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ADVANCE PRAISE FOR  
TEACHING AND LEARNING MATHEMATICS 

THROUGH VARIATION

“This book paints a richly detailed and elaborated picture of both teaching 
mathematics and learning to teach mathematics with variation. Teaching with 
variation and variation as a theory of learning are brought together to be theorized 
and exemplified through analysis of teaching in a wide variety of classrooms and 
targeting both the content and processes of mathematical thinking. Twenty diverse 
chapters from leading scholars provide a uniquely comprehensive view into this 
fundamental pillar of Chinese teaching, and demonstrate how the lens of variation 
reveals underlying connections between effective teaching practices around the 
world. Highly recommended.” 
– Kaye Stacey, Emeritus Professor of Mathematics Education, University of 
Melbourne, Australia

“Many teachers in England are excited by the concept of teaching with variation 
and devising variation exercises to support their pupils’ mastery of mathematics. 
However, fully understanding and becoming proficient in its use takes time. This 
book provides a valuable resource to deepen understanding through the experiences 
of other teachers shared within the book and the insightful reflections of those who 
have researched this important area. Variation is central to a national programme to 
improve mathematics achievement in England and many teachers have asked the 
question “why didn’t I think of teaching like this before? It makes perfect sense!” 
– Debbie Morgan, Director for Primary Mathematics, National Centre for 
Excellence in the Teaching of Mathematics, United Kingdom
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JILL ADLER

FOREWORD

In the recent past, I have included engagement with the notion of variation in the 
Masters course I teach focused on Teaching and Learning Algebra. Most of the 
students are practicing teachers. Their responses to the literature they read were 
interesting. For example, “this is common sense”, “this is what we do”, they said. 
They protested the need to theorize the idea, unconvinced of the value of making these 
‘common sense’, ‘obvious’ elements of their teaching visible and explicit. Over time 
the course matured. At the same time, my own research describing and interpreting 
shifts in mathematics teaching in South African classrooms drew substantively on 
the notion of variation as significant for exemplification in mathematics pedagogy 
(Adler & Ronda, 2015, 2017b; Adler & Venkat, 2014). And the teachers, both 
Masters students and others I work with in our professional development project, 
have come to appreciate the worth of deliberate attention to what and how they 
exemplify mathematical ideas, processes, and practices in their teaching. They 
further appreciate how this critical work of teaching is strengthened by attention to 
“variation amidst invariance” (Watson & Mason, 2006), to “contrast” and “similarity” 
(Marton & Tsui, 2004), to building generality and appreciating underlying structure 
in mathematics. Deliberate attention to selecting and sequencing examples enables 
them to teach more coherently; or more ‘powerfully’ as some have said; and having 
a language with which to talk about these aspects of teaching ignites and supports 
collaborative practice.

It was thus with enthusiasm that I accepted the invitation to write the foreword for 
this book. I was delighted by the opportunity of being able to read all its chapters in 
advance of others, and to pre-view their contents.

In the introductory chapter, the editors, Rongjin Huang and Yeping Li, provide 
an overview of the book, how and why it emerged in this form, and what they as 
editors and chapter authors hope can be learned. Indeed, there are numerous places 
in the book with review and reflective comments. There are introductory comments 
prefacing each part of the book, and two reflective and review chapters in the last 
part. Therefore, I will not go down that path here, but rather focus on what has stood 
out for me as I traversed the various chapters and contributions, for it is in these that 
I see its value and encourage its wide and critical reading.

What stands out first is the profound respect for the complex work of 
mathematics teaching, and the teachers who carry out this work. The pioneering 
work of Lingyuan Gu in Gu, Huang, and Marton (2004) has inspired a number of 
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studies on mathematics teaching through principles of variation. And that is the 
key – it is mathematics teaching that is studied, and then described, so as to make 
visible and explicit what it is that this work entails. Of course what is taught is not 
synonymous with what is learned, but what is taught – made available to learn – is 
critical. The mostly Chinese, but also other teachers who are the ‘subjects’ of the 
studies reported in various chapters in the book, are the leading actors in the story of 
variation that is developed. In his introduction to Section III, Konrad Krainer notes 
this too, and describes the positioning of teachers in the chapters in that section as 
key ‘stakeholders’ in mathematics education research and practice. Teachers are key 
participants in developing knowledge and understanding of the learning and teaching 
of mathematics in school. There is much to learn across the chapters in this book, 
both from the ways in which research has been carried out on specific classroom 
practices, and the induction of new mathematics teachers – and so learning as both 
researcher and new teacher from experienced teachers and teaching.

This is not the first book that foregrounds mathematics teaching practices in 
China, and it will not be the last. Its uniqueness, in the words of the editors, is its 
foregrounding and focus on variation. This includes a meta analysis of a ‘pedagogy 
of variation’ as it emerged in China and was described initially by Gu; explorations 
of such pedagogy in algebra and geometry lessons, and different types of lessons 
(review, problem-solving), as well as textbooks and other curricula texts; and 
engagement with research and writings on how ideas and theories of variation have 
been used in mathematics education research elsewhere. Its broad goal is to advance 
systematic examination of the teaching and learning of mathematics across contexts, 
through variation.

And this leads to what stands out next for me in the book: the language that 
has been developed to describe a pedagogy of variation as it is used in China and 
then elsewhere. Elaboration of terms like Bianshi, the distinction made between 
conceptual variation and procedural variation, Pudian (scaffolding), and related 
concepts of anchoring knowledge, chains of knowledge, make it possible for readers 
to interpret and engage with the research on these practices, and then relate these to 
their own research and teaching. The stand out for me is (and perhaps this is a function 
of translation into English) is the similarity of word use in mathematics education 
research elsewhere. Yet, the use often has different nuanced meanings, provoking 
reflection on what we mean when we name constructs as we must do in furthering 
conversations about our work. Key chapters in this book tease out similarities and 
differences in approaches and theories using variation, making it further possible for 
readers to grapple too with systematic examination across contexts and uses.

I will focus here only on the distinction between conceptual and procedural 
variation, as these words (conceptual, procedural) abound in the literature 
in mathematics education, referring sometimes to knowledge, sometimes to 
understanding, and sometimes to proficiency. In my current lesson study work with 
teachers (see Adler & Ronda, 2017a), the first task in planning a research lesson 
is to decide on the ‘lesson goal.’ We also refer to this goal, following Marton et al  
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FOREWORD

(op cit) as the ‘object of learning.’ We have found it useful and important to 
distinguish whether the ‘object’ is a mathematical concept (e.g., the notion of 
equality or the meaning of ‘solution’ or ‘solve’) or a mathematical procedure (e.g., 
algorithms or methods/strategies for finding the solution to an equation). Both 
the notions of equality and solution, and the methods and strategies for solving 
problems with equations are important in our curriculum, and introduced in the 
early secondary years. Then, depending on what is intended to be in focus, the 
examples, tasks, representations, and related meditational talk in the lesson would 
need to differ substantively. The research reported in many chapters in this book 
use the distinction between procedural and conceptual variation to analyze lessons 
and what is made available to learn. As I interpreted and learned from these studies, 
I appreciated the strong link here to pedagogic work: to elements, perhaps, of 
pedagogic content knowing, to when and how to transform a figure and so make 
available a new concept, to selecting a problem with multiple solution strategies, 
and to selecting many problems calling on the same underlying strategy. For sure, 
the use of ‘procedural’ here is in no way pejorative, without any relation to the 
notion of rules without reasons (knowing how without why), it is in alignment with 
procedural fluency in teaching as elaborated in Kilpatrick, Swafford, and Findell 
(2001). Yet, I believe there is still work to do, across uses of these constructs, to 
define more clearly what we mean when we use them, how we ‘see’ these in teaching 
and learning mathematics practices, and how they work analytically.

My third take away, is the question ‘why now?’ Why is it that variation in pedagogy 
is capturing attention now, or recapturing attention now? I first came across the 
notion of ‘variation’ in the mid-1980s as a pre-service primary mathematics teacher 
educator. I used Dienes’ (1973) perceptual variation productively in that work. It was 
interesting to see the influence of Dienes’ work in the early research in China. Yet, as 
I shifted my attention to language practices in multilingual mathematics classrooms, 
and teachers’ knowledge and practice, ‘variation’ did not feature. A short answer 
would be that my work lies within the social turn (Lerman, 2000), shaped also by 
social justice interests away from the cognitive or perceptive. But this trivializes the 
depth and breadth of Vygotskian theory. Yet it is now, some two decades later, that 
the value of the notion of variation for research and practice is in focus. And it has 
become important for a mathematics teacher professional development and research 
project in a context of deep inequality and poverty in South Africa.

A tentative suggestion, and this is how the chapters in this book resonate for me, 
is that variation is a productive metaphor/construct/tool (depending on how it is 
used) in our work, as we become more attuned to the complex work of mathematics 
teaching and the core practices of mathematics teaching within and across diverse 
classroom contexts. Pedagogic variation is perhaps one such core practice. The 
contribution of this book at this juncture is not only that it provides the field access 
in English to an important strand of mathematics education research in China, but it 
also positions this work in curriculum and pedagogy elsewhere – it offers a view and 
stimulates further work into pedagogy of variation around the world.
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RONGJIN HUANG AND YEPING LI

1. INTRODUCTION

A PERSONAL JOURNEY TOWARD UNDERSTANDING  
THE PEDAGOGY OF VARIATION

Both editors grew up in China and became high school mathematics teachers there. 
They learned about mathematics teaching in China not only as students, but also as 
teachers. Bianshi (i.e., changing or varying) teaching, or Bianshi exercise, viewed 
as a basic approach, has been used regularly in mathematics classroom instruction. 
Seeking multiple solutions to a problem, applying a mathematical method or strategy 
to solve a set of interconnected problems, and varying a problem into multiple 
problems are basic skills valued by all mathematics teachers in China. A variety 
of related books, journal articles, and teaching materials have been available for 
mathematics teachers to adapt such mathematics problems and methods in class. 
In 1990’s, Bianshi teaching, was clearly recognized and promoted as one of the 
most important teaching approaches nationwide due to Gu’s successful teaching 
experiment, which increased students’ mathematics achievement on a large scale 
in Qingpu County, Shanghai (Experimenting Group of Teaching Reform in maths 
in Qingpu, 1991). In his dissertation, Gu (1994) summarized four instructional 
principles including: emotional principle, accumulation step by step principle, 
activity principle, and feedback principle. To implement these principles, Gu 
(1994) further proposed different variation strategies for learning different types of 
mathematics knowledge such as concepts and facts, principles and theorems, and 
problem solving. He coined the strategies as concept-oriented variation and process-
oriented variation.

As a graduate student at the University of Hong Kong in late 1990s, the first editor 
also had an opportunity to learn about the theory of variation, written by Marton 
and his colleagues (Marton & Booth, 1997; Marton, 2015). The theory presumes 
that learning is about developing new ways of seeing or experiencing the object of 
learning, it is necessary to experience certain patterns of variation and invariance in 
order to discern critical features of the object of learning. Teaching then means to 
construct appropriate spaces of variation (Marton & Booth, 1997). Pondering on the 
Chinese practice in mathematics instruction and Marton’s variation theory of learning 
in general, the first editor developed his initial desire to explore the characteristics 
of mathematics instruction in Shanghai and Hong Kong from the perspective of 
variation (Huang, 2002). Based on a fine-grained analysis of eight Hong Kong 
lesson videos from TIMSS 1999 Video Study and 11 Shanghai lesson videos, he 
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provided a new description of Chinese mathematics classroom instruction where 
the teacher emphasized exploring and constructing knowledge, provided exercise 
with systematic variation, and scaffolded students’ engagement in the process of 
learning (Huang & Leung, 2004). Building on Huang’s (2002) dissertation and Gu’s 
(1994) research, Gu, Huang and Marton (2004) further interpreted and theorized 
the Chinese Bianshi teaching practice in mathematics by building connections 
with Western theories, including Dinese’ theory (Dienes, 1973), Marton’s theory 
of variation of learning (Marton & Booth, 1997), notions of scaffoldings (Wood, 
Brunner, & Ross, 1976) and the concept of Vygotsky’s (1962) “Zone of proximal 
development” (Gu et al., 2004). They argued that Bianshi teaching is an effective 
way for promoting meaningful learning in large size classrooms.

The idea of developing this book grew directly from our previous publication 
on mathematics teaching in China (see, Li & Huang, 2013). As the previous book 
provided the first comprehensive account of how the Chinese teach mathematics and 
improve teaching, it has become clear to us that readers want to learn more about 
mathematics teaching in China. Existing research documented many important 
features of Chinese teachers’ practices, such as Teaching Research Group (e.g., Ma, 
1999; Yang & Ricks, 2013), teaching contest (e.g., Li & Li, 2009), instructional 
coherence (e.g., Chen & Li, 2010), and teaching and learning through variation (e.g., 
Gu, Huang, & Marton, 2004). In the spirit of making a focused account of specific 
features one at a time, this book was designed to focus on teaching and learning 
mathematics through variation.

Clearly, the book differs from previously published books on mathematics 
teaching in China, as all contributors were asked to focus on this specific feature. 
The book is unique, as it provides readers with both comprehensive and in-depth 
accounts of this important feature practiced in mathematics classrooms in China.

The book also differs from many previous books through the inclusion of chapters 
that document similar practices in other education systems. The initial thought was 
to find out if similar practices were available in other education systems, and if so, 
provide a venue for us to learn about these practices from an international perspective. 
Such a thought was soon confirmed through our on-going work with mathematics 
teachers in the USA. We noticed that some teachers used mathematical tasks in their 
instructional designs and classroom instruction that reflected several principles of 
variation pedagogy, but they could not articulate the rationale for such tasks when 
asked. To examine U.S. teachers’ capacity in adapting variation pedagogy, a group 
of U.S. mathematics teachers was asked to implement a Chinese lesson plan that is 
designed according to Bianshi teaching principles. This exploratory study led to an 
exemplary lesson that implements mathematical practice effectively through using 
the patterns of variation (Huang, Prince, & Schmidt, 2014). Such an initial success 
also led us to believe that this effective teaching practice in China could be adapted 
in mathematics classroom teaching in other education systems. This book should be 
an important and valuable read for those who seek ways of improving their teaching 
practice in order to advance student learning.
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WHAT THIS BOOK IS ABOUT

Improving the quality of mathematics teaching and learning has been the focus of 
mathematics education for years. One method has been to identify and examine 
specific approaches and practices that prove to be effective in high-achieving 
education systems, including China (e.g., Fan, Wang, Cai, & Li, 2004; Leung, 1995; 
Li & Huang, 2013; Stevenson & Lee, 1997; Stigler & Stevenson, 1991). Existing 
studies (e.g., Gu, Huang, & Marton, 2004; Wong, 2008) have documented that 
Bianshi (i.e. teaching with variation) is a commonly used and effective approach 
in mathematics teaching and learning in China. Meanwhile, researchers in the West 
have also emphasized the use of variation to improve mathematics teaching and 
learning, such as deliberately varying mathematical tasks to facilitate students’ 
learning of mathematics (Rowland, 2008; Watson & Mason, 2008). Specifically, 
Learning Study, a combination of lesson study and design experiment guided by 
Marton’s theory of variations for learning (e.g., Cheung & Wong, 2014; Lo & 
Marton, 2012; Marton & Pang, 2006), has demonstrated its potential importance in 
prompting students’ learning and participating teachers’ professional development. 
The use of pedagogy of variation seems to be effective for promoting students’ 
learning in mathematics in different contexts. However, there is a lack of systematic 
examination of the pedagogy of variation for learning, teaching and learning 
mathematics through variation in particular, which could go well beyond what we 
know has been valued in China. Possible questions that can be examined include: 
What are the theoretical foundations and interpretations of Bianshi teaching that 
has been proven to be effective in China? What are possible similarities and 
differences among various notions of teaching and learning mathematics through 
variation globally? How may a theory of teaching and learning mathematics through 
variation be related to curriculum development? How may such a theory be used 
in mathematics teacher preparation and teacher professional development? Are the 
notion of teaching and learning through variation culturally specific or universal? A 
systematic examination of these questions will not only help us better understand the 
characteristics of mathematics teaching in China, but it will also connect with what 
are perceived as effective practices in other education systems.

STRUCTURE OF THE BOOK

This book is organized into five parts to provide both general and specific accounts 
of teaching and learning through variation. The first part presents various notions 
about teaching and learning through variation (Gu, Huang, & Gu, 2017; Pang, Bao, 
& Ki, 2017), an extension of using variation in a dynamitic learning environment 
(Leung, 2017), and a synthesis of the pedagogy of variation (Watson, 2017). The 
second part provides various examples about the pedagogy of variation that has 
been used to guide mathematics teaching in China. The vivid lesson cases include 
different topics such as algebra and geometry, which were enacted in different 
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types of lessons, such as the introduction of new concepts (Huang & Leung, 2017; 
Mok, 2017), exploration of new propositions (Qi, Wang, Mok, & Huang, 2011), 
problem solving (Peng, Li, Nie, & Li, 2017), and review of knowledge (Huang, 
Huang, & Zhang, 2017). The third part extends to other aspects that can contribute 
to the success of classroom instruction through variation, including textbooks 
(Zhang, Wang, Huang, & Kimmins, 2017) and teacher professional development 
approaches (Ding, Jones, & Sikko, 2017; Han, Gong, & Huang, 2017). The 
fourth part demonstrates how the pedagogy of variation has been widely used in 
mathematics teaching and task design in selected countries including Japan, Israel, 
Sweden, and the U.S. Finally, the fifth part contains three commentary chapters 
to provide specific accounts of the pedagogy of variation and its implications for 
mathematics instruction from different lenses such as East Asian perspective (Wong, 
2017), European perspective (Marton & Häggström, 2017), and Western perspective 
(Mason, 2017). In addition to these chapters, each of parts 2–4 includes preface for 
readers as a guide for reading and reflecting upon that part. The preface for the entire 
book helps highlight some important ideas that the reader can attend to.

Collectively, the book provides a rich picture about what the theories of variation 
pedagogy look like and how the theories have been implemented in teaching various 
topics and lessons in China. In addition, a focus on the use of variation pedagogy 
in textbooks, novice teachers’ mentoring, and implementing innovative ideas of 
new curriculum through professional development programs at system levels may 
be crucial for implementation of the variation pedagogy in classrooms. Finally, the 
book provides evidence that the pedagogy of variation can be utilized in selected 
educational systems.

WHAT READERS CAN EXPECT TO LEARN

The reader may find that each chapter tells a story about the theory of variation 
pedagogy and its application in mathematics classroom instruction. Some big ideas 
can emerge when comparing and contrasting different chapters within and across 
parts. In this session, we attempt to highlight some of these big ideas.

What is variation pedagogy? Four chapters in Part I illustrate major notions of 
teaching and learning through variation. In Chapter 2, Gu et al. (2017) discuss the 
historical and cultural origin of Bianshi teaching (i.e., teaching with variation), 
describe experimental studies on synthesizing the concepts and mechanism of 
Bianshi teaching, present theorization of Bianshi teaching over the past decades, and 
report the latest attempts to develop the Bianshi teaching theory by incorporating 
western notion of learning trajectory. Pang et al. (2017) juxtapose and compare the 
major claims of Bianshi teaching and Variation Theory of Learning (Marton, 2015) 
through examining a mathematics lesson from the two theoretical lenses. They 
conclude that both theories appreciate the importance and necessity of experiencing 
certain patterns of variation and invariance for student learning. Although the 
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priorities of sameness and differences when constructing patterns of variation differ, 
they are complementary, and thus essential. Leung (2017) discusses how variation 
can be used as a pedagogical tool in the context of mathematics teaching and 
learning when a dynamic virtual tool is employed. He proposes a set of Principles 
of Acquiring Invariant that is complementary to the patterns of variation in Marton 
(2015)’s Theory of Variation of Learning and is further explored under a tool-based 
teaching and learning environment. Finally, Watson (2017), building on comparing 
various notions of variation, argues that the use of variation in mathematics teaching 
should draw on leaners’ attention to “dependency relationships” that are invariant in 
mathematics, and illustrates how a careful use of variation can lead to abstraction 
of new ideas. The notion of “dependency relationships” echoes the notion of “core 
connection” articulated by Gu et al. (2017).

How can variation pedagogy be effectively implemented in mathematics 
classrooms? Part II includes five chapters demonstrating various examples in 
Chinese classrooms. Chapter 6 (Peng et al., 2017) focuses on the teaching of problem 
solving by examining a well-structured lesson on solving right triangles in contextual 
situations from the perspective of variation. Two major patterns of variation are used 
to develop student problem-solving ability and generalization. They are varying the 
conditions or contexts of the problems and seeking various methods of solving the 
problem. Chapter 7 (Qi et al., 2017) reports an experimental study on teaching an 
algebraic proposition guided by Bianshi teaching principles and features of student 
learning. Their data analysis revealed that a vibrant application of the Chinese 
pedagogy of variation in tandem with a mathematical thinking dimension enhanced 
student-learning outcomes. Chapter 8 (Huang & Leung, 2017) provides a fine-grained 
analysis of a geometry lesson based on Gu et al. (2004)’s framework. It reveals that 
the dimensions of conceptual variation focus on contrasting concept and non-concept 
images, and juxtaposing prototypical and non-prototypical figures, while dimensions 
of procedural variation demonstrate competence in setting and implementing 
deliberate tasks for students’ development of reconfiguration processing ability. 
Systemic use of variation could help students to develop conceptual understanding 
and problem solving ability in geometry. Chapter 9 (Huang et al., 2017) discusses 
the challenges when an experienced teacher adopted procedural variation in a review 
lesson. Chapter 10 (Mok, 2017) examines algebraic lessons in Shanghai and Hong 
Kong from the perspectives of variation theory of learning. In the application of 
these ideas to learning experiences in lessons, discernment is made possible when 
variation of the critical aspects of the object of learning is embedded in the design of 
the instructional tasks or in the interaction between teacher and students and between 
students. This chapter illustrates key skills in creating useful patterns of variation in 
teaching and learning, including contrast, generalization, fusion, and separation.

How to support the implementation of variation pedagogy? Part III includes three 
chapters focusing on closely related aspects of implementing variation pedagogy. 



R. HUANG & Y. LI

8

In Chapter 11, Zhang et al. (2017) examine the features of variation in mathematics 
textbooks. Analyses of selected textbooks reveal that multiple strategies of 
presenting variation tasks are used to introduce concepts. Both conceptual and 
procedural variation tasks are used to develop mathematical concepts. To develop 
mathematics skills, the textbooks first present problem situations progressively 
with an increasing complexity. In addition, procedural variations are used to 
guide students to experience mathematical thinking methods through the process 
of concept development and problem solving. In Chapter 12 (Ding et al., 2017), 
the authors examine the dynamic between an expert teacher and a junior teacher 
within school-based teaching research activities. They found the expert teacher’s 
mentoring to be effective in two distinct ways: (1) the use of the commonly shared 
teaching notions to help the junior teacher understand the theoretical elements 
of teaching with variation; (2) the use of commonly shared teaching frameworks 
and language to help the junior teacher to understand the deliberate focus on the 
fundamental ‘chains’ in learning mathematics and the dynamic teaching process 
of Pudian (akin to ‘scaffolding’). The contribution of the study is that it expands 
knowledge of how teacher learning takes place through the support of an expert 
practitioner. Han et al. (2017), in Chapter 13, report a study on how a combination 
of theoretical perspectives informed lesson study, which helped the teachers, with 
the support from knowledgeable others, to shift their focus toward student learning. 
The data analysis further revealed that the students could get ample opportunities to 
experience critical aspects of object of learning when the teacher enacts appropriate 
dimensions of conceptual and procedural variations in the classroom and develops 
their conceptual understanding of the concepts.

Is the teaching through variation culture specific? Part IV includes four chapters 
demonstrating how variation pedagogy is utilized in selected countries in various 
ways. In Chapter 14, Hino (2017) carefully re-examines the well-documented 
Japanese structured problem solving approach from the perspective of variation. She 
identifies three types of variation embedded in the Japanese approach. Two lessons 
are used to illustrate these three patterns of variation: presenting problems with 
variation, providing opportunities for students to construct variation themselves, 
and promoting students’ reflection on variation toward the intended object of 
learning. This chapter highlights the importance of purposeful use of variation to 
promote students’ learning cross-culturally. Barlow et al. (2017), in Chapter 15, 
present a sequence of four-day lessons that aimed at developing students’ capacity 
of generalizing a pattern for the purpose of developing functional relationships. 
The development of the featured tasks was informed by a theory of variation. Data 
analysis suggests that these lessons promoted students’ algebraic reasoning aligned 
with the vision established in U.S. curriculum documents. In Chapter 16, Peled and 
Leikin (2017) extend a dimension of variation about the multiplicity of mathematics 
problems. Two types of mathematical problems are used to illustrate different 
purposes. One involves a “regular” problem that allows for multiple approaches 
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to solving the problem. Another is modelling situations, where problem solvers 
are encouraged to interpret the situation from various perspectives and establish 
different models that lead to different solutions. The chapter opens a dialogue about 
the usefulness of each type of problem for different objects of learning. Runesson and 
Kullberg (2017), in Chapter 17, presents a longitudinal study in Sweden on learning 
study, which is a modified lesson study, enhanced by using variation pedagogy as 
an instructional design principle. Through iterative cycles of teaching and revising, 
the lesson on division with a denominator between zero and one has been improved 
to draw students’ attention to the intended object of learning. Moreover, Runesson 
and Kullberg attempt to address a crucial issue of sustainability of learning from the 
learning study by comparing a following up teaching of a different topic by the same 
teacher that did the learning study.

CONTRIBUTION AND FUTHER SUGGESTIONS

This book is designed to make important contributions in four ways. First, by inviting 
internationally well-known scholars who are interested in teaching and learning 
mathematics through variations to contribute their insights, we aim to build toward 
a solid foundation for theorizing this perspective. Second, a collection of chapters 
contributed by scholars in China provides lesson cases on the development and 
application of this pedagogy in teaching specific topics and lessons (e.g., concept, 
problem solving, exercise or review, etc.). Meanwhile, the factors influencing 
teachers’ utilization of variation pedagogy such as curriculum development and 
teacher professional development are explored. Third, some cases on adopting 
variation pedagogy in selected countries are presented. Fourth, commentary 
chapters on the original studies in the book from Eastern, Western, and European 
perspectives provide thoughtful insights into the theories of teaching and learning 
through variation and the application of these theories. Taken collectively, the book 
aims to theorize this pedagogical perspective and to provide cases showing how this 
pedagogical perspective can be used and implemented in mathematics teaching and 
learning, curriculum development, and teacher education.

Although the book has made important contribution to mathematics education as 
aforementioned, studies on the theories and application of variation pedagogy could 
be further developed in many ways. First, empirical studies on the effectiveness of 
implementing variation pedagogy to increase student achievement on a large scale 
should be conducted. Second, since effective implementation of variation pedagogy 
is related to curriculum and teacher professional development, developing relevant 
teaching materials based on variation pedagogy will be essential.

REFERENCES

Chen, X., & Li, Y. (2010). Instructional coherence in Chinese mathematics classroom – a case study 
of lessons on fraction division. International Journal of Science and Mathematics Education, 8, 
711–735.



R. HUANG & Y. LI

10

Cheung, W. M., & Wong, W. Y. (2014). Does lesson study work? A systematic review on the effects 
of lesson study and learning study on teachers and students. International Journal for Lesson and 
Learning Studies, 3(2), 2–32.

Common Core State Standards Initiative. (2010). Common core state standards for mathematics. 
Washington, DC: National Governors Association Center for Best Practices and Council of Chief 
State School Officers. Retrieved from http://www.corestandards.org

Dienes, Z. P. (1973). A theory of mathematics learning. In F. J. Crosswhite, J. L. Highins, A. R. Osborne, 
& R. J. Shunway (Eds.), Teaching mathematics: Psychological foundation (pp. 137–148). Ohio, OH: 
Charles A. Jones Publishing Company.

Experimenting Group of Teaching Reform in Mathematics in Qingpu County, Shanghai. (1991). Xuehui 
Jiaoxue (Learning to teach). Beijing, China: People Education Publishers. (In Chinese)

Fan, L., Wong, N. Y., Cai, J., & Li, S. (2004). How Chinese learn mathematics: Perspectives from 
insiders. Singapore: World Scientific.

Gu, L. (1994). Theory of teaching experiment: The methodology and teaching principles of Qingpu [In 
Chinese]. Beijing: Educational Science Press.

Gu, L., Huang, R., & Marton, F. (2004). Teaching with variation: An effective way of mathematics 
teaching in China. In L. Fan, N. Y. Wong, J. Cai, & S. Li (Eds.), How Chinese learn mathematics: 
Perspectives from insiders (pp. 309–348). Singapore: World Scientific.

Huang, R. (2002). Mathematics teaching in Hong Kong and Shanghai: A classroom analysis from the 
perspective of variation (Unpublished doctoral dissertation). The University of Hong Kong, Hong 
Kong.

Huang, R., Prince, K., & Schmidt, T. (2014). Developing algebraic reasoning in classrooms: Variation and 
comparison. Mathematics Teacher, 108, 336–342.

Leung, F. K. S. (1995). The mathematics classroom in Beijing, Hong Kong and London. Educational 
Studies in Mathematics, 29, 297–325.

Li, Y., & Huang, R. (2013). How Chinese teach mathematics and improve teaching. New York, NY: 
Routledge.

Li, Y., & Li, J. (2009). Mathematics classroom instruction excellence through the platform of teaching 
contests. ZDM-The International Journal on Mathematics Education, 41, 263–277.

Lo, M. L., & Marton, F. (2012). Toward a science of the art of teaching: Using variation theory as a 
guiding principle of pedagogical design. International Journal for Lesson and Learning Studies, 1(1), 
7–22.

Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: Lawrence Erlbaum 
Associates.

Marton, F. (2015). Necessary conditions of learning. New York, NY: Routledge.
Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum.
Marton, F., & Pang, M. F. (2006). On some necessary conditions of learning. The Journal of the Learning 

Science, 15, 193–220.
Marton, F., Runesson, U., & Tsui, A. B. M. (2003). The space of learning. In F. Marton, A. B. M. Tsui, 

P. Chik, P. Y. Ko, M. L. Lo, I. A. C. Mok, D. Ng, M. F. Pang, W. Y. Pong, & U. Runesson (Eds.), 
Classroom discourse and the space of learning (pp. 3–40). Mahwah, NJ: Lawrence Erlbaum.

Rowland, T. (2008). The purpose, design, and use of examples in the teaching of elementary mathematics. 
Educational Studies in Mathematics, 69, 149–163.

Stevenson, H. W., & Lee, S. (1997). The East Asian version of whole-class teaching. In W. K. Cummings 
& P. G. Altbach (Eds.), The challenge of Eastern Asian education (pp. 33–49). Albany, NY: State 
University of New York.

Stevenson, H. W., & Stigler, J. W. (1992). The learning gap: Why our schools are failing and what we can 
learn from Japanese and Chinese education. New York, NY: Summit Books.

Stigler, J. W., & Stevenson, H. W. (1991). How Asian teachers polish each lesson to perfection. American 
Educator, 15(1), 12–20, 43–47.

Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.
Watson, A., & Mason, J. (2006). Seeing an exercise as a single mathematical object: Using variation to 

structure sense- making. Mathematical Thinking and Learning, 8(2), 91–111.

http://www.corestandards.org


INTRODUCTION

11

Wong, N. Y. (2008). Confucian heritage, culture leaners’ phenomenon: From exploration middle zone” 
to “constructing bridge”. ZDM-The International Journal on Mathematics Education, 40, 973–981.

Wood, D., Brunner, J. S., & Ross, G. (1976). The role of tutoring in problems solving. Journal of Child 
Psychology and Psychiatry, 17, 89–100.

Yang, Y., & Ricks, T. E. (2013). Chinese lesson study – Developing classroom instruction through 
collaborations in school-based teaching research group activities. In Y. Li & R. Huang (Eds.), How 
Chinese teach mathematics and improve teaching (pp. 51–65). New York, NY: Routledge.

Rongjin Huang
Department of Mathematics Sciences
Middle Tennessee State University, USA

Yeping Li
Department of Teaching, Learning and Culture
Texas A&M University, USA
Shanghai Normal University, China



R. Huang & Y. Li (Eds.), Teaching and Learning Mathematics through Variation, 13–41. 
© 2017 Sense Publishers. All rights reserved.

FEISHI GU, RONGJIN HUANG AND LINGYUAN GU

2. THEORY AND DEVELOPMENT OF TEACHING 
THROUGH VARIATION IN MATHEMATICS IN CHINA

INTRODUCTION

Chinese students’ strong performance in mathematics in various international 
comparative studies has been noticed for decades (Fan & Zhu, 2004). In particular, 
Shanghai students’ outstanding performances in PISA (OECD, 2010, 2014) have 
stunned educators and policy makers around the world. Researchers have investigated 
Chinese students’ excellent performance in mathematics from different perspectives 
(Biggs & Watkins, 2001; Fan, Wang, Cai, & Li, 2004), including societal, socio-
cultural perspectives (Stevenson & Stigler, 1992; Sriraman et al., 2015; Wong, 2008), 
student behaviors (Fan et al., 2004), teacher knowledge, and teacher professional 
development perspectives (An, Kulum, & Wu, 2004; Fan, Wong, Cai, & Li, 2015; 
Huang, 2014; Ma, 1999), and classroom instruction perspectives (Huang & Leung, 
2004; Leung, 1995, 2005; Li & Huang, 2013).

A close examination of mathematics instruction in China may help better 
understand why Chinese students can succeed in large class-size classrooms. 
Typically, Chinese mathematics classrooms have been described as large and teacher 
dominated, with students who are well disciplined, passive learners (Leung, 2005; 
Stevenson & Lee, 1995). Classroom teaching in China is polished (Paine, 1990), 
fluent and coherent (Chen & Li, 2010; Wang & Murphy, 2004), with a focus on the 
development of important content, problem solving, and proof (Huang & Leung, 
2004; Huang, Mok, & Leung, 2006; Leung, 2005). Furthermore, from a cultural 
and historical perspective, Chinese mathematics instruction has been identified with 
two fundamental characteristics: (1) two-basics-oriented (basic knowledge and basic 
skills) teaching, and (2) direct explanation and extensive practices with variation 
(Li, Li, & Zhang, 2015; Shao, Fan, Huang, Ding, & Li, 2013). Particularly, Gu, 
Huang and Marton (2004) theorized teaching through variation1 and argued that 
teaching through variation is an effective way to promote meaningful learning in 
mathematics for classes of large size. In this chapter the authors further examine the 
practice of teaching through variation from a cultural perspective and provide state-
of-the-art studies on teaching through variation in China. Finally, the authors discuss 
how teaching through variation can be implemented to promote deep learning of 
mathematics in classrooms.
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TEACHING THROUGH VARIATION: A CULTURALLY INDIGENOUS PRACTICES

Teaching and learning mathematics through variation is a widespread idea in China 
as reflected in the old Chinese maxim, “Only by comparing can one distinguish”  
(有比较才有鉴别). There are different opinions about using variation in 
mathematics education. Some focus on using problems with variation in textbooks 
or curriculum (Cai & Nie, 2007; Sun, 2011; Wong, Lam, Sun, & Chan, 2009) while 
others emphasize using tasks with variation in classrooms for promoting student 
learning (Gu et al., 2004; Huang & Leung, 2004, 2005). Teaching through variation 
in this chapter is aligned with the following definition:

To illustrate essential features of a concept by demonstrating various visual 
materials and instances, or to highlight essential characteristics of a concept by 
varying non-essential features. The goal of using variation is to help students 
understand the essential features of a concept by differentiating them from  
non-essential features and further develop a scientific concept. (Gu, 1999, 
p. 186)

In her study, Sun (2011) argued that the concept of conducting a lesson or practice 
with variation problems is an “indigenous” feature in China. First, the major 
traditional philosophical systems such as Confucianism (儒家) imply the variation 
notion. For example, Confucius said, “I do not open up the truth to one who is not 
eager to get knowledge, nor help out any one who is not anxious to explain himself. 
When I have presented one corner of a subject to any one, and he cannot from it learn 
the other three, I do not repeat my lesson.” (The Analects, 7: 8) (举一隅不以三隅反, 
则不复也) This principle emphasizes the importance of self-motivated inquiry for 
understanding invariant patterns within different situations. Second, many ancient 
Chinese mathematics treatises such as Nine Chapter of Arithmetic Arts《九章算
术》have been organized in a similar structure: concrete examples (stereotype 
problem) – invariant methods – application (variation problems). In this way, the 
invariant principles (general methods) were developed through the exploration of 
the variation of concrete examples and further consolidated by application in a 
variety of novel problems.

When discussing learning and teaching mathematics, ancient mathematicians 
also emphasized heuristic strategies through making use of variation. For example, 
in Shuan Fa Tong Bian Ben Mo 《算法通变本末》, Yanghui (杨辉，no details) 
pointed out that “good learners can grasp the whole category from typical examples; 
they don’t need to teach them all in detail” (Song, 2006). It means that teachers 
should adopt analyzing typical cases or instances, illustration with diagrams, and 
drawing inferences about other cases from one instance to help learners to broaden 
their knowledge from concrete instances. Another example, in Zhoubi Suanjin《周
髀算经》, a classic mathematics treatise, the following conversation between the 
teacher (Chenzi) and a student (Rongfang) revealed the teaching philosophy:
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Rongfang: I do not master the Dao (way). Can you teach me?
Chenzi:  […] Now in the methods of the Way [that I teach], illuminating 

knowledge of categories [is shown] when words are simple 
but their application is wide-ranging. When you ask about one 
category and are thus able to comprehend a myriad matters, I call 
that understanding the Dao. Now, what you are studying is the 
methods of reckoning (the principles of learning mathematics), 
and this is what you are using your understanding for. [ …]. So 
similar methods are studied comparatively, and similar problems 
are comparatively considered. This is what sorts the stupid 
scholar from the clever one, and the worthy from the worthless. 
So, being able to categorize in order to unite categories-this is 
the substance of how the worthy will devote themselves to refining 
practice and understanding (Cullen, 1996, pp. 175–178, cited 
from Sun (2011)).

The above discussions about learning mathematics focus on using concrete examples 
to make sense of a category (a concept), grasping ways (generalization) across 
categories, and developing a hierarchical system of categories. All of these ideas 
reflect the key notion of using variation problems in learning mathematics.

In addition to the aforementioned traditional cultural values, ancient mathematics 
treatises and the strategies of mathematics learning, a civil service examination 
system associated with “educational attainment, career goals, social status, and 
political ambitions” (Li, Li, & Zhang, 2015, p. 72) has been established since Qin 
Dynasty (605–1905) in China. In modern China, mathematics examinations exist 
at all grade levels. In particular, the entrance examination for high schools and 
colleges are high-stakes and competitive. The high-stakes examination system has 
contributed to the origin of forming two-basics–oriented mathematics teaching, 
supported with teaching through variation (Li et al., 2015). Since mathematics 
teaching and examination focus on basic knowledge and skills that are defined by 
curriculum standards and the two “basics” are relatively invariant, the exam items 
have to be designed differently every time, although they have to adhere to standards 
and textbooks. So, examination items have to be created based on prototype problems 
in textbooks with varying forms (i.e., many variations while maintaining the same 
essence, 万变不离其宗). Thus, practices with variation problems surrounding 
standards and textbooks have been proved in practice to be an effective way to 
prepare students to succeed in their examinations (i.e., practice makes perfect, 熟练
生巧) (Li, 1999).

In addition to the traces of the roots in the ancient Chinese philosophy and 
mathematics treaties, teaching through variation has been promoted by the 
examination-oriented education system. Teaching through variation exists in many 
places without individuals’ purposeful awareness.
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EARLIER STUDIES ON TEACHING THROUGH VARIATION: CATEGORIZATION OF 
VARIATION AND MECHANISM OF USING VARIATION

Teaching and learning through variation problems has been practiced for centuries 
in China. Yet, the practice has only been examined empirically over the last three 
decades. Gu and his colleagues have explored how to use and theorize teaching 
through variation (e.g., Bianshi Teaching 变式教学) to increase student achievement 
in mathematics since the 1980s (Bao, Huang, Yi, & Gu, 2003a,b,c; Gu, 1981, 1994; 
Gu et al., 2004; Qingpu experiment group, 1991). This section describes the major 
concepts of teaching through variation. First, the authors introduce two essentially 
different types of variation in mathematics classroom teaching: conceptual variation 
and procedural variation, based on effective teaching experiences (Gu, 1981). Then, a 
key concept of potential distance featuring the procedural variation based on empirical 
studies is discussed (Gu, 1994).

Conceptual Variation

Conceptual variation refers to the strategies that are used to discern essential features 
of a concept and to experience connotation of the concept by exploring varying 
embodiments of the concept (i.e., instances, contexts) (Gu et al., 2004). It aims to help 
students develop a profound understanding of a concept from multiple perspectives. 
The sections that follow illustrate the critical features of conceptual variation.

Highlighting essential features through variations and comparisons. Students’ 
learning of geometrical concepts is closely related to the following major factors: 
experience with visual figures that represent the concept and verbal description of 
the concept. Previous teaching experience in geometrical concepts in middle schools 
demonstrates that directly defining a concept by describing essential features of 
the concept may help students memorize the concept. For example, the concept of 
altitudes of a triangle includes two critical features: perpendicular to one side and 
passing through the vertex at the intersection of the other two sides. However, the 
observation and experiment in Qingpu (Gu, 1994) revealed that if a teacher only told 
students the definition precisely and asked students to memorize the definition, then 
students were likely to have superficial and rigid understanding. Yet, if a teacher 
provided opportunities for students to observe and compare deliberately designed 
variation concept figures such as standard or non-standard position figures, or 
counterexamples, and then highlighted the essential features of the concept, students 
are more likely to synthesize the critical features of a concept based on observation 
of concrete instances. One example of variation figures used for developing the 
concept of altitude of a triangle is shown in Figure 1.

As shown in Figure 1, a standard figure is used to introduce the concept of 
altitudes of a triangle that is aligned with daily life experience. But the concept 
of altitudes in geometry is not equivalent to the perceived meaning of daily life 



TEACHING THROUGH VARIATION IN MATHEMATICS

17

experience. Thus, identifying altitudes in various triangles (positions and types of 
triangles) helps students abstract the essential features of the concept. Finally, by 
contrasting some common misconception figures, the critical features of altitude: 
“perpendicular to a side and passing through the opposite vertex of the side” are 
further consolidated.

Eliminating the distraction of complex background through transformation 
and reconfiguration of basic figures. Geometrical figures usually consist of 
combinations of basic figures through separation, overlapping, and intersection. 
Sometimes basic figures are embedded in complex situations. The complex 
background figures often distract, distort, and mask students’ perception of 
embedded basic figures. Thus, essential features of a geometrical concept embedded 
in complex backgrounds are often hidden and difficult to identify or even subject 
to being perceived inappropriately. To address this learning difficulty, a traditional 
strategy was to purposefully isolate geometrical objects explicitly (such as using 
colors) from complex background figures (including real contexts), which has been 
proven in practice to be effective. However, the experiment in Qingpu (Gu, 1994) 
demonstrated that such a strategy might resolve the problem that inappropriate 
perception of figures constrains appropriate recognition of a geometrical concept. 
How logical reasoning activities may influence the comprehension of a complex 
figure is an important issue. These strategies include: analyzing the structure 
of complex figures or generating a complex figure through transformation (i.e., 
translation, rotation, reflection, and shrinking and expanding) of basic figures. 
Through these decompositions and compositions, the focused figures can be 
separated from complex background figures (See Gu et al., 2004 for details).

Examining the effectiveness of using these variations through quasi-
experiments. Since 1980, the Qingpu experiment team has examined the 

Figure 1. Altitudes of triangle
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effectiveness of these variation strategies through “identifying effective methods 
based on implementation”, a Chinese version of “design-experiment” (Brown, 
1992): repeated within a short period (once a week), which includes an entire cycle 
of planning – implementation – evaluation – improvement. The effectiveness of 
these variation strategies has been testified through more than 50 cycles of studies 
within one year. In particular, quasi-experiment methods (numbers of students in 
experimental class and control class are similar) were adopted. The experimental 
studies aimed to examine the effectiveness of using variation strategies. The results 
of one experiment are discussed below.

In the first experiment, the instructional content is the concept of perpendicular 
lines. The experimental group is class A (50 students); the concept of perpendicular 
lines was briefly explained, and then students were provided a set of variation practices. 
After that, students’ errors were identified and discussed based on essential features 
of the concept. The control group is class B (51 students); the concept (definition of 
perpendicular lines) was repeatedly explained to students based on textbooks, then 
simple and repeated problems were provided for students to practice. After the class, 
a post-lesson evaluation test was conducted. To answer to the question, “What is the 
distance from a point to a straight line?”, the students from the control class mainly 
recited the definition from the textbook, yet the students from the experimental class 
explained the definition based on their understanding. The average correct rates on a 
basic problem of constructing a perpendicular line in both groups were about 70%. 
However, with the answers to non-routine problems (constructing a perpendicular 
line in non-standard position triangles, see below), there were significant differences 
between the two classes as follows:

Item 1, in the figure (on the right), asked students to 
construct a line DE containing D and perpendicular to 
AD. There was a significant difference (t = 2.13, p < 
.05) between experimental class A (mean = 5.80 (out of 
10 points)) and control class B (mean = 4.76).

Item 2, in the figure (on the right), asked students 
to construct the distance segments from B or C to line 
AD respectively. There was a significant difference 
(t = 4.91, p < .01) between experimental class A 
(mean = 6.04) and control class B (mean = 3.97).

Thus, this study revealed that teaching through deliberate variation problems 
appears to be more effective than teaching through repeated explanations of a 
definition.

The second experiment was conducted one month later. The instructional content 
was the SAS Postulate (Side-Angle-Side): If two sides and the included angle 
of one triangle are congruent to the corresponding parts of another triangle, then 
the triangles are congruent. The teaching strategy was swapped: class B was the 
experimental group and class A was the control group. In experimental class B, 
the theorem of SAS was briefly explained to students, and then variation problems 
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(with variation figures) were provided for students to practice on. After that, students’ 
errors were discussed and corrected, with particular attention to identifying hidden 
conditions within a complex figure or context. In the control class A, the teacher 
explained the theorem (SAS), students restated the theorem, and then students were 
given several variation problems (without figures, which consist of overlapping or 
separating basic figures) to practice on. A post-lesson test showed that the answers to 
two slight variation problems had mixed results; the means in the experimental class 
were 85% and 67% while those in the control class were 79% and 70%. However, 
the answers to another two proof problems that included complex variations showed 
significant difference between the two classes as follows:

Item 3: in the figures (on the right), AE = BE, CE = 
DE, ∠1 = ∠2. Prove AD = BC. There was a significant 
difference (t = 3.18, p < .01) between experimental class 
B (mean = 8.66) and control class A (mean = 7.12).

Item 4: In the figure (on the right), ∆ ABC ≅ ∆ BDE 
are equilateral triangles. Prove: ∆ BCD ≅ ∆ BAE.

There was a significant difference (t = 2.11, p< .05) 
between experimental class B (mean = 5.21) and control 
class A (mean = 3.50).

On item 3, students had to recognize the symmetrical 
structure of ∆ ADE and ∆ BCE On item 4, the students had 
to recognize that ∆ BAE is rotated left 60˚ from ∆ BCD. 
These results show the effectiveness of using variation 
figures to help students identify target figures from a complex background figure.

In summary, the experimental studies in Qingpu (Gu, 1994) demonstrated that 
(1) designing variation problems based on essential features of a concept, and 
comparing and contrasting concept images and non-concept images could help 
students clarify connotations and extensions of a concept; and (2) reconfiguring the 
structure of a complex figure and forming a figure through transformation of basic 
figures could help students reduce cognitive load and promote their understanding 
of a concept in depth. Use of these strategies in teaching in a large class could 
promote more active learning.

Procedural Variation

Mathematical concepts are defined clearly and statically. Yet, obtaining mathematical 
activity experience and understanding of mathematical thinking methods are a 
dynamic process. Gu (1981) explored another variation, known as procedural 
variation. Procedural variation refers to creating variation problems or situations 
for students to explore in order to find solutions to problems or develop connections 
among different concepts step by step or from multiple approaches. Based on 
extensive teaching experience and reflection, Gu (1994) synthesized two critical 
features of procedural variation as follows (see Gu et al., 2004 for details).
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Solving problems through transferring figures. Transferring is one of most important 
methods of solving problems in mathematics instruction in China. It means to break 
down a complex problem into simpler problems. The simpler problems provide 
the foundation for solving the original complex problem. Or reversely, based on a 
basic problem, through adding constraints, complicated problems can be created. 
Figure 2 is an example of how transferring methods could help prove a geometrical  
theorem.

Figure 2. An example of transferring problems

Figure 2 shows how the mid-point quadrilateral that connects four midpoints 
of a quadrilateral is a parallelogram can be proven based on a simple “anchoring 
property”, which states that the mid-segment of triangle (connecting two midpoints) 
is parallel and equal to half of the third side.

Building connections among different types of knowledge through categorization 
and building a hierarchical system of categories. Categorization is an important 
mathematical thinking method. The key is to ensure that a categorization includes 
all instances without missing and overlapping. For example, the categorizations 
of triangles, the categorizations of special quadrilaterals, and the categorization of 
angles in a circle are typical examples of categorization activities. Another important 
issue is to build connections among various concepts and various concept figures, 
and to clarify logical relationships between different concepts. Figure 3 is a typical 
example of a concept map of angles in circles.

In Figure 3, there are three situations of inscribed angles in circles: the center 
of the circle is on one chord, between the two chords, or outside the two chords. In 
addition, there are: relevant angles formed between a tangent and a chord, angles 
formed inside of a circle by two intersecting chords, and angles formed outside of a 
circle by two intersecting tangents, two secants, or a tangent and a secant. However, 
Figure 3, which was presented by a teacher in a unit review lesson, presents the 
relationships among different angles clearly by adding critical auxiliary lines, both 
connecting relevant concepts and consolidating these concepts.
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Illustration of procedural variation with the analysis of an exemplary 
lesson. Procedural variation relates to different mathematical thinking, either 
converging transformation or diverging transformation. Procedural variation is 
also derived from a prototypical problem, or combination and transformation 
of representations, or re-recognition or discovering, and so on. Different ways of 
thinking and multiple representations when creating procedural variations are beyond 
being dealt with by any conceptual variation. However, making a problem more 
difficult and complex through extensively varying problems is contrary to the goals 
of teaching through variation. Varying problems must serve for instruction processes 
and purposes. In addition to the quantitative results shown previously, we illustrate 
how to appropriately use variation problems by analyzing an exemplary lesson 
developed during the Qingpu experiment. The lesson focused on the theorem for 
determining isosceles triangles. Here, we just describe two segments of the lesson.

Segment 1: Multiple constructions and multiple proofs. In Figure 4: in an isosceles 
triangle, given the base BC and the angle ∠B formed by a leg and the base, construct 
the isosceles triangle.

Students provided a variety of constructing methods. Some constructed ∠C = ∠B 
and extended the sides of the angles so that they intersect at A. Some constructed 

Figure 3. The measurement of angles in circles
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the perpendicular bisector of base BC and intersect one leg at A. In addition, some 
students folded BC in half and found the vertex A and constructed the triangle. Based 
on the constructions of a triangle, the determining theorem of isosceles could be 
discovered: In ∆ ABC, if ∠B = ∠C, then AB = AC. Different proofs of this theorem 
could be found based on the construction of the figure. For example, the altitude 
of base BC can be constructed, or the bisector of angle A can be constructed, then 
prove ∆ ABD ≅ ∆ ACD; then, AB=AC can be obtained based on the properties of 
congruent triangles. In addition, students are encouraged to find various proofs: 
for example, if AB > (or <) AC, then ∠B > (or <) ∠C based on the property that 
in a triangle, the longer sides correspond to bigger angles. This is contradictory to 
the given of ∠B = ∠C. So, it is impossible that AB ≠ AC. This is Reductio ad 
absurdum (indirect reasoning). Moreover, if ∆ABC and ∆ACB are regarded as two 
overlapping triangles, then, because ∠B = ∠C, ∠C = ∠B, and BC=CB; thus, the two 
triangles are congruent (e.g., ASA) and therefore AB=AC. Based on different ways 
of constructing the figure, varying proofs were derived which are complementary to 
a single proof.

Segment 2: Varying the problems hierarchically. Based on previous teaching 
experience, exploration of multiple solutions to a problem and a set of problems 
which could be solved by the same method, should be better than seeking a 
solution to a problem regarding promoting students’ flexibility and profoundness 
of mathematical thinking (Cai & Nie, 2007). However, the Qingpu experiment (Gu, 
1994) indicated that exploring hierarchical-progressive variation problems could 
achieve a much better effect on student learning. The following is an exemplar for 
illustrating the feature of hierarchical-progressive variation problems. The initial 
problem is simple: In Figure 5(1), the bisectors of two base angles of an isosceles 
triangle ∆ABC intersect at D, determine whether the ∆DBC is an isosceles triangle.

The answer to the first problem (Figure 5(1)) is obvious. It aims to help students 
understand how to use judgment theorem and property theorem of isosceles triangles 
that are the basic knowledge of the content. In Figure 5(2), a segment EF passing 
through D is parallel to BC (EF||BC). Students were asked to find all isosceles 

Figure 4. An incomplete isosceles triangle
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triangles in the figure. ∆DBC and ∆AEF are obviously isosceles triangles, which 
is easy to prove. Then, students should focus on determining whether ∆EDB and 
∆FDC are isosceles triangles. If they are, prove that they must be. In this case, 
students have to use judgment theorem and identify the common relationships 
among the bisectors of an angle, parallel lines, and isosceles triangles. Immediately, 
students were asked to create their own problems based on the relationships and 
solve them by themselves. Students found the following results: D is the middle 
point of EF; EF = EB + FC and so on. This procedural variation was used to pose and 
explore subsequent challenging problems. In Figure 5(3), ∆ABC is not an isosceles 
triangle, but the bisectors of the base angles and parallel lines remain. Students are 
asked to individually think: among the statements posed in the previous problem, 
which ones are still tenable and which ones may be not true? This is a relatively 
complex problem. Repeated experiments showed that about 80% of the students 
who had experience with hierarchical-progressive variation problems could solve 
the complex problem, while only about 20% of the students who did not experience 
this process could solve the problem. Although, all students had similar academic 
backgrounds at preliminary stage of learning geometry.

In summary, the authors came to the following conclusions: (1) during 
mathematical activities, careful dealing with hierarchical levels of transferring from 
a related basic problem to a higher cognitive demand problem, and practicing with 
relevantly hierarchical-progressive variation problems could advance students’ 
capacity in solving problems step by step; (2) synthesizing common experiences and 
features during different hierarchical-progressive variation processes, and classifying 
and connecting these relevant variations could promote students’ development of 
hierarchical and systemic experiences. These strategies have evolved based on a 
great amount of effective teaching experiences. Actually, dynamic mathematics 
activities include an important characteristic, namely, the progression of knowledge 
and skills. This progression could be represented in the forms of hierarchical levels 
of knowledge or a series of strategies for, or experiences in, doing mathematics 
activities. Certainly, teaching through hierarchical-progressive variation problems is 
not the same as rote practice.

Figure 5. Hierarchical-progressive variation problems
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Mechanism of Procedural Variation

To understand the principles and mechanisms of procedural variation, the Qingpu 
experiment group (Gu, 1994) conducted a series of studies on student mathematical 
thinking processes between 1987 and 1988. These studies focused on psychological 
characteristics of learning through variation and describing progression of 
knowledge development and essential connections between what students have and 
what they are supposed to learn. The sections that follow describe the major findings 
of those studies (Gu, 1994) based on original data analysis (see Gu et al., 2004 for 
additional examples).

Anchoring knowledge point and new problems. Students’ existing knowledge 
structure is the key factor influencing students’ learning of new knowledge. The 
anchoring knowledge point is critical for the success of exploration of a new problem 
(Ausubel, 1978). Anchoring knowledge point refers to the previous knowledge point 
that underpins learning of the new knowledge.

There were 180 middle school students participating in this experiment. 
Seventh, eighth, and ninth grade students occupied one-third of the participants 
equally; male and female averaged half; and the ratio among high, average, and 
low achieving students is 3:4:3. Using stratified samplings, 60 students participated 
in the experiment: teaching through variation; another 60 students participated in 
dissemination of the experiment; yet another 60 students participated in a control 
group: direct teaching the concept. Activity cards are used as a research tool. One 
example is shown in Figure 6. There were 6 groups of 5 items, 30 items in total. 
Groups 1, 3, and 5 included items that can be solved based on visual perceptions 
(constructing figures based on given data and then making judgments based on 
visual perceptions) while groups 2, 4, and 6 included items that can be solved 
based on logical reasoning (Making conjectures based on the given and providing 
justification).

Regarding the problem in Figure 6, the anchoring knowledge point of students of 
different grade levels were different and therefore, the knowledge distance between 
the problem and anchoring knowledge point of different grade levels was different. 
Seventh graders knew about segment diagrams, but had the largest knowledge 
distance; eighth graders knew about translations of figures (such as two triangles) 
and had a shorter knowledge distance; and ninth graders knew about the relationship 
between a line and a circle and had the shortest knowledge distance. The test results 
showed that the correct rate of students increased as the knowledge distance decreases. 
This finding reveals that learning new knowledge or solving new problems not only 
relies on the anchoring knowledge point but also relies on the knowledge distance. 
This finding also indicates the mechanism of teaching and learning with progression 
and provides implications for teaching through progressive variation problems.

In addition, students could develop their mathematics cognition as they grow 
up across grades; how might the cognitive maturity influence students’ ability in 
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exploring a novel problem? To address this concern, another problem was posed: 
exploration of Pick’s theorem was given to students of three grades (e.g., seventh, 
eighth, and ninth). The theorem is expressed as follows:

Given a simple polygon constructed on a grid of equal-
distanced points (i.e., points with integer coordinates) such 
that all the polygon’s vertices are grid points, Pick’s theorem 
provides a simple formula for calculating the area A of this 
polygon in terms of the number N of lattice points in the interior 
located in the polygon and the number L of lattice points on the 
boundary placed on the polygon’s perimeter:

Although this theorem is totally new to all students, the 
knowledge needed for exploring this theorem is basic: area 
of triangle and counting, making the anchoring knowledge 
point quite similar for students in all grades. Thus, the knowledge distance is quite 
comparable as well. The incorrect rates (vertical axis) of solving these two problems 
across grades are displayed in Figure 7.

In Figure 7, the dash-line reveals that, even with the similar anchoring knowledge 
point for all students in all grades, the correct rate increased as the grade increased; 
this implies students’ mathematical cognition maturity matters. The bold-line 

Figure 6. Example of activity cards (visual perception oriented judgment)
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indicates that with different anchoring knowledge point, the correct rate increased 
tremendously as the grade increased. The gains of correct rate of the two problems 
across grades are obviously different. This difference may reflect the co-impact 
of mathematical knowledge distance and cognitive level maturity. The “potential 
distance” between anchoring knowledge point and a new problem is determined by 
two factors: mathematical knowledge distance between anchoring knowledge point 
and the new problem, and cognitive maturity.

Measurability of potential distance. As discussed previously, both the anchoring 
knowledge point and new problems are related to mathematical content. Thus, the 
potential distance could be measured through designing appropriate instruments 
(e.g., mathematical problems) and analyzing test results quantitatively. For instance, 
in the aforementioned examples (in Figure 7), the potential distance could be 
indicated by incorrect rate when exploring new knowledge or new problems. The 
lower the incorrect rate, the lower the potential distance. This is a kind of primary 
characterization/representation. Of course, further studies could be done through 
testing different content topics with larger samples and conducting advanced 
psychometric analysis to build standardized norms. Thus, potential distance is 
measurable, although more studies are needed in the area.

Differentiation of potential distance. The potential distance between anchoring 
knowledge point and a new problem could influence the difficulties and 
achievements of students’ exploration of the problem. If the potential distance 
between new knowledge and anchoring knowledge point is shorter (short distance 

Figure 7. Incorrect rates of solving problems regarding different knowledge
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connection), it is easy for students to understand and master the new knowledge. If 
the potential distance is longer (long distance connection), the problem can support 
the development of students’ exploratory ability. A teacher could adopt different 
orientations of instruction: direct, exploratory, or combination according to different 
potential distances and learning goals.

RECENT STUDIES ON PROCEDURAL VARIATION: CORE CONNECTION AND 
LEARNING TRAJECTORY

In addition to the definition and features of potential distance described in the 
previous section, it was noticed that when the potential distance is too long, a 
majority of students have difficulties in approaching the new knowledge, which 
we conjectured was due to heavy cognitive load (Gu, 1994). The key questions 
that need to be addressed include: how can teachers help students build bridges 
between anchoring knowledge point and new knowledge? How can teachers 
provide effective scaffolding activities? How can teachers use variation problems 
to shorten the potential distance, if possible? A second analysis of data taken from 
the Qingpu experiment (Gu, 1994) reveals partial answers to these questions. The 
major findings include identifying core connection and setting appropriate Pudian 
(i.e., scaffoldings). In addition, based on an attempt to incorporate the western 
notion of learning trajectory (Simon, 1995) with teaching through variation in 
Chinese mathematics classroom, it was found that the teaching guided by the 
combination of learning trajectory and teaching through variation could promote 
students’ understanding of concepts.

Concept of Core Connection

In the Qingpu experiment (Gu, 1994), the teachers in the experiment group had 
emphasized the integration of numerical and geometrical representations, and 
invariant features within varying transformations after seventh grade. For instance, 
in the experimental class, the students were introduced to analyzing the positional 
relationship between two segments on a line using “segment diagrams” in algebraic 
lessons as shown in Figure 8.

Figure 8. Positional relationships between two segments on a line
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In Figure 8, a truck is shown travelling toward a bridge from East to West. The 
length of the bridge is a, the length of the truck is b, and the distance between the 
West end of the bridge and the front of the truck is d. To explore the quantitative 
relationship among d, a, and b, students need to determine the following relationships 
between the truck and the bridge: (1) when is the truck not on the bridge? (2) When 
is a portion of the truck driving on the bridge? (3) When is the truck entirely on 
the bridge? If students understand these problems clearly, then they can answer the 
relationship between two circles successfully (see Figure 6). Seventh graders know 
about segment diagrams and can apply the above process of variation problems 
to explore relationship between two circles. The longer potential distance of the 
seventh graders could be shortened greatly. Actually, the positional relationship of 
two circles can be transferred into the positional relationship between two segments 
(i.e., the distance between two centers of circles, radii). If students understand 
the positional relationship between two segments, then, they can easily grasp the 
positional relationship between two circles. It is critical to find the most essential 
and transferable connections between the anchoring knowledge point and the new 
problem. We define this type of crucial connection as “core connection.” Teaching 
through variation based on “core connection” could result in two unique effects.

Effects of Using Core Connection

The experiment data shows that there are important effects of using core connection. 
First, it could shorten the distance between anchoring knowledge point and a new 
problem. Second, it could mature cognitive thinking and advance thinking levels.

Shortening potential distance. Based on the experiment of potential distance, a 
deep analysis of the data shows that using core connection could shorten potential 
distance. Students’ explorations of the five relationships between two circles between 
the experimental group and the control group (around 50 students) were examined 
and compared. In the experimental group, the teacher emphasized core connection 
by exploring problems with a truck and a bridge (Figure 8). Figure 9 shows students’ 
correct rates in exploring these relationships in the experimental and control group in 
seventh grade, and control groups in seventh and eighth grades. The results indicated 
that students’ correct rates from the experimental group was much higher than the 
control groups in seventh grade, and even higher than the control groups in eighth 
and ninth grades. These results imply that the use of core connection could shorten 
the potential distance significantly, and reduce the students’ cognitive load.

Advancing thinking ability. Two types of test items, visual judgment and 
abstract logical reasoning, are used to examine the correlations between different 
mathematical thinking levels. The correlations between visual judgment and abstract 
logical reasoning in seventh, eighth, and ninth grades respectively are 0.390, 0.686, 
and 0.696. The data appears to imply that seventh grade is a transformative period 
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from visual to logical reasoning. The scatterplots in Figure 10 further illustrate 
that students from the experimental group in seventh grade moved toward logical 
reasoning levels from visual perceptions. This means the transformation from 
visual judgment to logical reasoning occurred one year earlier (from eighth grade to 
seventh grade). Thus, variation problem focusing on core connection could promote 
students’ transformation from visual judgment to logical reasoning significantly.

Figure 10. Scatterplots of students’ thinking tests in seventh grade

Instructional Pudian

Building on the concept of core connection and its importance in procedural 
variation, this section further discusses another closely related concept of “Pudian” 

Figure 9. Correct rates of exploring new problems across different groups
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(铺垫). According to Gu et al. (2004), Pudian is commonly used in Chinese 
classroom teaching, which is metaphorically described as “by putting blocks or 
stones together as a Pudian, a person can pick fruit from a tree which cannot be 
reached without the Pudian” (p. 340). Similar to the notion of scaffolding in the 
West (Wood, 1976), by establishing “Pudian”, the students can complete the tasks 
that cannot be done without the “Pudian.” In contrast, the Pudian emphasizes “the 
process and hierarchy” of learning (Gu et al., 2004, p. 340). In classroom instruction, 
Pudian could be appropriately applied to instructional design and implementation as 
follows: Teachers and students move from their existing knowledge and cognitive 
level toward obtaining new knowledge and solving new problems through effective 
instructional design (or Pudian). The segment diagram in Figure 8 is an appropriate 
example of how Pudian can help students move from existing knowledge toward 
exploring positional relationships between two circles.

There are multiple strategies to help students move toward higher levels of 
learning. By utilizing the terminology of scaffolding in the West (Pudian, in China), 
it is crucial to construct appropriate scaffolding when necessary, and remove 
the scaffolding when unnecessary. In particular, when designing discovering or 
exploratory learning, appropriateness of constructing and removing scaffoldings is 
essential. The researchers (Bao, Wang, & Gu, 2005; Huang & Bao, 2006) explored 
teaching of Pythagoras’ theorem by using scaffolding notions (see Figure 11).

Figure 11. Constructing and removing scaffoldings

In the left figure, when a, b, c given various integer values (Pythagoras’ number 
triples), then various data sets of a2, b2, 2ab and c2 could be collected; based on this 
data, many conjectures about the quantitative relationships among a2, b2, 2ab, and c2 
could be made (including Pythagoras theorem, and other conditional equations). After 
making conjectures, the role of the scaffolding (left grid in Figure 11) is complete, 
and thus, scaffolding must be removed. The right figure in Figure 11, the sides are 
labeled as letters a, b, and c, and calculating the area of the square extending on the 
hypotenuse is the key. The core connection is: Formula of completing square of sum 
used to calculate the area of a combination figure. From the anchoring knowledge 
point (area of triangle and square), students can use the scaffolding in the right figure 
to prove the theorem. This is a creative strategy that has evolved over decades.
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This strategy has derived from one of the traditional features of learning: 
learning and teaching progressively. Teachers usually identify several hierarchical-
progressive levels of subject topics, and then employ procedural variation problems 
(Pudian) supporting students to transcend their existing knowledge (anchoring 
knowledge point) to higher levels of knowledge. In Figure 11, the right figure is 
a simple and effective scaffolding (i.e., procedural variation) to support students 
to find proofs. These scaffoldings are interconnected progressively, which is a 
major strategy in Chinese classrooms. The scaffoldings or Pudian are instructional 
artifacts, which are designed for prompting student learning. Appropriate design and 
use of scaffoldings requires teachers to be creative designers, supporters, and guiders 
of student learning. An effective design of scaffoldings in China usually focuses on 
the progression of mathematical knowledge development and the “core connection” 
of different levels of mathematical knowledge.

Variation, Learning Trajectory, and Student Learning

Traditionally, teaching through variation mainly focuses on subject knowledge 
structure and teaching strategies from a teachers’ perspective. Recently, some 
researchers explored how teaching through variation could help focus attention on 
student learning (Huang, Miller, & Tzur, 2015; Huang, Gong, & Han, 2016).

Huang and colleagues (Huang et al., 2015) proposed a hybrid-model for 
analyzing students’ learning opportunities in the classroom. This model includes 
three hierarchical layers of principles for guiding mathematical instruction in 
Chinese mathematical classrooms. Teaching through variation (with bridging) is 
located at a meso-level. A macro-level is Hypothetical Learning Trajectory (HLT) 
and micro-level is known as reflection on activity-effect relationship (Ref*AER). At 
macro-level, HLT (Simon, 1995; Simon & Tzur, 2004) focuses on three key aspects: 
(a) goals teachers set for student learning in terms of conceptions (activity-effect 
relationships) they are expected to construct, (b) sequences of mental activities (and 
reflections on them) hypothesized to promote students’ transformation of their extant 
conceptions into the intended ones, and (c) tasks designed and implemented to fit 
with and promote hypothetical reorganization processes from available to intended 
mathematics. At a meso-level, based on teaching through variation, six components 
are proposed as being important for effective mathematics instruction. They are 
(1) tailoring old-to-new; (2) specifying intended mathematics; (3) articulating mental 
activity sequences; (4) designing variation tasks; (5) engaging students in tasks; 
and (6) examining students’ progress through variation practice. At a micro-level, 
teachers could monitor students’ learning through systemic reflections on activity-
effect relationships that include: (1) continually and automatically comparing the 
effects of the activity with the learner’s goal and (2) comparing a variety of situations 
in which the recorded activity-effect dyads are called upon, which can bring about 
abstraction of the activity-effect relationship as a reasoned, invariant anticipation. 
Based on a fine-grained analysis of 10 consecutive lessons taught by a competent 
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teacher in middle school in Shanghai (Clarke et al., 2006) using this framework, the 
authors concluded that: “our analysis of learning opportunities indicates the power 
of teaching through variation to deepen and consolidate conceptual understanding 
and procedural fluency concurrently” (Huang et al., 2015, p. 104).

Moreover, Huang, Gong and Han (2016) explored how teaching through variation 
and incorporating the notion of learning trajectory could be used as a principle 
for designing and reflecting upon teaching to promote students’ understanding of 
division of fractions. In their study, a lesson study approach (Huang & Han, 2015) 
was adopted: a group of teacher educators (practice-based teaching research specialist 
and University-based mathematics educators) and mathematics teachers worked 
together to develop lessons on division of fractions based on variation pedagogy 
and learning trajectory through three cycles of lesson planning, delivering/observing 
lessons, and post-lesson debriefings. Based on a literature review, a hypothetical 
learning trajectory on division of fractions was proposed as a foundation for the 
design of the lessons. Data consisted of lesson plans, videotaped lessons, post-lesson 
quizzes, post-lesson discussions, and teachers’ reflection reports. This study revealed 
that by building on the learning trajectory and by strategically using variation tasks, 
the lesson was improved in terms of students’ understanding, proficiency, and 
mathematical reasoning.

Combined, these studies indicate that teaching through variation and incorporating 
learning trajectory (reflection on activity-effect relationship of student learning) 
could provide students with opportunities to develop conceptual understanding and 
procedural fluency concurrently.

INTERPRETATION, IMPLICATIONS AND SUGGESTIONS

In previous sections, we discussed major concepts and principles of teaching through 
variation that included two types of variations, potential distance, core connection, 
and Pudian (scaffolding). All of these ideas envision a core conception of learning 
through exploring a series of hierarchical-progressive tasks. This section interprets 
teaching through variation from other theoretical perspectives and discusses 
implications for classroom instruction.

Theoretical Interpretations

Gu et al. (2004) explored theoretical interpretations of teaching through variation 
from multiple theoretical perspectives. First, from the perspective of meaningful 
learning (Ausubel, 1978) that emphasizes establishing the non-arbitrary and 
substantive relationship between learners’ prior knowledge and the new knowledge, 
they argued that conceptual variation could help students understand the essence 
of a concept and develop substantial relationships. Meanwhile, procedural 
variation could help students develop well-structured knowledge and non-arbitrary 
connections between different types of knowledge. Second, the notion of duality 
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of mathematics learning (Sfard, 1991) proposes that mathematical concepts can 
be conceived in two fundamentally different ways: structurally (as objects), and 
operationally (as processes). Gu et al. (2004) claimed that by creating these two 
types of variation, it would enhance students’ understanding of two aspects of a 
mathematical object: operational process and structural object (these two aspects of 
a mathematical object are complementary). Third, Gu et al. (2004) also discussed 
the similarities and differences between scaffolding (Wood et al., 1976) and Pudian 
(i.e., a strategy of procedural variation). Although both scaffolding and Pudian 
emphasize the support for students to achieve higher learning goals within zone 
of proximal development (Vygotsky, 1978), Pudian devotes more attention to core 
connection and hierarchical progression. Fourth, Gu and colleagues also discussed 
the relationships among Dienes’ theory (Dienes, 1973), Marton’s variation pedagogy 
(Marton & Tsui, 2004; Marton, 2015), and teaching through variation (Gu et al., 
2004). Dienes emphasizes “mathematical variability” and “perceptual variability”, 
while Marton stresses the patterns of what varies and what is invariant. Both of them 
mainly focus on conceptual variation. Thus, Gu et al.’s (2004) theory of teaching 
through variation developed the concept of variation pedagogy by illustrating 
procedural variation that focuses on developing problem solving ability and building 
a well-structured knowledge base. In the following section, an additional dimension 
of teaching through variation, namely, dimensions of variation, will be discussed.

Dimensions of variation. Mathematical instruction has often been criticized in the 
past. For example, in the 1940s, famous mathematicians Courant and Robbins (1941) 
critiqued mathematics instruction that focused on simple procedural practice, which 
may develop students’ formal operation ability but has nothing to do with profound 
understanding of mathematics. In fact, precise understanding of mathematical 
concepts is the foundation of mastering mathematics, and effective problem solving 
is at the heart of all mathematics. Teaching through variation in China focuses on two 
fundamental aspects: understanding of concepts from multiple perspectives through 
conceptual variations and developing problem-solving ability and well-structured 
knowledge base through purposefully selected procedural variation.

The mechanisms and principles of teaching through variation (hierarchical-
progressive learning) include: (1) a measurable, plausibly potential distance between 
existing knowledge (anchoring knowledge point) and the new knowledge or new 
problems; adjusting the potential distance based on instructional goals and student 
learning readiness is critical; (2) both conceptual variation and procedural variation 
should reflect the core connection between existing knowledge and new knowledge 
to be learned, and design variation problems should surround the core connection. By 
using appropriate procedural variation problems surrounding the core connection, 
the potential distance could be shortened and learners’ thinking ability could be 
advanced.

Based on the research on classroom instruction reforms and practices over the 
past three decades, researchers have identified the following three critical aspects 



F. GU ET AL.

34

of “core connection”: (1) Situation and application. This aspect is concerned 
with background and meaning of discovery and development of mathematics. It 
should be pointed out that background and application should not be treated as 
simply additional information. Rather they should be carefully considered from the 
perspectives of mathematical necessity and promoting learners’ understanding. For 
example, the segment diagram in Figure 8 presenting the relationships between a 
truck and a bridge seem simple, but it reflects the essential quantitative relationship 
that could be used to present the positional relationship between the truck and the 
bridge and could be further transferred to present the positional relationship between 
two circles. (2) Computation and reasoning. These are two basic and fundamental 
mathematical thinking methods that form a system of mathematical thinking. 
Mathematical thinking methods reflect the simplicity and convenience of logical 
connections within variant contexts or situations. For example, in Figure 5, the 
variation practices regarding isosceles triangles provide an example demonstrating 
core connection in a logical system from a problem-solving perspective. (3) 
Cognition of learners. Most importantly, student learning should be the focus of all 
decisions. When designing applications or contexts, it is critical to consider if they 
could motivate student learning and are conducive to developing students’ cognition 
and thinking. In Figure 11, the scaffolding (left figure) is designed for discovering 
Pythagoras’ theorem by creating several sets of Pythagoras triples; the other 
scaffolding (right figure) is designed for discovering proofs of Pythagoras’ theorem 
by calculating areas by completing square of sum. These are typical examples on 
how scaffoldings (Pudian) could be designed based on core connection between 
existing knowledge and new knowledge.

In summary, situation and application, computation and reasoning, and cognition 
level are three relatively independent dimensions, which form a comprehensive 
space of variation. Of course, when designing a particular lesson, we may focus on 
one or several dimensions and design greatly meticulous variation in those selected 
dimensions. Although constructing variation problems should be open, it should 
focus on essential goals: contexts of knowledge and development of new knowledge; 
transformation between complex and simple problems; and eliminating rote learning 
and mastering general and powerful methods.

Implications for Reform of Classroom Instruction

The tradition of teaching through variation has evolved for a long time in China. For 
further development, attention should be focused on the following two issues.

Variation surrounding core connection. Variation does imply neither “the more, the 
better”, nor “the more difficult, the better.” There is an old saying, “ten thousand 
variation problems remains the same principle (万变不离其宗)”. The principle 
is promoting students’ learning of mathematics. Teaching through variation 
effectively requires addressing students’ learning differences. In order to implement 
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differentiated instruction, multiple formative assessments could help teachers 
understand student learning, and adopt appropriate strategies of teaching through 
variation. These formative assessments include student-learning worksheets and post-
lesson homework sheets, which are developed, based on instruction objectives of 
units or lessons and used for diagnosing and removing learning obstacles, discussing 
major problems in class, and designing and making use of post-lesson homework.

In addition, when designing procedural variation, it is crucial to identify and make 
use of core connection about different content. Take one released item on 2012 PISA 
test, for example (Figure 12).

Figure 12. Walking problem on 2012 PISA test

The picture shows the footprints of a man walking. The pace length p is the 
distance between the rear of two consecutive footprints.

For men, the formula p/n = 140, gives an approximate relationship between n and 
p where, n = number of steps per minute, and p = pace length in meters.

Question 1: If the formula applies to Heiko’s walking and Heiko takes 70 steps 
per minute, what is Heiko’s pace length? Show your work.

Question 2: Bernard knows his pace length is 0.80-meters. The formula above 
applies to Bernard’s walking. Calculate Bernard’s walking speed in meters per 
minute and in kilometers per hour. Show your work.

Question 1 is used to test whether participants understand the formula, which 
acts as scaffolding for solving question 2. Question 2 is used to examine flexibility 
in using the formula and application of the relationship among distance, time, and 
velocity in daily situations. Each question demonstrates clear core connection 
between anchoring knowledge point and a new problem.

Core connection in algebra is abounding. For example, regarding operations 
with polynomials: the basic concept and skills include factors and like terms. Yet, 
like terms could be combined or split for different purposes. The purpose of using 
variation problem practice is not mainly for deriving a specific multiplication 
formula, or splitting, adding or factorizing formula. Rather it serves for understanding 
the core thinking methods: applications of operational principles of polynomials 
through transformation. For instance, first, transformation between multiplication 
and factorization, namely, (x – 1) (x – 12) = x2 – 13x + 12: from left to right means 
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multiplications (combination of like terms); inversely, it is factorization (including 
splitting like terms). Second, when discussing quadratic equations through the 
comparison of two equations: x2 + px + q = 0 and (x – a) (x – b) = 0, where a and b 
are roots of the equation, then, the relationships between roots could be presented 
as follows: a + b = –p, ab = q (Vieta’s Theorem): x2 + px + q = 0 can be transformed 

as  (where 
 
), thus, the quadratic formula can be derived. 

Third, when studying the quadratic function y = x2 + px + q, the function can be 

transformed as:  thus, when  y = maximum value of 

the function; Moreover, the monotone and symmetry properties of functions can 
be analyzed easily. In this way, the operations of multiplication, factorization, and 
completing the square can lead to the discussion of relationships between roots and 
coefficients of quadratic equations, monotonous properties, and symmetric features, 
maximum or minimum value of quadratic functions. This is a typical example in 
school mathematics of how new concepts can be derived through making use of 
core connection.

Variation promoting self-exploratory exploration. One possible derivation of 
using variation in teaching is direct telling. Superficially, using variation knowledge 
eventually leads to telling rigid and cumbersome formulas. The ultimate goal of 
improving mathematics instruction is to develop students’ self-exploratory learning 
ability and their ability to learn how to learn by themselves without teaching in 
the future. Thus, it is necessary to establish a new classroom ecology of harmony 
in relationships between teachers and students. For example, teaching Pythagoras’ 
theorem for illustrating an ideal classroom ecology. Rigorous proofs of Pythagoras’ 
theorem are difficult for students to understand; “measurement and calculation”, or 
“cutting and pasting” methods are visual and interesting, but the teacher normally 
provides the results. The following is an example of self-exploratory learning of 
Pythagoras’s theorem (Bao et al., 2005).

As shown in Figure 11, students are asked to make conjectures based on calculating 
the area of squares in several situations (Figure 13).

Figure 13. Make conjectures through calculating area of squares
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In class, by using calculations on several diagrams (1)–(4) in grids, students 
created a set of data (see Figure 14).

Figure 14. Data collected based on selected diagrams

Based on these data, students are encouraged to make conjectures (correct and 
unexpected conjectures). The following is an excerpt focusing on proving and 
refuting:

1. S1: Based on the data in the table [Figure 14], I find that c2 = 2ab + 1.
2. T: [Surprise! Unbelievable] how can you make this conjecture? Is it possible?
3. S2: I investigated when a = 2, b = 4, 2ab = 16, c2 = 20, c2 ≠ 2ab + 1.
4. T: Student 2 used a counterexample to refute your conjecture. It disproves c2 = 

2ab + 1.
5. S3: Mr. I found that when the difference between a and b is 1, the result is tenable.
6. T: [Thinking in brain: c2 = (a – b)2 + 2ab, when b – a = 1, c2 = 2ab +1] This 

suggestion is correct. This is a conditional equation. Good, let us examine the 
other equation that many of you suggested: a2 + b2 = c2.

7. S4: This equation is tenable regarding the given four figures and numbers. But, I 
think that even if I examine 100 examples and the result is true, I cannot be sure 
that the equation is true when examining the next situation. So, we have to prove 
that this is true for all situations.

8. T: Whether a2 + b2 = c2  is a theorem? Examining more cases cannot prove it. What 
do we need to do?

9. Ss: We have to prove.

The previous discourse illustrated that students were actively involving 
mathematical reasoning activities such as making conjectures ((1)), disproving and 
refuting ((3)~(5)), and developing proofs ((7)~(9)). The teacher was a facilitator to 
guide and solicit students’ explorations.

Variation and learning trajectory. As discussed throughout this chapter, the 
core idea of teaching through variation can help students develop profound 
understanding of mathematical concepts and flexibility in problem solving through 
forming a well-structured knowledge system using hierarchical-progressive 
variation problems which surround the core connection between different types of 
knowledge. Paying attention to student cognitive readiness and development is also 
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one key dimension of core connection. Yet, there are no concrete suggestions about 
how teachers can pay attention to student thinking and solicit student thinking. To 
this end, the exploratory studies by Huang et al. (2016) revealed an alternative. 
That is, to incorporate notions of learning trajectory with teaching through 
variation. Huang et al. (2016) found that through the combination of two theoretical 
perspectives, teachers were able to shift their focus on student thinking and 
solutions during lessons and post-lesson reflections, which eventually resulted in 
students’ development of deep understandings. They further argued that the notion 
of teaching through variation emphasizes specific strategies in using systematic 
tasks progressively (content-focused), but it has not paid explicit attention to the 
route of children’s learning. Thus, the incorporation of these two perspectives 
may provide a useful tool for designing and delivering lessons: Teaching through 
variation could help teachers strategically design and implement tasks in line with 
students’ learning trajectory.

CONCLUSIONS

This chapter discussed the cultural and historical origin of teaching through 
variation. The traditional culture value and ancient mathematical learning ideas 
have afforded mathematical teaching and learning through variation, and the 
exam-oriented education system has further strengthened this practice. Based on 
experiences and empirical studies, the core concepts and major mechanisms of 
teaching through variation have been developed. Two types of variation include 
conceptual variation and procedural variation. The former focuses on building the 
essential connections between existing knowledge and new knowledge, developing 
profound understanding of a concept from multiple perspectives. The latter intends to 
develop students’ problem-solving ability and develop an interconnected knowledge 
structure. By considering potential distance and Pudian, which are associated with 
core connection between existing knowledge (anchoring knowledge point) and the 
new knowledge or new problems, teachers are expected to design and implement 
hierarchical-progressive variation problems to achieve mathematical instructional 
goals. Appropriate implementation of teaching through variation is likely to 
develop students’ conceptual understanding and procedural fluency concurrently. 
However, theoretically, more empirical studies on defining and measuring potential 
distance, and defining and identifying core connection among different types of 
knowledge are needed. In addition, how to develop teaching through variation by 
incorporating relevant theoretical perspectives such as learning trajectory (Simon, 
1995) and mathematical teaching practices (NCTM, 2014) is a new endeavor worthy 
of exploring. Practically, implementing teaching through variation effectively 
requires teachers to possess a profound understanding of content knowledge and 
rich instructional expertise. It calls for pertinent teacher professional development 
programs.
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NOTE

1 Teaching through variation is exchangeable with teaching with variation, or Bianshi teaching, 变式教学, 
in this chapter.
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MING FAI PANG, JIANSHENG BAO AND WING WAH KI

3. ‘BIANSHI’ AND THE VARIATION THEORY  
OF LEARNING

Illustrating Two Frameworks of Variation and Invariance  
in the Teaching of Mathematics

INTRODUCTION

In the past two decades of cross-cultural research on mathematics education, a 
key element that has gained popularity is the use of variation and invariance in the 
teaching and learning of mathematics (e.g., Häggström, 2008; Sun, 2011; Watson 
& Mason, 2005; Wong et al., 2009). According to Gu, Huang and Marton (2004), 
Chinese teachers have been found to systematically juxtapose examples, tasks, 
and problems that differ in important respects to help students develop a deep 
understanding of the mathematical content to be learned. Two groups of researchers, 
one in Sweden and Hong Kong led by Ference Marton, and the other in Shanghai 
headed by Gu Ling-yuan, arrived separately at a similar insight on the use of 
variation and invariance in their analysis of mathematics classroom practices. The 
former, developed by Marton’s group, is known as the variation theory of learning 
(Marton & Booth, 1997; Marton & Tsui, 2004; Marton & Pang, 2006; Marton, 2015; 
Pang & Ki, 2016), and the latter, developed by Gu’s team, is known as bianshi 
jiaoxue (teaching with variation; e.g., Bao, Huang, Yi, & Gu, 2003; Gu, 1991; Gu, 
Huang, & Marton, 2004). These two theories are referred to as VT and BS in the 
following sections.

The aim of this study was to develop a better understanding of the differences 
between the two theories, both of which focus on the importance of differences and 
sameness (or variation and invariance) in teaching and learning; to explore whether 
the two are contradictory, independent, or complementary; and to compare the 
static descriptions of the two theories. We closely examined the classroom practices 
of an experienced mathematics teacher in Shanghai, who was inspired by the BS 
framework and made systematic use of variation and invariance. We invited the 
researchers of the two above-mentioned research groups to analyze and comment on 
the patterns of variation and invariance in the same lesson in terms of their respective 
theories.

Obviously we cannot treat the lesson as a direct and complete enactive 
representation of the BS framework. Nonetheless, by comparing the interpretations 
of the same lesson by researchers of the two theories, some useful comparisons 
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and connections between the two theoretical lenses can be achieved, and some 
methodological issues concerning the relation between educational theory and 
practice can be made explicit.

THEORETICAL FRAMEWORK

The point of departure of this paper is a conjecture embodied in the two independently 
developed frameworks mentioned above. The conjecture suggests that the pattern of 
variation and invariance within and between units of teaching, such as problems, 
tasks, examples, or illustrations, in the interactions between the teacher and 
students has a great influence on what students might learn from participation in 
that interaction. The first framework, VT, is intended for learning and teaching 
powerful ways of seeing in different subject domains; it was developed in particular 
by Ference Marton and his colleagues in Hong Kong and Sweden (Marton & Booth, 
1997; Marton & Tsui, 2004; Marton & Pang, 2006; Marton, 2015; Pang & Ki, 2016). 
The second framework, BS, is intended to capture and make explicit good practices 
in mathematics teaching in China; it was named and codified by Gu Ling-yuan 
(Bao et al., 2003; Gu, 1991; Gu et al., 2004). We begin by very briefly describing 
these two frameworks.

With its origins in phenomenography, VT posits that we identify novel meanings 
and make them our own by discerning the ways in which things differ in certain 
respects but are otherwise the same (as opposed to discerning how things are 
the same in certain respects, but differ otherwise). This means, for instance, that 
multiplication can be better understood if we see how it differs from division, rather 
than if we only see how different multiplication tasks resemble each other. Similarly, 
we understand addition better if we see how it differs from subtraction (e.g., Marton 
& Pang, 2013; Pang & Marton, 2013).

According to Marton and Pang (2006), VT is concerned with how to enable learners 
to handle novel situations in powerful ways. Above all, learners need to develop the 
capability to discern which aspects or features must be taken into account when 
deciding how to achieve the goal in a novel situation. Discerning those critical aspects 
or features involves noticing the ways in which one specific situation (a problem, task, 
or instance of the phenomenon) differs from others. For example, the ability to use 
appropriate tones in writing is a function of the ability to distinguish between situations 
or instances that necessitate the use of different tones; the ability of a financial analyst 
to make good judgments is a function of the ability to discern different patterns of 
economic data and indicators; and a child’s ability to solve simple arithmetic word 
problems is a function of the ability to discern the parts and wholes and the relations 
between them in the specific problem situation. In this respect, VT differs from other 
learning theories because it focuses on the learning affordance of differences.

Interestingly, VT also highlights the important role of invariance (similarity) in 
affording the discernment of differences. According to Marton and Tsui (2004), 
to discern and focus upon the critical aspects (or dimensions of variation) of a 
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phenomenon, the learner must experience variation in these aspects against a 
background of invariance. They suggest the use of four patterns of variation and 
invariance, ‘contrast’, ‘separation’, ‘fusion’, and ‘generalization’, for organising the 
learning instances. As explained in Pang and Ki (2016), when one critical aspect varies 
while the other aspects are kept invariant, the pattern is called ‘separation.’ The aspect 
to be varied is perceptually separated from the other aspects of the phenomenon and 
becomes salient to the learner. In contrast, when two or more critical aspects of the 
phenomenon vary simultaneously and are thus brought to the learner’s awareness at 
the same time, this pattern is called ‘fusion.’ It helps the learner to discern and attend 
to the connections between or the joint and/or independent working of the changes in 
multiple critical aspects. The two other patterns of variation and invariance are more 
concerned with noticing the sameness and differences across different instances and 
non-instances of the phenomenon. For example, to grasp the concept of a square, 
one must ‘contrast’ it against something that is not a square. If every shape one has 
ever experienced is a square, then ‘square’ will be synonymous with shape and will 
carry no unique meaning of its own, not to mention the discernment and attention 
to its necessary aspects. Furthermore, to ‘generalize’ the idea of a square, one must 
see sameness, such as the same set of features (necessary values in its aspects and 
relations between them), across the various squares that one has experienced.

Out of these four patterns, Marton (2015) further proposed a new logical structure 
in which only three patterns of variation and invariance exist as the basic ones seen 
by the learners (i.e., contrast, generalization, and fusion) (see Figure 1). According 
to Marton (2015), “Both contrast and generalization separate aspects from what they 
are aspects of and from each other. Through contrast, we are trying to find necessary 
aspects of the objects of learning, those that define it. Through generalization, we 
want to separate the optional aspects from the necessary aspects” (p. 51). Here the 
‘necessary aspects’ refer to the aspects that are necessary for the targeted learning of 
a particular way of seeing the phenomenon.

Figure 1. The patterns of variation and invariance  
(adopted from Marton, 2015)

Accordingly, there are two kinds of patterns: ‘separation’ and ‘fusion’, whereas 
‘separation’ is of two kinds as well: ‘contrast’ and ‘generalization.’ Hence logically, 
this implies that ‘separation’ is on a higher level than the observational categories 
of ‘contrast’ and ‘generalization.’ Here ‘observational’ mainly refers to the ways in 
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which instances are juxtaposed ‘objectively’ as seen from the observer’s perspective 
(Marton, 2015). What makes the whole thing a bit convoluted is that ‘fusion’ belongs 
both to the lower, observational level, just as ‘contrast ‘and ‘generalization’ and to the 
higher level, along with ‘separation’ (private communication with Ference Marton, 
2016). With due respect to how ‘separation’ relates to ‘contrast’ and ‘generalization’ 
and the differences in the hierarchical level of these patterns, Figure 2 can be used 
to illustrate the logical relationships between the four patterns originally stated in 
Marton and Tsui (2004).

Figure 2. An extended interpretation of the logical relationships between the  
four patterns of variation and invariance

VT is intended to be a general theory about how people experience and learn to 
handle certain phenomena. It has been applied to many specific topics of learning 
across different subject disciplines and educational levels (e.g., Pang & Marton, 
2003, 2005, 2007, 2013 in economics; Lo, Chik, & Pang, 2006 in science; Ko, 2013 
in language; Kullberg, Martensson, & Runesson, 2016 in mathematics). In contrast, 
the BS framework, as Gu (1991) explains, attempts to theorize effective mathematics 
teaching practices in Chinese classrooms and extend the Chinese theory of bianshi.

Bao, Huang, Yi and Gu (2003) mention that the traditional bianshi in Chinese 
classrooms is used for learning concepts, and bianshi jaioxue (jaioxue means teaching 
and learning, and bianshi means variation in the form or move), making reference 
to the Education Dictionary (Gu, 1999), refers to the use of intuitive materials or 
example cases with different forms, or the change to the non-defining features of 
things to highlight the defining ones, so that learners can distinguish which features 
relate to the nature of the things concerned. In the development of the BS framework, 
Gu (1994) identified descriptive categories and systematized the instructional 
principles of such variations in mathematics classroom practices, including the use 
of standard examples, non-standard examples, and non-examples. This part of the BS 
framework is called ‘conceptual variation.’ Gu et al. (2004) also pointed out that by 
using conceptual variation, students can learn mathematical concepts from multiple 
examples – from concrete to abstract, from special to general – highlighting the 
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essential features and clarifying the connotation of concepts by initially excluding 
(and later including) the interference of background and non-essential features of 
objects. Thus, conceptual variation could help students to understand the essence of 
concepts, and establish the substantive relationship between them.

Bao et al. (2003) also suggested that the BS framework extends the traditional 
concept of bianshi, which follows the idea of ‘procedural variation.’ They mention 
that while conceptual variation is concerned with the static aspects of mathematical 
objects, grasping the different meanings that they carry and their interrelationships, 
procedural variation is concerned with the objects’ dynamic aspects, such as 
understanding the manner in which the concepts have evolved historically for 
humankind and psychologically for individuals, and the manner in which problems 
are solved and solutions are developed. It should be noted that Gu uses the terms 
conceptual and procedural in a somewhat different way than Hiebert and Lefevre 
(1986, p. 3ff). Hiebert and Lefevre use the words to distinguish between conceptual 
knowledge and procedural knowledge, with the former more concerned with 
conceptual understanding and explanation and the latter with the use of rules and 
algorithms for solving problems in mathematics, and the connection between the 
two. However, Gu’s concept of procedural variation emphasizes the dynamic nature 
of concepts, and how they evolve and can be applied to new situations. Procedural 
variation can help students to understand where the knowledge came from and 
where it can be applied, thus allowing well-structured knowledge to be constructed. 
It can help students to form concepts, solve problems, construct a system of activity 
experience and comprehend different components of knowledge as a structure with 
non-arbitrary relationships between new and prior knowledge.

According to Gu et al. (2004), the idea of procedural variation in BS can be 
encapsulated as the means to ‘progressively unfold the mathematical activities’, 
which involves (1) scaffolding the formation of concepts from operations on concrete 
things to operations on symbols; (2) scaffolding the solution of a new problem 
through progressively transferring the new problem back to known problems and 
then deducing the new solution based on the known solutions; and (3) building ‘a 
system of mathematics activities experience’ by increasing the diverse pathways 
and hierarchical (multi-level) connections within and between the activities, which 
can be achieved by expanding problem-solving activities to include (a) variation 
on the problem, (b) different solutions to a problem, and (c) one solution applied to 
different problems.

Point (3) above indicates that procedural variation in BS is based on the idea that 
the cognitive structure of the learner is made up of two parts. The first is a reflection 
of the objective logical structure of concepts and propositions in mathematics, and 
the second are the specific, subjective problem-solving experiences of the learner. 
The two are integrated to form the overall mathematical cognitive structure of the 
learner.

Other important BS concepts proposed by Gu (1994) include ‘potential distance’ 
and ‘Pudian.’ The potential difference is the difference between what the learner 
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already knows and the new situation to which he or she can (or needs to) transfer and 
apply the knowledge. Procedural variation can be regarded as introducing a physical 
or conceptual artifact that the learner can use to bridge that distance (Gu et al., 
2004, p. 126), which may include learning materials, activities, tasks, or problems. 
This kind of procedural variation is called Pudian (鋪墊) in Chinese, and the word 
has often been translated as ‘scaffold’ in English (such as in point (1) and (2) in the 
paragraph above). However, in Chinese, the word literally means ‘padding’, which 
means raising something to a higher level that is closer to the target level. No doubt, 
the concepts of potential distance and Pudian carry an unmistakable flavor of the 
writings of Vygotsky and Davydov (see, for instance, Davydov, 1990; Vygotsky, 
1986). Davydov’s approach is grounded firmly in rich, real-world experiences, 
which lead learners to understand mathematical concepts in a scientific fashion. 
Scientific concepts do not emerge spontaneously out of experiences, yet learners 
can be guided to think scientifically by reviewing sufficiently rich, preparatory 
experiences.

THE STUDY

Having described the concepts of VT and BS, both of which emphasize the 
importance of using variation and invariance in teaching and learning, one 
question remains: how are the two theoretical lenses similar to and different from 
each other when used to analyze or improve classroom practices? We believe 
that by juxtaposing them in the context of the same lesson, we can gain a better 
understanding of the patterns of variation and invariance within and between units 
of teaching and learning activity, and how the problems, examples, and concepts 
used in the interactions between the teacher and students affect what students 
experience and learn from such interactions. The research questions to be addressed 
are (1) can we distinguish the practices of teachers according to the two theories of 
VT and BS? and (2) can we distinguish the perspectives of the two theories of VT 
and BS when they are used to interpret a lesson? The first research question was 
addressed in the study by Pang, Marton, Bao, and Ki (2016), which found that the 
two frameworks did not distinguish between the practices that they are supposed 
to. Despite their shared emphasis on the importance of variation and invariance, the 
two frameworks do not imply what should be kept invariant and what should vary 
with regard to specific objects of learning.

In this study, we focused on the second research question. To this end, a 
mathematics lesson carried out in Shanghai was planned in accordance with the 
bianshi framework and analyzed in accordance with both frameworks. The 
comparison between the analyses thus focused on the aspects of the specific Grade 
Two lesson (on the addition of 3-digit numbers) that were made visible by the 
two frameworks. By illuminating similarities and differences between these two 
frameworks of variation and invariance, we aim to open up ways of combining the 
two.
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Methods

Participating teacher. The teacher conducting the lesson was a Level 1 teacher in 
Shanghai who was considered to be competent in teaching mathematics. She had 14 
years of experience in mathematics teaching at primary school level and obtained 
her Master’s degree in the area of mathematics education.

