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2. THEORY AND DEVELOPMENT OF TEACHING 
THROUGH VARIATION IN MATHEMATICS IN CHINA

INTRODUCTION

Chinese students’ strong performance in mathematics in various international 
comparative studies has been noticed for decades (Fan & Zhu, 2004). In particular, 
Shanghai students’ outstanding performances in PISA (OECD, 2010, 2014) have 
stunned educators and policy makers around the world. Researchers have investigated 
Chinese students’ excellent performance in mathematics from different perspectives 
(Biggs & Watkins, 2001; Fan, Wang, Cai, & Li, 2004), including societal, socio-
cultural perspectives (Stevenson & Stigler, 1992; Sriraman et al., 2015; Wong, 2008), 
student behaviors (Fan et al., 2004), teacher knowledge, and teacher professional 
development perspectives (An, Kulum, & Wu, 2004; Fan, Wong, Cai, & Li, 2015; 
Huang, 2014; Ma, 1999), and classroom instruction perspectives (Huang & Leung, 
2004; Leung, 1995, 2005; Li & Huang, 2013).

A close examination of mathematics instruction in China may help better 
understand why Chinese students can succeed in large class-size classrooms. 
Typically, Chinese mathematics classrooms have been described as large and teacher 
dominated, with students who are well disciplined, passive learners (Leung, 2005; 
Stevenson & Lee, 1995). Classroom teaching in China is polished (Paine, 1990), 
fluent and coherent (Chen & Li, 2010; Wang & Murphy, 2004), with a focus on the 
development of important content, problem solving, and proof (Huang & Leung, 
2004; Huang, Mok, & Leung, 2006; Leung, 2005). Furthermore, from a cultural 
and historical perspective, Chinese mathematics instruction has been identified with 
two fundamental characteristics: (1) two-basics-oriented (basic knowledge and basic 
skills) teaching, and (2) direct explanation and extensive practices with variation 
(Li, Li, & Zhang, 2015; Shao, Fan, Huang, Ding, & Li, 2013). Particularly, Gu, 
Huang and Marton (2004) theorized teaching through variation1 and argued that 
teaching through variation is an effective way to promote meaningful learning in 
mathematics for classes of large size. In this chapter the authors further examine the 
practice of teaching through variation from a cultural perspective and provide state-
of-the-art studies on teaching through variation in China. Finally, the authors discuss 
how teaching through variation can be implemented to promote deep learning of 
mathematics in classrooms.
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TEACHING THROUGH VARIATION: A CULTURALLY INDIGENOUS PRACTICES

Teaching and learning mathematics through variation is a widespread idea in China 
as reflected in the old Chinese maxim, “Only by comparing can one distinguish”  
(有比较才有鉴别). There are different opinions about using variation in 
mathematics education. Some focus on using problems with variation in textbooks 
or curriculum (Cai & Nie, 2007; Sun, 2011; Wong, Lam, Sun, & Chan, 2009) while 
others emphasize using tasks with variation in classrooms for promoting student 
learning (Gu et al., 2004; Huang & Leung, 2004, 2005). Teaching through variation 
in this chapter is aligned with the following definition:

To illustrate essential features of a concept by demonstrating various visual 
materials and instances, or to highlight essential characteristics of a concept by 
varying non-essential features. The goal of using variation is to help students 
understand the essential features of a concept by differentiating them from  
non-essential features and further develop a scientific concept. (Gu, 1999, 
p. 186)

In her study, Sun (2011) argued that the concept of conducting a lesson or practice 
with variation problems is an “indigenous” feature in China. First, the major 
traditional philosophical systems such as Confucianism (儒家) imply the variation 
notion. For example, Confucius said, “I do not open up the truth to one who is not 
eager to get knowledge, nor help out any one who is not anxious to explain himself. 
When I have presented one corner of a subject to any one, and he cannot from it learn 
the other three, I do not repeat my lesson.” (The Analects, 7: 8) (举一隅不以三隅反, 
则不复也) This principle emphasizes the importance of self-motivated inquiry for 
understanding invariant patterns within different situations. Second, many ancient 
Chinese mathematics treatises such as Nine Chapter of Arithmetic Arts《九章算
术》have been organized in a similar structure: concrete examples (stereotype 
problem) – invariant methods – application (variation problems). In this way, the 
invariant principles (general methods) were developed through the exploration of 
the variation of concrete examples and further consolidated by application in a 
variety of novel problems.

When discussing learning and teaching mathematics, ancient mathematicians 
also emphasized heuristic strategies through making use of variation. For example, 
in Shuan Fa Tong Bian Ben Mo 《算法通变本末》, Yanghui (杨辉，no details) 
pointed out that “good learners can grasp the whole category from typical examples; 
they don’t need to teach them all in detail” (Song, 2006). It means that teachers 
should adopt analyzing typical cases or instances, illustration with diagrams, and 
drawing inferences about other cases from one instance to help learners to broaden 
their knowledge from concrete instances. Another example, in Zhoubi Suanjin《周
髀算经》, a classic mathematics treatise, the following conversation between the 
teacher (Chenzi) and a student (Rongfang) revealed the teaching philosophy:
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Rongfang:	 I do not master the Dao (way). Can you teach me?
Chenzi:	� […] Now in the methods of the Way [that I teach], illuminating 

knowledge of categories [is shown] when words are simple 
but their application is wide-ranging. When you ask about one 
category and are thus able to comprehend a myriad matters, I call 
that understanding the Dao. Now, what you are studying is the 
methods of reckoning (the principles of learning mathematics), 
and this is what you are using your understanding for. [ …]. So 
similar methods are studied comparatively, and similar problems 
are comparatively considered. This is what sorts the stupid 
scholar from the clever one, and the worthy from the worthless. 
So, being able to categorize in order to unite categories-this is 
the substance of how the worthy will devote themselves to refining 
practice and understanding (Cullen, 1996, pp. 175–178, cited 
from Sun (2011)).

The above discussions about learning mathematics focus on using concrete examples 
to make sense of a category (a concept), grasping ways (generalization) across 
categories, and developing a hierarchical system of categories. All of these ideas 
reflect the key notion of using variation problems in learning mathematics.

In addition to the aforementioned traditional cultural values, ancient mathematics 
treatises and the strategies of mathematics learning, a civil service examination 
system associated with “educational attainment, career goals, social status, and 
political ambitions” (Li, Li, & Zhang, 2015, p. 72) has been established since Qin 
Dynasty (605–1905) in China. In modern China, mathematics examinations exist 
at all grade levels. In particular, the entrance examination for high schools and 
colleges are high-stakes and competitive. The high-stakes examination system has 
contributed to the origin of forming two-basics–oriented mathematics teaching, 
supported with teaching through variation (Li et al., 2015). Since mathematics 
teaching and examination focus on basic knowledge and skills that are defined by 
curriculum standards and the two “basics” are relatively invariant, the exam items 
have to be designed differently every time, although they have to adhere to standards 
and textbooks. So, examination items have to be created based on prototype problems 
in textbooks with varying forms (i.e., many variations while maintaining the same 
essence, 万变不离其宗). Thus, practices with variation problems surrounding 
standards and textbooks have been proved in practice to be an effective way to 
prepare students to succeed in their examinations (i.e., practice makes perfect, 熟练
生巧) (Li, 1999).

