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INTRODUCTION

Historically, algebra in the U.S. has been viewed “as a gatekeeper to a college 
education and the careers such education affords” (Kilpatrick & Izsák, 2008, p. 11). 
As such, current curriculum documents emphasize the need to support all students in 
learning algebra (Common Core State Standards Initiative [CCSSI], 2010; National 
Council of Teachers of Mathematics [NCTM], 1989, 2000). To do so, however, 
requires a reconceptualization of the preparation students receive for the formal 
study of algebra (Kilpatrick & Izsák, 2008). In considering this preparation, scholars 
have indicated that students need opportunities to engage in algebraic reasoning 
(Blanton & Kaput, 2005; Earnest, 2014; Hunter, 2014; Kaput, 2008; Kilpatrick & 
Izsák, 2008). Different perspectives exist, though, with regard to the core aspects of 
algebraic reasoning.

Kaput (2008) characterized algebra in two ways. First, he described algebra as an 
inherited subject or cultural artifact. Second, Kaput portrayed it as a human activity 
that requires humans for it to exist. In our work, we focus on the latter and explore 
Kaput’s (2008) view that “the heart of algebraic reasoning is comprised of complex 
symbolization processes that serve purposeful generalization and reasoning with 
generalizations” (p. 9).

Within this view of algebra, Kaput (2008) described a core aspect of algebraic 
reasoning as involving “algebra as systematically symbolizing generalizations of 
regularities and constraints” (p. 11). Although this core aspect appears in some form 
across all strands of algebra, we are particularly interested in algebraic reasoning as 
it supports generalizing a pattern through argumentation for the purpose of building 
towards functions (Kaput, 1999; Warren & Cooper, 2008). This view of algebraic 
reasoning has permeated recent international curriculum documents (e.g., Ministry 
of Education, 2007; Ontario Ministry of Education, 2005) as well as U.S. curriculum 
documents for over two decades. Table 1 provides an overview of the algebraic 
presence in U.S. curriculum documents, including Curriculum and Evaluation 
Standards (CES, NCTM, 1989), Principles and Standards for School Mathematics 
(PSSM, NCTM, 2000), and Common Core State Standards for Mathematics 
(CCSSM, CCSSI, 2010).
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The inclusion of algebraic reasoning in U.S. standards is informed, in part, by a 
literature base that supports a need to develop algebraic reasoning in middle school 
students (Blanton, 2008; Carraher & Schliemann, 2007; Lins & Kaput, 2004; Soares, 
Blanton, & Kaput, 2005). Note that we define middle school students as those in 
grades five through eight, approximately 11 through 14 years old. Additionally, 
algebraic reasoning is described as the process of building general mathematical 
relationships and expressing those relationships in increasingly sophisticated ways 
(Ontario Ministry of Education, 2005; Soares et al., 2005; Warren & Cooper, 2008). 
Furthermore, Carraher and Schliemann (2007) stated that the role of functions was 
the link between learning algebra from the middle school level through college. Thus, 
implementing this view of algebraic reasoning in middle grades is substantiated 
and of “great relevance for mathematics education because it provides a special 
opportunity to foster a particular kind of generality” (Lins & Kaput, 2004, p. 47) in 
students’ thinking.

Table 1. Algebraic reasoning in U.S. documents

Understanding patterns

CES Analyze tables and graphs to identify relationships (Grades 5–8)
PSSM Generalize a variety of patterns with tables, graphs, and words (Grades 6–8) 
CCSSM Analyze patterns and relationships (Grade 5)

Representing mathematical situations

CES Represent situations with tables, graphs, and equations (Grades 5–8)
PSSM Use symbolic algebra to represent situations and to solve problems (Grades 6–8)
CCSSM Represent and analyze quantitative relationships (Grade 6)

Generalizing to functions

CES Generalize number patterns to represent physical patterns (Grades 5–8)
PSSM Identify functions and contrast their properties between quantities and contrast 

their properties from tables (Grades 6–8) 
CCSSM Use functions to model relationships (Grade 8)

Despite the importance of algebraic reasoning demonstrated in both the curriculum 
documents and the literature, U.S. and international classrooms have fallen short in 
providing an opportunity for this type of learning (cf. Carraher & Schliemann, 2007; 
Stacey & Chick, 2004). To address this issue, Blanton (2008) developed curricular 
materials aimed at supporting teachers as they introduce algebraic reasoning in 
elementary and middle grades. In these materials, Blanton (2008) described algebraic 
reasoning as a habit of mind that students acquire through instruction that gives 
opportunities to “think about, describe, and justify general relationships” (p. 93). 



DEVELOPING ALGEBRAIC REASONING THROUGH VARIATION IN THE U.S.

323

This focus allows for students to engage in algebraic reasoning, a process that is 
supported by the following teacher practices:

•	 helping students learn to use a variety of representations, to understand how 
these representations are connected, and to be systematic and organized when 
representing their ideas;

•	 listening to student’s thinking and using this to find ways to build more algebraic 
reasoning into instruction; and

•	 helping students build generalizations through exploring, conjecturing, and 
testing mathematical relationships (Blanton, 2008, pp. 119–120).