The teacher was invited to plan the lesson, based on her understanding of the 
mathematical topic chosen and of the BS framework. She learned the framework 
from a ‘coach’, an experienced mathematics teacher educator and expert in the BS 
framework. In the course of lesson planning, the coach simply acted as a consultant 
or source of help, and did not actively influence the pedagogical design or try to 
ensure that the lesson was designed specifically to follow the BS framework. If 
the teacher had any questions or enquiries regarding the BS framework and its 
application, she could ask for theoretical and pedagogical support from the coach. 
The coach considered the teacher to have a good level of understanding of the BS 
framework.

Participating school and students. The school involved in this study had been open 
for only two years when the data were collected. It was situated in a newly developed 
suburb area of Shanghai, where two prestigious universities and a technology park 
are located. The students of the school were mainly from the families of the staff of 
these three giant institutions. The students’ academic ability was considered to be 
above average in Shanghai.

The mathematical topic chosen. The topic, ‘3-digit addition’, was chosen for the 
research lesson with the following considerations: (1) it is one of the prescribed 
mathematical topics in the Grade Two mathematics curriculum of Shanghai; (2) the 
participating teacher believed that the topic was moderately difficult for most of her 
students; and (3) the date for teaching the topic in the school fit well with the data 
collection schedule of the study.

Analysis. The systematic use of variation and invariance in the lesson was analyzed 
with reference to the two theories (BS and VT) simultaneously. It is noteworthy that 
the lesson to be analyzed was not intended to be an exemplary lesson that provided 
a direct and complete enactive representation of the BS framework.

Researchers of the two theories observed the lesson in Shanghai together. Based on 
the video recording, the researchers conducted the first round of analysis separately, 
using the respective theories of variation, and then met to exchange their views. 
They discussed questions concerning the similarities or differences they perceived 
in certain teaching episodes of the lesson, and their explanations of how the theory 
of variation was used.

In the following section, as the lesson was based on the BS framework, it is 
first described and analyzed in terms of teaching episodes with the use of the 
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BS framework. This will allow a good understanding of the rationale behind the 
instructional design and also provide a clear account of what really happened in 
the classroom. However, to make the text less repetitious, the same lesson is then 
analyzed in terms of topics with the VT framework. Conclusions are then drawn 
regarding the two theories and practices.

RESULTS AND FINDINGS

Analysis of the Shanghai Lesson on 3-digit addition based on the BS framework

Episode 1. The teacher began the lesson with some 2-digit addition tasks (see 
Figure 3). The students performed them very fluently with mental or oral calculation 
(i.e., saying aloud what they calculated in their minds).

Figure 3. The addition tasks given in Episode 1

The teacher asked the students what differences they could see between the tasks 
in the two columns. The students responded that the first column was about joining 
the numerals for the whole tens with the numerals for the units (整十数加上一位
数) and the second column was about adding whole tens to whole tens (整十数加整
十数); the numerals in the tens column needed to be added together. Based on that, 
she asked what other more general patterns of addition they had come across. One 
student gave the example of 35 + 35 and explained that it involved the addition of 
both tens and units; to obtain the result, one would need to add the tens (3 + 3) to 
get 6 tens, and add the units (5 + 5) to get 10, and hence the total was 7 tens, i.e., 70.

Two kinds of variation were involved in the above interaction. (1) Having the 
same number appear at different locations consolidated the concept of place value; 
e.g., in 20 + 4, the 4 is in the units place, but in 20 + 40, the 4 is in the tens place. 
This is a type of conceptual variation. The teacher also introduced a procedural 
variation, a Pudian (scaffold), which paved the way for 3-digit addition in which 
they also needed to pay attention to the place values associated with the numerals. 
(2) In 2-digit addition, which the students had learned previously, there were cases 
where they needed to carry from the units to the tens, or the tens to the hundreds, as 
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in the addition of 50 + 60. Later in the lesson, there were more examples of carrying 
from the tens to the hundreds, and further extending the idea by carrying from the 
hundreds to the thousands.

Episode 2. After finishing the review of 2-digit addition, the teacher began the 
main topic of the lesson, i.e., 3-digit addition. Before teaching the procedure for 
3-digit addition, the teacher gave the students some problems (Figure 4) to solve by 
mental or oral calculation.

Figure 4. The addition tasks given in Episode 2

These tasks can be seen as special cases of 3-digit number addition. The second 
addends were whole hundreds, whole tens or just units; the first addend in the left-
hand column was always the same whole hundred number (400), and in the right-
hand column a slightly more complicated number (423). As the second addends were 
relatively simple, the students were able to get the answers fairly quickly, but needed 
more time when they came to the last question (423 + 8), in which they needed 
to carry-over. As in Episode 1, the teacher asked the students what other general 
patterns of 3-digit number addition they would expect to see in the future, and the 
students responded that there could be a case of addition that involved hundreds, 
tens, and units at the same time, and it might involve carrying.

These tasks also served as Pudian for the more general 3-digit addition. Almost all 
of them could be solved according to the rule that numerals must be added according 
to their place value, which the students had learned in 2-digit addition. The same basic 
operation is used in multiple-digit addition, no matter how many digits there are: pairs 
of numerals with the same place value are added to each other. Almost all of the items 
applied this idea directly, except for 423 + 8, which led to the next issue of carrying.

Episode 3. Before the teacher introduced the procedure for more complex 
3-digit addition, she invited the students to recall daily experiences that involved 
the occurrence of 3-digit numbers and their addition. The teacher then posed an 
estimation task based on a possible real-life situation (see Figure 5).

She said, ‘I saw a promotion in a new supermarket. They awarded gift coupons if 
the purchase was over 500 dollars. Which two of the three items in the slides should 
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I buy?’ The students actively discussed the question in pairs, and some students 
were then invited to explain their answers. The class was able to identify the correct 
answer (buying a lamp for 247 dollars and a rice cooker for 335 dollars would cost 
more than 500 dollars). With some prompting by the teacher, the students also came 
up with an easy-to-follow logic to explain that this was the only answer: they could 
consider the sum of the hundreds to obtain the first estimation and then look at the 
remaining 2-digit parts of the numbers to see whether they could possibly ‘spill over 
100’. In the case of 161 + 335, the hundred digits only added up to 4, and 61 and 35 
did not add up to a hundred, and hence 161 + 335 could not be the correct choice.

This task also served as a Pudian for learning 3-digit addition in the following 
way: (1) it gave the students a preliminary experience of 3-digit addition; and (2) 
it gave the students some preliminary awareness that although the sum of over 500 
depended on the value in the hundreds place, the result was not just related to the two 
numerals in the hundreds place; it was also related to the numerals in the tens place 
(as their sum might produce a carry-over) and also to the numerals in the units place. 
This problem therefore served as a Pudian for the focus later in the teaching unit that 
when doing column addition, it is better to start with the units column.

This task was also in close accordance with the procedural variation concept of 
transferring a new complex problem to a simpler problem that students have already 
solved. Through the discussion in this class, the new question on 3-digit addition was 
transferred back to a previous simpler question on 2-digit addition. By taking the 
addition of whole hundreds separately (to see whether the hundred digits added up to 
5), what remained was in fact the problem the students had learned before, namely, the 
addition of 2-digit numbers and whether it would carry over to the hundreds column.

Episode 4. Next, the teacher asked the class, ‘Can you help me to calculate exactly 
how much I actually paid (i.e., 247 + 335)?’ The students had not yet been formally 
taught how to do 3-digit addition. The teacher asked the students to discuss and 
write their ideas in their exercise books, and then on the blackboard to share with 
the whole class. Many representations of the calculation soon appeared on the 
blackboard. There was a place-value chart (Figure 6), but more examples showed 

Figure 5. The estimation task given in Episode 3
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numerical or arrow expressions representing different ways of breaking down the 
addition into mentally easy-to-handle parts and processes (Figure 7).

In Figure 6, the student used a tool analogous to an abacus to represent 
‘concretely’ the computational process of the 3-digit number addition. This was a 
conceptual variation, but can also be regarded as a procedural variation because 
computing is itself procedural. One can refer to the idea of ‘procept’ proposed by 
David Tall (1991). As a conceptual variation, it allowed students to see the different 
representations of 3-digit number addition; as a procedural variation, its purpose was 
to provide a more concrete mode, which could be used as a Pudian for establishing 
the more abstract method. The different representations and operations in Figure 7 
served the same purposes of conceptual and procedural variation.

The students were given time to discuss with their neighbors to determine whether 
they understood the methods on the board and to group similar methods together. The 
teacher asked whether their own methods belonged to any of these groups. Through 
class discussion among the whole class, three major approaches were identified.

Figure 6. A student used place-value chart method to calculate

Figure 7. Various methods used by the other students



M. F. PANG ET AL.

54

1. Jumps on number line

Figure 8. Using jumps on the number line to calculate

The two methods in Figure 8 were essentially the same; that is, they involved 
adding on from the first addend. Interestingly, the class used a range of different 
methods, such as the use of two jumps (+300 then + 35), (+5 then + 330), and 
(+330 then + 5); three jumps (+300 then + 5 then + 30), (+300 then + 30 then + 5), 
and so on. After some discussion, all were regarded as the same idea of splitting 
the addition into easier, more manageable parts; the order was not important, but 
(+35) was a bit clumsy to handle mentally and hence was divided further. Some 
students were then also able to recognize that a similar idea was used in some 
methods that use numerical expressions (e.g., 247 + 300 = 547, then 547 + 30 = 
577, and then 577 + 5 = 582) and that these methods should also be included in 
this group.

2. Numerical addition of the same units

Figure 9. Adding the like units of 100, or 10, or 1

The students saw the two solutions in Figure 9 as the same because, although the 
order was reversed, they both added ‘the same units’ together and then combined 
the results. This approach was judged to be different from the previous approach 
because here both addends were split up. Some students pointed out that this was the 
same idea as the vertical column addition method (Figure 10) and the place-value 
chart method (Figure 6). The teacher then guided the students to see how carrying 
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was handled in the two cases of horizontal and vertical calculation. The purpose here 
was to allow the students to understand the processes of the two methods. It was a 
Pudian for future further development on column calculation.

3 .Transformation of the numbers (into complete tens or hundreds)

Figure 10. Adding numbers in the like columns

The class also noticed another clever method (Figure 11) that gave the same correct 
result. The teacher guided the student who produced the method to explain it.

Figure 11. Transforming the numbers into complete 10s or 100s

Student:  I first turn 247 into 250. Here 3 is added. Then 335 minus 3 equals 
332. They add up to 582 together.

Teacher:  Students, why do you think he made this change? Why does this 
change help?

Student: It rounds the number to tens.

Teacher:  Is it like taking things from my left pocket and putting them into my 
right?

Student: Add 3 and minus 3.

Teacher: Yes. Has the sum of my little pockets changed?

Student: No.

Teacher:  This method is very clever. You (the class) have shown so many 
clever approaches.
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The activity above, besides guiding students towards the first two purposes of 
procedural variation in Gu et al. (2004) (namely as a Pudian for the formation of 
concepts from concrete things to symbols, and the solution of new problem through 
transferring of the new problem back to old problem), also achieved the third purpose, 
namely ‘variation for extension’, by increasing the diverse pathways and hierarchical 
(multi-level) connections through presenting different solutions to a problem. However, 
opening up different solutions also required the teacher to bring effective convergence 
or closure based on the variations. Here, the third method (with smart calculation), 
although interesting, could have led the less able students to lose focus on the main 
purpose of the lesson, which was to provide the progression from 2-digit to 3-digit 
addition, particularly, the use of column addition and starting by adding the units.

After this discussion, the teacher provided two more 3-digit number addition 
problems to consolidate what had been discussed. The problems were (a) 534 + 321 
and (b) 259 + 198, both of which could be handled by certain approaches better than 
others. From (b), one can see that the teacher actually included the transfer of the 
smart calculation as an objective in her teaching, from the previous context of 2-digit 
addition to the present context of 3-digit addition.

Episode 5. The teacher then posed some challenging problems for further exploration 
(as shown in Figures 12, 13, and 14). Some of the digits in these problems were hidden, 
so the students needed to discern the dependency relationship in the addition process, 
namely, how the values of the different parts might influence the final result. The students 
needed to consider the possible values of the digits and the carry-overs they might 
generate, and to reason forward and backward along those lines to solve the problems.

Figure 12. An exploration problem given in Episode 5

Figure 13. Another exploration problem given in Episode 5
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Figure 14. The last exploration problem given in Episode 5

The last problem (Figure 14) was used to conclude the lesson. The problem was 
as follows: ‘Here are two 3-digit numbers. Some of the digits are covered with cards. 
To decide whether the result will be a 4-digit number, do I need to uncover some 
or all of the covered digits? And what would the digit have to be to cause such a 
difference?’

The purpose of this problem was ‘variation for extension’; it added mathematical 
reasoning to the computing process. This extension activity enabled the students 
to understand the concept of place-value and the carry-over procedure in a more 
integrated and dynamic manner. The students also learned to adapt to variation and 
to recognize its invariant property. Looking for such invariance within variation 
situations is a fundamental way of thinking in mathematics. There are more than 
7000 different answers to the problem in Figure 14. Various thought paths could be 
followed to work out the conditions under which the sum of the addition must be a 
4-digit number: (1) if the 100-digit of the second number is 8 or 9, then the sum of 
the three numbers must be a 4-digit number; (2) if the hundreds digit of the second 
number is 7 and the sum of the two tens digits of the two 3-digit numbers exceeds 
or equals 10 (e.g., in the cases of 28□+73□, 24□+76 and so on), then the sum of the 
two 3-digit numbers must be a 4-digit number; and (3) if the hundreds digit of the 
second number is 7, and the sum of the two tens digits of the two 3-digit numbers 
is only 9, then we need the sum of the two unit digits of the two 3-digit numbers to 
exceed 10, such that the sum of the 3-digit numbers will be a 4-digit number. The 
class discussion of this problem was as follows.

Teacher:  So far today, the addition problems with 3-digit numbers have not 
exceeded 1000. Do you think it is impossible for the addition of two 
3-digit numbers to produce a 4-digit number?

Student: No.
Student: For example, 999 + 100 will exceed…
Teacher:  Very good. (Showing the problem in Figure 14) I would like to 

ask, if I want to judge whether the sum can get to 1000, which card 
should I take away first? Should it be one from the units place or the 
hundreds place?

Student: Hundreds place.
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Teacher:  Okay, suppose I follow your instruction. Now this (the hundreds digit 
of the first addend) is 2. To get to 1000, what could this hundreds 
digit (of the second addend) be?

Student:  8.
Student:  9.
Teacher:  8 and 9, any smaller value? Is it impossible to have a smaller value 

here?
Student:  It’s possible. 7 can also …
Student:  There can be a carry.
Teacher:  There can be a carry from where?
Student:  The tens.
Teacher:  So if the tens get full, there will be a carry-over to the hundreds 

place, right?
Teacher:  So the fate of this 2 here (the hundreds digit of the first addend) 

may also rest on a possible carry of 1 (from the addition of the tens 
and units). So what can this digit (the hundreds digit of the second 
addend) be?

Student:  7.
Teacher:  Is it only tens that can produce this carry to the hundreds?
Student:  Units can also do so.
Teacher:  Sometimes, unit digits also can, right?
Student:  Imagine it is 299, and we can add 1 … or add …

As the lesson was running out of time, based on the last problem, the teacher 
gave the students a take-home task: ‘Create some 3-digit number additions in 
which a change in one digit in a certain place of the addend might generate an 
effect on the final result in the hundreds place or even require a result in the 
thousands place’.

The idea of procedural variation was once again present in the take-home tasks, 
The students were asked to extend their imagination to other possible problem 
scenarios that could be solved using the principles or methods they had learned. The 
tasks also paved the way for the noticing of the possible direction of propagation of 
carrying, and hence the reason that in doing column addition, it is generally more 
convenient to start by adding the unit digits, then the 10-digits, and so on in the 
ascending sequence. While the tasks were procedural variation, they also involved 
conceptual variation and worked in accordance with the principle of conceptual 
variation: the problems were based initially on situations that would be more familiar 
and within the students’ own imagination, before going onto familiar and not-so-
familiar tasks and examples to be introduced in the next lesson.

Overall remarks. The Shanghai lesson was designed according to the teacher’s 
understanding of the BS framework, particularly the ideas of conceptual and 
procedural variation. In the first and second episodes, students identified the 
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relevant concepts in the familiar context of 2-digit number addition, and then 
in the new context of 3-digit number addition using relatively simple examples, 
followed by more general examples later in the lesson. This can be considered as 
conceptual variation, and also as the procedural variation of Pudian. By highlighting 
the anchoring knowledge (certain features in 2-digit addition), the teacher used 
scaffolding to extend the students’ use of these concepts to novel problems (3-digit 
addition tasks that were more complex and distant from those that the students had 
previously encountered).

The use of procedural variation in the lesson was very explicit. The tasks were 
designed to provide increasing levels of challenge when moving from one task to 
the next, extending the use of the concepts further and further from the original 
examples, and with each task acting as a Pudian for later tasks. Another kind of 
procedural variation was used to get the students to share the different ways of 
performing the same addition and to make connections between them, enabling 
them to develop a deeper and more integrated understanding of the concepts and 
procedures involved, and the common principle underlying the various methods that 
appeared to be different on the surface. The third procedural variation, in contrast to 
Pudian, seemed to be the ‘variation for extension’ at the end of the lesson. To handle 
the more open situation, the students also needed to use inductive-deductive and 
hypothetical reasoning based on what they had learned.

Interpretation of the Same Lesson from the VT Perspective

In the previous section, the lesson on 3-digit addition was described and 
interpreted according to the BS framework. We invited researchers of the VT theory 
to analyze and comment on the variation and invariance in the same lesson. This 
allowed us to:

1. observe whether any of the practices using variation and invariance in one theory 
were contrary to the other theory, and

2. note any differences in how the two theories described or interpreted the same 
teaching and learning.

Object of learning. Both BS and VT share a similar goal of enhancing students’ 
understanding, so that learning does not just involve the specific things that are 
taught, but the general principles embedded in them, which can be extended to 
future novel situations that the students will encounter. From the VT perspective, 
the object of learning of the Shanghai lesson (i.e., what the students were expected 
to learn) was obviously targeted at such a level, as it focused not only on the correct 
performance of an algorithm for 3-digit addition, but also on different methods. The 
indirect object of learning was the extension of the different methods for handling 
2-digit addition to 3-digit addition with the use of certain principles that could be 
discerned in the 2-digit additions.
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The critical aspects (dimensions of variation) made salient in the lesson went 
beyond basic issues such as the variation in value and place and in carrying-over 
according to an algorithm. The lesson looked at the differences between the methods, 
such as the different ways of seeking possible methods or sequences of splitting and 
regrouping the quantities in the computation process, and the different conditions 
under which the carry-over value in one place may affect the carry-over value in 
another. By opening up such a rich set of dimensions of variation, the breadth of 
learning in this lesson was much wider than that in lessons that only focus on a 
particular algorithm and its application.

When teaching the topic of 3-digit addition, a teacher can be aiming at quite 
different critical aspects, such as the most basic properties of the mathematical objects 
and methods, or big mathematical ideas behind the formation and transformation 
of these mathematical objects and methods. Of course, teachers should choose an 
object of learning appropriate to the characteristics of the target groups of learners to 
create an optimal learning space. In this lesson, the interaction in the class indicated 
that the object of learning was very well pitched to the level of the students, and they 
actively participated in the lesson.

Having mentioned that the students’ ability level appeared to be good, one 
thing to note is the broad range of tasks of differing levels of difficulty used in 
the lesson. Some of the tasks were very easy for the students, very much against 
the folk belief that good students can be challenged by presenting them with more, 
and more difficult, problems. By bringing the students’ attention to some seemingly 
very simple tasks in a familiar domain (2-digit addition), they were afforded to 
see the dynamic variation and invariance between them by enacting their existing 
concept and skills, and hence were more prepared to view the new domain (3-digit 
addition) in that light. Some of the tasks were challenging, such as the invitation to 
estimate whether the sum of two numbers reached or exceeded 500 before teaching 
the students 3-digit addition, and the last problem, which asked the students which 
of the unknown digits would make a difference to whether the sum of the 3-digit 
numbers became a 4-digit number. In solving these problems, the students used 
the aspects they could discern simultaneously to further explore their relationships 
through reasoning and trial and error. Therefore, the students’ ability level was one 
factor. Yet, how to decide specific tasks and examples and stage the co-constitution 
of the learning space so that the general mathematics ideas could be discerned in 
order was another decisive factor for the success of the lesson.

Sameness, difference and Pudian. Both BS and VT emphasize the systematic use 
of variation and invariance in teaching and learning. However, BS seems to put more 
emphasis on the function of sameness and VT on the function of difference. The 
previous section makes it quite obvious that a lot of the teaching moves could be 
explained in terms of Pudian in the BS framework, which is concerned with bringing 
students closer to the target level so that they can generalize the underlying mathematical 
principle(s); in other words, so that they can see the similarity between what they 
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have learned and what is new. The teaching design is led by the core connections 
among different mathematical objects and situations, i.e., their sameness or invariant 
mathematical structure. It is through this sameness that we see the transcending power 
of mathematics. In what ways does VT offer a different interpretation?

VT posits that experiencing difference is a necessary and basic condition for 
powerful learning, as it opens up new ways of seeing meaning, and enables learners 
to handle future novel situations more effectively. From the VT perspective, transfer 
occurs only when the learner experiences difference against a background of 
sameness. This lesson illustrated this point, in which the difference between the old 
and the new demanded the transfer in the first place. If the learner experienced no 
difference (or gap) between the 3-digit addition (the new) and the 2-digit addition 
(the old), then there would be no transfer, and in fact there would be no need to teach 
the lesson. Without this lesson, in which the difference (or gap) between 2-digit and 
3-digit addition was dealt with seriously, the students would be less likely to see the 
transcending property of what they had learned.

Second, VT considers that what is transferred is often the difference that the 
learner has experienced in the original situation, or the contrast or changes she has 
made in the original situation (and hence the sensitivity to such critical aspects or 
dimensions of variation). Such experiences of difference, contrast or change, and the 
sensitivity to the relevant dimension(s) of variation help in exploring similar ways 
of differentiating, contrasting, or changing in the new situation. Thus, sensitivity 
towards the difference within a domain becomes the basis of sensitivity towards 
the sameness across domains. Looking closely at the Pudian of the lesson, it is 
not difficult to see that the teacher brought up contrast in the learned domain to 
strengthen students’ discernment of the critical aspects before transferring them to 
the new domain.

Figure 3 provides a good example of how such contrast can be used for Pudian. 
The example was clearly too easy to be called a revision or practice exercise of 
2-digit addition; it was an example of 2-digit addition purposely chosen for contrast. 
The first row contrasts two additions, drawing attention to the different ways the 
sum can be done. Both additions used the numeral 4 in the second addend, but in a 
different place (tens or units), and the method of doing the sum differed accordingly. 
The pattern of variation and invariance (the use of 40 versus 4 while other parts 
remained the same) acted as (1) a separation in which the place aspect was made 
salient, (2) a fusion of the place aspect to the value of the second addend (4 tens 
or 4 units) and (3) a fusion of the kinds of quantity of the second addend (whether 
whole tens or only units) to which the right part (or place) in the first addend the 
second addend should be added. To summarize, the contrast helped to make salient 
the meaning of place-value and the meaning of adding values in the correct place 
(adding tens to tens, but not tens to units). Then the same contrast was repeated row 
by row, with the numeral changing to 5, then 6, then 2. The pattern of variation and 
invariance helped the generalization of the pattern beyond the specific numerals 
used in the different rows.
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Figure 4 also provides an interesting example of Pudian. It shows a particular 
set of 3-digit addition tasks. In relation to the 2-digit addition tasks in Figure 3, 
they were new tasks that the students had not done before; but, in relation to the 
later 3-digit addition tasks, they were Pudian. Comparing the left-hand column of 
Figure 4 with the tasks in Figure 3 reveals a clear difference: the first addends all 
change from whole tens to whole hundreds (i.e., from 2-digit numbers to 3-digit 
numbers). However, there is also a clear similarity: in both cases, the second 
addends are either all hundreds, all tens, or all units, but never a mix of the different 
kinds. The clear similarity and difference helped the transfer, or, in BS terminology, 
made the potential psychological distance between Figure 3 and the left-hand side 
of Figure 4 very small.

Looking across the two columns of Figure 4, one can see another contrast – a small 
move from a more salient case to a more obscure case (with the distracting details 
entered into the tens place and units place of the first addend). In BS terminology, 
the variation of some irrelevant attributes can train the learner to focus on the critical 
attributes and object of interest. In VT terminology, this is called ‘generalization’ 
(learners make a distinction between the essential and non-essential aspects of a 
concept). Although Figure 4 is only a small subset of the huge set of possible 3-digit 
addition tasks, its pattern of variation and invariance makes salient the same critical 
aspects and relationships mentioned earlier for 2-digit addition, and prepares the 
learner to handle more 3-digit addition tasks in the future.

Hence, to summarize, the direction of Pudian is driven by the sameness from 
a mathematical perspective, but the actual learning transfer (or the discovery of 
the sameness across different examples) only occurs through a very skillful use of 
differences. For the learner to discern and focus on the important aspects for the 
transfer, the learner needs to experience (1) the difference (or gap) between the old 
and the new tasks that calls for the transfer, (2) the difference in the original tasks that 
makes salient the critical aspects and relations that are useful and (3) the difference 
within a ‘landing and test bed’ set of new tasks that help in checking whether the 
transfer is actually valid. Both sameness and differences are therefore necessary.

Separation and fusion. From the VT perspective, this lesson also made use of the 
variation-invariance patterns of separation and fusion to explore the cumulative 
effect of carrying that can originate from multiple places (hundreds, tens, and units). 
First there was the separation (in Figures 9 and 10), involving the adding of only 
multiples of hundreds, tens, or units. The students only had to focus on the addition 
in a single place, and to follow the consequence of carrying from that place forward, 
if necessary. At the end of the lesson, however, when the students came to the last 
problem (Figure 14), they needed to decide whether the sum would reach 1000, with 
many digits unknown and hence open to carrying. The students needed to attend to 
the possible variation of values in different places, find a way to handle it in order, 
and notice how carrying from one place could be affected not just by the sum at that 
location, but also by the sums in the lower places.
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In this lesson, VT may further consider that effective fusion often requires more 
support in addition to the simultaneous variation of the aspects concerned. First, 
it probably demands a meaningful problem or purpose that calls for such fusion, 
and is understandable to the learners; second, it probably demands active problem 
solving processes or the assistance of conceptual tools to cope with the complex 
situation; and third, certain constraining patterns of variation and invariance may be 
required to create intermediate levels of less complex fusion so that the openness can 
be kept manageable. In this lesson, the problem was very well set, which fulfilled 
the first demand; the teacher also guided the students using forward and backward 
hypothetical mathematical reasoning, which fulfilled the second demand. The teacher 
also valued this learning situation because it facilitated mathematical thinking. To 
help the learners achieve fusion, the teacher made a certain part of the example 
invariant. For example, fixing the hundred digit of the first addend to ‘2’ helped to 
reduce the openness. Subsequently, the teacher invited temporary assumptions from 
the students, such as making the hundred digit of the second addend 9, 8, or 7, and 
explored the reduced set of possible scenarios separately under each assumption. 
This addressed the third demand.

DISCUSSION AND CONCLUSION

It is quite obvious that there are some critical differences between the BS and VT 
frameworks. To begin with, the distinction that BS makes between conceptual and 
procedural variation is not made in VT. This has to do with VT’s phenomenological 
origin in attempting to understand people’s experiences and the meaning they make 
out of them: everything is described from a certain perspective (this is an inherent 
aspect of any description): the researcher’s, the teacher’s, or the learner’s. The 
viewer’s way of acting is always related to his or her way of seeing. Moreover, 
nothing is classified as inherently static or dynamic. While viewing a certain 
instance of the phenomenon, what is intended to be varying (dynamic) according 
to one viewer may be taken as invariant (static) by another. However, the analysis 
of this issue by the BS researcher clarified that a teaching move can involve both 
conceptual variation and procedural variation; BS does not draw a hard boundary 
between the two.

Another difference between the two frameworks is that VT often places the 
comparison of examples and non-examples early in teaching and learning, to facilitate 
the acquisition of the overall meaning of the concept. In contrast, BS often begins 
with standard examples, then introduces non-standard examples and finally non-
examples. How the two views can be juxtaposed in the analysis of this lesson is not 
particularly clear because the lesson does not introduce new concepts or meanings; 
rather, it refines and extends existing concepts. Nonetheless, the teacher obviously 
contrasts alternative views to facilitate learning. With the opening tasks in Figures 9 
and 10, students were invited to give multiple responses. Similarly, the students 
were invited to give their views on how to find the sum of 247 + 335. Therefore, 



M. F. PANG ET AL.

64

the teacher did not simply transmit her ideas to the students; instead, she allowed 
space for alternative ideas to be contrasted or errors to be discussed (incidentally, no 
erroneous responses came up in the lesson, although the space was provided). For 
instance, in the last challenging problem of the lesson, the teacher actually made an 
implicit contrast between the hundreds digit being 8, 9 or, 7 in the second addend, 
and highlighted the interesting features in the case of 7.

More fundamentally, while both VT and BS researchers agree that new meanings 
can be generated when one discovers similarities among things that are conventionally 
taken as different, or differences among things that are conventionally taken as the 
same, if we scrutinize the two frameworks, it is clear that they differ in the relative 
emphasis on sameness and difference. It seems that the VT framework puts more 
emphasis on the value of seeing differences over sameness, and the BS framework 
puts more emphasis on the value of seeing sameness over differences. This difference 
is probably due to the difference in the context and point of departure between the 
two frameworks, and in the context in which the terms ‘sameness’ and ‘difference’ 
are used in the two frameworks in the lesson analysis.

The BS framework was developed by mathematics educators, aiming to lead 
students to develop a mathematical understanding of the world, in which the same 
concepts and relationships can be used across different situations. As students’ 
mathematical knowledge develops, they also need to understand the connections 
between different mathematical representations and relationships, and hence, 
develop a parsimonious view of the knowledge concerned and an agile command 
of the various mathematical objects. In this sense, seeing the sameness among the 
vast number of instances in this knowledge space is especially important. Grasping 
the core concepts and the core connections between them will help to remediate 
the current trend of over-cramming substance into students, with the folk belief 
that giving them more, and more difficult, problems will naturally make them learn 
better and perform better in examinations.

However, similar to VT, BS scholars also believe in the use of differences, which is 
why the term Bianshi is used. This pedagogical framework does not stop at the point 
of offering ‘big ideas’, but tries to go beyond the Chinese tradition that emphasizes 
sameness to develop a teaching theory that asserts the need to use variation. BS is 
thus an especially valuable thought stimulator for VT researchers. At the same time, 
BS researchers are interested in using VT as a conceptual tool for conducting more 
close-up and scientific analyses of their variation-oriented practice.

VT was developed by researchers in the areas of education and psychology, 
who did not belong to a particular school subject discipline. VT originated from 
phenomenographic research, and the first objective was to make education more 
effective by challenging the taken-for-granted view of knowledge. People (including 
teachers) typically believe that the way they see the world is the true and only way 
to see it and that other people (including students) see it in the same way. However, 
phenomenographic studies comparing the different ways that people view the same 
phenomenon show that there are actually critical differences in terms of what aspects 
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of the phenomenon people attend to at the same time. VT researchers argue logically 
that if an aspect of a phenomenon, as far as it has been experienced by the person, 
has never varied, why should the person be concerned about it? This conjecture has 
been supported empirically: the critical aspects that students are able to see at the 
end, but not the beginning, of a lesson are commensurate with those critical aspects 
that are varied in the teaching and learning process. The change in the critical aspects 
and their connections to the change in the overall situation, or vice versa, has thus 
become a key to developing targeted ways of seeing the phenomenon.

Hence, VT always focuses on difference. Yet at the same time, sameness has 
always been there in VT. To discover a certain difference, other things need to be 
kept invariant. In phenomenography, the same phenomenon has to be used to reveal 
the differences in people’s way of seeing. In a classroom, varying all aspects at the 
same time throughout a lesson will obviously create more confusion than learning. 
The other aspects need to be invariant to make the varied aspect salient. Moreover, 
when comparing things to identify their differences, some logically implicit 
assumptions are made: (1) that it is somehow meaningful to make that comparison 
(i.e., they are comparable); and (2) that there is some common dimension(s) along 
which the things can exhibit their different values in relation to each other (i.e., they 
are different in a certain way).

Although BS and VT place different emphases on sameness and difference, the 
analysis of the lesson with the use of the two frameworks actually shows that they 
are highly compatible. The lesson inspired by BS is also regarded as a high quality 
lesson from the perspective of VT; it included both sameness and difference, and also 
afforded discernment, attention, and transfer in the way that VT sees as instrumental. 
It seems quite obvious that sameness or difference can be analytically separated, 
but in reality, they co-exist and are mutually dependent. The analysis of this lesson 
indicates that the two frameworks are compatible rather than mutually exclusive.

To conclude, a complementary relationship seems to exist between the two 
frameworks discussed here. The BS theory is more elaborate and explicit as far as 
the design of learning activities (tasks) is concerned in mathematics. Variation and 
invariance are closely related to the inherent structure of mathematical understanding. 
Furthermore, fine steps of variation and invariance are used as Pudian for students 
to reach that understanding. VT, a framework for learning in general, can help to 
explain how teaching can be designed to bring about learning, with a particular focus 
on patterns of variation and invariance as a way of directing students’ discernment 
and attention, and thus the formulation of new meanings and relationships, and their 
transfer.

The procedural variation of BS seems to emphasize the Pudian from one task or 
situation to another and their connections so as to make the distance of proximal 
development manageable to students in constituting their space of learning and 
thinking. On the other hand, the contrast and separation of VT emphasizes the 
differences within a task or situation, so that critical aspects and alternative meanings 
people see in the task or situation can be made discernible and thus preparing the 
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way of seeing for transfer. They are like working in complementary ways along to 
orthogonal directions.

The method of analyzing the same lesson with the two variation frameworks 
has been shown to be very useful for developing collective understanding between 
VT and BS researchers. While acknowledging the potential power of an integrated 
framework that synthesizes the two variation frameworks, it is useful to iterate that 
practice and theory are not direct products of each other, and more studies are needed 
to demonstrate more clearly how joint analysis using the two theoretical frameworks 
can provide the best contribution to the improvement of practice.
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ALLEN LEUNG

4. VARIATION IN TOOL-BASED  
MATHEMATICS PEDAGOGY

The Case of Dynamic Virtual Tool1

INTRODUCTION

A characteristic in the process of acquiring mathematical knowledge is a dual 
relationship between variation and invariance. Mathematics activities can be seen as 
either seeking invariants while varying aspects that define/describe a mathematical 
situation or seeking to apply invariant mathematical concepts in various situations. 
Another way to posit this duality is through two realms where one can experience 
mathematical knowledge: a realm of perceptive observable variable phenomena 
generated by cultural artifacts (e.g. mathematical tools like an abacus or dynamic 
geometry software) and a realm of cognitive invariant mathematical patterns 
(e.g. abstract mathematical formulas or theories). Strategic use of variation can 
serve as transitory means to connect the two realms. This chapter discusses how 
variation can be used as a pedagogical tool in the context of mathematics teaching 
and learning, in particular when the use of a dynamic virtual tool is employed, to 
make this epistemological connection. The set of Principles of Acquiring Invariant 
proposed by Leung (2014) that is complementary to the patterns of variation in 
Marton’s Theory of Variation will be further discussed and explored under a tool-
based teaching and learning environment.

BACKGROUND

The Theory of Variation

Marton’s Theory of Variation is a theory of learning and awareness that asks the 
question: what are powerful ways to discern and to learn? (cf. Lo & Marton, 
2012; Marton, 2015; Marton & Booth, 1997) The Theory of Variation starts with a 
taken-for-granted observation: nothing is one thing only, and each thing has many 
features. In this theory, discernment is about how to go from a holistic experience of 
a phenomenon (e.g. seeing a forest) to separating out different features (e.g. seeing 
a tree) in the phenomenon. It concerns with how to pick up meaningful experiences 
through our senses, and how meaning comes about from relationships between 
similarity and difference derived under simultaneous attention. In particular, there is 
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a discernment ordering from difference to similarity. That is, learning and awareness 
begins with noticing difference before observing similarity. Suppose I can only 
perceive “grey” in certain situations, then “grey” has no meaning for me even if you 
show me a grey chair, a grey car, or a grey cup, “Greyness” becomes meaningful 
to me only if I can perceive something else other than “grey”. Thus in discernment, 
contrast (finding counter-examples focusing on difference) should come before 
generalization (which can be regarded as an inductive process focusing on 
similarity). A fundamental idea in the Theory of Variation is simultaneity. When we 
are simultaneously aware of (intentional focusing our attention on) different aspects 
of a phenomenon, we notice differences and similarities. By strategically observing 
variations of differences, similarities and their relationships, critical features of the 
phenomenon may be brought out. Morton proposed four patterns of variation as such 
strategic means: contrast, separation, generalization and fusion (Marton et al., 2004; 
see Figure 1 for descriptions of these patterns). A major undertaking of the Theory of 
Variation is to study how to organize and interpret a pedagogical event in powerful 
ways in terms of these patterns of variation (Lo & Marton, 2012).

Applications of the Theory of Variation in Mathematics Knowledge Acquisition

The first application of the four patterns of variation in the Theory of Variation 
to mathematics pedagogy was discussed in the context of a dynamic geometry 
dragging exploration (Leung, 2003). There, the four patterns of variation were 
used to interpret dragging modalities in a dynamic geometry construction problem 
to explore experimental reasoning and theoretical reasoning. This began a long 
programme of study by Leung, where in subsequent work; the four patterns were 
used as epistemic functions to analyses the developmental processes of mathematical 
proof and mathematical concept (see for example, Leung, 2008; Leung, 2012; 
Leung et al., 2013). An epistemic activity in doing mathematics is to discern critical 
features (or patterns) in a mathematical situation. When these critical features are 
given interpretations, they may become invariants that can be used to conceptualize 
the mathematical situation. In Leung (2012), classification of plane figures was used 
as an example to develop a variation-based pedagogic model. The model consists 
of a sequence of discernment units in which different variation strategies are used 
to unveil different feature types of a plane figure: intuitive visual type, geometrical 
property type, and equivalent geometrical properties type. Each discernment unit 
contains a process of mathematical concept development that is fused together 
by contrast and generalization driven by separation. The sequence represents a 
continuous process of refinement of a mathematical concept, from primitive to 
progressively formal and mathematical. Mhlolo (2013) later used this model as 
an analytical framework to interpret a sequence of richly designed mathematics 
lessons teaching the conceptual development of number sequence. The upshot is, 
from a variation perspective, mathematical concepts can be developed by strategic 
observation and variation interaction in terms of contrasting and comparing, 



VARIATION IN TOOL-BASED MATHEMATICS PEDAGOGY

71

separating out critical features, shifting focus of attention (cf. Mason, 1989) and 
varying features together to seek emergence of invariant patterns. A variation 
interaction is “a strategic use of variation to interact with a mathematics learning 
environment in order to bring about discernment of mathematical structure” (Leung, 
2012). It is also a strategic way to observe a phenomenon focusing on variation and 
simultaneity. “Interaction” here is interpreted in the sense that the acts of observing 
may involve direct or indirect manipulation of the “mathematical object” (which 
may be a tool) under study.

PRINCIPLES OF ACQUIRING INVARIANCE

Simultaneity is the epistemic crux of variation. The four patterns in Marton’s 
Theory of Variation are different types of simultaneous focus used to perceive 
differences and similarities which lead to the unveiling of critical features of what is 
being observed. Looking for an invariant in variation and using an invariant to cope 
with variation are essences of mathematical concept development. A mathematical 
concept is in fact an invariant. For example, the basic concept of the number 
“three” is an invariant cognized out of myriad representations of “three-ness”. Thus 
in acquiring mathematical knowledge, to perceive and to understand an invariant 
amidst variation is a central epistemic goal. Leung (2014) proposed a set of four 
Principles of Acquiring Invariance that is complementary to Marton’s (Marton 
et al., 2004) four patterns of variation in the context of mathematics concept 
development.

Difference and Similarity Principle

Contrasting differences and comparing similarities in order to perceive or generalize 
possible invariant features

Sieving Principle

Separating under prescribed constraints or conditions in order to reveal or be aware 
of critical invariant features or relationships

Shifting Principle

Shifting attention to focus on different or similar features of a phenomenon at 
different times or situations in order to discern generalized invariance

Co-Variation Principle

Co-varying or fusing together multiple features at the same time in order to perceive 
possible emergent pattern or invariant relationship between the features
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These four principles work with the four patterns of variation in a concerted way. 
All four principles, just like the four patterns, are different aspects of simultaneity 
and contrast. They are “perceptual-cognitive” activities looking for mathematical 
invariants leading to development of mathematical concepts. In particular, they 
have the following predominant functions. Difference and Similarity Principle is 
about contrast and generalization leading to awareness of a perceptual invariant 
feature. Sieving Principle is about awareness of hidden invariant features that can 
be separated out under variation when only selected aspects of the phenomenon are 
allowed to vary. Shifting Principle is about diachronic (across time) simultaneity 
leading to possible generalization, particularly in the mathematics conjecture 
making process. Co-variation Principle is about synchronic (same time) simultaneity 
leading to fusing together of critical features in the mathematical concept formation 
process. These four principles are learner driven which can be cognitively mingled 
and nested together. During a variation interaction, a learner can apply these 
principles with different weight and transparency. Figure 1 is a summary of the 
relations between the Principles of Acquiring Invariance (PAI) and the patterns of 
variation.

Figure 1. Relations between the principles of acquiring  
invariance and the patterns of variation
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TOOL-BASED MATHEMATICS PEDGOGY

Tools/Artifacts mediate the representations and discourses of mathematical 
knowledge and expand the space of inquiry for students to discern and experience 
mathematics (cf. Leung & Bolite-Frant, 2015). In fact, “artifacts do much more 
than mediate: they are a constitutive part of thinking and sensing” (Radford, 2013, 
p. 8). There are two pedagogical perspectives to view tools/artifacts. The theory 
of instrumental genesis (Rabardel, 1995) explicates on how a learner develops a 
utilization scheme for a particular tool for problem solving and these schemes can 
be attached to the tool to make it into a pedagogical instrument. The Vygotskian 
approach regards artifacts as internalized psychological tools in the context of social 
and cultural interaction through a socio-semiotic process (Vygotsky, 1978, 1981).

Mathematical task is an important component in the teaching and learning 
of mathematics in the classroom. With the presence of a tool, the design of a 
mathematical task should capitalize the epistemic potentiality of the tool. A tool-
based mathematics task is:

A teacher/researcher design aiming to be a thing to do or act on in order for 
students to activate an interactive tool-based environment where teacher, 
students, and resources mutually enrich each other in producing mathematical 
experiences. In this connection, this type of task design rests heavily on a 
complex relationship between tool mediation, teaching and learning, and 
mathematical knowledge. (Leung & Bolite-Frant, 2015, p. 192)

Resources include the tool, physical or virtual manipulatives, and means associated 
with it in the mathematical knowledge construction process. Tools have affordance and 
constraint and they give potentials for variation interactions to happen in the mathematics 
classroom. Affordance means a relation between a tool-enriched environment and a 
learner that affords the opportunity for the learner to perform an action (cf. Gibson, 
1977). Constraint of a tool is interpreted here as the boundary between the utilization of 
the tool and the intended mathematical content to be learned. It also provides opportunity 
for the learner to compromise problematic situations arise from using the tool.

Tool-Based Task Design Features

Leung and Bolite-Frant (2015) discussed in-depth tool-based task design under the 
following considerations:

1. Use strategic feedback from a tool-based environment to create learning 
opportunities for student.

2. Design activities to mediate between the phenomena created by a tool and the 
intended mathematical concept to be learned.

3. Make use of the affordances and constraints of a tool to design learning 
opportunities.

4. Switch between different mathematical representations or tools.
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These tool-based design features are generic inter-related tool-based task design 
features that have pedagogical potential to create opportunities for learner actions 
and to reshape the boundary between tool usage and mathematics concept formation. 
Variation in tool-based mathematics pedagogy explores how these features and the 
Principles of Acquiring Invariance pedagogically mesh together in a tool-based 
environment for learners to acquire mathematical knowledge. In particular, what 
variation strategies based on the Principles of Acquiring Invariance can be designed 
to take advantage of the features of a specific chosen tool?

Tool-Based Task Design Epistemic Model

Exploring, constructing and explaining are three important aspects in mathematics 
knowledge acquisition. These shall form the core of the guiding principles for tool-
based task design. Learners should engage in activities that blend these aspects in 
a progressive epistemic sequence that is conducive to the purpose and utility of the 
tool-based task. In this connection, Leung (2011) proposed a nested epistemic model 
for tool-based task design consisting of a nested sequence of three epistemic modes 
of activities. This model was conceived as a prototype for tool-based pedagogical 
design.

Practices Mode: Interact with the feedback from acting on the tool to develop skill-
based routines, modalities of behavior and modes of situated dialogue.

Critical Discernment Mode: Observe, record, recognize and re-present (re-construct) 
invariance perceived from acting on the tool.

Situated Discourse Mode: Develop tool-based discourses to reason about the 
invariant perceived leading to making generalized mathematical ideas (e.g. 
a mathematical conjecture) and seek further to explain the ideas in formal 
mathematical ways.

These modes are nested in the sense that Critical Discernment Mode is a cognitive 
extension of Practices Mode, and Situated Discourse Mode is a cognitive extension 
of Critical Discernment Mode. An exploration space opens up for the learners 
as the sequence progresses where practices evolve into discernment followed by 
discernment evolving into discourses. Within each mode, cognitive activities 
can be organized by variation interactions and tool heuristics. Thus a tool-based 
pedagogical sequence can be designed through combining the epistemic modes, 
tool-based design features, and the Principles of Acquiring Invariance. The sequence 
presents an evolving process (not necessarily linear) that merges gradually from 
mainly perceptive experiential “thinking” while using a tool to mainly conceptual 
theoretical “thinking”.

To summarize: variation in tool-based mathematics pedagogy is a pedagogy that 
strategically organizes Principles of Acquiring Invariance and tool-based design 
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features under the nested epistemic modes to create a tool-based environment for 
learners to acquire mathematical knowledge (Figure 2).

Figure 2. Variation in tool-based mathematics pedagogy

A DYNAMIC GEOMETRY EXAMPLE

The following is an example of a task sequence using the epistemic model and 
the Principles of Acquiring Invariance in tool-based mathematics pedagogy. It 
is conceptualized and designed by using a student DGE (Dynamic Geometry 
Environment) exploration studied in Leung, Baccaglini-Frank and Mariotti (2013).

TASK 1: Construction

Practice Mode: DGE Construction
Construct three points A, B, and C on the screen, the line through A and B, and 
the line through A and C. Construct a line l parallel to AC through B, and a line 
perpendicular to l through C. Label the point of intersection of these two lines D. 
Consider the quadrilateral ABCD (see Figure 3).

In this first task, the learner practices how to use DGE to do geometrical 
construction and begin to develop a personal routine to familiarize oneself with 
DGE. Affordances and constraints of the DG software are used are explored.

Figure 3. The DGE construction
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TASK 2: Contrast and Comparison

Practice Mode and Principle of Difference and Similarity: Variation tasks are 
used to bring about awareness of different and similar aspects/features in a DGE 
phenomenon that leads to observable invariants.

2.1 Drag A, B, C to different positions to make different quadrilaterals
2.2  How many different or similar types of quadrilateral ABCD can you 

make?
2.3  Describe how you drag a point to make it changes into different types of 

quadrilateral

Questions 2.1 and 2.2 ask the learner to contrast and compare different 
positions of A, B and C as these vertices are being dragged to observe how many 
different types of quadrilaterals can be formed. Question 2.3 asks the learner to 
think about the dragging strategies used to obtain different types of quadrilaterals, 
thus motivating the learner to develop dragging skills and strategies, to relate 
strategic feedback and dragging action, and to begin a DGE-based reasoning about 
perceiving a DGE invariant. Figure 4 shows two snapshots for different positions 
of A where B and C are fixed. There are only two types of possible quadrilaterals: 
right-angled trapezium and rectangles. This is making use of the Difference and 
Similarity Principle.

Figure 4. Snapshots for different positions of A where B and C are fixed

TASK 3: Separation of Critical Features

Critical Discernment Mode and Principles of Sieving and Shifting: Variation tasks 
are used to bring about awareness of critical (causal) relationships among the 
observed invariants.

3.1  Activate the Trace function for point A. Drag A while keeping B and C 
fixed to maintain ABCD to look like a rectangle.

3.2 Describe your experience and what you observe.
3.3  Make a guess on the geometrical shape of the path that A follows while 

restricting BCD to look like a rectangle. How do you make this guess? 
Call this guess a maintained-path (cf. Leung et al., 2013)
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Question 3.1 asks the learner to use a special function in DGE to record the trace 
of point A as it is being dragged to keep ABCD looking like a rectangle. Using a 
rectangle as a perceptual invariant to constrain the dragging control makes visible 
the emergence of another perceptual invariant: the trace-mark of A which appears to 
take on a geometrical shape (see Figure 5). This gives rise to an uncertainty created 
by the dragging and tracing tools. Guessing and naming the trace motivates the 
learner to engage into a DGE discourse thus making use of the Sieving Principle.

Figure 5. The trace-mark of A which appears to take on a geometrical shape

In questions 3.2 and 3.3, by asking the learner to describe his/her dragging 
experience and to make a guess on the geometrical shape of the traced path, the 
learner’s cognitive mode is transiting from observation of DGE phenomena to 
discernment of critical features that could lead to concept formation. In particular, 
while the learner shifts his/her attention to the two perceptual invariants (the 
rectangular-like ABCD and the maintained-path) during dragging, attention to 
discern possible causal relationships between the two invariants may come about. 
This is Shifting Principle focusing on the pragmatic-epistemic continuum.

TASK 4: Simultaneous Focus

Situated Discourse Mode and Principles of Shifting and Co-variation: Variation tasks 
are used to bring about awareness of a connection between critical relationships 
observed and possible mathematical discourses (causal condition, formal/informal 
conjecture, concept, pattern, mathematical proof, etc.).

4.1  When A is being dragged to vary, vertices B, C and D either vary or not 
vary as a consequence. Observe the behavior of B, C and D while A is 
varying to and at the same time restricting ABCD looks like a rectangle.

4.2  Find a possible condition to relate the trace-path of A and the varying 
configuration of B, C and D.

4.3 Use the condition found in 4.2 to construct the maintained path

Questions 4.1 and 4.2 are a continuation of questions 3.3. The Shifting Principle 
continues with added attention to the consequential movements of the vertices A, B, 
C and D, and the Co-variation Principle comes into effect. In the process, the learner 
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develops a DGE discourse for geometrical reasoning and construction. Question 4.3 
is a consummation of the exploration in the form of a DGE soft construction (cf. 
Healy, 2000). The maintained-path takes the form of a circle centred at the midpoint 
of segment BC. The construction of this circle ensures D lies on the circle and when 
A is being dragged along this circle, ABCD becomes a rectangle (Figure 6). A DGE 
soft construction makes use of discrepancy to explore properties and relationships 
of geometrical objects.

Figure 6. A circle is constructed to ensure when A is on it, ABCD becomes a rectangle

TASK 5: Conjecture and Proof (Development of Theoretical Reasoning)

Situated Discourse Mode and Principles of Co-variation: Development of DGE 
discourse to connect experimental reasoning and theoretical reasoning

5.1 Write a conjecture on what you have discovered in the form
GIVEN A DGE construction
IF (certain condition being maintained during dragging)
THEN  (certain configuration appears to be maintained during 

dragging)
5.2  Drag A along the constructed trace-path. Observe how different aspects 

of the figure vary together. Explain what you observe and formulate a 
logical argument to explain/prove your conjecture

Question 4.3 (Figure 6) is a DGE representation of a conjecture, question 5.1 
asks the learner to write this in the form of a DGE-situated conditional statement, 
for example,

GIVEN Quadrilateral ABCD as constructed in TASK 1
IF  A is being dragged along the circle centered at the midpoint of 

segment BC
THEN ABCD is always a rectangle

Question 5.2 challenges the learner to formulate an explanation (or even a proof) 
for the conjecture just formed. The reader can explore this discourse and to see how 
the Principles of Acquiring Invariance are embedded in the reasoning process.
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A DESIGN EXAMPLE

A powerful aspect of integrating ICT into mathematics teaching and learning is 
ICT’s ability to construct and present visual-numeric information in a continuous 
dynamic form that allows learners to capture invariant relationships (as was 
shown in the dynamic geometry example above). Another powerful ICT aspect is 
the possibility of designing and constructing synchronized multi-representations. 
When designing an ICT tool capitalizing on these two features, the Principles of 
Acquiring Invariance are helpful when organizing and conceptualizing the design. 
The possibilities of dynamic variation under constraints and synchronic co-variation 
given by ICT are potentially promising pre-conditions for applying the Principles 
of Acquiring Invariance. In the following paragraphs, an example of designing a 
GeoGebra applet is used to illustrate a Principles of Acquiring Invariance design that 
incorporates appropriate tool-based task design features.

Suppose we want to design an ICT applet for an Upper Primary (Grades 4 to 
6) mathematics classroom to explore the relationship between the area and the 
perimeter of a rectangle. An objective for this exploration is to find out for a given 
perimeter, which rectangle gives the largest area. The following two features, with 
their Principles of Acquiring Invariance implications, are assumed to frame the 
design of the applet:

1. The perimeter is an independent variable. The two sides of the rectangles are 
variables that depend on the perimeter, and an area variable depends on the 
sides of the rectangle. These variables will be used for discerning difference and 
similarity, and the dependency among the (free and dependent) variables is used 
to design sieving (separating) out invariants.

2. Three dynamic interactive windows: 2D graphic, spreadsheet numeric table, 3D 
graphic. The elements/objects in these three windows should co-vary together 
according to the variables in 1. Shifting of attention and co-variation are the main 
variation interactions for these windows which have geometrical, numerical and 
graphical representations.

This interactive GeoGebra applet consists of three dynamic visual windows. 
On the left is a 2D graphic window that contains the main geometrical problem. 
The middle window is a dynamic numeric window that links with the 2D graphic 
window, and the right window is a 3D graphic window that also links with the 2D 
graphic window. Figure 7 is a snapshot of an example of such an applet.

The 2D Graphic Window

The upper slider fixes/adjusts the perimeter (10 to 40 units) of the rectangle. The 
slider below it adjusts one of the sides (side A) of the rectangle (start from 1 unit 
and increment by 1) for the chosen perimeter. Integral values are used only. The 
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rectangle is constructed out of the numerical information from the two sliders and 
it varies accordingly as the sliders’ values vary. The colour of the Side A slider and 
the colour of the corresponding sides of the rectangle match for visual identification.

The Dynamic Numeric Window

As the rectangle in the 2D graphic window varies when a slider’s value is dragged 
to change, the values of the lengths of the two sides of the rectangle and its area 
(Side A, Side B, Area) are recorded in a Spreadsheet. When the rectangle moves, 
the Spreadsheet will update correspondingly to record the numerical changes of the 
three variables. The recording of any one of the variables can be stopped any time by 
pressing the recording button of that variable located at the top of the column of the 
spreadsheet.

The 3D Graphic Window

The 3D graphic window automatically embeds the rectangle in the 2D graphic window 
in a 2D plane, and the 3D perspective can be changed easily by a dragging motion. 
The point showing the relationship between Side A, Side B, and area is plotted in 3D 
with the trace function turned on. As the rectangle in the 2D graphic window varies, 
the point traces out a path that shows the relationship between the three variables.

Figure 7. A GeoGebra Applet to explore the relationship between  
the area and the perimeter of a rectangle

What and how would students learn using this applet? Activity tasks can be 
designed where the tool-based design features work together with Principles of 
Acquiring Invariance. For example:
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Task 1

1. Fix a perimeter value (say 16).
2. Drag Side A to different values.
3. Observe how objects in the three windows vary together.
4. Are there number patterns appear in the Spreadsheet window?
5. Write down what you discover.

Task 1 starts with Sieving (fixing a value and observe how other things vary) 
and the visual feedback thus generated begins a cognitive process for the learner 
connecting the phenomenal world created by the applet and the mathematical ideas 
embedded in the applet. The learner is in the Practice Mode experiencing how to 
Shift Attention among the different visual dynamic representations which co-vary 
together.

Task 2

1. Change the perimeter to other values like 20, 24, 36 and 40 (all divisible by 4).
2. Observe similar features in all these cases.
3. Write down what you discovered and make a conjecture.

Task 2 repeats and enriches the variation experiences obtained in Task 1. The 
learner enters the Critical Discernment Mode to relate Similarity and Difference that 
lead to generalization.

Task 3

1. Set the perimeter to 34.
2. Observe what happens in the spreadsheet window. Something should seem not 

right compared to what you have observed in Task 1 and Task 2. What is it?
3. Explain why and make some mathematical sense out of it.
4. Write down a conclusion on the mathematical idea/concept behind the three tasks.

The maximum value for the area appears (in pairs) in the spreadsheet window 
does not correspond to a square. This is not consistent with what are observed 
in Task 1 and Task 2. The learner needs to explain what happens based on what  
s/he experienced using this applet (Situated Discourse Mode). This discrepancy was 
intentionally designed in the applet (by allowing only integer input) resulting in an 
uncertainty which requires the learner to bridge from a conflict he/she sees on the 
screen to a mathematical concept behind the phenomenon.

From this design example, the Principles of Acquiring Invariance acts as a 
design guide for an ICT applet to mediate and represent mathematical knowledge, 
for an explorative pedagogy to create an uncertainty that requires leaners to reason 
mathematically, and for organizing the doing of mathematics. Indeed, these three 
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realms are connected together under the same Principle of Acquiring Invariance 
lens (Figure 8). Thus, Principles of Acquiring Invariance manages and maintains the 
boundary between mathematical and pedagogical fidelities.

Figure 8. Principles of acquiring invariance as a meta-lens to maintain connections 
among three knowledge realms: tool, pedagogy and mathematics

DISCUSSION

In the above two examples, Principles of Acquiring Invariance, epistemic modes and 
tool-based design features are meshed together to explore the mathematical concept 
formation process from experimental observation to discernment of abstraction in 
the ICT context. The meshing is a complex design process that depends on multiple 
factors like the choice of tool(s), teachers’ knowledge, choices of task design 
approach and pedagogy, and classroom cultures. A first remark on this meshing is 
that these different frameworks form a nested network rather than follow a linear 
hierarchy. At any one instance during an exploration, any one of the principles, 
modes and tool-based design features can take dominance. These cognitive 
activities are pretty much learner driven, but when designing a mathematical task, 
the designer can guide the learners to pay more attention to particular features while 
other features can be put in the cognitive background. A second remark is that the 
pedagogical approach discussed in this chapter is an attempt to crystalize a possible 
process bridging the experimental-theoretical gap in the ICT context. Specifically, 
the upshot of using variation and invariance is to drive an epistemic sequence that 
may look like:

Constraint à Pattern Observation à Predictability à Emergence of Causal 
Relationship à Concept FormationàExplanation/Proof

This chapter is an attempt to enrich the current research literature on the use of 
variation in mathematics education and to propose a perspective focusing on 
invariance that is pertinent to mathematics knowledge acquisition.
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NOTE

1 This chapter is an expansion of the PME38 Research Report Principles of acquiring invariant in 
mathematics task design: a dynamic geometry example (Leung, 2014).
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ANNE WATSON

5. PEDAGOGY OF VARIATIONS

Synthesis of Various Notions of Variation Pedagogy

INTRODUCTION

In the last decade there has been a gradual increase in publications about the 
potential of variation theory for mathematics education. Mathematical concepts are 
often encountered by learners through examples, and the variation they experience 
through examples that have some similarity in structure leads them to generalise 
either about the properties of mathematical objects or about relations between them 
(Michener, 1978). The word ‘variation’ therefore elicits consideration of the possible 
variables that can be manipulated in teaching mathematics and designing tasks.

Task design always has with it, either explicitly or implicitly, assumptions about 
pedagogy, a fundamental belief being that learners will notice and generalize 
from patterns and relationships between what aspects vary and what aspects are 
invariant (e.g. Mason, 2000). By using historical examples, and examples presented 
at the 2013 ICMI Study Conference on Task Design in Mathematics Education 
(Margolinas, 2013), I reflect on the contribution that variation theory makes to our 
understanding of pedagogy in mathematics education. Through these examples I 
explore how variation is manifested in mathematics teaching, and identify a notion 
of ‘dependency relationships’ that are invariant in mathematics and which are often 
the intended object of learning. I look at various ways in which people draw attention 
to these invariants through use of variation and I compile statements that expand 
variation theory within mathematics education. Finally, I illustrate how careful use 
of variation can lead beyond generalization to abstraction of new ideas. The ICMI 
Study provides a snapshot of current practice in task design, and included a panel 
of presentations about the current use of variation to design tasks and pedagogy. 
However, I shall start with some observations from earlier examples of pedagogy.

MATHEMATICS PEDAGOGY OF VARIATION FROM SOME PAST TEXTBOOKS

I start with the beginning of a set of questions from a typical algebra textbook 
published in English in the early 20th century, chosen at random from a collection 
(Paterson, 1911, p. 120):

1. (2x)3 2. (–2x)3 3. (–2x)6 4. (2x)6

5. (2x2)3 6. (–2x2)3 7. (–2x2)6 8. (2x2)6
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The exercise goes on with more variation of letters, powers and structures, but 
these first eight questions provide raw material for more than mere practice of using 
algebraic notation. The examples have been constructed with care to draw attention 
to what varies and what stays the same, and to possible misconceptions a student 
may have, or mistakes they may make. The author goes on to say:

The student will now have found out the following rules: (i) an even power of 
a negative quantity is positive, an odd power of a negative quantity is negative; 
(ii) (xp) q = x p q … (p. 120)

This is followed by several other ‘rules’ which were to be ‘found out’ by reasoning 
inductively from the answers to the exercise. Paterson is explicit about the 
assumptions of his task construction: namely that learners will be led experimentally 
to a difficulty that has to be overcome, such as meeting ‘3 – 5’ before negative 
numbers are formally introduced (p. A2) and noticing the difference between this and 
other examples. This visually obvious use of variation is not replicated very often in 
his book. More usually, Paterson uses varied collections of questions in which one 
subsequence of questions holds a particular similarity that is then disrupted in a new 
subsequence. Both of these uses of variation – with and without visual similarity – 
are used in most algebra textbooks of that era.

Knowledge of the value of careful variation also appears in some mid-twentieth 
century texts produced in England by teacher teams. The Midlands Mathematics 
Experiment, which was a syllabus based on New Mathematics, introduces straight 
lines by varying L1 = {x,y: y = x} to give:

L2 = {x,y: y = x + 1} L4 = {x,y: y = x – 1}
L3 = {x,y: y = x + 2} L5 = {x,y: y = x – 2}

and then asks: ‘What do you notice about the lines L1, L2, L3, L4, L5?’ (MME, 1970, 
p. 53). Again, the purpose is to provide variation against an invariant background 
and the implied pedagogical intention is that learners will conjecture about the 
relationship between the variations in the algebraic expression and the differences 
in the graphical depiction of the sets of points. In this case, the chosen set of lines 
implies an understanding of the effects of near-simultaneous variation between 
examples but, unlike Paterson’s era, such use of variation, whether visually obvious 
or not, is not easy to find in textbooks during the later part of the 20th century, nor 
currently.

Both of the above textbooks assume that teachers will encourage appropriate 
reflection in learners, and not merely rush on to the next idea or technique and the 
next set of questions to do. Variation, in the examples I have given, is not random 
but relates closely to the concepts or conventions being introduced. In each of the 
examples above, variation is also indicated visually by using similar notations so 
that the difference in outcomes can be related to the visual difference as well as 
to differences in mathematical meaning. However, other exercises from Paterson’s 
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book have an underlying attention to variations in structure and complexity without 
a visually invariant background. For example (p. 125):

Find the square of each of the following expressions
a + b – c x – y – z -x – y – z
2a + 3b + 1 2x + 3y – 4z 3y – 4z + 2x

Obviously there are opportunities here for an astute teacher or student to make 
comparisons, but the use of a, b, c and x, y, z among the examples introduces a further 
variation that, while necessary for becoming fluent and competent with algebra, makes 
comparison across all examples less likely without teacher intervention. Marton 
would describe this as ‘fusion’ (2015, p. 51) in which a learner has to appreciate 
the underlying mathematical idea (squaring trinomials) by fusing variations in 
notation, in coefficients and in signs so that they can recognize the idea whatever 
the combination of letters, numbers and signs. Such variations might have been 
met separately and are then brought together, fused. We could argue that if every 
mathematical idea were to be broken down so that learners had to work on each 
possible dimension of variation separately the whole business of learning mathematics 
would take decades. Nevertheless a reliance on generalizing from varied examples is 
evident in some early algebra textbooks. For example Godfrey and Siddons (1915, 
p. vi) suggest ‘rough induction’ as a ‘sound’ way to approach algebraic laws.

CURRENT ‘TRADITIONS’ IN VARIATION THEORY

Having shown that variation was used purposefully in mathematics pedagogy before 
recent theoretical articulations, I now present two examples from the 2013 ICMI 
Task Design Study Conference to illustrate some current thinking. These use the two 
main approaches to variation theory in the literature that are now well-established, 
a Swedish approach represented in this paper by Kullberg (2013) and a Chinese 
approach represented in this paper by Sun (2013).

The Swedish ‘Tradition’

The Swedish approach originated in phenomenographic analysis of learning, which 
enables the researcher/developer/teacher to identify a critical aspect of the concept 
being learnt. These aspects are found in the variety of students’ responses, rather 
than in analysis of the concept. The theory propounded by Marton (e.g. Marton 
& Pang, 2004; Marton, 2015) is that unless this critical aspect is varied against an 
invariant background, students will not notice it, so therefore its variation becomes 
a design imperative for teachers. However, application of this idea in classroom 
settings suggests that students experience variation not only through the task 
as written, but also through pedagogical acts that draw attention to the variation  
(Al-Murani, 2006; Kullberg, Runesson, & Måtensson, 2013).
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Three full learning study cycles were carried out collaboratively with a small 
group of teachers by Kullberg and her colleagues (Kullberg et al., 2013). The part of 
the study I am going to look at focuses narrowly on the critical aspect of division that 
when the denominator, or divisor, is smaller than one (but still positive) the quotient 
will be greater than the dividend. This is the intended object of learning. For some 
understandings of division this idea is counterintuitive, since division in everyday life 
tends to involve reducing things in size, or sharing quantities between people. In this 
study the ‘critical aspect’ for division was chosen from the teachers’ knowledge of 
students’ difficulties. However, this same critical aspect could have been chosen as a 
result of analysing students’ work on a particular task, or from clinical psychological 
research into children’s understanding. The proposed variation is therefore the divisor, 
and its effect on the quotient, to draw attention to what happens when it is smaller 
than one by contrasting with what happens when it is greater than one.

Learning is described as ‘seeing something in a new way by experiencing aspects 
that you have not experienced previously’ (Kullberg et al., 2013, p. 616) and this is 
achieved by varying a critical aspect of the object of learning against a background 
of invariance thus producing something to notice – in this case the behaviour of a 
relationship. The teachers therefore co-planned the following collections of examples 
that would be used in the lesson (see Figure 1).

Figure 1. Examples used in a lesson on division  
(adapted from Kullberg et al., 2013, p. 617)

I have subsequently presented this collection to a range of teacher or student 
audiences to understand reactions to the visual layout. The first thing that most people 
notice, through visual perception, is that ‘there are lots of hundreds’ or every line starts 
with 100. A little while later they may say that along each line there is a fraction with 100 
at the top. The first column of equations shows multiples, and answers get smaller; the 
second column shows divisions, and answers get larger. The reason these similarities 
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and differences are easily noticeable is because of the layout, so if you were responding 
visually to the spatial structure you could say that there were similarities in the lines 
and columns of the layout. These similarities match exactly the abstract mathematical 
similarities that are instantiated by the numbers and represented by the numerical 
symbols. By this I mean that extending the sequences of equations downwards or 
upwards using superficial similarities and number sequences, the horizontal relationship 
between multiplication and division would also be preserved. The form and structure of 
the visual representation matches the form and structure of the underlying mathematics. 
Mathematically, the division examples aim to hold the dividend (100) invariant while 
varying the divisor so that the intended object of learning appears as the varied behavior 
of the division. When the intended object of learning is the behavior of a dependency 
relationship, as it is here, there has to be variation in at least two features: at least one 
input feature and, hence, the output feature. The relationship itself has to be inferred 
through discerning the effects of its behavior, so showing the possible differences in 
behavior is clearly a sensible thing to do. Kullberg et al. (2013) refer to this as using 
‘contrast’ after the four possible patterns of variation: contrast, generalization, fusion, 
and separation put forward by Marton, Runesson, and Tsui (2004).

Variation theory, as well as being used at the design phase, can also be used to analyze 
what is made available to be learnt through the pedagogy that accompanies the designed 
task. The lessons from this shared plan were analyzed by looking for variations in the 
way the plan was used, that is the ways in which teachers drew learners’ attention 
to the embedded relationships. The study shows how many aspects of the learning 
environment, such as teachers’ and students’ verbal interactions and gestures made 
a difference to what was available to be learnt by drawing attention to the possible 
relationships between elements in the examples. The authors drew mappings to show 
how different teachers pointed to different connections in the examples (Figure 2).

Figure 2. Teachers’ gestures to explain examples (from Kullberg et al., 2013, p. 618)
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In the partial version on the left the teacher is connecting the divisor to the 
quotient, which could emphasize that as the divisor gets smaller the quotient gets 
bigger; however, it is also possible to focus on the fact that their product is always 
100, which is what the teacher talked about. In the example of the right the teacher 
is less systematic about the relationship between multiplication and division, but 
points instead to illustrations of various aspects of the fundamental relationship, 
contrasting an example with divisor>1 with one where divisor<1, and was also 
talking about this contrast. This is important for the way that variation theory is seen 
within the mathematics education field, because a superficial look at it might suggest 
that the theory as applied to design is purely cognitive and concerned only with 
what is presented to learners in order for them to construct meaning individually 
through inductive reasoning. The addition of teachers’ gestures and speech to the 
mix indicates a need to think also about attention and the disposition of learners to 
discern what is intended.

Kullberg’s use of variation in this paper focuses only on what is available to be 
learnt, but we can surmise what students focus on. It could be argued that the same 
(not varied) gestures in different cases might help children learn about essential 
structure because it provides another representation; repetitive action, gesture, rhythm 
and speech is seen by some authors as an important aspect of learning structured 
knowledge (Hewitt, 2006). The gestures indicated in the leftmost example, together 
with the speech, emphasized the complementarity of division and multiplication 
through invariant gestures; the rightmost example gestures selected two contrasting 
examples that, with the speech, drew attention to the intended object of learning.

From this study we can see the value of varying the critical aspect, so it can be 
noticed by learners, and also the value of layout, speech and gestures that draw 
attention to the background invariant structure. In some of the textbook examples 
above, the ‘drawing attention to’ was intended through reflective questions and 
comments by the authors.

The Chinese ‘Tradition’

I now exemplify the Chinese tradition of focusing on change. Sun (2013) points to 
two key features of task design: OPMS (one problem multiple methods of solution) 
and OPMC (one problem multiple changes). My interpretation of ‘multiple changes’ 
in the examples that she gives is that these can be transformations of layout and 
different representations. Also at the bottom of the page the numbers are changed, but 
the underlying structure of the problems is the same, that is similarly structured and 
hence similarly cognitive. Comparison and connection of these varying experiences 
is understood to be a fundamental mental activity. Sun uses variation as an analytical 
lens to describe the way that the official Chinese textbook presents the additive 
relationship as an object of learning (see also Marton, 2015, p. 249).

The page of the Chinese textbook (Figure 3) first shows four symbolic 
transformations of the relationship between 10, 3, and 13. It also shows physical 
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materials that can be used, and some number facts between 11, 2, and 13 that can then 
be derived. It draws attention to symbolic notation by offering varied transformations 
of the relationships in which certain numbers have to be inserted. This illustrates two 
uses of OPMC. Firstly, Sun shows ‘one problem with multiple representations’ with 
each representation leading to a different solution method (OPMS). Secondly, she 
shows ‘one problem with different parameters’ which requires the same solution 
methods as above, but instantiated with different numbers. Contrasting this approach 
to the Swedish approach, we can ask: is the learner supposed to learn about the 
representations, because those are the things that vary? and: is the learner supposed 
to learn about the different solution methods because those are the things that vary? 
The variation is being used to support a variety of ways in which learners can enact 
and record the basic part-part-whole relationship, the additive relationship, which 
includes addition and subtraction as the relationship between 10, 3, and 13. Rather 
than learning about one varying critical aspect, the learner has to learn about the 
relationship. Is the learner supposed to learn only about 10 + 3 equals 13, because 
that is the thing that does not change? Well not that either, even though this specific 
relationship is the invariant. The underlying principles are more complex and 
sustained than these questions would imply.

Figure 3. Page from Chinese textbook (Mathematics textbook developer  
group for elementary school, 2005)
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On the page the actions and the notations are specific enactments of a fundamental 
relationship which will appear again and again throughout children’s early learning 
of number. Deliberate and planned variation is obvious, but the core idea – the 
relationship between addition and subtraction – is constant throughout several pages 
of the book. It is the invariant nature of the additive relationship that is the intended 
object of learning, together with the varying ways in which we might recognize it. 
Sun describes and demonstrates that the space of learning is about blending patterns 
of variation and invariance by juxtaposing problems, examples, illustrations that 
resemble each other in some respects but differ in others so that learners have 
something to discern.

My understanding of what is presented by both Kullberg and Sun is that the 
variations presented visually in mathematics give a direct access to important variations 
around a core conceptual idea: in the example I have given from Kullberg, the visual 
layout can be used to draw attention to the mathematical structure that causes the 
variations in output, as well as drawing attention to the variation in outputs themselves; 
in the example I have given from Sun, the visual layout also gives access to actions 
with materials that embody various perspectives on the mathematical structure, and 
notations that record the relations embedded in those actions. In Sun’s case, the 
intended object of learning is an invariant relation, whereas in Kullberg’s case, the 
intended object of learning is a particular varying feature of the underlying relation.

However, mathematics is not merely the product of inductive reasoning from 
examples, so the provision of carefully varied examples and hoping that, or directing 
attention so that, learners may generalize inductively from experience cannot provide 
a full mathematical learning experience. In Sun’s work, it is not only inductive 
generalization that leads to insight, nor is it only contrast and fusion (to use Marton’s 
words) but some kind of cognitive work that abstracts the additive relationship from 
those processes. The cognitive work involved in using the experience of working with 
examples to identify implicit relationships is described by Gu, Huang and Marton as 
‘conceptual’ and by Leung, Baccaglini-Frank and Mariotti (2013) as the identification 
of level-2 invariants, that is invariants that have to be discerned through experiencing 
an invariant relationship underlying variation. Cai and Nie (2007) talk about MPOS, 
multiple problems with one common method of solution, as also indicating that 
different problems might be manifestations of the same dependency relationship.

Learners have to be able to discern, to read, what is presented visually as a 
collection of parts – what Marton calls ‘separation’ (2015, p. 53) and we might 
also call ‘analysis’ (Huang, Mok, & Leung, 2006). The more mathematics we know, 
the more possible ways of reading a page of mathematics, or one mathematical 
expression, we have. We can go beyond the visual similarities and differences, 
especially with pedagogic help and direction. We can also go beyond induction, 
which enables us to build conjectures about objects and relations we have not yet 
met; but the more mathematics we know, the more capable we are of deduction 
by seeing a particular example as an instance of something we know about more 
generally, and being able to reason about its properties. Many textbooks tend to 
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confuse these by offering collections of very varied examples from which little can 
be either induced or deduced, the purpose being to rehearse procedures. Difficulty 
is ramped by varying numbers, signs and arrangements rather than by scaffolding 
progress towards conceptual understanding, as is indicated in the Chinese example.

Variation in Dynamic Geometry

Having set up a contrast between learning the feature that is varied, and discerning 
an underlying invariant relationship, I now move to a geometrical example presented 
at the ICMI Study from a body of work by Leung and Lee (2008). In geometry we 
would expect visual representation to relate very closely to the relationships being 
represented and Leung has done extensive work to connect dynamic actions to 
underlying relationships. Tasks are presented in a dynamic geometry environment. 
This allows students to use the action of ‘dragging’ to vary particular features of 
a diagram while shifting their attention between parts and the whole of the object 
of exploration, consistent with a perspective of discernment of a concept through 
variation. The invariant patterns of a configuration can then be ‘separated-out’ by 
observing patterns of change.

It is this kind of use of controlled variation in mathematics that initially attracted 
me to variation theory, since it provides a connection between structures inherent in 
mathematics, the components of the learning environment, and plausible variation 
in students’ learning.

In several of Leung’s studies a digital record is kept of the work undertaken by a 
large number of students in a geometrical context (e.g. Leung, 2008, 2011, 2013). 
In the example I use here (Leung & Lee, 2008) students have been asked to vary 
a given quadrilateral ABCD by dragging point D so that the quadrilateral then has 
at least one pair of parallel sides. There are several possible correct answers which 
would be achieved by applying full geometrical reasoning, and a digital record of 
variation among students’ answers provides an instant ‘phenomenograph ‘ of the 
outcomes (Figure 4). From this picture it can be deduced what subset of appropriate 
geometrical properties is being used by students.

What has happened is that students have digitally dragged point D and left it 
somewhere new. The clusters of points show two distinct patterns: one pattern makes 
AD parallel to BC and the other pattern makes CD parallel to AB. Where these cross 
there is a further cluster that makes both pairs of lines parallel. There are also several 
points that show possible misunderstandings or alternative interpretations of the task. 
Thus the digital record gives a window into the relationships between the diagram, 
the task and their knowledge and capabilities. We observe this by, in Leung’s words, 
“strategically contrasting and comparing, separating out critical features, shifting 
focus of attention and varying features together to see whether invariant patterns 
emerge” (2013, p. 7). Dynamic digital software makes it possible to use what he 
calls a ‘sieving’ principle, that is to sieve out and display certain critical invariant 
features of a dependency relationship.
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Figure 4. Graphical record of students’ ‘dragging’ solutions (from Leung & Lee, 2008)

Direct perception is used in this task in two ways: firstly for the student who is 
trying to enact their understanding of ‘parallel’ and secondly by the researcher who 
is trying to map the range of possible understandings. Both of these perceptual acts 
lead to classical geometrical properties which can be seen and described visually, 
for example the properties of a parallelogram where both pairs of opposite sides 
are parallel. Leung’s use of the phrase ‘invariant patterns’ is not referring to optical 
patterns, but to dependency relationships as level-2 invariants that are manifested 
through the behaviour of variables. By contrast the examples from Kullberg and 
Sun are both about mathematical properties that cannot be seen directly, but only 
experienced as the invariant connection between features of varying examples.

Although Leung and Lee’s work described here is concerned with finding out 
what students do, a key aspect of good mathematics pedagogy, these insights are 
also relevant for thinking about teaching geometrical relations. Dynamic geometry 
software provides an immediate, accurate, exploration tool for making conjectures 
and verifying relations between elements of geometrical objects. As in Kullberg 
and Sun above, the dependency relationships we want students to learn about are 
available to be learnt if students are presented with varied examples of them so 
that conjectures can be generated and tested, and the behaviour and domains of the 
relationship experienced. So far we have seen different domains of communication: 
visual, symbolic, dynamic, gestural and verbal variation and how these can combine 
to give access to dependency relationships that underlie surface variation in examples.

How Much Variation and Variation of What?

I now move to an example of the use of variation in pedagogy in which considerations 
of the dimensions and ranges of variation became central. Koichu and his colleagues 
draw on the idea of a space of learning to consider the relationship between the 
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intended and enacted objects of learning as an area for pedagogic decision. Their 
study is “an application of variation theory to design of a task aimed at enhancing 
learners’ awareness of mathematics as a connected field of study … awareness 
of mathematics as a connected field of study was an intended object of learning” 
(Koichu, Zaslavsky, & Dolev, 2013, p. 461). Awareness here means the ability and 
disposition to discern, through and between different representations. They designed 
a sorting task with the twin aims of (a) completing the sorting and (b) undertaking 
analytical reasoning to do the sorting. There are several layers to this study: the task 
design as a tool for learning about similarities and differences; learners reflecting 
on the process to become aware of such similarities and differences in future; and 
the design process itself. Evidence from task outcomes, participants’ comments in 
discussion, and records of their work gave insight into how they completed the task 
(53 subjects in three roughly equal cohorts). The design of the task was based on 
assumptions about the subjects’ previous experience based on typical textbooks, 
and the need to control variations in sets of objects from which learners “might 
observe regularities and differences, develop expectations, make comparisons, have 
surprises, test, adapt and confirm their conjectures within the exercise” (Watson & 
Mason, 2006, p. 109).

Three types of controlled variation were introduced in the initial task design 
(Figure 5 shows 14 of the original 24 items to be sorted): mathematical objects 
to be sorted; representations including verbal descriptions and instructions; prior 
knowledge requirements to achieve the sorting. Although these variations appear to 
make pedagogical sense, and provide material for making important contrasts, at the 
design stage the critical aspects of the intended object of learning were not known.

With the first cohort, learners could achieve the desired sorting by focusing 
on algebraic manipulation and then classifying items by surface features instead 
of connecting different representations by using their underlying mathematical 
connections. The sorting had not been achieved by the analytical reasoning which 
would be evidence of the intended awareness. For the second cohort, items that had 
been treated algebraically were omitted and the cohort did not spend so much time 
on superficial similarities. However, surface features of the visual representations 
seemed to present obstacles in making sense of the verbal descriptions. From these 
observations it was decided that the third version should exclude the dimensions of 
variation that had hindered task completion, and focus on verbal descriptions of the 
main generating elements of each locus and other representations that had emerged 
as critical aspects in the earlier sortings (e.g. see items 4 and 13 in Figure 5).

The relationship between this task and variation theory is complex. The intended 
object of learning is ‘awareness’ and although learners’ awareness can be discerned 
phenomenographically (Marton & Booth, 1997) it cannot be directly varied in the 
presented task, since it is a property of learners and not of the mathematical items. 
‘Awareness of … a connected field …’ might suggest that the connections themselves 
be varied, but because mathematics is a connected field it is hard to imagine how 
connectivity as a concept could be varied. Yet awareness is a legitimate objective for 



A. WATSON

96

the teaching of mathematics, indeed Leung identifies a ‘progression of awareness’ 
in his work connecting Marton’s four types of variation to dragging modes (Leung, 
2008, p. 153) finishing with fusion as the ultimate level of awareness. However, 
variation is a key component of Koichu et al.’s task design, since it has been used to 
generate the examples to be sorted, and their sorting is achieved through discerning 
similarities and differences in the set of examples. Furthermore, the designers 
reduced the set to one that contained only those features whose variation led to 
learners exhibiting the intended awareness of connectivity. It seems that variation in 
the parameters and conditions offered in the worded examples was enough to lead to 

Figure 5. Part of Koichu et al.’s original sorting task (Koichu, Zaslavsky, & Dolev 2013)
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the relevant awareness. Removal of distracting variations led to success. Koichu and 
his colleagues had hoped that learners would ‘fuse’ the understanding generated by 
algebraic forms, by graphs and by words during their sorting processes, but variation 
had to be successively limited towards variation within representations, rather than 
variation of representations, for the awareness of the embedded mathematics to be 
the lived experience of learning.

MATHEMATICS PEDAGOGY AND VARIATION THEORY

These reports have aired a range of issues that arise in the manifestation of variation 
theory in mathematics, and the use of variation in earlier texts. The decision to control 
deliberately the relationship between variation and invariance in a situation is pedagogic, 
and hence is in the realm of education rather than the mathematics itself, in which the 
variation relationships are inherent. The examples I have described above lead to some 
observations that extend variation theory in the context of mathematics education in 
ways that recognise the importance of dependency relations in mathematics:

• the intended object of learning is often an abstract relationship that can only be 
experienced through examples; it is by observing the relationship between two 
varying aspects that the invariant relationship can be experienced and understood. 
By ‘relationship’ I do not mean the contextual fusion of two variables merely because 
they co-exist, but a dependency relation in which a change in one variable causes 
a change in another, when one variation necessitates another variation. Examples 
include the invariant relation between addition and subtraction (Sun above) or the 
action of dragging to change characteristics of a shape (Leung above) or when 
divisor being <1 or >1implies increase or decrease in a quantity (Kullberg above).

• characteristics of a relationship may vary in response to varied input, so the 
behavior of the relationship varies for different inputs, but the relationship itself 
does not change (Kullberg).

• learners’ action may not be the reflective, deliberate, action that is intended if it is 
easier to apply intuitive habits of mind (Koichu).

• when the intended object of learning is awareness identifying suitable dimensions 
of variation is difficult because awareness is a characteristic of the learner, not of 
the examples (Koichu).

• variation of appropriate dimensions can sometimes be directly visible, such as 
through geometry or through page layout (explicit), but often requires meaningful 
interpretation of symbolic forms (implicit). All the examples so far demonstrate 
aspects of this distinction. Koichu et al.’s work demonstrates the value of limiting 
the dimensions of variation, in their case to variations within representations to 
focus on meaning.

• the role of the teacher, or some other method, in drawing attention to connections, 
similarities and differences in the given examples introduces other dimensions of 
variation in the enacted object of learning (Kullberg, Sun, Leung, Koichu).
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I hope I have shown above that if the object of learning is a dependency 
relationship, revealed by manipulation of variables, then higher levels of 
generalization can be attained through pedagogic attention to variation and control of 
dimensions of variation. One possible criticism of the application of variation theory 
to mathematics pedagogy is that inductive reasoning cannot lead to a higher level 
of abstraction. Can students be scaffolded to work at a higher level of abstraction 
than can be provided by comparison and generalization from given examples? By 
‘abstraction’ I mean something beyond generalization of mathematical relationships 
– I am not talking only of invariant background relationships here. ‘Abstraction’ in 
my use means that a dependency relationship itself becomes a kind of mathematical 
concept, so for example linear functions can be understood as dependency relations 
of a particular kind between two variables, or as objects in their own right with their 
own dimensions of variation, ranges of permissible change, operations, properties 
and so on (Watson & Mason, 2004). In general these levels of mathematical concept 
are only available to us through speech and mathematical symbolization. We cannot, 
for example, point to the concept of ratio; we can only point out situations in which 
ratio is the relationship between objects, and particular numerical instantiations of 
ratio, yet ratio as an idea has its own existence, definitions, variations and so on. 
Literature about this change of emphasis falls into two separate camps: the idea that 
cognitive change happens through processes of assimilation, accommodation and 
equilibration; or the idea that new objects can be brought into the communicable 
world through language and processes of enculturation. For me, variation theory 
provides part of an intellectual bridge to describe a combination of those processes, 
and also to inform design of learning environments. But the teaching of mathematics 
and presentation of near simultaneous examples that are constructed along the lines 
suggested in variation theory needs also appropriate forms of variance/invariant 
language and appropriate forms of variant/invariant presentation. We have already 
seen something of this in the examples so far, but now I shall demonstrate the 
importance of these considerations in achieving a shift to levels of higher abstraction.

Task Sequence Showing a Trajectory through Levels of Abstraction

In the following sequence of tasks, dimensions of variation are controlled in such 
a way that a hierarchy of relationships is achieved, first through generalization of 
dependency relations that have been exemplified, then through questioning which 
transforms the generalization into a new object. In workshops with students, teachers 
at all levels, and teacher educators I have found these tasks to be almost universally 
effective in giving learners an experience of becoming more powerful with ideas that 
previously were abstract, within a context that is not dependent on advanced school 
mathematics curriculum knowledge.

The first task is to create what is called a ‘tetramino’ chosen from the collection 
of all possible tetraminoes. An analysis of these shapes leads people to the correct 
definition – four congruent squares joined at edges. In Marton’s words learners are 
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providing for themselves the ‘necessary conditions of learning’, that is they are 
aware that other numbers of squares are possible, and other ways of joining them.

Participants are then given a number grid on which to place their tetramino 
(Figure 6), and asked to identify the relationships between the four numbers that 
they have covered. So far, therefore, there is variation in shape and variation in the 
numbers covered. These fulfill two different purposes: the first is pedagogic, so that 
students are not using the same shape and can have a conversation about the different 
ways in which they have to express generalities later and how these relate to the 
shapes themselves; the second is based on the theory that we learn from examples, 
and that variation in those examples serves to draw our attention to what they have 
in common, by comparing them and/or reasoning inductively from them.

Figure 6. First grid and a chosen tetramino

They should then find that the relationship between the four numbers is the same, 
whatever position they have chosen on the grid for their tetramino, but different from 
the relations underneath other tetraminoes. This relationship can be expressed in general 
terms, such as: n – 1; n; n + 10; n + 11 using the tetramino shown next to the grid. The 
relationship depends on the shape and its position. However, the way we express the 
relationship can also vary. The same relationship can be expressed as n; n + 1; n + 11;  
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n + 12 by varying which cell is described as n. Students with the same shape can 
compare expressions; students with different shapes can compare relationships.

The grid content is then varied (Figure 7), but is mathematically similar in structure 
to the previous grid, i.e. consists of consecutive whole numbers. The task is repeated 
and the new relationship expressed, such as: n – 1; n; n + 7; n + 8. Participants 
begin to realise that some of the numbers they have to use in the relationship are 
dependent on the grid size. The grid size has been varied, but the shape remains the 
same and the structure of the relationship stays the same. The object of learning at 
this point is the relationship structure, which stays the same even when the grid size 
varies. This use of variation confirms that we do not learn only about varied aspects, 
but about underlying relationships by becoming aware of similar structures in varied 
examples, as Sun describes (above).

Figure 7. Varying the grid

At this point the teacher asks new forms of question which are about the 
relationship, such as:

On an 9-by-9 grid my tetramino covers 8 and 18. Guess my tetramino.
What tetramino, on what grid, would cover the numbers 25 and 32?
What tetramino, on what grid, could cover cells (m – 1) and (m + 7)?

These questions could be tackled through the materials, but are also accessible 
through abstract consideration of the relationship through looking at the structures 
of different generalizations. They are not questions that can be easily answered by 
repeating the original actions with different inputs unless a process of trial-and-
adjustment is successful. New forms of reasoning are triggered which draw attention 
to the relationship, away from the initial manifestation; the particular relationship 
varies but its structure does not. This approach can be varied to other kinds of grid, 
such as bivariate grids, which I shall not consider further here.
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For each successive task I deliberately vary a dimension of variation that would 
then become itself a parameter (a structuring feature) for a new task, creating a 
relationship between grid and shape that we could call the ‘grid-shape’ object. This 
new object, which is an abstract connection between grid and shape, can then be 
talked about, and new kinds of question posed about it, thus scaffolding abstraction. 
The task sequence illustrates: variation as a generator of examples for selection, 
comparison and generalization; the use of the outcomes of generalization as new 
objects which can themselves be varied; the twin roles of presenting variation and 
asking new questions that require deductive reasoning about new objects.

I have presented this task sequence as an example of how attention to variation 
can provide pedagogic strategies and pathways towards understanding mathematical 
ideas at higher levels of abstraction, a role for variation which is as yet under-
researched. It has been hinted at in Marton’s idea of fusion, but the outcome of 
fusion than needs to be seen as an object with its own behavior and properties, and 
also in Leung’s idea of level-2 invariance, but again the invariant idea has to become 
an object in itself.

CONCLUDING REMARKS

In this chapter I have brought together a wide range of mathematical tasks and 
reports that depend to some extent on implicit or explicit use of variation theory to 
generate learning and/or reveal the range of learners’ understandings. In so doing 
I have included examples from textbooks to show that variation is an issue for 
textbook design as well as task design and pedagogy more broadly.

In all the examples I have given, there is more going on than merely asking learners 
to act on examples in which a critical aspect of an object of learning is varied. All 
examples address the harder problem of learning something about an underlying 
dependency relationship, which is very often the aim of mathematics teaching. This 
might be through: additional reflective tasks; contrasting behavior in examples; 
pedagogic talk and gesture; juxtaposition of OPMS, OPMC and MPOS examples; 
direct connections between actions, visual layout and the relationship; limiting 
dimensions of variation; and avoiding variations that can be treated superficially. 
The variations themselves can contribute to inductive reasoning. On its own this 
form of reasoning is unlikely to lead to higher levels of abstraction, and might lead 
to unexpected inductive generalizations, but might also lead to useful conjectures 
about dependency relationships. I have also given a demonstration that higher levels 
of abstraction can be achieved through controlled variation, when the relationships 
identified in one cycle of variation become themselves the variable objects for the 
next cycle. In all these observations, the invariant qualities are as important as the 
variations, either as background, or as limiting factors, or as the relations that are 
often the aim of learning mathematics.
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INTRODUCTION

Applying variation as an effective pedagogical tool can be traced back to a teaching 
experiment led by Gu in the 1980s in Shanghai, which was reported in the book 
Learning to Teach (Gu, 1991, see also Gu, 1994). Gu, Huang and Marton (2004) 
summarized a pedagogical theory of teaching with variation, distinguishing two 
types or uses of variation: conceptual variation and procedural variation. The 
essence of Gu’s theory of teaching with variation is to “illustrate the essential 
features by demonstrating different forms of visual materials and instances or 
highlight the essence of a concept by varying the nonessential features” (Gu et al., 
2004, p. 315).

The chapters in this section provide examples of lessons involving topics in both 
algebra and geometry in order to illustrate and highlight different forms of variation, 
and different ways in which variation can inform pedagogical choices. In each case 
the authors set the lesson topic in a theoretical background drawing on both eastern 
and western sources. Each in their own way leads the reader to question whether 
distinctions between conceptual and procedural variation are useful theoretically, 
but most especially whether they are likely to be informative for teachers (see also 
Watson, 2017).

As I read and re-read these chapters, I became aware that variation in and of 
itself provides, in the words of Marton (2015), “what is available to be learned”, 
but tells us nothing about what is actually learned. Several of the chapters are at 
pains to make connections between the pedagogic structure of the lesson and both 
learner proficiency and learner reflection on the lesson itself in order to demonstrate 
that students do in fact learn from the variation employed, whether in changing the 
context, the format, the representation, or significant mathematical parameters. 

Beneath the surface of some of the reports, and partly explicitly in others, there 
lie subtle pedagogic choices, pedagogic actions to be enacted. Although these are 
strategies recognizable in many classrooms where effective teaching takes place, 
variation as an aide-memoir highlights their importance, and provides a frame for 
emphasizing them. I would like to call this variation-pedagogy.

Each of the chapters promotes particular distinctions, so it behooves the reader 
to use the examples provided to see if they recognize those distinctions in their own 
experience, and to consider whether there are useful pedagogic actions which might 
be associated with those distinctions so that recognizing such a distinction in the 
future, whether putatively when planning or in-the-moment while teaching, brings 
actions to the surface to be available to be enacted. This is an example of the use of 
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the discipline of noticing (Mason 2002) through the education of awareness (Mason, 
1998). 

A significant feature worth attending to in these chapters is the habit of labeling 
things in order to aid discernment in multiple contexts. Teachers all over the world 
do it, but there is a particularly effective style of labeling and of making use of 
labels to direct attention which can be discerned in some of these chapters. The habit 
of labeling applies to pedagogical moves as well, as for example using the label 
pudian meaning foreshadowing and hence scaffolding. Labels assist by providing a 
vocabulary for discerning details and so sensitizing one to notice opportunities and 
possibilities, and for enabling meaningful discussion between colleagues, whether in 
a mathematical topic or in the pedagogical heart of a lesson (Mason, 1999). 

In a preface such as this it is not appropriate to quote specific details from 
the different chapters, so instead I recommend to the reader, when reading the 
descriptions of variation-informed teaching in these chapters, to be on the look out 
for specific pedagogic moves or actions being enacted. I suggest that it is not enough 
to say “the teacher guided discussion”, or “the teacher guided students to analyze”, 
because these generalities miss the actual action and the lived experience of students, 
and it is in the lived experience of teachers and students that we will find actions that 
are supporting and exploiting the variation that is provided. I suggest that readers ask 
themselves questions such as

“What are students attending to at this point in the lesson?” 

“How are they attending to it?” (see following questions)

“What is the teacher doing to direct student attention to this and directing 
students to attend in this way?”

“When is there time for students to dwell in gazing, in holding wholes, before 
being invited to shift their attention to details?”

“What are students being invited to discern at this point in the lesson?”

“What relationships are being recognized and stressed by the variation 
provided by the teacher at this point in the lesson?” (eg. relationships between 
(re)presentations, between varied examples or problems or exercises)

“What properties are students being invited to perceive as being instantiated 
at this point in the lesson?” (eg. what generalities are being called upon to be 
expressed and instantiated?)

“What properties are being called upon for acceptable reasoning in this part of 
the lesson?”

My questions are based on a framework that I find extremely useful when observing 
a lesson, whether as real-time observer or as researcher in working with video, audio 
or even field notes (Mason, 2003). Briefly, and in alignment both with van Hiele 
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(van Hiele, 1986, see also van Hiele-Geldof, 1957), and with the SOLO taxonomy 
(Biggs & Collis, 1982), but unlike both in that levels are inappropriate because 
attention is like a humming bird. It can hover apparently stationary, and it can 
very quickly dart to a different place, taking a different form. It seems to me that 
attention can take various forms including holding wholes (gazing, before specific 
details are discerned); discerning details; recognizing relationships in a particular 
situation; perceiving properties as being instantiated in the particular; and reasoning 
on the basis of agreed properties. The idea is that if the teacher and students are 
not attending to the same ‘thing’, then communication between them is likely to 
be ineffective. But even when they are attending to the same aspect, they may be 
attending differently, and this too will make communication difficult.

In my commentary chapter I raise several questions about variation that might be 
worth pursuing so as to inform teachers’ pedagogical choices and to enable detailed 
discussions between teachers. I then elaborate on the main thing which struck me 
in reading these chapters, namely that paying attention not only to what the teacher 
and students are attending to, but how they are attending to it could be helpful in 
elaborating pedagogic moves which may be necessary in order to exploit variation 
effectively in classrooms.
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6. CHARACTERISTICS OF TEACHING 
MATHEMATICAL PROBLEM SOLVING IN CHINA

Analysis of a Lesson from the Perspective of Variation

INTRODUCTION

Research over the past two decades has alluded that there are national patterns of 
mathematics teaching (Stigler & Hiebert, 1999). For example, Tweed and Lehman 
(2002) pointed out that there are distinctive features between Eastern and Western 
classrooms. Researchers have also found that there is evidence that teaching 
methods have evolved differently in particular countries. China appears to have 
developed a teaching approach that is different from Japan and Korea, though all 
three of them are rooted in the Confucian Heritage Culture (Givvin, Hiebert, Jacobs, 
Hollingsworth, & Gallimore, 2005; Park, 2006).