In addition to the traces of the roots in the ancient Chinese philosophy and 
mathematics treaties, teaching through variation has been promoted by the 
examination-oriented education system. Teaching through variation exists in many 
places without individuals’ purposeful awareness.
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EARLIER STUDIES ON TEACHING THROUGH VARIATION: CATEGORIZATION OF 
VARIATION AND MECHANISM OF USING VARIATION

Teaching and learning through variation problems has been practiced for centuries 
in China. Yet, the practice has only been examined empirically over the last three 
decades. Gu and his colleagues have explored how to use and theorize teaching 
through variation (e.g., Bianshi Teaching 变式教学) to increase student achievement 
in mathematics since the 1980s (Bao, Huang, Yi, & Gu, 2003a,b,c; Gu, 1981, 1994; 
Gu et al., 2004; Qingpu experiment group, 1991). This section describes the major 
concepts of teaching through variation. First, the authors introduce two essentially 
different types of variation in mathematics classroom teaching: conceptual variation 
and procedural variation, based on effective teaching experiences (Gu, 1981). Then, a 
key concept of potential distance featuring the procedural variation based on empirical 
studies is discussed (Gu, 1994).

Conceptual Variation

Conceptual variation refers to the strategies that are used to discern essential features 
of a concept and to experience connotation of the concept by exploring varying 
embodiments of the concept (i.e., instances, contexts) (Gu et al., 2004). It aims to help 
students develop a profound understanding of a concept from multiple perspectives. 
The sections that follow illustrate the critical features of conceptual variation.

Highlighting essential features through variations and comparisons.  Students’ 
learning of geometrical concepts is closely related to the following major factors: 
experience with visual figures that represent the concept and verbal description of 
the concept. Previous teaching experience in geometrical concepts in middle schools 
demonstrates that directly defining a concept by describing essential features of 
the concept may help students memorize the concept. For example, the concept of 
altitudes of a triangle includes two critical features: perpendicular to one side and 
passing through the vertex at the intersection of the other two sides. However, the 
observation and experiment in Qingpu (Gu, 1994) revealed that if a teacher only told 
students the definition precisely and asked students to memorize the definition, then 
students were likely to have superficial and rigid understanding. Yet, if a teacher 
provided opportunities for students to observe and compare deliberately designed 
variation concept figures such as standard or non-standard position figures, or 
counterexamples, and then highlighted the essential features of the concept, students 
are more likely to synthesize the critical features of a concept based on observation 
of concrete instances. One example of variation figures used for developing the 
concept of altitude of a triangle is shown in Figure 1.

As shown in Figure 1, a standard figure is used to introduce the concept of 
altitudes of a triangle that is aligned with daily life experience. But the concept 
of altitudes in geometry is not equivalent to the perceived meaning of daily life 
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experience. Thus, identifying altitudes in various triangles (positions and types of 
triangles) helps students abstract the essential features of the concept. Finally, by 
contrasting some common misconception figures, the critical features of altitude: 
“perpendicular to a side and passing through the opposite vertex of the side” are 
further consolidated.

Eliminating the distraction of complex background through transformation 
and reconfiguration of basic figures.  Geometrical figures usually consist of 
combinations of basic figures through separation, overlapping, and intersection. 
Sometimes basic figures are embedded in complex situations. The complex 
background figures often distract, distort, and mask students’ perception of 
embedded basic figures. Thus, essential features of a geometrical concept embedded 
in complex backgrounds are often hidden and difficult to identify or even subject 
to being perceived inappropriately. To address this learning difficulty, a traditional 
strategy was to purposefully isolate geometrical objects explicitly (such as using 
colors) from complex background figures (including real contexts), which has been 
proven in practice to be effective. However, the experiment in Qingpu (Gu, 1994) 
demonstrated that such a strategy might resolve the problem that inappropriate 
perception of figures constrains appropriate recognition of a geometrical concept. 
How logical reasoning activities may influence the comprehension of a complex 
figure is an important issue. These strategies include: analyzing the structure 
of complex figures or generating a complex figure through transformation (i.e., 
translation, rotation, reflection, and shrinking and expanding) of basic figures. 
Through these decompositions and compositions, the focused figures can be 
separated from complex background figures (See Gu et al., 2004 for details).

Examining the effectiveness of using these variations through quasi-
experiments.  Since 1980, the Qingpu experiment team has examined the 

Figure 1. Altitudes of triangle
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effectiveness of these variation strategies through “identifying effective methods 
based on implementation”, a Chinese version of “design-experiment” (Brown, 
1992): repeated within a short period (once a week), which includes an entire cycle 
of planning – implementation – evaluation – improvement. The effectiveness of 
these variation strategies has been testified through more than 50 cycles of studies 
within one year. In particular, quasi-experiment methods (numbers of students in 
experimental class and control class are similar) were adopted. The experimental 
studies aimed to examine the effectiveness of using variation strategies. The results 
of one experiment are discussed below.

In the first experiment, the instructional content is the concept of perpendicular 
lines. The experimental group is class A (50 students); the concept of perpendicular 
lines was briefly explained, and then students were provided a set of variation practices. 
After that, students’ errors were identified and discussed based on essential features 
of the concept. The control group is class B (51 students); the concept (definition of 
perpendicular lines) was repeatedly explained to students based on textbooks, then 
simple and repeated problems were provided for students to practice. After the class, 
a post-lesson evaluation test was conducted. To answer to the question, “What is the 
distance from a point to a straight line?”, the students from the control class mainly 
recited the definition from the textbook, yet the students from the experimental class 
explained the definition based on their understanding. The average correct rates on a 
basic problem of constructing a perpendicular line in both groups were about 70%. 
However, with the answers to non-routine problems (constructing a perpendicular 
line in non-standard position triangles, see below), there were significant differences 
between the two classes as follows:

Item 1, in the figure (on the right), asked students to 
construct a line DE containing D and perpendicular to 
AD. There was a significant difference (t = 2.13, p < 
.05) between experimental class A (mean = 5.80 (out of 
10 points)) and control class B (mean = 4.76).

Item 2, in the figure (on the right), asked students 
to construct the distance segments from B or C to line 
AD respectively. There was a significant difference 
(t  =  4.91, p < .01) between experimental class A 
(mean = 6.04) and control class B (mean = 3.97).

Thus, this study revealed that teaching through deliberate variation problems 
appears to be more effective than teaching through repeated explanations of a 
definition.