Through these practices, algebraic reasoning can focus on functional thinking 
via arithmetic tasks that are transformed into opportunities for generalizing 
mathematical  patterns and relationships (Blanton, 2008; Ontario Ministry of 
Education, 2005). One way that this can be accomplished is through varying a single 
task parameter (Blanton, 2008; Blanton & Kaput, 2003, 2005; Ontario Ministry of 
Education, n.d.; Soares et al., 2006).

Varying a “parameter allows you to build a task that looks for a functional 
relationship between two quantities” (Blanton, 2008, p. 58) and “can shift the focus 
from arithmetic thinking to algebraic thinking” (Ontario Ministry of Education, 
n.d., p. 19). This emphasis on varying a parameter suggests that applying a theory 
of variation to the design of instruction may be an important means for providing 
middle school students with an opportunity to engage in algebraic reasoning. 
Therefore, the purpose of this chapter is to present a case that describes a series 
of tasks whose development was informed by a theory of variation. Collectively, 
the tasks align with the vision established in the U.S. curriculum documents and 
aim to support the development of algebraic reasoning in sixth grade students. 
In the subsequent sections, a theory of variation will be presented, followed by a 
description of a four-task sequence, including its implementation in a sixth grade 
classroom. Finally, a discussion and reflection on the role of variation in the task 
sequence will be provided.

THEORY OF VARIATION

According to Marton, Runesson, and Tsui (2004), learning is a process in which 
students acquire a particular capability or way of seeing and experiencing. In order 
to see something in a certain way, students must discern critical features of an object. 
This is known as the theory of variation (Leung, 2012; Marton & Pang, 2006; 
Marton et al., 2004). The theory of variation can aid teachers in developing students’ 
algebraic reasoning skills by providing students with opportunities to discern 
critical aspects of what is to be learned, also known as the object of learning (Ling, 
2012). While teachers cannot guarantee the lived objects of learning experienced 
by the students, they can focus students’ attention on critical features by providing 
contrasting experiences that allow students to develop and test conjectures. After all, 
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students can only begin to understand the object of learning once they have seen it 
in various situations and with varying dimensions (Marton et al., 2004). Therefore, 
it is imperative that students discern the patterns of what varies and what is invariant 
in a learning situation (Leung, 2012). It is the main objective of the teacher to reveal 
these patterns to support students in powerful ways of seeing the intended object of 
learning, which leads to powerful ways of acting (Marton et al., 2004).

There are two features of the object of learning: “the direct and the indirect objects 
of learning” (Marton & Pang, 2006, p. 194). The direct object of learning is defined 
in terms of content, such as evaluating algebraic expressions. In contrast, the indirect 
object of learning refers to “the kind of capability that the students are supposed to 
develop such as being able to give examples, being able to discern critical aspects 
of novel situations” (Marton et al., 2004, p. 4). In the paragraphs that follow, we 
apply this theory of variation to the design and implementation of a four-task lesson 
sequence that aimed to support the development of algebraic reasoning. We include 
descriptions of both the direct and indirect objects of learning as evidenced in the 
design and enactment of the task sequence.

TASK SEQUENCE

Design

Defined as what the teacher aims for the students to learn, the intended direct objects 
of learning during this task sequence were for students to be able to generalize 
a linear pattern given a series of geometric figures, give the generalization as an 
expression involving one variable (i.e., an + b where a and b are integers), and 
justify the generalization based on the geometric pattern. This objective supports 
standard 6.EE.9 from the CCSSM (CCSSI, 2010), which states:

Use variables to represent two quantities in a real-world problem that change in 
relationship to one another; write an equation to express one quantity, thought 
of as the dependent variable, in terms of the other quantity, thought of as the 
independent variable. Analyze the relationship between the dependent and 
independent variables using graphs and tables, and relate these to the equation. 
(p. 44)

The intended indirect objects of learning, or capabilities to be developed, during the 
lessons included seeing the grouping structures within the geometric figures (a), 
relating these groups to the corresponding figure number (n), and recognizing the 
constant as what appears each time in the figure but is not in a group (b), where a, n, 
and b represent integers in the generalization an + b.

The students in these lessons needed to see linear patterns in different 
circumstances, with certain aspects varying in dimension. Research posits, “The most 
powerful strategy is to let the learners discern one at a time, before they encounter 
simultaneous variation of the features” (Lo & Marton, 2012, p. 11). This idea was 
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considered when developing the sequence of tasks. Table 2 provides an overview 
of the lesson sequence, including the geometric patterns featured in each lesson. In 
each task, a series of figures is presented and the student is expected to develop a 
means for determining the number of segments needed to produce the figure, based 
on the figure’s position in the pattern.

Table 2. Overview of lesson sequence

Task Fig. 1 Fig. 2 Fig. 4 Generalization

1 3n + 1

2 4n + 1

3 4n + 4

4 Students are given a generalization and are expected to create a 
geometric pattern.

__ n + 4

Task 1.  The purpose of this task was to introduce the process of generalizing 
the pattern. The intent was for Task 1 to provide a common experience on which 
to build for the students. This included introducing common vocabulary, such as 
generalization, and a particular way of looking for a relationship between the figure 
number and its corresponding figure. In this lesson, the intent was for students to 
experience variation with the number of segments in the figure (referred to as fence 
panels in the problem context and represented by toothpicks) given the number of 
squares (referred to as corrals in the problem context). Although the corresponding 
algebraic expression for n corrals is 3n + 1, the goal for this lesson did not necessarily 
include representing the pattern algebraically, only verbally. The variation in 
Task 1 was limited to only variation found within the pattern, as students examined 
Figures 1, 2, and 4 separately. Therefore, there was no contrast or anything with 
which to compare it, perhaps making it difficult to discern what aspects caused the 
general expression to be 3n + 1.