Recently, there has been increasing interest in uncovering the enigma of Chinese 
students’ outstanding mathematics achievements in international studies (cf. OECD, 
2010, 2013). Considerable research has focused on characteristics of mathematics 
education in China, and it is recognized that “teaching with variation” is a Chinese 
way of promoting effective mathematics learning (Gu, Huang, & Marton, 2004; 
Wong, 2014; Wong, Lam, Sun, & Chan, 2009). Teaching with variation has almost 
become the teaching routine for Chinese mathematics teachers (Marton, Runesson, & 
Tsui, 2004) and has been applied either consciously or intuitively for a long time in 
China (Li, Peng, & Song, 2011).

In addition, problem solving has long been a staple of school mathematics 
(Stanic & Kilpatrick, 1988). In China there is a long history of interest in integrating 
problem solving into school mathematics (Siu, 2004; Stanic & Kilpatrick, 1988), 
and this tradition extends to the present (Cai & Nie, 2007). The development of 
students’ abilities to solve problems has remained one of the fundamental goals in 
school mathematics over the years. Problem solving is a distinctive mathematics 
activity from other mathematics learning areas such as mathematical concepts, 
algorithms, and theorems.

Researchers have identified some characteristics of teaching mathematical 
concepts from the pedagogy of variation in China. For instance, research shows that 
students are provided a series of problems in which essential features of mathematical 
concepts are kept unchanged, but the nonessential features of mathematical concepts 
are changed (Li et al., 2011). Huang and Leung (2004) found that teaching with 
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variation helps learners acquire knowledge step-wise, progressively develop 
experience in problem solving, and form well-structured knowledge. However, it is 
not clear how problem solving is taught from the pedagogy of variation. Given the 
significance of problem solving in mathematics education, the lack of such studies 
will limit our understanding of the full picture of mathematics teaching in China. 
This chapter aims to fill in this gap and make such a contribution through analyzing a 
well-structured Chinese mathematics lesson on solving right triangles in ninth grade.

THEORETICAL FRAMEWORK

Gu (1994) stated that teaching with variation is an important method through which 
students can easily understand relevant mathematical concepts. Furthermore, it 
illustrates the essential features by using different forms of visual materials and 
sometimes highlighting the essence of a concept by changing the nonessential 
features. The aim of teaching with variation is to understand the essence of an object 
and to form a scientific concept by eliminating nonessential distractions. Based 
on a series of longitudinal mathematics teaching experiments in China, Gu (1994) 
systematically synthesized and analyzed the concepts of teaching with variation. He 
identified and illustrated the two forms of variation, namely “conceptual variation” 
and “procedural variation.” Conceptual variation aims at providing students with 
multiple perspectives and experiences of mathematical concepts. Procedural 
variation aims to provide a process for the formation of concepts step-by-step so that 
students’ experiences in solving problems are manifested by the richness of varying 
problems and the variety of transferring strategies (Gu et al., 2004).

In particular, Gu et al. (2004) identified the following three types of variation: 
(1) varying the conditions of a problem: extending the original problem by varying 
the conditions, changing the results, and generalization; (2) varying the processes of 
solving a problem: using different methods of solving a problem; and (3) varying the 
applications of a method: applying the same method to a group of similar problems. 
Likewise, Cai and Nie (2007) identified three types of variation problems in Chinese 
mathematics education practice: one problem with multiple solutions, multiple 
problems with one solution, and one problem with multiple changes.

More theoretically and fundamentally, the research from Marton and Pang 
(2006) and Marton and Tsui (2004) indicated the following points for the theory of 
variation: learning is a process in which learners develop a certain capability or a 
certain way of seeing or experiencing; in order to see something in a certain way, 
the learner must discern specific features of the object; and experiencing variation 
is essential for discernment and is thus significant for learning content. Marton et al. 
(2004) argued that it is important to attend to what varies and what is invariant in a 
learning situation.

Building on the ideas from Marton et al. (2004, 2006), Watson and Mason (2006) 
also argued that because some features of problems are invariant while others are 
changing, learners are able to see the general through the particular, to generalize, 
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and to experience the particular. As pointed out by Cai and Nie (2007), teaching 
with variation by presenting a series of interconnected problems could help students 
understand concepts and master problem-solving methods, thereby developing 
students’ knowledge of mathematics.

In addition, Watson and Mason (2006) saw generalization as sensing the possible 
variation in a relationship and saw abstraction as shifting from seeing relationships 
as specific to the situation to seeing them as potential properties of similar situations.

In this study, we are going to analyze a lesson with the three key components 
of the theory of variation: invariant, varied, and discernment (Marton et al., 
2004, 2006) and the three types of variations (Gu et al., 2004), as well as using 
“generalization” as a lens to check students’ learning (Watson & Mason, 2006).

METHODS

The Considerations: Why This Study Chooses This Lesson

The data included in the current study is a videotaped lesson. The topic of the lesson 
is solving right triangles. It belongs to a chapter about trigonometric function of 
acute angles in ninth grade, which includes two sections. The first section presents 
the definitions of trigonometric functions of acute angles including sine, cosine, 
tangent, and the second section presents solving right triangles that are the main 
focus of the selected lesson. Prior to the lesson, students learned the Pythagorean 
theorem, the definition of trigonometric functions of acute angles, and the methods 
on how to find the side length or angles of right triangles.

The lesson chosen for this study is a typical Chinese lesson under the 
background of China’s current mathematics curriculum reform. It includes six 
typical phases of the national pattern of teaching of a Chinese lesson (Peng, 2009). 
First, a context is set so as to lead to the mathematical problem that is going to be 
discussed in the lesson. Second, the new mathematical knowledge is introduced, 
on which the students are expected to collaboratively engage in inquiry-based 
learning. Third, a generalization is made. Fourth, students practice to enhance the 
new knowledge. Fifth, the students reflect what they have learned from the lesson. 
Sixthly, homework is assigned. The lesson lasts a total of forty-five minutes. 
Another reason to choose this lesson is that this lesson not only covers important 
content such as trigonometry, geometry, and algebra, but it also includes problem 
solving.

Data: The Lesson

The lesson was taught by Miss Li, a prospective teacher. She designed the lesson 
under the guidance of her teaching mentor in her university. She was in the last year 
of her 4-year bachelor degree program when she taught the lesson. It was enacted 
in a multimedia classroom with a projector, computer, and mathematical teaching 



A. PENG ET AL.

114

materials including set squares and protractors. Teacher’s lecturing, students’ inquiry 
learning, and self-study form the main methods of teaching and learning during the 
lesson. Figure 1 shows the mathematics classroom where the teacher was discussing 
the problem with students.

Figure 1. The teacher was discussing solutions with students

Corresponding to the six phases, this lesson includes the following activities:

Activity 1: Introduction of the problem. The lesson began with an open question 
that asked, “How could you apply the knowledge of solving right triangles to solve 
real life problems?” Next, the teacher presented a real life problem situation on 
how to find the height of a broken tree (Figure 2), accompanied with five sets of 

Figure 2. A problem on how to find the length of a broken tree
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different givens regarding the different components of the tree. This data consisted 
of the length between the treetop and tree root (4 meters), the angle between treetop 
(broken branch the tree) and the ground (37°), the length between the top of the 
broken tree (trunk) and the ground (3 meters), and the angle formed by the broken 
part and the upright part is 53 degrees. The question was: “Which set of data can be 
used to find the height of the broken tree?”

Activity 2: Analysis of the problem. The teacher guided students to analyze the 
problem and then introduced the topic of the lesson--“solving right triangles, the 
process of finding the unknown measurements by using given measurements in a 
right triangle.” This analysis transferred the real life problem into a rigorous pure 
mathematical problem on how to solve a right triangle. The teacher re-stated the 
question: “Which of the five sets of data can be used to find the height of the 
broken tree?” The students were required to think about this question carefully and 
individually. After a while they were grouped to analyze the five sets of data under 
the knowledge framework of solving a right triangle and explored how to find the 
length of the tree by using the knowledge of solving right triangles. Figure 3 shows 
the visual representations of the five sets of data in right triangles, which were 
from students’ group work. In the drawings 3a, 3b, and 3e, the three hypotenuses 
show students’ different attempts. In Figure 3a, when only the length between the 
treetop and tree root (4 meters) is given, it is impossible to find original height of 
the broken tree. Corresponding to the situation in a right triangle, it means that, 
given the measure of one side, it is impossible to find the missing measurements. 
In Figure 3b, when only the angle between treetop and the ground (37°) is given, 
it is also impossible to find the length of the broken tree. Corresponding to the 
situation in a right triangle, it means that, given the measure of one angle, it is 
impossible to find the missing measurements. In Figure 3c, when both the length 
between the treetop and tree root (4 meters) and the length between the top of the 
broken tree and the ground (3 meters) are given, the length of the broken tree can be 

found. And it is  Given the measures of two of the three sides, the 

missing measurements can be found using the Pythagorean theorem. In Figure 3d, 
when both the distance between the treetop and tree root (4 meters) and the angle 
between treetop and the ground (37°) are given, the length of the broken tree can 

be found:  Corresponding to the situation in a right triangle, 

it means that, given the measure of one side and one of the other two angles, the 
missing measurements can be found. In Figure 3e, when both the angle of the 
broken tree (53°) and the angle between treetop and the ground (37°) are given, it is 
impossible to find the length of the broken tree. Corresponding to the situation in a 
right triangle, it means that, given the measurements of two angles, it is impossible 
to find the missing measurements.
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Figure 3. The visual representations of the five sets of data in right triangles

Activity 3: Generalization of problem solving. Students and the teacher generalized 
the conclusion about how to solve right triangles (Figure 4) together. The teacher 
stated: “One of the most important applications of trigonometry is to ‘solve’ a right 
triangle. By now, you should know that every right triangle has five measurements: 
the lengths of its three sides and the measures of its two acute angles. Solving a right 
triangle means to find the unknown measurements when some of them are given. 
You can use trigonometric functions to solve a right triangle if relevant information 
is provided. Is there anybody who wants to summarize which information is needed 
in order to solve a right triangle?” Students answered “the length of one side and 
the measure of one acute angle, or the lengths of two sides. Namely speaking, if we 
know the values of three out of the five elements of the right triangle (except the 
right angle, and at least one side must be included), we can find the values of the 
remaining elements using trigonometric ratios.”

Activity 4: Application of learned knowledge to various situations related to the 
same problem. There are two examples of application of the problem. First is a 
pure mathematical problem on solving a right triangle as follows:

 

The second example is based on the question posed by the teacher: “If the tree is 
not broken, how could you find the length of the tree?” Specifically, it states that Xiao 
Ming wants to know the length of a big tree, which grows vertically on the campus. 
He stands 10 meters away from a tree root, and the angle of elevation from his position 
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to the tree top is 50° measured by goniometer. The distance between his eyes and the 
ground is 1.5 meters. The question is: can you find the height of the tree? Figure 4 
illustrates the conditions of this problem. Students are divided into groups to discuss 
the problem and they reach an agreement that right triangles can be constructed in 
order to solve the problem. Students proposed some interesting solutions, which will 
be discussed in the next section on varying the methods of solving the problem.

Figure 4. Visual representation of the second applied problem

The teacher encouraged students to find multiple ways to solve it. Below are two 
examples of students’ strategies.

Student 1: “I draw a diagram according to the problem (as shown in Figure 5). 
And I find that there is a segment AD when point A and D are connected, and there 
is a right triangle ADC. Naturally, using the knowledge of solving a right triangle I 
can solve the problem.”

In Rt∆ADC, ∠CAD = 50°, AD = BF = 10m.
Since CD = AD × tan50° ≈ 10m × 1.192 = 11.92m, AB = DF = 1.5m,
We get the height of tree: CF = DF + CD = 1.5m + 11.92m = 13.42m.
Student 2: “We can construct right triangles to solve the problem. Extend segment 

CA and intersect the extension line of FB at point E, and there will be a triangle 
CEF. Since the length of segment AB is known, the right triangle AEB can be easily 
solved, and then the right triangle CEF can be solved (See Figure 5). In this way, the 
length of the tree can be found.”

Here is the student’s solution:
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We get that the height of the tree is 13.42m.
Students then were divided into groups to discuss the multiple ways. With the 

teacher’s guidance, the multiple ways are compared. And finally, the specific steps 
and key points on how to use the knowledge of solving a right triangle to solve 
applied problems are generalized.

Activity 5: Review the lesson and assign homework. The teacher summarized the 
main contents of the lesson with the students. It included: (1) understanding what it 
means to solve a right triangle; (2) knowing that to solve a right triangle, at least one 
of the following two conditions are necessary: the length of one side and the measure 
of one acute angle, or the lengths of two sides; (3) using three tools for solving a 
right triangle: the trigonometric functions of acute angles, the Pythagorean Theorem, 
and the knowledge that the sum of the angles of a triangle is 180° (or the two acute 
angles are complementary, namely they add up to 90°); (4) being able to construct 
mathematical models and to solve simple practical problems by using knowledge 
regarding solving a right triangle.

Next, the teacher assigned two different types of tasks to the students. The first 
one is a basic task: In a right triangle ABC, angle A is 90°, solve the right triangle in 
terms of the given conditions as shown below:

1. if a = 30 and b = 20;
2. if angle B is 72° and b = 14.

The second one is an application task: Measure the height of the flagpole on 
campus with another classmate.

FINDINGS

By analyzing the activities implemented in this lesson, we have the following 
findings.

Figure 5. Student’s drawing to the second applied problem
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Varying the Conditions and Contexts of the Problems

As we see from the introduction and analysis of the problem from activities 
1 and 2, the conditions of the problem are varied. In varying the different given 
measurements of right triangles, students understood the minimum conditions for 
solving right triangles, and thus understand the nature of solving right triangles. 
The visual representation of the five sets of data in right triangles drawn by students 
showed that students’ mathematical reasoning contained higher order thinking skills 
and understanding of problem solving with close attention to angles between two 
segments and length between two points. By keeping the problem situation invariant 
while varying the given conditions and modeling with varying visual representations, 
the students could discern the object of learning. For different conditions in the case 
of the right triangle, the number of solutions could be zero, one, or multiple. Table 1 
indicates the three components of the variations.

Table 1. Varying the conditions of the problem from activities 1 and 2

Invariant Varied Discernment

Context: the broken tree trunk The types of conditions: 
side or angle

In what conditions, a right 
triangle is solvable

The quantities: the measures of 
sides and angles

The number of conditions

From activity 4, we found that the teacher presented two examples by varying 
both the conditions and situations of the broken tree trunk problem. Table 2 shows 
the three components of the variations.

Table 2. Varying the conditions and situations of the problem

Invariant Varied Discernment

Right triangles The conditions: sides and angles Solving right triangles
Contexts

Generalization of Problem Solving

Generalization is the result or refinement of the discernment. In activity 3, by 
comparing what varied (different conditions provided by students) against what 
remains invariant (the same situation), the object of learning should be discerned. 
In a right triangle, different conditions (known sides or angles) resulted in different 
methods for solving the triangle (sometimes one solution, multiple solutions, or no 
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solution). The students and the teacher generalized ideas about solving any right 
triangles in Figure 6:

Figure 6. The summary and generalization of solving right triangles

Varying the Methods of Solving the Problem

In the studied lesson, the teacher adopted this form of variation to foster students’ 
problem solving ability by varying the methods of solving a problem. The teacher 
encouraged students to find multiple ways to solve it. Specifically, two methods were 
used to solve the second application problem. Table 3 presents the three components 
of the variations.

Table 3. Varying the methods of solving the problem

Invariant Varied Discernment

Measures of  
sides or angles

Focused on different 
triangles by Constructing 
new triangles

The height of the 
tree

Tangent is used The relationships 
between the 
quantities

DISCUSSION

Varying the Conditions and Contexts of the Problems

Varying the conditions of the given problem provides students with an opportunity 
to experience a way of mathematical thinking in which they investigate the cases 
from special to general, from which students can see and construct mathematical 
concepts (Watson & Mason, 2006). Varying the conditions of a given problem 
provides a systemic experience for students to understand why a problem could be 
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solved with one or multiple solutions or a problem could be unsolvable (Gu et al., 
2004).

By varying the conditions of the problem, the situation of the problem is 
simplified, structured, and made more precise so that the students would be able 
to easily understand the problem situation. This provides the foundational work for 
their problem solving (Gu et al., 2004).

Varying the context of problems means to change the contexts of problems while 
the mathematical essence of the problems remains similar. Gu et al. (2004) suggested 
that, during the process of solving problems, reorganizing separate but interrelated 
learning tasks as a group can provide a platform for learners to make connections 
between some interrelated concepts. In this sense, students are able to develop their 
experience in problem solving through “one problem with multiple changes” (Cai & 
Nie, 2007).

In the studied lesson, the teacher guided students to understand how to solve right 
triangles by creating related problems within different situations (both mathematical 
and contextual situations) and to apply the knowledge and strategies in different 
contexts.

From the application activities and the exercise assignment, we argue that varying 
the context of a problem can provide a scaffold for learners to make connections 
between relevant mathematical ideas; therefore, variation can enhance students’ 
problem-solving ability. In this form of variation, it is the structure of the tasks as a 
whole that encourages mathematical sense making (Watson & Mason, 2006).

Generalization

In this study, the teacher guided students to summarize the general rules of solving 
right triangles. The actual solution will depend on the specific problem, but the three 
tools are always used: the trigonometric functions, the Pythagorean theorem, the 
theorem that the sum of the angles of a triangle is 180º. There is not necessarily a 
“right” way to solve a right triangle. One way that is usually “wrong,” however, is 
solving for an angle or side in the first step, approximating that measurement, and 
then using that approximation to finish solving the triangle. This approximation will 
lead to inaccurate answers. As we can see from above, the varied conditions of the 
problem increases the complexity and cognitive requirements of problem solving, 
which helps students to understand the nature of solving a right triangle. Watson and 
Mason (2006) argued that generalizations created by students can become tools for 
developing more sophisticated mathematics and are a significant component of their 
mathematical progress.

Varying the Methods of Solving the Problem

Gu et al. (2004) stated that students’ experience in solving problems is manifested by 
the variety of transferring strategies. In the studied lesson, the teacher adopted this 
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form of variation by varying the method of solving the problem in order to foster 
students’ problem solving ability.

The lesson was successful in the sense that students obtained good learning 
results with a high average score, 91 out of 100, on the test. The teacher designed the 
test to assess student understanding and application of solving right triangles. That 
showed they had reached the target learning objectives including basic knowledge 
and skills for solving a right triangle. The assessment teacher group in the school 
gave good evaluations, such as “the teaching activities aroused students’ thinking” 
and “discussing the problems together was very helpful for students understanding 
and solving the problems.”

Our data show that in teaching problem solving, this form of variation provides 
an illustration of the way in which multiple methods to approach the same task can 
promote deep understanding. In summary, this variation offers a structured approach 
to exposing underlying mathematical forms, which can enhance students’ conceptual 
understanding of a series of related concepts (Lai & Murray, 2012).

FURTHER CONSIDERATIONS AND SUGGESTIONS

Characteristics of Teaching Problem Solving from a Variation 
Theoretical Perspective

From the perspective of variation, during the instruction of mathematical 
concepts students are provided a series of problems in which essential features 
of mathematical concepts are kept unchanged while the nonessential features of 
mathematical concepts are changed (Li et al., 2011). By doing this students are 
provided with multiple perspectives and experiences of mathematical concepts (Gu 
et al., 2004). Lesh and Zawojewski (2007) argued that problem solving is a learning 
activity that is more complex than the learning of mathematical concepts. It requires 
the problem solver to interpret a situation mathematically. The interpretation usually 
involves progression through iterative cycles of describing, testing, and revising 
ideas as well as identifying, integrating, modifying, or refining sets of mathematical 
concepts drawn from various sources. Through varying the conditions, contexts, 
and methods of solving the problem, the essential features of problem solving are 
highlighted. Students experience the process of problem solving, thus deepening 
their understanding and enhancing their ability.

Theoretically teaching with variation makes sense to foster students’ learning and 
problem solving ability, but it lacks enough empirical studies to verify it (Cai & Nie, 
2007). Though our current study is just a case-based study, the fine-grained analysis 
provides solid evidence to confirm, “students’ experience in solving problems is 
manifested by the richness of varying problems and the variety of transferring 
strategies” (Gu et al., 2004, p. 322). Therefore the variations of problems help 
students make meaningful connections. Furthermore, our study has added new 
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knowledge in this aspect by identifying the three types of variation for teaching 
mathematical problem solving and varying the conditions, contexts, and methods of 
solving the problem.

Researchers caution that teaching with variation does not necessarily lead to 
the development of basic skills. Sometimes, it can even limit the opportunities for 
fostering students’ higher-order thinking skills. Thus, further research is needed to 
investigate ways to effectively teach with variation (Mok, Cai, & Fung, 2008).

Towards a Teaching of Problem Solving with a Balance of Content-Oriented  
and Contextualization Oriented Teaching

With an increasing emphasis being placed on the applications of mathematics in real-
life situations, the priority of contextualization of problems in the interest of facilitating 
connections is generally recognized as the common trend in mathematics education 
in the West (Clarke, 2006; Sun, 2013). However, there are more mathematical 
problems in classrooms in Hong Kong, Japan, and Korea (high-achieving regions 
in mathematics), compared to counterparts in the West in TIMSS 1999 video study 
(Leung, 2005). This implies that emphasizing contextual problems in mathematics 
teaching alone does not necessarily lead to excellence in students’ learning. One 
alternative may be making a balance between mathematical and contextual problems 
in mathematics teaching. To this end, teaching with variation may help us to make 
such a balance. As demonstrated in this study, the teacher presented variation problems 
with both contextual and mathematical situations for students to explore. This practice 
of teaching with variation in China may provide insights for mathematics educators in 
other cultures to reflect effective mathematics teaching.

CONCLUSIONS

Teaching with variation has been widely practiced in Chinese mathematics 
classrooms and is a teaching routine for Chinese mathematics teachers. The lesson 
featured in this study is a typical mathematics lesson in terms of teaching process 
and the use of variation. This study provides a vivid and concrete description of 
how teaching with variation was carried out in one type of lesson: teaching problem 
solving. Two types of variations are identified in our research, which may contribute 
to better understanding of teaching with variation in China. However, it is not our 
intent to generalize the findings to other lessons on problem solving in China.
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7. TEACHING THE FORMULA OF PERFECT SQUARE 
THROUGH BIANSHI TEACHING

INTRODUCTION

Pedagogy of variation has been in practice for a long time in China and can be dated 
back to Learning to Teach by Lingyuan Gu (Gu, 1994). Pedagogy of variation now 
has become a popular method in teaching mathematics in China. Many Chinese 
researchers have developed the application of the pedagogical model for different 
mathematical topics, and have provided enhancement for applying the pedagogical 
theory of variation in China. Therefore, it is fair to say that the Chinese Pedagogy of 
Variation1 is an instructional model for designing a specific efficient learning path 
for students to understand a mathematical topic.

The objectives of this paper are: (i) to explain the Chinese Pedagogy of Variation 
via its application in the teaching of a lesson of the formula of perfect square; (ii) to 
provide empirical evidence of what students may have learned.

The study reported in this paper aimed to answer the question: Could an 
experimental lesson based on the application of the Chinese pedagogy of variation 
improve students’ learning? We chose the topic of the formula of perfect square as 
the focus topic in the study. Why choose the formula of perfect square? Mathematical 
proposition, which comprises axioms, theorems, formulas etc., is very important 
in mathematics. Specifically, theorems and formulas are not only vital, but also 
challenging for students to learn. Some studies (Wu, 2006) have indicated that 
application of pedagogy of variations enables students to clarify the conditions and 
conclusions of theorems and formulas. Besides, pedagogy of variations provides 
assistance for students to understand the essence of theorems and formulas so 
that students’ rigorous reasoning and computing abilities can be developed in 
mathematics learning (Yuan, 2006). Moreover, researchers have reported that eighth-
grade students’ intuitive understandings of multiplication are weaker than their 
understandings of addition (Dixon, Deets, & Bangert, 2001). The formula of perfect 
square, consisting of formula and multiplication of binomials, can be a difficult topic 
for students and is, therefore, a good platform for experimental teaching.

In the following sections of the chapter, we will first explain the Chinese pedagogy 
of variation to provide a theoretical background for the study, followed by research 
design of the study. Next, the analysis of the lesson and the students’ learning 
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outcomes will be reported. Finally, based on the findings of the experimental lesson, 
we argue that a successful mathematics lesson promoting mathematical thinking 
should go beyond a simple focus on variation and should make use of geometric 
intuition in exploration and problem solving, which strengthens the variation of 
mathematical thinking with an emphasis on the connection of knowledge.

LITERATURE AND THEORETICAL BACKGROUND

The Learning of Algebraic Expressions

Learning and teaching algebra has been under intensive research for decades and 
there are lots of literature reported (e.g., see Kieran, 1992, 2007). Kieran (2007) in a 
chapter in the Second Handbook of Research on Mathematics Teaching and Learning 
proposed four main sources of algebraic meaning. The focus of this chapter is about 
the teaching of an algebraic formula. Therefore, the discussion in this section will 
be based on two of the sources of meaning directly related to the topic, namely, the 
meaning from the algebraic structure involving the letter-symbolic form and the 
meaning from other mathematical representations.

A substantial part of activities in school algebra belongs to the category of 
“transformational activities” or “rule-based activities” including, for example, 
“collecting like terms, factoring, expanding, substituting one expression for another, 
exponentiation with polynomials, solving equations and inequalities, simplifying 
expressions, substituting numerical values into expressions, working with equivalent 
expressions and equations, and so on” (Kieran, 2007, p. 714). Despite the importance 
of these activities, some students inevitably find difficulties in the apprehension of 
their algebra classes (Kilpatrick, Swafford, & Findell, 2001) because there are five 
types of refocusing in developing students’ algebraic thinking during the transition 
from arithmetic to algebra: a focus on relations instead of merely calculating a 
numerical answer, a focus on operations and the reverse operations, a focus on 
representing a problem in addition to solving it, a focus on number-letter expressions 
instead of numbers alone, and a refocus of the meaning of the equal sign (Kieran, 
2004). Another important well-reported area is the difficulty in understanding 
algebraic expressions. In addition to the need for refocusing, there is the process-
object dual meaning (Sfard, 1991), e.g., x + 3 can be an algebraic object of its own 
right as well as the process of adding 3 to the unknown x. Another obstacle is the 
parsing obstacle referring to reading an algebraic expression fully and in the right 
order, e.g., a student may make the mistake 12 – 5x = 7x, 3 + x = 3x (Thomas & Tall, 
2001). Common mistakes such as applying a rule to an inappropriate situation e.g., 
(a + b)2 = a2 + b2 can sometimes be classified as inappropriate extrapolation (Matz, 
1982; Mok, 2010).

One major competence in algebra relies on the fluency in manipulating the 
letter-symbolic forms or transforming an algebraic expression successfully into 
another algebraic expression that carries an equivalent meaning, for example, 



TEACHING THE FORMULA OF PERFECT SQUARE THROUGH BIANSHI TEACHING

129

(a + b)2 = (a + b)(a + b) = a2 + 2ab + b2. An understanding of such transformation 
involves the understanding of the systemic meaning and the syntactic meaning 
of algebra expressions (Kieran, 1989). Systemic meaning refers to the algebraic 
properties governing the rules of the operations of addition and multiplication, e.g., 
the commutative property and the distributive property. Syntactic structure refers 
to correct rules of transforming the letter-symbolic strings between their equivalent 
forms. Specific to the latter, the appreciation of the equal sign and the meaning 
of equivalence are fundamental (Davis, 1975; Kieran, 1981; Linchevski & Vinner, 
1990). Some researchers describe students’ manipulation of algebraic expressions 
from the perspectives of perceptual recognition of forms. Kirshner (1987), while 
investigating elementary algebra errors, found that experts read the deep form when 
transforming an algebraic expression, e.g., 3x2 is interpreted as 3M[xE2] where 
M and E represent multiplication and exponentiation. Besides the difficulties in 
dealing with the syntax in formal algebra notations, Kaput (2007) argued that the 
lack of association between alternative representations such as tabular and graphical 
representations is another common student difficulty, hence promoting translations 
between mathematical representations for the purpose of building meaning (Kaput, 
1989; Kieran, 2007).

Applying the Chinese Pedagogy of Variation to the Teaching of Formulas

The pedagogy of variation has been well used by many teachers for teaching 
mathematics since it was developed by Gu (Gu, 1994; Gu, Huang, & Marton, 2004). 
One of the major features in the pedagogy is to create experiences of variation of 
the mathematics objects so that students can learn the object in depth in an efficient 
way. According to Gu, Huang and Marton (2004), there are two important types of 
variation in application, namely the conceptual variation and procedural variation. 
Conceptual variation refers to understanding concepts from multiple perspectives, 
such as, using different visual and concrete examples, comparing with non-standard 
examples, and clarifying the connotation by non-concept variation. Procedural 
variation is progressively unfolding mathematics activities; that is, teaching process-
oriented knowledge (how to do something) by enhancing the formation of concepts, 
experiencing (scaffolding) problem solving from simple problems to complicated 
problems, and establishing a system of mathematics experience so that the steps and 
strategies for transferring/exploring can be internalized. For the application of the 
pedagogy of variation in China, many variations in the types of problems have been 
developed (See Bao, Huang, Yi, & Gu, 2003a,b,c; Gu, Huang, & Marton, 2004, for 
details).

Specific to the teaching of formula, the authors of this chapter, based on the work 
of Gu, used two major categories of variation to help the teachers understand the 
application of theory of variation for the teaching of formula. They are explained 
below:
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1. Variation in the style of examples or questions that includes:
a. seeing the similarity in concrete examples (1a), and
b. acquiring a deeper understanding in application (1b).

2. Variation in the way of recognizing the formula that includes:
a. analyzing the relationship between formulas (2a), and
b. recognizing the formula in multiple ways (2b).

When applying these concepts in the lesson design, there can be four types of 
variation:

1. contrast between examples and questions to see similarity and differences between 
the mathematical objects such as formula (type 1a);

2. applying the formula in a variety of problems and contexts to acquire a deeper 
understanding (type 1b);

3. analyzing different formulas to understand the relationship between formulas 
(type 2a);

4. recognizing the formula in multiple ways (type 2b).

Based on these ideas, 5 feasible learning steps were derived and applied in the 
planning the lesson (See figure 1). These steps were labeled as step 1 to step 5, 
noting that they do not need to be in a strict sequence.

• Step 1: contrast between examples and questions to see similarity and differences 
between the formula (type 1a);

• Step 2: analyze different formulas to understand the relationship between formulas 
(type 2a);

Figure 1. A framework for applying variation for the teaching of a formula
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• Step 3: apply the formula in a variety of problems and contexts to acquire a deeper 
understanding (type 1b);

• Step 4: recognize the formula in multiple ways (type 2b);
• Step 5: generalize the formula.

Other Essential Factors in Planning an Effective Lesson

Furthermore, in the process of designing the experimental lesson, other important 
aspects were considered and they are as follows:

The nature of the mathematical content. The formula of perfect square is a topic for 
Numbers and Algebra and is about multiplication after the learning of multiplication 
of polynomials. Therefore, the students are expected to contrast the formula with the 
formula of the difference between two squares in order to derive the perfect square 
formula. The formula is a Pudian2 for the learning of factorization in the future.

Analysis of the students’ background includes the students’ basic knowledge and the 
students’ basic experience of activity in learning. With respect to basic knowledge, 
the students had already learned the concept of algebraic expression, addition and 
subtraction of algebraic expression, calculation involving indices, multiplication of 
algebraic expression, and the formula of difference between two squares. These topics 
provided the students with a foundation for the lesson. However, the students were 
anticipated to have difficulty in representing geometric figures and its area with algebra. 
In addition, though students might be good in perceptual recognition in applying the 
formula, some might make mistakes such as (a + b)2 = a2 + b2 and (a - b)2 = a2 - b2. They 
might have difficulty differentiating the meaning of sum and difference in the formulas. 
With respect to activity experience in learning, they had experienced activities of 
exploration and application for the topic of difference between two squares and should 
have a sense of the symbols and some ability to make generalizations.

The objectives of the lesson. The objectives of the lesson are (i) to deduce the 
formula of perfect square, to carry out calculation involving the formula, and to 
apply the formula for simple calculation and (ii) to advance the students’ capacity 
of observing, comparing, discovering, and generalizing, and to experience the 
exploratory and creative nature of mathematics.

The analysis of the difficult parts and important parts of the topic. The important 
parts of the topic included: to deduce the formula of perfect square and to apply the 
formula for simple calculation. The difficult part was to understand the meaning of 
the letters in the formula.

Pedagogic strategy. Teaching would be carried by guiding questions. The lesson 
consisted of three phases: (i) discovering the formula; (ii) proving/justifying the 
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formula; (iii) applying the formula. In addition, special reference to the application 
of geometric intuition was considered.

THE RESEARCH DESIGN

The experimental lessons took place in a middle school in Beijing. The chosen 
teacher had 14 years of teaching experience and was well informed by the pedagogy 
of variation. The teacher taught two 8th grade classes of different abilities. Class 
1 had 38 students with average standard and Class 2 had 30 students with slightly 
poorer standard than Class 1.

Design of the Lesson

In the research experiment, the teaching design was based on the framework 
mentioned in a previous section. The research team has discussed the teaching 
design through three phases. The first phase focused on the nature of knowledge. The 
second phase focused on the Chinese pattern of variation. The last phase focused on 
the time arrangement. The researchers and the teacher cooperated closely on lesson 
preparation so that the intervention was carefully carried out. A summary of the 
lesson plan is given in Appendix 1.

Data Collection and Analysis

Collection of data. The researchers videotaped the two lessons in class 1 and class 
2. At the end of the lessons, the students were invited to write their reflections and 
feedback, and they were asked to complete a 10-minute post-lesson test, which 
consisted of seven questions to assess students’ understanding of the topic (See 
Appendix B).

Analysis of the data. The videotaped lessons were transcribed verbatim. The major 
features of the lesson are analyzed based on the framework (four types of variations). 
Students’ work was analyzed in terms of the correctness and types of errors.

RESULTS

Analysis of the Lesson

The lesson includes three stages focusing on discovering, justifying, and applying 
the formula. The teacher implemented the variation pedagogy purposefully in this 
lesson. She guided students to grasp the formula step-by-step, making the students’ 
experience the whole process. In order to show the variation process and students’ 
responses, the analysis of the interaction between teacher (T) and students (S) is 
presented below into three parts according to the three stages in the lesson.



TEACHING THE FORMULA OF PERFECT SQUARE THROUGH BIANSHI TEACHING

133

1. Discovering the formula
 Episode 1:

 [1]  T – Earlier we learned polynomial multiplied by polynomial. Let’s take a 
few practices and review.
1. (m + n)(p + q)
2. (p + 1)2

3. (m + 3)2

4. (a + b)2

 [2]  S1 – Every term of the first polynomial multiplies each term of the second 
polynomial, and then add together.

    (The students gave the expansion of the expressions orally. They obtained 4 
equations:

   (m + n)( p + q) = mp + mq + np + nq
   (p + 1)2 = (p + 1)(p + 1) = p2 + 2p + 1
   (m + 3)2 = (m + 3)(m + 3) = m2 + 6m + 9
   (a + b)2 = (a + b)(a + b) = a2 + 2ab + b2)
 [3]  T – Compare this observation with the characteristics of the four equations. 

Do you have any discoveries?
 [4]  T – If you want to classify, how many categories do you put the four 

equations into?
 [5]  S2 – Two.
 [6]  T – Question 1 is an ordinary polynomial multiplication, and followings are 

the multiplication of same polynomials, then we have a polynomial squared, 
is that right? OK, is that all?

 [7]  T – Well, the different left forms make differences in the results on the right 
side. Why do all the results consist of three terms?

   (The students thought about it independently)

 [8]  T – This is an ordinary polynomial multiplication, so we got this result. Now 
according to the algorithm of polynomial multiplication rules: multiplying 
p by p, and multiplying 1 by 1 respectively, and we got p2 and 12. Then, 
combining p × 1 and 1 × p will get…?

 [9]  S3 – collectively got 2p.
[10]  T – Good, through this example we could consider the square of a polynomial 

as a special case of polynomial multiplication. Because of the special form 
on the left side, the result is special, too. They can be merged into three 
terms.

Analysis. In this episode, the teacher presented four problems in [1]. Students got 
familiar with the expansion and the forms of the formula step-by-step [1 to 2]. The 
teacher and students made a contrast between expressions/formulas with the form 
(m + n)(p + q) and the form (p + 1)2. By comparing the appearance, students easily 
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discovered that there were 2 categories [3–5]. They were able to contrast between 
examples for observing similarities and differences between the formulas (type 1a 
variation). Next, with guidance from the teacher, students were asked to analyze 
the following two questions: “What are the differences among the four problems?” 
and “What causes these differences?” [6–7] The first question asked for “what” and 
the second question in fact asked for “why”. These what-and-why questions were 
raised simultaneously, emphasizing the request for the explanation for the observed 
differences. These questions turned out to be the key elements in stimulating a deep 
approach in analyzing different formulas to understand the relationship between 
formulas (type 2a variation). In the teacher’s explication and the student’s response 
[8–9], the anticipated reason required the students to see the difference and the 
feasibility of collecting like terms in the expansions:

mp + mq + np + nq and p2 + p × 1 + 1 × p + 1

The episode ended with the teacher making a statement of generalization. [10]

Episode 2
 [11]  T – What’s the result of (a - b)2? How did you get this? What is the base on 

which the formula is derived?
 [12]  S4: It can be worked out the same way as the last one, it is (a - b) ⋅ (a - b) 

actually, so we can get it.
 [13]  S5: There is another way to get this. We can think of (a - b)2 as [a + (-b)]2, 

then use the result of No.4 example.
 [14]  T – Excellent! Although this is a small change, it reflects her (S5) 

understanding of the problem. We have replaced b with -b so that we also 
have to replace b with -b on the right side. Therefore (-b)2 = b2 and + 2 ab 
changed to -2 ab. Well done. That is a substitution. On the one hand, we 
can use the polynomial multiplication. On the other hand, we can consider 
a - b as a + (- b). These two ways make sure that we have got the correct 
answer. By the way, by multiplying two identical polynomials, the result can 
be solved directly. And this formula is called the Perfect Square Trinomials.

Analysis. In this segment of class discourse, the teacher again posed the questions 
containing the key elements (what-and-why) in guiding the students to observe, in a 
deep approach, the variation between examples:

(a + b)2 and (a - b)2

Students discussed another form of the multiplication formula, (a - b)2, and saw 
(a + (-b))2 as an alternative form of (a - b)2, and referred to two ways of getting the 
formula (a - b)(a - b) an application of question 4, i.e. (a + b)2. [12–13] Then the 
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teacher drew the conclusion and generalized the idea of “Perfect Square Trinomials”. 
[14] In fact, this exemplifies at least four of the five steps:

• analyzing different formulas [(a + b)2 and (a - b)2] to understand the relationship 
between formulas (type 2a);

• applying the formula (a - b)2 = (a + (-b))2 in another case to acquire a deeper 
understanding (type 1b);

• recognizing the formula in two ways: [(a - b)2 = (a + (-b))2 and (a - b)2 = (a - b) 
(a - b)] (type 2b).

• generalizing the formula.

2.  Justifying the formula
After discovering the formula of perfect square, the students are led to justify the 
formula from multiple perspectives.

Episode 3
 [15]  T – It is so general that we can directly apply this formula into the following 

calculation. (a ± b)2 = a2 ± 2ab + b2 means that the square of sum or difference 
[of two terms] equals to sum of each term squared plus or minus 2 times of 
the product of the two terms.

 [16]  T – Since it is a special formula, we have to find out the characteristics of 
that. It is easy to see that the left side is a square of a polynomial. Can you 
find out the characteristics of the right side?

 [17]  S6 – There are 3 terms.
 [18]  S7 – It’s quadratic trinomial.
 [19]  T – What degree is this polynomial? Here is the sum of a2 and b2, and here 

is two times the product of the terms. Which one is consistent with sign 
in front of the cross term (referring to 2ab)? It is the sign in front of b, 
isn’t it?

 [20]  S8 – It is consistent with the sign in front of b.
 [21]  S9 – Look at (a ± b)2 = a2 ± 2ab + b2, if the left sign is ‘+’ there is ‘+2ab’. If 

not, there is ‘-2ab’ then.
 [22]  T – Right! In order to memorize it easily, we can summarize it into simple 

way: [adding] first and last term squared, put 2 times product [of the terms] 
in the middle. According to Commutative Law of Addition, 2ab or -2ab 
also can put in any place.

 [23]  T – As a formula, it is general and representative. For example, I’m going to 
change a to x, b to 2y. It is (x + 2y)2. Right now, can you orally answer it?

 [24]  S10 – x2 + 4xy + 4y2.
 [25]  T – a and b can represent numbers, monomials. Is there any other choice?
 [26]  S(all) – Polynomials.
 [27]  T – Correct. It can represent many things, such as integral expression and 

fraction. a and b are general and representative in the formula.
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Analysis. In this episode, the teacher led students to observe the characteristics of 
the form of the formula (a ± b)2 = a2 ± 2ab + b2. The characteristics included the 
three terms (a2, ±  2ab, b2) making a perfect square trinomial, the ± sign in front of ab. 
Apparently it seems to be observing and memorization. Nonetheless, mathematically 
a2 ± 2ab + b2 represents two formulas a2 + 2ab + b2 and a2 - 2ab + b2, hence the 
students were comparing two formulas for the similarity to make a generalization and 
the generalization was justified or proved by the actual expansion of (a ± b)(a ± b) 
[15–22]. The next example was an application of the formula by replacing a by x, b 
by 2y, forming (x + 2y)2. [23–27] The example played a dual role. On the one hand, 
it was an application of the formula (a ± b)2 = a2 ± 2ab + b2. On the other hand, the 
experience provided a contrast between (a ± b)2 = a2 ± 2ab + b2 and (x + 2y)2 = x2 + 
4xy + 4y2, to provide a deeper understanding between formulas. Although it was only 
one single case of type 2a variation and was difficult to generalize, it could be seen 
as a kind of Pudian for phase 3 of the lesson which consisted of more applications.

Episode 4
 [28]  T – From the view of Algebra, we got two formulas according to the Law of 

the Polynomial Multiplication. Then we need to think about this: what did 
you recall in Geometry when you saw a2, b2 and (a + b)2?

 [29]  S11 – is the area of a square with side a, and  is the area of a square with 
side b.

 [30]  T – Let’s try to explain the Perfect Square Trinomials from this point. Here 
we go. Please try to draw down it on paper.

  (students’ work for five minutes)
 [31]  S12 – I make a square whose length is a + b with two small square and two 

congruent rectangle in it. Their areas are a2, b2 and ab. So the big square’s 
area is a2 + b2 + 2ab = (a + b)2.

Figure 2. Decomposition of a square-method 1

 [32]  S13 – I’ve got a different way. The difference between these two ways is that 
the little squares and rectangles are located differently.

 [33]  S14 – Next, (a - b)2 = a2 - 2ab + b2. (see Figure 4) I use a square with side 
a - b, s1 = s2 = (a - b)b. Then the big square’s area is a2 = (a - b)2 + b2 + 
2b(a - b). That is (a - b)2 = a2 + b2 + 2ab.
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Figure 4. Decomposition of a square – method 3

 [34]  S15 – (see Figure 3). Since SAGEH = SBGFC = ab, then, the area of the middle 
square could be expressed as a2 - 2ab plus b2 because when subtracting 2ab, 
actually you subtract an extra b2 which should be added back.

 [35]  T – Good. This way makes it easier. (a - b)2 + (S1 + b2) + (S2 + b2) - b2 = a2. 
We have added b2 twice so we should subtract it.

Analysis. In this episode, the teacher guided the students to explore the geometric 
representation of the formula, namely, the decomposition of a square to smaller 
squares with area a squared and b squared, and 2 rectangles of area ab. In this 
episode, the students participated in an activity to see whether they could recognize 
with justification the formula in the context of geometry [type 2b]. With a brief initial 
instruction [28–30], the students were given the opportunities to explore different 
ways to represent the formula with geometric figures, i.e., they could draw their own 
square with their own choice of partition (Figure 2 and Figure 3) and label the side 
of the square (Figure 2 and Figure 4). [31–35] Hence, in the context of geometric 
representation, the students explored different application of the formula to different 
figures (Figure 2 and Figure 3) and different formulas to the same figure (Figure 2 
and Figure 4) [type 1b]. Reversely, the different partitions gave different ways of 
recognizing the formula with justification [type 2b].

Episode 5
 [36]  T – Let’s go back to the formula, (a - b)2 and (a + b)2. We can change the 

sign of b, can we change the sign on a?

Figure 3. Decomposition of square – method 2
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 [37]  S16 – (-a - b)2 = (a + b)2.
 [38]  S17 – (-a + b)2 = (b - a)2, same as (a - b)2,
 [39]  S18 – (-a + b) is the opposite of (a - b). After squared the result is as same 

as (a - b).
 [40]  T – Putting all this together, we can find out that because of the different 

combination of signs, there are four combinations. The way of transformation 
will depend on your understanding. Although they seem different, actually 
they are the same.

Analysis. In this episode, the teacher returned to the context of formula and put 
focus on the changing of the signs in front of a and b, hence, giving further experience 
of application of the formula [type 1b].

3. Applying the formulas
Episode 6

 [41]  T – Let’s do some practice.
 Case 1: use the Perfect Square Trinomials to calculate.
  1. (4m + 3)2

 [42]  T – Which one is a? Which one is b?
 Solution: According to (a + b)2 = a2 + 2ab + b2,
 (4m + 3)2 = (4m)2 + 2 × (4m) × 3 + 32 = 16 m2 + 24m + 9.
  2. (x - 2y)2

 [43]  T – Which one is a? Which one is b?
 Solution: According to (a - b)2 = a2 - 2ab + b2,
 (x - 2y)2 = x2 - 2x(2y) + (2y)2 = x2 - 4xy + 4y2.
 [44] Case 2: calculation.
  1.  1022

  2.  992

 (It’s very easy for students to solve it.)
 Solution:
  (1) 1022 = (100 + 2)2 = 10000 + 400 + 4 = 10404.
  (2) 992 = (100 - 1)2 = 10000 - 200 + 1 = 9801.
 [45]  T – Sometimes use Perfect Square Trinomials can make certain operations 

simple.
 [46]  Case 3: calculation.
  1. (4x + 5)2

  2. (mn - a)2

  3. (-2x - 3y)2

  4. 
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 Solution:
 (4x + 5)2 = 16x2 + 40x + 25.
 (mn - a)2 = m2 n2 - 2mna + a2.
 (-2x - 3y)2 = 4x2 + 12xy + 9y2.
 [47] T – To avoid mistakes we can take  as  to calculate.

 

 [48]   is a one term in the polynomial and it replaces b in the Complete 

Square Formula.
 [49]  Case 4: calculation.
  1. (a2 + b2)2

  2. (an - bn)2

  (a2 + b2)2 = a4 + 2a2b2 + b4.
  (a n - b n)2 = a2n - 2an b n + b2n.
 [50]  T – The base becomes another form, but the key is to recognize which one 

is the “a”.
 [51]  T – OK, let’s move on. Everybody write two Perfect square trinomials on 

this paper and swap it. Then solve your partner’s problems, and decide if it 
is right. Don’t be too hard.

  (students’ seat work)
  (Some students tried to construct difficult problems.)
 [52]  (two students show us)

  

 [53]  T – a can be monomials or polynomials. That will generate a lot of questions, 
and we need pay attention to which one is a or b when we apply the formula. 
There is one case raised by someone, (a + b - 3)2. Let’s think about it, what 
will happen if it’s a polynomial, and which one would you chose to become 
a polynomial between a and b?

 [54]  S19 – I combine a + b as a, 3 as b. (a + b - 3)2 = [(a + b) - 3]2.
 [55]  T – Let’s do the addition one:
   [(a + b) + c]2 = (a + b + c)2 = (a + b)2 + 2(a + b)c + c2 = a2 + 2ab + b2 + 2ac 

+ 2bc + c2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
 This formula contains a sum of three squares and product of each two pairs from 

a, b, and c. Basic formula of Perfect Square Trinomials facilitate the calculation 
on this.
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 [56]  T – We just explained Perfect Square Trinomials by the area of square 
visually. What about using the graph to represent it?

 [56] S20 – [see Figure 5]

Figure 5. Expansion of the formula 1

 [58] S21 – [see Figure 6]

Figure 6. Expansion of the formula 2

 [59]  T – Can we conjecture the result of (a + b + c + d)2? How to represent by 
graph? You can find it out after class.

Analysis. This episode was about practicing application of the formula in different 
questions [type 1b]. It provided consolidation and deeper understanding of the formula 
via practice with different questions. The questions varied in complexity and difficulty 
depending on the use of ± sign, index, and fractions. The difficulty of the four problems 
increased gradually. The purpose of the first question [41] was to consolidate the formula. 
The second problem [44] was meant to apply the formula into simple calculation. In the 
third problem [46], letters in the formula can represent different monomials. The fourth 
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question [49] showed that the letters of formulas can express monomials with high index. 
Next, the teacher let students construct their own problems which can be solved by this 
formula, which aims at understanding that the letters in the formula can be replaced 
by monomials, polynomials etc. [51]. Then the teacher asked a further question: “in 
addition to representing numbers and monomials with lower or higher power and so 
on, can it also represent a polynomial [53]?” This leads to the question [54]. First, the 
teacher generalized the question to show the sum square of multiple items with letters 
[55]. Next the teacher modelled the idea just learned to understand the multiplication 
graphically [56]. Finally, further expansion was given [59]. Through these practices, the 
students were expected to learn more about the relationship between variations of the 
formula [type 2a], and applying and recognizing the formula in algebraic expressions 
of different complexity [type 1b and 2b]

What the Students Learned

The students’ learning outcomes were analyzed in 2 parts: (i) the students’ 
achievement based on their performance of the post-lesson test (appendix 2); (ii) the 
students’ post-lesson written reflection.

Students’ achievements
Students in class 1 and class 2 took a post-lesson test based on the objectives of the 
lesson. The test consisted of questions about the formula of perfect square.

The Question (a + b)2 - (a - b)2

In question 3, students needed to understand how to use the formula of perfect square 
trinomials and the formula of the difference of two squares. All the students in Class 1 
gave the right answer and 76.7% students in Class 2 gave the right answer (see Table 1). 
Two students made errors on the formula of perfect square. Their answers are shown 
in Figure 7.

Table 1. Comparison between Class 1 and Class 2 for the question

Class1 Class2
Type No. of students % No. of students %

Right answer 38 100.0 23 76.7
Error occurred on expanding the bracket  0 0.0  2 6.7
Error occurred on the difference of two 
squares formula

 0 0.0  1 3.3

Error occurred on formula of perfect square 
trinomials 

 0 0.0  2 3.3

Other error  0 0.0  2 10.0
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The Question: Mary wrote (a + b)2 = a2 + b2. Please use geometric figures to analyze 
whether her idea is correct or not?

The analysis of the students’ performance is given in Table 2. For this question, 
the students in both classes sketched a graph to illustrate. Some of the students 
showed a correct geometric representation for the formula, such as in Figure 8, 
while a few students could not show a correct geometric representation, such as in 
Figure 9.

Table 2. Comparison between Class 1 and Class 2 for their performance for the question of 
analyzing  with geometric figures

Class 1 Class 2
Type No. of students % No. of students %

Blank  0 0.0  2 6.7
Right answer 37 97.4 26 86.7
Error occurred on the formula  1 2.6  1 3.3
Error occurred on the diagram  0 0.0  1 3.3

Figure 8. An example of a student’s correct answer in Class 1

Figure 7. Students’ wrong answers in Class 2
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Figure 9. An example of a student’s wrong answer in Class 2

Students’ reflection on their learning. Analysis of the students’ post-lesson written 
reflections shows that there were four themes:

1. Using geometric methods to prove the formula;
2. Other formulas were derived from perfect square trinomials;
3. The formula was easy to use for simplifying calculation;
4. Understanding from algebraic and geometric perspectives.

In class 1, 26.8% of the students mentioned the use of geometric methods to 
prove the formula; 22% of the students mentioned understanding from algebraic 
and geometric perspectives. Many students admitted that they were interested in 
the process of learning perfect square trinomials step-by-step. In their opinions, this 
lesson not only provided them opportunities to extend beyond the basics to become 
aware of the formula algebraically and geometrically and enrich their understanding, 
but it also broadened their horizon and enriched their knowledge of mathematics. 
Some examples of students’ reflections are shown in figures 10 through 13. Figure 
10 shows a student’s reflection which consists two points: (i) “it is possible to justify 
the formulas by drawing geometric figures; (ii) a-b can be substituted by a + (-b), 
so the formula (a – b)2 can be converted to (a + b)2” (Theme 1). In Figure 11, the 
student emphasized the connections between formula of perfect square trinomials 
and several variations (Theme 2). In Figure 12, the student said that the formula 
could simplify the expression, saving a lot time for convenience (Theme 3). In 
Figure 13, the student described two ways of explaining a formula, the algebraic and 
geometric perspectives (Theme 4).

Figure 10. A student’s reflection in Theme 1
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Figure 11. A student’s reflection in Theme 2

Figure 12. A student’s reflection in Theme 3

Figure 13. A student’s reflection in Theme 4

CONCLUSION

The conclusion of the teaching experiment with respect to students’ learning 
outcomes can be summarized below:

1. Students did well in applying formulas in calculation and demonstrated good 
computing skills.

2. Some students focused on memorizing the formulas but ignored the deduction 
and understanding of the formulas.

3. By constructing geometric figures, students demonstrated an alternative 
understanding of the formula of perfect square.

4. It’s harder to explain (a − b)2 = a2 − 2ab + b2 by graph than that of (a + b)2 = a2 
+2ab + b2.

5. The test data shows that the lower achieving students have less comprehension on 
variation than higher academic performance students.

With respect to the pedagogy of variation for teaching the formula, the experiment 
has shown that skillful planning to use the four types of variation can bring about an 
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effective lesson. This may also generalize to the teaching of other algebra topics of 
similar nature. The four types of variations are recapitulated here:

1. Contrast between examples and questions to see similarities and differences 
between the mathematical objects such as formulas (type 1a);

2. Apply the formula in a variety of problems and contexts to acquire a deeper 
understanding (type 1b);

3. Analyze different formulas to understand the relationship between formulas 
(type 2a);

4. Recognize the formula in multiple ways (type 2b).

DISCUSSION

In this chapter we reported a case of effective application of the Chinese Pedagogy 
of Variation in an experimental lesson of algebra. The experiment demonstrated 
an innovative application of the Chinese pedagogy of variation in tandem with a 
mathematical thinking model (discovering-justifying-applying), within the discovery 
phase, analysis showed specific examples of conceptual variation, whereas, the 
discovery, justifying, and applying phases demonstrated an innovative application 
of the procedural variation of unfolding the mathematical meaning of the formula 
through variation of activities. In addition, the experiment also provided evidence 
of student-learning outcomes for an effective lesson. While celebrating the success 
of the application of variation in teaching, it also shows that variation is not the only 
important element in planning a successful lesson, other elements are also important 
in the process of designing the lesson. They are:

1. the nature of the mathematical content;
2. analysis of the students’ background;
3. the objectives of the lesson;
4. analysis of the difficult parts and important parts of the topic;
5. combined use of variation, geometric intuition and modelling of mathematical 

thinking, namely, discovering-justifying-applying.

Besides demonstrating a case of effective use of the Chinese pedagogy in the 
teaching of an algebraic formula, the experimental lesson also revealed two 
important features: making use of geometric intuition in exploration and problem 
solving; and strengthening the variation of mathematical thinking with an emphasis 
on the connection of knowledge. Specific to geometric representation, Curriculum 
Standard (MoE, 2011b) requires that students ought to know the geometric 
background of (a ± b)2 

= a2 ± 2ab + b2. Also, geometric intuition is one of the core 
ideas in Standard, which states, “Geometric intuition (MoE, 2011b) provides more 
assistance in simplifying complex problems and exploring the idea of solving 
problems. Geometric intuition helps students understand mathematics intuitively, 
playing an important role in mathematics learning” (p. 3). Therefore, while helping 
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students understand an algebraic formula, teachers should assist students to explore 
the geometric meaning of the formula as well. During teaching, teachers could show 
students the quadrilateral figures as follows (Wei, 2013) to help them to present the 
algebra expressions using geometrical figures.

In addition to providing the variant figures of quadrilateral, teachers can try to 
show students triangles to analyze the connections among these geometric figures.

Students can strengthen their understanding of the meaning and application of 
formulas by the variation of these figures. There is an argument that “the more 
variations in graphing, the more conducive to students’ learning.” The answer 
should depend on appropriate variations (quality), not quantity. With respect 
to strengthening the variation of mathematical thinking with emphasis on the 
connection of knowledge, analysis of the lesson shows that the what-why questions 
and the application of the four types of variation created a strong connection of 
knowledge within each lesson episode and stimulated students’ mathematical 
reasoning. The overall three stages of discovering, justifying, and applying 
created an essential experience of mathematical process. The Curriculum Standard 
(MoE, 2011c) considers mathematical thinking as experiencing the exploration 
of mathematical conclusions through plausible reasoning. Teachers should 
encourage students to explore the results from various aspects, which are related 
to real life, mathematical figures, and arithmetic expressions. From students’ 
performances, we can see that students should make more efforts to explore and 
expand mathematical essence. Therefore, teachers should enhance the connection 
of knowledge in teaching and engage students in applying mathematical thinking 
in students’ learning process.
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NOTES

1 Rooted in Phenomenography, a theory of variation developed by Marton and his co-authors (Marton 
& Booth, 1997; Marton, 2014) also discusses variation. According to Marton’s theory, the learner’s 
experience and awareness of variation are essential for learning something (See chapter by Mok and 
chapter by Pang et al., same volume). To differentiate between the two theories, the pedagogy of 
variation discussed in this chapter is named as the Chinese Pedagogy of Variation.

2 “Pudian” is a Chinese term, literally means “bedding” or “foreshadowing”, that is metaphorically 
referring to scaffolding in learning, see explanation in Gu, Huang, & Gu’s chapter (this volume).
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APPENDIX 1  
A SUMMARY OF THE LESSON PLAN BASED ON THREE PHRASES

The content of the lesson Remark:
Stage 1: Discovering the formula
Question 1: [Applying the pedagogy of variation] 
The teacher presented 6 algebra expressions 
and asked the students to find the pattern in the 
calculation.
(m + n)(p + q)
(2x + 3y)(a + b)
(a + 2)(a + 2)

(p + 1)2 = (p + 1)(p + 1) = ____
(m + 2)2 = ____
(2m - 2)2 = ____

The teacher guided the students to observe the 
expressions on two sides of the equal sign, 
comparing the first two expressions with the later 
four expressions, pointing out the special cases in the 
later four. The students were then asked to discover 
the pattern and the teacher guided the students to 
think about the second question.

Question 2: Describe the pattern you find and explain 
how you find the pattern. [expecting the students to 
match the letters in the given expressions with “a” 
and “b” in the formula (a + b)2 = a2 + 2 ⋅ a ⋅ b + b2]

Question 3: How do you find the perfect square of 
(a - b) from the perfect square of )? [expecting the 
students to see (a - b) as a + (-b)]

Step 1: contrast between examples 
and questions to see similarity and 
differences between the formula 
(type 1a);
Step 2: analyze different formulas to 
understand the relationship between 
formulas (type 2a);
Step 5: generalize the formula;

Stage 2: Proof/Justification of the formula
Question 4: What are the patterns and characteristics 
of the perfect square formula? Explain in your own 
words.
Remark: The teacher will guide the students to the 
idea that the perfect square formula is a special case 
of (a + b)(p + q) when a = p and q = b. [This was not 
implemented in the lesson.]
Question 5: Can you derive the perfect square 
formula with other methods?
The teacher may guide the students to use the method 
of drawing.

Step 3: apply the formula in a 
variety of problems and contexts 
to acquire a deeper understanding 
(type 1b).
Step 4: recognize the formula in 
multiple ways (type 2b)

(Continued )
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The content of the lesson Remark:
Stage 3: Application of the formula
The teacher will use a ppt to give the following 
examples:
(-a + b)2

(2x - 3)2, (4x + 5y)2, (mn - a)2, (a2 + b2)2

1022, 1972

(a + b + c)2 = …, (a - b + c)(a - b - c) = 
Question 6: Have you found the application of 
perfect square formula in daily life?
Remark: The calculation of sum of area or difference 
of area is expected.
Question 7: How do you understand the perfect 
square formula and its discovery?
Remark: The teacher is expected to guide the 
students to give a summary for the lesson. [During 
implementation, there was not much interaction, the 
students were asked to put down their thoughts in 
writing.]

Step 3: apply the formula in a 
variety of problems and contexts 
to acquire a deeper understanding 
(type 1b);
Step 4: recognize the formula in 
multiple ways (type 2b).

APPENDIX 2  
THE POST-LESSON TEST FOR THE PERFECT SQUARE FORMULA

1. Calculate:
 (1) (x - 1)2 (2) (-x + 1)2

 (3) (3a + 1)2 (4) (-3a + 1)2

2. Apply the multiplication formula: (x + 1)(x - 1)(x - 1)2

3. Apply the multiplication formula: (a + b)2 - (a - b)2

4.  Mary wrote (a + b)2 = a2 + b2. Please use geometric figures to analyze whether 
her idea is correct or not?
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8. TEACHING GEOMETRICAL CONCEPTS 
THROUGH VARIATION

A Case Study of a Shanghai Lesson

INTRODUCTION

Chinese students’ superior performance in mathematics in various international 
comparative studies (Fan & Zhu, 2004; OECD, 2010, 2014) has led to an increasing 
interest in exploring the characteristics of mathematics instruction in China (Fan, Wong, 
Cai, & Li, 2015; Li & Huang, 2013). Mathematics classroom instruction in China has 
been described as being conducted in large classes and teacher dominated, with students 
being portrayed as passive learners (Leung, 2005; Stevenson & Lee, 1995). On the other 
hand, Chinese classrooms have also been found to be polished (Paine, 1990), fluent and 
coherent (Chen & Li, 2010), with a focus on the development of important content, 
problem solving, and proving (Huang & Leung, 2004; Huang, Mok, & Leung, 2006; 
Leung, 2005). Gu, Huang and Marton (2004) and Gu, Huang and Gu (2017) developed 
a theory of teaching with variation and argued that it is an effective way to promote 
meaningful learning in mathematics in large class-size classrooms. Several examples 
in geometrical concepts and proofs have been used to illustrate the major features of 
teaching with variation (Gu, 1992; Gu et al., 2004), but there is a lack of investigation 
into how the principles of teaching with variation could be applied in teaching geometry 
that promote students’ understanding of geometrical concepts. To this end, we aim 
to deepen understanding of mathematics teaching in China through examining how 
particular geometry concepts are taught from the perspective of variation.

LITERATURE REVIEW AND THEORETICAL CONSIDERATION

In this section, we first review the literature on the learning of geometrical concepts 
from a cognitive perspective. Then, variation pedagogy in general and learning 
geometry from a variation perspective in particular are discussed. Finally, a 
framework for this study is described.

Teaching Geometry: A Cognitive Perspective

According to Vinner (1991), a mathematical concept consists of two interconnected 
components: concept definition and concept image. It is important to introduce a 
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concept by exploring carefully organized sets of examples and non-examples. 
Through comparing examples and non-examples, the discriminating properties of 
the concept can be identified. Based on this model, Hershkowitz (1990) proposed 
a sequence of activities for teaching geometrical concepts that include selecting the 
critical attributes of the concept that students should discover and the non-critical 
attributes that students often identify erroneously as an example or a non-example; 
providing an example and a non-example differing in each critical attribute and 
examples differing in each non-critical attribute. It was noticed that the prototypical 
images (such as the upright position of a right triangle, the (interior) altitude in a 
triangle) could be either a starting point of understanding the concept or a limitation 
on concept formation (Vinner & Hershkowitz, 1983; Vinner, 1981). Students and 
pre-service teachers tended to make their judgment based on prototypical examples 
resulting in incomplete concept images such as failing to draw an altitude when the 
base needs to be extended (Hershkowitz, 1990). Exploring various non-prototypical 
images could be used to develop analytical strategies that are based on definition 
and logical analysis. To process or operate figures in geometry, Duval (1996, 1999) 
highlighted the ways of reconfiguration, namely, dividing a given whole figure into 
parts of various shapes and then combing their parts in another whole figure or 
making new subfigures. For example, a parallelogram is changed into a rectangle, or 
can appear by combining triangles. Different operations with a figure give different 
insights into solving a problem.

In sum, from a cognitive perspective, it is essential to explore both prototypical 
and not-prototypical concept images, and compare concept examples and non-
concept examples. In addition, developing the ability of reconfiguration within a 
given figure is critical for solving geometry problems.

Teaching Geometry: Perspectives from Variation Pedagogy

According to Marton and Tsui (2004), learning is a process in which learners develop 
a certain capability or a certain way of seeing or experiencing. In order to see 
something in a certain way the learner must discern certain features of that object. 
Experiencing variation is an essential experience for discernment, thus significant for 
learning. Marton and Pang (2006) further argued that it is important to pay attention 
to what varies and what is invariant in a learning situation. Objects of learning include 
a general and a specific aspect. The general aspect has to do with the nature of the 
capability such as remembering, interpreting and grasping. The specific aspect has to 
do with the subject on which these acts of learning are carried out, such as formulas 
and simultaneous equations. Teachers are often conscious of this object of learning 
and they may elaborate it in different degrees of detail. What teachers are striving 
for is the intended object of learning, which is an object of the teacher’s awareness. 
However, what is more important is how the teacher structures the lessons so that it 
is possible for the object of learning to come to the fore of the students’ awareness, 
which is called the enacted object of learning (Marton & Pang, 2006).
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Interestingly, a theory of mathematics teaching/learning, called teaching with 
variation, has been developed based on a series longitudinal mathematics teaching 
experiments in China (Gu, 1994; Gu et al., 2004). According to this theory, 
meaningful learning enables learners to establish a substantial and non-arbitrary 
connection between the new knowledge and their previous knowledge (Ausubel, 
1968). Classroom activities are developed to help students establish this kind of 
connection by experiencing certain dimensions of variation. Two types of variation 
are identified as important patterns of variation for meaningful learning: “conceptual 
variation” and “procedural variation” (Gu et al., 2004). Conceptual variation aims to 
provide students with multiple experiences from different perspectives. On the other 
hand, procedural variation is concerned with the process of forming a concept logically 
or historically, arriving at solutions to problems (scaffolding, transformation), and 
forming knowledge structures (relationship among different concepts) (Gu et al., 
2004). With regard to teaching geometry, Gu (1994) identified specific patterns of 
variation. For example, to explore critical features of a geometrical concept, concept 
figures and non-concept figures have to be compared; and both prototypical and 
non-prototypical examples should be explored. These are conceptual variations 
serving for developing a deep understanding of concepts from multiple perspectives. 
To solve geometrical problems, procedural variations such as reconfiguring within 
a given complex figure; or transforming prototypical figures to a complex figure are 
needed (Gu et al., 2004, 2017).

A Framework for the Current Study

The description of variations in geometry by Gu et al. (2004) is supported by 
cognitive theories of geometry learning. In addition, Marton and Pang (2006)’s 
notions of objects of learning provide a lens for examining possible learning 
opportunities. Thus, both Gu et al.’s (2004) classification of variation and Marton’s 
notions of enacted objects of learning are adopted to examine classroom teaching of 
geometrical concepts.

A CASE STUDY

Data Source

A videotaped seventh grade lesson used as evidence for the Excellent Young Teacher 
Award in Shanghai in 1999 constitutes the data source for this study. The lesson was 
taught by a young teacher (less than 5 years of teaching experience) to 56 students in 
a junior high school located in the countryside of Shanghai. This lesson is a typical 
and excellent lesson recommended by local teaching research specialists. The lesson 
was transcribed (in Chinese) verbatim. To ensure the validity of lesson analysis  
the video recording was referred to when needed. The lesson was analyzed based on 
Gu et al.’s (2004) classifications.
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Description of the Lesson

The topic of the lesson is “Corresponding angles, alternate angles, and consecutive 
interior angles on the same side of the transversal”. By and large, the lesson included 
the following stages: review, exploration of the new concept, examples and practices, 
and summary and assignment.

Reviewing and inducing. At the beginning of the lesson, the teacher drew 
two straight lines crossing each other (Figure 1(I)) on the blackboard, and asked 
students to use their previous knowledge (such as concepts of vertical angles and 
supplementary angles) to answer some review questions. After obtaining correct 
answers to those questions from the students, the teacher added one straight line to 
the previous figure (see Figure 1(II)) and asked students how many angles there are 
in the figure, and how many of them are vertical angles and supplementary angles. 
After that, the students were guided to explore the characteristics of a pair of angles 
from different vertices by being asked, “what relations are there between ∠1 and 
∠5?”, which actually is the new topic to be explored for this lesson.

Exploring new concepts. In order to examine the relationship between ∠1 and ∠5, 
a particular figure was isolated as shown in Figure 1(III). Through group discussion, 
the students found many features about these two angles, such as “∠1 and ∠5 are 
both on the right side of line 1, and above line a, and b”. Based on the students’ 
explanations, the teacher summarized and stated the definition of “corresponding 
angles”. Then the students were asked to identify all the “corresponding angles” in 
Figure 1(II).

Figure 1. Angle relationship in transversal figures

Similarly, another two concepts, “alternate angles and consecutive interior angles” 
were explored respectively.
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Examples and exercise. After introducing the three angle relationships, students 
were asked to identify them in different configurations. The problems are as follows:

Task 1: Find the “corresponding angles, alternate angles, and consecutive interior 
angles on the same side of transversal” in Figure 2:

Figure 2. Angle relationship within various transversals

Task 2: Find the “corresponding angles, alternate angles, and consecutive interior 
angles on the same side of transversal” in Figure 3(I).

Figure 3. Angle relationships in more complex situations

Task 3: In Figure 3(II), (1) Are ∠1 and ∠2 a pair of corresponding angles? (2) Are 
∠3 and ∠4 a pair of corresponding angles?

Task 4: Given ∠1 is formed by line l and line a as shown in Figure 3(III). (1) Add 
one line b so that ∠2 formed by line l and line b, and ∠1 are a pair of corresponding 
angles. (2) Is it possible to construct such a line b so that ∠2 (formed by line l and 
line b) is equal to ∠1?
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Summary and assignment. The teacher emphasized that these three types of 
relationship are related to two angles at different vertices. These angles are located 
in a “prototypical figure” which consists of two straight lines intersected by a third 
line. The key to judge these relationships within a complicated figure is to isolate 
a proper “prototypical figure” which includes these angles in question. Moreover, 
the teacher demonstrated how to remember these relationships by making use of 
different gestures as shown Figure 4 below.

Figure 4. Presenting angle relationship using finger gestures

Finally, some exercises from the textbook were assigned to students.

Enacted Objects of Learning

From the perspective of variation, and in order to examine what learning is made 
possible, we need to identify what dimensions of variation are constructed. Below 
we look at the lesson in greater detail from this particular theoretical perspective to 
identify the enacted object of learning and possible learning opportunities.

Procedural variation 1: Reviewing previous knowledge and bringing the new topic 
to the fore of students’ awareness. At the first stage, a variation: varying from two 
intersecting straight lines to two straight lines intersected by a third one, was created 
by the teacher’s demonstration and questioning. Through questioning students know 
how many angles there are in the new figures, and what relationships there are among 
those angles. A cognitive conflict with the previous knowledge reviewed about how 
to determine the relationship of angles at different vertices was then raised, which is 
the new topic to be explored in this lesson.

 1.  T: … now, I’ve drawn one straight line b to the two intersecting straight 
line l (see Figure 1(II)), then how many angles are there in the figure?

 2. S: Four angles [in unison]
 3.  T: Good. Increasing by four angles, then, how many angles are there in the 

figure: two lines intersected by a third line?
 4. S: Eight angles [in unison]
 5.  T: Let’s label the added angles as ∠5, ∠6, ∠7, ∠8. We call this figure as 

“straight line a and b intersected by a straight line l” [the teacher writes the 
part and highlights it with underline]. Then, there are eight angles. How 
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many vertical angles are there among them? How many supplementary 
angles are there among them? [The teacher repeated these questions]. 
Good, Pan Hong [nominating him]

 6.  Pan: There are four pairs of vertical angles, and eight pairs of supplementary 
angles.

 7.  T: Good! There are four pairs of vertical angles, and eight pairs of 
supplementary angles. Very good! Good, just now, I reviewed that all 
pairs of vertical angles and supplementary angles which are formed at the 
same point. Today, we are going to study the angle relationships among 
the angles formed at different vertices. For example, ∠1 and ∠5.

 8.  T: [Demonstrating by transparency as Figure 1(II)] How many angles are 
there in the figure: straight lines a and b intersected by straight line l?

 9. S: Eight angles [in unison]
10.  T: Good! Then, we study the positional relationship between two angles, 

which are at different vertices, such as ∠1 and ∠5. In order to make clear 
the positional relationship between ∠1 and ∠5, we isolate them from the 
figure, as showed in Figure 1(III) (demonstrating by transparency). Good! 
What are the positional features of ∠1 and ∠5.

In the above excerpt, the teacher guided students to construct a “prototypical 
figure” (e.g., transversal) and review previous knowledge (1~6), then the teacher 
drew students’ attention to the angle relationship located at different points by 
contrasting with previous concepts: the angles at the same point (8). In order to 
examine the new relationship clearly, the teacher isolated the focused angles from 
the complex Figure 1(II), as shown in Figure 1(III). By isolating the focused sub-
figure, the teacher tried to help students to clearly identify the characteristics of 
these angle relationships, and utilize a typical “isolation method”, namely, isolating 
a focused subfigure from a complex figure in problem solving in geometry 
(Gu et al., 2004).

By opening with this variation (i.e., adding one new line while two intersecting 
lines remain the same), the relevant previous knowledge was reviewed and the new 
topic was introduced in a sequential and cognitively connected manner. Thus, this 
variation is a procedural variation.

At the introducing new concepts stage, two variations were created which are 
crucial for students to develop an understanding of the new concepts.

Conceptual Variation 1: descriptions of new concepts. During the process of 
forming the new concepts, expressions of the new concepts have been shifted among 
the following forms: rough description, intuitive description, definition, and schema. 
After a group discussion, the students were invited to present their observations, 
and the new concepts were built based on students’ descriptions under the teacher’s 
guidance as shown in the following excerpt.
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 1.  T: …good! What are the characteristics of the pairs of ∠1 and ∠5 in terms 
of their positions in the figure?” (Pointing to Figure 1(III) shown on the 
transparency). Please discuss this question in groups of 4-students [at 
once, the 4-student groups were organized: the students at the row in the 
front turn back so that the 4 students sit around a desk. Then students 
discuss actively and the teacher circulates around the classroom assisting 
students occasionally].

 2.  T: Good! Just now, students have an active discussion. I would like to ask 
one student to answer: What is the characteristics of the pair of ∠1 and 
∠5 in terms of their position? [Pause] Fang Xiuting (who raised his hand), 
please.

 3. Fang: ∠1 and ∠5 are on the right side, and…
 4.  T: ∠1 and ∠5 are on the right side. Please, explain [it] in more detail. For 

example, what is the relationship of ∠1 and ∠5 with regard to the straight 
line l in terms of their positions? Moreover, what is the relationship of 
them with regard to the straight lines a and b?

 5.  Fang: With regard to straight line l, ∠1 and ∠5 are on the right side of 
it. Regarding straight lines a and b, all the two angles are above the two 
straight lines respectively.

 6.  T: Good! Very good! Thus, we call the two parts of the plane divided by 
the line l as two sides of the straight line l [left side and right side], and call 
the two parts of the plane divided by lines of a and b as two sides of lines 
a or b [above and below]. Moreover, we define this pair of angles, which 
possess the previous characteristics as corresponding angles [In Chinese, 
the angles with the same position]. [Teacher writes down: corresponding 
angles: ∠1 and ∠5]. What kind of angles are ∠1 and ∠5 [called]?

 7. S: Corresponding angles! [In unison]
 8.  T: Are there other corresponding angles in the figure [Figure 1(II)]? Cheng 

Dechong, please.
 9.  Cheng: ∠4 and ∠5 [ hesitation for a moment]. No! No! It should be ∠4 

and ∠8.
10. T: ∠4 and ∠8 [write down on blackboard], are there any more?
11. Cheng: ∠2 and ∠6.
12. T: ∠2 and ∠6[write down on blackboard], any more?
13. Cheng: No.
14. T: Very good!

In the above discussion, the representation of “corresponding angles” was transferred 
from the immature description by students (1~3) to a more precise description 
through the teacher’s probing (4~5), then to a formal definition given by the teacher 
(6), and finally to a schema, which can be applied in simple situations (7~14). This 
variation of representation of the concept is a conceptual one.
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Conceptual variation 2: Different orientations of “basic/standard/prototypical 
figure”. Through questions and answers between the teacher and students, the 
concepts of three types of angle relationship were constituted in a “prototypical 
figure”: two straight lines intersected by a third line (Figure 1(III)). After that, the 
teacher provided students with Task 1. By doing so, a new dimension of variation 
was opened for students to experience how to identify these angle relationships in 
different figures with various orientations. The teacher purposely varied the figures 
in terms of their positions and the number of angles in the figures.

 1.  T…. Next, I vary the picture (see Figure 2 (I)). Can you identify the 
corresponding angles, alternate angles, and consecutive interior angles on 
the same side of the transversal? [Present the problem by transparency]. 
How many angles are there in the picture?

 2. S: 8 angles [in unison]
 3.  T: Then, what is the relationship between ∠4 and ∠5 in these 8 angles? 

Shi Chihong, please.
 4. Shi: [it is a pair of] corresponding angles.
 5.  T: Now, I vary the picture again [show the picture by transparency like 

Figure 2 (II)]. Well, how many angles are there in this picture? [point to 
student S3]

 6. S3: 6 angles.
 7.  T: 6 angles. Then, how many pairs of alternate angles, and consecutive 

interior angles on the same side of the transversal in the picture? Please 
[point the student S3].

 8. S3: There are two pairs of corresponding angles.
 9. T: Which two pairs are they?
10. S3: ∠3 and ∠1. ∠2 and ∠6

By providing students with these variations, the students were exposed to the 
concepts from different orientations of the figure. It may make student aware that 
these concepts are invariant although the orientations of the figure vary.

To consolidate the new concepts and develop a method of solving problems, the 
following procedural variations were constructed.

Procedural variation 2: Different contexts of “prototypical figures”. After the 
students got a rich experience of these concepts in terms of their orientations of the 
prototypical figure, the teacher then deliberately provided a group of tasks in which 
“prototypical figures” were embedded in the complex contexts in Task 2 and Task 3. 
Through identifying the angle relationships in different contexts of the “prototypical 
figures”, an invariant strategy of problem solving, i.e. identifying and isolating a 
proper “prototypical figure” (i.e., prototypical image) from a complex configuration. 
In general, isolating a proper sub-figure from a complex figure is a useful strategy of 
solving a geometric problem (Gu et al., 2004).
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After highlighting the common features in the previous questions: identifying the 
“prototypical figure”, the teacher presented a more complex picture [see Figure 3], 
and asked students to count the number of angles in the figure, and identify the three 
types of angle relationships in the figure.

 1.  T: Good. [There are] 16 angles in this figure. As we learned today, there 
are three types of angle relationships: corresponding angles, alternate 
angles, and consecutive interior angles on the same side of the transversal 
in a “prototypical figure” which consists of two straight lines intersected 
by a third line. In this picture, there are 4 lines. How can we identify these 
relationships among the angles? Can you identify these three types of 
angle relationships according to the given condition in this figure? Please, 
write down your answer on the worksheet [students think individually]. 
Please, have a close look at which two straight lines are intersected by 
which line. Which two straight lines are they in question (1)? [i.e., straight 
lines a and b intersected by straight line d, find all the corresponding 
angles, alternate angles, and the consecutive interior angles]

 2. S: Straight lines a and b are intersected by line d. [in unison]
 3.  T: [The teacher demonstrates a transparency as shown in Figure 5(I). 

Students do seatwork individually, whiles the teacher circulated around 
the class, with occasional assisting of students] Are you ready?

 4. S: Yes! [In unison]
 5.  T: Who would like to answer the question? Yang Ninao, please. How 

many pairs of corresponding angles are there?
 6. Yang: [there are] 4 pairs of corresponding angles
 7. T: What are they?
 8. Yang: ∠9 and ∠13
 9. T: ∠9 and ∠13 [pointing to the relevant angles]
10. Yang: ∠12 and ∠13.
11. T: ∠12 and ∠13[pointing to the relevant angles]
…

After students selected the prototypical figure (1~2), they were asked to identify 
all three types of angle relationships one by one. The teacher confirmed students’ 
answers by pointing out the relevant angles on the transparency (6~11).

Procedural variation 3: Different directions for applying the new concepts. As 
soon as the students answered the first question, the teacher posed a new challenging 
question: “conversely, if ∠1 and ∠5 are a pair of corresponding angles, which 
prototypical figure contains them?”. After allowing individual students to think for 
a period of time, one student was called on to answer the question. The student gave 
a correct answer by saying that the prototypical figure is “straight lines a and b 
intersected by straight line c”(see Figure 5(II)). The teacher’s effort to push students 
to identify the prototypical figure is evidenced by the following excerpt:
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 1.  T: Think carefully! Which two straight lines intersected by a third line 
form ∠1 and ∠5, which are a pair of corresponding angles? Are you 
ready?

 2. S: Yes![in unison]
 3. T: You, please [point to one student]
 4. S2: The straight lines a, b intersected by the straight line c.
 5.  T: ∠1 and ∠5 are formed by straight lines a, b intersected by line c. Is it 

right?
 6. S: Right! [in unison]
 7. T: So, which line in this figure has not been used?
 8. S: [Straight line] d.
 9. T: In other words, how do we deal with the straight-line d?
10. S: Cover it up!
11.  T: [Remove the straight line d from the figure, and form a new figure, see 

Figure 5(II)]. Is it right?
12. S: Right! [in unison]
13.  T: Moreover, if ∠3 and ∠12 are a pair of consecutive interior angles on 

the same side of the transversal, which two straight lines intersected by a 
third line form this pair of angles?

Similarly, by searching for a pair of consecutive interior angles on the same side 
of the transversal of ∠3 and ∠12, students identified a prototypical figure, “straight 
lines c, d intersected by straight line a” (see Figure 5(III)). Moreover, through 
identifying a pair of alternate angles ∠13 and ∠7, a prototypical figure, “straight 
lines c, d intersected by straight line b” was isolated (see Figure 5(IV)).

Figure 5. Identifying angle relationship through decomposing complex figures

After the students identified all the “basic” figures as shown in figure 5, and 
recognized the relevant angle relationships, the teacher summarized the key points 
for solving those problems, that is how to isolate a “prototypical figure”, for 
instance, two straight lines a, b intersected by a third straight line d by deliberately 
“hiding” one line c from the original figure (see Figure 5(I)). Through identifying 
the three angle relationships within a given a prototypical figure or isolating a 
relevant ‘prototypical figure’ so that the given angle relationship is tenable, the 
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students not only consolidated the relevant concepts, but more importantly, learned 
the isolation method of problem solving, i.e. isolating a basic sub-figure from a 
complex configuration.

Conceptual variation 3: Contrast and counter-example. After doing extensive 
exercises, the students might think that they had fully mastered the learned 
concepts. At this moment, the teacher posed Task 3 (see Figure 3(II)) to assess 
whether students had truly mastered the concepts and methods of problem solving. 
Through isolating a prototypical figure shown in Figure 6(I), students concluded, 
“∠1 and ∠2 are corresponding angles“. However, since students could only 
identify a figure as shown in figure 6(II), they denied that “∠3 and ∠4 are a pair 
of corresponding angles”. Thus a new dimension of variation of experiencing 
corresponding angles was opened: example or counter-example of the visual 
judgment.

Figure 6. Contrast with counterexamples

Procedural variation 4: Creating a potential opportunity for learning a new 
topic. After solving the above problems through observation and demonstration, 
the teacher presented a manipulative Task 4. First, through playing with colored 
sticks, the first question was solved (see Figure 7(I), where a and b intersect). Then, 
based on drawing and reasoning, the second question was also figured out (see 
Figure 7(II), where a and b are parallel). During the process of problem solving, the 
students’ thinking levels were shifted along the following forms: concrete operation 
(by playing with the colored sticks) (enactive); drawing (iconic); logical reasoning 
(abstract)

The following excerpt shows how students were guided to reason logically:

 1.  T: I repeat the question for you: what is the quantitative relationship 
between the two alternate angles [in Figure 7(b)]? Who will…?

 2. S1: it is equal.
 3. T: why?
 4. S1: because these two angles are equal to 65 degree.
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 5.  T: Because they are equal to 65 degree! Good! Who would like to explain 
in more detail? [Pointing to student 6].

 6. S2: Because ∠3 and ∠2 are a pair of vertical angles.
 7. T: ∠3 and ∠2 are a pair of vertical angles.
 8. S2: Vertical angles are equal.
 9. T: Vertical angles are equal.
10. S2: And ∠1 is equal to ∠2 also;
11. T: Because ∠1 is equal to ∠2 also;
12. S2: So, ∠1 is equal to ∠3 in degrees.
13.  T: ∠1 is equal to ∠3 in degree also. Good! Great! Furthermore, if we 

name the fourth angle as ∠4, what is the relationship between ∠1 and ∠4? 
Pleas, deal with the question after class.

Although the students found a solution by drawing, it is difficult to explain the 
solution. The previous dialogue demonstrates the teacher’s intention to elicit a 
reasonable explanation. After the first student stated what he did (1~4), the student 
was probed for more details (5), and then another student gave a logical explanation 
by using previous knowledge (7~13). This exercise had two functions, on one hand, 
the “previous proposition: vertical angles are equal” was reviewed, on the other 
hand, “a further proposition: if the corresponding angles are equal, then the two lines 
are parallel” was operationally experienced. That means a potential space of learning 
was opened implicitly.

Conceptual variation 4: Consolidating and memorization of the concepts. As soon 
as the key points for identifying the three angle relationships in a variety of different 
situations were summarized, the teacher skillfully opened a new variation by making 
use of gestures to help students to memorize the three concepts. If the thumb and 
forefinger of the left hand form an angle, while the thumb and forefinger of the 
right hand form another angle, then all three angle relationships can be visually 
demonstrated by different gestures (see Figure 4) as follows:

Figure 7. Exploring a new topic to be discussed in next class
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1.  T: In order to memorize the characteristics of the three angle relationships, 
I would like to introduce a gesture method. For example, this represents an 
angle [The thumb and forefinger in left hand form an angle], whilst that 
also represents another angle [The thumb and forefinger form an angle] 
(see Figure 4(I)). When the two thumbs are opposite each other, what is the 
relationship between the two angles? (see Figure 4(II))

2.  S: Consecutive interior angles on the same side of the transversal![in 
unison]

3.  T: Good! It is a pair of consecutive interior angles on the same side of the 
transversal. Then, how to represent alternate angles?

4.  [Students try excitedly, some students have got the answer]
5.  T: In fact, I just turn the forefinger over (see Figure 4(III)). How to represent 

corresponding angles? [Students actively take part in trying]
6. T: It is ok, if one angle is against the other one [see Figure 4(IV))

Thus, the students had experienced the three angle relationships in different 
representations: verbal, drawing, reasoning, and gesturing. These rich representations 
will benefit students’ understanding, memorization and application of these concepts.

Summary

The lesson began with a review by questioning, and then moved forward inducing 
the new topic by varying an introductory task (procedural variation 1). Through 
several rounds of teacher-student interactions, the three concepts were built on 
students’ answers (conceptual variation 1). These concepts were immediately 
applied in a simple situation. After that, the lesson moved to the stage of practice. 
By addressing a series of well-designed tasks presented by the teacher, the students 
had an extensive experience of identifying the three angle relationships in various 
complex situations and learned the isolation method of problem solving in geometry 
(conceptual variations 2, 3; procedural variations 2, 3). It is worthy mentioning 
that by solving the last problem, a new topic for further lessons was implicitly 
introduced (procedural variation 4). During the last stage, a climax of teaching was 
established by actively imitating the three angle relationships by means of hand 
gestures (Conceptual variation 4). These dimensions of variation were constructed 
purposefully to serve different learning goals (See Table 1).

Through exploring various dimensions of variation constructed by classroom 
interaction (mainly between the teacher and students), the students had been 
guided to develop and consolidate the concepts conceptually, and apply the 
concepts in different geometrical contexts, and implicitly explore the potential 
topics to learn. The lesson had a warm atmosphere with frequent teacher-student 
interactions and progressed in a coherent manner. The deliberate use of these 
variations seems to have ensured that the progress of the lesson was both smooth 
and coherent.
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CONCLUSION AND DISCUSSION

According to the theoretical perspective, it is crucial to create certain dimensions 
of variation that enact the objects of learning. These objects of learning can 
be classified into two types. One is the content in question (such as concepts, 
propositions, formulae), another is the process (such as formation of concepts, or 
process or strategy of problem solving). In this particular lesson, the objects of 
learning include development of the concepts of three types of angle relationship 
involving a transversal (corresponding, alternative, and consecutive interior angles) 
and problem solving ability by applying these concepts. Two categories of variation, 
conceptual variation and procedural variation, have been strategically constituted to 
enact these objects of learning. It was demonstrated that the conceptual variations 
served the purpose of building and understanding the concept, while the procedural 
variations are used for activating previous knowledge, introducing the new topic, 
consolidating new knowledge, developing strategies for solving problems, and 
creating a topic for further learning.

From a perspective of pedagogy, this lesson was unfolded smoothly and 
consistently, and was guided by the teacher, which demonstrates the major features 
of mathematics classroom teaching in China (e.g., Huang & Leung, 2004; Leung, 
2005). Yet, if looking at students’ engagement and contribution to the generation 
of knowledge, namely, enacted objects of learning, we cannot say that students 
are passive learners. The analysis of this lesson indicates that the teacher can still 

Table 1. Dimensions of variation, their functions, and enactment of objects of learning

Phases of the 
lesson

Dimensions of 
variation 

Pedagogical effects of the 
variation 

Enacted objects of 
learning 

Reviewing and 
inducing 

Procedural 
variation 1

Activating previous knowledge;
Introducing the new topic

Developing the 
concepts

Exploring new 
concepts

Conceptual 
variations 1, 2

Forming, clarifying and 
consolidating the new concept 

Defining, and 
consolidating the 
concepts 

Examples and 
exercise

Conceptual 
variation 3

Procedural 
variations 2, 3 

Deepening understanding of the 
new concept by contrasting non-
examples;
Consolidating the new concept; 
Learning isolation method of 
problem solving 

Deepening the 
concepts

Consolidating 
and applying the 
concepts 

Summary and 
assignment

Procedural 
variation 4

Conceptual 
variation 4

Creating a potential topic for 
further learning

Visualizing and memorizing the 
new concepts

Reinforcing the 
concept; exploring 
further learning 
topics 
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encourage students to actively generate knowledge through strategically creating 
dimensions of variation. This observation echoes Huang’s (2002, p. 237) description 
of the Chinese mathematics classroom:

There are teacher, students and mathematics. The teacher presents mathematics 
and helps students engage in the process of exploring the mathematics by 
providing proper scaffoldings and asking a series of heuristic questions. The 
students are eager to listen and engage themselves in the process of learning.

From a perspective of learning geometry, the dimensions of conceptual variations 
which focus on contrasting concept images and non-concept images, juxtaposing 
prototypical figures and non-prototypical figures could help students develop a deep 
understanding of the concept (e.g., Vinner & Hershkowitz, 1983). Moreover, Duval’s 
(1996, 1999) studies support that developing reconfiguration ability when processing 
geometrical figures is crucial for problem solving in geometry. The dimensions of 
procedural variation constructed in this Shanghai lesson demonstrate the teacher’s 
competence in setting and implementing deliberate tasks for students’ development 
of this figurative processing ability when applying the learned concepts. Thus, from 
a perspective of cognitive science, the two types of variation could help students to 
develop geometrical concepts and problem solving ability in geometry. This reinforces 
Huang, Miller and Tzur (2015, p. 104)’s assertion of “the power of teaching through 
variation to deepen and consolidate conceptual understanding and procedural fluency 
concurrently” based on a fine-grained analysis of 10 consecutive lessons.

In asserting the positive effects of appropriate application of the principles of 
teaching with variation, a caution of designing and implementing dimensions of 
variation has been mentioned (Gu et al., 2004, 2017). It is crucial to construct 
appropriate spaces of learning by exploring relevant dimensions of variation focusing 
on critical features of the objects of learning with regard to the contexts, reasoning 
and student learning trajectory (Gu et al., 2017).
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9. TEACHING GEOMETRY REVIEW  
LESSON THROUGH VARIATION

A Case Study

BACKGROUND

In China, review lessons are quite common in mathematics teaching. After teaching 
a unit, a chapter, a book, or a course, teachers will arrange a lesson or several lessons 
to review what students have learned to help them consolidate what they have learned 
and therefore help them organize their knowledge systematically and improve their 
problem-solving ability. Another goal of review lessons is to help students prepare 
for examinations. In Chinese teaching culture, the result of examination is a critical 
evaluating indicator to students’ learning outcomes and the teacher’s teaching 
effectiveness as well. In primary and secondary schools, there are at least two school-
unified examinations each semester: a midterm and a final. In fact, mathematics 
is a compulsory subject in these examinations. In particular, in order to help the 
students achieve higher scores on the entrance examinations, such as Zhongkao (for 
entering high schools) and Gaokao (for entering colleges), mathematics teachers 
usually spend one to two semesters on systematically reviewing contents that have 
been taught before. In addition, there is also a clear distinction between a new 
content lesson and a review lesson. When teachers prepare for a new content lesson, 
they will design tasks, organize activities, and implement objectives based on a 
unified textbook. However, teachers do not have any standard reference materials 
to prepare for review lessons, except for Zhongkao and Gaokao. They have to rely 
on themselves or cooperate with colleagues to plan those lessons. It is a general 
challenge for every teacher to prepare review lesson. Therefore, the exploration of 
how to effectively teach review lessons attracts many mathematics teachers (Huang, 
2003; Luang & Liang, 2011; Wei, 2008).

Teaching with variation is a widely used strategy for types of lessons. Patterns 
of variation include conceptual variation and procedural variation (Gu, 1981). 
Conceptual variation provides students with learning experiences for understanding 
concepts from multiple perspectives, while procedural variation can help promote the 
formation of conceptions, provide background knowledge for problem solving, and 
accumulate necessary learning experience (Gu, Huang, & Marton, 2004). It is quite 
common for teachers to design review lessons, particularly in geometry, from the 
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perspective of procedural variation (Du, 2000; Tao & Xu, 2009; Zhang & Xu, 2013). 
First, this might be due to the fact that for teachers, geometric content provides more 
opportunities to design variation problems. Second, although literatures described 
lesson design using procedural variations from a teachers’ perspective, it is largely 
unknown what should be paid attention to when teachers design and implement 
the procedural variation. Teachers usually believe that enlightening and exploring 
variation problems from easy to difficult can stimulate students’ interests and guide 
students to think about problems in multiple ways. For this reason, teachers may 
believe it is a positive and desirable teaching strategy (Rui, 1998). However, there 
have been few appropriate empirical studies examining why and how we can use 
variation for effective teaching. Marton and his colleagues (1997, 2004) explained 
the necessity for students to learn concepts through exploring patterns of variation 
from general learning theory, and provided a theoretical support for teaching through 
variation, but their theories are not specific to learning mathematics. In this chapter, 
we examined the functions of using procedural variation in a geometry lesson 
and discussed its implementation from the perspective of students’ mathematical 
cognition.

THEORETICAL FRAMEWORK

Nature of Geometric Figures

Geometric figures are abstracted from the real world, but they do not exist in 
reality. Zero-dimensional point, one-dimensional linear, and two-dimensional plane 
don’t exist in the real world. Even a pillar made of stone or wood is just a model/
representation of a three-dimensional cylinder or prism. Therefore, geometric 
reasoning deals with the general, abstract geometric figures, rather than specific 
and concrete images (Fischbein, 1993). However, a geometric figure tends to be 
represented by a diagram. For example, we usually draw the diagram  to represent 
a figure of triangle (Fischbein, 1993). Here comes a paradoxical phenomenon 
where the points and lines of the diagram construct a special triangle, but some of 
its properties don’t appear in all triangles. In other words, a special diagram can’t 
be used to represent a general geometric object (Fischbein, 1993; Herbst, 2004). 
In fact, properties of a figure are determined by its definition and axiom system. 
For example, we draw to represent square, then from the definition of square in 
an axiom system you can generalize many properties of squares (Fischbein, 1993). 
That is to say, only under the condition of a definition or some properties, a figure 
could represent an abstract geometric object, which is an abstract concept, such as 
triangle, square, circle, cube, or sphere. However, we usually understand a geometric 
concept and make logical reasoning based on its diagram. The complicated relation 
between them causes many cognitive difficulties in learning geometry for students 
(Duval, 1995).
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Comprehension of Geometric Figures

Duval (1995, 1999) pointed out that students have different ways to understand a 
geometric figure. They may understand it intuitively and perceptually, where they 
identify properties of a geometric figure based on its shape and size. In this case, 
they think that diagrams and figures are equivalent. They may also understand 
a geometric figure in a discursive way, which is to understand properties 
of a geometric figure according to a definition or proposition. This kind of 
understanding might be the starting point of students’ geometric proof. At the same 
time, in the process of constructing a geometric figure, students can understand it 
in a sequential way. Duval (1999) argued that construction can improve students’ 
discursive understanding because they can’t construct a figure just relying on visual 
perception. Constructions must be done based on the understanding of geometric 
properties. Operational understanding, which is to modify the existing geometric 
figure, is the most important way to understand a figure. This modification can 
be accomplished mentally or by drawing. Duval (2006) further pointed out that 
one of the most important ways to modify a geometric figure is reconfiguration. 
In order to solve a geometric problem, we usually decompose the complex 
geometric figure into several different parts, and then identify the sub-figures, or 
reconfigure the original figure into a new geometric figure in order to solve the 
original problem effectively. For example, we can reconfigure a parallelogram into 
a rectangle with the same area in order to calculate the area of the parallelogram 
(Duval, 2006).

