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FOREWORD

Another Decade of PME Research

PME stands for Psychology of Mathematics Education; it is a society whose 
members form the International Group for the Psychology of Mathematics 
Education (IGPME). It holds an international conference annually, hosted by PME 
members in a diversity of countries around the world. From its beginnings in 1976, 
Psychology has underpinned the mathematics education research reported at PME 
conferences. For example, studies of students’ learning of mathematical topics 
(e.g., ratio, algebra, calculus, geometry…) and recognition of the difficulties certain 
topics present to students. However, it has long been understood that the P (for 
Psychology) embraces a range of human sciences, such as (for example) Philosophy, 
Sociology, Anthropology and Semiotics, which have become central to the research 
in Mathematics Education of quite a few PME members. While the central themes 
of research continue to be the learning and teaching of mathematics, and cognitive 
studies root PME firmly within the Psychological domain, we have seen focuses 
on other themes like constructivism, socio-cultural theories, linguistics, equity and 
social justice, affect, and on the professional lives of teachers emerging over the 
years.

In all cases, research published in PME proceedings has gone through a 
critical review process. Reviewing is undertaken by PME members who have 
attended several PME conferences and had their own research reports in previous 
proceedings. PME is open to researchers in mathematics education throughout the 
world, and reviewers reflect the cultural and geographic diversity of PME itself. 
The review process requires that papers accepted for publication focus clearly on 
aspects of mathematics education and satisfy a set of criteria with demands on 
theory, methodology, reporting of results and discussion of implications and impact 
of the research. It is indicative of the quality of PME research reports and conference 
proceedings that PME papers are respected alongside those in high quality research 
journals.

In 2006, a PME handbook celebrating 30 years of PME was produced as a 
milestone for the PME community (1976–2006). This handbook synthesised PME 
research over the 30-year period and demonstrated the developing themes mentioned 
above through its chapters. Authors were chosen to acknowledge the scientific quality 
of their research and their active contributions to PME conferences over the years 
and, as a whole, to celebrate the diversity of PME culturally and geographically.

We now present a new handbook celebrating another decade of PME research – 
40 years. The 40th PME conference is held in Szeged, Hungary. This is particularly 
fitting since Hungary was the birthplace of George Polya, who has been a great 
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inspiration to PME members and students of mathematics widely over the years. His 
seminal book “How to Solve It” has influenced the doing of mathematics through 
problem-solving and the use of heuristics of problem solving. In fact, the title of 
Polya’s book is taken as the title for PME 40, and as a theme for the conference. The 
choice of guest speaker, Alan Schoenfeld, reflects the theme: Alan having been one 
of the pioneers in mathematical problem solving building on Polya’s work.

The editors of this new handbook were invited by the PME International 
Committee to produce a volume celebrating the most recent decade of PME. Their 
work in producing the handbook started with a survey of research published in PME 
proceedings since 2006, the recognition of key themes in this work and invitation to 
authors to study and provide a synthesis of each of the themes. Their introduction 
provides details of this process and a rationale for the themes chosen, showing a 
diversity from focuses within mathematics itself towards key aspects of the learning 
and teaching of mathematics and its relations to society and culture. Themes include 
numbers, algebra, geometry, functions and calculus, proof and argumentation, 
problem solving, mathematical modelling, language, the use of digital technology, 
curriculum and assessment, teachers’ knowledge and professional development, 
affect, and the socio-cultural-political axis in understanding mathematics education.

PME as a society is alive and well. Recent conferences in Taipei, Kiel, Vancouver, 
and Hobart have been extremely well attended. In recent years, PME has introduced 
a special day for early career researchers (the ERD) before each annual conference. 
These days have also been well attended, and participants have then attended the 
main conference. This means that PME is actively encouraging a new generation of 
researchers with every conference. In the coming years we plan to have conferences 
in Singapore (2017) and Sweden (2018) and are in conversation with other nations 
for planning conferences after this.

I recommend this handbook to all researchers in Mathematics Education. You will 
find here a strong taste of the research in PME, a synthesis of recent research and 
indications for future research directions. My thanks go to the editors and all authors 
and reviewers for their contribution to this important work.

Barbara Jaworski
President of PME
On behalf of the PME International Committee (IC)
February 2016

FOREWORD
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INTRODUCTION

A handbook compiling the research produced by the PME Group from its very 
beginning until 2005 was published in 2006 to celebrate the first 30 years of existence 
of the PME Group. During the last ten years the activities of the PME Group have 
undoubtedly grown and diversified. From inspection of the more recent conference 
presentations and Proceedings it is readily apparent that research areas have 
continued to evolve. It thus seems an appropriate moment to release a new handbook 
which captures both the new directions that have emerged as well as providing a rich 
overview of areas which continue having a sustained record of explorations by the 
PME community. The second PME handbook is published to celebrate the 40 years 
of activity of the PME Group. It focuses primarily on the research activities over 
the last ten years (2006–2015) and can be seen as a ready sequel to the first PME 
handbook, which covered the period 1976–2005. The proximity of the timing of the 
2015 PME conference and a critical deadline to ensure the timely publication of this 
handbook has led to a slightly lighter review in several chapters of papers included 
in the 2015 Proceedings.

To test our impression that changes have occurred, since 2005, in the research 
interests of the PME Group, we analyzed the indexes of the Proceedings, identified 
the presentations related to the various research topics, and compared the different 
tallies. As for the first handbook, the editors’ most sensitive decision was to use this 
analysis to select the topics for the chapters of the new handbook. The result was a 
list of fourteen chapters which cover the core and most relevant parts of the activity 
of the PME Group during the last ten years.

By comparing the indexes of the two handbooks, the main differences which 
have resulted from the evolution of researchers’ interests can readily be seen. The 
emergence of new research directions was already becoming evident during the first 
years of this century. Since many of these explorations were still in an initial phase 
of development, it was deemed premature to include them in the first handbook. 
However, some of these research areas (like language or modelling) have increased 
in momentum and relevance, and now certainly warrant inclusion in the second 
handbook. Main “traditional” research areas (like algebra, arithmetic, geometry, and 
calculus) as well as domains that were “new” ten years ago (socio-cultural, political, 
affectivity, ICTs, and teacher related issues) have retained a dominant presence in 
the Proceedings. Accordingly they form part of the second handbook – although, in 
some cases, with reduced coverage.

Once we had decided which topics to include in the handbook, our second 
important task was to identify authors who could take on the responsibility for 
writing the chapters. We believed that it was important to select researchers who 
had not contributed a chapter to the first handbook and considered that effective 
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coverage of each field would be enhanced by the selection of a team of at least two 
authors, located, for most chapters, in different parts of the world. Finally, to achieve 
optimum continuity between the two handbooks, we asked, whenever possible, for 
an author from the first handbook to act as a reviewer of the pertinent chapter in the 
second handbook. Each chapter, it should be noted, was constructively reviewed by 
at least two PME members, with the selection of reviewers based on their expertise in 
the relevant area. For this group, too, we aimed at geographic diversity. In summary, 
the 31 authors in this handbook came from 15 countries (or 17 countries if we count 
their place of birth); the 27 reviewers from 13 different countries. The combination 
of the scientific quality of authors and reviewers, and their wide geographical 
distribution, have given voice to diverse approaches, perspectives and delivered a 
meaningful document of relevance to both mature and emerging researchers.

The handbook chapters are organized into the same four sections used in 
the first handbook. The first group of chapters correspond to topics related to 
mathematics content areas: algebra, arithmetic, geometry (including measurement 
and visualization), and calculus. The second section, the main one in terms of page 
volume, is devoted to transverse topics: proof, ICTs, language, curriculum and 
assessment, concept learning, problem solving, and modelling. The third group of 
chapters comprises those focused on social, cultural, political or affective aspects of 
teaching and learning of mathematics. Finally, the last but equally important section 
consists of a chapter devoted to pre- and in-service teachers’ activity.

In closing, we acknowledge the efforts of all those committed to the continuing 
growth and evolution of the PME Group, the persistent search for new knowledge 
aimed at fostering teachers’, students’, and society’s understanding and appreciation 
of mathematics and its productive application in their personal and professional 
lives. Our thanks are also extended to the members of the International Committee 
who serve the Group and take care of scientific, organizational, and administrative 
matters that require attention if the health of the PME Group is to be preserved, to 
the local organizers of the annual PME conferences, who selflessly strive to provide 
PME members with the best possible environment to celebrate the yearly meeting, 
and, above all, to the PME members with their shared aim of achieving a better 
mathematical education for all members of society.

Ángel Gutiérrez
Gilah C. Leder
Paolo Boero
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Á. Gutiérrez, G. C. Leder & P. Boero (Eds.), The Second Handbook of Research on the Psychology of  
Mathematics Education, 3–38. 
© 2016 Sense Publishers. All rights reserved.

FERNANDO HITT AND ALEJANDRO S. GONZÁLEZ-MARTÍN

1. GENERALIZATION, COVARIATION,  
FUNCTIONS, AND CALCULUS

1. INTRODUCTION

In this chapter we review the main contributions of PME to research on the topics 
of functions and calculus, identifying ongoing trends as well as newly emerging 
issues and approaches. The first part of this chapter (Section 2) refers mainly to 
the chapter on advanced mathematical thinking (Harel, Selden, & Selden, 2006) 
in the last Handbook of Research on the Psychology of Mathematics Education 
(Gutiérrez & Boero, 2006), which is where most of the PME research results 
concerning functions and calculus appear. However, the field has evolved, and 
a considerable part of this chapter is devoted to identifying issues we consider to 
be some of the major approaches and research topics that have emerged in recent 
years.

Our chapter examines research that has been carried out on the topics of functions 
and calculus. At first glance, this would appear to be a ‘condensed’ area of research, 
however the reality is very different from what we first imagined. Research on the 
teaching and learning of functions extends to the early grades, and Early algebra 
researchers advocate encouraging algebraic thinking beginning in primary school, 
using a functional approach. This led us to consider some PME papers that look 
at this Early algebra perspective, allowing us to explore the origins of functional 
thinking in primary school by examining the main contributions of PME to the 
perspective of the functional approach. Furthermore, the topic of functions is taught 
beginning in secondary school, leading to the introduction of calculus and its study 
at the university level. In the last ten years, research conducted at the university 
level has also evolved both in terms of approaches and research topics (Artigue, 
Batanero, & Kent, 2007; Nardi, Biza, González-Martín, Gueudet, & Winsløw, 2014; 
Rasmussen, Marrongelle, & Borba, 2014), adapting to the characteristics of a rather 
different and varied educational level. As a consequence, when we were asked to 
write a chapter about ‘Functions and Calculus,’ we were actually confronted with 
a wide range of topics and even some contradictions. For instance, there is a long 
tradition of research on teacher training for primary and secondary education, 
but scarce research focused on the university level; there is abundant research on 
teaching practices in primary and secondary education, but a major gap appears 
at the tertiary level; other discrepancies are covered later in this chapter. It would 
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be impossible to parse this diversity of research and multitude of approaches from 
primary school to the university level, and in this chapter we instead identify those 
works that, in our view, have propelled knowledge on the topic in the last ten years. 
Our choices are, of course, influenced by our own experience as researchers and 
the account presented here reflects our personal vision.

Concerning the theoretical approaches used to conduct research on the topics 
of functions and calculus, ten years ago, Harel et al. (2006) highlighted the fact 
that theoretical frameworks used in studies on advanced mathematical thinking 
(AMT) were largely cognitive. This phenomenon was not restricted to the PME 
community, but was a popular trend in research on advanced levels, which for a 
long time concentrated on “identifying cognitive processes underlying the learning 
of mathematics at advanced levels, investigating the relationships of these processes 
with respect to those at play at more elementary levels, and understanding students’ 
difficulties with advanced mathematical concepts” (Artigue et al., 2007, p. 1011). 
While this situation has changed (more quickly in research on the primary and 
secondary levels than the tertiary level), the PME proceedings still publish a number 
of papers that follow some of these cognitive approaches, such as the concept 
image – concept definition approach or the use of representations. Although PME 
and PME-NA have played an important role in the consolidation of AMT, research 
in the last years has been critical of this approach and some of its implicit ideas, as 
Artigue et al. (2007) summarize. These critiques may have been the reason certain 
terms appear less frequently (or, at least, are being used more judiciously). For 
example, the Congress of European Research in Mathematics Education (CERME) 
had an Advanced mathematical thinking working group until its sixth edition 
(2009), but shifted to the University mathematics education working group in 2011 
(Nardi, González-Martín, Gueudet, Iannone, & Winsløw, 2011), with some of the 
AMT content being redistributed to other groups. Consequently, we will not refer 
to AMT in this chapter and will instead refer to specific content related to functions 
and calculus and, of course, to the theoretical approaches pertaining to problems of 
teaching and learning this content.

As mentioned above, until ten years ago, researchers were using mainly cognitive 
approaches, especially in studying higher levels of education. Since then, some 
of these approaches have undergone developments that have opened up wider 
perspectives. For instance, research focusing on the cognitive (for example, 
articulation among representations, Duval, 1999) has evolved to other types 
of research connected to sociocultural processes, where communication in the 
classroom is the key ingredient (Mariotti, 2012; Radford, 2003, 2009). This last 
type of research has been at the origin of some interesting task-design activities 
(e.g. Prusak, Hershkowitz, & Schwarz, 2013). This is just one example, and later in 
this chapter we will discuss other instances of theoretical developments that have 
emerged in the last ten years. Another major evolution in the field has seen different 
approaches being used in a coordinated way; this has sparked an interest within the 
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PME community in comparing theories (e.g. Boero et al., 2002; Presmeg, 2006a) and 
in examining the networking of theories, as evidenced at the 2010 (Bikner-Ahsbahs 
et al., 2010), and 2014 (Clark-Wilson et al., 2014) Research Forums.

It is worth noting that PME and PME-NA communities have been extremely 
prolific in developing research related to the topics of functions and calculus. It 
would be therefore impossible to present a comprehensive summary, and in this 
chapter we address what we consider to be the most important advances, alongside 
research conducted outside the PME community. Although we will mainly refer to 
papers published in PME proceedings during the last ten years, references to the 
evolution of research that has appeared in journals are inevitable, and some of 
the papers presented during PME conferences have led to, or come from, papers 
published in international journals.

This chapter is divided into five main sections (not including this introduction). 
Section 2 synthetizes the main PME contributions developed using cognitive 
approaches, in most cases following pre-existing theoretical perspectives (although 
we also include some new approaches). The abundant literature on functions in 
different school grades led us to create a whole section summarizing the main 
results on this topic, which are discussed in Section 3, with a particular focus on the 
transition from mental to semiotic representations. In Section 4 we examine some 
attempts to expand past purely cognitive approaches, drawing mainly on socio-
cultural or institutional perspectives and on the networking of theories. Section 5 
addresses topics of research that have received more attention in recent years, 
compared to the previous handbook. Finally, in the last section, we reflect on the 
main contributions of PME research with respect to functions and calculus, and 
explore avenues for future research.

2. PME CONTRIBUTIONS USING COGNITIVE APPROACHES

2.1. Concept Image and Concept Definition

One important change becomes apparent when comparing the PME production of 
the last ten years with that of previous decades: the marked decline in the number of 
papers following the concept image – concept definition approach. This may be due 
to the shift in research towards favoring semiotic representations and issues that are 
more social and cultural rather than solely cognitive, as discussed in the introduction. 
Another possible reason is the trend towards using other cognitive approaches, as 
we will discuss later in this section.

The term concept image was introduced to define “the total cognitive structure 
that is associated with [a given] concept, which includes all mental pictures and 
associated properties and processes” (Tall & Vinner, 1981, p. 152). On the other 
hand, concept definition describes “a form of words used to specify that concept” 
(p. 152). This approach has been useful to show, for instance, that a learner can hold 
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a contradictory concept image and concept definition. Building on the gap between 
the concept definition and the concept image, as well as the relationships between 
intuitive and formal knowledge (as considered by Fischbein, 1999), Kidron and Picard 
(2006) constructed an activity based on the discrete-continuous interplay to help 
university students understand the notion of limit in the definition of the derivative. 
Using a model from the field of dynamical systems – the logistic equation – as well 

as Euler’s method to see the effect of replacing   by   , their data reveal 

the existence of the ‘treasured intuition’ that “gradual causes have gradual effects 
and that small changes in a cause should produce small changes in its effect ” (p. 443, 
emphasis in the original). Although their activities helped some students overcome 
treasured intuitions and enrich their concept image, the treasured intuitions seemed 
to be quite persistent. They also pointed at the link between different representations 
as a reason for students’ success at overcoming the gap. We will return to the 
importance of representations in Sections 3.1 and 3.3. This work was pursued by 
Kidron (2009), using Fischbein’s notion of mental model (Fischbein, 2001), to show 
that “the role of intuitive structures does not come to an end when analytical (formal) 
forms of thinking become possible” (p. 314), again demonstrating the tenacity of 
certain treasured intuitions. In particular, Kidron’s work shows that tacit models 
can coexist with logical reasoning, even in advanced students, and underlines the 
fact that some pictorial models may emerge when facing abstract questions, again 
reinforcing the importance of using different representations.

Although use of this approach in PME has dropped off significantly in recent 
years, it is not a static approach, as Artigue et al. (2007) clearly show. For instance, 
Bingolbali and Monaghan (2008) proposed a reinterpretation of the concept image 
construct, criticizing the fact that most studies using it adopt a purely cognitive 
approach. Their proposition – in connection with Bingolbali, Monaghan and Roper, 
2006, discussed in Section 5.5 – takes into account the learning context, particularly 
in undergraduate studies. They demonstrate how department affiliations can 
have an impact on students’ development of concept images (their work focuses 
on derivatives), which are influenced by teaching practices and departmental 
perspectives. Although their work adds an institutional component to the concept 
image – concept definition approach (we discuss the advantages of institutional 
approaches in Section 4.1), the impact of their work on PME research is unclear. 
However, it is worth noting that ten years ago, Harel et al. (2006) posed the 
question, “is a learner’s current concept image a consequence of a specific teaching 
approach or is it an unavoidable construct due to the structure and limitation of the 
human brain, mind, culture, and social interaction?” (p. 163). Although institutional 
approaches (see Section 4.1) seem to provide answers to this question, the recent 
reinterpretation of the concept image construct also appears to respond to it, and it 
will be interesting to see the new directions this approach might take in light of this 
development.
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2.2. The Duality between Process and Object

Like the concept image – concept definition approach, the APOS (Action, Process, 
Object, Scheme) framework has been less present in PME in the last 10 years. 
The main tenets of this approach, derived from Piaget’s ideas about reflective 
abstraction, are clearly presented by Artigue et al. (2007), so we will only cite an 
example concerning infinity using an innovative perspective and developed over a 
number of years.

Mamolo (2014) used APOS theory as a lens through which to interpret her 
participants’ struggle with various questions and paradoxes concerning infinity, in 
looking at the differences between potential infinity and actual infinity – both quite 
present in many notions and procedures of calculus; the former seen as a process in 
which every moment in time is finite, but also goes on forever, and the latter seen 
as a completed entity that envelops that which was previously potential (Fischbein, 
2001). These two notions can be associated with the process and object conceptions 
of infinity, respectively, the latter being the encapsulation of the former. In this 
perspective, “through encapsulation, the infinity becomes cognitively attainable” 
(Dubinsky, Weller, McDonald, & Brown, 2005, p. 346) and can be conceived as an 
object, a complete entity which can be acted upon. However, recent studies have 
shown that in some cases, de-encapsulating infinity back to a process seems to be a 
useful strategy to cope with infinity (Brown, McDonald, & Weller, 2010).

Taking an innovative approach and studying paradox resolution, and building 
on previous work (Mamolo & Zazkis, 2008), Mamolo (2014) approached the 
participants’ understanding of ‘acting’ on transfinite cardinal numbers via arithmetic 
operations, focusing particularly on struggles with the indeterminacy of transfinite 
subtractions. She used the Ping-Pong Ball Conundrum (P1, see Mamolo & Zazkis, 
2008) with a variant (P2):

P1 – Imagine and infinite set of ping-pong balls numbered 1, 2, 3…, and a 
very large barrel; you will embark on an experiment that will last for exactly 
60 seconds. In the first 30s, you will place balls 1–10 into the barrel and 
then remove ball 1. In half the remaining time, you place balls 11–20 into 
the barrel, and remove ball 2. Next, in half the remaining time (and working 
more quickly), you place balls 21–30 into the barrel, and remove ball 3. You 
continue this task ad infinitum. At the end of the 60s, how many balls remain 
in the barrel? (p. 169)

P2 – Rather than removing the balls in order, at the first time interval remove 
ball 1; at the second time interval, remove ball 11; at the third time interval, 
remove ball 21; and so on… At the end of this experiment, how many balls 
remain in the barrel? (p. 170)

Mamolo studied the work of two subjects, a high-achieving fourth year 
Mathematics major who had received formal instruction on comparing infinite sets, 
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and a university lecturer who taught prospective teachers mathematics and didactics 
(including comparing cardinalities of infinite sets). While the first participant was 
able to cope with P2, the second one could not, shifting his attention from describing 
cardinalities of sets to enumerating their elements, and reasoning informally rather 
than deductively, in what is described as “attempts to make use of properties of a 
process of infinitely many finite entities rather that make use of properties of an 
object of one infinite entity” (p. 175, emphasis in the original). The behavior of the 
two participants led Mamolo (2014) to identify two ways of ‘acting on infinity’: 
(1) through the use of coordinating sets with their cardinalities and using bijections 
between sets, and, (2) through de-encapsulation of the object of infinite set to extend 
properties of finite cardinals to the transfinite case. Her results point to tensions 
between object, process, and de-encapsulation of an object that warrant further 
research, which could shed light on the uses of potential and actual infinity in 
questions dealing with calculus.

2.3. Embodied Cognition

The growing contribution to research of the theories of embodied cognition 
has already been acknowledged (e.g. Artigue et al., 2007), however, their use in 
advanced mathematics remains rare. Embodied cognition sees mathematical ideas 
as grounded in sensory-motor experience (Lakoff & Núñez, 2000) and considers the 
centrality of learners’ gestures in grasping mathematical ideas. Two main conjectures 
of this approach are that mathematical abstractions grow to a large extent out of 
bodily activities (i.e. the latter are a part of conceptualizing processes), and that 
understanding and thinking are perceptuo-motor activities that are distributed across 
different areas of perception and motor action (Nemirovsky, 2003).

Before 2005, this approach was used in calculus in PME, for instance, by 
Maschietto (2004), who studied a key issue of the introduction of calculus – the global/
local game – with the help of graphic-symbolic calculators. Her main hypothesis 
was that the zoom-controls of the calculator could support the production of 
gestures and metaphors that could help students shift from a global to a local point 
of view, this being seen as a major aspect of transition in calculus. To tackle this 
issue, she designed a didactical engineering1 sensible to the principles of embodied 
cognition. Her paper explored the relationship between the physical features of 
the calculator (specifically, the different zooms) and the bodily activity involved. 
Her results seem to indicate that the exploration of several functions through the 
zooming process, aiming to shift between the local and the global, was supported 
by gestures and language, and that these remained in the students’ repertoire even 
when the calculators were not available, which agrees with Hähkiöniemi’s (2008) 
results concerning derivatives – except for the use of calculators – which we discuss 
in Section 3.3.

In 2005, Nemirovsky and Rasmussen (2005) – in connection with their work 
in Rasmussen, Nemirovsky, Olszervski, Dost and Johnson (2004) – also used this 
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approach for an even more advanced mathematical topic: systems of differential 
equations. They constructed a physical tool called a ‘water wheel,’ based too on 
the premise of the “rich connections between kinesthetic activity and how people 
qualitatively understand and interpret graphs of motion” (p. 9). Interested in the 
notion of transfer, they explored how prior kinesthetic experiences with a physical 
tool (the water wheel) can provide students with resources that can be generalized 
to work with symbolic equations (in their case, systems of differential equations). 
Their results show how the students’ interaction with the water wheel helped them 
develop sensitivity to the roles of different variables in a system of differential 
equations, as well as to the connections among them. One important implication 
of this work concerns the known dissociation of symbolic and graphical aspects 
of calculus concepts for students. Nemirovsky and Rasmussen argue that a bodily 
interpretation, or feeling, of the meaning of many topics in calculus could help 
students relate the results of calculations to the motion they describe, and hence their 
graphic representation.

More recently, Swidan and Yerushalmy (2013) also used this approach, taking 
into account elements of the objectification theory (which considers learning to be 
a process of becoming aware of the knowledge that exists in the culture, Radford, 
2003), and the important role of accumulation in building the notion of integral 
(see Thompson & Silverman, 2008). In the three cases explored in this section, 
evidence shows a strong bodily connection with the tools used, becoming a ‘bridge’ 
between abstract mathematical concepts and students. However, the lack of studies 
on this approach at advanced levels calls for caution, and more research needs to be 
developed to better understand the knowledge that students build through this type 
of activity (Artigue et al., 2007, p. 1024). In any case, it seems that the mediations 
of the teacher in this kind of activity play a crucial role, particularly in helping 
students associate their developed knowledge with the targeted institutional forms 
of knowledge.

2.4. Other Approaches

Other approaches have been used in research on the topics of functions and 
calculus. For instance, the conceptual change approach, which postulates the 
necessity of going through intermediate states before gaining an understanding of 
mathematical notions. Using this approach, Vamvakoussi, Christou and Van Dooren 
(2010) showed the main difficulties students have apprehending the density property 
in different sets of numbers (rational, irrational and real numbers), and particularly 
the strong impact of the nature of interval end points (e.g. natural, decimal, or 
rational numbers) on students’ answers related to the amount of numbers in between; 
these difficulties may interfere with the learning of notions such as convergence or 
the epsilon-delta definition of limit. Their results agree with those of Pehkonen, 
Hannula, Maijala and Soro (2006), who developed a longitudinal study of students 
in grades 5 to 8, mapping the development in the understanding of the density of 
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rational numbers.2 To explicitly tackle the idea of discreteness, they implemented the 
rubber line metaphor (Vamvakoussi, Katsigiannis, & Vosniadou, 2009), focusing on 
the ‘no successor’ aspect of density, to help students transition through intermediate 
states of understanding, and showing different degrees of success depending on the 
students’ grade level.

Another approach used by PME researchers to investigate notions related to 
functions and calculus is the development of models on the understanding of a given 
notion. Roh (2010a, 2010b) and Roh and Lee (2011) established a framework for 
understanding the ε-N definition of limit and constructed activities aimed at helping 
students grasp this definition, and, in particular, understand the role and order of 
the quantifiers ε and N. Their second activity (Roh & Lee, 2011) exploits the use 
of ε-N strips, and their results seem to indicate they help students develop a better 
understanding of the ε-N definition. The use of strips is not new, and in the early 
80s, Robert (1983) showed the potential of such approaches through the use of 
didactical engineering, and, in particular, the effect of classroom interaction in the 
construction of the notions of limit and convergence. It is important to note that, 
although Vamvakoussi, Roh and their colleagues built cognitive models, a big part of 
their research is based on social interaction among students. However, this element 
is not central to their research and their analyses focus on the individual. We explore 
other approaches in Sections 3.4 and 4, where going beyond the individual becomes 
an important factor.

Finally, it bears mentioning that some works presented at PME conferences have 
used the Abstraction in Context (AiC) approach (Schwarz, Dreyfus, & Hershkowitz, 
2009). This approach investigates processes of constructing knowledge by taking 
into account the need for a new construct as part of the process of abstraction. This 
approach follows three stages: (1) identifying the need for a new construct; (2) the 
emergence of the new construct; and (3) the consolidation of the new construct. This 
approach has been used, for instance, to investigate the process of constructing a 
definition – in this case, inflection point, which is a problematic object in calculus –  
(Gilboa, Kidron, & Dreyfus, 2013). AiC confirms once again that students often 
appeal to their concept image and not to the concept definition of mathematical 
objects, and demonstrates that students must realize the need for a definition. 
Also, Kouropatov and Dreyfus (2013) used the concept of accumulation to introduce 
the Fundamental Theorem of Calculus (FTC) – following the work of Thompson 
and Silverman (2008) – and showed how AiC is useful for identifying actions and 
constructs to study processes of knowledge construction. Their results point to the 
relevance of the notion of accumulation to help students construct processes of 
integration, and indicate that understanding of the FTC can be achieved based on 
the notions of accumulation and rate of change. Although the role of the interviewer 
seems to have a strong effect on results (and one might question the stability of 
the knowledge constructed by the students in their experiment), the effectiveness of 
identifying different levels of actions calls for more research using this approach. It 
is also worth noting that even though the focus of this approach is mostly cognitive, 
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it has recently been linked with more social approaches, as we discuss in Section 4.3 
on the networking of theories.

3. SEMIOTIC REPRESENTATIONS IN THE CLASSROOM: THE  
DEVELOPMENT OF THE CONCEPT OF FUNCTION

3.1. Use of Representations, Patterns and Variation

Over the last ten years, a large number of PME researchers have focused on the 
idea of generalization related to variation in primary school; this allows the 
subsequent use of this same approach in secondary school, employing patterns as a 
tool. In this approach, children in primary and secondary school are asked to find a 
general rule for a given pattern and to produce a semiotic representation to explain 
their reasoning. Through these processes, pupils eventually develop a way to figure 
out the form of a general term related to the pattern (usually, from a visual, natural 
language or numerical point of view, although in some cases, particularly in secondary 
education, an algebraic expression is asked). Using this approach and favoring whole 
class discussion in primary school, Dooley (2009) proposes to analyse patterns not 
just focusing on a single variable, but rather on the functional relationship between 
variables, showing that generalization and justification are closely aligned. Making 
use of a whole class discussion, it is legitimate to ask whether every single pupil 
retains the knowledge constructed in class. In her study with 10-year-old children, 
Warren (2006) identified different types of performances regarding patterns (p. 380):

1. No response;
2. Nonsense response;
3. Quantification of the growing rule in symbols (e.g. +3);
4. Quantification using specific examples (e.g. 2 × 3 + 2, 3 × 3 + 2);
5. Correct symbolic relationship using unknowns (e.g. 3 × ? + 2).

These categories clearly reflect that not all children are able to immediately 
develop processes of generalization. Related to this, Wilkie (2015) analyzed 102 
7th-graders’ performances in generalization activities with patterns, finding that 
18.6% of the population used correspondence, 14.7% gave a rule using letters and 
only 2.9% expressed their results as an equation. These research findings seem to 
indicate that several steps must be taken to help young students successfully perform 
this type of activity. This agrees, on the one hand, with Radford (2010, 2011) who 
posits that engaging in early algebra thinking is not immediate or spontaneous, and 
highlights the idea that while early algebra could be promoted, it must take into 
consideration specific pedagogical conditions. On the other hand, Wilkie’s findings 
also agree with Trigueros and Ursini (2008), who indicate that several steps must 
be taken to acquire the notion of variable as unknown, as a general number, or as a 
functional relationship. As we discuss in the next section, these steps are a necessary 
precursor to acquiring the concept of function.
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3.2. The Use of Covariation between Variables, Modelling and Task-Design

The late 90s and the first decade of this century saw a flurry of research that produced 
important results concerning the construction of the concepts of covariation and 
function. The PME and PME-NA groups on representations studied the processes 
of visualization and conversion between representations, both with students and 
pre-service teachers (see, for instance, the Journal of Mathematical Behavior 
special issue, edited by Goldin and Janvier, 1998). The construction of the concept 
of function appeared to be more complex than expected with respect to students 
(Janvier, 1998) as well as high school teachers (Hitt, 1998). Both cases highlighted 
the importance of building the concept of function through conversion processes 
among representations (Duval, 1995). The discussions continued in PME-NA, which 
led Carlson (2002) to present a more accurate approach showing the importance 
of the subconcept of covariation between variables as a prelude to the concept of 
function, which is concretized with the Five Mental Actions of the Covariation 
Framework (p. 65):

• MA1. Coordinating one variable with changes in the other;
• MA2. Coordinating the direction of change of one variable with changes  

in the other;
• MA3. Coordinating the amount of change;
• MA4. Coordinating the average rate of change;
• MA5. Coordinating the instantaneous rate of change of the function.

This framework underscored the importance of modelling in the construction 
of the concept of function. For instance, Thompson (2008) addressed a major 
problem in learning mathematics related to the notion of meaning (as a coherent 
conceptual approach), and exemplified this notion with three contents: trigonometry, 
linear and, exponential functions. With respect to linear functions, he explained 
the importance of meaning in associating the notions of linear functions to rate of 
change, proportionality, and average speed, showing the value of modelling (see also 
Thompson and Carlson, in press). Furthermore, Musgrave and Thompson (2014) 
explored teachers’ mathematical meanings as influenced by function notation, 
finding that teachers read function notation by stressing only the content to the right 
of the equal sign while neglecting the importance of covariation between variables. 
The ability to shift from a variational to a covariational type of reasoning seems to be 
far from evident, and some efforts have been made to help students with this process. 
Here we can cite the recent contribution of Johnson (2015), who developed activities 
to promote this shift among 9th grade students, using a dynamic computer applet and 
a task-design approach. The use of dynamic computer representations seems to be an 
interesting approach to help students grasp covariational relations.

Over the last few years, modelling in the learning of mathematics has taken 
on greater importance from primary to university levels (e.g. Blum, Galbraith, 
Henn, & Niss, 2007), and as said above, its use can help students grasp content 
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related to functions. This is the case of the work presented by González-Martín, 
Hitt and Morasse (2008), which assigns importance to representations and 
modelling processes using a task-design approach and collaborative learning 
in a sociocultural setting. Their work shows that secondary students’ thinking 
processes during modelling activities can promote covariational thinking about 
variables, allowing the notions of independent and dependent variable to emerge 
naturally. In their study, they introduced the notion of spontaneous representations 
(non-institutional representations) constructed by the students to tackle modelling 
activities, showing that these representations act as an important ‘bridge’ between 
the students’ first attempts at tackling the activity and the institutional representations 
expected by the teacher and the school system. The work on modelling can 
provide a suitable environment to facilitate the evolution of these spontaneous 
representations in a special socio-cultural setting, called ACODESA (see also Hitt &  
González-Martín, 2015).

3.3. Transition from Mental Images to a Focus on Semiotic Representations and 
Visualization as a Semiotic Process Related to Functions and Calculus

As we said in the previous section, the PME working group on representations 
(Goldin & Janvier, 1998) and further research published by PME-NA (see Hitt, 
2002) revealed another side of the learning coin, contrasting with the concept 
image – concept definition approach. In this perspective, external representations 
of mathematical objects are fundamental, because they permit the apprehension 
of mathematical concepts. Conversion processes between different representations 
therefore play an essential role in the construction of mathematical concepts, 
articulation among registers of representations becoming an essential part of the 
learning process (Duval, 1995, 1999). It is worth noting that targeted external 
representations are usually connected to pre-existing institutional representations, 
such as those found in textbooks or on computer screens, and shared by a 
collectivity. All the papers in this section clearly illustrate that this theoretical 
approach distances itself from the concept image – concept definition approach. 
The main goal is to understand the difficulties students experience when doing 
a treatment in the same register of representations, when converting from one 
representation in one register to another representation in a different register, and, 
of course, to know more about their learning and understanding. One of the main 
characteristics of this approach is that it relates visualization to a cognitive activity 
that is intrinsically semiotic (Duval, 1999; Presmeg, 2006a). Although its first 
versions placed a clear emphasis on the cognitive aspects of learning – and, as a 
consequence, on the individual – this led to a noticeable shift from investigation 
focused on mental images (or related constructs) constructed by an individual, to 
investigation focused on the conversion processes between representations, and, 
finally, on how the individual in a learning process constructs a mathematical 
concept throughout this activity (Duval, 2006; Presmeg, 2006b, 2008). Under 
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this theoretical approach a new era of research emerged, exposing the learning 
problems that materialize when converting from one representation to another.

We discuss two specific examples concerning derivatives. To contribute to the 
debate on the differences and complementarity between visualization and analytic 
thinking, Aspinwall, Haciomeroglu and Presmeg (2008) constructed an instrument 
to better understand the thinking of calculus students, particularly with respect to 
derivatives. In their work, which aligns with PME contributions on visualization 
(Presmeg, 2006b), mathematical visualization encompasses “processes of creating 
or changing visual mental images, a characterization that includes the construction 
and interpretation of graphs” (p. 98). The instrument they constructed predicts 
individuals’ preferences for visual or analytic thinking, showing that successful 
students use a combination of visualization and analysis, and that verbal-descriptive 
thinking helps sustain the use of visual and analytic thinking. Moreover, their 
work shows that visual and analytical processes are mutually dependent during 
mathematical problem solving, and that the verbal-descriptive component acts as a 
necessary link, being one of the most useful modes of internal processing, supporting 
visual and analytic processes.

Finally, Hähkiöniemi’s (2008) research used aspects of embodied cognition (see 
Section 2.3) to investigate the meaningfulness and durability of students’ knowledge. 
This study is related to the promotion of an articulation between the definition of 
the derivative of real functions and graphical representations of the function and 
the tangent of the curve in one point. The formal definition of the derivative was 
not addressed; rather, the study investigated descriptions of five 12th grade students 
who were assigned tasks of conversion between the definition of the derivative 
and a graphical representation of the situation (qualitatively analyzing the rate of 
change of functions from graphs), one year after receiving instruction. Regarding 
the meaning of the derivative, all the students referred to the slope of the tangent, the 
rate of change, and the differentiation, giving embodied meaning to the derivative 
and using gestures to describe it. The author suggests “it seems that the graphical and 
embodied elements of the derivative were experientially real for the students and 
gave meaning to the abstract mathematical concept” (p. 116). The visualization 
of the tangent also seemed to be a helpful tool for the students, assisting with the 
durability of knowledge and leading in many cases to the use of gestures.

These two last examples illustrate the potential of research on visualization and 
representations to make connections with other ways of expressing mathematics 
that are usually neglected by traditional practices: language and gesture. We come 
back to the potential of these approaches in Section 6.3.

3.4. Sociocultural Approaches to Teaching and Learning Covariation between 
Variables and Functions

As we discuss in Section 4, the last few years have seen the emergence of some 
(and the consolidation of many) institutional and sociocultural approaches in 
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mathematics education. These approaches have also figured in work on semiotics 
and representations. The PME community quickly realized the importance of 
representations for the teaching and learning of mathematics, evidenced by the 
“Semiotics” discussion group organized by Sáenz-Ludlow and Presmeg held from 
2001 to 2004. The work carried out in this group bore fruit, leading to a special 
issue of Educational Studies in Mathematics in 2006 (Sáenz-Ludlow & Presmeg, 
2006) and the book, “Semiotics in mathematics education” edited by Radford, 
Schubring and Seeger (2008). In the introduction to this book, the authors point out 
that the theoretical approach of semiotics attempts to understand “the mathematical 
processes of thinking, symbolizing and communicating” (p. vii), adding:

But semiotics is more than a contemplative gesture: in contemporary 
semiotic perspectives the notions of culture and cultural praxis receive a 
new interpretation—interpretation which extends to history as well—making 
semiotics a form of practical understanding and social action (Thibault, 
1991). This is why it does not come as a surprise that semiotics is increasingly 
considered as a powerful research field capable of shedding some light 
on what have traditionally been understood as self-contained domains of 
enquiry. (p. vii)

This perspective represented a break with the cognitive approach. Research 
studies did not focus exclusively on the individual, and communication processes 
were ascribed more power. The use of semiotics in the processes of signification 
(in a construction of the sign and concepts) has been in ascendancy as a theoretical 
approach in PME over the last ten years, and in these processes, communication 
is the main ingredient in a sociocultural setting, as illustrated by González-Martín 
et al. (2008), discussed in Section 3.2.

Communication and its combination with artefacts (considered broadly and not 
restricted to technology) are paramount in the theory of semiotic mediation (TSM). 
Mariotti (2012), in considering a collaborative setting where communication is a 
main element, argues that:

The theoretical model of TSM offers a powerful frame for describing the use 
of an artefact in a teaching-learning context. Within this model the use of an 
artefact has a twofold nature: on the one hand it is directly used by the students 
as a means to accomplish a task; on the other hand it is indirectly used by the 
teacher as a means to achieve specific educational goals. (p. 36)

From this perspective, the planning of teaching activities where communication 
is important and the use of processes of co-construction of the sign, including 
artefacts, requires a careful task-design. This can allow teachers to reach their goals 
while giving students the opportunity to construct, in this process of signification, 
action schemas through which the artefact evolves into a tool. The conceptual 
and technological approach to learning mathematics was influenced by semiotics, 
communication, and the transformation of an artefact into a tool, leading to a 
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better understanding of the technological approach to the teaching and learning of 
functions (e.g. Presmeg, 2008) and calculus (e.g. Lagrange & Artigue, 2009) in a 
technological environment, as we will see in the next subsection.

3.5. Semiotics and Technology, the Concept of Function and Modelling Processes

As there is a chapter in this Handbook concerning the use of technology, we 
will mention just a few works produced in the last ten years that reflect the rapid 
evolution of research on the problems of learning functions and calculus in a 
technological environment. At the end of the last century, advances in technology 
led many countries to adopt a high school syllabus that promoted the teaching of 
functions and calculus using three representations – numeric, graphic and algebraic 
(e.g. Schwarz, Dreyfus, & Brukheimer, 1990) – and some conversion activities 
appeared in calculus textbooks. However, conversion is not easy, even when using 
technology. Following the theory of reification (Sfard & Linchevski, 1994) for 
the case of functions, Campos, Guisti and Nogueira de Lima (2008) showed how 
secondary school teachers could not shift from the interiorization and condensation 
phases to the reification phase in a computational environment, when confronted 
with tasks about conversion among representations.

Such studies illustrated once again that conversion among representations 
(from a cognitive perspective) is not as easy as was previously thought, even using 
technology. A shift was made, not only with respect to the cognitive approach 
using technology, but also in studying the role of communication in the process 
of knowledge construction. This shift led to new studies on the processes of 
instrumentation and instrumentalisation when dealing with artefacts and semiotic 
mediation (Arzarello & Paola, 2008; Hegedus & Moreno-Armella, 2008; Mariotti, 
2012), promoting a better understanding of the concepts of variation, covariation 
and function.

With regard to modelling processes, technology reinforced pupils’ possibilities 
to reflect on covariation between variables and the construction of functions in a 
dynamic approach; for example, using MathWorlds (e.g. Rojano & Perrusquía, 2007) 
and video-clips (e.g. Naftaliev & Yerushalmy, 2009). These environments allow the 
use of different technological perspectives, thereby providing more opportunities 
to implement modelling processes than in the past (see also Arzarello, Robutti, & 
Carante, 2015).

As discussed in Section 3.2, modelling processes are gaining importance in 
research, and technology expands the possibilities for new approaches in the 
classroom. The connections between modelling and technology were addressed 
in PME39, during the plenary lecture given by English (2015). This lecture 
presented the STEM (Science, technology, engineering, and mathematics) project 
related to the unification of several scientific branches to tackle common goals; 
it also discussed the importance of a STEM perspective in education and how 
this project is changing syllabuses and curricula in countries such as the USA 
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and Australia. The fact that curricula need to emphasize more data analysis from 
modelling processes and functional approaches was stressed, as well as variation and 
covariation processes; the use of technology may pave the way for major advances 
in these areas.

4. OTHER APPROACHES

As mentioned in the introduction, Harel et al. (2006), in their discussion on future 
research, noted the predominance of cognitive approaches in research, stating that 
“It would be enlightening to incorporate social and cultural constructs […] offered 
by PME scholars, into AMT studies” (p. 162). Section 3.4 outlined how these 
constructs have been exploited through the use of semiotic approaches. In fact, 
the emergence and consolidation of such approaches has now affected all levels 
of education, their impact at the tertiary level being more recent, as shown in a 
recent Research in Mathematics Education special issue in which Nardi, Biza et al. 
(2014) stated: “we see the emergence of institutional, sociocultural and discursive 
approaches to research in [University Mathematics Education] as a milestone” 
(p. 91). In this section, we discuss some of these approaches and how they have 
enriched our understanding of the processes of teaching and learning of functions 
and calculus.

4.1. Institutional Approaches

In this section, we consider the contribution of the Anthropological Theory of 
Didactics (ATD, Chevallard, 1999) to the study of processes related to the teaching 
and learning of calculus. The use of ATD has developed quickly in recent years and 
has shown its potential to deepen the study of processes of teaching and learning 
from an institutional point of view. Its use at the tertiary level has grown considerably 
(Winsløw, Barquero, De Vleeschouwer, & Hardi, 2014) and the number of CERME 
conference participants applying it at the university level is considerable (Nardi, 
Biza et al., 2014). Paradoxically, its presence in PME regarding the teaching and 
learning of functions and calculus is still scarce.

Like other approaches in this section, ATD puts forward the view that mathematical 
objects are not absolute but emerge from human practices. A fundamental notion is 
that of institution, which is broadly defined as a social organization that allows and 
imposes on its subjects (every person who occupies any of the possible positions 
within the institution), the development of ways of doing and of thinking proper to 
itself (Chevallard, 1989, pp. 213–214). Therefore, regarding mathematical objects, 
institutions develop sets of rules that define what it means to ‘know’ these objects, 
thus determining their institutional relationship with mathematical objects, i.e., the 
ideal relationship that their subjects should have regarding these objects. Subjects 
also have a personal relationship with any object, as a product of all the interactions 
they can have with these objects through contact with them as they are presented 
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in different institutions. Institutional relationships have a strong effect on personal 
relationships, and the study of learning processes requires an examination of 
institutional practices.

This effect is illustrated in González-Martín’s (2013, 2014) research. This 
study on how pre-university textbooks introduce infinite series of real numbers 
(González-Martín, Nardi & Biza, 2011), also examined teachers’ practices, identifying 
several implicit contract rules that could potentially influence students in their learning:

• To solve given questions about series, the latter’s definition is not necessary.
• Applications of series, inside or outside of mathematics, are not important.
• The notion of convergence can be reduced to the application of convergence 

criteria.
• To solve given questions about series, the use of visualization (or any visual 

representation of series) is not necessary.

The results of this study, which examined a group of 32 pre-university students 
studying under three different teachers, showed the effect of institutional organizations 
(in this case, through textbooks) and teachers’ practices on their students’ learning. 
If existing praxeologies take for granted that visualization is developed in a natural, 
spontaneous way, and if they address issues related to convergence and its meaning 
solely through the application of convergence criteria, it is no surprise that students 
do not develop any tools to tackle questions requiring the development of visual 
abilities, nor do they develop an interpretation of what convergence really is, calling 
instead on intuitions or using the potential infinity (see Section 2.2).

ATD has also been used in PME, as well as outside PME, to investigate the 
transition from secondary to tertiary studies, highlighting the impact of institutional 
choices (many of which are guided by societal choices) on how content is organized 
and what students can learn. For instance, Alves Dias, Artigue, Jahn and Campos 
(2010) investigated the kind of tasks associated with functions in the selective 
evaluations that serve as gateways to the tertiary level in Brazil and France. Their 
analysis shows that in these evaluations, functions belong to different habitats: 
algebra in Brazil, and analysis in France. The type of tasks that put functions 
into play in both contexts is considerably different, thereby leading students to 
develop different skills and, consequently, different personal relationships with 
functions. Given the presence of ATD on the international scene and its potential 
to illuminate the effects of institutional choices (at several levels) on students’ 
learning, its negligible impact on the PME community is surprising. It is also worth 
noting that this theory is connected to the Theory of Didactical Situations and 
instrumental and documentational approaches, which have also had little impact 
in the PME community over the last ten years. However, these approaches and 
their combination with ATD have proven useful for studying teaching and learning 
phenomena concerning calculus, both at the secondary and the tertiary levels (see 
González-Martín, Bloch, Durand-Guerrier, & Maschietto, 2014; Gueudet, Buteau, 
Mesa, & Misfeldt, 2014; Winsløw et al., 2014).
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4.2. Commognition

The commognitive framework, which emerged in recent years and consolidated 
with the publication of Sfard’s book (2008),3 appeared very early in PME. This 
framework stresses the close relationship between thinking and communicating, 
to the point that “Thinking is an individualized version of (interpersonal) 
communicating” (p. 81), and sees learning as a change in ways of communicating. 
It identifies four distinctive features of mathematical discourses, analyzing how 
they change over time: word use, visual mediators, routines, and narratives. To 
illustrate this principle of learning, which can be seen as a change in discourse, we 
mention the work of Kim, Sfard and Ferrini-Mundy (2005), who analyzed students’ 
discourse concerning infinity and limits, going beyond other works focused on 
misconceptions and cognitive obstacles. They investigated two groups of students 
as they aged (Korean and US students), comparing the characteristics and evolution 
of their discourse concerning limits and infinity. Their results show that the fact the 
word infinite appears in the English language before it is used mathematically –  
which is not the case in Korean – seems to influence the way students define 
and refer to infinity; this appeared to lead the US students to take the object-like 
character of infinity for granted, and the researchers concluded that colloquial 
discourse effectively seems to have an impact on mathematical discourse.

The commognitive approach was also used by Güçler (2011) to analyze the 
historical development of limits, identifying junctures that resulted in changes 
in the discourse on limits, and which may also be critical for students’ learning. 
She highlights that the dynamic view, which holds an underlying assumption 
of continuous motion, dominated mathematicians’ discourse until the 18th 
century, and that it was not until Cauchy (1789–1857) that the notion of limit was 
objectified. Although he realized the necessity of a theory of limits and an explicit 
definition of the concept, his definition still called for the metaphor of continuous 
motion. Weierstrass (1815–1897) and Dedekind (1831–1916) replaced Cauchy’s 
kinematic approach with an algebraic-arithmetic approach: the metaphor of 
continuous motion was replaced with the metaphor of discreteness. Objectification 
led to the elimination of dynamic motion; however, in spite of the precision that 
the current formal definition of limits provides, it “wipes out all the intuitive tools 
with which to make sense of the concept” (p. 470). Data coming from a study with 
students (see also Güçler, 2013) seems to indicate that these junctures are critical 
for students: even when writing expressions such as , students will say 
“it is approaching two”, rather than “the limit is equal to two”. This word choice 
is seen as an indicator of students only endorsing the narrative ‘limit is a process’ 
and not objectifying limits as a number at the end of their instruction (p. 447). The 
metaphor of continuous motion is also present in some students, indicating that they 
did not attend to the instructor’s shifts in word use and metarules in the contexts of 
the informal and formal definition.
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This approach provides a lens through which to examine aspects of interactions 
in detail, and has also been used to study phenomena related to the transition from 
school to university mathematics (e.g. Nardi, Ryve, Stadler, & Viirman, 2014). 
Recent developments have adapted it to study teachers’ knowledge in terms of 
discourse (Cooper, 2014) and this approach offers great potential to study “‘the 
macro-level’ of historically established mathematical discourse, the meso-level of 
local discourse practices jointly established by the teacher and students […] and 
the micro-level of individual students’ developing mathematical discourses” (Cobb, 
2009, cited by Nardi, Ryve et al., 2014, p. 196).

4.3. Networking of Theories

The comparison of theories has been a subject of interest for the PME community. 
For instance, at the beginning of the century, Boero et al. (2002) worked on 
comparing theories of abstraction and, in the last ten years, Presmeg (2006a) 
compared two theoretical frameworks: that of Duval (1995, 1999) on semiosis 
and noesis (related to the articulation among registers of representations) and the 
semiotic means of objectification of Radford (2002, 2003).

The work of Prediger, Bikner-Ahsbahs and Arzarello (2008), and later of  
Bikner-Ahsbahs and Prediger (2009), which examined the importance of focusing 
on the networking of theories, may have spurred the PME scientific committees’ 
promotion of research along these lines (with two Research Forums in 2010 and 
2014, see the introduction of this chapter) in order to unite, differentiate and 
strengthen different theoretical frameworks. According to Clark-Wilson et al. (2014), 
the aim of networking theories is to unite, differentiate and strengthen different 
theoretical frameworks to better explain learning phenomena. This brings us to 
the discussion undertaken by the PME forum organized by Bikner-Ahsbahs et al. 
(2010), who identified some conditions for an efficient networking: “the underlying 
principles have to be ‘near enough’ and […] the empirical load of a concept plays 
a crucial role if integrating is the aim” (p. 146). Furthermore, they offered a broad 
analysis of different ways in which theories can be networked (Figure 1):

Figure 1. Networking strategies (Prediger et al., 2008, p. 170)

One of these ways is comparing and contrasting. Taking this into consideration, 
it is possible to make a critique of Presmeg’s (2006a) discussion when comparing 



GENERALIZATION, COVARIATION, FUNCTIONS, AND CALCULUS

21

relationships amongst signs related to the theoretical approaches of Duval (1995, 
1999) and Radford (2002, 2003). As explained in Section 3.3, Duval’s approach 
mainly concerns institutional representations and the conversion processes among 
them that serve students in the construction of an articulation among representations 
related to a mathematical object. Meanwhile, according to Radford (see Section 
3.4), in the process of objectification, elements are considered that are not 
necessarily institutional, but are an integrant part of the institution, such as culture, 
communication and representations. That is, the manipulation of objects, drawings, 
gestures, marks, and the use of linguistic categories, analogies, metaphors, etc., are 
key components of mathematical communication in the process of objectification. 
Presmeg’s comparison analyzes excerpts from both theoretical approaches, albeit 
in a context related to institutional representations (concerning trigonometric 
functions, graphic representations, and processes of visualization). It is therefore 
not surprising that Duval’s approach is seen as “paramount” (p. 32), but we can 
criticize the fact that the analyzed data are not ‘near enough’ Radford’s theoretical 
approach, and the design of the investigation seems rather to have been conceived 
to be analyzed from a cognitive approach and not from a semiotic process of 
signification. This contrasts with the principles of the networking of theories, as 
highlighted by Bikner-Ahsbahs et al. (2010), in which research must be designed 
to allow the integration of different approaches, giving both theories the chance to 
interact (Figure 1).

One example of networking of theories, implying the use of technology, is 
provided by Clark-Wilson et al. (2014). They contrast theoretical approaches 
and constructs that have been frequently used to examine students’ performances 
and have recently been applied to teachers – for instance, instrumental genesis and 
instrumental orchestration. New constructs emerged from this contrast to analyze 
students’ errors or strategies when solving problems (not restricted to functions 
and calculus), such as critical incidents, hiccups, and the notions of instrumental 
distance and double instrumental genesis. A similar evolution took place with the 
notion of Pedagogical Content Knowledge (PCK, Shulman, 1986), which led to 
the emergence of the Pedagogical Technology Knowledge (PTK, Thomas & Hong, 
2005); the latter focuses on mathematics and employs the theoretical base of 
instrumental genesis. 

Finally, we mention the work of Kidron, Bikner-Ahsbahs, Cramer, Dreyfus 
and Gilboa (2010), who networked the Interest-Dense Situations (IDS) and the 
Abstraction in Context (AiC, see Section 2.4) approaches in activities concerning 
real numbers to assist in “uncovering blind spots of their methodologies” (p. 169): 
IDS considers social interactions as a basis for learning mathematics, and AiC 
develops tools to investigate the construction of learning, with social interaction 
as part of the context. Their paper shows how each theory helped uncover or refine 
elements of the data analysis performed by the team using the other theory, noting 
that, for instance, “the social interaction analysis offered by IDS reveals important 
cognitive aspects” (p. 175).
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4.4. Mathematics Education, Psychology and Neurosciences

We end this section by looking at the increasing importance placed on 
interdisciplinary research between mathematics education and psychology and 
neurosciences at the last PME meeting (PME39), which leads to a questioning 
of “how different methodologies currently used in cognitive neuroscience afford, 
and constrain, research design and potential findings/implications for maths 
education” (Tzur & Leikin, 2015, p. 115). We name two works that illustrate this 
interdisciplinarity in recent research in mathematics education. Lithner (2015) 
presented a descriptive study to show how the brain works when solving tasks 
related to an algorithmic reasoning and when solving tasks related to creative 
mathematically founded reasoning; among the results reported, brain imaging 
seems to indicate that students learning by creative reasoning could use their 
mental resources more economically in different tasks. This work also relates to 
that of Waisman, Leikin and Leikin (2015), who used tasks related to functions 
and proposed to measure “mathematical ability” through the identification of 
brain activity. Their results also show that different mathematical abilities reflect 
in different ways on ERPs, and that these differences are dependent on the level 
of insight imbedded in the task solution. These works introduce new dimensions 
for research in mathematics education and in some cases seem to confirm or 
contradict some of the beliefs held about students’ learning. Although the presence 
of functions and calculus in the examples briefly presented here is peripheral, we 
believe that new areas can be explored to improve our understanding of how this 
content is learned.

5. TOPICS DESERVING SPECIAL ATTENTION

In this section we discuss topics that have been the focus of growing research in 
recent years, especially concerning functions and calculus. Space limitations have 
forced us to zero in on just a few topics. This obliges us not to discuss, for instance, 
studies that have been developed in the last few years on the secondary-tertiary 
transition, particularly with different approaches;4 one example of these studies is 
given in Section 4.1.

5.1. Teachers’ Knowledge and Practice

The theoretical proposition of Shulman (1986), concerning the amalgam of 
specific content knowledge and teaching knowledge, gave origin to what we know 
as PCK and to a field of research on teachers’ knowledge. Research now focuses 
on preservice teachers to a greater extent than in the past, particularly regarding 
content related to functions and calculus. In this sense, research has identified that 
a strong PCK concerning a mathematical topic (inverse functions, in the case of 
Bayazit & Gray, 2006) does not guarantee adequate teaching. This result calls for 
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further research to identify factors orientating PCK towards effective practices, 
avoiding procedural approaches (such as the ones identified by Lucus, 2006, 
concerning the composition of functions).

Developing Shulman’s (1986) work for the teaching and learning of mathematics, 
Ball and Bass (2000) introduced a new dimension for teachers’ knowledge, the 
Mathematical Knowledge for Teaching (MKT). Using this construct, Seago 
and Goldsmith (2006) worked with teachers possessing a conventional and 
‘compressed knowledge’ of linear functions; they showed that some activities 
demanding conceptual and ‘unpacked understanding’ presented in a seminar can 
help teachers increase their MKT and develop their teaching abilities. However, the 
use of professional development materials does not always produce a significant 
impact on teachers’ MKT, as Seago, Carroll, Hanson and Schneider (2014) discuss 
in the case of linear functions. The MKT construct has also been used to explore 
lower secondary mathematics teachers’ abilities concerning mathematical language 
(Wang, Hsieh, & Schmidt, 2012). Results unveil difficulties teachers may have 
concerning competences related to thinking and reasoning about mathematical 
language, as well as difficulties they may have choosing teaching activities that 
could cultivate their students’ competences related to mathematical language.

PME has also been interested in teachers’ beliefs (see the chapter Research 
on mathematics-related affect in this Handbook). However, research on calculus 
teachers’ belief systems is still scarce, and work in this area may make a useful 
contribution to an emerging area of calculus research (Rasmussen, Marrongelle 
et al., 2014, p. 512). In Section 5.3, we refer to some of these works concerning 
calculus in tertiary education. Regarding calculus in high school, Erens and Eichler 
(2014) were interested in the structure of belief systems, which characterize 
teachers’ instructional planning. Working from the perspective of beliefs and 
goals, their work identifies some relations of coordination (for instance, presenting 
calculus as process-oriented and application-oriented) and subordination (for 
instance, presenting calculus as application-oriented as a means to facilitate students’ 
motivation). However, their work also identifies contradictions that may be due to 
personal factors (for instance, although they hold a formalist view of calculus, some 
teachers do not activate it to avoid creating difficulties for students) or to constraints 
from external factors (for instance, although an instrumentalist view could be 
peripheral for a teacher, s/he could activate this goal in order to help students pass 
national exams). These results support the idea that beliefs and goals depend not 
only on individual factors (as we also illustrate in Sections 5.3 and 5.5 concerning 
tertiary education), and identify the existence of inconsistencies, calling for further 
research. Other inconsistencies, this time regarding the use of visualization, have 
been identified by Biza, Nardi and Zachariades (2008): some teachers can explicitly 
accept a visual argument, while at the same time claiming the need to support and 
verify algebraically for the same statement. The possibility of holding erroneous 
images, combined with a tendency to support visual reasoning in some cases, could 
lead to negative effects from the use of visualization.
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5.2. Teachers and Task-Design

Task-design is not new, and already at the beginning of the twentieth century, 
psychology studies on intelligence had developed specific tasks suitable for these 
studies (Brownell, 1942). The evolution of different theoretical frameworks in 
mathematics education entailed the production of tasks associated with these 
frameworks, the coherence between the task and the theoretical approach being a 
fundamental element of research design. For instance, considering the notion of 
epistemological obstacle (Brousseau, 1997) related to the concept of function, and 
to raise awareness of the conception that “functions are continuous and expressed by 
a single algebraic expression”, one task that has proven efficient consists of asking 
participants to construct two examples of one real variable function such that for all 
x, f (  f(x)) = 1 (Hitt, 1994).