The second experiment was conducted one month later. The instructional content 
was the SAS Postulate (Side-Angle-Side): If two sides and the included angle 
of one triangle are congruent to the corresponding parts of another triangle, then 
the triangles are congruent. The teaching strategy was swapped: class B was the 
experimental group and class A was the control group. In experimental class B, 
the theorem of SAS was briefly explained to students, and then variation problems 
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(with variation figures) were provided for students to practice on. After that, students’ 
errors were discussed and corrected, with particular attention to identifying hidden 
conditions within a complex figure or context. In the control class A, the teacher 
explained the theorem (SAS), students restated the theorem, and then students were 
given several variation problems (without figures, which consist of overlapping or 
separating basic figures) to practice on. A post-lesson test showed that the answers to 
two slight variation problems had mixed results; the means in the experimental class 
were 85% and 67% while those in the control class were 79% and 70%. However, 
the answers to another two proof problems that included complex variations showed 
significant difference between the two classes as follows:

Item 3: in the figures (on the right), AE = BE, CE = 
DE, ∠1 = ∠2. Prove AD = BC. There was a significant 
difference (t = 3.18, p < .01) between experimental class 
B (mean = 8.66) and control class A (mean = 7.12).

Item 4: In the figure (on the right), ∆ ABC ≅ ∆ BDE 
are equilateral triangles. Prove: ∆ BCD ≅ ∆ BAE.

There was a significant difference (t = 2.11, p< .05) 
between experimental class B (mean = 5.21) and control 
class A (mean = 3.50).

On item 3, students had to recognize the symmetrical 
structure of ∆ ADE and ∆ BCE On item 4, the students had 
to recognize that ∆ BAE is rotated left 60˚ from ∆ BCD. 
These results show the effectiveness of using variation 
figures to help students identify target figures from a complex background figure.

In summary, the experimental studies in Qingpu (Gu, 1994) demonstrated that 
(1)  designing variation problems based on essential features of a concept, and 
comparing and contrasting concept images and non-concept images could help 
students clarify connotations and extensions of a concept; and (2) reconfiguring the 
structure of a complex figure and forming a figure through transformation of basic 
figures could help students reduce cognitive load and promote their understanding 
of  a concept in depth. Use of these strategies in teaching in a large class could 
promote more active learning.

Procedural Variation

Mathematical concepts are defined clearly and statically. Yet, obtaining mathematical 
activity experience and understanding of mathematical thinking methods are a 
dynamic process. Gu (1981) explored another variation, known as procedural 
variation. Procedural variation refers to creating variation problems or situations 
for students to explore in order to find solutions to problems or develop connections 
among different concepts step by step or from multiple approaches. Based on 
extensive teaching experience and reflection, Gu (1994) synthesized two critical 
features of procedural variation as follows (see Gu et al., 2004 for details).
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Solving problems through transferring figures.  Transferring is one of most important 
methods of solving problems in mathematics instruction in China. It means to break 
down a complex problem into simpler problems. The simpler problems provide 
the foundation for solving the original complex problem. Or reversely, based on a 
basic problem, through adding constraints, complicated problems can be created. 
Figure 2 is an example of how transferring methods could help prove a geometrical  
theorem.

Figure 2. An example of transferring problems

Figure 2 shows how the mid-point quadrilateral that connects four midpoints 
of a quadrilateral is a parallelogram can be proven based on a simple “anchoring 
property”, which states that the mid-segment of triangle (connecting two midpoints) 
is parallel and equal to half of the third side.

Building connections among different types of knowledge through categorization 
and building a hierarchical system of categories.  Categorization is an important 
mathematical thinking method. The key is to ensure that a categorization includes 
all instances without missing and overlapping. For example, the categorizations 
of triangles, the categorizations of special quadrilaterals, and the categorization of 
angles in a circle are typical examples of categorization activities. Another important 
issue is to build connections among various concepts and various concept figures, 
and to clarify logical relationships between different concepts. Figure 3 is a typical 
example of a concept map of angles in circles.

In Figure 3, there are three situations of inscribed angles in circles: the center 
of the circle is on one chord, between the two chords, or outside the two chords. In 
addition, there are: relevant angles formed between a tangent and a chord, angles 
formed inside of a circle by two intersecting chords, and angles formed outside of a 
circle by two intersecting tangents, two secants, or a tangent and a secant. However, 
Figure 3, which was presented by a teacher in a unit review lesson, presents the 
relationships among different angles clearly by adding critical auxiliary lines, both 
connecting relevant concepts and consolidating these concepts.
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Illustration of procedural variation with the analysis of an exemplary 
lesson.  Procedural variation relates to different mathematical thinking, either 
converging transformation or diverging transformation. Procedural variation is 
also derived from a prototypical problem, or combination and transformation 
of representations, or re-recognition or discovering, and so on. Different ways of 
thinking and multiple representations when creating procedural variations are beyond 
being dealt with by any conceptual variation. However, making a problem more 
difficult and complex through extensively varying problems is contrary to the goals 
of teaching through variation. Varying problems must serve for instruction processes 
and purposes. In addition to the quantitative results shown previously, we illustrate 
how to appropriately use variation problems by analyzing an exemplary lesson 
developed during the Qingpu experiment. The lesson focused on the theorem for 
determining isosceles triangles. Here, we just describe two segments of the lesson.

Segment 1: Multiple constructions and multiple proofs. In Figure 4: in an isosceles 
triangle, given the base BC and the angle ∠B formed by a leg and the base, construct 
the isosceles triangle.

Students provided a variety of constructing methods. Some constructed ∠C = ∠B 
and extended the sides of the angles so that they intersect at A. Some constructed 

Figure 3. The measurement of angles in circles
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the perpendicular bisector of base BC and intersect one leg at A. In addition, some 
students folded BC in half and found the vertex A and constructed the triangle. Based 
on the constructions of a triangle, the determining theorem of isosceles could be 
discovered: In ∆ ABC, if ∠B = ∠C, then AB = AC. Different proofs of this theorem 
could be found based on the construction of the figure. For example, the altitude 
of base BC can be constructed, or the bisector of angle A can be constructed, then 
prove ∆ ABD ≅ ∆ ACD; then, AB=AC can be obtained based on the properties of 
congruent triangles. In addition, students are encouraged to find various proofs: 
for example, if AB > (or <) AC, then ∠B > (or <) ∠C based on the property that 
in a triangle, the longer sides correspond to bigger angles. This is contradictory to 
the given of ∠B = ∠C. So, it is impossible that AB ≠ AC. This is Reductio ad 
absurdum (indirect reasoning). Moreover, if ∆ABC and ∆ACB are regarded as two 
overlapping triangles, then, because ∠B = ∠C, ∠C = ∠B, and BC=CB; thus, the two 
triangles are congruent (e.g., ASA) and therefore AB=AC. Based on different ways 
of constructing the figure, varying proofs were derived which are complementary to 
a single proof.