Task 2.  In order for the learners to discern the critical features of the object of 
learning, Task 1 focused on introducing the idea of finding a generalized pattern. In 
contrast, Task 2 introduced a different pattern that allowed students to experience the 
variation of one dimension of the object of learning – the number found in each group. 
The new pattern held the constant invariant, while the group value changed, leading 
to the corresponding expression 4n + 1. In this way, students had the opportunity to 
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see the object of learning under different circumstances and test the validity of any 
conjectures that they had, seeking to understand the new figures by trying to discern 
what was critical and what was not (Ling, 2012). Moreover, this task provided 
students with the opportunity to be aware of the two situations at the same time in 
order to compare and contrast them, what is known as “diachronic simultaneity” 
(Marton et al., 2004, p. 17). Based on what the students had experienced before and 
what they were experiencing in this task, there was the potential for them to develop 
“separation” (Marton et al., 2004, p. 16) with the group feature and be able to discern 
it from other features. It was also important that this first variation be situated within 
a similar situation so that everything else was invariant, making it clear what was 
affecting change.

Task 3.  Task 3 was similar to Task 2 in two ways. First, the grouping structure 
(i.e., the house shapes in the pattern), and thus the coefficient (a), remained the 
same. Second, variation of one dimension of the object of learning was present. 
However, in this scenario, it was the constant value that was separated so that 
students could experience how the invariant structure within the pattern affects the 
general expression. The teacher intended to keep the grouping structure the same so 
that this effect would be clearer. According to Marton et al. (2004), students need to 
experience the following related to the object of learning: contrast instances, make 
generalizations from varying appearances, separate each individual aspect, and fuse 
them together simultaneously (Leung, 2012). In this task, students are separating 
the last aspect of the object of learning. As a result, they should be able to discern 
between the two aspects of the object of learning and have a basic understanding of 
how varying dimensions of those aspects alter the general expression.

Task 4.  The purpose of this final task was to further develop students “professional 
seeing” (Marton et al., 2004, p. 11) of generalizing patterns by providing them with 
the opportunity to experience the object of learning from a novel perspective. In this 
task, students are asked to create a geometric pattern that satisfies __ n + 4. In order 
to build a corresponding geometrical pattern, students must experience the grouping 
structure and constant simultaneously and understand how each aspect affects their 
pattern. Afterward, students are able to compare and contrast solutions, recognize 
different grouping structures, and see multiple representations of the same algebraic 
formula.

Summary.  This sequence of tasks should allow students to become aware of the 
critical features of the object of learning through carefully selected experiences 
directed by the theory of variation. Through sequences of contrast, generalization, 
and separation (Marton et al., 2004), students should be able to enhance their 
“seeing” (Marton et al., 2004, p. 11) of the intended objects of learning. However, 
what matters most is what the learner actually encounters and what is possible to 
learn in the context of the lesson, what is known as the enacted objects of learning 
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(Marton et al., 2004). In the section to follow, the enacted objects of learning are 
described through the patterns of variation and invariance that were actually co-
constructed by the teacher and the students.

Implementation

In this section, we present a summary of the four-task lesson sequence (see Table 2), 
or enacted objects of learning, that was implemented in a sixth-grade class in a 
suburban school district located in the southeastern United States. The class had 20 
students and met for 55 minutes each day. The first author was the instructor for the 
lessons. In her role as a university professor, she spends a considerable amount of 
time teaching demonstration lessons in local schools and has been recognized for 
her expertise and experience in implementing reform-oriented lessons. The four-task 
lesson sequence was videoed for the purpose of developing a multimedia case to 
support teachers’ understanding of reform-oriented instruction.

Lesson 1.  To begin the lesson, the teacher described a problem scenario designed 
to support the students in understanding the task at hand.

I have some land that I just bought and I am going to build corrals on the land. 
We will use toothpicks to represent the corrals. (Displays a square-shaped 
corral made with four toothpicks). That will be one corral. How many panels 
does it take to build one corral? (Students respond with four.) I can build more 
than one corral but they will be built lengthwise. Now, I am cheap and I do 
not like to spend money. When I build the second corral, I do not double up 
on fence panels. (Displays two corrals made of toothpicks.) How many fence 
panels have I used? (Students respond with seven.) So here is our problem. 
I want to build as many corrals as possible on my land but I do not know 
how long the land is or how many fence panels I will need. This (pointing to 
Figure 2) is two corrals, and it takes seven fence panels. Predict how many 
fence panels we need for four corrals. Do you have your number? Build your 
corrals and see if your prediction is correct. (Students build four corrals with 
toothpicks.) How many panels did you need? (Students respond with 13.) So 
here’s our task: If I tell you the number of corrals I can build on my land, I need 
you to tell me how many fence panels I will need.

After supporting students in thinking about the problem scenario, the teacher asked 
questions aimed to support students’ recognition of the structure of the corral pattern.

