BI-CRNs, similar definitions for
UI-CRNs can also be given. Then, a similar network collision minimization game
can be established accordingly. For reducing unnecessary repetition, they are not pre-
sented here. For UI-CRNs, the network-centric goal is also tominimize the aggregate
MAC-layer interference. However, due to the unilateral interference relationship, it
is no longer a potential game. This makes the analysis of the convergence of the
proposed uncoupled learning algorithms a formidable task and an open problem.

3.7.2 Simulation Results

Although there is a lack of theoretic analysis, as discussed above, we evaluate the
performance of the proposed uncoupled algorithms by simulation study. Specifically,
the deployment of the considered UI-CRN is shown in Fig. 3.14. For the considered
UI-CRN, the expected convergence behaviors of the proposed learning algorithm are
shown in Fig. 3.15. The results are obtained by simulating 1000 independent trials
and then taking the average. It is noted that it asymptotically converges to global
optimum in about 450 iterations.
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Fig. 3.14 An unilateral
interference CRN with nine
CR users (links) and three
licensed channels (Each
circle represents a CR link,
double arrows represent
bilateral interferences, and
single arrows represent
unilateral interferences)
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The comparison results of expected network throughput obtained using fivemeth-
ods (exhaustive search, random selection, the proposed algorithm, SAP, and BR) are
shown in Fig. 3.16. As for the UI-CRNs, it is also noted from the figure that the pro-
posed learning algorithm achieves higher network throughput than the BR algorithm
and the random selection approach. Also, it achieves almost the same throughput
with the SAP algorithm. Therefore, we claim that the proposed learning algorithms
are not only suitable for BI-CRNs, but also suitable for UI-CRNs, although it lacks
rigorous theoretical analysis.

Fig. 3.15 The convergence
behaviors of the two
algorithms for the simulated
UI-CRN (H = 200)
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Fig. 3.16 Companion
results of four channel
selection methods (For the
learning algorithms, we set
H = 200)
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3.8 Concluding Remarks

Compared with traditional PHY-layer interference model, e.g., the one considered
in Chap.2, the MAC-layer interference model in this chapter coincides with the
experiment results for collision channel models. Moreover, it admits mathematical
tractability as it only cares about whether two users interfere with each other or not.
Also, the binary log-linear learning algorithm can achieve the best NE of exact poten-
tial games. Thus, the results presented in this chapter provide efficient distributed
solutions for resource allocation problems over graph/network.
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Chapter 4
Game-Theoretic MAC-Layer Interference
Coordination with Partially Overlapping
Channels

4.1 Introduction

Due to the nonideal shaping of filter in practical wireless networks, the transmitted
signal in a channel always leads to spectrum leak in the adjacent channels. Thus,
in order to avoid adjacent channel interference, there should be enough separation
between two operational channels. These channels are called orthogonal channels
(non-overlapping channels), as adjacent channel interference can be completed elim-
inated. Most existing dynamic spectrum access approaches focused on assigning
non-overlapping channels to the users, e.g., [1–5]. As a result, the basic principle
is that only when allocated with non-overlapping channels, two interfering players
can transmit simultaneously. However, due to the restriction that two operational
channels need to be orthogonal, the number of available channels is very limited.
For example, there are total eleven channels but only three orthogonal channels in
the IEEE 802.11b networks. As the network becomes dense, mutual interference
among the users cannot be completely eliminated, resulting in severe co-channel
interference and throughput drop. Therefore, it is important to break the restriction
of orthogonal channels and develop new channel usage mechanisms to improve the
network throughput.

In this chapter, we consider the problemof dynamic spectrum accesswith partially
overlapping channels (POC), in which the operational channels may be orthogonal
or not [6]. As can be expected, the number of operational channels increases sig-
nificantly when the new paradigm of partially overlapping channels (orthogonal
channels) is employed. In partially, it has been shown that the full-range spectrum
utilization can be improved significantly using POC [7–14]. The idea of using POC
is interesting and promising. However, in most existing researches, the channels
are always allocated using centralized approaches, e.g., graph coloring [7], genetic
algorithm [13], and other optimization technologies [10, 14]. As stated before,
the centralized approach requires a central controller and information exchange
among users, which is not feasible in some scenarios. In this chapter, based on the

© The Author(s) 2016
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Approaches for Dynamic Spectrum Access, SpringerBriefs in Electrical
and Computer Engineering, DOI 10.1007/978-981-10-0024-9_4
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MAC-layer interference model presented in Chap. 3, we formulate an interference
game for dynamic spectrum access with POC and propose a distributed learning
algorithm to achieve the global optimum. Note that the main analysis and results in
this chapter were presented in [15].

4.2 Interference Models and Problem Formulation

Similar to the systemmodel inChap. 3,we also consider awireless canonical network
which consists of K users. In partially, we take the IEEE 802.11b-based network as
the research instance, which were always utilized as the hardware platforms for
dynamic spectrum access [3]. In the 802.11b-based networks, the heading access
point (AP) and the associated clients form a basic service set (BSS). The AP chooses
the operation channel and then all the clients belonging to the sameBSSoperate on the
chosen channel, using the well-known distributed coordination (DCF) mechanism.
Denote the available channel set as {c1, . . . , cM }. Then, the optimization objective for
eachAP is to choose appropriate operational channel to eliminatemutual interference
with other APs.

4.2.1 MAC-Layer Interference Model with Partially
Overlapping Channels

For 802.11b-based wireless networks, there are total eleven channels and each one is
with 5MHz bandwidth. It has been reported by measurement results that spectrum
leak in IEEE 802.11-based networks is quite severe [13, 14]. Specifically, the power
mask on a channel with center frequency Fc can be approximately expressed as [13]

P( f ) =
⎧
⎨

⎩

0 dB, | f − Fc| ≤ 11MHz
−30 dB, 11MHz < | f − Fc| < 22MHz
−50 dB, | f − Fc| > 22MHz

(4.1)

An illustrative diagram of the power mask is shown in Fig. 4.1. Thus, in order to
make themutual interference between two channels to be ignored (less than−30 dB),
the separation of the center frequencies should be larger than 22MHz. That is, the
channel number separation of any two orthogonal channels is at least 5. As a result,
there are at most three non-overlapping channels available in the IEEE 802.11-
based networks. Traditionally, the problemof interferencemitigationwith orthogonal
channel assignment has been well studied in the literature. However, it is also noted
that the spectrum resources are not fully exploited since only a small part of channels
(orthogonal channels) is utilized. To improve the spectrum efficiency, using partially
overlapping channels has been regarded as an interesting and promising approach.

http://dx.doi.org/10.1007/978-981-10-0024-9_3
http://dx.doi.org/10.1007/978-981-10-0024-9_3
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Fig. 4.1 The power mask in
802.11b-based networks

To begin with, we analyze the interference model for partially overlapping chan-
nels. It was shown in [13] that the interference in IEEE 802.11-based WLAN is
jointly determined by the physical distance and the channel separation. In particular,
a binary interference property can be observed with respect to their physical distance
[13]. Thus, the MAC-layer interference model presented in Chap. 3 is used in this
chapter. If two users choose channels a1 and a2, then the channel separation in terms
of channel number is calculated as

δ = |a1 − a2|. (4.2)

For example, δ = 2 if channels 1 and 3 are chosen. Following the similar lines for
analysis Chap.3, an interference range RI (δ) can be defined for a specific channel
separation distance δ. Specifically, if two users are located in the interference range
of each other, they interfere with each other and hence share the channel equally;
also, when located beyond the interference range, there is no mutual interference so
they can transmit simultaneously.

Without loss of generality, the communication range of a user is denoted as R.
Based on themeasurement reported in [13], the relationship between the interference
range RI (δ) and the channel separation δ is presented in Table4.1. Take the data
rate of 2Mb/s as an illustrative example: (i) RI (0) = 2R, if δ = 0. That is, if the
same channel is used by two users, the interference range is then two times the
communication range. (ii) RI (5) = 0, if δ = 5. That is, if two orthogonal channels
are used, the interference range is zero. (iii) when the channel separation δ increases
from 0 to 5, the interference range RI (δ) decreases monotonically from 2R to 0. For
other data rates, e.g., 5.5 and 11Mb/s, the same trend can also be observed.