Segment 2: Varying the problems hierarchically. Based on previous teaching 
experience, exploration of multiple solutions to a problem and a set of problems 
which could be solved by the same method, should be better than seeking a 
solution to a problem regarding promoting students’ flexibility and profoundness 
of mathematical thinking (Cai & Nie, 2007). However, the Qingpu experiment (Gu, 
1994) indicated that exploring hierarchical-progressive variation problems could 
achieve a much better effect on student learning. The following is an exemplar for 
illustrating the feature of hierarchical-progressive variation problems. The initial 
problem is simple: In Figure 5(1), the bisectors of two base angles of an isosceles 
triangle ∆ABC intersect at D, determine whether the ∆DBC is an isosceles triangle.

The answer to the first problem (Figure 5(1)) is obvious. It aims to help students 
understand how to use judgment theorem and property theorem of isosceles triangles 
that are the basic knowledge of the content. In Figure 5(2), a segment EF passing 
through D is parallel to BC (EF||BC). Students were asked to find all isosceles 

Figure 4. An incomplete isosceles triangle
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triangles in the figure. ∆DBC and ∆AEF are obviously isosceles triangles, which 
is easy to prove. Then, students should focus on determining whether ∆EDB and 
∆FDC are isosceles triangles. If they are, prove that they must be. In this case, 
students have to use judgment theorem and identify the common relationships 
among the bisectors of an angle, parallel lines, and isosceles triangles. Immediately, 
students were asked to create their own problems based on the relationships and 
solve them by themselves. Students found the following results: D is the middle 
point of EF; EF = EB + FC and so on. This procedural variation was used to pose and 
explore subsequent challenging problems. In Figure 5(3), ∆ABC is not an isosceles 
triangle, but the bisectors of the base angles and parallel lines remain. Students are 
asked to individually think: among the statements posed in the previous problem, 
which ones are still tenable and which ones may be not true? This is a relatively 
complex problem. Repeated experiments showed that about 80% of the students 
who had experience with hierarchical-progressive variation problems could solve 
the complex problem, while only about 20% of the students who did not experience 
this process could solve the problem. Although, all students had similar academic 
backgrounds at preliminary stage of learning geometry.

In summary, the authors came to the following conclusions: (1) during 
mathematical activities, careful dealing with hierarchical levels of transferring from 
a related basic problem to a higher cognitive demand problem, and practicing with 
relevantly hierarchical-progressive variation problems could advance students’ 
capacity in solving problems step by step; (2) synthesizing common experiences and 
features during different hierarchical-progressive variation processes, and classifying 
and connecting these relevant variations could promote students’ development of 
hierarchical and systemic experiences. These strategies have evolved based on a 
great amount of effective teaching experiences. Actually, dynamic mathematics 
activities include an important characteristic, namely, the progression of knowledge 
and skills. This progression could be represented in the forms of hierarchical levels 
of knowledge or a series of strategies for, or experiences in, doing mathematics 
activities. Certainly, teaching through hierarchical-progressive variation problems is 
not the same as rote practice.

Figure 5. Hierarchical-progressive variation problems
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Mechanism of Procedural Variation

To understand the principles and mechanisms of procedural variation, the Qingpu 
experiment group (Gu, 1994) conducted a series of studies on student mathematical 
thinking processes between 1987 and 1988. These studies focused on psychological 
characteristics of learning through variation and describing progression of 
knowledge development and essential connections between what students have and 
what they are supposed to learn. The sections that follow describe the major findings 
of those studies (Gu, 1994) based on original data analysis (see Gu et al., 2004 for 
additional examples).

Anchoring knowledge point and new problems.  Students’ existing knowledge 
structure is the key factor influencing students’ learning of new knowledge. The 
anchoring knowledge point is critical for the success of exploration of a new problem 
(Ausubel, 1978). Anchoring knowledge point refers to the previous knowledge point 
that underpins learning of the new knowledge.

There were 180 middle school students participating in this experiment. 
Seventh, eighth, and ninth grade students occupied one-third of the participants 
equally; male and female averaged half; and the ratio among high, average, and 
low achieving students is 3:4:3. Using stratified samplings, 60 students participated 
in the experiment: teaching through variation; another 60 students participated in 
dissemination of the experiment; yet another 60 students participated in a control 
group: direct teaching the concept. Activity cards are used as a research tool. One 
example is shown in Figure 6. There were 6 groups of 5 items, 30 items in total. 
Groups 1, 3, and 5 included items that can be solved based on visual perceptions 
(constructing figures based on given data and then making judgments based on 
visual perceptions) while groups 2, 4, and 6 included items that can be solved 
based on logical reasoning (Making conjectures based on the given and providing 
justification).

Regarding the problem in Figure 6, the anchoring knowledge point of students of 
different grade levels were different and therefore, the knowledge distance between 
the problem and anchoring knowledge point of different grade levels was different. 
Seventh graders knew about segment diagrams, but had the largest knowledge 
distance; eighth graders knew about translations of figures (such as two triangles) 
and had a shorter knowledge distance; and ninth graders knew about the relationship 
between a line and a circle and had the shortest knowledge distance. The test results 
showed that the correct rate of students increased as the knowledge distance decreases. 
This finding reveals that learning new knowledge or solving new problems not only 
relies on the anchoring knowledge point but also relies on the knowledge distance. 
This finding also indicates the mechanism of teaching and learning with progression 
and provides implications for teaching through progressive variation problems.

In addition, students could develop their mathematics cognition as they grow 
up across grades; how might the cognitive maturity influence students’ ability in 
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exploring a novel problem? To address this concern, another problem was posed: 
exploration of Pick’s theorem was given to students of three grades (e.g., seventh, 
eighth, and ninth). The theorem is expressed as follows:

Given a simple polygon constructed on a grid of equal-
distanced points (i.e., points with integer coordinates) such 
that all the polygon’s vertices are grid points, Pick’s theorem 
provides a simple formula for calculating the area A of this 
polygon in terms of the number N of lattice points in the interior 
located in the polygon and the number L of lattice points on the 
boundary placed on the polygon’s perimeter:

Although this theorem is totally new to all students, the 
knowledge needed for exploring this theorem is basic: area 
of triangle and counting, making the anchoring knowledge 
point quite similar for students in all grades. Thus, the knowledge distance is quite 
comparable as well. The incorrect rates (vertical axis) of solving these two problems 
across grades are displayed in Figure 7.