In reflecting on ways to improve task-design activities and the efficacy of these 
tasks, the 2014 Research Forum on mathematical tasks (Clark, Strømskag, Johnson, 
Bikner-Ahsbahs, & Gardner, 2014) was structured around four key questions:

1. What are the possible functions of a mathematical task in different instructional 
settings and how do these functions prescribe the nature of student task 
participation?

2. What contingencies affect the effectiveness of a mathematical task as a tool for 
promoting student higher order thinking skills?

3. How might we best theorize and research the learning processes and outcomes 
arising from the instructional use of any mathematical task or sequence of tasks 
from the perspective of the student?

4. What differences exist in the degree of agency accorded to students in the 
completion of different mathematical tasks and with what consequences? 
(p.  119–120).

These questions can provide a suitable basis for the discussion on the elaboration 
of efficient tasks, taking into account the mathematical content, the student and the 
teacher. Furthermore, a reflection on and transformation of the tasks used may have 
the potential to change teaching and learning approaches to functions and calculus, 
as highlighted, for instance, by English (2015).

Finally, regarding the use of technology, in a work related to functions and 
modelling processes and following the documentational approach, Psycharis and 
Kalogeria (2013) highlighted the existence of three factors that may hinder teachers’ 
construction of tasks and materials: (1) Teachers’ difficulties in developing their 
own teaching material, (2) Teachers’ difficulties in learning the affordances of the 
software tools and integrating them into activities with added educational value 
(e.g. microworlds, scenarios, worksheets), (3) Teachers’ knowledge, pedagogical 
conceptions and experiences regarding the everyday practice of teachers. These 
results highlight the need for additional research on task-design activities in 
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technological environments (Clark-Wilson et al., 2014), particularly regarding 
functions, calculus and modelling.

5.3. Teachers, Teaching Practices and Their Effects in Tertiary Education

In the last PME Handbook, Harel et al. (2006) acknowledged the growing body 
of research on mathematicians’ writing, problem solving, and proving (p. 160). 
Although they also mentioned the growing research on mathematicians’ teaching 
practices, there was not enough space in their chapter to develop this point. 
More recently, with respect to research on the teaching and learning of calculus, 
Rasmussen, Marrongelle et al. (2014) identified work on teacher knowledge, 
beliefs, and practices as one of the most recent developments in the field. Furthermore, 
as we noted in the introduction, covering the topics of functions and calculus in a 
single chapter would lead us to encounter some gaps. In this section, we address 
an important one. PME researchers have focused a good deal on teachers’ beliefs, 
as the last PME Handbook shows (Leder & Forgasz, 2006). However, although 
primary and secondary teachers’ training, beliefs and practices have been a subject 
of research for many years, this is not the case for the tertiary level, and there is 
still little research on how lecturers actually teach at the university level (Speer, 
Smith, & Horvath, 2010; Weber, 2004). In this section, we give an overview of some 
important results obtained in PME regarding these issues.

Regarding undergraduate teaching practices relative to calculus content, we cite 
the works of Rowland (2009) and Petropoulou, Potari and Zachariades (2011), 
related to university teachers’ training, beliefs, decisions, and practices, the former 
in connection to the Fundamental Theorem of Calculus and the latter in connection 
to general calculus content, with data from sequences. In both cases, the authors 
developed a single-case study concerning a particular subject: a lecturer with a 
background in mathematics and mathematics education. In both cases, different 
uses of examples are among the main strategies aimed at constructing mathematical 
meaning. These works indicate that the instructors’ practices appear to be based 
on the professional knowledge they develop (or craft), their beliefs and vision 
concerning the nature of mathematics itself, the purposes of teaching and learning 
mathematics, and the ways in which mathematics is most effectively taught and 
learned, as well as their own experience. These results agree with those of Weber 
(2004), who noted that beliefs about mathematics as a research mathematician, and 
beliefs about students and teaching as an experienced mathematics lecturer, were 
the main influences on a lecturer’s practice. We see here differences in research 
concerning primary and secondary teachers, who usually receive teacher training 
that influences their belief system. This shortcoming in the case of tertiary education 
may place higher importance on the need to hold discussions within teams of 
lecturers, as proposed by Rowland (2009). This is justified by the fact that if an 
instructor’s beliefs are his/her own, and if other lecturers teach differently and do 
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not articulate similar beliefs, it is unclear which version of ‘being mathematical’ 
students might construct. Rowland therefore recommends that the entire team of 
lecturers meet to discuss different ways of teaching, epistemological assumptions, 
students’ role in lectures, and so on, in order to establish sociomathematical norms.

Having examined university teachers’ training, beliefs and practices regarding 
calculus, it is worthwhile to question the effects of these elements on students. So 
far, experience and the literature suggest that there is much research to conduct, 
because Calculus courses prompt many students to change careers: this issue is 
addressed by Rasmussen and Ellis (2013) who sought to better characterize the 
profile of students who choose not to continue with Calculus and uncover the main 
reasons why students switch out of Calculus courses. Their data comes from an in-
depth national survey with over 14,000 students responding to at least one of their 
instruments. One important result showed that 12.5% of STEM-intending students 
in their sample had planned to take Calculus II at the beginning of their Calculus I 
course, but decided not to do so upon completing the first course. This group, called 
switchers, displays a number of characteristics: the percentage of female switchers 
is significantly higher in comparison to males (20% and 11%), switcher rates differ 
significantly depending on career choice (engineers having the lowest rate), and, the 
mathematical background of switchers and students who go on to Calculus II was 
statistically similar at the start of their post-secondary education. This last result is 
quite significant and refutes a preconceived idea: their data indicate that students 
who abandon their STEM ambitions are not weaker when they enter university 
than those who continue on the STEM path. Regarding the reasons for changing 
majors, 31.4% of students in this situation acknowledged that their experience with 
Calculus I made them decide not to take Calculus II. Their study also points to 
teaching practices as influencing students’ experiences and choices, and indeed, 
the researchers’ subsequent paper (Rasmussen, Ellis, Zazkis, & Bressoud, 2014) 
shows that one characteristic of successful calculus programs is the existence of 
substantive graduate teaching assistant (GTA) training programs, varying from 
“a weeklong training prior to the semester together with follow up work during 
the semester to a semester course taken prior to teaching” (p. 37). This training of 
GTAs, who are seen as future lecturers, was the topic of a paper by Ellis (2014), 
who sees it as a way to make up for the lack of pedagogical or didactical training 
for university teachers. The need pointed out by Rowland to hold group discussions 
on practices, views and beliefs can be addressed somewhat preemptively through 
professional development programs. Ellis (2014, p. 13) underlines the important 
role played by mentoring with respect to K-12 professional development, and her 
results seem to show that mentoring augments the training of GTAs, suggesting “a 
relationship between GTA professional development and student success that needs 
to be further examined” (p. 14). Given the large number of Calculus students around 
the world, research concerning teachers’ practices and training is needed, as “there 
is great need to better understand the factors that contribute to student decisions to 
stay in or to leave a STEM major” (Rasmussen, Marrongelle et al., 2014, p. 512).
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5.4. Analysis of Textbooks

Sträßer (2009) addressed the important role of artefacts (such as textbooks, 
computers, tools, etc.) in the teaching and learning of mathematics, acknowledging 
that textbooks “have always played a major role in mathematics education” (p. 70). 
This being the case, it is surprising that research has not placed much focus on 
the analysis of textbooks until recently, and research concerning high school and 
university topics – including calculus – is still scarce.

Of all the topics included under the label ‘Calculus’, a wide variety have received 
little research attention, especially the most advanced topics. However, of the topics 
that students encounter first, continuity is one that has been studied the least by 
researchers, often appearing implicitly in studies on limits or functions. Taking this 
into account, Giraldo, González-Martín and Santos (2009) analyzed how continuity 
of single-valued real functions of one real variable is presented in undergraduate 
textbooks used in pre-service mathematics teachers’ calculus courses. Their main 
results indicate that the notion of continuity is mostly introduced using the notion of 
limit, in many cases using intuitive images that call for the image of ‘a curve drawn 
without removing the pencil from the paper.’ This could have consequences for 
teachers’ understanding of the notion of continuity, which has already been signaled 
as problematic (Hitt, 1994; Mastorides & Zachariades, 2004).

Regarding the concept of infinite series, Nardi, Biza and González-Martín 
(2009) analyzed a set of university textbooks used in the UK (and which are also 
used in many other countries). The analysis focused mainly on the use of visual 
representations, tasks, and examples to introduce series, finding that this concept is 
mostly introduced in a decontextualized way, with few graphical representations and 
even fewer applications and references to the concept’s significance and relevance. 
The results agree with the analysis of a larger sample of pre-university textbooks 
used in Quebec (González-Martín, Nardi et al., 2011). In addition, the effects of 
these textbooks and their use by teachers on students’ learning of series have been 
analyzed using ATD (see Section 4.1). Finally, regarding secondary education, 
González-Martín, Giraldo and Souto (2011, 2013), analyzed how real and irrational 
numbers are introduced by textbooks, using ATD. Their results revealed a similar 
situation, as well as a lack of justification for the need of these ‘new’ numbers. 
Moreover, although studies have identified difficulties in learning the topics 
addressed in this section, this research is often neglected, which raises the question 
of why research on calculus is not having a greater impact on practices and resources.

5.5. Calculus as Service Mathematics

One of the areas of tertiary mathematics research that have developed rather quickly 
in the last few years is the study of educational processes for audiences enrolled in 
faculties other than mathematics (Artigue et al., 2007). The landscape has changed 
a great deal: technology has altered the skills and knowledge required for many of 
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these professions, the number of students enrolled in these faculties has dramatically 
increased, the background (particularly concerning mathematics) of students 
entering these faculties has changed, and societal expectations have also grown. 
The number of papers published in the last few years on the teaching and learning 
of mathematics as a service course has increased, and the field of engineering has 
attracted special attention. However, efforts are still needed to better understand 
the phenomena at play, and the claim made by Kent and Noss (2001, p. 395) 15 
years ago seems to be still valid, namely that “The teaching of service mathematics 
remains relatively unexplored, and many of its fundamental assumptions (What is 
its purpose? What are the fundamental objects and relationships of study?) remain 
unexamined.”

Earlier in this chapter (Section 2.1), we mentioned the work by Bingolbali 
and Monaghan (2008), indicating the differences in students’ acquisition of the 
derivative according to their department of affiliation. This work is closely 
related to their paper presented at PME30 (Bingolbali et al., 2006) where they 
analyzed the views and practices held by lecturers teaching Calculus courses in 
different departments. This research collected data from six different lecturers 
with experience teaching mathematics or physics as a service subject. Their 
results indicate that lecturers behave in different ways according to their audience: 
they privilege different aspects of mathematics, place different questions on 
examinations, and use different textbooks. For instance, lecturers emphasized 
different aspects of topics based on the type of student: concerning derivatives, 
aspects related to rate of change were highlighted for engineering students, whereas 
aspects related to tangents were highlighted for mathematics students. The role and 
place given to proof also varied according to the audience. But not every decision 
is the result of personal choice, and the lecturers’ perception of the department’s 
priorities also seems to play an important role. The results of this research have 
at least two implications. First, the connections between this work and the results 
presented by Bingolbali and Monaghan (2008) seem to imply that students’ learning 
is strongly conditioned by their lecturers’ choices. This aligns with many results 
obtained using ATD, such as those already noted by González-Martín (2013, 2014) 
in Section 4.1. Secondly, lecturers’ choices are influenced by the fact that while they 
each have their own background, they see themselves as members of an institution 
(department or faculty), although these institution-driven choices can sometimes 
conflict with their own background and views, as illustrated by Hernandes Gomes 
and González-Martín (2015).

This type of investigation calls for more research to better understand the 
interplay of elements in contexts such as the teaching of calculus to engineering 
students. For instance, the choice of textbooks – and resources in general – may 
have implications for students’ learning, as well as the training of the lecturers, 
as acknowledged by research following the documentational approach (Gueudet 
et al., 2014; Gueudet & Trouche, 2009). Also, while some choices seem to be 
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made to adapt lectures to a specific audience, the question remains whether these 
changes lead to a ‘different’ calculus course, or whether the same key characteristics 
endure. In this sense, Barquero, Bosch and Gascón (2011) identified a dominant 
epistemology in university teaching that has an impact on different mathematics 
teaching practices. They call this epistemology ‘applicationism’ and its main 
characteristics are: (1) mathematics is independent of other disciplines; (2) basic 
mathematical tools are common to all scientists; (3) the organization of mathematics 
content follows the logic of mathematical models instead of being built up by 
considering modelling problems that arise in different disciplines; (4) applications 
always come after basic mathematical training; (5) extra-mathematical systems 
could be taught without any reference to mathematical models (pp. 1940–1941). 
Whether these principles can be found (and to what extent) in the practices of 
lecturers who ‘adapt’ content to their students’ profile also remains an open 
question for research.

6. FUTURE RESEARCH

We finish this chapter by examining issues that, in our opinion, warrant further 
research. Once more, we focus on just a few issues, although we are aware that 
several require more investigation (we have noted some of these in previous sections 
of this chapter).

One important issue already identified by researchers (Artigue, 2001; Rasmussen, 
Marrongelle et al., 2014), is the fact that while research in calculus has concentrated 
on a few topics (namely functions, limits, derivatives, and integrals), advanced 
topics remain relatively unexplored. For instance, the proportion of papers focusing 
on differential equations is quite small compared with functions and derivatives, and 
papers on multivariate calculus are few in number. Issues concerning transition in a 
broad sense (for instance, from high school to university, from calculus to analysis, 
from calculus to algebra, etc.) also deserve further research through a variety of 
lenses, especially institutional and sociocultural perspectives. And, as we noted in 
Section 5.5, there is a great need to investigate the relationships between calculus 
and client disciplines in terms of practices, what should be taught, and what students 
are learning, to cite just a few. In particular, “Post-secondary educational research 
has from this point of view a specific epistemological role to play in educational 
research thanks to its proximity with the professional world of mathematics. The 
increasing importance taken in post-secondary mathematics education by service 
courses faces us with the necessity of taking a wider perspective” (Artigue et al., 
2007, p. 1044). This leads us, finally, to underline the importance of coordinating 
efforts to make various advances in research concerning functions and calculus 
available to the broader practitioner and policymaking communities. Furthermore, 
systematic research on teaching practices concerning calculus content, particularly 
at the tertiary level, is needed.
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In the following paragraphs, we address other issues that warrant further research.

6.1. Networking of Theories

As noted in Section 4.3, for more than 15 years the PME community has been 
interested in the comparison and/or networking of theories, and theoretical advances 
are shown in this line under different perspectives. Bikner-Ahsbahs et al. (2010) 
offer some methodological elements to consider in this process of networking and 
they draw on research projects, such as TELMA and Re-Math, identifying the 
emergence of cross-experimentation methodology as a key element. As noted by 
Bikner-Ahsbahs and Prediger (2009), to overcome some of the limitations that arise 
from using only psychological approaches, the networking of theories appears to 
be a promising way of doing research. Furthermore, considering technology (and, 
in particular, its use by client courses), Rasmussen, Marrongelle, et al. (2014) also 
propose the networking of different theoretical perspectives and their respective 
findings as a promising way forward. Although PME has considered the networking 
of theories, more systematic research is needed. As we have highlighted throughout 
this chapter, many issues related to the teaching and learning of functions and 
calculus interact (teachers’ training or the lack thereof, practices, beliefs, materials 
and resources, departments, etc.), and the networking of theories looks to be a 
promising way of taking into account several of these issues at the same time.

6.2. Task-Design

Rasmussen, Marrongelle et al. (2014) recently stated that “It is noteworthy that 
the research in calculus learning and teaching has not capitalized on advances in 
design research […] to further link theories of learning with theories of instructional 
design” (p. 509). Although not necessarily connected with calculus, task-design has 
been the focus of some interest recently, as indicated by the organization of topic 
study groups focusing on it at ICME conferences, resulting in an ICMI study on 
task-design (Watson & Ohtani, 2015). This interest can be explained, according 
to Clark-Wilson et al. (2014), by the great difficulty teachers face in building 
tasks and applying them in the classroom. One strategy for successful task-design 
consists of proposing sequences of enchained tasks covering broad mathematical 
topics (Artigue, 2002), preferably aiming at producing emergent models, necessary 
to symbolize and mathematize gradually (Gravemeijer, 2007). As discussed in 
Section 3.2, Hitt and González-Martín (2015) proposed ways (a method) to tackle 
these issues in the classroom at the secondary level: in a sociocultural approach, 
the construction of a sequence of activities promoting diversified thinking and 
the emergence of non-institutional representations. Combining individual work, 
teamwork and whole class debate, these tasks helped pupils co-construct the 
subconcept of covariation between variables, necessary to the construction of 
functions. This is just one example of task-design, but certainly more effort must 



GENERALIZATION, COVARIATION, FUNCTIONS, AND CALCULUS

31

be made to transfer results on students’ learning of calculus into design research. 
At the undergraduate level, collaboration between mathematicians and mathematics 
education researchers seems to be a promising avenue for future research.

Finally, concerning technology, there is also a need (both for pre-university and 
university students) to relate theoretical work with computer activities, as well as the 
need to create sequences of activities around a given topic.

6.3. Semiotics

In looking at research developed over the last 10 years in the PME community 
concerning argumentative discourse, two types of components can be highlighted:

• A component that seeks to convince, to win the support of the other (called the 
seduce component by some authors).

• A component that aims to explain, based on reasoning.

These two components can be found in different works of the PME community: 
the first is seen more in research on collaborative learning when communicating 
mathematical ideas in primary and secondary school (more related to conjecturing 
and convincing in peer interaction), and the second is found mostly in research on 
university-level contexts, where proof is a requirement even if a previous conjecture 
has been made. Both components are always present in research on communication 
with others, but in the construction of mathematical thinking, instruction usually 
promotes the gradual diminution of the first component and an incremental increase 
in the second one. Some authors following a semiotic approach include gestures 
in the argumentative discourse – as we discussed in Section 3.3, – which is an 
interesting approach. As Sfard (2008, p. 94) puts it: “while defining thinking as 
individualized communication, I was careful to stress that all forms of communication 
need to be considered, not just verbal.”

Many results related to semiotics do not adequately clarify the relationship between 
the process of resolution of the mathematical task (not exclusively with mathematical 
content) and the role the students or teachers assign to gestures to convince others. 
The importance of spoken language is not always highlighted either, as we discussed 
in Section 3.3. We believe that Sections 2.3 and 3.4 have emphasized the important 
role that gestures and signs (other than mathematical symbols) can play in the learning 
of mathematics, and certainly more research is needed to better understand how 
semiotics, in a sociocultural setting, can help in the understanding of learning processes 
concerning generalization, functions, calculus and modelling problems in context.

NOTES

1 For a summarized overview of the Theory of Didactic Situations and the main principles of didactical 
engineering, particularly at the undergraduate level, see González-Martín, Bloch, Durand-Guerrier & 
Maschietto (2014).
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2 These authors also studied students’ self-confidence, showing that students who gave better answers 
were also usually more confident in their answers, whereas this was not the case when ends were 
given in the form of decimal numbers (0.8 and 1.1 in their case). Issues surrounding affection and 
self-confidence are discussed in the chapter Research on mathematics-related affect in this Handbook.

3 For a summarized overview of the main tenets of this framework, and some examples of its use at the 
undergraduate level, particularly in calculus, see Nardi, Ryve, Stadler & Viirman (2014).

4 For instance, Rasmussen, Marrongelle et al. (2014) state that “the secondary vs. tertiary differences 
might be greater when viewed through a pedagogical or cultural lens, including institutional constraints 
and affordances. This is an interesting area of research” (p. 507).
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RINA ZAZKIS AND AMI MAMOLO

2. ON NUMBERS: CONCEPTS, OPERATIONS,  
AND STRUCTURE

All is number.
(The motto of the Pythagorean school)

Mathematics as well as mathematics education research has long progressed 
beyond the study of number. Nevertheless, numbers and understanding numbers 
by learners, continue to fascinate researchers and bring new insights about these 
fundamental notions of mathematics.

In progressing from one to infinity (and beyond) we follow our own curiosities 
as they led us through various domains of the research landscape. Highlighted 
throughout the research surveyed in this chapter is an emphasis on structures – be 
they number structures, structures for task design, or structures of mathematical 
thinking. We embark on our journey, with a few stops along the way (and with 
apologies to authors that were not included).

ON NATURAL NUMBERS: COUNTING, ORDERING, AND OPERATING

Some will tell you that three is the magic number. Others will tell you that there 
are eight days a week for love. Forty-two is the answer to everything; ninety-nine 
is the great one; six degrees of separation; and one ring to rule them all. Numbers! 
Naturally, we are drawn to them, and in this section we exemplify several themes 
that have attracted researchers and the PME community.

Following the “usual” trajectory of school learning, we start with a review of 
research on early number concepts, and we then devote several subsections to 
arithmetic operations with numbers, as those occupy a significant part of school 
curricula. Examining relationships amongst number concepts and operations lead us 
to structure, and in our last subsection we highlight learners’ and teachers’ attention 
to number structures found in elementary number theory.

Early Number Concepts and Number Sense

The pop culture references to numbers listed above are hardly mathematical, yet 
pop culture is one of the early contexts in which children learn to interpret and 
make sense of numbers. For young children, early number contexts tend to focus on 
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counting, ordering, and comparing. For instance, Coles (2014) extended discussion 
on cardinality vs. ordinality of numbers in children’s initial exposure to numbers, 
asking: which approach is primary in the development of number concepts? Based 
on neuro-science evidence that perceptions of ordinality and cardinality operate 
in different parts of the brain, Coles presented results from, and advocated for, an 
instructional approach that highlights ordinality. Such an approach links numbers 
with each other (rather than with collections of objects) and therefore supports the 
development of mathematical structure. Askew, Abdulhamid and Mathews (2014) 
highlighted the role of embodied cognition in learning early counting. Their focus 
on forward and backward counting implicitly emphasized ordinality of numbers and 
connected it to the embodied metaphors in teachers’ gestures that support learning 
opportunities. Embodiment metaphors have also been linked to the development of 
mental computation, and we discuss this in a subsequent section.

The role of ordinality in children’s early number learning may be linked to their 
development and use of different counting strategies, where the ability to associate 
numbers with each other can lend itself to more efficient approaches. Lampert and 
Tzur (2009) revisited children’s transition from counting-all to counting-on and 
provided an explanation for what supports the transition from the former to the latter 
strategy. They noted that counting-on requires a coordination of two invariants – 
extending a count and keeping track of the second quantity. To that end, they 
suggested that the regress of children from counting-on to counting-all strategies 
“may be rooted in the stage at which a learner has formed each or both invariants, 
not mainly or entirely in the structure of a task” (p. 478). Strategies for composing 
numbers have also attracted research interest for early number concepts. Cayton and 
Brizuela (2008) investigated Grade 2 children’s abilities to write multidigit numbers, 
which were presented to them either orally or by tokens in which different colours 
corresponded to different place values. The results demonstrated a large variety of 
notational strategies used in composing numbers, and that by the end of the second 
grade some children still had difficulty representing numbers, not yet grasping the 
concept of a number system.

As a learner develops, the need for an extended sense of number also develops. 
Similarities and differences between Israeli and Korean learners’ number sense 
for whole numbers, fractions and decimals were discussed by Markovits and 
Pang (2007). They noted a cultural difference in learners’ preferences regarding 
the use of exact calculations over what they described as “more of number sense 
considerations” (p. 247), such as benchmark comparisons or estimation. Pittalis, 
Pitta-Pantazi and Christou (2013) proposed a theoretical model that extends further 
the notion of number sense to include what they characterized as algebraic arithmetic. 
In particular, this includes recognition of number patterns and understanding of 
number equations. Pittalis et al. (2013) observed over a longitudinal study that the 
development of algebraic arithmetic may require a stabilization period after a growth 
period, yet it also had the largest latent slope compared to growth in early number 
sense and conventional arithmetic.
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Number Line

Number line – as a metaphorical representation of numbers – was used in a several 
studies that focused on students’ acquisition of number concepts. In schools, number 
line can be treated as a separate part of the curriculum, or as a model for teaching 
ordering numbers and number operations (Ernest, 1985). Bruno and Cabrera (2006) 
asserted that a number line is a “common representation for all number systems, and 
is a connecting thread in numerical knowledge” (p. 250). In their review of Spanish 
textbooks, Bruno and Cabrera noted that number lines are used mainly when a new 
number system (whole, integer, rational or real) is introduced. However, when 
introducing or presenting number operations, the use of number lines was infrequent.

Gray and Doritou (2008) described number line as “a sophisticated mathematical 
representation characterized as a metaphor of the number system” (p. 97). They 
noted that while number line is used as an essential aid in supporting learning and 
is a frequent pedagogical choice, it can present some conceptual difficulties. These 
difficulties are related to an ambiguous metaphorical association of conceptual 
number line with a physical and finite number track, which is used as a model to aid 
computation. In particular, PME researchers demonstrated that teachers associated 
number line with actions, used mostly in counting “jumps” when teaching addition 
and subtraction (see, for example, Heirdsfield & Lamb, 2006). In particular, teachers 
focused on perceptual, rather than conceptual, aspects of number line. Similarly, 
students in Grades 3 to 6 saw number line as a “line with numbers on it”, stripped 
from its richness related to density and continuity. Consequently, the limited 
knowledge of the teacher did not promote the abstract conception of a number 
system among students.

In a follow up to their study reported in 2008, Doritou and Gray (2009) pointed 
out that in teaching (following the framework from teaching mathematics in 
England; DfEs, 2009) the number line is used mostly for demonstration, rather than 
for developing ideas. In observing teachers’ use of a number line in instruction, 
Doritou and Gray noted, in resonance with their earlier work, that number line was 
seen as a tool supporting operations, rather than an aid in developing relational 
understanding of ordering numbers. The conceptual differences between number line 
and number track were not evident in instruction, as both can be used to represent 
“jumps”. As such, children’s understanding remained limited to whole numbers. 
The researchers considered this approach as contributing to children’s focus on 
procedures and their failure to consider number line representations in a “relational” 
way. They suggested that association of a number line with number track can lead 
to significant difficulties when learning to work with fractions or larger numbers.

Diezmann and Lowrie (2007) investigated how the concept of number line (to 
which they refer as a “structured number line” to distinguish it from an “empty” 
number line, discussed below) develops over time. They noted considerable 
advantages of using number lines as a generic representational tool for a variety of 
concepts (mathematical variability) and as a possible representational tool among 
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other tools (perceptual variability). They also revealed the considerable development 
of these related concepts among primary students over three years and noted 
significant gender differences in favour of boys. The former result is not surprising, 
and it was attributed to students’ additional experience in schooling, rather than to 
particular instruction related to number lines. The latter result, while in accord with 
other studies that favour boys in tasks of spatial/visual representations (e.g., Battista, 
1990; Maeda & Yoon, 2013), warrants further investigation.

Murphy (2008) discussed the idea of an “empty” number line (ENL) and 
its use in teaching mental calculations, contrasting the case of England and the 
Netherlands. She outlined the theoretical origins of the empty number line concept, 
which originated with the works of Soviet psychologists Vygotsky and Gal’perin 
and was further developed in the Freudenthal Institute, and which capitalized on the 
“abstractness” of the empty number line. However, likely due to space limitations, 
particular tasks associated with the ENL were not elaborated upon in this report. 
Particular tasks were mentioned in the two studies we describe in what follows.

Research by Gervasoni, Parish, Bevan, Croswell, Hadden, Livesey and 
Turkenburg (2011) has extended the seminal work of Siegler and Booth (2004) on 
the development of numerical estimation and showed that at times the “simplest” 
tasks in the experts’ eyes can be most revealing. Working with 2-digit numbers and 
the notion of place value, these researchers presented students in Grades 2 and 3 with 
a number line segment, with marked locations of 0 and 100. A point was marked at 
half-distance between 0 and 100, and children were asked to identify what number 
“would go there”. This novel task presented significant difficulty to children and 
helped in identifying students in need of additional experience with 2-digit numbers. 
Williamson (2013) also used empty number line (referring to it as “blank” number 
line) in tasks of positioning a number on the line and also estimating the value of 
a number positioned on the line. Randomized numbers were used across different 
ranges, with only end points labeled. Linear and logarithmic models were fitted to 
children’s estimates. However, the report focused on strategies used by students in 
their estimations, rather than on the relative accuracy of estimated placements. It was 
noted though that the accuracy of children’s estimates decreased on larger ranges.

The tasks used in Gervasoni et al. (2011) and Williamson (2013) are reminiscent 
of our experiences working with teachers, in which we present a number line segment 
with points 0 and 1,000,000 labeled, and request to place 100 on this number line. 
While all teachers place 100 “much closer” to 0 than to 1,000,000, the position they 
typically identify is actually closer to 10,000 rather than to 100. This task provokes 
an interesting conversation related to scaling and relative size of numbers and 
highlights the pedagogical power of the empty number line idea.

Number Operations and Computations

Operations with whole numbers comprise a significant part of any curriculum in 
the early grades. Researchers in Psychology attended to children’s acquisition of 
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number operations long before mathematics education emerged as a research field. 
Nevertheless, the focus on number operations continues to attract researchers, 
presenting nuanced theoretical approaches and instructional interventions.

Clarke, Clarke and Horne (2006) reported on a longitudinal study that looked at 
children’s mental computational strategies, from their arrival to school at age 5, over 7 
years. They presented “growth points” for arithmetic operations, which described the 
progression of a child’s competency. While a steady progression over time was noted, 
a slower rate was observed in Grade 3. This was attributed, in part, to the introduction 
and emphasis on formal algorithms at that time. In line with Narode, Board and 
Davenport (1993), Clarke et al. (2006) advocated for a delay in presenting conventional 
algorithms to students and encouraged the development of personal computational 
strategies. In a related work, Gervasoni, Brandenburg, Turkenburg and Hadden 
(2009) explored the tensions faced by pupils and teachers when the teaching of 
arithmetic algorithms was delayed in favour of personal or informal computation 
strategies. Their study used empty number line as an intended catalyst for improving 
mental computation for students in Grades 3 and 4, and self-study and roundtable 
reflection as a methodology to challenge conventional approaches to teaching primary 
mathematics. Key themes included tensions amongst the usefulness of number lines 
for providing justifications and for developing computational reasoning, and the 
over-reliance and automaticity observed in pupils’ use of algorithms (often without 
understanding) when presented with calculations. Not surprisingly, tensions also arose 
amongst community/parent/government expectations for pupils and the subsequent 
transitions from those strategies to more formal or abstract ones encountered in future 
mathematics classes. The researchers concluded that the teachers “were caught in the 
middle between research-based innovative practice and the tug of more conventional 
practice” (Gervasoni et al., 2009, p. 62, emphasis in original).

Notwithstanding these tensions, transitions from fostering informal or personal 
strategies to teaching more efficient and formal computational strategies have 
been met with some success via learners’ use of metaphors. For instance, Murphy 
(2006, 2008) suggested that embodied metaphors – such as a “conceptual” number 
line – can aid with both fostering mental calculations, as well as transitioning from 
informal to formal mathematics. Murphy’s use of empty number line differs from 
that of Heirdsfield and Lamb (2006) whose research explored number line as a 
“jumping” tool to aid mental computation. Through an embodied perspective, it 
was suggested that researchers could gain a better understanding of “how children’s 
early reasoning develops into their first mathematical thinking beyond numerosities 
and… mental calculations” (Murphy, 2006, p. 223). Indeed, recent research has 
also begun to delve into the relationship between embodiment and more advanced 
mathematics such as linear algebra (e.g., Hannah, Stewart, & Thomas, 2014), 
periodicity and graphical representations (e.g., Bolite Frant, Quintaneiro, & Powell, 
2014), and calculus (e.g., Swidan & Yerushalmy, 2013).

Number operations and computations have also attracted more in-depth research 
focusing on particular operations, the schemes and strategies which promote 
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reasoning with these operations, and trends amongst learners of different ages, 
stages, and prior achievement, as we demonstrate below.

Addition-Subtraction

Ellemor-Collins and Wright (2008) argued that “facility in adding and subtracting 
without counting is a critical goal in early numeracy” (p. 439). Their report described 
instructional interventions that focused on learning addition and subtraction by low-
achievers in Grades 3 and 4. They followed one student, 4th grader Robyn, in her 
successful progress from counting strategies to non-counting reasoning in addition 
and subtraction tasks for numbers up to 100. Gervasoni’s (2006) study focused on 
children in Grades 1 and 2 identified as “vulnerable in number learning” and their 
addition strategies for one-digit numbers. She described children’s strong preference 
for the “count-on” strategy and advocated for instructional intervention before this 
perceptual strategy becomes entrenched. Such a progression in abstraction was 
interpreted by Gilmore and Inglis (2008) through the lens of the process-to-object 
theories of conceptual development. The transition from process-based thinking 
(such as applying counting strategies for addition) to object-based thinking (non-
counting reasoning) was described as requiring an ontological shift that allows 
the process to be viewed as something completed, upon which operations or 
transformations can be applied.

Torbeyns, Vanderveken, Verschaffel and Ghesquière (2006) analyzed the adaptive 
expertise of Grade 2 children of different abilities in solving addition and subtraction 
tasks with numbers up to 100. The instruction focused mainly on two strategies – 
referred to as jump and split. That is, in considering the addition of 45 and 21, for 
example, in the jump strategy one attends first to 45 and 20 and then to 1, while in 
the split strategy, the initial attention is on 40 and 20 and then on the 5 and 1. The 
researchers noted that only high-achievers adapted their strategy choice to particular 
features of the tasks, and they argued for instruction that supports children’s adaptive 
expertise.

Learners’ strategies for mental computations with addition and subtraction have 
been delineated in the research literature and used to both interpret understanding 
and foster it through task design. Csikos (2012) provided one such example in 
connection to Grade 4 students’ 3-digit mental arithmetic. Csikos referred to Heinze, 
Marschick and Lipowsky (2009) whose framework for computational strategies 
proposed four types (stepwise, split, compensation, and indirect addition), which 
extend on the prior work of Fuson, Wearne, Hiebert, Murray, Human, Olivier, 
Carpenter and Fennema (1997) and Selter (2001). In the research conducted by 
Csikos, tasks which were designed to be easily solvable when using the compensation 
strategy (e.g., 176 + 135 = 180 + 135 – 4 or 176 + 135 = 171 + 140) were among the 
most challenging for students to complete correctly. It was noted that computational 
errors hindered otherwise appropriate uses of strategies and that students used a 
limited variety of strategies. In resonance with Torbeyns et al. (2006), Csikos 
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advocated for a wide repertoire of strategies to be taught to provide a broader basis 
from which to develop learners’ adaptive strategy use.

Multiplication-Division

Tzur, Johnson, McClintock, Xin, Si, Kenney, Woodward, Hord and Jin (2012) 
claimed that learning to reason multiplicatively requires a major conceptual shift 
and an abstracted notion of “coordinated counting”. They explored the conceptual 
schemes children construct for multiplicative reasoning, and identified a framework 
for task design that deliberately builds with learners’ existing schemes as a means 
of fostering more advanced knowledge. They discussed six schemes: multiplicative 
Double Counting (mDC), Same Unit Coordination (SUC), Unit Differentiation and 
Selection (UDS), Mixed-Unit Coordination (MUC), Quotitive Division (QD), and 
Partitive Division (PD). Each scheme provides a basis for the development of further 
arithmetic reasoning – e.g., UDS provides a basis for the distributive property of 
multiplication over addition and MUC is a precursor to partitioning a totality. 
Tzur, Xin, Si, Woodward and Jin (2009) and Woodward et al. (2009) discussed more 
on the MUC and mDC schemes in the context of task design for promoting progress 
and transitions in schemes. The role of reflection, via directing attention to structure 
and coordinated counting, and the importance of analyzing students’ existing 
schemes were clearly emphasized. Such schemes may develop intuitively, as Bakker, 
van den Heuvel-Panhuizen and Robitzsch (2013) suggested, noting that young 
children demonstrated substantial knowledge of multiplicative reasoning before 
having been taught. Children’s pre-instructional multiplicative knowledge included 
the ability to solve context problems as well as “bare number” problems of the form 
of doubling or with the verbal prompt of “times”. The most challenging problems 
were ones that relied on a structural understanding of multiplicative situations, and 
these seemed to require formal instruction. Interestingly, their results suggested that 
multiplication and division may be considered equally difficult to a learner who has 
not received formal instruction on multiplicative reasoning. They speculated that 
simultaneous introduction of multiplication and division could benefit children’s 
intuitive understanding of the connections between the two operations, and they 
called for further research to this end.

In most current curricula, multiplication precedes division, and the operation of 
division is known to present difficulty for students and elementary school teachers 
alike. As such, Leinonen and Pehkonen (2011) argued that division is an essential 
operation to consider in teacher education. They implemented an instructional 
strategy in which student teachers were encouraged to reflect on the principles 
of the long division algorithm and to write in their accounts about the reasoning 
involved. The results demonstrated the effectiveness of this strategy, in comparison 
to traditional teaching methods involving examination.

In addition to the mysteries of long division, division with remainders is not well 
understood, both as a decontextualized operation (e.g., Pehkonen & Kaasila, 2009), 
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and as a model of situations (e.g., Spinillo & Lautret, 2006). Spinillo and Lautret 
(2006) acknowledged the difficulty students usually experience with the operation 
of division, in particular with situations involving division with remainder. Their 
instructional intervention, with students aged 8–11years from low income families, 
highlighted the notion of reminder in problems representing both quotitive and 
partitive division. They noted that understanding the role of remainder plays a 
significant role in learners’ understanding of division and they suggested including 
division with remainder problems early in school curriculum. Pehkonen and Kaasila 
(2009), in investigating elementary school teachers’ and upper secondary school 
students’ understanding of division, asked to determine without any calculation, the 
result of 491 ÷ 6, when it was known that 498 ÷ 6 = 83. The failure of the majority 
of participants to produce a correct solution to this non-standard task was attributed 
to insufficient reasoning strategies.

Amato’s (2011) report demonstrated student teachers’ difficulty in representing 
various division situations (sharing, measuring and comparing) and focused on 
developing ways for helping them improve their understanding. In particular, it was 
noted that comparison in terms of ratio is not sufficiently present in (Portuguese) 
school and therefore was not sufficiently experienced by the participants. Involving 
teachers in performing children’s activities, which in this study included translating 
from concrete materials to verbalization and discussion of division situations, 
appeared appropriate. The post-test conducted as part of the research indicated that 
the majority of participants improved their understanding with this approach.

The Role of Parentheses

A few studies have looked at students’ understanding of numerical computations 
with and without the use of “useless” brackets as a means to gain further insight 
into students’ arithmetic reasoning as well as to help scaffold transitions to algebraic 
thinking. Marchini and Papadopoulos (2011) used a series of simple addition 
and subtraction tasks – some with and some without “useless” brackets – with 
292 primary school pupils. Their overall results supported the use of (useless) 
brackets for improving performance and for “understanding correctly the equality 
sign since this can be easily misunderstood as another operation sign” (p. 190). 
In particular, students in the control group had difficulty with questions such as 
☐ + 4 = 9, whereas all students in the experimental group were able to correctly 
solve (☐ + 4) = 9. This result is in line with Lincheski and Livneh’s (1999) ESM 
study; Marchini and Papadopoulos suggested “useless” brackets may serve as 
a useful teaching tool for acquiring relational thinking. Gunnarsson, Hernell and 
Sonnerhed (2012) designed a similar study to test the suggestion of Lincheski and 
Livneh’s (1999) that inserting brackets around the product in a ± b × c would foster 
structure sense. In contrast to the previous studies, Gunnarsson et al. (2012) found 
that certain uses of useless brackets had a detrimental impact on student learning. 
In particular, they distinguished between two roles that brackets play in numerical 
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computations – emphasizing and indicating precedence. With a sample size of 169 
students aged 12 to 13, they found that emphasizing brackets impeded development 
from a left-to-right computation strategy to the use of precedence rules. They 
suggested that an implicit conflict between these two roles (emphasizing/indicating 
precedence) may create obstacles to learning the order of operations, and that a clearer 
articulation of bracket roles may offer a different outcome for student achievement.

Overall, as seen from the above examples, researchers around the world have 
experimented with various methods of helping learners acquire computational 
competence, with variable degrees of success. Insights into particular “stumbling 
stones” in learning may guide teachers and curriculum designers, and we expect 
future PME research will continue to explore this rich territory.

Number Theory

The theory of numbers, to which Gauss referred as “Higher Arithmetic”, has 
found its place in PME research. Rephrasing the famous assertion of Gauss, that 
number theory is a “Queen of Mathematics” and the title of the Eric Temple Bell 
classic, “Mathematics: Queen and Servant of Science,” Zazkis (2009) suggested 
that number theory was a queen and servant of mathematics education. The 
“queen” metaphor implied power, rather than perfunctory, while the “servant” 
metaphor implied utility, rather than lower societal status. Furthermore, by the 
servant metaphor it was articulated that researchers use number theory concepts 
and relations for investigating other topics in mathematics education, in particular 
transitions to algebra and proof.

Interest in number theory continued in the decade of interest for this chapter, 
primarily focusing on the “servant” role. The notions of proof and argumentation, 
and teachers’ and undergraduate students’ progress in acquiring and strengthening 
these concepts has been pursued in a variety of studies (e.g., Barkai, Tabach, Tirosh, 
Tsamir, & Dreyfus, 2009; Tsamir, Tirosh, Dreyfus, Barkai, & Tabach, 2008; Gabel & 
Dreyfus, 2013; Kempen & Biehler, 2014; Toh, Leong, Toh, & Ho, 2014). These 
studies draw examples from elementary number theory.

As this review is concerned with numbers, within this set, we focus on the number 
theory examples used in these studies, rather than on their results. Participants in 
Barkai et al.’s (2009) study examined existential and universal statements related to 
the divisibility of numbers, such as “The sum of every five consecutive numbers is 
divisible by 5” or “There exists a sum of five consecutive numbers that is divisible 
by 5”. In-service high school teachers were asked to examine the validity of the 
statements and provide either proofs or counterexamples. The study of Tsamir et al. 
(2008) focused on similar examples, where teachers were invited to suggest correct 
and incorrect justifications that their students might produce. Gabel and Dreyfus 
(2013) used the proof of the Euclidean algorithm to demonstrate the notion of “flow 
of a proof”. Kempen and Biehler (2014) used the following task, “The sum 11 + 17 
is an even number. Is this true for every sum of any two odd numbers? – Argue 
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convincingly!” in their examination of argumentation used by student teachers. 
Toh, Leong, Toh and Ho (2014) discussed principles of task design, as well as 
conjecturing and proving strategies of student teachers, drawing on a particular 
number theory related task: “An L-Shaped number is one that can be written as 
a difference of two squares. Describe as completely as possible, which natural 
numbers are L-Shaped numbers.”

Studies that focused on the use of examples also utilized the context of elementary 
number theory. For instance, “What can you tell about the divisors of two consecutive 
numbers?” was a particular task in the study of Morselli (2006). Levenson (2014) 
used the concept of parity in analyzing Grade 5 students’ explanations and examples. 
Specifically, participants were asked to determine whether the numbers 14, 9, 284 
and 0 were even or odd and explain their reasoning. Issues of parity were also 
of interest for researchers concerned with aspects of teachers’ knowledge and its 
development. For example, Cooper (2014) analyzed mathematical discourse for 
teaching, using a lesson on parity of numbers that included definitions of even and 
odd numbers and parity result of operations. Also working with teachers, Zazkis 
and Chernoff (2006) introduced the notions of “pivotal example” and “bridging 
example” while discussing the understanding of prime numbers, divisibility and 
the fundamental theorem of arithmetic of one teacher, in her attempt to reduce the 

expression 13 × 17
19 × 23

. Tjoe (2014) investigated aesthetic predispositions of student 

teachers, using various approaches to find the greatest common factor and least 
common multiple.

The study of Zazkis and Zazkis (2013), as a noted exception, focused on student 
teachers’ understanding of the structure of natural numbers, rather than using number 
theory as means to another end. A further development of this study is published in 
Zazkis and Zazkis (2014). This research used a method of script writing: participants 
were presented with two opposing views with respect to a mathematical claim, 
“Larger numbers have more factors”, and were asked to continue the dialogue 
between two characters elaborating upon and arguing for or against the presented 
views. It was revealed that the majority of participants considered prime numbers 
as “exceptions” to the general view that larger numbers indeed have more factors. 
This view was supported by selected examples and revealed participants’ articulated 
approaches for making and accepting arguments – touching once more upon the 
usefulness of number theory in its “servant role”.

ON FRACTIONS AND (NON-INTEGRAL) RATIONAL NUMBERS

Fractions are hard. Fractions present difficulties to teachers and students alike. 
Over a hundred PME research reports in 2005–2014 supported this general claim, 
highlighting different aspects of understanding and operating with fractions.

One of the main difficulties highlighted in the research seems to relate to the fact 
that learners encounter fractions after they have established ideas and procedures 
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for natural numbers. These early experiences may influence learners’ expectations 
for working with fractions, a phenomenon referred to in the research as “natural 
number bias.” Beginning with this phenomenon, we explore fraction interpretations, 
representations, models, and operations that have been brought into play by learners 
and teachers. Knowledge of the teacher, its relation to interpretations and models 
used by and for learners, and possible implications and issues for assessment are 
each considered in this section.

Natural Number Bias

Among repeatedly observed difficulties in operating with fractions is students’  
over-reliance on procedures and intuitions acquired when working with natural 
numbers. This was labeled in the research as a “natural numbers bias”. For example, 
a person may naively conclude that 1/3 is smaller than 1/4 because 3 < 4. In fact, 
such an inappropriate comparison was attributed to McDonald’s fast food chain’s 
failure to promote a third-pounder hamburger, as many customers did not understand 
why it was more expensive than the familiar and loved quarter-pounder.

While natural number bias was investigated mainly among elementary school 
children, recent PME reports from Belgium extended the research on this issue 
to populations more mathematically mature. Van Dooren, Van Hoof, Lijnen 
and Verschaffel (2012) studied the manifestation of natural number bias among 
secondary school students on tasks of fraction comparison. They employed a dual 
process perspective that differentiated between intuitive and analytic reasoning. 
Students responded much faster on so called “congruent items”, that is, where the bias 
would lead to a correct solution (e.g., comparing 1/3 and 2/3), than to “incongruent 
items”, for which the bias would lead to an error (e.g., comparing 1/5 and 1/9). 
However, the expectation that incongruent items will result in more errors was not 
confirmed. Similarly, Obersteiner, Van Hoof and Verschaffel (2013) studied expert 
mathematicians working on comparing fractions in order to get further evidence 
for the intuitive character of this bias. They found that even experts had a “trace” 
of natural numbers bias. This was concluded by observing that though experts 
responded to the tasks correctly, their response time was longer when fractions 
contained common numerators or denominators. This observation supported the 
claim that the source of the bias is in intuitive processes. In a related study, Van 
Hoof, Vandewalle and Van Dooren (2013) demonstrated that natural number bias 
persists not only in transition to fractions. They also found evidence of natural 
number bias in secondary school students working with algebraic expressions. That 
is, students exhibited more accuracy working with “congruent items”, where the 
bias, if invoked, led to a correct conclusion (example: Is it always true that 9 + c > 
c ?) than with “incongruent items”, for which the bias would have led to a wrong 
conclusion (example: Is it always true that 2 × m > m ?).

Attending further to congruence and incongruence, Gomez, Jimenez, Bobadilla, 
Reyes and Dartnell (2014) explored the extent to which a natural number bias 
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provides a useful account of the errors committed by students in Grades 5–7 in a 
fraction comparison questionnaire. About a quarter of the participants responded 
in a way considered as “extreme case of bias” – those students were 100% 
accurate on congruent items and erred on all incongruent items. Of note, this 
research distinguished between congruent items with common components (e.g., 
4/9, 8/9), congruent items without common components, for which both larger 
numerator and denominator belong to a larger fraction (e.g., 5/7, 1/3), incongruent 
items with common components (e.g., 5/8, 5/17), and incongruent items without 
common components (e.g., 2/3, 5/17). The presence of common components made 
no difference for incongruent items, where in both cases the demonstrated success 
rate was about 40%. However, the presence of common components in congruent 
items resulted in a larger percentage (82% vs. 72%) of successful solutions. 
Interestingly, top students in this study (that is, students with overall better results) 
behaved in a way opposite to the predictions of the natural number bias for the case 
of items with no common components. This surprising finding was explained by the 
possibility of heuristic overgeneralization of the common remark made by teachers 
that the magnitude of a fraction grows if its denominator shrinks, and vice versa. 
This reasoning supports decision making when considering a single fraction, but 
leads to errors in fraction comparison.

In a study that looked at Grades 3 to 6 students’ understanding of rational 
decimal numbers, Roche and Clarke (2006) found that ordering tasks provided 
considerable difficulty for students, even for those who were characterized as 
“experts” in decimal comparison tasks. A whole number bias resulted in inaccuracies 
when comparing the relative sizes of decimals in tasks that required ordering more 
than two decimal numbers. Roche and Clarke (2006) suggested that teaching 
strategies which confirm a whole number bias, such as adding strings of zeroes to 
equalise the lengths of two decimals before comparison may be detrimental to the 
development of conceptual understanding. They advocated for the frequent use of 
fractional language to describe decimals for purposes of fostering more appropriate 
understanding of the decimal numeration system.

A strong reliance on experience with natural numbers has also presented 
an obstacle in understanding the density of rational numbers (Vamvakoussi & 
Vosniadou, 2006; Vamvakoussi, Christou, & Van Dooren, 2010). Evidence of 
natural number bias – though not labeled as such in the studies on density – was 
found when students attempted to assign a successor to a rational number, or 
believed that there was a finite number of rational numbers in a given interval. 
These and similar mistakes were attributed to the property of discreteness of 
natural numbers that was misapplied in considering rational numbers. A further 
challenge in understanding the density of the rational and real numbers was linked 
to students’ understanding of infinity (Pehkonen, Hannula, & Soro, 2006). While 
it was found that understanding of density improved with age, tasks which asked 
students from Grades 5–8 to identify how many numbers exist between 0.8 and 1.1 
were consistently problematic for participants. In a similar work with an alternative 
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angle, Kullberg, Watson and Mason (2009) analysed the responses of Grades 7 and 
9 students through a covariational perspective. They suggested there is a two-way 
relationship, which develops over time, between decimal number understanding 
and number line representations, and that this relationship is necessary for correctly 
placing given numbers on a number line. Participants had difficulty ordering and 
positioning (spacing) decimal numbers such as 1.7, 1.71, 1.701, 1.7001, on an 
unscaled number line, which required an understanding of positional variation as 
well as variation in digits and numbers of decimal places.

Researchers have argued that conceptual change is required for successful 
transition from understanding natural to rational numbers. Such a conceptual change 
is not unlike that connected to the development of real number concepts. Merenluoto 
and Lehtinen (2006) conducted a large quantitative study with 17 and 18 year olds 
that found natural number bias hindered success in operating with real numbers. 
They suggested that students “need to tolerate the inevitable feeling of ambiguity” 
(p. 165) which accompanies letting go of familiar practices and procedures. Theory 
on conceptual change is also featured in Prediger’s (2006) report, in which similarities 
and differences – referred to as “continuities and discontinuities” in the learning 
process – between natural numbers and fractions were examined. The mentioned 
“discontinuities” included the unique symbolic representation of natural numbers 
vs. the multiple representations for the same fractional value, the discreteness of 
natural numbers vs. the density of fractions, and the order-property of multiplication 
and division (e.g., “multiplication makes bigger”). Prediger proposed an integrated 
model that attempted to describe students’ difficulties with discontinuities related to 
fractions as obstacles requiring a conceptual change to overcome.

Is it possible to overcome the natural number bias by means of pedagogical 
interventions? According to Gomez et al. (2014) this remains an open question. 
Recent research suggests that it may be impossible to overcome this bias in its 
totality.

Fractions and Teachers

Anna Sfard, in her plenary address at the International Congress of Mathematics 
Education in Copenhagen in 2004, noted that she was “pleased to find out that the 
last few years have been the era of the teacher as the almost uncontested focus of 
researchers’ attention” (Sfard, 2004, p. 90). She also described the last two decades 
of the 20th century as “almost exclusively the era of the learner”, and the several 
decades prior to that as the “era of the curriculum” (ibid.). In reviewing PME research 
for the past decade, it is evident that the era of the teacher is continuing and getting 
momentum. In reviewing over a hundred PME reports that focused on fractions 
and rational numbers, we note that about a third of these reports addressed various 
aspects of teachers’ knowledge related to these concepts. There is a separate chapter 
in this handbook dedicated to research on teachers’ knowledge and its development, 
however we highlight here several studies that addressed fraction-related concepts.
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The majority of research reports from PME 2005–2015 have focused on aspects 
of pedagogical knowledge related to teaching fractions and interpreting students’ 
work. For instance, Chick, Baker, Pham and Cheng (2006) proposed a framework 
for investigating teachers’ pedagogical content knowledge (PCK) in the content of 
decimal fractions and confirmed its applicability. Focusing on particular aspects of 
fractions, PME researchers have found deficiencies in student teachers’ knowledge 
of mathematics and pedagogy related to multiplication of fractions (Ho & Lai, 
2012; Amato, 2009), division of fractions (Li & Smith, 2007), particular models and 
representations related to fraction operations (Izsak, 2006; Amato, 2006), fractional 
units (Lo & Grant, 2012), and changing referent wholes (Prediger & Schink, 2009).

Studies which have focused on teachers’ knowledge of fractions have also 
presented ideas for how this knowledge can be strengthened. For example, PME 
researchers have reported on primary school teachers’ misconceptions related to 
the order of decimals and fractions (Alatorre & Saiz, 2008) and student teachers’ 
difficulty in attending to the place-value structure in decomposing decimals 
(Widjaja & Stacey, 2006). Ideas for how to strengthen knowledge in these domains 
included engaging teachers as leaners using realistic contexts that draw attention to 
structure (e.g., Peled, Meron, & Rota, 2007). While the teachers’ personal knowledge 
was at times linked to their inability to interpret students’ solutions, working with 
students or with student solutions was seen as an avenue for supporting teacher’s 
knowledge, and in particular, for supporting various aspects of pedagogical content 
knowledge or knowledge of mathematics for teaching. A “learning study”, as a 
particular model that combines students’ and teachers’ learning, was suggested as an 
example of teachers’ professional development (Ling & Runesson, 2007). Learning 
study is similar to the Japanese Lesson Study “in which a group of teachers work 
collaboratively to explore and develop their teaching practice in a cyclic process of 
planning, observing and revising lessons” (p. 157). However, the goal of the learning 
study is to enhance students’ learning, rather than to improve the lesson. A particular 
lesson of fraction addition was used as an example. Involvement in the learning 
study helped teachers re-evaluate their assumptions related to students’ knowledge 
and re-evaluate their instructional emphases. The revised instruction included an 
emphasis on whole and part-whole relationships, rather than on the algorithms and 
operations.

Teachers’ interpretation or evaluation of students’ solutions of fraction tasks 
was featured in several studies (e.g., Alatorre, Mendiola, Moreno, Sáiz, & Torres, 
2011; Ribeiro, Mellone, & Jakobsen, 2013; Callejo, Fernandez, & Marquez, 2013). 
The overall results pointed to teachers’ difficulties in interpreting non-algorithmic 
solutions and judging their correctness for both contextualized (e.g., “What amount 
of chocolate would six children get if we divide the five bars equally among them?) 
and decontextualized (e.g., How many times does ⅓ fit in 2.5?) tasks involving 
multiplicative structures. Further, more procedural, rather than conceptual, errors 
were identified in students’ solutions. In accord with other research, the task 
of working with students’ solutions was seen as an important method in teacher 
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education, fostering teachers’ professional development, in particular their 
specialized content knowledge.

Naturally, as fractions are an integral part of any elementary school curriculum, 
these above mentioned studies focused on elementary school teachers. However, 
Zoitsakos, Zachariades and Sakonidis (2013) looked at secondary mathematics 
teachers understanding of the decimal expansion of rational numbers. In particular, 
they focused on a repeating period of 9, in the decimal expansion 0.3999… . They 
reported that despite a strong mathematics background, the majority of teachers 
considered this symbol as a process, rather than as a number. For readers interested 
in an extended discussion of repeating decimal expansion we recommend consulting 
Weller, Dubinsky and Arnon (2009, 2011, 2013).

Fraction Interpretations

According to Charalambous and Pitta-Pantazi (2005), “fractions are among the most 
complex mathematical concepts that children encounter in their years in primary 
education” (p. 233). The multifaceted fraction notion, which encompasses five 
interrelated sub-constructs contributes to this complexity. The sub-constructs are: 
part-whole, ratio, operator, quotient and measure (e.g., Kieren, 1980, 1988). A variety 
of PME research reports addressed these interrelated interpretations of fractions and 
considered how various interpretations are featured in children’s problem solving.

Based on the model that presents a relationship between fractional constructs and 
operations, Charalambous and Pitta-Pantazi (2005) developed and implemented a 
test, carried out with over 600 students in Grades 5–6, and identified correlations 
between various components of the model. The data confirmed that the part-whole 
interpretation is a foundation for the other four ‘subordinate’ interpretations, and also 
indicated that all the interpretations contributed towards proficiency with fraction 
operations. In a follow up study, Charalambous (2007), in addition to developing 
a scale for measuring student understanding, examined the level of difficulty 
presented by different sub-constructs. Tasks related to part-whole recognition of 
fractions appeared less difficult for students, while tasks related to the measure 
and operator sub-constructs appeared most difficult. However, the differences in 
students’ performance could have been attributed to the Cypriot curriculum in 
which students have more opportunity to practice part-whole related tasks. Clarke, 
Sukenik, Roche and Mitchell (2006), designed and used an assessment instrument, 
which attended to the five sub-constructs identified above, in individual interviews 
with Grade 6 students (n = 323). In resonance with the aforementioned studies, 
students performed much better on the part-whole tasks than on the tasks involving 
other interpretations of fractions. The weakest performance was demonstrated on 
the tasks that involved measure and division interpretations. This can be seen as a 
further support of the importance of the part-whole interpretation.

In contrast to these studies, the foundational positioning of the part-whole 
interpretation, which largely followed from the studies of Kieren (1980, 1988), was 
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not supported by others (e.g., Freudenthal, 1983; Thompson & Sandanha, 2003), 
who argued for the importance of the inclusion of ratio interpretations in the early 
stages of fraction instruction. Following this latter view, Cortina and Zuniga (2008) 
suggested that ratio comparisons could be a viable starting point in introducing 
fractions, and an alternative to the “equal partitioning” traditional approach. This 
recommendation was based on the study of nine 11 year olds, reasoning about the 
relative capacity of cups – as the task appeared meaningful and supported quantitative 
reasoning about multiplicative relationships and about basic equivalencies.

Mamede and Nunes (2008) described a teaching experiment in which children 
were randomly assigned to groups and then introduced to fractions using quotient, 
part-whole or operator situations. The results of the test administered after the 
teaching experiment demonstrated that quotient situations were the most helpful 
for children in the tasks of equivalence and ordering of fractions. They noted that 
quotient situations were helpful for children in establishing connections between 
informal ideas and fractional representations of quantities, and could be used for 
introducing learners to fractions. In a similar vein, Naik and Subramaniam (2008) 
discussed the inadequacy of an exclusive emphasis on the part-whole interpretation, 
and demonstrated in their study with Grade 5 students the effectiveness of 
supplementary instruction that focused on measure and quotient interpretations 
of fractions. Particular gains were noted on tasks of comparing the relative 
size of fractions. However, the study of Mamede and Cardoso (2010) suggested 
that emphasizing one sub-construct over another was not the only indicator of 
differences amongst student understanding or performance, and they pointed instead 
to the centrality of context. In their study, students in Grade 6 performed better on 
equivalence and ordering tasks presented in quotient situations than in part-whole 
and operator situations, but they performed better on labeling tasks in part-whole and 
operator situations than in quotient situations. Their results suggested that “distinct 
situations affect differently students’ understanding of fractions” (p. 262).

These studies combined emphasize the importance of exposing students to 
a variety of situations in their mathematics class, repeating the argument against 
almost exclusive reliance on part-whole notion. However, given the structure of the 
curriculum and teachers’ dispositions, this recommendation appears easier to agree 
with than to implement.