When a figure only consists of simple figures, it is relatively easy to deal with 
the reconfiguration, such as a parallelogram being reconfigured into a rectangle, 
as mentioned above. But within a superimposed and staggered complex figure, 
it is harder to recognize hidden sub-figures. In addition, there are many different 
ways to reconfigure, so we should comprise, discriminate, and choose an 
appropriate reconfiguration in order to solve a problem effectively. This is very 
difficult for students due to two main factors of the cognitive difficulty. First, 
students do not have appropriate understanding of properties of a figure, because 
a deep understanding can help students to identify the hidden sub-figures, and 
then solve problems through configuration. Second, students may disconnect 
properties with diagrams, and observe and identify sub-figures based on visual 
perceptions. So they may overlook some configurations and not see the hidden 
sub-figures (Duval, 2006). In order to help students overcome these difficulties, 
Duval (1999) pointed out: “a true didactical approach requires to embrace the 
whole range of variations of the conditions of a problem and to bring out the 
various factors that make them clear” (p. 29). What he advocated is similar 
to what teaching through variation implies in China; specifically, these above 
notions correspond to what Gu described as procedural variation in his theory 
(Gu, 1981).
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Procedural Variation

Reconfiguration of geometric figures. Gu (1994) argued that in some complex 
geometric figures, sub-geometric figures tend to be separated, broken, or staggered 
due to their background. Sometimes essential properties of the geometric objects/
elements are hidden within the backgrounds, which results in students’ difficulties 
with understanding of the geometric objects/elements. To solve the problems, 
students have to learn how to identify geometric objects/elements from a complex 
background. This identification/discrimination not only relies on the complexity 
of the figure, but also relies on learners’ prior knowledge and the problem to be 
solved. Gu’s notions of teaching with variation are aligned with Duval’s view about 
the understanding of geometric figures. In classroom teaching practice, Gu (1994) 
explored a teaching method named “transforming figure construction” (or in Chinese, 
it is called Tuxing Yanbian), where students were shown the process of transforming 
simple figures into complex figures by translation, rotation, and reflection. He 
believed that this process could help students understand how the geometric figures 
transform from simple to complex, from continuous to discontinuous, and from 
staggered to without staggering. This transformation can help students identify 
geometric objects from a complex background. Through transformation, it can build 
a bridge between the simple and complex figures, which can provide an opportunity 
for students to understand geometric figures in a sequential way. It can also promote 
further understanding of complex figures for students, thus helping them reconfigure 
the figures according to what is needed to solve the problem. For example, in 
Figure 1, a simple figure (triangle) can become a basic figure (sub-figure) through 
a transformation (rotation). Then by adding a line, we can get a complex figure 
(trapezoid). This process of transformation can help students reconfigure figures by 
identifying basic figures from background. Gu later coined this way of teaching as 
“procedural variation”, and explored effective implementation in mathematics class 
in China. Now it has become one of the key characteristics of Chinese mathematics 
teaching (Gu et al., 2004).

Anchoring knowledge point and potential distance of knowledge. In the process 
of problem solving, procedural variation can be presented in three ways: (1) one 
problem with multiple change- changing the initial problem or expanding the initial 
problem by changing the conditions and conclusions; (2) one problem with multiple 
solutions- various solutions to a problem as variations and then connect the multiple 
solutions; (3) one solution with multiple use- use a same solution to solve similar 
problems (Gu et al., 2004). By this way of instruction, previous problem posing and 
solutions can set a necessary foundation for approaching and solving the subsequent 
problem. So the key point is how to design scaffoldings (in Chinese, it is called 
Pudian) for student learning, which can maintain an appropriate distance between 
the prior knowledge and new problem.
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Gu (1994) put forward a hypothesis of “Anchoring knowledge point” and “potential 
distance of knowledge.” The anchoring knowledge point means the prior knowledge 
serving as a foundation for new knowledge. The distance between a task to solve 
and the anchoring knowledge point is the potential distance. When the potential 
distance becomes larger, the task is more difficult. For example, in Figure 1, if we 
use the simple figure as the anchoring knowledge point to explore properties of the 
complex figure, which has a longer potential distance and more difficult than using 
the basic figure. Therefore, a teacher needs to design the necessary scaffoldings 
according to students’ mathematics cognition and adjust the potential distance to 
achieve effective teaching results.

Figure 1. Potential distance between different figures

In this study, we adopt a combination of the perspectives from Gu and Duval 
mentioned before to analyze a lesson as a case to reflect on how the teacher enacted 
procedural variation in a review mathematics lesson.

METHODS

Participant and Context

Mr. Chou has been teaching middle school mathematics for 15 years and is currently 
a teacher and deputy director of academic affairs in a public middle school in W 
town. Mr. Chou was promoted as a senior secondary school teacher (See Huang 
et al., 2010 for detailed information about ranking system in China) in 2010, and 
has been selected as a young model teacher of the town and academic leader of the 
distinct. The lesson analyzed in the chapter is a public lesson taught by Mr. Chou 
in the spring of 2014. Nearly 30 mathematics teachers observed this lesson. We 
interviewed Mr. Chou about his teaching design and his perception of and reflection 
on the lesson after the lesson.

Data Collection

In this study, we collected data from a public lesson organized by a Master Teacher 
Workstation (MTW), which is a professional learning community consisting of a 
leader master teacher who is officially recognized and some key teachers (young 
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and promising teachers). In May 2014, the MTW held the public lesson of Fuxi Ke 
(a type of lesson which reviews content from textbook unit learned in classroom). 
The public lesson development is similar to normal teaching research activity. Mr. 
Chou implemented public lessons first, and all members of the MTW observed 
the lessons. In the meeting after each lesson, the teacher explained his lesson plan 
and implementation briefly, then the leader of the MTW commented on the lesson 
and other observing teachers commented and discussed their questions. Collected 
materials included the lesson plan, the lesson video (about 45 minutes), and the 
meeting audio (about 120 minutes).

Description of the Lesson Plan

We identified two main teaching objectives of the lesson from the lesson plan: first, 
to facilitate students’ understanding of congruent figures, Mr. Chou intended to 
connect congruency of triangles with geometry transformations, which would help 
students employ multiple solutions in problem solving. Second, Mr. Chou planned to 
design variation problems, trying to go through different tasks with a principle idea 
to help students understand the nature of the tasks during transformations.

The lesson plan included three major phases:
In the first section, Mr. Chou wanted to give each student a pair of cards of 

congruent right triangles (containing an angle of 30 degrees). Students were required 
to use the cards to form various basic figures by translation, reflection, and rotation, 
and were asked to draw the formed figures on the blackboard.

In the second section, Mr. Chou would pick three basic figures formed by 
translation, reflection and rotation from what the students draw on the blackboard 
(Figure 2), and then asked them to pose problems and solve them.

Figure 2. Basic figures formed by translation, reflection, and rotation

In the third section, on a basic figure by rotation (Figure 3), Mr. Chou would 
translate one of the triangles, and make the basic figure become a complex figure 
(Figure 4). When ∆APN is congruent with ∆DCN, Mr. Chou required his students 
to prove ∆EPM is congruent with ∆BFM (Task 1). Then Mr. Chou keep translating 
the right triangle towards left along the common sides till point D overlaps with 
point B (Figure 5), connect AE, and take the midpoint G, students are asked to prove 
GF = GC (Task 2).
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Figure 3. A basic figure by translation

Figure 4. Two intersected triangles

Figure 5. Nearly separated triangles

Research Presumption and Question

From the lesson design, it is evident that Mr. Chou planned to run through different 
tasks by the employment of variation in teaching design. First, he planned to 
ask students to form various basic figures (one figure with multiple changes) 
according to different geometric transformations, by which all kinds of basic 
figures of congruent triangles could be unified in geometric transformations. 
Then, he planned to pick three basic figures from the figures formed in the first 
section. He asked his students to pose different problems through adding some 
conditions by themselves, and prove different conclusions (one problem with 
multiple changes).

During this process, the teacher could review the basic knowledge of congruent 
triangles, while facilitating the students to compound understanding various 
properties of basic figures and help them accumulate learning experiences for 
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recognizing sub-figures and re-configuring complex figures in the third section. 
What is worth noticing is that in his plan, all basic figures would be transformed 
once in the first two sections, while in the third section the two complex figures 
would be formed by two geometric transformations which are overlaid and 
intersected, including several sub-figures. This is anticipated to be more difficult 
for the students.

In the lesson design, Figure 4 would be obtained by a translation from Figure 3, 
which is a basic figure. When translating it, the teacher wanted to get Figure 5. 
It is a typical procedural variation where tasks were designed from a basic figure 
to complex figures by translation. Can the basic figures help the students shorten 
potential distance, or reduce their cognitive difficulties? Could solving Task 1 
provide the students necessary scaffoldings for solving Task 2? We aim to answer 
these questions through examining students’ behaviors and interaction between 
students and the teacher in the classroom.

LESSON OBSERVATION AND ANALYSIS

In this section, we break Mr. Chou’s lesson into three phases: constructing basic 
figures, exploring properties of the basic figures, and solving complicated problems. 
The students’ work and interactions between the students and the teacher from each 
phase are reported and analyzed.

Constructing Basic Figures

First of all, Mr. Chou asked each student to use the two right triangles cardboard 
to construct figures with transformations of translation, reflection, and rotation, 
and then draw these figures on the background. As a whole class, the students 
came up with three kinds of basic figures with translation (Figure 6), two kinds of 
symmetric figures (Figure 7), and four kinds of figures with rotation (Figure 8) on 
the blackboard.

Figure 6. Basic figures with different translations
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Figures 7. Different symmetric figures

Figure 8. Basic figures with different rotations

Mr. Chou asked, “are there any other figures?” He found that a student constructed 
another different rotating figure and he showed it to the class (Figure 7(1)). The 
rotational center of this figure is same with Figure 8(3). By reducing the angle of 
rotation, the two right triangles were superimposed. Mr. Chou continued asking 
whether there were any other figures. When he walked around in the classroom, he 
found a new symmetric figure (Figure 9(2)) and raised the cardboard to demonstrate 
to the whole class. Mr. Chou looked for others that he had in mind, and asked for 
more figures again. As he returned to the podium, he found a new symmetric figure 
(Figure 9(3)) and drew this figure on the blackboard.

Figure 9. Three new-formed figures from students

According to Duval’s view, the process of construction can help students 
understand geometric figures deductively. In other words, it can promote their 
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understanding of the properties of the figures (Duval 1995, 1999). In this lesson, 
although students did not construct figures with ruler and compass, their operations 
and drawings were under the guide of the geometric transformation, and followed 
the law of transformations. From this point of view, this strategy can further facilitate 
the students’ understanding of the properties of figures. According to Gu’s notion, 
transforming figure constructions can help students understand geometric figures 
in a dynamic manner, which allows students to identify geometric objects from a 
complicated background (Gu, 1994). In conclusion, according to the two scholars’ 
view as mentioned above, the first section of Mr. Chou’s lesson can help students 
understand basic figure properties, and it is conducive for them to reconfigure 
geometric figures. In terms of the teaching effect, students’ performance in the 
section that follows.

Exploring Properties of the Basic Figures

Mr. Chou demonstrated a translation figure with a projector (Figure 10). This figure 
can be seen as a variation of the Figure 5(2), drawn by students on the blackboard. 
He asked the students to find conditions to make ∆ABC≅∆DEF. The following 
hypotheses were made: (1) AD = CF, ∠B = ∠E, ∠A = ∠EDF; (2) ∠B = 900, BC = 
DE, AC = DF, ∠BCA = ∠F; (3) ∠B = ∠E, ∠C = ∠F, AB = DE; (4) ∠B = ∠E = 900, 
BC = EF, AD = CF.

Figure 10. Adding conditions to make ∆ ABC ≅ ∆ DEF

Through translating the basic figure, Mr. Chou reviewed how to determine 
triangles’ congruency. Meanwhile, it enhanced students’ understanding of the 
properties of the basic figure by connecting the properties with triangle congruency 
and transformations.

The second basic figure Mr. Chou wanted the students to explore is in Figure 7(2). 
Here is an episode from the lesson.

Episode 1

[1]  Mr. Chou: Can you use this figure to pose some problems? For convenience, 
we add some corresponding letter under the condition ∆ ABC ≅ ∆ ADC, 
……who can try?

[2]  Student 1: connect BD, so BD = AC (Figure 11(2)).
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[3]  Mr. Chou: why? … We connect BD, and assume it intersects with AC on 
point O.

[4]  Student 1: because ∆ ABC ≅ ∆ ADC, so ∠BAC = ∠BDC, AB = AD, so BD 
is perpendicular to AC.

[5]  Mr. Chou: why?
[6]  Student 1: in an isosceles triangle, altitude, angular bisector, central line 

are the same.
[7]  Mr. Chou: good, we can also prove it with congruent triangles. What else 

do you find?
[8]  All the students: AC is perpendicular bisector of BD.
[9]  Mr. Chou: well, if we take a point O on AC, Can you pose a problem? …… 

(Figure 11(3))
[10]  Student 2: BO=DO.
[11]  Mr. Chou: Can you tell me why?
[12]  Student2: because ∆ABO≅∆ADO.
[13]  Mr. Chou: Do you all understand? As I just said …… In fact this is a 

symmetric figure. If you fold it along its symmetrical axis, the two parts 
will coincide completely. ……If we take a point E on BC, and a point F 
on DC, then ……(Figure 11(4))

[14]  All the students: AE = AF.
[15]  Mr. Chou: what conditions do we need in order to ensure AE=AF?
[16]  Student 3: BE = DF.
[17]  Mr. Chou: why?
[18]  Student 3: SAS.
[19]  Mr. Chou: very good.

From the Episode 1, we can find in the Line [2], Student 1 conjectured that “connect 
BD, then BD = AC” and then completed its proof. Under the guidance of Mr. Chou, 
all the other students found “BO = DO” ([8]). Similarly, the other students also 
proved “BO = DO” ([9] ~ [12]), and “if BE = DF, then AE = AF” ([13]~[18]). This 
shows that Mr. Chou used a symmetric figure as an original figure and changed it 
during the communication with the students, which helped them to use this basic 
figure as an anchoring knowledge point. It shortened the potential distance to the 
explored problems and thus reduced the difficulty of the problem. In addition, it is 
also evident that the conclusions involved some properties of the isosceles triangle 
under the condition that the basic figure was treated as a symmetric figure. Through 
the proof of congruent triangles, students made connections between the triangle 
congruency and geometric transformations, which are the main learning goals 
of this lesson. On the other hand, through the exploration of these problems, the 
students utilized the symmetric properties upon the basic figures, so that the figure 
became a stronger anchoring knowledge point associated with abundant knowledge. 
According to Gu’s (1994) view, it brings convenience to solve more complicated 
problems. The teacher-student interactions, in which the students made conjectures 
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and proved by themselves, could promote their deductive reasoning related to the 
basic figure. When students have a deeper understanding of the basic figure, it 
will benefit them to reconfigure the complicated figures and solve more difficult 
problems (Duval, 2006).

Figure 11. Exploring properties of a symmetric figure

Mr. Chou used the same strategy to discuss the third type of basic figure – a 
rotational figure (Figure 12(1)). The original figure is shown in Figure 8(2), which 
students drew on the blackboard in the first lesson section. There were three 
different variations: (1) drawing a line from point C which intersects with AB and 
DE on F and G, prove CF = CG (Figure 12(2)); (2) If connecting AE and BD, then 
AE = BD (Figure 12(3)); (3) if AF = DG, and connecting EF and BG, then EF = BG 
(Figure 12(4)).

At this point, the second section of the lesson was finished. It may be the 
scaffolding of the basic figures that made the potential distance of the problem 
relatively close and allowed students to solve the problem without any significant 
cognitive obstacles. Through exploring the three basic figures as described above, the 
students had a deeper understanding of the properties of the basic figures and learned 
more knowledge, which potentially improved their ability to identify sub-structures 
from complicated figures and reduce the difficulty of complicated problems.

It should be noticed that the figure Mr. Chou looked for and highlighted in the first 
section of the lesson was deliberate. According to what he claimed in the meeting, 
the figure was a key basic figure for students solving complex problems. However, 
if the figure is so important, why didn’t he explore its properties with students in the 
class? In fact, according to Gu’s view, this basic figure shows the interval of lines 
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and the stagger of triangles, so the positional relations of different lines and the 
measurement relations of line segments become more complicated (Gu, 1982). It 
may either be a missed teachable moment, or a deliberate choice of Mr. Chou, which 
was not clear without further elaboration from him.

Solving Complicated Problems

Encountering challenges/difficulties. Mr. Chou showed a rotational figure 
(Figure 3) on the projection, then translated Rt∆ECD to the left along the straight 
line CD, and asked, “What kind of positional relationship is maintained between 
ED and AB during the translation?” Students answered immediately that the two 
lines were perpendicular to each other. Then Mr. Chou asked a follow-up question, 
“if Rt∆APN is congruent with Rt∆CDN, which triangles are congruent with each 
other (Figure 4)?” The students all answered that Rt∆EPM would be congruent 
with Rt∆BFM. Then the teacher asked them to prove it. After a few minutes, the 
teacher noticed that the students could not come up with any answer, so he suggested 
erasing some line segments to reduce the difficulty. Then a substructure as shown 
in Figure 13(1) was demonstrated on the blackboard. It was the figure (Figure 9) 
that the teacher found and drew on the blackboard in the first section. “If Rt∆APN 
is congruent with Rt∆CDN, then which two triangles would be congruent with 
each other?” Mr. Chou asked. It was evident that the triangles were Rt∆ABC and 
Rt∆BDP. A student volunteered to give a proof. Under the condition that Rt∆APN 
was congruent with Rt∆CDN, the student got that AD = ND, PN = CN, and then 
AC = DP, so he successfully proved that RtABC was congruent with RtBDP.

Figure 12. Exploring properties of rotational figures
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Mr. Chou went back to the original figure and encouraged the student to make 
a conjecture, such as Rt∆EPM was congruent with Rt∆BFM. But the student 
only knew that ED = AB, as shown in Figure 4. Although Mr. Chou gave him an 
important hint that AB was equal to BD, the student still could not reason further. 
The teacher erased the line segments reluctantly, and went back to Figure 13(1), 
explaining that if Rt∆ABC was congruent with Rt∆BDP, and then AB would be 
equal to BD. He returned to the original figure, erased other parts, and got a 
new substructure of Figure 13(2), which was still the basic figure as shown in 
Figure 13(1) with only the position changed. Mr. Chou said, “Can you prove 
that Rt∆EPM is congruent with Rt∆BFM?”, in fact, in the figure, Rt∆EFD is 
congruent with RtBPD because of ED = BD, so it is relatively easy to prove that 
Rt∆EPM is congruent with Rt∆ ∆BFM (EP = BF is evident, because of DP = DF 
and ED = BD).

Figure 13. Two substructures in Task 1

From what we observed in the lesson, the students had difficulties solving the 
problem; at least, they were unable to complete their proof within a short amount 
of time. In other words, there was a long potential distance between the anchoring 
knowledge point to the problem they were exploring. The key to solving the problem 
is to identify the basic figure of symmetry in the complex background, and then 
reconfigure the original figure. However, the students demonstrated difficulties to 
accomplish it. In the lesson, although Mr. Chou had constructed the basic figure at 
the beginning of the lesson, he didn’t lead the class to explore the figure’s properties 
as doing with other figures in the later part of the class. It wasn’t clear why Mr. Chou 
chose not to elaborate on these properties. It is plausible to conjecture that if the 
teacher could have done so, it may have provided more scaffolding for the students 
to identify the substructure, and possibly make the potential distance shorter to reach 
the solution.

The final variation problems. Mr. Chou kept translating the triangle towards the 
right where only a common point was shared, as shown in Figure 14(1).
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Episode 2

[1]  Mr. Chou: what would you find when we connect A and E (Figure 13(2))?
[2]  Student 4: AB is perpendicular to EB, and AB = EB.
[22]  Mr. Chou: that is to say ∆EBA is an isosceles right triangle. What would 

you come up with as you get the midpoint G of AE (Figure 14(3))?
[23]  Student 5: BG is half of AE.
[24]  Mr. Chou: when connect B and G (the teacher didn’t do it on the figure), 

the median of the hypotenuse is half of it. If I connect F and G, and 
connect C and G, then what relation do the two segments have (Figure 
14(4))?

[25]  Student 6: FG is perpendicular with BG, and FG = BG.
[26]  Mr. Chou: ∆FGB is also an isosceles right triangle. Please think about 

how to prove? (The teacher constructed the figure on the blackboard). 
Generally, if want to prove FG = BG, we should find two congruent 
triangles. Here we got ∆EFG, and here is FG. Which triangle do we put 
GC into?

[27]  All: Into GBC, connect G and B.

Figure 14. Variation figures in Task 2

From the Episode 2, we can see that Mr. Chou employed procedural variation and 
demonstrated the construction process of the figures from Figure 14(1) to Figure 
14(4). This process was beneficial for the students to identify substructure of the 
complicated figure and reconfigure: at first, Mr. Chou connected A and E, asking his 
students to identify the shape of EBA ([20] ~ [22]), which scaffolded the students 
to recognize congruent triangles. When Mr. Chou took the midpoint G of AE ([22]), 
the students had an opportunity to mentally operate the figure and identify a basic 
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figure with the median line of hypotenuse ([23]). It again scaffolded the students to 
successfully construct a new triangle in the figure ([27]). It might be because of the 
scaffolds from Mr. Chou that the students could prove this task smoothly.

In the lesson, the teacher made the figure in Task 2 based on a transformation 
from Task 1. When he prepared the lesson, Mr. Chou intended to make the two 
tasks into variation problems. A positive influence of the former task on the second 
was not evident in the observed episode. Mr. Chou’s choice was plausible based on 
the result of the observation. A further look into the students’ cognitive obstacles 
revealed missing opportunities of potential teachable moments, and that the specific 
scaffoldings provided by Mr. Chou might be beneficial to improve the effectiveness 
of the variation instruction.

CONCLUSION AND DISCUSSION

Summary

In the case study examined in this paper, Mr. Chou adopted procedural variations in 
his lesson design and implementation. At the beginning he structured multiple basic 
shapes through transforming triangles, and then explored three basic figures formed 
by the students. Based on the analysis of the teaching episode, the students solved 
the initial problems successfully possibly because the potential distance between 
these problems and the anchoring knowledge point of the students were close (needs 
evidence to support). Despite the fact that no cognitive obstacle was revealed during 
this phase, from a theoretical perspective, this instructional method can help students 
understand basic figures deeply and make necessary scaffoldings for students to 
identify basic figures from complicated figures.

However, Task 1 became more complicated and had many sub-constructions, 
which made it difficult for the students to reconfigure. This is plausible since the 
teacher did not conduct any exploration to the basic figure, which was required 
for the students to identify in the background. The potential distance between the 
anchoring knowledge point and the task explored was too far for the students to reach 
a further discussion. In addition, the teacher failed to give the students adequate time 
to explore and only provided two scaffolds. As a result, the students did not have 
enough opportunities to tackle the task. For Task 2, although the students solved 
it successfully, the teacher provided an exceedingly large amount of scaffolds by 
asking a series of questions. As a result, the students had limited space to explore 
on their own.

Conclusion

According to the literature, the amount of scaffolds made by teachers and 
explorations carried out by students distinguishes the difference between teacher-
centered and student-centered instruction within a learning context. The more 
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scaffolds a teacher provides, the less space is left for students to explore, and vice 
versa. The teacher in this case study tried to achieve a balance between the two, 
where he provided a certain amount of scaffolds to control the distance between the 
anchoring point and the task at hand, so that the students could have a manageable 
amount of space to explore the problem. Our findings showed that the distance 
varied throughout the episode, and different amounts of scaffolds were provided 
for different tasks. The decision-making moments for the control of the distances 
and the scaffolds are the most challenging parts for teachers to conduct procedural 
variation teaching (Gu, 1994).

Discussion

There was an extra task found in Mr. Chou’s lesson plan (see Figure 15(1)), which 
was designed a year ago. Since he did not use this task in the observed lesson, we 
do not have data to elaborate on the students’ cognitive obstacles on it. The task is 
shown in Figure 14(1): AC = BC, ∠ACB = 90°, BD is the bisector of ∠ABC, prove: 
AB = BC + CD.

Figure 15. A task in the teacher’s materials with different solutions

In the lesson plan, Mr. Chou planned to ask students to solve this problem with 
different methods. This task can be solved in at least two ways. First, students can use 
folding to reconfigure the figure (as shown in Figure 14(2)), which was explored in 
the second section of the lesson. Second, as shown in figure 14(3), students can use 
the properties of Figure 8(3), which can provide necessary scaffold for the solving 
of Task 2. The change of the lesson plan may have reflected difficulties of designing 
teaching with variations.

Many factors should be considered while designing teaching with variations, 
such as the limitation of teaching time, how deep the scaffolds should be made, 
and space for students to explore. Teachers need to reflect on their teaching 
moments in practice in order to design effective variations to tasks employed in 
teaching.
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IDA AH CHEE MOK

10. TEACHING ALGEBRA THROUGH VARIATIONS

Contrast, Generalization, Fusion, and Separation 

INTRODUCTION

Recent years have witnessed an increase in research focused on studying on the 
psychological and pedagogical perspectives of Chinese learners in the mathematics 
instructions. A main driver in these studies has been the sustained interest in cracking 
the phenomenon known as the “Paradox of Chinese Learners” (see for example 
Biggs, 1996; Mok et al., 2001; Leung, 2001; Huang & Leung, 2004; Watkins & 
Biggs, 2001) that highlights the apparent contradiction between the teaching 
methods and environments in East Asian and Western school, and the fact that East 
Asian students have regularly performed better than their Western counterparts in 
comparative studies, such as the Trends in International Mathematics and Science 
Study (TIMSS, Mullis, et al., 2012) and the Programme for International Student 
Assessment (OECD, 2010, 2014). Findings of these studies have contributed to a 
more comprehensive picture of Asian classrooms. In several studies, teaching with 
variation is identified to be an important feature of the Chinese ways for promoting 
effective learning in Chinese mathematics lessons (Fan, Wong, Cai, & Li, 2015; Gu, 
Huang, & Marton, 2004; Lim, 2007; Mok, 2006). The appreciation of variation as an 
important factor for effective learning is, indeed, not a culture specific feature. With 
the assumption that meaningful learning can only be achieved via discernment of 
the critical aspects, Marton and others developed the Variation Theory of Learning 
(Marton & Booth, 1997; Marton, Runesson, & Tsui, 2003; Marton & Pang, 2013; 
Marton, 2015; Pang & Marton, 2013). The aim of this paper is to provide an 
illustration of the Chinese teaching with variation via empirical examples found in 
algebra lessons of Hong Kong and Shanghai. The analytical tools developed in the 
Variation Theory of the phenomenography approach were used in the analysis to 
capture the examples. A brief summary of the Variation Theory for learning will 
be given in the next section, followed with a summary of studies of the Chinese 
way of teaching with variation. This theory is then used to analyze selected algebra 
lessons of Hong Kong and Shanghai taken from the Learner’s Perspective Study 
(LPS) (Clarke et al., 2006).
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THE VARIATION THEORY FOR LEARNING

Variation Theory is not a theory about how learning is organized but theory 
bout how the content of learning is organized. (Pang & Marton, 2013, p. 1066)

The Variation Theory finds its root in the work of phenomenography led by 
Marton and his co-researchers (Marton & Booth, 1997). The basic assumption is 
that learning is a kind of experience in which learners develop a way of seeing or 
experiencing (Marton et al., 2004). Referring to classroom learning, learning is 
centred on objects of learning and it is very important for the learners to discern 
the critical features of the object of learning. In this theory, learning is supported 
by an awareness of the critical aspects of the object of learning, where awareness 
depends on the experience of variation. In other words, via the experience 
of different patterns of variation, the learner makes sense of the “sameness” in 
different forms of the object of learning and the differences against a background 
of sameness (Marton & Pang, 2013; Marton, 2015). It is argued that the contrast 
between the variant and the invariant helps the learner experience the object of 
learning in a certain way. This is called discernment in the theory. The idea can 
be illustrated with an example of the concept of “green” (Marton, 2015). The 
color “green” can only be comprehended if people live in a world consisting of 
green color and the non-green color, and there are two patterns of variation and 
invariants for discerning what “green” is. Namely, different green objects (e.g., 
green ball, green cube, and green prism) and objects of different color (e.g., green 
ball, red ball, and blue ball). Furthermore, even though the learner may not see all 
these at the same time, the accumulated experiences of “green” and “color” will 
help the learner see a dimension of variation. For example, in this case, color is a 
dimension of variation in relation to green, red, and blue; green is a dimension of 
variation in relation to light green or dark green. Therefore, learning is promoted 
in an environment consisting of appropriate patterns of variation. Discernment is 
essential for meaningful learning to take place. Furthermore, discernment is made 
possible when variation concerning the critical aspects or features is created either 
in the design of the content (or the tasks) of the lesson or in the interaction between 
class participants (i.e., teacher and students, students and students). According 
to Marton, Runesson, and Tsui (2003), the teacher may have a specific object of 
learning and this may be elaborated in different degrees of detail. What teachers 
try to teach is the intended object of learning, which is an object of the teacher’s 
awareness. However, what is more important is how the teacher structures the 
lessons so that it is possible for the object of learning to come to the forefront of 
the students’ awareness. The researcher’s description of the lesson from the point 
of view of a specific research interest, which describes how an object of learning 
appears in the lesson, is called the enacted object of learning. In other words, the 
enacted object of learning encompassing the content and the interaction between the 
learning tasks and the participants and between participants is depicted. Moreover, 
the enacted object of learning is compared with the intended object of learning 
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created by the teacher’s planning and the lived object of learning captured by an 
individual learner (e.g., Marton et al., 2003; Runnesson & Mok, 2005). 

Variation can be created in different ways within a lesson. What patterns of variation 
may teachers have created in their lessons to enhance learning? Some examples are 
found in empirical studies of lessons. Marton and Tsui (2004) studied classroom 
discourse in lessons for different subjects (including language, mathematics, and 
science) and identified some patterns of variations, namely, contrast, generalization, 
separation, and fusion. Mok (2009), in her study of the lessons of a competent Hong 
Kong teacher, found patterns of variation such as contrast, separation, and fusion in 
the teaching of algebra. These concepts are briefly recapitulated here (for elaborate 
discussion, see Marton & Tsui, 2004; Marton, 2015): 

Contrast. In order to experience something, a learner must experience something 
else to compare with, e.g. a comparison between what the object is and what it is not, 
such as, “three” (three balls) and “not three” (two balls, four balls). 

Generalization. In order to understand what “threeness” is, one must see the 
meaning of “three” in three apples, three monkeys, three books, etc. These experiences 
are important for enabling the learner to grasp the idea of “threeness” and separate 
the focused aspect (“three”) from the non-focused aspects (apples, monkeys, books). 
The pattern of generalization seems to be the same as that of induction but there is 
an important difference. In Marton’s theory, contrast comes before generalization 
in the path of learning. For example, learners have discerned triangle as a feature 
by contrasting triangles, squares, and circles. Then by subsequently experiencing 
triangles of different sizes, different angles, and different rotational positions, 
learners may then generalize the geometric form of a triangle across size, angle, and 
rotational position.

Fusion. After discerning parts of an object of learning, the whole has to be put 
together. Fusion refers to learners’ “putting together” the parts to constitute the whole 
through an experience of the variation of several critical aspects simultaneously. 
Fusion not only involves each case, all aspects being focused, but also deals with 
how these aspects are functionally or logically related to each other. For example, 
to learn a Chinese word with the correct sound, tone, and meaning; to recognize the 
meaning and equivalence of an equation when it is presented in apparently different 
forms, such as, 2x + 3y = 0, 2x = -3y. Referring to the path of learning, the stages 
necessarily occur in the sequence of contrast, generalization, and fusion. 

Separation. Discernment implies separation. That is, when discerning an aspect 
of an object, one must separate the aspect from the other aspects via experiences 
of patterns of variant and invariant aspects of the object. For example, one cannot 
discern coefficients and unknowns without separating the coefficients (“2”, “3”) 
from the unknowns (“x”, “y”) in the equation 2x + 3y = 0. 



IDA AH CHEE MOK

190

TEACHING WITH VARIATION: A CHINESE WAY FOR PROMOTING 
EFFECTIVE LEARNING OF MATHEMATICS

Applying variation as an effective pedagogical tool can be traced back to the 
teaching experiment led by Gu in the 1980s in Shanghai, that was reported in the 
book Learning to Teach (Gu, 1991). Variation is also a component of Gu’s model 
for structuring the lessons. Because of its positive impact on students’ learning, 
teaching with variation, also known as “Bianshi Teaching” (Bao et al., 2003; 
Wong & Chan, 2013), has been widely adopted in China (Gu et al., 2004; Wong, 
Lam, & Chan, 2013). Gu, Huang and Marton (2004) summarized the pedagogical 
theory of teaching with variation with two concepts of variation: conceptual 
variation and procedural variation. The essence of Gu’s theory of teaching with 
variation is to “illustrate the essential features by demonstrating different forms of 
visual materials and instances or highlight the essence of a concept by varying the 
nonessential features” (Gu et al., 2004, p. 315). Conceptual variation is concerned 
with understanding concepts from multiple perspectives, which can be achieved 
by varying visual and concrete instances, contrasting non-standard concept images 
figures. A kind of “procedural variation” is suggested to help students establish the 
concept progressively. For example, in writing the equation for the problem “James 
pays $D 2 for buying three erasers and the seller gives him 2 coins in change (1/10 
$D). How much is each eraser?”, three kinds of scaffolding can be introduced 
progressively: (1) representing the unknown by concrete things (e.g., 2D-♣♣♣=2C, 
presenting the question visually); (2) symbolizing the unknown (e.g., 20 – 3x = 2, a 
concrete model of the equation); (3) replacing unknown x with the symbol of a box 
“” (20 – 3=2, a game for which  represents a box for numbers). The purpose of 
the pedagogical model is to design a series of conceptual and procedural variation to 
create a system of experiences and strategies hierarchically and could be internalized 
into the cognitive structure (for details, see Gu et al., 2004, pp. 319–322).

THE USE OF VARIATION AS A CONCEPTUAL TOOL FOR  
THE ANALYSIS OF MATHEMATICS LESSONS

There are now a significant number of research studies (e.g., Huang & Leung, 2004; 
Huang, Miller, & Tzur, 2015; Mok, 2004, 2009, 2013; Runesson & Mok, 2005) that 
have used variation as a conceptual tool to analyze mathematics lessons. Collectively, 
the findings contribute instances to support the contention that variation is an important 
feature in providing effective learning for mathematics in Chinese classrooms. In 
the context of algebra, Mok’s (2006) analysis of mathematics lessons in Shanghai 
showed how variation played a role in the formation of concepts progressively while 
providing an experience for discerning the critical aspects of the relationship between 
the coefficients and the method of solving equations. Mok further argued that the 
Shanghai teacher had successfully developed a planned experience in exploring 
the intended object of learning and that the skillful use of variation brought about 
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opportunities for students to experience the important aspects of the mathematics 
in the lessons, such as the coefficients of the equations, the contrast between the 
methods, and the relationship between procedural and conceptual aspects. Huang 
and co-researchers, studying lessons in Hong Kong and Shanghai, noted different 
patterns of variation in the pedagogy, for example, procedural variation for 
investigating the cases from special to general in mathematical proofs; implicit and 
explicit variation in the items for practice (Huang & Leung, 2004; Huang, Mok, & 
Leung, 2006). Also, on the study of instructional practice for algebra, Mok (2013) 
investigated the nature of instructional coherence in a sample of four consecutive 
Shanghai mathematics 7th grade lessons on the topic of systems of linear equations 
of two unknowns. In the findings five strategies supporting instructional coherence 
were identified and one strategy was the consolidation with variation in examples 
and exercises. Huang, Miller and Tzur (2015) developed a hybrid-model analysis of 
students’ learning opportunities in Chinese classrooms that consisted of a tripartite 
theoretical lens, namely, reflection on activity-effect relationship, hypothetical 
learning trajectory, and teaching with bridging and variation. Via the lens of this 
model, the task sequence might serve the purposes of bridging, teaching intended 
ideas with variation, and elaboration with variation. 

METHODS AND SOURCE OF DATA

The data used in this chapter is taken from the Hong Kong and Shanghai data set of 
the Learner’s Perspective Study (LPS). The study recorded a sequence of at least ten 
consecutive lessons of each competent teacher in the study recommended by local 
researchers. The video recording used a three-camera setting: a teacher-camera, a 
student-camera on two focused students, and a class-camera on the whole class. The 
two focused students were invited for post-lesson interviews after each lesson and 
the teacher was interviewed three times during the data collection period. Stimulated 
recall method was employed; during the interview, the teacher chose one lesson 
video and elaborated his thinking, supporting the design and implementation of 
his lesson. The analysis of the lesson employed the learning perspectives with the 
essential elements of discernment and variation developed in the work of Marton 
and his co-authors. The main objective was to illustrate how useful patterns of 
variation may be created in algebra lessons, therefore, one Hong Kong lesson and 
one Shanghai lesson were chosen to be analyzed in detail. The lessons were chosen 
because they were potentially rich in patterns of variation and illustrative examples 
for how appropriate patterns of variation might be created. The Shanghai lesson 
took place in Qingpu, where the empirical origin of the pedagogy of variation was 
found and promoted. Therefore, the lesson could be seen as a typical application 
of the Chinese pedagogical model of variation. Unlike Shanghai, the pedagogy of 
variation was not a promoted pedagogy in the curriculum of Hong Kong; therefore, 
it was unlikely for Hong Kong teachers to use variation persistently in their design 
of lessons. The Hong Kong lesson was chosen because the teacher had reviewed the 
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lesson in his interview, and he explained explicitly that he had employed the idea of 
variation in designing this lesson. It was expected that the contrast of the two lessons 
would enrich the understanding of how patterns of variation might be created. 

RESULTS: SOME EXAMPLES IN THE ALGEBRA LESSONS OF  
HONG KONG AND SHANGHAI

The Teaching of Factorization: Examples from a Hong Kong Lesson HK1

The lesson (HK1) was a grade-8 lesson on the topic: Factorization of polynomials. 
It was the first lesson within the topic sequence and the students had already learned 
multiplication of polynomials before the lesson. To help students develop a deeper 
understanding of factorization, the teacher used seven examples (Figure 1) in 
the class. The arrangement of the content and the use of dimensions of variation 
(contrast, separation, and fusion) are explained in the analysis here.

Figure 1. The 7 examples used in the lesson (HK1) of “factorization”

Episode 1: “What is” and “What is not.” At the beginning of the lesson the teacher 
used an introductory example: 

m(a + b) = ma + mb.

In the teacher-led whole class discussion, the teacher guided students to see the 
contrast of “what is factorization” and “what is not factorization.” Taking into 
account the tradition that a mathematics statement should be read from left to right, 
that is s/he discussed the examples:

ma + mb = m(a + b) is factorization. m(a + b) = ma + mb is not factorization. 
(multiplication or expansion)

The intent of the examples was to establish that factorization involves the 
identification of the common factor of the terms and rewriting the statement in factor 
form. Hence, the introductory example provided a typical contrast between “what 
is” and “what is not.” 

Episode 2: The variant and invariant in the invariant form: common factors and 
highest common factor (HCF). To carry out factorization successfully, the students 
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need to discern the invariant form (variant)a + (variant)b, as well as the meaning 
of common factor and highest common factor in their experience of handling the 
algebraic expressions. While keeping the invariant form unchanged, the contrast 
between the examples (Q.1 to Q.3) creates an opportunity to discern the common 
factors, n in na + nb, 2 in 2a + 2b, 2n in 2na +2nb. Variation as such help students 
discern what is the common factor in the invariant form, separating the common 
factor from the variable in the expression, also generalizing the form (variant)a + 
(variant)b.

Zooming into the third example (Q.3), 2na + 2nb, the class discourse created 
another dimension of variation. The teacher drew the class’ attention to this and 
initiated the student discussion by the following conversation:

T:  Questions one and two are similar to Question three. It involves “two”, and 
it involves “n.” Is it confusing? Which one should we deal with first?

T:  (after getting three answers 2(na + nb), n(2a + 2b), 2n(a + b) from the 
class) Okay! First of all, I would like to know, these three answers, are they 
the same as the original formula?

S: The same.
T: Then are all three answers correct?
S: No.
T:  No? You said they are the same and now they are not all correct? How 

come? Discuss with your classmates and then tell me your conclusions!

The different possible common factors 2, n, and 2n create three factor forms in the 
class discourse: 

2(na + nb)
n(2a + 2b)
2n(a + b)

The episode gives an example of fusion as the students had to consider multiple 
aspects together. In addition to the variation of factors 2, n, and 2n for the expression  
2na + 2nb, the teacher intentionally recalled the students’ experience of factorization 
of the number 12 (12 = 4 × 3), hence, the meaning of factorization can be contrasted 
in the experiences between the factorization of a number and the factorization in an 
algebraic expression. The multiple instances of variation help the class to discern 
the idea of factors, highest common factor (HCF), the equivalence of different 
factor forms. The contrast between the three factor forms helps the realization of 
the “correct” answer using HCF in the process of factorization. Thus, knowing that  
2n(a + b) is viewed as the correct answer in the convention, whereas the other two 
factor forms are not, was supported through the example choice. 

Very often when an index is attached to a variable in an algebraic expression,  
the level of difficulties of the problem increases. Therefore, it is important to let 
students experience the variation of situations to develop a deeper awareness of 
implicit multiplication meaning in the embedded structure of the algebraic symbols 
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(e.g, 2na + 2n2b = 2 × n × a + 2 × n × n × b); and what should be selected as a 
factor in the process of factorization. The two questions (Q.6, 2na + 2n 2 b; Q.7, 
2na + 2n 2b 2) were embedded within a variation designed for raising awareness of 
the implicit meaning of multiplication between the symbols while also referencing 
the earlier idea of greatest common factor. 

T: How do you check your answer?
LEO: Find the value by multiplication!
T: And? What is this? What’s the relationship between them?
T:  It is correct to multiply them, but it may not be the complete factorization. 

So, the relationship between this and the two terms must be?
S: Common factor.
T:  What kind of common factor is it? One more word, what common 

factor?
S: The highest!
T: Bingo! The biggest common factor or the highest common factor! 

To summarize, the teacher selected examples that provided the opportunity for 
the teacher to use multiple forms of variation—contrast, generalization, separation, 
and fusion—all of which served to help students discern variation at three levels 
while carrying out factorization: 

• “what is factorization” and “what is not factorization”,
• the different factors and the greatest common factor,
• the identification of factors and the embedded multiplication in the algebraic 

expressions.

The Teaching of “a System of Equation”: Examples from a  
Shanghai Lesson (SH1)

The lesson was a Grade-7 lesson on the topic, the meaning of a system of equations 
and its solution. The overall objectives of the lesson included: (1) the concept of a 
system of linear equations, (2) the concept of the solution(s) of a system of linear 
equations, and (3) the tabular method for solving a system of linear equations. This 
topic, in contrast to the aforementioned lesson of factorization, covered relatively 
much more content of mathematics examples and problems. Lessons with dense 
content are common within Chinese mathematics classrooms; however, the analysis 
here does not aim to compare the amount of content between lessons in different 
lessons, as mathematics is a subject rich in structure and relationship, and concept 
building relies a lot on scaffolding upon earlier concepts. Episodes in this lesson are 
chosen to illustrate how variation can be used to create a scaffolding path through 
different stages of the lesson. The beginning of the lesson was arranged through a set 
of 5 review tasks concerning the concept of a linear equation and the solution for a 
linear equation (Figure 2).
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Task Questions/ Description Analysis

1 Identify whether the equations are in linear 
equations in two unknowns

“What is a linear equation” 
and “What is not a linear 
equation”

2 Q: How many solutions for 2x + y =10? Many solutions

3 Given x + 3y = –4, when x = 2, then y = ? Finding a specific solution 
when x value is given. 
Applying the property of a 
solution.

4 If x = –4, y = –5 is one of the solutions of  
2x + ay = 7, then a = ?

Finding the unknown 
coefficient when a solution 
is given. Applying the 
property of a solution. 

5 What is/are the solution(s) for 2x + y = 10? 
What is/are the solution(s) for x + 3y = –4?

a.    b. 

c.   d. 

“What is a solution” and 
“What is not a solution”?

Figure 2. The five tasks for reviewing the concept of a linear  
equation and the solution of an equation

Analysis shows that in the review questions the following variations were 
utilized:

• “What is a linear equation” and “What is not” (Task 1)
• The multiple applications of the concept of solution (Tasks 3, 4, and 5): finding 

solutions when a linear equation is given; finding coefficients when a solution 
is given; testing a solution when equation is given, and which the meaning of 
solution remains invariant (the given values of x and y satisfy the equation)

For Task 1, the students were required to provide reasons to support their 
decision between “what is a linear equation” and “what is not.” The conversation 
showed that they were expected to make a decision based on the critical aspect 
of “the index of the unknown.” The task itself did not give any contrast between 
“what is” and “what is not” because both equations did not belong to the category 
of “linear equation.” However, the style of questions suggested that the students 
were expected to be familiar with applying the skill of contrast to tell between 
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“what is” and “what is not.” In the class discourse, the student, Andrew, stated his 
reason for saying that the equation was not an equation. He said, “Both of them 
are not. It is because the index of the unknown is two.” Obviously, the student was 
able to discern the unknown and the index of the unknown as the critical features 
for deciding whether the equation was linear or not. Therefore, while the question 
tag is asking for contrast, apparently, the given equations provided an experience 
of fusion of what the students had learned about linear equations, unknowns, and 
index of unknowns in earlier lessons. 

For Tasks 3, 4 and 5 the students needed to apply the concept of “solution” to 
answer the questions. That is, putting the solution into the equation to test whether it 
satisfied the equation or not. There is a progressive variation between the questions 
to help the students develop an understanding of the concept of the solution:

• For Task 3, the equation, x + 3y = –4, when given a value of x, (a part of the 
solution), they put the value of x into the equation to find the other part, the value 
of y. 

• For Task 4, the equation, 2x + ay = 7, when given a solution (x = –4, y = –5), they 
put the solution into the equation and creating another equation for the letter a, 
then solved for a. In the process, the role of “a” changes from coefficient of y 
in  2x + ay = 7 to the unknown variable in the new equation 2 (–4) + a (–5) = 7. 
In addition to a variation between the results of applying the concept of solution 
between Task 3 and Task 4, there is a change of roles of “a” in different equations. 
The variation of the role of “a” creates a separate focus for the coefficient “a” 
from the rest of the equation. 

• For Task 5, the students may apply the concept by putting the given pair of x and 
y into the equation to decide whether the given pair is the solution or not. This 
provided an alternative way to apply the concept of solution for testing cases by 
discerning the variation between “what is” and “what is not.”

To summarize, for the solution of a linear equation, the students might be 
expected to be familiar with the following dimensions of variation:

• “What is a solution” and “what is not” (Task 5),
• Change of the role of a letter symbol between equations while applying the 

concept of solution (Task 4), 
• Applying the concept of solution in different problem situations (Tasks 3, 4  

and 5). 

Making these variations explicit in the beginning segment of the lesson created 
important ground work (pudian) for scaffolding in the later development for the 
learning of the concept of solution for a system of equations. 



TEACHING ALGEBRA THROUGH VARIATIONS

197

Episode 3: A Variation among the Text of the Concept, the Discourse,  
and Action of Applying the Concept

Task 6 In a group of 2 students, read the textbook about the system of linear equations in 
two unknowns and discuss the three questions (6a to 6c) after reading the textbook.

6a Q1. What is “a system of equations”?
6b Q2.  How can you identify whether a system of equations is a system of linear 

equations in two unknowns?
6c Q3.  To identify whether the given is a system of linear equations in two unknowns. 

(Example given by teacher on the blackboard)

Figure 3. Task 6 for the concept of a system of linear equations of two unknowns

The concept of a system of linear equations in two unknowns was taught via 
Task 6 (Figure 3). The task required students to read the definition in the textbook 
and discuss the three questions (6a, 6b, and 6c). The definition in the textbook is 
translated below:

Several equations forming a system is called a system of equations. If the 
system of equations contains two unknowns and the indices of the unknowns 
are all one, then the system of equations is called a system of linear equations 
of two unknowns. (From the textbook, author’s translation) 

The analysis of the transcript of the episode is given in Figure 4. The class 
discourse contained three questions. The first two questions were based on the text 
definition: “What is a system of equations?” (6a); “How can you determine whether 
a system of equations is a system of linear equations in two unknowns?” or not (6b), 
while the two questions also serve the purpose of preparing the students to apply the 
concept to identify cases of a system of linear equations of two unknowns in (6c). At 
a superficial level, the questions (6a) and (6b) might appear to be aiming to check 
the students’ comprehension of the text. However, the what-question is a recall 
question, whereas the teacher used the how-question to help students be aware of the 
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Transcript Remarks
Angel:  A system of equations is formed by a number 

of equations.
T: Oh, what did she say?
Angel: Formed by a number of equations.
T:  Oh, formed... by a number of equations.

[teacher writing on the blackboard]
Angel: Formed one pair of equations.
T: What is formed?
Angel: A pair of equations.
T: A pair of equations.
Angel: Called a system of equations.

(6a) 

•  What is a system of 
equations?

•  Comprehension of the concept 
via the text. 

•  Angel’s answer is the same as 
the text book. (Recall, what is)

•  The teacher’s questions drew 
focus onto the phrase “a 
number of equations”.

T:  What is the answer of the second question? … 
anyone? That means how to identify? Aaron.

Aaron:  There are two unknowns in the equation and 
the indexes of the unknowns are one. This 
is called system of linear equations in two 
unknowns.

…

T:  Then, what have you to consider first when I 
ask you to identify whether they are system 
of linear equations in two unknowns? Bern.

Bern: It should have two unknowns.
T: It should have two unknowns.
Bern: The indexes of the unknowns should be one.
T:  The indexes of the unknowns … should be 

one. Sit down please.

T:  Can anyone make supplement on it? The 
index of each unknown is one. Okay, please 
talk about it.

Bandson:  And each term should be in a whole 
expression. 

T:  And each term should be in a whole 
expression. Then each term… the index of 
the equation is … one. 

T:  If the index is one, then it should be … in 
whole expression already. 

T:  Ar … this should be … Bunney please talk 
about it.

Bunney:  The indexes of the unknowns.
T:  Ar, the indexes of the unknowns… they are 

… one. 

(6b) 

•  How to identify whether 
a system of equations is a 
system of linear equations in 
two unknowns.

•  Comprehension of the concept 
via the text. 

•  Aaron gave a definition 
(Recall, what is)

•  The teacher refrained from 
drawing conclusion and 
invited more students joined 
the conversation: The teacher 
continued to ask question, 
“What have you to consider 
first when I ask you to 
identify…” (Talking about 
action, talking about how to) – 
separation of the criteria from 
the text definition.

•  Expansion of the shared 
space: More students joined 
the conversation. Bern named 
two criteria, “2 unknowns”, 
“the indexes of the unknowns 
should be one”; Bandson 
mentioned the criterion of 
“whole expression”; Bunney 
mentioned the indexes of 
unknowns

Figure 4. The analysis of the class discourse for questions (6a) and (6b)
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T:  Okay, these two points, oh, then, let us 
take a look at the following questions 
with these two points. 

T:  Ar … please take a look, come on, the 
first sub-question. Ok, please say.

S:  The first one is linear equation in two 
unknowns.

T:  The first one is linear equation in two 
unknowns. Ok, please sit down. Then, 
students, please look here.

T:  The first problem, x and y … there is two 
unknowns and the indexes are one.

E: The index is one.
T:  The index is one. The second equation, 

x minus y equals one, the indexes of the 
two unknowns x and y are one. Yes, it 
is a system of linear equations in two 
unknowns. 

T:  Then, let us look at the second question. 
Come on, you please.

Buss: They are not.
T:  Oh, he said not. Why not?
Buss:  Because in the equation, the index of the 

term is two.
T:  Oh, please look at this, x plus y bracket 

square what is the expanded form?
E: (…) square root.
T:  Yep, the expanded form is x square plus 

two x y plus y square. You see, what is 
the index of the unknown x?

E: Two.
T: Good, what about the term xy?
E: Two.
T: Two. What about y? This is also two.
E: Two.
T:  So, we can say although the two 

unknowns, x minus y, is with the index of 
one.

T:  We can’t say the second equation is a 
linear equation when there are something 
on the upper side ... okay, then please 
look at the third question...oh, Bern 
please.

(6c)

•  Action: applying the concept to 
differentiate different cases of 
“what is” and “what is not”.

•  Contrast, separation and fusion
•  Case 1, + y = 3, x – y = 1: A case 

of “what is”, the teacher made 
sure that the class observed the 
two criteria.

•  Case 2, (x + y)2 = 1, x – y = 0: 
A case of “what is not”, the 
teacher made sure that the class 
expanded the perfect square and 
saw the indexes were two. 

•  Via the experiencing of different 
equations with different 
unknowns and different indexes, 
the students were given a chance 
to generalize the form of a 
system of linear equations across 
the variation of coefficients, 
indexes and unknowns.

Figure 5. The students attending to the critical aspects of unknowns and  
indexes while deciding between what-is and what-is-not cases
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two critical aspects—that there are two unknowns and the index of the unknowns 
should be one. Importantly, the action of asking the two questions simultaneously 
with reference to the same piece of text in the textbook served to create a what-how 
dimension of variation for understanding the text. 

We see below that the students had no difficulty in answering the what-question 
by recalling the definition from the textbook. The how-question (6b) and the way 
the teacher delayed making the summary which encouraged other students to join 
the conversation, supported the students to focus on the two criteria (the number 
of unknowns and the indexes of the unknowns). In other words, a separation of 
the criteria from the text definition. Furthermore, the shared space was expanded 
as more students (Bandson and Bunney) joined in the conversation contributing to 
what they saw as the key features (unknowns and the degree of the unknowns).

When the students tried to apply the concept to determine whether the given 
systems of equations were systems of linear equations of two unknowns or not 
(question 6c), the dimension of what-how was further extended to carrying out 
procedurally the contrast between “what is” and “what is not” (see Figure 5). The 
various examples in question 6c provided rich opportunities for students to attend to 
aspects such as the unknowns and the indexes and bring them together to determine 
whether the given was a system of linear equations in two unknowns or not. 
Therefore, contrast, generalization, separation, and fusion were enacted. 

In working with Task 6, the students were provided with opportunities for 
experiencing the concept at three levels: the level of text, the level of discourse 
for talking about the concept, and the level of action for applying the concept (see 
Figure 6). This progressive variation is noteworthy as it explains the interaction 
between teacher-student-text in the enacted space of learning and it also delineates 
the variation of the concept from the text of definition in the textbook, to discourse 

Figure 6. Experiencing the concept through the text-discourse  
variation and the discourse-action variation in Task 6
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about the text, and actions of applying the concept to problems, then to the actual 
action of applying the concepts to solve a mathematics problem. Importantly, this 
arrangement of learning to help students develop their understanding through the 
text-discourse-action level is not by chance; rather it is a pedagogical strategy that 
the teacher tried to repeat skillfully. Immediately after this episode, the teacher 
applied the same instructional approach to teach the concept of solution for a system 
of equations (see Task 7 in Figure 7). In a similar way, the design of Task 7 provided 
a platform the students to experience the text-discourse-action variation for the 
meaning of “solution.” 

Task 7 In a group of 2 students, read the textbook and discuss the three questions 
(7a to 7c) after reading the book.

7a

7b 

7c

Q1. What does “solution” mean in a system of equations? 

Q2. Why  is the solution of 

Q3.  Is the solution(s) of equation 5x – 3y = 3 must be the solution of

 And vice versa?

Figure 7. Task 7 providing a platform for the text-discourse-action  
variation for experiencing the meaning of “solution”

Two Kinds of Content Scaffolding in the SH Lesson

In addition to the contrast-generalization-fusion-separation patterns of variation, the 
instructional approach depicted in the lesson utilized two kinds of content scaffolding 
(Figure 8). 

• The first kind is the scaffolding occurred via the experience of similar patterns of 
variation in instructional approach of different contents. A mathematical object 
may often be presented in the what-how variation, answering the questions: what 
is it and how to use it? Whether it is a concept or a skill, it will have different 
forms of representations. In the consistent pedagogical arrangement in this lesson, 
the teacher guided a text-discourse-action variation from reading the definition in 
text, to a discussion of the concept in class, then to the action of applying the 
concept to demonstrate their discernment in a problem-solving context.

• The second kind is the scaffolding of knowledge according to the intrinsic 
hierarchy of mathematics topics, from linear equations, to a system of equations, 
then to a solution of a system of equations. There are different levels of embedding 
according to the hierarchical nature of the mathematics contents, i.e., “linear 
equations” is embedded in “system of equations”; “linear equations” and “system 
of equations” are embedded in “solutions of a system of equations.” Embedding 
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in the different mathematical objects, linear equations and systems of linear 
equations are generalizations of the form of equations; and between the two kinds 
of systems of equations (a single equation and a system of equations), the concept 
of solution can be generalized. In addition, to discern the meaning of solution, the 
learner has to separate the meaning of solution in experiencing fusion of different 
features of the equation systems; and through the experience of the meaning 
solution of two kinds of systems (a single linear equation and a system of linear 
equations), the meaning of solution for an equation can be generalized. It is in 
the evolution of the second kind that students were empowered with a growing 
experience of the patterns of contrast, generalization, separation, and fusion.

Figure 8. Two kind of scaffolding: A hierarchical arrangement  
of topics & text-discourse-action

DISCUSSION

What counts as an effective teaching strategy? Answers to this question depend 
very much on assumptions for meaningful learning based on psychological and 
epistemological grounds. 

Variation Theory of Learning from a pedagogical perspective suggests a 
relationship between learning and the conditions of learning (Marton, 2015; Pang & 
Marton, 2013). Meaningful learning only happens when a learner discerns the 
critical aspects of the object of learning. For example, the common factors and 
greatest common factor in factorizing an algebraic expression, and the realization 
of the meaning of the greatest common factor can only happen after the learner has 
experienced cases with more than one common factor. 

The learning of mathematics often involves the learning of a concept, which may 
appear as various forms in the process of learning. The learning of a concept to a 
certain extent is to experience the what-is question or to go through an experience 
of seeking an answer for the what-is question. For the example of “a system of 
linear equations in two unknowns”, the students’ experience of what-is in this study 
involved an experience going from the text form of the definition of the concept, to 
a shared space created in the class discourse for answering the what-is question, then 
to an action of applying the concept to solving mathematical problems. In this lesson, 
the experience involving the contrast between the what-is and what-is-not cases 
was supported through the creation of dimensions of variations. Specifically, the 
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variation provided opportunities for learners to contrast between what-is and what-
is-not, to separate the critical aspects from the non-critical, and to fuse (discerning 
different aspects and putting them together in a given context). The delineation 
depicted in dimensions of variation can be called the enacted space of learning. The 
enacted space is a dynamic one and there are no definite patterns of variation for 
the conditions for learning, and the arrangement of the learning contents may vary 
according to the teacher and the learners. The examples show a possible pattern of 
replicable pedagogical strategies employed by the teacher that helped the learners to 
experience an arrangement of the learning content scaffolding on the hierarchy of the 
intrinsic mathematical structure (from “linear equation”, to “a system of equations”, 
then to “the solution for a system of equations”), and a text-discourse-action pattern 
of variation in the process of learning. 

A research framework of multiple perspectives enhances the understanding of 
the pedagogical approach. For example, in the work of Huang, Barlow, and Prince 
(2016), the hybrid framework of variation and task design made the comparison of 
lessons between two cultural systems possible. In this paper, the two lessons were 
from two different systems with very similar features such as large class size, a 
directive teaching tradition, examination-orientation, and competitiveness. However, 
any analytical framework may also delimit what the researchers can see through the 
theoretical lens provided. The two lessons depict two learning spaces of very different 
complexities. The contrast brings in the epistemological realm, showing the possibility 
of content scaffolding in the instructional approach in addition to the experience of 
the patterns of contrast, generalization, fusion, and separation. Although the patterns 
of variation appear to be of a finite number, the learning space experienced by the 
learners is by no means static. It is bound to be dynamic and develop into complexity 
as the learners are brought through a journey in the enacted space of learning.

ACKNOWLEDGEMENT

The project is funded by General Research Fund, Research Grants Council, Hong 
Kong SAR, China.

REFERENCES

Bao, J., Huang, R., Yi, L., & Gu, L. (2003). Study in bianshi teaching [in Chinese]. Mathematics Teaching 
[Shxue Jiaoxue], 1, 11–12.

Biggs, J. B. (1996). Western misperceptions of the Confucian-heritage learning culture. In D. Watkins & 
J. Biggs (Eds.), The Chinese learner: Cultural, psychological and contextual influences (pp. 69–84). 
Hong Kong: CERC and ACER.

Experimenting Group of Teaching Reform in maths in Qingpu County, Shanghai. (1991). Xuehui Jiaoxue 
[Learning to Teach]. Beijing, China: People Education Publishers. (In Chinese)

Fan, L., Miao, Z., & Mok, I. A. C. (2015). How Chinese teachers teach mathematics and pursue 
professional development: Perspectives from contemporary international research. In L. Fan, 
N. Y. Wong, F. Cai, & S. Li (Eds.), How Chinese teach mathematics: Perspectives from insiders  
(pp. 43–70). Singapore: World Scientific.



IDA AH CHEE MOK

204

Gu, L., Huang, R., & Marton, F. (2004). Teaching with variation: A Chinese way of promoting effective 
mathematics learning. In L. Fan, N. Y. Wong, J. Cai, & S. Li (Eds.), How Chinese learn mathematics: 
Perspectives from insiders (pp. 309–347). Singapore: World Scientific.

Huang, R., & Leung, F. K. S. (2004). Cracking the paradox of Chinese learners: Looking into mathematics 
classrooms in Hong Kong and Shanghai. In L. Fan, N-Y. Wong, J. Cai, & S. Li (Eds.), How Chinese 
learn mathematics (pp. 348–381). Singapore: World Scientific.

Huang, R., Mok, I. A. C., & Leung, F. K. S. (2006) Repetition or variation – “Practice” in the mathematics 
classrooms in China. In D. Clarke, C. Keitel, & Y. Shimizu (Eds.), Mathematics classrooms in 12 
countries: The insiders’ perspective. Rotterdam, The Netherland: Sense Publishers B.V.

Huang, R., Miller, L. D., & Tzur, R. (2015). Mathematics teaching in a Chinese classroom: A hybrid-model 
analysis of opportunities for students’ learning. In L. Fan, N. Y. Wong, F. Cai, & S. Li (Eds.), How 
Chinese teach mathematics: Perspectives from insiders (pp. 73–110). Singapore: World Scientific.

Huang, R., Barlow, A. T., & Prince, K. (2016). The same tasks, different learning opportunities: An 
analysis of two exemplary lessons in China and the US from a perspective of variation. The Journal 
of Mathematical Behavior, 41, 141–158.

Ki, W. W., & Maton, F. (2003, August 26–30). Learning Cantonese tones. In EARLI 2003 Conference 
(European Association of Research in Learning and Instruction). Padova, Italy.

Leung, F. K. S. (2001). In search of an East Asian identity in mathematics education. Educational 
Studies in Mathematics, 47, 35–51.

Lim, C. S. (2007). Characteristics of mathematics teaching in Shanghai, China: Throughout the lens of a 
Malaysian. Mathematics Education Research Journal, 19(1), 77–89.

Marton, F. (2014). Necessary conditions of learning. New York, NY: Routledge.
Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum.
Marton, F., & Pang, M. F. (2013). Meanings are acquired from experiencing differences against a 

background of sameness, rather than from experiencing sameness against a background of difference: 
Putting a conjecture to the test by embedding it in a pedagogical tool. Frontline Learning Research, 
1(1), 24–41.

Marton, F., Runesson, U., & Tsui, A. B. M. (2003). The space of learning. In F. Marton, A. B. M. Tsui,  
P. Chik, P. Y. Ko, M. L. Lo, I. A. C. Mok, D. Ng, M. F. Pang, et al., (Eds.), Classroom discourse and 
the space of learning (pp. 3–40). Mahwah, NJ: Lawrence Erlbaum.

Marton, F., & Tsui, A. B. M. (Eds.). (2004). Classroom discourse and the space of learning. Mahwah, 
NJ: Lawrence Erlbaum.

Marton, F., Tse, S. K., & Cheung, W. M. (Eds.). (2010). On the learning of Chinese. Rotterdam, The 
Netherlands: Sense Publishers. 

Mok, I. A. C. (2006). Shedding light on the East Asian learner paradox: Reconstructing student-
centredness in a Shanghai classroom. Asia Pacific Journal of Education, 26(2), 131–142.

Mok, I. A. C. (2009). In search of an exemplary mathematics lesson in Hong Kong: An algebra lesson on 
factorization of polynomials. ZDM Mathematics Education, 41, 319–332. 

Mok, I. A. C. (2013). Five strategies for coherence: Lessons from a Shanghai teacher. In Y. Li & 
R. Huang (Eds.), How Chinese teach mathematics and improve teaching (pp. 120–133). New York, 
NY: Routledge, Taylor and Francis Group.

Mullis, I. V., Martin, M. O., Foy, P., & Arora, A. (2012). TIMSS 2011 international results in mathematics. 
International Association for the Evaluation of Educational Achievement, Herengracht, Amsterdam, 
The Netherlands.

OECD. (2010). PISA 2009 results: What students know and can do: Student performance in reading, 
mathematics and science (Vol. I). Paris: OECD Publishing.

OECD. (2014). PISA 2012 results in focus: What 15-year-olds know and what they can do with what they 
know. Paris: OECD Publishing

Pang, M. F., & Marton, F. (2013). Interaction between the learners’ initial grasp of the object of learning 
and the learning resource afforded. Instructional Science, 41, 1065–1082.



TEACHING ALGEBRA THROUGH VARIATIONS

205

Runesson, U., & Mok, I. A. C. (2005). The teaching of fractions: A comparative study of a Swedish and a 
Hong Kong classroom. Nordic Studies in Mathematics Education, 10(2), 1–15.

Watkins, D. A., & Biggs, J. B. (Eds.). (2001). Teaching the Chinese learner. Hong Kong: Comparative 
Education Research Centre, The University of Hong Kong. 

Ida Ah Chee Mok
Faculty of Education
University of Hong Kong
Hong Kong SAR, China 



PART III

THE PEDAGOGICAL PERSPECTIVE OF 
VARIATIONS AS A PRINCIPLE FOR CURRICULUM 
DEVELOPMENT AND TEACHER PROFESSIONAL 

DEVELOPMENT IN CHINA



R. Huang & Y. Li (Eds.), Teaching and Learning Mathematics through Variation, 209–212. 
© 2017 Sense Publishers. All rights reserved.

KONRAD KRAINER

INTRODUCTION

“The Lesson Plan Is Only the Teacher’s Hypothesis of Students’ Learning”

Chinese students’ good performance in mathematics PISA 2012 (Programme for 
International Student Assessment [OECD], 2013) is a phenomenon that attracted 
increasing interest world-wide. The reasons for these good results are manifold and 
complex. Among others, they include sociocultural aspects (high societal importance 
dedicated to performance and effort, to collective thinking and enactment; high 
respect of mathematics), teacher education and recruitment (demanding selection, 
mathematics taught by mathematics teachers only), number of mathematics lessons 
taught at schools (higher than on PISA average), long tradition of bottom-up teacher 
movement aiming at self-determined quality assurance of teaching (teacher research 
groups, e.g. focusing on joint lesson planning), and sincere efforts to combine 
theoretical and practical dimensions of teaching (increasingly taking into account 
western theories and co-developing new theories like variation theory).

    Two of the three following chapters directly refer to the good results regarding 
PISA. In one case, the authors stress that the consistent use of variation problems in 
textbooks and in classroom instruction provides strong support for students’ learning 
that may provide further explanation of Chinese students’ excellent performance. 
A second team of authors highlights that the success of pupils from Shanghai 
(ranked on first place in PISA 2012) made it important to understand how teacher 
learning takes place in Shanghai. All three chapters provide insightful cases showing 
how teaching and learning through variations can be used and implemented, with a 
particular focus on teacher professional development and curriculum development. 
In the following, all three chapters are described shortly, in each case supplemented 
by some reflections from a western mathematics education perspective. 

The chapter by Zhang, Wang, Huang and Kimmins deals with the question how 
notions of variation pedagogy are adopted in mathematics textbooks in China. The 
authors stress that there are only sporadic studies on how variation tasks are used 
in Chinese textbooks. However, these few studies indicate that textbooks introduce 
new concepts and deepening understanding of concepts through use of variation 
tasks. In the chapter, six mathematics textbooks for grades 7, 8 and 9 are selected 
to identify the major characteristics of use of variation tasks. The authors sketch 
interesting examples, focusing on four features of use of variation tasks (building 
on Zhang, 2011): the use for learning of mathematical concepts (both conceptual 
and procedural), for discovering and understanding mathematical principals, for 
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developing mathematical skills, and for developing mathematics thinking methods. 
From a western perspective, the positive connotation of textbooks (their importance 
in practice, their exemplary stance) are surprising, since in many western countries 
the impact of textbooks for teaching practice is not estimated that high and textbooks 
are analysed rather critically, highlighting both strengths and (and more often) 
weaknesses. In western countries, many textbooks are regarded as needy of theory, 
whereas the chapter here gives the impression of a good balance between (variation) 
theory and practice in the selected Chinese textbooks. The chapter gives a good 
insight into the (ideal) use of Chinese mathematics textbooks, the authors themselves 
stress the need for providing a comprehensive picture about the use of variation tasks 
in textbooks (going beyond the selected cases). Similar to most western countries is 
the high importance given to teachers (and their challenge to stimulate active student 
participation) and to tasks as a core means of planning mathematics teaching. 

The chapter by Ding, Jones and Sikko analyses how an expert teacher supports 
the professional learning of a junior teacher focusing on mathematics teaching with 
variation and the interaction between the two teachers. The study uses teacher’s 
teaching diary, reflection notes, lesson plans, video transcripts of interactions in the 
school-based teaching research group meetings, the textbook, and transcripts of a 
video-taped lesson. The Interconnected Model by Clarke and Hollingsworth (2002) 
and the Keli Model by Gu and Wang (2003) are used as a tool for categorizing the 
data and explaining the results. The chapter works out that the expert teacher guided 
the junior teacher in two sophisticated ways, namely through the use of teaching 
notions, and the use of teaching frameworks and language (that teachers commonly 
understand and practice in the country). The authors give a good insight into a junior 
mathematics teacher’s reflections on her teaching and her learning for teaching 
with variation. From a western perspective, the use of a wide-spread and generally 
accepted teaching strategy is unique. The fact that teaching with variation has long 
been widely accepted by mathematics teachers in China defines a context, so far not 
(well) known in many western countries. One major advantage is the development of 
a common language which makes it easier to (jointly) plan teaching and to reflect on 
it. For many western countries, the direct guiding of the junior teacher by the expert 
teacher (e.g., stating “you did not really understand what should be done in each of 
the stages”) is surprising. On the one hand, the clear way of communicating could be 
seen as a consequent guidance; on the other hand, when the expert teacher regards 
the students as self-determined learners, why not also (and even more justified) the 
junior teacher (helping her to realize critical issues herself)? However, this seems 
to be a cultural issue (in many western countries, teachers would not easily accept 
strong criticism by other teachers; surely, expert teachers might have a specific 
status in the Chinese teaching profession). The authors conclude that teachers’ 
growth is not straightforward and continuous, in contrast, it is rather discrete and 
discontinuous. This is surely a shared view between eastern and western teachers 
and teacher educators.
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The chapter by Han, Gong and Huang reports about a designed lesson study 
that integrates the concepts of learning trajectory (e.g. Simon, 1995) and teaching 
and learning through variations. The four participant teachers in the study were 
(voluntarily) engaged in the lesson study activity to design six lessons on the topic of 
division with fractions. They were supported by university mathematics education 
experts and district teaching specialists. The major data sources used in this study 
were students’ post-lesson test, videotaped lessons and student interviews. The focus 
of the chapter is on the research lessons taught by one (experienced) teacher and the 
related teaching research activities. This teacher gradually shifted her instruction 
from teacher-dominated instruction to an instruction dominated by students’ 
exploration and investigation, accompanied by several changes in the learning of her 
students. For many western countries, the clear statement that one approach (here, 
lesson study, see e.g., Huang & Shimizu, 2016) “makes schools become places 
where teachers, not just students learn” would be rather an innovation. Apart from 
some exceptions, such a long tradition of bottom-up teacher movement aiming at 
self-determined quality, is not developed in western countries like here in China 
(or going back even longer, in Japan). In particular, the wide-spread formation of 
teaching research groups is unique. This is apparently an outcome of a collectivist 
view on culture, education and society, whereas in many western countries teachers 
(and other citizens) are more regarded as individuals and the challenge is to foster 
joint action and reflection among teachers and to establish wide-spread collaborations 
between teachers and researchers.

One joint feature of all three chapters is the strong role given to teachers. They 
are regarded as practitioners and as experts (in teaching and students’ learning) who 
investigate their own teaching in order to improve their own teaching (and that of 
their lesson study colleagues), and to contribute to the generation of professional 
knowledge (to be used by teachers but also by the scientific community). This means 
that teachers are regarded as key stakeholders not only for mathematics teaching, 
but also for mathematics education research (e.g., Krainer, 2011; Kieran, Krainer, & 
Shaughnessy, 2013). Regarding teachers as key stakeholders for mathematics 
education research implies taking the students as learners as the main focus. This 
cannot be better said then by teacher Yiji in the chapter by Ding, Jones and Sikko: 
“The lesson plan is only the teacher’s hypothesis of students’ learning.”
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11. STRATEGIES FOR USING VARIATION  
TASKS IN SELECTED MATHEMATICS  

TEXTBOOKS IN CHINA

INTRODUCTION

In China, mathematics textbooks based on unified national “mathematics curriculum 
standards” (MOE, 2011) are major and core resources for teachers’ teaching and 
students’ learning. Mathematics textbooks in China generally emphasize the 
following aspects: making use of learning situations for which students are familiar; 
arranging mathematical tasks with variations step by step; guiding students to 
explore mathematics activities progressively; making contrast, analogy, induction, 
and generalization with varying learning situations to discover similarities and 
differences of learning objects and derive the mathematical essence of concrete 
instances; and finally developing profound understandings of mathematical 
knowledge. Through applying learned knowledge to a variety of contexts, students 
are expected to develop adaptive and flexible abilities in problem solving. Selection 
and arrangement of various mathematical tasks is one of the major considerations 
when compiling mathematics textbooks (Editorial Committee, 2005).

The structure and arrangement of mathematics content in textbooks are 
determined based on a coherent development of the material logically and on the 
development of student cognition and mathematics learning. The characteristics 
of textbooks have great impact on teachers’ design of teaching, because textbooks 
in China are treated as mandatory documents that contain all essential knowledge 
students need to learn (Park & Leung, 2006). Each mathematics object in textbooks 
is presented according to the following rule: introducing learning contexts, defining 
concepts, deriving properties, building connections, and making applications. This 
sequence aims to illustrate the necessity of (1) introducing a new concept and 
abstracting the common features of the mathematics object from numerical and 
graphical perspectives, (2) defining the concepts explicating the mathematics object, 
(3) acquiring the properties of mathematics objects through exploring the relationships 
between different mathematical objects, (4) developing mathematics knowledge 
systems through building connections between relevant types of knowledge, and 
(5) deepening understanding of new knowledge through applying knowledge to 
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solving mathematical and contextual problems (Zhang, 2014). This arrangement 
acknowledges the unity of mathematics knowledge structure and student cognitive 
development, the unity of learning mathematics knowledge and development 
of mathematical capacities, and formation of a systemic and developmental 
mathematical knowledge structure (Ding, 1992; Editorial Committee, 2005). To 
achieve this goal, one of the core tasks is to select and arrange mathematically rich 
tasks for exploring and developing relevant mathematical objects. The variation 
pedagogy that has been widely practiced in mathematics classrooms over decades 
(Gu, Huang, & Marton, 2004) has a great implication for selection and arrangement 
of learning tasks/activities (Zhang, 2011).

Induction and deduction are two complementary inquiry methods typically used 
to explore mathematics objects. On one hand mathematical objects are developed 
through the following inductive process: based on experiment and analysis of 
concrete instances, mathematical essence is induced; mathematics concepts are 
defined; and mathematics conjectures are made. On the other hand, through deductive 
reasoning, conjectures and mathematics propositions are proven or disproven, new 
mathematical discoveries justified or refuted, the connections and consistency of 
various concepts built, and finally, a coherent system of different mathematics 
objects developed (Xiang, 2015). Thus, student learning of mathematics knowledge 
generally goes through the following process: analysis of concrete instance, 
recognition of individual rules, abstraction of general principles, and formation 
of thinking and conception (Zhang, 2015). In mathematical textbooks, content is 
arranged to provide students with the experience of such a learning process. The 
selection and use of varying learning tasks is aimed to promote students’ exploration 
and understanding of mathematics objects, and develop their capacities in flexible 
application of knowledge. Variation pedagogy that focuses on providing deliberate 
mathematical task selection and implementation in classroom instruction (Gu et al., 
2014) has direct implications for compiling textbooks.

Thus, it is necessary to consider appropriate use of varying learning tasks/activities 
in textbooks regarding structure of mathematics knowledge and arrangement 
of mathematics content from a perspective of variation pedagogy. This chapter 
examines the methods of using varying learning tasks in a series of middle school 
mathematics textbooks published by People’s Education Press (2012a, b; 2013a, b; 
2014a, b).

THEORETICAL CONSIDERATIONS

This section includes four parts. First, literature on teaching mathematics through 
variations and the use of variation tasks in mathematics textbooks is briefly reviewed. 
Then, a brief historical review on the use of variation tasks in textbook development 
is provided. After that, a framework for categorizing mathematical knowledge is 
described. Finally, a framework for analyzing textbooks utilized in this study is 
presented.
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Teaching through Variation: A Long-standing Tradition

Teaching through variation is an important teaching principle for developing 
students’ understanding of concepts, and is described as follows:

To illustrate essential features of a concept by demonstrating various visual 
materials and instances, or to highlight essential characteristics of a concept by 
varying non-essential features. The goal of using variation is to help students 
understand the essential features of a concept by differentiating them from non-
essential features and further develop a scientific concept. (Gu, 1999, p. 186)

There has been a long tradition of implementing teaching through variation in 
mathematics education. In 1950s, some researchers explored how using multiple 
variations helps students distinguish the essential and nonessential features of a 
concept (Zhou, 1959). From a psychological perspective, Lu (1961) further examined 
the impact of experimental teaching of using “standard figures” and “varying figures” 
on student learning and found a positive role of using varying figures in geometry, 
namely, eliminating negative effects of non-essential features and improving middle 
grade students’ capacities of problem solving. In 1980’s, Gu (1994) first carried out 
systemic experimental studies and developed theoretical interpretations of teaching 
through variation in mathematics.

Since 2000, Gu and others have attempted to theorize the practice of teaching 
through variation (Gu et al., 2004; Wong, Lam, & Chan, 2009). Gu et al. (2004) 
systematically synthesized the basic principles of teaching with variation, and 
explained these principles using Western theories such as Dienes’ (1973) variability 
principle, Marton’s variation of pedagogy (Marton & Booth, 1997), and Brunner’s 
(1985) scaffolding notion. According to Gu et al. (2004), conceptual variation 
includes two categories, concept variation and non-concept variation. Concept 
variation involves varying extensions of a concept; non-concept variation involves 
varying seemingly related but essentially relevant features of the extension of 
a concept, for instance, creating a counterexample. The goal of using these two 
types of variation is to gain understanding of a concept from multiple perspectives. 
They further clarified the meaning of procedural variation which mainly includes: 
progressing mathematics activities step by step, solving a big problem by breaking 
it down into sub-problems, gaining various activity experiences accumulatively 
during the process of instructional activities. There are three major functions of 
using “procedural variation”: (1) Forming a concept, namely, helping students 
experience the process of forming a concept, and helping students understand the 
necessity of introducing the concept; (2) Problem solving, namely, transforming a 
unknown problem into a solved problem progressively, helping students clarify the 
process of solving the problem and understand the structure of problems, gaining 
activity experiences progressively, and advancing problem solving ability; and (3) 
Establishing a specific experience system through a series of variation (see Chapter 2 
this volume for details). These variations mainly include creating different problems 
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based on a given problem, using multiple methods to solve a problem, and using the 
same methods to solve different problems (Cai & Nie, 2007).

As discussed, several Western theories support why implementing teaching through 
variation appropriately could be effective for student learning of mathematics in a 
large classroom. In particular, Marton’s (Marton & Booth, 1997) theory of variation 
provides an epistemological and conceptual foundation of the Chinese practice of 
teaching. Zheng (2006) argued that the core ideas of Marton’s theory of variation are: 
(1) learning is to learn to discern [critical features of a learning object], (2) discernment 
relies on comparison (differences). Thus, it is important to provide students 
opportunities to explore appropriate dimensions of variations so as to broaden learning 
space. Gu et al. (2004) concluded that conceptual variation aims to construct a space of 
variation that focuses on critical aspects of the learning object, and to enhance students’ 
understanding of essential aspects of the learning object. Procedural variation intends 
to scaffold students’ learning to build substantive connections between the learning 
object and previous knowledge and promote students’ development of mathematical 
concept and skills. They also cautioned that it is crucial to set appropriate potential 
distance between the learning object and existing knowledge. Thus, constructing an 
appropriate space of variation is essentially important for implementing effective 
mathematics teaching. If the potential distance is too short, it may constrain challenges 
and eliminate motion for critical thinking and exploration; if the space of variation is 
too small, it may provide students with incomplete learning conditions resulting in 
narrowness of understanding of the learning objects. Teachers’ wisdom is needed to 
achieve a balance from the perspective of variation.

Use of Variation Tasks in Textbooks: An Emergent Area

There are sporadic studies on how variation tasks are used in textbooks (e.g. Sun, 
2011; Wong et al., 2009). Yet, some of these studies indicated that mathematics 
textbooks in China emphasize introducing new concepts and deepening 
understanding of concepts through use of variation tasks. For example, in the 
textbook for “middle school algebra” (People’s Education Press [PEP], 1963), 
eight examples were selected to illustrate the essential feature of an algebra 
equation: connecting two algebraic expressions by using equal sign, which 
belongs to conceptual variation (Figure 1). For another example, in the middle 
school geometry textbook (PEP, 1981), there is a set of practicing problems that is 

Figure 1. An example for conceptual variation
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used to contrast concept and non-concept figures (Figure 2), and develop a deep 
understanding of vertical angles.

In the figures on the right, A, O, B are on a line and O, 
P are two points on line AB. Are ∠ 1 and ∠ 2 a pair of 
vertical angles? Why? Are ∠ 3 and ∠ 4 a pair of vertical 
angles? Why?

Figure 2. An example of non-concept figures

In fact, exercises and problems are usually compiled with purposeful variations 
in textbooks. Practice with variation problems is one of salient features of Chinese 
mathematics textbooks, which is intended to develop students’ ability in learning 
by analogy (举一反三、触类旁通). Teaching through variations relies on intended 
variation tasks in textbooks. For example, in the 1990’s, the Journal of Secondary 
Mathematics Teaching References included a specific column, called variation 
problem collection in textbooks. It was argued that “The problems included in 
university and high school entrance exams are crafted ingeniously. They look novel 
and unique. However, although there are a variety of variations with test problems, 
the test item creators have to follow a principle that is “rooting [test items] in 
textbook, not exceling (beyond) requirement of curriculum standards. Thus, many 
exam items can be found from their stereotype problems from the textbooks – either 
examples or exercises.” (Ru, 1994, p. 26) It corresponds to the old Chinese saying 
that “changing embedment (of a problem) ten thousand times remains the same 
original essence or principle.”(万变不离其宗)

Yet, few studies have been devoted to examination of the nature of using 
variation tasks in textbooks (Sun, 2011; Wong et al., 2009) in China. In her 
study, Sun (2011) classified problems in textbooks into two categories: problem 
variations with and without concept connections and problem variations with or 
without solution connections. It is argued that the roles of variation problems 
(“one problem multiple solutions” and “one problem multiple changes”) used 
in Chinese textbooks aim to “provide opportunities for making connections, 
since comparison is considered the pre-condition to perceive the structures, 
dependencies, and relationships that may lead to mathematical abstraction” (p. 65). 
Furthermore, Wong and his colleagues (2009) developed a variation curriculum 
based on four types of bianshi problems: the inductive bianshi, the broadening 
bianshi, the deepening bianshi, and the applicative bianshi. An experiment with 
this curriculum with 21 sixth grade classes (a total of 686 students) revealed that 
“students using spiral bianshi teaching materials performed significantly better 
than their counterparts using standard textbook materials. However, no significant 
differences were detected among affective learning outcome variables despite 
the positive results on cognitive learning outcomes.” (p. 363). This suggests 
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that intentionally implementing curriculum with deliberate variation problems 
has the potential to result in high cognitive learning outcomes. However, these 
aforementioned two studies focused on elementary school mathematics topics 
(division of fraction, speed, and volume).

Since implementation of a new curriculum (MOE, 2011), the editors of textbooks 
have adapted research findings on teaching through variations in compiling textbooks 
to improve the selection and arrangement of mathematical activities, examples and 
exercises. However, no systemic analysis and theoretical reflection on the use of 
variation tasks in the standard-based textbooks has been carried out. This study 
aimed to extend our understanding of the use of variation tasks in textbooks by 
examining a set of popularly used mathematics textbooks in middle school in China 
(PEP, 2012a, b, 2013a, b; 2014a, b). In the sections that follow, we will illustrate a 
theoretical framework used for analyzing textbooks in this study.

Categorization of Knowledge

Textbooks provide comprehensive and systematic development and illustration 
of subject matter knowledge. The structures of textbooks indicate the organization 
of various components and elements of content（Liao & Tian, 2003), and imply 
instructional structures and methods. From a cognitive psychology perspective, the 
components of mathematics textbooks actually consist of various types of knowledge. 
Building on the taxonomy of Anderson et al. (2001), Zhang (2011) further illustrated 
four categories of knowledge. These include: factual knowledge, conceptual 
knowledge, procedural and meta-cognitive knowledge. Because textbooks consist 
of static and explicit mathematical teaching materials that have been purposefully 
presented by taking pedagogical principles and mathematical structure into 
consideration, we adopted the following categories of mathematical knowledge: 
(1) Mathematical concepts; (2) Mathematical principles including properties, rules, 
formulas and theorems; (3) Mathematical skills including operations by following 
certain procedures and steps, construction of figures, and data processing; and 
(4) Mathematical thinking methods underlying mathematical contents and skills. 
Mathematical concepts and principles are conceptual knowledge; mathematical 
skills are procedural knowledge; and mathematical thinking methods are strategic 
knowledge (part of metacognitive knowledge). Thus, we analyzed textbooks 
from four components: concepts, principles, skills, and thinking methods in 
mathematics. The material in textbooks is presented in three elements: introduction, 
major text, and exercise problems (Zhang, 2011): (1) The introduction focuses on 
illustrating the necessity of learning the new knowledge and explaining learning 
strategies. Use of variation materials aims to motivate students’ learning. (2) The 
main text presents the mathematical knowledge structure that has been established 
historically. In addition to presenting basic thinking methods: observation and 
experimentation, induction and deduction, comparison and classification, analysis 
and synthesis, generalization and specialization, it also reflects basic models of how 
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people approach problems such as conditions and conclusion, reasons and result, 
and problem solving methods. Use of variation tasks in main texts aims to promote 
students’ understanding of concepts, principles, and thinking methods. (3) Exercise 
problems are designed to develop students’ ability in applying learned knowledge 
to various situations. Practicing with variation problems aims to help students to 
apply knowledge in varying contexts and develop conceptual understanding and 
procedural proficiency in mathematics.

A Framework for Analyzing Use of Variation Tasks in Mathematics Textbooks

Based on mathematical knowledge categorization and types of variation, a framework 
is proposed to be used to analyze the features of the use of varying tasks in textbooks 
as shown in Table 1.

Table 1. A framework for analyzing use of variation tasks in textbooks

Mathematical 
concept 

Mathematical 
principles 

Mathematical 
skills 

Mathematics 
thinking methods 

Conceptual variation 
(concept vs. non-concept)
Procedural variation 

For each of the four types of knowledge, we analyzed how the two types of 
variation are used to develop content in textbooks when applicable.

METHODS

The six textbooks of mathematics for grade 7(A) and (B) (PEP, 2012a,b), 
mathematics for grade 8 (A) and (B) (PEP, 2013 a,b), and mathematics for grade 9 
(A) and (B) (PEP, 2014 a, b) were selected to identify the major characteristics of use 
of variation tasks. We examined how mathematics tasks are selected and presented 
to develop four types of knowledge in different content areas. First, we listed all 
key mathematics objects (i.e., concepts, principles, skills, and mathematical thinking 
methods) across grades and examined the ways of presenting the key mathematical 
objects with respect to how mathematical tasks (conceptual variation (concept or 
non-concept), procedural variation, combination of the two types of variation or no 
variation at all) are used. The first and second authors developed a code table. Based 
on the identified mathematical objects, the third author individually developed a 
code table. The inter-rater agreement was about 75%. Then, the disagreements were 
resolved through discussions among authors. Based on comparing and contrasting 
the types and functions of variation, patterns of using variations emerged (See 
Table 2 below). After that, appropriate examples from the examined textbooks were 
selected to illustrate as shown in results.
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THE MAJOR FEATURES OF USE VARIATION TASKS IN TEXTBOOKS

We first present the overall features of using variation tasks in developing the 
four types of knowledge. Then, relevant examples are used to illustrate the major 
characteristics of the use of variation tasks in textbooks.

Overall Features of Using Variation Tasks in Textbook

The frequencies of use variation tasks in textbooks are shown in Table 2.

Table 2. Frequency of variation tasks used to develop mathematical objects in textbooks

Concept  
(49)

Principle  
(33)

Skill  
(15)

Thinking  
(14)

Total  
(N = 111)

Conceptual
variation

Concept 23(47%) 11(33%) 3(20%) 0 38(34%)
Non-concept 13(27%) 1 1 0 15(14%)

Procedural variation 17(36%) 29(88%) 12(80%) 14(100%) 72(65%)

Note. Since a mathematical object (i.e. concept, principle, skill, or thinking method) could be 
developed using more than one type of variation, the sum of percentages in a column is not 
necessarily equal to 100 percent.

The table shows overall features which include: (1) to support different types 
of concept learning, both conceptual variation (including concept variation (47%), 
non-concept variation (27%)) and procedural variation (36%) are used; (2) to 
discover and understand principles, both conceptual variation (33%) and procedural 
variation (88%) are used, but using procedural variation dominated; (3) to promote 
the transformation from mathematical knowledge and principles to problem 
solving abilities, mainly procedural variation (e.g., variation of problem situations 
and variation of problem type) is used; and (4) to develop mathematical thinking 
methods, solely, procedural variation (e.g., variation of problem situations and 
variation of problem types) is used. In the sections that follow, we will illustrate 
each of these features.

The Use of Variation Tasks for Learning Concepts

Learning a concept typically goes through the following phases: first, based on 
examining similarities among different instances, the common and essential features 
are abstracted and synthesized to define a concept; then, the newly developed concept 
is applied to similar situations. Finally, the concept is connected to a broad concept 
system and the knowledge structure is further strengthened (Cao & Zhang, 2014). 
Thus, how to help students classify concrete instances, synthesize key features of 
a concept through comparing and contrasting, and develop the ability to construct 
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mathematical concepts is a key question needed to be addressed when compiling 
textbooks. Appropriate use of variation tasks is one of the important strategies.

Use of concept variation for forming a concept. Formation of concepts mainly 
uses concrete instances to abstract essential attributes/characteristics. Because 
essential attributes usually are recognized through comparing, the typicality and 
richness of variation tasks are critical. Typicality refers to the embedment (clear and 
explicit) of essential attributes in the variation tasks. Richness refers to the various 
representations of the essential attributes embedded in the variation tasks (Lin, 
2011). Take the development of function concept for example.

Function is the most important concept in school mathematics. At the 
middle school level, the standards state that students should be able “to 
incorporate examples to know function concept and three representations, and 
provide examples of functions” (MOE, 2011, p. 29). The examples used in 
textbooks could be understood as concept variation, a type of conceptual variation. 
The textbook (PEP, 2013b, p. 71) provides the following questions for students to 
explore the ideas of a co-varying relationship between two variables in various 
contexts (such as speed and distance, income and number of products sold, and 
area of a circle and radius).

1. A car is driving at 60 km/h. If the distance traveled is denoted as s (km), the time 
traveled is denoted as t (h), fill in a table as follows. How does the change of s 
co-vary with t?

2. A theater was showing a movie with a ticket price of 10 CNY. If 150 tickets were 
sold for the first show; 205 tickets were sold for the second show; and 310 tickets 
were sold for the third show, how much income was gained from each show? If 
the total tickets sold for a show is x and the income gained is y, how does change 
of income y co-vary with the total tickets sold x?

3. A rectangular area is fenced using a 10m-long strip. When the length of one side 
x is 3 m, 3.5 m, 4 m, or 4.5m, how much is the other side y? Does the change of 
y co-vary with x?

Within different contexts, the same question is asked, “how does change of one 
variable co-vary with another variable?” This experience helps students synthesize the 
common feature: There is a relationship between two variables in a given situation: 
when one variable is given a value, this determines a unique corresponding value for 
the other variable. After that, the textbook provides more problem situations such as 
electrocardiogram using graphic representation (time vs. bio-electric current), and 
population in China in different years using tabular representation (year vs. population).

Based on experiencing the common feature with various contexts, the concept 
of function is introduced. This design reflects the idea of “conceptual variation”, 
namely, examining the invariant relationship with various instances or context (from 
different perspectives). Through varying contexts and representations (expressions, 
diagrams and tables), the invariant characteristic of co-variation is discerned. This 
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exploration may help students move from individual quantitative changes to the co-
variation relationship, the key idea of function concept.

Use of non-standard situation tasks for assimilation of concept. As discussed 
previously, the use of concept variation can highlight the connotation of a concept. 
However, after defining a concept, if activities (such as classification, assimilation, 
and decomposition) focus only on standard perception of the concept, it could cause 
an incomplete understanding of the concept. In a textbook, after using concept 
variation (various contextual situations) to explore the essential characteristics of 
the concept, non-standard variations can be used to discern essential features by 
contrasting non-essential ones, clarifying extension of the concept. Take the concept 
of altitude of a triangle as an example (PEP, 2013a).

An altitude is an important segment in a triangle, the concept of which includes 
two essential features: starting from a vertex and being perpendicular to the opposite 
side. The critical feature is perpendicularity. However, the typical perceived 
perpendicularity from daily life experience is “vertically perpendicular to horizontal 
ground”, which is different from the concept of perpendicularity in geometry. 
Determining whether one line is perpendicular to another one relies on the relative 
positions of the lines (invariant 90 degrees of the angle formed by the two lines, 
with varying positions of two lines). At the beginning stage of learning geometry, 
students typically rely on their daily life experience and regard perpendicular to 
ground as the stereotype of “perpendicularity” (Cao, 1990).

In textbook PEP (2013a, p. 4), first of all, based on daily life perception of 
perpendicularity, a standard figure (Figure 3) is used to illustrate key features of 
altitude. In a triangle ABC, students are asked to draw a segment from vertex A 
perpendicular to opposite side BC, intersecting at D and instructed that the segment 
AD is called an altitude of side BC. Then, a new exploratory question is posed in a 
note box, “can you use the same method to draw other altitudes of other two sides?”

Figure 3

In order to eliminate the possible student misconception that an altitude must be 
vertical, various situations (particularly, the non-standard situations) with different 
orientations are provided for students to compare and contrast after introducing the 
concept. In the class exercise section, the textbook (PEP, 2013a, p. 5) provides a task 
inviting students to compare three different situations in a “standard figure” (see 
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Figure 4(a)). It aims to clarify the concept, eliminate irrelevant features, and develop 
a comprehensive understanding of the concept.

Figure 4 (a) (b)

Finally, in the post-lesson exercises, students are asked to draw three altitudes 
in a triangle as shown in Figure 4 (b), which is an obtuse triangle in a non-standard 
position (no horizontal sides).

Examining these non-standard variation figures aims to clarify the concept 
images of altitude. By varying types and positions of a triangle, the common 
invariant feature of altitude (mutually perpendicular to each other) is highlighted. 
This arrangement of tasks provides conditions for students to discern the essential 
features of altitude regardless of the type or position of triangles.

Use of variation tasks for building connections among relevant concepts. A 
common strategy in textbooks is to contrast closely related concepts using variation 
tasks to develop connections of different concepts. For example, after discussing the 
concept of altitude (as discussed previously), the textbook PEP provides problems 
for students to differentiate altitude from the relevant concepts of median and angle 
bisectors from a quantitative perspective. Specifically, in the section of “relevant 
segments in a triangle”, the textbook (PEP, 2013a, p. 8) provides an exercise asking 
students to contrast the quantitative features of median, angle bisector and altitude 
from the same vertex in a triangle as shown in Figure 5.

In the figure (on the right below), in triangle ∆ ABC, AE is a median, AD is an 
angle bisector, and AF is an altitude, fill out the following blanks.

Figure 5
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Use of variation tasks for elaborating concepts. For both concept formation and 
concept assimilation, it is necessary to provide practicing activities for clarifying 
and elaborating the concept (Wu, 2000). In textbooks, these activities normally vary 
systematically surrounding a concept. For example, the concept of inscribed angle of a 
circle is introduced by assimilating based on the concept of central angle (PEP, 2014a, 
p. 85). In a circle O, in addition to the central angle (∠ AOB), there is another type of 
angle such as ∠ ACB or ∠ ADB (the angle subtended at a point (C or D) on the circle 
by the two given points (A and B) ) which is defined as inscribed angle.

Figure 6

After that, the textbook (PEP, 2014a, p. 88) provides varying tasks for students to 
further clarify the concept of inscribed angles and examines the relationship between 
inscribed angles and central angles by presenting both concept and non-concept 
variation problems as shown in Figure 7.

Judge whether the angles in the following figures are inscribed angle or not, and 
explain your statement.

Figure 7

The above five figures focus on the connotation of an inscribed angle (two cords 
intersect at a point on the circle) by varying conditions, both concept and non-
concept variations. These variations aim to discern: (1) vertexes outside the circle; 
(2) vertexes inside the circle; (3) one side of the inscribed angle as the diameter; 
(4) two sides without intersection with the circle (except the common vertex); and 
(5) only one side intersects the circle.
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Use of Variation Tasks for Discovering and Understanding  
Mathematical Principles

Mathematical principles, namely invariant patterns within varying contexts, include 
mathematical rules, formulas and properties. Similar to formation of a concept, 
the use of variation tasks could also be helpful for discovering invariant patterns. 
Ausubel (1968) suggests that the process of mastering knowledge includes three 
phases of knowing, consolidating and applying. Regarding learning of mathematical 
principles, we specify these three phases as forming a principle, building connections 
between relevant principles, and applying the principle flexibly.

Use of varying tasks for discovering principles. At the forming stage, the textbooks 
provide tasks/activities for motivating students, and providing concrete experiences 
which lays a foundation for discovering mathematical principles. There are multiple 
ways for students to discover mathematical principles (e.g., patterns in certain 
varying contexts). These include synthesis of common features of concrete instances, 
making conjecture through analogy, generalization or specialization, induction or 
deduction. The textbooks provide conceptual variation or/and procedural variation 
tasks depending on the characteristics of the content.

For example, to introduce various algebraic operation rules, textbooks usually 
adopt inductive reasoning based on concrete instances (from concrete to abstract, 
conceptual variations). Generally, textbooks first provide operation tasks with 
different concrete numbers and then ask students to see patterns of operation results; 
finally the patterns are analogous to algebra operations.

In textbook PEP (2013b, p. 6), the operation rules with square roots are 
introduced as follows:

First, students are provided exploration tasks to observe the patterns from the 
following operations with concrete numbers

1. 

2. 

3. 

After that, algebraic operation rule for square roots is synthesized as:

1. 