In Figure 7, the dash-line reveals that, even with the similar anchoring knowledge 
point for all students in all grades, the correct rate increased as the grade increased; 
this implies students’ mathematical cognition maturity matters. The bold-line 

Figure 6. Example of activity cards (visual perception oriented judgment)
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indicates that with different anchoring knowledge point, the correct rate increased 
tremendously as the grade increased. The gains of correct rate of the two problems 
across grades are obviously different. This difference may reflect the co-impact 
of mathematical knowledge distance and cognitive level maturity. The “potential 
distance” between anchoring knowledge point and a new problem is determined by 
two factors: mathematical knowledge distance between anchoring knowledge point 
and the new problem, and cognitive maturity.

Measurability of potential distance.  As discussed previously, both the anchoring 
knowledge point and new problems are related to mathematical content. Thus, the 
potential distance could be measured through designing appropriate instruments 
(e.g., mathematical problems) and analyzing test results quantitatively. For instance, 
in the aforementioned examples (in Figure 7), the potential distance could be 
indicated by incorrect rate when exploring new knowledge or new problems. The 
lower the incorrect rate, the lower the potential distance. This is a kind of primary 
characterization/representation. Of course, further studies could be done through 
testing different content topics with larger samples and conducting advanced 
psychometric analysis to build standardized norms. Thus, potential distance is 
measurable, although more studies are needed in the area.

Differentiation of potential distance.  The potential distance between anchoring 
knowledge point and a new problem could influence the difficulties and 
achievements of students’ exploration of the problem. If the potential distance 
between new knowledge and anchoring knowledge point is shorter (short distance 

Figure 7. Incorrect rates of solving problems regarding different knowledge
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connection), it is easy for students to understand and master the new knowledge. If 
the potential distance is longer (long distance connection), the problem can support 
the development of students’ exploratory ability. A teacher could adopt different 
orientations of instruction: direct, exploratory, or combination according to different 
potential distances and learning goals.

RECENT STUDIES ON PROCEDURAL VARIATION: CORE CONNECTION AND 
LEARNING TRAJECTORY

In addition to the definition and features of potential distance described in the 
previous section, it was noticed that when the potential distance is too long, a 
majority of students have difficulties in approaching the new knowledge, which 
we conjectured was due to heavy cognitive load (Gu, 1994). The key questions 
that need to be addressed include: how can teachers help students build bridges 
between anchoring knowledge point and new knowledge? How can teachers 
provide effective scaffolding activities? How can teachers use variation problems 
to shorten the potential distance, if possible? A second analysis of data taken from 
the Qingpu experiment (Gu, 1994) reveals partial answers to these questions. The 
major findings include identifying core connection and setting appropriate Pudian 
(i.e., scaffoldings). In addition, based on an attempt to incorporate the western 
notion of learning trajectory (Simon, 1995) with teaching through variation in 
Chinese mathematics classroom, it was found that the teaching guided by the 
combination of learning trajectory and teaching through variation could promote 
students’ understanding of concepts.

Concept of Core Connection

In the Qingpu experiment (Gu, 1994), the teachers in the experiment group had 
emphasized the integration of numerical and geometrical representations, and 
invariant features within varying transformations after seventh grade. For instance, 
in the experimental class, the students were introduced to analyzing the positional 
relationship between two segments on a line using “segment diagrams” in algebraic 
lessons as shown in Figure 8.

Figure 8. Positional relationships between two segments on a line
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In Figure 8, a truck is shown travelling toward a bridge from East to West. The 
length of the bridge is a, the length of the truck is b, and the distance between the 
West end of the bridge and the front of the truck is d. To explore the quantitative 
relationship among d, a, and b, students need to determine the following relationships 
between the truck and the bridge: (1) when is the truck not on the bridge? (2) When 
is a portion of the truck driving on the bridge? (3) When is the truck entirely on 
the bridge? If students understand these problems clearly, then they can answer the 
relationship between two circles successfully (see Figure 6). Seventh graders know 
about segment diagrams and can apply the above process of variation problems 
to explore relationship between two circles. The longer potential distance of the 
seventh graders could be shortened greatly. Actually, the positional relationship of 
two circles can be transferred into the positional relationship between two segments 
(i.e., the distance between two centers of circles, radii). If students understand 
the positional relationship between two segments, then, they can easily grasp the 
positional relationship between two circles. It is critical to find the most essential 
and transferable connections between the anchoring knowledge point and the new 
problem. We define this type of crucial connection as “core connection.” Teaching 
through variation based on “core connection” could result in two unique effects.

Effects of Using Core Connection

The experiment data shows that there are important effects of using core connection. 
First, it could shorten the distance between anchoring knowledge point and a new 
problem. Second, it could mature cognitive thinking and advance thinking levels.

Shortening potential distance.  Based on the experiment of potential distance, a 
deep analysis of the data shows that using core connection could shorten potential 
distance. Students’ explorations of the five relationships between two circles between 
the experimental group and the control group (around 50 students) were examined 
and compared. In the experimental group, the teacher emphasized core connection 
by exploring problems with a truck and a bridge (Figure 8). Figure 9 shows students’ 
correct rates in exploring these relationships in the experimental and control group in 
seventh grade, and control groups in seventh and eighth grades. The results indicated 
that students’ correct rates from the experimental group was much higher than the 
control groups in seventh grade, and even higher than the control groups in eighth 
and ninth grades. These results imply that the use of core connection could shorten 
the potential distance significantly, and reduce the students’ cognitive load.

Advancing thinking ability.  Two types of test items, visual judgment and 
abstract logical reasoning, are used to examine the correlations between different 
mathematical thinking levels. The correlations between visual judgment and abstract 
logical reasoning in seventh, eighth, and ninth grades respectively are 0.390, 0.686, 
and 0.696. The data appears to imply that seventh grade is a transformative period 
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from visual to logical reasoning. The scatterplots in Figure 10 further illustrate 
that students from the experimental group in seventh grade moved toward logical 
reasoning levels from visual perceptions. This means the transformation from 
visual judgment to logical reasoning occurred one year earlier (from eighth grade to 
seventh grade). Thus, variation problem focusing on core connection could promote 
students’ transformation from visual judgment to logical reasoning significantly.

Figure 10. Scatterplots of students’ thinking tests in seventh grade

Instructional Pudian

Building on the concept of core connection and its importance in procedural 
variation, this section further discusses another closely related concept of “Pudian” 

Figure 9. Correct rates of exploring new problems across different groups



F. Gu et al.

30

(铺垫). According to Gu et al. (2004), Pudian is commonly used in Chinese 
classroom teaching, which is metaphorically described as “by putting blocks or 
stones together as a Pudian, a person can pick fruit from a tree which cannot be 
reached without the Pudian” (p. 340). Similar to the notion of scaffolding in the 
West (Wood, 1976), by establishing “Pudian”, the students can complete the tasks 
that cannot be done without the “Pudian.” In contrast, the Pudian emphasizes “the 
process and hierarchy” of learning (Gu et al., 2004, p. 340). In classroom instruction, 
Pudian could be appropriately applied to instructional design and implementation as 
follows: Teachers and students move from their existing knowledge and cognitive 
level toward obtaining new knowledge and solving new problems through effective 
instructional design (or Pudian). The segment diagram in Figure 8 is an appropriate 
example of how Pudian can help students move from existing knowledge toward 
exploring positional relationships between two circles.