Table 4.1 The interference range for different channel separations

Channel separation (δ) 0 1 2 3 4 5

Interference range (2Mb/s) 2R 1.125R 0.75R 0.375R 0.125R 0

Interference range (5.5Mb/s) 2R R 0.625R 0.375R 0.125R 0

Interference range (11Mb/s) 2R R 0.5R 0.345R 0.125R 0

http://dx.doi.org/10.1007/978-981-10-0024-9_3
http://dx.doi.org/10.1007/978-981-10-0024-9_3
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Based on the above analysis, the MAC-layer interference between two users is
defined as follows:

α =
{
1, d ≤ RI (δ)

0, d > RI (δ)
(4.3)

whered is the distancebetween the twousers. Thus, the achievednormalized through-
put of a user can be expressed as T = 1

1+α
. Furthermore, it can be extended to the

scenarios of multiple users. Specially, denote the physical distance between users k
and n as dkn , and their channel separation as δkn . Then, the interference between user
k and n is given by

αkn =
{
1, dkn ≤ RI (δkn)

0, dkn > RI (δkn)
(4.4)

Based on the above definition, the achieved normalized throughput of user k is given
by Tk = 1

1+Ik
, where Ik = ∑

n �=k αnk can be regarded as the aggregate MAC-layer
interference experienced by user k. Similar to Chap. 3, we consider minimizing the
aggregateMAC-layer interferencewith partially overlapping channels in this chapter.

4.2.2 Problem Formulation

Denote the user set asK, i.e.,K = {1, 2, . . . , K }. For an arbitrary user k, denote the
neighboring user set in the interference range of channel separation δ = 4 as J(4)

k , i.e.,
J

(4)
k = { j ∈ K : d jk ≤ RI (4)}, where RI (4) is given in Table4.1. Furthermore, define
the neighboring user set in the range of RI (3) but beyond the range of RI (4) as J

(3)
k =

{ j ∈ K : RI (4) < d jk ≤ RI (3)}. Similarly, J(2)
k = { j ∈ K : RI (3) < d jk ≤ RI (2)},

J
(1)
k = { j ∈ K : RI (2) < d jk ≤ RI (1)} and J

(0)
k = { j ∈ K : RI (1) < d jk ≤ RI (0)}.

Finally, Jk = J
(4)
k ∪ J

(3)
k ∪ J

(2)
k ∪ J

(1)
k ∪ J

(0)
k represents the user set that potentially

interferes with user k. Note that the classification of the above five user sets is
determined by the network topology. Figure4.2 shows an illustrative diagram of the
neighboring user classification.

Denote the available channel set asM, i.e.,M = {1, 2, . . . , M}. Assume that user
k chooses channel ak , and the channel separation between users k and j is δ(ak, a j ).
Then, the number of interfering users in the five potentially interfering sets, i.e., J(i)

k ,
∀i = 0, 1, . . . , 4, can be calculated as

s(i)
k =

∑

j∈J(i)
k

σ
(i)
k j , (4.5)

where σ
(i)
k j is the MAC-layer interference between users k and j in region J

(i)
k , i.e.,

σ
(i)
k j =

{
1, δ(ak, a j ) ≤ i
0, otherwise

(4.6)

http://dx.doi.org/10.1007/978-981-10-0024-9_3
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Fig. 4.2 An illustrative
diagram of the neighboring
user classification

Thus, according to the principle of the contention coordination mechanisms in
802.11b-based networks, the achieved normalized throughput of user k under a chan-
nel selection profile (a1, . . . , aK ) is given by

Tk(a1, . . . , aK ) = 1

1 + sk
, (4.7)

where sk is aggregate MAC-layer interference experienced by user k in range Jk , i.e.,

sk =
4∑

i=0

∑

j∈J(i)
k

σ
(i)
k j =

4∑

i=0

s(i)
k . (4.8)

Following the similar methodology in Chap. 3, we formulate an interference mit-
igation problem with partially overlapping channels. Specifically, the optimization
objective is to find the optimal channel selection profile to minimize the aggregate
MAC-layer interference of all the users in the network, i.e.,

P1: min
∑

k∈K
sk (4.9)

However, P1 is a combinatorial problem which is hard to solve even in a central-
ized manner. Thus, the task of solving P1 in a distributed manner is challenging. In
the following, an efficient game-theoretic learning approach is proposed.

http://dx.doi.org/10.1007/978-981-10-0024-9_3
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4.3 Graphical Game Model

4.3.1 Graphical Game Model

Formally, we formulate the interference mitigation problem with partially over-
lapping channels as a non-cooperative game. Specifically, the game is denoted as
G = {K, Ak, Jk, uk}, where K is the player (user) set, Ak is the action (available
channel) set of player k, Jk in the neighboring user set of player k, and uk is the util-
ity function. Note that all channels are available for the each player, whichmeans that
the action set of all the players is exactly the channel set, i.e., Ak ≡ M, ∀k ∈ K. In
the considered scenarios, the utility function of an arbitrary player k is only directly
affected by its action and the action profile of the players in Jk . Thus, the formu-
lated game model belongs to local interactive game [3] or graphical game [16]. To
capture such local interaction, the utility function of player k can be expressed as
uk(ak, aJk ), where ak is the channel selection of player k and aJk is the action profile
of the players in Jk . In the formulated interference mitigation game with partially
overlapping channels, the utility function is defined as

uk(ak, aJk ) = −sk, (4.10)

where sk is the MAC-layer interference experienced by player k, as defined in (4.8).
Then, it is expressed as follows:

G : max uk(ak, aJk ),∀k ∈ K (4.11)

4.3.2 Analysis of Nash Equilibrium

In this following, the properties of the formulated interference mitigation game in
terms of Nash equilibrium (NE) existence and achievable performance are analyzed.

Theorem 4.1 The interference mitigation game with partially overlapping channels
is an exact potential game which has at least one pure strategy NE point.

Proof According to the definition of exact potential game (see Definition 1.2 in
Chap.1), we need to prove that there exists a potential function such that the change
in the individual utility function caused by any player’s unilateral deviation is the
same as that in the potential function. Specifically, we define the potential function
as follows:

Φ(a1, . . . , aK ) = −1

2

∑

k∈K
sk, (4.12)

http://dx.doi.org/10.1007/978-981-10-0024-9_1
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which is exactly the negative value of the half aggregate MAC-layer interference.
Then, it can be verified that it is an exact potential game with Φ serving as the
potential function. For detailed lines for proof, refer to [15]. �

As the players selfishly maximize their individual utility functions, as specified
by (4.11), it may lead to inefficiency and dilemma, which is known as tragedy of
commons [17]. Therefore, it need to investigate the achievable performance of NE
solutions. To begin with, the aggregate MAC-layer interference of a pure strategy
NE point aNE = {a∗

1 , . . . , a∗
N } is given by

U (aNE) =
∑

n∈K
sk(a

∗
k , a∗

Jk
), (4.13)

where sk is calculated by (4.8). Then the achievable performance of NE solutions of
the formulated game is characterized by the following theorems.

Theorem 4.2 The global minimum of the aggregate MAC-layer interference of the
network constitutes a pure strategy NE point of G.

Proof Suppose that aopt is an optimal channel selection profile that maximizes the
potential function, i.e.,

aopt ∈ arg
a
max Φ(a1, . . . , aK ). (4.14)

Using the relationship between the potential function and the optimization objective,
as specified by (4.12), aopt also minimizes the aggregate MAC-layer interference in
the network, i.e.,

aopt ∈ arg
a
min

∑

k∈K
sk (4.15)

Since a maximizer of the potential function constitutes a pure strategy NE point of
any exact potential game [18], it follows that aopt serves as the optimal pure strategy
NE of formulated MAC-layer interference mitigation game. �

Theorem 4.3 For any network topology, the aggregate MAC-layer interference is
upper bounded by U (aNE) <

∑

k∈K

(
(
∑4

i=0(2i + 1)|J(i)
k |)/M

)
.

Proof Refer to [15]. �

Interestingly, it can be observed from Theorem 4.3 that increasing the total number
of available channels, i.e., M , would lower the aggregate MAC-layer interference in
the network. This is exactly the basic idea of using partially overlapping channels
instead of orthogonal channels.
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4.4 Simultaneous Log-Linear Learning Algorithm
with Heterogeneous Rates

4.4.1 Algorithm Description

As stated before, there are a large number of learning algorithms that can achieve pure
strategyNash equilibria of potential games, e.g., the best response [12], the stochastic
learning automata used in Chap.2, and the binary log-linear learning algorithm used
in Chap.3. In the stochastic automata learning algorithm, all the players can perform
learning simultaneously but the convergent NE solutions are not optional in general
scenarios. Although the binary log-linear can achieve the best Nash equilibrium,
there is a restriction that only one player is allowed to update its action at a time.
Note that it needs some distributed coordination mechanisms to schedule exactly one
player to learn in each iteration, and the most efficient approach is to use a common
control channel (CCC) for coordination. However, a CCC is not always available in
practice. Thus, it needs to develop a simultaneous and uncoupled algorithm that can
achieve the optimal solution.