Fraction Representations and Models

Researchers in mathematics education have acknowledged the importance of 
attending to representations of mathematical concepts in teaching and learning. 
Recognizing the same concept in multiple systems of representations, the ability 
to manipulate the concept within these representations, as well as the ability to 
move flexibly between different representations are essential for understanding the 
concept (Lesh, Post, & Behr, 1987). Several PME reports attended to a variety of 
models and representations in the domain of fractions.
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Kyriakides (2006), for example, explored Grade 5 students’ use of rectangular 
area models to represent fractions via a constructivist teaching experiment. He 
suggested that “the value of the rectangular area model as a tool for scaffolding 
the meaning of fractions lies in the multidimensional role area plays in human 
life” (p. 18). The findings demonstrated that vertical partitioning is central in 
children’s perception of proper fractions. Deliyianni, Panaoura, Elia and Gagatsis 
(2008) attended to the addition of fractions represented in a variety of ways, such 
as number line, circle diagrams, rectangular diagrams, or symbols. They confirmed 
their hypothesis that flexibility with multiple representations influenced various 
dimensions of students’ (in Grades 5 and 6) understanding of fraction addition. In a 
follow-up study, Deliyianni, Elia, Panaoura and Gagatsis (2009) focused on primary 
and secondary school students’ understanding of decimal addition, and looked for 
similar trends with respect to the influence of different representations. In resonance 
with their previous work, they advocated for flexibility across representations, noting 
that different types of representations – including diagrammatic and symbolic – 
affected students’ solving processes. Further, they noted an importance in making 
explicit connections amongst decimals and fractions for fostering structural sense of 
decimal number addition, and they suggested that flexibility across representations 
may help students transition from primary to secondary school mathematics.

While flexibility in attending to various representations is acknowledged in 
the above mentioned studies, representation of fractions were also attended to as 
relevant to particular operations. Kalogirou, Gagatsis, Michael and Deliyianni 
(2010) explored to what extent different types of fraction representations can help 
students overcome obstacles with fraction division as well as students’ perceptions of 
the usefulness of different kinds of pictorial representations. The results indicated that 
students were more successful on tasks that were accompanied by a representational 
picture than ones without. The researchers reported significant differences in 
students’ beliefs about the utility of various pictorial representations: decorative 
pictures, informational pictures, representational pictures, or organizational pictures. 
Unfortunately, this report was not accompanied by any pictorial representations, 
so we are left wondering what the various pictures could have been. Adding 
another dimension, Dreher, Kuntze and Winkel (2014) focused specifically on the 
conversions of representations of fractions. They administered a test for Grade 6 
students that involved examining, performing and justifying conversions among 
representations. The results indicated greater success in examining conversions task, 
than in performing conversions, regardless of whether or not justifications were 
required.

Representations and context have also attracted research interest with regard 
to the teaching and learning of decimal number sense, arithmetic, and structural 
understanding. For instance, Bonotto (2006) noted that realistic modeling had 
a positive effect in fostering decimal number sense. Such modeling included 
cultivating particular socio-mathematical norms (such as pretending to be at a 
restaurant and splitting a bill) and using cultural artifacts that fostered decision-
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making and a grasp of the connections between numerical representations of 
decimals and their referent quantities (such as making choices from a menu). 
Further, while students who engaged with these experimental activities showed 
positive growth, students from the control group were found to have an increase 
in errors during the post-test. Peled, Meron and Rota (2007) also promoted the 
benefits of realistic modeling and contexts in fostering an understanding of 
decimal structure with Grade 3 students. Their approach included a long sequence 
of contextualized investigations that emphasized a re-invention of base ten 
groupings and place value, before introducing tasks which aimed at generalizing 
multiplicative structures. In particular, their multiplicative approach was based on 
viewing decimal numbers as special combinations of multiples and powers of 10. 
Peled, et al. found that students’ activity was characterized by “deep thinking” 
and “good argumentation” (p. 71), and that the multiplicative approach enabled 
activation of prior learning for meaningful transfer. They also noted that while the 
teachers they worked with initially rejected such an instructional approach, they 
benefited from experiencing it as learners, which helped increase their appreciation 
for the techniques.

Deficits in fraction or decimal number understanding can have serious repercussion 
not only in school mathematics, but also in the workforce. Steinle and Pierce 
(2006) found fundamental misunderstandings of decimal numbers among student 
nurses could lead to calculation interpretation errors, even when correct procedural 
routines were followed. The nurses’ self-professed problems with decimals included 
knowing how to treat repeating decimals – e.g., 3.77777 was viewed as the same 
as 3.7, with implications in dosage interpretation and administration – and ordering 
and comparing decimals – e.g., deciding whether or not a blood alcohol reading 
of 0.12 was over the legal driving limit of 0.05. While the nursing courses and 
supplementary learning material focused mainly on procedural understanding, 
Steinle and Pierce found that even minimal intervention with conceptually-focused 
teaching had a significant positive effect.

On Tests and Errors

Several researchers addressed the challenges of developing reliable tests for assessing 
students’ understanding of fractions. For example, Nikolaou and Pitta-Pantazi (2013) 
developed a theoretical model of factors involved in understanding fractions and 
confirmed that the proposed factors determined hierarchical levels of understanding 
the fraction concept. At the low level, the factors included inductive reasoning and 
sense about the magnitude of fractions. At the middle level, the additional factors 
were argumentation and justification, connections with decimals and percentages, 
and ability to attend to and convert between different representations. At the high 
level, comprising the factors from the previous two levels, the additional factors 
were definitions and mathematical explanations, and ability to reflect on one’s 
solution. The levels were found to be stable over time.
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In a study on testing of fractions, decimals, and multiplicative reasoning, 
Hodgen, Kuchemann, Brown and Coe (2010) compared test results from 1976/7 
and 2008/9 to examine changes in adolescents’ achievement and difficulties. Their 
preliminary results indicated that while attainment in decimals was higher in 2008 
than thirty years prior, the opposite was true for fractions, and in both cases a 
higher proportion in 2008 of very low performances was observed. The measures 
used included the items developed as part of the 1970s Concepts in Secondary 
Mathematics and Sciences (CSMS) study. This data was compared with the results 
of 3000 11–14 year olds’ address of the same CSMS test items in 2008.

Acknowledging that developing reliable measures of understanding on any 
mathematical concept is difficult, Jones, Inglis, Gilmore and Hodgen (2013) 
presented a different approach, called Comparative Judgement (CJ). They argued 
that “The expense, lengthiness and difficulty of measuring conceptual understanding 
is a barrier to progress in mathematics education” (p. 113) and suggested that 
collective expertise of teachers and researchers could provide an alternative. In 
this approach, experienced educators make pairwise judgments on the quality of 
students’ responses on a test. The idea is derived from a psychological principle 
that humans are better at comparing objects to one another, rather than comparing 
an object against a particular criterion. In this study eight mathematics educators 
assessed 25 student responses pairwise, each completing 50 judgment decisions. 
One particular item involved ordering a list of seven fractions (3/4, 3/8, 2/5, 8/10, 
1/4, 1/25, 1/8) from smallest to largest and justifying the method. The researchers 
found strong inter-rater consistency and demonstrated the validity of the method 
as general mathematical achievement of students could predict the CJ parameters. 
They suggested further research should examine the extent to which CJ may offer a 
method that can be used routinely in different content domains. Further information 
on uses of CJ can be found in Jones and Inglis (2015).

The studies of Heemsoth and Heinze (2013, 2014) investigated whether or not 
instruction that involved discussion of errors supported students’ performance. 
Their initial study demonstrated that reflection on errors – so called “negative 
knowledge” – was beneficial for advanced students only. The findings of the follow 
up study, which implemented two different error-handling strategies, demonstrated 
that students who reflected on the rationales behind erroneous solutions enhanced 
their knowledge more than students who reflected only on the corresponding correct 
solution. However, these results are limited to procedural knowledge, and further 
research was suggested to draw conclusions about conceptual knowledge.

THE INTEGRAL, THE IRRATIONAL, AND THE INFINITE

The (intended) pun in the titles of this and the previous section poke a little 
at the dominance of fractions, rational decimals, and their manipulations in 
mathematics education research. Non-integral in the mathematical sense (i.e., not 
of integer value), yet integral in a linguistic sense, the future of fractions and their 
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representations in teaching, learning, and research will be interesting to watch. Eyes 
might look toward controversies around their necessary place in the curriculum 
(e.g., Mason, Taylor, Simmt, & Gourdeau, 2015) and new thinking around curricular 
design (e.g., Ministry of Education and Culture, Finland, 2015), in the meantime, we 
turn our attention to other “integral” mathematics.

In the following, our attention turns to integers, and the elements and relationships 
that are integral to integer understanding, yet offer challenges for learning and 
teaching. We then turn our attention toward pedagogical structures for developing 
ideas of irrational numbers, and to conceptual structures in reasoning with and about 
infinity.

Zero: More Than Nothing, Less Than Everything

Gallardo and Hernandez (2005, 2006) examined learners’ conceptions of zero in the 
context of transitioning from arithmetic to algebra. From an advanced perspective, 
zero is recognized as an identity element in a group with additive structure 
(closure), such as the integers. For a novice learner, Gallardo and Hernandez (2006) 
observed that different meanings of zero can develop as different associations 
across contexts and (re)presentations are made. They offered a case study analysis 
of the conceptions of a high-achieving 12 year old pupil who was competent in 
“arithmetic and algebraic systems of signs” (p. 154). Five different meanings of 
zero were interpreted: the nil zero (valueless), the implicit zero (used in solving 
processes), the total zero (identity element), the arithmetic zero (result of arithmetic 
manipulations), and the algebraic zero (result of algebraic manipulations). Bofferding 
and Hoffman (2014) observed that strong conceptions about zero, and its place on 
the number line, could act as a hindrance in distinguishing between absolute value 
and ordered value of positive and negative integers. They suggested that teachers 
provide explicit instruction to help students from overgeneralizing the idea that zero 
is always the start of a number line, targeting instruction around the placement of zero 
relative to all integers and highlighting the structural symmetry of the number line.

On Negative Numbers

Number sense developed for natural numbers relates to, but is not sufficient for, 
number sense of negative integers (Kilhamn, 2009). Kilhamn (2009) suggested that 
number sense be an explicit part of teaching negative numbers, bearing in mind four 
interrelated components, which included: ability and intuition about natural numbers 
and arithmetic, ability to compare magnitudes and relative sizes, ability to recognize 
benchmark numbers and patterns (such as the symmetry of opposite numbers), and 
possessing knowledge of the effects of operations on integers. Appreciating the 
symmetric relation about zero of inverses in the group of integers may be seen as a 
precursor to “check and balance” type approaches to integer arithmetic. Koukkoufis 
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and Williams (2006) analysed children’s semiotic processes when applying 
the “compensation strategy” while playing dice games. They noted that in some 
contexts, children intuitively and comfortably used the compensation strategy, and 
that this intuition facilitated its symbolic generalization (Radford, 2003).

While Koukkoufis and Williams (2006) found children to have some success 
in reifying negative numbers through their experiences with realistic dice games, 
Chrysostomou and Mousoulides (2010) noted that student teachers relied on process-
based explanations of negative numbers and lacked conceptual (and encapsulated) 
understandings. Their participants relied on rules and memorization, and could 
not justify comparison decisions or pedagogical models and representations. 
Chrysostomou and Mousoulides (2010) concluded that teachers’ limited and un-
encapsulated knowledge of negative numbers “created even more difficulties on 
their pedagogical content knowledge and prevented them from being able to realize 
what was actually needed for successfully teaching the negative numbers” (p. 272). 
Ekol (2010) probed students’ and teachers’ action-oriented thinking when learning 
negative numbers in a dynamic geometry environment. He observed that the use 
of a dynamic, and necessarily interactive, number line shifted attention away from 
object properties of the numbers to action-oriented thinking, which was found to be 
important for working with integer arithmetic and conceptual understanding. It is 
worth noting that while action- (or process-) based thinking was helpful in the digital 
context of interactive dynamic software, such thinking was deemed problematic 
when trying to provide a definition for negative numbers, or in placing decimals on 
a static number line (Chrysostomou & Mousoulides, 2010).

On the Seeming Irrationality of Irrational Numbers

What are these creatures, such as π,е,φ and fan favourite  ? How are these so-called 
numbers introduced and developed in school mathematics? And, what on earth are 
they for? These questions might be quite challenging for some to answer, particularly 
if they are relying on textbook explanations. Gonzalez-Martin, Giraldo and Machado 
Souto (2011) analysed a collection of textbooks commonly used across educational 
strands in Brazilian curriculum, and raised important criticisms about how irrational 
numbers were presented and not presented. The texts exclusively introduced irrational 
numbers via decimal representations and unjustified computational routines and 
algorithms. The lack of any explanation or argumentation to motivate the need for, 
or existence of, irrational numbers was highly problematic and to the detriment of 
structure and conceptual development of irrationals and of properties of the real 
number line, such as its density. Gonzalez-Martin et al. (2011) suggested that such 
textbook approaches ought to introduce these “new” kinds of numbers with a sense 
of their purpose and utility, such that the mathematical need for the construction of 
the field of real numbers is better motivated. They promoted the use and discussion 
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of mathematics problems which cannot be solved by rational numbers, and as such 
may beget the concept of irrational numbers.

Similarly, Shinno (2007) suggested that a historical setting and determining 
the existence of a solution to equations such as x2 = 2 could offer context for a 
meaningful rediscovery of irrational numbers. Shinno noted that several challenges 
exist when introducing irrational numbers, and he cautioned against an over-reliance 
on concrete representations or contexts. In particular, he suggested that to develop 
“incommensurability sense” a learner must appreciate the limitations of concrete 
representations and recognize a need for algebraic development and general forms. 
While Shinno’s experiment made use of paper folding to draw attention to the 
existence of irrational numbers, the role of questioning whether or which numbers 
cannot be represented as a ratio of integers should be part and parcel to instructional 
approaches. Shinno and Iwasaki (2009) explored further the process of conceptual 
change in learners, and found that an understanding of incommensurability was 
essential for the ontological shift required in transitioning from ideas of rational 
to irrational number concepts. They observed lessons in a Grade 9, lower-tiered, 
mathematics class, which focused on square roots of numbers. They found that 
Euclid’s algorithm and proof by contradiction served as a useful didactical aide 
in fostering a sense of incommensurability, in spite of the considerable challenges 
students can encounter with the formal logic of an indirect proof. More importantly, 
they reaffirmed the role of shifting from a ‘realistic’ knowledge of (natural) number 
relying on concrete existence, to an ‘idealistic’ knowledge of (real) number relying 
on abstracted reasoning. In analysing students’ discursive processes when learning 
irrational number addition, Shinno (2013) emphasized the importance of reifying the 
signifiers  and  to represent one irrational number. Shinno suggested 
that the act of reifying was fostered through the use of questions similar to “if not, 
what yes?” (Koichu, 2008) which kept students focused and active, and which 
“implies the need for a new semantic space of the signifier” (p. 213) that can then be 
objectified through students’ interactions with area models.

The representation  can be interpreted as a procept (Gray & Tall, 1994), 
where the ambiguity between the process of adding two numbers, and the object 
or concept of the sum of two numbers, is visible in the signifier and linked to 
challenges in learner perceptions. The decimal representations of irrational numbers, 
particularly because of their infinite expansion and an associated tendency to view 
the expansion as a process but not a concept, can also be challenging for individuals’ 
understanding of the magnitude of those numbers, and has implications for learners’ 
understanding of infinity. Mamolo (2007) found that pre-Calculus students had a 
tendency to over-apply the term “infinite number” and in doing so, confounded the 
finite properties but infinite representation of π with the “infinite properties” but 
“finite representation” of points on a number line. An intuitive use of the notion 
of “measuring infinity” (Tall, 1980) and a lack of conceptual understanding of 
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irrational numbers are some factors which contributed to challenges when moving 
beyond the reals to the surreal. Let us turn now to the surreal; off to infinity.

Making Space for Infinity

In a chapter dedicated to number, the place of infinity might be seen as dubious, 
yet we see a space for it. Not a number, but a number, we restrict our focus on the 
expansive topic to the notion of infinity as it emerges in Cantorian set theory – as 
transfinite numbers with their own idiosyncratic arithmetic structures. Whether or not 
one accepts infinity as a number, it is a concept that continues to attract attention and 
interest. Indeed, there has been no shortage of research within the PME community 
which has been dedicated to learners’ understandings of infinity.

Tsamir and Tirosh (2006), who have written extensively on the topic, provided 
an overview of the first thirty years of PME research on the psychological 
complexity, mathematical significance, and educational challenges (“pme”) of 
the learning and teaching of infinite sets. They highlighted series of tasks that 
have been used to uncover, explore, and foster student thinking around infinite 
divisibility, transfinite cardinal comparisons, and limits. Early findings unearthed 
the resilience of intuitive and contradictory approaches, which drew research 
attention toward teaching interventions and the effects of various presentations, 
and re-presentations, of infinite sets. With an eye on teaching, infinity in teacher 
education began to attract research attention, which had been previously focused 
on novice learners. The anomalous nature of infinity was no less challenging for 
teachers, despite more advanced mathematics backgrounds. Particular attention was 
paid toward teachers’ awareness of the necessity for consistent and non-contradictory 
results when comparing sets and in determining by which criteria to make the 
comparison. Tsamir and Tirosh (2006) suggested that “when designing and teaching 
mathematics courses, attention should be given to the relations between formal and 
intuitive knowledge and to the conflicts which may arise in the mismatching of 
applications of these different types of knowledge” (p. 60).

The context of (set theoretic) infinity (infinities, actually) has continued to attract 
researchers interested in the interplay amongst intuitive and formal understandings, 
and in learners’ strategies for coping with abstract mathematics. Singer and Voica 
(2009) identified four ‘categories of structures’ that children and adolescents used 
to reason about infinite set comparisons. They identified arithmetic structures, 
geometric structures, fractal-type structures, and density-type structures. These 
different structures were linked to other mathematical contexts, and if activated 
could help the understanding of some important concepts, such as graphical 
transformations, recursion, and division algorithms. This research supports the claim 
of Montes, Carrillo and Ribeiro (2014), who suggested that infinity is “intrinsic 
to school mathematics … [and] applicable to the day-to-day work of teaching” 
(p. 237). Teaching interventions, however, have had dubious influences on learner 
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perceptions of infinity. For example, Narli, Delice and Narli (2009) confirmed prior 
research around the resilience of personal experiences and primary intuitions in 
young adolescents’ conceptions of infinity. They noted the persuasiveness of non-
mathematical contexts and emotional connections – infinity was likened to extreme 
feelings such as loneliness and freedom, and to notions of life and living. As one 
participant put it “if there was infinity plants would not die they would all still 
be alive” (p. 212). Similar considerations were observed in more mathematically 
sophisticated learners, whose consideration of paradoxes of infinity – such as 
Hilbert’s Grand Hotel (HGH) and the Ping Pong Ball Conundrum (PPBC) – led 
to new insights on the tacit influences of philosophical or emotional orientations 
toward the concept (Mamolo & Zazkis, 2008a). Success in resolving such paradoxes 
seemed to hinge on an ability to separate belief from knowledge – that is, even 
participants who could accept the normative resolution of the PPBC felt compelled 
to identify that this acceptance was in spite of their instincts. Mamolo and Zazkis 
(2008a) provided one of the first empirical studies which used paradoxes as a research 
tool (rather than a teaching tool) to investigate and compare learners’ understanding. 
Maes, Cornet, Verhoef and Hendrikse (2011) extended this work, using the PPBC 
with upper-year high school students, noting similar results and suggesting that the 
coordination of multiple infinite sets may have been too complex for the learning 
stages of their participants. More on the uses of paradoxes as windows to learners’ 
understandings can be found in Dubinsky, Weller, Stenger and Vidakovic (2008), 
Mamolo and Zazkis (2008b) and Radu and Weber (2011).

The ambiguous nature of infinity as either (or both) a potential or an actual 
mathematical entity offers a fruitful ground for delving into the nuances of 
individuals’ abstract reasoning processes. The tension between potential and actual 
infinities has been considered from the perspective of young learners (Singer & 
Voica, 2009), adolescents (Maes et al., 2011; Narli et al., 2009), student teachers 
and undergraduates (Mamolo & Zazkis, 2008a; Mamolo, 2014a). In their ESM 
papers, Dubinsky, Weller, McDonald and Brown (2005a, 2005b) applied the APOS 
Theory to correspond the notions of potential and actual infinity to process- and 
object-based conceptions, respectively. Through this perspective, the notion of 
actual infinity may evolve from an individual’s encapsulation of potential infinity. 
In her consideration of learners’ understanding of transfinite cardinal arithmetic, 
Mamolo (2014a) highlighted the nuances involved in reasoning about the cardinality 
and cardinal number of an infinite set. In particular, she showed that it is possible 
to conceptualize an infinite set as a completed object without conceiving of a 
transfinite cardinal number as one (where a transfinite cardinal number is that which 
represents the cardinality of the ‘completed’ infinite set). Further, it was suggested 
that de-encapsulation of an infinite set may be problematic for making sense of 
an encapsulated transfinite cardinal number when the properties of a process 
of infinitely many finite items is extrapolated to make sense of the properties 
of an object of one infinite entity. This and other studies focused on the genetic 
decomposition of infinity are discussed further in the Canadian Journal for Science, 
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Mathematics and Technology Education; see for example, Mamolo (2014b) and 
Weller, Arnon and Dubinsky (2009, 2011, 2013).

Tsamir and Tirosh (2006) declared that the “value of examining the same 
issues from different viewpoints cannot be overstated” (p. 60). Indeed, in their 
own work, revisiting findings through a variety of theoretical lenses provided 
them with “a more extensive vocabulary to discuss the phenomena observed” 
(ibid). Theoretical approaches both informed, and were informed by, researches 
on learners’ understanding of infinity. Kim, Sfard and Ferrini-Mundy (2005) 
investigated students’ discourse on the topic of infinity, comparing and contrasting 
US and Korean participants. Clear differences amongst the discourses of US and 
Korean students were noted, and were “ascribed to the fact that only in English 
do the mathematical words infinity and infinite (as well as set) appear also in the 
colloquial discourse” (p. 207). Since colloquial discourse was the primary source for 
US students’ conceptualization of infinity, the authors conjectured that this discourse 
may impact students’ development of other aspects of their mathematical discourse, 
such as routines and endorsed narratives. This work was further developed in Kim, 
Ferrini-Mundy and Sfard’s (2012) investigation on the language-dependent nature 
of mathematics learning, and has informed broader research on the influence of 
language in mathematics learning (e.g., Sfard, 2014).

AFFORDANCES OF TECHNOLOGY IN SUPPORTING THE STUDY OF NUMBER

Technological innovations support the development of new teaching and research 
tools and in such allow further insight into issues of affect and cognition of 
mathematics learners. These innovations range from computer-based interaction 
with tools and applets to advances in brain research.

For instance, virtual manipulatives have been implemented for fraction learning. 
Suh and Moyer-Packenman’s (2007) study of 3rd graders found significant 
differences in student achievement in favour of virtual manipulatives vs. physical 
ones. Furthermore, Suh and Moyer-Packenman (2008) used virtual manipulatives 
to study the learning of fraction equivalence of students with special needs. The 
affordances of these manipulatives were discussed with particular attention to the 
connections between the visual and notational representations. The simultaneous 
change in multi-dimensional representations was considered advantageous, helping 
learners avoid cognitive overload, which may be present in a physical environment.

Olive (2011) used a dynamic number line and semiotic mediation to explore 
learners’ understanding of the relative sizes and positions of fractions. He 
demonstrated the ways in which participants’ reasoning advanced and how it was 
shaped by using this dynamic tool. Over the field of real numbers, arithmetic skills 
and number sense rely on a flexible understanding of place value, for which the 
affordances of digital technologies may provide helpful. Kortenkamp and Ladel 
(2013, 2014; also Ladel & Kortenkamp, 2013) looked at the effect of a digital, 
interactive place value chart on learners’ growth of understanding. Their early 
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qualitative analyses indicated that the use of the digital tool, while surprising to 
students at first, supported a conceptual understanding of place value and the ability 
to flexibly represent numbers in the place value chart. Their on-going quantitative 
analyses will investigate whether their interactive place value chart – which 
preserves the value of a number and allows for nonstandard partitions – will yield 
similar results consistently across a larger scale. Geiger, Dole and Goos (2011) noted 
the necessity of seamlessly integrating instructional models for numeracy learning – 
be they via digital tools or otherwise – such that the various representations and 
contexts for mathematics are understood. More to this end is discussed in the chapter 
dedicated to ICT in mathematics teaching and learning.

While the aforementioned technologies were useful in the study of number (as 
teaching tools), other technologies are being employed – and have been found 
similarly useful – in the study of “the study of number” (as research tools). For 
instance, Obersteiner, Moll, Beitlich, Cui, Schmidt, Khmelivska and Reiss (2014) 
used eye tracking to distinguish strategies used by mathematicians in comparing 
fractions. Cimen and Campbell (2012) used a wide spectrum of observational tools, 
including eye tracking, electrocardiography (EKG) and respiration rate data to 
compose learners’ profiles as they attended to concepts of elementary number theory.

Results from neuroscience research have also entered the ongoing debates among 
mathematics education researchers, some of which we have discussed throughout 
this chapter – such as primality of ordinality vs. cardinality conceptions of number 
(Coles, 2014), or the connections between counting and measuring (Iannece, 
Mellone, & Tortora, 2009) – and are used to support researchers’ views or to guide 
their investigations. An innovative study by Tzur and Depue (2014) used fMRI to 
study the brain activity of participants comparing fractions and whole numbers. 
Their research demonstrated that different brain regions are activated by comparison 
tasks in different numerical domains, and that constructivist-based interventions 
during which participants engaged in particular problem solving tasks impacted 
what brain regions were activated for the tasks. Tzur and Depue (2014) advocated 
for collaboration between educators and neuroscientists and argued that brain 
research can provide further insight into the conceptual frameworks in mathematics 
education that were to date developed through observational studies.

CONCLUDING COMMENT

On reflecting over this chapter, and in particular on the promising roles technologies 
may yet play in the discipline, we note that in the realm of mathematics, technological 
advances have enabled new discoveries about numbers, and continue to do so. For 
example, as of 2013, the largest known prime number is 257,885,161 − 1 and it has over 
17 million digits. A Pi Calculator Applet can compute a million digits of π in a few 
seconds on a normal PC; in theory it can compute more than 1015 digits of π. In the 
realm of mathematics education, our curiosities turn toward the possibilities that 
new technologies may afford PME researchers. Will technological advances help 
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researchers better understand how various numbers are processed in a human brain? 
Will (and in what ways could) they shape the next decades of PME research focused 
on (and beyond) number? We expect that the PME research handbook published in 
the third decade of the 21st century will shed light on these, and other, important 
questions.
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ELIZABETH WARREN, MARIA TRIGUEROS AND SONIA URSINI

3. RESEARCH ON THE LEARNING AND 
TEACHING OF ALGEBRA

INTRODUCTION

For many years, the mathematics education community has investigated the 
difficulties students have with algebra. Different aspects of algebraic thinking, 
considered to be fundamental to overcome those difficulties, have been analyzed 
by researchers using a variety of theoretical frameworks. Different proposals to 
redress those difficulties, based on research results, have been suggested and their 
effectiveness has been investigated. Results of these research studies have signalled 
that in order to foster students’ development of algebraic thinking it is necessary to 
help them: improve their sense and dynamic conception of variables (i.e., variables 
as changing entities); develop their capability to generalize and to express their 
generalization; become aware of the dynamic relation that exist between variables; 
and, identify algebraic structure (e.g., Kieran, 2006; Radford, 2008, 2011; Mason, 
Stephens, & Watson, 2009; Ursini & Trigueros, 2011; Cooper & Warren, 2008). 
Within the mathematical topics studied in high school, algebra plays an important 
role. Researchers have found that the higher level of mathematics courses students 
take in high school, the greater their chance of attending and graduating from college 
and finding better paid employment in the future (Carnevale & Desrochers, 2003).

Algebra still remains an area of interest for the PME community. There have been 
major shifts in the focus of this research since it first came to the attention of PME 
researchers (Kieran, 2006). The themes that have witnessed a growth in interest by 
the PME community over the last ten years are: algebraic thinking in the elementary 
years (early algebra); generalization; structure sense; advanced algebra; and, the 
use of technological tools to support the development of algebraic understanding of 
secondary school students. One of the major gains that early algebra research has 
seen over the past ten years is the inclusion of researchers whose previous focus 
of research has been predominantly 8th and 9th students (aged 13 to 14 years) 
(e.g., Becker & Rivera, 2005, 2008; Radford, 2006; Sabena, Radford, & Bardini, 
2005). Recent findings have indicated that many of the difficulties young students 
experience with algebraic thinking mirror the difficulties students’ exhibit as they 
begin formal algebra (e.g., Becker & Rivera, 2007; Warren, 2006). Thus research 
with 13–14 year-old students is not only informing research regarding upper 
secondary and tertiary students but also informing research involving elementary 
students. Additionally there has been an increase in the emphasis on theorizing 
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related to the nature of algebraic thinking of 5–14 year old students (e.g., Radford, 
2006, 2010; Rivera, 2013).

Algebraic thought rests on some basic pillars and fundamental among them 
are the two aspects: variables as general abstract entities that can be represented 
in different ways; and, the ‘structure sense’ of algebra. These two aspects are 
involved in any algebraic activity (generalization, equations, functions, etc.). 
Research conducted this last decade on the teaching and learning of algebra, in 
secondary and university level, has used a variety of theoretical frameworks to 
analyze the complexity of working with these two aspects, paying attention to the 
particularities of their specific instantiations. In particular, PME researchers have 
been concerned with them through the analysis of students’ and teachers’ work 
with equations, relation between variables, pattern recognition, and generalization. 
In addition, this last decade has witnessed a rapid development of technologies. 
Its influence on mathematics’ learning and in particular, in algebra learning has 
demanded further research. The possibility to use technologies to develop students’ 
algebraic knowledge and skills, and the obstacles involved in their use by teachers 
has strongly attracted the attention of researchers.

This report is organised into four sections: The development of algebraic thinking 
among students aged from 5–14 years; the development of algebraic thinking among 
upper secondary and tertiary students; the use of technology; and a final section 
which integrates these themes, identifies the gaps in these themes and presents 
possible directions for future research in the domain of the learning and teaching of 
algebra. The examples presented in these sections have been drawn from the research 
that has occurred over the ten-year period from 2005 to 2015, with a particular focus 
on PME conference proceedings.

THE DEVELOPMENT OF ALGEBRAIC THINKING AMONG STUDENTS 
AGED FROM 5–14 YEARS

Early algebraic thinking refers to thinking about algebra early and looking at 
number from a more structural perspective. Thus, its focus is on developing in 
students the awareness of the structure of patterns and the structure of arithmetic 
(Mason, Stephens, & Watson, 2009). Early algebraic reasoning entails encouraging 
young students to become naturally aware of generalizations in numerical and non-
numerical contexts and expressing these generalizations using a variety of semiotic 
signs (Radford, 2006). Traditionally algebra has only been taught after students 
have acquired a substantial amount of arithmetic knowledge, with the assumption 
that arithmetic provides the grounding on which to build algebraic knowledge. 
But as evidenced by the current research conducted by PME researchers, many 
early secondary students (13–14 years) struggle with this domain, and most of 
these difficulties can be traced back to their prior experiences in arithmetic. Thus a 
research focus for the future is how (and should) arithmetic and algebraic thinking 
be intertwined with each supporting the other across the first 10 years of school.



RESEARCH ON THE LEARNING AND TEACHING OF ALGEBRA

75

Underpinning the research classified as early algebra is the perspective 
that for many students the meaning of algebra is derived from its numerical 
foundations. In particular the focus of research over this last ten year period 
has been on investigating the challenges of the well-documented discontinuities 
that arithmetic has created for students beginning to formally explore algebraic 
concepts (Kieran, 2006). For example, students’ prior arithmetical use of letters 
in formulas and as labels can negatively impact on their understanding of the 
concept of a variable (e.g., Kuchemann, 1981; Clement, 1982); and, many students 
experience difficulties when (a) interpreting equations with several numerical 
terms and unknowns (e.g., Linchevski & Linveh, 1999), (b) manipulating algebraic 
expressions (e.g., Kirshner, 1989), and (c) articulating the structure of a pattern 
or relationship in ordinary language (Macgregor & Stacey, 1993). Traditionally 
early algebra has tended to be associated with the elementary years of schooling. 
Given that the recent findings have indicated that many of the difficulties young 
students experience mirror the difficulties students exhibit as they begin formal 
algebra, this section has been extended to include both of these groups of students 
(i.e., elementary school students – 5 to 12 year old – and students beginning formal 
algebra – 13 to 14 year old).

In all 62 PME full research reports informed this section of the review. No short 
communications were included in this analysis. However, if the PME research 
report was further elaborated in a journal article, book section or book this source 
was also utilized to inform this section of the review. This section reflects the 
types of research that have occurred, and the particular themes that researchers 
have investigated with regard students aged 5–14 years. Initially the papers were 
classified according to their focus and the methodology utilized to explore this 
focus. The number of students included in quantitative studies ranged from 50 to 
1300. Table 1 presents the frequency of PME papers according to their focus and 
their data collection method.

Table 1. PME papers – Algebraic thinking 5–14 year old students

Focus Method
Qualitative Quantitative Mixed method Theory Total

Student learning 25 8 3 36
Teaching algebra 6 4 1 11
Teaching & learning 5 4 4 2 15

Total 36 16 8 2 62

Thus in the last ten years research has predominantly occurred in the area of 
student learning with a focus on the use of qualitative methods such as interviewing 
individual students or videoing small groups of students as they engage in algebraic 
tasks. Secondary to this interest is the concern with the act of teaching algebra, and 
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the relationship between what is taught and what is learnt. A meta-analysis of these 
research papers revealed that the focus of PME algebra researchers investigating 
algebraic thinking amongst 5–14 year old students over this period were: noticing and 
representing pattern structure (35 papers); and, working with equations, expressions 
and variables – the influence of arithmetic thinking (27 papers). This analysis was 
driven by the understanding that research in early algebra in the elementary school 
arose from the many difficulties beginning high school students exhibited as they 
studied algebra, difficulties that emanated from ‘operating from an arithmetic frame 
of reference’ with a focus on calculating (Kieran, 2006, p. 25). Thus the fundamental 
purpose of early algebra research has focused on further investigating and theorising 
about redressing this issue (e.g., thinking about numeracy equalities as relational, 
symbolizing relationships between qualities, developing functional thinking). In 
addition, the categories reported in this section of the review are also utilised in the 
second section of the chapter, allowing for a more coherent analysis of the issues 
pertaining to learning algebra to occur. The next section presents a synopsis of the 
research findings related to these themes.

Noticing and Representing Pattern Structure

Pattern activities have been considered to be one of the main ways for introducing 
students to algebra (e.g., Ainley, Wilson, & Bills, 2003; Mason, 1996). From this 
perspective, algebra is about generalizing (Radford, 2006). Previous research has 
evidenced that visual approaches generated in tasks involving the generalization 
of geometric figures and numeric sequences can provide strong support for the 
development of algebraic expressions, variables, and the conceptual framework 
for functions (Healy & Hoyles, 1999). However, not all activities lead to algebraic 
thinking. For example, placing the emphasis on the construction of tables of values 
from pattern sequences can result in the development of closed-form formulas, 
formulas that students cannot relate to the actual physical situation from which 
the pattern and tables of values have been generated (e.g., Amit & Neria, 2008; 
Hino, 2011; Warren, 2005). This impacts on students’ ability to identify the range of 
equivalent expressions that can be represented by the physical situation.

The patterns utilised in the 2005–2015 research encompassed both linear and 
quadratic functions that were represented as a string of visual figures or numbers. 
The activities students engaged in involved searching for the relationship between 
the discernable related units of the pattern (commonly called terms), and the terms’ 
position in the pattern. These reflect the types of activities predominantly used in 
current curricula to introduce young adolescent students to the notion of a variable 
and equivalence.

Students noticing and representing the pattern structure. Fundamental to patterning 
activities is the search for mathematical regularities and structures. In this search, 
Rivera (2013) suggests that students are required to coordinate two abilities, their 
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perceptual ability and their symbolic inferential ability. This coordination involves 
firstly noticing the commonalities in some given terms, and secondly forming a 
general concept by noticing the commonality to all terms (Radford, 2006; Rivera, 
2013). Finally, students are required to construct and justify their inferred algebraic 
structure that explains a replicable regularity that could be conveyed as a formula 
(Rivera, 2013). At this stage the focus is no longer on the terms themselves but rather 
on the relations across and among them (Kaput, 1995).

While the 2005–2015 research involved the exploration of the notion of variables, 
the findings suggest that signs other than the conventional alphanumeric symbols 
of algebra can be used to express variables (Radford, 2010). Given this caveat, the 
findings of this research exhibit that algebraic thinking can appear in students at 
an early age (e.g., Radford, 2010; Anthony & Hunter, 2008; Rivera, 2011; Warren, 
Miller, & Cooper, 2011). Having students engage in quasi-generalization processing 
using quasi-variables, that is expressing generalizations in terms of specific large 
numbers as examples of ‘any number’ significantly assists students to noticing and 
representing pattern structure, and providing a generalization in language and other 
signs including alphanumeric symbols (Cooper & Warren, 2011).

Difficulties students experience in noticing pattern structure. Emerging from the 
findings of this current research is that while young students are capable of noticing 
pattern structure and engaging in pattern generalization, they exhibit many of the 
difficulties found in past research with older students. As revealed in the findings 
of this research: young students have difficulties moving from one representational 
system to another such as from the figures themselves to an algebraic form that 
conveys the relationships between the figures (Becker & Rivera, 2007); students 
tend to be answer driven as they search for pattern structure (Ma, 2007); they engage 
in single variational thinking or recursive thinking (Becker & Rivera, 2008; Warren, 
2005); they fail to understand algebraic formula (Warren, 2006; Radford, 2006); 
and, they have difficulties expressing the structure in everyday language (Warren, 
2005). In addition, initial representations of the pattern (e.g., pictorial, verbal and 
symbolic) can influence students’ performance. This is particularly evident as 139 
10 and 11 year-old students explored more complex patterns (Stalo, Elia, Gagatsis, 
Teoklitou, & Savva, 2006), with pictorial representations of patterns proving easier 
for students to predict terms in further positions and articulate the generalization.

Capabilities that assist students to notice structure. Adding to the research 
is a delineation of the types of capabilities that assist young students to reach 
generalizations. The ability to see the invariant relationship between the figural 
cues is paramount to success (Becker & Rivera, 2006; Stalo et al., 2006). The 
development of specific language that assists students to describe the pattern (e.g., 
position, ordinal language, rows) (Warren, Miller, & Cooper, 2011; Warren, 2006) 
and fluency with using variables (Becker & Rivera, 2006) help students to express 
and justify their generalization. In addition, Becker and Rivera (2006) found that 
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students who had facility with both figural ability and variable fluency were more 
capable of noticing the structure, and developing and justifying generalizations. 
By contrast, students who fail to generalize tend to begin with numerical strategies 
(e.g., guess and check) as they search for generalizations and lack the flexibility 
to try other approaches (Becker & Rivera, 2005). This has implications for the 
types of instructional practices that occur in classroom contexts. It is suggested that 
instruction that includes verbal, figural and numerical representations of patterns, 
and emphasises the connections among these representations assists students to 
reach generalizations (Becker & Rivera, 2006). An ability to think multiplicatively 
has also been shown to assist students generalize figural representations of linear 
patterns (Rivera, 2013).

Theories pertaining to noticing structure and reaching generalisations. Results 
from Radford’s longitudinal study of 120 8th grade (typically 13–14 year-olds) 
students over a three year period delineated three types of generalization that emerged 
from the exploration of figural pattern tasks: factual; contextual; and symbolic 
(Radford, 2006). The first structural layer is factual: ‘it does not go beyond particular 
figures, like Figure 1000’. The generalization remains bound at the numerical level. 
Expressing a generalization as factual does not necessary mean that that is the extent 
of student’s capability. It may simply be that this level can answer the question posed 
by others or the context in which algebra is needed (Lozano, 2008). The second 
layer is contextual; ‘they are contextual in that they refer to contextual embodied 
objects’ and use language such as the figure and the next figure. Finally, symbolic 
generalization involves expressing a generalization through alphanumeric symbols. 
The suggested criteria that can be used to assist teachers to distinguish these levels 
of early algebraic reasoning are: the presence of entities which have the character 
of generality; the type of language used; and, the treatment that is applied to these 
objects based on the application of structural properties (Aké, Godino, Gonzato, & 
Wilhelmi, 2013). The latter refers to how students express this generality. Aké et al. 
(2013) suggest that algebraic practice involves two crucial aspects, namely, being 
able to use literal symbols as a general expression and relate this expression to the 
visual context from which it is derived. In addition, with growing patterns gesturing 
between the variables (e.g., pattern term, pattern quantity) in conjunction with 
having iconic signs to represent both variables (e.g., counters for pattern term and 
cards for pattern quantity) helped 7–9 year old Indigenous students to identify the 
pattern structure (Miller & Warren, 2015).

Rivera (2013) from the results of his longitudinal study with 2nd grade to 
7th grade students begins to provide insights into how these shifts in thinking 
occur, from the figural representation, to the factual, contextual and symbolic 
generalizations. He theorises that these shifts involve toing and froing between 
thoughts and pattern, and fundamental to this movement is the role of abduction and 
induction. At the initial stage, from a limited sample set, a generalization is abduced 
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or inferred and a hypothesis constructed. Induction involves testing this hypothesis 
through intensive experimentation. As students obtain terms for larger positions 
(e.g., step 10 and step 100), they review their generalization and make necessary 
adjustments. Thus a combined abduction-induction process allows students to 
state their generalization. Rivera adds rigour to this process by suggesting the 
conditions required to be in place in order to help students and teachers evaluate 
their generalizations. These are: The generalization must 1) Be Non-monotonic: 
the generalization that offers the best explanation can still be shown to be false 
if additional or different assumptions are made. 2) Deal with the cut off point: 
the generalization can explain why the stated generalization that is based on a 
few examples hold for the whole population. 3) Allow for vertical extrapolation: 
the generalization must support conclusions for sequences of values beyond the 
values that are already known. 4) Accommodate the eliminative dimension: the 
generalisation has be chosen from several plausible ones and provides the best 
understanding of the pattern beyond what is superficially evident. These condition 
stem from the research of Psillos (1996) and Peirce (1960).

Reaching generalization from figural patterns is a complex and difficult process 
for many young students. From the results of interviews conducted with 19 7 year-
old students, Rivera (2011) explored the use and implications of parallel distributing 
processing to begin to explain the differences between their ability to generalize 
the structure inherent in figural patterns. Underpinning this theory of cognition of 
learning is that ‘knowledge emerges and is stored in connections among neuron-
like processing units with experiences and learning altering, strengthening and 
continuously making adjustments in connections among units’ (Rivera, 2013, 
p. 100). The complexity of the model reflects the complexity entailed in students 
thinking as they search for generalizations. One advantage of the model is that it 
begins to take into account the notion of context (and prior learning/connections) 
as we explain the differences between students’ capabilities. In addition, it has been 
shown that students activate and coordinate a number of different semiotic systems 
when exploring figural patterns. They engage in oral speech (utterances), draw 
figures, construct patterns, and use iconic gestures (e.g., Chen & Leung, 2012; 
Sabena, Radford, & Bardini, 2005). The specific role this synchronization of these 
systems plays in the objectification of knowledge, and in particular as students 
move through the three types of generalization needs further investigation.

The transition to noticing the structure of quadratic patterns. The difficulties that 
students exhibit when generalizing figural linear patterns appear to be compounded 
as they move into figural quadratic patterns. In an empirical study involving 50 
talented students aged 12–14 years Amit and Neria (2008) found that 23 students 
used an additive strategy when finding successive terms in the pattern. These 
strategies encompassed drawing other terms in the pattern and counting or using 
tables and lists, and tended to result in the generation of recursive generalizations. 
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Aligning with the findings of research incorporating linear figural patterns, the 
14(28%) students who were successful in reaching a global generalization used 
a visual-based approach (i.e., visualised the growth in the pattern). By contrast, 
Chua and Hoyles (2012, 2013, 2014) reported that 93(56%) of similar aged 
students investigating a similar quadratic figural pattern reached a correct global 
generalization. They conjectured that this is the result of students’ prior experiences 
in algebra, specifically the teaching of number patterns followed by an introduction 
to the concept of a variable. This conjecture aligns with Sigley, Maher and Wilkison’s 
(2013) results showing that being introduced to the technical language of algebra in 
conjunction with formal notation assisted the 11 year old student, who was the focus 
of their study, to correctly articulate his global generalization and link it to symbolic 
notation.

Concluding comments. The findings of the 2005–2015 research with regard to 
noticing and representing pattern structure are significant for four reasons. First, 
while noticing and representing the structure of patterns is a complex process, these 
findings show that young students are capable of engaging in pattern activities 
and expressing the pattern structure as generalizations. This practice involves 
two crucial aspects, namely, generating a general expression for the pattern and 
relating this expression to the visual context from which the pattern is derived. 
Initial representations of the pattern (e.g., tables of a values) and the visual cues 
inherent in the pattern can influence this practice. Additionally, the development 
of specific language to describe the pattern and an increase in fluency in using 
variables can help students to express their generalizations. Second, this research 
has produced a number of theoretical frameworks that will guide the research that 
occurs in the future. The two main dimensions further elaborated in this research 
pertain to (a) the levels students pass through as they notice pattern structures 
and express these structures in a symbolic form (factual, contextual, symbolic) 
and (b) the role combined abduction-induction processes play in helping students 
move through these levels. Both these dimensions not only assist teachers to 
evaluate what students know but also inform the types of instructional practices 
that occur within the classroom context. Third, this research has reaffirmed the 
finding that expressing generalizations in symbolic notation is not a necessary 
condition of thinking algebraically. Algebra can be ‘practiced by resorting to other 
semiotic systems and signs’ (Radford, 2006, p. 3). The findings also suggest that 
prior experiences with less complex patterns (e.g., number and linear patterns) 
influence students’ ability to generalise the structure of more complex patterns 
(e.g., quadratic patterns). Fourth, this research has generated a number of 
directions for future research in this area: How do we help young students develop 
their mathematical language and visual capabilities as they progress through the 
elementary years? How do we help older students transfer this knowledge to more 
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complex patterns including quadratic patterns? What representations and pattern 
sequences assist these processes?

Working with Variables, Expressions and Equations – Arithmetic Thinking

Although it is now well recognized that algebraic thinking in the early grades 
can occur without the need to use letter-symbolic algebra (Kieran, 2006), 
students’ understanding of the structure of arithmetic and associated use of 
arithmetic symbols still impacts on their ability to effectively engage in letter-
symbolic algebra. For example, past research has presented many examples of 
how adolescent students hold a persistent belief that the equal sign is a syntactic 
indicator for a place to put the answer. Additionally, many of the misconceptions 
of the meaning of a variable persist (e.g., Lim, 2007; Trigueros & Ursini, 2008). 
It is also recognized that this could be due to the types of activities that are 
occurring in the early grades. Thus in the last ten years attention has been drawn 
to this issue, particularly in terms of investigating students’ ability to form and 
manipulate equations, and solve inequalities. The two types of equations utilised 
in the 2005–2015 research were equations containing only numeric symbols 
(arithmetic equations) (e.g., 5+ = +7) and equations containing alpha-numeric 
symbols (algebraic equations) (e.g., 2x + 3 = y + x).

Working with variables. The 2005–2015 research with regard to variables has 
evidenced that young students can engage in the concept of a variable without the 
use of letters. The inclusion of visual-gestural cues, such as the sign for ‘secret’ 
proved important for deaf students (Fernandes & Healy, 2014) understanding 
of a variable. Additionally, Khosroshani and Asghari (2013) showed that the 
notion of a specular number (a number that is specific to the user but is treated 
as a particular non-specific number) helped pre-schoolers to engage in algebraic 
thinking. It also needs to be acknowledged that the symbols and letters commonly 
used in representing variables have emerged from particular historical and cultural 
contexts. For Australian Indigenous students, allowing them to create symbols that 
are culturally appropriate and personal appears to be an effective way to introduce 
them to working with variables (Matthews, Cooper, & Baturo, 2007).

However, evidence also suggests that the use of letters and symbols does not 
necessarily mean that students understand the notion of a variable (Hewitt, 2014). 
In his study with 12–13 year old students, Hewitt (2014) found, through probing 
students’ statement that letter/symbol could be ‘any number’, that many responses 
exhibited the ‘natural number bias’, interpreting a letter as a natural number. In 
addition, for some, the natural number value it could be was mitigated by the 
ease of calculation that could occur, for example, ‘it can’t be 572’ or ‘it is even’. 
Christou and Vosniadou (2009) suggested that a reorganisation of students’ initial 
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knowledge of number needs to produce a conceptual change so that students can 
recognize a variable as a symbol that can stand for any real number.

Interpreting, manipulating and generating expressions. The difficulties that many 
students experience in both arithmetic and algebra in interpreting and manipulating 
expressions involving more than one operation are well documented. Van Hoof, 
Vandewalle and Van Dooren (2013) claimed that secondary students in their second 
year (14 years of age) also interpreted a letter as a natural number rather than a 
rational number which led them to make consistent errors when determining whether 
expressions such as 2 × m > m are always true. Additionally, students continued to 
exhibit the propensity to calculate all arithmetic expressions from left to right, a 
problem that Gunnarsson, Hernell and Soonerhed (2012) found in a large proportion 
of 169 students aged 12 to 13. However, intervention involving tasks where brackets 
were used to emphasise the precedence of the operations (e.g., 5 + (3 × 2)) did 
not result in a significant number of these students transferring from a left to right 
strategy to using precedence rules when computing arithmetic expressions without 
brackets (Gunnarsson et al., 2012).

How students manipulate and generate equivalent algebraic expressions is also 
guided by student’s structural sense of arithmetic. Geraniou, Mavrikis, Hoyles 
and Noss (2011) showed that the use of pattern-based activities involving figural 
growing patterns helped 11 and 12 year-old students generate and justify equivalent 
expressions. They also identified three main categories that students used to justify the 
equivalence of their expressions: Structural Justification for Equivalence (focussing 
on structural aspects of the figural pattern with little reference to its symbolic rule); 
Symbolic Justification (focussing on both the symbolic rule and the figural pattern); 
and Empirical Justification (focussing solely on the numerical aspect of the rule).

Finally, Meyer (2014) conjectured that, when 12 year-old students manipulated 
expressions, they utilized two different processes: Giving relevance (relating the 
certain parts of an algebraic expression to each other, while neglecting other parts); 
and, Basic structure (recognizing the basic structure of the expression together with 
how it is represented symbolically). For example, in an expression like ab + ac + 
ab a student may give relevance to the two ab’s while ignoring ac and reformulate 
the expression as 2ab + ac. By contrast, another student may recognise the basic 
structure of the expression (each term is a multiple of a) which might result in the 
transformation of the expression to a(b + c + b).

Understanding equality and inequality. The 2005–2015 research with regard 
to equality and inequality resulted in two broad findings. First, the types of 
representations students experience can influence their ability to form an equation 
and recognise the equivalence between the equations. For example, five year-old 
students successfully used the balance scales to model arithmetic problems in real 
world contexts as equations with more than one value on each side (Warren, 2007). 
Additionally, Carlo and Ioannis (2011) found that using brackets to encompass each 
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side of an arithmetic equation (e.g., (5+ ) = ( +7)) with 2nd and 3rd grade students 
helped them to ‘see’ the unity of different terms connected by a sign or operation, 
that is, the equivalence between the equations expressions.

Second, even if students are successful in representing and manipulating 
equations, this knowledge does not necessarily positively impact on their ability to 
understand and handle inequality (Verikios & Farmaki, 2006). The findings of this 
later research suggest that this is due to the fact that the manipulations required to 
represent and solve inequalities do not align with those used for equalities. Finally, 
teachers’ perceptions of their students’ ability with regard to the algebraic concept of 
an equation do not necessarily align with their capabilities (Alexandrou-Leonidou & 
Philippou, 2005). Students are often more capable than some teachers imagined.

The influence of teaching. Teaching arithmetic for algebraic purposes can have 
a positive impact on students’ growth in mathematics. Pittalis, Pitta-Pantazi and 
Christou’s (2014) empirical study of 204 6-year-old students showed that these 
students’ growth in algebraic arithmetic (understanding of patterns, equations 
and functions) over an eight-month period had a direct effect on their growth in 
conventional arithmetic, and an indirect effect on their growth in elementary number 
sense. Teaching arithmetic for algebraic purposes can also assist at risk students 
to transfer their arithmetic knowledge to algebra contexts. Livneh and Linchevski 
(2007) in an empirical study with at risk 7th grade students showed that intervention 
focussing on developing an understanding of the structure of algebraic expressions in 
arithmetic contexts entailing arithmetic expressions prevents students from making 
structural mistakes in compatible algebraic expressions. The results of a post-test at 
the completion of one years teaching without intervention indicated that the students 
at risk were unable to meet the requirements of a basic algebra course by the end 
of their first year of algebra. In the second year of the study, 7th grade students 
(aged 12 years) at risk participated in a purposely designed intervention consisting of 
items, such as, “Is 75 – 25 + 25 equal or not equal to 75 – 50?” This was considered 
to be compatible with the algebraic task: “Is 16 – 4x + 3x equal to or not equal to 
16 – 7x?” The results of the post-test at the end of this intervention evidenced that 
these students could successfully engage with compatible-algebra tasks (tasks that 
mirrored the arithmetic tasks utilized in the intervention). However, these students 
failed to show significant progress in algebra tasks that were not compatible with the 
numerical tasks used in the intervention.

If instruction is appropriate, young students can learn to understand powerful 
mathematics structures such as the backtracking (unwinding) principle and the 
balance principle (Cooper & Warren, 2008). In their five-year longitudinal study with 
7 to 11 year-old students, Cooper and Warren (2008) showed that the combination of 
balance and number line models was powerful in assisting these young students to 
determine that change resulting from addition–subtraction requires the performance 
of the opposite change (subtraction-addition respectively of the same amount) if 
one wants to return the expression to its original state. This mathematical structure 
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underpins solving equations using the backtracking (unwinding) principle and 
balance principle.

However, Eisenmann and Even (2008) found that the same teacher does 
not necessarily enact the same curriculum materials in a different classroom. 
The results of an intense study on a 7th grade teacher working in two different 
classrooms showed that the discipline problems in one of these classrooms resulted 
in them engaging in fewer global/meta level activities (e.g., activities involving 
generalizing, problems solving, proving and justifying; see Kieran, 2004), activities 
that are seen as at the very heart of algebraic thinking.

With regard to texts and the importance they place on developing students 
understanding of the structure of arithmetic, Demosthenous and Stylianides (2014) 
in their intensive study involving 2814 tasks from a series of 4th grade to 6th 
grade Cypriot texts discovered that only 10.7% of these tasks were algebra related 
and less than 12% of these attended to exploring the structure of arithmetic and 
generalizing its arithmetic relations. By contrast, in their study involving 60 10–11 
year-old students, Slovin and Venenciano (2008) reported that the 19 students who 
had prior experience with their Measure Up Curriculum, a program built on the 
theoretical framework developed by Elkonin and Davydov (1966) and focussing on 
relationships among quantities and the use of literal symbols from the first grade, 
were more capable at working with variables.

Concluding comments. The findings of the 2005–2015 research with regard to 
working with variables, expressions and equations are significant for four reasons. 
First, young students can engage in the concept of a variable provided they are 
allowed to use signs and symbols that are culturally and developmentally appropriate 
(e.g., own invented signs, spectacular or secret numbers). Additionally, it seems 
that focussing on relationships amongst quantities (e.g., lengths and volumes) and 
using literal symbols from the first grade, helps these students later understanding 
of the concept of a variable. Second, students’ lack of understanding of the structure 
of arithmetic and associated use of symbols persists in negatively impacting on 
their understanding of equations. While the types of representations that students 
experience at a young age can help them ‘see’ the equivalence between each side of 
an equation (e.g., balance scales to model equations, brackets to show the different 
expressions on each side of an equation), many students still exhibit a natural number 
bias when assigning meaning to letters and symbols. In addition, it seems that, as 
students grow older, the more resilient these misunderstandings become. Third, the 
knowledge students gain with regard to successfully representing and manipulating 
equations does not necessarily transfer to nor is applicable for inequality contexts. 
Fourth, teaching arithmetic for algebra purposes can positively impact directly on 
students’ understanding of algebra and arithmetic, and indirectly on their growth in 
elementary number sense. In particular, intervention that focuses on developing an 
understanding of the structure of algebraic expressions in arithmetic contexts with at 
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risk students who are beginning formal algebra study can assist them in successfully 
engaging in compatible algebraic tasks.

This research, and in particular the fourth point, has generated a number of 
directions for future research. Although the impact that students’ understanding of 
the structure of arithmetic remains problematic with regard to their ability to transfer 
to formal algebra, there has been little research particularly relating to the arithmetic 
curricula and teaching interventions that can assist this transition to occur smoothly. 
The little that has transpired clearly shows that teaching arithmetic for algebra 
purposes can positively impact on both arithmetic and algebra.

THE DEVELOPMENT OF ALGEBRAIC THINKING IN 
STUDENTS 15-YEAR-OLD AND UP

In this section we provide a panoramic view of the research on algebraic thinking 
and on the learning and teaching of algebra in students 15-year-old and up, with 
special attention on that developed by researchers in the PME community in the 
last ten years. As in previous section, PME papers were classified according to 
their focus and the methodology employed. Table 2 presents the frequency of the 
PME papers according to their focus and their data collection method. As can 
be observed, the great majority focus on students’ learning using a qualitative 
approach.

Table 2. PME papers – Algebraic thinking 15 year old students and up

Focus Method
Qualitative Quantitative Mixed method Theory Total

Student learning 21 4 1 3 29
Teaching algebra 2 1 3
Teaching & learning 2 4 6

Total 25 4 5 4 38

The research studies informing this section are grouped according to the topics 
mentioned in the introduction: Focus on variables; Generalization and skills for 
generalizing; Equations: Solutions and meanings; Related variables and functions; 
and Structure sense.

Focus on Variables

Algebra is the basis of all other fields of mathematics, and also of natural and social 
sciences and engineering. Solving problems in algebra involves abstraction and the 
capability to interpret and use symbols, together with the possibility to generalize, 
model different situations, and use rules to perform symbol manipulation.
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Although it is true that the introduction of early algebraic thinking is not 
necessarily linked to the use of literals (Kieran, 2004) and, that “using letters does 
not amount to doing algebra” (Radford, 2006, p. 3), using and interpreting symbols 
to designate the objects of algebra is fundamental to the development of algebraic 
thinking and to the possibility of using them outside the classroom. At upper school 
levels this implies working with literal symbols to represent variables. Otherwise, 
the solution of problems would become troublesome. This is why this conceptual 
study area has been and continues to be of interest to researchers.

According to many studies, the development of algebraic thinking goes hand in 
hand with the development of the concept of variable, a multifaceted concept linked 
to the different facets of algebra (generalizing, problem solving, structure analysis, 
modelling, analysing related quantities). For more than forty years researchers have 
pointed out the many difficulties students encounter in grasping the essentials of 
the notion of variable and in working flexibly with its multiple uses at different 
levels of abstraction. When solving problems in school algebra the different uses 
of variable (unknown, general numbers, related variables, parameters) very often 
appear together, and the same symbols are used to represent them. Students are 
expected to grasp the essence of each use, work with each of them and shift fluently 
from one to the other as required by a specific task. Some researchers have insisted 
on the need to distinguish the different uses and aspects characterizing algebraic 
variables arguing that a more explicit distinction of the diverse meanings associated 
with the word ‘variable’ would help students make sense of the symbols used to 
represent them.

Research developed in the last thirty years has shown that each use of variable 
is linked to specific epistemological and didactical obstacles. It has been suggested 
as well that when algebra is taught taking only one specific use of variable as the 
starting point and central focus, the possibility of flexibly moving between its 
different uses and the richness derived from the relationships between them is lost or 
obscured and students’ understanding of algebra remains limited (see Kieran, 2006). 
These difficulties continued to be studied in the last ten years and recent studies 
have focused on how students’ can be helped to give meaning to variables. In spite 
of the important role played by parameters, these seem to have been neglected by 
algebra researchers. Since in almost any problem situation involving a variable its 
multifaceted character is present, a deep understanding of this concept becomes a 
source of richer comprehension of algebra and mathematics in general.