There are multiple strategies to help students move toward higher levels of 
learning. By utilizing the terminology of scaffolding in the West (Pudian, in China), 
it is crucial to construct appropriate scaffolding when necessary, and remove 
the scaffolding when unnecessary. In particular, when designing discovering or 
exploratory learning, appropriateness of constructing and removing scaffoldings is 
essential. The researchers (Bao, Wang, & Gu, 2005; Huang & Bao, 2006) explored 
teaching of Pythagoras’ theorem by using scaffolding notions (see Figure 11).

Figure 11. Constructing and removing scaffoldings

In the left figure, when a, b, c given various integer values (Pythagoras’ number 
triples), then various data sets of a2, b2, 2ab and c2 could be collected; based on this 
data, many conjectures about the quantitative relationships among a2, b2, 2ab, and c2 
could be made (including Pythagoras theorem, and other conditional equations). After 
making conjectures, the role of the scaffolding (left grid in Figure 11) is complete, 
and thus, scaffolding must be removed. The right figure in Figure 11, the sides are 
labeled as letters a, b, and c, and calculating the area of the square extending on the 
hypotenuse is the key. The core connection is: Formula of completing square of sum 
used to calculate the area of a combination figure. From the anchoring knowledge 
point (area of triangle and square), students can use the scaffolding in the right figure 
to prove the theorem. This is a creative strategy that has evolved over decades.
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This strategy has derived from one of the traditional features of learning: 
learning and teaching progressively. Teachers usually identify several hierarchical-
progressive levels of subject topics, and then employ procedural variation problems 
(Pudian) supporting students to transcend their existing knowledge (anchoring 
knowledge point) to higher levels of knowledge. In Figure 11, the right figure is 
a simple and effective scaffolding (i.e., procedural variation) to support students 
to find proofs. These scaffoldings are interconnected progressively, which is a 
major strategy in Chinese classrooms. The scaffoldings or Pudian are instructional 
artifacts, which are designed for prompting student learning. Appropriate design and 
use of scaffoldings requires teachers to be creative designers, supporters, and guiders 
of student learning. An effective design of scaffoldings in China usually focuses on 
the progression of mathematical knowledge development and the “core connection” 
of different levels of mathematical knowledge.

Variation, Learning Trajectory, and Student Learning

Traditionally, teaching through variation mainly focuses on subject knowledge 
structure and teaching strategies from a teachers’ perspective. Recently, some 
researchers explored how teaching through variation could help focus attention on 
student learning (Huang, Miller, & Tzur, 2015; Huang, Gong, & Han, 2016).

Huang and colleagues (Huang et al., 2015) proposed a hybrid-model for 
analyzing students’ learning opportunities in the classroom. This model includes 
three hierarchical layers of principles for guiding mathematical instruction in 
Chinese mathematical classrooms. Teaching through variation (with bridging) is 
located at a meso-level. A macro-level is Hypothetical Learning Trajectory (HLT) 
and micro-level is known as reflection on activity-effect relationship (Ref*AER). At 
macro-level, HLT (Simon, 1995; Simon & Tzur, 2004) focuses on three key aspects: 
(a) goals teachers set for student learning in terms of conceptions (activity-effect 
relationships) they are expected to construct, (b) sequences of mental activities (and 
reflections on them) hypothesized to promote students’ transformation of their extant 
conceptions into the intended ones, and (c) tasks designed and implemented to fit 
with and promote hypothetical reorganization processes from available to intended 
mathematics. At a meso-level, based on teaching through variation, six components 
are proposed as being important for effective mathematics instruction. They are 
(1) tailoring old-to-new; (2) specifying intended mathematics; (3) articulating mental 
activity sequences; (4) designing variation tasks; (5) engaging students in tasks; 
and (6) examining students’ progress through variation practice. At a micro-level, 
teachers could monitor students’ learning through systemic reflections on activity-
effect relationships that include: (1) continually and automatically comparing the 
effects of the activity with the learner’s goal and (2) comparing a variety of situations 
in which the recorded activity-effect dyads are called upon, which can bring about 
abstraction of the activity-effect relationship as a reasoned, invariant anticipation. 
Based on a fine-grained analysis of 10 consecutive lessons taught by a competent 
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teacher in middle school in Shanghai (Clarke et al., 2006) using this framework, the 
authors concluded that: “our analysis of learning opportunities indicates the power 
of teaching through variation to deepen and consolidate conceptual understanding 
and procedural fluency concurrently” (Huang et al., 2015, p. 104).

Moreover, Huang, Gong and Han (2016) explored how teaching through variation 
and incorporating the notion of learning trajectory could be used as a principle 
for designing and reflecting upon teaching to promote students’ understanding of 
division of fractions. In their study, a lesson study approach (Huang & Han, 2015) 
was adopted: a group of teacher educators (practice-based teaching research specialist 
and University-based mathematics educators) and mathematics teachers worked 
together to develop lessons on division of fractions based on variation pedagogy 
and learning trajectory through three cycles of lesson planning, delivering/observing 
lessons, and post-lesson debriefings. Based on a literature review, a hypothetical 
learning trajectory on division of fractions was proposed as a foundation for the 
design of the lessons. Data consisted of lesson plans, videotaped lessons, post-lesson 
quizzes, post-lesson discussions, and teachers’ reflection reports. This study revealed 
that by building on the learning trajectory and by strategically using variation tasks, 
the lesson was improved in terms of students’ understanding, proficiency, and 
mathematical reasoning.

Combined, these studies indicate that teaching through variation and incorporating 
learning trajectory (reflection on activity-effect relationship of student learning) 
could provide students with opportunities to develop conceptual understanding and 
procedural fluency concurrently.

INTERPRETATION, IMPLICATIONS AND SUGGESTIONS

In previous sections, we discussed major concepts and principles of teaching through 
variation that included two types of variations, potential distance, core connection, 
and Pudian (scaffolding). All of these ideas envision a core conception of learning 
through exploring a series of hierarchical-progressive tasks. This section interprets 
teaching through variation from other theoretical perspectives and discusses 
implications for classroom instruction.