As the MAC-layer interference cannot be observed directly by the users, a simple
and efficient estimation approach is then proposed. Suppose that there are N slots
in each iteration of the learning algorithm, and denote the number of slots in which
player k successfully access the channel in the i th iteration as Nk(i). Then, the
expected achievable throughput of player k can be expressed as Tk = Nk (i)

N = 1
1+sk (i)

and hence the aggregate interference experienced by player k can be estimated as
ŝk(i) = N

Nk (i)
− 1, which means that the received utility in each iteration can be

estimated by

ûk(i) = 1 − N

Nk(i)
, (4.16)

In this chapter, a simultaneous log-linear learning algorithm is proposed, in which
all the players simultaneously update their actions in each play. The procedure of
the proposed learning algorithm is described in Algorithm 3. The key idea can be
explained as follows: (i) in each iteration, the players explore new actions with
probability δk , as given in (4.17). (ii) After the exploration, they update their actions
using the log-linear learning rule over the actions in the last two iterations, as shown
in (4.18). An illustrative diagram of the simultaneous log-linear learning algorithm
is shown in Fig. 4.3. It is noted that the proposed learning algorithm is simultaneous,
fully distributed, and uncoupled.

4.4.2 Convergence Analysis

In methodology, the simultaneous log-linear learning algorithm is motivated by the
spatial adaptive play (SAP) [3, 19, 20], which is a coupled learning algorithm for that

http://dx.doi.org/10.1007/978-981-10-0024-9_2
http://dx.doi.org/10.1007/978-981-10-0024-9_3
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Fig. 4.3 The illustrative diagram of the simultaneous log-linear learning algorithm

Algorithm 3: simultaneous log-linear learning algorithm

Initialization: For iteration index i = 0, each player k, ∀k ∈ K, randomly selects a channel ak(0) ∈
Ak . An updating binary flag, xk(0) = 0, ∀k ∈ K, is set for each player k.
All players simultaneously execute the following procedure:
Loop for i = 1, . . . ,
Exploration:
If the updating flag is zero, i.e., xk(i − 1) = 0, player k explores all the possible channels using to
the following rule:

Pr[ak(i) = a] =
{

δk|Ak |−1 , a ∈ {Ak\ak(i − 1)}
1 − δk , a = ak(i − 1),

(4.17)

where |Ak | is the number of available channels of player k, and δk can be regarded as the exploration
rate. Furthermore, set xk(i) = 1 if ak(i) �= ak(i − 1), and xk(i) = 0 otherwise.
End if
Update:
If the updating flag is one, i.e., xk(i − 1) = 1, player k updates the action according to the following
rule:

Pr[ak(i) = ak(i − 1)] = exp{ûk(i − 1)β}
exp{ûk(i − 1)β} + exp{ûk(i − 2)β}

Pr[ak(i) = ak(i − 2)] = exp{ûk(i − 2)β}
exp{ûk(i − 1)β} + exp{ûk(i − 2)β} ,

(4.18)

where β is the learning parameter, ûk(i − 1) and ûk(i − 2) represent the received utility function
of the player k in iterations i − 1 and i − 2 respectively, as specified by (4.16). Set xk(i) = 0.
End if
End loop
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requires information exchange among the users. Although there is an improved ver-
sion of SAP,which is called the binary log-linear algorithm, no information exchange
is needed. (This algorithmwas used in Chap.3). However, only one player is allowed
to perform learning in each iteration. In essence, the used simultaneous log-linear
learning algorithm is a variant of the payoff-based learning algorithmwhichwas orig-
inally proposed in [21]. The key difference is that homogeneous exploration rate was
used in [21] while heterogeneous exploration rates are used in the proposed learn-
ing algorithm. Specifically, the following theorem characterizes the convergence and
optimality of the simultaneous log-linear learning algorithm.

Theorem 4.4 If the exploration parameters are chosen as δk = exp(−βmk),

∀k ∈ K , the simultaneous log-linear learning algorithm asymptotically converges
to an optimal channel selection profile that minimizes the aggregate MAC-layer
interference for sufficiently large mk.

Proof Theproof ismainly based on the theory of resistance trees [21, 22] and detailed
lines can be found in [15].

4.4.2.1 Discussion on the Learning Parameters

In this part, we discuss the rationale behind the learning algorithm. At the beginning,
the players randomly explore new actions for finding a better channel. Based on the
results of exploration, the log-linear updating strategy is used to update its selection.
Note that the log-linear strategy is also known as Boltzmann exploration strategy
[23], in which the probability of choosing an action with higher utility is larger than
that for an action with lower utility. The Boltzmann rule is an efficient way to escape
from local optimal points and finally achieves the global optimum. Thus, in order to
balance the tradeoff between exploration and convergence speed, it is desirable to set
the value of the learning parameter mk small values at the beginning phase and let it
increase as the algorithm iterates. In practice, the following simplest linear strategy
can be used: m(i) = m0 + iΔm, where m0 is the initial value, Δm is the step size,
and i is the iteration number.

The simultaneous log-linear learning algorithm was originally proposed in [21],
inwhich globally interactive games, i.e., an action of a player affects all other players,
were considered. In the local interactive games (graphical games), i.e., games over
graph, we found that exploiting the feature of the spatially locations of the players
would accelerate the learning speed, which motivates us to set the heterogeneous
exploration rates for the players. Denote the number of potentially interfering users
of player k, i.e., the neighboring players, as Dk = |Jk |. To achieve heterogeneous
exportation rates, the players with less value of Dk are advisable to have larger
exploration rates while those with large value of Dk are advisable to have smaller
rates. The reason is as follows: the players with large value of Dk , i.e., they have
more neighboring users, have more impact on the system, and hence their action
changes would result in more perturbations and lower convergence speed. Thus, we

http://dx.doi.org/10.1007/978-981-10-0024-9_3
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set the exploration rate of player k as mk(i) = max{D1,...,Dk }
Dk

m(i). It will be shown
later that heterogeneous exploration rates lead to faster convergence speed than that
of homogeneous exploration rates.

4.5 Simulation Results and Discussion

4.5.1 Scenario Setup

We consider IEEE 802.11b-based networks with 2Mb/s data rate. All the users are
located in a 1000m× 1000m square area, and the interference range of co-channel
communication is 200m [8], i.e., 2R = 200m. Thus, according to Table4.1, the
interference ranges of different channel separations as follows: RI (1) = 112.5m,
RI (2) = 75m, RI (3) = 37.5m, and RI (4) = 12.5m. To make it more general, two
kinds of networks are considered. The first is the random topology, in which the users
are randomly located in the square, and the second is the grid topology, in which the
users are located in the junction points of a grid. In order to investigate the impact of
the user density, the number of users is arbitrarily increased in the random topology.
For the grid topology, the number of users is increased in a square rule, i.e., the
number of users is given by K = l2, where l is a natural number. Examples of the
considered random and grid topologies are given by Figs. 4.4 and 4.5 respectively.

To evaluate the throughput improvement of partially overlapping channels (POC)
over non-overlapping channels (NOC), we compare the achievable throughput of
the proposed POC approach with that of an existing optimal NOC approach using
the spatial adaptive play (SAP) approach [3]. In that approach, the MAC-layer inter-
ference mitigation problem was also formulated as an exact potential game and
the optimal optimum is achieved via information exchange. In addition, since the

Fig. 4.4 An example of the
random topology with 60
users. The small solid circles
represent the users, while the
large dashed circles
represent the interference
regions corresponding to
different channel separations
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Fig. 4.5 An example of the
grid topology with 64 users.
The small solid circles
represent the users, while the
large dashed circles
represent the interference
regions corresponding to
different channel separations
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formulated interference mitigation problem with POC is an exact potential game
with the optimal NE solutions minimizing the aggregate MAC-layer interference,
other learning algorithms that can converge to the pure strategy NE solutions can
also be used as referred algorithms. Thus, we also evaluate the throughput perfor-
mance of the SAP algorithm [3], the MAX log-linear algorithm [24], the binary
log-linear algorithm (B-logit) [25], and the multi-agent Q-learning algorithm1 [26].
In classification, SAP is coupled and sequential (only one player updates action at
a time), both MAX-logit and B-logit are uncoupled and sequential, and both the
simultaneous log-linear algorithm and the Q-learning algorithm are uncoupled and
simultaneous (multiple players update actions simultaneously).