T:	� When you built the corral and then counted the fence panels, how did 
you count? Think about how you could describe how you counted the 
fence panels. Jot down how you counted and we will share our strategies 
in just a moment. (Students take approximately one minute to write their 
strategies.) Let’s start with Ben.
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S1:	 I counted the first pen with four and then I added three three times.
T: 	� Do you all understand what Ben said? I am going to ask Candy to repeat 

Ben’s idea.
S2:	 He counted the first pen with four and then he counted threes.
T:	 Larry, how did you count?
S3: 	� I counted the left toothpick, then the top toothpick, then the bottom 

toothpick, then the right toothpick, like all in one box. (The student 
illustrates how he counted the remaining toothpicks: top, bottom, right, 
top, bottom, right, top, bottom, right.)

T: 	� Did someone count differently?
S4:	� I counted the ones in the middle, then the ones on the top, then the ones 

on the bottom.
S5:	� I counted the top and bottom and then the middle.

Following this exchange, each student was given a number of corrals (i.e., 6, 7, 9, 
10, 12) for which they were to figure out the corresponding number of fence panels. 
After students in their small groups checked each other’s work, the teacher asked the 
students to look across the different problems and identify two or three things that 
they noticed. The following exchange occurred.

T: 	 What is something that you or your partner noticed?
S1: 	� The number of panels is the number of corrals times three and then you 

add one.
T:	� I think I heard a lot of different groups saying something like this. I want 

you to talk about this – why would this be true? If you didn’t see this, 
check it with your problem. Check it – why would this be true?

S2:	� We thought because of the four and the rest was three. We didn’t have to 
add any more because the first one was whole.

S3: 	� If we are counting the first four and we take off one and add all the rest 
together that would bring us to, say nine times three is twenty-seven, and 
then you add back on the one you took off.

S4: 	� Wouldn’t that “three times the number of corrals plus one” – would that 
be a formula for the problem?

T: 	� I’m going to write that over here. Remember that I do not know how big 
the land is. What are some other observations?

S5:	� We noticed that you should make sure that you counted all the panels.
S6: 	� That the number of corrals had an impact on the number of panels.
S7:	� If you use a simple pattern and you lay it out the long way, it is easier to 

complete. It is simple to complete.
T:	� So you are thinking about how you can see the patterns in there. 

Remember that I do not know how big the land is. They are going to call 
me up and say, “Hey, we think you could have 200 corrals on there,” and 
I need to be able to immediately say how many panels I need. Which of 
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our observations is going to help me with that? Talk to your partner about 
that.

S8:	� The first one because it would be 200 times three which would be 600 
plus one making it 601.

T:	� Thumbs up if you agree that the first observation is going to be most 
useful for solving our problem. Ok. Thumbs up if you agree that for 
200 corrals we will need 601 fence panels. Wow! I am going to have to 
challenge you now. Remember this word formula. How could you use 
symbols and a variable to represent this first observation? Talk with your 
partner.

Students eagerly talked with their partner about how to represent the observation 
(i.e., the number of panels is the number of corrals times three and then you add 
one) with symbols. The following expressions were offered: C × 3 + 1; 3n + 1; 
(C*3) + 1; 3c + 1. Next, the teacher linked the students’ use of the word formula 
to the words expression and generalization. After some discussion regarding why 
the generalization was useful for the problem, the teacher asked how many corrals 
could be built if there were 61 fence panels. The class ended with a discussion of the 
solution to this problem.

Lesson 2.  For their homework, students revisited the corral task and responded 
to the following prompt: When Sarah looked at the corrals, she said that she saw 
groups of 3. What do you think she meant by that? To start the second lesson, the 
teacher asked the students to take out their homework sheet and compare their 
responses to this prompt. Then, the following exchange occurred.

T:	� I would like to have three people share with us what they have written. 
Alice?

S1:	� I thought that she started with the first corral and she took out the first 
toothpick so it would have groups of three toothpicks.

S2: 	� After you have the first set of four toothpicks, you have sets of three 
toothpicks.

S3: 	 She was thinking about three corrals.
T:	� My question is: We see how Sarah is thinking about these groups of three. 

Right? Alice said that toothpick is gone and we have these groups of 
three. And then Larry said we have this group of four and then we have 
these threes. And then Alden is talking about these corrals of threes. And 
so my question that I want you to think about inside your head for just 
a minute is: How did Sarah’s groups of three help us to think about the 
pattern? (The students discuss their thoughts in small groups.) Let’s start 
with Callie.

S4:	� Take out one toothpick and then there will be threes and then you add the 
one back.

T:	� How is this helping you?
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S4:	� Then you can figure out how many toothpicks?
S5:	� Every time you are going to times it by three and then – take that one 

panel off then times it and then add the one back.
S6:	� I thought maybe you could take one out and add three each time.
T:	� So you take the one out and add three each time. And repeatedly adding 

the threes is multiplying. (Teacher points at the multiplication symbol in 
the generalizations recorded from the previous day.)

S7: 	� She said that she saw groups, meaning there was more than one group of 
three. So when you did the formula and taking one out, you would just 
multiply the number of fence panels times the number of corrals that you 
have the number of fence panels that you need for all of them.

T:	� So from this what we are beginning to see is this idea of groups - when 
we are trying to figure out our generalization it is helpful to think about 
groups.

Following this exchange, the teacher introduced the task for the day by telling a 
story, similar to the one from the previous day and using a new shape for the figures, 
which the students called a house. After asking students to share what they noticed 
about the pattern, the teacher asked students to think about how this new pattern was 
different from the pattern explored on the previous day.