Several studies explored the appropriateness of different environments and 
approaches to promote the creation of meaning and better understanding of 
variables. Lim (2007), for example, created opportunities for students to attend 
to meaning and to use numbers as a platform to investigate algebraic expressions 
and structures. Through a case study this researcher illustrates the feasibility of 
helping 11th grade students improve their algebraic thinking, in particular, moving 
from manipulating symbols in a non-referential symbolic manner to reasoning 
with symbols in a goal-oriented manner, from association-based prediction 
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to coordination-based prediction, and from impulsive anticipation to analytic 
anticipation. Wille (2008) signalled that the versatility of students’ thinking about 
variable was enhanced when they experienced its different aspects. The possibilities 
of understanding the different uses of variable in parallel with each other, in 
real contexts and multi-representational environments was underlined by Tahir, 
Cavanagh and Mitchelmore (2009). They found that studying variable as a function 
in parallel with variable as a generalized number using multiple representations 
and real contexts helped students to come to a more complete meaning of the term 
‘variable’. Their results also showed a reduction in students’ misconceptions and 
an improvement of their performance when using this approach. In a study about an 
effective strategy to help students develop ideas about the solution set of systems 
of linear equations, using modelling, Trigueros, Possani, Lozano and Sandoval 
(2009) suggested that students’ strategies were strongly related to their flexibility 
in moving between the different uses of variable. Those students who showed 
proficiency when working with variables and those who developed this flexibility 
during the course employed richer strategies; were able to use them to model and 
work with different types of problems; and, were able to interpret different types 
of solution sets, including those containing free variables and restrictions (that is, 
variables in solution sets that can take any value in a given set of real numbers 
and that are associated to systems that have an infinity of solutions, for example 
t in S ={x ∈ R3/ x = 2 – 3t, y = 2t, z = 1−t, t ∈ [0, 25]}), which have proven to 
be difficult for most studies, and to use them to analyze both real situations and 
models’ solutions.

Little research has been conducted internationally using the same tools to 
explore students’ capability to work with variables in order to establish similarities 
and differences in achievements and difficulties across different contexts and 
locations. The aim of these international studies is primarily to assist countries 
understand their own education systems by setting their strengths and weaknesses 
against the backdrop of those of other countries. This was the purpose of Alvarez, 
Gómez-Chacón and Ursini (2015) research. They analyzed 8th and 11th grade 
students’ responses to a questionnaire testing their understanding of algebraic 
variables. The results provide evidences that might help the participating countries 
to revisit their curricula, focusing on their strengths and weaknesses and the 
support provided to students to develop the ability to think in algebraic terms.

Researchers in the last ten years have been less interested in students’ use and 
understanding of parameters in spite of previous studies reporting that students 
have many difficulties when they encounter parameters in algebraic expressions 
(see Kieran, 2006). Bardini, Radford and Sabena (2005) investigated 11th 
graders’ cognitive difficulties when working with parameters in the context of the 
generalization of patterns and showed how the semiotic problem of indeterminacy, 
a central element of the concepts of variable and parameter, reveals students’ weak 
understanding of letters and algebraic formulas. Moreover, the many difficulties 
students of different school levels have with the interpretation, manipulation 
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and symbolisation of parameters were documented by Ursini and Trigueros 
(2011). Students in this study conceived parameters as products of second order 
generalizations, that is, product of generalising first order general statements (for 
example, the equation 3x² + px +7 = 0 involves a family of quadratic equations). 
Their results also showed that students need a clear referent or statement that gives 
meaning to parameters to be able to work with them; otherwise, they perceive 
parameters as general numbers and have many difficulties handling parameters 
when they encounter them in any type of algebraic expression.

Generalization and Skills for Generalizing

Algebraic thinking is characterized by the capability to generalize and express 
generalization. Many researchers have stressed that generalization is one of the paths 
to algebra (e.g. Mason, Graham, & Johnston-Wilder, 2005). According to Carraher, 
Martinez and Schliemann (2008, p. 3):

Mathematical generalization involves a claim that some property or technique 
holds for a large set of mathematical objects or conditions. The scope of the 
claim is always larger than the set of individually verified cases; typically, it 
involves an infinite number of cases (e.g., ‘‘for all integers’’). To understand 
how an assertion can be made about ‘‘all x’’ we need to consider the grounds 
on which the generalization is made. (p. 3)

Fundamental to the act of generalizing is the learner. A context that has gained 
the greatest attention by PME researchers in the last ten years is the patterning 
context. In this particular context, Radford (2006) stated that:

Generalizing a pattern algebraically rests on the capability of grasping a 
commonality noticed on some elements of the sequence S, being aware that 
this commonality applies to all terms of S and being able to use it to provide a 
direct expression of whatever term of S. (p. 5)

As delineated in the first section of this chapter, many studies have shown that both 
algebra beginners and more advanced students can deal successfully with particular 
cases of patterns, but have serious difficulties in generalizing and expressing the 
relationships in terms of algebraic language. Some of the reported dimensions 
that contribute to these difficulties for young 4th grade students are: the lack of 
spatial visualisation techniques (Warren, 2005); the lack of appropriate generalizing 
strategies (Moss & Beatty, 2006a, 2006b); and, difficulties in using algebraic 
language to express generality (Warren, 2005). Many of these difficulties have also 
been shown to exist in secondary students (Ursini, 2014; Alvarez, Gómez-Chacón, & 
Ursini, 2015). These results suggest that many students across all ages tend to lack 
the capability to reflect on their own actions and become conscious of them. They 
lack metacognitive abilities and the capability to use algebraic language as a tool to 
communicate mathematically.
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In the PME tradition of algebra as generalization to develop and express 
mathematical proofs and modelling situations (Kieran, 2006), Boero and Morselli 
(2009) considered algebraic language as a system of signs and transformation rules 
useful to generalize arithmetic properties. An adaptation of Habermas’ construct of 
rational behaviour is used by Boero and Morselli (2009) to describe and interpret 
some of the students’ difficulties and mistakes, and to provide indications for the 
teaching of algebraic language. Their analysis showed that goal oriented reasoning 
and using verbal language are necessary in order to perform the actions needed in 
proving, modelling and problem solving.

Regarding teacher education programs, Hallagan, Rule and Carlson (2009) 
considered that strategies that involve inquiry, problem solving, and critical 
thinking helped pre-service teachers to focus on interpreting and making sense 
of the role of symbols involved in the generalization of patterns. In this same 
line, Radford (2006) has suggested that teachers and teacher educators should 
be aware of students’ practices in order to distinguish algebraic generalization in 
students’ activity from other forms of work with the general, which according to 
his previously mentioned definition, are not truly algebraic. He also warns that 
teachers must be equipped with knowledge to be able to distinguish different 
approaches to generalization.

Stressing the importance of focussing on teachers’ explanations of students’ 
responses to mathematical tasks, El Mouhayar and Jurdak (2015) explored teachers’ 
arguments to explain students’ responses to pattern generalisation tasks. They 
identified four different perspectives teachers assume (student lens, teacher lens, 
mixed teacher, and inability to explain students’ responses) stressing that the pattern 
generalization types mediated teachers’ perspectives.

Equations: Solution and Meaning

The PME community has devoted decades of research to the identification and 
the analysis of students’ difficulties in interpreting and manipulating algebraic 
expressions. Attention has been paid to students’ approaches to solve equations 
(particularly linear, less research has been carried out on students’ solving of 
quadratic equations), systems of equations, and inequalities. Students’ procedures 
and strategies to deal with such tasks have also been analyzed from different 
perspectives. Well-grounded teaching experiments have been designed, with and 
without the support of technology, to help students overcome their difficulties and 
to help them construct meaning for algebraic expressions, equations and solution 
procedures (see Kieran, 2006). In spite of these efforts, and probably due to different 
kinds of obstacles (from bureaucratic and political, to economic, socio-cultural and 
cognitive, from teachers’ and parents’ academic preparation, attitudes and beliefs, 
to curricular organization) students’ difficulties are still present in most classrooms 
around the world and at different school levels. Research efforts have continued in 
the same lines and concerns about teaching equations, and the influence of students’ 
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difficulties with equations in university mathematics education have emerged 
(Borja-Tecuatl, Trigueros & Oktaç, 2013).

Efforts to deepen our understanding of the possible causes of students’ 
difficulties and to look for ways to help students interpret equations and their 
solutions have continued during the last ten years. Nogueira de Lima and Tall 
(2006) and Nogueira de Lima (2007), for example, investigated Brazilian 14- to 
16-year-old students’ interpretation of the concept of equation and its solution 
set. Their findings show the influence of previous arithmetic studies, previous 
algebra experience and teachers’ beliefs about algebra on students’ conceptions. 
Based on their results they stress that teaching practices focussing on a single 
solution procedure limits the development of students’ flexibility to give meaning 
to equations, to the solution set, and to their procedural knowledge. The question 
of meaning was also tackled by Caglayan and Olive (2008) who studied 8th grade 
students’ use of a representational metaphor for writing and solving equations in 
one unknown. They reported that only one of 24 students was able to construct a 
“family of meanings” to make sense of equations and solutions, and to connect 
algebraic expressions to representational metaphors when negative quantities were 
involved. Based on the analysis of the knowledge used by a teacher and her 8th 
grade students when generating and evaluating equations to model word problems, 
Caglayan and Olive (2008) extended previous results on meta-representational 
competence and stressed the importance for teachers to develop the capacity to 
recognize and discuss students’ criteria when choosing representations.

Students’ cognitive tendencies when dealing with different tasks involving 
unknowns has continued to attract researchers’ attention. Filloy, Rojano and Solares 
(2008) found that the cognitive tendencies identified when students operate with 
a single unknown reappeared when they were learning methods to solve two-
unknown linear equations systems, showing that the reference to and the sense of 
the different representation of unknowns must be reconstructed when facing new 
types of problems.

The concern for students’ understanding of equations and solution sets has 
led researchers to focus on university students’ capabilities to use equations and 
inequalities, to manipulate them and to interpret solution sets. Studies have focused 
on the development of algebraic thinking when students encounter university 
mathematics topics. Researchers have found that algebra is central in the learning 
of advanced mathematics, but it can act as a “key and a lock” at the same time in 
understanding advanced concepts such as limits of functions (Alcock & Simpson, 
2005). They insist that when students used mathematical notation as a way to apply 
mathematical procedures, without making sense of expressions or of the goal of 
manipulations, for example to solve inequalities, algebra can become a lock to their 
success. By contrast, for students who were able to interpret and use the different 
variables involved in definitions or inequalities, algebra acted as a key to their 
understanding of new concepts.
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Attention was also paid to teachers and teachers’ development in relation to their 
content knowledge and the way they teach equations. Findings suggest that their 
poor understanding of mathematical structures and their knowledge about students 
influence their teaching decisions. The impact of teachers’ training programmes in 
their teaching practice and how innovative teaching strategies can support students’ 
learning of algebra have been explored as well. Koirala (2005), for example, found 
that using mathmagic, a game in which students are invited to play with numbers 
(“think of a number”, “add 10”, “multiply it by 3”, and so on), can help low-
performing 14 years old students develop confidence and interest in learning basic 
algebraic concepts and enhance their understanding of variables, expressions and 
equations.

Related Variables and Functions

Function is a central concept in mathematics and has a significant role in 
mathematics education. Literature on mathematics education has paid in the past, 
and in the last decade as well, a lot of attention to this concept. Studies have used 
different theoretical perspectives and have reported the many difficulties students, 
pre-service and in-service teachers face in understanding and learning the meaning 
of function, such as, paths to understanding functions, process-object conceptions 
or the use of different representations (Elia, Panpura, Eracleus, & Gagatsis, 
2007; Gerson, 2008; Bayazit, 2011). Specific tools based on results of diagnosis 
questionnaires have been used in the design of online applications that can help 
and give feedback to students, both in the case of algebraic manipulation and in 
drawing and interpreting the graphs of functions. These applications can also help 
teachers to design specific strategies to help students to better understand these 
central concepts.

Research has shown that students can understand the correspondence between 
numbers, independently of the representation used, but find a dynamic conception 
between numbers, which includes variation, difficult (Ursini & Trigueros, 2011). 
To help students make sense of variation, some researchers have proposed using a 
method where each operation is explicated so that students can reflect on the situation 
and “make tacit meanings explicit” (Thompson, 2008). Other researchers stress that 
using an appropriate methodology, such as games, modelling situations in context or 
using metaphors from everyday experiences to introduce functions to students can 
help them develop the notion of correspondence into that of covariance (Francisco & 
Hähkiöniemi, 2006; Dogan-Dunlap, 2007; Pierce, 2005). Teaching strategies based 
in knowledge theories, such as APOS theory, have also been successful in assisting 
at risk students make sense of the concept of function (Dubinsky & Wilson, 2013). 
Students participating in this study were able to develop their algebraic thinking 
from beginning with their own verbal explanations to ending with writing functions 
in symbolic forms.
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For some researchers, the main difficulty with the understanding of functions 
is the fact that they present different facets depending on the representations used 
(Nyikahadzoyi, 2006; Adu-Gyamfi, Stiff, & Bossé, 2012). All these authors suggest 
that flexibly working with different representations, being able to understand 
the characteristics of functions in each representation, and relating different 
representations to each other are fundamental to the learning about the concept of a 
function.

Some researchers have indicated that attention to the role played by symbols and 
the use of models has proved to be successful in fostering students’ capabilities to 
make sense of related variables. These researchers have focused on specific types 
of functions, for example, quadratic, exponential or trigonometric functions (Pierce, 
2005; Francisco & Hähkiöniemi, 2006; Panasuk & Beyranevand, 2010). However, 
after all these years there has been no consensus on how to help students understand 
the concept of function, and on how to overcome the difficulties inherent in its 
learning. Nilsen (2015) focused on the way functions are introduced by teachers in 
both lower and upper secondary school, and the usual gap between formal explanations 
provided in textbooks. This author argued that the introduction of functions is done 
without explicitly considering mathematical aspects like the range and domain, or 
the uniqueness property, and that dependent and independent variables continue to 
prove problematic. He concluded that examples and explanations provided should 
underpin and support the mathematical properties of function.

All the previously referred-to studies have analyzed one variable functions. More 
recently, however, this field of research has expanded and two variable functions 
and parametric functions have been investigated. These studies have shown 
that generalization of knowledge from one variable functions to other types of 
functions is not straightforward and that difficulties students experience with one 
variable function transfer to other types of functions. Results demonstrate that each 
generalization involves particular obstacles that need to be studied in depth and 
that effort is needed in order for students to construct a formal and more inclusive 
definition of function (Trigueros & Martinez-Planell, 2010; Martinez-Planell & 
Trigueros, 2012; Stalvey, 2014; Weber & Thompson, 2014).

Function is clearly one of the most important concepts in mathematics. The 
teaching and learning of functions has received a lot of attention. For example, 
strategies to help overcome students’ conceptual difficulties have been investigated, 
and activities that promote students’ reflection and formally make aspects of 
functions explicit have been developed. However, more effort is required both in 
research and in making research results available to a wider educational community 
in order to help a majority of students learn more deeply about functions.

Structure Sense

Students at different school levels and university levels, all have difficulties in 
transferring what they learnt in the context in which they first met different concepts 
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to other unfamiliar contexts (Hoch & Dreyfus, 2006). This research emphasises 
the importance of making sense of manipulations, generalization, functions, and 
different properties of algebraic expressions. Previous studies have already called 
attention to the importance of making sense of the structure in algebra (see Kieran, 
2006). But the meaning of “structure sense” was and continues to be under debate.

Arcavi (1994), for example, referred to symbol sense as a complex feel for 
symbols. He included in it an appreciation of the power of symbols, the ability to 
manipulate and to interpret symbolic expressions, and have a sense of the different 
roles symbols can play in diverse contexts. Other researchers have emphasized 
identifying structure in expressions or equations; identifying visually repeating 
characteristics of expressions; and, exhibiting versatility of thought as key 
dimensions of structure sense (Kirshner & Awtry, 2004, Tall & Thomas, 1991). 
Hoch and Dreyfus (2007) gave a precise and pragmatic definition of structure sense 
based on their studies with high school students. They defined structure sense as: 
recognising a familiar structure in its simplest form; dealing with a compound term 
as a single entity and through appropriate substitutions; and, choosing appropriate 
manipulations to make best use of a structure. They also underlined the importance 
of the substitution principle in this definition. In accordance with these criteria and 
based on their observations, Novotná and her colleagues (Novotná, Stehlíková, & 
Hoch, 2006; Novotná & Hoch, 2008), suggested definitions linked to university 
algebra. They also suggested that there is a relationship between high school and 
university algebra structure sense, and viewed high school structure sense as sub-
components of university structure sense components. In addition, they underlined 
the importance of structures as part of mathematics in general, and in the learning of 
algebra in particular. Studies on students’ structure sense have played an important 
role in research on algebraic thinking in the last ten years. This interest has been 
reflected in the PME community’s work where the importance and development of 
structure sense for successful performance in algebra has been stressed, for example 
identifying the structure of equations or inequalities.

In the last ten years research on advanced algebraic thinking has become an 
important area of interest for mathematics education researchers. Aiming at finding 
factors that could explain students’ success in the solution of complex algebraic 
equations and inequalities, Trigueros and Ursini (2008) analyzed in depth the 
approach followed by 36 university students working with equations and high 
achieving university students working with inequalities (Ursini & Trigueros, 2009). 
Their results showed that understanding the different uses of variable, including 
parameters, together with other factors that can be associated to structure sense, 
in terms of Hoch and Dreyfus’ definition are crucial for success. These results led 
these researchers to extend the definition of structure sense to include understanding 
of variable. They considered this understanding as critical to successfully solving 
problems and as a starting point to developing the capability to work with problems 
requiring advanced mathematics. Using their definition, Trigueros, Ursini and 
Escandón (2012) analyzed the responses of 270 Pre-Calculus university students 
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to six complex algebraic problems in order to find possible relations among all 
the included categories and their role. Using Implicative Statistics they found that, 
although all the categories appeared to be strongly interrelated, two categories: 
distinguishing that a problem involves the analysis of different cases and, a correct 
use of definitions, played significant roles in students’ ability to use all the aspects 
considered in the definition of structure sense. Moreover, a flexible use of variables 
and the capability to interpret parameters played a dominant role when implication 
relations were studied. These were tightly linked to students’ ability to identify 
algebraic structures and use definitions correctly. Thus, there is an urgent the need 
to take these implications into account in the design of activities that aim to foster 
structure sense in students.

Systems of linear equations are a central topic in the transition from elementary 
Algebra to Linear Algebra. Students are known to have difficulties interpreting the 
solution set of systems of equations, particularly when systems have an infinite 
number of solutions. Research results on this topic signal that these difficulties 
are related to students’ difficulties in interpreting a variable as a dynamic entity, 
that is as a “changing entity” which can take different values (Ursini & Trigueros, 
2011); with the notion of set as an object; with the distinction of the process of 
solution and the notion of solution set; and with the interpretation of different 
representations of solution sets (Afamasaga-Fuata´I, 2006; Trigueros et al., 2007). 
All these difficulties can be related to the lack of structure sense in terms of the 
definitions described above.

Focusing on students’ development of structure sense, Hoch and Dreyfus 
(2006) used a questionnaire to analyze 165 high achieving 10th grade students’ 
performance. Their results showed that most of these students did not use a high 
level of structure sense when solving exercises requiring the use of algebraic 
techniques, and that those students who used structure sense made fewer mistakes.

Searching for factors that could explain the lack of progress in the development 
of algebraic proficiency of students from 8th to 12th grade, Van Stiphout, Drijvers 
and Gravemeijer (2011) considered structure sense as part of what Arcavi defined 
as symbol sense (see above) in order to analyze test items. The analysis revealed 
that most students were not able to deal flexibly with the mathematical structure 
of more complex expressions and equations that involve, for example, the use 
of subtraction technique. These researchers emphasised that this is an obstacle 
for attaining a higher level of conceptual understanding which requires a shift 
of thinking. Using the anthropological theory of didactics, Chevallard and Bosch 
(2012) propose a structural approach that considers algebra as a tool to model 
different intra and extra-mathematical situations. These authors consider such an 
approach as a way to overcome the difficulties that the learning of algebra presents 
nowadays. Other authors have used the same theory, together with the ontosemiotic 
approach, to offer a model that takes into account the structure of algebra and that 
can be used in the teaching of algebra at the secondary level and to design richer 
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teaching sequences. The emergence of structure sense in classroom interactions at 
the secondary level was analyzed by Janßen and Bikner-Ahsbahs (2013). Focusing 
on linear equations and functions’ structure they studied the development of 
structure sense. They searched for crucial moments of objectification claiming 
that when it happens the object is accessible in other situations and students can 
identify algebraic structures.

All these researchers agree that even students, who can display proficiency when 
working with elementary algebra problems, may have difficulties in applying the 
techniques to complex problems. They also concur on the need to teach explicitly the 
abilities included in structure sense. Some recommendations were: using brackets to 
help students to “see” algebraic structure and make evident the presence of a new 
expression that could be considered as an entity or a new variable; working with 
examples where analysis or classification of problems in terms of their structural 
properties is the goal of the activities; making the role of variable and changes of 
variable explicit in classroom discourse; asking how definitions and properties can 
be used; asking students for the goal of the activity instead of the solution; and, 
stressing the importance of validation. Such approaches would lead students to 
engage in greater levels of reflection and analysis related to algebraic situations.

Additionally, the development of structure sense would provide students with 
a stronger foundation on which more complex and abstract algebraic thinking can 
be developed. For instance, research conducted in the last ten years has shown 
that many students finish Linear Algebra courses with a limited understanding 
of the main ideas of this discipline. Analyzing possible causes of difficulties and 
looking for ways to help students develop a richer understanding of concepts of this 
discipline has been the main concern of these studies. Researchers have underlined 
that most students can cope with the manipulations involved in solving a variety 
of Linear Algebra exercises, but that they do not develop an understanding of the 
concepts involved in such manipulations and are unable to apply them to problems 
that need competencies that go beyond rote manipulation (Hannah, Stewart, & 
Thomas, 2014). Other researchers have suggested that Linear Algebra difficulties 
can also be related to students’ conception that a great effort is needed in its learning 
(Martinez-Sierra, García, & Dolores-Flores, 2015). Some researchers have related 
students’ difficulties in understanding particular Linear Algebra concepts to the 
lack of formal thinking (Britton & Henderson, 2009; Wawro, Sweeney, & Rabin, 
2011), described in the definition of structure sense as based in a complex feel of 
symbols and a flexible use of variables (Arcavi, 1994; Ursini & Trigueros, 2009).

However, other studies have pointed out that the need to work jointly with several 
algorithms also generates obstacles for students (Hannah, Stewart, & Thomas, 
2014). In a study focusing on students’ understanding of linear independence and 
dependence, Stewart and Thomas (2006) found that working with the solution 
algorithm for homogeneous systems of equations, together with the interpretation 
of the obtained solution set in terms of these concepts was an obstacle for most 
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students. They also concluded that interpreting free variables in the solution set 
seems to be key to understanding linear dependence and independence as well as 
their relation to other Linear Algebra concepts such as span and basis.

Results of studies related to specific concepts (Plaxo & Wawro, 2015; Stewart & 
Thomas, 2008) underline that difficulties in Linear Algebra are related mainly to lack 
of understanding of definitions, and the use of properties in the solution of exercises 
when working with modelling or application problems. In spite of difficulties 
associated with the learning of abstract concepts, several research studies have 
shown that using models to approach abstract concepts can help students to make 
sense of definitions and apply their learning in the solution of complex problems 
(Zandieh & Rasmussen, 2010).

Algebraic thinking in Abstract Algebra courses and its teaching also received 
some attention (Novotná, Stehlíková, & Hoch, 2006; Hare & Sinclair, 2015). 
Novotná et al. (2006) were interested in students’ understanding of algebraic 
operations and their structure. They found that while some students are able to 
abstract specific properties of one or more mathematical objects to form the basis of 
the definition of new abstract objects, other students constructed abstract concepts 
through logical deduction from definitions. They concluded that few students 
were able to reason inside a new structure spontaneously and to find a structure’s 
properties. On this basis they developed a model for teaching binary operations and 
their properties as a first step to develop students’ structure sense. Hare and Sinclair 
(2015) used semiotic theory to analyse teachers’ signs in an Abstract Algebra 
course. They found that the act of pointing is important in ‘underlining’ objects and 
relations among them.

It is interesting to observe that the development of structure sense, both from 
the perspective of high school algebra and from that of university algebra plays a 
fundamental role in university students making sense of algebraic structures and 
applying concepts related to different algebraic structures. It is of fundamental 
importance to do more research on this topic in order to help students to develop 
structure sense so that they can progress in their understanding of advanced 
mathematics topics and apply this structure sense to the solution of formal and real 
problems.

ABOUT THE USE OF TECHNOLOGY

The use of technology continues to be an interesting and important topic of research 
in the mathematics education community. As new software is developed these 
questions always arise: How do we use it in the classroom? What kind of tasks need 
to be designed within specific technological environments? What are the results 
of its use in terms of developing algebraic thinking and learning? Research in the 
last ten years evidences that technology has had a small but significantly positive 
impact on students’ learning. However, this impact is dependent on teachers’ use 
of the technology, the classroom interactions that occur (e.g., Ursini & Sacristan, 
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2006; Rakes, Valentine, McGatha, & Ronau, 2010; Guzman, Kieran, & Martinez, 
2011) and, the tasks’ design (Johnson, 2015). Table 3 gives a glimpse of PME papers 
related to technology use and clearly calls for more research in this area.

Already well-known technologies, such as CAS, continue to be studied 
particularly in terms of the potential of instruction design that includes their use and 
the development of teacher training programs. Researchers have found that high 
expectations on this tool can be considered as naive and that experiences show the 
complexities involved in their use in the classroom (Trouche & Drijvers, 2010). In 
spite of this complexity, it has been found that the possibilities offered by CAS can 
enrich and extend students’ and teachers’ view of algebra. CAS can for example 
foster the emergence of algebraic reasoning or be used to the development of novel 
tasks (Kieran & Guzmán, 2009; Heid, Thomas, & Zbiek, 2013; Kieran & Drijvers, 
2006; Kieran & Saldanha, 2005).

PME researchers continue analyzing if and how the use of specific technologies 
help to improve communication and understanding in the classroom. Among others, 
Sacristán and Kieran (2006) analyzed a student’s difficulties in understanding 
notation for general polynomials using CAS. They found that by making conjectures 
and trying them in TI-92 Plus calculator the student improved in the use of general 
notation and eventually could make sense of the ellipsis sign. The role of teachers in 
orchestrating class discussion and fostering attention of students to overcome their 
difficulties shows how some approaches to classroom communication can be useful 
for teachers (Kieran, Guzmán, Boileau, Tanguay, & Drijvers, 2008).

The impact of CAS in students’ learning continues to play a role in research 
(Kieran & Damboise, 2007; Solares & Kieran, 2012). Researchers have 
demonstrated the impact of CAS in improving weak 10th grade algebra students 
in being able to do procedures and understand concepts, or help students’ articulate 
different perspectives to understand equivalence of expressions. These studies 
found that CAS had a positive impact on the development of procedures and on 
concept development. In another study (Lim, 2007) technology and its graphing 
potential was used to teach transformation of functions and their graphs to 
secondary school students. The impact on students’ learning was examined using 
APOS theory. They compared results of students who used CAS with those who 

Table 3. PME papers – Use of technology in algebraic thinking

Focus Method
Qualitative Quantitative Mixed method Theory Total

Student learning 14 1 3 18
Teaching algebra 3 3
Teaching & learning 3 3

Total 20 0 1 3 24
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didn’t use it in their classroom. They found that the group that used CAS were able 
to apply transformations on mental objects they had constructed to construct new 
graphs, while the other students needed to calculate specific points to graph its 
transformations.

Comparing teachers’ beliefs, how they are reflected in their use of CAS in 
secondary school algebra instruction, and how they shape CAS algebra tasks has also 
been studied (Kieran, Tanguay, & Solares, 2011; Özgün-Koca, 2011). Researchers 
concluded that technology can help to change teachers’ views and to make sense of 
specific algebraic content by working with appropriate practical and theoretical rich 
experiences where they can reflect, and discuss to shape these experiences for their 
classroom needs.

Other technologies have been designed and tested in terms of their potential in the 
teaching and learning of algebra. The dynamic metaphors of change and dragging, 
together with the process of naming when working with spread-sheets, was studied 
by Wilson, Ainley and Bills (2005). Their results appeared to support the evolution 
of meaning and notation for variable. The ReMath European project was developed 
to investigate the role of representations of mathematical objects offered by different 
Digital Dynamic Artifacts (DDA) when used in educational contexts. The DDA 
that received more attention in terms of research reported at PME meetings was a 
microworld called Aplusix (Nicaud et al., 2006). Studies on its impact on students’ 
learning were conducted in different settings. Maffei and Mariotti (2006) found 
that a specific tool of the software, called detached step, played an important role 
in making students conscious of their errors and in helping them to reflect on and 
overcome their difficulties. Exploring the potential of the feedback component of 
Aplusix when teachers used it during discussion in the classroom, Maffei, Sabena 
and Mariotti (2009) found that teachers’ questioning played a pivotal role in 
developing a semiotic chain starting from the DDA’s signs that led students to give 
mathematical meaning to algebraic expressions. The development of this chain of 
interpretations was not linear, but it helped to maintain students’ interest in asking 
new questions and, at the same time, promoted interactions among them and with 
the teacher. As a result, a process of unfolding the meaning of the tool feedbacks 
signs was developed in the group. In a teaching experiment conducted by Maffei and 
Mariotti (2013) to investigate how the Graph representation provided by this DDA 
could become a tool of semiotic mediation, they found that the Graph representation 
tool helped students to carry out algebraic manipulation and allowed them to refer 
to the mathematical meaning of equivalence class of algebraic expressions. Based 
in semiotic considerations Chaachoua, Chiappini, Pedemonte, Croset and Robotti 
(2012) analysed and compared DDA possibilities in terms of their impact on 
students’ learning.

In another study, Kynigos, Psycharis and Moustaki (2010) performed a design 
experiment to explore 17-year-old students’ construction of meaning and the use of 
algebraic like equations. These researchers focused on students’ engagement while 
they constructed and controlled animated models on MoPix and in their possibility 
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to make sense of structural aspects of equations underlying the models’ behaviour. 
Through the experiment, students edited ready-made algebraic like equations and 
constructed new ones to assign particular behaviours to objects. Results showed 
how students developed different degrees of structuring and shifted gradually from 
a view of equations as processes to a view of equations as objects. According to 
authors reification was not a one-way process of meaning making; it was a dynamic 
process of understanding supported by the use of the technology.

The effects of teaching algebraic solving of word problems using Hypergraph 
Based Problem Solver (HBPS) software were studied with 15–16 years old students 
(González Calero, Arnau, Puig, & Arevalillo–Herráez, 2013). Their strategies were 
analyzed. González et al. (2013) found the emergence of a tendency to construct 
equations where one of the variables appears on one side of the equation, without 
using all the available information, and how they tried to use it to calculate values of 
the related variable. They attributed this tendency to the interpretation of the equal 
sign in the equation as a comparison between quantities rather than as a sign to do 
something.

Naftaliev and Yerushalmy (2009) investigated innovative uses of technology in 
the domain of school algebra. They compared the contexts for mathematics learning 
created by printed diagrams vs. interactive diagrams and video clips vs. interactive 
animations, when presenting to students an activity describing a motion situation 
and another requiring the description of a linear function. The two activities included 
an interactive diagram. They argue that the process of concept construction occurred 
as a result of the students’ decision to change the representation of the data in the 
activity to build a focused collection and to expand the given representations, or 
build new ones. The ways in which sketchy interactive diagrams were used by 
students transformed sketchy information into an important component of conceptual 
learning.

Concern about teachers’ developmental process to integrate technology into 
their classroom practices led researchers to study how teachers use their knowledge 
of algebra, to teach different concepts using a Dynamic Software (GeoGebra). 
Studies have found that stressing interconnection between knowledge of teaching 
algebra and knowledge of teaching with technology is fundamental for success. 
Johnson, for example, analysed the transition from variation to covariation creating 
environments that involve non-temporal changing quantities. Her experience led 
her to underline the importance of activities that provide students with opportunities 
to attend to multiple varying quantities from the same measure space as well as the 
role of the teacher in promoting interaction between students who have a different 
conception of variation and covariation (Johnson, 2015).

Overall, the studies related with the use of technology in the teaching and learning 
of algebra in the last ten years have focused mainly on how technologies can help 
students to make sense of mathematical signs, calculations and results. Interesting 
results have been found on how teachers can use technologies in their classroom to 
promote communication and reflection. Research findings suggest that when used in 
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an active and participative way, technology can help teachers in improving students 
learning. It is evident that technologies have evolved towards more dynamic and 
powerful designs that can be used both by teachers and students to conjecture, 
explore, try out and make sense of the meaning of algebraic expressions, to find 
solutions of equations and to work with related variables in a variety of interesting 
and motivating contexts. The dynamics of technology development continue to pose 
challenges to researchers and students, while new questions about their use in the 
classroom and the nature of the tasks to be designed to promote students’ interaction 
and learning keep arising.

FINAL REFLECTIONS AND FUTURE DIRECTIONS

The study of how we teach and learn algebra has played a role in research within 
the PME community. However, some epistemological questions arise, as we need, 
as a community, to define what exactly we mean by algebra, algebraic thinking, 
algebraic reasoning, and algebraic problems. Researchers have worked so far as if 
those terms had the same meaning for all researchers. However, some positioning 
facing the difficulties in learning this subject make it clear that this is not the case. 
More effort to clarify these meanings is needed. This would not only add clarity to 
research results, but also point out to different research and teaching strategies tuned 
to possible different positions.

Even though algebraic thinking continues to be an important topic for the 
PME community of researchers, this review has evidenced that, while research 
in the domain of early algebra has increased and intensified, research pertaining 
to secondary and tertiary students has diminished as compared with previous 
decades. Juxtaposed against this trend is the continued difficulty that secondary and 
university students have in this domain. In spite of the progress we have made in 
our use of technology to teach algebra and our understanding of student difficulties, 
the problems that have been evidenced in past research still exist. Algebra 
remains an important domain of mathematics, and is fundamental for advanced 
mathematics learning. How can students learn university mathematics without a 
thorough understanding of algebra? Thus, not continuing research in this university 
and secondary sector would be a great mistake regarding the future of mathematics.

With respect to generalization, the majority of the research that has occurred has 
been in the early algebra area using qualitative methods with a focus on generalizing 
the structure of patterns. There is a call to reignite the focus on generalizing the 
structure of arithmetic, particularly in regard to its relation to the structure of 
algebra. This review evidences tentative findings that intervention focusing on the 
structure of arithmetic has positive pay offs for students successfully identifying 
the structure of algebra. However, this review shows, on the one hand, that many 
of the misconceptions that students have with regard to algebraic structure (e.g., 
the order of operations) are entrenched at an early age, and on the other hand, a 
lack of interest from researchers about the role that proofs play in generalization. 
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Thus important questions requiring further research are: When and how should this 
integration occur? When and how should we be engaging students in conversations 
and experiences that focus on arithmetic for algebraic purposes rather than arithmetic 
purely for arithmetic purposes? Should this occur somewhat simultaneously or 
consecutively? What is the role of algebraic proofs in this integration?

Research in the last decade has clearly put forward the importance of 
development of structure sense at the secondary and tertiary levels and its relation 
to the study of advanced algebra and advanced mathematics. Research efforts in 
this topic should be a priority in the years to come. Particularly, studies about 
intervention strategies, comparison and the influence of institutional constraints 
using sound methodological approaches need to be encouraged.

There is evidence throughout this review that how teachers teach has an impact 
on what students learn. Results of many studies also underline the importance of 
working both with students and teachers stressing the relevance of developing 
students’ capability to generalize, to interpret symbols, and to express their thoughts 
and generalizations in correct mathematical (and algebraic) language, to fully 
understand functions, and to use modelling through all the school levels so the 
students can become acquainted with parameters and other elements of structure 
sense. Even though Kieran insisted ten years ago on the importance of doing 
more research about teachers’ algebraic thinking development, this issue has not 
received enough attention in this decade. The knowledge that teachers have about 
mathematical structures and the beliefs they hold with regard to students’ capability 
to learn algebra influences the decisions they make as they teach. In addition, it 
has been demonstrated in this review that coming to an understanding of algebraic 
concepts requires the use of a range of representations and modes of learning. Thus 
more research focusing on these topics is imperative to forwarding students’ learning 
of algebra and new comparative studies may shed some light both in curricula and 
how it is enacted in different countries and school levels.

Finally, while research in the fields of use of technology in the classroom and 
its influence on students learning and on the use of algebraic language has been 
somewhat intense over the last 10 years, little research has occurred in the areas 
of generalization, cognition and students capability of understanding functions, 
developing structure sense and in how technology is used by teachers and students in 
real classroom contexts. We are thus calling for a balance of our knowledge across all 
these areas since it is important if our aim is to continue to enhance the development 
of students’ algebraic thinking from elementary school up to the university.
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KEITH JONES AND MARIANNA TZEKAKI

4. RESEARCH ON THE TEACHING AND 
LEARNING OF GEOMETRY

INTRODUCTION

The chapter provides a comprehensive review of recent research in geometry 
education, covering geometric and spatial thinking, geometric measurement, and 
visualization related to geometry, as well as encompassing theoretical developments 
and research into teaching and teacher development. Without doubt, the research 
of the International Group for the Psychology of Mathematics Education (PME) 
community in the field of geometry education has advanced since the first PME 
research handbook reviewed PME research over the 30 years from the inception 
of PME to 2005 (see Gutiérrez & Boero, 2006). In general, the emphasis of 
subsequent geometry education research has increasingly been on the use of 
technology (especially forms of dynamic geometry software) and how this impacts 
on geometry teaching and learners’ geometrical thinking (especially on the teaching 
and learning of geometrical reasoning and proving), on teachers’ geometric content 
knowledge, and on teacher development for geometry education. As such, studies 
examining the uses of forms of digital technology are addressed in every section 
of this chapter.

At same time, there has been continuing work related to spatial reasoning, geometric 
measurement, and visualization related to geometry. There has also been a continuing 
focus on the development of students’ knowledge regarding understanding of 
geometric figures, definitions and inclusion relations, identification of shapes and 
language issues. In these studies, there are fewer examples of a furtherance of the 
Piagetian legacy, while use of the van Hiele model has continued alongside more 
recent developments in theory and methodology such as discursive, embodied, and 
eco-cultural perspectives (e.g. Ng, 2014; Owens, 2015). Thus, many research studies 
have focused on modes of understanding (visual, figural, conceptual), as well as on 
mental images and their manipulation, while employing new theoretical notions and 
methodologies.

The content of this chapter reflects the main emphases of research in geometry 
education as presented at PME conferences over the period 2005–2015. The 
synthesis is presented in the form of the following sections: spatial reasoning, 
geometric visualization, geometric measurement, geometric reasoning and proving, 
students’ knowledge, teachers’ knowledge and development, and teaching geometry 
and the design and use of geometric tasks.
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A NOTE ON REVIEW METHODOLOGY

There are a number of well-established methods for conducting a research review 
(Cooper, Hedges, & Valentine, 2009). While a literature review is a vital part of 
every research report, the purpose of this research synthesis is to make explicit 
some of the connections and relations between individual studies that otherwise 
may not be so visible. As such, constructing this review involved the purposeful 
selection, review, analysis and synthesis of research on geometry education that was 
presented at annual PME conferences over the period 2005–2015, inclusive. Where 
appropriate, connection is made to work presented at PME conferences prior to 
2005, as is connection to work published in relevant journals and books. The content 
of each set of PME proceedings from 2005 to 2015 was digitally – searched, and 
also hand-searched, to create a database of research reports. Each research report 
was reviewed and analysed, and this set of analyses used to develop the synthesis 
presented in this chapter.

SPATIAL REASONING

Spatial reasoning has always been a vital capacity for human action and 
thought, but has not always been identified or supported in schooling. 
(Whiteley, Sinclair, & Davis, 2015, p. 3)

Previously in the field of spatial reasoning, spatial capability was examined essentially 
for its relation to mathematical learning, connected to cultural and teaching factors 
as well as to imagery and strategies for geometric measurement of area and volume 
(Owens & Outhred, 2006). There were also some studies about spatial problem-
solving strategies in relevant tasks (e.g. Oikonomou & Tzekaki, 2005). However, 
there was limited specific interest in this capability per se, its meaning and definition, 
its role in curricula, its development in school.

A link between spatial capability and geometric thinking was made during 
earlier PME research on the use of technology in approaching geometry, such as 
the use of Logo (e.g. Edwards, 1994). More systematic research increased when the 
learning of space acquired a particular value. As Sack, Vazquez and Moral (2010, 
p. 113) have argued, spatial reasoning is now seen as a vital component of learners’ 
successful mathematical thinking and problem solving. More recently, Sinclair and 
Bruce (2014) led a compendium of reports on projects that have focussed on spatial 
reasoning for young learners. This mapped out “the terrain of established research on 
spatial reasoning” by examining “the actualities and possibilities of spatial reasoning 
in contemporary school mathematics” through offering “examples of classroom 
emphases and speculations on research needs that might help to bring a stronger 
spatial reasoning emphasis into school mathematics” (p. 173). Much of this work is 
expanded upon by Davis and the Spatial Reasoning Study Group (2015).
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Studies of Students’ Knowledge Related to Spatial Capabilities

Earlier studies investigated connections between spatial capability and geometric 
thinking. In their research, Xistouri and Pitta-Pantazi (2006) examined connections 
between spatial capabilities (mental rotation and perspective-taking) and geometrical 
thinking related to symmetry, while Kalogirou, Elia and Gagatsis (2013) investigated 
how visualization and mental rotation might be related to geometrical figure 
apprehension (perceptual and operative) as proposed by Duval (1999). Using data 
from relatively large-scale samples of primary and secondary school students, these 
studies showed significant relations between spatial capabilities and performance in 
symmetry, perspective-taking capability as well as geometrical figure apprehension. 
More specifically, the results of the first study indicated that perspective-taking 
capability is more related to symmetry performance than spatial rotation, being thus 
a predictor of students’ performance in reflective symmetry, while data from the 
second showed that spatial capability is “positively related to geometry achievement 
and problem solving” (Kalogirou et al., 2013, p. 134). By examining the data from 
the sample of secondary school students, the authors suggested that it is likely that, 
as students get older and receive more advanced teaching in geometry, they tend 
to use figures not just as spatial representations but as “semiotic representations of 
geometric objects” (p. 135).

In a study of primary students on spatial visualization and spatial orientation 
with net tasks (matching net cubes to cubes) and model tasks (finding top views of 
models), Diezmann and Lowrie (2009) found that students mainly used matching or 
matching-and-eliminating strategies. The researchers’ concluded that the students’ 
difficulties in visualizing and explaining their thinking might be due to the lack of 
prior experience and under-developed mental imagery.

In investigating the development of spatial reasoning in pre-school children, 
Tzekaki and Ikonomou (2009) invited 30 children, aged 4.5 to 6.5 years old, to 
observe, one by one, two-dimensional Lego configurations and retain their 
characteristics in order to reconstruct them, either by watching or from memory. The 
analyses of the children’s reconstructions demonstrated a continuous improvement 
of their spatial thinking and provided interesting information about the spatial 
characteristics that children at this age retain mentally when they attempt to copy 
a spatial situation. More specifically, such children easily retain information related 
to the number and shape of bricks, or to their left-right placement (corresponding 
to their own orientation), but they encounter difficulties in finding relative positions 
that demand combining spatial information.

In order to investigate young children’s spatial strategies from kindergarten to 
primary age, Reinhold, Beutler and Merschmeyer-Brüwer (2014) video-recorded 
task-based one-to-one clinical interviews with 22 pre-schoolers (aged 5 to 7) as 
each child was presented with a series of four tasks that involved ‘buildings’ made 
of glued cubes and drawings of ‘buildings’ (shown in a ‘cavalier’ perspective). 
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Using Thurstone’s (e.g. 1950) framework of distinguishing three major spatial 
capability factors (spatial relations, visualization, and spatial orientation) and using 
previous research on cube building (e.g. Battista & Clements, 1996), they reported 
on the nature of pre-schoolers’ building strategies in relation to their capabilities 
of enumerating the number of cubes in a three-dimensional cube building. While 
Reinhold et al. found that while students’ paying attention to intended structural 
elements (counting in rows or columns) does not guarantee an awareness of the 
structure of the ‘building’, they could gain insight into structural elements and 
could change “trial and error building strategies into orientation in structural 
elements” (p. 87).

More specific research by Panorkou and Pratt (2009, 2011) explored how 
individuals experience and think about dimension. In their first study, in which a 
phenomenographic approach was implemented, two pairs of 10 years old students 
and 10 teachers were interviewed with questions related to their dimensional 
thinking. The findings formed a characterization of this thinking in a variety 
of ways: dimension as action; as state (involving location); material dimension 
(involving measuring or conceptions based on vision or touch); abstract dimension; 
and dimension as prototype or hierarchy (with relationships between dimensions). 
Continuing their study Panorkou and Pratt (2011) designed tasks using Google 
Sketchup and conducted a number of extended task-based interviews with 10 year-
old students. They observed the students expressing various “situated abstractions” 
such as “polygons can be ‘flat’ (in a 2-D space) or ‘coming out’ (in a 3D space)” 
and “polygons that look flat in 3D can be disconnected” or “twisted” (pp. 342–343). 
They concluded that “a key idea about dimension seems to be that it in some sense 
depicts the level of capacity of the space” (p. 343).

Studies by Diezmann and Lowrie (2008), and by Lowrie, Diezmann and Logan 
(2011), focused on primary students’ knowledge of maps of localities. In the first 
study a GLIM (Graphical Languages in Mathematics) test was administrated to 
a sample of 378 4th grade students, plus 98 students were interviewed using 12 
items from the test. The results revealed key difficulties including interpreting 
vocabulary incorrectly, attending to incorrect foci on maps, and overlooking critical 
information. In the later study, information is encoded in the form of fixed attributes 
(marks and symbols) in a particular spatial orientation. Lowrie et al. (2011) 
examined the performance on six map items of 583 students of 2nd and 3rd grades, 
from metropolitan and non-metropolitan locations. The results showed significant 
performance differences in favour of metropolitan students on two of six map tasks. 
In trying to explain the differences, they speculated that metropolitan students 
might be more likely to be exposed to coordinate map systems than students in 
non-metropolitan areas and that “the additional requirement for students to locate 
information besides what was provided in the direct instructions proved challenging 
for non-metropolitan students” (p. 149).

Summarizing, research in the field of spatial capabilities indicates a low 
development of skills related to spatial orientation, spatial relations and 
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transformations, as well as understanding of dimensions and localities. However, 
spatial experiences such as reconstruction of spatial configurations or cube building 
are likely to support progress of spatial abilities. This kind of research is significant 
because, as noted above, spatial reasoning, more than being an important component 
of human action and thought, is known to be closely connected to geometric thinking 
and development of geometric knowledge.

Teaching Proposals Improving Spatial Reasoning

A range of studies has aimed at improving spatial reasoning for different ages. 
In earlier research, Owens (2005) examined how pre-service teachers were using 
substantive communication about space mathematics in primary schools. A 
qualitative analysis of observations in their classroom showed that, teachers, after 
taking a large number of example lessons, worked systematically with their students’ 
knowledge attempting to extend it, by providing effective challenges and questions. 
In general, working with spatial tasks in the classroom, games, toys or relevant 
software improve significantly different aspects of spatial capabilities and spatial 
thinking.

More recently, Highfield, Mulligan and Hedberg (2008) studied the case of two 
children exploring a Bee-bot programmable toy, a tool that enabled them to engage 
in transformational geometry. These two children demonstrated relational thinking 
to plan, program and manipulate the toy through a complex pathway and developed 
interesting problem-solving strategies.

Experimenting with teaching approaches, Chino, Morozumi, Arai, Ogihara, Oguchi 
and Miyazaki (2007) proposed a spatial geometry curriculum utilizing 3-D dynamic 
geometry software in lower secondary grades. The results, coming after comparing 
experimental with control groups as well as results of the national survey of Japan, 
identified positive effects regarding the construction of spatial figures by moving a 
plane figure and the explanation the students gave for a 3-D figure represented in 2-D. 
Hegedus (2013) reported on a multi-modal interactive environment where young 
learners were able not only to “click-drag-deform mathematic objects on a screen 
as in traditional dynamic geometry” but also experience “force feedback related to 
mathematical properties through the same device” (p. 33). Psycharis (2006) reported 
on how 13 year-olds dynamically manipulated geometrical figures involving ratio 
and proportion tasks, while Samper, Camargo, Perry and Molina (2012) reported a 
case study of implication and abduction in dynamic geometry.

Both Moustaki and Kynigos (2011) and Ferrara and Mammana (2014) have 
researched the spatial capability of much older students. In their research, Moustaki 
and Kynigos (2011) looked for instances in which students’ visualization, construction 
and mathematical reasoning processes might contribute to the enhancement of those 
capabilities. They developed a ‘3-D Modelling & Cutting’ microworld and used it 
with some 12th grade engineering students specializing in Programming Computer 
Numerical Control (CNC) Machines. The analysis showed that the students initially 
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perceived the figures and shapes represented in the 2-D drawing in a “purely iconic 
way instead of a mathematical one” (p. 262). With greater experience, the students 
came to realise that they had been ‘misled’ by the static 2-D drawing and needed to 
use 3-D geometrical objects to specify spatial relationships among the component’s 
parts that would not differentiate as they changed viewpoints.

For Ferrara and Mammana (2014), the visual challenge involved in the approach 
of spatial geometry was the use of ‘flat’ diagrams for geometrical figures. Using 
the dynamic geometry software Cabri 3D, they introduced a definitional ‘analogy’ 
between quadrilaterals and tetrahedra for ‘edges’ and ‘faces’. Undergraduate 
mathematics students tackled two main tasks; introducing the medians for 
quadrilaterals and tetrahedra, and conjecturing about the properties that hold in both 
cases. These tasks, say the researchers, pushed the students towards a search for 
similarities and differences, invariants and changes, between the two figures. In this 
way the learners managed to “see in space” (p. 59) through the affordances offered 
by the dynamic geometry software.

With elementary-age children (in Grade 3), Sack, Vazquez and Moral (2010) 
and Sack and Vazquez (2011) reported on using 3-D models, 2-D conventional 
and semiotic (abstract) representations, verbal descriptions of figures, and tasks 
using Geocadabra (Lecluse, 2005) software by which a multi-cube structure can 
be viewed as 2-D conventional representations or as top, side and front views or 
numeric top-view grid coding. Working with different representations, the children 
had to calculate in multiple ways how many unit cubes were in relevant structures 
and connect the result to the sum of the numbers in the figures’ top-view coding grid.

Summarizing the results of these studies, spatial tasks combining 2-D and 3-D 
geometric figures supported by relevant technological tools are likely to foster 
spatial-knowledge development and improve students’ spatial reasoning, confirming, 
thus, the important role of technological environments in the development of spatial 
thinking.

GEOMETRICAL VISUALIZATION AND VISUAL THINKING

Geometry comprises those branches of mathematics that exploit visual intuition 
(the most dominant of our senses) to remember theorems, understand proof, 
inspire conjecture, perceive reality, and give global insight. (Zeeman, quoted 
in Royal Society, 2001, p. 12)

In this section visualisation is taken to be the capacity to “represent, transform, 
generate, communicate, document, and reflect on visual information” (Hershkowitz, 
1990, p. 75) and attention is paid to visual intuition. For both, there is some inevitable 
overlap with spatial reasoning. As such, some research reported in the section on 
spatial reasoning may also appear in this section, and vice versa.

In the first PME handbook, Owens and Outhred (2006) covered a good deal 
of research on visualization alongside findings concerning the use of imagery in 
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mathematics in general, and also in spatial processing and geometric thinking. In 
relation to this, Presmeg (2006) summarised issues in visualization by first clarifying 
terms relating to semiotics (such as signifier, registers, iconic, indexical, or symbolic 
signs) and then explicitly examining imagery (mental images) and externally-
presented inscriptions involving visualization. Presmeg explained that “both visual 
imagery and inscriptions are sign vehicles that are instantiations of visualization in 
mathematics, insofar as they depict the spatial structure of a mathematical object” 
(p. 22).

Visual Cognition of Geometrical Objects

A number of research studies have focused on ‘visual cognition’, defining it as a 
mental process (perceiving, recognizing, retaining in memory, etc.) that refers to the 
way an individual acquires and processes visual information. Usefully, Kalogirou, 
Elia and Gagatsis (2013) pointed to differences between terms such as visual 
perception and visualization. They suggested that visual perception, while one of 
the most important factors affecting the capability to recognize plane shapes, only 
provides a “direct access to the shape and never gives a complete apprehension 
of it” (pp. 129–130). On the contrary, they argued, visualization is “based on the 
production of a semiotic representation of the concept and gives at once a complete 
apprehension of any organization of relations”; as such, visualization in mathematics 
“requires specific training in order to grasp directly the whole configuration of 
relations and to handle the figure as a geometrical object” (p. 130).

Widder, Berman and Koichu (2014) have been searching for “a better 
understanding of the visual obstacles’ constituents, and the interaction between 
them” as that might be “the key to improve spatial geometry instruction” (p. 370). 
With data from testing high-attaining grade 12 students, their study confirmed “the 
existence of a prototype representing a cube” in that the overwhelming majority 
of the participants “drew the same normatively-positioned cube frequently used 
during spatial geometry instruction” (p. 375). While the prototypical use of 
normative drawings of cubes in spatial geometry instruction “may form a mental 
image meant to assist visualization”, at the same time Widder et al. argued that 
this “may not allow enough flexibility, and therefore hinder identification and 
manipulation of a 3-D geometrical situation in un-normative sketches” (Widder 
et al., 2014, p. 375).

Relevant to students’ visual cognition appears to be teachers’ capability in 
visualization in geometry. For example, Markovits, Rosenfeld and Eylon (2006) 
investigated 25 teachers’ performance in visual tasks along with their prior content 
knowledge and beliefs in the area of visual cognition. The results showed that 
the visual cognition of these teachers was limited, and their capabilities in visual 
estimation, free recall and graphical reproductions were close to those of 3rd grade 
students. Cohen (2008) examined pre-service and in-service teacher’s knowledge of 
mental images and their beliefs about geometrical straight lines and planes. Their 



K. JONES & M. TZEKAKI

116

findings revealed conflicting teacher beliefs between formal knowledge and mental 
images as well as typical misconceptions about lines and planes.

Sack and Vazquez (2008), based on a spatial operation capacity model (SOC) 
conducted an after-school teaching experiment with two groups of 3rd and 4th grade 
students. The authors found that the student’s performance on standardized test 
items that use verbal visualization terms (for example, top, side and front views) 
“may be compromised by unconventional language use rather than lack of visual 
cognition” (p. 224).

Haj-Yahya and Hershkowitz (2013) aimed at “linking visualization, students’ 
construction of geometrical concepts and their definitions, and students’ ability to 
prove” (p. 409). With data from testing grade 10 students, they found that many 
of them knew the formal definitions of the various quadrilaterals but did not make 
use of the definitions when faced with tasks using forms of visual representation of 
shapes. In many cases, say Haj-Yahya and Hershkowitz, “students know the formal 
definition but do not make use of it when faced with a visual task representation|” 
(p. 415).

Chumachemko, Shvarts and Budanov (2014) were also interested in the 
development of visual perception. Focusing on the Cartesian coordinate system 
and, in particular, the “transformations of perception that are needed to approach 
this mathematical visual model” (pp. 313–314), they compared the eye movements 
of participants at three levels of mathematics competence and they confirm their 
hypothesis: when detecting a point on the Cartesian plane “the better participants are 
educated, the shorter are their gaze paths, and the more the number of their fixations 
is reduced, and the durations of their tasks solving become shorter” (p. 316).

Overall, research agrees in the existence of limits to visual cognition and how 
there are visual obstacles in different recognition processes both for students 
and for teachers. In some cases, the visual aspect might even distract students 
from their mental or relevant theoretical knowledge, a finding that needs further 
investigation.

Visualization in Reasoning and Problem Solving

Introducing notions of ‘linking visual active representations’ (LVAR) and ‘reflective 
visual reaction’ (RVR), the aim of a teaching experiment by Patsiomitou and Koleza 
(2008) was to explore the role of these notions in a dynamic geometry software 
environment. With data from 14 secondary school students, the results showed that 
prior knowledge played a significant role in parallel with LVAR and RVR as a shift 
from visual to formal proof led students to formulate “if …then” propositions and 
to move “between two successive ‘Linking Visual Active Representations’ only by 
means of mental consideration, without returning to previous representations to 
reorganize his/her thoughts” (p. 94).

When undergraduate students are reading a ‘worked proof’, research by Lin, 
Wu and Sommers (2012) found that visualization corresponds to “needing to 
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keep spatial representations in their working memory and to look between proof 
and figures” (p. 151). By studying the eye-tracking movements of undergraduate 
students as they read geometry proofs of different difficulty levels, the researchers 
found evidence that “visual reception and visualization occur simultaneously” 
(p. 152).

In their studies with pre-service teachers, Torregrosa and Quesada (2008, 2009) 
focused on what they call configural reasoning in which discursive and operative 
apprehensions (Duval, 1999) are coordinated in order to solve a problem or generate 
a proof. They found that visual predominance tends to inhibit the visualisation of 
the configuration sucg that configurative reasoning and the proving process are not 
always interrelated.

In the same context of solving geometrical problems, Pitta-Pantazi and Christou 
(2009) investigated whether individuals’ cognitive styles, measured in terms of object 
imagery, spatial imagery and verbal capability, were related to their mathematical 
creativity. Some 96 pre-service teachers answered the Object-Spatial Imagery and 
Verbal Questionnaire (OSIVQ) and were examined in a mathematical creativity test 
for their capabilities in area, shape, pattern, problem solving and number. The results 
showed significant connections between spatial imagery and cognitive style, on the 
one hand, and mathematical fluency, flexibility and originality (as components of 
creativity) on the other, but no connections of object imagery and verbal cognitive 
capability to any dimension of creativity.

In their study Ramfull and Lowrie (2015) examined the connections between 
students’ cognitive style, visualization and mathematics performance. They 
examined 807 6th graders from Singapore schools with three instruments: the 
C-OSIVQ questionnaire for measures of cognitive styles, the Paper Folding Test 
for spatial visualization and the Mathematics Processing Instrument for problem 
solving performance. The results align with previous studies by indicating 
significant correlations between cognitive styles (mainly spatial imagery information 
processing) and spatial visualization and problem solving abilities.

It is apparent from all aforementioned studies that visualization is indispensable 
in proving and problem solving. Visual aids support students’ and teachers’ thinking 
and both appear to improve their visual imagery for the needs of a solution or a 
proof. However, the visual representations or process they develop are not always 
effective in solving or proving relevant tasks, but there is still limited research related 
to the connection of visuality (as defined at the beginning of this section) to creative 
developments. Studies with digital technologies, such as DGEs, are providing more 
evidence and are offering new possibilities in the visualization of geometric objects.

Visualizing in Geometry and Use of Gestures

Humans make use not just of one communicative medium, language, but also 
of three mediums concurrently: language, gesture, and the semiotic resources 
in the perceptual environment (Roth, 2001, p. 9)
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Research in geometry education has special interest in the role of gestures in 
mathematical communicating and thinking as an aspect of geometric visualization. 
In their Research Forum, Arzarello and Edwards (2005) examined gestures as a 
way of processing and communicating geometric ideas based on psychological, 
semiotic and psycholinguistics theoretical frameworks (Alibali, Kita, & Young, 
2000; Bara & Tirassa, 1999; Peirce, 1955; Radford, 2003). Thus, they recorded the 
dynamic evolution in the use of gestures as pointed out by the social activity of 
the students in a geometric context and their discussion about solid shapes. They 
first analysed gestures and speech alongside written words and mathematical signs 
(c.f. Edwards, 2005). Later in the forum, Arzarello, Ferrara, Robutti and Paola 
(2005) extended this by examining relations between the use of gestures and the 
development of new ‘perceivable signs’. They recorded the progression of students’ 
solution during the construction of solids and examined the introduction of signs 
with gestures. At first, the students’ gestures had an iconic function presenting the 
solid they were describing. Gradually they became ‘indexes’ (in the sense of Pierce) 
in the communicative attempt of transferring knowledge to others and finally they 
acquired a symbolic function; thus their relation developed in a piece of theoretical 
knowledge.