In these three operation equations, the structure remains the same while the 
numbers change. Through computation and subsequent observation, students can 
find the invariant structure within the varying computation equations, and derive 
the algebra operation rule. The question such as “based on the observation of your 
computation results, what pattern do you find” leads students to thinking about 
general patterns based on concrete operations. The operation rule of square root 
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 is generalized from numbers to expressions with additional constraints 
of a≥0, b≥0. To draw students’ attention to the constraint, the textbook provides an 
example as follows: simplify . If students do not notice the constraint, they 
will get . If they notice the condition, then they have to consider the 
domain of a, b, and finally get the correct answer of . Discussing this type 
of task (concept variation) could help students to understand the formula precisely.

Use variation problems for building connections between mathematical 
properties. Mathematical principles reflect the properties of mathematical objects 
and relationships between different elements of mathematical objects. Algebraic 
properties mainly focus on the invariant patterns of operations. Functional properties 
mainly reflect invariant patterns when variables change; geometric properties reflect 
invariant patterns when shapes, size and positions change. Thus, use of varying 
tasks can help students discover these properties. In textbooks, purposeful design 
of variation tasks aims to promote students’ discovering and understanding of 
properties (Cao & Zhang, 2014).

For example, to explore the properties of parallelogram the textbook PEP presents 
the following sequence of exploratory tasks (2013b, p. 41–55). After introducing the 
definition of parallelogram the following task is presented:

Task 1: Draw a parallelogram based on its definition, observe the figure and 
explore any relationships between sides or angles of a parallelogram beyond the 
property of two opposite sides are parallel. Check your conjectures by measuring 
relevant elements.

After exploring basic properties about sides and angles, then the following is 
provided to help students discover properties related to diagonals.

Task 2: In the parallelogram ABCD (below), connect AC, BD intersecting at 
O. Are there any special relationships among OA, OB, OC, and OD? Justify your 
conjectures.

Figure 8

Further, tasks are provided to explore converse properties of parallelogram as 
follows:

Task 3: Based on previous exploration, we learned that in a parallelogram, the 
opposite sides are equal, opposite angles are equal, and diagonals bisect each other. 
Conversely if opposite sides are equal, or if opposite angles are equal, or if diagonals 
bisect each other in a quadrilateral, will the quadrilateral be parallelogram? That is to 
say, are the converse properties of parallelogram tenable?
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Additionally, through specifying the angles and sides of a parallelogram, then, the 
specific parallelograms such as rectangle, rhombus, and square are explored.

Through the procedural variation problems, the properties of parallelograms are 
explored systematically. Based on the definition of parallelogram, through drawing, 
observing, measuring (variations in shape and size), the invariant relationships 
between sides and between angles in quadrilaterals are discerned. Then, through 
asking converse questions, “if two opposite sides are equal in a quadrilateral, will 
the quadrilateral be a parallelogram?” the theorems for determining a parallelogram 
are explored. Furthermore, through specifying, “an angle is right”, or “a pair of 
adjacent sides are equal”, or “an angle is right and a pair adjacent sides are equal”, 
then, specific parallelograms of rectangle, rhombus and square are explored. Thus, 
the structure of the knowledge about parallelograms has been developed logically as 
shown in the chapter summary (Figure 9).

Figure 9

Use of variation tasks for developing multiple representations of a property. Profound 
understanding of concepts or principles depends on building interconnection among 
different types of knowledge (Zhang, 1995). In textbooks, multiple representations 
often are used to develop the connections among different types of knowledge and 
deepen understanding of mathematical principles. For example, the textbook PEP 
provides the following activities to develop the formula for the square of a sum 
(2013a, pp. 109–111):

Explore activity 1: Expand the following expressions. What patterns do you 
notice?
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Based on the computations for the expansion of the above sums, a common 
structure of expression is identified for (a ± b)2. Because

(a + b)2 = (a + b) (a + b)= a2 + ab + ba + b2 = a2 + 2ab + b2

the following formulas for square of a sum and difference are derived:

(a + b)2 = a2 + 2ab + b2

(a − b)2 = a2 − 2ab + b2

In other words, the square of sum of two numbers (or difference) is equal to the 
sum of square of each number, plus (or minus) 2 times of the product of the two 
numbers (verbal representation). The textbook indicates the relationship between 
this square of sum formula and multiplication of polynomial expressions by saying 
that the formula is a special case of (a+b)(p+q) when p=a and q=b in a note box. 
Finally, the textbook provides an exploratory task inviting students to find the 
algebraic formulas based on area relationships in each of the following figures 
(Figure 10).

Figure 10

The algebraic formula has been discovered inductively by examining specific 
cases and then synthesizing the form of (a ± b)2 and by proving the formula by using 
multiplication of algebraic expressions. Moreover, the formula is represented in 
verbal, algebraic and graphic forms. Through the procedural variation of discovering 
the formula and conceptual variation of multiple representations, students can gain 
understanding of the formula adaptively.

Use of Variation Tasks for Developing Mathematical Skills

Mathematical skills include computation, construction and reasoning. Operation 
skills include numerical computations or algebraic transformations based on concepts, 
formulas and properties. Construction skills include drawing figures precisely based 
on given conditions. Reasoning skills refers to making logical arguments based on 
given conditions and by following certain procedures and steps (Ding, 1992).

Typical skills include operations with algebraic expressions, solving equations 
and inequalities, analyzing properties of functions, constructing geometric figures, 
and basic methods of logical reasoning. It is important to develop mathematical skills 
based on conceptual understanding through appropriate practicing. The process of 
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acquiring mathematical skills includes the three phases of knowing, connecting and 
automatizing (Cao & Zhang, 2014).

1. Knowing phase: Students learn how to carry out procedures step by step, with a 
focus on sequence and results of each step.

2. Connecting phase: Students build connections between consequent steps (action 
and effect) so that taking each step becomes more smooth and effective.

3. Automatizing phase: The procedure becomes precise, natural, and automatic for 
the students.

Practicing with variations could play an important role in the process of developing 
mathematical skills. In textbooks, building on concepts, formulas and figures, the 
tasks are first presented in situations with which students are familiar. Then tasks 
are changed in different forms, and finally tasks are presented in novel contexts. 
Providing these variations (for example, changes in given conditions, or results, or 
contexts) aims to develop skills in applying mathematical concepts and principles 
to solve problems flexibly. These changes should be sequenced and systematic in 
alignment with the process of development of mathematics.

For instance, in geometry, various figures usually are derived from some stereotypical 
figures. Understanding these basic figures and relevant variations will help solve 
relevant problems effectively. Take one example from the chapter of “triangle” and 
“congruent triangle” to illustrate a stereotypical figure and its variations (PEP, 2013a). 
The figure is two triangles sharing a common side as shown in Figure 11.

Figure 11

Based on this basic figure, there are a great number of derived figures appearing 
in 17 examples or exercises as displayed in Table 2.

Various ones of the seventeen variation figures in Table 2 are included in sections 
of the textbook dealing with the definition of triangle; basic properties of triangles; 
the altitudes, medians, and angle bisectors in a triangle; and congruent triangle. 
While the invariant feature of the figure was two triangles sharing a side, many 
things changed: (1) specific relationships between other two sides: equal, collinear, 
common point; (2) specific relationships between other angles: equal, right;  
(3) incorporating new concepts (Tasks 6 and 15); (4) transformations of the basic 
figure (translation, reflection, rotation) (Tasks 8, 9, 10, 14); and (5) substantial 
differences from the basic figure (Tasks 16 and 17).
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Table 2. Variation figures derived from the same stereotype figure

Variation figures Relevant tasks

1.  How many triangles are there in the figure? Label them. 

2.  In triangle ∆ ABC, AB = 2cm, BC = 4cm. AD and CE are 
altidudes. What is the ratio AD to CE? (hint: use the area 
formula of traingle) 

3.  In the figure, ∠C = ∠D = 90°. AD, BC intersect at E. What 
relationships are there between ∠CAE and ∠DBE? Why? 

4.  In the figure, D is on AB. E is on AC. BE and CD intersect at 
F. ∠A = 62°. ∠ACD = 35°. ∠ABE = 20°. Find ∠BDC and 
∠BFD. 

5.  In ∆ABC, BE and CF are angle bisectors of ∠B and ∠C 
respectively. BE and CF intersect at G.

   Prove:  (1) ∠BGC = 180°–½ (∠ABC + ∠ACB);  
(2) ∠BGC = 90° + ½ ∠A

6.  In ∆ABC, AD is an altitude. AE and GF are angle bisectors 
and intersect at O. ∠BAC = 50°. ∠C = 70°. Find sizes of 
∠DAC and ∠BOA

7.  In the figure, ∆AEC ≅ ∆ADB, and points E and D are 
corresponding points. (1) Find corrresponding sides and 
angles. (2) If ∠ = 50°, ∠ABD = 39° and ∠1 = ∠2, find the 
degree measure of ∠1.

8.  In the figure, points E, F are on BC. BE = CF. AB = DC.  
∠C = ∠B. Show ∠A = ∠D.
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Variation figures Relevant tasks

9.  In the figure, ∆ABN ≅ ∆ACM. ∠B and ∠C are 
corresponding angles. AB and AC are conrrespoding sides. 
Find other corresponding sides and angles. 

10.  In the figure, ∆ABC ≅ ∆DEC. CA and CD. CB and CE are 
corresponding sides. Are ∠ACD and ∠BCE equal? Why? 

11.  In the figure, AC ⊥ BC. BD ⊥ AD. BD and AD intersect at 
C, and D respectively. AC = BD. Show BC = AD. 

12.  In the figure, from point C, looking at A and B with an ∠C; 
the distances from C to A and B are equal, the distances from 
A to side BC is AD and the distance from B to side AC is 
BC. Are AD and BE equal? Why? 

13.  In the figure, AC ⊥ BC. BD ⊥ CB. BD and AD intersect at C 
and B respectively. AB = DC. Show ∠ABD = ∠ACD.

14.  In the figure, points B, E, C, F are collinear. AB = DE. AC = 
DF. BE = CF. Show ∠A = ∠D.

15.  In the figure, BM and CN are the angle bisectors of ∆ABC, 
and they intersect at P. Show: the distances between P and 
each of sides AB, BC, and CA are equal. 

16.  In the figure, ∠ACB = 90°. AC = BC. AD ⊥ CE, BE ⊥ CE. 
BE and CD intersect at D and E, respectively. AD=2.4 cm 
and DE = 1.7cm. Find the length of BE.

17.  In the figure, in ∆ABC, AD is an angle bisector of ∠A. 
Show: Area of ∆ABD: Area of ∆ACD = AB:AC.
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In textbooks, as the study of the triangle develops, these variation figures are 
arranged progressively in different sections. The basic figure is used for clarifying the 
definition of triangle and illustrating the structure of the figure. Variation figures in 
Tasks (2)–(5) are used for exploring basic properties of triangles, while the variation 
figure in Task (6) is closely related to the use of triangle properties. Variation figures 
in Tasks (7)–(15) are related to congruent triangles. Among them, the variation figure 
in Task (7) is a result by specifying sides, angles in an isosceles triangle. Variation 
figures in Tasks (8) and (9) are the result of specifying and translating, while figures 
in Task (10) are the result of rotation. Variation figures in Task (11)–(13) specify 
sides and angles.

In summary, the design of the problems in Table 2 aims to cultivate students’ 
ability to discern the basic figure from various figures and then use the properties of 
the basic figure as a springboard for solving different problems.

Use of Variation Tasks for Developing Mathematics Thinking Methods

Mathematical thinking refers to essential understanding of mathematics objects, 
and fundamental opinions and ideas synthesized through the process of exploring 
mathematics knowledge (such as inductive and deductive reasoning thinking, 
equation thinking and so on) that have overarching guiding implications for doing 
mathematical activity (Cao & Zhang, 2014). Mathematical methods refer to the 
methods and strategies during mathematics activity (such as substitution methods, 
consideration of a special case, eliminating methods). Mathematics thinking and 
methods are closely related. Usually, overarching guiding thinking is deemed as 
mathematical thinking, while implementing process and strategies is referred to 
mathematical methods. Mathematical thinking and methods are about how to collect 
and process data, how to draw figures and make tables, how to select and design 
algorithms, and how to form and solve problems in contextual situations. These, 
related to how to think, belong to strategic knowledge (Cao & Zhang, 2014). It is 
necessary for students to explore more examples, practice with variation problems, 
and reflect on the process of problem solving.

Use of variation tasks for developing mathematical thinking in algebra. Mathematical 
textbooks present a logical system of mathematical content using mathematics 
language. Mathematical thinking methods are a type of knowledge about how to think 
about developing mathematical knowledge. Thus, mathematical textbooks have to 
reflect the integration of mathematical content and mathematics thinking methods. 
Variation tasks serve for uncovering the mathematical thinking methods embedded in 
different contents with different forms. It aims to highlight mathematical essence and 
help students’ discover invariance within varying phenomena, while experiencing 
the process of mathematical discovering and thinking. The following is an example 
of introducing properties of inequalities in algebra using the mathematical method 
of analogous reasoning.
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There is an introduction (PEP, 2012b, p. 116) as follows:
We know that adding to or subtracting from both sides of an equation the same 

number (expression), multiplying or dividing both sides of an equation by the same 
non-zero number, results in the equation remaining valid. Are there similar properties 
regarding inequalities?

In order to answer the question, students are asked to fill in following blanks 
using “>” or “<” and summarize the patterns:

Figure 12

Further, students are asked to fill in the following blanks based on their discoveries: 
when adding the same number to or subtracting the same number (positive or negative) 
from both sides, the direction of the inequality:_____. When multiplying both sides 
by a positive number, the direction of the inequality: ______. When multiplying both 
sides by a negative number, the direction of the inequality: ______. In the note box, 
there is a suggestion on using other numbers to check these discoveries.

Using the analogous reasoning method, the textbook includes the task of 
exploring properties of inequalities. Then, four concrete examples are used to 
discover operation rules with inequalities (e.g., conceptual variations). After that, 
students are led to synthesize patterns by filling in blank tasks, and further using 
“note box” (using other number, verifying your conjectures) (e.g., procedural 
variations). In the textbook, the analogous method is used to put forward questions 
and make conjectures, then “invariability in operations” leads to discovering 
properties of inequalities. This arrangement reflects on how variation tasks could be 
used to develop mathematical thinking methods.

Use of variation tasks for developing mathematical thinking in Geometry. We 
consider another example involving proving the “theorem of sum of three interior 
angles” (PEP, 2013a, pp. 11–12) which allows us to reflect on the mathematical 
thinking methods of inductive and deductive reasoning using variation tasks.

Although in elementary school, students learned that the sum of interior angles of a 
triangle is equal to 180° through cutting and pasting, and measuring, students need to 
learn how to prove the property in middle school. From the textbook, four phases were 
used to discover and prove the property and help students move from manipulative 
activities (inductive reasoning) to iconic representations (i.e., segment figures), to 
final symbolic representations (deductive reasoning), and to multiple proofs.
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Reviewing cutting activities and exploring proof. First, the textbook provides an 
exploratory activity (Draw a triangle, cut off three interior angles and put them together 
to form a straight angle. What do you find regarding proof the sum of interior angles 
of a triangle is 180°), allowing student to review what they did in elementary school.

Two of various samples of student work are presented in the textbook as follows:

Figure 13

Based on this exploratory activity, students are asked to recall different ways to 
assemble three interior angles of a triangle forming a straight angle, which lays a 
foundation for discovering formal proof.

Selection of appropriate methods and construction of auxiliary line. How do we help 
students develop proving methods? Because the proposition that the sum of interior 
angles of any triangle is equal to 180° is equivalent to the statement that the three interior 
angles form a straight angle, namely, a line containing the vertex. The key to discovering 
a proof is to transform a “straight” angle into a straight line using the properties of 
parallel lines. Then, the problem is transformed to examine if there is an auxiliary line 
that contains a vertex and is parallel to one side of the triangle. The difficulty in making 
this transformation is the abstraction from physically cutting the figures to forming a 
geometric “figure”. To help students make this transformation, the textbook provides 
two methods of assembling and highlights the “segment figures” as shown in Figure 14.

Figure 14

In Figure 14 (left figure), ∠A and ∠B are assembled around the vertex A (left 
and right sides without overlapping), and the three angles form a straight angle 
which forms a line l passing through A. The textbook provides probing questions 
in a note box such as “think about the relationship between l and the side BC of 
the triangle. Do you have any ideas about proving that the sum of interior angles is  
180° ?” The advancing questions are designed to lead students to observe the structure 
of the segment figure and discover line l passing through A, and focus their thinking 



STRATEGIES FOR USING VARIATION TASKS IN SELECTED TEXTBOOKS

235

on “the relationship between line l and side BC”. Thus, the constructing an auxiliary 
line is the key to proving the property.

Developing deductive proof. Based on the previous exploration, the textbook provides 
a “pure” geometry figure (Figure 15) which includes triangles, parallel lines, and 
alternate angles. Meanwhile, the textbooks provide a complete, formal proving process.

Figure 15(a) (b)

So far, the textbook presents the entire process of proving as a transition from 
visual verification to abstract logical justification. The “segment figures” is the 
bridge between “physical manipulation” and “abstract geometry figure”.

Multiple proofs. In a note box, students are encouraged to “think about making 
other proofs”. Based on different figures (with different auxiliary lines), students are 
required to complete another poof.

The above example demonstrates how variation tasks (procedural variations) are 
used to promote student engagment in the process of discovering proofs from visual 
verification to deductive proof. Meanwhile, the mathematical thinking methods 
such as visual observation, conjecture making and conjecture justification could be 
experienced through these exploratory activities.

CONCLUSIONS AND DISCUSSIONS

Characteristics of the Use Variation Tasks in Mathematics Textbooks in China

Teaching through variation that relies on enlightening teaching principles and 
variation tasks in mathematics textbooks has been practiced over decades. Editors 
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of mathematics textbooks have emphasized the use of variation tasks in textbooks 
historically, but little research has been devoted to the use of variation tasks 
in textbooks. To this end, the study focused on examples of how variation tasks 
(conceptual variation and procedural variation) are used to develop mathematical 
concepts, principles, skills and thinking methods in mathematics based on a set of 
the most widely used mathematics textbooks for middle schools in China. Based on 
a comprehensive analysis of the textbooks, we made the following observations:

Developing mathematical concepts. During the different phases of learning 
concepts, different variation tasks are used for different purposes: (1) When forming 
a concept, concept variation is used to explore the common features of different 
instances, and to synthesize the essential characteristics of a concept. (2) When 
assimilating a new concept, to avoid the distraction of non-critical features, non-
concept variation tasks are used to clarify the critical features of the concept. 
(3) When consolidating and applying a concept, procedural variation tasks are used 
to help students build connections among different representations and different 
types of knowledge.

Developing mathematical principles. Regarding learning of principles, different 
variation tasks were used to develop principles at different phases. (1) To discover 
mathematics principles, multiple instances are used to identify the invariant features 
of different instances, and then generalization is made based on the exploration of the 
set of instances. The variation tasks are used to enable students to discover “invariant 
features” within variation tasks. Normally, procedural variation problems are the 
major strategies for discovering the invariant features within varying contexts. (2) 
To build connections among different principles, procedural variation tasks are 
used to discover proofs of the principles and build an interconnected knowledge 
network. (3) To apply principles, procedural variation tasks are used to discover 
the consistency of different representations, and build knowledge interconnections.

Developing mathematical skills. With respect to acquiring mathematical skills, 
practicing variation problems (procedural variation) is a necessary pathway to 
developing mathematical skills in applying mathematics concept and principles. 
Variation tasks are used to develop mathematical skills at different stages. These 
variation tasks build on basic concepts, formulas and figures and are presented 
progressively, from a situation with which students are familiar, via changing types 
of problems, finally to situations that are unfamiliar for students. Solving these 
variation problems could develop mathematical skills in applying concepts and 
principles within various situations.

Developing mathematical thinking methods. Mathematical thinking methods 
is a type of strategic knowledge that is implicit, generalizable, and enlightening. 
Textbooks adopted the design principle that “mathematical thinking methods should 



STRATEGIES FOR USING VARIATION TASKS IN SELECTED TEXTBOOKS

237

be reflected through mathematical content”. Through variation and transformation 
in representation of mathematical content, mathematical thinking methods are 
introduced implicitly. The use of procedural variation tasks helps students discover 
and form problems, analyze and solve problems, and experience approaches 
to learning mathematics. In addition, variation problems provide students an 
opportunity to judge and make decisions based on different conditions.

DISCUSSION

This study shows that in the selected textbooks, systemic variation tasks (procedural 
and conceptual variations) are used to develop mathematical concepts, principles 
and mathematical skills and mathematical thinking methods. Both cognitive theory 
(Ausubel, 1968) and variation theory (Gu et al., 2004; Marton & Booth, 1997) 
argue the positive roles of these variations for students’ meaningful learning. 
Teaching through variation is a long-standing and daily used teaching strategy, 
and Chinese teachers heavily rely on mathematics textbooks. Thus, the textbooks 
that include purposefully designed variation problems provide valuable and user-
friendly materials for teachers to adapt. The consistent use of variation problems in 
textbooks and in classroom instruction provides strong support for students’ learning 
that may provide further explanation of Chinese students’ excellent performance of 
mathematics on international comparative assessment (OECD, 2012).

However, there is little empirical study on the relationship between use textbooks 
with variation problems and teaching through variation and student learning outcomes 
(Wong et al., 2009). More empirical studies in this area are needed. In addition, 
regarding compiling textbooks, there are several issues that need to be addressed. 
First, since there are substantial differences between algebra and geometry, how 
should design variation tasks be designed that reflects these differences? In geometry, 
the truthfulness of many propositions can be judged based on visual representations. 
However, in algebra, a proposition can only be justified based on algebra structure 
and formula. It is an inductive construction process. How can these differences be 
reflected in design of using variation tasks? Secondly, to what extent are the variation 
problems conducive to student learning? Less variation tasks may be not enough to 
explore critical features of a learning object, while too many variation problems may 
distract students’ learning. So the appropriateness of design variation tasks is still a 
challenge when compiling textbooks.

FINAL REMARK

This study reveals some characteristics of the use of variation tasks in textbooks, 
which aims to develop mathematical concepts, principles, skills and mathematics 
thinking. The framework used in this study may provide a useful tool for further 
studies. More studies in this area are needed to provide a comprehensive picture about 
the use of variation tasks in textbooks. In addition, it will be interesting to examine 



J. ZHANG ET AL.

238

the relationship between textbooks used and classroom instruction regarding use of 
variation problems and their effect on students’ achievement.
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LIPING DING, KEITH JONES AND SVEIN ARNE SIKKO

12. AN EXPERT TEACHER’S USE OF  
TEACHING WITH VARIATION TO SUPPORT 

A JUNIOR MATHEMATICS TEACHER’S 
PROFESSIONAL LEARNING

INTRODUCTION

Our study concerns an important issue raised by recent studies of teacher professional 
development (TPD); that of the process of teacher change. As long ago as 2002, 
Clarke and Hollingsworth pointed out that the key shift in TPD is “from programs 
that change teachers, to teachers as active learners shaping their professional growth 
through reflective participation in professional development programs and in 
practice” (2002, p. 948). More recently, Goldsmith, Doerr and Lewis (2014) have 
highlighted that in many existing TPD studies, teachers’ learning has typically been 
treated as an indicator of the effectiveness of the TPD programme rather than the 
primary object of inquiry. Their research synthesis shows that, to date, few studies 
have focused on the processes or mechanisms of teachers’ learning. Similarly, the 
latest report from The New Teacher Project (2015) suggests that despite considerable 
investment in TPD, the evidence base for what actually helps teachers improve 
remains very thin. Consequently, there is still much to learn about how teachers 
develop knowledge, beliefs, or instructional practices.

More particularly, the success of pupils from Shanghai, China, in the recent PISA 
(Programme for International Student Assessment) study has made it important 
to understand how teacher learning takes place in Shanghai. Our Lesson Design 
Study (LDS), which focuses on primary school mathematics teacher professional 
learning through school-based teaching research group activities on lesson design 
and action, is being conducted in Shanghai (see Ding et al., 2013, 2014, 2015). 
In this chapter, our research question focuses on how a Chinese expert teacher in 
Shanghai used the idea of teaching with variation (Gu, Huang, & Marton, 2004) to 
support a junior teacher (with three years of teaching experience) to develop certain 
ways of reflecting on her teaching.

LITERATURE BACKGROUND

Given our research question concerning the expert teacher’s use of teaching with 
variation to support a junior teacher to improve her teaching, in this section we 
chiefly focus on two themes within the existing literature that are relevant to 
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our study: one is teaching with variation; the other is teachers’ learning through 
the social interaction processes within the professional community that leads to 
sustained learning, together with an understanding of the role of the mentor (or 
‘knowledgeable other’).

Teaching with Variation

Teaching with variation (变式教学 Bian Shi Jiao Xue in Chinese) has long been widely 
practiced by mathematics teachers in China (e.g., Ding et al., 2015; Gu, Huang, & 
Marton, 2004; Huang, Mok, & Leung, 2006; Li, Peng, & Song, 2011; Sun, 2011). 
In Gu’s early work (the ‘Qingpu experiment study’ led by Gu from 1977 to 1994 in 
collaboration with a number of teachers and researchers and focused on improving 
the effectiveness of teaching and learning of mathematics in the Qingpu district of 
Shanghai), Gu (1994) noted that the most effective mathematics teachers were those 
who were able intentionally to arrange what might best be called ‘multiple layers of 
teaching and learning’. Accordingly, Gu, Huang and Marton (2004, p. 319) consider 
that mathematics teaching largely consists of two types of activities: teaching 
declarative knowledge (i.e., concepts) and teaching procedural knowledge (i.e., 
processes). They identify and illustrate two forms of teaching with variation adopted 
in the two types of mathematics teaching activity, namely conceptual variation and 
procedural variation. Within conceptual variation, there are two means of variation: 
(1) concept variation (i.e., varying connotation of a concept); (2) non-concept 
variation (i.e., giving counterexamples). Thus, conceptual variation emphasizes 
understanding concepts from multiple perspectives. In tandem, procedural variation 
highlights the formation of a hierarchical system of the learner’s experiencing 
process in unfolding mathematics activities, which include steps and strategies for 
transferring/exploring. In the process of problem solving, for instance, there are 
three procedural variation approaches: (1) varying a problem; (2) multiple methods 
of solving a problem; (3) multiple applications of a method (for more details see Gu, 
Huang, & Marton, 2004, p. 324).

Gu (2014) further explains that it is the procedural variation that plays a key role as 
Pudian (铺垫); that is, in setting up a proper potential distance between previous and 
new knowledge in a student’s learning. Akin to the notion of ‘scaffolding’, Pudian 
means to build up one or several layers so as to enable learners to complete tasks that 
they cannot complete independently. In this chapter we aim, in particular, to develop 
a deeper understanding of how the expert teacher’s concrete ideas of teaching with 
variation were used in helping the junior teacher to develop a deep understanding of 
the teacher’s role of setting up Pudian to engage all students in classroom learning.

Teachers’ Individual Learning in the Professional Community

In the recent TPD studies there is a growing recognition of the dual nature (both 
individual and collaborative) of teachers’ professional learning (e.g., Murray, 
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Ma & Mazur, 2009; Obara, 2010; Neuberger, 2012; Goos, 2014). Moreover, existing 
studies have noted that features of the individual teacher’s learning, and of the 
collaborative community within which they work, can be culturally-dependent. In 
the years since Berliner (2001) noted that lesson study (or coached performance) 
was limited to some Asian countries, these forms of deliberate practice are now 
much more widespread (e.g., Hart et al., 2011). As we are interested in practice in 
China, here we chiefly refer to relevant studies of the concept of teacher professional 
development, the deliberate practice of particular kinds of school-based TPD models, 
and the notion and role of an expert teacher in China (e.g., Huang & Bao, 2006; Han, 
2013; Li, Chen, & Kulm, 2009; Wong, 2012; Zhang, Xu, & Sun, 2014).

Zhang et al. (2014) point out that, in Shanghai, teacher professional development 
is defined as a process of continuous learning throughout a teacher’s career. 
Commonly, in Chinese schools, each subject teacher belongs to two groups; a 
subject-based teaching research group and a subgroup of this, the lesson preparation 
group – the latter comprising all the teachers in the school who teach mathematics 
at the same grade level (Li et al., 2009). The school-based teaching research group 
(TRG) is the main professional community for teachers, as well as being the basic 
unit at the different levels (i.e., province, county and school levels) of the teaching 
research network within the country (Li et al., 2009; Yang, 2009).

Peng (2007) shows how ‘lesson explaining’, originally a ‘bottom up’ invention 
by teachers for their lesson study in the school-based TRG, has become an effective 
form of TPD particularly for developing teachers’ mathematics subject knowledge 
and the professional community’s shared pedagogical content knowledge. Peng 
illustrates how the fundamental feature of ‘lesson explaining’ – knowing both ‘what’ 
and ‘why’ in mathematics lesson design – leads individual teachers to reflect and 
develop their own subject matter knowledge (in Peng’s case study on the topic of 
probability). Moreover, Peng reveals how the individual teacher gains a deeper 
understanding of mathematics, and develops their pedagogical content knowledge, 
from studying the textbook and through conversations with a mathematics expert 
teacher in the ‘lesson explaining’ community. Other teachers who participated in 
this form of professional activity also commented that they learnt and reflected on 
their own mathematics knowledge and pedagogical content knowledge from hearing 
other teachers articulating their thinking and reflection during the ‘lesson explaining’ 
activity.

Through a study of three lessons on the Pythagoras theorem, Yang (2009) 
analyses how a teacher changed the teaching behaviour during collaborative TRG 
teamwork: the first lesson emphasized applying the theorem, the second justifying 
the proposition, and the third producing propositions. Yang quotes from an interview 
with the teacher that illustrates the teacher’s learning in the TRG:

After the study of teaching, especially the discussion, I think the way of 
teaching is clearer than that in the textbooks. I have known it well. Where a 
question should be given to students and where an emphasis is arranged, and 
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the teaching details guided by master teacher in discussion, are more useful 
compared to my own lesson design. (Yang, 2009, p. 295; original translation)

Han (2013) notes that there are several shared forms of teacher mentoring in 
China, including observing and commenting on the mentees’ lessons, inviting them 
to observe the teaching of the same lessons, and reviewing and revising lesson plan 
drafts through informal and formal discussions. Through the process of mentoring 
and deliberate practice of particular kinds, Han (2013) reports on how one teacher’s 
skill in designing a good display on the classroom board was enhanced, while 
another teacher improved her skill in creating a clear sequence for the lesson that 
had a suitable structure to promote student learning, and approached instruction with 
variation.

Li, Huang and Yang (2011) highlight that ‘expert teachers’ in China are not just 
experienced teachers; they are part of the teaching culture in China and also play 
an important role in nurturing that culture. Moreover, Yang (2014) differentiates 
the multiple roles that an expert teacher plays in China: expert in teaching (i.e., 
organizing good teaching processes), in researching (i.e., conducting teaching 
research and publishing papers in professional and academic journals), in teacher 
education (i.e., mentoring non-expert teachers and facilitating non-expert teachers’ 
professional development), in scholarship (i.e., having a profound knowledge base 
in mathematics and other areas), in examining (i.e., being able to pose examination 
problems), and in being an exemplary model for students and colleagues.

Huang, Gong and Han (in press) highlight the critical role played by 
‘knowledgeable others’ (i.e., university professors, subject specialists, etc.) during 
the lesson study process. It is exactly the mechanisms of how these ‘knowledgeable 
others’ work with practicing teachers and develop the teachers’ professional 
knowledge and skills through mentoring during lesson study that is the focus of this 
chapter.

THEORETICAL FRAMEWORK

There has been criticism that models of professional development oversimplify both 
teaching and teacher professional growth (e.g., Opfer & Pedder, 2011). We support 
Clarke and Hollingsworth’s (2002) view that teachers’ professional growth is more 
likely to proceed through a series of incremental changes than by a linear path from a 
single professional development experience via a change in practice to improvement 
of student outcomes.

We use Clarke and Hollingsworth’s (2002) Interconnected Model as a tool for 
categorising the teacher change data we have accumulated in our study. Clarke and 
Hollingsworth’s (2002) model conceptualises individual teacher change within four 
distinct domains: the personal domain (teacher knowledge, beliefs and attitudes), 
the domain of practice (professional experimentation), the domain of consequence 
(salient outcomes), and the external domain (sources of information, stimulus or 
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support) (p. 950). The Interconnected Model particularly identifies the mediating 
processes of ‘reflection’ and ‘enactment’ as the mechanisms by which change in 
one domain leads to change in another. The term “change sequences” (p. 958) is 
employed when change in one domain leads to change in another, while the term 
“growth networks” (p. 958) is used to highlight the occurrence of change that is 
more lasting change, and thus signify professional growth.

While the Interconnected Model recognizes the multiple growth pathways 
among the domains, it does not suggest the specific ways of reflecting and enacting. 
Here we further refer to Gu and Wang’s (2003) ‘Action Education’ Model (briefly 
named as the Keli Model in Huang & Bao, 2006), which enables us to examine 
the ‘change sequences’ and ‘growth networks’ (Clarke & Hollingsworth, 2002) 
of particular kinds through lesson study activities. The Keli Model emphasizes an 
exemplary lesson as a means of teacher’s action (or enactment), and a whole process 
that includes three stages of teaching action and two main teacher’s reflections 
between the three teaching stages. Huang and Bao (2006) illustrate the whole process 
of the Keli model as three stages.

For the first stage, called ‘existing action’ (or existing enactment), the individual 
teacher designs the lesson independently and delivers the lesson publicly to a class of 
students observed by all the Keli group members. After the lesson, the Keli members 
provide immediate feedback on the teacher’s lesson in the first Keli meeting, with 
the aim to help the individual teacher to reflect and identify the gap between the 
existing experiences and the innovative design suggested by the curriculum and 
textbook.

During the second stage, called ‘new design’, the teacher revises the lesson design 
according to the Keli members’ feedback and re-delivers (or re-enacts) the lesson in 
another class. The Keli members observe the teacher’s second lesson enactment. 
After the second lesson, the Keli members’ discussion with the teacher aims to help 
the teacher to develop a reflection on the gap between the new design and effective 
classroom practice (as suggested by the curriculum and textbook) and to improve 
the lesson design and enactment further. Through the third stage, called ‘new action’ 
(or new enactment), the teacher is helped to develop a deep understanding of how 
students learn in a new style and attain a high quality of learning that is consistent 
with the goals of the curriculum and textbook.

The Keli Model is also concerned with building up a collaboration that enables 
teachers and researchers to study theoretical ideas, design innovative learning 
situations, and reflect on the enactments of teaching and learning within the Keli 
community (Huang & Bao, 2006). As we have illustrated, we see a teacher’s ‘action’ 
in the Keli Model as close to the term ‘enaction’ in the Interconnected Model of 
Clarke and Hollingsworth (2002, p. 951), in that the teacher’s action represents the 
enactment of something that the teacher has experienced and learned in the Keli 
community.

In our lesson design study (LDS), we combine both the Interconnected 
Model (Clarke & Hollingsworth, 2002) and the Keli Model (Gu & Wang, 2003; 
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Huang & Bao, 2006) for examining teachers’ potential change sequences and growth 
networks in our lesson design study activities. That is, during the lesson study process, 
we examine the mediating processes (teachers’ enactments and reflections) that link 
the four domains: teacher’s lesson design (personal domain), teacher’s classroom 
action (domain of practice), the interactions in the TRG (external domain), and 
students’ classroom learning (domain of consequence).

To illustrate the whole process of our LDS model we use junior teacher Jiyi’s 
(all names are pseudonyms in this chapter) three main teaching cycles that we 
studied from September to December in 2013 (see L1, L2 & L3 in Figure 1). The 
first cycle (L1) includes Jiyi’s initial stage of lesson design, lesson enactment and 
reflection. The second cycle (L2) represents the second stage of the re-designed 
(i.e., re-enacted) lesson of L1. The third cycle (L3) represents the re-redesigned 
(i.e., re-re-enacted) lesson of L1. Each stage (each cycle in Figure 1) includes a 
set of the school-based TRG activities, such as Jiyi’s classroom teaching, lesson 
explaining (Peng, 2007) and our study members’ observation and the mathematics 
TRG meetings. In our LDS model we use the term ‘cycle’ to address the nature of 
teaching as both comprehension and reasoning, and as transformation and reflection 
(Shulman, 1987). In Figure 1, T means teacher, LD1 means lesson design 1, action1 
is teaching in lesson 1, reflection1 is teacher’s reflection after lesson 1, TRG1 is 
school-based TRG meeting after lesson 1, and so on.

Figure 1. The three main cycles of the LDS model (including L1,L2 L3)

METHODOLOGY AND DATA

Our ongoing LDS study is being conducted through a school-based TRG in a local 
school located in the western suburb of Shanghai. The school is an international 
school (Grades 1-9, students age from 6 to 15 years old) funded by the China Welfare 
Institute with the key mission of launching innovative and laboratory educational 
classroom studies aimed at improving the quality of compulsory education for 
children in the country. The school consists of elementary (Grades 1-5) and lower 
secondary sections (Grades 6-9). Each section has two divisions; one is the domestic 
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division, mainly for Chinese-speaking students; the other is the multi-culture division 
for both home and overseas students with English as the first language. Our study 
is conducted within the mathematics TRG in the elementary section. In total, in the 
elementary section there are 295 students in the domestic division, and 364 students 
in the multi-culture division. Each class has around 25 students. Students are mixed 
(both gender and academic attainment) in each class. There are seven mathematics 
teachers in the elementary section.

Teacher Jiyi had about three years elementary mathematics teaching experience 
at the time of our study. She was teaching mathematics to Grade 1 and 2 classes. 
All of her classes at the time of this study were in the domestic division. The class 
size ranged from 23 to 25 students. In general, students’ learning attainment was 
above average for the school according to the school annual assessment.

Mei is an expert teacher invited by the school to support teachers in our study. The 
term ‘expert teacher’ in our study recognizes that Mei is not only an effective teacher 
of mathematics, but also that she plays the multiple roles that are described by Yang 
(2014, pp. 271–272). She has over 30 years teaching experience in elementary 
mathematics teaching in her school district. She has taken the leadership of the in-
service elementary mathematics teachers TPD program at her school district level 
since 2009.

In reporting our findings, we present an analysis of the mediating processes (Jiyi’s 
actions/enactments and reflections) that link Clarke and Hollingsworth’s (2002) 
four domains through the LDS model (see teacher’s lesson design, action, reflection 
and TRG meetings in Figure 1). To develop a deep understanding of individual 
teacher’s learning and professional growth, our particular focus is to examine the 
interpretive acts and change phenomena that the teacher considered salient (Clarke 
& Hollingsworth, 2002). Thus, our analysis is primarily based on the following data 
sources: Jiyi’s teaching diary; her reflection notes; her lesson plans (her own design 
and her redesigned versions); video transcripts of interactions in the TRG meetings; 
the mathematics textbook; and transcripts of the videoed lessons.

Our data analysis chiefly focused on the following two questions: How the expert 
teacher’s main ideas of teaching with variation were used to create the conditions 
required to (i) stimulate change sequences, and (ii) foster the junior teacher to reflect 
on her teaching and changes (as learning) from certain perspectives towards the 
transformation into growth networks. In terms of the analysis of teaching with 
variation, we mostly focused on the type of procedural variation. We selected this 
focus because of our aim to understand more sufficiently why Mei emphasized the 
idea of ‘not to lose the chain in learning mathematics’ (Ding et al., 2015) in her 
guidance on lesson design that led Jiyi to make changes in her re-designed lesson 
and follow-up actions with her class.

Yang and Ricks (2012) argue that ‘crucial teaching events’ analysis (which is 
concerned with patterns of the interaction between the teachers and the students, 
and with the professional judgement of the teachers) is typical in TRG activities. We 
thus refer to two kinds of analysis of the ‘critical incidents’ in our analysis of the 
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interpretive acts and change phenomena that both Mei and Jiyi considered salient in 
the TRG meetings, specifically: (1) analysis of the ‘three points’ of the lesson plans, 
namely the lesson’s ‘key point’ (重点 Zhong Dian) (content focus), ‘difficult point’  
(难点 Nan Dian) (learning focus), and ‘critical point’ (关键点 Guan Jian Dian) (teaching 
focus) as these ‘three points’ are used by Chinese teachers when thinking about 
lesson preparation, lesson enactment, observation and reflection (in a typical lesson 
plan, the difficult point and the critical point can overlap); and (2) the identification, 
understanding, and resolution of ‘crucial events’ of the lesson implementation.

FINDINGS

In this section we present the key findings from the initial data analysis of our study. 
In the first part of this section, we focus on the first research question, namely how 
Mei’s main ideas of teaching with variation were used to stimulate Jiyi’s change 
sequences. In the second, we turn to the second research question, namely how the 
junior teacher was fostered to reflect on her teaching and changes (as learning) from 
certain perspectives towards the transformation into growth networks.

Mei’s Use of Teaching with Variation to Guide Jiyi to Redesign L2

1. Using problem variation without consideration of instructional coherence and 
knowledge connections in Jiyi’s lesson 1. In Jiyi’s initial lesson plan and action 
(L1 in Figure 1), she tried the idea of teaching with variation by varying problems 
(see Tasks 1-4 in Figure 2). The four tasks were relevant to two learning goals of 
the lesson: (1) to make sense and understand division with remainder in hands-on 
operations (e.g., drawing, sharing candies); (2) to explore the relationship that a 
remainder is smaller than a divisor. Noticeably, in Jiyi’s lesson plan these two goals 
were treated both as the key point and the difficult point of the lesson (here the 
difficult point overlapped with the critical point).

After Jiyi’s action in the first lesson, the teaching research group meeting (TRG1) 
took place (illustrated in Figure 1). Based on the classroom observation of lesson 1, 
Mei considered that Jiyi’s teaching in lesson 1 was likely to lead the students into 
rote learning. Mei explained that Jiyi did not really understand the role of problem 
variation in developing lesson coherence through multiple layers of teaching (Mei’s 
own word ‘teaching stage’) for students’ understanding and learning of mathematics. 
Using Mei’s own words in the interaction with Jiyi in the TRG1 meeting, the problem 
variation through the four tasks did not help to develop students’ understanding of 
the concept of ‘division with remainder’—a ‘crucial teaching event’ (Yang & Ricks, 
2012) of the lesson:

Mei:  Generally speaking, your lesson (L1) can be seen through several stages 
(i.e., the four tasks in Figure 2). But you did not really understand what 
should be done in each of the stages. Thus, the lesson lacks coherence. 
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Students did not really understand what the ‘six dots’ (symbol of 
‘remainder’, see Figure 2) meant on the blackboard. They just imitated 
what you did. This is a real example of rote learning. [All translations of 
Jiyi and Mei in this chapter were made by the author team.]

2. Mei’s emphasis on ‘the chain in learning mathematics’ through teaching with 
variation. To help Jiyi develop a deep understanding of teaching with variation 
through intentional and systematic practice, Mei highlighted the ‘crucial teaching 
event’ (Yang & Ricks, 2012) – developing a deep understanding of the concept 
of ‘division with remainder’ through the instructional coherence and mathematics 
knowledge connections in the lesson; in Mei’s own words, “not to lose the chain in 
learning mathematics” (Ding et al., 2015). Mei pointed out that the chain could be 
developed according to the teaching framework of three layers of knowledge, which 
is commonly shared by teachers in China. The specific teaching terms of the three 
layers of knowledge are (see Figure 3): (1) previously learned knowledge (旧知 Jiu 
Zhi); (2) key points of new learning goal of the lesson (新知识点 Xin Zhi Shi Dian;  
教学目标 JiaoXue MuBiao); (3) future learning according to textbook and curriculum  
(后续学习 Houxu Xuexi; 教材 JiaoCai; 教学大纲 JiaoXue DaGang).

This teaching framework (illustrated in Figure 3) provided guidance for Jiyi 
to develop understanding of the connections of mathematics knowledge of two 
kinds; namely both declarative knowledge (in this case, concepts such as ‘division 
with remainder’, ‘sharing’, ‘division’, etc.) and procedural knowledge (in this 
case, the process of division operation) (Gu et al., 2004). Moreover, it enabled 
Jiyi intentionally to practice and reflect on teaching with variation at two specific 

Figure 2. The main lesson structure of lesson 1 (L1)  
[note that the six dots ….. indicates the remainder]
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levels: the first level was the question of ‘how’ to teach, namely to simultaneously 
set up the multiple layers of mathematics knowledge in the re-designed lesson; the 
second level was the question of ‘why’ to teach in such a way, namely the theoretical 
elements of teaching with variation such as ‘procedural variation’, and Pudian, ‘the 
proper potential distance’ between students’ previous knowledge and the intended 
learning goals of the lesson and future learning goals (Gu et al., 2004; Gu, 2014; 
Ding, Jones, Mei, & Sikko, 2015).

Noticeably, Mei strongly helped Jiyi to develop a deep understanding of the 
connections between two aspects of students’ previous knowledge: (1) to analyse 
students’ actual learning (in Mei’s own words, ‘what have the students learned?’), 
which is the anchoring part of knowledge (i.e., previous knowledge underpinning 
learning of the new knowledge and the exploration of new problems, Gu et al., 2004); 
(2) to analyse the content order prior to the lesson topic in the textbook (see Figure 
3). That is, the object of Jiyi’s learning is not to critique the problem/task design in 
the ways that might be done with a poorly-produced textbook, or with questions the 
teacher has chosen themselves, but to build the coherence of a lesson around given 
topics in the textbook. This means that the purpose of the ‘crucial teaching event’ 
(Yang & Ricks, 2012) highlighted by Mei here is for Jiyi to understand, and exploit 
the potential for using, the problems/tasks given in the well-designed textbook with 
her students.

3. Teaching with procedural variation for establishing the chain of learning goals 
in Mei’s guidance of lesson redesign. We use Figure 4 to show the chain of three 
key learning goals suggested by Mei (for Mei’s own design of the same lesson 
topic, see Ding et al., 2015) – a concrete example for improving the lesson design 
of the ‘crucial teaching event’ (Yang & Ricks, 2012) that Mei discussed with Jiyi 
in TRG1. Noticeably, Mei pointed out that while the first two learning goals are 
the key points, the second and the third learning goals are the difficult points of 
the lesson (here the difficult points and critical points overlapped) (see Figure 4). 
Mei deliberately structured the lesson into three stages, in which each stage had its 
own learning goal but each progressively developed students’ deep understanding of 
the connections between the concept and the operation of ‘division with remainder’ 
through mathematics activities. We consider this process of Mei’s intentional, 
systematic, structured and effortful practice as teaching with procedural variation 
(Gu et al., 2004).

Figure 4 can be read together with Figure 2 so as to see the changes of learning 
goals through the multiple teaching stages that Jiyi later adopted in lesson 2 (as 
illustrated in Figure 1). For the purpose of developing a deep understanding of Jiyi’s 
change sequences as learning in the later sections, in this section, we chiefly focus 
on Mei’s ideas of “not to lose the chain in learning mathematics” (Ding et al., 2015), 
namely teaching with procedural variation (Gu et al., 2004) through the three tasks 
for the first learning goal. In a later section of our analysis of Jiyi’s learning, we 
further trace the intentional practice with procedural variation from the first three 
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tasks to the fourth task in the second learning goal, together with an explanation of 
the use of procedural variation to establish the chain for the third learning goal (see 
Figure 4).

Here we use two quotes from the interactions between Mei and Jiyi in TRG1 to 
show how Mei explained to Jiyi about the ‘crucial teaching event’ (Yang & Ricks, 
2012), that of developing students’ deep understanding of the connections between 
the concept and the operation of ‘division with remainder’ by deliberately setting up 
the multiple layers of teaching with procedural variation. In the first quote (about 
teaching Task 1 in Figure 4), Mei emphasized that the core teaching stage was 
to identify the ‘anchoring’ part of knowledge (Gu et al., 2004); in this instance, 
students’ existing knowledge of the connections between the concepts of division 

Figure 3. The teaching framework of three layers of knowledge  
in Mei’s guidance to Jiyi of redesigning L2  

[MT = multiplication table]
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as sharing and as the reverse operation of multiplication. Using Gu et al.’s (2004) 
theoretical notion, the teaching focus was to set up Pudian (Gu et al., 2004; Gu, 
2014) – students’ previously learned knowledge of the meaning of numbers 12, 3, 4 
in the division form and the use of the method of the multiplication table (MT) to try 
the division operation in Task 1 as the ‘anchoring’ part of knowledge for learning the 
new concept and operation of ‘division with remainder’ (see Figure 4).

Mei:  The first learning goal is preliminarily to know what division with 
remainder is. The learning process can be divided into two stages. The 
first stage is of the concept of ‘remainder’, the other is of the fact that the 
remainder is smaller than the divisor. In Task 1, the problem is to share 12 
peaches. Each monkey is to have 3 peaches. How many monkeys can there 
be? The purpose of this task is to lead students to review their previously 
learned knowledge. The teacher should ask students what the numbers 
12, 3, 4 mean after they form the division for solving the problem. The 
second stage is to review how to use the method of the multiplication table 
to get the quotient [to see the relation of dividend, divisor and quotient in 
the multiplication operation]. Students should not recite each statement 
of the factor 3 [i.e., one three is three, two threes are six and so on; here 
Mei is suggesting that students should have learnt to see the relation of 
dividend, divisor and quotient in the multiplication table].

Noticeably, in the core of this lesson, Mei did not merely suggest a focus on the 
repeated subtraction or equal-sharing models (Gu & Wong, 2003) for making sense of 
the concepts of division and quotient, for this was the students’ existing knowledge. 

Figure 4. The key learning goals and tasks suggested by Mei
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Rather, Mei’s intention was focussed on using students’ existing knowledge of a 
specific kind – the concept of division as sharing and as the reverse operation of 
multiplication – as the anchoring part of knowledge (Pudian) for developing a 
deep understanding of the connections of the new concept and the new operation of 
‘division with remainder’ – this being the ‘crucial teaching event’ (Yang & Ricks, 
2012) of the lesson. For Mei, the proper potential distance between previous and new 
knowledge in this lesson was for students to see the same kind of relationship between 
factors and products in the multiplication table and the dividend, divisor and quotient 
when varying in Task 2 (see Figure 4) and later in Task 4 at the second and the third 
stages (see the Goals 2 and 3 in Figure 4) of learning of the operation of division with 
remainder. The implicit Pudian (Gu, 2014) becomes evident when Mei addressed the 
use of students’ such previous knowledge in her explanation of Task 4 for the second 
learning goal (Figure 4) (see the italics we highlight in the quote below).

Mei:  [referring to Task 4 in Figure 4] The second stage is to build up the 
connection of students’ operation of sharing activity to mental 
calculation activity. Here, 11 ÷ 4, while the class keeps drawing pictures 
to understand the quotient, some students would be able to use the 
multiplication table to try the quotient. Then, you [Jiyi] should ask the 
students how they did so. That is, how they think about the statements 
of 4 in the multiplication table. Two four is 8, but there is not 8. What 
to do then? To find a number that is smaller than 11, but closest to 11. 
In fact, the thinking method is the same as in the task of ‘which one is 
the largest’ [see Task1 in Figure 2], but we should use students’ previous 
knowledge. Next, 11  ÷  3 = 3……2. What does each number mean? 
How is the quotient obtained? Students should be trained to think so in 
the calculation procedure.

Identifying the Complexity of Jiyi’s Learning Through the Change Sequences from 
Lesson 1 to Lesson 2

In this section, we show the complexity of Jiyi’s learning through an analysis of three 
types of change sequences from lesson 1 to lesson 2 (as illustrated in Figure 1). Our 
data analysis of change sequences is based on Jiyi’s teaching diary, the interactions 
of Jiyi with Mei in the teaching research group meeting after the second lesson 
(TRG2), and Jiyi’s reflection notes throughout our study. The three types of change 
sequences we identified are: (1) changes within the teacher’s personal domain; (2) 
changes from the personal domain to the practice domain; (3) a mixed picture of 
change sequences across the personal domain and the domain of practice.

1. Changes within the personal domain: Understanding the teaching terms of three 
layers of knowledge for teaching with variation. We found that Mei’s guidance 
“not to lose the chain in learning mathematics” (Ding et al., 2015) in TRG1 first led 
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Jiyi to reflect on her analysis of the textbook and action in lesson 1, and consequently 
to make changes in the learning goals and the lesson structure in the lesson 2 plan. 
Here, we consider the teacher’s lesson plan as an explicit realization of the teacher’s 
personal domain (e.g., evidences of the teacher’s implicit knowledge and beliefs of 
teaching and learning mathematics). We illustrate the change sequence within Jiyi’s 
knowledge domain in Figure 5, where E = external domain; K = teacher’s personal 
(knowledge) domain; P = practice domain; S = salient outcome; P-L1 = practice in 
L1; K-L2 = teacher’s L2 lesson plan.

Figure 5. A change sequence made by Jiyi through L1 cycle (see Figure 1)

The first two steps in this change sequence (marked 1 and 2 in Figure 5) is of Jiyi’s 
learning through her reflection on Mei’s guidance of using the teaching framework 
with specific teaching terms of three layers of knowledge for analysing the textbook 
in the first teaching research group meeting (see TRG1 in Figure 1): (1) previously 
learned knowledge (旧知 Jiu Zhi); (2) key points of new learning goal of the lesson  
(新知识点 Xin Zhi Shi Dian; 教学目标 JiaoXue MuBiao); (3) future learning according 
to textbook and curriculum (后续学习 Houxu Xuexi; 教材 JiaoCai; 教学大纲 JiaoXue 
DaGang) (see Figure 3). In doing so, Jiyi focused on the ‘crucial teaching event’ 
(Yang & Ricks, 2012) of the lesson – developing students’ deep understanding of the 
connections between the new concept and operation of ‘division with remainder’. In 
her teaching diary, Jiyi wrote as follows:

After an analysis of the textbook, students have learned the following 
knowledge before the lesson ‘division with remainder’: (1) multiplication of 
digits from 1 to 9; (2) the concept of ‘sharing’; (3) division calculation. The 
key points of knowledge of this lesson (L2) are: (1) the concept of ‘remainder’; 
(2) the meaning of each number in the form of division with remainder; 
(3) the relationship that remainder should be smaller than divisor; and 
(4) the calculation process of division with remainder. Based on the previous 
knowledge, students are to learn the new knowledge. To build up the chain of 
these knowledge points, I made considerably large changes in the lesson plan. 
[Italics used to highlight key phrases]

The phrases such as “students’ learned knowledge”, “the key points of knowledge 
of the lesson”, “based on previous knowledge, to learn new knowledge”, and “to 
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build up the chain of these knowledge points” (highlighted in italic), illustrate that 
Mei’s guidance on the use of the teaching framework of three layers of knowledge 
led Jiyi to develop a specific form of reflection on Mei’s idea of teaching with 
variation, namely “not to lose the chain in learning mathematics”.

Moreover, we noted that in her lesson 2 plan Jiyi adopted the three learning goals 
and the main teaching stages and tasks similar to Mei’s guidance in TRG1 (see Figure 
4). The third step in this change sequence (marked 3 in Figure 5) shows that changes 
in Jiyi’s understanding of the teaching framework of three layers of knowledge (see 
Figure 3) for building up the coherence of knowledge chain in students’ learning led 
her to change the learning goals of the lesson plan.

2. Changes from the personal domain to the practice domain: Learning precise 
teaching language and questioning strategy in teaching with procedural 
variation. To understand Jiyi’s learning as an outcome from the first teaching 
cycle (illustrated as L1 in Figure 1), Mei suggested a ‘lesson explanation’ (Peng, 
2007) activity (TRG2 in Figure 1) before Jiyi went on to teach the second 
lesson (L2). While there are considerable positive changes that took place in 
Jiyi’s learning, here we focus on Jiyi’s learning to use more precise teaching 
language and to focus on the learning goal underlying Mei’s idea of teaching with 
procedural variation, namely “not to lose the chain in learning mathematics” (Ding 
et al., 2015).

Figure 6. A change sequence made by Jiyi during L2 circle (see Figure 1)

The first two steps in this change sequence (marked as 1 and 2 in Figure 6) are an 
indication that Jiyi seemed to develop a specific way of reflection, or understanding, 
of teaching with procedural variation under Mei’s support in the TRG2 meeting. 
That is, Jiyi learned to be more intentional and effortful in using precise teaching 
language when she explained how she was to teach Task 1 (see Task 1(1) 12  ÷  2 = 6 
in Figure 4). Here, we provide the key interactions between Jiyi and Mei of teaching 
Task 1 as follows (with italics used to highlight key parts):
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Jiyi:  Winter is coming; all animals are preparing food for the winter. Let’s 
visit the rabbit family and take a look of what they are doing.

Mei:  This is a nice start of the lesson. You may consider changing your word 
here. That is, not to ask students what the rabbit family is doing, but ask 
them how the rabbits are to share the carrots.

Jiyi:  Rabbit mother brings 12 carrots to her two baby rabbits to share. I will 
ask students how many carrots each baby rabbit would have. Then I will 
ask who can give a mathematical formula and calculate it (12  ÷  2 = 6). 
After students give answers, I will invite them to explain the meaning of 
the numbers 12, 2, and 6. For instance, 12 represents 12 carrots, and 2 
represents 2 baby rabbits.

Mei:  It’s better not to say ‘12 represents’, but to say ’12 means.’ [Note: 
In Chinese, the word ‘represent’ (代表 Dai Biao) does not request 
an explicit explanation or reasoning – for instance, a picture can 
‘represent’ a meaning, however vague the meaning may be – while the 
word ‘mean’ (表示 Biao Shi) clearly requests an explicit explanation or 
reasoning.]

Mei’s emphasis on the use of the precise teaching language such as share and means 
developed Jiyi’s understanding of the important role of teacher’s precise teaching 
language skills to enable students to focus on the key point of learning in the task, 
in this instance, the ‘crucial teaching event’ (Yang & Ricks, 2012) of the lesson—
developing students’ deep understanding of the connections between the new 
concept and operation of ‘division with remainder’.

Next, Jiyi explained how she would teach when varying Task 1(2) (see Task 1(2), 
12 ÷ 3 = 4 in Figure 4). Mei’s explanation intends to lead Jiyi not only to address 
the calculation procedure in teaching, but also deliberately to use the questioning 
strategy to encourage students to explain their calculation method, which was one 
of the key learning goals of the lesson. That is, not only to enable students to know 
‘how’ to do so, but also to understand ‘why’ to do so in the division operation. 
A shift of the calculation method from students’ previous knowledge to the new 
knowledge of the lesson is pinpointed by the teacher’s questions of ‘how’ and 
‘why’ through the teaching with procedural variation (from Task 1(1) to Task 1(2) 
in Figure 4) – a concrete teaching strategy for dealing with ‘the proper potential 
distance’ (Pudian) (Gu et al., 2004; Gu, 2014). Jiyi’s clear statement of the term 
‘Pudian’ in the following extract is evidence that she became aware of students’ 
previous knowledge and learning experience as the anchoring part of knowledge in 
this lesson (with italics used to highlight key parts):

Jiyi:  (Task 1: 12  ÷  3 = 4) Here, I will ask them how they get the quotient 4.
Mei:  If you ask students “how they get the quotient 4”, how would students 

respond in your class?
Jiyi:  I will use ‘Pudian’ by asking them a question about which statement of 

the multiplication table they will use [such as, for instance, one three is 
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three, two threes are six, and so on in the multiplication table]. I expect 
them to respond by ‘three fours are twelve’.

Mei:  Did you emphasize this method in your previous lessons? If students 
do not know how the quotient 4 comes (that is, why 12 ÷ 3 would get 
4), it would be very difficult for you to teach today’s topic. The new 
knowledge in today’s lesson ought to be connected to students’ previous 
knowledge.

Mei:  12  ÷  3 = 4. How the quotient 4 comes? Students should understand the 
[reasoning] method to get 4 here. That is, they need to understand the 
relationship between the divisor and quotient in the multiplication table 
(MT). If the divisor were 3, then they would think of the statement with 
3 in the MT. Why to think of the statement with 3 in the MT? This is 
because it is students’ previous knowledge. And, why would students 
think about the statement ‘three four are twelve’? This is because of the 
relationship between divisor and dividend. Here the dividend is 12, so 
the statement ‘three four are twelve’ is considered.

We further identify that Jiyi adopted Mei’s guidance of using precise language and 
the term ‘Pudian’ as discussed above and intentionally practiced in lesson 2 (see 
the third step in Figure 6). Jiyi’s reflection on her effortful practice with the precise 
teaching language and proper questioning strategy in lesson 2 was also evident in her 
reflection note after lesson 2 as follows:

In lesson 2, I used more precise language, which was more vivid and more 
suitable for lower grade students [Grade 2 in her class]. Teaching should focus 
on students’ thinking development, so the teacher should play the guiding 
role in students’ learning. In teaching the calculation procedure of division 
with remainder, I encouraged students to explain their calculation process by 
questions such as “To think about which set of the statement in the MT (by 
looking at the divisor)?”, “which statement is exactly related to the division?”, 
“why it?”, “how to get the remainder?”, etc.

Significantly, we found that Jiyi particularly showed her willingness towards 
improving her teaching language skills in her reflection note after TRG2 (see the 
forth step in Figure 6). This can be considered as the teacher’s commitment to the 
sustained learning which is a kind of teacher’s potential ‘growth network’ (Clarke & 
Hollingsworth, 2002).

The teacher must be aware of using precise teaching language. Particularly 
to an experienced mathematics teacher, every word should be as precise as 
possible. Though I know that I am unable to be so precise in every word I say 
in my teaching, I am now improving my language towards this goal.

3. A mixed picture of change sequences across the personal domain and the domain 
of practice: The art of teaching with variation. Our data analysis shows a mixed 
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picture of Jiyi’s learning in her reflection and action on tackling the relationship 
between her leading role as teacher and the students’ active learning through teaching 
with variation from lesson 1 (L1) to lesson 2 (L2), as captured in Figure 7.

Figure 7. A mixed picture of change sequence made by Jiyi  
through L1 & L2 circles (see Figure 1)

Here, on the one hand, for the first two steps of the change sequence (labelled 1 
and 2 in Figure 7) Mei’s guidance of teaching with procedural variation in TRG1 
led Jiyi to reflect carefully on the relationship of the three key elements in her initial 
lesson design (L1): textbook, teaching and learning. Jiyi wrote what she learned of 
‘the proper potential distance’ (Pudian) (Gu et al., 2004; Gu, 2014) in her teaching 
diary as follows:

Previously I planned lessons according to my understanding of the textbook 
content. I rarely thought about that I should deliberately connect what students 
already learned to what I was to teach in my lesson plan. Now, I think that it 
is very necessary to do so. Mei’s guidance helped me to understand more that 
teaching should be based on students’ existing learning, in order to help them 
to learn independently. That is, to teach students how to fish rather than giving 
them fish [an ancient Chinese saying]. So I should give students opportunities 
to explain what they see, do and think in the learning process.

Nevertheless, on the other hand, our data analysis of the lesson explanation 
meeting (TRG2 in Figure 1) shows that Jiyi had uncertainties in handling students’ 
learning responses for independent learning, particularly when students’ learning 
responses were not prepared in her lesson plan. Noticeably, it was Mei who helped 
Jiyi specifically to update her knowledge of Pudian by addressing the relationship 
of teaching and learning of two specific kinds (labelled 3 and 4 in Figure 7): one is 
to analyse students’ potential learning problems and alternative ways of reasoning, 
which is related to Simon’s (1995) notion of ‘Hypothetical Learning Trajectory’ 
(HLT); in Mei’s own words ‘knowing what students are likely to understand and 
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respond’ to the teacher’s intentional teaching; the second is to improve teacher’s 
teaching language and questioning skills (i.e., the teaching notion of ‘follow their 
response by questioning’ (追问Zhui Wen), see the quote of Mei’s exchange below) 
to enable students to focus on the learning goal of the mathematical reasoning 
development.

It was difficult for Jiyi to develop students’ understanding through their 
independent learning of the division relationship that a remainder is always smaller 
than the divisor. When Jiyi added one more carrot into the picture for Task 2(1) in 
Figure 4, it was natural for students to see that the additional carrot in the picture 
could not be grouped and should remain as a single carrot. This is evident in the 
following exchange (with italics and bold text used to highlight key parts).

Mei:  First, showing the problem [Task 2(1)] before providing a picture. 
Secondly, encouraging students to guess the result after they formed the 
formula (13 ÷ 3 = ?). After guessing, you can encourage them to prove 
their guess by grouping the carrots in the picture. You should follow their 
response by questioning; for instance, why the single carrot that is left 
cannot be grouped? This question is to encourage them to prove their 
claim. Thus, some students in the class would explain to others in the 
class that it is because each group has three carrots. The one remaining 
carrot is not enough to be counted as a group.

Jiyi:  What shall I do then if some students do not give a clear explanation?
Mei:  That is not a problem. You can invite other students to continue until 

they give a clear explanation. You have to adjust your questions to 
a deeper level of teaching. It is better to invite students to guess the 
result, rather than to tell them the result. If you asked them to tell the 
whole class their result, they may worry about giving a wrong answer. 
But if you encourage a guess, they would not worry about a wrong 
answer, as it is a guess anyway. Teaching is an art. Teacher’s language 
plays a very important role in engaging students into deep learning 
interactions.

In analysing the interactions above, teaching with variation entails not only the 
precise teaching language for developing students’ mathematical reasoning and 
understanding, but also an art of teaching language for engaging students into active 
and independent learning processes. On the one hand, as shown above, Mei’s precise 
teaching language, like the words ‘guess’, ‘prove’, ‘why’, and ‘explain’ illustrate 
the important role of teacher’s precise language in the development of students’ 
mathematical reasoning and understanding. On the other hand, the teacher’s 
questioning such as ‘follow their response by questioning’, plays a significant role 
to enable students to play an active role in their own individual learning and the 
whole-class-shared mathematical reasoning. Mei’s use of the two different kinds of 
teaching language shows a sophisticated level of teaching with variation.
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The mixed picture of Jiyi’s learning is further identified in her learning and 
reflection on the importance to ‘follow their response by questioning’. On the one 
hand, Jiyi’s ‘Oh, Yes!’ as learning is evident in the following interaction with Mei 
regarding Task 2(3) (with italics used to highlight key parts of Mei’s response):

Jiyi:  If all students can group 15 carrots into 5 groups and no one says 4 
groups and 3 carrots left, what I should do?

Mei:  Then you can ask them why not. Students would tell you that because 
the remaining 3 carrots can still be grouped. Then you should follow up 
their response by questioning “why in the last couple of examples, the 
remaining carrots were not grouped, but now the remaining ones can be 
grouped”.

Jiyi:  Oh, yes! This question is very important!

On the other hand, nevertheless, Jiyi confessed her difficulty in such questioning 
if students’ learning responses were out of her lesson plan; that is, the questioning 
of ‘follow their response by questioning’ is used in the dynamic teaching process 
and requests a teacher’s impromptu action in the authentic class. Jiyi wrote in her 
reflection note after TRG2 as follows:

The lesson plan is only the teacher’s hypothesis of students’ learning. But I am 
not sure of what to do if some learning situation out of my lesson plan happens 
in the class.

The fifth step in Figure 7 thus represents a mixed picture of Jiyi’s changes and 
difficulties as we have illustrated above. She understands some specific ways of 
teaching with variation (e.g., learning of ‘the proper potential distance’, Pudian, 
Gu et al., 2004; Gu, 2014), yet she has difficulty making changes in action (e.g., 
teacher’s language of two levels). As conveyed in Jiyi’s teaching diary after L2, 
though she developed a considerable understanding of the teacher’s leading role in 
the development of students’ independent learning, it was difficult for her to do so 
in action.

During the process of redesigning the lesson, I found that the amount of 
content of this lesson is considerably large. After the lesson explanation 
meeting, I understand that I should guide students to explore by themselves 
the relationship that the remainder is smaller than the divisor. But I still find it 
difficult to do so to enable students to make correct conclusion from their own 
exploration.

DISCUSSION

We have identified three elements for our discussion of the expert teacher’s use of 
the idea of teaching with variation to support a junior teacher’s professional learning. 
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The first part examines the expert teacher’s teaching notions that helped the junior 
teacher to learn the theoretical terms of teaching with variation. The second part of 
the discussion clarifies the special role that teaching language plays in setting up 
Pudian in the dynamic process of teaching with procedural variation. The final part 
highlights the complexity of teacher’s professional learning.

The Expert Teacher’s Use of Common Teaching Notions to Support the  
Junior Teacher’s Learning of Teaching with Variation

As our data analysis in the foregoing section showed, the expert teacher (Mei) used 
teaching notions that teachers commonly share and understand in China to create the 
learning conditions for the junior teacher (Jiyi) to reflect and practice on the specific 
ways of teaching with variation. In Table 1 we highlight the key theoretical terms 
of teaching with variation (Gu et al., 2004) that the expert teacher Mei guided the 
junior teacher Jiyi to learn and to understand in lesson design and action. In Table 2 
we summarize the uniqueness of the expert teacher’s teaching notions that helped 
the junior teacher to develop an understanding of the relevant theoretical terms of 
teaching with variation (as shown in Table 1).

Table 1. The theoretical terms of teaching with variation

Theoretical terms (Gu et al., 2004)

Variation
Teaching with variation
Procedural variation
The proper potential distance and the 
anchoring part of knowledge
Pudian (akin to scaffolding)

The Complexity of Teaching with Procedural Variation: Building Up the Chain of 
Knowledge and Setting Up ‘Pudian’ in the Process of Dynamic Teaching

The expert teacher’s teaching notions, summarised in Table 2, created learning 
opportunities for the junior teacher to understand the complexity of the theoretical 
notions of teaching with variation, in particular teaching with procedural variation 
(see Table 1). As pointed out by Gu et al. (2004), procedural variation plays a key 
role as Pudian in setting up a proper potential distance between previous and new 
knowledge in a student’s learning. Akin to the notion of ‘scaffolding’, Pudian means 
to build up one or several layers so as to enable learners to complete tasks that 
they cannot complete independently. Our analysis in the foregoing sections shows 
that the complexity of teaching with Pudian requires a teacher intentionally and 
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consciously to practice the following two parts as a whole: (1) building up the chain 
of knowledge embedded in mathematics textbooks and curriculum; (2) developing 
the dynamic teaching process with an emphasis on the relationship of the teacher’s 
language and students’ understanding and active learning.

To build up the chain of knowledge embedded in the mathematics textbook 
and curriculum, the notion of ‘an anchoring part of knowledge” (Gu et al., 2004) 
was specifically emphasized through the teacher’s analysis of student’s existing 
knowledge and the order of learning content embedded in the textbooks and 
curriculum. Moreover, it was necessary for the teacher to develop a more sufficient 
understanding of students’ potential learning difficulties/problems and alternative 
ways of reasoning, which makes resonance with an understanding of the notion of 
‘proper potential distance’ (Gu et al., 2004).

To develop the dynamic teaching process with Pudian, expert Mei highlighted the 
significance of the teaching framework and teaching language/notions that teachers 
commonly understand in China as the key elements of effective classroom teaching 
and learning mathematics. The teaching framework is useful to guide the junior 
teacher to conduct the analysis of the textbook, to focus on the learning goals of the 
lesson, and to develop an understanding of students’ existing knowledge and potential 
learning (see Figure 3). We wish to point out that a teacher’s teaching language plays 
a special role in Pudian, apart from setting up the multiple layers of teaching and 
the well-designed tasks. Our data analysis identifies two levels of teacher language: 
(1) the preciseness of teacher language, which plays an important role in students’ 
understanding and reasoning in mathematics; (2) the art of teacher language (i.e., 追
问 Zhui Wei questioning strategy – ‘follow their response by questioning’), which 
leads students not only to develop active individual learning but also to develop a 
kind of shared-learning with one another in the whole class. These findings lead us 
to suggest that the term Pudian in teaching with procedural variation is more specific 
than the theoretical term ‘scaffolding’, because it tells new teachers more about how 
to achieve scaffolding in the authentic classroom.

Table 2. The expert teacher’s teaching notions of teaching with variation

The expert teacher’s teaching notions

Coherence

Not to lose the chain in learning

Multiple teaching layers/stages

Students’ existing knowledge, the order of textbook content, students’ 
potential learning difficulties/problems and alternative ways of reasoning
The teaching framework of previous knowledge, key points of learning 
goal, future learning
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The Complexity of Teacher’s Professional Learning through Intentional,  
Systematic and Effortful Practice

In the foregoing data analysis section, we showed three types of teacher change 
sequences: (1) changes within the teacher’s personal domain; (2) changes from the 
personal domain to the practice domain; (3) a mixed picture of change sequences 
across the personal domain and the domain of practice. We wish to point out that 
the expert teacher Mei played an important role in guiding the junior teacher to 
develop reflections in specific ways (i.e., labelled 1&2 in Figure 5; 1&2 in Figure 6; 
and 1&2, 3&4 in Figure 7). Consequently, the junior teacher Jiyi made change 
sequences according to her reflections (i.e., labelled 3 in Figure 5; 3 in Figure 6; 
and 5 in Figure 7). We consider these change sequences as intentional, systematic 
and effortful practice through professional learning.

Our data analysis also showed a complex picture of Jiyi’s professional learning. 
On the one hand, we identified Jiyi’s change sequences as learning and professional 
growth; on the other hand, we recognized Jiyi’s difficulties in the professional 
learning process. Gu (2014) identifies three stages of teacher’s professional learning 
through various kinds of TPD program: (1) listening [to ‘knowledgeable others’] but 
not understanding; (2) listening and understanding, but not knowing immediately 
how to act; (3) listening, understanding, and acting. Gu notes that the transition from 
understanding to action takes a considerable amount of time. Our findings of three 
types of change sequences support Gu’s observation. Our data analysis also leads us 
to suggest that while teachers’ professional growth is more likely to proceed through 
a series of incremental changes (Clarke & Hollingsworth, 2002), such growth is not 
straightforward and continuous; rather it is discrete and discontinuous.

CONCLUSION

In this chapter, we sought to address the question of how an expert teacher used the 
idea of teaching with variation to support a junior teacher to develop certain ways 
of reflecting on her teaching, and as a result to make ‘change sequences’ (Clarke & 
Hollingsworth, 2002) as learning from her teaching enactment and reflection. We 
identified the expert teacher’s significant guidance in the following two sophisticated 
ways: (1) the use of teaching notions that teachers commonly share and understand 
in China to understand the theoretical terms of teaching with variation; (2) the use 
of teaching frameworks and language that teachers commonly understand and 
practice in the country to understand an emphasis on the fundamental ‘chains’ in 
learning mathematics and the dynamic process of Pudian. Our study reveals how 
the detail of didactics and mathematics pedagogy can be zoomed in on when there is 
an understood structure within which to do this; in this case the teaching framework 
(see Figure 3), the lesson structure (see Figure 4) and common understandings 
of teaching notions and language about variation (see Table 2). Our study makes 
explicit the possible high-quality expert input in teacher education. It contrasts with 
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other studies where the ‘expert’ teacher is a mentor or coach who focuses primarily 
on classroom behaviour and management.

Moreover, we wish to point out that what is also important is that there is a 
commonly understood structure – the school-based teaching research group (TRG) 
– in which teachers learn from ‘knowledgeable others’ for their professional 
development and network in China (e.g., Huang & Bao, 2006; Huang et al., in press; 
Peng, 2007; Yang, 2009; Li et al., 2011; Han, 2013).

In focusing on the junior teacher’s professional learning through our lesson 
design study, we found that the teacher modified her lesson plans more than ten 
times from lesson 1 to lesson 2, according to data from Jiyi’s teaching diary and 
reflection notes. Apart from the redesign of the lesson structure and the improvement 
of teaching language, there were other considerable changes that were related to our 
lesson design study, such as the design of number in the tasks (i.e., all numbers in 
the tasks in Figure 4 were deliberately designed), the amount of tasks, classroom 
interactions, and so on.

While understanding the ‘black box’ of teacher’s professional learning is in its 
early stages, the contribution of our study is of the expert teacher’s teaching notions 
(see Table 2) that expands knowledge of using the Chinese practitioner’s ideas 
of teaching with variation to guide mathematics teacher preparation and teacher 
professional development.
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13. TEACHING AND LEARNING MATHEMATICS 
THROUGH VARIATION IN LESSON STUDY

INTRODUCTION

Since The Teaching Gap, authored by Stigler and Hiebert, was published in 1999, 
Japanese lesson study as a form of teacher development has been adapted by many 
teachers and school districts around the world (Huang & Shimizu, 2016). Lesson 
study challenged the traditional way of teacher professional development, most of 
which were snapshot workshops to tell teachers what to do on some designated 
days during a school year. In lesson study activities, teachers learn to teach through 
collaborative study on teaching a lesson, and examining what works and what does 
not with a focus on student learning (Hart, Alston, & Murata, 2011). Similarly, 
teachers in China also work together in teaching research groups to study how to 
teach more effectively.

Teachers in China learn to teach through conducting public lessons or exemplary 
lessons (known as Chinese lesson study hereafter) within a school or across schools 
(Han & Paine, 2010; Huang & Bao, 2006; Huang, Su, & Xu, 2014; Yang & Rick, 
2013). Many studies (Borko, 2004; Franke, Kazemi, Shih, Biagetti, & Battey, 
2005; Garet, Porter, Desimone, Birman, & Yoon, 2001; Grossman, Wineburg, & 
Woolworth, 2001; Little, 2002; McLaughlin & Talbert, 2001; Wilson & Berne, 
1999) revealed that effective teacher learning is built into teachers’ daily and weekly 
teaching practices that are school-based, curriculum-based, and student learning-
centred. Lesson study turns schools into places where both students and teachers 
learn. Teaching is a public activity in China, which lends itself to collaborative 
research on lessons. Recently, lesson study in China has attempted to shift the focus 
from teaching performance to student learning. Teachers, teacher researchers, and 
educators in China have been modifying public lesson as deliberate practice (Han & 
Paine, 2010). In this study a group of sixth grade mathematics teachers in Eastern 
China developed lessons about the topic of dividing fractions, which was facilitated 
by university experts in math education and several district teaching research 
specialists. The group of teachers drew on two concepts to design lessons through 
Lesson Study. One concept is learning trajectory, and the other concept is teaching 
and learning math through variations. As a designed research study that integrated 
two theoretical concepts into the lesson study activities, this study attempted to 
answer two research questions: How did the designed lesson study activities change 
lessons? How did the designed lesson study activities influence student learning?
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CONCEPTUAL FRAMEWORK AND LITERATURE REVIEW

Learning Trajectory: Division of Fractions

Realistic Mathematics Education (Freudenthal, 1991) argued that mathematics 
instruction should give students a “guided” opportunity to discover mathematics. 
The guided opportunities existed in long-term learning and teaching trajectories 
that aimed at achieving certain learning goals (Van den Heuvel-Panhuizen, 2000). 
With the support and facilitation of university experts of mathematics instruction 
and the district teaching research specialists, the group of sixth grade teachers in an 
elementary school of Eastern China developed a learning trajectory for the topic of 
dividing fractions. The lesson study activities the group of teachers conducted was 
embedded with creating, designing, modifying, and testing the learning trajectory of 
dividing fractions.

Learning trajectories include sequences of tasks and activities aimed at the 
progressive development of mathematical thinking and skill (Clements & Sarama, 
2004, 2007; Daro et al., 2011; Simon, 1995, 2014; Van den Heuvel-Panhuizen, 
2008). A hypothetical learning trajectory is what teachers or researchers predict as 
to how student learning might develop regarding a certain mathematics topic. The 
theory of learning trajectory asks teachers to plan lessons based on how students 
might construct the new mathematical knowledge. Simon (1995) proposed three 
components of learning trajectory, including learning goals, learning activities, and 
learning process. All three aspects can be achieved through interactions among 
teachers, students, and curriculum in the classroom. The traditional way of deciding 
scopes and sequences of mathematics curriculum mainly considered the nature and 
structure of mathematics knowledge while the learning trajectories are “rooted in 
actual empirical study of the ways in which students’ thinking grows in response 
to relatively well specified instructional experiences, as opposed to being grounded 
mostly in the disciplinary logic of mathematics and the conventional wisdom of 
practice” (Daro et al., 2011, p. 12).

Clements and Sarama (2004) further developed the theory of learning trajectory 
which described students’ mathematical thinking and design as a series of learning 
tasks to promote students’ developmental progression in their mathematical thinking. 
They suggested three stages to designing learning trajectories: identifying research-
based models to depict students’ knowledge construction, selecting and designing 
key mathematical tasks, and sequencing the tasks to compose the hypothetical 
learning trajectory. In this study the authors supported the group of teachers to 
design and modify the learning trajectory by following these three stages.

Division of fractions was often considered the most mechanical and least 
understood topic in elementary school (Carpenter et al., 1988; Fendel, 1987; 
Payne, 1976). The common mistakes students made reflected this observation. For 
example, many students inverted the dividend instead of the divisor, or they inverted 
both the dividend and the divisor before multiplying numerators and denominators 
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(Ashlock, 1990; Barash & Klein, 1996). Meanwhile, it has been challenging for 
teachers to teach division of fractions for understanding (Ball, 1990; Borko et al., 
1992; Ma, 1999; Son & Crespo, 2009; Tirosh, 2000). Ma (1999) described difficulties 
American teachers had with contextualizing 1 ¾ ÷ ½ in a story context. In the study 
of Borko et al. (1992), a novice teacher stumbled with a conceptual explanation of 
division of fractions.

When designing the learning trajectory that was adapted for teachers and students 
in China, the university experts first drew on several versions of the Chinese 
textbooks and research on the topic of division of fractions (Ott, Snook, & Gibson, 
1991; Sowder, Sowder, & Nickerson, 2010; Tirosh, 2000; Tirosh, Fischbein, 
Graeber, & Wilson, 1998). The team also referred to the Common Core State 
Standards for Mathematics (2010), which proposed a sequence for learning division 
of fractions. In the designed learning trajectory,1 students were exposed to two ways 
of interpreting the meanings of division of fractions through visualization, story 
contexts, and proportional reasoning. When the expert team and the teachers agreed 
upon the learning trajectory, the teachers selected mathematical tasks for the lessons 
and sequenced those tasks in the lesson plans. The teachers were facilitated to use 
the theory of teaching and learning mathematics through variations for selecting 
math tasks and planning lessons.

Teaching and Learning through Variation

Teaching and learning through variation emphasizes the importance of using varied 
mathematics tasks to develop students’ understanidng and support students in 
problem solving (Gu, Huang, & Marton, 2004; Lo & Marton, 2012; Marton & Pang, 
2006; Marton & Tsui, 2004; Watson & Mason, 2006). Variation and invariance in 
mathematical tasks affect student learning through interactions between teachers, 
students, and learning objects. Ference Marton and his colleagues in Hong Kong 
and Sweden (Lo & Marton, 2012; Marton & Tsui, 2004; Marton & Pang, 2006) 
developed the variation theory of learning which argues that students construct 
new knowledge by identifying the critical features of the knowledge. Those critical 
features make the new learning objects differ from others. For example, when 
students learn the algorithms of division with fractions, they need to discern the 
relationship between the dividend and divisor in a specific problem situation and 
identify the appropriate visual representation of the relationship for conceptual 
understanding of the algorithm. Invariance is underlined in the variation theory, as 
learners need a background of invariance to recognize critical features of the new 
learning. Marton and Tsui (2004) proposed four types of variation and invariance 
patterns: separation, contrast, fusion, and generalization. The separation pattern 
of variation and invariance reveals one critical aspect of the new knowledge to 
students by holding the other aspects invariant. The pattern of contrast differentiates 
examples and non-examples that the new knowledge can be applied to. The variation 
and invariance pattern of fusion poses a higher cognitive demand level, as multiple 
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critical aspects of the problem situation vary at the same time. The generalization 
pattern requires students to use the new knowledge (understanding the critical 
aspects) to solve problems in similar situations.

Similarly, Chinese researchers (Gu, 1991; Gu, Huang, & Marton, 2004) 
employed the theory of teaching mathematics through variation to discuss 
effective teaching practices in the mathematics classrooms of China. The theory 
of teaching mathematics through variation includes conceptual and procedural 
variations. Conceptual variation aims at revealing and highlighting the essential 
features of a concept (e.g., showing polygons and non-polygons to deepen 
students’ understanding of the concept of polygon). Conceptual variation can be 
achieved in two ways: varying the connotation of a concept with various visual 
and concrete representations in a standard and non-standard context and offering 
counterexamples to delineate the boundary of the concept. Procedural variation 
helps students develop skills in problem solving, deriving from three aspects—
solving extended problems, using multiple ways to solve problems, and applying 
solution methods to other similar problems (Gu et al., 2004). Lo and Marton (2012) 
argued that systematically varying certain aspects while keeping other aspects 
constant helps children discern the essential features of a new object. With the 
conceptual and procedural variations in mind, the group of teachers chose and 
modified mathematical tasks to develop the students’ mathematical proficiency 
related to division with fractions.

Lesson Study, Teacher Learning, and Student Achievement

Lesson study is a collaborative activity done by a group of teachers who focus 
on student learning and the subject matter, integrate inquiry stance into their 
daily practice, and reflect upon their teaching practice for improvement. Lesson 
study has been argued to be an effective approach to teachers’ professional 
development as it incorporates many key features of effective professional 
development programs identified in the literature (Borko, 2004; Cochran-
Smith & Lytle, 1999; Darling-Hammond et al., 2009; Desimone, 2009; Franke, 
Kazemi, Shih, Biagetti, & Battey, 2005; Garet et al., 2001; Grossman, Wineburg, 
& Woolworth, 2001; Little, 2002; McLaughlin & Talbert, 2001; Porter et al., 
2003; Wilson & Berne, 1999). The research literature reached a consensus on the 
key features of effective professional development: being focused on knowledge 
of the subject, the curriculum, and student learning; being ongoing, inquiry-
based, and integrated into the daily work of teachers; providing opportunities for 
teachers to become actively engaged in the meaningful analysis of teaching and 
learning, and promoting coherence between teachers’ professional development 
and other professional experiences; and engaging teachers in collaboratively 
doing mathematics, reflecting on teaching and learning mathematics, and refining 
practices in a community of learners.
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In the past decade, more studies emerged in the literature to reveal the influences 
of lesson study on teaching, teacher learning, and student achievement (Hart, 
Alston, & Murata, 2011; Huang & Han, 2015; Leiws & Hurd, 2011; Lewis, Perry, 
Friedkin, & Roth, 2012; Perry & Leiws, 2011). These studies argued for the 
effectiveness of lesson study to improve teaching, teacher learning, and student 
knowledge. Among the emerging studies on lesson study in the US, experimental or 
longitudinal studies are rare. Lewis and the team (Perry & Lewis, 2011) conducted 
a longitudinal case study on the effects of school-based lesson study on teachers 
and students. Their studies revealed changes in teachers’ instructional practice 
and increased standardized test scores of students in mathematics. Further studies 
done by the team (Perry, Lewis, Friedkin, & Baker, 2011; Perry & Lewis, 2011; 
Perry & Lewis, 2015) found that lesson study improved teachers’ and students’ 
mathematical knowledge. In more recent years, researchers (Han & Paine, 2010; 
Huang & Bao, 2006; Huang et al., 2014; Huang & Han, 2015) conducted several 
small scale qualitative studies to understand the influences of Chinese lesson study 
on teaching practices and teachers’ learning. They argued the participant teachers 
improved the core aspects of instructional practices and identified the changes in 
their knowledge and beliefs. This study drew on the data of a small case study on 
one group of teachers’ lesson study activity to investigate the effects of the theory-
driven lesson study activity on teacher learning and student learning in the topic of 
division with fractions.

The participant teachers in the study were engaged in lesson study activities to 
design lessons on the topic of division with fractions. Their lesson study activities 
were supported and facilitated by university mathematics education experts and 
district teaching specialists. The teachers aimed at identifying the learning trajectory 
that was appropriate for student cognitive development in learning division with 
fractions, while producing effective instructional practices.

Conceptual Frameworks for This Study

Mathematics teachers have been teaching with variation consciously or unconsciously 
in their daily practices for decades (Gu et al., 2004). Chinese lesson study is a job-
embedded, practice-based approach to professional development that has been in place 
for half a century (Yang, 2009).2 However, researchers pointed out that the theory of 
teaching with variation and Chinese lesson study have paid great attention to improving 
teachers’ performance, with less attention to students’ learning (Chen & Fang, 2013; 
Gu & Gu, 2016; Huang et al., 2014), which is deviated from the recommendation 
in the new curriculum. To address this issue, the theory of learning trajectories was 
incorporated into the design of the lesson study activities that also adopted the variation 
theory. In the larger project, the researchers and the participant teachers employed both 
of the theories to guide the planning, teaching, reflection, and revision of research 
lessons throughout the lesson study (see Huang, Gong, & Han, 2016 for details).
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RESEARCH METHODS

Research Setting

In an Eastern coastal large city of China, four elementary teachers formed a lesson 
study group on a voluntary basis. The second author, Dr. Gong, and two teaching 
research specialists, Mr. Sao and Mr. Ren, from the districts were involved in the 
lesson study activities as experts. They supported developing and modifying the 
learning trajectory for the topic of division of fractions as well as observing and 
debriefing research lessons. The four participant teachers were three experienced 
teachers, Ms. Shao, Ms. Han, and Ms. Tang, and a less experienced teacher, Ms. Lu, 
who had five years of teaching experience. Both Ms. Lu and Ms. Shao volunteered 
to teach the Research lessons in parallel lesson study activities,3 but the current 
study chose to focus on the Research lessons taught by Ms. Shao and the related 
teaching research activities. Altogether, the lesson study group designed two lessons 
that reflected their collaborative work on the learning trajectory of division of 
fractions. Lesson One was about fractions divided by whole numbers and Lesson 
Two was about whole numbers divided by fractions. Ms. Shao taught each of the 
two topics to three different sixth grade classes in the same school. The average 
class size was about 30 students. Among the three classes, one class always received 
the first Research lessons, the second class received the second Research lessons, 
and the third class received the final public lesson. Table 1 shows the timeline and 
organization of the Research lessons.

Table 1. Timeline and organization of research lessons

Topic of research lessons Rehearsal research 
lesson 1
Class: 605

Rehearsal research 
lesson 2
Class: 603

Final public lesson
Class: 606

A fraction divided by a 
whole number

Date: 10-9-2014 Date: 10-10-2014 Date: 10-15-2014

A number divided by a 
fraction

Date: 10-11-2014 Date: 10-14-2014 Date: 10-17-2014

Data Collection

The study lasted about three months, from September to November 2014. The data 
sources of the study included three videotaped research lessons and debriefing 
meetings, audiotaped interviews with the participant teachers and some students, 
lesson plans, student worksheets, student quizzes, and the participant teachers’ 
reflection journals. The post-lesson quiz had five word problems about division 
of fractions and asked the students to justify their solution methods with words, 
drawings, and symbols. The quiz was given right after each research lesson. 
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Each quiz was about 20 minutes. All completed quizzes were collected. The one-
on-one interviews were conducted with all the participant teachers and 10 of the 
students on a voluntary basis at the end of the study. During the interviews, the 
students were asked about their understanding of the different solution methods of 
division with fractions. The major data sources used in this study were students’ 
post-lesson test, videotaped lessons, and student interviews.

Data Analysis

The authors first read through each set of the following data sources: the lesson 
plans, transcribed debriefing meetings, transcribed lesson videos, and transcribed 
interviews with the teachers and district teaching research specialists. The authors 
coded the common terms that emerged from the data. With the labeled common 
terms, the authors examined the data across the different data sources to seek any 
emerging themes regarding conceptual variation and procedural variation. The 
triangulation of the data sources produced several themes, including (1) enriching 
visual representations, (2) revising story contexts, and (3) reorganizing student 
learning to allow free exploration that promoted conceptual and procedural variations.

Meanwhile, the authors read through all the students’ post-tests to identify 
common understandings, mistakes, and misconceptions the students had regarding 
division with fractions. Employing the concept of mathematical proficiency, the 
authors thoroughly examined all the tests in the following dimensions: procedural 
fluency—having correct answers and setting up correct number sentences; conceptual 
understanding—using pictorial representations and using words to explain thinking; 
strategic competences—using different pictorial models to demonstrate solution 
methods. After examining all the tests after the first and last research lessons, we 
compared the results of each test in the aforementioned three dimensions to identify 
changes in student learning. The analysis of the student tests’ data was triangulated 
with other data sources such as student interview data, transcribed lesson videos, 
debriefing meetings, and teacher interviews.

RESULTS

Improving Teaching through Constructing Appropriate Dimensions of Variation

The topic of division with fractions at 6th grade was broken into two sub-topics—
fractions divided by whole numbers and whole numbers divided by fractions. Each 
sub-topic was taught to three different groups of students during the lesson study. 
The lesson study contained three full cycles of planning, teaching, and debriefing 
for each sub-topic. Examining the three lessons for each sub-topic, we identified the 
approaches the teachers employed to teach the topic through conceptual variation 
and procedural variation. Conceptual variation was created in the lessons mainly 
through enriched visual models. To support the students to understand the reasoning 
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behind the algorithm of division with fractions, the teachers enriched the visual 
representations that aimed at making the critical aspects of the new knowledge 
noticeable to the students. Procedural variation was produced in several ways 
in the lessons, including revising how to activate the students’ prior knowledge, 
modifying the numbers in the story contexts while keeping the background of the 
story contexts invariant, and encouraging and comparing multiple ways to solve the 
problems. Meanwhile, the teachers reorganized student learning to scaffold students 
in initiating conceptual and procedural variation.

Conceptual variation: Enriched visual representations. The major lesson objective 
was focused on understanding the standard algorithm of division with fractions. 
Traditionally, it was not difficult to calculate answers of division with fractions, 
but it was challenging to explain and understand why the algorithm works using 
pictures, words, and story contexts. The teachers in the lesson study group took 
on the challenge to design and revise the visual representations that were used to 
develop the students’ conceptual understanding of the algorithm.

In the three lessons on fractions divided by whole numbers, the teachers worked 
on two critical aspects of understanding the algorithm. One was to recognize 
the partition division in the story context where several people equally shared a 
certain amount of juice. The amount of juice was expressed in fractions. The other 
critical aspect was seeing the relationship between multiplication and division with 
fractions. Dividing a whole number in the partition division situation is to multiply 
the reciprocal of the whole number, such as dividing 4/5 by 2 that is to figure out 
half of 4/5. The first critical aspect of understanding the algorithm seemed to not be 
challenging for the students, which was demonstrated and explained to the students 
through procedural variation. We will discuss this in the section of procedural 
variation. In the following paragraphs we describe and analyze how enriched visual 
models helped the students understand the second critical aspect.

Originally, the teachers planned to draw on area model to demonstrate the 
algorithm in the lessons of dividing fractions by whole numbers. After the first 
research lesson, Teacher Shao observed three difficulties her students had with 
using pictorial models to demonstrate and explain the standard algorithm. One 
difficulty was they did not know how to divide in the picture. The second difficulty 
was they did not realize they needed to partition the whole to show the answer. The 
last difficulty was some students skipped the division number sentence and wrote 
a multiplication number sentence based on the picture. At the debriefing meeting, 
the other teachers and the district experts pointed out another observation that some 
students were able to draw the picture, but they first calculated the answer and used 
the answer to guide their drawing. Instead of being an end, all the teachers agreed 
that using a visual model should be a means to help the students understand the 
algorithm. They decided Teacher Shao would encourage the students to diversify 
the visual models in order to deepen the students’ conceptual understanding of the 
algorithm.
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The advantage of the area model is that it clearly indicates the relative size of 
a part to a whole (Cramer, Wyberg, & Leavitt, 2008). For example, the students 
would easily see 4 parts out of 5 equal parts in a whole rectangle, which was used 
in the lessons – 4/5 ÷ 2. The topic of dividing fractions by whole numbers is usually 
introduced and explained in the area model by drawing on the interpretation of 
division as partition division. In the lessons, the students could easily understand 
dividing fractions by whole numbers as equal sharing problems; however, it was 
challenging for the students to discern the reasoning for the standard algorithm in 
the visual models—why to multiply the reciprocal of divisor. For example, finding 
how 2 people can equally share 4/5 of a liter of juice (Figure 1) is the same as finding 
half of 4/5 of a liter of juice. Connecting with the interpretation of multiplication 
with fractions, to figure out half of 4/5 of a liter, we multiply 4/5 with ½. The teachers 
noticed that it was not easy for the students to make this conceptual connection 
between multiplication and division related to fractions.

Figure 1. Area model in the lesson on fractions divided by whole numbers

Figure 2. Length model in lesson on fractions divided by whole numbers

To further support the students to make the connection, starting from the second 
research lesson, the teachers decided to make use of the students’ work that adopted 
the length model to demonstrate the partitive division (Figure 2). The length model 
is important in developing student understanding of fractions and other fraction 
concepts (Petit et al., 2010; Siegler et al., 2010). In this lesson, after the students 
discussed and shared their justification of the ways they divided 4/5 by 2, Teacher 
Shao elicited a different model by asking, “Is there any different picture you drew? 
I remembered some of you drew a different model, but followed the same reasoning. 
Let’s take a look at a different picture” (Lesson on Oct.10, 2014). One student 
presented his length model and explained what he did. “I divided the line segment 
into 5 equal part. I then took 4 equal parts to represent 4/5. The 4 equal parts, 4/5, was 
then split in half. One half of the 4 equal parts thus showed the answer 2/5” (Lesson on 
Oct.14, 2014). Following the first example problem, the students solved the second 
example problem—1/5 of a liter of juice equally shared by 2 people. Teacher Shao 
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purposefully called on one student to share her length model picture. The students 
first divided a line segment into five equal intervals, split 1/5 interval into halves, and 
then labeled one half of 1/5 as 1⁄10 to display the answer. To clearly show the answer, 
Teacher Shao reminded the whole class of dividing the other four equal parts in half 
too, which would indicate the fractional part out of the whole. In the last research 
lesson, once again Teacher Shao chose both models produced by the students to 
present and share with the whole class.

As the teachers reflected at the second debriefing meeting, when Teacher Shao 
gave more opportunities to the students, the students came up with more visual 
models. Teacher Shao built upon her instruction on those visual models to scaffold the 
students in understanding the standard algorithm through the pictures. In the second 
research lesson Teacher Shao called on three groups to share their discussions after 
the students worked together in their small groups. One group of students shared 
their thoughts on making the connection between multiplication and division with 
fractions.

S1:  To divide 4/5 by 2 is to multiply it by ½.
T:  Why did you think so? Let me see. Your group drew a similar picture. Can 

you (another student’s name) explain why it is to multiply ½?
S2:  Because we turned the division sign into a multiplication sign.
T:  (pointing to Student 1) You said you understood it. Please share your 

understanding.
S2:  Dividing by 2 is equal to half of it. That’s to say, ½ is equal to half.
T:  Do you understand what he said?
S:  (all the students) No.
T:  Please explain your thought one more time.
S1:  To divide a number by 2 is to split that number into half. So ½ represents 

half of that number.

The district teaching specialist, Mr. Sao, pointed out some students were able to 
not only draw a visual model, but also explain what the drawing demonstrated after 
the second research lesson. In the last research lesson we noticed that the students 
quickly made sense of the connection when Teacher Shao invited one student to use 
his picture to explain it. The student stated, with his length model, “To divide 4/5 by 2 
is to find out its half. The reciprocal of 2 is ½. So 4/5 divided by 2 is 4/5 multiplying ½” 
(Lesson on Oct.15, 2014). The conceptual variation through diverse visual models 
produced by the students eventually made the critical aspect of the new knowledge, 
the relationship between multiplication and division with fractions, salient to the 
students.