S1:	� Instead of the three in the pattern, we are going to have a four.
T:	� So you are thinking about multiplying by four. Someone else?
S2:	� Instead of adding three we are adding four.
T:	� Good. Another idea?
S3:	� Houses use four toothpicks.
T: 	� Do you all understand what he is saying? Where are the groups in this 

pattern? Remember in the homework, Sarah said something about the 
groups. Where do we see groups in this pattern? Write your ideas down 
on the paper.

S4:	� I see groups of four.
T:	� Will you come up and show us where you see groups of four? (The student 

demonstrates at the front of the class the groups of four that she sees.) Do 
you all see the same groups?

S5:	� Each one would have a group of four toothpicks, except for that first one.
T:	� How can we use our strategies to figure out how many toothpicks are 

needed for a certain number of houses?

Following this exchange, each student was given a number of houses (i.e., 8, 
9, 10, 11, 12, 15) for which they were to figure out the corresponding number of 
toothpicks. After students in their small groups checked each other’s work, the 
teacher used their number pairs (i.e., number of houses and number of toothpicks) to 
create a function table. In the function table, she recorded an n in the input column 
and asked the students to think about the corresponding generalization to record 
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in the output table. After time for small group discussion, the students offered the 
following generalizations: n x 4 + 1; 4n +1; 4h +1; 4 * n + 1. The lesson concluded 
by finding the output for an input of 50 and finding the input for an output of 81.

Lesson 3.  On this day, the opening of school was delayed by two hours due to 
inclement weather. As a result, the original lesson was modified to fit within 
a 30-minute timeframe. To begin the lesson, the teacher distributed a paper that 
contained representations of the new pattern. Students noted that a garage had been 
added to the houses. The teacher asked them to create a function table for the pattern. 
After several minutes of working, the teacher asked one student to display her work 
for the class to examine.

S1: 	� I took the one house – it was five toothpicks. And then I added another 
three for the garage. Then for the second one, I did the two houses, 
which was nine toothpicks and added three for the garage. Then I saw a 
pattern – add four each time so that’s 8, 12, 16, 20, 24.

T:	� Tammy, can I stop you a second? Will you all take a look at Tammy’s 
outputs and see if you agree with those? (Students compare their charts 
with Tammy’s work.) Ok, so keep going, Tammy.

S1: 	� I did the same thing and then the formula would be n times four plus one 
plus three or to simplify that it would be n times four plus four.

T:	� Tammy, can you tell us again how it is that you figured out the formula or 
the generalization?

S1:	� I took the formula that we did yesterday, n times four plus one, and I 
noticed that the garage was just another three sides so all I did was just 
add three to the formula.

T:	� And I noticed that some of the other groups did the same thing. They 
had the plus one and then the plus three, which simplified to 4n plus 
four. So the generalization that she is offering to us is n times four plus 
one plus three or n times four plus four. So I want you to do two things 
in your groups. First, take this generalization and check it. Take an input 
value, substitute it into the generalization, and see if it produces the 
correct output. And then second, I want you to think about why are we 
multiplying by four and then why today are we adding four when we 
were adding one yesterday? Talk to your partners. (Students work in their 
groups for several minutes, writing down their ideas.) Let’s share out 
whole group what we are thinking.

S2:	� I was thinking you would remove this square – the garage- and then you 
count the pieces of the houses and you get four and you multiply by the 
number of houses you have and then you add the four back on.

S3:	� You have four sides on each of the pentagon houses and then you add on 
the square and that puts the side back on the house.
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T:	� Remember how Sarah saw groups in our problem the other day. Talk to 
your neighbor about the groups that you see.

S4:	� She saw groups of four. (Student outlines the house, missing one side.)
T:	� It happens that there is a group of four here in the garage too. This four 

is different. This number sitting out there by itself is called the constant. 
So we are looking at what comes in groups and we are looking at the 
constant – what is sitting here.

With only a few minutes remaining in class, the teacher asked the different pairs 
of students to develop a pattern for a pre-selected generalization. All generalizations 
were of the form ___ n + 4, where the coefficient of n differed for each group. 
Students were not able to make much progress, however, as class ended.

Lesson 4.  Following some discussion of a homework problem, the teacher began 
class by asking students to look back across the three patterns developed during 
the previous three lessons. She reminded them of the groups and the constants that 
had been discussed previously. Then, students began working to develop their own 
geometric pattern that could be represented by the generalization that was assigned 
to them. Two groups were asked to present their work to the class. The dialogue from 
one discussion, which focused on the pattern shown in Figure 1, is featured here.

Figure 1. Pattern presented by students

T:	� Lets give our attention to this group and think about their work.
S1:	� We got four n plus seven. We thought about a house with two garages. In 

figure number one, you remove the two garages and count the four panels 
and then put the garages back on; that is the plus seven.

T: 	� Can you show us where your groups of four are?
S1:	� The groups of four are right there (outlines part of the house).
T:	� And where is the constant seven?
S1:	� It would be here in the garage.