Maschietto and Bartolini Bussi (2005) approached the study of the construction 
of mathematical meanings in terms of development of semiotic systems (gestures, 
speech in oral and written form, drawings) in a Vygotskian framework with 
reference to cultural artefacts. In their paper they presented a teaching experiment 
related to perspective drawing with 4th-5th grade students. The authors described 
how they analysed “the appropriation of an element of the mathematical model 
of perspective drawing (visual pyramid) through the development of gestures, 
speech and drawings, starting from a concrete experience with a Dürer’s glass 
to the interpretation of a new artefact as a concrete model of that mathematical 
object…” (p. 315). Analysis of the students’ protocols highlighted the parallel 
development of different semiotic systems (gestures, speech in oral and written 
form, drawings) and their mutual complementary enrichment. Research by Sack, 
Vazquez and Moral (2010), mentioned earlier, also reveals the use of gestures by 
young students.

In their research, Ng and Sinclair (2013) studied children’s use of gestures 
on spatial transformation tasks. They found that children used gestures “as 
multi-modal resources to communicate temporal relationships about spatial 
transformations” (p. 361). Subsequently, Ng (2014) reported on the interplay 
between language, gestures, dragging and diagrams in bilingual learners’ 
mathematical communications, when students rely on “gestures and dragging 
as multimodal resources to communicate about dynamic aspects of calculus” 
(p. 289). For more on high school students engaged in perceptual, bodily, and 
imaginary experiences while discussing about calculus concepts in a dynamic 
geometry environment, see Ferrara and Ng (2014).
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GEOMETRIC MEASUREMENT

Measurement plays a central role in reasoning about all aspects of our spatial 
environment. (Battista, 2007, p. 891)

In their review of earlier PME research, Owens and Outhred (2006) depicted the 
complexities of measurement principles and their teaching. Here, subsequent 
research is reviewed – first on length, then on area, volume, and angle.

Length

An understanding of linear measure is imperative, as it provides the basis for 
length, area, and volume. (Cullen & Barrett, 2010, p. 281)

As Watson, Jones and Pratt (2013, p. 76) confirm, research has shown that when 
children measure lengths they can end up “applying a poorly-understood procedure 
rather than focusing on the correspondence between the units on the ruler (which 
may be seen erroneously as a counting device) and the length being measured”. 
What is more, research by McDonough (2010, p. 294) reports “confusion regarding 
unit name, length, and relationships” when the object being measured is longer than 
the ruler.

Given the different ways that measurement tasks can be presented, Cullen and 
Barrett (2010) compared the strategies used by young children (aged 4–5 years, 
and 7–8 years) when engaged in measurement tasks that were presented either 
using Geometer’s Sketchpad (GSP) software or as paper-and-pencil. Noting that 
measurement strategies include the endpoint strategy (where the child refers either 
to the right or left endpoint as the length of the object) and the point-to-the-middle-
of-an-interval strategy, the researchers found that “linking the intervals on a ruler 
to iterable discrete objects, or to virtual representations of those objects, were both 
successful ways to motivate students to use the effective ‘point to midpoint’ strategy” 
(p. 287). They concluded that interval-identifying strategies should be beneficial 
when teaching students to measure the length of an object with a ruler.

Beck, Eames, Cullen, Barrett, Clements and Sarama (2014) investigated whether 
grade 6 children’s knowledge of measurement related to their capability to use 
double number lines when solving problems involving proportional reasoning. 
Using ideas of hierarchic interactionalism, Beck et al. defined a series of ‘levels’ – 
the first two of which are Length-Unit-Relater-and-Repeater (LURR) level, where 
children “measure by repeating, or iterating, a unit, and understand the relationship 
between the size and number of units”, and the Consistent-Length-Measurer (CLM) 
level, whereby children “see length as a ratio comparison between a unit and an 
object” and “use equal-length units, understand the zero point on the ruler, and can 
partition units to make use of units and subunits” (p. 106). They found that children 
at the LURR level relied on iterative strategies, while children at the CLM level 
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could “partition and correctly attend to units along one scale but not yet coordinate 
units along two scales simultaneously” (pp. 111–112).

Future research could build on what is already known about the foundational 
ideas of measurement such as identical units, iteration and zero-point.

Area

Given that area measurement is known to pose further challenges for learners 
(see Watson, Jones, & Pratt, 2013, p. 76), Gonulates and Males (2011) analysed 
US primary school mathematics textbooks and found little variety in the ways in 
which knowledge was expressed. The researchers concluded that the textbooks 
did not provide opportunities for students to engage with conceptual knowledge 
of area.

Whether primary-age children might benefit from being taught a curriculum 
that integrates 2-D geometry with area measurement, compared with a curriculum 
that stressed numerical calculation of area, was studied by Huang (2011). Huang’s 
conclusion was that integrating area measurement instruction with numerical 
strategies and geometric materials seemed to be “a promising approach to 
promoting children’s conceptual understanding of area measurement” as well as 
their capacity to “explain geometric reasoning with measurement when solving 
problems” (pp. 47–48).

The development of different components of students’ knowledge about area 
measurement was investigated by Frade (2005). Frade found that students aged 11 
to 12 showed a concept of area as a physical geographic space while by age 12–13 
this had evolved to them being able to use “the rectangle area formula adequately” 
and having “the ‘know how’ to solve a number of problems” (p. 327).

Area concepts continue to appear in the mathematics curriculum through to 
university. Cabañas-Sánchez and Cantoral-Uriza (2010) focused on how first-year 
university mathematics students could transform convex and non-convex polygons 
so that area was conserved. In analysing the arguments presented by the students, 
the researchers found that the students used both ‘parallelism’ (area between parallel 
lines is conserved) and relevant formulae to calculate areas.

Future research might develop further promising ways of promoting children’s 
conceptual understanding of area.

Volume

Turning to 3-D measures, Watson, Jones and Pratt (2013, p. 76) note that these 
introduce “even more complexity, not only by adding a third dimension and thus 
presenting a significant challenge for students’ spatial sense, but also in the very 
nature of the entity being measured”. As noted above in the section on spatial 
reasoning, in research on how 8–9 year-old children solve 3-D tasks using the 
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software Geocadabra (Lecluse, 2005), Sack and Vazquez (2011) concluded that 
“coding of rectangular array structures fosters children’s understanding of the 
volume formula in concert with their emerging multiplication skills” (p. 95). Huang 
(2012) was similarly interested in how children would benefit from a curriculum 
that integrates geometry with volume measurement, as compared to teaching that 
stresses numerical calculations and application of the formula. By designing different 
week-long teaching sequences for two 5th grade classes (pupils aged 10–11), Huang 
found that each approach “facilitated the children’s acquisition of the idea of volume 
measurement” and their capability to “solve different types of problems embedded 
with volume measurement concepts” (p. 361).

While focusing on mass rather than volume, McDonough, Cheeseman and 
Ferguson (2012) developed a one-week teaching unit for 6–8 year olds. Through 
this they found that the children were capable of thinking constructively about the 
intricacies of mass measurement. In terms of comparing and ordering masses, they 
found that the children appeared to “draw on prior experiences and sometimes on 
visual cues, but with appearance-based comparison for mass not as likely a reliable 
strategy as it might be, say, for length” (p. 207).

These studies illustrate the continuing need for active research on the topic of 
volume, and for research on the related topics of mass and capacity.

Combinations of Measures

As well as studying individual measures, researchers have also conducted studies 
involving more than one measure. For example, Stephanou and Pitta-Pantazi (2006) 
analysed the answers that upper primary school students gave to area and perimeter 
tasks. They found that more than half of the students’ answers were influenced “not 
so much by the specific context of a task (area or perimeter) or the presence of 
a diagram” but rather they were influenced “by the external features (change of 
one/both dimensions) of the task that trigger the intuitive rule ‘if A then B, if not 
A then not B’” (p. 183). Huang (2010) also examined children’s understanding of 
perimeter and area. The findings indicated that even where children (aged 8–9) had 
the computational capability to calculate perimeters, this did not necessary mean 
that they had complete comprehension of the meanings of multiplication and of the 
formula for area calculation.

Cullen, Miller, Barrett, Clements and Sarama (2011) compared three different 
unit-eliciting task structures for measurement comparison tasks. With a sample of 
children from grades 2–4, the researchers found that students were most successful 
with a task structure that asked “how much longer/bigger?” and were least successful 
with a task structure that asked “how many times longer/bigger?” (p. 249). What 
is more, in response to “how much longer/bigger?” the children tended to use an 
additive comparison while they tended to produce multiplicative comparisons in 
response to “how many times longer/bigger?” (ibid).
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Research by Fernández and De Bock (2013, p. 297) focused on a frequently-
investigated case of students’ misuse of linearity; that of effect of an enlargement 
or reduction of a geometrical figure on its area or volume. Here, learners have the 
tendency to treat relations between length and area, or between length and volume, 
as linear instead of, respectively, quadratic and cubic – perhaps, the researchers 
suggest, because secondary school students struggle with the distinction between 
dimensionality and ‘directionality’ (an example of that latter being that while the 
perimeter of a square is one-dimensional, it has two ‘directions’ in the form of length 
and breadth). Analysis of the responses to a set of tasks by 13–14 year olds confirmed 
the preponderance of “linear” answers and also indicated that more than 20% of the 
students’ answers were “directional” (ibid). The distinction between dimensionality 
and directionality was more a struggle for figures where the number of directions 
and dimensions coincided, such as when a square has two dimensions and also two 
directions.

Curry, Mitchelmore and Outhred (2006) surveyed 96 students of Grades 1–4 
using tasks assessing understanding of the five measurement principles: the need 
for congruent units; the importance of using an appropriate unit; the need to use 
the same unit when comparing objects; the relationship between the unit and the 
measure; and the structure of the unit iteration. Their results showed that while some 
of these principles were found to be clearer to older children, a precise order of 
development was not evident. The researchers concluded that appropriate learning 
tasks could be ones that help focus students on “the reasons for using a fixed unit 
size, for not leaving gaps, for using multiplication in some contexts, for rejecting 
certain units and accepting others, and for the inverse principle” (p. 383).

Such suggestions can be compared to those of Owens and Kaleva (2008), who 
have studied the many differing indigenous communities of Papua New Guinea 
(PNG). In setting out to collect and analyse approaches to measurement for as 
many PNG language groups as possible, Owens and Kaleva generalise to say that 
PNG people “have a sense of area (tacit knowledge) developed through sleeping, 
gardening and house building in particular” and “are able to use this idea of area to 
make judgements such as the estimated amount of material needed for a house of a 
particular floor size”; likewise, PNG people “would visualise a garden by knowing 
its length” (p. 79). The researchers concluded “by making these points explicit, 
teachers can reduce the discontinuities in knowledge and hence build a firm basis 
for school mathematics” (ibid).

The issue of primary students’ measurement estimates has been studied by 
Huang (2015) and by Ruwisch, Heid and Weiher (2015). Huang reported that good 
estimators tended to adopt multiple strategies and mental rulers more frequently 
than poor estimators, while Ruwisch and colleagues found that the children (and 
educators) that they studied gave better estimations for lengths than for capacities.
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Angle

The measuring of angle is, according to Bryant (2009, p. 4), “another serious 
stumbling block for pupils”. One problem, according to Bryant, is that turning 90 
degrees (a ‘dynamic’ angle) appears very different to the corner of a book being 
90 degrees (a ‘static’ angle). The study by Masuda (2009) confirms that learner 
difficulties range from grade 5 students having difficulty paying attention to an angle 
as one of the attributes of the shape (and distinguishing it from measuring a side of a 
shape) to grade 11 students being unclear about radians and degrees.

Kaur (2013) researched the ideas of elementary school children (aged 5–6) 
working on angle comparison using dynamic geometry software (DGS). Here, the 
children’s gestures and motion played an important role in their decision-making on 
angle comparison tasks. In particular, the use of gestures, such as hands as the ‘arms’ 
of an angle, enabled the children to see the process of turning even in case of ‘static’ 
shapes. In this way, “embodied routines could be helpful in looking at dynamic 
thinking, especially in case of young children” (p. 151).

Dohrmann and Kuzle (2014) focused on the development from grade 5 to 10 of 
pupils’ understanding of an angle of 1 degree. The results showed that many of the 
children’s misconceptions were directly connected to the measuring tool, namely 
the set square, and to the way they tried to draw an angle of 1°. In the case of the set 
square, this tool was found to privilege a ‘static’, rather than ‘dynamic’, perspective 
on angle.

In shedding light on the meanings of angle in 3-D space held by 12-year-old 
students, Latsi and Kynigos (2011) used a specially-designed “Turtle Geometry 
with dynamic manipulation microworld” within a teaching experiment in which 
the children “addressed angle as a directed turn … in the context of noticing and 
understanding 3-D objects’ spatial and geometrical properties” (p. 127). The 
researchers found that the students benefitted from experiencing “a vehicle of 
motion metaphor (e.g. flying the turtle)” (ibid). In this way the students came to use 
angle as “a spatial visualisation concept” (ibid).

In research by Tomaz and David (2011), the focus was on the definition of the 
bisector of an angle and measuring the angles formed by it. In the study, students 
aged 13–14 tackled the problem of finding the measure of an angle formed by the 
bisectors of two given adjacent angles. This “opened the possibilities to deepen their 
[the students’] understanding about the measure of angles” (p. 264). This illustrates, 
say the researchers, the “power of the visual representations for structuring and 
modifying the mathematical activity in the classroom” (p. 259).

While the difficulties that students encounter with the notion of angle are well 
known in the literature, these studies show how research is needed on fusing, rather 
than confusing, for learners the ‘static’ and ‘dynamic’ perspectives on angle.
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GEOMETRICAL REASONING AND PROVING

An important aspect of geometry is concerned with the development of 
deductive reasoning and proof. (Royal Society, 2001, p. 9)

Students’ Developing Capabilities with Geometric Reasoning and Proving

Research continues to focus on the capabilities of students at different grade 
levels with geometric reasoning and proving. Investigating cognitive predictors of 
geometrical proof competence, Ufer, Heinze and Reiss (2008) proposed a model 
comprising three levels: basic calculations; one-step proofs; and multi-step proofs. 
With data from testing 341 students in grade 9, the research confirmed that while 
knowledge was an important predictor of geometric proof competence, other 
predictors were also significant. The authors concluded that “if a student does not 
understand the nature of mathematical proofs, or has no problem-solving strategies 
at hand, he or she will hardly be able to construct a proof in spite of the best 
geometric content knowledge” (p. 367). Such a conclusion was echoed by Yang, Lin 
and Wang (2007) in a study of students’ capabilities when reading geometry proofs.

The issue of how geometrical proof competence is connected to the capability to 
define geometric concepts was studied by Silfverberg and Matsuo (2008). In data 
from testing 152 Japanese and 162 Finnish students at 6th and 8th grade on the 
definitions of quadrilaterals, the researchers found that in both countries the students’ 
understanding of defining geometric concepts related to their “understanding of the 
class inclusion relations” (p. 263). In examining students’ capabilities in making 
geometric generalizations, Yevdokimov (2008) found that the higher-attaining 
students could formulate generalized arguments. Antonini (2008) showed how 
students treated contradictions in geometric argumentations and proofs, indicating 
how proof by contradiction is not straightforward for learners. Ginat and Spiegel 
(2015) found an absence of the ‘fluency’ and ‘flexibility’ aspects of creativity in 
novices’ geometry proofs.

Bieda (2011) reported on the aspects of proofs and non-proofs that were convincing 
to middle grade students. The analysis found that the students “valued the explanatory 
power of an argument when evaluating a proof for a true geometry statement that 
provided a diagram” (p. 153). In a study of the assumptions made by 10th grade 
students when proving geometric statements, Dvora and Dreyfus (2011) found 
that unjustified assumptions arose when students “misused theorems or assigned 
extraneous properties to geometric objects”, and that unjustified assumptions were 
“made with the purpose of reaching a critical step in the proof” (p. 289).

Matos and Rodrigues (2011) investigated how the construction of geometric 
proof related to the social practice developed in the classroom, and, in particular, 
the role of geometric diagrams. The researchers concluded that diagrams played “an 
important role in the process of sharing and increasing the ownership of meaning of 
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proof by highlighting the relevant properties” (p. 183). For an interesting analysis of 
geometric pictures, see Stenkvist (2012).

In proof problems involving 2-D representations of 3-D shapes, the diagram may 
not always help. For example, Jones, Fujita and Kunimune (2012) reported a study 
of lower secondary school pupils (aged 12–15) who tackled a 3-D geometry problem 
that used a particular diagram as a representation of the cube. The analysis showed 
how some of the students could “take the cube as an abstract geometrical object 
and reason about it beyond reference to the representation”, while others needed to 
be offered “alternative representations to help them ‘see’ the proof” (p. 339). The 
influence of 3-D representations on students’ level of 3-D geometrical thinking is 
reported by Kondo, Fujita, Kunimune and Jones (2013) and the follow-up paper by 
Kondo, Fujita, Kunimune, Jones and Kumakura (2014).

Attempting to deepen the ways in which visually-based geometric materials 
support students’ generating of conjectures, Lin and Wu (2007) examined how 6th 
graders, still in the process of intuitive geometry, generated geometrical conjectures 
when geometrical conditions in diagrams were given. The analysis showed that 
students generated more related conjectures if they looked at one example, instead of 
two or three at the same time, and they generated more conjectures if the examples 
were conjunctive (that is, the example was the conjunction of the conditions given 
in the question with other conditions). Komatsu (2011) studied how grade 9 students 
generalized their conjecture through proving. After the students proved their 
conjecture and faced its counterexample, applying their proof to a boundary case 
between example and counterexample of their conjecture was found to be crucial.

Given that there can be a tension between the practical aspect of physically 
carrying out a geometrical construction and the theoretical aspect of constructing 
the related proof, Fujita, Jones and Kunimune (2010) studied the extent to which 
there might be ‘cognitive unity’ between students’ geometrical constructions and 
their proving activities. The results suggested that while grade 9 students gained 
a much greater appreciation of how to use already-known facts to proceed with 
further investigations in geometry, the uniting of student conjecture production and 
proof construction was not automatic. As the authors concluded “further research is 
necessary to give a fuller answer to the matter of how, and to what extent, geometrical 
constructions encourage the uniting of student conjecture production and proof 
construction” (p. 15). In a follow-up report, the same authors reported two cases 
from grade 7 where the use of geometrical constructions enabled the students to shift 
“from relying on visual appearances or measurement to reasoning with properties of 
shapes” (Fujita, Kunimune, & Jones, 2014, p. 65).

A range of studies has examined students’ proof and proving when using dynamic 
geometry software (DGS). Patsiomitou and Emvalotis (2010), for example, 
concluded from their study that “the dynamic manipulation of objects in the software 
led the students to construct the properties of figures” and this, in turn, helped 
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the students classify the figures (see also, Patsiomitou, 2011). Baccaglini-Frank, 
Mariotti and Antonini, (2009) reported on different perceptions of invariants and 
generality of proof in dynamic geometry, while Baccaglini-Frank, Antonini, Leung 
and Mariotti (2011) reported on a study with upper secondary-age students (aged 
16–18) that focused on constructing a proof by contradiction. The latter showed that 
“there can be a strong subjective element in the process of producing a geometrical 
proof (or a convincing argument) via the solver’s conscious choices of construction 
and dragging in a DGS” (pp. 87–88). Olivero (2006) investigated the role of the 
DGS hide/show tool in the conjecturing and proving processes. While this facility 
offers students the possibility to focus on different elements during a geometric 
construction, the analysis confirmed that the visible elements on the screen guided 
the focus of the students and it was this that effected the construction of conjectures 
and the development of proofs. In a different approach, Leung and Or (2007) studied 
oral explanations and written proofs provided by secondary students working on 
construction tasks with DGS. The researchers concluded that writing up DGS proofs 
“may involve using mathematical symbols or expressions that transcend the usual 
semantic of a traditional mathematical symbolic representation (p. 183).

Fujita, Jones and Miyazaki (2011) and Miyazaki, Fujita and Jones (2014) 
reported on studies of a “web-based proof learning support environment” (p. 353) 
in which learners tackled geometrical congruency-based proof tasks by dragging 
sides, angles and triangles to cells of a flowchart-style proof while the web-based 
system automatically transfered figural to symbolic elements so that learners could 
concentrate on the logical and structural aspects of their proofs. From their research, 
the researchers argued that with this approach, alongside suitable guidance from the 
teacher on the structural aspects of a proof, students could “start bridging the gap 
in their logic and thereby begin to overcome circular arguments in mathematical 
proofs” (2011, p. 353).

Textbooks may, or may not, provide support for students’ developing capabilities 
with geometric proving. Dolev and Even (2012) compared six 7th grade Israeli 
mathematics textbooks, examining the opportunities provided by the textbooks 
to justify and explain mathematical work about triangle properties. They found, 
compared with algebra, that all six textbooks included “considerably larger 
percentages of geometric tasks that required students to justify or explain their 
solutions” (p. 203). Miyakawa (2012) compared textbooks from France and Japan 
and found differences such as what gets called proof in the textbook, the form of 
proof used, and the functions of proof employed.

Given that definitions are integral to geometric proof, Okazaki (2013) found that 
for 5th grade pupils five situations should help: “(1) understanding the meaning 
of identifying geometric figures, (2) constructing examples from non-examples 
and justifying the constructions via comparisons, (3) recognizing equivalent 
combinations, (4) examining undetermined cases via counterexamples, and (5) 
conceiving figures as relations beyond the given actualities” (p. 409). Haj-Yahya, 
Hershkowitz and Dreyfus (2014) investigated 11th grade students’ geometrical 
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proofs through the lens of the students’ definitions and found that the difficulties 
students had in understanding geometric definitions affected their understanding of 
the proving process and hence the capability to prove.

Several studies have examined the ways in which high-attaining students compose 
or construct a proof, or create a definition, and how this might help in understanding 
the proving approach of the students in general because the characteristics of their 
approaches are very close to the mathematical proving or defining processes. 
Examples include Lee (2005) and Song, Chong, Yim and Chang (2006) who 
examined the constituents of proving that high-attaining students produce, Ryu, 
Chong and Song (2007) who researched their spatial visualization of solid figures, 
Lee, Kim, Na, Han and Song (2007) who researched their use of utilize induction, 
analogy, and imagery, and Lee, Ko and Song (2007) who studied the ways they 
define geometric objects. These researchers concluded that teachers need to draw 
explicit attention to the value of informal proofs and that for students to develop 
their sense of geometrical reasoning there needs to be extensive experience of 
conjecturing and then verifying. Kim, Lee, Ko, Park and Park (2009) built on this 
work in a study of how high-attaining students can become aware of unjustified 
assumptions in geometric constructions.

Teaching Proposals Improving Students’ Performance in Geometric Proving

In looking to help students, Cheng and colleagues examined strategies such as 
reading-and-colouring (Cheng & Lin, 2006), the use of coloured flashcards to 
support geometric argumentation (Cheng & Lin, 2007), and step-by-step reasoning 
in two-step geometry proofs (Cheng & Lin, 2008). With the reading-and-colouring 
teaching approach entailing students using colours to show known and unknown 
information in proving tasks, teaching experiments with 9th grade students found 
that the approach helped students to see the necessary information for proving a 
statement. As a way of supporting geometry proof reasoning in slower students, 
Cheng and Lin (2008) developed a step-by-step reasoning strategy and found that 
this teaching strategy improved the students’ proving process. Research by Kuntze 
(2008) confirmed that writing about geometrical proving can foster “the competency 
of solving geometrical proof tasks” (p. 295).

Huang (2005) investigated how a sample of teachers in Hong Kong and Shanghai 
taught Pythagoras’ theorem. The findings showed both similarities and differences 
in terms of the approach to the justification of the theorem. Although teachers in 
both places emphasized the justification of the theorem by various activities, the 
following differences were noticeable: Hong Kong teachers were what they called 
“visual verification-orientated” while Shanghai teachers were “mathematical-proof-
orientated” (p. 166). Moreover, compared with Hong Kong teachers, Shanghai 
teachers made more effort to encourage students to speak about and construct their 
own proofs. Zaslavsky, Harel and Manaster (2006) also investigated the teaching of 
the Pythagoras theorem, in particular how examples were used and how this enabled 
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analysis of teacher mathematical and pedagogical knowledge that may support or 
inhibit student learning.

The role of the teacher is known to be crucial to students’ developing capabilities 
with geometric proving. Dimmel and Herbst (2014) found that teachers had different 
views of the appropriate level of detail in a student’s geometrical proof. Focused on 
classroom interaction, Miyakawa and Herbst’s (2007) study of classroom geometrical 
proving found differences between what they called “installing theorems” and 
“doing proofs”: in the former, “details may be excluded, and a theorem may be 
established without proof” while when ‘doing proofs’ the conclusion “cannot be 
used until proved” (p. 288).

In the same direction, Fuglestad and Goodchild (2009) examined teachers’ 
knowledge about proof and its necessity, concluding that some teachers do not 
appear certain about the nature and the necessity of a proof. Attempting to support 
teachers’ understanding of geometric reasoning and proof, Bayazit and Jakubowski 
(2008) proposed constructions with compass and straightedge, while De Bock 
and Greer (2008) proposed to pre-service teachers a challenging task (in this case, 
finding and proving which rectangles with sides of integral length have equal area 
and perimeter). Lei, Tso and Lu (2012) examined how reading comprehension of 
geometry proof might be influenced by worked-out examples. With data from 85 
grade 8 students who were novices at deductive proof in geometry, they found that 
lower-attaining students tended to overlook the overall logical structure of proof by 
only repeating the steps from worked-out examples and that these students failed to 
apply related knowledge in proving.

Brockmann-Behnsen and Rott (2014) reported on a long-term study conducted 
in four 8th grade classes. Two of these classes served as control groups, with the 
mathematics lessons of the other two classes frequently enriched by structured 
argumentation and the training in the use of heuristics. In the post-test, the treatment 
groups obtained significantly better results than the control groups (who had no 
special training in heuristics and argumentation strategies). While not a controlled 
trial, Fielding-Wells and Makar (2015) describe a teaching unit with a class of 10–11 
year-olds which included the task “Can a pyramid have a scalene face?” (p. 297). 
Through their analysis the researchers identified several benefits of argumentation 
for the learners.

STUDENTS’ GEOMETRIC KNOWLEDGE

Owens and Outhred (2006, p. 85) pointed to the impact of Piaget on earlier 
research on student’s knowledge about geometric figures. In subsequent research, 
evidence of the legacy has been much less. In contrast, the van Hiele model (ibid, 
pp. 86–89) continues to feature. More recent studies have employed various 
frameworks, including figure apprehension according to Duval (1999), and the 
notion of figural concept by Fischbein (1993). In addition, use of more general 
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frameworks includes Sfard’s (2008) commognition approach, as well as notions of 
embodiment (Gibbs, 2006).

The Piagetian Legacy and Use of the van Hiele Model

Examples of continuation of the Piagetian legacy in PME research include the study 
by Cullen et al. (2011) who used the Piagetian idea of the importance of comparison 
in measurement and Maier and Benz (2014) who used Piagetian notions of drawing 
skills in investigating how children aged between 4 and 6 drew different kinds 
of triangles. Examples of the use of the van Hiele model include research by, for 
example, Wu and Ma (2005), Wu and Ma (2006), Wu, Ma, Hsieh and Li (2007). 
Such studies of elementary school students confirm the outcomes of previous 
research that students tend to judge geometric figures by their appearance, with the 
circle the easiest and quadrilaterals the more difficult.

More recently, Guven and Okumus (2011) tested the van Hiele levels of 8th 
grade Turkish students together with their classification preferences (hierarchical or 
partitional) about relationships between some quadrilateral pairs. They found that 
“most of the students were at van Hiele level 2 before starting their high school 
education and the students generally chose partitional classification” (p. 473). For 
Kospentaris and Spyrou (2009), after examining data on the van Hiele levels of 
secondary school students, it was because of geometry teaching methods that such 
students barely surpass level 1. Patsiomitou and Emvalotis (2010) used the van Hiele 
levels in a study of the development of students’ geometrical thinking through a 
guided-reinvention process with DGS. They found that students “developed their 
geometrical thinking processes and applied skills, reaching a higher level of 
abstraction” (p. 39)

Apprehension of Geometric Figures

According to Duval’s (1999) theoretical framework, there are four different ways to 
organize and process visual aspects in geometric figures: perceptual apprehension 
(recognizing figures); sequential apprehension (perceiving their different parts); 
discursive apprehension (on the basis of statements, definitions, descriptions); 
and operative apprehension (modifying a figure or some of its element). A study 
by Elia, Gagatsis, Deliyianni, Monoyiou and Michael (2009) of various aspects of 
figure modification confirmed students’ tendency to apply part-whole modifications 
rather than modifications referring to the position or orientation of a figure. In later 
research (Deliyianni, Michael, Monoyiou, Gagatsis, & Elia, 2011), the researchers 
aimed at confirming a composite theoretical model concerning middle and high 
school students’ geometrical figure understanding. More recently, Kalogirou, Elia 
and Gagatsis (2013) investigated how two major components of spatial capability, 
that of visualization and mental rotation, might be related to geometrical figure 
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apprehension (perceptual and operative) as proposed by Duval (1999). Statistical 
analysis indicated a moderate though significant correlation between spatial 
capability and geometrical figure apprehension.

Sinclair and Kaur (2011) found that kindergarten children were able to 
“develop an understanding of symmetry that showed awareness of the properties 
of reflectional symmetry through the behaviour of dynamic images” (p. 193). For 
Sinclair, Moss and Jones (2010) the focus was children aged 5 to 7 trying to decide 
whether two lines on a DGS screen that they know continue (but cannot see all of 
the continuation) would intersect, or not. They report that, in tackling this question, 
the children engaged in “aspects of deductive argumentation” (p. 191). Kaur and 
Sinclair (2014) reported part of a longitudinal study of the development of young 
children’s geometric thinking (aged 7–8). They found that “during the teacher-led 
explorations and discussions with dynamic sketches, children’s routines moved from 
description of tool-based informal properties to formal properties” (p. 415), as well 
as from particular to more general discourse about what is a triangle.

Knowledge of Definitions and Inclusion Relations

A study by Ubuz (2006) of secondary school students’ definitions of polygons and 
quadrilaterals, and the ways these figures are presented in the textbooks, found that 
“figures (in textbooks) often provide an instantiation of a definition, not a general 
and rigorous proof” so that the students “focus on figural understanding to produce 
conceptual understanding” (p. 347).

The understanding of the inclusion relations between quadrilaterals has been the 
focus of a number of studies (Guven & Okumus 2011; Okazaki, 2009; Okazaki & 
Fujita, 2007; Silfverberg & Matsuo, 2008). Such studies confirmed that students’ 
difficulties in understanding the inclusion relations differ from grade to grade and 
can be related to tacit properties and significant prototype phenomena. In their 
study of how Japanese and Finnish students were able to apply class inclusion 
and disjunctive classification, Silfverberg and Matsuo (2008) found that about 
half of the students could identify the inclusion of squares into rectangles, and of 
rectangles into parallelograms. Okazaki and Fujita (2007), grounding their research 
on Hershkowitz’s (1990) theoretical frame of prototype phenomenon, obtained data 
from Japanese 9th graders and from Scottish pre-service primary teachers. They 
found that for Japanese students the prototype phenomenon appeared “strongly 
in squares and rectangles” and that such prototype images and implicit properties 
were “obstacles for the correct understanding of the rectangle/parallelogram and 
square/rectangle relations” (p. 47), while even though the pre-service teachers had a 
“relatively flexible images of parallelograms” the strongest prototype phenomenon 
appeared with squares.

The image of angles in a parallelogram or a rectangle appears to be an obstacle 
in understanding inclusion properties, as shown in the study by Ozakaki (2009). 
The simple identification of geometric figures does not necessarily allow students to 
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approach inclusion relations as they remain with the tacit properties that they have 
in mind.

Matsuo (2007) recorded the differences in students’ understanding of geometric 
quadrilaterals. The results revealed four ordered states in understanding relations: not 
distinguishing between two geometric figures; identifying both figures respectively; 
distinguishing or identifying figures based on their differences or similarities; and 
understanding the inclusion relation. Serow (2006) examined the development of 
triangle property relationships using the SOLO taxonomy (Biggs & Collis, 1982). 
The analysis revealed differences in the ways students understood the relationships 
among properties. As notted earlier, Haj-Yahya and Hershkowitz (2013) found 
that, when definitional statements about quadrilaterals were given verbally to 10th 
graders without any visual support, more students were able to identify and explain 
the inclusion relationships.

Identification of 2-D and 3-D Shapes

A number of studies have investigated the identification of shapes such as triangles 
through different grades (e.g. Horne & Watson, 2008), as well as the type of criteria 
that students use to identify geometric figures more generally (e.g. Sophocleous, 
Kalogirou, & Gagatsis, 2009). Such studies have confirmed that students develop 
the concept of shapes through experiences both inside and outside school and from 
holistic visual approaches to properties recognition. Horne and Watson (2008) 
tested students across seven consecutive grades on a task related to identification 
of triangles. While they found an improvement across grades 1 to 4, most students’ 
errors concerned the inclusion, rather than the exclusion, of triangles. Maier and 
Benz (2014) studied young children’s ideas of triangles by analysing their drawings. 
They found that children aged 3–11 mainly drew isosceles triangles (although the 
researchers were not sure whether the children were attempting to draw equilateral 
triangles with limited drawing skills). Moreover, they found that prototypical 
presentations were dominant not only for the first drawn triangle but also as varying 
triangles because “most children varied their triangles through area size” (p. 160).

The study by Sophocleous, Kalogirou and Gagatsis (2009) compared the criteria 
of figure recognition with solutions that 5th and 6th grade students proposed in 
creativity tasks with overlapping figures. Their results indicated that the more 
critical attributes of shapes the students could recognize, the better they performed 
in creativity tasks.

More recently, Arai (2015) investigated how instructional tasks change the ways 
first graders identify geometric figures. A questionnaire with instructional tasks was 
administrated to three groups of 69 students. In the first group the students have to 
find the number of sides and vertices of triangles, to draw figures and read definition 
of triangles, while in the second group they have only to find the number of sides and 
vertices of triangles and draw figures, and in the third group students read definition 
of triangles. While most of the students “used visual reasoning to identify triangles, 
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and were noticeable influenced by prototype examples”, there were signs that they 
could change their reasoning “after engaging in instructional tasks” (p. 55).

A number of studies have investigated students’ knowledge of 3-D shapes. Wu, 
Ma and Chen (2006) investigated students of different grades and found that higher 
grade students had more sophisticated representations of 3-D shapes. In a later study, 
Ma, Wu, Chen and Hsieh (2009) examined students’ drawings of solid cuboids and 
compared their results to those given by Mitchelmore (1978) two decades earlier. 
This indicated an improved distribution of the stages compared with that presented 
by Mitchelmore.

Nevertheless, research by Pittalis, Mousoulides and Christou (2009) has 
underlined that students have many difficulties in representing, identifying, or 
interpreting. With data from 40 students from 5th to 9th grade, the researchers 
identified four levels of sophistication in the representations: no proper drawings; 
coordination of front and side views; proper conventions of 3-D drawings with 
some errors; proper drawings.

Hatterman (2008) observed 15 university students, trained in 2-D DGEs (Euklid-
DynaGeo and Cabri 3D), while they worked in groups on Archimedes Geo3D 
and Cabri 3D. The results showed that experiences in 2D-environments appeared 
insufficient when students work in 3-D space. The students had problems in justifying 
simple facts in 3D-environments and benefitted from access to 3-D models to solve 
given tasks. In their study, Leung and Or (2009) investigated perspective dragging in 
Cabri 3D and found that this helped students to identify and reason about geometric 
properties of 3D objects.

Language Issues in the Development of Geometrical Thinking

In research on language issues in the development of geometrical thinking, Leung 
and Park (2009) found that common names in geometric and in everyday language 
both support and prevent students’ understanding of figures and their properties 
because the terms direct students to fix their attention on some special characteristics 
that are not always consistent with the definition of the figures. More recently, 
Ng (2014), as noted above, studied the “interplay between language, gestures, 
dragging and diagrams” (p. 290) in 12th grade bilingual learners’ mathematical 
communications about various aspects of Calculus through geometrical dynamic 
sketches using DGS. The findings suggested that “bilingual learners utilised a 
variety of resources, including language, gestures and visual mediators in their 
mathematical communication – with gestures taking on a prevalent role” (p. 295).

Summarizing, studies related to students’ geometric knowledge keep attracting 
the interest of research on the teaching and learning of geometry, with older or 
newer approaches related to identification of 2-D or 3-D geometric figures. As a 
significant number of relevant studies have been accumulated in this field, a careful 
and systematic record of the findings and subsequent conclusions related to students’ 
geometric knowledge might be imperative.
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TEACHERS’ GEOMETRIC KNOWLEDGE AND DEVELOPMENT

Teaching geometry well involves [the teacher] knowing how to recognise 
interesting geometrical problems and theorems, appreciating the history and 
cultural context of geometry, and understanding the many and varied uses to 
which geometry is put. (Jones, 2002, p. 122)

Given that the nature and extent of teachers’ knowledge affects the quality of their 
teaching (e.g. Ball & Bass, 2003), a number of studies have focused on examining 
pre-service and in-service teachers’ knowledge of geometry – and on ways of 
developing this knowledge.

Geometric Knowledge of Teachers

Fujita and Jones (2006) reported on the geometric knowledge of Scottish pre-service 
primary teachers and the ways that these pre-service teachers defined and classified 
quadrilaterals. Based on the ideas of concept definition and concept image introduced 
by Tall and Vinner (1981), and of figural concept initiated by Fischbein (1993), Fujita 
and Jones (p. 130) distinguished what they called the individuals’ “personal figural 
concept” (coming from personal experiences) from the “formal figural concept” 
(as defined in geometry). Almost 160 pre-service primary teachers in the first year 
of their studies were examined in questions related to quadrilateral properties, and 
124 pre-service teachers in the third year of their studies were examined about 
quadrilateral relationships. Analysis of the first group’s answers showed that there 
was a gap between figural concepts and definitions provided. Similarly, the analysis 
of the answers of the second group indicated a weak understanding of the hierarchical 
relationship of quadrilaterals.

For Tatsis and Moutsios-Rentzos (2013), their focus was the capability of pre-
service primary school teachers to interpret and evaluate verbal information related 
to 2-D geometrical objects. The researchers found, in contrast with their conjecture, 
that the pre-service teachers mostly showed a stronger positive evaluation of the 
geometrical descriptions, followed by weaker positive evaluations of the topological 
descriptions. These, say the researchers, were accompanied by “relatively negative 
evaluations for everyday descriptions” (p. 270).

While the above studies focus on pre-service elementary teachers, Silfverberg and 
Joutsenlahti (2014) studied pre-service elementary and secondary teachers’ notions 
of angles in a plane. They found that some of their respondents “interpreted an angle 
as a line consisting of two line segments, some consisting of two rays, and some as a 
region defined by these elements” (p. 190). What is more, interpretations differed as 
to “whether an angle continues outside the part shown in the drawing in the direction 
determined by the angle, or not” (ibid). Moore-Russo and Mudaly (2011) reported 
on a study of South African secondary school teachers’ knowledge of gradient 
(or slope). Based on data from nine free-response test items completed by 251 
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practicing teachers pursing qualifications to teach grades 10–12 mathematics, their 
findings suggested that understanding of gradient of these teachers varied greatly, 
with many of the teachers lacking “even a basic understanding of this important 
concept” (p. 241).

In a similar vein, research by Son (2006) investigated pre-service primary and 
secondary teachers’ conceptions of reflective symmetry and compared these with 
their teaching strategies. Based on the van Hiele model, the results showed that 
the pre-service teachers had a limited understanding of reflective symmetry and 
confused symmetry with rotation. Their deficiencies directed them to use procedural 
teaching approaches in their attempt to help students’ understanding of symmetry 
and symmetrical constructions. Comparable results in the study of Van der Sandt 
(2005) showed that when secondary pre-service teachers did not adequately control 
the geometric subject matter, their deficiencies had implications in their classroom 
teaching. Paksu (2009) found that pre-service elementary teachers’ self-efficacy in 
geometry was related to many factors such as their van Hiele geometric thinking 
level, their attitude towards geometry, and their attainment in geometry. Chiang 
and Stacey (2015) focused on in-service primary school teachers in Taiwan. In line 
with much existing research, they found the teachers lacked some basic geometric 
knowledge.

In a diagnostic test of the knowledge of both pre-service and in-service teachers 
about triangles, Alatorre and Saiz (2009) found both figural and conceptual 
misconceptions. These included the idea that the base of a triangle is necessarily 
horizontal (with the rest of the figure above it) and the height necessarily vertical 
and/or drawn from the highest point, the idea that triangles must necessarily be 
isosceles, that altitudes need to be internal, the idea that each triangle has only one 
base and one height, confusing the height with the median, the use of right-angled 
triangles terminology with non-right-angled ones, various misconceptions about the 
Pythagorean Theorem and its applications, and errors with the formula for the area 
of a triangle. Subsequently, Alatorre, Flores and Mendiola (2012) studied in-service 
primary teachers’ reasoning and argumentation about triangle inequality. Their 
findings suggested that reasoning and argumentation “are not part of many [primary] 
teachers’ professional practice” (p. 9).

Given the consistent findings of problems with teacher knowledge, more research 
could focus on how the geometrical knowledge of pre-service, and in-service, 
teachers could be improved. Existing PME research on this topic is addressed in the 
next section.

Teacher Development for Geometry Education

Various research studies have shown that the geometrical knowledge of pre-service, 
and in-service, teachers can be improved not only by the appropriate education (for 
instance, González & Guillén, 2008, proposed an Initial Competence Model for 
teachers for the teaching of geometric solids), but also by the use of technologies 
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such as dynamic geometry environments (e.g. Haja, 2005). In the study by Haja, 
pre-service secondary teachers were studied for their problem-solving capabilities 
while they were undertaking geometrical constructions using DGS. The researcher 
applied a “knowledge-in-action design that expected them to “…apply their content 
knowledge to understand the given problem, construct the dynamic figures, make 
conjectures, verify the conjectures, and solve similar problems” (p. 82). Using open-
ended tasks for which the pre-service teachers had to find a solution with the dynamic 
software, the evidence showed that they met the expectations of the knowledge in 
action design.

In a similar vein, Presmeg, Barrett and McCrone (2007) designed a course that 
included geometric constructions that the pre-service teachers could tackle both by 
using DGS and by traditional tools. These two different modes of representation 
of geometric concepts could, according to Duval’s (1999) framework, support the 
pre-service teachers’ constructions of generalized geometric knowledge. According 
to researchers’ approach, the property of DGS sketches to stay together when the 
mouse moves points or lines, and the distinction between variant and invariant 
properties, were the two concepts that were more related to the development by 
the pre-service teachers of geometric generalizations. Moreover, collaborative 
discussions and sharing meanings were amongst the main factors for participants’ 
accomplishments. Similarly, in a study conducted by Olvera, Guillén and Figueras 
(2008), the fostering of communities of practice of in-service primary teachers was 
found to improve their approaches in the teaching of solid geometry. Alqahtani and 
Powell (2015) studied teams of middle and high school in-service teachers during a 
semester-long professional development course in which the teachers participated in 
a collaborative online dynamic geometry environment. The researchers found that 
through this online dynamic geometry environment the teachers interacted to notice 
variances and invariances of objects and relations in geometrical figures and to solve 
open-ended geometry problems. For Morgan and Sack (2011) in their research with 
pre-service teachers, the van Hiele model remained “a useful framework to describe 
the evolving shape-building activities” (pp. 249–250).

Martignone’s (2011) research provides examples of tasks for teachers involving 
artefacts (such as ruler and compasses) and how teachers can succeed in implementing 
such tasks in their classrooms. Lavy and Shriki (2012) studied how the skills of 
pre-service secondary school mathematics teachers in evaluating geometrical proofs 
could be improved through peer assessment of each other’s proofs. The outcome 
was that the engagement of the pre-service teachers in peer assessment, both as 
assessors and as those being assessed, “contributed to the development of [their] 
assessment skills” (p. 41). By comparing the first and the second assessment tasks 
conducted by the pre-service teachers, the researchers found that the pre-service 
teachers developed their capabilities “to select a proper criteria list and assign a 
reasonable numerical weight to each criterion” (ibid).

Cirillo (2011) provides a case study of a beginning secondary school teacher 
working to improve the way of teaching geometrical proof and proving during 
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their first three years of teaching. Given that the beginning teacher had a strong 
mathematics background, the study illustrated how content knowledge “is not 
necessarily sufficient preparation to teach proof” (p. 247). The study by Hähkiöniemi 
(2011) provides an account of how an experienced teacher was given the opportunity 
to try a pre-planned unit for high school students on approximating the area under 
a curve that was enriched with DGS-based tasks and how this raised the teachers’ 
awareness of different teaching methods as well as the benefits and challenges of 
using such methods.

In general, the studies on teachers’ geometric knowledge, and their pre-service and 
in-service education, indicate that attention needs to be given to how to build teachers’ 
understanding of common 2-D and 3-D objects (e.g. triangles, quadrilaterals, or 
angles) with consequent implications for their teaching. In investigating approaches 
that improve teachers’ geometrical education, relevant research confirms the 
effectiveness of general approaches (e.g. community in practice or peer assessment) 
but also the use of technological tools in geometric problem solving or proving.

TEACHING GEOMETRY AND GEOMETRIC TASKS

Tasks shape the learners’ experience of the subject and their understanding of 
the nature of mathematical activity. (Watson & Ohtani, 2015, p. 3)

Teaching Interventions

Of the various studies of geometry teaching, some entail genetic approaches 
involving historical, logical and epistemological, psychological and socio-cultural 
aspects (e.g. Safuanov, 2007) and some feature ethno-mathematical and humanist 
approaches valuing cultural and scientific heritage (e.g. Chorney, 2013; Gooya & 
Karamian, 2005), as well as the use of art work as a creative tool to approach 
geometric figures (Pakang & Kongtaln, 2007). On top of this, there have been 
studies related to the teachers’ choices regarding the use of diagrams and examples 
(Zodik & Zaslavsky, 2007) and studies emphasizing algebraic approaches to solving 
geometrical problems (Dindyal, 2007). How students make sense of the ‘figured 
world’ of the geometry classroom was explored by Aaron (2008), while Ding and 
Jones (2006) investigated geometry teaching at the lower secondary school level in 
Shanghai, China.

Gal, Lin and Ying (2006) observed five different 9th grade classes aiming at 
investigating the factors and class characteristics that influenced students’ low 
achievement. The findings suggested that the low achievers were provided with less 
learning opportunities. Similarly, Soares (2010) studied a 4th grade geometry class 
that was co-taught by two teachers with “different and complementary perspectives” 
(p. 201), one trying to encourage the students to solve challenging problems, and the 
other managing situations in which novel tasks are introduced. This combination of 
skills made for successful teaching. Both Hähkiöniemi (2011), as noted above, and 
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Hollebrands, Cayton and Boehm (2013) reported on the types of pivotal teaching 
moments, and related teacher actions, which can arise in a technology-intensive 
geometry classroom.

Geometric Tasks

For some studies, the design of geometric tasks was integral to the research. The 
research reported by Fujita, Jones and Kunimune (2010), Fujita, Jones and Miyazaki 
(2011), and Komatsu (2011), all relied on well-designed tasks. In Fujita, Jones and 
Kunimune (2010), the task was “how to construct the largest square within a given 
triangle ABC” (p. 12). The conclusion of the teaching experiment was that this task 
could be used to “encourage students’ mathematical arguments, reasoning and proof” 
(p. 15). In Fujita, Jones and Miyazaki (2011), the tasks were integral to the design 
of a “web-based proof learning support environment” (p. 353). In the tasks, learners 
tackled proof problems by dragging sides, angles and triangles to cells of the flow-
chart proof and the web-based system automatically transferred figural to symbolic 
elements so that the learners could concentrate on logical and structural aspects 
of proofs. The task included both ordinary proof problems such as prove the base 
angles of an isosceles triangles are equal (the researchers call these closed problems) 
and problems by which students construct different proofs by changing premises 
under certain given limitations (which the researchers called open problems). Each 
time the learners selected a next step in their flow-chart proof, the web-based system 
checked for any error via a database of possible next steps. If there was an error, the 
learners received feedback in accordance with the type of error.

The study by Komatsu (2011) utilised a task concerning a small triangle placed 
on top of a larger one and the change in length of two segments after rotation of 
one triangle around a common point. For the students, the task was deliberately 
ambiguous as they were unclear what the ‘two segments’ meant, but it was this 
ambiguity that made the task interesting as it resulted in the students. It was also 
the boundary case between example and counterexample that played a crucial role.

Aspinwall and Unal (2005) conducted a teaching experiment called geo-
arithmetic with pre-service secondary mathematics teachers. Their results confirmed 
that implementing a variety of different representational systems helped the pre-
service teachers to translate from one to another. Other studies have examined 
geometrical tasks involving toys, machines or other tools, the use of which appear 
to support problem-solving processes and advancements in understanding (e.g. the 
use of Bee-bots by Highfield, Mulligan, & Hedberg, 2008, mentioned above).

Using DGS, the dynamic manipulation of geometric objects by ‘dragging’ is 
commonly referred to as the ‘drag mode’ (Hölzl, 1996; Jones, 1996). This is when 
an object in an on-screen diagram is ‘dragged’, the diagram is modified yet all the 
geometric relations used in its construction are preserved. This function supports 
teaching tasks that provide different apprehensions to the viewing of geometric 
objects and support of dynamic representations that enrich internal thought of 
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students (Xu & Tso, 2009). A range of studies continues to explore the affordances 
of dynamic geometry ‘dragging’ environments. For example, Chan (2012) studied 
a university mathematics teacher who, while an accomplished mathematician, was 
unfamiliar with DGS. Chan found that initially the mathematician considered the 
software “a computational tool for the system of Euclid’s Elements” but while 
working on explorative tasks, the mathematician experienced “the powerfulness 
of dragging and developed a new understanding towards DGS” (p. 297). The 
affordance of dragging for geometrical problem solving was a feature of the 
research of Jacinto and Carreira (2013). Here, 14 year-olds tackling a problem 
involving a rectangular lawn and a triangular flowerbed used ‘dragging’ to check 
or verify their solution. Similarly, Leung and Or (2009), investigating perspective 
dragging in Cabri 3D, showed that this function helps students’ identification and 
reasoning about geometric properties of 3D objects.

Certainly, dragging in 3D software presents some differences compared to the 
manipulation of 3D physical models. Hattermann (2008, 2010) focused on the drag-
mode of the 3D digital environment and underlined its importance in explaining that 
it transforms the static figures of geometry to dynamic objects. However, the use of 
this function is not so apparent to students who need encouragement to implement it 
and appreciate its advantages. In their study with 13–14 year old students, Lee and 
Leung (2012) confirm that, while generating more examples is the central affordance 
of dragging, generating such examples becomes possible for the student “only when 
prompted” (p. 66). Building on this and related studies, Leung (2014) proposes four 
principles for task design in dynamic geometry, while Sollervall (2012) reports on 
the design of spatial coordination tasks that make use of mobile technologies.

In a different vein, Martignone and Antonini (2009) introduced pantographs 
for geometrical transformations. They presented a classification scheme efficient 
to analyse the interaction between a subject and the machine, and the processes 
involved. Subsequently, Martignone (2011) presented and discussed some examples 
of tasks for teachers that involved geometrical ‘machines’; that is “reconstructions 
of tools belonging to the historical phenomenology of mathematics from ancient 
Greece to 20th century” (p. 193) such as curve drawers and pantographs. The 
teachers tackled tasks such as constructing an isosceles triangle and then later they 
adapted the tasks for their classroom.

Wu, Wong, Cheng and Lien (2006) designed a learning environment named 
InduLab that gave 4th grade students the possibility to discover the rules of triangle 
construction and thus approach the angle sum property. Lew and Yoon (2013) 
used a developing affordance of certain software to link geometry and algebra and 
reported how “constructing the solutions of quadratic equation offers an alternative 
approach that gives students an opportunity to connect algebra (quadratic equation) 
and geometry (construction)” (p. 255). Their study showed how understanding of 
the mathematics of geometric similarity connects quadratic equation with geometric 
construction.
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Finally, Choy, Lee and Mizzi (2015) studied how textbooks support the teaching 
of the topic of gradient in Germany, Singapore, and South Korea. By examining 
textbooks in terms of “contextual (educational factors), content, and instructional 
variables” (p. 169), they concluded that the textbook ‘signature’ of each country is 
‘unique’.

Summarizing, several studies have, to date, focused explicitly on geometric 
task design and entailed the use of technology. As the teaching of geometry is a 
multidimensional challenge, there is scope for more research on geometry teaching 
and tasks.

CLOSING REMARKS

Research on spatial reasoning has analysed different components, including 
perspective taking, rotation and mental transformation. Findings emerging from 
these investigations, mainly from tests or task-based interviews, both on younger 
and older ages, have concerned students’ and teachers’ capabilities in spatial 
understanding and processing. These capabilities improve over the age-range, but 
some individuals still retain vague conceptions of dimensions or space, and thus face 
spatial situations (even maps) with strategies that tend to be rather non-elaborated. 
These shortcomings are attributed to the lack of appropriate education and are 
generally improved by teaching proposals, especially when appropriate tasks and 
technological tools are implemented.

In terms of geometrical visualisation and visual thinking, there is evidence that, 
even though the role of visual process is particularly important in the learning 
and teaching of space and geometry, the number of investigations related to the 
visualizing capabilities of either students or teachers, or proposals for teaching 
interventions, has been somewhat limited. One reason for this could be the 
greater range of studies conducted in earlier years. Nevertheless, there remains a 
considerable interest in investigating visual processes in geometrical proving and 
problem solving, as well as a special concern about the use of gesture as an aspect 
of visualization.

In contrast to the somewhat limited development of research on geometrical 
visualisation and visual thinking, research continues to search for ways to improve 
the learning and teaching of geometric measurement. Using tests and interviews to 
examine conceptions about measurement of length, area or volume both on young 
and older students, research indicates low achievement and confusions regarding 
different aspects such as units, partition or iteration. Appropriate teaching proposals 
and relevant activities appear to improve measurement understanding.

Research into the teaching and learning of geometrical reasoning and proving 
continues apace, spurred by the increasing availability and sophistication of computer 
software. Studies with tests or interviews, mainly on secondary students, are 
attempting to connect proving processes to other capabilities or social practices and 
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to identify predictors of proving skill. There is a special research interest in teaching 
proposals or use of relevant software with encouraging results regarding students’ 
development in argumentation, generalization and proving. However, these results 
are only parts of a wide field of investigation. Constituting an important component 
of mathematical activity, geometric reasoning and proving requires further research 
in several under-researched issues.

Studies of students’ geometric knowledge continue to form a main thrust in 
research on the teaching and learning of geometry, mainly based on the van Hiele 
model, Duval’s figure apprehension framework, or other approaches related to 
identification of 2-D or 3-D geometric figures. Such research focuses on many of 
the key geometric ideas in the curriculum, and attempt to find connections with 
other mathematical issues (like spatial reasoning, visualization, proving or use of 
language). A systemization of the results in this field might be needed.

Paralleling the studies of students’ geometric knowledge are studies of teachers’ 
geometric knowledge and studies of teacher development for geometry education, 
indicating important figural and conceptual misunderstandings. Based on the same 
frameworks as with students, researching teachers’ knowledge across different 
geometric ideas mainly indicates low understanding of geometry subject matter. 
This fact raises the need for an improvement of teachers’ education and attracts 
the interest of several studies with proposals including relevant tasks, geometric 
software or teaching approaches.

Another rich vein of research in geometry education is that focusing on the 
teaching of geometry and the design and use of classroom tasks, especially the use of 
technology. Even so, research with proposals for appropriate teaching tasks remains 
somewhat limited and would benefit from further systematic investigation.

Some topics of research are under-represented. For example, there seems 
limited research explicitly on the topics of congruency and similarity, and little on 
transformation geometry. Research on analytic/coordinate geometry is also limited, 
as is research on vector geometry. On the positive side, research in geometry 
education is embracing the use of more recent discursive, embodied and eco-cultural 
perspectives, and is also employing new methods such as eye-tracking.

As research develops further, the affordance of digital technologies is enriching 
approaches to geometric and spatial teaching and learning by providing new ways of 
apprehension and representation, new manipulation and processes, wider and deeper 
conceptual understanding and linking of different meanings and treatments.

In general, results concerning the better understanding of how space and geometry 
are comprehended by students but also related to the development of effective 
teaching approaches, give opportunities for an enhanced access to relevant concepts 
and procedures. Moreover, the improvement of teachers’ geometrical knowledge as 
well as their awareness of appropriate teaching methods, including the use of digital 
technology, develops the overall image. As mentioned previously, throughout the 
research effort, the systematization of findings and methods continues to be of great 
importance.
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LEONOR SANTOS AND JINFA CAI

5. CURRICULUM AND ASSESSMENT

INTRODUCTION

Curriculum and assessment have not been popular themes in PME conferences and 
proceedings. In the first Handbook of Research on the Psychology of Mathematics 
Education (Gutiérrez & Boero, 2006), there was neither a chapter on curriculum 
nor on assessment. This is very understandable given that PME has traditionally 
been focused on the “psychology of mathematics education.” Therefore, most of the 
chapters in the first handbook involved cognitive aspects. In recent years, however, 
there has been an increased number of PME presentations and papers on both 
curriculum and assessment. This phenomenon shows the wider recognition of the 
importance of curriculum and assessment in studying the psychology of mathematics 
education. In fact, researchers have recognized curriculum and assessment as an 
integral part of research related to the psychology of mathematics education.

Searching the major publications in mathematics education, we found no 
chapter entitled “curriculum and assessment.” Although curriculum and assessment 
are related, there seems to be a distance between the two. How, then, can we 
conceptualize a chapter on curriculum and assessment? We first conceptualize 
the chapter by viewing assessment as the link between the implemented and the 
attained curriculum. There is a broad acceptance of the conception of curriculum 
as having three levels: Intended curriculum, implemented curriculum, and attained 
curriculum (Husen, 1967). We have therefore tried to conceptualize the connections 
between curriculum and assessment in these three levels (Cai, 2014). After we 
present this conceptualization, the chapter will discuss curriculum and assessment 
in the following sections: Assessment as a way to analyse the intended curriculum, 
assessment as a means to implement the curriculum, and assessment as a validation 
of the attained curriculum. Because of the critical roles of teachers, we also include 
a section on teachers’ knowledge of curriculum and assessment. In each section, we 
have tried to point out the methodological issues and possible future directions of 
research. We conclude the chapter by summarizing the major aspects that emerged 
from the analysis presented.

ASSESSMENT AS THE LINK BETWEEN IMPLEMENTED AND 
ATTAINED CURRICULUM

There is no consensus about the actual definition of curriculum. In this chapter, 
we use the term in a broad sense, following Cai and Howson (2013) from two 
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perspectives. The first is that curriculum can be discussed from different levels. The 
International Association for the Evaluation of Educational Achievement (IEA)’s 
First International Mathematics Study (FIMS) (Husen, 1967) distinguished between 
three levels of curriculum (intended, implemented, and attained). The intended 
curriculum refers to the formal documents that set system-level expectations for 
the learning of mathematics. These usually include goals and expectations set for 
the educational system along with textbooks, official syllabi, and/or curriculum 
standards. The implemented curriculum refers to school and classroom processes 
for teaching and learning mathematics as interpreted and implemented by the 
teachers according to their experience and beliefs for particular classes. Thus, the 
implemented curriculum deals with the classroom level. The classroom is central 
to students’ learning since students acquire much of their knowledge and form 
their attitudes from classroom instruction. Regardless of how well a curriculum is 
designed, it has little value outside of its implementation in classrooms. Finally, the 
attained curriculum refers to what is learned by students and is manifested in their 
achievement and attitudes. It exists at the level of the student, and deals with the 
aspects of the intended curriculum that are taught by teachers and actually learned 
by students.

The second is that curriculum can be used both as a product and a process. A 
curriculum is a product: A set of instructional guidelines and materials for students’ 
acquisition of certain culturally-valued knowledge and skills. A curriculum can 
also be viewed as a process. In this sense the curriculum is not a physical thing, 
like textbooks, but rather the interaction of teachers, students and knowledge. In 
this view, teachers are an integral part of the curriculum constructed and enacted 
in classrooms (Cai & Howson, 2013). Thus, it is natural for us to discuss teachers’ 
knowledge related to curriculum and assessment.