Theoretical Interpretations

Gu et al. (2004) explored theoretical interpretations of teaching through variation 
from multiple theoretical perspectives. First, from the perspective of meaningful 
learning (Ausubel, 1978) that emphasizes establishing the non-arbitrary and 
substantive relationship between learners’ prior knowledge and the new knowledge, 
they argued that conceptual variation could help students understand the essence 
of a concept and develop substantial relationships. Meanwhile, procedural 
variation could help students develop well-structured knowledge and non-arbitrary 
connections between different types of knowledge. Second, the notion of duality 
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of mathematics learning (Sfard, 1991) proposes that mathematical concepts can 
be conceived in two fundamentally different ways: structurally (as objects), and 
operationally (as processes). Gu et al. (2004) claimed that by creating these two 
types of variation, it would enhance students’ understanding of two aspects of a 
mathematical object: operational process and structural object (these two aspects of 
a mathematical object are complementary). Third, Gu et al. (2004) also discussed 
the similarities and differences between scaffolding (Wood et al., 1976) and Pudian 
(i.e., a strategy of procedural variation). Although both scaffolding and Pudian 
emphasize the support for students to achieve higher learning goals within zone 
of proximal development (Vygotsky, 1978), Pudian devotes more attention to core 
connection and hierarchical progression. Fourth, Gu and colleagues also discussed 
the relationships among Dienes’ theory (Dienes, 1973), Marton’s variation pedagogy 
(Marton & Tsui, 2004; Marton, 2015), and teaching through variation (Gu et al., 
2004). Dienes emphasizes “mathematical variability” and “perceptual variability”, 
while Marton stresses the patterns of what varies and what is invariant. Both of them 
mainly focus on conceptual variation. Thus, Gu et al.’s (2004) theory of teaching 
through variation developed the concept of variation pedagogy by illustrating 
procedural variation that focuses on developing problem solving ability and building 
a well-structured knowledge base. In the following section, an additional dimension 
of teaching through variation, namely, dimensions of variation, will be discussed.

Dimensions of variation.  Mathematical instruction has often been criticized in the 
past. For example, in the 1940s, famous mathematicians Courant and Robbins (1941) 
critiqued mathematics instruction that focused on simple procedural practice, which 
may develop students’ formal operation ability but has nothing to do with profound 
understanding of mathematics. In fact, precise understanding of mathematical 
concepts is the foundation of mastering mathematics, and effective problem solving 
is at the heart of all mathematics. Teaching through variation in China focuses on two 
fundamental aspects: understanding of concepts from multiple perspectives through 
conceptual variations and developing problem-solving ability and well-structured 
knowledge base through purposefully selected procedural variation.

The mechanisms and principles of teaching through variation (hierarchical-
progressive learning) include: (1) a measurable, plausibly potential distance between 
existing knowledge (anchoring knowledge point) and the new knowledge or new 
problems; adjusting the potential distance based on instructional goals and student 
learning readiness is critical; (2) both conceptual variation and procedural variation 
should reflect the core connection between existing knowledge and new knowledge 
to be learned, and design variation problems should surround the core connection. By 
using appropriate procedural variation problems surrounding the core connection, 
the potential distance could be shortened and learners’ thinking ability could be 
advanced.

Based on the research on classroom instruction reforms and practices over the 
past three decades, researchers have identified the following three critical aspects 



F. Gu et al.

34

of “core connection”: (1) Situation and application. This aspect is concerned 
with background and meaning of discovery and development of mathematics. It 
should be pointed out that background and application should not be treated as 
simply additional information. Rather they should be carefully considered from the 
perspectives of mathematical necessity and promoting learners’ understanding. For 
example, the segment diagram in Figure 8 presenting the relationships between a 
truck and a bridge seem simple, but it reflects the essential quantitative relationship 
that could be used to present the positional relationship between the truck and the 
bridge and could be further transferred to present the positional relationship between 
two circles. (2) Computation and reasoning. These are two basic and fundamental 
mathematical thinking methods that form a system of mathematical thinking. 
Mathematical thinking methods reflect the simplicity and convenience of logical 
connections within variant contexts or situations. For example, in Figure 5, the 
variation practices regarding isosceles triangles provide an example demonstrating 
core connection in a logical system from a problem-solving perspective. (3) 
Cognition of learners. Most importantly, student learning should be the focus of all 
decisions. When designing applications or contexts, it is critical to consider if they 
could motivate student learning and are conducive to developing students’ cognition 
and thinking. In Figure 11, the scaffolding (left figure) is designed for discovering 
Pythagoras’ theorem by creating several sets of Pythagoras triples; the other 
scaffolding (right figure) is designed for discovering proofs of Pythagoras’ theorem 
by calculating areas by completing square of sum. These are typical examples on 
how scaffoldings (Pudian) could be designed based on core connection between 
existing knowledge and new knowledge.

In summary, situation and application, computation and reasoning, and cognition 
level are three relatively independent dimensions, which form a comprehensive 
space of variation. Of course, when designing a particular lesson, we may focus on 
one or several dimensions and design greatly meticulous variation in those selected 
dimensions. Although constructing variation problems should be open, it should 
focus on essential goals: contexts of knowledge and development of new knowledge; 
transformation between complex and simple problems; and eliminating rote learning 
and mastering general and powerful methods.

Implications for Reform of Classroom Instruction

The tradition of teaching through variation has evolved for a long time in China. For 
further development, attention should be focused on the following two issues.

Variation surrounding core connection.  Variation does imply neither “the more, the 
better”, nor “the more difficult, the better.” There is an old saying, “ten thousand 
variation problems remains the same principle (万变不离其宗)”. The principle 
is promoting students’ learning of mathematics. Teaching through variation 
effectively requires addressing students’ learning differences. In order to implement 
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differentiated  instruction, multiple formative assessments could help teachers 
understand student learning, and adopt appropriate strategies of teaching through 
variation. These formative assessments include student-learning worksheets and post-
lesson homework sheets, which are developed, based on instruction objectives of 
units or lessons and used for diagnosing and removing learning obstacles, discussing 
major problems in class, and designing and making use of post-lesson homework.

In addition, when designing procedural variation, it is crucial to identify and make 
use of core connection about different content. Take one released item on 2012 PISA 
test, for example (Figure 12).

Figure 12. Walking problem on 2012 PISA test

The picture shows the footprints of a man walking. The pace length p is the 
distance between the rear of two consecutive footprints.

For men, the formula p/n = 140, gives an approximate relationship between n and 
p where, n = number of steps per minute, and p = pace length in meters.

Question 1: If the formula applies to Heiko’s walking and Heiko takes 70 steps 
per minute, what is Heiko’s pace length? Show your work.

Question 2: Bernard knows his pace length is 0.80-meters. The formula above 
applies to Bernard’s walking. Calculate Bernard’s walking speed in meters per 
minute and in kilometers per hour. Show your work.

Question 1 is used to test whether participants understand the formula, which 
acts as scaffolding for solving question 2. Question 2 is used to examine flexibility 
in using the formula and application of the relationship among distance, time, and 
velocity in daily situations. Each question demonstrates clear core connection 
between anchoring knowledge point and a new problem.