Following the two presentations, students were asked to reflect on the ideas 
learned over the past four lessons. Students’ ideas included: the meaning of the word 
generalization; it can be hard to find figures given the generalization; the constant; 
the input/output table.
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THE PRESENCE OF VARIATION IN THE LESSON SEQUENCE

The intended objects of learning for this sequence of lessons were for students to 
be able to generalize a linear pattern given a series of geometric figures, give the 
generalization as an expression involving one variable (i.e., an + b where a and b are 
integers), and justify the generalization based on the geometric pattern. Employing 
the theory of variation allowed for the intended object of learning to be made 
accessible to the learners in the classroom. In this section, we present a discussion 
of the intended objects of learning, the enacted objects of learning, and the lived 
objects of learning.

Intended Objects of Learning.

The planned sequence of lessons, as represented in Table 3, demonstrates the 
intentional use of variation to bring attention to the features of linear functions. In 
the first lesson of the sequence, a toothpick pattern of corrals was introduced in 
order to provide a starting point for the discussion of linear functions. Then, within 
the first lesson, only the number of corrals was varied, bringing awareness to the 
relationship between an input and an output in a linear function. This use of variation 
established a common experience on which to build understanding of the process of 
generalization.

Table 3. Dimensions of variation by task

Task Dimension Variant Invariant Object of learning

1 Corrals Number of corrals 
(1 to n)

Group size (3) 
and constant 
(1)

How the number of corrals 
relates to the number of fence 
panels needed

2 Groups Group size (3 
to 4)

Constant (1) How the number within 
each group alters the general 
expression

3 Constant Constant (1 to 4) Group size (4) How the additional fence 
panels alters the general 
expression

4 Direction Given expression 
instead of picture, 
group size (4 to 
__ )

Constant (4) Create a geometric figure 
given a general expression

Day 2 
Homework

Type of 
Pattern

Counting shapes 
instead of sides

Generalization 
(3n+1)

Transferability

The subsequent lessons then proceeded to vary one feature of linear functions at 
a time so as to bring attention to the characteristics of the parts of a linear function. 
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The  second lesson focused on a new toothpick pattern in which the number in 
each group varied from the corral pattern of the first day. Then the third lesson 
presented a third toothpick pattern in which the constant was varied. In order to 
adhere to variation theory, the explored pattern for each day was of the same style 
(i.e., envisioned as built out of toothpicks), therefore allowing this aspect of the 
discussion to remain invariant. In addition, only the position in each sequence (or 
input) was varied within the main activity in each lesson. By keeping these portions 
invariant, the lessons drew attention to the varied feature, allowing students to 
separate these features.

Homework was assigned on days two and three in which the visually presented 
pattern was of a different form than the in-class toothpick models. This variation 
was intended to provide students an opportunity to extend their thinking about linear 
patterns into different visual images while maintaining the same generalization 
that had been explored in class. For example, the homework pattern on the second 
day was an equilateral triangle with squares built on each side of the triangle (see 
Figure  2). In counting the number of shapes (i.e., squares and triangles) used to 
create each “Y,” the generalization was 3n + 1, where n represents the position of 
the figure in the pattern. This problem required students to count shapes rather than 
segments but utilized the same generalization that students explored in class on the 
first day.

Figure 2. Homework task pattern for Day 2

The intention for including a different style of pattern in the homework was 
to vary  the type of pattern with which students interacted while keeping the 
generalization of the pattern invariant, bringing awareness to the transferability of 
the concepts of generalizations of linear functions.

Enacted objects of learning.  Throughout the four lessons in the sequence, the 
instructor focused student attention on the object of learning with clear questions. In 
the first lesson, the instructor asked, “When you built the corral and then counted the 
fence panels, how did you count?” This question encouraged students to consider the 
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different ways in which the panels could be counted and set in motion the possibility 
for a wide variety of generalizations. In the next phase of this lesson, however, 
the first  student offered that he noticed, “The number of panels is the number of 
corrals times three and then you add one.” This student statement seemed to 
constrain the ways in which other students later considered the generalization of the 
relationship. Rather than offering a rich variety of generalizations for the pattern, the 
generalizations were limited to similar expressions (i.e., C × 3 + 1, 3n + 1, (C*3) + 1, 
3c + 1). Although the generalizations were limited, the experience allowed students 
to focus on the pieces within a linear function and begin to operationalize the ideas 
of groups and constants as related to them.

At the start of the second lesson, the instructor focused student discussions on the 
homework by asking, “How did Sarah’s groups of three help us to think about the 
pattern?” This focusing question constrained student thinking to consideration of the 
groups rather than consideration of the entire linear function. We see the impact of 
this constraint in the responses of the students during the class discussion as students 
connected the groups of four in the day two lesson to the groups of three in the 
day one lesson. Student responses in the class discussion incorporated the language 
as they said, “I see groups of four,” and, “Each one would have a group of four 
toothpicks except for that first one.”

Having established the idea of the role of groups in linear functions during the 
first two lessons, the planned lessons varied the constant on the third day and held 
the number of groups invariant. After students generated the function for a new 
pattern, the instructor asked a focusing question: “Why today are we adding four 
when we were adding one yesterday?” Because the duration of the lesson on this 
day was shortened (due to weather delays), students did not have enough time to 
grapple with the idea of the constant and returned to discussion of the groups in their 
conversation. However, in their presentations on the last day of the lesson sequence, 
students clearly identified the role of the groups and the constant.