4.5.2 Convergence Behavior

In this part, the convergence behaviors of the simultaneous log-linear learning algo-
rithm are studied. The learning is set to β = −8 and m = 0.1 + 0.0095i , where i is
the iteration number.Note that these parameters have been optimized by experiments.

First, we present the convergence behaviors of the proposed learning algorithm
with partially overlapping channels (POC). The convergence behaviors for the above
two example networks are shown in Fig. 4.6. These results are obtained by taking
the expected value of 20 independent trials. It is noted that for both topologies, the
proposed learning algorithm converges in about 600 iterations. Also, it is noted from
the figure that, as the algorithm iterates, the aggregate interference in both topologies

1We found that it never converges when the original Q-learning algorithm presented in [26] is
directly applied. To achieve its convergence, wemodify the algorithm slightly by setting the learning
parameter as γ = 1

5+0.045i , where i is the iteration number.
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Fig. 4.6 The convergence
behaviors of the proposed
learning algorithm using
partially overlapping
channels for the two example
topologies
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Fig. 4.7 The convergence
behaviors of the proposed
learning algorithm using
non-overlapping
(orthogonal) channels for the
two example topologies
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decreases to zero gradually. These results validate the convergence of the proposed
synchronous learning algorithm with partially overlapping channels.

Second, we study the convergence behaviors of the proposed learning algorithm
with non-overlapping channels (NOC). The convergence behaviors for the two exam-
ple network topologies are shown in Fig. 4.7. It is noted that the algorithm in both
topologies also converges in about 600 iterations. These results validate the gener-
ality of the proposed learning algorithm, since it is not only suitable for partially
overlapping channels but also suitable for non-overlapping channels. In addition, it
is shown that the final aggregate interference using NOC is much greater than those
using POC for both network topologies. According to the relationship between the
experienced interference and the achieved throughput, it can be inferred that the
throughput performance of POC is much higher than that of NOC.
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Fig. 4.8 The comparison
results of the convergence
speed of heterogeneous and
homogeneous exploration
rates
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Third, the convergence comparisons of homogeneous and heterogeneous explo-
ration rates are shown in Fig. 4.8, in which the results are obtained by simulating 20
independent trials and then taking the expected value. It is observed that the learning
algorithm with heterogeneous exploration rates converges in about 400 iterations
while the algorithmwith homogeneous rates converges in about 600 iterations. Also,
the aggregate interference of both algorithms decreases gradually. These results val-
idate the faster convergence speed caused of heterogeneous exploration rates.

4.5.3 Performance Evaluation

In this part, the achieved performance of the simultaneous log-linear algorithm using
POC is evaluated. In particular, the simultaneous log-linear algorithm is compared
with other coupled and uncoupled algorithms, and the achieved performance of POC
is also compared that of NOC.

4.5.3.1 Random Topology

First, the comparison results of the expected aggregate interference of random topolo-
gies are shown in Fig. 4.9. The number of users increases from 40 to 150. The results
are obtained by independently simulating 500 topologies and then taking the expected
values. It is noted that the expected aggregate interference of POC is greatly less than
that of NOC. In particular, as the number of users becomes larger, the differences
become larger, as can be expected in any wireless networks.

Second, the comparison results of the expected network throughput of random
topologies are shown in Fig. 4.10. It is noted that the expected network throughput



4.5 Simulation Results and Discussion 67

Fig. 4.9 The comparison
results of the expected
aggregate interference of
random topologies
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Fig. 4.10 The comparison
results of the expected
network throughput of
random topologies
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of POC is significantly larger than that of NOC, which validates the statement that
the throughput improvement of POC over NOC is significant. Also, it is observed
that the simultaneous log-linear algorithm achieves satisfactory performance when
compared with other existing learning algorithms. In particular, for relatively sparse
networks, e.g., K ≤ 80, the achieve throughput of the simultaneous log-linear algo-
rithm is almost the same with that of SAP. As the user density increases, it is slightly
worse than that of SAP. For other uncoupled algorithms, it can be observed that
the throughput performance of the simultaneous log-linear algorithm is close to
those of MAX log-linear and binary log-linear algorithms, which belong to uncou-
pled and sequential algorithms. In addition, the simultaneous log-linear algorithm
achievesmuchhigher throughput than that ofQ-learning,which is also uncoupled and
synchronous.
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4.5.3.2 Grid Topology

First, the comparison results of the expected aggregate interference of grid topologies
are shown in Fig. 4.11. The number of nodes increases from 36 to 169. The results are
obtained by independently running 500 trials and then taking the expected values. It
is noted that the expected interference of POC is significantly less than that of NOC,
which exhibits the same trend as that in random topologies.

Second, the comparison results of the expected network throughput of grid topolo-
gies are shown in Fig. 4.12. It is also observed that the expected network throughput of
POC is much higher than that of NOC, especially when the number of users is large.
For scenarios with small number of users, e.g., K = 36, 49, 64, 81, the throughput
gap is trivial. The reason is that the interference in the grid topologies is light in sparse
networks. An interesting result in Fig. 4.12 is that the expected network throughput

Fig. 4.11 The comparison
results of the expected
aggregate interference of
grid topologies
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Fig. 4.12 The comparison
results of the expected
network throughput of grid
topologies
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of NOC exhibits a singular trend. In particular, it increases when the number of users
K increases from 36 to 64, decreases when K increases from 64 to 100, and again
increases when K increases from 100 to 144. The potential reason might be as fol-
lows: as the users in the grid networks are fixed, some scales of the networks may
lead to singular results. Furthermore, the simultaneous log-linear learning algorithm
achieves satisfactory performance when compared with other existing coupled or
uncoupled algorithms, and the same trend as that in random topologies also holds.

4.5.3.3 Throughput Gain of POC Over NOC

To characterize the throughput gain of POC over NOC, we present the throughput
gain for the two kinds of network topologies in Fig. 4.13. The throughput gain is
defined as the incremental ratio of the expected network throughput POC and NOC,
respectively, i.e., it is expressed as

g = Tpoc

Tnoc
− 1, (4.19)

where Tpoc is the achieved throughput of using POC and Tnoc is that of using NOC.
It is seen from the figure that when the number of nodes increases from 40 to 150,
the throughput gain of random topologies increases from 15 to 180%. Also, for the
grid topologies, the throughput gain is trial (about 2%) when the number of nodes
is less than 80, and increases from 70 to 140% when the number of nodes increases
from 80 to 140. A common trend for the two kinds of network topologies is that the
throughput gain is small in sparse networks, i.e., the number of nodes is small, and
becomes larger in more dense networks, i.e., the networks with more nodes. This
can be explained as follows: (i) the interference in sparse networks is slight and that

Fig. 4.13 The comparison
results of throughput gains of
the proposed uncoupled
learning algorithm
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in dense networks is heavy, and (ii) for sparse networks, NOC provides with enough
channels and hence achieves the same throughput with POC.

4.6 Concluding Remarks

Compared with orthogonal (non-overlapping) channels, as the one considered in
Chap.3, partially overlapping channels improve the full-range spectrum utilization
significantly. The key design is that the channel separation and physical distance are
jointly considered in the interference model. To meet the increasing mobile traffic
in future wireless networks, exploiting partially overlapping channels is a promising
candidate. For example, one may introduce partially overlapping channels into the
LTE-Usystems, inwhich the users dynamically share the 802.11a bandswithWLAN.
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Chapter 5
Robust Interference Coordination
with Dynamic Active User Set

5.1 Introduction

Due to hardware limitation, the users in dynamic spectrum access networks can
sense only a small part of channels (always one) at a time [1]. As a result, there are
two basic channel sensing strategies [2]: parallel sensing, i.e., a fixed set of chan-
nels is simultaneously sensed in each slot, and sequential sensing, i.e., channels are
sequentially sensed according to a pre-defined order. For parallel sensing strategies,
the users have to keep silent in the current slot if no idle channel is found, which
may be inefficient. In comparison, the sequential sensing is more efficient and adap-
tive. However, interference/collision occurs if more than two users sense and access
an idle channel simultaneously. Thus, the sensing orders in the sequential sensing
strategy should be carefully designed [3–6]. In Chaps. 2, 3, and 4, parallel sensing
strategies were considered. In this chapter, we consider the problem of interference
coordination for sequential dynamic spectrum access, and the focus is to optimize
channel sensing orders of the users.