Meanwhile, two different critical aspects of understanding the algorithm were 
emphasized in the lessons on whole numbers divided by fractions. First, the students 
were expected to understand the algorithm through the relationship of distance, 
time, and speed. When a person walked 5 kilometers within ⅔ of an hour, finding 
the speed per hour was a division problem (distance ÷ time = speed), which was 
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5 ÷ ⅔ = speed per hour. The second critical aspect of the new knowledge in the 
three lessons was to discern a multiplicative relationship among quantities in the 
problems and draw on proportional reasoning to explain and understand the standard 
algorithm. 5 kilometers within ⅔ of an hour is in a proportional relationship with 
the distance within one hour that is the speed. In all three lessons, Teacher Shao 
immediately asked the students to identify the quantitative relationship once she 
displayed the first example problem. The students had no difficulty discerning the 
quantitative relationship as distance, time, and speed, and setting up the division 
number sentence, such as 3 ÷ ½, 5 ÷ ⅔, and 21⁄8 ÷ ¾ in the last research lesson. In what 
followed we focused on the analysis of drawing on the proportional relationship to 
understand the standard algorithm.

In the lessons on the topic of whole numbers divided by fractions the teachers 
solely relied on the length model by interpreting the division of whole numbers 
by fractions as special partitive division. The central problem the students worked 
around in the last research lesson was: Xiaohua walked 3 kilometers within ½ hour. 
Xiaoming Walked 5 kilometers within ⅔ hours. Xiaohong walked 21⁄8 kilometres 
within ¾ hours. How many kilometers did each of them walk in one hour?

  2km within 2/3 hour

Figure 3. Single line diagram

Originally, the teachers used one single line diagram to illustrate the problem 
(Figure 3). At the debriefing meeting after the first research lesson Teacher Shao 
and the district teaching research specialists realized the difficulty the students had 
when they tried to use one single line to demonstrate how to calculate the answer 
and how to explain the standard algorithm. There were two reasons Teacher Shao 
and the specialists decided to employ double line diagrams to represent the problem 
in the second research lesson. One line represented the distance the person walked 
within certain time, and the other line represented the speed per hour. The first 
reason was that Teacher Shao mentioned that the average and low students could 
not figure out how to show the time and the distance on one single line at the same 
time. For example, some students got stuck with showing ⅔ hour and 2 km when a 
person walked 2 km within ⅔ hour. They were not sure if the one single line should 
represent 2 km or ⅔ hour. Or if they labeled the one single line to represent ⅔ hour, 
they stumbled with expressing one hour on the line. The teacher and the specialists 
thought the original one line diagram in the textbook could be confusing for the 
students. They came out with double line diagrams to represent the given condition 
and the question. For example, in Figure 4 the top line diagram showed the distance 
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of 2 km a person walked within ⅔ hour and the second line diagram indicated the 
distance a person walked in one hour that the students needed to seek an answer for. 
The double line diagrams were adopted in the second research lesson.

Figure 4. Double line diagram

The second reason was that they tried to find out a way that could support the 
students’ understanding of the standard algorithm of division with fractions from 
the perspective of multiplicative relationship. At the debriefing meeting after the 
first research lesson Teacher Shao noticed there was only one girl in her class who 
touched on the idea of multiplicative relationship when the students were struggling 
with explaining the reason for multiplying by the reciprocal of the divisor – 2 ÷ ⅔ = 
2 × 3⁄2. The girl explained in her small group that if Xiaoming walked 2 km within 
⅔ hour, he would walk 3⁄2 times as many km per hour as the distance he walked 
within ⅔ hour. However, the rest of the class did not understand her idea. Teacher 
Shao commented that her students did not learn much from the lesson. Therefore, 
she proposed how she could revise the lesson to help the students make sense of the 
algorithm from the perspective of multiplicative relationship. The district teaching 
research specialists agreed with her and focused their discussions on the possible 
way that could best scaffold the students’ understanding of the standard algorithm.

The district teaching research specialist, Mr. Ren, first suggested that a two 
line diagram should be used to represent the multiplicative relationship between 
the quantities. Anticipating the possible difficulty the students would have in 
understanding the standard algorithm as multiplicative relationships, Mr. Sao posed 
that they might need to consider keeping some conditions the same and varying 
others. For example, three different story contexts could be set up where a person, a 
dog, and a car travelled different distances within ¾ hour. As three dividends were 
divided by the same divisor, ¾, the students might be able to notice the pattern that 
dividing ¾ was to divide 3 and multiply 4 in all three problems. However, the other 
district teaching research specialists disagreed with Mr. Sao’s idea. On one hand, 
they were afraid the students’ attention on understanding multiplying the reciprocal 
would be distracted when they felt comfortable with dividing the numeration and 
then multiplying the denominator. On the other hand, they thought there would be 
inconsistency between the multiplicative relationship perspective and employing 
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the associative property to identity the pattern – 2 ÷ ⅔ = 2 ÷ 2 × 3 = 2 × ½ × 3. 
They finally reached the agreement that the second lesson would not connect the 
multiplicative thinking with the associative property and that was more for the 
purpose of calculation. Therefore, the second lesson would be centered on using 
the double line diagrams to demonstrate the multiplicative reasoning for making 
sense of the standard algorithm.

According to Thompson and Saldanha (2003), the development of multiplicative 
reasoning in division with fractions resulted from a network of meanings that 
demanded conceptualizations of fractions, multiplication, division, measurement, 
and proportionality. Vergnaud (1988) argued that proportions were the foundation 
of the multiplicative conceptual field that consisted of all situations related to 
proportions, multiplications, and divisions. A conceptualized measure has a ratio 
relationship. For example, what the teachers and the district teaching research 
specialists discussed entailed such a ratio relationship—one hour is 3⁄2 times as 
much time as ⅔ hour. Proportions are important for conceptualizing measured 
quantities. A single proportion, for example, a relationship between the distance 
and time, indicates one quantity (time, e.g., ⅔) increases by a factor of s (e.g., 3⁄2), 
then the measure of the other quantity (distance, e.g. 2km) will increase by the 
same factor of s (3⁄2) to keep the proportional relationship (3⁄2 times as many as). 
Linking the multiplicative reasoning and proportional relationship to division with 
fractions, Thompson and Saldanhe (2003) interpreted a ÷ m⁄n as n times as large 
as 1⁄m of a because a ÷ m could be explained as 1⁄m of a. Thus a ÷ m⁄n = a × (n⁄m). 
In terms of relative size and multiplicative thinking, they thought employing the 
proportional relationship in division with fractions was a conceptual derivation of 
the standard algorithm of inverting and multiplying, and its interpretation should 
be straightforward. Obviously, instead of considering a conceptual derivation from 
the rule of ‘invert and multiply”, the teachers and the district teaching research 
specialists tried to adopt the proportional relationship as a conceptual path to develop 
the students’ understanding of the standard algorithm. In the second lesson, Teacher 
Shao used the double line diagrams to support the students’ conceptual development 
of seeing the proportional relationship in dividing whole numbers by fractions.

Procedural variation. Procedural variation is concerned with arriving at solutions 
to problems, using multiple methods to solve problems, and applying the knowledge 
to other problem contexts. In the six research lessons, the teachers activated 
procedural variation in three ways: reviewing prior knowledge to relate to the new 
knowledge closely, modifying the numbers in the story contexts while keeping the 
background of the contexts invariant, and sharing and comparing multiple ways to 
solve the problems.

Reviewing prior knowledge can activate students’ prior knowledge and get them 
ready for new knowledge in a lesson. The teachers in the lesson study designed and 
revised the tasks for the purpose of making the connection between the students’ 
prior knowledge and the current critical aspects of the new knowledge in the lessons. 
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They created two tasks in the three research lessons on fractions divided by whole 
numbers. Task One was “Two people equally shared 2 liters of juice. How much did 
each person get?” Task Two was “Two people equally shared 1 liter of juice. How 
much did each person get?” As we mentioned above, the first critical aspects of 
understanding the standard algorithm in a story context was to discern the partition 
division in that context. The two tasks in the review section of the lesson aimed at 
linking partition division with whole numbers to partition division with fractions. 
The teachers expected the students to recognize the same interpretation of partition 
division both with whole numbers and fractions. The students had learned the 
meaning of division as equal sharing and been able to identify the story contexts of 
partition division with whole numbers. Making the connection, the students could 
efficiently transfer their prior knowledge of partition division to the new knowledge 
in the lessons. Following the review of the two tasks, Teacher Shao showed the first 
example problem—How much each person got when two people equally shared 
4/5 of a liter of juice. Throughout the three research lessons, the students had no 
difficulty with discerning the partition division context and setting up a correct 
division number sentence. This procedural variation held the story context invariant 
while changing the numbers from whole numbers to fractions, which successfully 
connected division with whole numbers and division with fractions in a partitive 
context.

In the three lessons on whole numbers divided by fractions, the teachers revised 
how to review the students’ prior knowledge. In the first lesson, Teacher Shao 
simply reviewed the reciprocals of five numbers. When the teachers realized the 
first lesson did not achieve the objectives, they discussed how the review should be 
revised at the debriefing meeting. Reviewing reciprocals did not help the students 
understand the algorithm from the perspective of proportional relationship. Teacher 
Shao wanted to start with reviewing how many ½ hour, ⅓ hour, 1/5 hour, and 1⁄10 
hour are in one hour, which would prepare the students’ conceptual understanding 
of multiplicative relationship in division with fractions. Ms. Han followed with 
her idea that the students would be able to realize the distance changed at the same 
rate as time changed. In other words, the quantities of distance and time had the 
same multiplicative relationship, such as the time changing from ⅔ to one hour at 
the rate of 3⁄2 times, while the distance changed at the same rate from 2 km to 3⁄2 
times 2km.

In the second research lesson, Teacher Shao reviewed the reciprocals of five 
numbers and then posed the question of how many ½ hour, ⅓ hour, 1/5 hour and 
1⁄10 hour are in one hour, respectively. After the second research lesson the teachers 
decided to remove the review of reciprocals of five numbers. They did not want 
to give the students an excessive hint to multiply the reciprocal of a divisor in the 
standard algorithm. Instead, they expected the students to focus on the conceptual 
understanding of the algorithm from the perspective of proportional relationship. 
To achieve that goal, the teachers revised the numbers in the tasks and added three 
more questions to the review tasks in the final research lesson. The final review tasks 
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were how many ⅓ hour in ⅔ hour, how many ¼ hour in ¾ hour, how many ⅓ hour 
in one hour, how many 1/5 hour in one hour, and how many 1⁄10 hour in one hour. The 
new numbers – ⅔ and ¾ in the review tasks were aligned with the numbers in the 
example problem that followed in the final lesson. Meanwhile, Teacher Shao asked 
the students three new questions: how many times bigger one hour is than ⅓ hour, 
how many times bigger one hour is than 1/5 hour, and how many times bigger one 
hour is than 1⁄10 hour.

T:  I can also express in this way- how many times bigger is one hour than ⅓ 
hour.

S:  Three times.
T:  Next problem.
S:  There are five copies of 1/5 hour in one hour.
T:  How can you express this relationship in a different way?
S:  One hour is five times 1/5 hour.
T:  How about 1⁄10 hour? How many 1⁄10 hour are there in one hour?
S:  Ten.
T:  Express it in another way? Let’s say it together.
S:  One hour is ten times of 1⁄10 hour. (Lesson on Oct.17, 2014)

Through changing the review task from reviewing reciprocals to thinking about the 
multiplicative relationship between ⅓ and ⅔, ¼ and ¾, ⅓ and one, 1/5 and one, 
and 1⁄10 and one, the teachers established links with the example problem. The prior 
knowledge of multiplicative relationship was activated, which prepared students 
for exploring the conceptual understanding of the standard algorithm through 
proportional relationship in pictures and words. This procedural variation played 
an important role in making sense of the critical aspect of the standard algorithm 
in a special partition division context. The story contexts that asked for a unit rate 
(e.g, speed/hour, price/pound, etc.) represented a special partition division situation. 
Compared with the measurement interpretation of division when a number is divided 
by a fraction, story contexts of seeking a unit rate are more challenging for students 
to understand.

In the three research lessons on fractions divided by whole numbers, the 
teachers modified the numbers in the problems to focus the students’ attention on 
the reasoning behind the algorithm. Following Example Problem One – 4/5 liter of 
juice is equally shared by 2 people, the teachers added Example Problem Two that 
changed 4/5 liter to 1/5 liter in the second and the final lessons. Example Problem Two 
was “1/5 liter of juice is equally shared by 3 people. How much does each person 
get?” In the first lesson, the students came up with the method of 4/5 ÷ 2 = (4 ÷ 2)⁄5 = 
2/5. Similarly, we also noticed the teachers changed the numbers in the three lessons 
on whole numbers divided by fractions, e.g., from 2 ÷ ½ to 3 ÷ ½ in the example 
problem, etc. The second example problem was added with the intent to provide a 
context where the students could realize the limit of applying this method to solve 
similar problems, such as 1/5 ÷ 2. When the students went beyond this method, they 
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would consider why the standard algorithm worked in every problem of division 
with fractions. At the same time, it was seen that the teachers designed a consistent 
story context throughout the three lessons on each of the two sub-topics. In the 
three lessons the example problems were about equally sharing juice and had the 
background of walking some distance within a period of time. Though the teachers 
designed different numbers and modified the numbers in the example problems, the 
background of those problems stayed invariant. The consistent backgrounds with 
different numbers helped the students focus on their quantitative relationships and 
thus understand the algorithm.

The third kind of procedural variation throughout all six lessons was encouraging, 
sharing, and connecting different solution methods to problems. Though the major 
lesson objective was to understand the reasoning of the standard algorithm, the 
teachers did not constrain the students’ thinking within the standard algorithm. They 
designed different ways to organize student learning, which opened the door for the 
students to produce various solution methods. In the lessons on fractions divided by 
whole numbers, the students came up with three other solution methods besides the 
standard algorithm. In the first lesson, one different method was shared – dividing 
numerators. In the second lesson after Teacher Shao had the students work in small 
groups, one group of students converted fractions into decimals and divided—4/5 
÷ 2 = 0. 8 ÷ 2 = 0.4 = 2/5. In the final research lesson, the students came up with 
three different methods, including the standard algorithm, dividing numerators, and 
multiplying the reciprocal of the divisor to both numerator and denominator. One 
student explained, “I divided the whole into five parts and then took four parts. 4/5 
divided by 2 is to evenly split the four parts into two parts. So (4 ÷ 2)⁄5 = 2/5” (Lesson 
on Oct.10, 2014). Another student explained her method, “I used the property of 
division—the quotient will not change if we multiply both the dividend and divisor 
by the same number. The dividend 4/5 times 2⁄1 and the divisor times 2⁄1 too. So the 
quotient does not change. Then 2 multiplying ½ equals to 1. 4/5 times ½ gives me 2/5. 
So 2/5 ÷ 1 = 2/5” (Lesson on Oct.10, 2014).

Similarly, in the final research lesson on numbers divided by fractions, when 
Teacher Shao created an opportunity for the students to explore their own methods 
to solve the problems independently and collaboratively, the students brought about 
three different methods: multiplying both dividend and divisor by the reciprocal 
of the divisor, the standards algorithm, and dividing numerator and multiplying 
denominator (e.g. 5 ÷ ⅔ = 5 ÷ 2 × 3). Teacher Shao also attempted to connect the 
three different methods in the lesson. She invited students to think about if the 
method of multiplying by the reciprocal of the divisor was related to the method of 
multiplying both dividend and divisor by the reciprocal of the divisor. For example, 
3 ÷ ½ = (3 × 2⁄1) ÷ (½ × 2⁄1) = 3 × 2, Teacher Shao asked the class, “3 times 2, ½ 
times 2. What is he trying to explain? His method can demonstrate my answer is 
correct, isn’t it? So let’s find out if the two methods are related to each other. Aren’t 
they? Why did he multiply 2? Is it because one hour is what of ½ hour?” (Lesson 
on Oct.17, 2014). The whole class answered “two times ½ hour”. When discussing 
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their methods to solve the problem—the speed of walking 5 kilometers within ⅔ 
hour, one group of students elaborated on their reasoning of 5 ÷ ⅔ = 5 ÷ 2 × 3. 
“… we see ⅔, which is these two parts (pointing to the picture), we need to figure 
out the time for one part. So ⅔ divided by 2 is equal to ⅓. Then the distance should 
be divided by 2 too. That is to divide 5 kilometers by 2. It is equal to 2.5 killometers” 
(Lesson on Oct.17, 2014). Teacher Shao guided the students to compare the three 
methods and identify that they all eventually arrived at multiplying the reciprocal of 
divisor, such as 5 ÷ ⅔ = 5 × (3⁄2). The procedural variation expanded the students’ 
approaches to solving problems of whole numbers divided by fractions. Connecting 
the three methods from the perspective of multiplicative relationship consolidated 
the students’ understanding of the standard algorithm.

Reorganizing student learning to initiate learning through variations. While 
observing and revising the lessons, Teacher Shao gradually shifted her instruction to 
the students’ exploration and investigation from teacher-dominated instruction. When 
Teacher Shao made the shift, she embraced openness, diversity, and complexity in 
the classroom. She created opportunities for the students to initiate multiple ways 
to solve the problems, apply their solution methods to similar problems, and reason 
about the algorithm, which promoted conceptual and procedural variations at the 
same time. In all six lessons, Teacher Shao spent more time on having students 
explore how to solve problems both independently and collaboratively. In each 
of the two last lessons on the two different topics, respectively, Teacher Shao did 
not present her way of solving the problem, including her visual models. Instead, 
she posed the problem and linked the meaning of division with fractions to that of 
division with whole numbers at the beginning. Then she had the students investigate 
the solution methods and explain their solution methods in number sentences, 
pictures, and words. Building upon the students’ ideas, she guided the students to 
compare and discuss their different solution methods.

At the debriefing meeting after the second lesson on the topic of dividing fractions 
by whole numbers, Teacher Shao reflected that her students came up with multiple 
solutions methods and multiple visual models compared to the first lesson. She 
was surprised to see one group of students convert the fractions into decimals and 
divide, e.g., 1/5 ÷ 2 = 0.2 ÷ 2 = 0.1. This method was not proposed by the students 
in the first lesson when the teacher dominated the learning process of the students. 
In the second lesson, more students drew the length model to explain their solution 
methods, while there was only one student in the first lesson who used the length 
model. Several students used a different partition in the area model that was not seen 
in the first lesson either. As the district teaching specialist, Mr. Sao commented at 
the debriefing meeting, “… when a teacher gives students an opportunity to freely 
explore, the students’ mind would be open and unbounded. Otherwise, in the first 
lesson the students’ thinking was confined to one visual model and one solution 
method presented by the teacher” (The debriefing meeting on Oct. 10, 2014). Based 
on the observation data on student learning in the second lesson, several district 
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teaching research specialists suggested that Teacher Shao change her way of 
organizing the lesson in order to learn the first two example problems. In the second 
lesson, Teacher Shao focused her students’ learning on the first problem – 1/5 liter 
of juice equally shared by 2 people, for which she arranged independent thinking, 
small group discussion, and whole class discussion. However, the district specialists 
all pointed out the second example problem-4/5 liter of juice equally shared by 2 
people, was a big leap in terms of student cognitive difficulty. They recommended 
that Teacher Shao organize the lesson to explore this second problem in small groups 
and to spend more time on discussing their solution methods to this problem and 
illustrating their understanding of the algorithm through the second problem.

Similarly, Teacher Shao revised her way of organizing student learning in the 
three lessons on dividing whole numbers by fractions in order to promote student 
thinking and reach the goal of understanding the standard algorithm through 
conceptual and procedural variations. As discussed above, at the debriefing meeting 
after the first lesson on this topic, the teachers and the district specialists came to an 
agreement that a double line diagram should be used to replace a single line diagram 
to represent the multiplicative relationship between quantities. In the second lesson, 
Teacher Shao adopted double line diagrams as visual models. However, the learning 
outcomes from the students were not positive. Ms. Tang pointed out she noticed 
that some students could not understand the relationship between the two lines. For 
example, some students first calculated the answer of 15⁄8 ÷ ¾

 
and then used the result 

5⁄2 to draw the length model that had a shorter line with two parts and a longer line 
with five parts. They did not understand why the double line diagram could help 
them illustrate and explain the algorithm at all. When discussing the reason for why 
the students could not understand the double line diagrams, the experts thought the 
double line diagrams separated the fractional parts and the whole, such as ⅓ hour 
and one hour drawn in two different lines, which did not clearly show to students ⅓ 
hour as one fractional part of one hour. In addition, the double line diagrams Teacher 
Shao modelled for the students funnelled their thinking to her method, which was 
evidenced in the interviews with some students after the lesson. All the interviewed 
students used no other ways than her way to illustrate their reasoning. The specialists 
speculated that the students would produce more ideas on how to model and explain 
their reasoning if Teacher Shao revised her way of organizing student learning to 
allow them investigate the topic on their own. It did not matter if the students drew 
single line diagrams or double line diagrams. What mattered was that they came up 
with their own ideas on visual models and explanations. In the final lesson, Teacher 
Shao did not demonstrate double line diagrams anymore. Instead, she built her 
instruction upon the students’ thoughts.

Dr. Gong, the university expert in the lesson study, cited from Book of Rites on 
Learning, commented on Teacher Shao’s second lesson on the topic of dividing whole 
numbers by fractions and stated that a teacher should help students understand why 
and inspire them to think independently. When a teacher funnels student thinking 
and tells them conclusions without their own thinking, students can not develop their 
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reasoning and their thinking would be confined. Conceptual and procedural variations 
are not simply achieved through choosing, adapting, and revising mathematical tasks 
by teachers. When teachers create rich opportunities to learn for students and build 
instruction upon students’ mathematical ideas, conceptual and procedural variations 
are produced in the classroom. The literature reveals that discussions can provide 
opportunities to learn for all students in the mathematics classrooms (Cirillo, 2013; 
Gearhart et al., 2014; Webb, Franke, Ing, Wong, & Fernandes, 2013). The lesson 
study, with designed learning trajectory and the lens of teaching through variation, 
showed that teaching through variation is not only a pedagogical lens or tool for 
teachers to teach, but also a result of students’ investigation and thinking as well as 
a lens to examine student learning.

Changes in Student Learning

Drawing on the concept of mathematical proficiency, the authors analyzed 
and compared the post-tests after the first and last research lessons in the three 
dimensions: procedural fluency—having correct answers and setting up correct 
number sentences; conceptual understanding—using pictorial representations and 
using words to explain thinking; strategic competences—using different pictorial 
models to demonstrate solution methods.

After the first and last lessons on the topic of dividing fractions by whole 
numbers, a post-test4 was administered to the students. On both tests there were 3 
word problems and the students were directed to calculate answers and use multiple 
ways to explain their thinking, including number sentences, pictures, and words. The 
three problems were as below.

A rope that is 6⁄7 meter long is cut into three equal parts. How long is one part?
A rope that is ½ meter long is cut into 3 equal parts. How long is one part?
A rope that is ⅔ meter long is cut into 5 equal parts. How long is one part?
Table 2 listed the numbers of students in the two tests who got correct answers, set 

up correct number sentences, drew completely correct or partially correct pictures, 
and used words, area model, and length model to explain their thinking.

From Table 2, it is clear that on both post-tests the students almost had no 
problem with calculating the correct answers, but nine of twenty-five students (36%) 
produced partially correct visual models on the first post-test compared to only four 
of twenty-eight (14%) on the third post-test. There were three students on the third 
post-test who did not draw visual models, but instead used words to explain their 
thinking correctly. The four students who employed the length model (single line 
diagram) on the first post-test all presented their models as the unit fractional part of 
the rope, such as showing 1/5 of ⅔ on the single line. Only one student had difficulty 
partitioning the presented rope length into equal parts for the first and last problems. 
That student did not know how to divide the ⅔ out of the whole one into five equal 
parts and show the correct answer in the models. Though their length models could 
not illustrate the answers, they demonstrated the meaning of dividing fractions by 
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whole numbers as partition division, e.g., ⅔ ÷ 5 to partition ⅔ into 5 equal parts. 
That was the same with the length models of the 7 students on the third post-test. We 
can see that on the third post-test, the visual models the students drew were slightly 
more diverse. More students tried to employ the length model to represent their 
thinking.

However, it was worth noting that the percentage of the students who chose to 
verbalize their thinking dropped from the first test to the third test. Almost half of the 
class on the first test tried to explain their thinking verbally, and 10 out of 11 students 
did it correctly. All 8 students showed their verbal explanations accurately on the 
third post-test, while six of the eight students used visual models. The reason for this 
issue could be that the students were not asked to write down their explanations in 
the lessons. Even though Teacher Shao and the district specialists encouraged them 
to talk about their thinking, they did not have a chance to practice jotting down their 
thinking in words on paper. From the debriefing meetings and interviews with the 
participant teachers, we can see writing down their verbalized thoughts on paper was 
not the focus of the lesson study.

It was not surprising to find out that on the third post-test more students used two 
or three ways to solve the problems. On the first post-test only 20% of the students 
(5 out of 25) used two different ways to solve the problems. As we discussed above, 
Teacher Shao and the district specialists decided to empower the students more in 
the last lesson. The students were organized to independently and collaboratively 
explore different solution methods and make sense of the standard algorithm. Thus 
61% of the students (17 out of 28) on the last test calculated the answer in two 
or three different ways, including the standard algorithm, the method of dividing 
numerators (e.g., 6/7 ÷ 3 = (6 ÷ 3)⁄7 = 2⁄7), and the method of multiplying the reciprocal 
of divisor with both dividend and divisor (e.g., 6/7 ÷ 3 = (6/7 × ⅓) ÷ (3 × ⅓)). On the 
first post-test, the majority of the students used only the standard algorithm to solve 
the problems and no student solved the problems by using the method of multiplying 
the reciprocal of divisor with both dividend and divisor.

Table 2. Post-tests: Fractions divided by whole numbers

First lesson 
(N = 25)

Third lesson 
(N = 28)

First lesson 
(N = 25)

Third lesson 
(N = 28)

Correct answers 24
(96%)

28
(100%)

Partially correct 
pictures

9
(36%)

4
(14%)

Correct number 
sentences

21
(84%)

28
(100%)

Area model 22
(88%)

23
(82%)

Verbal 
explanations

11
(44%)

8
(29%)

Length model 5
(20%)

8
(29%)

Correct pictures 16
(64%)

21
(75%)

Use both 
models

2
(8%)

5
(18%)
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Following each of the first and last lessons on the topic of dividing whole numbers 
by fractions, a post-test was administered to the students. Both post-tests included 
the same set of five word problems. The five problems are presented below:

A person walks 3 km within 1/5 hour. How many km does he walk in one hour?
A person walks 1 km within ⅔ hour. How many km does he walk in one hour?
A person walks 3 km within ⅔ hour. How many km does he walk in one hour?
A person walks ⅓ km within 1/5 hour. How many km does he walk in one hour?
A person walks 4/5 km within ⅔ hour. How many km does he walk in one hour?
Table 3 lists the number of students in the two tests who got correct answers, set 

up correct number sentences, drew completely correct or partially correct pictures, 
and used words, area model, and length model to explain their thinking.

Table 3. Post-tests: Numbers divided by fractions

First lesson 
(N = 31)

Third lesson 
(N = 29)

First lesson 
(N = 31)

Third lesson 
(N = 29)

Correct answers 22
(71%) 

27
(93%)

Partially correct 
pictures

13
(42%)

0

Correct number 
sentences

27
(93%)

28
(97%)

Area model 3
(10%)

1
(3%)

Verbal 
explanations

5
(16%)

9
(31%)

Length model 30
(97%)

26
(90%)

Correct pictures 18
(58%)

27
(93%)

Use both models 2
(6%)

0

As what was aforementioned, Teacher Shao and the district specialists had detailed 
discussions at the debriefing meeting after the first lesson on the approaches they 
should adopt to support the students’ understanding of the standard algorithm. The 
test results of the first post-test reflected what they observed. 42% of the students 
on the first post-test did not accurately produce visual models to represent their 
thinking. Only five out of 31 students tried to explain their thinking in words. At 
the debriefing meeting the participant teachers seemed to agree on an idea that the 
students could develop their conceptual understanding of the algorithm from the 
perspective of multiplicative reasoning. Following the second debriefing meeting, 
Teacher Shao accepted the feedback from her colleagues and reorganized student 
learning by giving them more space to freely explore the topic. It was remarkable 
that 93% of the students on the third post-test drew correct visual models and 31% of 
the students made an attempt to spell out their ideas in words. Out of 9 students who 
verbalized their thinking, there were 6 students who clearly illustrated their thinking 
in the proportional relationship. For example, ⅔ hour increases 3⁄2 times to reach 
one hour, and so does 3 km to reach 9⁄2 km. Those six students clearly used words 
and diagrams to illustrate the proportional relationship involved with the quantities 
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in the problems. We can speculate that the teacher’s revision of the approach to 
understanding and the way of organizing student learning boosted the production of 
verbal explanations on the third post-test.

In addition, comparing the solution methods the students adopted to solve the five 
word problems on the two post-tests, it was seen that there was a tremendous change 
in the number of students who drew on two or three ways to solve the problems. 
On the first post-test there were only two students (6%) who used two different 
solution methods. On the third post-test 18 students (62%) demonstrated two or 
three solution methods. Their multiple solution methods were similar to what we 
have described above: the standard algorithm, the method of dividing the numerator 
and multiplying the denominator of the divisor (e.g., 3 ÷ ⅔ = (3 ÷ 2) × 3 = 9⁄2), and 
the method of multiplying the reciprocal of divisor with both dividend and divisor 
(e.g., 3 ÷ ⅔ = (3 × 3⁄2) ÷ (⅔ × 3⁄2)).

DISCUSSIONS AND CONCLUSIONS

In this study, we drew on the multiple data sources to examine six research lessons 
on the topics of division with fractions. The participant teachers worked closely 
with the district teaching research specialists to design the learning trajectory and 
adopt the conceptual lens of teaching through variations to improve teaching and 
students’ learning. We argued that the participant teachers made use of conceptual 
and procedural variations through enriching visual models and modifying story 
contexts. In addition, our analysis revealed that teaching through variation was 
not only a conceptual lens or tool for teachers to design and improve instruction, 
but also a conceptual lens to examine student learning. In other words, students 
could get ample opportunities to learn through experiencing the variations which 
focus on critical aspects of the object of learning when a teacher enacts appropriate 
dimensions of conceptual and procedural variations in the classroom. Therefore, it 
will promote conceptual development of student mathematical thinking.

Division of fractions has often been considered the most mechanical and least 
understood topic in elementary school (Borko et al., 1992; Carpenter et al., 1988; 
Fendel, 1987; Payne, 1976). For example, Borko et al (1992) documented the 
difficulty the student teacher and her students had with conceptual explanation 
for the standard algorithm of division with fractions. To promote the conceptual 
development of the algorithm of division with fractions, the Common Core State 
Standards for Mathematics (2010) proposed that students at 5th and 6th grade should 
understand division with fractions in various ways, including using visual models, 
story contexts, equation, and reverse relationship between multiplication and 
division. Similarly, in the current study, a conceptual explanation for the standard 
algorithm was also a challenge for both the teachers and the students. The participant 
teachers studied and explored different ways to help students reach a conceptual 
explanation. Parallel Lesson Study guided by the theories of learning trajectory and 
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variations made it possible for the teachers to theorize their local instruction and 
produce their own new ways of teaching and learning division with fractions.

In order to scaffold the students to discern and understand the critical aspects of 
the new knowledge, especially the relationship of multiplication and division with 
fractions and the multiplicative reasoning, Teacher Shao and the district specialists 
implemented conceptual variation through diverse visual models. Various visual 
models became tools to develop conceptual variation in the lessons. In addition, they 
achieved procedural variation through changing numbers in the story contexts of 
partition division while keeping the background of the contexts invariant. Because 
there were two teachers who were teaching the same two topics at the same time in 
the large parallel lesson study, Teacher Shao taught all her six research lessons by 
interpreting division as partition, while the other teacher drew on the meaning of 
division as partition (fractions divided by whole numbers) and measurement (fractions 
divided by fractions) to teach another 6 research lessons. In the research lessons the 
teacher gradually shifted her instruction from teacher-dominated to student exploration, 
which engaged the students in yielding multiple methods of division with fractions. 
This change to the lesson helped promote conceptual and procedural variation.

Multiplicative reasoning in understanding the standard algorithm was another 
approach the participant teachers tried so hard to implement in the classroom. 
This way of understanding the standard algorithm of division with fractions had 
not been seen in the math textbooks the participant teachers used. This idea is rare 
in the mathematics classrooms in the US as well. Thompson and Saldanha (2003) 
mentioned that understanding of reciprocal relationship of relative size was very 
rare among the US students. They argued that this was a significant problem for 
mathematics education in the US and suggested investigating the reason why 
mathematical instruction failed to support its development among students. When 
teaching the topic of dividing whole numbers by fractions, the participant teachers 
redesigned the tasks and learning activities to scaffold student understanding of the 
proportional relationship5 between the quantities in the problems. For example, “A 
person walks 5 km within ⅔ hour. How many km does this person walk in one 
hour?” To solve this problem and produce a conceptual explanation, the students 
needed to reason through the relationship between ⅔ hour and 1 hour. With the 
relationship, they needed to understand the distance within the two time units shared 
the same relationship. Both time and distance change at the same rate as they have 
a proportional relationship. Therefore, if we know ⅔ hour is 3⁄2 times as many as 1 
hour, we understand the unknown distance will be 3⁄2 times as many as 5km. That 
leads to a conceptual explanation of 5 ÷ ⅔ = 5 × 3⁄2. Actually, this method could 
be connected with the method of multiplying both dividend and divisor with the 
reciprocal of divisor as 5 ÷ ⅔ = (5 × 3⁄2) ÷ (⅔ × 3⁄2), both dividend and divisor 
increasing 3⁄2 times so that we can figure out the distance within 1 hour.

A remarkable shift in the six lessons was a change of the participant teachers’ 
discussions from teacher performance to student learning. In the past some studies 
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revealed that teachers’ comments and feedback used to focus on a teacher’s 
performance in a lesson (Han & Paine, 2010). However, one of the notable features 
of lesson study is the focus on student learning. The elements of learning trajectory 
design and teaching through variations in the parallel lesson study altered the 
narrative. At the debriefing meetings, in the participant teachers’ observations, 
and through the interviews with them, we can notice the meaningful shift. They 
focused more on how students learned, responded, and understood. The theoretical 
lens of teaching through variations led the teachers to recenter their discussions 
and reflections on supporting students’ conceptual development, which helped the 
teachers revise the way to organize student learning in the classroom. Students’ 
independent and collaborative exploration eventually initiated opportunities to learn 
through conceptual and procedural variations.

NOTES

1 The details of the designed learning trajectory can been seen in Huang, Gong and Han (2016). 
Implementing mathematics teaching that promotes students’ understanding through theory-driven 
lesson study. ZDM Mathematics Education, 48, 425–439.

2 Chinese teachers usually work in a school-based teaching research group that is organized by subject, 
e.g., mathematics teaching research group. In the teaching research group teachers are involved in 
various activities, among which collaboratively conducting public lesson or exemplar lesson is a key 
approach to their professional development. The structure and procedure of conducting public lesson 
or exemplar lesson are similar to Japanese Lesson Study while some researchers argue Chinese lesson 
study has multiple purposes and traditionally focused more on teacher performance (Han & Paine, 
2010; Yang & Ricks, 2013).

3 The information about Parallel Lesson Study can be found out in Huang and Han (2015).
4 The teachers did not score the post-tests. The tests were collected for analysing and understanding the 

students’ learning.
5 Students in China start learning proportional relationship at Grade 5.
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DAVID CLARKE

INTRODUCTION

Putting Variation Theory to Work 

The chapters in this section offer accounts of the application of Variation Theory 
in different contexts and for different purposes. The overarching message is that 
Variation Theory offers such an intuitively universal perspective (see Runesson & 
Kullberg) that it can be applied usefully to any instructional situation with the 
expectation that insight will follow. This demonstrable effectiveness of Variation 
Theory as a tool for analyzing pedagogical approaches has at least three implications:

• Variation Theory systematizes a natural (possibly inevitable) pedagogical 
inclination to vary aspects of the object of learning.1

• The systematic structure of Variation Theory and the associated vocabulary 
provide a powerful tool for the analysis of instruction.

• The productive applicability of Variation Theory to the four very different 
educational purposes discussed in these four chapters provides evidence of the 
general utility of Variation Theory.

Indeed, the chapters themselves are so artfully varied that it seems legitimate 
to consider how effectively the variation between chapters supports the learning 
of the reader, where “Variation Theory” is the object of learning. I therefore posed 
the question to myself, “How does the variation provided in the chapters contribute 
to our understanding of Variation Theory?” What follows is my answer to this 
question.

THE INDIVIDUAL CHAPTERS

Consider the chapters as elucidating “Variation Theory” through its varied 
application in specific educational settings. Each chapter varies with respect to 
originating country/school system, mathematical content addressed, instructional 
context explored, and in the aspect of variation theory that is foregrounded. It is 
useful for me to make these specific variations explicit in reference to each chapter.

The chapter by Hino utilizes variation theory to examine the Japanese problem 
solving approach to mathematics teaching. This chapter connects the pedagogy of 
variation with what are perceived to be effective practices in the Japanese education 
system. Three particular viewpoints are presented: (1) presenting problems with 
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variation, (2) providing opportunities for students to construct variation themselves, 
and (3) promoting student reflection on variation toward the intended object 
of learning. On the basis of the application of these viewpoints to two primary 
mathematics lessons, implications for teaching through variation are discussed. 
Hino’s approach is to articulate the basic features of Japanese problem solving 
pedagogy and identify elements that can be interpreted in terms of variation theory. 
Having identified structural elements of variation within the iconic Japanese problem 
solving instructional prototype, Hino illustrates the presence of these elements 
within two lessons on the comparison of fractions in fifth-grade.

Hino legitimately concludes “a structured problem solving lesson can be viewed 
from the perspective of variation” (p. 17). She identifies specific resonances between 
the Japanese prioritization of mathematical thinking and instructional strategies, 
such as procedural variation, made visible by the variational analysis. The chapter is 
full of rich examples of aspects of Japanese pedagogy made visible by consideration 
from the perspective of variation.

The chapter by Barlow et al. takes as its curricular setting the U.S. literature on the 
development of algebraic reasoning and integrates considerations of variation theory 
in the instructional use of carefully sequenced mathematical tasks. The specific focus 
is on the recognition and generalization of mathematical patterns facilitated through 
the selective variation of a single task parameter at a time (“in order to adhere to 
variation theory”). A distinctive emphasis is the statement that “the enacted objects 
of learning are described through the patterns of variation and invariation that were 
actually co-constructed by the teacher and the students.” Variation Theory emerges 
as a powerful vehicle by which “U.S. algebra instruction” might better facilitate 
student transition from arithmetic to algebraic thinking.

Runesson and Kullberg open with the characterization of variation as a “taken 
for granted” aspect of mathematics instruction. The authors cite Sun (2011) as 
suggesting that “the idea of variation is almost invisible to teachers.” Swedish 
“learning study” provides the two cases discussed in this chapter. The content focus 
was 8th grade division with positive denominators less than 1. Emphasis in the 
first case is on the collaborative design of mathematical tasks to facilitate student 
learning about division. A second case examines an individual teacher’s lessons on 
the same topic two years apart. Despite evident changes in sequence and patterns of 
variation, the teacher’s discussion of his instruction, “did not talk about variation at 
all.” The principal message of the chapter is that Swedish Learning Study, predicated 
on the principles of variation theory, provides a structure by which implicit teacher 
knowing can “become visible, reflected upon and developed.”

The chapter by Peled and Leiken contrasts two instructional approaches, 
characterized by two task types: Multiple Solution Tasks (MSTs) and Modeling 
Tasks (MTs). Peled and Leiken employ “multiplicity” as a common dimension by 
which to connect and compare the two approaches. “Multiplicity of mathematical 
tasks at two levels (pedagogical approaches and solution methods)” becomes a 
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surrogate for “Variation Theory”, and insight arises from comparison of the “nature 
and goals of these two multiplicities.” For the reader, seeking to understand Variation 
Theory, the two approaches can be seen as offering useful differences in perspective; 
demonstrating the benefits of within-task variation, while simultaneously making 
comparison between two variant applications of the general instructional principle 
of multiple solutions. As with the other chapters, the object of learning is, in 
fact, Variation Theory, about which more becomes known through its separate 
consideration in the contexts of MST and MT use.

SOME GENERAL REMARKS

I have argued elsewhere that comparison is fundamental to the act of research (Clarke, 
2015) and perhaps a fundamental aspect of what it means to be human. It seems to 
me, given the evident universal utility of Variation Theory as a lens by which to 
interrogate both instruction and learning, that not only is the developing capacity 
to discern identical with learning (Marton & Booth, 1997), but also the promotion 
of that discernment is encrypted in almost every instructional act. Runesson and 
Kullberg’s account of Mr B’s instructional development suggests this. Hadamard 
is reputed to have said, “The purpose of mathematical proof is to legitimize the 
conquests of intuition.” In the same way, Variation Theory may represent the 
formalization of something so fundamental to learning and instruction as to be both 
intuitive and invisible. The suggestion of the chapters in this section is that Variation 
Theory makes visible a fundamental aspect of learning, systematizes it, and renders 
it visible for reflection and instructional optimization. The diversity of contexts 
provided by the chapters and the different emphases employed by the authors 
provide a form of meta-validation of the effectiveness of variation in elaborating the 
object of learning: in this case, Variation Theory itself. The chapters are scholarly, 
lucid and purposeful. Their combination has a value that transcends even the sum 
of their individual worth. Of course, that is what Variation Theory would lead us to 
expect. I commend them to your careful consideration.

NOTE

1 Instructional methods without variation might be classified as catechistic and associated with the 
verbatim memorisation of sacred or culturally significant text. Such memorisation can serve legitimate 
educational purposes and should not be dismissed as valueless. However, the educational purposes 
that motivate variation can be treated separately for the purpose of this discussion.
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KEIKO HINO

14. IMPROVING TEACHING THROUGH VARIATION

A Japanese Perspective

INTRODUCTION

International comparisons of classroom practices promote the growth of research 
on the design of classroom tasks, principles for organizing lessons, and ways of 
structuring classroom discourse to support students’ understanding and thinking 
(e.g., Clarke, Emanuelsson, Jablonka, & Mok, 2006; Clarke, Keitel, & Shimizu, 
2006; Hiebert et al., 2003; Li & Shimizu, 2009; Shimizu & Kaur, 2013; Stigler & 
Hiebert, 1999; Watson & Ohtani, 2015). Teaching through variation is an 
increasingly prominent method that provides a framework for effective mathematics 
teaching and learning (e.g., Gu, Huang, & Marton, 2004; Watson & Mason, 2006; 
Wong, 2008; Wong, Lam, & Chan, 2013). The fundamental principle of teaching 
through variation is that the learners experience and discern the critical features 
of the intended object of learning through completing a series of tasks in which 
some parts vary while others do not (Runesson, 2005). In particular, this method 
has been used and studied vigorously in mathematics instruction in China (e.g., 
Gu, Huang, & Marton, 2004; Wong, 2008). This chapter connects the pedagogy of 
variation with what are perceived to be effective practices in one education system. 
Such an attempt will contribute to a systematic examination of the pedagogy of 
variations, which goes beyond what is valued in China and is one of the issues 
addressed in this book.

THE JAPANESE PROBLEM SOLVING APPROACH

Teaching Mathematics through Problem Solving

Teaching mathematics through problem solving is a widely preferred method within 
the community of mathematics educators in Japan. Generally, mathematics teaching 
is associated with solving mathematics problems (Hiebert et al., 2003), but quite 
often, solving problems is regarded as the application of knowledge acquired in a 
lesson. In Japan, having students solve problems is deeply connected with the goal of 
fostering mathematical thinking, which has been the goal of mathematics education 
for more than 50 years. Here solving problems is not only regarded as application of 
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learned knowledge but also used as a vehicle for imparting new knowledge (Hino, 
2007).

To effectively teach mathematics through problem solving in the classroom, it 
is crucial to provide students with worthwhile tasks and to engage them in active 
mathematical thinking. It is equally critical to organize the lessons in such a way that 
students can experience the problem solving process. These two facets continue to 
attract the interest of mathematics educators in Japan (Hino, 2007).

Investigation of mathematics problems that demand higher-order thinking as 
well as arouse student interest has been a major issue of Kyozaikenkyu (instructional 
materials research) in lesson study. In this regard, a well-known undertaking is the 
development of open-ended problems, or problems with multiple correct answers. 
This approach originated in the research on the evaluation of higher-order thinking 
conducted by Shimada and his colleagues at the beginning of the 1970s (Becker & 
Shimada, 1997). Their investigation encouraged mathematics educators to exploit a 
more varied range of teaching materials and ways of organizing lessons (e.g., Nohda, 
1983; Takeuchi & Sawada, 1984). The idea of openness in teaching and evaluation 
has developed and expanded in various ways since then.

Investigations into effective lesson organization for the purpose of deepening 
students’ understanding and fostering mathematical thinking were already prevalent 
in the 1960s (e.g., Sugita Elementary School, 1964). Mathematics educators studied 
the seminal works of Polya and Poincaré and sought to develop ways to help students 
discover new ideas and construct knowledge on their own. They incorporated 
Polya’s four phases of problem solving (understanding the problem, devising a 
plan, carrying out the plan, and looking back) into the organization of mathematics 
lessons. Sugiyama and Ito (1990, p. 155) described the rationale for sequencing 
lessons in this way as follows:

To have students experience problem solving means more than letting them 
solve the problem at hand. It means having them learn how to think and how 
to overcome difficulty and having them experience the desire, effort, struggle, 
joy, and so on in the process of solving the problem. In order to achieve this, it 
is important for teachers to help students:

1. Build confidence and experience the joy of being able to find a preliminary 
solution to the problem by fully drawing on their own knowledge, and

2. Appreciate more fully elaborated solution methods, and experience the joy 
of continuously searching for better ways. (emphasis in original)

For students to go through the intended process of problem solving, the teacher’s 
role was considered crucial. With respect to teachers’ questioning, Katagiri (1988) 
examined the mathematical thinking used in each stage of problem solving and 
developed a list of questions that would foster students’ mathematical thinking 
in the classroom. Koto et al. (1992, 1998) suggested principles for organizing 
discussions after students found preliminary solutions by drawing on their own 
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knowledge. They proposed three stages: examination of the validity of each solution, 
examination of the relationship between solutions, and self-determination of better 
solutions. Teachers were advised to organize discussions by thoughtfully considering 
the multiple types of solutions that the class should deal with to achieve the lesson 
objective (see also Hino, 2015).

Thus, mathematics educators in Japan generally believe that letting students 
experience the process of problem solving is an excellent way of fostering 
mathematical thinking and recognizing its value. They also acknowledge the crucial 
role of teachers to realize this goal in the classroom.

Features of Structured Problem Solving Approaches

The Japanese problem solving approach became widely known through the Trends 
in International Mathematics and Science Study (TIMSS) videotape studies on 
mathematics lessons. In their investigation of eighth-grade mathematics lessons 
in Germany, Japan, and the United States, Stigler and Hiebert (1999, pp. 79–80) 
described the Japanese lesson pattern as a sequence of five activities:

• Reviewing the previous lesson,
• Presenting the problem for the day,
• Students working individually or in groups,
• Discussing solution methods, and
• Highlighting and summarizing the major points.

A distinct feature of the Japanese lesson pattern, when compared with those of the 
other two countries, was that presenting a problem set the stage for students to work 
on developing solution procedures. Stigler and Hiebert (1999) called this pattern 
structured problem solving. In contrast, other students worked on problems only after 
the teacher demonstrated how to solve them (in the U.S.) or after the teacher directed 
students to develop procedures for solving the problem (in Germany). Stigler and 
Hiebert contended that these cultural scripts for teaching were grounded on beliefs 
about the nature of the subject, about how students learn, and about the role that a 
teacher should play, all of which served to maintain the stability of cultural systems 
(pp. 89–90).

Further comparative studies on mathematics classrooms across countries 
have clarified that Japanese classrooms are distinguished by teachers’ intentional 
guidance of students through their multiple solutions to the mathematical task. In 
the Learner’s Perspective Study (LPS) (Clarke, Keitel, & Shimizu, 2006), eighth-
grade mathematics lessons taught by competent teachers from 16 participating 
countries were analyzed from various perspectives. The results in the three Japanese 
classrooms repeatedly showed the teachers offering intentional guidance in response 
to their students’ multiple solutions, in the form of posing additional questions or 
summarizing the lesson (Koizumi, 2013; Shimizu, 2006). Funahashi and Hino 
(2014) further described the teacher’s role in drawing out and extending students’ 
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thinking toward achieving the lesson’s objectives through an interactional pattern 
called the guided focusing pattern.

Another feature, closely related to those explained above, is lesson coherence, 
which refers to the connectedness or relatedness of the mathematics within and 
across the lessons. Stigler and Hiebert (1999), in their three-country comparison 
study, used coherence as an indicator of mathematical content in lessons. One way 
in which they measured coherence was by whether the teacher explicitly pointed out 
connections among the ideas and activities. In this regard, only Japanese teachers 
were found to routinely link the parts of a lesson together. Moreover, they examined 
the mathematical connections between segments of lessons by delineating how a 
given segment was similar to, dependent on, or extended to the previous segment 
mathematically. Among 30 analyzed lessons in each country, they reported the 
percentage of lessons in which all segments were connected through at least one 
appropriate mathematical relationship as 45% in the U.S, 76% in Germany, and 92% 
in Japan. These were considered as the lessons that “told a single story” (Stigler & 
Hiebert, 1999, p. 64). Similar results were obtained by the TIMSS 1999 video study 
that compared lessons in seven countries (Hiebert et al., 2003).

Several Japanese researchers have explored the idea of a story or a drama as a 
metaphor for an excellent Japanese lesson. Shimizu (2009) pointed out that some 
key pedagogical terms shared by Japanese teachers have their roots in a story or a 
drama. One such term is Yamaba, or the climax of a lesson. Another is Ki-Sho-Ten-
Ketsu, which describes the particular structure of a lesson’s flow from the beginning 
(Ki) toward the end (Ketsu means a summary of the whole story). The implication 
of these terms is that a lesson should have a beginning, reach a climax during the 
whole-class discussion, and then arrive at a conclusion. Shimizu further pointed out 
that the highlight or climax should be based on students’ active participation and that 
teachers guide students to process and reflect on the methods by which a problem is 
solved. He summarized these aspects by stating that “a coherence of the entire lesson 
composed of several segments, students’ involvement in each part of the lesson, 
and the reflection of what they did are all to be noted for the quality instruction in 
Japanese classrooms” (p. 314).

Okazaki, Kimura, and Watanabe (2015) examined the coherence of mathematics 
lessons from the viewpoint of the genesis and development of students’ learning 
goals. They inquired as to the generation of the coherent plot of a lesson, in which 
the students were the protagonists of the story. Four levels of student-established 
learning goals were set and used for the analysis of two mathematics lessons. The 
results showed that in both lessons, the initial learning goals emerged from the 
student and were then enhanced by the teachers during the activity of discussing 
solution methods. The authors concluded that “a lesson can become coherent when 
the students’ learning goal gradually develops in terms of its level and when there 
are fruitful interactions for connecting and reflecting on ideas” (Okazaki et al., 2015, 
p. 407). Teachers and students collaboratively set and refine the learning goal by 
connecting and reflecting on their previous experiences.
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THE JAPANESE PROBLEM SOLVING APPROACH VIEWED  
FROM THE PERSPECTIVE OF VARIATION

Variation Theory

Variation theory accounts for differences in learning and provides a way to describe 
the conditions necessary for learning (Marton & Booth, 1997; Marton et al., 2004; 
Runesson, 2006). According to this theory, learning is defined as “a change in the 
way something is seen, experienced or understood” (Runesson, 2005, p. 70). What 
the learner experiences or sees in the situation is critical. The theory regards learning 
as being aware of critical aspects of the object (e.g., a situation or a problem). For 
learning to take place, the learner must develop the capability to discern certain 
aspects that are critical to a specific way of seeing the object. Therefore, the theory 
positions the object of learning as its center.

In classroom learning, three types of objects of learning are distinguished. The 
intended object of learning is the capabilities that the teacher wants students to 
develop. The enacted object of learning is the object that is co-constituted in the 
interaction among the class members and afforded to the learners. Finally, the lived 
object of learning denotes what the learner actually learned. Whereas the intended 
object of learning is a product of the teacher’s awareness, the enacted object of 
learning is what the students encounter and defines “what it is possible to learn in the 
actual setting, from the point of view of the specific object of learning” (Marton & 
Tsui, 2004, p. 4). Therefore, even if the intended object of learning is the same in two 
instructional settings, differences in the enacted objects result in crucial differences 
in the opportunities for student learning.

With regard to the enacted object of learning, the theory is used to analyze what 
the student experiences in the process of learning. In other words, it examines what 
aspects or features come to the forefront of the student’s attention and are discerned. 
It further examines how the student discriminates and differentiates the features, 
discerns certain aspects simultaneously, makes relations among them, and gains 
richer understanding. In order to discern certain aspects or features, variations that 
appear within the experience can play a central role. It is impossible to discern an 
aspect unless we experience a variation in that aspect. Therefore, for learning to 
take place, one necessary condition is to provide the students with the possibility 
of experiencing for themselves certain patterns of variation and invariance of these 
features in the critical aspects of the object (Lo & Marton, 2012).

The patterns and dimensions of variation and invariance discerned by the student 
form a space for learning. This term denotes the whole of what the student can 
possibly learn from the lesson (Marton et al., 2004). The space of learning is not 
the situation per se, but the “potential for learning offered in terms of variation and 
invariance opened in the situation” (Runesson, 2006, p. 403). It is not predetermined 
but created by the learner. Through his or her inquiry into the situation, the learner 
opens up a space for the dimensions of variation, which are different features critical 
for a particular learning.
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Conceptual Variation and Procedural Variation

Variation theory underpins the Chinese mathematics teaching method called teaching 
with variation, which “intends to illustrate the essential features by demonstrating 
different forms of visual materials and instances or highlight the essence of a 
concept by varying the nonessential features” (Gu, 1999, cited by Gu, Huang, & 
Marton, 2004, p. 315). Teaching with variation has occurred for a long time in 
Chinese classrooms, either consciously or intuitively. For several decades, Chinese 
researchers have made explicit the principles of this method of teaching.

Gu et al. (2004) identified two types of variations that exist within the practice 
of teaching with variation. One is conceptual variation, which encompasses two 
ways of creating variation: “varying connotation of concept” and “varying instances 
which confuse the connotation of concept” (p. 315). For the former, in order to 
induce abstract mathematical concepts, variations are created in visual and concrete 
items, such as visual models experienced in daily life, or figures and diagrams. For 
the latter, to highlight the essential features of the concept, nonessential features 
are varied through providing non-standard figures or counterexamples. In this 
way, conceptual variation aims to help students understand concepts from multiple 
perspectives.

The other type of variation is procedural variation. Here, procedure means 
process, or dynamic knowledge of problem solving and meta-cognitive strategies 
(Gu et al., 2004, p. 319). According to Gu et al., this is the aspect that extends the 
concept of variation, helping students to arrive at solutions to a problem by forming 
different processes and connections between the known problem and unknown 
problems. Procedural variation aims at providing a process for formulating the 
concept stage by stage. Gu et al. stated that “the richness and effectiveness of the 
process system are important for upgrading cognitive structure” (2004, p. 324).

Gu et al. (2004) distinguished three dimensions of problem solving for the 
purpose of constructing student experience through procedural variations. The 
first dimension is varying a problem. This includes using the original problem as a 
basis for scaffolding, or extending the original problem by varying the conditions, 
changing the results, and making generalizations. The second dimension is varying 
the process, which involves producing multiple methods of solving a problem and 
associating them with each other. The third dimension is varying the application of a 
method by applying the same method to a group of similar problems.

Huang and Leung (2005) analyzed a well-taught Shanghai lesson by using 
this framework. The teacher was described as unfolding the lesson smoothly by 
following a deliberate design in a seemingly teacher-dominated manner. Both 
conceptual variation and procedural variation were demonstrated during the lesson. 
Conceptual variation was observed in the phases of forming new concepts and of 
consolidating and memorizing the concept. Procedural variation was observed in the 
phases of reviewing previous knowledge, introducing a new concept, consolidating 
the new concept, developing a method to solve problems with the new concept, 
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and preparing for further learning. The researchers pointed out that the two types 
of variations were created alternatively for different purposes of experiencing the 
enacted object of learning.

Variation in Structured Problem Solving Lessons

As described in a previous section, problems used in the lesson and ways of organizing 
the lesson are two crucial facets of Japanese problem solving. Furthermore, the 
lesson pattern of structured problem solving constitutes a distinct feature of 
organizing the lesson. As described, high-quality mathematics instruction in Japan 
has several aspects that are connected with structured problem solving. Below, a 
quality mathematics lesson with structured problem solving is examined from the 
perspective of variation. Specifically, three viewpoints are presented to show how 
teachers use variations strategically to create a rich space for learning in the lesson.

The first viewpoint concerns presenting problems with variation. Developing 
rich problems aimed at lesson objectives is an important part of lesson construction. 
Here, teachers use variation in the problem and examine the affordance of learning 
by changing the nature of variations (Sekiguchi, 2008). For example, to introduce 
the method of composing or decomposing numbers into tens in addition with 
whole numbers, first-grade teachers carefully consider variation in numbers. When 
students are presented with the problem “9 + 4,” they will be led more naturally to 
make 10 by adding 1 to the 9 than students who are presented with “8 + 6.” In some 
cases, however, teachers may use “8 + 6” from the outset, if they want to encourage 
a range of student thinking by allowing the application of different strategies. As 
noted above, Gu et al. (2004) distinguished three dimensions of problem solving 
through procedural variation; a teacher considers his or her intention and decides 
how to manipulate each of these dimensions in the problems. In structured problem 
solving, usually a small number of problems is covered in a lesson. However, those 
problems are carefully developed and sequenced to realize rich paths of learning 
toward the intended object of learning.

The second viewpoint concerns providing opportunities for students to construct 
variation themselves. The deliberately chosen problems often take the form of open-
ended questions. Students are first requested to approach the problem in their own 
way by drawing on their knowledge. This phase produces variations in students’ 
ways of solving the problem, which may be idiosyncratic, unsophisticated, or even 
erroneous. These variations then become the object of attention in the discussion 
phase, during which students are asked to explain their thinking and the reasons 
behind it. Variations in students’ explanations are indispensable in the process of 
refining the solutions and approaches to make them more sophisticated and integrated 
through extensive whole-class discussion (Shimizu, 1999). A teacher anticipates 
these variations when planning the sequence of problems. Involving students in 
the activity of constructing variations is vitally important in the structured problem 
solving lesson.
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In a structured problem solving lesson, a teacher guides students toward the 
intended object of learning by promoting their reflection on the variations they have 
constructed. Therefore, the third viewpoint concerns promoting students’ reflection 
on variation toward the intended object of learning. This viewpoint especially 
applies to the discussion phase, as students compare and contrast proposed variations 
in thinking and find ideas that integrate them, identify the relationship among them, 
or create and justify better ways (Hino, 2015; Koto et al., 1992). These discursive 
activities contain the act of reflection because they include critically examining the 
obtained solutions, drawing on self-knowledge for further inquiry, and constructing 
arguments, alternatives, or suggestions (Polya, 1985). The teacher plays an important 
role in guiding the students toward the intended object of learning through their 
reflection on variations. Funahashi and Hino (2014) pointed out the importance of 
the teacher controlling students’ focus of attention by identifying important ideas 
on which to focus, proposing another focus when necessary, and modifying or 
improving students’ focus.

Sekiguchi (2012) analyzed LPS data from three Japanese classrooms with respect 
to how they coordinated coherence and variation in their lessons. In the analysis, he 
identified different types of key questions to encourage students to reflect on their 
experiences of variations:

• Classifying or isolating (e.g., which ones look similar?)
• Noticing (e.g., what differences or similarities do you notice?)
• Comparing and contrasting (e.g., what is different?)
• Evaluating (e.g., which one is more efficient?)

These are conceived as key instructional actions to direct students’ reflections 
toward the intended object of learning. Nevertheless, how to encourage students’ 
discernment of a critical feature while they construct variation is an important theme 
of Japanese lesson study.

In summary, the three viewpoints—presenting problems with variation, providing 
opportunities for students to construct variation themselves, and promoting students’ 
reflection on variation toward the intended object of learning—are highlighted when 
we look at a structured problem solving lesson from the perspective of variation. 
In the next section, these viewpoints are used to analyze mathematics lessons in a 
primary school classroom.

VARIATION IN MATHEMATICS CLASSROOMS: A CASE STUDY  
OF COMPARING THREE FRACTIONS

Outline of the Two Lessons

This case study comes from two consecutive fifth-grade lessons on comparing 
fractions. The lessons were taught by Mr. Taka (all the names used in this chapter 
are pseudonyms) in 2010 in a university-affiliated primary school in Tokyo. There 
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were 38 students in the classroom. The duration of one primary school lesson in 
Japan is 45 minutes. The lessons were conducted as part of the Learner’s Perspective 
Study―Primary (LPS-P) (Fujii, 2013; Shimizu, 2011). The lessons analyzed in 
this chapter are the first two in a series of 16 lessons on the topic of addition and 
subtraction with unlike denominators. Drawing on the methodology from the earlier 
LPS (Clarke, 2006), the LPS-P collected data from the lessons and from interviews 
with the teacher and four focus students.

The objectives of these two lessons were to understand that fractions can be 
compared if a common “unit fraction” is found and to understand the reasons for 
comparing fractions by finding a common denominator or numerator. In the teacher 
interview, Mr. Taka emphasized repeatedly the idea of finding a common unit fraction 
because once it is found, one can compare the fractions and add or subtract fractions 
in the same way as was previously learned with whole numbers. He said that these 
concepts connect with building students’ understanding of fractions as numbers. In 
his teaching, Mr. Taka consistently focused on the “unit” or “unit fraction.”

In these two lessons, a situation of comparing three quantities, 2/4L, 3/4L, and 
2/3L, was given. Table 1 shows the implemented flow of the lessons. In Lesson 1, 
the students compared 2/4L and 3/4L first and then 2/4L and 2/3L. In Lesson 2, after 
reviewing Lesson 1, the students compared 3/4L and 2/3L.

Analysis of the Lessons from Variation Perspectives

Presenting problems with variation. Since these lessons served as an introduction 
to the topic of fractions with unlike denominators, Mr. Taka chose the three fractions 
carefully to represent three variations of fractions:

a. Different numerator, same denominator (2/4 and 3/4)
b. Same numerator, different denominator (2/4 and 2/3)
c. Different numerator, different denominator (3/4 and 2/3)

The students had learned to add and subtract fractions with like denominators 
in earlier grades. Therefore, they could compare fractions of type A easily. Type B 
is newer and would require additional thinking; Type C is completely new to the 
students. By presenting these variations of fraction comparisons, Mr. Taka attempted 
to connect students’ previous knowledge and new knowledge. Mr. Taka began the 
lesson by writing 2/4L, 3/4L, and 2/3L on the blackboard and posed an open-ended 
question: “Which one is bigger? What do you notice at a glance?” He encouraged 
the students to speak up freely. A student responded that 2/4L < 3/4L (type A). After 
some discussion, another student said that 3/4 > 2/3 (type C). Mr. Taka postponed the 
student’s thinking until Lesson 2 by stressing “at a glance” in his question. Therefore, 
quite naturally, the class proceeded to discuss type A and then type B in Lesson 1, 
and type C in Lesson 2. The variation of these problems is shown in Figure 1, in a 
similar way as the illustration of procedural variation as scaffolding for problem 
solving in Gu et al. (2004).
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Table 1. The flow of the lesson on comparing three fractions

Activity Phase Content of activity

Lesson 1
“Which one is bigger?” 
Looking at the fractions and 
finding explanations

Presenting the problem 
Discussing the solutions

The teacher wrote a problem on 
the blackboard, “Which one is 
bigger? 2/4L, 2/3L, or 3/4L.” 
He asked the students to judge 
at a glance. Through interaction 
between the teacher and the 
students, they discussed 2/4 < 
3/4 and 2/4 < 2/3 by proposing 
several explanations.

Explaining why we need 12 
to compare 2/4 and 2/3

Focusing on the problem 
Working individually 
Discussing the multiple 
solutions 

In one of the explanations, a 
student used “12” as the least 
common multiple of 3 and 4. 
The teacher posed a question 
regarding the reason for using 
12. He made the students write 
the reason for using 12 in their 
notebooks so that everyone 
could fully understand it. Later, 
other students presented different 
explanations.

Summarizing what we  
found today

Summarizing the lesson On the basis of the students’ 
explanations above, the teacher 
summarized that we cannot 
compare the fractions unless 
the unit fractions are common 
between the two fractions.

Lesson 2
Reviewing Lesson 1 Reviewing the previous 

lesson
The teacher and the students 
reviewed the reasons for 2/4 
< 3/4 and 2/4 < 2/3.

Comparing 2/3 and 3/4 Discussing a solution The class dealt with the 
comparison between 2/3 and 3/4, 
which had been postponed. One 
student presented 2/3 < 3/4 by 
noticing the difference between 
the fraction and 1. By proving her 
explanation, the class reached the 
consensus that they can compare 
fractions if either numerators or 
denominators are the same.
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Activity Phase Content of activity

Comparing 2/3 and 3/4 by 
finding common numerator 
or denominator.

Presenting the problem 
Working individually 
Discussing solution 
methods

The teacher asked the students 
to compare 2/3 and 3/4 by the 
other methods, namely, by 
finding a common numerator 
or denominator. After working 
individually for about six 
minutes, two students presented 
their solutions. One student’s 
solution of finding a common 
numerator was examined, and in 
the discussion, several students 
further explained its plausibility.

Summarizing today’s lesson Summarizing the lesson On the basis of the students’ 
explanations, the teacher 
summarized that in order to 
make two equivalent fractions, 
they need to multiply both 
numerator and denominator by 
the same number.

Figure 1. Variation in the lesson on comparing three pairs of fractions

The variations in the problems had specific intentions. Type A and type B 
comparisons were intended to promote students’ awareness of the value of finding 
a common unit fraction when comparing two fractions. Here, awareness means 
that the students recognize what they have done in the act of comparing fractions, 
not that they are discovering some novel phenomenon. The purpose of type C 
comparison was to further promote the students’ clearer understanding of this idea. 
In addition, Mr. Taka emphasized the connection between type C and the other two 
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types by enlightening students’ application of the idea to the type C comparison. 
In this way, type A and B comparisons were used as scaffolding for the type C 
comparison.

Providing opportunities for students to construct variation themselves. In the 
two lessons, Mr. Taka provided several opportunities for the students to construct 
variation. For types B and C, Mr. Taka requested the students to develop clear 
explanations of the reason for their judgments. Thus, multiple explanations using 
different representations were abundant in these lessons. Importantly, the students 
constructed alternative explanations by attempting to supplement or modify the 
previous explanations given by their peers.

In Lesson 1, two occasions arose in which the students proposed multiple 
explanations. The first was when they discussed the reasons why 2/4 < 2/3. The 
other occasion resulted from focusing on one of the explanations given by a student, 
who explained her reasoning for 2/4 < 2/3 by using 12, the least common multiple of 
3 and 4. Mr. Taka posed his question regarding the reason for using 12 and requested 
the students to write down the reason. On these occasions, the students’ various 
reasonings were refined toward more viable understandings with a clearer focus on 
the idea of finding a common unit fraction.

In Lesson 2, when the class engaged in the activity of comparing 2/3 and 3/4, 
there were two instances in which student solutions became the object of discussion. 
The students again improved their explanations, and this process contributed to 
clarifying the meaning of finding a common numerator or denominator.

Below, one occasion is presented in which the students constructed variations in 
their reasoning with regard to the comparison of two fractions. When the students and 
the teacher discussed the reason why 2/4 < 2/3 in Lesson 1, one student explained, 
“The numerator is the same. If we compare two [parts] of what we divided into 
four and two [parts] of what we divided into three, 2/3 is larger.” At this point, Mr. 
Taka asked the students if anyone could give additional detail. Then five students 
proposed explanations by way of attempting to make the reasoning clearer and more 
detailed:

C1:  The one that is divided into three [is larger], because the area of one part 
is larger, so we know 2/3L is larger.

C2:  I used a figure. (C2 represented 2/4 and 2/3 visually by drawing two 
cups on the blackboard.) Two of four equal parts are this part, and … 
2/3L means, well, divide this into three equal parts, and take two of 
them, they are here. (Mr. Taka added lines and made Figure 2.)

C3:  (when asked to explain the relationship between C2 and C1’s 
explanations): Well, the area of one part is this part. (She colored the 1/4 
part red as shown in Figure 2.) For this one, this is the part. (She colored 
the 1/3 part red in the same way.) (Mr. Taka asked C1 if this was what 
she had intended to say.)
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C4:  Mine is easier to know the difference than C2’s figure. (Mr. Taka drew 
Figure 3 on the blackboard by looking at C4’s notebook.) The least 
common multiple between 3 and 4 is 12. So, I divided a rectangle into 12. 
I connected 12 blocks. This is one block (pointing to 1/12 part). (Mr. Taka 
marked it with red chalk and wrote “a block.”) For 2/4, I divided the 
blocks into 4 chunks, and 1, 2, well, I marked here (pointing at the area of 
2/4 in Figure 3). (She explained 2/3 in the same way.) Then we know that 
2/3 is larger by the difference of 2 blocks. (Mr. Taka drew a dotted line.)

Figure 3. A figure by C4

C5:  (drawing two circles on the blackboard): These are the same size. (C5 
showed 2/4 and 3/4 in the circles.) … C1 said the area of one part; 2/4 is 
two of four divided parts (marking the parts in yellow as shown in Figure 
4); 2/3 is two of three-divided parts (marking the parts). C1’s area of one 
part is here and here (marking the area). For 2/3, the shape of area of one 
part is larger, so we know 2/3 is larger. I can use this method for other 
fractions such as 2/4 or 3/4.

The students’ utterances show that C1 stated the words “area of one part” to 
make the previous explanation clearer. Then C2 explained the “area of one part” by 

Figure 2. A figure by C2
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drawing two cups, and C3 emphasized it by using red chalk. C4 supplemented the 
previous discussion by proposing a different new perspective. Finally, C5 further 
clarified the “area of one part” by drawing another representation. The student drew 
a circle because he thought that a circle showed the difference of two areas more 
clearly than a cup. With some prompts for clarification by Mr. Taka, the students 
proposed multiple explanations one after another.

Promoting students’ reflection on variation toward the intended object of 
learning. The students’ reflection on the varied reasoning was intimately linked to 
their activity of construction. As illustrated in the episode above, this is because the 
students constructed alternative explanations by attempting to supplement or modify 
the previous explanations given by their peers. Mr. Taka also played an important 
role in guiding their process of refining their explanations. He checked the chain 
of reasoning, sometimes negotiated it, and occasionally summarized what they had 
reached as a consensus.

Through the students’ active involvement in constructing and reflecting 
on explanations of the reasons for their judgments, they were provided with 
ample opportunity to discern critical features of the intended object of learning. 
Nevertheless, Mr. Taka was consistently checking whether the students made sense 
of the idea of finding common unit fractions when comparing two fractions. He was 
especially sensitive to whether the students paid attention to the meaning.

For example, in Lesson 1, after the discussion of 2/4 < 2/3, Mr. Taka questioned 
C4’s use of 12: “I really don’t understand why this 12 comes out.” He took time to 
write their explanations as to the reason for the necessity of 12. When the students 
presented their reasons, one said, “We must make the denominators the same number. 
Twelve is the number that divides both three and four evenly. So I used 12.” Mr. Taka 
asked for clarification: “Why must you make the denominators the same?” and the 
discussion continued. In the teacher interview conducted after the lesson, Mr. Taka 
described his dissatisfaction with the students’ superficial understanding when they 
simply made calculations without thinking much about their meaning. He also said 

Figure 4. A figure by C5
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that he wanted the students to verbalize that they need to divide the whole into 12 
equal parts to “make the areas of one part the same size.”

Similar opportunity for discussion was observed in Lesson 2. When a student 
explained the method of finding the common numerator to compare 2/3 and 3/4, she 
said that 2/3 and 4/6 are in a proportional relationship. Mr. Taka posed a question: “Is 
it a proportional relationship? Why do you need to multiply the denominator by two 
if you multiply the numerator by two?” He requested the students to clarify this point 
by using figures. In this way, Mr. Taka grasped the quality of students’ reasoning 
from their verbal and written expressions, and he reacted in various ways to improve 
their reasoning, such as questioning, probing, clarifying, or asking for additional 
alternative expressions or elaboration.

Mr. Taka also guided the students toward the intended object of learning by 
encouraging connections with the previous activity and learning. When comparing 
2/3 and 3/4, a student proposed her method of finding the difference between each 
fraction and 1. After the explanation, Mr. Taka asked the students whether this method 
was different from the method of finding a common denominator or numerator that 
they had been using. At first the students did not notice the relationship between 
the two ways. One of them replied, “I think this has nothing to do with that. The 
other method is an easy one because the numerator or denominator is the same, 
but this one is about the difference.” Mr. Taka gave a prompt, “Yes, but after that 
the method compares 1/4 and 1/3, doesn’t it? [It compares] which result is larger. 
So it compares the remaining amount, 1/4 and 1/3.” Then several students came to 
recognize the similarity between the two ways. A student said, “1/4 and 1/3. Yeah, 
I think it probably has something to do with … .” Then another student gave a 
clearer reason: “1/4 and 1/3 have the same numerator. So it has a relationship with 
the fact that we can compare fractions if either the numerator or the denominator is 
common.”

Rich and consistent connections between the tasks and the activities were an 
invariable feature of Mr. Taka’s lessons. Mr. Taka said in the interview that, for 
him, a good lesson involved the process of elaborating incomplete solutions into the 
complete one by adding different opinions. This feature was also heard in the student 
perspectives. In the interviews conducted after each lesson, four students were asked 
about their significant learning events as they reviewed a video of the lesson. They 
primarily chose moments when they were listening to their peers’ comments. At 
these points, they were relating their classmates’ solutions and reasons with their 
own, as also exhibited by the eighth-grade students in Hino’s (2015) study. The 
students also chose moments when their peers remembered and used the ideas that 
they had learned some time ago. For example, Katsu said, “He said ‘proportional 
relationship.’ That is a word that we learned in the first semester, a long time ago. 
He made use of it in today’s lesson. I thought, ‘Oh, that’s great,’ because he used 
what we had learned before.” Moreover, all four students described, as part of their 
experience, their positive expectation of connections within the lesson and between 
the lessons:
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Nami:  This is the way we do mathematics in the classroom. Someone 
proposes an idea, then everyone else adds to the idea, and we connect 
one after another.

Koma:  I like the lessons in which everyone proposes ideas, connects them, 
and derives conclusions. In today’s lesson, we have not yet reached 
a good conclusion, but everyone proposed ideas, so I think today’s 
lesson was good.

Katsu:  (when asked about connections): For example, if the ideas [expressed] 
today will connect to the solutions we will use in the next semester 
… if we connect different types of thinking and think more, then the 
solutions in the previous lessons are helpful.

Fuji:  When I was thinking of comparing 3/4L and 2/3L, I looked at my 
notebook and reviewed the methods we used in the previous lesson. 
Then I thought that C2’s way of using cups and C5’s way of using 
circles are good because they can be used everywhere.

The students made positive comments on the rich connectivity realized with their 
peers through the support of their classroom teacher.

DISCUSSION AND CONCLUSIONS

The research question of this chapter referred to exploring types of variation that 
teachers use strategically in structured problem solving lessons. To answer this 
question, three viewpoints were developed by synthesizing Japanese problem 
solving with the variation theory and teaching with variation. The three viewpoints 
were presenting problems with variation, providing opportunities for students to 
construct variation themselves, and promoting students’ reflection on variation 
toward the intended object of learning. The viewpoints highlight how the teacher and 
the students collaboratively enacted objects of learning in the lesson by experiencing 
and discerning the critical features of the intended object of learning.

These viewpoints were applied to two primary mathematics lessons conducted 
by an experienced Japanese teacher. To achieve the lesson objectives, the teacher 
incorporated variation into the problems. Although the number of problems was 
small, he chose a specific problem as a representative of a group of problems and 
also incorporated open-endedness into the question. He placed each variation in the 
context of the entire lesson and planned a sequence of variations. In the lesson, 
the teacher provided opportunities for the students to construct variations through 
their reasoning and explanations. Moreover, the teacher promoted and regulated 
the students’ reflection on the variations by making different reactions such as 
questioning, probing, or asking for elaboration. These forms of feedback exhibit the 
teacher’s critical role in enabling the students to discern invariance, that is, the key 
idea of finding a common unit fraction in order to compare fractions.



IMPROVING TEACHING THROUGH VARIATION

317

The three viewpoints as applied to the lesson analysis show that a structured 
problem solving lesson can be viewed from the perspective of variation. The results 
obtained in this chapter will contribute to the examination of the pedagogy of 
variation, because structured problem solving has unique features as described in a 
previous section.

An implication of this chapter on teaching with variation is that some types of 
variation will promote students’ mathematical thinking and problem solving ability. 
Huang and Leung (2005) described a lesson in terms of conceptual variation and 
procedural variation and pointed out that both were created alternatively for different 
purposes in experiencing the enacted object of learning. Both types of variations 
were also observed in the lessons analyzed in this chapter. Procedural variation was 
especially rich, as the teacher emphasized process. To foster autonomous thinking, 
he incorporated variation as the scaffolding for problem solving. In this regard, 
the dimensions of variation of problem solving identified by Gu et al. (2004) were 
used strategically. The observed conceptual and procedural variations, especially 
the rich opportunity for procedural variation, can be said to reflect the emphasis 
on mathematical thinking in Japanese problem solving. The analyzed lessons were 
conducted with the objective of introducing new mathematical content. Such an 
objective would also have an influence on the salience of certain features of variation. 
On the other hand, in the literature on teaching with variation, there are many studies 
and practices examining Chinese lessons that aim to consolidate new knowledge. 
Needless to say, the types of variation to be presented will differ according to the 
lesson’s aim. It would be useful to further clarify the aspects of variation for different 
objectives of learning.

Another implication of this chapter is that students’ autonomy in the activity of 
variation is an important condition for learning. In elucidating this point, the chapter 
further clarified the critical role of the teacher in directing students’ reflection 
on variation. Marton and Booth (1997) identified a surface approach and a deep 
approach to learning. In the analyzed classroom, we have observed the students’ 
superficial attention to the object of learning. Catching students’ surface approaches 
and offering various and flexible forms of feedback and intervention are how the 
teacher can change the students’ ways of seeing, experiencing, or understanding the 
critical features. A crucial observation is the close relationship between construction 
of and reflection on the variation. By letting the students construct and reflect on 
variation in their reasoning and explanations, the teacher involved them in the 
activity of changing their ways of seeing and experiencing the critical features. 
Lo and Marton (2012) recommended a teaching sequence of “fusion, contrast, 
generalization, fusion” for effective teaching with variation. The pedagogical actions 
observed in the teacher described in this chapter will offer important information on 
how to provide students with natural but necessary transitions between the stages in 
realizing the teaching sequence.
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Lastly, the three viewpoints and the lesson analysis call attention to the importance 
of examining the students’ actual experience of and engagement in variation with 
their peers and the teacher. This study implies that both teaching with variation 
and learning with variation need to be explored. In particular, we need further 
inquiry into the steps of providing opportunities for students to construct variation 
themselves and promoting students’ reflection on variation toward the intended 
object of learning, because, as shown in the analysis, students’ paths and reactions 
are divergent and subtle. It is also interesting to look at the enacted object of learning 
from the perspective of the students’ lived object of learning. The interviews revealed 
that the focus students were impressed by their peers’ reasonings and benefited from 
the connections that their teacher and their peers made between multiple solutions 
and explanations in the lessons. Considering that their lived object of learning was 
deep, their comments in the interviews may suggest important information on raising 
the quality of the enacted object of learning. One such insight is that the teacher 
should routinely demonstrate a deep approach to learning in his or her interaction 
with students.
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15. DEVELOPING ALGEBRAIC REASONING 
THROUGH VARIATION IN THE U.S.

INTRODUCTION

Historically, algebra in the U.S. has been viewed “as a gatekeeper to a college 
education and the careers such education affords” (Kilpatrick & Izsák, 2008, p. 11). 
As such, current curriculum documents emphasize the need to support all students in 
learning algebra (Common Core State Standards Initiative [CCSSI], 2010; National 
Council of Teachers of Mathematics [NCTM], 1989, 2000). To do so, however, 
requires a reconceptualization of the preparation students receive for the formal 
study of algebra (Kilpatrick & Izsák, 2008). In considering this preparation, scholars 
have indicated that students need opportunities to engage in algebraic reasoning 
(Blanton & Kaput, 2005; Earnest, 2014; Hunter, 2014; Kaput, 2008; Kilpatrick & 
Izsák, 2008). Different perspectives exist, though, with regard to the core aspects of 
algebraic reasoning.

Kaput (2008) characterized algebra in two ways. First, he described algebra as an 
inherited subject or cultural artifact. Second, Kaput portrayed it as a human activity 
that requires humans for it to exist. In our work, we focus on the latter and explore 
Kaput’s (2008) view that “the heart of algebraic reasoning is comprised of complex 
symbolization processes that serve purposeful generalization and reasoning with 
generalizations” (p. 9).

Within this view of algebra, Kaput (2008) described a core aspect of algebraic 
reasoning as involving “algebra as systematically symbolizing generalizations of 
regularities and constraints” (p. 11). Although this core aspect appears in some form 
across all strands of algebra, we are particularly interested in algebraic reasoning as 
it supports generalizing a pattern through argumentation for the purpose of building 
towards functions (Kaput, 1999; Warren & Cooper, 2008). This view of algebraic 
reasoning has permeated recent international curriculum documents (e.g., Ministry 
of Education, 2007; Ontario Ministry of Education, 2005) as well as U.S. curriculum 
documents for over two decades. Table 1 provides an overview of the algebraic 
presence in U.S. curriculum documents, including Curriculum and Evaluation 
Standards (CES, NCTM, 1989), Principles and Standards for School Mathematics 
(PSSM, NCTM, 2000), and Common Core State Standards for Mathematics 
(CCSSM, CCSSI, 2010).
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The inclusion of algebraic reasoning in U.S. standards is informed, in part, by a 
literature base that supports a need to develop algebraic reasoning in middle school 
students (Blanton, 2008; Carraher & Schliemann, 2007; Lins & Kaput, 2004; Soares, 
Blanton, & Kaput, 2005). Note that we define middle school students as those in 
grades five through eight, approximately 11 through 14 years old. Additionally, 
algebraic reasoning is described as the process of building general mathematical 
relationships and expressing those relationships in increasingly sophisticated ways 
(Ontario Ministry of Education, 2005; Soares et al., 2005; Warren & Cooper, 2008). 
Furthermore, Carraher and Schliemann (2007) stated that the role of functions was 
the link between learning algebra from the middle school level through college. Thus, 
implementing this view of algebraic reasoning in middle grades is substantiated 
and of “great relevance for mathematics education because it provides a special 
opportunity to foster a particular kind of generality” (Lins & Kaput, 2004, p. 47) in 
students’ thinking.

Table 1. Algebraic reasoning in U.S. documents

Understanding patterns

CES Analyze tables and graphs to identify relationships (Grades 5–8)
PSSM Generalize a variety of patterns with tables, graphs, and words (Grades 6–8) 
CCSSM Analyze patterns and relationships (Grade 5)

Representing mathematical situations

CES Represent situations with tables, graphs, and equations (Grades 5–8)
PSSM Use symbolic algebra to represent situations and to solve problems (Grades 6–8)
CCSSM Represent and analyze quantitative relationships (Grade 6)

Generalizing to functions

CES Generalize number patterns to represent physical patterns (Grades 5–8)
PSSM Identify functions and contrast their properties between quantities and contrast 

their properties from tables (Grades 6–8) 
CCSSM Use functions to model relationships (Grade 8)

Despite the importance of algebraic reasoning demonstrated in both the curriculum 
documents and the literature, U.S. and international classrooms have fallen short in 
providing an opportunity for this type of learning (cf. Carraher & Schliemann, 2007; 
Stacey & Chick, 2004). To address this issue, Blanton (2008) developed curricular 
materials aimed at supporting teachers as they introduce algebraic reasoning in 
elementary and middle grades. In these materials, Blanton (2008) described algebraic 
reasoning as a habit of mind that students acquire through instruction that gives 
opportunities to “think about, describe, and justify general relationships” (p. 93). 
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This focus allows for students to engage in algebraic reasoning, a process that is 
supported by the following teacher practices:

• helping students learn to use a variety of representations, to understand how 
these representations are connected, and to be systematic and organized when 
representing their ideas;

• listening to student’s thinking and using this to find ways to build more algebraic 
reasoning into instruction; and

• helping students build generalizations through exploring, conjecturing, and 
testing mathematical relationships (Blanton, 2008, pp. 119–120).

Through these practices, algebraic reasoning can focus on functional thinking 
via arithmetic tasks that are transformed into opportunities for generalizing 
mathematical patterns and relationships (Blanton, 2008; Ontario Ministry of 
Education, 2005). One way that this can be accomplished is through varying a single 
task parameter (Blanton, 2008; Blanton & Kaput, 2003, 2005; Ontario Ministry of 
Education, n.d.; Soares et al., 2006).

Varying a “parameter allows you to build a task that looks for a functional 
relationship between two quantities” (Blanton, 2008, p. 58) and “can shift the focus 
from arithmetic thinking to algebraic thinking” (Ontario Ministry of Education, 
n.d., p. 19). This emphasis on varying a parameter suggests that applying a theory 
of variation to the design of instruction may be an important means for providing 
middle school students with an opportunity to engage in algebraic reasoning. 
Therefore, the purpose of this chapter is to present a case that describes a series 
of tasks whose development was informed by a theory of variation. Collectively, 
the tasks align with the vision established in the U.S. curriculum documents and 
aim to support the development of algebraic reasoning in sixth grade students. 
In the subsequent sections, a theory of variation will be presented, followed by a 
description of a four-task sequence, including its implementation in a sixth grade 
classroom. Finally, a discussion and reflection on the role of variation in the task 
sequence will be provided.

THEORY OF VARIATION

According to Marton, Runesson, and Tsui (2004), learning is a process in which 
students acquire a particular capability or way of seeing and experiencing. In order 
to see something in a certain way, students must discern critical features of an object. 
This is known as the theory of variation (Leung, 2012; Marton & Pang, 2006; 
Marton et al., 2004). The theory of variation can aid teachers in developing students’ 
algebraic reasoning skills by providing students with opportunities to discern 
critical aspects of what is to be learned, also known as the object of learning (Ling, 
2012). While teachers cannot guarantee the lived objects of learning experienced 
by the students, they can focus students’ attention on critical features by providing 
contrasting experiences that allow students to develop and test conjectures. After all, 
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students can only begin to understand the object of learning once they have seen it 
in various situations and with varying dimensions (Marton et al., 2004). Therefore, 
it is imperative that students discern the patterns of what varies and what is invariant 
in a learning situation (Leung, 2012). It is the main objective of the teacher to reveal 
these patterns to support students in powerful ways of seeing the intended object of 
learning, which leads to powerful ways of acting (Marton et al., 2004).

There are two features of the object of learning: “the direct and the indirect objects 
of learning” (Marton & Pang, 2006, p. 194). The direct object of learning is defined 
in terms of content, such as evaluating algebraic expressions. In contrast, the indirect 
object of learning refers to “the kind of capability that the students are supposed to 
develop such as being able to give examples, being able to discern critical aspects 
of novel situations” (Marton et al., 2004, p. 4). In the paragraphs that follow, we 
apply this theory of variation to the design and implementation of a four-task lesson 
sequence that aimed to support the development of algebraic reasoning. We include 
descriptions of both the direct and indirect objects of learning as evidenced in the 
design and enactment of the task sequence.

TASK SEQUENCE

Design

Defined as what the teacher aims for the students to learn, the intended direct objects 
of learning during this task sequence were for students to be able to generalize 
a linear pattern given a series of geometric figures, give the generalization as an 
expression involving one variable (i.e., an + b where a and b are integers), and 
justify the generalization based on the geometric pattern. This objective supports 
standard 6.EE.9 from the CCSSM (CCSSI, 2010), which states:

Use variables to represent two quantities in a real-world problem that change in 
relationship to one another; write an equation to express one quantity, thought 
of as the dependent variable, in terms of the other quantity, thought of as the 
independent variable. Analyze the relationship between the dependent and 
independent variables using graphs and tables, and relate these to the equation. 
(p. 44)

The intended indirect objects of learning, or capabilities to be developed, during the 
lessons included seeing the grouping structures within the geometric figures (a), 
relating these groups to the corresponding figure number (n), and recognizing the 
constant as what appears each time in the figure but is not in a group (b), where a, n, 
and b represent integers in the generalization an + b.

The students in these lessons needed to see linear patterns in different 
circumstances, with certain aspects varying in dimension. Research posits, “The most 
powerful strategy is to let the learners discern one at a time, before they encounter 
simultaneous variation of the features” (Lo & Marton, 2012, p. 11). This idea was 
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considered when developing the sequence of tasks. Table 2 provides an overview 
of the lesson sequence, including the geometric patterns featured in each lesson. In 
each task, a series of figures is presented and the student is expected to develop a 
means for determining the number of segments needed to produce the figure, based 
on the figure’s position in the pattern.

Table 2. Overview of lesson sequence

Task Fig. 1 Fig. 2 Fig. 4 Generalization

1 3n + 1

2 4n + 1

3 4n + 4

4 Students are given a generalization and are expected to create a 
geometric pattern.

__ n + 4

Task 1. The purpose of this task was to introduce the process of generalizing 
the pattern. The intent was for Task 1 to provide a common experience on which 
to build for the students. This included introducing common vocabulary, such as 
generalization, and a particular way of looking for a relationship between the figure 
number and its corresponding figure. In this lesson, the intent was for students to 
experience variation with the number of segments in the figure (referred to as fence 
panels in the problem context and represented by toothpicks) given the number of 
squares (referred to as corrals in the problem context). Although the corresponding 
algebraic expression for n corrals is 3n + 1, the goal for this lesson did not necessarily 
include representing the pattern algebraically, only verbally. The variation in 
Task 1 was limited to only variation found within the pattern, as students examined 
Figures 1, 2, and 4 separately. Therefore, there was no contrast or anything with 
which to compare it, perhaps making it difficult to discern what aspects caused the 
general expression to be 3n + 1.

Task 2. In order for the learners to discern the critical features of the object of 
learning, Task 1 focused on introducing the idea of finding a generalized pattern. In 
contrast, Task 2 introduced a different pattern that allowed students to experience the 
variation of one dimension of the object of learning – the number found in each group. 
The new pattern held the constant invariant, while the group value changed, leading 
to the corresponding expression 4n + 1. In this way, students had the opportunity to 
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see the object of learning under different circumstances and test the validity of any 
conjectures that they had, seeking to understand the new figures by trying to discern 
what was critical and what was not (Ling, 2012). Moreover, this task provided 
students with the opportunity to be aware of the two situations at the same time in 
order to compare and contrast them, what is known as “diachronic simultaneity” 
(Marton et al., 2004, p. 17). Based on what the students had experienced before and 
what they were experiencing in this task, there was the potential for them to develop 
“separation” (Marton et al., 2004, p. 16) with the group feature and be able to discern 
it from other features. It was also important that this first variation be situated within 
a similar situation so that everything else was invariant, making it clear what was 
affecting change.

Task 3. Task 3 was similar to Task 2 in two ways. First, the grouping structure 
(i.e., the house shapes in the pattern), and thus the coefficient (a), remained the 
same. Second, variation of one dimension of the object of learning was present. 
However, in this scenario, it was the constant value that was separated so that 
students could experience how the invariant structure within the pattern affects the 
general expression. The teacher intended to keep the grouping structure the same so 
that this effect would be clearer. According to Marton et al. (2004), students need to 
experience the following related to the object of learning: contrast instances, make 
generalizations from varying appearances, separate each individual aspect, and fuse 
them together simultaneously (Leung, 2012). In this task, students are separating 
the last aspect of the object of learning. As a result, they should be able to discern 
between the two aspects of the object of learning and have a basic understanding of 
how varying dimensions of those aspects alter the general expression.

Task 4. The purpose of this final task was to further develop students “professional 
seeing” (Marton et al., 2004, p. 11) of generalizing patterns by providing them with 
the opportunity to experience the object of learning from a novel perspective. In this 
task, students are asked to create a geometric pattern that satisfies __ n + 4. In order 
to build a corresponding geometrical pattern, students must experience the grouping 
structure and constant simultaneously and understand how each aspect affects their 
pattern. Afterward, students are able to compare and contrast solutions, recognize 
different grouping structures, and see multiple representations of the same algebraic 
formula.

Summary. This sequence of tasks should allow students to become aware of the 
critical features of the object of learning through carefully selected experiences 
directed by the theory of variation. Through sequences of contrast, generalization, 
and separation (Marton et al., 2004), students should be able to enhance their 
“seeing” (Marton et al., 2004, p. 11) of the intended objects of learning. However, 
what matters most is what the learner actually encounters and what is possible to 
learn in the context of the lesson, what is known as the enacted objects of learning 
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(Marton et al., 2004). In the section to follow, the enacted objects of learning are 
described through the patterns of variation and invariance that were actually co-
constructed by the teacher and the students.

Implementation

In this section, we present a summary of the four-task lesson sequence (see Table 2), 
or enacted objects of learning, that was implemented in a sixth-grade class in a 
suburban school district located in the southeastern United States. The class had 20 
students and met for 55 minutes each day. The first author was the instructor for the 
lessons. In her role as a university professor, she spends a considerable amount of 
time teaching demonstration lessons in local schools and has been recognized for 
her expertise and experience in implementing reform-oriented lessons. The four-task 
lesson sequence was videoed for the purpose of developing a multimedia case to 
support teachers’ understanding of reform-oriented instruction.

Lesson 1. To begin the lesson, the teacher described a problem scenario designed 
to support the students in understanding the task at hand.

I have some land that I just bought and I am going to build corrals on the land. 
We will use toothpicks to represent the corrals. (Displays a square-shaped 
corral made with four toothpicks). That will be one corral. How many panels 
does it take to build one corral? (Students respond with four.) I can build more 
than one corral but they will be built lengthwise. Now, I am cheap and I do 
not like to spend money. When I build the second corral, I do not double up 
on fence panels. (Displays two corrals made of toothpicks.) How many fence 
panels have I used? (Students respond with seven.) So here is our problem. 
I want to build as many corrals as possible on my land but I do not know 
how long the land is or how many fence panels I will need. This (pointing to 
Figure 2) is two corrals, and it takes seven fence panels. Predict how many 
fence panels we need for four corrals. Do you have your number? Build your 
corrals and see if your prediction is correct. (Students build four corrals with 
toothpicks.) How many panels did you need? (Students respond with 13.) So 
here’s our task: If I tell you the number of corrals I can build on my land, I need 
you to tell me how many fence panels I will need.

After supporting students in thinking about the problem scenario, the teacher asked 
questions aimed to support students’ recognition of the structure of the corral pattern.

T:  When you built the corral and then counted the fence panels, how did 
you count? Think about how you could describe how you counted the 
fence panels. Jot down how you counted and we will share our strategies 
in just a moment. (Students take approximately one minute to write their 
strategies.) Let’s start with Ben.
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S1: I counted the first pen with four and then I added three three times.
T:   Do you all understand what Ben said? I am going to ask Candy to repeat 

Ben’s idea.
S2: He counted the first pen with four and then he counted threes.
T: Larry, how did you count?
S3:   I counted the left toothpick, then the top toothpick, then the bottom 

toothpick, then the right toothpick, like all in one box. (The student 
illustrates how he counted the remaining toothpicks: top, bottom, right, 
top, bottom, right, top, bottom, right.)

T:   Did someone count differently?
S4:  I counted the ones in the middle, then the ones on the top, then the ones 

on the bottom.
S5:  I counted the top and bottom and then the middle.

Following this exchange, each student was given a number of corrals (i.e., 6, 7, 9, 
10, 12) for which they were to figure out the corresponding number of fence panels. 
After students in their small groups checked each other’s work, the teacher asked the 
students to look across the different problems and identify two or three things that 
they noticed. The following exchange occurred.

T:  What is something that you or your partner noticed?
S1:   The number of panels is the number of corrals times three and then you 

add one.
T:  I think I heard a lot of different groups saying something like this. I want 

you to talk about this – why would this be true? If you didn’t see this, 
check it with your problem. Check it – why would this be true?

S2:  We thought because of the four and the rest was three. We didn’t have to 
add any more because the first one was whole.

S3:   If we are counting the first four and we take off one and add all the rest 
together that would bring us to, say nine times three is twenty-seven, and 
then you add back on the one you took off.

S4:   Wouldn’t that “three times the number of corrals plus one” – would that 
be a formula for the problem?

T:   I’m going to write that over here. Remember that I do not know how big 
the land is. What are some other observations?

S5:  We noticed that you should make sure that you counted all the panels.
S6:   That the number of corrals had an impact on the number of panels.
S7:  If you use a simple pattern and you lay it out the long way, it is easier to 

complete. It is simple to complete.
T:  So you are thinking about how you can see the patterns in there. 

Remember that I do not know how big the land is. They are going to call 
me up and say, “Hey, we think you could have 200 corrals on there,” and 
I need to be able to immediately say how many panels I need. Which of 
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our observations is going to help me with that? Talk to your partner about 
that.

S8:  The first one because it would be 200 times three which would be 600 
plus one making it 601.

T:  Thumbs up if you agree that the first observation is going to be most 
useful for solving our problem. Ok. Thumbs up if you agree that for 
200 corrals we will need 601 fence panels. Wow! I am going to have to 
challenge you now. Remember this word formula. How could you use 
symbols and a variable to represent this first observation? Talk with your 
partner.

Students eagerly talked with their partner about how to represent the observation 
(i.e., the number of panels is the number of corrals times three and then you add 
one) with symbols. The following expressions were offered: C × 3 + 1; 3n + 1; 
(C*3) + 1; 3c + 1. Next, the teacher linked the students’ use of the word formula 
to the words expression and generalization. After some discussion regarding why 
the generalization was useful for the problem, the teacher asked how many corrals 
could be built if there were 61 fence panels. The class ended with a discussion of the 
solution to this problem.

Lesson 2. For their homework, students revisited the corral task and responded 
to the following prompt: When Sarah looked at the corrals, she said that she saw 
groups of 3. What do you think she meant by that? To start the second lesson, the 
teacher asked the students to take out their homework sheet and compare their 
responses to this prompt. Then, the following exchange occurred.

T:  I would like to have three people share with us what they have written. 
Alice?

S1:  I thought that she started with the first corral and she took out the first 
toothpick so it would have groups of three toothpicks.

S2:   After you have the first set of four toothpicks, you have sets of three 
toothpicks.

S3:  She was thinking about three corrals.
T:  My question is: We see how Sarah is thinking about these groups of three. 