From observations of the enacted lessons, it appears that students were beginning 
to make sense of the concepts of the role of groups and the role of the constant 
in linear functions. The choice to use only toothpick structures during the lessons 
seemed to allow students access to learning about the concepts separately. In a 
continuation of these lessons, variation concerning the physical structure of the 
patterns may provide opportunities for students to generalize more broadly.

Lived objects of learning.  On each day of the lessons, students were assigned 
homework. We can glean some insight into the lived objects of learning by 
examining the student work, looking for patterns in learning. On the first homework 
assignment, students were asked, “When Sarah looked at the corrals, she said that 
she saw groups of three. What do you think she meant by that?” Student responses to 
this question varied. Within one group of students who were seated together in class, 
the responses included: “She saw three even groups of toothpicks;” “That there is a 
group of four and groups of three connected to it;” “That after you have one set of 
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four toothpicks you have sets of three toothpicks;” and “She saw three panels with 
three groups.” It is clear that there were still a variety of levels of understanding of 
the concept present in the class.

Homework assigned on the second day required students to draw figures related 
to the pattern presented in Figure 2 and then generalize the pattern. In most cases, 
students were able to draw the fourth and tenth figure in the patterns. However, 
various correct and incorrect generalizations of the pattern were suggested. Provided 
generalizations included: 3n + 1 (a correct generalization); 4n; n × n + 1; n + 7; and 
4n + 1. Of the 14 students who submitted the assignment, six of them provided a 
correct generalization. Of the eight who had incorrect generalizations, three provided 
responses that did not represent generalizations (i.e., 35 or 4).

Homework assigned on the third day included the following problem:

Joseph made a pattern using squares. The first figure of Joseph’s pattern is 
pictured below along with his function table. Draw the next two figures in 
the pattern so that the pattern matches the function table. Then, generalize the 
pattern.

Figure 3. Homework task for Day 3

On this assignment, half of the students provided a correct generalization. In other 
words, more students were attending to the nature of the role of groups and constants 
in generalizations of linear patterns. In addition, students were asked to create their 
own patterns and provide a generalization. Although many students still chose to 
work with toothpick models, there was more variation in the arrangement of the 
toothpicks and some students even chose to create a model other than a toothpick 
model.
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Across the assignments and in-class work, gains in understanding were found. 
Through variation on the object of learning, the students were afforded the 
opportunities to consider features of linear functions. The lived objects of learning 
indicate that most students were beginning to make sense of the concepts of linear 
functions.

CONCLUSION

Informed by the theory of variation and U.S. perspectives on developing algebraic 
reasoning in middle grades learners (Blanton, 2008; Blanton & Kaput, 2003, 2005; 
Kaput, 1999), the sequence of tasks presented in this chapter transformed student 
noticing into powerful ways of seeing. These tasks provided rich opportunities for 
students to learn by strategically varying features of the geometric figures being 
represented. By analyzing what varied and what was invariant, evidence was found 
of the development of the indirect objects of learning, as students were able to 
recognize patterns and discern the critical features of the object of learning, (i.e., 
the aspects and structure of generalized linear relationships). This process utilized 
variation as a means of building on concepts of pattern and generality, which are 
typically developed as a path to algebraic reasoning in Western English-speaking 
countries (APPA Group, 2004).

Moreover, the teacher incorporated questions during the lessons that elicited 
various strategies for counting the fence panels in order to support students’ 
“professional seeing” (Marton et al., 2004, p. 11). Focusing on different ways of 
counting provided students the tools by which they could count the fence panels 
without actually counting them one-by-one. The use of questioning in this way is 
an example of one of the pedagogical tools suggested as a means for extending 
knowledge of “numerical concepts to algebraic reasoning” (Hunter, 2014, p. 280). 
The incorporation of variation in the planning of the lesson tasks allowed for specific 
areas in which the instructor could press students to make public their thinking about 
the direct objects of learning (i.e., generalizations of linear patterns), which engaged 
students at a high level of cognitive function (Hunter, 2014; Kazemi, 1998).

Constructing these generalizations led students to be able to begin to transfer their 
understanding in order to build linear functions to represent the various geometrical 
figures. As a result, the series of tasks presented in this chapter collectively align 
with the vision and aim to support the development of algebraic reasoning in sixth 
grade students. From a theoretical perspective, careful analysis of the intended, 
enacted, and lived objects of learning found in this task sequence provides a clear 
picture of teaching through variation in the U.S. Further, this chapter provides an 
example that can potentially move U.S. algebra instruction away from a state in 
which schools do “not adequately prepare students to successfully navigate the 
significant transition from the concrete, arithmetic reasoning of elementary school 
to the increasingly complex, abstract algebraic reasoning required for middle school 
and beyond” (Blanton et al., 2015, p. 76).



A. T. Barlow et al.

338

REFERENCES

APPA Group (led by Sutherland, R.). (2004). A toolkit for analyzing approaches to algebra. In K. Stacey, 
H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra (pp. 73–96). 
Dordrecht: Kluwer.

Blanton, M. L. (2008). Algebra and the elementary classroom: Transforming thinking, transforming 
practice. Portsmouth, NH: Heinemann

Blanton, M. L., & Kaput, J. J. (2003). Developing elementary teachers’: “Algebra eyes and ears.” 
Teaching Children Mathematics, 10, 70–77.