Core connection in algebra is abounding. For example, regarding operations 
with polynomials: the basic concept and skills include factors and like terms. Yet, 
like terms could be combined or split for different purposes. The purpose of using 
variation problem practice is not mainly for deriving a specific multiplication 
formula, or splitting, adding or factorizing formula. Rather it serves for understanding 
the core thinking methods: applications of operational principles of polynomials 
through transformation. For instance, first, transformation between multiplication 
and factorization, namely, (x – 1) (x – 12) = x2 – 13x + 12: from left to right means 
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multiplications (combination of like terms); inversely, it is factorization (including 
splitting like terms). Second, when discussing quadratic equations through the 
comparison of two equations: x2 + px + q = 0 and (x – a) (x – b) = 0, where a and b 
are roots of the equation, then, the relationships between roots could be presented 
as follows: a + b = –p, ab = q (Vieta’s Theorem): x2 + px + q = 0 can be transformed 

as  (where 
 
), thus, the quadratic formula can be derived. 

Third, when studying the quadratic function y = x2 + px + q, the function can be 

transformed as:  thus, when  y = maximum value of 

the function; Moreover, the monotone and symmetry properties of functions can 
be analyzed easily. In this way, the operations of multiplication, factorization, and 
completing the square can lead to the discussion of relationships between roots and 
coefficients of quadratic equations, monotonous properties, and symmetric features, 
maximum or minimum value of quadratic functions. This is a typical example in 
school mathematics of how new concepts can be derived through making use of 
core connection.

Variation promoting self-exploratory exploration.  One possible derivation of 
using variation in teaching is direct telling. Superficially, using variation knowledge 
eventually leads to telling rigid and cumbersome formulas. The ultimate goal of 
improving mathematics instruction is to develop students’ self-exploratory learning 
ability and their ability to learn how to learn by themselves without teaching in 
the future. Thus, it is necessary to establish a new classroom ecology of harmony 
in relationships between teachers and students. For example, teaching Pythagoras’ 
theorem for illustrating an ideal classroom ecology. Rigorous proofs of Pythagoras’ 
theorem are difficult for students to understand; “measurement and calculation”, or 
“cutting and pasting” methods are visual and interesting, but the teacher normally 
provides the results. The following is an example of self-exploratory learning of 
Pythagoras’s theorem (Bao et al., 2005).

As shown in Figure 11, students are asked to make conjectures based on calculating 
the area of squares in several situations (Figure 13).

Figure 13. Make conjectures through calculating area of squares
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In class, by using calculations on several diagrams (1)–(4) in grids, students 
created a set of data (see Figure 14).

Figure 14. Data collected based on selected diagrams

Based on these data, students are encouraged to make conjectures (correct and 
unexpected conjectures). The following is an excerpt focusing on proving and 
refuting:

1.	 S1: Based on the data in the table [Figure 14], I find that c2 = 2ab + 1.
2.	 T: [Surprise! Unbelievable] how can you make this conjecture? Is it possible?
3.	 S2: I investigated when a = 2, b = 4, 2ab = 16, c2 = 20, c2 ≠ 2ab + 1.
4.	 T: Student 2 used a counterexample to refute your conjecture. It disproves c2 = 

2ab + 1.
5.	 S3: Mr. I found that when the difference between a and b is 1, the result is tenable.
6.	 T: [Thinking in brain: c2 = (a – b)2 + 2ab, when b – a = 1, c2 = 2ab +1] This 

suggestion is correct. This is a conditional equation. Good, let us examine the 
other equation that many of you suggested: a2 + b2 = c2.

7.	 S4: This equation is tenable regarding the given four figures and numbers. But, I 
think that even if I examine 100 examples and the result is true, I cannot be sure 
that the equation is true when examining the next situation. So, we have to prove 
that this is true for all situations.

8.	 T: Whether a2 + b2 = c2  is a theorem? Examining more cases cannot prove it. What 
do we need to do?

9.	 Ss: We have to prove.

The previous discourse illustrated that students were actively involving 
mathematical reasoning activities such as making conjectures ((1)), disproving and 
refuting ((3)~(5)), and developing proofs ((7)~(9)). The teacher was a facilitator to 
guide and solicit students’ explorations.

Variation and learning trajectory.  As discussed throughout this chapter, the 
core idea of teaching through variation can help students develop profound 
understanding of mathematical concepts and flexibility in problem solving through 
forming a well-structured knowledge system using hierarchical-progressive 
variation problems which surround the core connection between different types of 
knowledge. Paying attention to student cognitive readiness and development is also 



F. Gu et al.

38

one key dimension of core connection. Yet, there are no concrete suggestions about 
how teachers can pay attention to student thinking and solicit student thinking. To 
this end, the exploratory studies by Huang et al. (2016) revealed an alternative. 
That is, to incorporate notions of learning trajectory with teaching through 
variation. Huang et al. (2016) found that through the combination of two theoretical 
perspectives, teachers were able to shift their focus on student thinking and 
solutions during lessons and post-lesson reflections, which eventually resulted in 
students’ development of deep understandings. They further argued that the notion 
of teaching through variation emphasizes specific strategies in using systematic 
tasks progressively (content-focused), but it has not paid explicit attention to the 
route of children’s learning. Thus, the incorporation of these two perspectives 
may provide a useful tool for designing and delivering lessons: Teaching through 
variation could help teachers strategically design and implement tasks in line with 
students’ learning trajectory.

CONCLUSIONS

This chapter discussed the cultural and historical origin of teaching through 
variation. The traditional culture value and ancient mathematical learning ideas 
have afforded mathematical teaching and learning through variation, and the 
exam-oriented education system has further strengthened this practice. Based on 
experiences and empirical studies, the core concepts and major mechanisms of 
teaching through variation have been developed. Two types of variation include 
conceptual variation and procedural variation. The former focuses on building the 
essential connections between existing knowledge and new knowledge, developing 
profound understanding of a concept from multiple perspectives. The latter intends to 
develop students’ problem-solving ability and develop an interconnected knowledge 
structure. By considering potential distance and Pudian, which are associated with 
core connection between existing knowledge (anchoring knowledge point) and the 
new knowledge or new problems, teachers are expected to design and implement 
hierarchical-progressive variation problems to achieve mathematical instructional 
goals. Appropriate implementation of teaching through variation is likely to 
develop students’ conceptual understanding and procedural fluency concurrently. 
However, theoretically, more empirical studies on defining and measuring potential 
distance, and defining and identifying core connection among different types of 
knowledge are needed. In addition, how to develop teaching through variation by 
incorporating relevant theoretical perspectives such as learning trajectory (Simon, 
1995) and mathematical teaching practices (NCTM, 2014) is a new endeavor worthy 
of exploring. Practically, implementing teaching through variation effectively 
requires teachers to possess a profound understanding of content knowledge and 
rich instructional expertise. It calls for pertinent teacher professional development 
programs.
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NOTE

1	 Teaching through variation is exchangeable with teaching with variation, or Bianshi teaching, 变式教学, 
in this chapter.
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