Figure 1 illustrates our conceptualization about curriculum and assessment. For 
the implemented curriculum, our focus will be on formative assessment, which we 
will discuss in the section on assessment as a means to implement the curriculum. 
To gain access to the attained curriculum, it is possible to use summative assessment 
of students’ mathematics learning, taking into consideration the implemented 
curriculum. This will be considered in the section on assessment as validation of the 
attained curriculum. As both the implemented and attained curricula are built on the 
intended curriculum, we also discuss assessment as a way to analyse the intended 
curriculum. Finally, teachers’ knowledge of curriculum and assessment could be 
about formative assessment or summative assessment, as well as the implemented 
or attained curriculum.

In developing this chapter, we mainly used the PME Proceedings from 2005 to 
2015. Because the short oral and poster presentations have only one-page summaries 
in the PME proceedings, we faced a challenge in reviewing those studies. Thus, we 
have mainly relied on the PME research reports for this chapter. To help us discuss 
issues related to curriculum and instruction, we also refer to other relevant work 
whenever it is appropriate.
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Figure 1. Relations between curriculum and assessment

ASSESSMENT AS A WAY TO ANALYSE THE INTENDED CURRICULUM

In the field of mathematics education, the analysis of intended curriculum has 
long been accepted as a line of scholarly inquiry (e.g., Cai & Cirillo, 2014; Fuson, 
Stigler, & Bartsch, 1988; Hamann & Ashcraft, 1986), and a number of researchers 
have published findings purely based on curriculum analysis in respected journals 
in the area. However, it is only in recent years that a few researchers have started to 
present studies based on their analysis of intended curriculum at PME conferences. 
Some researchers have directly analysed the intended curriculum for certain topics 
to examine the kinds of learning opportunities provided to students. For example, 
Jiang and Cai (2014) analysed problem-posing tasks in Chinese and U.S. elementary 
mathematics textbooks. In the past several decades, there have been efforts around 
the world to incorporate problem posing into school mathematics at different 
educational levels (e.g., Cai, Hwang, Jiang, & Silber, 2015; Singer, Ellerton, & Cai, 
2015). If problem-posing activities are to play a more central role in classrooms, 
they must be more prominently represented in curricula. Similarly, if teachers are 
to engage students in problem posing in the classroom, they must have sources for 
problem-posing activities. The education reform both in China and the U.S. has 
recommended that problem-posing activities be included in mathematics curricula. 
By analysing problem-posing tasks in textbooks, Jiang and Cai (2014) observed 
how reform ideas were reflected in the mathematics curriculum, particularly in the 
increasing prominence of problem-posing tasks in textbooks. It would appear that 
curriculum reform has moved problem-posing tasks into greater prominence, but a 
great effort is still needed to make problem posing a reality in both curriculum and 
instruction. In fact, the analysis showed that even in the so-called reform textbooks, 
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the proportion of problem-posing tasks was very small (about 3%). Moreover, most 
of the problem-posing tasks were embedded in the content strand of number and 
operations.

In longitudinally investigating the effect of middle school mathematical curricula 
on students’ learning in the United States, Cai and his colleagues first analysed 
two types of middle school curricula in their LieCal Project (Cai, Nie, & Moyer, 
2010; Cai, Moyer, & Wang, 2013a). The first type of middle school curriculum is 
called Connected Mathematics Project (CMP). The CMP curriculum is one of the 
Standards-based middle school curricula in the United States, designed to build 
students’ understanding of important mathematics through explorations of real-
world situations and problems. Students using the CMP curriculum are guided to 
investigate important mathematical ideas and develop robust ways of thinking as they 
try to make sense of and resolve problems based on real-world situations. Through 
exploring interesting mathematical situations, reflecting on solution methods, 
examining why the methods work, comparing methods, and relating methods to 
those used in previous situations, students build deep understanding of mathematical 
concepts and related procedures. The LieCal Project was designed to longitudinally 
investigate the ways and circumstances under which CMP and more traditional 
(non-CMP) middle school mathematics curricula could or could not enhance student 
learning in algebra as well as the characteristics of the curricula that led to student 
achievement gains. The project addressed a number of research questions, one of 
which is related to the intended curriculum: What are the differences between the 
intended treatment of algebra in the CMP curriculum and in the non-CMP curricula?

Cai and his colleagues (Cai et al., 2013a; Cai et al., 2010; Nie, Cai, & Moyer, 
2009) found that the CMP curriculum takes a so-called functional approach to the 
introduction of algebraic concepts in the teaching of algebra, whereas the non-
CMP curricula take a structural approach. The functional approach emphasizes 
the important ideas of change and variation in situations. It also emphasizes the 
representation of relationships between variables. In contrast, the structural approach 
avoids contextual problems in order to concentrate on developing the abilities to 
generalize, work abstractly with symbols, and follow procedures in a systematic 
way. In particular, CMP characterizes a variable as a quantity that changes or varies. 
In contrast, the non-CMP curricula define a variable as a symbol (or letter) used to 
represent a number. Variables are treated predominantly as placeholders and are used 
to represent unknowns in expressions and equations. In CMP, equations are a natural 
extension of the development of the concept of variable as a changeable quantity 
used to represent relationships. In the non-CMP curricula, the definition of a variable 
as a symbol develops naturally into the use of context-free equations with the 
emphasis on procedures for solving equations. To illustrate the functional approach 
in the CMP curriculum and the structural approach in the non-CMP curricula, all 
problems involving linear equations in the curricula were classified into three 
categories: (1) One equation with one variable, e.g., 2x + 3 = 5; (2) One equation 
with two variables, e.g., y = 6x + 7; and (3) Two equations with two variables, 



CURRICULUM AND ASSESSMENT

157

e.g., the system of equations y = 2x + 1 and y = 8x + 9. In the CMP curriculum, over 
90% of the problems involve one equation with two variables, but nearly 90% of 
the problems in the non-CMP curricula involve one equation and one variable. This 
finding confirms the functional approach to the introduction of algebraic concepts 
in the CMP curriculum, whereas the non-CMP curricula take a structural approach.

The analysis of intended curriculum as a line of scholarly inquiry is often the 
domain of researchers. However, Lee (2006) investigated how preservice teachers 
analysed mathematics textbooks in Korea. Thirty-four preservice teachers from Korea 
participated in the three-hour lecture and discussion for 15 weeks. These teachers 
were exposed to an existing framework for textbook analysis and, in particular, they 
were asked to evaluate two series of textbooks using the following seven categories 
from Kulm, Morris and Grier (2000): (1) Identifying Sense of Purpose, (2) Building 
on Student Ideas about Mathematics, (3) Engaging Students in Mathematics, (4) 
Developing Mathematical Ideas, (5) Promoting Student Thinking about Mathematics, 
(6) Assessing Student Progress in Mathematics, and (7) Enhancing the Mathematics 
Learning Environment. Teachers were asked to rate the textbooks High, Medium 
or Low in each category using scores of 3, 2, or 1, respectively. After the analysis, 
the preservice teachers were also asked to try reconstructing the textbooks based 
on the results of the evaluation and analysis. Lee (2006) found that the preservice 
teachers rated the textbooks quite low on the categories of ‘Building on Student 
Ideas about Mathematics,’ ‘Engaging Students in Mathematics,’ and ‘Enhancing the 
Mathematics Learning Environment’ (close to 1). As for ‘Developing Mathematical 
Ideas’ and ‘Assessing Student Progress in Mathematics,’ the preservice teachers 
rated the textbooks relatively high (about 2). Perhaps the most exciting finding from 
Lee (2006) was that participating in such textbook analysis is an effective way to 
learn and understand curriculum materials and then grow as an effective teacher. 
This type of curriculum analysis can play an important role in shifting from a passive 
curriculum user to an active curriculum developer. There have been similar findings 
from other studies suggesting that engaging curriculum analysis could increase 
teachers’ curriculum knowledge (Ariav, 1991).

There has been little discussion about methodological issues when analysing 
the intended curriculum. Some researchers have recently begun to discuss 
methodological issues (Cai & Cirillo, 2014; Stylianides, 2014). For example, Cai 
and Cirillo (2014) raised several fundamental questions to consider when engaging 
in research on intended curriculum: (1) How many textbooks should we analyse? 
(2) Which textbook(s) should we analyse? (3) What text in the textbook(s) should 
we analyse? The exposition? The exercises? (4) How much of that text should we 
analyse? (5) How should we analyse it (i.e., what framework will we use to conduct 
our analysis)? and (6) What research questions should guide our analysis? For 
additional discussion about methodological issues with respect to the analysis of the 
intended curriculum, please see Lloyd, Cai and Tarr (in press).

In summary, the analysis of the intended curriculum has been widely accepted as 
a scholarly activity aimed at understanding students’ learning opportunities. Guiding 
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teachers to analyse intended curriculum can help them to be both curriculum users 
and curriculum developers. There is a need for the field of mathematics education 
to systematically consider the methodological issues with respect to the analysis of 
the intended curriculum.

ASSESSMENT AS A MEANS TO IMPLEMENT THE CURRICULUM

When we consider assessment strategies to enhance learning and consequently to 
attain the mathematics curriculum, three main aspects have to be considered: The 
definition and the nature of adequate settings that permit the successful deployment 
of such strategies, the characteristics of the strategies themselves, and finally the 
effectiveness of such strategies for mathematics learning.

Conditions of Assessment for Learning

As assessment for learning happens in the daily life of the classroom, some conditions 
have to be guaranteed to create an adequate environment for using an assessment that 
contributes to implementing the curriculum. Although we recognize the complexity 
of the educational environment, we highlight two particular conditions: (i) The 
way errors are considered by the teacher and the students and (ii) the knowledge 
of assessment criteria. The culture of error determines the students’ confidence in 
sharing their reasoning and mathematical processes. The assessment criteria permit 
teachers to be conscious of what they do in their teaching practices and students to 
understand what is missing, so that they may close the gap between what they have 
done and what they are expected to do.

Culture of error. Errors made by students, revealed throughout the assessment 
process, are a familiar phenomenon to any mathematics teacher. They are present 
in the everyday life of the classroom and come through oral or written productions 
of students in learning situations. However, the way teachers and students face an 
error is decisive for the type of learning environment that is built in the mathematics 
classroom. From the perspective of assessment as a measure, the error is seen as an 
evil to eradicate and assumes an accountant function (Santos, 2002). Its causes are 
usually associated with the student. From the perspective of assessment for learning, 
error is seen as natural and inherent to the learning process (only one who is learning 
errs) and constitutes a fundamental source to access the different types of students’ 
reasoning. The reasons for error will now be centered around the curriculum. 
The error is taken as an indicator of the degree of difficulty in the construction or 
ownership of a certain concept, or in the way it was approached and worked. It is 
an indicator of the need for educational intervention that requires adaptation. Taking 
these assumptions as a starting point, students’ errors or misconceptions may be 
analysed using three perspectives: (i) As a curriculum support; (ii) the way teachers 
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face and use the error in their teaching processes; and (iii) possible benefits for 
mathematics learning when students reflect on their own errors.

To use errors as a curriculum support, it is necessary to know the level of difficulty 
of the different mathematics topics for students’ learning. Based on a sample of 
8,829 children, Davis, Pampaka, Williams and Wo (2006) scaled the item difficulties 
of data-handling and statistics items for the UK national curriculum for ages 7 to 
14 and identified errors on the same scale. They developed a five level hierarchy 
of item difficulty, using three dimensions: Cognitive load, arithmetic demand, and 
prototyping. For the data-handling problems used, “prototyping errors were most 
frequent at the lower end of the difficulty scale than those of cognitive demand” 
(p. 407), although the three dimensions considered for explaining the reasons for 
error were identified at all ability levels.

Chung (2007), focusing on the concept of time, identified 24 types of 
misconceptions in a national sample of 1,100 schools (9- to 12-year-old students) 
in Taiwan. “The more distance moved, the longer time spent” and “when the clock 
stops moving, the time stops as well” (p. 210) were the stronger misconceptions 
found in the study. Doig, Williams, Wo and Pampaka (2006) used a national 
representative sample involving a total of 14,000 students from schools in England 
and Wales to create a developmental map of students’ understanding and skills about 
time. According to their report, although the students involved were exposed to a 
particular curriculum (that used in the UK), the map may be used as a diagnostic 
assessment tool, providing a description of students’ development concerning the 
concept of time.

Knowing students’ difficulties in the learning process of any mathematics topic 
is important to support teachers’ work. However, several conditions are needed for 
teachers to use this knowledge profitably. First of all, it is necessary to pay attention to 
how teachers perceive error and how they deal with it in the mathematics classroom. 
Studying 137 German in-service secondary teachers, Kuntze (2009) concluded that 
teachers held a low behaviorist and a rather constructivist view about the role of 
errors in mathematics learning. Moreover, most of the teachers had a positive view 
of the importance of learning by errors.

In Taiwan, Leu and Wu (2005) developed a three-year case study of one teacher, 
Ms. Lin. As time passed, this teacher seemed to change her perception of the use of 
errors for learning – from the perception that error was an indicator of failure and the 
role of the teacher is to ignore it, to the recognition that discussing students’ errors 
may help them to clarify and reflect. Nevertheless, this change was conditioned by 
extrinsic factors, such as time constraints and/or pressure for students’ high score 
attainment.

Secondly, teachers need to skillfully use the errors in the classroom to implement 
the intended curriculum. Focusing on the subtraction algorithm, the division 
algorithm, fraction addition, and the relationship between area and perimeter, 
Chick and Baker (2005) aimed to identify which types of answers (procedural or 
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conceptual) nine Australian teachers of grade 5 or 6 gave to their students. The 
authors concluded that the mathematical topic and the nature of the items might be 
related to the emphasis on procedural and/or conceptual explanations.

Finally, Heemsoth and Heinze (2014) highlighted the benefit that students may 
gain by reflecting on their own errors in fraction problems. Participants in the study 
included 174 German students in seventh and eighth grade. Heemsoth and Heinze 
(2014) provided evidence that procedural knowledge was enhanced when students 
reflected on the rationales behind their errors when compared with those who 
reflected only on the corresponding correct solutions.

The studies presented reinforce the importance of the way the error is faced, by 
students and teachers, as well as the need to have a deep understanding of the reasons 
underlying the students’ errors. The perceptions and knowledge about errors allow 
teachers to orient their teaching, foster a deep understanding of the curriculum, and 
develop meaningful learning of mathematics.

Assessment criteria. Assessment criteria are statements that tell us what aspect of 
responses is important for students to solve mathematical problems, at a given time. 
They are lenses with which it is possible to analyze students’ work. In assessment 
for learning, assessment criteria are elements of communication. The use of 
assessment criteria depends on the context and on the learning objectives stated in 
a certain moment. It is “a working tool, subject to improvements, adjustable” (Vial, 
2012, p. 277).

As students better understand what is expected from them, they are predisposed 
to achieve greater learning. Pinto and Santos (2013) reviewed two Portuguese 
studies including two classes (first and sixth grade) working with problem solving 
and developing mathematical reasoning, respectively. The results showed that 
both group of students used and reshaped assessment criteria in a progressive way, 
being progressively able to improve their learning. These findings show that the 
assessment criteria can be an important resource for mathematics learning, despite 
a student’s age.

The appropriation of assessment criteria by students is essential to the learning 
process (Black & Wiliam, 1998). Nevertheless, it is not easy for students to develop 
a deep understanding of the assessment criteria, as evidenced in a study carried out 
in Portugal by Santos and Gomes (2006) This large study involved a seventh grade 
class, and included the case of a student named Vanda. Data collection consisted of 
observations of 23 lessons, interviews with students, and document analysis of the 
students’ written reports. Students were asked to write reports from mathematical 
tasks. At the beginning, Vanda is directed by an impression she creates from her 
previous assessment school experience, based on self-imposed standards. Self-
imposed standards mediated her actions towards the criteria and the activity under 
development. From the teacher’s continuous investment in students’ appropriation 
of criteria, the relationship between assessment criteria and self-imposed standards 
changed, as reflected in Vanda’s mathematical activity.
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The appropriation of the assessment criteria by the students demands a committed 
investment by the teacher. It is not enough that teachers state the criteria, it is also 
necessary to negotiate with students and to work with them in a continuous way, 
allowing the ownership of the criteria by the students. However, those demands may 
constitute new teaching and assessment practices, which may create a new set of 
difficulties. But teachers’ reflection, enhanced by a collaborative work setting, helps 
mathematics teachers to perform the role necessary to support the appropriation of 
the assessment criteria by the students (Semana & Santos, 2011).

Similar to what was found concerning the students (Santos & Gomes, 2006), 
in the beginning of their work with assessment criteria, teachers may also use 
previous mathematics values and discourse. In Greece, Klothou and Sakonidis 
(2009) investigated the pedagogical discourse adopted by eight primary teachers 
with respect to the nature of mathematics as well as the learning, teaching, and 
assessment processes. From the 2-hour-long interviews the researchers conducted 
with the teachers, the results concerning one of the teachers, Nikitas, evidenced that 
he “utilizes an unofficial discourse, adopting, however, the values of the traditional 
pedagogic discourse” (Klothou & Sakonidis, 2009, p. 357). In the same vein, 
Monoyiou, Xistouri and Philippou (2006) used semi-structured interviews of 16 
teachers from Cyprus. Using students’ arguments from 236 students’ worksheets 
(fifth and sixth grades), they asked the teachers to mark the students’ arguments on 
a scale from 0 to 5. Apparently, the teachers’ appraisals were based on subjective 
criteria and differed greatly from one another. Similarly, Sakonidis and Klothou 
(2007) concluded that the teachers in their sample (553 primary teachers with 
different amounts of professional experience) used their own criteria, which in some 
cases did not allow them to offer diverse assessment judgments. Limited resources 
were used by teachers, namely related to their expectations of how mathematical 
knowledge should be communicated and their beliefs about the nature of mathematics 
(Sakonidis & Klothou, 2007; Klothou & Sakonidis, 2011).

Taking into account that the definition of assessment criteria may be a difficult 
task for teachers, based on the definition of a hypothetical learning trajectory (HTL), 
Siemon, Izard, Breed and Virgona (2006) identified and validated an integrated 
learning assessment framework for multiplicative thinking to help improve students’ 
learning in years 4 to 8. A range of rich tasks, including at least two extended tasks, 
were applied to 3,200 students; teachers in the researched school scored the students’ 
worksheets on the basis of the scoring rubrics provided. Finally, part of the previous 
group of students (1,500 students) was involved in an 18-month action research 
study that progressively explored a range of targeted teaching interventions aimed 
at scaffolding student learning in terms. Content analysis of items permitted “the 
identification of eight relatively discrete categories which described what students 
might be expected to be able to do if they scored within the corresponding band of 
item thresholds” (Siemon et al., 2006, p. 117).

In summary, clear specification and deep understanding of assessment criteria 
are challenging tasks for teachers and students. Self-imposed standards, that may 
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include beliefs about the nature of mathematics and mathematics learning, constitute 
possible obstacles, which make an adequate and helpful use of assessment criteria 
a difficult task. The appropriation of the assessment criteria by the students is a 
progressive process, but it contributes to the students’ knowledge of what is expected, 
namely in high quality writing (Santos & Semana, 2015).

Main Strategies of Assessment for Learning

Although it is possible to identify several strategies to develop assessment for 
learning practices in the mathematics classroom, we will highlight feedback and 
self-regulation. The first may be the responsibility of the teacher or the students. 
Although the second has to be developed by the student, the teacher nevertheless has 
a great responsibility to create favorable situations for its development.

Feedback. Black and Wiliam (1998), in their review of the literature on classroom 
formative assessment spanning the previous 15 years, showed that a large amount of 
research concerning feedback, mainly empirical studies, had already been developed. 
However, the effectiveness of feedback is a complex issue that depends on several 
factors. As Black and Wiliam concluded, it seems that “formative assessment is a 
static process of measuring the amount of knowledge currently possessed by the 
individual, and feeding this back to the individual in some way” (p. 52). Moreover, 
“it is the quality of feedback, not just the quantity of feedback that merits our closest 
attention” (Sadler, 1998, p. 84). These facts may explain the continuing interest in 
this topic.

There is no consensus on the definition of feedback. A broader definition 
is equivalent to information about the level of success of something. A second 
definition, with an explicit learning purpose, considers the information that allows 
one to identify the gap between what is already made and the reference level or 
the objective to be attained, and the attempt to change this gap in any way. A more 
restrictive definition is also used, in which something is only considered feedback 
when “it is used to alter the gap” (Sadler, 1989, p. 121). In other words, the first two 
definitions are centred on the type of feedback provided while the third one is centred 
on its effects. In this chapter we have taken the broader view of what constitutes 
feedback to permit us to include more information from the PME proceedings. The 
structure of this section will try to establish the relation between the effectiveness 
of feedback and: (i) The content of feedback; (ii) classroom factors; (iii) student 
dimensions; and (iv) mathematical context.

In the context of a Portuguese collaborative project, Santos and Pinto (2009) 
presented a meta-analysis of four studies developed along three school years by two 
mathematics teachers and four middle school classes with students aged from 12 to 
14 years old. The results indicated that an interrogative or mixed (both interrogative 
and affirmative) feedback that is contextualized by the task tends to be clearer to the 
students, helping them to improve. The interrogative form, however, has one risk. 
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Instead of helping students reflect on and reorient their reasoning, it may lead them 
to answer the question directly. On these occasions, the purpose of the interrogative 
feedback is lost. Short feedback comments seem to be more effective than long 
ones, helping students to focus on certain specific aspects of the task. The results 
also suggested the existence of a possible relationship between the length of the 
feedback and the nature of the mathematical task. This relation was the focus of 
another study carried out in the same collaborative project (Dias & Santos, 2010). 
Following the methodological design of case studies, four students from eighth 
grade were studied. Considering four different types of mathematical tasks, two open 
tasks (investigations and bibliographical inquiries), and two focus tasks (problems 
and tests), the authors found patterns that seemed to confirm the existence of that 
relationship. In particular, the most challenging mathematical tasks led the teacher 
to write longer comments. Open tasks tended to originate feedback focused on the 
content, but for focused tasks, the feedback seemed to focus on encouragement, 
positive reinforcement, and underlying mathematical aspects. This study was part of 
a broader one that involved 50 students aged 13 years old and aimed to understand 
the effectiveness of teacher written feedback related to the nature of the mathematical 
task and to the work method developed (Dias & Santos, 2009). The results showed 
that feedback given for worksheets of tasks such as problems and exploratory or 
investigative tasks seemed to be more efficient than feedback given for tasks that 
appealed strictly to knowledge of mathematical concepts. Also, the feedback given 
for worksheets of tasks solved in small groups seemed to enhance learning in a more 
significant way when compared to that for tasks solved individually.

These results alert us to the complexity of the teaching and learning setting. Several 
other factors are present and may explain why students react in different ways to 
the same learning situation. Students’ perceptions about feedback may include: (i) 
Feedback as a means to improve students’ understanding, so marking right or wrong 
makes no sense; (ii) feedback as playing a role in building or breaking a learner’s self-
confidence; and (iii) feedback as a way to access the teacher’s point of view (Bansilal, 
James, & Naidoo, 2009). When students’ understanding of what is requested from 
the task is not what the teacher intended it to be, this may naturally constitute a 
new difficulty for the effectiveness of feedback. Santos and Pinto (2009), in the 
meta-analysis referenced previously, highlighted different attitudes of the students 
related to their mathematical achievement. The students with lower achievement in 
mathematics revealed more difficulties in understanding feedback when it related 
to or used mathematical concepts, or referred to more abstract ideas. Students with 
high achievement in mathematics, when not understanding the feedback, tended to 
orally question the teacher in an attempt to gain new feedback, thus creating a new 
learning opportunity. In contrast, students with lower achievement in mathematics 
did not question their teachers, thereby missing a new opportunity to learn.

When using artifacts, feedback may play a recursive role that moves from 
the modification of the artifact, to the construction of a new interpretation of a 
mathematics concept (e.g., fractions) or of solving the problem, returning to the 
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modification of the artifact, and so on (Abtahi, 2014). The use by children of the 
feedback from a mathematical artifact depends on their initial idea about the task and 
the artifact. In the scope of a European project, Maffei, Sabena and Mariotti (2009) 
focused on the use of a Dynamic Digital Artefact, namely the feedback component 
(feedback-signs), in the learning of equivalence between algebraic expressions. 
Through continuous questioning, the teacher intended to facilitate the understanding 
of the meaning of the signs and the development of that understanding from a 
primary interpretation to a developed one. But, this evolution was not linear. The 
semiotic chain maintains a coexistence of both interpretations.

In summary, all the studies discussed concerned feedback provided by the teacher, 
although it is recognized that students’ feedback given to their peers may have a lot 
of potentialities (e.g., Sadler, 2010). One transversal message that emerges from 
these studies is that the effectiveness of feedback is not guaranteed, whatever its 
quality. Looking at feedback as a communication process, the great challenge is to 
assure that feedback is a dialogical process and not an action of sending a message 
(Nicol, 2010). In a dialogical process, students receive external feedback and then 
adapt and integrate this information internally.

Self-regulation. Taking a progressive perspective on education, it is assumed 
that the construction of learning requires an active role by students throughout the 
construction process, including the assessment. In particular, when students are 
responsible for assessing their own learning process, with the main aim being to 
modify the current state of affairs and improve their achievement, we speak about 
the process as self-regulation. Self-regulation is an activity essential for effective 
learning (Allal, 2007).

The self-regulation process may consist of different components. There is, 
however, a certain consensus on the key role of cognition, metacognition, and 
emotions in this process. Panaoura and Panaoura (2006) developed a study in Cyprus 
that had as its main objective the exploration of the impact of processing efficiency 
and working memory on metacognitive processes with respect to mathematics, and 
to explore whether the interrelations between these processes tend to change with 
development. Participants in this study included 126 pupils who were 8 to 11 years old. 
The results provided evidence that “processing efficiency had a coordinator role on the 
growth of mathematical performance, while self-image, as a specific metacognitive 
ability, depended mainly on the previous working memory ability” (Panaoura & 
Panaoura, 2006, p. 319) and partially on recent mathematical performance.

In mathematics education, problem solving occupies a prominent place and it 
is therefore not surprising that the majority of the studies over the last decade of 
PME proceedings that approach self-regulation established relations with problem 
solving. That was the case for Marcou and Philippou (2005), who aimed to study 
the relationship between motivational beliefs and self-regulatory strategies in 
solving mathematical problems and in students’ performance in problem solving. 
They considered self-efficacy beliefs, task-value beliefs, and goal orientations as 
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characterizing motivational beliefs, and cognitive and metacognitive as components 
of self-regulatory strategies as well as volitional strategies. The study involved 219 
Cypriot students from the fifth and sixth grades. They concluded that students who 
tend to use self-regulatory strategies while solving a mathematical problem are more 
likely to have increased motivational beliefs, and vice versa.

Aiming to better understand the relationship between self-regulation and problem 
solving, Marcou and Lerman (2006) proposed a model that combined the theory of 
Self-Regulated Learning (SRL), namely the Zimmerman model (e.g., Zimmerman, 
2000), with Mathematical Problem Solving (MPS). To check and validate the 
mapping of their model, the authors conducted two studies. The first one was 
carried out in the UK and involved five students from fourth to sixth grade. Students 
were asked to solve at least two of the three problems posed, to write their work in 
detail, and to think aloud. Students chose to work in a group. Based on the results, 
an improvement of the initial version of the model was made. The second study 
involved Cypriot students and five teachers of year 4, 5, and 6. Teachers were asked 
to implement the theory and the model in their classrooms during three lessons 
within two months. Clinical interviews were added due to the difficulties the young 
children had in making their cognitive and metacognitive ability explicit. Although 
there were some very positive indications of the suitability of the model in the 
second study, due to the short period of time of the study, the authors concluded that 
it was not possible to make final conclusions concerning the impact and efficiency 
of the model.

Whatever model we use to access and relate students’ problem solving and self-
regulation capacities, these capacities have to be developed. The role of the teacher 
is crucial in this development process. In Germany, a study carried out by Collet 
and Bruder (2006) showed that the work with students by specially trained teachers 
integrating problem solving, self-regulation, or both leads to improvement in 
problem solving in all performance groups (low, medium, and high). Based on these 
results, the same authors conducted a subsequent study (Collet & Bruder, 2008) one 
year after the end of the intervention. The follow-up study confirmed the stability of 
the students’ problem-solving capabilities.

From the studies described above, it seems possible to conclude that teachers’ 
competences for teaching problem solving and promoting self-regulation can 
enhance students’ problem-solving capacities. However, this may not be the 
case for changing students’ self-regulation. Achmetli, Schukajlow and Krug 
(2014), also in Germany, studied the effects of prompting students to use multiple 
solution methods on students’ self-regulation while solving real-world problems. 
No significant differences were found in self-regulation between students in the 
multiple solution methods condition and the one solution method condition when 
controlling for self-regulation on the pre-test. The authors explained that the 
absence of increase in students’ self-regulation was due to the fact that students did 
not have the opportunity to make assumptions about missing information and to 
apply their assumptions to the task.
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Using written reports, Semana and Santos (2010) carried out a study in Portugal 
that aimed to understand students’ development of self-regulation capacity, supported 
by some assessment strategies that were the teacher’s responsibility (the discussion 
of a report script, the investment over the students’ appropriation of the assessment 
criteria, and feedback production). The results from two eighth grade students 
were presented. The students’ self-regulation capacities evolved gradually but 
differentially, although both students tended not to identify areas for improvement in 
their work. Neither did the students outline intervention strategies in order to reduce 
or eliminate the differences between the current and the desired state of events.

Another context for enhancing self-regulation capacity, namely a reflexive 
portfolio, was studied in Portugal by Dias and Santos (2013), but with secondary 
students (11th grade). The results showed improvement in some metacognitive 
processes throughout the school year. Improvement in mathematical communication 
also emerged. Explicit work, continued over a sufficiently extended period, helped 
to change some of the students’ behavioral habits, such as studying only on the 
eve of summative tests. The students considered that working with a portfolio had 
positive effects on the motivational dimension of self-regulation.

It is important to note that the students’ consciousness of their own motivational 
beliefs is important due to the role that this component plays in the self-regulation 
process. It is also necessary to understand how students think about their own 
capacity to self-regulate their learning process. In the context of posing problems 
and its relation to the development of creativity, Shriki and Lavy (2014) carried out 
a study in Israel that was intended to examine the effect of students’ self-assessment 
on their mathematical creativity and its development. Out of 190 students from six 
different regular upper-elementary schools (9th to 12th grades), two case studies 
were presented. The results showed that for students who possess an optimal mixture 
of resources from the outset (intellectual skills, thinking styles, personality, and 
motivation) self-assessment of creativity can be beneficial. Students that do not have 
these resources need some additional support, such as teacher feedback.

In summary, self-regulation is an important student capacity to enhance 
mathematical learning, in particular in problem solving. Nevertheless, it is highly 
demanding of students. It requires not only cognitive capacities, but also affective 
and emotional ones. For its development, a supportive environment has to be created 
by the teacher. In other words, fostering assessment for learning by allowing students 
to take part in self-assessment demands a major shift in student and teacher roles 
compared to those found in more traditional classrooms (Nortvedt & Santos, 2014).

Technological Classroom Environments and Assessment for Learning

Nowadays, we cannot ignore the important role of technology in any context of 
mathematics classrooms if our aim is to contribute to meaningful mathematical 
learning (NCTM, 2014). Leung (2013) calls for a greater understanding of how 
technology may improve mathematics teaching and learning compared to the 
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curriculum of the past, stating that “curriculum and teaching and learning methods 
will need to be regularly reconceptualized to take advantage of the power of modern 
technology to improve mathematics education” (p. 523). This reconceptualization 
demands new ways to look for what it is really relevant to know in mathematics and 
which mathematics make sense to teach and, consequently, to rethink the assessment 
processes in the digital age.

The use of technology may offer a good opportunity to change all aspects of 
the assessment process (Stacey & Wiliam, 2013), such as the ways that assessment 
tasks are selected, created, and presented to the students and the ways with which 
to provide feedback. In Australia, Goodwin (2008) presented the development 
and implementation of an Early Digital Fraction Assessment (EDFA) that present 
students with open-ended tasks. Participating in the study were 40 male students 
(Kindergarten and grade 1) and eight case study students, consisting of four from 
each class. The results showed that the dynamic representations enabled by the 
EDFA elicited representations of common fractions and percentages, with apparent 
conceptual understanding.

With the objective of developing a formative assessment design for web project-
based learning (WPBL) in elementary schools, Lin, Hung and Hsiao (2009) carried 
out a research study in Taiwan. The online device provided norms for individual 
accountability in the group and progress for each group, as well as assessment 
feedback with guidance for or models of how to conduct an operation within the 
project materials. The study took three years and involved 124 fifth grade students 
(62 in each group, with an experimental and a control group). The experimental 
group of students learned collaboratively for 15 months. A pre-test and post-test 
were used. According to the results, collective knowledge and creativity may 
be developed using formative assessment through a web-based PBL, even for 
elementary school students.

Broughton, Hernandez-Martinez and Robinson (2013) in the UK used computer-
aided assessment (CAA) over ten years. The participants of the study were nine 
self-selected first-year undergraduates (four mathematicians, three aeronautical and 
automotive engineers, one materials engineer, and one sports technology engineer). 
Students were pleased because the feedback enabled them to demonstrate an 
improvement and, considering that the high marks in CAA indicate the attainment 
of learning goals, that they had learned the material. Moreover, “students had set 
superficial goals that did not indicate what had been learned, and perhaps this 
explains in part why more challenging goals were not set” (Broughton, Hernandez-
Martinez, & Robinson, 2013, p. 119). The use of CAA encouraged interaction 
between peers, which developed more beneficial mutual support over time.

Finally, Roble (2014) studied how U.S. mathematics teachers use the Navigator 
system to formatively assess their students. She considered two high school 
mathematics teachers in the U.S., one from one an urban district and the other from 
a suburban district, who used technology. Several types of questions, such as check 
for understanding and recall of prior knowledge, were used as feedback. As they 
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worked with connected classroom technology, teachers were able to seek feedback 
from all students, resulting in data-based instructional decision making.

We conclude that, despite the recognition of the role of technology in assessment 
for learning, we found only a few studies in the PME proceedings that considered the 
use of this resource in developing an assessment process that enhances learning. In 
the studies presented, the focus was different, from the opportunities contributing to 
students’ mathematics learning to the way teachers used technology. Nevertheless, 
they evidence positive results, not ignoring some difficulties that did not fulfill 
the initial expectations. Further studies are needed, especially if we take into 
consideration that “technology resources is not yet evident among most teachers” 
(Leung, 2013, pp. 522–523) and even when teachers use digital tools it is not easy 
to integrate it with other elements of teaching and learning mathematics (Geiger, 
Dole, & Goos, 2011).

Assessment for Learning and Students’ Mathematical Performance

Assessment is not an end in itself, but a means for learning and a means to attain 
the curriculum. Perhaps one of the most important results from the meta-analysis 
carried out by Black and Wiliam (1998, p. 61) is that “formative assessment does 
improve learning.” But this key issue continues to be discussed and studied (e.g., 
Bennett, 2011; Kingston & Nash, 2011; McMillan, Venable, & Varier, 2013). Several 
studies previously presented in this part of the chapter made connections between 
assessment strategies and students’ performance. Here, we will include very recent 
PME proceedings research, the objective of which was to study the effects of 
formative assessment strategies on students’ mathematical performance.

In the Netherlands, Veldhuis and van den Heuvel-Panhuizen (2014) proposed 
studying the feasibility and effectiveness of classroom assessment techniques for 
mathematics in primary school. Two consecutive small-scale studies with 10 third 
grade teachers (four, then six) and a total of 214 students were conducted. The same 
method and assessment techniques, consisting of short activities of less than 10 
minutes (Red/Green cards, Clouds, Hard or easy, Experiment, Find the error(s), and 
Find problems with the same result), were used in both studies in the context of the 
assessment of number sense, specifically when working with addition and subtraction. 
The first study focused on feasibility and sustainability issues. Subsequently, the 
second study aimed to study the effectiveness of the use of classroom assessment 
techniques. A pre-test and a post-test were used to measure students’ mathematics 
achievement. The results provided evidence that in both studies students learned 
more when teachers made effective use of classroom assessment, compared with 
students from the national sample.

The effectiveness and sustainability of feedback was also studied in Turkey by 
Özdemir and Tekin (2011). Worksheets containing test questions about the subject 
and essay questions aiming to learn students’ thoughts on the subject were given 
to students of the experimental group during and after the classes. After students 



CURRICULUM AND ASSESSMENT

169

completed the worksheets, the teacher collected them and gave feedback. Depending 
on the feedback, students had to resubmit their sheets. A pre-test and post-test 
were applied, as well as a retention test after eight weeks. A mathematical attitude 
scale was used to determine mathematical attitudes. According to the authors, the 
experimental group was more successful than the group of students who were not 
given feedback and, after eight weeks, the experimental group remembered the 
mathematical subject, while the other group had started to forget it.

In summary, the findings of these studies point in the same direction as the 
findings of Black and Wiliam (1998). In other words, the feasibility, effectiveness, 
and sustainability of mathematics classroom assessment for learning strategies may 
be possible.

A significant number of researchers have dedicated their effort to studying 
assessment as a means to attain the curriculum. Researchers from different countries 
have provided evidence supporting the use of assessment for learning as well as 
evidence of the positive relationship between assessment for learning and student 
performance. In the future, continued research efforts are needed to explore a deeper 
understanding of classroom assessments teachers and students may use to contribute 
to students’ mathematics learning. In the last decade, the studies published in PME 
proceedings have mainly involved students or teachers in elementary or middle 
school levels. In the future, this line of research could be extended to the high school 
or college levels. That is, another direction for future research is to investigate the 
effect of formative assessments on high school and college students’ learning.

ASSESSMENT AS VALIDATION OF THE ATTAINED CURRICULUM

Because of the critical role of curriculum in teachers’ teaching and students’ 
learning, it is important to empirically investigate the actual impact of curriculum 
on students’ learning. In this section, we first summarize some findings from the 
LieCal Project (Cai et al., 2013a), mentioned in an earlier section because this 
is the only project reporting the effect of curriculum on students’ learning in the 
PME proceedings. Then, we discuss a few methodological issues regarding this 
line of research. Finally, we discuss possible relationships between formative and 
summative assessment.

Findings from the LieCal Project

The LieCal Project had both a middle school component and a high school component 
(Cai, 2014; Cai et al., 2011; Moyer et al., 2011). The LieCal-Middle School Project 
investigated the differential effects of the Connected Mathematics Project (CMP) 
and more traditional mathematics curricula (non-CMP) on middle school students’ 
learning of algebra. In the LieCal-Middle School component, more than 1,300 
students (650 using CMP and 650 using non-CMP curricula) were followed as they 
progressed through grades 6–8 from 14 middle schools in an urban school district 
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serving a diverse student population in the United States. In the LieCal-High School 
component, Cai and colleagues continued to follow about 1,000 of these students 
from 9th grade to 12th grade as they spread out to ten different high schools in the 
district. As was indicated in Cai (2014), the LieCal Project investigated not only the 
ways and circumstances under which these curricula could or could not enhance 
student learning in algebra, but also the characteristics of the curricula that led to 
student achievement gains. In the LieCal Project, a quasi-experimental design with 
statistical controls was used to examine longitudinally the relationship between 
students’ learning and their curricular experiences. Student achievement in grades 
6–8 was measured using the state test in mathematics, using multiple-choice items 
(assessing basic algebraic thinking skills) and open-ended tasks (assessing conceptual 
understanding and problem solving in algebra). On the open-ended tasks, the growth 
rate for CMP students over the three years was significantly greater than that for 
non-CMP students (Cai et al., 2011). Also used were problem-posing tasks that 
examined the impact of middle school curriculum on students’ high school learning 
(Cai et al., 2013a; Cai et al., 2013b). Generally, when comparing the problem posing 
performance of the CMP students in each third to the non-CMP students in the same 
third, the CMP students performed as well or better than the non-CMP students 
in the same third. The evidence has shown that problem posing can be a feasible, 
reliable, and valid measure of the effect of middle-school curriculum on students’ 
learning in high school.

Methodological Considerations for Assessing the Impact of Curriculum

We discuss three methodological issues related to assessing the impact of curriculum 
on students’ learning: (1) Using various learning outcome measures; (2) using both 
classical and modern statistical methods; and (3) examining the curricular impact 
beyond the grade levels in which the curriculum was implemented.

Using various learning outcome measures. Even though various methods can be 
used to measure students’ learning, the heart of measuring mathematical performance 
is the set of tasks on which students’ learning is to be evaluated. It is desirable to use 
various types of assessment tasks, thereby measuring different facets of mathematical 
thinking. For example, different formats of assessment tasks (such as multiple-choice 
and open-ended tasks) may be used to measure students’ learning. Multiple-choice 
tasks have many advantages, including the fact that more items can be administered 
within a given time period, and scoring responses can be done quickly and reliably. 
However, such items are difficult to use to infer students’ cognitive processes from 
their responses. Thus, in addition to multiple-choice tasks, open-ended tasks may be 
used. For open-ended tasks, students are asked to produce answers as well as show 
their solution processes and provide justifications for their answers. In this way, the 
open-ended tasks provide a better window into the thinking and reasoning processes 
involved in students’ mathematics learning. Of course, a disadvantage of open-
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ended tasks is that only a small number of these tasks can be administered within 
a given period of time. Also, grading students’ responses is labor intensive. To help 
overcome the disadvantages of using open-ended tasks, a matrix sampling design of 
administering open-ended tasks to students is recommended. This can reduce both 
testing time and grading time while still obtaining a good overall estimate of students’ 
learning of mathematics (Cai et al., 2011). In addition, as we noted above, problem-
posing tasks can be a reliable and feasible measure of curricular effect on students’ 
learning (Cai et al., 2013b).

Analyses of mathematical performance. The unit of analysis should be appropriately 
selected in analysing students’ performance. In evaluating mathematics education 
programs at the student level, a reasonable number of students from different classes 
with different teachers in different schools or even different school districts are 
needed. To examine the impact of a curriculum on students’ learning, pre- and post-
tests are usually used and statistical analyses are conducted. In classical analysis 
using t-tests or Analysis of Covariance (ANCOVA), each student in the sample is 
treated as the same. This implies that students from different classes with different 
teachers in different schools are considered to have the same experience with the 
program. The reality is that students from different classes with different teachers in 
different schools are likely to have different experiences with the program. Thus, in 
evaluating mathematics education programs, researchers must select an appropriate 
unit of analysis, and take into account the degree to which a program is implemented 
as well as the relationship between the degree of implementation and students’ 
achievement. Advanced analysis techniques, such as hierarchical linear modeling, 
can be used to examine the impact of a curriculum on student learning at the intended 
(system) and at the implemented (classroom) level simultaneously (Cai et al., 2011; 
Raudenbush & Bryk, 2002).

When assessing the attained curriculum, it is useful to know students’ learning 
outcomes in terms of mean scores on various types of tasks. However, comparing 
the students’ performances from different mathematical programs in terms of 
correctness on individual tasks is not particularly revealing unless the reviewers 
explore the thinking and methods that led students to their correct answers. For 
example, two students may receive the same mean score, but use very different 
solution strategies. Also, two students may receive the same mean score, but may 
make very different errors. Therefore, in evaluating students’ learning outcomes, 
it is important to examine the cognitive aspects of their problem solving, such as 
solution strategies, mathematical misconceptions/errors, mathematical justifications, 
and representations. In fact, examining solution strategies can reveal qualitative 
aspects of students’ mathematical thinking and reasoning, such as how they go 
about formulating goals and purposes in their learning and mathematical problem 
solving. Similarly, the examination of solution justifications and representations 
reveals the ways that students process a problem and express their mathematical 
ideas and thinking processes. In the LieCal Project, problem-solving strategies have 
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been used as a measure of longitudinal curricular effects on student learning (Cai 
et al., 2014). Using assessment data, Cai et al. (2014) compared the CMP students’ 
problem-solving performance and strategy usage on a multi-part open-ended 
problem to that of their non-CMP counterparts. When controlling for their sixth-
grade state mathematics test performance, high school students who had used CMP 
in middle school had significantly higher scores. In addition, high school students 
who had used CMP appeared to have greater success algebraically abstracting the 
relationship in the task.

Examining the curricular effect beyond the grade levels. The LieCal Project is the 
only longitudinal study that has examined the effect of middle school curriculum 
beyond the middle school levels. Findings from research studies of the effectiveness 
of Problem-Based Learning (PBL) on the performance of medical students (Dochy, 
Segers, Van den Bossche, & Gijbels, 2003) showed that PBL students performed 
better than non-PBL (e.g., lecturing) students on clinical components in which 
conceptual understanding and problem solving ability were assessed. However, 
PBL and non-PBL students performed similarly on measures of factual knowledge. 
When these same medical students were assessed again 6 months or a few years 
later, it was found that the PBL students not only performed better than the non-
PBL students on clinical components, but also on measures of factual knowledge 
(Vernon & Blake, 1993). This result may imply that the conceptual understanding 
and problem solving abilities learned in the context of Problem-Based Learning 
facilitate the retention and acquisition of factual knowledge over longer time 
intervals. The CMP curriculum can be characterized as a problem-based curriculum 
(Cai, 2014). Analogous to the results of research on the learning of medical students 
in the PBL research, it was found that CMP students outperformed non-CMP 
students on measures of conceptual understanding and problem solving during 
middle school. Also analogously, CMP and non-CMP students performed similarly 
on measures of computation and equation solving. Therefore, it is reasonable to 
hypothesize that the superior conceptual understanding and problem-solving 
abilities gained by CMP students in middle school may result in better performance 
on a delayed assessment of manipulation skills such as equation solving, in addition 
to better performance on tasks assessing conceptual understanding and problem 
solving (Cai et al., 2013a).

While the field of mathematics education has made advances in assessing 
the impact of curriculum on students’ learning, recent research has shown the 
advantages of using multiple outcome measures to detect curriculum impact on 
student learning. In particular, it is important to use a combination of multiple-
choice tasks and open-ended tasks for such measures. Both quantitative and 
qualitative analyses should be used to investigate curricular effect. In the quantitative 
analysis, both classical (e.g., ANCOVA) and modern statistical techniques (HLM) 
may be used. Finally, we must examine the curricular effect beyond the grade levels 
in which the curricula are used.
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Relation between Formative and Summative Assessment

Researchers have shown that integrating formative assessment into the classroom 
can enhance learning. However, summative assessment is an imperative in many 
education systems. Therefore, it is essential to understand how these two types of 
assessments may be interrelated (Looney, 2011). Some researchers have started 
to address the issues of the relatedness of formative and summative assessments 
(Taras, 2005). This can be seen in Vial (2012, p. 353) when he speaks about 
the “ambiguity of the expression ‘to do at the same time the formative and the 
certificate’” or when comparing the control functions (verification of conformity) 
with the accompaniment. He associates the two with oil and water, respectively, 
showing the impossibility of mixture. A less radical position, but also reserved, is 
presented by Shepard (2001) when she says that “the uniform nature of external 
assessment and their infrequency means that they will rarely ask the right questions 
at the right time to be an effective part of the ongoing learning process” (Shepard, 
2001, p. 1080).

The very nature of the information provided by summative exams – quantitative 
scales, statistical measures, very general categories of mathematical topics such 
as “Geometry and Measurement” or “Algebra” – means that they make a very 
inefficient contribution if we want to intervene in terms of learning support (Foster & 
Noyce, 2004). The interpretation and consequent action need to be distinct in order 
to be suited to different purposes (Harlen, 2006). Thus, the integration of formative 
and summative assessment is coated with a high complexity and tension (Black & 
Wiliam, 2005; Price, Carroll, O’ Donovan, & Rust, 2011). However, this complexity 
can be reduced when we consider only internal evaluation practices, that is, those 
that are the teacher’s responsibility and not the responsibility of external experts. 
The information is thus collected and processed by the same person. It involves the 
teacher in planning the assessment and in defining the assessment criteria. This is 
the situation in the three articles from the PME proceedings that we analyse below. 
These three studies were situated in the primary, secondary, and pre-university 
education levels, respectively.

Pinto and Santos (2012), in Portugal, intended to understand a possible 
relationship between summative and formative assessment in a group of primary 
schools. Thirteen primary teachers with students from 6 to 10 years old applied 
mathematics written tests each trimester to all the students from the same grade of 
the group of schools. This assessment practice was intended to assess the students’ 
achievement in mathematics and to contribute to the development of plans to support 
their learning. Since the information that the teachers got from students’ tests was 
marked by a high level of generality, the teachers encountered difficulties in building 
supportive plans according to the specifications of each student. As the students 
progressed in age, the difficulties described moved from certain mathematical topics 
(numbers, operations) to mathematical capacities (problem solving, mathematical 
reasoning, and communication). These results indicate that these tests served a 
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more summative purpose than as a way for teachers to collect useful information to 
regulate students’ mathematical learning.

With a similar objective, Baroudi and Clarke (2009) studied ways in which the 
formative and summative goals of assessment could be achieved by using the same 
instruments in the context of an Australian secondary school for girls. The teachers 
used assessment worksheets throughout the instructional sequence. At the end of the 
unit, teachers predicted the marks that would be achieved by their students. They 
were most accurate about the group of students who achieved the lowest 25% of 
the test marks. “Formative assessment instruments complement, but do not replace, 
an end-of-unit summative test for the purpose of generating an accurate report of 
students’ performance” (Baroudi & Clarke, 2009, p. 333).

The setting of these two previous studies included an attempt to change the usual 
assessment practices. This attempt may be also found in the study conducted by Povey 
and Angier (2006) in a higher education mathematics course in the UK. Different 
assessment tasks were developed in which students had space to explore and find out 
about mathematics, to try out different approaches to the subject, and to develop their 
own ideas. The part of the study presented involved two students, Geoff and Anna, 
who had previously failed university mathematics but went on to become effective 
mathematicians, achieving first class honors in their final mathematics assessments. 
Each student was interviewed, sometimes alone and sometimes together, and written 
reflections from one or both as well as email conversations with one or both were 
also considered in the data analysis. The authors concluded that it is possible to 
re-craft the demands on students in order to incorporate some opportunities for 
educative assessment (assessment as part of the learning process).

But changing assessment practices is demanding and requires the willingness 
to do it and the recognition of the importance of doing it. In Israel, Biton and 
Koichu (2009) aimed to characterize the process of creating conditions for adopting 
particular alternative assessment tools. Data was collected from interviews with 
the head teacher, the academic advisor, and 6 out of 10 mathematics teachers at 
the Centre for Pre-University Education. In addition, about 250 randomly chosen 
students’ files were analyzed, representing about 600 files of students who had 
studied at this centre in the past and were then accepted to the Technion. Biton and 
Koichu (2009) found that statistical analyses were the most convincing arguments 
for the academic staff to implement alternative assessment. Moreover, as the level of 
prediction of the different exams is not the same, the use of alternative assessment 
tools will not decrease the predictive validity of overall grades.

A future direction for research is to investigate the alignment among various 
levels of curriculum. Thomas and Yoon (2014) have shown the challenge for 
a teacher to align the intended and implemented curricula, as has also been 
documented elsewhere (e.g., Lloyd et al., in press). The encouraging news from 
Thomas and Yoon (2014) is that it is possible to help teachers become aware of the 
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curriculum alignment through professional development activities. It is also quite 
complex to align formative and summative assessment practices. Thus, one of the 
important directions for future research is to explore ways to align various levels of 
curriculum, as well as to align formative and summative assessments.

TEACHERS’ KNOWLEDGE OF CURRICULUM AND ASSESSMENT

In the context of the mathematics classroom, the role of the teacher is essential. The 
success of assessments depends on the learning environment created by the teachers 
and their own role during the assessment process. But the quality and adequacy of 
these learning opportunities depend greatly on teachers’ professional competence. 
In other words, teachers need to have deep curriculum and assessment knowledge 
to develop adequate assessment practices. In this section, we will discuss research 
about types of curriculum and assessment knowledge teachers need, as well as the 
ways to develop teachers’ curriculum and assessment knowledge.

Teachers’ Knowledge of Curriculum

Curriculum matters for teachers’ teaching and students’ learning (Cai, 2014). 
Teachers’ knowledge of the intended curriculum facilitates their enactment of the 
curriculum in classrooms. Gilbert and Gilbert (2013) proposed the development 
of Educative Curriculum Materials (ECMs) to deepen teachers’ knowledge of 
mathematics. According to Gilbert and Gilbert (2013), an ECM is not intended 
to script instruction, but rather is designed to help teachers learn and understand 
the intended curriculum. ECMs increase teachers’ knowledge so that they can 
help students develop mathematical understanding through the construction of 
increasingly detailed relationships between concepts.

Teachers’ curriculum knowledge can grow, and in fact, participation in 
curriculum-analysis workshops leads to changes in teachers’ curriculum knowledge 
(Ariav, 1991). Ariav (1991) conducted a study based on Silberstein’s three levels 
of teachers’ curriculum knowledge (autonomous consumer, consumer-developer, 
and autonomous developer; cited in Ariav, 1991) that examined the effects of such 
curriculum-analysis workshops. The teacher is an autonomous developer who can 
plan, design, and develop an entire course of study, often in areas with no (or few) 
existing curriculum materials. Ariav (1991) discovered that at the beginning of the 
study, most of the participating teachers thought they were already at the level of 
autonomous consumers of curriculum materials, but in reality, they had not yet 
reached that highest level (autonomous). Participation of the curriculum-analysis 
workshops not only helped teachers to become aware of their level of curriculum 
knowledge, but also led to a deep understanding of the curriculum through curriculum 
analysis.
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Teachers’ Knowledge of Assessment

The professional knowledge necessary to develop assessment practices with success 
is currently a key, but problematic, issue. Several studies have indicated that teachers 
show a lack of declarative and procedural knowledge of assessment (e.g., Black & 
Wiliam, 1998; Clark, 2012). These findings are consistent with those presented by 
Clyatt (2014) that involved a group of 15 experienced U.S. mathematics teachers. 
Clyatt’s study showed that a large majority of the teachers were not familiar with 
assessment terms. Moreover, the teachers did not establish any relation between 
teacher training education, understanding terms, and available assessment options.

In the last decade, some studies in the PME proceedings have had as their 
main objective the understanding of which kinds of knowledge teachers apply or 
need to apply when they are developing assessment activities. These studies have 
involved experienced teachers or preservice teachers from different school grades. 
For example, in Germany, Leuders and Leuders (2014) aimed to understand the 
diagnostic competencies of preservice teachers, viewed as the ability of teachers to 
accurately assess students’ performance. From the short written statements made by 
the group of participants about primary students’ solutions to open-ended tasks, the 
results pointed out that the quality of the diagnostic judgments seemed to be related 
to noticing specific features of students’ solutions.

In Israel, Liora and Miriam (2012) examined 42 preservice and 25 novice 
elementary mathematics teachers’ pedagogical knowledge in the area of assessment 
of student achievement. Two questionnaires were given to each group of participants: 
One related to declarative knowledge and another to actual knowledge. For the novice 
teachers, a declarative behavior questionnaire was also given to understand how 
they make use of the same terms used in declarative knowledge in the classroom. 
For most of the terms, a significant difference was found between the participants’ 
declarative knowledge and its application. One year later, a similar study was 
conducted, also in Israel (Hoch & Amit, 2013). Similar questionnaires were used. 
No difference between the two groups of teachers was found regarding knowledge 
on both knowledge questionnaires. However, the results did show, again, a lack of 
knowledge, including basic concepts of assessment. Even when teachers know a 
term, they tend to not use it.

Taking PISA 2003 competencies as a benchmark for their study, Rubio, Font 
and Giménez (2010), from Spain, aimed to determine the initial competency level 
of preservice secondary teachers with respect to assessing the PISA mathematical 
competencies. Presenting one case study from a broader study, the authors 
concluded that this particular future teacher showed difficulties in determining the 
level of complexity of the competencies needed to solve a given problem, as well as 
difficulties assessing the competencies that can be inferred from the solution given 
to a problem. With the same framework, Lee and Na (2007) carried out a study in 
South Korea to understand the practical knowledge helpful in assessing students’ 
mathematical power. Using the action research approach, the study was carried 
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out by a researcher who was an elementary mathematics teacher, in three stages: 
Development of an assessment plan, with 15 open-constructed response problems 
and scoring guides; the application of these problems to students; and the analysis 
and reflection of the initial materials and the students’ responses. After analysing 
the material and the students’ responses, the teacher reported the improvement and 
development of practical knowledge for assessments.

When we consider teachers’ professional knowledge, this can include teachers’ 
attitudes. Krzywacki, Koistinen and Lavonen (2011), through their analysis 
of interviews with eight mathematics teachers in Finland who worked with a 
technological assessment tool, pointed out the importance of teachers’ willingness 
to change their assessment practices.

In summary, one particular aspect that is important to notice from the few articles 
revisited from the PME proceedings is that most of them used concrete materials 
from students to study the teachers’ assessment knowledge. This methodological 
option supports the importance of connecting teachers’ knowledge with practices 
(Ponte & Chapman, 2006). Although these studies confirm what the large body of 
literature in the field already states about the need to develop teachers’ assessment 
knowledge, they also call attention to the importance of attending to teachers’ 
attitudes in any process of assessment practice innovation that is aligned with what 
mathematics learning actually means.

Teachers’ Knowledge Development

There exist several strategies to develop teachers’ professional knowledge in 
general and teachers’ curriculum and assessment knowledge in particular. These 
strategies may be categorized into two types: Formal/institutional and informal. 
One of the formal ways to improve teachers’ professional knowledge is through an 
institutional course or training. This strategy is not an end in itself, but rather is a 
way to achieve learning. Thus, the efficacy and sustainability of such approaches 
are essential considerations in studies related to professional courses. This is the 
case in the study of Koh and Chapman (2014) that investigated an intervention to 
improve the quality of Singaporean teachers’ assessment literacy in mathematics 
teaching and learning. Guidelines for teachers to design authentic assessment tasks 
as well as criteria to characterize authentic intellectual quality were used. Eighteen 
grade 5 teachers from four schools participated (two schools in the experimental 
group, two schools in the control group). The data consisted of 116 assessment tasks 
designed by the teachers and 712 related pieces of students’ work collected before 
and after the intervention. The experimental teachers increased their competence in 
designing assessment tasks that were of high authentic intellectual quality, focusing 
more than the control group teachers on students’ mathematical understanding, 
thinking, problem solving, and connections. Olson, Slovin, Olson, Brandon and Yin 
(2010) compared a professional development model with formative assessment but 
without networked technology with formative assessment along with technology. 



L. SANTOS & J. CAI

178

During a period of one year, the model without technology brought greater gains 
in assessment knowledge, but did not provide evidence for more positive attitudes 
toward using assessment.

In Germany, Besser and Leiss (2014) studied the possibility of developing 
tests and fostering teachers’ pedagogical content knowledge concerning formative 
assessment in the context of dealing with modeling tasks in competency-oriented 
mathematics. Over a period of ten weeks, 27 mathematics teachers participated in 
teacher training. Teachers in experimental group A were trained in central ideas of 
formative assessment when dealing with modeling tasks in competency-oriented 
mathematics teaching. Teachers in experimental group B were trained in selected 
aspects of competency-oriented mathematics in general. A pre-test and a post-test on 
teachers’ mathematical pedagogical content knowledge were applied to compare the 
two groups. The results showed that teachers’ knowledge of students’ learning was 
significantly higher if they were specifically trained within the topics being tested. In 
other words, special formative assessment knowledge when dealing with modeling 
tasks is more suitable for developing pedagogical content knowledge than general 
knowledge about competency-oriented mathematics.

Although the results from these studies of professional development have 
generally been positive, the PME proceedings also reflect other ways to develop 
teachers’ assessment knowledge. There is, for instance, the case of reflection. 
Reflection is one strategy to develop knowledge that has been highlighted in the 
literature (e.g., Schön, 1991; Wood, 2001). There is also evidence that collaborative 
work that supports teachers’ practice is another way to improve teachers’ knowledge 
of assessment. Santos and Pinto (2010) accompanied one Portuguese mathematics 
teacher during three school years, focusing on her feedback practices. Although 
the teacher used feedback, the evolution of her feedback practices included the 
establishment of favorable moments for students’ reflection, from noting fewer 
errors, to encouraging correction and varying the feedback’s syntactic form.