The problem of channel sensing order optimization for single-user dynamic spec-
trum access systems has been extensively studied in the literature [7–13]. For multi-
user dynamic spectrum access networks, it has begun to draw attention very recently
[3–6]. Note that in most existing decision-making optimization problems for dynamic
spectrum access networks, the number of active users is assumed fixed. However,
it should be pointed out that in several practical scenarios, a user does not perform
learning when there is no traffic to transmit. Thus, it is important and timely to
investigate the impact of dynamic active users on game formulation and learning
algorithm.

In this chapter, a generalized interference metric is proposed to address the over-
lapping of multiple channel orders. Based on this, the following two optimization
objectives are considered: minimizing the aggregate interference for a specific active
user set and minimizing the expected aggregate interference for over all possible
active user sets. To achieve distributed decision making, two interference mitigation
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game models are proposed: (i) a state-based game, in which the active user set char-
acterizes the system state in each slot, and (ii) a robust game, in which the utility
functions are defined as the expected value over all system states. The two game
models are proved to be exact potential games, and the stochastic learning automata
algorithm is applied to achieve stable and desirable solutions. Note that some useful
tutorials for robust games with changing player set can be found in [14], and the
main analysis and results in this chapter were presented in [15].

5.2 System Model and Problem Formulation

5.2.1 System Model

Consider a distributed dynamic spectrum access network with N secondary users
and M channels. Assume that time is divided into slots with equal length, and denote
xm as the occupancy state of channel m. Specifically, xm = 1 means that chan-
nel m is idle and xm = 0 means it is unavailable. For analysis simplicity, assume
that the states of the channels are determined by the idle channel probabilities, θm ,
0 ≤ θm ≤ 1, ∀m ∈ {1, 2, . . . , M}, and remain unchanged in a slot. When the number
of users is larger than that of channels, i.e., N > M , the users would choose a fixed
number of channels (always one) to sense and access in a slot rather than performing
the sequential sensing strategies, as the spectrum opportunities are limited in this
scenario. Thus, we only consider the case that the number of the users is not greater
than that of the licensed channels, i.e., N ≤ M in this chapter.

To make it more practical, dynamic active user model is considered. Specifically,
each user performs channel sensing and accesses in each slot with a probability λn ,
0 < λn ≤ 1. Note that such a model captures general kind of dynamics in dynamic
spectrum access networks, e.g., a user becomes active only when there is data to trans-
mit, a mobile user joins or leaves dynamically. Furthermore, the active probability
can be regarded as the probability of non-empty buffer.

5.2.2 Problem Formulation

For presentation and analysis, a system state is defined as S = {s1, . . . , sN }, where
sn = 1 means that the nth user is active, while sn = 0 indicates that it is inactive.
Then, the probability of a system state can be expressed as μ(s1, . . . , sN ) = ∏N

n=1 pn ,
where pn is determined as follows:

pn =
{

λn, sn = 1
1 − λn, sn = 0

(5.1)
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Denote the user set in the network as N, i.e., N = {1, . . . , N }, the active user set as B,
i.e., B = {n ∈ N : sn = 1}, and the set of all possible active user sets as Γ . Then, the
probability of an specific active user set is μ(B), which satisfies

∑
B∈Γ μ(B) = 1.

However, it should be pointed out that the distribution probabilities of the system
states are unknown to the users since there is no information exchange among the
users.

The impact of the channel sensing orders of the users on the achievable network
throughput is analyzed by the following examples. Consider a dynamic spectrum
access system with five channels and two active users. Their channel sensing orders
are {1, 3, 2, 4, 5} and {3, 4, 2, 5, 1}, respectively, which means that the two users
simultaneously sense channel 2 at time 3τ . Then, if channel 2 is detected as idle by
both users, they may access the channel simultaneously and hence cause collision.
An illustrative diagram of the example scenario is shown in Fig. 5.1. Note that the two
users can employ some approaches, e.g., cognitive TDMA and CSMA, to resolve
collision.

For presentation, denote the permutation set of M as O, and the channel sensing
order of the nth user as a M-dimensional order vector On = (on1, on2, . . . , onM ),
On ∈ O. Motivated by the MAC-layer interference model analyzed in Chaps. 3 and 4,
a more general interference metric can be defined to capture the impact of accessing
the same channel simultaneously. Specifically, the generalized interference metric
between two active users n and m is defined as follows:

gnm = On � Om, (5.2)

τ
T

Idle Occupied by PU

Fig. 5.1 The illustrative diagram of a system with five channels and two users. The channel sensing
order of user 1 is {1, 3, 2, 4, 5} and that of user 2 is {3, 4, 2, 5, 1}. When detecting channel 2 as idle
in time 3τ , they access this channel simultaneously and cause collision

http://dx.doi.org/10.1007/978-981-10-0024-9_3
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where � is the bitwise XNOR operation. That is, gnm = ∑M
k=1 δ(onk, omk), and

δ(onk, omk) is the following indicator function:

δ(onk, omk) =
{

1, onk = omk

0, onk �= omk
(5.3)

If the interference between users n and m is zero, i.e., gnm = 0, we say their
channel sensing orders are orthogonal. It can be seen that gnm reflects the impact
of overlapped channel sensing orders on the achievable throughput. Specifically,
larger value of gnm causes lower achievable throughput, and vice versa. Extending
the interference model to the scenarios of multiple users, the aggregate generalized
interference level experienced by an active user n in a slot is defined as follows:

Gn(B) =
∑

m∈B,m �=n

gnm =
∑

m∈B,m �=n

On � Om (5.4)

A lower value of Gn(B) is desirable for user n as higher throughput can be
achieved. Similarly, a lower value of an aggregate generalized interference level of
all the users is also desirable. Thus, we define the aggregate generalized interference
level of an active user set B(k) as follows:

I (B) =
∑

n∈B

∑

m∈B,m �=n

On � Om (5.5)

If I (B) = 0, it corresponds to an interference-free profile of channel sensing
orders as there is no overlap in the channel sensing orders of any two users. Formally,
the optimization objective is to find an optimal channel sensing order profile to
maximize the aggregate interference level, i.e.,

(P1:) max −I (B),∀B ∈ Γ (5.6)

or

(P2:) max −EB[I (B)] =
∑

B∈Γ

μ(B)IB, (5.7)

where EB[·] takes the expectation over all possible active user sets. Generally, solving
problem P1 and P2 in a distributed manner is challenging, and the reasons are as
follows: (i) they are combinatorial optimization problems, which are NP-hard, and
(ii) the active user set in each slot is unknown to the users, since a user only knows
its own state but knows nothing about other users. In the following, a game-theoretic
distributed solution is developed for solving the two problems.

Remark 5.1 The optimality of the above optimization problems is discussed as fol-
lows. For a network with homogeneous channels, the optimality in interference means
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the optimality in throughput, on the condition that the final result is interference-free.
For a network with heterogeneous channels, this is not true. However, we would like
to point out that due to the heavy computational complexity, it is not possible to
achieve an optimal solution for sum-rate maximization directly. For example, con-
sidering a system with five channels and five users, the total possible solutions are
(5!)5, which is extremely huge. Thus, although the sum-rate maximization generally
cannot be achieved, we believe that the formulated interference mitigation approaches
are desirable as distributed solutions with low-complexity can be achieved.

5.3 Channel Sensing Order Selection Games

In this section, we formulate two game non-cooperative models to address the for-
mulated channel sensing order optimization problems P1 and P2, respectively. The
first one is a state-based order selection game, in which a system state is defined to
describe the active user set in each slot, and the second one is a robust order selection
game, in which the utility functions are defined as the expectation value over all
possible system states. Their properties in terms of existence of Nash equilibria and
achievable performance are analyzed.