Right? Alice said that toothpick is gone and we have these groups of 
three. And then Larry said we have this group of four and then we have 
these threes. And then Alden is talking about these corrals of threes. And 
so my question that I want you to think about inside your head for just 
a minute is: How did Sarah’s groups of three help us to think about the 
pattern? (The students discuss their thoughts in small groups.) Let’s start 
with Callie.

S4:  Take out one toothpick and then there will be threes and then you add the 
one back.

T:  How is this helping you?
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S4:  Then you can figure out how many toothpicks?
S5:  Every time you are going to times it by three and then – take that one 

panel off then times it and then add the one back.
S6:  I thought maybe you could take one out and add three each time.
T:  So you take the one out and add three each time. And repeatedly adding 

the threes is multiplying. (Teacher points at the multiplication symbol in 
the generalizations recorded from the previous day.)

S7:   She said that she saw groups, meaning there was more than one group of 
three. So when you did the formula and taking one out, you would just 
multiply the number of fence panels times the number of corrals that you 
have the number of fence panels that you need for all of them.

T:  So from this what we are beginning to see is this idea of groups - when 
we are trying to figure out our generalization it is helpful to think about 
groups.

Following this exchange, the teacher introduced the task for the day by telling a 
story, similar to the one from the previous day and using a new shape for the figures, 
which the students called a house. After asking students to share what they noticed 
about the pattern, the teacher asked students to think about how this new pattern was 
different from the pattern explored on the previous day.

S1:  Instead of the three in the pattern, we are going to have a four.
T:  So you are thinking about multiplying by four. Someone else?
S2:  Instead of adding three we are adding four.
T:  Good. Another idea?
S3:  Houses use four toothpicks.
T:   Do you all understand what he is saying? Where are the groups in this 

pattern? Remember in the homework, Sarah said something about the 
groups. Where do we see groups in this pattern? Write your ideas down 
on the paper.

S4:  I see groups of four.
T:  Will you come up and show us where you see groups of four? (The student 

demonstrates at the front of the class the groups of four that she sees.) Do 
you all see the same groups?

S5:  Each one would have a group of four toothpicks, except for that first one.
T:  How can we use our strategies to figure out how many toothpicks are 

needed for a certain number of houses?

Following this exchange, each student was given a number of houses (i.e., 8, 
9, 10, 11, 12, 15) for which they were to figure out the corresponding number of 
toothpicks. After students in their small groups checked each other’s work, the 
teacher used their number pairs (i.e., number of houses and number of toothpicks) to 
create a function table. In the function table, she recorded an n in the input column 
and asked the students to think about the corresponding generalization to record 
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in the output table. After time for small group discussion, the students offered the 
following generalizations: n x 4 + 1; 4n +1; 4h +1; 4 * n + 1. The lesson concluded 
by finding the output for an input of 50 and finding the input for an output of 81.

Lesson 3. On this day, the opening of school was delayed by two hours due to 
inclement weather. As a result, the original lesson was modified to fit within 
a 30-minute timeframe. To begin the lesson, the teacher distributed a paper that 
contained representations of the new pattern. Students noted that a garage had been 
added to the houses. The teacher asked them to create a function table for the pattern. 
After several minutes of working, the teacher asked one student to display her work 
for the class to examine.

S1:   I took the one house – it was five toothpicks. And then I added another 
three for the garage. Then for the second one, I did the two houses, 
which was nine toothpicks and added three for the garage. Then I saw a 
pattern – add four each time so that’s 8, 12, 16, 20, 24.

T:  Tammy, can I stop you a second? Will you all take a look at Tammy’s 
outputs and see if you agree with those? (Students compare their charts 
with Tammy’s work.) Ok, so keep going, Tammy.

S1:   I did the same thing and then the formula would be n times four plus one 
plus three or to simplify that it would be n times four plus four.

T:  Tammy, can you tell us again how it is that you figured out the formula or 
the generalization?

S1:  I took the formula that we did yesterday, n times four plus one, and I 
noticed that the garage was just another three sides so all I did was just 
add three to the formula.

T:  And I noticed that some of the other groups did the same thing. They 
had the plus one and then the plus three, which simplified to 4n plus 
four. So the generalization that she is offering to us is n times four plus 
one plus three or n times four plus four. So I want you to do two things 
in your groups. First, take this generalization and check it. Take an input 
value, substitute it into the generalization, and see if it produces the 
correct output. And then second, I want you to think about why are we 
multiplying by four and then why today are we adding four when we 
were adding one yesterday? Talk to your partners. (Students work in their 
groups for several minutes, writing down their ideas.) Let’s share out 
whole group what we are thinking.

S2:  I was thinking you would remove this square – the garage- and then you 
count the pieces of the houses and you get four and you multiply by the 
number of houses you have and then you add the four back on.

S3:  You have four sides on each of the pentagon houses and then you add on 
the square and that puts the side back on the house.
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T:  Remember how Sarah saw groups in our problem the other day. Talk to 
your neighbor about the groups that you see.

S4:  She saw groups of four. (Student outlines the house, missing one side.)
T:  It happens that there is a group of four here in the garage too. This four 

is different. This number sitting out there by itself is called the constant. 
So we are looking at what comes in groups and we are looking at the 
constant – what is sitting here.

With only a few minutes remaining in class, the teacher asked the different pairs 
of students to develop a pattern for a pre-selected generalization. All generalizations 
were of the form ___ n + 4, where the coefficient of n differed for each group. 
Students were not able to make much progress, however, as class ended.

Lesson 4. Following some discussion of a homework problem, the teacher began 
class by asking students to look back across the three patterns developed during 
the previous three lessons. She reminded them of the groups and the constants that 
had been discussed previously. Then, students began working to develop their own 
geometric pattern that could be represented by the generalization that was assigned 
to them. Two groups were asked to present their work to the class. The dialogue from 
one discussion, which focused on the pattern shown in Figure 1, is featured here.

Figure 1. Pattern presented by students

T:  Lets give our attention to this group and think about their work.
S1:  We got four n plus seven. We thought about a house with two garages. In 

figure number one, you remove the two garages and count the four panels 
and then put the garages back on; that is the plus seven.

T:   Can you show us where your groups of four are?
S1:  The groups of four are right there (outlines part of the house).
T:  And where is the constant seven?
S1:  It would be here in the garage.

Following the two presentations, students were asked to reflect on the ideas 
learned over the past four lessons. Students’ ideas included: the meaning of the word 
generalization; it can be hard to find figures given the generalization; the constant; 
the input/output table.
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THE PRESENCE OF VARIATION IN THE LESSON SEQUENCE

The intended objects of learning for this sequence of lessons were for students to 
be able to generalize a linear pattern given a series of geometric figures, give the 
generalization as an expression involving one variable (i.e., an + b where a and b are 
integers), and justify the generalization based on the geometric pattern. Employing 
the theory of variation allowed for the intended object of learning to be made 
accessible to the learners in the classroom. In this section, we present a discussion 
of the intended objects of learning, the enacted objects of learning, and the lived 
objects of learning.

Intended Objects of Learning.

The planned sequence of lessons, as represented in Table 3, demonstrates the 
intentional use of variation to bring attention to the features of linear functions. In 
the first lesson of the sequence, a toothpick pattern of corrals was introduced in 
order to provide a starting point for the discussion of linear functions. Then, within 
the first lesson, only the number of corrals was varied, bringing awareness to the 
relationship between an input and an output in a linear function. This use of variation 
established a common experience on which to build understanding of the process of 
generalization.

Table 3. Dimensions of variation by task

Task Dimension Variant Invariant Object of learning

1 Corrals Number of corrals 
(1 to n)

Group size (3) 
and constant 
(1)

How the number of corrals 
relates to the number of fence 
panels needed

2 Groups Group size (3 
to 4)

Constant (1) How the number within 
each group alters the general 
expression

3 Constant Constant (1 to 4) Group size (4) How the additional fence 
panels alters the general 
expression

4 Direction Given expression 
instead of picture, 
group size (4 to 
__ )

Constant (4) Create a geometric figure 
given a general expression

Day 2 
Homework

Type of 
Pattern

Counting shapes 
instead of sides

Generalization 
(3n+1)

Transferability

The subsequent lessons then proceeded to vary one feature of linear functions at 
a time so as to bring attention to the characteristics of the parts of a linear function. 
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The second lesson focused on a new toothpick pattern in which the number in 
each group varied from the corral pattern of the first day. Then the third lesson 
presented a third toothpick pattern in which the constant was varied. In order to 
adhere to variation theory, the explored pattern for each day was of the same style 
(i.e., envisioned as built out of toothpicks), therefore allowing this aspect of the 
discussion to remain invariant. In addition, only the position in each sequence (or 
input) was varied within the main activity in each lesson. By keeping these portions 
invariant, the lessons drew attention to the varied feature, allowing students to 
separate these features.

Homework was assigned on days two and three in which the visually presented 
pattern was of a different form than the in-class toothpick models. This variation 
was intended to provide students an opportunity to extend their thinking about linear 
patterns into different visual images while maintaining the same generalization 
that had been explored in class. For example, the homework pattern on the second 
day was an equilateral triangle with squares built on each side of the triangle (see 
Figure 2). In counting the number of shapes (i.e., squares and triangles) used to 
create each “Y,” the generalization was 3n + 1, where n represents the position of 
the figure in the pattern. This problem required students to count shapes rather than 
segments but utilized the same generalization that students explored in class on the 
first day.

Figure 2. Homework task pattern for Day 2

The intention for including a different style of pattern in the homework was 
to vary the type of pattern with which students interacted while keeping the 
generalization of the pattern invariant, bringing awareness to the transferability of 
the concepts of generalizations of linear functions.

Enacted objects of learning. Throughout the four lessons in the sequence, the 
instructor focused student attention on the object of learning with clear questions. In 
the first lesson, the instructor asked, “When you built the corral and then counted the 
fence panels, how did you count?” This question encouraged students to consider the 
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different ways in which the panels could be counted and set in motion the possibility 
for a wide variety of generalizations. In the next phase of this lesson, however, 
the first student offered that he noticed, “The number of panels is the number of 
corrals times three and then you add one.” This student statement seemed to 
constrain the ways in which other students later considered the generalization of the 
relationship. Rather than offering a rich variety of generalizations for the pattern, the 
generalizations were limited to similar expressions (i.e., C × 3 + 1, 3n + 1, (C*3) + 1, 
3c + 1). Although the generalizations were limited, the experience allowed students 
to focus on the pieces within a linear function and begin to operationalize the ideas 
of groups and constants as related to them.

At the start of the second lesson, the instructor focused student discussions on the 
homework by asking, “How did Sarah’s groups of three help us to think about the 
pattern?” This focusing question constrained student thinking to consideration of the 
groups rather than consideration of the entire linear function. We see the impact of 
this constraint in the responses of the students during the class discussion as students 
connected the groups of four in the day two lesson to the groups of three in the 
day one lesson. Student responses in the class discussion incorporated the language 
as they said, “I see groups of four,” and, “Each one would have a group of four 
toothpicks except for that first one.”

Having established the idea of the role of groups in linear functions during the 
first two lessons, the planned lessons varied the constant on the third day and held 
the number of groups invariant. After students generated the function for a new 
pattern, the instructor asked a focusing question: “Why today are we adding four 
when we were adding one yesterday?” Because the duration of the lesson on this 
day was shortened (due to weather delays), students did not have enough time to 
grapple with the idea of the constant and returned to discussion of the groups in their 
conversation. However, in their presentations on the last day of the lesson sequence, 
students clearly identified the role of the groups and the constant.

From observations of the enacted lessons, it appears that students were beginning 
to make sense of the concepts of the role of groups and the role of the constant 
in linear functions. The choice to use only toothpick structures during the lessons 
seemed to allow students access to learning about the concepts separately. In a 
continuation of these lessons, variation concerning the physical structure of the 
patterns may provide opportunities for students to generalize more broadly.

Lived objects of learning. On each day of the lessons, students were assigned 
homework. We can glean some insight into the lived objects of learning by 
examining the student work, looking for patterns in learning. On the first homework 
assignment, students were asked, “When Sarah looked at the corrals, she said that 
she saw groups of three. What do you think she meant by that?” Student responses to 
this question varied. Within one group of students who were seated together in class, 
the responses included: “She saw three even groups of toothpicks;” “That there is a 
group of four and groups of three connected to it;” “That after you have one set of 
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four toothpicks you have sets of three toothpicks;” and “She saw three panels with 
three groups.” It is clear that there were still a variety of levels of understanding of 
the concept present in the class.

Homework assigned on the second day required students to draw figures related 
to the pattern presented in Figure 2 and then generalize the pattern. In most cases, 
students were able to draw the fourth and tenth figure in the patterns. However, 
various correct and incorrect generalizations of the pattern were suggested. Provided 
generalizations included: 3n + 1 (a correct generalization); 4n; n × n + 1; n + 7; and 
4n + 1. Of the 14 students who submitted the assignment, six of them provided a 
correct generalization. Of the eight who had incorrect generalizations, three provided 
responses that did not represent generalizations (i.e., 35 or 4).

Homework assigned on the third day included the following problem:

Joseph made a pattern using squares. The first figure of Joseph’s pattern is 
pictured below along with his function table. Draw the next two figures in 
the pattern so that the pattern matches the function table. Then, generalize the 
pattern.

Figure 3. Homework task for Day 3

On this assignment, half of the students provided a correct generalization. In other 
words, more students were attending to the nature of the role of groups and constants 
in generalizations of linear patterns. In addition, students were asked to create their 
own patterns and provide a generalization. Although many students still chose to 
work with toothpick models, there was more variation in the arrangement of the 
toothpicks and some students even chose to create a model other than a toothpick 
model.
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Across the assignments and in-class work, gains in understanding were found. 
Through variation on the object of learning, the students were afforded the 
opportunities to consider features of linear functions. The lived objects of learning 
indicate that most students were beginning to make sense of the concepts of linear 
functions.

CONCLUSION

Informed by the theory of variation and U.S. perspectives on developing algebraic 
reasoning in middle grades learners (Blanton, 2008; Blanton & Kaput, 2003, 2005; 
Kaput, 1999), the sequence of tasks presented in this chapter transformed student 
noticing into powerful ways of seeing. These tasks provided rich opportunities for 
students to learn by strategically varying features of the geometric figures being 
represented. By analyzing what varied and what was invariant, evidence was found 
of the development of the indirect objects of learning, as students were able to 
recognize patterns and discern the critical features of the object of learning, (i.e., 
the aspects and structure of generalized linear relationships). This process utilized 
variation as a means of building on concepts of pattern and generality, which are 
typically developed as a path to algebraic reasoning in Western English-speaking 
countries (APPA Group, 2004).

Moreover, the teacher incorporated questions during the lessons that elicited 
various strategies for counting the fence panels in order to support students’ 
“professional seeing” (Marton et al., 2004, p. 11). Focusing on different ways of 
counting provided students the tools by which they could count the fence panels 
without actually counting them one-by-one. The use of questioning in this way is 
an example of one of the pedagogical tools suggested as a means for extending 
knowledge of “numerical concepts to algebraic reasoning” (Hunter, 2014, p. 280). 
The incorporation of variation in the planning of the lesson tasks allowed for specific 
areas in which the instructor could press students to make public their thinking about 
the direct objects of learning (i.e., generalizations of linear patterns), which engaged 
students at a high level of cognitive function (Hunter, 2014; Kazemi, 1998).

Constructing these generalizations led students to be able to begin to transfer their 
understanding in order to build linear functions to represent the various geometrical 
figures. As a result, the series of tasks presented in this chapter collectively align 
with the vision and aim to support the development of algebraic reasoning in sixth 
grade students. From a theoretical perspective, careful analysis of the intended, 
enacted, and lived objects of learning found in this task sequence provides a clear 
picture of teaching through variation in the U.S. Further, this chapter provides an 
example that can potentially move U.S. algebra instruction away from a state in 
which schools do “not adequately prepare students to successfully navigate the 
significant transition from the concrete, arithmetic reasoning of elementary school 
to the increasingly complex, abstract algebraic reasoning required for middle school 
and beyond” (Blanton et al., 2015, p. 76).
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IRIT PELED AND ROZA LEIKIN

16. USING VARIATION OF MULTIPLICITY IN 
HIGHLIGHTING CRITICAL ASPECTS OF  

MULTIPLE SOLUTION TASKS AND  
MODELING TASKS

INTRODUCTION

Let us consider the following two problems.

Problem 1:
The Flower Patch Problem: A square piece of land, with a length 
of 10 meters on each side, is divided into 4 sections as described 
in the figure. Flowers are planted in the 2 dark areas and grass in 
the two white areas. What should be the length of the square at the 
bottom right so the flower area will be minimal?

Problem 2:
The Lemonade Stand Problem: During the County Fair, Patricia 
and Max put up a lemonade stand. Max bought disposable cups 
for $5 and Patricia bought some concentrated juice for $10. These 
were all their expenses. They sold lemonade for a total of $300. 
Help Patricia and Max figure out how to split the money.

We urge the reader to solve these problems before reading the paper. Then 
we suggest that the reader asks himself whether there is a different route or a 
different analysis of the given situation that leads to a different solution to any of 
the problems.

These two problems represent the kind of problems each of the article’s authors 
uses in their didactical approaches and research tools: a Multiple Solution Task 
approach and a Modeling approach. Each of us has her own specific way and yet 
we feel that there is also a lot in common. Using the terms of variation theory, we 
were trying to identify or discern the nature and critical aspects of our learning 
(or teaching) objects. In this article we show how variation theory has offered us 
a relevant direction of analysis, and how its principles can be borrowed to help us 
achieve our goal, leading us to learn more about our own instruction.

Variation theory suggests that learning is always directed at changing one’s 
view of the object of learning that has some critical features that the learner 
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is expected to discern from among other possible features (Lo & Marton, 2012; 
Marton & Booth, 1997). The change can be associated with a mathematical or meta-
mathematical concept, for example, a geometric figure such as a triangle (Lo & 
Marton, 2012), a set of numbers such as fractions, or the concept of proof.

Watson and Mason (2006) took the definition of the object of learning a step 
further and “use it to mean a thing on which a learner focuses and acts intelligently 
and mathematically by observing, analyzing, exploring, questioning, transforming, 
and so on. Thus an object could be a symbol, some text, a diagram, a theorem….” 
(p. 101). As explicated later, in this paper we consider variations in learning objects 
of two levels: the first is a didactical approach to teaching mathematical problems 
solving as function of a type of mathematical task presented to learners and the 
second object comprises the nature and meaning of a solution.

The main point of variation theory is that in order to discern critical features 
of the learning object one should have the opportunity to experience such a 
feature together and in comparison with other [non critical] features in the same 
dimension. That is, the learner must experience potential alternatives (Marton & 
Pang, 2006).

While variation theory focuses on learning, we borrow its ideas to identify 
features of our instruction. Using its principles about learning we can say that in 
implementing our approaches we have something specific towards which we direct 
our instruction, and want our students to learn as a result. As mathematics educators 
we are interested in being more aware of the nature of our object of instruction (and 
our students’ object of learning).

In our case variation theory suggests that in order to discern critical features of 
each of our approaches, it would be helpful for us to make comparisons within a 
dimension that is common to the two approaches. Since both approaches create 
opportunities for students to investigate and discuss different solutions, the common 
dimension is identified as the dimension of multiplicity. That is, we compare the 
two approaches as two cases on this dimension by analyzing the nature and goals of 
these two multiplicities.

It is interesting to note that variation is present in this article in two levels: 
Didactical approaches (solutions within an approach), and concept constructs 
and meanings within a task. The first level involves viewing our approaches as 
alternatives in a space of approaches that promotes multiplicity, the second level is 
manifested within each approach, where students are encouraged to offer alternative 
solutions and engage in discussions about these variations.

The two approaches are compared using the two problem examples introduced 
above. Problem 1 will be discussed as an example of a Multiple Solution Task 
(MST) and Problem 2 as an example of a Multiple Model Task (MT). We will 
analyze the differences and similarities in the goals and learning mechanisms 
associated with MSTs and MTs, highlighting critical features that emerge from this 
comparison. We will then argue that both types of problems, together with each 
problem’s didactic contract, encourage flexibility in different ways and aspects 
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and yet similarly (and complementarily) lead to the development of mathematical 
thinking and creativity.

MULTIPLE SOLUTION TASKS (MSTs)

MSTs are tasks in which a student is explicitly required to solve a mathematical 
problem in different ways (e.g., Leikin, 2009). The problem may be solved using 
tools from different branches of mathematics (e.g., solving maxima-minima 
problems with tools from Euclidian or transformational geometry), or different tools 
from the same branch of mathematics (e.g., different representations of functions).

In a comparative analysis of mathematics lessons in the United States, Germany, 
and Japan, Stigler and Hiebert (1999) found that encouraging the idea that there 
may be multiple solutions to a problem enhanced the quality of the lessons. Solving 
problems in different ways is an effective instrument for developing connectedness of 
mathematical knowledge (Leikin, 2003, 2007; NCTM, 2000; Polya, 1981; Schoenfeld, 
1985; Silver, 1997). It supports the construction of mathematical knowledge by 
encouraging students to shift between representations, compare strategies, and 
connect different concepts and ideas (Fennema & Romberg, 1999). Put differently, 
it supports the development of creativity and flexibility. Mathematical creativity—
sometimes thought to be the province of advanced research mathematicians—is 
evaluated in school pupils with reference to their previous experience and to the 
performance of other students who have a similar educational history (Leikin, 2009; 
Liljedahl & Sriraman, 2006). Liljedahl and Sriraman (2006) defined mathematical 
creativity at the school level as a process that results in original (insightful) solutions 
to a given problem and/or approaches to an old problem from a new perspective 
(Liljedahl & Sriraman, 2006). Many researchers have shown that MSTs nurture such 
mathematical creativity and flexibility in students (e.g., Elia et al., 2009; Ervynck, 
1991; Kwon, Park, & Park, 2006; Leikin, 2009; Silver, 1997; Star & Newton, 2009; 
Torbeyns, De Smedt, Ghesquière, & Verschaffel, 2009).

In the classroom, MSTs have other advantages as well. For instance, awareness 
of the possibility that a problem may be solved in different ways helps students 
persist in searching for the solution. Also, the existence of two solutions to a given 
problem provides solvers with two strategies in their mathematical practice, each 
one available when needed (Schoenfeld, 1988).

When the instructions for solving Problem 1 include a requirement to find many 
solutions to the problem, as depicted in Figure 1, the problem becomes an MST 
problem. In a class setting, the implementation of such a problem is designed to 
help the teacher create an atmosphere of inquiry, where the goal is not simply to 
solve a given problem. Ultimately, the teacher (or the teacher educator) working 
with students (or teachers) can create a didactic contract that promotes the habit of 
solving problems in as many ways as possible. While at first students are specifically 
required to find many possible solutions, the creation of classroom norms can make 
doing this a habit, even when there is no explicit request for multiple solutions.
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Example 1: Towards Flexibility and Connections

Problem 1 was presented to teachers, and following their own experience with 
MSTs, the teachers presented the problem as an MST in their classes. In one of 
the classes, students worked with Problem 1 in small groups of three or four and 
each group was directed towards one of the solutions. After reaching the required 
solution, the students were encouraged to think about additional explanations for the 
solution or additional ways of solving the problem. When the work in small groups 
was completed, students from the different groups presented their solutions to the 
whole class.

Figure 1. Example of an MST

The nature of students’ work is an additional expression and another use of 
variation theory in this article. As detailed above, the problem was held constant 
while the students discussed and compared alternative solutions. This type of 
variation is described by Ryve et al. (2012), who offer some ideas for establishing 
mathematics for teaching through the introduction of variation. As further discussed, 
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this variation enabled the discovery of critical features and facilitated interesting 
insights.

The following excerpts demonstrate that the MST format was used by the teacher 
(Miki) to encourage a flexible problem-solving process. The teacher encouraged 
students to provide varied explanations and solutions, and thereby opened 
opportunities for the students to draw connections themselves.

Miki:  Is there any additional explanation? [The student in this group (who 
worked with a table-of-values card) determined the domain 0 < x < 10 
and calculated the area for various x-s.]

After the student answered the question, Miki asked for a more rigorous 
explanation:

Miki:  O.K. They say that x is between 0 and 10. First the values increase 
and then decrease [she draws a parabola starting at (0, 0) and ending 
at (10, 0)], and now what do you say?

Student:  It [the maximal point] is exactly in the middle… between the 
smallest and the biggest x. … as long as it is a parabola it must be 
symmetrical.

When three solutions to the problem were presented, Miki asked students about 
additional solutions.

Miki: Is there an additional solution?
Student:  It is possible to combine the second and third ways. …The vertex [of 

the parabola] is the extreme point [at which the derivative equals 0]. 
…[We got the vertex] using symmetry. I take the two intersection 
points with the x axis and find the middle.

When discussing this episode, Miki reported:

Miki:  Without my guidance, the students had drawn connections between 
table-based and parabola-based solutions. This was really surprising… 
The connection to symmetry made by the students was simply 
astonishing!

Following presentation of the solutions, Miki directed students toward a 
discussion in which they compared the different proofs, identified their differences 
and similarities, and looked at their difficulty and their beauty. Such comparisons 
lead to the development of both critical thinking and rigorous use of mathematical 
language. While some differences are obvious (“since the picture looks different”), 
others are less trivial. Moreover, by comparing similarities between obviously 
different solutions, learners construct connections between different mathematical 
concepts and theorems (e.g., median and midline, circle radius, and hypotenuse of 
a right triangle) and thus deepen their mathematical understanding. In short, such 
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discussions can help students look at performed proofs through a new lens, and can 
raise the level of the mathematical discussion or even move the discussion to new 
mathematical territory.

MODELING TASKS (MTs)

While MSTs (as presented above) are directed at promoting creativity and expertise 
in problem solving, researchers in recent years have drawn attention to tasks that 
involve problem solving of a different nature, with different goals (Blum & Niss, 
1991; Lesh & Doerr, 2003; Lesh & Zawojewski, 2007). This type of task often 
involves complex word problems that present a realistic situation and obey special 
design principles (Lesh et al., 2000).

A central part of the task entails organizing the situation and making decisions 
with regard to mathematizing the situation (i.e., by using some mathematical model 
or integrating different models). This process of fitting mathematical models to 
situations is termed modeling, and the problem solver is expected to go through 
a modeling cycle described by Blum and Leiβ (2007). Researchers have shown 
that students (and teachers) need to work on a sequence of modeling problems 
in order to develop modeling competencies (Maaβ, 2006) and go through the 
whole cycle successfully. These problems are different from traditional problems, 
and it takes students some time and practice to realize that the didactic contract 
has changed and that they need to adjust their problem solving habits to the new 
contract.

In addition, as suggested by Peled and Bassan (2005) and Peled and Ballacheff 
(2011), the promotion of modeling tasks should also aim at helping students better 
understand what it means to fit mathematical models to situations. This involves a 
new understanding of the roles of mathematical tools and an understanding of the 
(differing) degrees of freedom the problem solver has in mathematizing different 
problem situations.

Example 2 below is presented as a part of an instructional sequence. Unlike 
common school problems, where the solver is expected to use one specific 
mathematical model (a model that the problem composer had in mind), in this case 
the didactic contract allows and encourages the solver to consider other models.

Because this problem is similar to familiar investment problems, there is some 
tendency to solve it by fitting a ratio model and using the purchase ratio to split the 
profits. Still, other mathematical models are possible, with each model leading to a 
different solution. Figure 2 shows three examples from the space of possible models 
and solutions.

Example 2: Towards an Epistemological Understanding

Peled and Balacheff (2011) detailed a discussion evoked by this problem in a group 
of elementary school teachers, who came up with the three solutions shown in 
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Figure 2. In reacting to the teacher educator’s question about whether one of the 
solutions can be considered better than the others, one responded (p. 313):

Anna:  The answer that uses proportion is the correct answer. The other two 
answers can be correct only in a social-studies class. In a mathematics 
class I expect a mathematical solution.

Figure 2. Example of an MT with alternative solutions

The teacher educator (TE) asked Anna to try and convince the group that they 
should use proportion. Turning to the whole class, the TE asked them to think about 
the question: Who determines the mathematical model we should use, and how do 
we know that proportion is the right model here?

Leora:  I think that in the other two solutions, half-half and reimburse and 
split, we made some assumptions on the basis of which the solution 
was given.

TE:  And what about the proportion solution – did we make no assumption 
there?

Leora:  No. There was no assumption there. This is given in the problem: This 
is the investment and this is the income.

Molly (turns to Leora abruptly):

Who said so?! It isn’t written here (in the problem) “please split the income 
using the investment ratio.”

As this episode shows, while one of the teachers was absolutely sure that the 
problem calls for proportion, another teacher realized that there is no information 
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in the problem that dictates the use of proportion. The choice of proportion as the 
one correct model is often made in such cases despite the fact there is no relevant 
information in the problem to support it.

The discussion of alternative answers creates an “insight” moment that helps 
teachers (as learners) break away from the habit of using proportion intuitively, 
without much deliberation about the situation or about why proportion is used, just 
because the problem seems to belong to a familiar type of proportion problems.

Indeed, this problem was designed precisely to serve as an example of a situation 
where the participants (in the situation) or the problem solvers could have chosen 
from a variety of mathematical models. On the one hand, the problem has a structure 
similar to the structure of a proportion problem. On the other hand, it is not a familiar 
textbook problem, and so solvers might use their personal experience to suggest 
another solution. In this latter case, they are likely to suggest another mathematical 
model (e.g., reimburse and split).

Thus, as in the case of the MST approach, variation is exhibited here through 
alternative solutions to the same modeling problem. This multiplicity is, again, a 
good trigger for argumentation that leads to insight and promotes the development 
of a metacognitive perspective of the meaning of mathematizing a given situation.

As mentioned earlier, modeling competencies and modeling perspectives involve 
a new type of problems that have to be experienced gradually. Thus, as detailed by 
Peled and Balacheff (2011), the Lemonade Stand Problem is not an isolated problem 
solving experience. It is presented within a problem sequence, the purpose of which 
is to change teacher or student modeling conceptions and competencies.

DISCERNING CRITICAL ASPECTS

The didactic contracts associated with MSTs and MTs include mathematical 
assignments that lead to the transformation of relatively standard problems into 
problems that promote mental flexibility through the request to generate and discuss 
different solution alternatives.

Still, there are many differences between the components of the learning process 
when tasks of these two types are employed. The focus on comparing student or 
teacher behavior in the two problems facilitated the identification of relevant features 
and resulted in the analysis presented in Figure 3.

Although both problems serve as examples of multiplicity and flexibility, their 
multiplicities are of an entirely different nature. MSTs are problems that essentially 
have one solution, and their multiplicity is exhibited in the different ways of 
reaching this result. These different ways often involve a description of a certain 
mathematical structure by using different mathematical tools. The different views 
of the structure create analogical expressions that suggest interesting connections 
between, for example, geometry and algebra, and might lead to the construction of 
more general structure schemes.
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Figure 3. Comparison of two types of Tasks
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In contrast, the multiplicity in MTs, especially those involving a social-moral 
situation, involves multiple structures. The problem solver might have the choice 
of different assumptions and ways of organizing the situation, which results in a 
choice between different kinds of models. Each student might suggest a different 
mathematical model leading to a different result, and the class discussion would lead 
to an understanding of the legitimacy of these multiple structures and results.

Thus, the way in which we open “closed” problems has to do with the goals 
that can be attained in each case. MSTs usually lead to proving a specific 
mathematical property or finding a specific numerical answer, whereas MTs lead 
to different, sometimes, controversial results. MSTs nurture mental flexibility and 
connectedness of mathematical knowledge, while MTs develop modeling skills and 
an awareness of the possibility of applying multiple mathematical structures to a 
particular problem. MSTs develop freedom in choosing solution routes, and MTs 
develop awareness of the potential for freedom in choosing a mathematical model. 
In both cases students advance their specific problem-solving skills along with their 
understanding of the structure and nature of the problem-solving process.

DISCUSSION

In this article, we demonstrate the contribution of variation theory in two different 
cases or levels. First we view a didactical approach as an object of learning, placing 
two didactical approaches on the same dimension where they can be compared 
to discern their critical aspects. Another use involves variation within each of the 
approaches. Now the object of learning is a solution and the goal is to understand 
the meaning of a solution. Within a given approach a problem is kept constant and 
alternative solutions in the dimension of different routes or the dimension of different 
structures are encouraged and compared.

The first use involves a comparison of two approaches involving multiplicity. 
One approach (MSTs) involves the explicit challenge (that might later become 
implicit) to find multiple mathematical tools that can be used in its solutions. The 
other (MTs) calls on solvers to (1) question whether a mathematical model that is 
usually applied is justified and (2) apply considerations of “social justice” to the 
situation given in a problem and then to apply mathematical models that fit those 
considerations.

In an effort to better understand the nature of each of these approaches we follow 
principles of variation theory. The theory suggests that critical features of each of 
these two approaches would emerge when an approach, viewed as a learning object, 
is compared to another learning object. Such a comparison is helpful, especially 
when the objects can be placed in a common dimension. In this case, both approaches 
could be situated in the dimension of multiplicity. This enables us to investigate 
similar and different features of the two multiplicities.

Our comparison resulted in discerning several critical features where the 
learning objects varied with respect to these aspects. The main difference involved 
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the nature of “what” varies within a given multiplicity. MSTs focus on multiple 
strategies to the same solution that are based on different properties/theorems of 
the same mathematical concept, whereas MTs focus on problem structure. That is, 
different realistic considerations or assumptions might lead to organizing a given 
situation using different mathematical models (e.g., an additive structure versus a 
multiplicative structure). The different structures, i.e., mathematical models that fit 
the situation, might lead to different results.

A close question to “what varies” is “who offers multiple solutions.” MSTs 
require that each of the problem solvers comes up with many solutions, and, in fact, 
individual’s creativity and mathematical connections are determined by observing 
the number and quality of the solutions. MTs, in contrast, encourage group work 
where each group makes its own assumptions, and the variety of solutions comes up 
later in class discussion. It should be noted, however, that the didactical contract in 
MTs encourages students to consider and analyze the situation rather than impose a 
certain structure almost automatically.

Another critical feature is the nature of using reality. The focus of MSTs is 
basically mathematical, i.e., to afford the use of different mathematical concepts and 
experience connections between them (e.g., a geometric solution and an algebraic 
solution). In MTs, on the other hand, the focus is on developing modeling skills, i.e., 
to learn to analyze and organize a situation. Correspondingly, reality does not play 
a “real” role in MSTs. It serves more as an ornament or motivation, or an excuse 
for constructing a mathematical model. Once this model is constructed there is no 
genuine interest in the result. In MTs, on the other hand, the dilemma is genuine and 
“someone” in the story is interested in getting a real-world answer.

The second use of variation is exhibited in the article within each of the approaches. 
In each case, the students are encouraged to construct or discuss alternative solutions. 
In the MST example, students constructed different solution routes using, for 
example, algebra, geometry, or a qualitative analysis. In their discussion they mapped 
solutions, made connections, and discovered special features such as symmetry, and 
thus acquired new insights from the opportunity to experience variation.

In the MT example teachers were given a problem that was designed to elicit 
several different mathematical models resulting from making different assumptions 
about the realistic situation. The discussion involved argumentation that challenged 
existing habits leading to a new meta-perspective on the meaning of mathematizing 
a situation.

Our experience demonstrates that after a period of systematic (teacher-initiated) 
engagement with MSTs and MTs, students search for different solutions on their own 
initiative. However, the didactic situations created by the two types of problems are 
different: When coping with MSTs, each student is required to find several means 
of reaching the solution, and then students take part in a critical and comparative 
discussion of the collective solution space. When coping with MTs, the solution 
process starts with a discussion of different (non-mathematical) considerations that 
can be applied to the situation, and then the students are encouraged to fit to each 
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of the considerations a different mathematical model. This stage can be performed 
collectively or individually according to the instructor’s decision.

Our analysis of MSTs and MTs shows that in spite of the different ways in which 
these problems encourage multiple solutions, the openness in both cases has a 
good potential to develop learners’ critical reasoning, thinking about the meaning 
of mathematical solutions, and an ability to search for alternative explanations and 
interpretations of mathematical situations.

We hope that the openness created by these multiplicities will lead to a more 
general opening of minds. Hopefully, students who get used to facing one of these 
problem types will also start questioning conventions related to the other type. For 
example, students who have developed the habit of searching for non-conventional 
solutions may behave less automatically when applying mathematical structures to 
situations. Perhaps we should facilitate this flexibility by having each of us discuss 
her colleague’s approach with students just as we have discussed and compared the 
approaches in this article. That is, introduce variation of approaches in class.

The idea is to develop a problem solver who will not let conventions make 
decisions for him, but will take responsibility during all steps of the problem-solving 
process. For this problem solver, flexibility and self decision-making become “the 
name of the game.”
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17. LEARNING TO TEACH WITH VARIATION

Experiences from Learning Study in Sweden

TEACHING WITH VARIATION: A TAKEN FOR GRANTED DIMENSION?

Let us imagine two different grade 6 classrooms where the aim of the lesson is the 
same; to calculate examples such as ¾ of 12 = 9. When introducing this, in one of the 
classrooms, the teacher demonstrates a method for computing; “divide the integer 
(12) by the denominator (4) and multiply the quotient (3) by the numerator (3).” This 
method is then applied to three different problems; ⅔ of 90, 1⁄5 of 40 and 3⁄5 of 60. In 
the other classroom, the teacher gives the learners a problem to solve: “mark 3⁄7 of a 7 
by 8 squared rectangle.” After having worked out the problem in pairs, they present 
their solutions. It was found that some learners had divided the small squares into 
eight groups of seven and marked three of them. Others had divided the small squares 
into eight groups of seven and marked three out of seven squares in each group (cf., 
Behr, Harel, Post, & Lesh, 1992). These differences in how the same topic was 
handled in the two classrooms could, on a general level, be described as; in the first 
lesson the same method was applied to different examples, whereas in the second, 
different methods were applied to the same example. Or put differently, in one of the 
lessons the method was invariant and the examples varied, in the other lesson it was 
the opposite. Thus, that which was varied and that which was invariant—the pattern 
of variation—was different in the two lessons (Runesson, 1999).

It might be the case that how variation appears in teaching materials and is used 
by teachers is so familiar that it is almost invisible (Sun, 2011). This seems to be 
the case for these teachers too. When studied in action they demonstrate an ability 
to use variation and invariance when they focus on aspects of the topic taught. 
However, when they talked about their lesson plan in the interview before the lesson 
and were directly asked how to teach to enhance students’ learning of fractions as 
operator (e.g., ¾ of 12), they did not mention the use of variation at all. Instead, 
they talked about the organization and arrangements of the lesson. For instance, 
they emphasized ‘interaction’ as an important means for the learners to discuss and 
reflect. The importance of using manipulatives was also mentioned, as one of the 
teachers said, “it must be tangible, [they will be] cutting strings, folding paper [in the 
lesson]” (Runesson, 1999, p. 164). From this we would ask: Is it possible to make 
such taken-for-granted principles visible to teachers and can they learn how to create 
patterns of variation more purposefully and systematically? In this chapter we will 
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use two cases to illustrate, (1) how a group of Swedish teachers can learn to make 
use of principles of variation and invariance, and (2) how that seems to affect their 
ways of handling the topic over time. These teachers had participated in a form of 
professional learning community, called learning study (described below), where a 
theory of learning—variation theory—was used as a guiding principle.

VARIATION—A NECESSARY CONDITION OF LEARNING

Does a difference in the enacted pattern of variation, such as the ones described 
above, matter for learning? This can be answered by studying how teaching and 
learning are related. However, there are indeed problems with this. Learning can 
hardly be predicted and there is no simple cause and effect relationship between 
teaching and learning. Still, there is a need to know how teachers’ actions affect 
student learning. Particularly, teachers themselves need to be aware of this. For that 
purpose, they need a theory that can guide them to evaluate and plan a lesson that 
would lead to better learning (Nuthall, 2004, 2005). Variation theory (Marton, 2015; 
Marton & Booth, 1997) has been implemented with that purpose in mind and with 
promising results.

Variation theory explains learning failures in a specific way and spells out the 
conditions of learning; when learners fail to learn what was intended, they have not 
discerned aspects necessary to discern. So, the very core idea of variation theory is 
that discernment is a necessary condition of learning. The point of departure is that 
our awareness has a structure. We do not attend to all aspects of an object. Neither 
do we attend to them in the same way or simultaneously. However, what aspects we 
attend to or discern is of decisive significance for how we understand or experience 
the object. So if that which seems to be ‘the same thing’ (e.g. ¾ of 12) is experienced 
differently, this has to do with differences in discernment of aspects of ‘the same 
thing.’

Discernment cannot happen without experiencing variation, however. So for 
example, it is more likely that the relational aspect ¾ of 12 is discerned, if different 
relationships are possible to experience at the same time. If the relationship ¾ of 
12 is opened up as a dimension of variation, (e.g., by juxtaposing and comparing 
dividing a 3 × 4 rectangle into three groups of four then marking three of the groups, 
with the same rectangle divided into three groups of four with three small squares 
marked within each group), it is likely discerned that ¾ of 12 represents relationship. 
Thus, it is a premise of variation theory that discernment presupposes variation; we 
learn from seeing differences and making distinctions (cf., Gibson & Gibson, 1955) 
prior to seeing similarities.

Variation theory states that learning is a function of discernment and discernment 
comes from experiencing variation and making distinctions. Therefore, on a 
theoretical ground it could be argued that the pattern of variation and invariance 
matters. When comparing two lessons where the same topic was taught and arranged 
similarly, several studies have demonstrated that differences in the pattern of 
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variation seemed to have a significant role for student learning. These studies suggest 
that ideas about variation and invariance are powerful principles of pedagogical 
design that maximize student learning (Cheng & Lo, 2013).

Furthermore, variation theory states that the variation must concern the aspects 
we want to draw the learners’ attention to. Teachers must be aware of (1) what 
aspects the learners must attend to, and (2) make these aspects learnable by means of 
variation. In learning study (described in detail below) teachers can become aware 
of how the use of variation can focus learners’ attention to aspects of the object of 
learning.

VARIATION THEORY AS A GUIDING PRINCIPLE IN LEARNING STUDY

When Lesson study (Lewis, 2002; Yoshida & Fernandez, 2004) was introduced in 
the West, it was suggested that this collaborative learning and teacher development 
model contributed greatly to the high quality learning of the Japanese students. In 
the reflective and iterative process, teachers can observe the lesson and gain insights 
into teaching and learning; insights that are shared and are the basis for revision 
and refinement of the lesson. The potential of Lesson study arrangement for teacher 
professional development was picked up by a group of researchers in Hong Kong 
around 2000 in a project aiming at developing teachers’ capabilities to deal with 
diversity in the classroom. They took Lesson study as a point of departure, but 
introduced variation theory as a basis for their work. They anticipated that an explicit 
theory of learning would add value to Lesson study by focusing on what is learned 
(the object of learning), what the necessary conditions for learning might be, and 
how to make them discernable in class. In this way variation theory was put to the 
test as a pedagogical theory used by teachers in their everyday practice.

Furthermore, they added a diagnostic pre- and post-test as well as a more 
systematic approach to the observation of the lessons, and named it ‘learning study’ 
(since learning, rather than lesson, was the focus) (Marton & Pang, 2003). Thus, 
learning study became a research-like version of Lesson study “with the double aim 
of boosting the participating teachers’ ability to help their students to learn, on the 
one hand, and to produce new insights into learning and teaching that can also be 
shared with teachers who do not participate in the study, on the other hand” (Marton 
& Runesson, 2015, p. 104).

LEARNING STUDY

Variation theory focuses on what is learned prior to how it is learned. For every 
object of learning there are certain aspects of that object that must be learned. Some 
students master these, others do not. Those aspects that are not (yet) discerned, 
but are necessary to discern, are called ‘critical aspects.’ These aspects must be 
identified for every object of learning and for every group of learners. Furthermore, 
what is critical for learning cannot be derived either from variation theory or from 
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mathematics alone, but must be identified by studying and relating the learners’ 
learning and how the object of learning is handled in the lesson. By comparing the 
learning outcomes from the diagnostic test before and after the lesson and carefully 
analyzing the lesson, differences in student learning can be related to features of the 
lesson. If the learners do not improve on the post-test, questions about the necessary 
conditions—what they might be—and whether they were made possible to discern 
in the lesson can be addressed.

When the critical aspects are identified, principles from variation theory (e.g., 
what we want the students to notice must vary) are used to design the lesson in terms 
of how to handle the content.

In learning study teachers can become aware of how the use of variation can focus 
learners’ attention towards aspects of the object of learning. They can also put to 
the test and explore how a deliberately designed pattern of variation affects student 
learning (Elliott, 2012; Kullberg, 2010).

In the Swedish landscape, learning study has been used as an approach for research 
(Holmqvist, 2011; Kullberg & Runesson, 2013; Marton & Pang, 2013; Vikstrom, 
2014) and as an arrangement for teacher professional development. It is well known 
and has engaged thousands of teachers and their students from pre-school to upper 
secondary level and university level in various subjects. It has been promoted as an 
effective model for school development and collaborative learning by The Swedish 
National Agency of Education.

USING VARIATION PRINCIPLES TO COLLECTIVELY  
DESIGN AND REVISE A TASK

The first example we will use to illustrate teachers’ learning to teach with variation 
describes how a group of teachers collectively tried to enhance grade 8 students’ 
learning of division with denominators <1 but >0 by exploring how variation 
between examples affected students’ learning.

The idea that it is possible to design a task based on a systematic and conscious 
use of variation has been suggested by Watson and Mason (2006). They argue that 
“Constructing tasks that use variation and change optimally is a design project in 
which reflection about learner response leads to further refinement and precision 
of example choice and sequence” (p. 100). Furthermore, the notion that an inbuilt 
pattern of variation between examples, where only one or few variable changes at a 
time and in a systematic way, can draw learners’ attention to essential structures and 
make learners aware of relationships of numbers has been shown (e.g., Runesson, 
2005).

The learning study with division was conducted with three teachers at the same 
school in collaboration with a researcher (see Kullberg, Runesson, & Mårtensson, 
2014 for further details). The group met regularly for approximately three months 
to design and revise the lesson based on analysis of video-recordings from the 
lessons and learning outcomes of the pre- and post-test. They were all experienced 
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mathematics teachers (8–20 years of teaching experience) and participated on a 
voluntary basis.

Our analysis is mainly based on transcripts of video-recorded lessons, but 
complemented with analysis of transcripts of pre- and post-lesson meetings. Our 
rational for studying teacher learning in class when enacting the lesson, and not from 
analyzing interviews or self-reports for example, comes from Ryle (1949/2002) 
who conceived knowing as a disposition to act, and Schön’s (1983) notion of 
‘knowing-in-action.’ What we count as teacher learning is the enacted learning in 
the classroom and furthermore, what is enacted, we see as significant since that is 
what the learners encounter and have possibilities to experience.

From the teacher designed diagnostic pre-test the group found that some students 
answered in a way that could be interpreted as: ‘when dividing with a decimal 
number (e.g., 4 ÷ 0.2, 4 ÷ 0.02, or 4 ÷ 0.002) the quotient is less than the quotient 
in divisions with whole numbers, e.g. 4÷2 (cf. Bell, Swan, & Taylor, 1981; Bell, 
Fischbein, & Greer, 1984; Bell, Greer, Grimison, & Mangan, 1989; Fischbein, Deri, 
Nello, & Marino, 1885; Okazaki, & Koyama, 2005). To overcome these difficulties 
among the students and change their ways of understanding, the teachers designed 
the lesson to achieve what they thought must be the learning goal: that the students 
should understand why the quotient sometimes becomes greater than the numerator 
in a division (Mårtensson, 2015).

The teachers designed some tasks they thought would enhance students’ learning. 
One of these tasks, comprising a set of examples, is illustrated in Figure 1. The 
set of examples demonstrates variation and invariance. Taking a closer look at the 
variation between the examples in the two columns, there is a variation in operations 
(multiplication and division, 6 examples of each). There is also variation between 
the examples in each column. The numbers in the denominator (and in one factor), 
consist of numbers both greater and less than 1, with 20 being the biggest and 0.1 
the smallest. Comparing the examples in the two columns, the factor/quotient 100 is 
invariant and the same numbers in the denominator/factor are used in both columns.

Thus, the variation between the examples (within and between the columns) 
creates opportunities for students to experience differences and similarities of 
various kinds.

However, the inherent pattern of variation needs to be presented in class in a 
way that brings out the aspects that teachers intend learners to notice. What is made 
possible to see in terms of similarities and differences is due to what differences and 
similarities between the examples are pointed to. So, even if teachers might have 
the skill to design a set of examples based on principles of variation, they might not 
have the skill to implement it in a way that brings the intended pattern of variation 
(and thus, the critical aspect) to the fore of attention. In the following section we will 
show how the above set of examples was successively implemented and re-designed 
during the iterative process of observing and revising the lesson. This, we interpret, 
led to a more efficient use of the inherent pattern of variation in terms of how the 
anticipated critical aspects were brought out.
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Lesson 1

Although the teachers had designed the task to make it possible for the students to 
see why the quotient sometimes can be greater than the numerator, this was not made 
possible to experience in lesson 1. In lesson 1, the examples were sequenced and 
discussed in a way that mostly emphasized the multiplication – division relationship. 
The numbers (1) to (3) in Figure 2 show the order in which the examples were 
introduced in the discussion. First, in sequence, (1) two multiplication examples were 
solved (100 · 20, 100 · 4), followed by two division examples (100 ÷ 20, 100 ÷ 4). 
The teacher emphasized that the same numbers were used in the calculations, but did 
not point out any relationship at that time. In (1) the operations varied, whereas the 
numbers 100, 4, and 20 were invariant. Thereafter, the examples in (2) and (3) were 
calculated.

After the calculation of the examples, the teacher directed the students’ attention 
towards the division column and inverse relationship between multiplication and 
division. She pointed out that the quotient multiplied by the denominator is equal 
to the numerator (5·20 = 100, 25·4 = 100, 50·2 = 100, etc.). She concluded, “So one 
can connect these two operations (multiplication and division).” The analysis of the 
similarities and differences that were explicitly pointed out suggests that the planned 
variation inherent in the task was not fully used. Although the teacher at one point 
said that “the answers get greater the further down (in the division column) one 
gets”, this did not address why the quotient sometimes is greater than the numerator. 
Instead the implemented variation, in terms of similarities and differences between 
and within the examples, brought the inverse relationship between division and 
multiplication to the fore.

Figure 1. The set of multiplication and division examples designed by the teachers
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Lesson 2

During the post-lesson meeting after lesson 1, the teachers realized that the way 
the task was enacted did not help the learners to see what was targeted: why the 
quotient in a division with a denominator <1 but >0 is greater than the numerator. 
This insight led to another way of enacting the task in lesson 2 (with a new group of 
students). Now the teacher directed the students’ attention towards (1) the patterns 
in the multiplication and the division column in terms of the relationship between 
the size of the product/quotient the multiplicand/the denominator successively 
changes into a smaller number, and (2) the difference between examples of divisions 
with denominators < 1 and >1, (3) ‘the turning point’, i.e., the multiplicand/
denominator =1, and (4) the internal relationship between the quotient, numerator, 
and denominator.

As is seen in Figure 3, the examples in each column were calculated separately; 
first the multiplication column (1) and next the division column (2). Thereafter the 
teacher asked if the students could identify any patterns in terms of similarities 
and differences between the examples. One difference found by the students was 
concluded by the teacher as: “the less number multiplied with (pointing at 20, 4, 2, 
1, 0.5, 0.1, i.e., the multiplicands in the multiplication column), the less the product” 
(2000, 400, 200, 100, 50, 10), and thereafter, in the same way, while pointing to the 
division column: “the less number divided with, the greater the quotient”).

Figure 2. The sequence of the examples enacted in lesson 1, see (1 to 3). The arrows  
show what the teacher directed students’ attention to, in this case inverse  

relationship between multiplication and division, and that the further  
down in the column, the greater ‘the answer’
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Next, the teacher pointed out how some of the examples in the division column 
‘break the pattern.’ He pointed to the two examples, 100÷20 = 5 and 100÷4 = 25 
and said, “Here the quotient is less than the numerator, is it always like that?” The 
class came to the conclusion that the examples with denominators <1 was different. 
To emphasize this difference the teacher drew a line between the divisions (and 
multiplications) with numbers < 1, and division with numbers > 1 to illustrate this 
‘turning point.’ Division examples with denominators <1 were contrasted with the 
two division examples with denominators >1. The teacher said, “Around 1, do you 
agree with me that something happens here (draws a line under 100÷1), do you agree 
with me … ?” The teacher pointed to the denominator 1 and then to the denominator 
0.5, and said, “When the denominator is less than 1 the quotient (pointed to the 
quotient 200) is greater than the numerator (pointed to the numerator 100). Next, 
the teacher made a contrast with multiplication: “But what about multiplication?” 
(see Figure 3). By comparing multiplication with division (100·0.5 = 50, 100 ÷ 0.5 = 
200), it was pointed out that the quotient is greater and the product less, when the 
denominator or one of the factors is less than 1. So, it could be concluded that in 
lesson 2 the set of examples was utilized in a way that came closer to the intended 
goal. The pattern of variation and invariance, in terms of what was compared, 
brought out significant features of division with denominators >0 but <1 and how 
this is different from multiplication (multiplicands <1).

Figure 3. The sequence of the examples enacted in lesson 2 (1 and 2). The arrows  
show what the teacher directed students’ attention to, e.g., that the quotient  

becomes greater than the numerator when dividing with a number  
less than 1, and ‘the turning point (‘1’)’
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Lesson 3

In the post-lesson meeting, the teachers interpreted lesson 2 to better realize the 
learning target. However, they made some small changes in the set of examples 
that they thought would improve the enactment of the task in lesson 3 with a new 
group of students. First, in some of the examples the multiplicands/denominators 
were exchanged. Instead of dividing/multiplying 100 by 20 and 4 as was the case 
in lesson 2 (see Figure 3), in the revised two first examples in each column 100 was 
divided/multiplied by 50 and 5 (see Figure 4). This they thought would put less 
emphasis on the calculation. They anticipated that the learners would just ‘know 
the answers’ and thus, more directly see the pattern. This change implied that the 
variation between the examples in each column changed. Another difference in 
the set of examples in this lesson was that the two last examples (100 · 0.1 = 10 
and 100 ÷ 0.1) were not on the board from the beginning, but presented after the 
other examples in each column had been discussed (Figure 4 (3)). In many ways 
this lesson was enacted in a similar way as lesson 2. The teacher first directed the 
students’ attention towards the multiplication column (1) and asked for similarities 
and differences:

T:  Look at the multiplication columns first. Do you see any pattern? Anything 
that is the same or different?

S:  The smaller number [we calculate with] the less zeros there are [in the 
product]

T:  Yeah, but what answer do we usually get in multiplication?
S:  A larger number.
T:  Is it always like that? When do we get a larger number?
S:  After one.

The teacher challenged the idea she knew was common among the learners by 
asking, “What answer do we usually get when we calculate a multiplication?” The 
teacher continued and challenged the students’ by asking if that is always the case. 
One student seemed to see the exception; s/he answered “After one.”

Next, the teacher pointed at the multiplier 0.5 and the product 50 (in the example 
100 · 0.5 = 50), and again at the product 50 and 100 to show that the product in 
this case was less than the multiplicand (100). By introducing a new example 
100 · 0.1 = 10 (See Figure 4 (3)) and thus varying the multiplicand between the 
examples (from 0.5 to 0.1), it was demonstrated that this is true for other instances 
as well: the product is less than the multiplicand even in that example.

After, the teacher directed the students’ attention to the division column (2) and, 
just as she did for multiplication, challenged the idea of the relationship between the 
numbers (in this case dividend, divisor, and quotient). She asked, “What answer do 
we usually get when we calculate a division?” The teacher then asked the students 
if it is always like that and continued. “Do you see where it turns? Here we get a 
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greater answer (quotient) (100 ÷ 0.5 = 200), when do we not get a larger number 
(quotient)?” After answers from the students, the teacher continued, “Is this true for 
all decimals?” Just as in the discussion about multiplication, she introduced a new 
division example with a divisor <1 but >0: 100 ÷ 0.1 = 1000 in order to demonstrate 
and generalize the ‘rule’ (3).

Figure 4. The sequence of the examples enacted in lesson 3 (1 to 3). The arrows show what 
the teacher directed students’ attention to e.g., that the quotient becomes greater than the 

numerator when dividing with a number less than 1 and ‘the turning point’

This example illustrates that the teachers were able to design a set of instructional 
examples based on the idea that variation and invariance within and between 
examples must appear in a systematic way to make aspects discernible to the learners. 
We have also shown that they could refine the task and its implementation from 
the analysis of the lessons and their students’ learning just as Watson and Mason 
(2006) have suggested. The first lesson they did not find successful regarding what 
they wanted to accomplish. They came to realize that the way the examples were 
sequenced and hence, the pattern of variation that was brought out in the lesson, 
emphasized other relationships than those targeted. This was mainly due to that the 
inverse relationship between division and multiplication was highlighted by the 
enacted variation. Whereas, in the second lesson, when the set of examples was 
slightly changed and other patterns of variation and invariance were brought to the 
fore of attention, the teachers were more satisfied and other distinctions were made 
visible. Our analysis indicates that the teaching in lesson 2 and 3 more explicitly 
(although perhaps not fully) directed the students’ attention to the relationship that 
the teachers wanted the students to discern.
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Here we have only demonstrated one task from one of the learning studies. Other 
tasks were designed, implemented, and revised guided by the principles from variation 
theory in a total of 12 lessons in three learning studies. Analysis of these lessons, 
of pre- and post-lesson meetings and student learning out-comes demonstrated 
similarities to what we have shown here; the teachers could successively make use 
of ideas of variation in their teaching in a way that enhanced learners’ possibilities to 
learn what was targeted (Mårtensson, 2015).

LEARNING TO TEACH WITH VARIATION—EFFECTS OVER TIME?

In the example above, the teachers inquired and tested how principles of variation 
and invariance can be used as a tool for designing tasks and planning the lesson 
to enhance learning. This was a collective process, with possibilities to discuss 
different options together but, first and foremost, to study the effects of various 
patterns of variation in class. However, do those experiences have any impact on 
their daily work? Considering that learning study is time consuming and takes a 
lot of effort for the participating teachers, we found it essential to find out if their 
experiences had any long-term effects. Twelve mathematics and science teachers’ 
teaching before and after having participated in three learning studies, were studied 
by examining how the same topic (of their own choice) was taught before and after 
participating in learning study, with two years in between (Kullberg, Runesson, 
Marton, Vikström, Nilsson, Mårtensson, & Häggström, 2016). As in the previous 
example we followed the rational inspired by Ryle (1949/2002) and Schön (1983) 
to study aspects of what the teachers had learned by examining transcripts of the 
video-recordings of their actions in the classroom. It was found that 10 of the 12 
teachers changed their way of handling the topic in a way that reflects principles 
of variation theory. One striking difference was found among all teachers’ teaching 
after the intervention: both the mathematics and science teachers structured the 
content taught in another way after the intervention and thus, the enacted pattern of 
variation was different. In the following section we will give one example of how 
two mathematics lessons differed in terms of structure of the topic and the pattern 
of variation enacted before and after the teacher’s participation in learning study 
and his experience with variation theory.

Changes in the Enacted Patterns of Variation

The teacher we will report on, Mr. B, taught grade 8 and the content taught on the 
two occasions was units of measurements and how to convert within units, e.g., 
1 dm² to 100cm².

Lesson 1. Phase 1 in the first lesson started with a definition of 1 dm2: a 1 dm × 
1 dm square. How the unit cm2 is related to the unit dm2 was demonstrated next by 
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showing a 1 dm2 square divided into 100 cm2 and concluding that 1dm2 = 100cm2 

(written on the board). Two examples of converting area units, from dm2 into cm2 
and the reverse, were given to the class to solve (6 dm2 = 600 cm2; 40 cm2 = 0.4dm2). 
Next, the relationship between length units was discussed, and on the board the 
students could read: 1m = 10dm = 100cm. Finally, the relationship between different 
area units was the topic. It was stated and written on the board that 1m2 = 100 dm2 = 
10000 cm2.

Next, a worksheet with similar examples of converting area units from dm2 

into cm2 and the reverse were practiced individually. When the tasks were corrected 
in public, the teacher gave ‘a rule’: “going from m2 into dm2 you add two zeros, 
going from dm2 to cm2 you add two zeros, or you multiply with 100”, however, no 
explanation was provided. Thus, in this section, the area units and their relationship 
was the main topic.

In phase 2 volume and volume units were introduced by showing a 1dm × 1dm × 
1dm cube. ‘Volume’ was defined as length × breadth × height and written on the 
board together with ‘1 dm × 1 dm × 1 dm = 1 dm3.’ Here the notion ‘dimension’ 
was mentioned, “height is the third dimension”. He further explained that the ‘3’ in 
dm3 indicated three dimensions. Similarly, he explained the ‘2’ in dm2 as related to 
the two dimensions of area. Next, the relationship between cm3, dm3, and m3 was 
summarized on the board: 1 m3 = 1000 dm3 = 1000000 cm3. This was followed by 
individual worksheet work with examples of converting volume units. During the 
last five minutes of the lesson the tasks were jointly corrected and students were 
reminded of the rule, “Remember; add three zeros, multiply by 1000.”

Section of 
the lesson/
activity

Section 1 
plenary

Worksheet 1 
individually

Section 2 
plenary

Worksheet 2 
individually

Topic Area units 
relationships
1 m2 = 100 dm2 
= 10000 cm2; 
6 dm2 = 600 cm2; 
40 cm2 = 0.4dm2

Length units 
relationships
1 m = 10 dm = 
100 cm

Converting area 
units
(e.g., 3 dm2 = 
300 cm2 and the 
reverse)

Volume units 
relationships
1 m3 = 1000 dm3 
= 1000000 cm3

Converting 
volume units 
(e.g., 3 m3  = 
3000 dm3, and 
the reverse)

Pattern of 
variation

Area/length 
invariant, 
variation within 
one unit (area/
length)

Area invariant, 
variation within 
one unit (m2, 
dm2, cm2)

Volume 
invariant, 
variation within 
one unit (m3, 
dm3, cm3)

Volume 
invariant, 
variation within 
one unit (m3, 
dm3, cm3)

Figure 5. Sequence of lesson 1 and the identified patterns of variation
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Figure 5 gives an overview of the lesson and how the topic taught was sequenced. 
The analysis suggests that the relationship within each unit (length, area, volume) was 
taught one at a time, first in whole class and then practiced individually. In terms of 
patterns of variation enacted, the lesson could be described as consecutively opening 
up the relationship between units within area, length, and volume respectively.

Lesson 2. Two years later the teacher taught the same topic to the same grade 
(although not the same students). In contrast to the previous lesson, the teacher 
introduced all units (length, area, volume) from the start. Notes of length units, area 
units, and volume units were simultaneously on the board from the beginning of 
the lesson and the notion ‘dimension’ was presented right from the start. First, 1 
dm (a line on the board) was compared to 1 dm2 (a square) and 1 dm3 (a cube) and 
1 dm3 was defined as 1 dm × 1 dm × 1 dm = 1 dm3. The relationship within each 
unit and between length, area, and volume was simultaneously visible on the board 
and pointed out by the teacher: 1 dm = 10 cm; 1 dm2 = 100 cm2; 1 dm3 = 1000cm3. 
Thereafter, the following was written on the board:

Length
1 dm
10 cm
100 mm

Area
1 dm2

100 cm2

10000 mm2

Volume
1 dm3

1000 cm3

1000000 mm3

Figure 6. The white board in lesson 2. The three units of length, area,  
and volume are present at the same time

Throughout the lesson, the teacher compared the units. The relationship between 
length, area, and volume was made visible. For example, the teacher pointed to the 
three columns with different units. He said:

T:  Do you experience or see any patterns? … Length units (points to the 
column and makes a vertical gesture), area units (points to the column 
and makes a vertical gesture), and volume units (points to the column and 
makes a vertical gesture)?

S:  It’s always bigger.
T:  Definitely, if you go in this direction (makes a vertical gesture and points 

to the columns within length, area and volume, one at a time) and the same 
if we go in that direction (makes a horizontal gesture and points to length, 
area and volume).

T:  Can you see something else?
S:  You add the same amount of zeros as there is after decimeter.
T:  Could you hear what Mary said?
Ss:  No!
T:  Say it again, Mary.
S:  You add the same amount of zero as there is after decimeter.
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We interpret her answer “after decimeter” as referring to the ‘2’ in dm2. That is, 
there is a ‘two’ after dm and this tells us how many zeros to add.

The teacher did not rephrase her comments, but directed students’ attention to the 
different amount of zeros in each column and to the number of dimensions. He said:

T:  Yeah, I have talked about dimensions. Look here, one dimension, length 
(a unit segment), decimeter to centimeter add one zero, centimeter to 
millimeter add one zeros, area (a unit square) decimeter it says 1 dm², when 
we go from dm² to cm² add two zeros, from cm² to mm² add additional 
two, two dimensions, area is two dimensions, three dimensions; volume 
(a unit cube) … dm³, from dm³ till cm³ three dimensions add three zeros, 
if we go from cm³ till mm³ add three (zeros).

Here ‘dimensions’ were used to explain the number of zeros you can add when 
converting, for instance, dm to cm and dm2 to cm2. The ‘rule’ was explained and 
the rational for ‘adding different numbers of zeros’ was given. Next, the students 
worked with a worksheet with items about converting all three units, for example, 
from dm to m, dm², to cm² and from cm³ to dm³. Finally, students double-checked 
their answers on worksheets based on the answers provided by the teacher at the end 
of the lesson.

Our analysis suggests that this lesson was different from the previous one in 
terms of sequence and patterns of variation. In contrast to the first lesson, in lesson 
2 all the units were dealt with simultaneously without interrupting with students 
practicing work. This we interpret as an indication of that the teacher wanted to deal 
with the three units as a whole. However, having all units on the board at the same 
time and dealing with them in relation does not imply that everything varied at the 
same time. Instead we found systematics in the way variation was used. Variation 
theory is based on the idea that seeing differences rather than similarities is the 
foundation for learning, and that generalization must be proceeded by experiencing 
how things differ—a contrast (Marton, 2015). A closer look at lesson 2 indicates 
a sequence of this kind. First, a contrast was made between length and area (1) in 
terms of number of dimension (one in contrast with two) and (2) units (1 dm = 10 
cm in contrast with 1 dm2 = 100 cm2), followed by a similar contrast between length, 
area and volume (1, 2, 3 dimensions and units; 1 dm = 10 cm, 1 dm2 = 1000 cm2, 1 
dm3 = 10000 cm3). Next, this relationship, between dm-cm, dm2-cm2, dm3-cm3, and 
numbers of dimensions (one dimension; adding one zero, two dimensions adding 
two zeros, three dimensions adding three zeros), was generalized to mm, mm2, and 
mm3 (the teacher asked whether the students could see a pattern see Figure 6).

Having length, area, and volume visible on the board at the same time, allowed 
for comparison between the three geometrical objects (length, area, and volume) 
and their corresponding units as well as within each object. In terms of variation, 
the lesson could be described as a simultaneous opening of variation between 
and within units. In lesson 1, we also find systematics of variation, however, of 
another character. In lesson 1 there was an opening of variation within each unit 
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(length, area, and volume) before variation between units were opened. Although 
the identified difference between the lessons may seem subtle, we would argue that 
the relationship between length, area, and volume that was made explicit by the 
simultaneous handling in lesson 2, will likely give different learning possibilities 
when compared to lesson 1. Instead of taking one unit at a time (as in lesson 1), the 
three units were presented at the same time and systematically dealt with through 
contrast and generalization. So, when compared to lesson 1, lesson 2 enhanced the 
possibility to experience other connections.

SHIFTS IN THE WAY OF TEACHING WITH VARIATION

Teaching without accomplishing a pattern of variation is hardly possible. However, 
the pattern of variation—what is varied and what is kept invariant—could be 
spontaneously created and more or less systematic (cf., Runesson, 1999). We 
believe that it is not uncommon (at least not in Sweden) for teachers to present a set 
of examples on the board without having reflected on, for instance, what numbers 
to use and how to vary them between the examples in a systematic way. This may 
imply that too many things vary between the examples and consequently, that what 
we want the learners to notice will not come to the fore of their attention. It is not 
unusual that ‘taking one thing at a time’ and letting the learners practice before 
something ‘new’ is introduced to be conceived as facilitating learning, and that 
taking too many things at a time would make it more complicated and would risk 
learners ‘mixing things up.’ However, variation theory goes against such beliefs 
and states that the aspects of the object of learning that we want the learners to 
connect or see relationally must be possible to experience simultaneously. Further, 
to know what something is, requires to know what it is not, thus two things (at 
least) need to be contrasted in order to distinguish them. We also believe that 
this might have consequences for what is made possible to learn and for what is 
actually learned, as has been demonstrated in several studies (See Marton, 2015 
for more details).

In this paper we have given two scenarios of teachers learning to make use 
of variation theory. In the first one, we described how a group of teachers in the 
collective and iterative inquiry process with the object of learning and students’ 
learning in focus applied variation theory and improved their teaching skills when 
designing an instructional task. Our results suggest that they managed to design a 
set of examples when planning the lesson but did not manage to fully make use 
of and enact the potential of the designed task in their first trial. However, when 
reflecting on the lesson afterwards and how the set of examples was used, they 
came to realize what differences and what distinctions they must bring to the fore of 
learners’ attention in order to promote the intended learning. In the iterative process, 
they were allowed to ‘experiment’ in the classroom. So, learning study became a 
platform that provided opportunities for exploring, testing, and further development 
of teaching the task.
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The second scenario points to that the change and improvement of teachers’ 
teaching skills that might be seen even if the lesson is not collectively planned. The 
teacher, Mr. B, was one of the teachers in the Learning study group reported on in 
example 1. The topic taught in the Learning study lessons was not the same as in 
example 2. Furthermore, the lessons were individually planned by Mr. B in the two 
occasions. Our main interest in the study reported (see Kullberg et al., in press) was 
to trace changes of teachers’ ways of dealing with the same content in the classroom 
before and after participating in Learning study. When studying what teachers learn 
from teacher professional development it is common to involve interviews and 
various forms of self-reports from teachers. In our study, teachers’ reflections on 
their own learning was not our main interest; we were not primarily interested in 
what the teachers said about their own experiences. We were more interested in 
what the learners encountered in class before and after the teachers’ participation 
in Learning study. Therefore, the main data for our study was video recordings of 
the classroom. It is important to note that the teachers talked about the lesson with 
the researcher before the lesson was recorded. However, these interviews did not 
focus on their experiences of Learning study or how they made use of variation 
when planning the lesson. The teachers were asked to tell the interviewer about 
their objectives and plans for the lesson. Interestingly, it was found that Mr. B did 
not talk about using variation at all, neither in the first nor in the second interview. 
So, we cannot draw any conclusions of his learning of variation theory from these 
interviews.

Yet, the analysis of the two lessons showed that Mr. B rather radically – and on a 
concrete level – changed his way of handling the specific content of the lessons. We 
cannot exclude that these changes are influenced by other experiences Mr. B has had 
during the previous two years. They might even be quite accidental. What cannot 
be disregarded, however, is that the changes we have identified, to a great extent, 
reflect principles of variation theory (cf. Kullberg, et al., 2016, for the other eleven 
teachers in the study). Variation theory is a general theory of learning. It cannot be 
concluded from the theory what to vary or keep invariant for a particular object of 
learning. This must be decided in each and every case. What can be drawn from the 
theory, however, is that, the particular aspect we want to draw the learners’ attention 
to should be opened up as a dimension of variation. This we can see happened in 
lesson 2. For instance, in lesson 2, attention was drawn to the number of dimensions 
as indicating dm, dm2, dm3 and the adding of numbers of zeros in the corresponding 
units (when converting from e.g., dm to dm2) by opening up a variation in this 
respect right from the start. Actually Mr. B talks about this in the interview. He says:

I want them to see the logic, to me it’s logical, and hopefully they will see this 
pattern too. Yes, from dm to cm, add one zero, from cm to mm, another zero. 
One dimension, one zero, are, two dimensions, two zeros are added in each 
step. And similarly, volume, three dimensions, three zeros are added in each 
step.
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Our analysis suggests that this way of dealing with the content reflects 
principles we know the teacher has experienced when participation in three Learning 
studies.

When Sun (2011) talks about how the idea of variation is almost invisible to 
teachers, we interpret this as the knowledge of how to create patterns of variation 
when presenting the content to the learner, designing examples and so on, is un-
reflected but also ‘knowing in action’ (Schön, 1983). What has been reported here 
suggests that one of the strengths of Learning study is that such knowing can become 
visible, reflected upon and developed.
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18. TEACHING THROUGH VARIATION

An Asian Perspective – Is the Variation Theory of Learning Varying?

PROLOGUE

In 1997, I invited Ference1 (Prof. Marton) for an academic visit to the Chinese 
University of Hong Kong, where I was serving. In a lecture, he said he would start 
with his personal encounter. He then talked about his cultural origin and how he 
immigrated to the West, and then got in touch later with the Eastern culture. Learning 
from him, I would also start with my personal encounter with the variation theory of 
learning as well as bianshi teaching.

Figure 1. The author (left) introduces Ference (right) in his lecture  
at the Chinese University of Hong Kong

In fact I knew Ference much earlier, towards the end of my Ph.D. study. At 
that time, my supervisor, Prof. David Watkins, inspired me to the fertile field of 
understanding mathematics (Wong, Ding, & Zhang, 2016). He introduced me to 
Ference, whom David described as an expert in understanding ‘understanding.’ 
After that, Ference and I met several times and finally came up with a Hong Kong 
Research Grant Council competitive earmarked grant on Enhancement of students’ 
mathematics problem solving abilities by the systematic introduction of variations 
in 2001.
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The basic idea of the project was to broaden students’ lived space (Wong, 
Marton, Wong, & Lam, 2002) via the systematic introduction of non-routine 
(including open) mathematics problems. That granted research did generate a 
number of publications (Wong, Chiu, Wong, & Lam, 2005; Wong, Kong, Lam, & 
Wong, 2010) but the results were not as sharp as expected. One of the issues we saw 
was that the introduction of non-routine problems was not systematic enough. Many 
participating teachers found the whole idea not easily executable. At that time, I got 
acquainted with Rongjin2 (Prof. Huang, one of the co-editors of this book) and got 
in touch with bianshi teaching. I knew that Prof. L. Gu had done a lot in the area 
in particular. In a book which I edited, it could be the first time that these two key 
figures (Ference and Gu) co-authored a chapter, with the great help of Rongjin, on 
the topic.

I heard of Gu’s name early in 1992 in ICME-7,3 in which he reported his Qingpu 
experience (Gu, 1992). For some reason we did not meet. It was until 1998 when I 
was invited for a visit to Shanghai by my first Ph.D. student, Qiping (Prof. Kong), 
that we met as Gu came to my lecture.

I realized that empirical studies on both variation theory of learning and bianshi 
teaching were lacking. Thereafter, I ran into a number of investigations (some 
conducted by my M.Ed./Ph.D. students) on what, how, and why they work (please 
refer to Wong, Chiu, Wong, & Lam, 2005; Wong, Kong, Lam, & Wong, 2010; Wong, 
Lam, & Chan, 2012; Wong, Lam, Sun, & Chan, 2009; and Wong, Lam, Chan, & 
Wang, 2008 for more details).

HOW IT STARTED: CONCEPTIONS OF MATHEMATICS  
AND DOING MATHEMATICS

As mentioned above, the entire project (which began in 1996, one year after I 
got my Ph.D., and spanned more than a decade) started off with the conceptions 
of mathematics. The results of my initial investigations had it that students from 
Hong Kong and Changchun hold a relatively narrow conception of mathematics, 
and this attracted my attention. In brief, mathematics, in the eyes of these students, is 
identified by mathematical terminologies and students took mathematics as a subject 
of calculables (Wong, 2002a; Wong, Marton, Wong, & Lam, 2002). Surprisingly (or 
unsurprisingly), teachers’ and students’ conceptions of mathematics were in close 
resemblance.

Not only that, such conceptions of mathematics directly affected students’ problem 
solving tactics and, in particular, their thoughts that came to mind when they faced a 
mathematics problem. How they approach a problem is crucial to successful problem 
solving. What we found among the students in our studies is that, when students 
faced a mathematics problem, they tried to identify the key words, the prototype of 
the problem, which chapter (in the textbook) the problem might be situated in, which 
formulas were discussed in the chapter, and tried to fit the numbers into the formulas 
in order to check if they could get the answer (Wong, Marton, Wong, & Lam, 2002).
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Another study that I (and collaborators) conducted indicated that although 
students were exposed to a variety of problem types, most of the problems were 
abstract mathematics problems rather than real-life ones. Most of the problems posed 
required students to only apply rules and routine procedures (Wong, Lam, & Chan, 
2002). It reflected that the narrow conceptions of mathematics and mathematics 
problem solving are probably the results of a confined space that students lived in. 
However, this lived space is constructed by teachers, so it is a reasonable conjecture 
that teachers’ narrow conceptions of mathematics and of mathematics teaching 
lead to the confined lived space, which leads to students’ narrow conception of 
mathematics (Figure 2) (Zhang & Wong, 2015). A number of studies evidenced 
this point (see, e.g. Wong, 2002b; Wong, Han, & Wong, 2005). More seriously, if 
students, holding a narrow conception of mathematics, one day become teachers, it 
is possible that such a narrow conception, if not narrower, will be passed down from 
generation to generation.

Figure 2. The lived space of mathematics learning

To reverse the vicious circle, as mentioned earlier, we tried to broaden the lived 
space by introducing non-routine mathematics problems. As we are all familiar with 
the theoretical basis is phenomenography, which I am not going to repeat. In brief, 
discernment is an essential element to learning, and variation is crucial to bringing 
about discernment. The lack of variation in the lived space of mathematics learning 
experienced by students would inevitably lead to a relatively narrow conception 
of mathematics. Furthermore, they would tend to hold a narrow conception of 
mathematics learning and would possess limited strategies when they are confronted 
with mathematical problems. In sum, less variation is associated with narrower ways of 
experiencing a phenomenon whereas more variation is associated with wider ways of 
experiencing that phenomenon. Thus, students’ conceptions of mathematics would be 
broadened if their lived space of mathematics learning was widened by systematically 
introducing variation. They would become more capable problem-solvers as well 
(Wong, Chiu, Wong, & Lam, 2005; Wong, Kong, Lam, & Wong, 2010).

VARIATION THEORY OF LEARNING AND BIANSHI TEACHING: EAST OR WEST?

Besides the fact that we found our previous lived space project not easily executable, 
variation theory of learning deals with concept formation more than problem solving 
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(I do not mean the two are segregated). Problem solving is so essential in mathematics 
learning. It is so important that it was even asserted by the National Council of 
Supervisors of Mathematics as “the principal reason for studying mathematics” 
(1977, p. 2). Since one of our major goals was to enhance students’ problem solving 
abilities, we turned to bianshi teaching, which has been practiced in the Chinese 
mainland for decades.

Figure 3. The author (middle) invited Gu (right) for an academic  
visit to the Chinese University of Hong Kong

After reviewing mathematics textbooks and papers concerned, we found that 
there are so many different bianshis in existence. Bianshi has been (or maybe still 
is) so popular in the Chinese mainland that every mathematics teacher labels his/her 
teaching a certain kind of bianshi! No doubt in a lecture that I invited Gu to deliver 
at the Chinese University of Hong Kong in 2005, he shocked the floor by saying that 
there is nothing particularly called bianshi way of teaching, it is simply a basic skill 
that every teacher should know!

Our sole aim was to develop a framework for (mini-) curriculum development 
in order to investigate the effectiveness of bianshi teaching. After some sorting and 
categorization, we came up with four basic bianshis that can be used to form the 
cornerstones of curriculum construction (Wong, Lam, Sun, & Chan, 2009). Figure 
4 summarizes the four bianshis and their relationships. In brief, ‘inductive bianshi’ 
can be used to derive rules and concepts from the inspection of a number of realistic 
situations. These rules are consolidated by a systematic introduction of variation into 
mathematical tasks. Yet no new rules and concepts are introduced, and learners just 
broaden their scope through a variety of problems. This is the case in ‘broadening 
bianshi.’ At a certain point, by further varying the types of the mathematical 
tasks, learners are opened up to more mathematics. This is ‘deepening bianshi.’ 
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Mathematics is then applied to a greater variety of realistic problems, and this is 
‘applying bianshi’ (Wong, Lam, Sun, & Chan, 2009).

Figure 4. The bianshi curriculum framework

One may query whether these are the only bianshis. We suppose that this is not 
an issue. Different scholars can come up with their own particular bianshis for their 
own particular purposes. To us, these four are sufficient to develop our curriculum 
for further research. Not only that, the framework is in line with the process of 
mathematization and the nature of mathematics learning (National Council of 
Teachers of Mathematics, 1989).

As mentioned above, our main target was to investigate the effectiveness of bianshi 
teaching. In that sense, the framework was just a stepping stone. We must develop 
a curriculum for teaching experiment before we can test it. Division of fractions, 
which is perceived as the most difficult topic in primary mathematics, was chosen 
as our first trial. When it came to the actual process of curriculum construction, 
analysis of existing textbooks was taken as the first step to identify difficult points 
難點. Bianshi can then provide scaffoldings to help students cross these hurdles. 
Ideally, diagnoses with students (through clinical interviews and/or analyses with 
their works) would provide more information for curriculum development (which 
we did in later projects). This may be similar to ‘V1’ in the Learning Study Approach, 
in which the following variations were identified (Cheng & Lo, 2013):

• V1. Variation in the students’ understanding of the object of learning
• V2. Variation in the teachers’ own ways of understanding and dealing with this 

object of learning in the past
• V3. Variation as a guiding principle of pedagogical design
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Thereafter, we experimented in various topics, including Division of Fractions, 
Speed, Volume, Circumference, Bar Charts, and Use of Trigonometry to solve 
3-dimensional Problems (please refer to Wong, Lam, & Chan, 2012; Wong, Lam, 
Chan, & Wang, 2008; Wong, Lam, Sun, & Chan, 2009 for the designs of some of 
these topics).

EFFECTIVENESS: IN WHAT SENSE?

As previously stated, our sole aim was to not just repeat the idea in different 
topics but to gather more empirical data to evaluate the effectiveness of the use of 
variations, whether variation theory of learning or bianshi teaching. Such empirical 
studies were so lacking then. But when we talk about effectiveness, we have to check 
whether (expected) learning outcomes are achieved. Learning does not only involve 
behavioural change but conceptual change. Thus, conceptual formation is naturally 
one of the major concerns.

There was an interesting discussion at the International Workshop on Updating 
Phenomenography, which was held in 2000. A participant reported his research 
result that, among the students, besides ‘conventional’ dimensions of cardinality and 
ordinality, there are other dimensions of number concepts, such as color and emotion 
(to some students, certain numbers are ‘beautiful’, while some are ‘dull.’ Or ‘I hate 
the number 17’, etc.). Whether these dimensions can be called part of the conceptions 
of mathematics (or of the concepts of numbers) aroused some debate. Apparently, 
to most mathematicians, the answer is negative. But if you take ‘conception of X’ as 
‘how one (student) conceives/perceives X’, obviously we have to accept that these 
are dimensions that we actually found among the students. The issue boils down 
to whether they are desirable learning outcomes or not. Such a desirability is not 
defined solely by mathematicians or the curriculum documents but whether these 
dimensions can have sustainable development in higher mathematics or not (or so 
called esoteric mathematics: Cooper & Dunne, 1998).

There is yet another issue that we should not overlook. When we talk about 
learning, we have to realize that there are many aspects of learning. Let’s ponder 
about the followings:

• Understand Newtonian mechanics
• Construct a wooden cart with low center of gravity that will not easily topple
• Comprehend a Shakespeare’s piece
• Learn how to write a poem
• Learn how to play a musical instrument
• Learn Chinese kungfu and apply such skills in combat
• Learn how to swim
• Learn yoga or even meditation (the art of non-thinking)

…
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It needs no further explanation that these require vastly different skills and ways to 
acquire each of the above. Even if we confine ourselves to mathematics, we have the 
following different aspects of learning outcomes:

• formulate and solve a realistic problem that concerns the maximization of the area 
of a rectangle

• factorise a cubic polynomial, knowing factor theorem
• solve a trigonometric equation
• construct the perpendicular bisector of a line segment
• construct a dodecahedron by cutting and folding papers
• explore geometry properties using DGS (dynamic geometry system)
• explain to others the strategies one used in solving a mathematics problem

…
(and which of the above are means and what are ends?) I do not want to run hastily 
into the recent hot topic of procedural and conceptual knowledge (deep procedures 
and reciprocal acquisition), put it in simplistic terms, having a clear concept may 
not directly lead to successful problem solving, and vice versa. So when one reads 
papers reporting the effectiveness of bianshi, one needs to clarify what sense of 
effectiveness these papers refer to.

In our empirical studies (Wong, Lam, Sun, & Chan, 2009), we did not only check 
the effectiveness through conventional test scores. We also included mathematics 
problem solving tests and affective measures (like attitude and motivation). We also 
checked the possible changes in the conceptions of mathematics: how students see 
and do mathematics differently – this is our most wanted aspect right from the start. In 
our later studies, we also incorporated clinical interviews to see whether or not their 
approaches to mathematics problem changed. Under the above conceptualization of 
the lived space, with the broadening of it, students should get hold of a wider range 
of approaches and strategies to approach mathematical problems, non-routine ones 
in particular.

DOES VARIATION/BIANSHI HAVE A ‘NATIONAL/CULTURAL’  
IDENTITY? DO WE NEED ONE?

As we went along with the endeavor, several ideological issues came up. First, 
whether the ‘Western’ variation theory of learning and the ‘Chinese’ bianshi teaching 
are the same or difference. In Gu, Huang, and Marton (2004) the similarities between 
variation theory of learning and bianshi teaching were highlighted. Yet there are 
arguments whether they represent different perspectives (e.g., Pang, Bao, & Ki, 
2017). My opinion is, even teaching methods bearing the same name could have 
differences (variations!) in their practices, if we take ‘systematic introduction of 
variations’ in the broad sense, undoubtedly the two belong to the same family.
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Along this line, there were queries about whether our bianshi curriculum 
framework Chinese, Western, or a hybrid. To us, we did not go for bianshi for bianshi’s 
sake. As Shakespeare said, “What is in a name? A rose by any other name would 
smell as sweet.”4 Whether the designed curriculum belongs to Western or Eastern 
style of teaching (if there is anything as such) is unimportant. Mathematics learning, 
to some extent, has its universality. As said, our curriculum framework aligns with 
the nature of mathematics and mathematics learning. This is what ultimately matters.

For the betterment of mathematics learning, we look for (‘good’) practices from 
various cultures and utilize them without bothering whether they are labelled East 
or West (Wong, 2006).

In this book, we can see that teaching through variation exists in various cultures 
(Barlow, Prince, Lischka, & Duncan, 2017; Hino, 2017; Pang, Bao, & Ki, 2017; 
Runesson & Kullberg, 2017). Therefore, it is difficult to claim that variation belongs 
to a particular culture. Even for bianshi, one can say that it has Chinese origins, but 
it could be a bit far reaching to say that it has Chinese cultural roots. In addition, 
inevitably, some components of these different kinds of variations are common with 
other pedagogical ideas. For instance, ‘offer problems with variations – providing 
opportunity for students to construct variations themselves’ as mentioned in Hino 
(2017) could have similarities with the ‘open problem – problem posing’ cycle 
(Silver, 1994). Furthermore, among the four strategic means (see Leung, 2017), 
contrast, generalization, fusion, and separation, some of them might have similarities 
with progressive differentiation, integrative reconciliation that were proposed by the 
advance organizer of Ausubel (1990).

The theory of variation is itself changing (bian!5) too (which is quite natural). 
In Learning and Awareness (Marton & Booth, 1997), the phenomenon of learning 
was thoroughly analyzed (phenomenography). The analysis inspired teaching 
and learning. Almost at the same time, Ulla (Runesson) developed her pedagogy 
of variation (1999). When Ference visited us in 1997, he emphasized that 
phenomenography is (was?) not a research methodology but a research tradition. 
The positioning was changed again during the International Workshop on Updating 
Phenomenography (2000), the Education Bureau commissioned project, ‘Catering 
for Individual Differences, Building on Variation’ (2000), and then in the Learner 
Study. The whole thing gradually developed from ‘analysis of learning’ to ‘means 
to enhance learning’6 and to ‘teaching method’, though undoubtedly they are inter-
related.

Do we really need to label a teaching method Chinese, British, Swedish, Western, 
or Eastern? Rather, when one talks about variation (the same for bianshi), it is 
important to know which version of variation we are talking about.

‘CHINESE CULTURAL ROOT’: WHERE IS THE CHINESE-NESS?

Some years ago, a colleague of mine invited me to give a talk on the Buddhist view 
of education in her class. However, she held a Western philosophy of education. 
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I told her, why not? If Buddhist had not come from the West, we wouldn’t have had 
the novel Journey to the West.7 East, West, Chinese, non-Chinese are sometimes just 
labels that we use in casual conversations. In academic discourses, particular care 
may be needed when these terms are coined.

It is often claimed that bianshi has Chinese cultural origins. It is possible that such 
discussions fall into common misconceptions about Chinese culture. Before making 
assertions like these, we may ask ourselves questions like:

• China comprises 23 provinces, 4 municipalities, 5 autonomous regions, and 2 
Special Administrative Regions. It has 56 ethnic groups. If we talk about China, 
which part of China are we referring to?

• Even if we confine ourselves to the ‘Middle Kingdom’ 中原, what does it mean 
by Chinese culture?

• Is Confucianism mainstream ‘traditional’ Chinese culture? How do we see the 
influences of other schools like Daoism (some also mixed up Daoism 道家 and 
the Dao religion 道教), Buddhism, Mohism and Legalism?

• There had been changes in Confucianism (institutionalization, revitalization, 
…) in history, when we talk about Confucianism, which Confucianism are we 
referring to?

• With different waves of Westernization at the turn of the 20th century, in which 
‘down with the Confucian Mansion’ was the refrain, how much ‘Chinese’ is 
contemporary China?

• Is (traditional) Chinese mathematics taught in Chinese regions (including Taiwan 
and Hong Kong)? Are they practicing traditional Chinese pedagogy?

• How much is mathematics treasured throughout the history of China? (some even 
claimed that Confucianism suppresses discursive reasoning and was a hindrance 
to the development of mathematics in China)

We won’t run into details of these. Wong, Wong, and Wong (2012) could provide 
a good starting point for further discussions.

MY (ASIAN?) PERSPECTIVE: TEACHER-CENTREDNESS,  
LEARNER-CENTREDNESS, LEARNING- CENTREDNESS

In this book, I was asked to write from an Asian perspective. Following the above 
line of discussion, if there is no so-called (unified) Chinese perspective, it is even 
more impossible to have an Asian one (Wong, 2013)! However, we can look at the 
whole thing from another angle.

It was argued that although Asian (Chinese in particular) classrooms have a 
large class size and students seem to be passive learners, classroom teaching is still 
effective (Gu, Huang, & Gu, 2017). A number of reasons were offered (for more 
details, see, e.g. Watkins & Biggs, 1996, 2001; Wong, 2004). In particular, Gao and 
Watkins (2001) pointed out that teachers and students establish a mentor-mentee 
relationship, teachers show personal concern for their students, the learning process 
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in fact goes for a ‘whole class teaching + after class mentoring’ model. Furthermore, 
teaching is teacher-led yet student-centred (see, e.g., Wong, 2009; Wong, Ding, 
& Zhang, 2016). The learner is first led to ‘enter the way’, then gradually led to 
‘transcend the way’ (Wong, 2006). If we regard this scenario as Asian (or Chinese at 
least), variation or bianshi has a prominent role to play.

In other words, the ‘Chinese’ (so-to-speak for the time being) mathematics 
classroom does not go for free discovery (we do not comment whether it is desirable 
or not) right from start. Students learn the basics (‘entering the way’) via the guidance 
of teachers. And through variations (or bianshis) precisely designed by teachers, 
students are enlightened to a higher level of understanding (‘transcending the way’).

There are vastly different methods to actualize ‘transcending the way’ (Wong, 
2006). However, there could be a general impression that variation/bianshi only 
deals with the basics. Such an impression may be imposed by earlier studies that 
dealt with average students. We do think variation/bianshi have a lot of potential 
in enhancing higher order thinking skills. The above argument of broadening 
problem solving strategies and their flexible use provide evidence for this. This can 
be facilitated by the use of non-routine problems, open problems (Peled & Leikin, 
2017), and new problems (Gu, Huang, & Gu, 2017). I think much should be explored 
to this end.

This book contains an abundance of good practices with variation and bianshi. To 
deepen the discourse, I think many more research studies are needed that go beyond 
textbook/classroom analysis, analysis of lesson plans, and classroom observation. 
More studies employing systematic curriculum evaluation methodologies are 
called for. As mentioned above, some research agendas could be concerned with 
how students attain various learning outcomes (cognitive, affective, psychosocial, 
conceptions, and approaches to mathematics problems), how the lived space is 
shaped by teachers’ teaching behaviour, and how these behaviours were affected by 
teachers’ conceptions8 and knowledge (Figure 5).

Figure 5. Teacher-student interaction in the lived space of mathematics learning
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A final remark: as a teacher (and teacher educator), undoubtedly, we target to 
teach with solid grounds. We want to have the lessons well planned and organized 
(Runesson & Kullberg, 2017). Yet all these efforts were paid for the betterment 
of mathematics learning among students. The curriculum (as well as teaching 
methods), in a sense, is just a hardware that naturally has its limitations. The 
utopic imagination that students would automatically learn well once we have a 
good teacher delivering a well-designed curriculum is far from reality. Curriculum 
fidelity is not the only option. Perhaps (if we still have the teacher in the classroom 
– teacher-led yet student-centred), the teacher also needs to proceed from ‘entering 
the way’ to ‘transcending the way’ too, moving from having a script to having none 
(Wong, 2009; Wong, Zhang, & Li, 2013).

To finish, I would like to end this chapter with a little story in Chan (zen) 
Buddhism. Please notice how the master skillfully changed his topic spontaneously, 
according to the reactions of the monk during the dialogue.

At that time, several monks paid a visit (to Big Jewel) and said, “I wish to 
ask a question, will you still respond9?” The Master [Big Jewel] said, “Like 
the moon shadows in a deep pond, you can explore it at will (i.e., he is open 
to take questions).” (One of the monks) asked: “What is the Buddha?” The 
Master said, “Opposite to the clear pond,10 who else is besides the Buddha?” 
Everybody got stunned. After quite a while, the monk asked again, “Master, 
what way11 do you use to liberate others?” The Master said, “I don’t have a way 
to liberate others!” The monk (spoke among themselves), “Chan masters are 
all like this.” The Master asked rhetorically, “Venerable one, then what way do 
you use to liberate others?” (The monk) Replied, “I preach the Diamond Sutra”. 
The Master asked, “How many sessions?” (The monk) Replied, “Twenty or 
so.” The Master asked, “Who spoke that sutra?” The Monk raised his voice and 
replied, “The Master is kidding, isn’t it spoken by the Buddha?” The Master 
said, “If one says that the Buddha uttered something, it is blasphemy against 
the Buddha, this is precisely the meaning (stated in the Diamond Sutra) of 
what the Buddha said, ‘people don’t understand my words’12; but if one says 
that is not spoken by the Buddha, it is blasphemy against the Sutra (accusing 
that the Sutra is a fake one). Venerable one, what is your take?” The monk got 
no responses. After a short while, the Master asked again, “In the Sutra [the 
Diamond Sutra], it was said that ‘if someone sees me in forms, searches me in 
voices, one is on the wrong path and cannot see the Buddha.’ Venerable one, 
please tell me then, who is the Buddha?” The Monk said, “At this point, I am 
lost.” The Master said, “You have never realized, how can you get lost?”

時有法師數人來謁曰。擬伸一問。師還對否。師曰。深潭月影任意撮
摩。問如何是佛。師曰。清潭對面非佛而誰。眾皆茫然。良久其僧又
問。師說何法度人。師曰貧道未曾有一法度人。曰禪師家渾如此。師卻
問曰。大德說何法度人。曰講金剛般若經。師曰。講幾坐來。曰二十餘
坐。師曰。此經是阿誰說。僧抗聲曰。禪師相弄。豈不知是佛說耶。師
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曰。若言如來有所說法。則為謗佛。是人不解我所說義。若言此經不是
佛說。則是謗經。請大德說看。無對。師少頃又問。經云。若以色見
我。以音聲求我。是人行邪道。不能見如來。大德且道。阿那箇是如
來。曰某甲到此卻迷去。師曰。從來未悟說什麼卻迷。

Record of Lineage Transmission in the Years of Jin-De景德傳燈錄 (Volume 6).
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NOTES

1 I am used to calling him Ference. To maintain this personal touch, I address him as ‘Ference’ 
throughout this chapter.

2 Chinese seldom call others by names, except for very close friends or juniors – difference between 
Chinese and Western culture! Due to my close relationship with Rongjin, I address him as ‘Rongjin’ 
throughout this chapter. And since Gu is a senior, I address him as ‘Gu’.

3 The Seventh International Congress on Mathematics Education, Quebec.
4 Romeo and Juliet.
5 The literal meaning of bian (the root of bianshi) is change.
6 The above incident ‘I hate the number 17’ precisely shows the difference between analyses of 

phenomenon and a means to enhance learning.
7 A legendary novel which depicts the journey of a monk from the Tang dynasty who travelled to the 

West (India: West of China) with his disciples to acquire Buddhist scriptures there.
8 There have been discussions about whether beliefs, conceptions, etc. should be regarded as cognitive 

or affective. We choose to treat these terms loosely.
9 Big Jewel refused to respond to any question for some time, claiming that he actually does not know 

Chan.
10 There is a possibility that Master Big Jewel is making a pun, ‘clear pond’ has the same pronunciation 

with ‘free chats’ 清談, i.e. the one (Master Big Jewel himself) you are chatting with, if not the Buddha, 
who else?

11 Dharma, may refer to a doctrine or a scripture.
12 In a sense, the Buddha does not utter a word. Just like what Confucius said, the Nature does not speak 

a word.
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FERENCE MARTON AND JOHAN HÄGGSTRÖM

19. TEACHING THROUGH VARIATION

A European Perspective

INTRODUCTION

This book is about variation and invariance in the teaching of mathematics, that 
is, about what instances, examples, tasks are used and in which order, to make it 
possible for students to make concepts, principles, methods their own. Although 
we can find cases of individual teachers and individual textbook authors paying 
special attention to such aspects of the teaching of mathematics in different places 
in the world and at different points in time, such focused attention on the pattern 
of similarities and differences-especially on the latter-between tasks, instances, 
examples seems have been particularly common in China for a long time. Moreover, 
this character of Chinese practice of teaching mathematics has been made explicit by 
Gu (1991) who called it Bianshi (i.e. teaching with variation) and who tried to relate 
it to theoretical and empirical research on the learning and teaching of mathematics 
(in the following the acronym “BS” is used to widely refer to the Chinese tradition of 
systematically using variation and invariance in the teaching of mathematics). This 
is the major impetus of most chapters of the present book.