Blanton, M., & Kaput, J. J. (2005). Characterizing a classroom practice that promotes algebraic reasoning. 
Journal for Research in Mathematics Education, 36, 412–446.

Blanton, M., Stephens, A., Knuth, E. Gardiner, A. M., Isler, I., & Kim, J. S. (2015). The development of 
children’s algebraic thinking: The impact of a comprehensive early algebra intervention in third grade. 
Journal for Research in Mathematics Education, 46, 39–87.

Carraher, D. W., & Schliemann, A. D. (2007). Early algebra and algebraic reasoning. In F. K. Lester, Jr. 
(Ed.), Second handbook of research on mathematics teaching and learning (pp. 669–705). Reston, 
VA: National Council of Teachers of Mathematics.

Common Core State Standards Initiative. (2010). Common core state standards for mathematics. 
Washington, DC: National Governors Association Center for Best Practices and Council of Chief 
State School Officers. Retrieved from http://www.corestandards.org

Earnest, D. (2014). Exploring functions in elementary school: Leveraging the representational context. In 
K. Karp (Ed.), Annual perspectives in mathematics education: Using research to improve instruction 
(pp. 171–179). Reston, VA: National Council of Teachers of Mathematics.

Hunter, J. (2014). Developing learning environments which support early algebraic reasoning: A case 
from a New Zealand primary school. Mathematics Education Research Journal, 26, 659–682.

Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. W. Carraher, & 
M.  L.  Blanton (Eds.), Algebra in the early grades (pp. 5–17). Reston, VA: National Council of 
Teachers of Mathematics.

Kazemi, E. (1998). Discourse that promotes conceptual understanding. Teaching Children Mathematics, 
4, 410–414.

Kilpatrick, J., & Izsák, A. (2008). A history of algebra in the school curriculum. In C. E. Greenes (Ed.), 
Algebra and algebraic thinking in school mathematics: Seventieth yearbook (pp. 3–18). Reston, VA: 
National Council of Teachers of Mathematics.

Leung, A. (2012). Variation and mathematics pedagogy. In J. Dindyal, L. P. Cheng, & S. F. Ng (Eds.), 
Proceedings of the 35th Annual Conference of the Mathematics Education Research Group of 
Australasia (pp. 433–440). Singapore: MERGA.

Ling, M. L. (2012). Variation theory and the improvement of teaching and learning. Gothenburg, Sweden: 
Acta Universitatis Gothoburgensis.

Lins, R., & Kaput, J. J. (2004). The early development of algebraic reasoning: The current state of the 
field. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of teaching and learning of algebra: The 
12th ICMI study (pp. 45–70). Boston, MA: Kluwer Academic Publishers.

Lo, M. L., & Marton, F. (2012). Towards a science of the art of teaching: Using variation theory as a 
guiding principle of pedagogical design. International Journal for Lesson and Learning Studies, 1, 
7–22.

Marton, F., & Pang, M. F. (2006). On some necessary conditions of learning. The Journal of the Learning 
Science, 15, 193–220.

Marton, F., Runesson, U., & Tsui, A. B. M. (2004). The space of learning. In F. Marton & A. B. M. Tsui 
(Eds.), Classroom discourse and the space of learning (pp. 3–36). Mahwah, NJ: Lawrence Erlbaum 
Associates.

Ministry of Education. (2007). The New Zealand curriculum. Wellington: Learning Media.
National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards. Reston, 

VA: Author.

http://www.corestandards.org


DEVELOPING ALGEBRAIC REASONING THROUGH VARIATION IN THE U.S.

339

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. 
Reston, VA: Author.

Ontario Ministry of Education. (2005). The Ontario curriculum: Grades 1–8 mathematics. Toronto, ON: 
Queen’s Printer for Ontario.

Ontario Ministry of Education. (n.d.). Paying attention to algebraic reasoning. Retrieved from  
http://edu.gov.on.ca/eng/literacynumeracy/PayingAttentiontoAlgebra.pdf

Soares, J., Blanton, M. L., & Kaput, J. J. (2005). Thinking algebraically across the elementary school 
curriculum. Teaching Children Mathematics, 12, 228–235.

Stacey, K., & Chick, H. (2004). Solving the problem with algebra. In K. Stacey, H. Chick, & M. Kendal 
(Eds.), The future of the teaching and learning of algebra (pp. 1–20). Dordrecht: Kluwer.

Warren, E., & Cooper, T. (2008). Generalising the pattern rule for visual growth patterns: Actions that 
support 8 year olds’ thinking. Educational Studies in Mathematics, 67, 171–185.

Angela T. Barlow
Department of Mathematical Sciences
Middle Tennessee State University, USA

Kyle M. Prince
Central Magnet School in Murfreesboro
Tennessee, USA

Alyson E. Lischka
Department of Mathematical Sciences
Middle Tennessee State University, USA

Matthew D. Duncan
Department of University Studies
Middle Tennessee State University, USA

http://edu.gov.on.ca/eng/literacynumeracy/PayingAttentiontoAlgebra.pdf

	15. DEVELOPING ALGEBRAIC REASONING THROUGH VARIATION IN THE U.S.
	INTRODUCTION
	THEORY OF VARIATION
	TASK SEQUENCE
	Design
	Implementation

	THE PRESENCE OF VARIATION IN THE LESSON SEQUENCE
	Intended Objects of Learning

	CONCLUSION
	REFERENCES