5.3.1 State-Based Order Selection Game

5.3.1.1 Game Model

In this game, a system state is added to capture the dynamic active user set. Specifi-
cally, the state-based game is denoted as G1 = {N,B, {An}n∈B, {U1n}n∈B}, where N
is the potential player (user) set, i.e., N = {1, 2, . . . , N }, B is the system state which
corresponds to the active user set in the current slot, An is the available action set
of player n, and U1n is the utility function of player n. Note that all the players’
action sets are the permutation set of M , i.e., An = O,∀n ∈ N. The utility function
of player n is determined by U1n(On, O−n), where On ∈ An is the chosen action of
player n and O−n is the action profile of all the active players except n. For an active
player n ∈ B, we define the utility function as follows:

U1n(B, On, O−n) = −
∑

m∈B,m �=n

On � Om, (5.8)

which means that the state-based channel sensing order selection game can be
expressed as follows:

G1 : max U1n(B, On, O−n),∀n ∈ B (5.9)
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5.3.1.2 Analysis of the Nash Equilibrium

Following the definition of pure strategy Nash equilibrium (NE), a channel sensing
order profile aN E = {O∗

n , O∗−n} is a pure strategy NE of G1 if and only if no player
can improve its utility function by deviating unilaterally, i.e.,

U1n(B, O∗
n , O∗

−n) ≥ U1n(B, On, O∗
−n),∀On ∈ O,∀n ∈ B (5.10)

In addition, the aggregate interference level in a pure strategy NE of any active user
set B is given by

IG1 = −
∑

n∈B
U1n(B, O∗

n , O∗
−n) (5.11)

Theorem 5.1 For any active user set, i.e., ∀B ∈ Γ , the state-based channel sensing
order selection game G1 is an exact potential game which has at least one pure
strategy NE point. Furthermore, any optimal solution of problem P1 constitutes a
pure strategy NE of the game.

Proof According to the definition of exact potential games (see Definition 1.2 in
Chap. 1), we need to prove that there exists a potential function such that the change
in the utility function of an active player by its unilaterally deviating is the same
as that in the potential function. To achieve this, a state-based potential function
Φ1 : On × O−n → R is defined as follows:

Φ1(B, On, O−n) = −1

2

∑

n∈B

∑

k∈B,k �=n

On � Om, (5.12)

which is exactly the negative half value of the aggregate interference level of all the
active users. (Detailed proof lines are not presented here and can be found in [15].)
Then, it can be verified that it is a potential game. Furthermore, using the relationship
between the aggregate interference level and the potential function, as specified by
(5.5) and (5.12), respectively, we can see that any optimal solution of problem P1 is
a global maximizer of the potential function. Then, following the property of exact
potential games, Theorem 5.1 follows. 
�
Theorem 5.2 For any active user set, i.e., ∀B ∈ Γ , an interference-free channel
sensing order profile always exists.

Proof We prove this theorem by the method of construction. Without loss of gener-
ality, denote B1 = {b11, b12, . . . , b1M } as a channel sensing order vector arbitrarily
chosen from the permutation set of M , i.e., B1 ∈ O. Construct B2 by a cyclic shift of
B1, i.e., B2 = {b12, b13, . . . , b1M , b11}, and iteratively Bk by a cyclic shift of Bk−1,
k = 3, 4, . . . , M . Then, Bk , k = 1, . . . , M , form the following matrix:

http://dx.doi.org/10.1007/978-981-10-0024-9_1
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Bcs =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

b11 b12 · · · b1(M−1) b1M

b12 b13 · · · b1M b11
...

...
...

...
...

b1(M−1) b1M · · · b1(M−3) b1(M−2)

b1M b11 · · · b1(M−2) b1(M−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (5.13)

which is called the cyclic-shift matrix. It can be verified that the following equation
always holds:

Bi � B j = 0,∀i, j ∈ {1, 2, . . . , M}, i �= j (5.14)

Consequently, it follows that

M∑

i=1

M∑

j=1, j �=i

Bi � B j = 0. (5.15)

Thus, it is known that {B1, B2, . . . , BM} constitutes an interference-free profile for
the full user set N. For an arbitrary active user set B, |B| distinct order vectors
among Bcs can be chosen, which is also interference-free. Therefore, Theorem 5.2 is
proved. 
�

If there are M channels, then the total number of cyclic-shift matrices is given
the permutation number of M − 1, i.e., (M − 1)!. For example, there are total six
cyclic-shift matrices of interference-free profiles for M = 4, which are shown in
Fig. 5.2. Based on Theorem 5.2, the achievable performance of the state-based game
can be studied.

Theorem 5.3 For any active user set, i.e., ∀B ∈ Γ , the best pure strategy NE of G1

is an interference-free sensing order profile.

Proof For ∀B ∈ Γ , an interference-free channel sensing order profile always exists.
The most efficient approach is to allocate different rows of a common cyclic-shift
matrix, as characterized by (5.13), to the active users. Clearly, the optimal solution
to problem P1 is an interference-free channel sensing order profile. Thus, according
to Theorem 5.1, Theorem 5.3 follows. 
�

Fig. 5.2 For M = 4, there
are six cyclic-shift matrices
which correspond to
interference-free order
selection profiles
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The above analysis results are promising since the best pure strategy NE of the
G1 corresponds to an optimal solution of P1. However, the state-based game cannot
be solved as the system state B is random and unknown to the players. Thus, we
develop a new game model for P2 in the following.

5.3.2 Robust Order Selection Game

In this part, a robust order selection game, which can be regarded as an expected
version of the state-based order selection game over all system states, is formulated
to address the optimization problem P2. Formally, the robust order selection game is
denoted as G2 = {N, {An}n∈N, {U2n}n∈N}, where N is the player set, An is the action
set, and U2n is the utility function of player n. Note that the players in G2 are all the
potential users. The utility function is defined as follows:

U2n(On, O−n) = EB

[
U1n(B, On, O−n)

] =
∑

B∈Γ

μ(B)U1n(B, On, O−n), (5.16)

where EB takes the expectation over all system states. Similarly, the robust channel
sensing order selection game can be expressed as

G2 : max U2n(On, O−n),∀n ∈ N (5.17)

Based on the theoretic analysis for the state-based game, the properties of the NE
of the robust order selection game are characterized by the following theorems.

Theorem 5.4 The robust order selection game G2 is also an exact potential game
which has at least one pure strategy NE point. More importantly, any optimal solution
of problem P2 constitutes a pure strategy NE of G2.

Proof Refer to [15]. 
�
Theorem 5.5 The best pure strategy NE of G2 corresponds to an interference-free
sensing order profile.

Proof Based on Theorem 5.2 and following the similar lines for the proof of Theo-
rem 5.3, this statement can be proved.

Finally, the robust order selection game G2 and the state-based game G1 are
related by the following theorem.

Theorem 5.6 A best pure strategy NE of the robust order selection game G2 is also
a best pure strategy NE of the state-based game G1 for all system states, i.e., ∀B ∈ Γ .

Proof According to the above analysis, it is known that any best pure strategy NE
of G2 is interference-free. For any arbitrary active user set B in the state-based game
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G1, let the active users choose the actions drawn from a best pure strategy NE of
G2. As a result, the chosen channel sensing order vector profile is interference-free,
which corresponds to a pure strategy NE of G1 . Therefore, Theorem 5.6 is proved.

As analyzed before, due to the restriction that no information exchange among
the users is available and the active probabilities are unknown, it is not feasible to
use traditional approaches to solve the problems P1 and P2. In the following, a
distributed learning algorithm that asymptotically converges to the best pure strategy
NE solutions is proposed.

5.3.3 Distributed Learning Algorithm with Dynamic Active
User Set

There are a large number of learning algorithms converging to the NE of potential
games, e.g., best (better) response [16], spatial adaptive play [17], log-linear learning
algorithms [18, 19] in Chaps. 3 and 4, and no-regret learning [20, 21]. However, these
algorithms cannot be applied in the considered network with dynamic active user
set.

Algorithm 4: stochastic learning algorithm with dynamic active user set

Initialization: at the first time being active, each active user n sets its channel selection as qn(k0) =
( 1

M , . . . , 1
M ).

Loop for k = 0, 1, 2, . . . ,

1. Selecting channel sensing orders: at the beginning of slot k, each active player n ∈ B(k) selects
a channel sensing order an(k) ∈ An according to its current mixed strategy qn(k).
2. Sensing channels and receiving binary feedback: All the active players sense the licensed
channels sequentially according to its chosen order and then transmit in the first idle channel. At
the end of slot k, each active player receives a binary feedback rn(k), which is jointly determined
by the channel states and the actions of other active users.
3. Updating mixed strategy: All the active users update their mixed strategies using the following
rule:

qn(k + 1) = qn(k) + brn(k)
(
Ian (k) − qn(k)

)
, (5.18)

where 0 < b < 1 is the learning parameter, Ian (k) is a unit vector with the an(k)th component being
one. All inactive users keeps their mixed strategies unchanged.
End loop

In this chapter, a stochastic learning automata [22]-based algorithm is proposed
for the robust order selection game. The players employ mixed strategies in each
slot. Specifically, denote Q(k) = (q1(k), . . . , qn(k)) as the mixed strategy profile
in slot k, in which qn(k) = (qn1(k), . . . , qnM(k)) is the action probability vector
of player n. The algorithm iterates as follows: (i) in the first slot player n being
active, it randomly chooses a channel sensing order with equal probabilities, i.e.,
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Fig. 5.3 The illustrative diagram of the stochastic automata-based learning algorithm with dynamic
active user set

qn(k0) = ( 1
M , . . . , 1

M ), (ii) for an active player n ∈ B(k) in slot k, it then employs
an rule to update its mixed strategy based on the received binary feedback rn(k). An
inactive user is always silent and keeps its mixed strategy unchanged. The proposed
stochastic learning algorithm with dynamic active user set is formally described in
Algorithm 4 and an illustrative diagram is shown in Fig. 5.3.