We also find another influence, not quite comparable in importance, with the 
former. It is our own research specialization, called the Variation theory of learning. 
This research specialization originates from a phenomenological interest in 
differences in how various phenomena appear to people, i.e., an interest in which 
different meanings the same phenomenon might have for different people. The 
reason for this interest is the assumption that people act in relation to things as 
they appear to them. Hence learning to handle situations in powerful ways takes 
learning to see them in powerful ways. As one particular contrast between Bianshi 
(BS) and the Variation theory of learning (VTL) is our focus in the present chapter, 
and as the former is elaborated in other chapters, we will deal with the latter at 
some length in the present chapter. There are shorter, but by no means less accurate, 
introductions to the theory in other chapters. First, when we have established the 
contrasts between BS and VTL, will we use it very briefly in the very last section as 
a perspective on the previous chapters. Doing so may appear odd, unconventional, 
and even disappointing. We have, however, found a problem that – we believe – has 
to be addressed for the field (the teaching of mathematics through variation) to move 
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forward. Being the authors of one of the last chapters of the book, we were eager to 
make it pertinent beyond itself.

THE VARIATION THEORY OF LEARNING

What something looks like to someone is a function of what features of that 
phenomenon the person discerns and focuses on simultaneously. A feature is 
“[…] any discriminable attribute of a phenomenon that is susceptible of some 
discriminable variation from phenomenon to phenomenon” (c.f., Bruner, Goodnow 
& Austin, 1986, p. 28). Features have names and the most frequent form of adults 
helping children to learn is the learning of what the names refer to, i.e., learning 
the meaning of words, e.g., what does “green” (or “three” or “virtue” etc.) refer to, 
what does it mean? Interestingly, there is no agreed upon understanding of how this 
most frequent form of human learning takes place or how it can be made possible 
to take place. But can we not just say the word “green”, at the same time pointing 
to a green thing or saying the word “circle”, at the same time pointing to a circle, 
i.e., making use of what is called “direct reference” (Quine, 1960)? “Green” is 
certainly a feature of what we are pointing to, and so is “circle”, but so is its size, its 
color, its appearance on a computer screen, its location on that screen, its movement 
across the screen (given that it is moving, of course), the speed of its movement, and 
many, many (actually an unlimited number of) other features. So how can the child 
possibly know what we have in mind? By knowing the meaning of the word “green” 
or “circle”, of course, but this is exactly what she does not know and what we are 
trying to help her to learn.

We must then enable her to see some difference between the focused feature (the 
one that we have in mind) and other features. The widely accepted solution of this 
problem is to let the learner engage with instances of the focused feature, in which 
that feature is invariant (i.e., is the same), while other features vary (i.e., are different). 
In our two examples, the learner would encounter green things that vary in size and 
form or circles that vary in color and size perhaps. The learner is then supposed 
to see the invariant feature, which is the meaning of the word exposed (green or 
circle). This is called “induction” and is the only method we have for acquiring novel 
meanings, according to the American philosopher, Jerry Fodor (1980). Moreover, 
Fodor claims that the method does not work at all. The focused aspect is one that 
the learner has not yet acquired, this is why she has to learn it. Hence, she cannot 
possibly see what instances of the focused feature have in common. Novel meanings 
(concepts) cannot be acquired, Fodor concludes. They are innate.

Nonetheless, induction is the preferred way of teaching novel meanings. The 
teacher tells the student the novel meaning (concept, principle, method) followed by 
a great number of positive examples from which the students are expected to discern 
the focused feature. Bianshi (BS) is also frequently described in such terms. The 
essential meaning of the mathematical entities is supposed to be appropriated by the 
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students through engaging with instances that have the focused feature in common, 
but differ otherwise.

But if we accept the thesis that novel meanings cannot be acquired through 
induction, without accepting the thesis that all meanings are innate, we are forced 
to come up with another explanation of how novel meanings are acquired. The 
Variation theory of learning (VTL) is based on a conjecture that affords such an 
alternative explanation. According to this conjecture, “[…] novel meanings are 
acquired from experiencing differences against a background of sameness, rather 
than from experiencing sameness against a background of difference” (Marton & 
Pang, 2013; see also Pang et al., 2017; Watson, 2017; Mok, 2017; Barlow et al., 
2017). Or to put it in a more straightforward way: Novel meanings are acquired 
through contrast and not through induction. The former is the reversal of the latter: 
The focused feature varies while other features are invariant, instead of the focused 
feature being invariant while other features vary. In our example, in order to see a 
circle as a geometric figure, it has to be contrasted to another geometric figure, or 
to other geometric figures, such as an ellipse, a square, an octagon, etc. of the same 
size and of the same color. If we want to show what blue color is instead, we can use 
a blue circle juxtaposed to another circle of the same size, but of different color. Will 
we draw the learner’s attention to its size (“small”, for instance), we have to contrast 
it to a bigger circle of the same color.

According to this line of reasoning, a feature appears through a difference 
between two or more mutually exclusive features. Those mutually exclusive 
features define a dimension of variation, in which the features are “values”. The 
dimension of variation is also called “aspect”. We cannot experience an aspect 
without experiencing features that define it, nor can we experience a feature 
without experiencing the aspect to which it belongs. Two or more features must 
be experienced simultaneously. Thus, the aspect that is defined by the differences 
between the mutually exclusive features, is experienced simultaneously as well. In 
other words: By juxtaposing two or more mutually exclusive features, a dimension 
of variation is opened up. A dimension of variation being opened up for someone 
amounts to that person being able to see a relevant phenomenon in terms of that 
dimension of variation (thus, being aware of it).

Hence, there are two kinds of meanings: features and aspects. In order to acquire 
a novel meaning of any of those two kinds, the learner must simultaneously acquire 
(become aware of) a corresponding meaning of the other kind. Thus, acquiring a 
novel meaning amounts to discerning – or separating it – from that which the novel 
meaning is a meaning of, for instance discerning – or separating – the meaning 
“small”, “blue”, or “circle” from a small, blue circle. Upon encountering such 
features, the learner will be able to discern – or separate – them from instances of 
those features as long as she is aware of them and of the dimensions of variation to 
which they belong.
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Contrast

So, novel meanings are acquired through discernment – separation – of features 
and aspects simultaneously. But new meanings (in the sense of new features) can 
also be acquired if the corresponding dimension of variation is already opened up in 
the learner’s awareness. For instance, if she encounters a new geometric form after 
having encountered other geometric forms earlier and the dimension of variation 
“geometric form” is opened up already. Similarly, it is easier for a child to learn a new 
color if she is already aware of the dimension of variation “color”. If it is necessary 
for the learner to be aware of a specific feature, or of a specific aspect (dimension of 
variation), in order to achieve a particular educational objective and she is not already 
aware of it, we call that specific feature or aspect critical feature or critical aspect. 
They are learned and used through contrast, i.e., by simultaneously experiencing 
two or more features in the same dimension of variation. By comparing geometric 
figures of the same size and same color (unfocused features are invariant), the 
(varying focused) features that define the differences between them, are highlighted. 
This is the way in which critical features and critical aspects are appropriated. We 
might mention in passing that this pattern of variation and invariance, which is of 
key importance in VTL, is not highlighted in BS.

Generalization

But there are features that the learner may assume make a difference and she 
therefore takes them to be defining or necessary features. Students may be used 
to seeing triangles with their base-line parallel to the short-side of their textbook 
with the vertex pointing upwards. The students might then have to open up for the 
dimension of variation “rotational position”, which is a critical aspect (not a necessary 
or defining aspect, but an aspect that is necessary to separate from the necessary 
aspects, such as “three sides”) to realize that a triangle can be in any position, and it 
still remains a triangle. In this case the focused feature is invariant and the unfocused 
features vary. This is basically the same pattern of variation and invariance as in 
induction, mentioned above, but in this case the learner is not supposed to discover a 
novel meaning (“triangle” in this case) but, instead, generalize a restricted meaning 
(triangle only in one specific rotational position) to a generalized meaning (triangle 
in any rotational position). This kind of change in meaning is called generalization 
(“contrasting with non-standard figures” in Bianshi belongs to this category).

Fusion

The point of departure of the present line of reasoning is that learning to a substantial 
extent is learning to see, and learning to see entails learning to discern and separate 
various features and dimensions of variation. Such learning can be made possible 
by letting certain features vary while others remain invariant. The combination 
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of features in the environment itself makes it possible to discover certain features 
(meanings) and does not make it possible to discover other features. By allowing all 
kinds of combinations of features in practice for learning, learners get prepared to 
handle all kinds of combinations of features. This is the third pattern of variation and 
invariance that we might make use of in order to facilitate learning. It is called fusion 
and many features may vary simultaneously in this case.

Induction and Generalization

As we have stated above, according to the received wisdom, new meanings are 
arrived at by keeping the focused feature invariant, while other features vary. We 
have also argued that this arrangement cannot work and suggested contrast as an 
alternative, powerful way of making novel meanings our own. Questioning induction 
and suggesting contrast are key principles of VTL. When studying various accounts 
of BS, we might get the impression that it rests on the assumption of induction as the 
chief mechanism of the learning of novel meanings:

To illustrate essential features of a concept by demonstrating various visual 
materials and instances, or to highlight essential characteristics of a concept by 
varying non-essential features. The goal of using variation is to help students 
understand the essential features of a concept by differentiating them from non-
essential features and further develop a scientific concept. (Gu, 1999, p. 186)

These lines are quoted in other places in this book (Peng et al., 2017; Zhang et al., 
2017). We can also find other, similar formulations, such as “[…] essential features 
of mathematical concepts are kept unchanged, but the non-essential features of the 
mathematical concepts are changed” (Peng et al., 2017).

The above quote from Gu (1999) and the other, similar, formulations make the 
impression of being in conflict with the basic principle of VTL, stating that novel 
meanings cannot be grasped by keeping the aimed at meaning (feature) invariant. 
We can write it as

 x y
 i v

where x is a focused feature, y is an unfocused feature, “i” stands for “invariant” 
and “v” for “varies.” The pattern of symbols represents induction. According to the 
VTL, we cannot acquire novel meanings through induction, however, according to 
the BS, it seems we can. This potential contradiction is actually the focal point of our 
chapter. We consider the question so important for the development of the research 
field dealt with in this book, that we are using the space given for our comments to 
illuminate this – in our judgement – very important problem. BS does not, however, 
necessarily suggest that we can acquire novel meanings through induction. If we 
return to the paragraph on Generalization, we can see that it can be represented in 
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exactly the same way as Induction. The VTL indeed suggests that in order to grasp a 
novel meaning, the focused feature needs to vary against the background of invariant 
unfocused features (contrast). But it also suggests that in order to separate focused 
and unfocused features, the focused feature needs to be kept invariant against the 
background of varying unfocused features (generalization), given that a necessary 
contrast has been made and the learner is already aware of the focused feature, 
even if it has not yet been sufficiently separated from other features. Gu’s words 
may apply to any of the two (induction or generalization). This ambiguity calls for 
studying the practice of BS empirically. But there is still another reason for doing so. 
While Gu and other authors are explicit about the pattern “focused feature invariant, 
others vary” (implying induction or generalization), they do not mention the 
pattern “focused feature varies, others invariant” (implying contrast, the key to the 
acquisition of novel meanings according to the VTL). A highly relevant observation 
was made by Pang et al. (2017). After having made a comparison between teaching 
the same topic (adding three-digit numbers) in accordance with principles of BS 
in one class in Shanghai and in accordance with the VTL in another class in Hong 
Kong, the theoretical underpinnings of the two practices could not be differentiated. 
We are now going to look at a study in which the same topic (systems of linear 
equations in two unknowns) was taught in some classes in China and Sweden. In at 
least one of the classes in Shanghai, the teaching clearly followed the principles of 
BS. Interestingly, one of the lessons in that class was also analyzed by Mok (2017) 
in Chapter 10 of the present book. In particular, we want to find out in what sense 
the principle advocated by Gu in the quote above, was realized in that class. Could it 
really be the case that students acquired novel meanings through induction and that 
the basic assumption of the VTL (telling us that novel meanings cannot be acquired 
through induction) is simply wrong? Or did the particular pattern of variation 
(focused feature invariant, unfocused features vary) refer to generalization (i.e., 
the separation of already acquired novel meaning of focused feature and unfocused 
feature)? How was the novel meaning acquired in that case? And does contrast, the 
only path to novel meaning according to the VTL, occur at all in the practice of BS?

TEACHING OF SIMULTANEOUS EQUATIONS

In this section the introduction of the same content, systems of linear equations in two 
unknowns, in two classrooms is analyzed. The two classrooms were video-recorded 
in the Learner’s Perspective Study (Clarke, 2000) and the data has previously been 
used in a larger study where Häggström (2008) analyzed and compared the teaching 
of 16 lessons in 6 classrooms. These lessons covered three topics: (1) the concept 
of systems of linear equations in two unknowns, (2) the solution to a system of 
linear equations in two unknowns, and (3) the method of substitution for solving a 
system of linear equations in two unknowns. Häggström’s study focused on how the 
mathematical content was handled and what was made possible for students to learn. 
The analysis was founded in the VTL and made use of the concept “dimension of 
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variation”. In the analysis, a dimension of variation was considered opened if there 
were at least two different features of an aspect present simultaneously, or very close 
in time, which provides students with an opportunity to experience the difference. 
The study showed significant differences regarding what dimensions of variation 
were opened in the 6 classrooms (see Häggström, 2008). The largest number of 
dimensions of variation was opened in one of the classrooms from Shanghai (SH1) 
and the fewest were opened in the Swedish classroom (SW2). In the paragraphs that 
follow, we will take a new look at the classroom from Shanghai and compare it to 
the teaching in the Swedish classroom.

Table 1. Spaces of learning for systems of linear equations in two unknowns

Dimension of variation Features SW2 SH1

1.  Number of equations 1a.  Two equations, not one x x

1b.  More than one equation x

2.  Number of unknowns 2a.  Two unknowns not one x

2b.  Two unknowns not three x

3.  Type of equations 3a.  xy is not first degree x

3b.  x2 , (x + y)2, is not first degree x

3c.  1/y is not first degree x

4.  An unknown represents the  
same number in both equations

4a.  “Unknowns are the same” is not 
taken for granted

x

5.  Constants and coefficients can 
be different types of numbers

5a.  Rational numbers not just natural x x

5b.  Negative numbers not just natural x x

5c.  Parameters not just specified 
numbers

x

6.  Different letters may be used 6a.  The letters x, y are not taken for 
granted

x

7.  A system of equations can be in 
different formats

7a.  Format of individual equations 
varies

x x

7b.  One expression x

7c.  Both unknowns not present in both 
equations

x x

In Häggström’s study, the patterns of variation in the 6 classrooms were studied 
without consideration of the character of the dimension of variation opened. That 
means, no discrimination was made between contrast or generalization. The 
result of Häggström’s analysis for the first of the three topics in the two selected 
classrooms is shown in Table 1. The table shows that during the analyzed lessons, 
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seven different dimensions of variation regarding the concept of systems of linear 
equations in two unknowns were opened (“x” means that the pattern of variation 
was found in the analyzed lesson). Further, a dimension could be opened in different 
ways, i.e., different features could open a dimension. For example, in the Swedish 
classroom they solve the same problem, first by means of one unknown, directly 
followed by the use of two unknowns. When two alternatives are provided in this 
way, the dimension of variation regarding the number of unknowns is opened – 
the potential experience of the difference between one and two unknowns makes 
it possible to become aware of this aspect of a system of equations. In SH1 the 
same dimension of variation – the number of unknowns – was also opened, but in 
a slightly different way. Here, examples of systems of equations with two and three 
unknowns provided students with the opportunity to become aware of this aspect.

Table 1 shows that all seven dimensions of variation were opened in the Shanghai 
classroom (SH1), and that it was done in several different ways. In contrast, just four 
of the dimensions of variations were opened in the Swedish classroom (SW2). From 
Häggström’s study, it can be concluded that the use of variation was much more 
frequent in the Chinese classroom than in the Swedish and that the teaching in SH1 
can be considered as following the BS tradition.

In the following re-analysis of the teaching in the two classrooms, the focus will 
be on the topic “systems of linear equations in two unknowns” only. Further, the 
analysis will go beyond just noting what dimensions of variation were opened and 
focus on how the students were provided with opportunities to become aware of 
novel aspects of the content.

Setting the Scene

The Swedish class, labelled SW2, is a high-ability mathematics class with 
24 students from four regular classes. This formation is used exclusively for 
mathematics instruction. The students are in 9th grade and cover more topics than 
could be considered compulsory – system of linear equations in two unknowns is 
not mentioned in the Swedish syllabus. In the 12th recorded lesson (of a total of 14), 
the concept of systems of linear equations in two unknowns is introduced. During 
the 8 previous lessons, the class has worked with equations in one unknown, and 
more specifically solved problems by forming and solving linear equations in one 
unknown. The concept of system of equations is introduced as an alternative way to 
represent a problem – the same problem was solved in lesson 11 by means of one 
equation in one unknown. From the data available, it might be assumed that (most 
of) the students had not been exposed to equations with more than one unknown and 
had not handled more than one equation at a time by the time of the introduction of 
systems of linear equations in two unknowns.

The class in Shanghai (SH1) was different in many respects. It is a grade 8 class 
consisting of 50 students, roughly twice the number in SW2. Even though it was a 
grade 8 class, the level of mathematical proficiency of the students was no doubt 
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much higher and the students previous experience was more advanced compared 
to the students in SW2. In SH1 the concept of systems of linear equations was 
introduced in the 5th recorded lesson. In the preceding 4 recorded lessons the class 
had worked with (single) linear equations in two unknowns, the coordinate plane, 
and graphs of linear equations in two unknowns. When the concept of systems of 
linear equations in two unknowns was introduced, the students in SH1 had already 
encountered equations with both one and two unknowns.

Contrast or Generalisation

Being interested in characterizing the patterns of variation in SH1 related to novel 
aspects as either contrast or generalisation, we need to establish what aspects of the 
mathematical content can be considered as novel to the students. Before the actual 
introduction of the new concept – systems of linear equations in two unknowns – in 
the Shanghai lesson (SH1-5), they revise previously covered topics. The revision 
was made with five questions posed to the students (see Figure 1).

Figure 1. Overhead transparency – revision of previously covered topics in SH1-5

The revision revealed a number of things regarding the mathematical proficiency 
of the students in this class. At the time of the introduction, at the most three of the 
seven dimensions of variation in Table 1 could be regarded as novel to the students in 
this class. From the content of the revision questions, it is clear that aspects such as, 
“there can be more than one unknown” and “there are equations of different degrees” 
were not new to these students. However, what might be novel was to consider two 
equations simultaneously and that “an unknown represents the same number in both 
equations” – the fourth dimension of variation in Table 1. The third new aspect was 
the format of a system of equations, the seventh dimension of variation in Table 1.
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After the revision (it lasted only a couple of minutes), the new concept was 
introduced. The teacher showed a new slide with three questions (Figure 2) and told 
the students to read a section in the textbook and discuss the questions in pairs.

Figure 2. Overhead transparency – introducing questions in SH1-5

After a couple of minutes, students answered the first two questions and two 
points were noted on the board:

1. the two equations should have two unknowns
2. the indexes of the unknowns should be one

The two points were repeated a number of times before they moved on to the third 
question.

Transcript, question 1 and 2, SH1-5

S: A system of equations is formed by a number of equations [question 1]
 […]
S:  There are two unknowns in the equations and the indexes of the unknowns 

are one. This is called system of linear equations in two unknowns 
[question 1]

T:  Oh, sit down please. He has just mentioned the definition of system of 
linear equations in two unknowns

 […]
T:  … let me summarise […] the first point […] these two equations should 

have two unknowns. The second point, the second, a classmate has just 
mentioned, the indexes of the unknowns … should be one
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Even though the aspects, “number of unknowns” and “type of equations” seemed to 
be emphasized, it may be considered that students could experience the difference in 
the aspect “number of equations”. There was a contrast created between the concept 
of one linear equation in two unknowns, from the introductory revision, and systems 
of equations with more than one equation, in question one and two. This contrast 
opened the corresponding dimension of variation, thus enabling students to become 
aware of this novel aspect. Thus, even if the two aspects “number of unknowns” 
and “type of equations” were regarded as the “essential features of the mathematical 
concept” and were intended, following BS practice, to be kept invariant, the 
consequence of the pattern of variation that emerged was that a contrast between 
one and more equations were created. In our opinion this contrast opened up an 
important dimension of variation giving students the opportunity to discern a novel 
aspect regarding the new concept.

The eight items in question 3 generate a rich pattern of variation. The selection 
of items is an indication of the teacher’s knowledge and experience of common 
student errors. It follows the BS practice of using standard examples, non-standard 
examples, and non-examples to generate variation in many different aspects. They 
were discussed in whole class, one at a time, and arguments for or against them 
meeting the necessary requirements were given. See an example below.

Transcript, question 3–2, SH1-5

 Question 3-2 

S: They are not linear equation in two unknowns
T: Oh, he said not. Why not?
S: Because in this system of equation, the index of the term is two

The two “essential” points noted on the board – “number of unknowns” and 
“type of equations” – were used in the argumentation. In one sense they were kept 
invariant, as the yardsticks to use when determining whether the items were systems 
of linear equations in two unknowns, or not. However, the eight items provided 
contrasts between two and three unknowns, as well as between linear and non-linear 
equations, and in that way, these two aspects were not kept invariant. During this 
episode, a number of dimensions of variations were opened (see Häggström, 2008), 
and we will particularly point to the novel aspect, “a system of equations can be in 
different formats” (see Table 1). The contrasts created by item 3 and 7, in particular, 
opened this dimension. The dimension of variation – an unknown represents the 
same number in both equations (the third novel aspect) – was not opened during the 
introduction (but was in following lessons).

As a comparison, we will outline the introduction of systems of equation in the 
Swedish classroom. In this classroom it was much more obvious that the “essential 



F. MARTON & J. HÄGGSTRÖM

400

aspects” of the concept were varied, even though the teacher in question is by no 
means influenced by the VTL. As mentioned before, it can be assumed that to 
students in this class “equations with more than one unknown” and “more than one 
equation at a time” were novel aspects at the time of the introduction of systems of 
linear equations in two unknowns. The introduction was made in two steps. First 
the dimension of variation – “number of unknowns” was opened, followed by an 
episode where the dimension “number of equations” was opened.

In previous lessons, some students in the class had worked on a problem involving 
a number of dogs and cats. The problem can be solved by forming one equation in 
one unknown, but some students tried to use two unknowns. In the beginning of the 
lesson in question, the teacher connected to this idea and the number of cats and dogs 
were expressed both with one and two unknowns. During this episode the problem 
was kept invariant. The number of unknowns used is what varied. A contrast was 
made between the use of one and two unknowns, thus opening this dimension of 
variation and providing students with an opportunity to experience the number of 
unknowns as an (essential) aspect of equations.

The teacher then aimed to illustrate the need of two conditions (equations) in order 
to determine the values of two unknowns. He let one student “think of a number” 
and then he himself “thought of another number” [The student Joel overheard Tony’s 
number, which probably was a miscalculation by the teacher. This is probably the 
reason why the points the teachers tried to make became less clear].

Transcript, think of a number-1, SW2-12

T:  Tony, think of a number … tell me, but no one else [writes on the board]
 […]
T:  I think of another number … I know that … [writes “x + y = 60” on the 

board]
T:  Those two numbers together are 60 … and then, the big question is – 

which are the numbers? […] Which are the numbers? … Any suggestions? 
… Joel.

S: 56 and 4
T: Alright. Why is that?
S: It’s 60.
 [Teacher writes “56 + 4 = 60” on the board.]
T:  Are there any other possibilities? … Yes, of course there are … Now, I 

know this is correct because you have seen through me here, but … is it 
enough to know the sum of two numbers is 60 in order to find the answer? 
Michael?

S: No
T:  No it isn’t
S: (…) it could be 40 and 20

[Teacher wrote this and a third possible pair of numbers on the board (Figure 3).]
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The class came to a conclusion that there was not enough information to determine 
the two numbers. The teacher then added a second condition regarding the two 
numbers and completed the system of equations on the board (Figure 4).

Transcript, think of a number-2, SW2-12

T: Thus, it’s not enough to know one condition
 […]
T: Your [Tony’s] number is 14 times my number
 [Teacher writes on the board]
T:  Now, we already know the answers, it’s a little … no good, but anyhow 

… now I have two conditions and two unknowns. Now we can easily 
calculate … the whole, so let’s do it

Figure 4. The board showing the systems of equations, SW2-12

In this second episode the two “unknown” numbers were kept invariant, while the 
number of equations were changed from one to two in order to determine the numbers. 
The teacher, most likely, had intended to clearly show the distinction between two 
cases: (1) with two unknown numbers and one condition (equation) there are many 
possible solutions, and (2) with two unknown numbers you need two conditions 
(equations) to obtain one solution. This intention is however not fulfilled due to the 
fact that the numbers, unintentionally, became known to the students beforehand.

This introduction indicates two patterns of variation, where the novel aspects – 
“number of unknowns” and “number of equations” – were made possible for 
students to experience by means of contrast.

Figure 3. The board, SW2-12
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In the next episode the teacher demonstrated how the value of the number y could 
be obtained by the method of substitution. The students then worked with (solved) 
systems of equations from the textbook (see Figure 5) and two of them were put 
on the board and discussed in whole class. For one of the systems of equations, the 
solution was verified by substitution into the two original equations.

Figure 5. The tasks in the textbook, SW2–12

The tasks in the students’ textbook are very similar, e.g., only x and y are used. 
Only one task (924a) is slightly different, perhaps even considered non-standard. 
The first equation in this task is the only one where not both unknowns are present 
(only y). The items in the Swedish textbook are, when compared to the items from 
SH1 (Figure 2), strikingly similar to each other. The use of variation seemed to be a 
lot less pronounced when it came to the tasks students worked with.

COMPARISONS OF THE TWO LESSONS

The use of contrast to provide students with opportunities to discern novel aspects 
of the mathematical content can be found in both classrooms, or to put it slightly 
differently: To the extent novel aspects of the object of learning were introduced, 
they were introduced by means of contrast, just as VTL predicts. This was the case 
in spite of the fact that BS does not point out this pattern of variation and invariance 
explicitly, and neither the Chinese nor the Swedish teacher had ever come across the 
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VTL. The reason is that nobody can teach mathematics without using some pattern 
of variation and invariance, although it can be done more or less systematically and 
with more or less awareness. BS is an explicit systematization of a certain teaching 
practice. VTL also captures a certain practice, although less explicitly. A difference 
between the two lessons is, however, that the pattern of variation in SW2 was much 
more limited as well as less complex. There were two distinct aspects (“number of 
unknowns” and “number of equations”), which were varied one at time and thus 
opening up dimensions of variation. In SH1, aspects already known by the students 
appeared to be emphasized, but even still, the patterns of variation created contrasts 
that opened up dimensions of variation, which were novel to the students. Overall, 
there were much more elaborated patterns of variation in SH1 than in SW2 and 
the awareness of the significance of varying mathematical content seemed to be 
greater in SH1. This was not the least evident when comparing the selection of items 
students work with in the two classrooms. Another striking difference was the little 
time spent on the new concept in SW2; after no more than 15 minutes of introduction, 
students were starting to solve a number of systems of equations. In SH1 the whole 
introductory lesson was spent on getting acquainted to the new concept and the 
method of substitution was not introduced until the following lesson.

SOME COMMENTS ON PREVIOUS CHAPTERS AND CONCLUSIONS

To the extent the teaching in the class in Shanghai can be considered representing 
the Chinese tradition of the systematic use of variation and invariance in the teaching 
of mathematics, Häggström’s (2008) study implied at least some tentative answers 
to the questions about the practice of BS. First of all, we have to conclude that the 
description of the lessons was done in terms of the dimensions of variation opened up, 
or rather: in terms of dimensions of variation made possible to open up. This means 
that lessons were characterized in terms of patterns of variation and invariance, i.e., 
in terms of what was made possible to learn. All three patterns of variation and 
invariance defined above (contrast, generalization, and fusion) could be found in 
the lessons analyzed. The pattern with the focused feature varying and unfocused 
features being invariant (contrast) opened up (or rather, made it possible to open up) 
the dimensions of variation of necessary (essential) features. In accordance with the 
VTL, novel meanings were never acquired through induction, and this was in fact 
never attempted (the teacher never tried to help students acquire a new meaning by 
offering examples that had that meaning in common but differed otherwise). When 
the pattern of variation characteristic for both induction and generalization was used, 
it seemed to serve the latter. Contrast was indeed frequently used.

These observations support Pang et al.’s (2017) thesis that even if the description 
of the intended practice implied by BS and of the intended practice implied by the 
VTL differ, the enacted practices might look very much the same if described by the 
same framework (see also Chapter 3 where Pang et al., 2017, are demonstrating that 
the same practice looks different if described in different frameworks). Although the 



F. MARTON & J. HÄGGSTRÖM

404

distinctions super-imposed by the two frameworks differ, they are commensurable: 
they can be mapped into each other.

But what about the idea that mathematical concepts are invariant and that we 
learn them by separating them from that which is not invariant? In Chapter 4, 
Leung (2017) is emphasizing the invariant nature of mathematical concepts and 
presents four principles of “the acquisition of invariance” that are supposed to 
be complementary to the four patterns of variation and invariance in the VTL. 
In Chapter 5, Watson (2017) argues that in mathematics the object of learning 
is often an abstract relation that can only be experienced through examples. She 
calls such an object of learning a dependency relation, in which one variable 
causes a change in another (when one variation necessitates another variation). 
Mathematical concepts and dependency relations are invariant, indeed, but we can 
never grasp their invariant form. They can only be grasped through their infinitely 
varying appearances (as Huang et al., 2017, claim in Chapter 9). In that sense, 
we can only perceive the invariance through variation, just as Gu Lingyan argues 
(see Chapter 2). VTL and BS frameworks agree on the principle that novel and 
essential aspects of the object of learning in mathematics can only be appropriated 
by the learners by means of separating those essential aspects from non-essential 
aspects. To the extent the origin of novel mathematical meanings is dealt with in 
the other chapters, this principle is expressed and followed in one way or another. 
The difference between the two frameworks boils down to this: According to BS, 
in order to separate essential and non-essential aspects, the former has to be kept 
invariant, while letting the latter vary. To the extent the question is raised at all, it is 
in this way that the principle is formulated in all the mainly BS inspired chapters. 
According to VTL, it is just the other way around: In order to separate essential 
and non-essential aspects, we must let the former vary, while keeping the latter 
invariant. To the extent the question is raised at all, it is in this way that the principle 
is formulated in all the chapters inspired mainly by VTL. But in every chapter, 
whether it builds on BS or on VTL, to the extent there are examples of how learners 
appropriate essential (and novel) aspects of the object of learning in mathematics, 
the essential (and novel) aspect varies (through contrast) while the non-essential 
aspects remain invariant in practice. Our conclusion, as far as the focal point of the 
chapter is concerned, is thus that the potential contradiction between BS and VTL 
seems illusory and mainly rhetorical.

As this chapter is written from the perspective of VTL, the above observations 
were easiest to make in chapters that had the same point of departure or one of 
their points of departure. What we have in mind are Chapters 3 (dual perspectives), 
4, 5 (dual perspectives), 8 (dual perspective), 10, 15, 16, and 17. Chapter 1 is an 
introduction to the whole book and Chapter 2 describes the BS framework (just 
as this chapter is mostly about the VTL framework). Chapter 14 by Hino (2017) 
represents the Japanese framework for variation in the teaching of mathematics. 
We find an interesting idea well worth to be developed further: Helping students to 
explore and nurture their own use of variation. The remaining chapters reflect the BS 
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tradition. Most of the students and teachers who have participated in the empirical 
studies are Chinese, many of them from Shanghai and Hong Kong.

This book represents an important step in establishing a new research 
specialization: Learning and teaching mathematics through variation (and 
invariance). This field is, to a considerable extent, built on a long and successful 
Chinese pedagogical tradition. But, as was mentioned in several contributions, there 
is quite a bit of research going on in different places in the world, in which the effect 
of various patterns of variation and invariance on learning is studied. We should try 
to develop connections and make this new research specialization truly international 
and visible as a genuine field of scientific enquiry.
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JOHN MASON

20. ISSUES IN VARIATION THEORY AND HOW IT 
COULD INFORM PEDAGOGICAL CHOICES

INTRODUCTION

This chapter is both a response to and a development from the preceding lucid and 
inspiring chapters in this book. It is a response because there are some clear issues 
arising from the examples of variation that have been provided, and I wish to elaborate 
on these. It is a development because my own thinking about the role of variation has 
been augmented and amplified by reading those chapters, through being stimulated 
to relate the various uses of variation to the nature and role of attention. I want to 
suggest that with a firm commitment to variation, it is possible to overlook other 
insights available in the preceding chapters, which suggest to me that variation is a 
significant stepping stone towards a more complex appreciation of what is available 
to be learned, and under what conditions that learning might actually be induced to 
take place. For example, it is important pedagogically not only to be aware of what 
needs to be varied, but when, and to consider how much variation, over what range, 
and over what period of time. These considerations are likely to lead to choices 
which are highly dependent on how novel the topic or procedure is to learners, and 
whether they are meeting it for the first time, after a brief or lengthy absence, or as 
revision or exploration.

In developing the notion of variation I find myself called upon to make use of 
a more complex view of the human psyche than the traditional enction, affect and 
cognition, by including attention, will and witness as well. Being committed to the 
lived experience of thinking mathematically, of learning and doing mathematics, 
I have chosen to illustrate my questions and conjectures using a single mathematical 
topic, the notion of angle, augmented with a few other examples where necessary. 
I begin by elaborating briefly on my theoretical framework.

ROOTS AND ESSENCE OF VARIATION THEORY

Several authors in this book (see for example Mok, Chapter 10 this book) indicate 
that the explicit articulation of variation as a principle on which to base lessons 
in mathematics in China derives from the work of Gu (1994) in Qingpu county 
Shanghai in the 1980s. However Sun (2011, p. 68) suggests that variation, being an 
integral part of Confucianism and Daoism, as manifested for example in the I Ching, 
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the Book of Changes (Wilhelm, 1967), has underpinned Chinese pedagogic practices 
for many centuries, and is a basic principle of Confucian Heritage educational 
practices. For example, there is a Chinese maxim quoted by Gu, Huang and Gu 
(Chapter 2, in this book): “Only by comparing can one distinguish”.

As several authors point out in their chapters, variation as an educational principle 
derives from the fact that the functioning of human beings is based on constant 
change. Thus sensation of any kind, whether visual, aural, touch, taste or smell depend 
on detecting change. For example, saccadic movement of the eyes is necessary in 
order to refresh the stimulation of receptors in the eye. The same applies to more 
abstract perception, and hence to conception as well. This has been expressed in 
many different ways at different times, for example, in the I Ching as “abstracting 
invariant concepts from a varied situation” (quoted in Sun, 2011, p. 68); in the 
adage attributed to Heraclitus that “you cannot walk into the same stream twice”; 
in the stressing of mutabilitie both in nature and in politics by Edmund Spencer 
(Zitner, 1968); in identifying disturbance as the basis for intellectual development by 
Heidegger (1927/1949); and in modern manifestations such as cognitive dissonance 
as the trigger for learning (Festinger, 1957), cognitive conflict (Tall, 1977a, 1977b), 
and variation theory as the necessary conditions for learning (Marton & Booth, 1997; 
Marton & Pang, 2006; Marton, 2015). But dissonance and conflict, originating as 
disturbance, can both originate in, and have consequences for, affect, enaction and 
cognition, not to say attention, will and witness.

The notion of experiences in the material world as being dominated by change 
finds resonance in mathematics. For example, in order to formulate mathematical 
models of material world phenomena it is often only possible to begin by expressing 
how things change. The calculus was developed in order to convert expressions 
of how things change into expressions that would predict their actual values. In 
addition, one of the major and pervasive themes of modern mathematics is the 
study of invariance in the midst of change, from cardinality of sets when order is 
changed, through properties of classes of geometric figures, to fundamental groups 
of manifolds, and beyond.

As Pang, Bao and Ki (Chapter 3) and Watson (Chapter 4) both observe, even 
change itself is only discernible in relation to something else, whether invariant or 
changing differently or less quickly. Two or more things may be changing together 
because they are linked, but seen against a relatively invariant background. Their 
co-variational relationship may be the object of learning, rather than simply the 
individual change in each.

Marton (2015) has always been very clear that his focus and interest lies in what 
is available to be learned. All of the authors of the chapters are clearly concerned in 
addition with whether what is available is actually accessed, whether opportunities 
afforded are actually experienced, and whether this experience is sufficiently marked 
so as to bring about learning of what is intended. To be of practical use, teachers need 
suitable pedagogical actions for exploiting variation, and some of these are either 
implied or described in the chapters in this book.
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Anne Watson and I (Watson & Mason, 2002, 2005) found it useful to augment the 
notion of dimensions of variation by introducing dimensions of possible variation, in 
order to draw attention to the fact that although the teacher may be aware of aspects 
or dimensions that can vary, learners may not. The word ‘possible’ is intended to 
act as reminder of this. In order to keep in mind the fact that things that can vary 
may not be able to vary completely independently, that there may be constraints on 
how things can vary, we also introduced the phrase range of permissible change. 
Thus for example, the coefficients of a quadratic expression with integer coefficients 
which factors over the integers cannot all vary independently: there are structural 
relationships which govern their co-variation.

A SIX-FOLD HUMAN PSYCHE

I conjecture that when preparing to teach and when actually interacting with learners 
it would be extremely helpful to be thinking always in terms of all six aspects of the 
human psyche: attention, will and witness, as well as enaction, affect and cognition.

Traditionally, Western psychology has conceived of the human psyche as three-
fold: enaction or behavior, usually associated with the body; affect or emotion, 
often associated in ancient psychology with the heart; and cognition or intellect, 
usually associated with the head. These appear to have been derived from ancient 
sources such as the Upanishads, and it is only comparatively recently in the West 
that attempts have been made to integrate them, despite the fact that our experience 
is a complex interweaving of these three strands and more. In the Baghavad Gita a 
similar trio of strands are the purusha (Ravindra, 2009) delineated by the Gunas: 
rajas (initiative, action), tamas (receptivity) and sattva (mediation, independence). 
The Upanishads (Rhadakrishnan, 1953, p. 623) offer a more complex image of the 
human psyche as a chariot drawn by horses, which was modernized by Gurdjieff 
(1950, pp. 1193–1199, see also Mason & Metz, in press). Additional complexity 
was identified by Ouspensky (1950) who proposed the metaphor of the head, heart 
and body as three centres, each of which has its own tripartite inner structure, again 
related to head, heart and body. To connect this with dual systems theory as trumpeted 
by Kahneman (2012) requires, in addition to System 1 (reaction) and System 2 
(considered response) a System 1.5 (emotional disposition which is the source or 
wellspring of most energy) and a System 3 which is the source of creative energy, 
accessed by letting go, by indwelling without distraction, parallel to a meditative or 
contemplative state, much of which may be subconscious (Hadamard, 1945).

In addition to the standard three components, human will is a critical feature of 
human psyche. It is will that makes teaching an art as much as a science, because 
learners and teachers are not machines, however much they operate in machine-like 
modes out of habit (Ouspensky, 1950; Gurdjieff, 1950). People can and do exercise 
will to resist what is imposed on them, even though on the surface they may appear 
to be compliant. They can also mean to act in certain ways and yet fail to do so, as 
reported in Pang, Bao and Ki (Chapter 3 in this book).
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And yet, learning can also take place even when people are not aware of it, as 
when we pick up stock phrases (like ‘bottom line’) without being consciously aware. 
This raises issues about the relation between variation and conscious awareness 
which will be developed in the next section. Several authors in this book have 
acknowledged the need for initiative to lie with learners some of the time, partly as 
a general desire, and as a will to learn, but more specifically to be willing to play 
any of the roles of initiating, responding and mediating (corresponding to the three 
gunas) in the various modes of interaction between teacher, learner and mathematics 
(Mason, 1979, 2008, see also Mason & Johnston-Wilder, 2004a, 2004b).

The inner Witness is generally overlooked but nevertheless a vital aspect of the 
psyche. It is signaled in the fourth phase of problem solving, looking back identified 
by Pólya (1962), and it is aligned with the second bird in a stanza from the Rg Veda 
(See Mason, 2002). It is also referred to as the executive (Schoenfeld, 1992), the 
observer (Ouspensky, 1950), and the monitor (Mason, Burton, & Stacey, 2010). This 
is the little voice that asks “why are we doing this?” when the going gets tough, or 
“isn’t there a better way?”. It observes but does not participate. The witness is one 
way in which System 2 (cognitively considered response) of Dual Systems theory 
is brought into play before System 1 (habitual reaction) can automatically initiate 
an action. Minsky (1975, 1986) uses the notion of frames as in ‘frames of mind’ to 
describe how actions are enacted as soon as necessary parameters for a frame receive 
values, often by default rather than through cognitive choice.

Actions in the moment relate centrally to assumptions we make about people and 
how the behavior they display is enacted. If learners and teachers are seen as acting 
intentionally through cognitive control and intentional initiative, their behavior may 
seem at odds with their articulations and their claims; if they are seen as sometimes 
acting spontaneously out of habit, or driven by certain emotional dispositions, then 
their behavior may be somewhat more construable. Norretranders (1998) captures 
this beautifully in his title The User Illusion which provides neuro-scientific 
evidence for what has been known in Eastern psychology for centuries concerning 
how actions are enacted and where initiative usually lies.

Attention, which William James (1890) considered, but which fell out of favor 
until relatively recently (see for example Gallagher, 2009), is turning out to be an 
extremely important strand of the psyche, a vital component of learning, and hence 
of teaching. In a sense, teaching is about directing learner attention appropriately. 
Attention has a rich substructure operating at meta, meso and micro levels, as is 
developed in the next subsection.

Structure or Forms of Attention

Of course we all see through our own lenses, through frameworks of distinctions that 
we have found fruitful. In my case, while reading and thinking about the chapters 
in this book I have found myself more and more convinced that one fruitful way 
of discerning details of pedagogic moves being used in the lessons being reported, 
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and of appreciating what students are making of the lesson, is through a study of 
attention: what the teacher is attending to, what the teacher is inviting and directing 
students to attend to, and what the students are actually attending to. Furthermore, it 
is not simply what people are attending to that matters, the key ideas, but how they 
are attending to them.

There is a common cliché that “you are where your attention is”, because 
attention is what, or perhaps how we have experience of which we are aware. We can 
only be present in what we are attending to, though that attention can be so diffuse 
that we are not really present to it at all. We dwell in what and how we are attending. 
We may be present to what we are attending to if the witness is awake, but we may 
be caught up in a flow of attention, the ‘stream of consciousness’ of James (1890). 
Notice though that attention can be split between several foci, and that the inner 
witness is not the same as attention.

At a meta level, attention can be experienced as having a locus (do you feel you 
are inside or outside of your body; is the seat of your attention dominantly from 
your head, heart or solar plexus? Is it front, side or back?). Attention can be single 
or multiple, like one or several searchlights illuminating the sky, so that you can 
actually attend to several things at once (or perhaps in rapid succession). Attention 
can also be diffuse, narrowly focused or somewhere in between. These are the locus, 
focus and scope of attention.

At a meso level, attention can be dominated by one or more concerns. For example, 
adolescents are commonly concerned about social relationships generally, and sex 
in particular; young teachers are often dominated by concerns centred around nest-
building and starting a family; researchers by career prospects.

My interest in this chapter is particularly with the micro structure (Mason, 
1988, 2003), which, although similar to van Hiele levels (van Hiele, 1986; see 
also van Hiele-Geldof, 1957), and to the SOLO taxonomy (Biggs & Collis, 1982), 
acknowledges that attention is skitterish. It is more like a humming bird than a 
staircase of levels: it can hover apparently stationary, and it can very quickly dart to a 
different place, taking a different form. It seems to me that attention can take various 
forms including holding wholes (gazing, before specific details are discerned, 
but including gazing at already discerned detail); discerning details; recognizing 
relationships in a particular situation; perceiving properties as being instantiated 
in the particular; and reasoning on the basis of agreed properties. The idea is that if 
the teacher and students are not attending to the same ‘thing’, then communication 
between them is likely to be ineffective. Even when they are attending to the 
same aspect or detail, they may be attending differently, and this too will make 
communication difficult. It behoves a teacher to be sensitive to how learners are 
attending so as to provide sufficient time for them to make appropriate shifts, and 
this is, I think, what is going on in the pedagogic moves described in the chapters in 
this book.

Immediate connections with distinctions made concerning types of variation can 
be found. For example, the need to separate out different dimensions of (possible) 
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variation corresponds to shifting from gazing, or holding wholes, to discerning 
details: identifying ‘this not that’ or ‘what it is and what it is not’ (Mok: Chapter 10 
of this book). Leung (Chapter 5 in this book) calls this the different and same 
principle. Treating discerned details as wholes to be held or gazed at corresponds 
to Leung’s sieving principle. Fusion between two or more dimensions of possible 
variation corresponds to recognizing relationships present in a situation, in the 
particular. In Leung this is the co-variation principle when it is in-the-moment, and 
the shifts principle when it is across time. Generalizing is the shift from recognizing 
relationships in the particular to perceiving them as instantiations of (general) 
properties. It comes about by stressing some features and consequently ignoring 
others (Gattegno, 1970), by ‘becoming aware of the general through the particular’, 
and this is what well-structured variation achieves. Perceiving properties as being 
instantiated, and more generally, as being available to be instantiated is an instance 
of ‘seeing the particular in the general’, as instances of a generality (Mason & Pimm, 
1984).

Awareness

The term awareness is often used to mean consciousness, as in “I became aware 
of a fly buzzing at the window”. Marton and Booth (1997) use it this way in their 
discussion about what can be learned. However I find it more convenient to use it 
in the sense of Gattegno (1987, see also Young & Messum, 2012) to mean ‘that 
which enables action’. Thus, my awareness of the fly means that some or all of my 
conscious attention is directed to the fly, and this has brought to the surface various 
actions I could take, such as opening the window, seeking out something to act as 
a fly swatter, or simply ignoring it. These actions were always available, in some 
sense, since they have been internalized, but they become closer to being enacted, or 
they become available to be enacted through awareness, which may be somewhere 
on a spectrum from unconscious to conscious. Gattegno noticed that there are many 
actions that we carry out unconsciously, particularly in the somatic domain. Our 
bodies change which nostril is doing most of the breathing while the other one rests; 
they alter our rate of breathing, our heart rate, the openness of pores on the skin, 
and so on. These are all actions which as neonates we had to educate in ourselves 
(Gattegno, 1973, 1988).

One consequence of Gattegno’s sense of awareness is contained in the memorable 
adage that he coined: “Only awareness is educable” (Gattegno, 1970). This implies 
that ‘learning’ is about gaining facility with, integrating and internalizing actions 
which have triggers in affect and resonances in cognition. Something in a situation 
then triggers or resonates (or both) those actions to make them available in the 
moment. Our cognition refers to this as ‘our awareness’. Inspired by the image 
of the human being as a chariot drawn by horses as found in the Upanishads, I 
augmented Gattegno’s assertion with ‘only behavior is trainable’ and ‘only emotion 
is harnessable’. The extended view of the psyche might lead to proposals that ‘only 
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attention is directable’, ‘only will can initiate’, and ‘only witness can observe 
impartially’. As Maturana (1988) put it, “everything said is said by an observer”. 
The cogency and impartiality of this observing is important so as not to be caught up 
in a stream of automaticity and habit.

Variation theory can be seen as awakening teacher awareness (in the common 
sense of consciousness) of the sorts of experiences that will make possibilities for 
learning most efficient, and awakening teacher awareness (in the sense of Gattegno) 
through making relevant pedagogical actions available to be enacted. Put another 
way, variation theory awakens practitioners and researchers to the need to discern 
(whether explicitly or implicitly) actions and their effects: this is the action-effect 
relation of Simon and Tzur (2004). A really important contribution of the chapters 
in this book is to begin to probe beneath the surface of lesson descriptions so as to 
enable teachers to ‘educate their awareness’ regarding variation-pedagogy choices.

ISSUES ABOUT VARIATION

There are a number of issues that arise in connection with what is to be varied, 
how, when and by whom, whether systematically or unsystematically, whether 
implicitly or explicitly, and the role of non-examples, so as to make the critical 
aspects of a concept or procedure as sharply discernible as possible. These overlap 
with pedagogical concerns about how to maximize the opportunity for learners 
to encounter, appreciate and comprehend concepts, procedures and techniques. 
Teachers and learners are both centrally concerned with what it is possible to vary 
(without changing the concept, or the procedure), and over what range or subject to 
what constraints that change is permitted to take place.

Since the issues and ways that people deal with them overlap and intertwine, I 
begin with an example concerning the notion of angle (in two dimensions) and how 
it is measured, since this traverses both primary and secondary school. I then use this 
example to raise and comment on various issues, calling upon a few extra examples 
along the way.

Angles and Their Measures

Take for example the notion of angle (in two dimensions). In Figure 1 the first 
angle diagram displays some variation of some irrelevant features, while the second 
displays variation of some relevant features.

Experience with both diagrams appears to be necessary in order to appreciate 
and comprehend the notion of angle. But what exactly is invariant amongst these 
figures? Irrelevant features include the orientation and lengths of the arms, and 
the position of the arrow; critical features include an indication of direction and 
an amount of turn. Once the notion of angle and how angles are presented has 
been firmly established, it might be desirable to move on to a procedural aspect of 
angle, namely measurement. However measurement of angles depends on another 
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construct, which is that ratios of lengths are invariant under scaling. Thus to make 
sense of measure using a protractor requires awareness that a ‘larger protractor’ will 
give the same measurement. When this is firmly established, Thales theorem about 
ratios of lengths in triangles being invariant under scaling is a special case, which 
then gives access to using ratios of sides of triangles to measure angles, known as 
trigonometry. Another aspect of angle, not treated here, is identification of angles 
which must be equal, and consequences of this.

Issues arising. Various issues arise not only from this one example but from many 
of the chapters in this book:

• When does something need to be varied?

When the term angle is going to be formalized, variation has a major role 
to play. The diagrams are part of the iconic presentation of angle and its 
formalization, and would necessarily have followed physical experience of 
turning, and discerning the difference between ‘pointy’ or ‘sharp’ and ‘blunt’ 
parts of objects. Rotations through 0°, ±90°, ±180° etc. will have already been 
experienced and named.

• What needs to be varied: is attention to be on what is varied or what is invariant?

Features of angles such as length of arms, orientation, direction of implied 
rotation need to be varied so that attention can be directed to what is invariant 
or common to all examples. Varying the ‘size’ of the angle is necessary so that 
attention can be directed to the range of permissible change (see also When). 
The two diagrams are in contrast, with the first varying the features that are 
irrelevant to what invariant that is common, and the second, mostly, varying 
what matters so as be aware of the range of permissible change of phenomena 
to which the concept angle applies. The aim is to identify angles in complex 
situations.

• How extensively to vary?

Following the lead of the teacher whose lesson is described in Huang and 
Leung (Chapter 8 in this book), a teacher might choose to begin with two 
and then three line segments and get learners to investigate all the ways the 

Figure 1. Two examples of variation
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segments can interact. Situations which form one or more angles could then 
be identified. Subsequently, learners can be invited to locate angles in more 
complex diagrams. This variation places the concept in a more general context.

The first diagram has no angles opening downwards. The second diagram has 
no examples of obtuse angles, nor of any angles whose measure is greater 
than 360°. The relative sizes of the angles is not uniformly distributed, and 
the diagram avoids the issue of every angle being accompanied by its 360° 
complement by rotating the second arm to the first so as to make up a full 
rotation.

• What are the roles of both systematic and unsystematic variation?

Using dynamic geometry, or two sticks, perhaps hinged at their ends or 
elsewhere, the notion of an angle could be presented and encountered 
systematically as starting from 0° and varying until it makes a full revolution 
(or indeed more). The two diagrams are in some sense unsystematic in their 
choice of angle, arm length, orientation and so on, yet they are systematic in 
that each of the intended features has been varied.

The second diagram could keep the angle arms constant in length, but this might 
undermine experience and assumptions from the first diagram concerning the 
irrelevance of the length of the arms. Is it sensible to assume that a previously 
varied feature will be kept in mind as possibly variable?

• Who does the varying?

Here the author has done the varying, but pedagogically it is desirable if 
learners then try to find other instances and non-instances for themselves, so 
that they have direct experience of the variation and of the invariance. Asking 
learners to consider all ways that two or three segments could interact would 
leave much of the initiative to learners.

• What role is played by non-examples?

As mentioned above, non-examples, perhaps involving non-intersecting 
segments could help place the concept in a more general context rather than 
suddenly being imposed. Learner experience of ‘angles’, which is prior 
variation although not localized in time and space, could also be drawn upon. 
Note the common use of “at an angle” to refer to two possibly non-intersecting 
segments extended so as to intersect. There is also an issue concerning the 
angle between parallel lines, and other instances of an angle of 0°.

• How is variation experienced when the invariance is not directly experienced?

You cannot actually point to angle itself, only to aspects which demarcate or 
signify angle. So what are learners actually experiencing? Other examples will 
be given in the elaboration to follow.
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• When is it sufficient to leave variation as implicit, and when is it necessary to be 
explicit?

If learners are already familiar with what to do when encountering variation 
in diagrams, then they may not need to have their attention directed to what is 
varying and what is (relatively) invariant. However other learners, and perhaps 
in some circumstances, all learners, may need to have their attention directed 
explicitly.

It is unlikely that either diagram alone, or even both together would be 
sufficient for all learners to absorb all of the features which are permitted to 
change, and to appreciate and comprehend what is invariant, without explicit 
attention being drawn to them. The diagrams themselves are, after all, only ink 
on paper. They do not ‘contain’ mathematical ideas or awarenesses.

As many of the chapters in this book indicate, when reporting actual lessons the 
pedagogic choices made by the teacher concerning length of time to dwell on varied 
and invariant aspects is what is really critical: the length of time taken to gaze at the 
whole; to discern details; to gaze at discerned parts; to recognize relationships that are 
invariant against the variation indicated in a diagram or manifested in an animation; 
to perceive more general properties as being instantiated; and to appreciate the scope 
and range of the suggested variation that constitutes those properties. Only then does 
it make sense to reason about and with those properties, for example to consider how 
an angle might be measured and how their measures might be compared, because 
this depends on a confident sense of ‘what is and what is not’ (Mok, Chapter 10 in 
this book) to be measured.

ISSUES CONCERNING VARIATION AND VARIATION-PEDAGOGY

One of the things that emerges for me from the chapters in this book is the critical 
role of pedagogical choices made by teachers when informed by the principle of 
variation. I find the notion of variation-pedagogy helpful, not because the use 
of variation requires special pedagogy, but because of the way that the principle 
of variation can lead to pedagogical thinking. Some of the chapters in this book 
provide glimpses of such pedagogical thinking, or pedagogical awareness, while 
others skim over the surface. I am convinced that further progress is required in 
delineating the ways in which variation can inform pedagogical choices, and that 
one way to do this will be by being awake and alert to teacher and learner attention, 
as described earlier. Many of the issues developed in this section arise not because 
of variation alone, but because of what they are supposed to achieve pedagogically.

What to Vary?

Is it the aspects that are varied that are important, or the aspects that remain 
invariant? On first encountering variation theory it is tempting think that it is 
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obvious what to vary, and how, but for me it is not at all obvious. The two angle 
diagrams in Figure 1 highlight this contrast, and a sensible conclusion is that both 
are necessary, perhaps at different times, because both contribute to appreciation 
and comprehension of a concept, indeed of a procedure as well. What will matter 
most will be the pedagogical choices so that attention is directed appropriately.

The use of the adjective ‘possible’, as in dimensions of possible variation can be 
useful as a reminder that there are choices to be made, but it is important to probe 
deeply into the origins in experience of the distinctions to be made in the use of a 
concept, or in the aims and methods of a procedure. An a priori epistemological 
analysis, drawing on research as well as experience, serves to identify some 
potentially critical aspects. These will depend on known epistemological obstacles 
(Bachelard, 1938/1980) derived from structural underpinnings of the topic itself and 
found in the research literature, and the known pedagogically induced obstacles that 
students are seduced into encountering because of their previous experience, again 
often indicated in the research literature but more contextually dependent. Other 
critical aspects are based in the particular learners, their past and recent experience, 
their current dispositions and their willingness to take initiative, to ‘assert’ (make 
and test conjectures) rather than simply ‘assent’ to what the teacher says and does 
(Mason, 2009). The ‘onlys’ mentioned earlier provide one framework for taking 
all aspects of the human psyche into account in considering the essence of a topic 
(Mason & Johnston-Wilder, 2004a, 2004b).

Even focusing on critical aspects as those to be varied is not sufficiently definitive: 
different people recognize different aspects as critical, and this may be as much a 
reflection of their mathematical or pedagogical awareness as it is of their sensitivity 
to their particular learners. For example, Huang, Barlow and Prince (2016) report a 
difference between dimensions of (possible) variation activated in a Chinese lesson 
as compared to an apparently similar lesson in the USA.

My experience of mathematics has led me to a more balanced position on the 
roles of variation and invariance than is implied in the original formulation by 
Marton (see Marton & Booth, 1997; Marton, 2015). In Watson and Mason (2005) 
we showed some situations in which what strikes the viewer is the invariance, and 
other situations in which what strikes the viewer is the variation. For example, when 
shown a family of straight lines through the origin in quick succession, attention 
may be attracted to what is changing (the lines) rather than to what is invariant (the 
common point), whereas in the static picture (see first diagram in Figure 2) attention 
is drawn to the invariant point, for Gestalt-based reasons. The second diagram 
indicates a single frame of a dynamic version of the first diagram, and how as a 
static image there can be an ambiguity between whether attention is drawn to what 
is varying or to what is invariant. When shown a family of straight lines enveloping 
a curve as in the third diagram in Figure 2, attention is naturally drawn to the virtual 
curve which is invariant. Attention may be drawn to what is changing against a 
relatively invariant backdrop, or attention may be drawn to what is invariant in the 
midst of great changes.
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Figure 2. Three families: all at once; a few in sequence; all at once  
What strikes you: variation or invariance?

Leung (Chapter 5 in this book) considers five principles for realizing (in its 
fullest sense) invariance in the midst of change and the range of permissible change 
of those dimensions. They are related to shifts of attention, as described earlier, 
concerning recognizing relationships and perceiving properties as being instantiated. 
But what happens when the mathematical ideas leave the world of the tangible? 
If the relationships really have become properties which are familiar and confidence 
inspiring, then they may become ‘as-if’ tangible, but it may require the learner to do 
the varying in order to get a sense of a further new invariance.

Although Lakoff and Nunez (2000) claim that mathematical ideas are developments 
from physical sensory experience, most mathematical concepts beyond the primary 
school involve relationships between ideas which are not easily presentable as 
perceptual ‘things’ and so cannot so easily be pointed to or embodied in physical action 
with material objects. In the case of ‘angle’, it’s subtly intangible nature is masked 
by the various signs and signifiers used to denote and to indicate the presence of an 
angle. As another example, Thompson (2002) has studied co-variation extensively, 
and highlighted many of the difficulties students have in appreciating co-variation, 
largely because it is hard to ‘see’ named-ratios such as speed and density.

As yet another example, consider the first diagram in Figure 3 below. Dragging 
points A, B or C around makes no change in the ratios; moving points D, E or F 
on their respective lines changes individual ratios but leaves the overall equality 
relationship invariant.

Figure 3. A hidden invariant relationship and a mistaken invariant relationship
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I cannot see how to detect or present the equality relationship visually, nor 
arrange for it to be sensed physically, even when a dynamic version is experienced. 
Only with the inclusion of measurements can an invariance be observed, but by 
proxy, and although that may be convincing cognitively, it is less than convincing 
enactively. Consequently it has a reduced affective impact. It is not at all clear to me 
how greater enactive, and hence affective impact could be managed. However, after 
a period of immersion in and use of the invariance, the diagram itself can come to 
embody the relationship (sum of ratios) and so can be used as a signal to locate the 
algebraic statement whenever the diagram appears in a more complex configuration, 
and vice versa. To appreciate and comprehend mathematics requires mathematical 
thinking, in which what was previously abstract becomes sufficiently familiar and 
confidence inspiring to be experienced ‘as-if’ it were concrete (Mason 1980; Mason 
& Johnston-Wilder 2004a) drawing on the notion of ‘acting as if’ of William James 
(1890).

A further difficulty with virtual enaction is presented in the second diagram, where 
the divisions on the quadrilateral edges are midpoints. To two decimal places it appears 
that the ratio of the area of the whole to the area of the inner overlap quadrilateral 
is 5:1, but in fact it is a minimum of exactly 5 when the inner quadrilateral is a 
trapezium. If measurements are only taken to a few decimal places, something that is 
not invariant may appear to be.

Sometimes what is invariant and what is permitted to change can be obscure when 
even two aspects are varying at the same time, while at other times it is perfectly 
possible and even desirable to deal with more. Indeed, a task in which there are 
several different dimensions that could be varied opens up the possibility for learners 
to experience the need and effectiveness of choosing to fix some aspects while 
varying others in order to locate structural relationships for themselves, mindful of 
the potential dangers of reductionism. This is an action they might come to internalise 
(an educated awareness) so as to be able to initiate it for themselves in the future. For 
example, imagine an animation of two points each traversing their own circle, and a 
point P on the line segment joining them with its path being traced, with variations in 
the radii of the circles, the distance between their centres, the directions and speeds 
of travel around their circles, and the position of P on the line segment.

Figure 4. Two-circles configuration

These several dimensions open up many possibilities which can for most students 
only be dealt with by selecting some aspects to vary while fixing the others, then 
changing what is fixed and what is varied so as to uncover underlying structural 
relationships involving all or many of the dimensions of possible variation.
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What reading this book has reinforced for me is that thinking in terms of what 
students are likely to attend to, informed by both what the teacher is aware of as 
needing attention and what the teacher is aware of in terms of the form of that 
attention, is one way of addressing the issue of what to vary. To become aware 
of the process of discerning details (separating), and recognising relationships in 
the particular situation, so as to come to (some authors say ‘discover’) properties 
which are being instantiated (fusing) is itself a process, akin to what Gattegno called 
educating ‘awareness of awareness’ (see Mason, 1998).

The Tetrad of Activity

Several authors in the preceding chapters have made use of the notion of a distance 
between what learners already know, what Gu, Huang and Gu (Chapter 2 in this 
book) refer to as the anchoring point, and the intended object of learning, and how 
important it is that both the tasks and the resources called upon from the learners 
themselves and from images and material embodiments, are appropriate for bridging 
that gap. Bennett (1993) incorporated this notion in his Systematics schema for 
activity, which unlike the Vygotskian triad, is based on a tetrad. It is formed from 
two axes, one concerning motivation or intention and the other concerning means 
(Figure 5).

Figure 5. The tetrad of activity

The activity is maximally effective when each of the four triads comprising the 
tetrad in any particular instance are appropriately balanced. The motivational axis 
corresponds to the distance between anchoring point and new knowledge used by 
Gu et al. (Chapter 2 in this book) to gauge the appropriateness of the challenge being 
offered to learners. Ding (Chapter 4 in this book) makes reference to Pudian as the 
distance between previous knowledge and intended goals, which is the vertical axis 
of the tetrad of activity. Other authors use Pudian to refer to presaging something 
implicitly before addressing it explicitly, and relate this to a shift from scaffolding to 
fading (Seeley Brown, Collins, & Duguid, 1989) or from directed through prompted 
to spontaneous use by learners themselves (Love & Mason, 1992).

Pang, Bao and Ki (Chapter 4 in this book) draw a distinction between Pudian 
from one task to another or one situation to another, and Pudian related to differences 
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within a task or situation. They see these as ‘orthogonal’ forms of variation. The first 
is to make the proximal distance or learner ‘gap’ manageable by learners, and the 
second is to make dimensions of possible variation discernible be learners through 
choice of tasks and resources called upon.

Sometimes authors recommend varying the essential features so that learners 
become aware of them as worthy of attention, which is the essence of Marton’s 
claim that what is available to be learned is what is varied. Sometimes authors 
recommend varying the inessential features so that learners recognise that what is 
invariant is what is important (see for example, Gu et al., Chapter 2 in this book). 
Sometimes learners need to discern, that is separate out, what can be changed while 
still something else remains invariant and at other times they need to be not only 
aware of but actually disposed to ignore features irrelevant to a concept or procedure 
(Watson chapter 4 this book; see also Koichu, Zaslavsk, & Dolev, 2013), because as 
Gattegno (1970, 1987) points out, stressing with consequent ignoring is the basis of 
generalization, of shifting from recognizing specific relationships in a situation to 
perceiving these as instantiations of more general properties.

When to Vary?

When introducing a concept or the ideas behind a technique, structured variation has 
a clear, perhaps even essential role to play, especially if the teaching and learning 
are to be as efficient and effective as possible, as is illustrated throughout this 
book. Similarly, intentional variation is useful when exploring, when posing and 
resolving novel problems, whether set by someone else or by yourself, because this 
is the process of specializing and generalizing promoted by Pólya (1962) among 
many others. It is vital that learners internalize the use of systematic variation for 
themselves.

It is perhaps not so clear whether structured and systematic variation is helpful 
when students are reviewing a topic. A teacher might employ variation if, during 
revision, learners appear not to be attending in expected ways. Intentional variation 
can be used to bring concepts and procedures back to mind, but is not in itself likely 
to promote integration or internalization of actions by learners. The one problem 
many contexts, one problem many solutions, and many problems one method of 
solution forms of variation all need to be experienced. If learners are trying to gain 
facility, then random problems are probably a good idea, as found in many English 
and American mathematics texts in the 18th and 19th centuries, with sections headed 
promiscuous problems, where the challenge is to have an appropriate action become 
available as the problems contexts and types change. This too can be seen as a form 
of variation, mostly unsystematic, of all the dimensions associated with a particular 
course of study.

Revision itself can take the form of learners constructing examples which 
display possible dimensions of variation, and which therefore indicate the scope 
and richness of their appreciation and comprehension of a concept or a procedure 
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(Watson & Mason, 2005). Exploration and investigation, during which learners may 
extend the richness of what they notice, discern and relate, will often depend on 
learners having learned to make use of systematic variation for themselves. Wallis 
(1682) called this “my method of investigation” and although castigated by Fermat 
among others (Stedall, 2002, p. 169), it often proves very effective. Pólya (1962) 
called it specialising and the purpose was to detect underlying relationships which 
might turn out to be instantiated properties (Mason et al., 2010).

The whole point of experiencing variation is to enrich your sense of a concept 
or procedure through enriching the space of examples and example-construction 
techniques that you can access. It is unlikely that any single pedagogic recipe will 
be useful, because effective teaching depends very much on the students and the 
situation, and on their past and recent experience and expectations as to what might 
be appropriate.

The distinction between conceptual and procedural variation pointed to by Gu, 
Huang and Marton (2004) is to my mind simply pointing to differences in when 
to use variation. To get learners to attend to something not previously noticed or 
discerned, variation, in some form or other is absolutely essential. When some ideas or 
actions are going to be extended or developed, it is vital to bring previous experiences 
to the fore, such as previously discerned details, recognizable relationships and 
perceivable properties, before extending or developing these in some way. This is the 
anchor points notion of Gu et al. (Chapter 2 in this book) and so part of the tetrad of 
activity. It is notable in many of the chapters how reports of lessons include teachers 
spending time doing exactly this, rather than rushing straight into the new extensions 
and developments. To move to extensions and developments assumes that learners 
will have distinctions, relationships and properties immediately to hand. This seems 
to me to be the basis for the Western interpretations of Shanghai ‘mastery-teaching’, 
in which all learners make progress and actually learn something.

How Extensively to Vary?

Deciding how much variation, over what range, and how systematic to make 
the variation is part of the art of teaching, for it depends entirely on how quickly 
and effectively students show that they are attending to what is intended, and in 
the intended manner. Once learners have had multiple experiences of the act of 
generalization, which involves seeing one or more aspects as being variable, one 
‘good’ example can often suffice to provide insight into what happens in general. 
A typical Chinese take on this is that “good learners can grasp the whole category 
from typical examples; [teachers] don’t need to teach them all in detail” (Song, 2006). 
There is a remarkable resonance with Colburn (1829) in the USA who initiated the 
‘inductive method’ of teaching in his textbooks. His version was

As the purpose is to give the learner a knowledge of the principles, it is 
necessary to have the variety of examples under each principle as great as 
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possible. … when the principles are well understood, very few subjects will 
require a particular rule, and if the pupil is properly introduced to them [s]he 
will understand them better without a rule than with one.

One general maxim to be observed with pupils of every age, is never to tell 
them directly how to perform any example. If a pupil is unable to perform an 
example, it is generally because [s]he does not fully comprehend the object of 
it. [Colburn 1829 preface]

His sets of exercises use unsystematic variation of numbers in a variety of contexts, 
but all involving the same operation.

Having been exposed to the notion of variation, in the form of the role of parameters 
which are temporarily constant but can be varied, it is often the case for me that a 
single object triggers generalization: a consideration of aspects that could be allowed 
to vary opening up the possibility of investigating the range of permissible change, 
the structural constraints governing that change, and what remains invariant. It is an 
opportunity for creativity in mathematics. For example, consider an elementary task 
such as

If Anne gives John 3 marbles, they will then have the same number of marbles.

How many more marbles does Anne have than John?

For me this is one instance in a whole space of ‘marble tasks’, through spontaneously 
wanting to vary the number of marbles given away; the effect of giving away marbles 
(eg. ending up with 3 times as many, 4 fewer, or 5 more than John, etc.); the number 
of people involved and who gives what to whom with what effect; the details of what 
to give or exchange (eg. Anne giving two of her red marbles for each 3 of John’s 
blue ones). And of course the marbles themselves are of no concern: they might as 
well be counters or teddy bears, movements on a number line or people queuing at 
a bus stop.

Learners would benefit if they became enculturated into seeing dimensions of 
possible variation for themselves, because this is what is required to do well on 
an examination: to recognize the ‘type’ of each task and to have an appropriate 
action become ready to enact. So studying for an examination involves recognizing 
dimensions of possible variation and rehearsing the action which is common to all, 
which is invariant, and which solves them all. Constructing your own particular 
cases so as to get a sense of the general, is well worth acquiring as a personal 
propensity. As Gu (1999, p. 186, quoted in Gu et al., in Chapter 2 in this book) points 
out, in China examinations have often been based on prototypical problems already 
familiar to students, which induces teachers to focus on prototypes in training their 
students. It makes sense in these circumstances to use variation to build up from the 
simple to the complex, and to vary the context so that students learn to recognize 
underlying structural relationships (many problems one solution and one problem 
many contexts). But as mentioned earlier, if students only ever encounter ‘typical’ 
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problems, they are unlikely to learn what to do when they meet something fresh and 
novel. By sometimes posing complex unfamiliar challenging problems, and then 
collectively simplifying and specializing until something tractable is reached, then 
building back up to the complex through generalizing and varying for themselves, 
learners may begin to internalize not simply the procedures, but how to think 
mathematically (Pólya, 1962; Mason et al., 2010, among many others).

Locally and Globally Systematic Variation

The angles example already points the way to roles for both systematic variation, and 
for unsystematic variation, or more accurately, for globally systematic but locally 
unsystematic variation. Chinese lesson study involves recognizing opportunities to 
use systematic variation within variation (Huang et al., 2016, p. 10). To explore the 
possibilities of varying two dimensions of possible variation in concert or separately, 
I developed a collection of structured variation grids (Mason website). But it is not 
only a matter of what aspects to vary, but also in what order to vary them. There may 
not be a universal answer to this as it is likely to depend on the teacher’s awareness, 
and on the learners’ disposition, initiative and preparation.

An important example arises in early algebra. For years I was content to construct 
tasks in which learners were given the first few terms of a sequence. The objects 
might have been pictures or numbers. Mindful that mathematically there has to 
be some underlying rule or structural relationship which determines the sequence, 
I would first ask people to decide how they would extend the sequence and to 
articulate a rule for continuing the sequence indefinitely. Then, and only then 
was it appropriate to ask for a generalization, a formula, to count the number of 
components in the nth object, usually a picture (Mason, Johnston-Wilder, & Graham, 
2005). However, I became aware that my invariant task structure of providing the 
first few terms in sequence was generating learner dependency and also inducing 
them to focus on term-by-term extension rather than looking for a general formula. 
Since the intended object of learning was experience in expressing generality, my 
systematicity was actually getting in the way, and so I moved to being much less 
systematic when presenting sequences for generalization.

The three forms of variation identified by Sun (2011), One Problem Multiple 
Solutions; Multiple Problems One Solution; and One Problem Multiple Changes 
are, like the angles example, amenable to locally unsystematic variation of the 
parameters but globally systematic variation of what needs to be varied, that is, 
of the dimensions of possible variation. Again I conjecture that there is no rule, no 
‘best practice’, but rather, that variation can remind teachers to be sensitive to these 
various issues and so inform their pedagogical choices.

How many different dimensions can be varied at the same time is uncertain, 
but pedagogically significant. Too many things varying at once might put learners 
off, but too few might be considered condescending and rule-bound, as if learners 
are being ’led by the nose’. It is certainly tempting, once latching onto variation 
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as a principle, to use it mechanically and strictly, rather than creatively when 
appropriate.

Furthermore, what it means to say ‘varied at the same time’ is unclear, since 
student attention is more likely to be consecutive rather than simultaneous. For 
example, Lo and Marton (2012) argue “when learners need to discern more than two 
… critical features, the most powerful strategy is to let the learners discern them one 
at a time, before they encounter simultaneous variation of the features” (p. 11). Pang 
and Ki (2016) and other authors use the term separation when one critical aspect 
varies while the other aspects are kept invariant, because what is varied is separated 
out. When two or more dimensions are varied simultaneously, usually subsequently, 
the term fusion is used.

But the situation is not so clear to me. In the following task, more than one thing is 
varying at once, but it is the joint co-variation between the numbers that are varying 
that is of interest. It provides an opportunity for learners to do some separating for 
themselves, detecting a single feature and trying examples of that for themselves.

Observe that:

Figure 6. Some arithmetic facts

Looking across rows might reveal one relationship; looking down columns might 
reveal another. What is available is fusion of both and to this end it may help to 
read each statement out loud, placing emphasis on a particular digit (Brown & 
Walter, 1983). If done several times, varying the chosen digit, relationships may be 
recognized and articulated as properties being instantiated.

Here there is systematic variation but it has to be detected by directing attention 
to relationships between digits in the two digit numbers. The implicit invitation is 
to express a generality as a conjecture and then to check its validity. The concept 
involved is that the difference in the products when the units digits are switched 
must be divisible by 10 and can be calculated from the differences in the digits of the 
original numbers. This then could be seen as a procedure for multiplying two-digit 
numbers so as to simplify calculation. An underlying principle is that the product of 
two numbers is increased by making the two numbers closer to their mean. It can 
also be seen as a step towards generalizing to three digit numbers.

Two more examples are shown in Figure 7. On the left is Sundaram’s Grid 
(Honsberger, 1970; Ramaswami Aiyar, 1934; see also Mason website). The 
relationship being instantiated is bilinear, so two dimensions changing together are 
essential, although the layout means that attention can at times be directed to a single 
dimension by focusing on a single row or column. Ultimately the claim requires 
an integration of both dimensions of possible variation simultaneously, whether 
encountered simultaneously from the start, or independently for some time with 
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along the way. The same applies to the arithmetic equalities in Figure 6: whether 
a single dimension is separated out is a pedagogic choice with no definitive ‘best 
approach’, as it is likely to depend on the learners and their recent experience. 

Claim: A number appears in this grid if 
and only if one more than double it is a 
composite number.

Remove the parentheses, and combine

Figure 7. Two examples of near-simultaneous variation

The set of exercises on the right in Figure 7 are the first actual tasks in First Steps 
in Algebra (Wentworth, 1894, p. 10) following a verbal introduction to indices and 
parentheses and many other technical terms. Notice the local variations suggesting 
dimensions of possible variation and hence indicating generality. Ex 13 and 14 offer 
a matched pair similar to Ex 1 & 2, but would students notice? Even if they did, 
would they be inclined to pause and construct a story about what was happening? 
The last exercise offers a single new variation which could be extended by the 
learner to a new dimension of possible variation, but which might also be ignored. 
Note that negative numbers are not introduced until a later chapter, which explains 
some dimensions not varied here. The numbers used are small enough to make it 
easy to check the result by evaluating the parentheses mentally, but the negative side 
of this is that students might be tempted simply to write down the answer.

Although not invoking ‘variation’ explicitly as a pedagogic strategy, quite 
complex variation is present. Because all of Wentworth’s papers disappeared in a 
fire we know little of his pedagogic principles apart from analyzing his textbooks, 
but his many books sold millions of copies and were used over many years in the 
United States, so they must have been considered to be successful.

In all of these situations (and in the angle diagrams earlier), the variation could 
be said to be simultaneous since several or all of the examples are displayed at 
once. But human attention tends to work sequentially. After gazing for a while at 
the whole, details are discerned and relationships recognized within and between 
these details, which themselves may be gazed at as wholes for a time. Experience 
with invoking learners’ powers to detect patterns suggests that presenting instances 
sequentially, pausing to allow processing time can be much more effective than 
simply moving on quickly, and this accords with the lesson descriptions in various 
chapters in this book.
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Who Does the Varying?

People calling upon variation theory often assume that it is the teacher or author who 
provides the variation, yet it is clear that when someone varies different aspects for 
themselves, and experiences these as dimensions of either possible or inappropriate 
dimensions of variation, even more robust learning is likely. For example, young 
children learning to crawl, walk, run and speak introduce their own variations. 
Mathematical exploration and meaning-making almost require learners to take the 
initiative to vary just enough for them to appreciate both the dimensions of possible 
variation available and the ranges of permissible change within those. Extreme 
positions (always the teacher or always the learner) are unlikely to be helpful. 
Sometimes it is the teacher’s awareness of dimensions of possible variation that the 
learner might not think of varying that is crucial, for that is at the heart of the role 
of the teacher: the teacher can do for the learners what the learners cannot yet do 
for themselves. This is the essence of the notion of zone of proximal development 
(Vygotsky, 1978; see also van der Veer & Valsiner, 1991). At other times teacher 
initiated variation may lead to learners depending on the teacher (or textbook) to do 
the varying for them.

When two or more dimensions are crucial to recognizing and underlying 
structural relationship, there is a pedagogical choice to be made as to whether to 
plan a careful staircase of development, so that the learners perhaps encounter 
increasing complexity with the gap between anchor point and intended learning 
carefully managed, or whether to expose learners to at least some complexity, and 
to engage them in choosing what to simplify so as to gain familiarity. It is very 
easy for a teacher to be tempted to simplify for learners rather than developing 
their confidence to simplify for themselves when necessary. (Stein, Grover, & 
Henningsen, 1996). Such a choice minimizes local disturbance, but ultimately 
disempowers learners.

Mathematics Education is plagued by an absence of theorems guaranteeing 
effects of actions. Yet this is precisely because education is about human beings who 
are capable of exercising will, of taking initiative. Exercising their will may include 
blocking what is being offered, shutting down in the face of challenge, or directing 
attention to other matters which may at the time seem much more important. Trying 
to control learner attention may result in training behavior, and may negatively 
influence any disposition to think mathematically. On the other hand, carefully 
constructed tasks in which attention is subtly and deliberately directed can be 
maximally efficient in bringing learners into contact with important awarenesses, 
what Gattegno (1987, 1988) called, controversially, “forcing awareness”, leading 
to their experiencing effective actions that may then be internalised through further 
work. Furthermore, in order to respond creatively to unfamiliar challenges it is vital 
to develop a range of actions that the learner can initiate for themselves: actions 
such as specializing and generalizing, imagining and expressing, conjecturing and 
convincing (Pólya, 1962), Mason et al., 2010; Mason, 2008a).
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Several chapters in this book make use of a pedagogic sequence of movement from 
‘concrete, through invariant methods, to applications’ which sets a specific order 
for what to vary and when. Where learner behavior becomes dependent and reliant 
on previously trained behavior rather than calling upon or invoking internalized 
actions, creativity is likely to be restricted. I would counsel against rigidity since 
it fails to give learners experience of tackling the unfamiliar, making it familiar 
in order to make progress through learner use of their natural powers. Pedagogic 
rigidity is likely to lead to learners becoming dependent on the teacher-text rather 
than educating their awareness so as to be able to initiate use of these forms of 
variation for themselves. I conjecture that a truly effective Hypothetical Learning 
Trajectory (Simon & Tzur, 2004) affords opportunity for learners to use their own 
developing powers, not simply tread a staircase from simple to complex, from 
concrete to abstract, from particular to general. A range of pedagogical frameworks 
have been proposed to assist teachers in providing learners with such experience 
based on ideas of Bruner (1966): see for example Mok (Chapter 10 in this book); 
Mason and Johnston-Wilder (2004a, 2004b).

Variation can be thought of as a device for scaffolding (Huang et al., 2015, 
p. 11; Mok, Chapter 10 in this book) so that more variation (‘simultaneous’) can be 
introduced in line with growing confidence and facility. This is a form of ‘fading’ 
after initial scaffolding (Brown et al., 1989) or of making prompts less and less direct 
until learners can act spontaneously (Love & Mason, 1992). Judging when learners 
have recognized dimensions of possible variation, when they have internalized 
appropriate actions, and when they have access to triggers to initiate those actions, 
or put another way, have educated their awareness so as to enable actions (Gattegno, 
1970) requires sensitivity and observation.

What Role Is Played by Non-Examples?

In order to discern what is important, it seems pedagogically desirable if not essential 
that learners experience for themselves non-examples so that they test the limits of 
the range of permissible change in addition to exploring the dimensions of possible 
variation. Furthermore, non-examples can provide a broader context in which a 
particular constraint can be imposed, as long as learners appreciate this is what they 
are experiencing. This aligns with the holist’s desire to have an overview, a chance 
to hold a whole, before being immersed in detail.

Do non-examples always help? Bruner, Goodnow and Austin (1956) reported 
instances in which non-examples did not appear to assist learners in discerning the 
intended concept, whereas Gu et al. (Chapter 2 in this book), in line with Gagné 
(1977) and several others (see for example Cohen and Carpenter 1983) suggest 
that non-examples ought to, and even do in some circumstances, contribute to 
appreciation of the scope of instances of a concept. For example, Huang and Leung 
(Chapter 8 in this book) report how the teacher began with two intersecting lines, 
drawing attention to what was already familiar in terms of related angles, then 
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introduced a third line intersecting one of the original lines, thus setting a context of 
intersecting lines, and worked on pairs of related angles for some time before moving 
to parallelism and equality of angles. Similarly, Gu, Huang and Gu (Chapter 2 in this 
book) report on a teacher inviting learners to consider all possible ways in which two 
circles of different sizes might interact, described in terms of the distance between 
the centers in relation to the radii, before moving to the same problem but with line 
segments on the same line.

It is most likely that it is not the presence or absence of non-examples alone 
that contributes to appreciation and comprehension of a concept, but the teacher’s 
awareness, learner disposition and initiative, the pedagogic milieu, and the ways in 
which attention is directed, which can make the presence of non-examples effective 
or ineffective. Another factor could be the structure and systematicity of the implicit 
variation.

Implicit and Explicit Variation

When is it sufficient to leave variation as implicit, and when is it necessary to be 
explicit? Pedagogical reliance on implicit variation assumes that the presentation 
of variation is sufficient in order for learners to learn what is intended, whereas 
explicit variation (through using pedagogical actions such as Say What You See, 
Same and Different, What It Is and What It Isn’t, etc.) incorporates some degree 
of explicitness, of explicitly directed attention, in the interaction between teacher 
and student. While systematic variation may make something available to be 
learned, it by no means ensures that it will be learned. Consequently, attempts to 
validate variation theory must take into account the scope of the teacher’s awareness 
of the concept or procedure together with the variations that comprise it and the 
range of pedagogic strategies available to be enacted, as well as the pedagogical 
ethos or milieu of the situation, and the disposition, initiative and preparation of 
learners.

In terms of teaching, variation is always implicit until a teacher draws attention 
to it (Mok, Chapter 10 in this book). However a learner may or may not become 
aware (consciously) of variation or its implications, even when the teacher tries to 
draw attention to it. Note that as mentioned earlier, awareness of variation enables 
students to enact actions associated with variation, such as turning their attention to 
other dimensions of possible variation as well as to ranges of permissible variation, 
and this in turn is likely to shift attention to recognizing underlying structural 
relationships and to perceiving properties as being instantiated.

Fischbein (1987, 1993) pointed to the way in which learners make assumptions 
about what is important in a figure, often implicitly and because it is invariant in the 
examples they encounter, without realizing that they are doing it. He called these 
figural concepts. One classic example is of triangles always being presented with 
a ‘base’ parallel to the bottom of the page, with the implication that an altitude is 
always perpendicular to the base. Another classic example is the way that cubes 
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are presented on a page, leading to learner assumptions that this is the only way 
of depicting a cube. It is useful to extend the notion of figural concepts to apply to 
any concept in which unintended dimensions of possible variation are taken to be 
invariant and necessary. One example is the use of fractions as operators on figures 
in which the whole of the figure as presented is always the whole on which the 
fraction acts, leading to learners overlooking the possibility of selecting what part 
of a diagram is to be acted upon, and that what really matters with fractions is to be 
explicit (and hence flexible) about the whole that is to be operated on.

So an extremely important question to ask when variation is being used, is 
“what figural concepts might be adduced by learners unintentionally?”. This is a 
vital pedagogic question that is essential whenever variation is planned, but not one 
that can be addressed by theoretical constructs or by invariant rules or principles. 
It requires mathematical and pedagogical experience.

Variation in Task Structure and Presentation

Having selected a task, there are many dimension of possible variation in how the 
task is presented. It can be presented on paper, on a screen or on a board. It can be 
presented statically and complete, or dynamically as an unfolding sequence, either 
by animation or by the teacher judging and varying the pace. It can be presented 
in silence, with commentary, or interactively. It can be used with strategies such 
as Say What You See, with or without small group discussion. Learners can be 
invited or prompted to make their own copies, to make another example, and to try 
to articulate some or all of the structural relationships (Mason & Johnston-Wilder, 
2004a). Seeing these choices as pedagogic variation could enrich teacher choices 
by reminding them of pedagogic strategies and little variations according to their 
reading of the situation unfolding in the classroom.

VARIATION-PEDAGOGY AND PEDAGOGIC VARIATION

Although many of the chapters in this book focus on how variation can be used as 
a focus for analyzing lessons, and hence for planning lessons, they reveal more, 
namely that there are subtle pedagogic moves which both depend upon and exploit 
the variation. I use the term variation-pedagogy to refer to pedagogic actions used 
to exploit variation. I suggest that they can be informed by being aware of the 
relationship between what the teacher is attending to, and how, and what learners are 
attending to, and how. What is important is that pedagogic actions do not become 
solidified, that they do not form a rigid and constant sequence. Rather, they too are 
subject to variation in various dimensions, and that the art of teaching lies in the 
flexibility and variation of pedagogic choices.

The whole purpose of variation as a theory and as a practice is to make learning 
efficient by drawing upon the psyche of the learners, including their natural powers. 
While it is certainly the case that textbooks constructed along variation principles, 
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used by teachers who appreciate and comprehend these principles, can make an 
important contribution, texts are themselves only ink on paper. They are not, 
I suggest, sufficient in and of themselves (cf. Zhang et al., Chapter 14 in this book). 
It requires a person to make sense of them, to seek and find their own coherence. 
An incoherent text may make this difficult for many readers, but a coherent text 
cannot in and of itself ensure coherence in the meanings constructed by teachers or 
by learners. The extra ingredients required include the will (initiative) of learners 
and the pedagogic choices made by teachers. Where the pedagogy is in alignment 
with learners’ psyche, effective learning can be expected.

Some Specific Pedagogical Actions

Variation as an informing principle can open up opportunity to use pedagogic actions 
which might otherwise not be effective. For example, Huang and Leung (Chapter 8 
in this book) describe a lesson in which great care has been taken in getting students 
to attend to relationships between angles. During work on ‘applications’, when the 
students do not detect an important sub-configuration, the teacher recommends the 
action of removing lines from complex diagrams. This action could develop into 
learning to ignore (without deleting) through stressing other lines. In the language of 
forms of attention, learners are given time to educate their awareness by internalizing 
the strategy of stressing some features and consequently ignoring others in seeking 
to discern details as wholes which can be held. These discerned wholes can then 
be exploited through relevant internalized actions associated with those sub-
configurations, and experienced as perceiving properties being instantiated. All this 
is made possible by the previous work on becoming familiar with discerning pairs 
of related angles.

Overall, this process of working on discerning and exploiting familiar sub-
configurations is referred to in Huang and Leung as opening a space of learning. 
However, without access to relevant pedagogic moves to achieve desired shifts 
of attention and educating of awareness, ‘opening a space of learning’ is liable to 
go the way of other summarizing labels, like ‘zone of proximal development’ and 
‘discovery learning’ which, without specific details, are too vague to lead to effective 
action, being open to multiple interpretations.

An effective way to direct learner attention is through getting them to stress 
something, and consequently ignore other things. Brown and Walter (1983) 
articulated a strategy which achieves this. Different people are invited to read out 
a task or theorem or definition by placing particular emphasis or stress on just one 
of the words. The effect is to invite the question “why that word; how might that be 
varied?”. Stressing one word, number or symbol can be sufficient to open it up as a 
dimensions of possible variation.

Several chapters in this book stress the importance of precise language, and 
make use of what seems to be a Chinese propensity to label things: both types of 
mathematical objects and pedagogic moves. Even so, as Ding et al. (Chapter 12 in 
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this book) acknowledges, it can be difficult for teachers to change well established 
habits, and so difficult for professional development to be effective. It was for this 
very reason that the Discipline of Noticing was articulated (Mason, 2002) as a 
collection of methods to assist in replacing habits with fresh actions. It is possible 
that variation itself could be used to inform professional development practices.

A case has been made in the examples used to illustrate various issues concerning 
variation that pedagogic intervention can often be helpful, if not vital, and the 
analyses of the various lessons in chapters of this book underpin the fact that a great 
deal depends on the institutional and mathematical milieu (Brousseau, 1997), as 
well as on the teacher’s sensitivity to learners’ experiences both past and present. 
But pedagogical choices need to be subtle, not prescriptive, and so variation plays 
a role here too. Koichu, Zaslavsky, and Dolev (2013, p. 461), quoted in Watson 
(Chapter 5 this book) make a similar point through their use of the term space of 
learning which connects intended, enacted and experienced learning as a domain of 
pedagogic choice.

Pedagogic Variation

In parallel with ‘what is available to be learned by students?’ from one or more tasks, 
there is a corresponding pedagogic question: ‘what is available to be enacted by a 
teacher?’. Not only is this a pedagogic form of variation, encompassing a range of 
pedagogic actions that can be used to initiate activity and interaction with learners, 
but it has associated dimensions of possible variation and ranges of effective change.

For a particular pedagogic action (for example, Talking in Pairs, Say What You 
See, Learners Writing on Boards, What It Is and What It Is not, or What is the Same 
and What is Different about …) there are features of the principal action which can 
be varied, but only if the teacher is awake to them as possibilities. For example, 
in Talking in Pairs, the teacher can set a specific question to be addressed, or can 
invite learners to try to articulate something they have been working on; in Say What 
You See, learners can be in small groups, or in plenary and the teacher can make 
sure everyone has the opportunity to say something or can take a few contributions; 
they can choose to have students work individually, in small otherwise unstructured 
groups or in groups with specific tasks or specific roles or in plenary; Learners 
Writing on Boards, can be done individually, in small groups, or with movement 
between boards promoted so that there is collaboration both within a group and 
between groups.

The notion of range of effective change draws attention to limits to the scope 
of variation associated with a pedagogic action. For example, ‘talking in pairs’, or 
indeed any pedagogic activity, can be very effective at first, but if allowed to go on 
beyond the point where the energy in the room has dissipated and declined, it can 
turn into opportunity for learners to chat amongst themselves, permitting them to 
drift off task. Action initiated by the teacher may prove effective for a while (for 
example getting learners to evaluate their effort at the end of a lesson: see Baird 
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and Northfield (1992); or getting learners to construct an easy, a hard and a novel or 
general example (see for example Bills, 1996; Watson & Mason, 2002). However, 
any pedagogic strategy will lose its potency if repeated too often or too frequently. 
If the action is one that learners could usefully integrate into their own functioning, 
then some process of scaffolding and fading (Brown et al., 1989) may be appropriate, 
in which initially direct prompts to action become increasingly indirect (“what 
did you do last time in this situation?”) until learners spontaneously initiate it for 
themselves (Love & Mason, 1992). So not only the choice of action to initiate, but 
also the length of time the action is allowed to continue depends on the sensitivities 
of the teacher to what the learners are actually doing, and what the teacher hopes the 
learners will experience through the activity.

Withdrawing from an action in order to consider whether the action appears to be 
effective, and if so, when else it might be similarly effective, can help strengthen the 
witness, drawing attention to dimensions of possible variation of that action, and is 
a useful contribution to the ‘something else’ that is required in order to learn from 
experience. Prompting students to construct their own narratives, trying to articulate 
what sense they have made is clearly present in several if not most of the lessons 
reported in the chapters in this book. The same applies to teachers.

Pedagogic preparation for teaching a lesson includes bringing some appropriate 
pedagogic actions to the fore: imagining oneself as vividly as possible carrying 
them out mentally so that they are available to be enacted when needed. This is a 
form of educating pedagogic awareness following Gattegno (1970; see also Young 
& Messum, 2011). In these terms, one can see ‘teaching’ as creating conditions in 
which and experiences through which learners can ‘educate their awareness’, that is 
in which learners are led to integrate into their functioning not only the carrying out 
of procedures and the construction of examples but sensitivities to notice situations 
in which those actions could be useful. The Discipline of Noticing (Mason, 2002) 
can be seen as a collection practices directed to this end.

Ding et al. (Chapter 4 in this book) studied the way In which variation principles 
were addressed during teacher professional development, concentrating on gaps 
between pedagogic actions initiated by the teacher and suggestions made in the 
textbook. An obvious question arises as to whether variation principles could also 
inform the ways in which professional development is constructed and carried out. 
There is a lot to be gained by working with teachers in a manner consistent with how 
they are intended or expected to work with their students.

CONCLUSIONS

Variation as a principle informing what is available to be learned is consistent with 
the way human beings function. It follows that variation as a principle to inform 
both teaching and teacher education, including teacher professional development, is 
likely to be powerful. What the chapters in this book demonstrate is that variation 
alone is not going to guarantee that learning actually takes place. For learning to 
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take place, that is for integration and internalization of mathematical actions, it is 
not usually enough to have experienced variation. “One thing we don’t seem to 
learn from experience, is that we don’t often learn from experience alone. Something 
more is required” (Mason, 1998). Worse “a succession of experiences does not add 
up to an experience of succession” (Mason & Davis, 1989). This turns out to be a 
version of an assertion by James (1892, p. 628) that “a succession of feelings does 
not add up to a feeling of succession”. In other words, more is required than simply 
a succession of experiences of variation if we are going to learn from them.

Appropriate pedagogical moves are required to maximise the possibility that the 
variation provided will influence learners, and are themselves informed by awareness 
of dimensions of possible variation associated with each pedagogical action, and 
familiarity with appropriate ranges of effective change in those dimensions. These 
constitute variation-pedagogy. But in my view there is no recipe, no ‘best sequence’. 
What is required is sensitivity to the topic, to the students and their past and current 
experiences. One way to develop this sensitivity is to pay particular attention to 
both what needs to be attended to, and how. This calls upon the teacher to be aware 
of their awarenesses, in the sense of Gattegno (1970; 1987 see also Mason, 1998), 
concerning both what they themselves are attending to, and how, with access to 
pedagogic moves that encourage and promote such shifts of attention.

Variation is something to be sensitized to, not a programme or a sequence of 
pre-determined pedagogical acts to enact. The chapters in this book all point to the 
artistry of variation-pedagogy rather than to a mechanical process to ensure learning 
takes place. Ensuring learning, attractive as it may seem to policy makers, is simply 
impossible because, as Confucius observed, self-motivation, the taking of initiative 
by learners, acting upon their recent and past experiences as they undertake tasks 
they are offered, is essential and not under teacher control. Will is a key part of 
the human psyche. Of course the teacher can create conditions which make learner 
participation more likely, and many of the pedagogic actions mentioned in chapters 
in this book are designed to assist with this, whether by maintaining a reasonable but 
neither excessive nor miniscule challenge, by providing time for learner attention to 
encounter and make sense of what is being offered as foci of attention, or time for 
personal construal and narrative building through discussion with peers and in the 
presence of the teacher. The same applies to teachers making sense of a lesson.

Several of the chapters in this book suggest or imply that it is very difficult to 
disentangle conceptual and procedural variation. For example, one of the effects of 
the pedagogic moves underpinning the examples in Peng, Li, Nie and Li (Chapter 6 
in this book) is that variation, in their case changing conditions constituting the 
data, is really providing access to the conceptual underpinnings of the procedures 
for solving right triangles. In other words, making distinctions between conceptual 
variation and procedural variation is not as straightforward as it seems on the surface. 
I wonder whether it will prove to be helpful for teachers.

In terms of attention, lesson descriptions in this book indicate that variation-
informed pedagogic actions devote time to a thorough exposure to discerning 
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relevant details and recognizing significant relationships, aiming for a fusion of 
awareness that might otherwise be skipped over superficially from a desire to ‘get 
to the nub’. One of the lessons from variation theory is that the ‘nub’ is not the 
‘doing of exercises’, valuable as that might be, but rather lies in appreciating and 
comprehending the critical features, the details that need to be discerned in order 
that structural relationships can be recognized, so that student attention can shift to 
perceiving properties as being instantiated. It is evident that time spent on ‘student 
narratives’, on students articulating and rephrasing for themselves the core ideas of 
the lesson is a significant part of learner experience when the teaching is informed 
by variation principles. In this way students experience contrast, generalization, 
separation and fusion. The whole point about making distinctions or discerning 
details is not to dwell in those distinctions themselves, but rather to have access 
to them, to have recourse to associated actions, when in the midst of an unfamiliar 
situation in the future. This is what problem solving is really about.

One of the features emerging from many of the chapters in this book is the value 
of being sensitive to learner experience, and this aligns well with the ‘teaching-
triad’ of Jaworski (1994; see also Despari & Jaworski, 2002) which highlights 
sensitivity to learners, appropriate challenge, and management of learning. For 
example, taking time to make sure that everyone has time to gaze at a diagram 
or exercise before rushing to enact the first action that becomes available. In the 
language of attention this is holding wholes and applies not only to a ‘whole’ but 
to a discerned aspect or part. It is more efficient to make sure that learners are 
discerning details that the teacher knows are important than to rush on to seeking our 
relationships or perceiving properties as being instantiated too quickly. ‘Stressing 
and consequently ignoring’, is how generalization takes place, how learner attention 
shifts from recognizing a relationship in a particular situation to perceiving a property 
as being instantiated in the particular. Seeing the general through the particular, 
and the particular in the general are fundamental acts of attention which need to be 
invoked, supported, promoted, and internalized if learners are going to internalize 
actions (procedures) and appreciate and comprehend both concepts and procedures.
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