Another possible strategy to develop teachers’ assessment knowledge is to use 
particular instruments. For example, Clarke, Sukenik, Roche and Mitchell (2006) 
used task-based interviews in Australia as instruments to enhance teacher knowledge. 
Ten experienced primary teachers, after participating in a day’s training on the use 
of the interview tasks, interviewed 323 grade 6 students (broadly representative of 
Victorian students) at the end of the school year. Previously, students had answered 
tasks focusing on rational numbers, prepared by the research team and piloted and 
refined in their own schools. In the results, the authors concluded that “the use of the 
interview provides teachers with considerable insights into student understanding, 
common misconceptions, and forms a basis for discussing the ‘big ideas’ of 
mathematics and curriculum implications of what they have observed” (p. 343). This 
instrument continued to be developed and studied, with a focus on its capacity to 
foster the improvement of teachers’ knowledge, and in particular, knowledge about 
students (e.g., students’ understanding, thinking, and reasoning), content knowledge, 
and pedagogical content knowledge (Clarke, 2013).
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Tier-testing is another instrument particularly useful for diagnostic purposes 
(Haja & Clarke, 2009). Considering one Australian mathematics teacher and 12 of 
her seventh grade students, a qualitative and quantitative inquiry was used to answer 
the following research question: How does the teacher react to the assessment 
information, concerning proportional reasoning, from two-tier tasks? Although the 
teacher used tier-tasks frequently and was able to notice students’ misconceptions, she 
seemed to have great difficulty adjusting her instruction according to the information 
she received. The peer-assessment environment may also be a promising setting for 
the teacher to get information about students’ learning and difficulties. Biton (2013) 
used six 90-minute peer-assessment activities in two classes, with video and audio 
recorded, allowing the teacher to develop her knowledge about the students and 
improve her teaching in a grounded way.

In conclusion, research on teachers’ curriculum and assessment knowledge is 
under development. Teachers’ professional knowledge has been widely studied 
in the last few decades (e.g., Ball, Thames, & Phelps, 2008; Shulman, 1986). The 
frameworks developed by Ball et al. (2008) and Shulman (1986) have been adapted 
to study teachers’ curriculum and assessment knowledge. Perhaps there is a need 
to develop specific frameworks to study teachers’ curriculum and assessment 
knowledge. For example, what are the main components of knowledge in these 
two particular types of teachers’ knowledge? What distinguishes curriculum and 
assessment knowledge from other types of professional knowledge? How can we 
measure teachers’ curriculum and assessment knowledge?

In an era where mathematics curricula are changing in many countries and 
introducing new curricular orientations, it is imperative to improve teachers’ 
curriculum knowledge and the assessment knowledge they will need to guarantee 
adequate assessment practices. In this section, we have reviewed several ways of 
improving teachers’ curriculum and assessment knowledge. Although this knowledge 
is far from what is desired, it is possible to create favorable settings to change this 
situation. That promises to be another critical direction for future research.

CONCLUSIONS

In this chapter we have proposed a way to examine the relatedness of curriculum 
and assessment. Taking learning as the main purpose of education, and considering 
curriculum and assessment as processes, the establishment of this relation between 
curriculum and assessment allows us to look at teaching and learning in a more 
integrated way. We were conscious of possible difficulties that this conceptualization 
could bring to us, especially as the PME authors most likely did not consider this 
perspective in their research. We believe that our conceptualization of curriculum 
and assessment makes sense, is operational, and may be useful for future research 
in the area.

A great diversity of countries across different continents is represented in the 
research on curriculum and assessment that we have reviewed. Clearly, curriculum 
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and assessment are on the agenda of diverse mathematics education research 
communities, all of which recognize their importance.

The methodological options presented in the great majority of the research 
considered in this chapter were in the category of empirical studies, whether they 
followed a quantitative or qualitative design. This fact is consistent with calls to 
develop a theory of assessment, particularly for formative assessment (Black & 
Wiliam, 2006; Santos, 2015). It should be indicated that there are only a few large-
scale studies related to curriculum and assessment in the PME proceedings in the 
past decade.

The findings of the studies we reviewed were diverse and most of them confirmed 
the findings from other studies, a fact that makes for more robust research results. It 
is particularly interesting to note that some research studies conducted in different 
countries were very similar. The opportunity to have such a chapter in this volume 
allows us to highlight such similarities.

As we have indicated at the beginning of the chapter, the number of PME studies 
that have focused on curriculum or assessment or both is not high, when we consider 
the total number of such research studies in 10 years of PME proceedings. We hope 
that the interest in curriculum and assessment continues and develops in the PME 
research community. Curriculum and assessment constitute two main dimensions of 
teaching and learning mathematics. Without them we will not be able to understand 
and to contribute to mathematics learning, the fundamental aim of the work of any 
mathematics education researcher.
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ATHANASIOS GAGATSIS AND ELENA NARDI

6. DEVELOPMENTAL, SOCIOCULTURAL, SEMIOTIC, 
AND AFFECT APPROACHES TO THE STUDY OF 
CONCEPTS AND CONCEPTUAL DEVELOPMENT

THE STUDY OF CONCEPTUAL DEVELOPMENT: AN OVERVIEW

We live in a world rich and full of unique events and objects. The book you hold in your 
hands and read at this moment resembles another book placed on a bookshelf of your 
library. They both have different covers or different size or address different things, 
but both are “books”. We could say that both are different categories of “books”, such 
as “science fiction”, “fantasy” or “many readable written sheets” etc. What is the 
difference between a magazine and a journal? Under what principles do we decide to 
classify a series of objects under the concept of “book”? What are the implications of 
ignoring the uniqueness of each book when we engage with this classification? Most 
of us would probably agree that without such classifications – or, concepts – we 
could hardly recall and process information, and communicate with others. It is not 
surprising then that how concepts arise and what role their emergence plays in the 
teaching and learning (of mathematics) is a major focus of (mathematics) education 
research. In order to contextualize and embed mathematics education work within 
the broader field of investigations into concepts and conceptual development, we 
review briefly some work from this broader field. We note that the approaches taken 
here are largely from the field of psychology. However, as our account progresses, 
it is gradually enriched by weaving in influences from other fields – and crucially 
the proportion of purely psychological works reviewed in the rest of the chapter 
reveals that contemporary developments within mathematics education feed from 
influences from a range of other disciplines, most notably sociology, anthropology 
and linguistics.

Conceptual development has been described either in terms of analyzing human 
ability to construct knowledge through representations of concepts, or by examining 
specific concepts that are crucial to human survival or critical to the very nature of 
knowledge constructed and used by humankind (Markman, 1999). Four approaches 
to describing and interpreting conceptual representations seem to dominate the 
psychological literature: representations in terms of necessary and sufficient features; 
probabilistic representations; representations through example; and, representations 
through causal relationships.
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The approach of conceptual representations in terms of necessary and sufficient 
features (Markman & Dietrich, 2000) is a “classical” approach: it suggests that two 
objects or events are put into the same category because, first, they are identical to 
each other in terms of certain features and, second, they are different from those 
that belong to other categories. All instances of a concept share common properties. 
Sharing these properties is a necessary and sufficient condition for an item to qualify 
as member of a category. It is worthwhile to note that although the classic approach 
to concepts has not proved fruitful for understanding everyday concepts – inter alia 
by seminal works in cognitive linguistics such as (Lakoff, 1987) that brought the 
study of categorizing as a fundamentally human capacity center-stage – it has much 
in common with the accepted approach to definition in logic and mathematics. In 
other words, even if humans do not use the ‘categorical’ approach in developing 
everyday concepts, they are capable of using it in a certain rule-governed domains, 
i.e., mathematics, science and law.

Another construal of conceptual representations views concepts as consisting not 
of necessary and sufficient features but of features that belong to the concept with a 
certain degree of probability. The approach of probabilistic representation refers to 
features that are associated with a concept, none of which, however, is a sufficient 
and necessary feature of the concept. Instead, each feature has some degree of 
correlation with the concept in the sense that an object that belongs to this category 
has a certain probability of possessing this feature.

With regard to the approach of probabilistic representations Rosch et al. (1976) 
proposed that humans mostly and with priority use concepts that belong to the 
so-called “basic” level. This is the core of the classification system and the level 
that maximizes similarities to and minimizes differences from members of other 
concepts. Consider, for example, the concept “chair”: chairs can be made of metal, 
wood or plastic; they can be high-back or low-back; they can be with arms or 
without arms; etc. Yet are all recognized as chairs. In the terms of the probabilistic 
representations approach, deciding on whether an object belongs or not in a certain 
concept is based on a judgement that compares similarities and differences between 
families of objects.

The construal of conceptual representations based on specific examples of 
members of the category designated by the concept refers to the view that concepts 
are represented in terms of the specific and important examples of concept members, 
the exemplars. Central to this model is the notion that concepts are organized around 
family resemblances rather than features that are individually necessary and jointly 
sufficient for categorization. The exemplars for a category consist of the most 
common attribute values associated with the members of the category. A conceptual 
representation for a category like ‘furniture’ includes all the instances that belong to 
the category ‘furniture’ (Estes, 1994).

Finally, the approach of representation through causal relationships focuses on 
different aspects of concepts and refers to beliefs that shape a “simplistic” theory for 
the understanding and use of each concept. Kail’s (1989) studies provide evidence 
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that concepts develop as theories. Theories are bodies of knowledge about a particular 
domain or field of information. Such theories have been suggested to explain several 
psychological fields, for example, mental state attribution information from a 
mentalizing theory, visual perception information from a theory of how seen objects 
behave in relation to the observer etc. The paper of diSessa and Cobb (diSessa & 
Cobb, 2004) about the “ontological innovation and the role of theory in design 
experiments” distinguishes clearly different types and levels of theory.

The above mentioned four approaches have influenced several prominent 
psychologists, including Piaget (Inhelder & Piaget, 1964), Vygotsky (Vygotsky, 
1962), and Bruner (Bruner, 1970), who have written extensively about conceptual 
development, often with a focus on learners. Research within mathematics education 
has been under the strong, even definitive influence of these works – PME itself was 
initially conceived as emerging out of this purely psychological tradition (see also 
Hershkovitz & Breen, 2006; Gutiérrez & Boero, 2006). Foreword and Introduction 
respectively to the first Handbook, in which the cognitive roots of PME research 
is traced also with reference to the Introduction by Fischbein (1990) to the earlier 
Mathematics and Cognition volume.

Following this description, we now turn to reviewing how PME studies of the 
last 11 years study conceptual development within mathematics. Given that this 
Handbook maintains the first one’s focus on specific content and cross-content 
areas, our chapter focuses on the many and varied approaches that researchers 
in mathematics education, particularly those presenting at the 2005–2015 PME 
conferences, have been taking in their studies.

The studies reviewed here take a plethora of approaches and our review aims to 
do justice to this plethora. Our intention is to trace different trends in the scholarly 
work over the past 11 years and also ask: has scholarly interest changed over the past 
years, and, if so, how? Are, for example, some approaches being employed more 
than others? If so, how?

To do so, we review the studies presented at the PME conferences between 
2005 and 2015 with a particular focus on the approach that these studies take in 
terms of conceptual development. The approaches we consider are developmental, 
sociocultural-discursive and semiotic (the next three sections), followed by a 
section on studies that examine conceptual development in relation to affect. We 
conclude with some observations on the patterns and shifts we have noticed since 
the publication of the first Handbook as well as highlights of what we see as potent 
ways forward. Our attempt is to include as many studies that used these approaches 
to study conceptual development as possible. However, because of the space 
limitations, in each topic that is discussed within each section we describe in greater 
detail those studies that we judged as more “representative” and we reference other 
studies (which are by no means lacking in quality or interest in comparison) more 
succinctly. Further, throughout, we note that the terms concept and development are 
treated differently by the different approaches reviewed here. We have therefore 
dedicated some space within each section to a potted history of each approach, in 
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order to provide the necessary clarifications regarding use of terms – and we have 
done so in full awareness that such potted accounts can never be comprehensive or 
completely escape the risk of omission or oversimplification.

DEVELOPMENTAL APPROACHES TO CONCEPTUAL DEVELOPMENT

The concept of cognitive development has attracted considerable interest throughout 
the history of mathematics education research. This section refers to psychological 
research on conceptual development, which is based on the work of researchers in 
psychology who studied extensively in the field of mathematics education, as well 
as on the work of researchers in mathematics education who focused on conceptual 
development. Pegg and Tall (2002) proposed two kinds of theories of cognitive 
growth: global developmental theories and local theories of conceptual development. 
Global developmental theories suggest that cognitive development occurs in a series 
of global stages, each characterized by increasingly sophisticated and abstract levels 
of thought. Local theories of conceptual growth revolve around the transformation 
of processes into objects.

Regarding global developmental theories, the most well-known and influential 
theory that falls under this category is that of Piaget. Piaget’s stage theory of 
cognitive development describes four distinct stages: sensori-motor, preoperational, 
concrete operational and formal operational (Piaget & Garcia, 1983). In addition, 
Bruner’s (1966) constructivist theory describes how a learner’s encounter with 
new knowledge follows a progression from enactive to iconic and then to symbolic 
representations.

In Piaget’s (1972) seminal work three types of abstraction were defined: 
empirical, pseudo-empirical and reflective. Empirical abstraction gathers 
knowledge from the properties of objects, by acting on objects in the external world 
(Beth & Piaget, 1966). Pseudo-empirical abstraction mediates between empirical 
and reflective abstraction and “teases out properties that the actions of the subjects 
have introduced into objects” (Piaget, 1985, pp. 18–19). General coordination 
of actions leads to reflective abstraction, which is an absolutely internal process 
(Piaget, 1980). Further constructions can be built using existing structures and 
abstracting from them. In other words, an operation on such “entities” becomes in 
its turn an object of the theory. Thus, mathematical entities move from one level to 
another (Piaget, 1972).

Regarding local theories of conceptual growth, several have been proposed by 
influential theorists (Davis, 1984; Dubinsky, 1991; Gray, Pitta, Pinto, & Tall, 1999; 
Gray & Tall, 1994; Piaget, 1972; Sfard, 1991). Gray and Tall (1994), Sfard (1991) 
and Dubinsky (1991) all give emphasis on the way a process is condensed into 
an object. In addition, the process-object theories of Dubinsky (1991) and Sfard 
(1991) focused on formal concept development and more advanced mathematical 
thinking. Gray and Tall’s procepts (1994) highlight the importance of mathematical 
symbolism to a larger extent than the other theories. Furthermore, while Sfard, at 
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least in her writing at the time (1991), underscores that a process comes first and is 
followed by the object, Gray and Tall (1994) do not explicitly make reference to the 
ordering of process-and object-based thinking (Gilmore & Inglis, 2008).

The qualitative changes that occur when actions become objects of thought have 
been the focus of Davis (1984). Davis (1984) identified two kinds of procedures: 
a visually moderated sequence (VMS) and an integrated sequence. In a VMS, 
the learner carries out the procedure step by step, without being able to perceive 
the whole algorithm or patterns of the activity. Subsequently, as the procedure is 
practised, it becomes an object of scrutiny and analysis (pp. 29–30). In what is 
called an “integrated sequence”, the learner conceives of the whole algorithm as a 
construction consisting of smaller component sequences.

Sfard (1991) claimed that concepts are developed through three successive 
stages: interiorization, condensation and reification. During the interiorization stage, 
a process is executed mentally on lower-level mathematical objects. The learner 
becomes progressively capable of performing these processes. At the second stage of 
concept development, which is called condensation, the learner becomes even more 
capable of consciously thinking of a particular process as a whole. ‘“Squeezing” 
lengthy sequences of operations into more manageable units’ is a key feature of 
this stage (Sfard, 1991, p. 19). Reification is regarded as an ontological shift, since 
the learner suddenly becomes able to view a familiar concept through a different 
lens, as a ‘fully-fledged object’ (Sfard, 1991, p. 19). The construct is no longer 
dependent upon a process, as the student can recognize the conceptual category 
the construct falls under and attribute meaning to it. Therefore, although the first 
two stages involve quantitative changes, reification is characterized by a merely 
qualitative change, because ‘a process solidifies into object, into a static structure’ 
(Sfard, 1991, p. 20). More recently, Pitta-Pantazi, Christou and Zachariades (2013) 
identified these three stages (interiorization, condensation and reification) in 11th 
grade students’ responses regarding the monotonicity of exponential functions (see 
also, Paschos & Farmaki, 2006).

Several research studies having in purpose to examine Piaget’s theory of 
concept learning and development were carried out in the past decade. Recently, 
Paschos and Farmaki (2006) conducted a case study on a first year university 
student of mathematics focusing on the Piagetian theory of reflective abstraction 
for investigating the way in which the student acts in order to calculate the distance 
covered in a time. The findings indicate that the stages of knowledge, the concepts’ 
images, and the mental mechanism and operations of the students are gradually 
revealed. Also, understanding this mechanism will allow teachers to decide and 
distinguish whether the students understand correctly the definition of the definite 
integral concept, and not just have an empirical perception of integration, by 
which they can act effectively only in a limited and particular framework (see also 
Simon, 2014).

Dubinsky (1991) formulated a similar theory on concept development, known 
as APOS theory, according to which a mathematical concept develops as one tries 
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to transform existing physical or mental objects. The acronym APOS stands for 
Action-Process-Object-Schema. Weller, Arnon and Dubinsky (2009) argue that as 
an individual repeats an action (A), the action may be interiorized into a mental 
process (P). If one apprehends a process as an entirety, then the individual has 
encapsulated the process into an object (O). A coordination of these actions, 
processes and objects, is called a schema (S). A schema could help students ‘... 
understand, deal with, organise, or make sense out of a perceived problem situation’ 
(Dubinsky, 1991, p. 102).

For example, Zuffi (2010) used APOS theory to analyse data from a qualitative 
study conducted in Brazil, with in-service mathematics teachers, in order to explore 
teachers’ knowledge about functions. The aim of the study was to propose a spherical 
model for human beings’ complex learning processes. Such a model considers 
elements from inner-individual aspects (like in Piagetian theory), but also how 
these aspects are affected by social-historical-cultural (as considered by Vygotsky), 
affective, or even extra sensorial – unconscious aspects (by psychoanalysis).

Gray and Tall (1994) relied on Sfard’s (1991) and Dubinsky’s (1991) theories, 
but extended them by giving emphasis to the role of mathematical symbols. They 
introduced the term of ‘procept’ to underline that a symbol flexibly and ambiguously 
represents both process and concept and acts as a pivot, switching from a process 
to a concept. Hence, procept is defined as ‘the amalgam of three components: a 
process which produces a mathematical object, and a symbol which is used to 
represent either process or object’ (p. 121). They suggested that a major challenge 
in mathematics learning pertains to bridging the proceptual divide. Zoitsakos, 
Zachariades and Sakonidis (2013) examined secondary mathematics teachers’ 
knowledge based on the notion of ‘procept’. This study showed that, despite the 
subjects’ strong mathematical background, notably few individuals appeared to hold 
an accurate understanding of a particular infinite decimal representation of a rational 
number, whereas a significant number see it only as a process.

According to Gray and Tall (1994), proceptual thinking refers to the ability to 
compress stages into procepts. Procepts are constructed usually through a procedure-
process-procept sequence. Initially, the individual performs a procedure as a series 
of steps. Then, the procedure becomes more routine and carried out without paying 
attention to details, resulting in process. At this stage, a number of procedures yielding 
the same input-output are considered as the same process. Finally, the process is 
compressed into a procept, while the symbol is used to evoke either a process or 
a concept. They assumed that learners that think in a flexible manner are able to 
perceive symbols as a process and a concept. In contrast, less flexible thinkers are 
not aware of the dual role of symbols and rely on less flexible procedural methods 
(Gray & Tall, 1994). This theory was also enriched with research studies which tried 
to explore the relations and connections between students’ concept development and 
their mental representations (Gray & Pitta, 1996; Gray, Pitta, & Tall, 1997; Pitta & 
Gray, 1996; Pitta & Gray, 1997; Pitta & Gray, 1999; Pitta-Pantazi, Gray, & Christou, 
2002; Pitta-Pantazi, Gray, & Christou, 2004).
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Apart from the procedure-process-procept sequence, Tall (2004, 2013) built a 
theory describing three distinct worlds of mathematics: the embodied, the symbolic-
proceptual, and the formal. The embodied world begins with our perceptions 
and actions on the real world. The proceptual world is related to calculations in 
arithmetic and symbolic manipulation in algebra and calculus. The formal world is 
based on axioms, which are formulated to define specific mathematical structures. 
Tall, Gray, Bin Ali, Crowley, DeMarois, McGowen, Pinto, Pitta, Thomas and Yusof 
(2001) claimed that the three worlds focus on different qualities: The embodied 
world focuses on the objects and their properties, the proceptual world on processes 
represented by symbols, and the formal on properties and their relationships. Some 
studies investigated Tall’s three worlds theory in certain mathematical concepts. For 
example, Pitta-Pantazi, Christou, and Zachariades (2013) explored this theory in 
the context of functions confirming Tall’s theory. Likewise, Furinghetti, Morselli 
and Paola (2005) examined 15 year old students who explored a phenomenon of 
covariance, by using Cabri to draw geometric figures, measure, and sketch graphs. 
The findings of their study highlighted the path from the embodied stage to formal 
mathematics and that even the symbolic-proceptual world is hindered to students: 
the dynamic figure and the diagram may act as a burden in the effort to go on. A 
similar finding emerged in the study by Swidan and Yerushalmy (2009), on two 17 
year old students.

Some research studies combined research frames mentioned above, such as the 
study of Stewart and Thomas (2007) which investigated the learning of the linear 
algebra concepts of linear combination, span, and subspace in a group of second year 
university students focusing on the implementation of APOS theory of Dubinsky 
(1991), particularly in the context of Tall’s (2003) three worlds of mathematics. The 
results of their study confirmed that the students struggled to understand the concepts 
through mainly process conceptions, but embodied, visual ideas proved valuable 
for them. A year later, the same research team repeated their research, by teaching 
students a procedural way to find a basis for a subspace using matrix manipulation. 
They found that emphasis on matrix processes may not help students understand 
the concept, and embodied, visual ideas that could be valuable were usually lacking 
(Stewart & Thomas, 2008).

In addition, Hannah, Stewart and Thomas (2014) investigated linear algebra with 
second year undergraduates, who were taught fundamental linear algebra concepts 
with the use of the embodied, symbolic and formal dimensions. The results showed 
that student affect – the relationship of which with conceptual development we 
return to in the penultimate section of this chapter – was much more positive when 
concepts were first met in the embodied or symbolic worlds but there was little 
effect on the overall understanding. In general, by the end of the course student 
perspectives on formal aspects of mathematics, definitions, theorems and proofs, 
were much more positive than at the beginning. Verhoef and Tall (2011) focused on 
three upper level high school teachers development based on Tall’s (2003) embodied 
and symbolic worlds. Their study revealed the significance of the complex reality 
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of school practice in reference to the powerful claim of curriculum guidelines, study 
guides based on textbooks, and the attaining of high exam results.

What our review of studies with a developmental/cognitive take on conceptual 
development suggests is that these approaches – largely established in the 1980s 
and 1990s – continued to be deployed well into the 2000s, often with only minor 
amendments. A distinctive development – certainly inaugurated in the 1990s but 
shaping the field in a much more visible manner in more recent years – was the surge 
of approaches to conceptual development that address directly and systematically 
the aforementioned complex and multifaceted reality – the context – in which 
mathematical learning takes place. While some of the approaches mentioned in 
this section were to some extent revisited in the light of such considerations (e.g. 
Bingolbali & Monaghan, 2008), more visible were developments regarding studies 
with a sociocultural and/or discursive take. We showcase some of these developments 
in the section that follows with an overview of said studies.

SOCIOCULTURAL AND DISCURSIVE APPROACHES TO 
CONCEPTUAL DEVELOPMENT

In the last ten years or so sociocultural and discursive approaches to research in 
mathematics education have grown substantially. In this section we present a 
synthesis based on the 2005–2015 PME papers that deploy a sociocultural and/or 
discursive approach to conceptual development. Before we do so we remind the 
reader that what is meant by ‘conceptual development’ is meaning-making as defined 
and used in the participationist perspective of sociocultural researchers (according to 
which learning is an activity of participation determined by the situational, cultural 
and historical milieu in which it takes place)

A Sociocultural Take on Conceptual Development

In recent years, the field has opened up substantially to approaches that encompass 
strong consideration of the context in which learning occurs. We relay here from 
the observation Lerman (2006) offers in the first Handbook regarding this strong 
consideration (pp. 362–363): identity and a close, systematic study of teaching 
practice (both in terms of teacher learning and the influence on learners of various 
teaching modalities) are emerging as major foci for future work. The works we 
review in what follows – such as (Frade, Lerman, & Meira, 2014) and (NicMhuirí, 
2014) – illustrate the accuracy of Lerman’s observation, as well as Simon’s (2015) 
call for work that elaborates further what Vygotsky (1978) labelled “internalization” 
of knowledge by individual learners.

Bradford and Brown (2005) deploy a poignant metaphor – paraphrasing the 
famous painting by Magritte, which depicts a smoker’s pipe with the caption “Ceci 
n’est pas une pipe” – in order to remind us that what we see in a circle drawn on a 
piece of paper is not a circle but a drawing of a circle. They then discuss the syntactic 
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filters and sociocultural factors that condition our perception of mathematical 
concepts.

Power within the group dynamics of a learning environment is amongst the 
most significant sociocultural factors that shape our engagement with mathematics 
(Barnes 2005). Barnes analysed the enactment of power during group discussions 
in high school mathematics. The class presented in the study was working on 
introductory calculus using a collaborative learning approach. In analysing a group 
discussion, Barnes first traces the flow of ideas, looking at when and by whom a 
new idea was introduced, and how others responded. She then divides the transcript 
of the conversation into what she terms “negotiative events” and examines how 
transitions from one event to the next come about. Her examination is driven by 
sociocultural constructs by Davydov (1995) and Lerman (2001) – and she concludes 
that the negotiations of mathematical meaning that she observed were driven by 
learners in a position of power not always determined by these learners’ hitherto 
perceived mathematical capabilities.

Gorgorió and Planas (2005) start from the constructs ‘cultural scripts’ and ‘social 
representations’, and, on the basis of their empirical research, they revisit the 
construct of ‘norms’ (Cobb & Yackel, 1996) from a sociocultural perspective and 
propose that norms, both sociomathematical norms and norms of the mathematical 
practice, as cultural scripts influenced by social representations, mediate the learning 
of mathematics in multicultural classrooms. When taking into account the particular 
circumstances in which mediation occurs, they then claim, there is a need for a move 
from a cultural perspective to a broader sociocultural one.

Graves and Suurtamm (2006) bring together research into the fundamental 
question “What is mind?” that examines the relation between culture and cognition. 
This research, their account says, talks about the social mind, the discursive mind, 
mind as action, and the collective mind. Their research draws on complexity theory 
(Davis, 2004: Davis & Simmt, 2003; Maturana & Varela, 1987) and sociocultural 
theory (Bakhtin, 1986; Foreman, 2003; Vygotsky, 1986) to investigate how learning 
collectives evolve and are understood from the perspectives of multiple participants. 
They focus particularly on examples from their work with beginning teachers.

Hunter (2007) focuses on the challenges faced by teachers who aspire to develop 
discourse communities in which the students learn to construct and evaluate 
mathematical meaning – in her case, the focus is on the construction of mathematical 
arguments – collectively. Her paper examines the interactional strategies used by 
a teacher to constitute a classroom context in which the students participated in 
the discourse of collective argumentation. She reports the way the teacher used 
student explanations as the foundations for building justification and validation of 
reasoning. In a subsequent report from this study Hunter (2008) provides descriptions 
of the interactional strategies four teachers used which gradually scaffolded 
student use of more complex questions and prompts. Hunter reports the way the 
students appropriated the teachers’ models of questions and prompts – and used 
them to engage in exploratory talk (Mercer, 2000) and to develop rich explanatory 
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justification and generalisations. The theoretical framework of this study is derived 
from a sociocultural perspective. An analogous focus can be found in Tsai’s (2007) 
study of classroom discourse, again from the perspective brought together by Paul 
Cobb and Erna Yackel (e.g. 1996).

Zahner, Moschkovich and Ball (2008) build on previous work on student 
interpretations of graphs and use a sociocultural perspective on mathematical 
reasoning to describe how four pairs of eighth-grade students interpreted horizontal 
segments on a distance versus time graph using a story about a bicycle trip.

Following the strand of work within mathematics education that gave us studies 
of ethnomathematics, everyday mathematics, situated cognition and workplace 
mathematics, Naresh and Presmeg (2008) focused on the nature of workplace 
mathematics, through the case study of a bus conductor in India. The general 
aim of their study is to develop a better understanding of the mathematics used 
in said workplace, both from the perspective of the workplace practitioner himself 
as well as that of the researchers. Likewise, Amit and Gurion (2015), showed that 
ethnomathematics can change students’ attitudes to culture of their and the tribe’s 
older generation (see also the Chinese research of mathematical effectiveness in 
Zhang & Seah, 2015).

Radford (2008) deals with students’ transformation of meanings related to their 
understanding of Cartesian graphs in the context of a problem of relative motion. 
The investigation of the students’ transformation of meanings is carried out in the 
course of a process that he terms objectification, i.e., a social process related to 
the manner in which students become progressively conversant, through personal 
deeds and interpretations, with the cultural logic of mathematical entities. Radford 
provides a multisemiotic analysis of the work done by one Grade 10 group of 
students and their teacher, and tracks the evolution of meanings through an intense 
activity mediated by multiple voices, gestures and mathematical signs. His study 
draws on a Vygotskian sociocultural perspective in which mathematical thinking 
is considered a cultural and historically constituted form of reflection and action, 
embedded in social praxis and mediated by language, interaction, signs and artefacts 
(Radford, 2006). Of particular interest here is Radford’s treatment of meaning 
making as heteroglossic transformation. We return to Radford’s seminal work also in 
the following section of this chapter (on semiotic and embodied approaches) as well 
as other works (e.g. Berger, 2015) that deploy a fusion of sociocultural and semiotic 
approaches to substantial effect.

Rivera and Becker (2008) draw on data obtained over three years to address 
how shared content and understanding of generalization emerged and evolved in 
a middle school class using a socially shared symbolic system in a community of 
minds framework.

Dooley (2009) also focuses on the emergence of generalization in the context of 
a primary classroom. Taking a sociocultural perspective, and treading beyond the 
common – and often superficial – pattern seeking type of activity that can be found 
in primary classrooms, Dooley describes a whole class discussion that shows that 
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generalization and justification are closely aligned. She concludes from this that 
there is a need for teachers to press for justification and for students to attend to 
the functional relationship between variables rather than pattern finding in single 
variable data.

Goos (2012) sketches out two theoretical frameworks for understanding 
mathematical learning. One framework extends Valsiner’s zone theory of child 
development (1987), and the other draws on Wenger’s (1998) ideas about 
communities of practice. Her aim is to suggest how these two frameworks might help 
us understand the learning of others who have an interest in mathematics education, 
such as teacher educators and mathematicians.

Andersson and Seah (2012) present the mathematics learning story of a student 
named Sandra to demonstrate how a student’s engagement changes with the learning 
contexts, via the identity narratives which are told with reference to different levels 
of contexts in and outside the mathematics classroom. Data were collected from a 
survey, interviews, spontaneous conversations, students’ blogs and project logbooks. 
Changes in identity narratives and engagement appeared to be rooted in the relatively 
stable valuing of achievement, explanation, application and sharing. The extent to 
which Sandra’s valuing was aligned with these facilitates our understanding of the 
complex interplay amongst context, valuing and agency. That is, sociocultural and 
personal valuing, and the extent to which these are aligned, promise to regulate and 
explain the role of learning contexts in student agency, including engagement and 
hence learning. In this vein Radford (2014) argues that, in joint labour, teaching and 
learning are fused into a single process: the process of teaching-learning—one for 
which Vygotsky used the Russian word obuchenie. Teachers and students therefore 
“are simultaneously teachers and students” (Freire, 2005, p. 76).

Clarke, Strømskag, Johnson, Bikner-Ahsbahs and Gardner (2014) refer to Rezat 
and Strässer (2012) who identify the students’ mathematics-related activity as an 
example of the Vygotskian conception of an instrumental act, where the student’s 
interaction with mathematics is mediated by artefacts, such as mathematical tasks. 
Most importantly, recognizing the function of mathematical tasks as tools for the 
facilitation of student learning leads us to the further recognition that (à la Vygotsky) 
the use of a tool (i.e. a task) fundamentally affects the nature of the facilitated activity 
(i.e. student learning). Rezat and Strässer (2012) have re-conceptualized the familiar 
didactical triangle (teacher-student-mathematics) as a socio-didactical tetrahedron, 
where the vertices are teacher, student, mathematics and mediating artefacts. This 
reconception of didactical relationships recognizes that the connections represented 
by the sides of the original didactical triangle require mediation. The vehicles of 
this mediation are artefacts, which include everything from textbooks and IT tools 
to tasks and language. Use of the socio-didactical tetrahedron provides us with an 
important tool by which to give recognition to the mediational role of tasks in the 
teaching and learning of mathematics.

One virtue of the socio-didactical tetrahedron is that it facilitates the separate 
consideration of the triangles forming each face of the tetrahedron and the vertices of 
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each of those triangles. Where Clarke et al. (2014) focus is on the task as mediating 
artefact and address the question of how the resultant socio-didactical tetrahedron 
might structure our consideration of research into the function of tasks in facilitating 
student learning and into the dynamic between student and task.

To paraphrase Rezat and Strässer (2012, p. 645): each of the triangular faces 
of the tetrahedron stands for a particular perspective on the role of tasks within 
mathematics education: the didactical role of the teacher is best described as an 
orchestrator of student mathematical activity as represented by the triangle teacher-
task-student (Face A); the triangle student-task-mathematics represents the student’s 
task-mediated activity of learning mathematics (Face B); the triangle teacher-task-
mathematics depicts the teacher’s task-mediated activity of representing mathematics 
in an instructional setting (Face C); the original didactical triangle constitutes the 
base of the model (i.e. student-teacher-mathematics) (Face D). The tetrahedral 
structure offers an important representation of the complexity of classroom teaching/
learning that affords a level of detailed reflection on the didactical role of tasks. In 
utilizing this more complex conception of the instructional use of mathematical tasks, 
significant agency is accorded to each component (student, teacher, mathematics and 
task) in the determination of the actions and outcomes that find their nexus in the 
social situation for which the task provides the pretext.

Clarke et al.’s (p. 138) use of the socio-didactical tetrahedron puts forward a 
‘Vygotskian conception of the process of mathematical learning and the role of 
instructional tasks in facilitating this learning process’. They argue that recognizing 
the function of mathematical tasks as tools for the facilitation of student learning 
leads us to the further – and useful – recognition that the use of a tool (i.e. a task) 
fundamentally affects the nature of the facilitated activity (i.e. student learning). We 
see this work as a demonstration of how researchers have been coming together to 
issues concerning conceptual development from several perspectives. Here these 
perspectives are: phenomenographic approaches capturing the reflexive connection 
between the teacher’s use of tasks and the students’ conceptions of those tasks and 
according significance to student intellectual agency; and, didactique (Brousseau, 
1997) approaches highlighting the role of task in creating a milieu.

Douek (2014) takes a Vygotskian didactical perspective, conceiving teaching-
learning as a dialectical construction of “scientific concepts” in relation to 
“everyday concepts”. Among every day concepts here Douek includes spontaneous 
individual practices and scientific conceptualization is characterized by conscious 
management of concepts, their properties and related practices on a general level. 
This perspective implies the gradual construction of class references through 
cycles of individual production, negotiated and then synthetized with the teacher’s 
guidance. For scientific conceptualization argumentation is a means and an aim, 
as it is involved in proving and conjecturing. Douek outlines direct implications 
of a Vygotskian perspective on classroom discourse particularly in relation to 
developing scientific conceptualization and argumentation. These are the five 
implications she lists:
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“(1) introduce students to cultural interest for finding reasons that have a 
theoretical relevance and/or can be shared as valid references; (2) make them 
aware that reasons can be various, not all based on the class references, and 
understand the relations between those and the specific references related 
to everyday concepts; (3) develop attention and concern for interaction and 
ability to adequately express one’s views in a given socio-cultural context; 
(4) develop consciousness of one own’s positioning and a critical attention to 
it; (5) establish mathematical references collectively—theoretical knowledge 
and practices—under teacher’s guidance, built upon various sources, including 
students’ contributions and cultural experience”. (p. 210)

Adler and Ronda (2014) illustrate an analytic framework for teachers’ mathematics 
discourse in instruction (MDI). MDI is built on three interacting components of a 
mathematics lesson: a sequence of examples and related tasks; accompanying talk; 
patterns of interaction. Together these illuminate what is made available to learn. 
MDI is grounded empirically in mathematics teaching practices in South Africa, and 
theoretically in socio-cultural theoretical resources. The framework is responsive 
to the goals of a particular research and professional development project with 
potential for wider use.

Alsalim (2014) refers to the social approach of research in mathematics education 
as promoting the notion that practice is not only a personal individual matter but 
situated in the social and cultural context. The Patterns of Participation (PoP) construct 
put forward here serves the purpose of exploring this situating, understanding the 
relationships between teachers’ practice and social factors. In this sense PoP is a 
paradigmatic example of recent PME research which adopts participationism as a 
metaphor for learning as driven by the work of Vygotsky (1978), Lave and Wenger 
(1991), and Sfard (2008).

Anderson and Anderson (2014) note that research on mathematics found 
in ‘everyday’ interactions (e.g., Walkerdine, 1988) often relies on analysis of 
parent-child talk during studies of social interactions and/or literacy events more 
generally. In contrast, from the outset of the current study, parents were aware that 
mathematics was the focus of study and that each of them would determine the 
activities to be video-taped in their home. They report the types of activities six 
middle class mothers perceived as opportunities to engage their preschool child 
with mathematics. Analysis also included the patterns found within and across 
families. Overall, the mothers documented play-based events, many of which were 
common across four or more homes and entailed ‘less conventional’ mathematics. 
Parental styles of mathematical engagement are discussed. This study, as many 
of those we review in this section is informed by socio-historical theory (e.g. 
Vygotsky, 1978; Wertsch, 1998) and the notion that learning is social, as well as 
individual. Children learn to use the “cultural tools” such as mathematics of their 
community and culture inter-psychologically as they are guided and supported 
by parents and significant other people. As they practice using these “tools” and 



A. GAGATSIS & E. NARDI

200

support is gradually withdrawn, children learn to use them intra-psychologically or 
independently.

Another typically Vygotskian construct, introduced by Barabash, Guberman and 
Mandler (2014), is implementation ability (IA), by which they mean the ability of 
a person to apply the recently acquired piece of mathematical knowledge, provided 
this piece is in his or her mathematical Zone of Proximal Development (ZPD) 
(Vygotsky, 1978). The implementation is expected to occur in the “neighborhood” 
of a learning issue in question – and, “the farther” within this “neighbourhood” a 
learner treads, “the better” (p. 95). In this vein Abtahi (2015) supports that the ZPD 
emerges as children participate in collective interactions with mathematical tools 
that involve the use of guidance provided by the physical properties of the tools in 
the process of solving problems.

The intensified focus on context – amply demonstrated in the samples of PME 
research presented in this section so far – has often implied a focus on communication 
and language. In other words, examination of learning in recent years has become 
increasingly discursive (Nardi, 2005).

Conceptual Development as a Discursive Shift

Much like the sociocultural approaches described in this section so far, discursive 
approaches to research in mathematics education are described as ‘participationist’ 
and are typically juxtaposed to those labelled ‘acquisitionist’ (Kieran, Forman, & 
Sfard, 2002) which, have often come into question on methodological and 
epistemological grounds (Sriraman & Nardi, 2013): clinical-experimental methods 
can be remote from where learning occurs; and, learning is not context invariant 
and universal. As Kieran et al. (2002) note, discursive perspectives aim to bridge 
individual and social dimensions of learning, espouse the sociocultural tenet that 
learning occurs in, and is co-constituted by, the situational, cultural and historical 
milieu – and emphasise human thinking as a type of communication. Within 
mathematics education discursive approaches have risen fast in recent years as 
Ryve’s (2011) review of 108 papers amply demonstrates. One discursive approach 
that has come into full display and substantial deployment in recent years is Sfard’s 
(2008) commognitive approach.

Roux and Adler (2012) indicate that first-year undergraduate student action is 
a complex interplay of the ways of talking about and looking at the mathematical 
objects, together with discursive, social and political ways of acting in the classroom. 
Additionally, Heyd-Metzuyanim’s (2013) research included seventh grade students 
and the results of the study indicate that a conceptual division is made between 
mathematizing (talking about mathematical objects) and subjectifying (talking about 
the participants of the discourse). This division forms the basis of an operational 
set of discursive categorizations for “identifying” activity, enabling the extraction 
of identity narratives from spontaneous interactions in class (see also, Nachlieli, 
Heyd-Metzuyanim, & Tabach, 2013). Shinno (2013) suggests that the change of 
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meta-discursive rule in a ninth grade classroom, which is an essential aspect of the 
reification of a new signifier, is inevitable for the transition from the template-driven 
use of signifier to the objectified use of symbol. Further Gholamazad (2007) examined 
pre-service elementary school teachers’ methods of proving and demonstrated that 
proving through writing a dialogue can involve students in the process of creating 
a mathematical proof effectively (see also, Wille, 2011 on 11 years old students). 
This finding is in line with Knott, Olson and Currie’s (2009) discursive approach to 
exploring the influence of an instructor’s discursive practice on student learning (see 
also, Knott, 2010).

Bardelle (2013) – building on earlier work (2009) which investigated the role 
of graphs in the conceptualization of the derivative of real valued, differentiable 
functions and identified a lack of coordination of the semiotic systems involved 
in the representation of derivatives and in particular the occurrence of pragmatic 
aspects related to the use of graphs – in her study of Italian science undergraduates 
showed that “implicatures” occurring in everyday communication heavily affect 
the interpretation of a variety of sentences (see also, Sánchez & García, 2011; 
Morgan & Tang, 2012). In this vein, Ingram (2009) studied 13–15 year-old students 
and revealed that students engage in mathematics when their perceptions of what 
they want to achieve have not yet been realized and these perceptions are affected 
by students’ views about mathematics, the context of the moment and the students’ 
feelings about being able to do mathematics.

Several studies have deployed Sfard’s theory in the context of conceptual 
development within geometry. Ng and Sinclair (2013) suggest that kindergarten 
student’ use gestures as multi-modal resources to communicate temporal 
relationships about spatial transformations. In the same age range Sinclair and 
Kaur (2011) examine the effect of the use of dynamic geometry environments on 
children’s thinking and offer evidence of how dynamic environments can facilitate 
the growth of more sophisticated mathematical discourse (see also, Kaur & Sinclair, 
2014). Ng (2014) investigates secondary students’ reliance on gestures and dragging 
as multimodal resources to communicate about dynamic aspects of calculus. We 
note here that these studies take a commognitive as well as semiotic perspective and 
we return to the latter in the following section of this chapter.

Hino and Koizumi (2014) explore how sixth-grade students’ attention is brought 
to new mathematical content in whole-class interaction. They analyse the progression 
of social interaction in terms of how different foci were presented, problematized, 
or modified in the context of studying constancy of proportion. The results show 
that the children’s vague attention to the constant number was questioned and made 
an object of examination. The children’s attention was then carefully controlled by 
involving them in building new perspectives, which became the basis for meaning 
making about the constancy of proportion. Teaching actions that make this happen 
are also the focus here. In a tertiary level context, Jayakody (2014) studied first 
year university students’ conflicts between different ‘realizations’ of the concept 
of ‘continuous function’. Her study explains how these conflicting realizations 
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have arisen from the inconsistent definitions presented in textbooks and other 
mathematical resources. This study also points to the need of elaborating further 
the notion of “commognitive conflict”. An example of recent work that engages 
with this aim is the study by Kim and Kwon (2015) who conduct a commognitive 
analysis of students’ progressive mathematisation (from situational to referential 
and then formal levels) when they resolve commognitive conflicts about conditional 
probability through storytelling.

In looking forward we see broadening the scope of the commognitive approach – 
as well as more broadly the variations of the study of discourses that have risen in 
recent PME studies – and linking it with other sociocultural approaches as a task to 
be taken up from now onwards. Commognitive analyses generate ‘mathematically 
rich accounts of data’ (Sriraman & Nardi, 2013, p. 326) – see the Research Cases 
presented in (Nardi, Ryve, Stadler, & Viirman, 2014) as examples. In our view these 
examples merely scratch the surface of the potentialities within the commognitive 
framework. The framework reveals the many and varied facets of participation in 
discourse ‘without requiring us to reduce the complexity of the social and semantic 
interrelationships’ (Stahl, 2009, p. 4) that govern this participation. We agree with 
Stahl that ‘Sfard has done us the great service of bringing the “linguistic turn” of 
twentieth century philosophy (notably Wittgenstein) into twenty-first century 
learning science’ (p. 5).

So far the bulk of commognitive analyses ‘are confined to brief dyadic interchanges 
or even utterances by one student’ (p. 7) – or lecturer, or a combination of both. The 
unit of commognitive analysis can certainly ‘be scaled up’ (p. 7) and can encompass 
the consideration of ‘physical environment, history, culture, social institutions, 
power relationships, motivational influences and collective rememberings’ (p. 7). 
What Jablonka and Bergsten (2010) describe as the “social brand” of approaches to 
research in mathematics education – such as Communities of Practice and Inquiry 
and Activity Theory – identify these as ‘the web of agency’ (p. 7) and the elaborate, 
mathematically intricate detail of the commognitive framework (Yackel, 2009) – its 
expansive and precise ‘grammar’ (Sriraman, 2009) – can assuredly strengthen our 
systematic inquiry into this web.

Coming back to the observation by Lerman (2006) on the rising importance of 
studies of identity, we see this discursive approach as having much to offer in this 
respect. As Sfard (2008) notes, there is a need for a ‘commognitive operationalization 
of the notion of identity and the systematic study of the processes of subjectification’ 
(p. 293). We agree with her and with the numerous reviewers of her work (Walker-
Johnson, 2009; Lemke, 2009; Felton & Nathan, 2009; Cobb, 2009; Wing, 2011) 
who make a similar point. As Cobb (2009) notes, the commognitive framework has 
the capacity to attend to ‘the macro-level of historically established mathematical 
discourse, the meso-level of local discourse practices jointly established by the 
teacher and students […] and the micro-level of individual students’ developing 
mathematical discourses’ (p. 207). For example, her construct of learning-teaching 
agreement can be seen as a variant of Brousseau’s didactic contract, or ‘systems 
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of reciprocal obligations’ (Sfard, 2008, p. 283). Sfard’s model of teaching is also 
‘broadly compatible with Lave and Wenger’s (1991) notion of legitimate peripheral 
participation’ (Cobb, 2009, p. 209). We also agree with the now widespread 
appreciation of ‘the essential pragmatism of Sfard’s approach’ (Wing, 2011, p. 364) 
and, are optimistic about the growth of its capacity in the light of the PME works 
reviewed here. The fact that it is becoming more broadly deployed in studies of 
mathematical reasoning in distinctly different and under-studied social and cultural 
contexts – Morris’ (2014) South Pacific context of study is an example – adds 
evidence to this promise.

A very pronounced emphasis in the papers we review in this section is on 
communication and on our ways of mediating meaning. It is far from surprising then 
that a major focus of works within PME in the last 10 years has been on the semiotics 
of mathematical meaning making, including gestures. We now turn to a review of the 
approaches taken in these studies.

SEMIOTIC AND EMBODIED APPROACHES TO CONCEPTUAL DEVELOPMENT

In this section we focus on the contribution of semiotics to concept learning and 
development as it is reflected in the PME proceedings of this decade. Mathematics 
is a human activity that is carried out by means of signs since mathematical 
objects cannot be accessed and apprehended directly through the senses (Duval, 
2007; Presmeg, 2006). This means that mathematics and its teaching and learning 
is an inherently semiotic activity. Mathematical signs mediate two processes: the 
development of a mathematical concept in the individual and that individual’s 
interaction with the already codified and socially sanctioned mathematical world. 
In this way, the individual’s mathematical knowledge is both cognitively and 
socially constituted (Radford, 2000; Berger, 2005). In line with this view, Ernest 
(2006) suggests that semiotics can offer a synthesis of the cognitive nature of 
mathematical activity and also of its social aspects. The seminal work of Radford 
and Arzarello on semiotics, which will be discussed more extensively below, has 
shown that semiotics is a powerful tool which can help us understand how people 
think, symbolize and communicate in mathematics (e.g., Arzarello, 2006; Radford, 
Schubring, & Seeger, 2008). Peirce (1931, 1958) defines sign, or representamen, as 
“something which stands to somebody for something in some respect or capacity. 
It addresses somebody, that is, creates in the mind of that person an equivalent, its 
object. It stands for that object, not in all respects, but in reference to a sort of idea.”

In the learning and teaching of mathematical concepts a wide range of semiotic 
resources are activated, including written numbers and equations, drawings of graphs 
and geometrical figures, bodily movements, gestures and various representations 
in computer environments (Sabena, 2008; Radford, 2009a). Radford (2003, 2008) 
claims that mathematical activity includes a set of semiotic resources (mediation), 
named as semiotic means of objectification, that direct individual’s intentional 
activates (reflexivity).
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Numerous PME studies in the last ten years investigated students’ and teachers’ 
conceptual development through a semiotic lens focusing on one or more of this array 
of signs. Considering the specificities of the nature, use and influence of different 
types of signs in mathematical activity, we aim to gain a better understanding of 
the role the semiotic resources play in the teaching, learning and development of 
mathematical concepts, by reviewing two research themes (or directions) based on 
the type of mathematics-related representations these studies have as a focus: a) 
semiotic representations and b) embodied actions with a focus on gestures.

a) The Role of Semiotic Representations in the Development of 
Mathematical Concepts

Initially, it is important to define the term “semiotic approach”. Mathematical 
objects are not accessible by themselves but they require representations in suitable 
registers: “the only way to have access to them and deal with them is using signs and 
semiotic representations” (Duval, 2006, p. 107). In agreement with Duval’s theory, 
the development of mathematical understanding is relative to the use of different 
semiotic representations of the mathematical objects being studied in order for the 
learner to distinguish any mathematical object from its representation. Thus the term 
“semiotic representations” in this section refers to mental productions or externally 
presented inscriptions in oral or written/visual form, or in computer environments 
(Duval, 2006; see also Pino-Fan, Guzmán, Duval, & Font, 2015).

According to Duval’s theory (Duval, 1995, 2009) which is used in numerous 
studies (e.g. Andrài & Santi, 2011; González-Martín, Giraldo, & Souto, 2011; 
Tatsis & Moutsios-Rentzos, 2013), mathematical thinking and learning seems as a 
coordination of semiotic systems according to the following operations: treatment 
(transforming a representation into another one within the same semiotic system), 
and conversion (transforming a representation into another one, in another semiotic 
system).

Many studies were conducted based on a Peircean model (e.g. Arzarello, Ferrara, 
Paola, Robutti, & Sabena, 2005; Presmeg, 2006). However in terms of Ernest’s 
(2005) semiotic processes, numerous researchers (e.g. Berger, 2008) argued that 
mathematics consists of three components: sets of signs which may be written, or 
uttered, or encoded electronically.

Framed within the Theory of Semiotics, several studies (e.g. Martignone, 
2011; Olive, 2011; Mariotti, 2012; Chan, 2012; Maffei & Mariotti, 2013; Samper, 
Camargo, Molina, & Perry, 2013; Swidan & Yerushalmy, 2013) adopt the term 
of semiotic mediation and stressed that in a semiotic framework the teacher’s 
main roles are the following: to develop suitable tasks; to make the condition 
for polyphony, eliciting the polysemic property of the artefact; to guide the 
transformation of situated “texts” (signs) into mathematical “texts”. In this way the 
teacher mediates mathematical meanings, through the artefact as a tool of semiotic 
mediation (Bartolini Bussi, 2009).
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The use of multiple representations and their interconnections in mathematics 
education have long been acknowledged (see Benke, 2006; Leung & Wang, 2006; 
Lin, 2008; Dreher, Winkel, & Kuntze, 2012). The National Council of Teachers 
of Mathematics (NCTM) reinforces this belief: “Different representations support 
different ways of thinking about and manipulating mathematical objects. An object 
can be better understood when viewed through multiple lenses” (2000, p. 360). 
Barmby, Harries, Higgins and Suggate (2007) argue that extensive links between 
external representations imply a more developed network of internal representations 
(see also Shvarts & Chumachenko, 2011). Warner (2005) add that connecting 
contexts and linking multiple representations for the same idea, is associated to 
better understanding of the mathematical context (see Triantafillou & Potari, 2009; 
and also, Yamada, 2012).

Numerous studies explore the role of multiple representations in the development 
of different mathematical concepts, showing that linking between multiple semiotic 
representations can lead to multiple mathematical and real-world meanings (Amato, 
2005; Bardini & Stacey, 2006; Triantafillou & Potari, 2008; Van Dooren, De Bock, & 
Verschaffel, 2012a). Furthermore, research on teachers’ views about the use of 
multiple representations showed that there is a common lack of awareness regarding 
reasons for emphasizing multiple representations and their interrelations (Amit & 
Fried, 2005; Dreher, Kuntze, & Lerman, 2012) and that the choice of representations 
could be influenced by teachers’ lack of subject knowledge and limitations in 
teachers’ use of representations (Barmby & Milinkovic, 2011). What is more, Kertil, 
Delice and Aydin (2009) revealed that pre-service teachers had difficulties in the 
transition between different modes of representations and therefore in modeling 
process. Stylianou (2008) suggested that teachers should be explicitly aware of 
the purposes of a representation they use and, further, should make the students 
explicitly aware of this (see also, Izsák, Caglayan, & Olive, 2009; Henriques, 2010; 
Milinković, 2012).

In this vein, a line of research provided empirical evidence for the tenability 
of a theoretically-driven framework of representational flexibility. The study of 
Delice and Korkmaz (2009) showed that students had difficulties in writing down 
as representations the sets they described orally with mathematical language, thus 
representational flexibility was deficient. Gagatsis and Monoyiou (2011) confirmed 
a model for the structure of the understanding of the concept of functions related 
to multiple representational flexibility and problem solving ability and investigated 
its stability across pre-service teachers from two countries (Cyprus and Italy). 
Nevertheless, Presmeg and Nenduradu (2005) found that fluency of conversion 
among representational registers was not a sufficient criterion for inferring a 
robust, relational grasp of the mathematical concepts involved (see also, Verhoef & 
Broekman, 2005). Rossi Becker and Rivera (2005) showed that students who used 
pragmatic generalization employed both numerical and figural strategies and were 
representationally fluent; that is, they saw sequences of numbers as consisting of 
both properties and relationships (similar results are proposed by McNab, 2006; 
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Borba, Barreto, & Azevedo, 2012). Mulligan, Mitchelmore and Prescott (2005) 
found that children’s perception and representation of mathematical structure 
generalized across a range of mathematical content domains and contexts. They 
added that representations over time became more complex with configurations 
and characters of the child’s earlier ‘system’ used inappropriately. Relying on the 
developmental stages of Mitchelmore, Wu, Ma and Chen (2006) elementary students 
with higher Van Hiele levels of geometric thinking were classified into higher stages 
of the representation of five simple regular space figures (see also, a pattern research 
by Michael, Elia, Gagatsis, Theoklitou, & Savva, 2006).

Representational flexibility was examined also in the concepts of fraction 
and decimal number addition (Deliyianni, Gagatsis, Elia, & Panaoura, 2015; see 
also, Deliyianni, Panaoura, Elia, & Gagatsis, 2008; Deliyianni, Elia, Panaoura, & 
Gagatsis, 2009; Panaoura, Gagatsis, Deliyianni, & Elia, 2009). This type of 
flexibility was defined as the ability to handle within-representation transformations 
(intra-representation flexibility), that is, treatment, and between-representation 
transformations (inter-representation flexibility), that is recognition and conversion, 
of the same mathematical object. This triad of representational transformation 
competences (recognition, treatments, conversion) is of great significance in the 
learning and development of any mathematical concept. Taking a developmental 
perspective, Deliyianni and Gagatsis (2013) used dynamic modelling to show that 
there is a strong interrelation between representational flexibility and problem 
solving in fraction addition. Further research studies were developed examining 
fraction’s representations and mathematical concept development (e.g. Amato, 2005; 
Gabriel & Content, 2009; Deliyianni & Gagatsis, 2013; Deliyianni, Gagatsis, Elia, & 
Panaoura, 2015). What emerges from such studies is that the multi-representational 
presentation of the fraction addition process activated interconnected systems of 
coding information (Suh & Moyer-Packenham, 2007). Thus translating between the 
fraction representations and using mental models that appear to include a variety 
of interpretations of a fraction led students to a better understanding of the concept 
(Morrow-Leong, 2014). Furthermore, particular kinds of pictorial representations 
were found to help students overcome the epistemological obstacle related to fraction 
division (Kalogirou, Gagatsis, Michael, & Deliyianni, 2010).

Izsák (2006) explored teachers’ knowledge when using linear and area 
representations to teach fraction arithmetic for the first time. The researcher 
suggested that the role of representation in teaching mathematics needs to be used 
in ways that promote sense making. Moreover, Charalambous (2007) indicated that 
capitalizing on the affordances that several representational models offer, such as 
the number line, teachers might better scaffold students’ construction of the concept 
of fractions. However, Dreher and Kuntze (2015) found that most teachers focused 
only on a few core aspects of fractions and suggested interrelations with more 
global views.

In a report on an analysis of the treatment of addition and subtraction of fractions in 
elementary mathematics textbooks used in Cyprus, Ireland, and Taiwan it was found 
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that the Taiwanese textbooks employ a greater variety of representations compared to 
the Cypriot and Irish textbooks; they use a greater variety of representations (linear, 
area, volumetric, and discrete sets representations), which is considered critical for 
supporting students’ understanding of rational numbers (Delaney, Charalambous, 
Hsu, & Mesa, 2007). What is more, Berger (2015) pointed out that in a typical 
textbook the usage of signs with mathematical meaning combined with everyday 
concepts is a necessary ingredient of learning.

The connection between using representations and problem solving in different 
mathematical content strands was the object of investigation by various PME 
studies. Besides representational flexibility, an additional core component of 
students’ representational thinking of the mathematical notions of fraction and 
decimal number addition, is problem-solving ability (Deliyianni et al., 2015). This 
is also the case for the understanding of the concept of functions. Confirmatory 
factor analysis in the study of Gagatsis and Monoyiou (2011) revealed that multiple 
representational flexibility and problem solving ability are both dimensions of the 
conceptual understanding of functions, with this structure remaining invariant across 
Cyprus and Italy (see also, Monoyiou & Gagatsis, 2010).

Research conducted by Sevimli and Delice (2011) indicated that teacher 
trainees lacked sufficient levels of representation awareness in the process of 
solving definite integral problems. Similar results were shown in Dindyal’s (2005) 
research with high school students using four different forms of representations 
(verbal, numerical, graphical, and symbolic) during problem solving which include 
algebraic thinking in geometry. In geometry it seems that visual elements have 
an effect on the students’ geometrical concept formation (see also, Haj Yahya & 
Hershkowitz, 2013). Additionally, Bayik and Argun (2011), support that students 
internal and external representations in the problem solving process of geometrical 
reasoning can reveal students’ understanding and difficulties about geometrical 
concepts. Students were able to separate each form of representation but they had 
difficulties switching from one form of representation to another and making links 
between parallel representations of the same concept (see also Leuders, Bruder, 
Wirtz, & Bayrhuber, 2009). In other words, as Guidoni, Iannece and Tortora (2005) 
emphasized, the most essential in problem solving and teaching mathematics is not 
in a standard hierarchy of multi-representations but is in a continuous shifting from 
one cognitive dimension to another in a mutual progressive enhancement (see also, 
Higgins, 2005). Furthermore, as Benko and Maher (2006) concluded, students built 
meaningful representations while working together on strands of problem tasks 
and specifically they used their representations to justify their solutions in order to 
make sense of the problems for themselves and to convince others (see also, San 
Diego, Aczel, Hodgson, & Scanlon, 2006). It is essential to note that, as Zodik and 
Zaslavsky (2007) argue, the specific choices of representation and diagram a teacher 
makes could reflect a pedagogical goal, such as maintaining the need to rely on the 
givens of the problem and not on the particularities of a specific visual representation 
(similar findings were detected in the study of Cayton & Brizuela’s, 2008).
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Research studies on the role of semiotic representations in mathematics learning 
were conducted also for young children (preschoolers and first grades of primary 
school). Selva, Da Rocha Falcão and Nunes (2005) provided empirical evidence for 
the importance of supplying diverse symbolic representations in order to support 
concept development in mathematics addition problems. Elia and Gagatsis (2006) 
explored the effects of two experimental programs on the development of arithmetic 
problem solving (APS) ability by 6–9 year-old pupils. The programs stimulated 
flexible interpretation and use of a plurality of semiotic representations in the 
context of APS with emphasis on a particular mode: informational picture or number 
line. An a priori model was validated for all the pupils, suggesting that different 
modes of representation of the problems significantly influence APS performance, 
irrespective of the kind of instruction they had received. What is more, Zigdon-
Mark and Tirosh (2006) found in their research that most children, both kindergarten 
children and first graders, regarded quantity as an essential characteristic of number 
representation (see also, Papandreou, 2009). Another study about kindergarten 
children by Kafoussi (2006) investigated the capabilities of kindergarten children to 
read visual representations of data in a problem situation. The results showed that 
more difficulties seemed to occur in the process of counting in the two-dimensional 
block graph as well as in the reading of the cyclic diagram. Droujkova (2005) 
focused on children of four to seven years of age working with table representations. 
Using tables in qualitative, additive and multiplicative worlds, children developed 
algebraic and multiplicative ideas such as covariation, binary operation, distribution, 
or commutativity.