The learning algorithm is further discussed below. For presentation, the slot index
is added into the game models. Specifically, denote sn(k) as the state of player n in
slot k, B(k) as the active user set in slot k, and rn(k) is the received binary feedback
of player n. Based on the transmission strategies of the users, the binary feedback is
determined as follows: (i) rn(k) = 1, which indicates that the transmission of player n
is successful, and (ii) rn(k) = 0, which indicates that player n experiences a collision
or does find idle channels. As the action space is extremely huge, e.g., a number of
the action space for M = 5, 6 are 120 and 720, respectively, it is desirable to reduce
the action space size for accelerating the convergence speed. A simple and efficient
approach is used as follows: all the active users use a common cyclic-shift matrix as
their action space, i.e., An = Bcs,∀n ∈ N.

Theorem 5.7 When a common cyclic-shift matrix is used as the action space for all
the players, the proposed stochastic learning algorithm asymptotically converges to
the best pure strategy NE points of both G1 and G2 if the learning parameter goes
sufficiently small, i.e., b → 0.

Proof The detail proof lines are not presented here but can be found in [15]. Following
the methodology for the convergence of the stochastic learning automata algorithm
presented in Chap. 2, and with some modification in dealing with the dynamic active
user set, similar lines can be used to prove the convergence. Moreover, since all the
players use a common cyclic-shift matrix as the action set, it is concluded that the
proposed learning algorithm converges to the best Nash equilibria of G1 and G2,
according to Theorems 5.3, 5.5, and 5.6. Therefore, Theorem 5.7 can be proved. 
�

http://dx.doi.org/10.1007/978-981-10-0024-9_2
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5.4 Simulation Results and Discussion

To begin with, the parameters and scenario setting for simulation are specified. The
normalized achievable throughput of an active player successfully accessing at the nth
channel in a slot is given by R = 1 − nτ , where τ = Ts

T is the sensing time fraction in
a slot. Following the similar setting in [23], the slot length is set to T = 100 ms and the
sensing duration is set to Ts = 5 ms. For its simplicity and easy implementation, the
energy detection approach [23] is employed and the spectrum sensing performance
is characterized by Pd(Ts) = 0.9 and Pf (Ts) = 0.1. Furthermore, for convenience
of discussion, it is assumed that the idle probabilities of the channels are the same,
i.e., θm = θ,∀m ∈ {1, 2, . . . , M}, and the active probabilities of the users are also
the same, i.e., λn = λ,∀n ∈ {1, 2, . . . , N }, otherwise specified.

5.4.1 Convergence Behavior

In this part, the convergence behaviors of the proposed learning algorithm in the
presence of dynamic active users are studied. Consider a network with five channels
and five users, i.e., M = 5, N = 5. Assume that the channel idle probabilities are
θ = 0.6 and the user active probabilities are λ = 0.5. The step size in the learning
algorithm is set to b = 0.05, which has been optimized by experiment.

First, for an arbitrarily chosen user, the evolution of its order selection probabili-
ties is shown in Fig. 5.4. It can be observed that the probabilities remain unchanged
in successive multiple slots, e.g., from slot 200 to 215, which is caused by the event
that it is inactive in these slots. The mixed strategy finally converges to a pure strat-
egy action (q = {0, 0, 1, 0, 0}) in about 400 iterations (slots). After slot 400, the
player adheres to the converging stable solution. Furthermore, the evolution of the

Fig. 5.4 The evolution of
the order selection
probabilities of an arbitrarily
chosen users (M = 5,

N = 5, θ = 0.6, λ = 0.5)
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Fig. 5.5 The evolution of
the aggregate interference
level (the number of
channels is M = 5, the
number of users is N = 5,
the channel idle probabilities
are θn = 0.6, and the active
probabilities of the users are
λ = 0.5)
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aggregate interference level is shown in Fig. 5.5. It is noted from the figure that it
finally decreases to zero in about 500 iterations, which implies that the converging
order selection profile is interference-free for every changing active user set. Thus,
the results presented in the figures validate the convergence and optimality of the
proposed learning algorithm in the presence of dynamic active user set.

Second, as the proposed learning algorithm takes several slots to converge to
stable solutions, its convergence time should be studied. Specifically, the expected
convergence time is defined as the number of iterations that when a component of the
mixed strategy of each player is sufficiently approaching one, e.g., larger than 0.95.
The expected convergence times when varying the number of users and the active
probabilities are shown in Fig. 5.6. Some important observations are as follows:

Fig. 5.6 The expected
convergence time (No. of
iterations) with different
numbers of users and active
probabilities in each slot (the
number of channels is
M = 10, and the channel idle
probabilities are θn = 0.8)
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• For a specific number of users, e.g., N = 5, the expected convergence time
increases as the user active probability decreases. The reason is that a user with
lower active probability performs learning occasionally, while the one with higher
active probability does more frequently.

• For scenarios with large active probabilities, e.g., λ = 0.5, 0.8, 1, the expected
convergence time increases when the number of users is small, e.g., N < 6, and
decreases when the number of users becomes large, e.g., N ≥ 6.

5.4.2 Throughput Performance

In this part, the throughput performance of the proposed learning approach is stud-
ied. Specifically, we compare the throughput performance of the proposed learning
approach with the random selection approach, in which each active player chooses the
sensing and access order randomly and autonomously. To study the effect of channel
availability on the system throughput, the following four scenarios are considered:

• (Scenario 1) homogeneous channels: all the channel idle probabilities are set to
0.8.

• (Scenario 2) slight heterogeneous channels: the channel idle probabilities are set
to {0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9}.

• (Scenario 3) moderate heterogeneous channels: the channel idle probabilities are
set to {0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9}.

• (Scenario 4) heavy heterogeneous channels: the channel idle probabilities are set
to {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.8, 0.9}.
The comparison results versus the user active probabilities are shown in Fig. 5.7.

The results are obtained by simulating 100,000 successive slots and then taking the

Fig. 5.7 The comparison
results versus the active
probabilities of the users in
each slot (the number of
channels is M = 10, and the
number of users is N = 10)
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Fig. 5.8 The comparison
results versus the number of
users (the number of
channels is M = 10, and the
active probability of each
user is λ = 0.7)
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expected value. It can be observed that the normalized expected system throughput
of both approaches increases as the user active probability λ increases. In addi-
tion, the comparison results versus the number of users are shown in Fig. 5.8. The
active probability of each secondary user is set to λ = 0.7. It is noted that the nor-
malized expected system throughput of both approaches increases as the number of
users increases. In addition, the proposed learning algorithm outperforms the random
selection approach for four considered scenarios significantly.

To summarize, the simulation results validate the convergence of the proposed
learning algorithm in the presence of dynamic active user set. Also, it is shown
that it outperforms the random approach significantly in both homogeneous and
heterogeneous scenarios.

5.5 Concluding Remarks

Compared with the interference modes considered in Chaps. 2, 3, and 4, we can see
that there are two new differences in this chapter: (i) the active user set is time-
varying, which is more general in practical wireless networks; and (ii) a generalized
interference metric is used to address the overlap in channel sensing order. Note that
following the methodology in this chapter, some studies on resource optimization
problems with dynamic active user set were recently reported in [24–26]. Thus,
it is believed that the model and results presented in this chapter provide efficient
solutions for multiuser resource optimization problems.

http://dx.doi.org/10.1007/978-981-10-0024-9_2
http://dx.doi.org/10.1007/978-981-10-0024-9_3
http://dx.doi.org/10.1007/978-981-10-0024-9_4
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Chapter 6
Future Direction and Research Issues

In this chapter, we briefly discuss some future direction and research issues with
regard to interference mitigation in the fifth-generation mobile communication
systems (5G).

6.1 Hierarchical Games for Small Cell Networks

With the ever-increasing demand for high-speed and high-quality wireless data appli-
cations, e.g., video streaming, online gaming, and social networks, small cell tech-
nology is emerging as a powerful and economic solution to boost the system capacity
and enhance the network coverage [1, 2]. Generally, typical small cells include the
operator-deployed micro-cells and pico-cells as well as the user-deployed femto-
cells. Specifically, femtocells are low-power and short-range access points, which
aremainly applied to improve the indoor experience of cellularmobile users andman-
aged by end users in a plug-and-play manner. Because small base stations (SBSs) are
deployed in the coverage range of a macro base station (MBS), from the perspective
of network operators, SBSs can drastically improve the spectrum efficiency due to
spatial reuse and offloading partial traffic load from the main network.

In practice, from the perspective of either an infrastructure or spectrum avail-
ability, it is more favorable to deploy two-tier small cell networks in shared spec-
trum rather than splitting spectrum scheme [3]. However, the co-existing issue of
co-channel deployed SBSs and MBSs brings about numerous technical challenges
in terms of interference management. Without proper interference control, the
cross-tier and co-tier interferences severely affect the overall system performance.
Accordingly, the interferencemitigation is an important research area and is regarded
as the major challenge in spectrum-sharing small cell networks.

Various interference mitigation schemes have been proposed for heterogeneous
wireless networks [4–7]. However, these approaches cannot be directly applied to
practical two-tier small cell networks, as these schemes are centralized and hence
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need coordination between SBSs and MBSs. As a result, it requires a large number
of timely cross-tier and co-tier information exchange and leads to heavy overhead
especially in large-cale scenarios. In addition, because of the randomness of mobile
users’ activity and the small cell access points’ placement, it results in the ad-hoc
topology of small cell networks, which implies that the networks’ topology is essen-
tially affected by end users’ behavior. Therefore, centralized optimization approaches
seem to be impractical, and hence it is desirable to develop distributed interference
management approaches for small cell networks.

Due to the hierarchical decision structure between MBSs and SBSs, it is suitable
and natural to apply the Stackelberg game, also known as leader–follower game or
hierarchical game, to model the hierarchical interaction and competition between
MBS and SBS in two-tier networks. Specifically, the MBS is modeled as leader and
moves first. In the sequel, the SBSs are followers and take their actions based on the
observation of leaders’ actions. Note that the Stackelberg game is the extension of
normal non-cooperative game. In a typical non-cooperative hierarchical game, the
Stackelberg equilibrium (SE) is commonly used as a universal solution concept. SE
is a stable operation point, at which no player can improve its utility by deviating uni-
laterally in the hierarchical game, which has the similar meaning as Nash equilibrium
(NE) in formal game. The hierarchical game addresses the differentiated demands
and priorities in tiered communication systems, and thus, it has been shown in
[3, 8–13] that Stackelberg games provide a suitable framework to implement inter-
ference management in two-tier small cell networks.

Technically, when it comes to apply the Stackelberg games into small cell net-
works, the following concerns should be addressed:

• Sophisticated utility function design. In the hierarchical game, both the leaders
and followers are aiming at maximizing their own utility function. Utility function
reflects the differentiation demand and preference of player involved in the game.
To avoid the tragedy of commons, leading to inefficient SE, the utility function
should be well designed to achieve improved performance in concerned metrics.
Moreover, the utility function should have the specific physical meaning such as
achievable rate, quality of experience (QoE), and energy efficiency.
To obtain the SE in a relative simple and low-computationway, the utility functions
are commonly well designed to satisfy some features, i.e., the utility functions are
designed as concave function shown in [3, 9] to facilitate the usage of backward
induction, so that the SE can be obtained in a closed form. On the other hand,
getting the closed-form SEmay be not an easy task, and some works are expecting
to obtain SE in a recursive manner that requires the utility function to meet some
specific characteristics [10]. For example, if the players’ strategy updating strategy
follows the standard interference function first introduced by Yates [14], it can be
guaranteed to converge to the stable operation point which admits an SE.

• Robust decision under information uncertainty. In practical systems, the
assisted information for decision making may contain uncertainty, i.e., some para-
meters involved in the utility function or constraints cannot be precisely observed.
The uncertainty may be caused by dynamic communication environment such
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as time-varying channel state information (CSI), information transmission error
caused by limited feedback bandwidth, and so on. The imperfect information sce-
nario is more practical than perfect assumption applied in [9, 11–13]. However, if
not well designed and optimized, the performance may degrade drastically under
the SE which is obtained with the perfect information assumption. From the per-
spective of optimization theory, there are two widely used approaches to deal with
the information uncertainties in game models [11]: (i) Bayesian approach [9]: it
considers the average payoff based on some prior distribution information, and
(ii) Robust optimization [11]: it considers the payoff for the worst-case scenario,
which is a distribution-free method.
Another efficient method is resorting to learning theory, e.g., the stochastic learn-
ing automata [15]. Under the hierarchical learning framework, the SBS and MBS
are assumed to behave as intelligent agents and have self-learning ability to auto-
matically optimize their configuration. Each smart agent’s overall goal is to learn
to optimize its individual long-term cumulative reward via repeatedly interacting
with network environment [16].

• Scalability with dense deployment. Network densification is the dominated
theme in the 5G communication systems [1]. However, the problem of interfer-
encemanagement under hyper-dense deployment of SBS is still an open issue. The
cost of obtaining the SE solution in large-scale scenario may drastically increase.
One possible approach is to split the large-scale optimization problem into sev-
eral dub-problems. Another possible solution is to build a smart decision system
based on cloud infrastructure owning powerful real-time computational capabili-
ties. Using the data mining technique and with the assistance of information base
in the cloud center, the users in system can utilize themixed information, e.g., feed-
back knowledge from either learning or reasoning, and multi-dimensional context
information including spectrum state, channel state information, location, energy,
etc., to make efficient decisions. In addition, the users can utilize machine learn-
ing methods, e.g., online learning and statistical learning in dynamic scenarios, to
make decisions more flexible, efficient, and intelligent.

6.2 Interference Mitigation for Carrier Aggregation

Carrier aggregation (CA) [17] has been regarded as a promising technology for
5G systems, as multiple spectrum bands can be simultaneously utilized to satisfy
the large bandwidth demand. Compared with most existing interference mitigation
approaches, there are some new challenges and problems for interference mitigation
with carrier aggregation. In particular, the inherent characteristics of CA should be
well addressed. However, this problem just begins to draw attentions very recently
and some research issues are listed below.

• The cost of non-contiguous CA should be addressed. In general, CA can be used
in three different scenarios: intra-band contiguous CA, intra-band non-contiguous
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CA, and inter-band non-contiguous CA. For intra-band contiguous CA, it needs
only one fast Fourier transform (FFT). For intra-band non-contiguous CA, it is
more complicated than the intra-band contiguous CA. Specifically, the multi-
carrier signal cannot be treated as a single signal and hence more transceivers
are required, which adds processing complexity significantly. For inter-band non-
contiguous CA, it requires separate FFT and needs the use ofmultiple transceivers.
In addition, reducing inter-modulation and cross-modulation from different trans-
ceivers also causes future complexity. Thus, the cost for non-contiguousCA should
be included in the interference mitigation problem [18], which differs significantly
from existing interference mitigation approaches.

• Autonomous guard band assignment. In practice, guard bands are needed to
prevent mutual interference among multiple users. The guard bands naturally con-
strain the spectrum utilization. Furthermore, fixed guard bands are not suitable
for scenarios where multiple operators independently and autonomously perform
CA. Thus, it is timely and important to achieve autonomous guard band assign-
ment. In [19], the authors investigated the problem of assigning channels/powers
to opportunistic transmissions, taking into account the constraint of guard bands,
and then proposed a guard-band-aware channel assignment scheme for dynamic
spectrum access systems with CA. Based on the above preliminary results, further
investigation is needed.

• The heterogeneous channel availabilities cause a new interference paradigm.
In practice, the licensed users always transmit at different times and on different
channels, i.e., the channel availabilities are heterogeneous. From the view of inter-
ference coordination, the transmission of unlicensed users is dramatically affected
if one of the aggregated channels is subjected to severe interference, even when the
other aggregated channels are interference-free. This interference diagram is dif-
ferent from traditional interference models without CA, e.g., the modes presented
in Chaps. 2–5. Thus, how to model and analyze the new interference paradigm for
CA is important and urgent.
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