A significant body of PME studies focused on the number line and the 
contribution of its use to learning in different mathematical content areas. Van 
den Heuvel-Panhuizen (2003) found that the form of a double number line “can 
function on different levels of understanding, and that it can keep pace with the 
long-term learning process that students have to pass through” (p. 30). In the same 
vein, Kuchemann, Hodgen and Brown (2011) argued that an understanding of 
the double number line model is important for helping students make a shift in 
understanding multiplication as scaling. Beck, Eames, Cullen, Barrett, Clements 
and Sarama (2014) suggested that there exists a link between children’s level of 
conceptual and procedural knowledge for length measurement and their ways of 
using the double number line representation when solving problems involving 
proportional reasoning.

However, Bruno and Cabrera (2006) in a study on textbooks demonstrated that the 
number line is mainly used when new number systems (whole, integer, rational or 
real numbers) are introduced, while it is less often connected with basic operations. 
Shiakalli and Gagatsis (2006) explored the difficulties that arise in the conversion 
from one mode of representation of the concepts of addition and subtraction to 
another, emphasizing number line representation. The results of the study showed 
that different types of conversions among representations of the same mathematical 
content were approached in a distinct way by students, indicating the existence of 
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the phenomenon of compartmentalization, i.e., deficiency in the coordination of at 
least two modes of representation of a concept.

Several research studies explored linear algebra (function) and the representations 
connected to them, as representational flexibility is a core component of developing 
understanding of the concepts in this mathematical topic. Amado, Carreira, Nobre 
and Ponte (2010) showed the key role of the representations that are used to solve 
a problem and how they are critical in the development of a sustainable process for 
informal learning of formal methods of solving systems of linear equations (see 
also, Dewolf, Van Dooren, Hermens, & Verschaffel, 2013). What is more, Greenes, 
Chang and Ben-Chaim (2007) suggested that in order to enable students to build deep 
and meaningful understanding of the key concepts of linearity, it is recommended 
that teachers use the spiral method and devote much more time to teaching and 
systematically reviewing concepts of slope, y-intercept and the connection between 
the algebraic and graphical representation of a line (see also Rojano & Perrusquía, 
2007; Caglayan & Olive, 2008; Schmitz & Eichler, 2013).

Stewart and Thomas (2007) confirmed that some students struggle with basic linear 
algebra concepts such as linear combination, span and subspace. Using embodied 
symbolic and formal experiences the researchers showed that students could obtain a 
better understanding of linear algebra concepts. Furthermore, Van Dooren, De Bock 
and Verschaffel, (2012b) investigated students’ conceptual understanding of linear 
functions and discovered that the most difficult representational connection was the 
one between a formula and a graph, and vice versa. Kaldrimidou, Moroglou and 
Tzekaki (2008) also found that students’ conceptions depend on the function’s mode 
of representation. Triantafillou, Spiliotopoulou and Potari (2013) revealed that the 
graphical representation of a function, conceptions and procedures used are related 
and when a function is represented numerically or algebraically, conceptions and 
procedures are not related (see also Kaldrimidou & Moroglou, 2009).

During teaching linear relations Huang and Cai (2007) found that a U.S. teacher 
tried to treat all four representations (graphic, symbolic, verbal and numerical) 
equally and develop them simultaneously through different activities, while a Chinese 
teacher paid more attention to developing symbolic and graphic representations 
by treating numerical and tabular representations as tools for developing other 
representations (see also González-Martín, Giraldo, & Souto, 2011 about Brazilian 
public textbooks). However, teachers in Indigenous Australian and multi-cultural 
schools appeared to rely heavily upon a literacy approach to mathematics instruction, 
rather than a focus upon using rich mathematical representations to model concepts 
(McDonald, Warren, & de Vries, 2011).

The use of dynamic environments is also closely related to representations. 
There is a great number of publications regarding the use of such environments 
by teachers and students or relating these environments with representational 
flexibility. Different researchers have examined the role of a dynamic environment of 
representation (ICT impact) in the development of different mathematical concepts. 
Many researchers studied students’ behaviour when using different representations 
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of functions when they work with dynamic software (Canavarro & Gafanhoto, 2012; 
Lowrie & Diezmann, 2005; Ku & Aspinwall, 2007; Beatty, Brune, & McPherson, 
2011; Fernandes & Healy, 2014). Numerous studies also found regarding the use of 
dynamic environments in problem solving (Maher & Gjone, 2006; Santana, 2008; 
González-Martín, Hitt, & Morasse, 2008), indicating their positive effect on the 
students’ understanding of problems. We invite the reader to see a detailed review of 
studies of the role dynamic environments elsewhere in this handbook.

Although the discussion of semiotic representations in mathematics learning 
and development originated earlier than the past ten years, our review here 
suggests that it still receives much attention and it will probably remain the focus 
of a major body of research in the next years, because mathematical information 
is conceptualized and communicated through semiotic representations, which 
are written in books, students’ and teachers’ notes, or on computer screens. In a 
broader sense, embodied actions, including gestures, constitute also an important 
component of the semiotic approach to mathematics learning, which has received 
much attention in studies carried out under newer paradigms, as it will be discussed 
in what follows.

b) The Role of Gestures in the Development of Mathematical Concepts

A semiotic approach refers to representations which include not only written symbols, 
language or graphs, but also body movements, gestures and other types of signs 
(Radford, 2009a). By the term of “gestures” we mean the movements of the arms and 
hands that are produced in effortful cognitive activity, such as reasoning or problem 
solving (McNeill, 1992). McNeill (2005) proposes a dimensional framework for 
gestures, in which every gesture has a specific loading across the following four 
dimensions: deixis, iconicity, metaphoricity and temporal highlighting. Gestures 
can serve as a representational tool of various mathematical ideas through which 
children can get a deeper level of consciousness of their meaning. As McNeill (2005, 
p. 56) points out, to make a gesture “is to iconically materialize a meaning in actional 
and spatial form”.

Godino, Font and Batanero (2009) put forward what they call an integrative 
theoretical system for mathematics education: an onto-semiotic approach to 
mathematical knowledge and instruction. Their perspective aims to bring together 
institutional (sociocultural) and personal (psychological) viewpoints.

There is an established and increasing focus in mathematics education research 
concerned with gestures in mathematical situations and classrooms contexts. 
Numerous studies have been developed to explore the effect of gestures in the 
teaching and learning process in mathematics. Several research studies have 
occurred about the four dimensions of gestures. The gestures used in the study of 
Arzarello, Thomas, Coballis, Hamm, Iwabuchi, Lim, Phillips and Wilson (2009) 
appear iconic, but they can become metaphoric gestures in nature when presented in 
a mathematical context. Additionally, the case study of Yoon, Thomas and Dreyfus 
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(2009) showed that a virtual space gives an iconic gesture a metaphoric quality by 
conferring onto it a set of mathematical properties that enable it to be considered not 
simply an iconic shape, but a mathematical object in a mathematical space.

Healy and Fernandes (2008) examined the role of gestures for blind learners 
showing that iconic gestures may actually be more important to the blind people. 
Highfield and Mulligan (2009) observed 19 grade one children while programming 
a simple robotic toy (Beebot or Pro-bot) to solve a spatial mapping task. They 
classified most children’s gestures as ‘deictic’ and they were re-coded into four 
subcategories (discrete pointing, hand sliding, hand stepping and pointing with eyes 
or head). Similar findings were deduced by Ferrara and Nemirovsky (2005).

Gestures are considered as important components of the communication 
system, providing a tool to convey information (McNeill, 1992). Gesture, is 
a major component of the semiotic systems that teachers use in mathematics 
teaching (Arzarello, 2006; Radford, Edwards, & Arzarello, 2009; Williams, 2005). 
Specifically, gesture can be regarded as a semiotic resource that teachers use in 
building and improving mathematical notions (e.g., Bikner-Ahsbahs, Dreyfus, 
Kidron, Arzarello, Radford, Artigue, & Sabena, 2010; Robutti, Edwards, & Ferrara, 
2012). Arzarello, Thomas, Coballis, Hamm, Iwabuchi, Lim, Phillips and Wilson 
(2009) make a clear recommendation from their research that gestures could be 
usefully employed to assist in the teaching of mathematical subject matter. Certainly 
this study confirmed that teachers (and students) are able to understand the semantic 
meaning of the gestures they observe, and hence they are in a position to respond to 
them. Radford’s (2003, 2008) cultural-semiotic approach considers cognition as a 
reflexive mediated activity, of which a specific aspect is objectification. According 
to Radford cognition is a shared practice (activity) that involves the individual as a 
whole (both mind and body), as part of his socio-cultural contexts. Following the 
semiotic means that mediate activity, mathematical objects are layered in level of 
generality which Radford (2003) described as: a factual generalization, when the 
objectification of the general scheme is characterized by a perceptual/sensorimotor 
semiosis; a contextual generalization when the general scheme is objectified by more 
abstract semiotic means that, however, originated in/from the spatial and temporal 
context; and a symbolic generalization when the general scheme is objectified by 
symbolic language that is differed by a spatial-temporal dimension. The learner 
lives a desubjectification of meaning, namely a conflict with his spatial-temporal 
and sensorimotor experience.

Also, Radford (2009b) used another concept named semiotic node in order to 
analyze the students’ use of speech, gestures and actions in their meaning making 
processes. Specifically semiotic node is an attempt to theorize the relations between 
the semiotic systems in knowledge objectification. A semiotic node is a part of 
the students’ semiotic activity where action and diverse signs (e.g. gesture, word, 
formula) interplay in order to achieve knowledge objectification. Since knowledge 
objectification is a process of becoming aware of specified conceptual states of 
affairs, semiotic nodes are related to the developmental progress of becoming 
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conscious of something. They are associated with layers of objectification, which 
are mentioned above.

Gestures, glances, drawings, and other extra-linguistic modes of expression do not 
satisfy all the properties of such definitions, but they seem to be an integral aspect of 
the semiotic activities that could be observed in the classroom. To take into account 
all these phenomena within a semiotic perspective, an enlarged notion of semiotic 
system must be used, the semiotic bundle (Arzarello, 2006). The semiotic bundle 
includes all the signs that are produced simultaneously, by a student or a group of 
students who interact in order to solve a problem and/or discuss a mathematical 
question. This mechanism that teachers use in relation to the development of 
knowledge using the semiotic resources is called semiotic game. Specifically, the 
semiotic game takes place when teacher harmonizes with the semiotic resources 
produced by the students and then guides the development of knowledge according 
to these resources (Arzarello, 2006). In particular, the semiotic bundle does not only 
give attention to the signs at a certain moment (synchronic analysis), but also their 
evolution over time (diachronic analysis), in a dynamic way. With the diachronic 
analysis of the semiotic bundle, we can consider signs produced at different (close or 
far) times, transformed into other signs. The semiotic bundle thus allows us to analyze 
the multimodal semiotic activity of the subjects in a holistic manner, showing the 
dynamic evolution of signs over time. A multimodal approach includes ‘‘the range 
of cognitive, physical, and perceptual resources that people utilize when working 
with mathematical ideas’’ (Radford et al., 2009, p. 91; also see Elia, Evangelou, & 
Hadjittoouli, 2014). What is more, Warren, Miller and Cooper (2011) investigated 
how six grade 1 students grasp and express generalisations using Piagetian clinical 
interviews. The findings of their study suggested that the use of gestures (both by 
students and interviewers), self-talk (by students), and concrete acting out, assisted 
students to reach generalisations and to begin to express these generalisations in 
everyday language. Furthermore, as students gained more awareness of the structure 
of functions, their use of gestures and self-talk tended to decrease (see also Miller & 
Warren, 2015).

Arzarello and Sabena (2011) adopt another term in order to specify the way that 
students’ processes are managed and guided according to intertwined modalities of 
control, namely semiotic and theoretic control. The researchers speak of semiotic 
control “when the decisions concern mainly the selection and implementation of 
semiotic resources” (p. 191) and of theoretic control when the decisions concern 
mainly the selection and implementation of a more or less explicit theory or parts 
of it. For example, a semiotic control is necessary to choose a suitable semiotic 
representation for solving a task (e.g., an algebraic formula vs a Cartesian graph), 
while a theoretic control intervenes when a subject decides to use a theorem of 
calculus or of Euclidean geometry for supporting an argument (ibid.).

Edwards (2005, 2008) proposes that the framework of embodied cognition, 
and the tools of cognitive linguistics and gesture analysis can help us discover the 
ways that both novices and more experienced students build and conceptualize 
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mathematical ideas. In her research the question of how gestures evoke meaning is 
addressed within the context of two studies, one involving prospective elementary 
school teachers discussing fractions, and the other involving doctoral students in 
mathematics talking about and carrying out proofs. In both situations, gestures and 
their accompanying language are analyzed in terms of conceptual mappings from 
more basic conceptual spaces.

As was mentioned above, Arzarello (2006) proposes the concept of semiotic bundle 
that comprises of different types of semiotic resources that are used in mathematical 
activities. Sabena, Yoon, Arzarello, Dreyfus, Paola and Thomas (2009) attempt 
deepened the analysis of gestures within the semiotic bundle model by introducing 
a new construct: the virtual space of gestures. A virtual space of gestures is a space 
that is created by subjects through a set of gestures and the meanings associated with 
them. From a cognitive point of view, the virtual space endows the gesture space 
with a palpable structure.

Gestures may convey the same information as speech (Arzarello & Edwards, 
2005), thus reinforcing the speech meaning. It is important to point out that at 
PME29 (2005), a research forum was established (vol. 1, pp. 123–154) coordinated 
by Arzarello and Edwards, in order to investigate the role of gesture in the 
construction of mathematical meaning. The research forum included seven articles 
in which several dimensions of the subject were discussed. Specifically, Arzarello, 
Ferrara, Robutti, Paola and Sabena (2005) presented a case involving geometric 
visualization to illustrate a new theoretical framework for analyzing gesture and 
speech in mathematics learning environments.

Edwards (2005) in her article emphasized that the original narrative-based 
classification of gestures of McNeill should be adjusted for gestures used in 
mathematical discourse. Moving on, the research team of Arzarello, Ferrara, Robutti 
and Paola (2005) conducted a study about the genesis of signs by gestures, which 
are used as a communicating tool of the mathematical thinking during an activity 
of 3D geometry problem. The results showed that starting gestures have an iconic 
meaning in that their shape looks like their referents (the geometric solids they 
express), but they become indexes (in the sense of Peirce) in the communicative 
attempt of transferring knowledge to the others. The indexical gestures acquire a 
symbolic function later, when they are used as existing objects of a virtual geometric 
world and in relation with the genuine geometric objects (p. 79).

Recent research has shown that speech and gesture are two facets of the same 
cognitive linguistic reality. Nevertheless, gestures’ cognitive potential can be 
analyzed and understood only in the context of their interaction with other modalities 
and principally with language. As McNeill noted, “Speech and gesture are elements 
of a single integrated process of utterance formation in which there is a synthesis 
of opposite modes of thought—global-synthetic and instantaneous imagery with 
linear segmented temporally extended verbalization” (McNeill, 1992, p. 35). This 
view suggests not only that, gestures should be examined in association with other 
modes of representation in our attempts to understand mathematical thinking, but 
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also that the contribution of gesture to mathematical understanding, which almost 
always requires both analytic thinking and imagery, is distinct from the role of other 
modalities. Ferrara and Savioli (2009) concluded that gestures and words are well 
coordinated with each other, and they are pertinent to mathematical understanding. 
Similar to these findings are those of Simensen, Fuglestad and Vos (2014) who 
proposed that the use of artefacts, gestures and speech are intertwined with thinking 
in the meaning making process (see also Bartolini Bussi & Maschietto, 2005).

What is more, Sabena, Radford and Bardini (2005) in their article about 
synchronizing gestures, words and actions in pattern generalizations, presented 
the dynamics between gestures and speech. Their results showed the occurrence of 
gesture-speech match (with gesture and speech containing congruent information) 
and mismatch (with gesture and speech containing different information) and the 
critical role of gestures in the objectification of knowledge. Similar research studies 
have been carried out by Radford (2005), Edwards, Robutti and Bolite Frant (2006) 
and Edwards (2006).

When gestures and speech contain different information, gestures may provide 
information that is conflicting to the content of speech, or may supplement speech 
by providing additional information. As shown by the study of Radford, Miranda and 
Guzman (2008) students used gestures to communicate distances in a meaningful 
relational way. Thus, gestures helped them extend their way of seeing and interpreting 
a graph. Teachers’ gestures, according to Bjuland, Cestari and Borgersen (2008), 
help students to make the connection between the semiotic representations, figure 
and diagram. Sinclair and Gol Tabaghi (2009) concluded that the mathematicians 
use gestures and metaphors to express their thinking about concepts. Additionally, 
linguistic and nonlinguistic expressions comprise a dynamic component of thinking 
(see also Kaur, 2013).

Last but not least, it must be said that producing gestures facilitates speakers to 
explore possible ways of organizing and packaging spatial information in speech. 
Findings from the research study of Ng and Sinclair (2013) suggested that children 
use gestures as multi-modal resources to communicate temporal relationships about 
spatial transformations. Likewise, Ng (2014) showed that the students relied on 
gestures and dragging as multimodal resources to communicate about dynamic 
aspects of calculus. He also suggested that language, gestures, and diagrams serve 
complementary functions in mathematical communications.

THE STUDY OF AFFECT IN RELATION TO CONCEPTUAL DEVELOPMENT

The concept development of any mathematical concept is related with the affective 
development and it seems that mathematical activity is marked out by a strong 
interaction between cognitive and emotional aspects. One of the major issues in 
the recent research on affect is the understanding of the interaction between affect 
and cognition. Researchers agree that apart from knowledge of the subject and 
its teaching, teachers’ beliefs and attitudes towards mathematics, its teaching and 
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learning play a predominant role in their instructional approaches (see also Donovan, 
2015). Social cognitive theory contends that human behaviour, the environment and 
personal factors such as cognition, emotion and motivation, operate reciprocally on 
one another (Chiu & Klassen, 2010). Students’ engagement is a significant issue in 
mathematics classrooms and affects achievement levels (Skilling, Bobis, & Martin, 
2015). Schukajlow (2015) considers emotional factors essential for students’ learning 
and supported that mathematical enjoyment, boredom and interest are interrelated.

The interrelations of the affective domain and cognitive domain were underlined 
by Goldin, Rösken and Törner (2009) by using the example of beliefs which do not 
exist in isolation; they are attached to objects and serve both affective and cognitive 
functions. DeBellis and Goldin (2006) interpreted affect as a representational system 
parallel to the cognitive system. As Goldin (2002) suggested, the affective domain is 
a complex structural system consisting of four main dimensions, emotions, values, 
attitudes and beliefs, while concepts such as motivation, feelings, conceptions, 
interest belong also in the field of affect. The significant correlation between the 
development of those components with the declarative and conceptual understanding 
and construction of any mathematical concept is underlined by the research interest 
of the last decades as expressed by the thematic working groups on Affect at the 
ERME conferences, the numerous presentations at the conferences of PME and the 
special issues of scientific journals such as the Educational Studies in Mathematics 
63(2) (October 2006). Leder and Grootenboer (2005) reported a predominance of 
belief studies, a diminishing number of studies on attitudes and a few on values and 
emotions (e.g., Pierce, Chick, & Wander, 2015).

The affective factors of mathematical achievement have to be taken into account 
in order to understand all levels of performance (Roth, 2008) in mathematics in 
general and problem solving in particular. It is accepted that one’s behaviour when 
confronted with a task is determined by her/his beliefs and personal theories rather 
than the respective knowledge of the specifics of the task. Beliefs are a multifaceted 
construct which can be described as one’s subjective opinions about the world. 
Teachers have beliefs about themselves as teachers and learners of mathematics, 
about the nature of the mathematical knowledge and about the factors that affect 
the learning of mathematics. A part of teachers’ beliefs are their self-efficacy beliefs 
about their ability to affect student learning through the planning of mathematical 
instruction. Teachers with high efficacy beliefs are expected to be more willing 
to adopt innovations and more successful in scheduling inquiry-based teaching. 
Further, self-efficacy theory predicts that students work harder on a learning task 
when they judge themselves as capable (Mayer, 1998; Baron, 2015).

The research forum at the 28th conference of PME, in 2004, discussed the 
theoretical frameworks of affect in mathematics education such as (i) a system of 
representation and communication, (ii) by a dynamic viewpoint in the functioning 
of self-system processes and (iii) under a socio-constructivist perspective. The 
literature review of the studies on the affective domain which had been presented 
at PME conferences and had been published at the respective proceedings indicated 
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that the works of the last years can be divided into five main categories which are 
presented below:

• The first category consists of studies on the pre-service teachers’ beliefs (e.g. 
Beswick & Callingham, 2014), their beliefs in relation to the practice (Bayazit & 
Aksoy, 2011; Beswick, 2015), their beliefs about the use of computer systems 
at the teaching of mathematics (Özgün-Koca, 2011; Berube et al., 2010) and 
teachers’ epistemological beliefs in mathematics (Gattermann, Halverscheid, & 
Wittwer, 2012; Beswick, 2009; Bardini, 2015). It seems that the relationship 
with mathematics of prospective teachers is often built on negative experiences 
with mathematics as students. The key issue is to empower their desire for 
“redeeming” themselves from negative past experiences in order to become good 
mathematics teachers (Di Martino, Coppola, Mollo, Pacelli, & Sabena, 2013). 
Teachers’ beliefs influence how a classroom in organized and what mathematics 
will be emphasized and valued (Kuhnke-Lerch et al., 2010).

• The second group of studies consists of teachers’ belief systems on specific 
mathematical concepts such as calculus (e.g. Erens & Eichler, 2014), the place 
of proof in school mathematics (Iscimen, 2011), their conceptions of inequalities 
(Halmaghi, 2010), the beliefs and difficulties in dealing with rational numbers 
(Marceness & Frade, 2010), their ontological beliefs and their impact on teaching 
geometry (Girnat, 2009). One of the major shifts in thinking in relation to teaching 
and learning of mathematics the last years is related with the different views 
about the nature of mathematics. At the same time many studies examined the 
teachers’ didactical beliefs about errors in classroom (Rahat & Tsamir, 2009) and 
mistakes (Kuntze, 2009). Rach, Ufer and Heinze (2012) investigated the effects 
on students’ attitudes towards errors as learning opportunities for reconstructing 
the mathematical knowledge.

• A significant body of research suggested that negative attitudes are a major factor 
limiting the development of mathematical skills, knowledge and confidence 
(Palandri & Sparrow, 2009; Larkin, 2015; Martínez-Sierra, Socorro, González, & 
Dolores-Flores, 2015). The same category includes the students’ perceptions 
on learning mathematics in general (Perger, 2009) or on specific mathematical 
concepts such as their perceptions of invariants and generality of proof 
(Baccaglini-Frank, Mariotti, & Antonini, 2009).

• The interrelations of students’ cognitive behaviour with their affective or meta-
affective behaviour are more obvious in the case of the problem solving where 
students have to self-monitor the engaged cognitive processes. The concept of 
meta-affect was defined by Goldin (2002) as the affect about affect, the affect 
about and within cognition, the monitoring of affect and the affect as monitoring. 
There are studies about students’ affective self-regulatory monitoring during 
solving mathematical problems (Cimen & Campbell, 2012) and studies about 
their self-representation on activating processes, such as the study on students’ 
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self-beliefs about using representations while solving geometrical problems 
(Panaoura, Deliyianni, Gagatsis, & Elia, 2011).

• Finally the interrelations of students’ mathematical achievements with their goal 
orientation, attitudes and beliefs (Hannula & Laakso, 2011), constitute another 
group of studies on the affective domain. The study of Panaoura, Gagatsis, 
Deliyianni and Elia (2009) investigated the structure of students’ beliefs about the 
use of different types of representation and their respective self-efficacy beliefs in 
relation to their cognitive performance on the concepts of fractions and decimals.

A great emphasis on the research about beliefs and attitudes was on the 
methodological issues concerning the measuring tools which are used. Significant 
were the ethical issues surrounding its highly personal nature and the interference 
of the way in which individuals behave. There are studies which underlined the use 
of qualitative approach such as the use of interview (Horne, 2009) or observations 
(Kuntze, 2009). Olson, Olson, and Okazaki (2008) used a detailed analysis of 
videotapes in order to provide interpretation of the notion of an affective structure. 
Additionally in a few cases the use of case study as a method of investigating the 
domain in depth was suggested. Meagher and Brantlinger (2008) examined the 
mathematics instructional practices and beliefs of novice mathematics teachers by 
using observation, interview and survey data. The emphasis of the discussion was on 
the limitations of using either quantitative or qualitative instruments (Bernack et al., 
2011). Wang, Odell and Schwille (2008) explored the developmental processes 
about the teaching conceptions of practice teachers in mathematics by using the 
case study method, including classroom observations and pre and post-lesson 
interviews. Halverscheid and Rolka (2007) used pre-service teachers’ pictures and 
texts in order to examine their mathematical beliefs, while Melo and Pinto (2007) 
used a written paper on a movie script about mathematics which was worked out 
by students in order to describe a case study’s beliefs, feelings and attitudes. Lewis 
(2012) used an interpretative phenomenological analysis of the data concerning 
one student. A discussion took place on the criticism about the lack of validity of 
the questionnaires which are used during quantitative methods (Barmby & Bolden, 
2014), the difficulties in interpreting the qualitative data of narrative processes and 
the advantages of using mixed methods (Chang & Wu, 2007; Asnis, 2013).

A branch of research presented at PME conferences focused on the role of affect 
in the social context of the classroom and mainly in relation to different cultural 
environments. Studies presented the results from cross-cultural comparison of 
mathematics teachers’ beliefs, such as the work of Hannula et al. (2013) which 
compared Estonian, Latvian and Finnish mathematics teachers’ self-reported 
constructivist teaching practices. This study was a part of a Research Forum 
which focused on affect and contrasted cognitive with sociocultural approaches 
to studying affect. Also, Varas et al. (2012) analysed the drawings made by third 
grade students from Chile and Finland when asked to draw their math classes and 



A. GAGATSIS & E. NARDI

218

results indicated that there were many differences in these countries (Uegatani & 
Koyama, 2015).

While reviewing the research reports of the last years the high age range of the 
studies on the affective domain is obvious as well as the different levels of education 
which are covered. There are studies about pre-school teachers’ perceptions (Yalcin & 
Ocal, 2009), elementary teachers’ knowledge in mathematics (Li, Huang, & Tang, 
2008), mathematical beliefs and behaviours of high school students (Francisco, 
2008) and teachers’ and students’ perceptions of their mathematics classroom 
environments (Beswick, 2008). In all ages it seems that there are connections and 
relationships among affect and mathematical learning, while affect play a decisive 
role in the progress of cognitive development, the construction and the reconstruction 
of any mathematical concept. For example, Marcou and Lerman (2006) studied self-
efficacy of primary school children and found that “students spend more time to 
read, analyze and understand the text of the problem and on verification processes in 
order to review and correct their work.” (p. 142).

PATTERNS, SHIFTS AND WAYS FORWARD

Concepts and concept development in mathematics is in itself a multifarious and 
complex theme and is related to a diversity of factors. Thus, studies that aim to 
develop a better understanding of concepts and concept development need to use 
a broad and multidimensional framework, including major approaches similar to 
those involved in the present chapter: developmental, sociocultural/discursive, 
and semiotic. The most intensive and extensive developments seem to use the 
sociocultural/discursive and the semiotic/embodied approaches: the former with 
numerous works focusing on the context in which conceptual development occurs 
and the discursive activity occurring in this context; and, the latter with numerous 
works on semiotic representations, often enriched by a strong emphasis on embodied 
actions and gestures.

Our review reveals that the various approaches to the study of concept development 
are interrelated and complementary rather than in contrast to one another, as they 
focus on, and give insight into, different facets of concept development (e.g., 
semiotic representations, gestures, tasks as tools, social interactions) which are 
closely connected to each other in mathematics teaching and learning. Evidence for 
this is provided by the presence of the work of the same researchers in more than 
one section referring to different approaches (e.g. see Radford). However, it is to be 
noted that most of the PME studies focus on a specific research approach to study 
concepts and concept development. This seems to apply not only for PME but more 
generally, as according to Nemirovsky (2005), for example, some semiotics-oriented 
studies tend to rely on the formal analysis of semiotics representations whereas 
others bring to prominence the socio-cultural context of use.

In PME the number of publications on semiotic representations, which are 
extended by other approaches, such as embodied actions and gestures, is extensively 
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growing. Further the social approach in mathematics education research is a major 
focus of studies in PME which has grown substantially in the past ten years. An 
important issue in studying concept development is whether the mathematics 
education community (including the PME community) is ready to accept new 
theoretical frameworks related to other fields of research, such as (neuro) cognitive 
science. In light of the above considerations, we propose that much further (probably 
collaborative) work is needed to reach a more holistic, integrated and inclusive line 
of research which could improve and deepen our knowledge of concept development 
in mathematics.

Finally, a major observation based on our review is the high degree of specialisation 
and specificity in PME studies in the sense that the papers that grapple with grand 
themes such as conceptual development are rarely found in the proceedings. Is this 
tendency a sign of maturity in the discipline of mathematics education, or is this 
the result of the small size of PME papers, or of the way reviewing works with the 
proposed texts? Is this observation applicable to papers published, say, in ESM and 
other leading journals too? Given this high degree of specialisation and specificity, 
will a chapter on conceptual development be present (or even necessary) in the Third 
PME Handbook of 2026?
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NATHALIE SINCLAIR AND MICHAL YERUSHALMY

7. DIGITAL TECHNOLOGY IN MATHEMATICS 
TEACHING AND LEARNING

A Decade Focused on Theorising and Teaching

INTRODUCTION

Over the past decade, a wide variety of PME papers have focused on the use of 
digital technologies in mathematics education. The 2006 PME Handbook separated 
research on the use of digital technologies across three main chapters (geometry, 
arithmetic and algebra, and proof); however, this 2016 PME Handbook unites the 
topic areas together. Rather than categorise the papers by these topics, we have 
chosen to organize this chapter in terms of four main sections: technology innovation, 
theorizing, technology broadening and teaching. In this introduction, we explain 
our choice for this structuring and link it, where possible, to recommendations and 
predictions made in the 2006 Handbook.

In relation to the first section, we were initially struck by the relative lack of 
innovative technologies in the PME papers written over the past decade. We 
thus decided to consult outside sources to get a better sense of the major areas 
of innovation in technology in education, which pointed to three major types of 
advancements: (1) the move from comprehensive software packages to small, 
expressiveness, web applets; (2) the move towards mobile, touch-based interface; 
and (3) the changes in social norms (web and social technology). Within each type 
of innovation, we examine relevant research in the mathematics education research, 
where possible, and identify PME papers that relate to these innovations. Some of 
these innovations were anticipated in the 2006 Handbook, such as the touch-based 
interfaces (Confrey & Kazak, 2006) and the change in social technology (Lerman, 
2006), including the development of online communication (which have yet to gain 
much attention in PME papers over the past decade).

While innovation was surprisingly limited, there was significant work on 
developing and refining theory, which is our second section. In their chapter on 
digital technology in the teaching and learning of geometry, Laborde et al. (2006) 
argue that, “research on the use of technology in geometry teaching needs more 
contributors” (p. 296). This has happened over the past decade, and in addition to 
developing existing theories, several new theoretical perspectives have emerged. 
We dedicate a central part of our review to these developments, highlighting how 
they are a consequence of: (1) developments of new technologies that are used in 
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learning and teaching; (2) increases in use of technology and broadening of their 
implementation.

The third and largest section provides an overview of all the research papers 
related to the use of technology. Most of these involve well-known digital 
technologies such as dynamic geometry environments (DGEs), CAS, Graphing 
Calculators and Spreadsheets. A smaller but growing number of papers focus on 
smaller-scale environments that are constrained to the teaching and learning of 
particular concepts. In the previous Handbook, Ferrara et al. (2006) had observed 
a shift from larger, more comprehensive environments to smaller, more specialized 
ones. We conjecture that the acceleration of this process is due to two reasons: (1) 
Web 2.0 technology better support smaller, focused and linked learning objects, 
often evolving by different users and relatively easy to produce and use; and (2) the 
increasing need for and acceptance by the school system of digital technology across 
all levels and ages (often without much change to the curriculum), which requires 
modest, more easily integrated pieces.

Finally, in the fourth section, we focus on the teaching of mathematics using 
digital technology. Technology had opened up new challenges for teaching, not only 
in terms of their knowledge and beliefs, but also in terms of the complexities of 
integrating different kinds of resources. Several chapters in the previous Handbook 
underline the importance of the teacher and the need for more research on how 
teachers might become more effective at integrating digital technology and how 
their practices might change as a result. For example, Ferrara et al. (2006) highlight 
the need to focus on the substantial challenges of teaching with digital technology: 
“…re-awakens us to the complexity underlying the teaching and learning of 
mathematics” (p. 268).

Decade of Technology Innovation

The internationally recognized NMC Horizon Project (available at: http://k12.wiki.
nmc.org), established in 2002 identifies on a yearly basis emerging technologies 
likely to have a large impact over the coming five years in education around the globe. 
More recently, the NMC project has published Horizon Reports (HR) examining 
technologies for their potential impact on and use in teaching and learning. Each 
year, the HR picks six major features of technology related to education, policy, 
inquiry and broader aspects of learning in the new society that are likely to have 
impact during the next five years. These trends are sorted into three time-related 
categories—fast moving trends that will realize their impact in the next one to two 
years, and two categories of slower trends that will realize their impact within three 
to five or more years. The reports also identify critical challenges that schools face, 
especially those that are likely to continue to affect education over the coming five-
year time period.

A comprehensive review of the last decade suggests trends and related challenges 
that we grouped under three categories: (1) Mobile related technologies (any 

http://k12.wiki.nmc.org
http://k12.wiki.nmc.org
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device that its mobility suggests ubiquitous world of computing including phones 
and gaming, sensors and GPS based applications); (2) Tangible Smart technology 
(augmented reality, internet of things, wearable computing) linking objects with 
online content; and (3) Personal-Web and social technologies (user created content, 
collaboration, social networking, personalization of learning and of teaching and 
learning analytics). Most of the examples in this category are not yet present in the 
PME work of the last decade.

Clearly there is a gap between the marked trends and the ability of the school-
systems to change. Further, the research community (including PME papers) is often 
the product of a later stage of implementation of innovation. However, a review of 
the work done by the mathematics education community (some outside of PME) 
suggests some connections between these overall trends. We start by looking at these 
studies, which are pointing towards current challenges that schools and teachers are 
already facing and near future challenges that research could address.

Mobile Personal Devices in Mathematics Education

Ubiquitous computing for teaching and learning was best instantiated during the 
last decade by the capacities of new mobile phones and the networks to which they 
belong. The most apparent dimension is the unique capabilities of mobile devices 
to serve as tools for social participation in mathematical practices (Roschelle 
et al., 2007). However, research on mobile devices started some time ago, with the 
introduction of calculators.

Roschelle et al. (ibid.) reviewed three successful implementations of handheld 
devices in mathematics education: graphing calculators, classroom response systems 
and probeware, which have also produced valuable improvements in school learning. 
The success of graphing calculators has been documented in studies since the 1980’s 
(see also section 3 for work carried out in the last decade). Classroom response 
systems are participatory and include feedback tools that with teacher mediation can 
increase the students’ engagement in learning, enhance classroom communication 
between teacher and students. Hegedus and Kaput (2003) suggest that such systems 
can dramatically change students’ engagement with core mathematics. The SimCalc 
Classroom Connectivity Project built on the opportunity to connect students within 
a classroom so that they may respond in real-time to a teacher’s queries and have 
their “responses” instantly (and often anonymously) collected and posted to a public 
display, where they become the focus of classroom discussion. Probeware refers to 
the use of sensors with associated software incorporating instant multiple linked 
representations and immediate feedback to the data collected with the sensor.

From calculators to mobile phones. Many of the functions mentioned above, that 
were implemented and studied with calculators, became available to innovative 
work with mobile phones throughout the past decade. They mark an additional 
step towards the challenge of ubiquitous learning, learning in and out of the formal 
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setting of the classroom and the change of the school-system infrastructure. An 
example of implementation that was designed to serve wide spectrum of activities 
in the mathematics classroom is the Math4Mobile system (Yerushalmy & Weizman, 
2006). It consists of specialized applications (as graphing calculators, geometry, 
algebra and calculus applications) that use the connectivity affordances of the phone. 
Connectivity means also the inclusion of a voting system that offers immediate 
presentation of the group and personal collected data. This work follows investigation 
into uses of handheld devices for classroom collaborative learning that was built on 
Roschelle and Pea’s (2002) Wireless Internet Learning Devices (WILDs) framework 
principles.

Capturing and communicating with images. The use of the mobile phone camera 
was a major component of the settings studied by Gadanidis, Borba, Hughes and 
Scucuglia (2010) and by Yerushalmy and Botzer (2011). In both studies, users 
captured phenomena with the video camera and shared it online. Yerushalmy and 
Botzer asked pre-service teachers to record phenomena and mathematize it into a 
rate of change model as part of a calculus unit that they were designing with mobile 
phones applications. Gadanidis et al. asked 7th graders to write dramatic scripts to 
communicate about their mathematics learning with a wider community. The scripts 
were written in small groups, performed and recorded using mobile phones, and 
shared online.

Mobile phones also feature location awareness and context-aware applications 
that can offer learning opportunities relevant to mathematics education. Spikol and 
Eliasson (2010) report on the findings from a mobile geometry project for middle 
school students designed together with teachers that consisted of outdoor and indoor 
activities. Sollervall (2012) reports positive results of an intervention lesson using 
GPS (Global Positioning System) with 12-year-old students, who were asked to 
coordinate themselves physically in an outdoor activity. The work was continued in 
the mathematics classroom and involved mobile software applications specifically 
developed to support spatial coordination activity.

Teaching with mobiles. A few researchers have started to study changes in teachers’ 
practices in regard to the use of mobile technology. Sinclair and Wideman (2009) 
studied the effects of linked hand-held technology in early secondary mathematics. 
They developed a set of criteria specific to TI-Navigator, to evaluate teachers’ 
implementation experiences and found that changes in teachers’ practices in regard to 
sharing, checking, and modelling are related to the key affordances of TI-Navigator: 
(1) the provision of two-way communication between teacher and students, which 
enables sharing, and checking, and (2) the provision of a shared visual display, 
which facilitates investigation of mathematical models. Daher and Baya’a (2011) 
studied various aspects of learning and teaching secondary mathematics. They used 
activity-theory to analyze in-service and preservice teachers’ attitudes and decisions 
regarding mathematics teaching and learning with mobile phones. Yerushalmy 
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and Botzer (2011) designed tasks to support new types of practices such as guided 
explorations of real-life phenomena, collaborative group discussions and personal 
experience. They demonstrate why shifting attention from static, inert representations 
to dynamic personal constructions on learners’ personal devices, and sharing these 
constructions among learners creates new challenges for teachers, such as having to 
deal immediately with a large amount of data.

Tangible Designs for Mathematical Experiences

The cognitive significance of our bodies and senses has become a growing interest 
in mathematics education in the embodied nature of mathematical thinking. It has 
been a feature of research on technology at least since Papert (1980) coined the 
term ‘body syntonicity’. Some digital technologies seem to provide new types of 
bodily engagement with mathematics, primarily through visual, kinetic and tangible 
modes. For example, the exploration of motion graphs using the Microcomputer-
Based Laboratory (MBL) proved to be a powerful tool for improving students’ 
understanding of concepts in kinematics and for elaborating their graphing skills. 
Using MBL, one and two-dimensional motion is represented through graphs which 
reflect kinematic interactions with real objects connected to computers, as well as 
onscreen and haptic manipulations (e.g., Robutti, 2005; Botzer & Yerushalmy, 2008).

Working within this tradition, Ferrara (2006) considers the activity of high-school 
students who worked in groups to track a 3-D uniform circular motion. Ferrara used 
a device called 3D Motion Visualizer to display in real time the trajectory of motion 
on a computer screen. The task was to draw the 2-D temporal representations of 
motion along the three directions (width, height, depth). The analysis of speech 
and gestures shows how understanding the concept of motion in mathematical 
terms grows out of a complex dynamics between recollections (remembering) and 
expectations (imagining). Similarly, Ferrara and Savioli (2011) studied elementary 
school students throughout a teaching experiment. The students had used a motion 
sensor to work with graphical representations of position versus time. The students 
were asked to compare two graphs, choosing two cartoon characters, animals and 
vehicles, as subjects of possible corresponding motions. The authors’ analysis 
revealed the students’ thinking strategies, as well as key characterizations of graphs 
as models of motion.

Embodied experimentations of young students with technology is repeatedly 
acknowledged as providing unique opportunities for children to learn through 
action and reflection and for researchers to observe and get a new glimpse into 
students’ conceptualization. One example of the work can be found in Abrahamson 
and Lindgren’s (2014) Mathematical Imagery Trainer, which is designed to help 
students learn about proportion through a qualitative approach. Another example 
is Hegedus (2013), who investigates how young children make sense of 3-D 
mathematical objects in a multimodal environment involving a haptic, force-
feedback device. A third example is Avraamidou and Monaghan (2009), who 
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describe non-conventional abstraction carried by an 11 year-old child with the 
mediation of the Sim 2 simulation video-game.

Finally, Highfield, Mulligan and Hedberg (2008) describe learning through 
exploration with a Bee-bot programmable toy. They report on two case studies of 
young students (aged five and eight years), engaging in transformational geometry. 
The authors argue that in planning, programming and manipulating the toy through 
complex pathways, the children developed problem-solving strategies and relational 
thinking.

New sensual experiences: The touch-technology. Touch technology offers new 
sense to sensual experiences in mathematics with technology permitting both touch 
and multi-touch interactions. Touch-screen devices can enable intuitive interface 
suitable for whole-class and individual interactions and for young learners, allowing 
them to use their fingers and gestures to explore mathematics ideas and express 
mathematical understandings. Multitouch technology is capable of detecting multiple 
on-screen touch-locations simultaneously, which may also provide opportunities 
for multi-user interactions. Recent mathematics education research has started to 
explore both the use of personal and mobile multi-touch systems.

Arzarello, Bairral and Dane (2014) investigate the cognitive singularities involved 
in touchscreen manipulation that can be observed with respect to geometrical 
thinking. They identify and illustrate different types of touchscreen manipulation 
during the process of solving high-school problems using the Geometric Constructor 
tablet software. Soldano, Arzarello and Robutti (2015) explore game strategies to 
improve secondary students’ geometric thinking with a multi-touch system.

Sinclair and Pimm (2014) explore the richer sense of finger gnosis (literally, 
knowledge of one’s fingers) with respect to three- and four-year-olds’ interactions 
with a novel iPad App (TouchCounts). The study focuses on direct and tactile 
engagement and examines the children’s responses to an “inverse subitising” task. 
They report on a striking shift from index finger incrementation to deployment of 
several fingers all-at-once (in a cardinal touch gesture) to achieve a given target 
number that is then spoken by the iPad. 

Also in a multi-touch environment, Ng (2014) provides a detailed analysis 
of the mathematical communication involving a pair of high school calculus 
students who are English language learners. She looked at the word-use, gestures 
and dragging actions in the student-pair communication about calculus concepts 
when paper-based static and then touchscreen dynamic diagrams. Of particular 
importance is Ng’s notion of “dragsturing”, which is the combined act of dragging 
and gesturing that seems to have both communicative and epistemic functions, and 
that points to a fundamentally new kind of mathematical practice in touch-based 
environment.

Outside of PME, research on learning with touch technology is expanding and 
we anticipate this to be an area of significant future growth. In particular, the use of 
touch technology seems to be promising for students with disabilities, as evidenced 
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in Thompson Avant and Heller’s (2011) research on the use of TouchMath with 
students with physical disabilities.

Social Technology: Learning and Teaching on the Web

Social computing, social technology, social media and social networking are terms 
used for describing computer technology to facilitate socializing, collaborating and 
working in groups. Social media has now proliferated to the point where it spans 
all ages and demographics. For educational institutions, social media enables two-
way dialogues between students, educators, and the institution that are less formal 
than with other media. As social networks continue to flourish, educators are using 
them as professional communities of practice, as learning communities, and as a 
platform to share interesting activities and stories about topics students are studying 
in class. The 2014 Horizon Report states that understanding how social media can 
be leveraged for social learning is a key skill for teachers, and that teacher training 
programs are increasingly being expected to include this skill.

In his study of on-line, distance education course for teachers, Borba (2005) 
assumes that knowledge is generated by collectives of humans-with-media, and that 
different technologies modify the nature of the knowledge generated. He studied the 
transformation of mathematics in on-line courses, highlighting the highly written 
form of mathematics that occurred as the teachers exchanged solutions through chat. 
Borba and Zulatto (2006) report data that illustrate how teachers can collaborate 
online in order to learn how to use geometry software in teaching activities. They 
studied a virtual environment that allows construction to be carried out collectively, 
even if the participants are not sharing a classroom. Goos and Bennison’s (2006) 
interest in online communities of practice brought them to set up pre-service 
teachers and beginning teachers communities focused on learning to teach secondary 
mathematics. Bulletin board discussions as well as email messages were archived 
and analyzed. The authors examined messages posted that span the transition from 
pre-service to beginning teaching. The participants expanded, transformed and 
maintained the community during the pre-service program and after graduation. 
The study shows that the emergent design of the community contributed to its 
sustainability in allowing the pre-service teachers to define their own professional 
goals and values.

Learning in an online community was also part of the Besamusca and Drijvers’ 
(2013) study, which followed 8th grade teachers learning to implement an algebra 
system in the mathematics classroom. A community of practice was set up to study 
and evaluate the influence of the community on teachers’ professional development. 
However, evaluation of the enterprise shows that the teachers’ development was not 
optimally supported by the community. Teachers lost interest in writing their blogs 
and expressed a relatively low opinion of the added value of the blogs.

These results contradict those from other studies with a similar setup. As extended 
and more frequent use of online teachers’ professional development communities 
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emerge, we suggest that it is important to analyze the differences that may cause 
different outcomes and should be addressed by near future studies. One reason 
might be the change of the technological tools supporting collaborative work and 
learning. Social technology is changing daily and has been dramatically changed 
since the beginning of the decade. Today’s web users are also creating content in 
different representations, uploading photographs, audio and video to the cloud to 
record and share their experiences, including their teaching and resources (e.g.  
http://betterlesson.com/ and http://www.seasamath.net). Producing, commenting 
and classifying these media has become just as important as the more passive 
tasks (that dominate the web 1.0 actions in the previous decade) of searching, 
reading, watching and listening. Open tools and sites make it easy to share (such as 
GoogleDocs). In addition to interacting with the content, social media makes it easy 
to interact with friends and institutions that produced the content. The other regards 
the participants’ motivation for engaging in an online community. What makes a 
social technology phenomenon interesting? What is likely to make it long lasting? 
Is it the way it facilitates an almost spontaneous development of communities who 
share similar interests?

We expect that the study of communities of learning and construction of 
knowledge will soon expand to include the communication channels that became the 
natural and spontaneous way for social networking such as Facebook. A glimpse of 
such research can be seen in Biton, Hershkovitz and Hoch (2014), who studied new 
opportunities of Facebook for interactions between teachers and students preparing 
for the matriculation test.

THEORISING

Artigue and Cerulli (2008) describe eight different theoretical approaches in 
research on technology: theory of didactical situations, anthropological theory of 
didactics, activity theory, instrumental approach, theory of semiotic mediation, 
social semiotics, socio-constructivism and constructionism. These theories are 
not all specific to the use of digital technologies. Indeed, Drijvers, Kieran and 
Mariotti (2009) provide an historical overview of theoretical perspectives they 
consider relevant to integrating technology into mathematics education. They then 
focus on Instrumentation Theory and Semiotic Mediation, but make “a plea for the 
development of integrative theoretical frameworks that allow for the articulation of 
different theoretical perspectives” (p. 89). While these two theoretical perspectives 
attend explicitly to the use of digital tools, there have been several other theoretical 
perspectives that have been used in the PME proceedings over the last decade. In this 
section, we have chosen to focus on two main categories: those that attend explicitly 
to digital tools and those that do not. Within each category, there is great variety in 
terms of epistemological and ontological assumptions. Further, some researchers 
have chosen to combine different theoretical perspectives.

http://betterlesson.com/
http://www.seasamath.net
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With respect to the second type, we highlight the need for a combination of new 
theoretical perspectives and new research methodologies (that do not rely only on 
questionnaires) that concern the affective dimension of students’ and teachers’ use 
of digital technology.

Theoretical Perspectives that do not Directly Involve Digital Tools

As evident in the list proffered by Artigue and Cerulli, there are several theories that 
are used in mathematics education that do not specifically involve the use of tools. 
For example, Furinghetti, Morselli and Paola (2005) use Bruner’s enactive, iconic 
and symbolic modes to analyse the interaction modalities used by students using the 
DGE Cabri. This approach has some similarity to theories of embodied cognition 
and also semiotic mediation, both of which have been developed as mathematics-
specific theories, as we will describe later.

A few reports also offer theoretical approaches that enable a more critical 
analysis. One example has been the work by Lerman and Zevenberger. In Lerman 
and Zevenberger (2006), they examine the equitable practices of ICT use in 
diverse contexts. They use the notion of productive pedagogy to do so, drawing 
on Bernstein’s (2000) notions of classifications and framing to investigate controls 
on communication. In Lerman and Zevenberger (2007), they focus on the way in 
which the use of IWB’s can shut down students’ thinking, despite the widespread 
rhetoric to the contrary. Palmér and Ebbelind (2013) also use Bernstein’s notions of 
classification and framing to study the possibilities to learn for preschool children 
using iPads. They find that applications with weak framing (i.e., they are interactive, 
instead of being exercise-focused) prompt free dialogues between the teacher and 
the student, and the focus of the dialogue often became mathematical, irrespective 
of whether the classification is strong (containing mostly mathematical elements) or 
not. The notions of framing and classification are specific to the situative perspective 
that highlights the social context in which an activity takes place. Several other 
researchers have classified technology using different approaches, such as Sedig and 
Sumner (2006), who classify them in terms of the forms of interaction they enable 
individual users.

Theories of embodied cognition arise in certain studies, particularly in relation to 
the use of gestures and in studies where the digital technology enables mathematical 
objects to be in motion. The studies by Ferrara (2006) as well as Ferrara and Savioli 
(2011), described in the previous section, use the “sensuous cognition” approach of 
Radford (to examine the role of gestures in the students’ thinking. The latter paper 
focuses on more phenomenological accounts of perceptuo-motor-sensory activities 
and their relation to what the authors call “imaginary” activity, which they take to be 
constitutive of mathematical thinking. Radford’s approach is also used by Highfield 
and Mulligan (2009), who study children’s use of gestures and diagrams as they work 
on a problem-solving task involving robotic toys. These researchers use McNeill’s 
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(2005) classification of gestures and highlight the role of deictic gestures, which 
were especially helpful in the problem solving process.

Within the research focused on teachers’ use of digital technologies, many PME 
authors draw on participationist approaches, especially Wenger’s (1997) work on 
communities of practice. The Goos and Bennison (2006) paper described in the 
previous section used it to examine how pre-service and beginning teachers of 
secondary mathematics can develop and sustain communities of practices. Fuglestad 
(2007) uses it to study the teachers’ competence with ICT in mathematics developed 
through workshops. Camargo, Samper, Perry, Molina and Echeverry (2009) use it to 
analyse the way that teachers use dragging to make conjectures.

Participationist approaches also get used to analyse students’ learning with digital 
technologies. Sfard’s (2008) commognitive approach, which adopts the point of view 
that thinking is communicating, and that changes in mathematical discourse (which 
can be linguistic or non-linguistic in nature) correspond to changes in thinking. 
She characterises discourse in terms of word use, routines, visual mediators and 
endorsed narratives. Sinclair, Moss and Jones (2010) thus analyse the changes in 
geometric discourse of k-2 children using a DGE to explore the concept of parallel 
and intersecting lines. They highlight the pivotal role played by the children’s 
gestures, which arose out of the dynamic diagrams shown on the overhead projector, 
in enabling students to produce two effective routines for determining whether 
or not two lines will intersect. The authors underscore the need to complement 
Sfard’s approach with one that accords sufficient attention to children’s gestures. 
Sinclair and Kaur (2011) conduct a similar analysis, but this time in the context 
of young children’s thinking about reflectional symmetry in a DGE. In particular, 
they compare the children’s discourse between the discrete and continuous contexts, 
where the former triggered a processual discourse while the latter led to a more 
structural discourse. Kaur (2013) combines Sfard’s approach with an added focus on 
the role of gestures in thinking and learning to study the emergence of kindergarten 
children’s dynamic thinking in angle comparison tasks. Kaur and Sinclair (2014) 
also use Sfard’s approach to examine grades 2/3 children’s thinking about scalene, 
isosceles and equilateral triangles in a DGE. They focus on dragging as a visual 
mediator for helping the children develop more mathematical routines for comparing 
triangles, and even helping some children think in terms of inclusive definitions of 
triangles.

Berger (2011) also draws on Sfard’s commognitive framework to analyse a pair 
of in-service teachers’ activities when using a DGE-based task involving polynomial 
and rational functions. She finds that the students did not exploit the graphs produced 
by the DGE as visual mediators, perhaps because it is not consistent with existing 
endorsed narratives around what graphs should look like. They also insisted in 
drawing the sketches by hand. Sfard’s characterisation helped provide insight into 
the key aspects of their mathematical thinking, including their expectations about 
mathematical activity.
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Combining Sfard’s approach with Moschkovich’s sociocultural view of bilingual 
learners, Ng (2014) examines the interplay between language, gestures, dragging and 
diagrams in bilingual secondary students communication about calculus concepts 
presented in a multitouch DGE. She describes how students’ dragging actions also 
function as communicative acts as they are working in pairs, which increases their 
communicative resources, perhaps making them less dependent on language.

Mason’s (2008) theory on shifts in awareness was used in Gol Tabaghi and 
Sinclair (2010) to investigate one undergraduate student’s learning of eigen theory in 
the DGE Sketchpad. This theory permitted the authors to focus explicitly on how the 
students attended to the symbolic, geometric and dynamic aspects of eigenvectors 
and eigenvalues, and how the increased geometric awareness emphasised the 
invariant collinearity of infinitely many eigenvectors for a given eigenvalue, the 
relative importance of the eigenvector (which is usually found after the eigenvalue 
in algebraic approaches), and the possibility of having more than one eigenvector. 
The students’ dragging strategies provided an important way of analysing shifts in 
attention. The link between dragging and attention was also used in Lee and Leung’s 
(2012) paper, as a way of analysing how students understand geometric properties 
in a DGE. The authors drew on Marton and Booth’s (1997) variation theory, which 
conceptualises learning in terms of improved discernment. They argue that the action 
of dragging helped draw students’ attention to relevant geometric properties. Leung 
(2014) also draws on variation theory, but as a theoretical approach for task design.

Mason’s (2002) Discipline of Noticing is used as a theoretical framework in 
Hewitt’s (2010) analysis of grade 5 students’ learning of about equation solving 
using Grid Algebra. This framework acknowledges that the viewing of data depends 
on what is stressed and ignored, which depends on the viewer’s experience and 
interests. Hewitt also uses the pedagogical framework of the arbitrary/necessary 
divide (Hewitt, 1999), which shaped the design of the software as well as the teaching 
activities. Hewitt identifies the themes of subordination and fading as relevant to 
the students’ learning of formal notation, which ended up helping students solve 
equations as well.

Theoretical Perspectives that Directly Involve Digital Tools

In addition to the theories of semiotic mediation and instrumental genesis (to which 
we dedicate the two next subsections), some researchers have drawn on Borba and 
Villarreal’s (2005) construct of humans-with-media, which advances a theoretical 
assumption that humans and media are deeply interrelated, and that the use of media 
changes the way students and teacher think, as well as the mathematics. This is a 
perspective that had previously been articulated by earlier theorists such as Papert 
as well as Noss and Hoyles. Like constructionism, it lays out some epistemological 
and/or ontological assumptions about learning, but does not provide specific 
constructs or methods that can be used in the analysis of data. For example, Borba 
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(2005) asserts that the internet modifies the interactions and knowledge production 
of students in distance learning courses, but this is a function of his theoretical 
perspective rather than a result of the analysis of the empirical data he provides. 
Borba and Zulatto (2006) examine the way in which collective work with a DGE 
in an online teacher education context emerges. This perspective is also adopted by 
Jacinto and Carreira (2013) in their study of students’ DGE-based problem solving 
in out-of-school mathematics competition context. Finally, Flores, Escudero and 
Aguilar (2014) use the humans-with-media approach to reflect on the possible 
transformations that online environments produce in the production of research 
knowledge within the area of online mathematics teacher education. They argue that 
researchers-with-online environments can access remote data in a less intrusive way, 
that data collection and processing is also facilitated, and that new theoretical tools 
are adapted and created

Focus on affordances and instrumentation. A few papers draw explicitly on 
Gibson’s (1977) notion of affordances, which has become a key construct in the 
literature. For example, Brown (2005) studies how students and teachers perceive 
and enact graphing calculators. Brown (2006) focuses on the importance of helping 
students become aware of affordances. Finally, Brown (2014) investigates the 
variety of ways in which students use and perceive the same affordances.

This approach has several points in common with the instrumental approach, which 
also grows from a non-educational context. While Gibson draws attention to the 
potential tools might have, and hence to the importance of tool design, instrumental 
genesis is interested in the complex process through which an artefact (a physical 
tool) transforms into an instrument (a psychological tool), which includes scripts 
for how to use the artefact—which are called utilization schemes (see Laborde et al. 
(2006) for more information).

Some studies are conceptually informed by the instrumental approach, while 
not using it as a methodological tool. For example, the instrumental approach is 
mentioned by Stewart and Thomas (2005) as a way of recognising the process of 
instrumental genesis involved in learning to use a CAS, but their study focuses on 
university students’ attitudes towards and perceptions of CAS use, as determined 
by questionnaires. Wilson, Ainley and Bills (2005) do not mention the instrumental 
approach directly, but draw heavily on Haspekian’s (2003) study of the students’ use 
of spreadsheets, which does explicitly use the instrumental approach. Wilson, Ainley 
and Bills also use the instrumental approach as a tool for analysing data in that they 
examine the way particular aspects of spreadsheets (the variable cell and naming 
columns) mediate students’ meanings of variable.

Other authors use the instrumental approach explicitly. Prior work in the field 
has described schemes of utilisation, especially in relation to the use of DGEs. This 
work elaborated different dragging modes (Arzarello, Olivero, Paola, & Robutti, 
2002) and measuring modes (Olivero & Robutti, 2007). Similarly, Hatterman (2008) 
identifies unique drag modes of students using a 3-D DGE and extends this work in 
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Hatterman (2010). Patsiomitou (2011) considers the notion of “theoretical dragging”, 
which she links to Toulmin’s theory of argumentation. The author claims that, in 
contrast to experimental dragging, theoretical dragging can provide a non-linguistic 
warrant that leads to “dynamic propositions” in a DGE. Minh (2012) investigates the 
process of instrumental genesis in the learning of functions within a geometrical and 
symbolic CAS environment and finds that this process takes a long time for students. 
Roorda, Vos, Drijvers and Goedhart (2014) examine the instrumentation schemes 
of one student using a graphing calculator to study the derivative concept, showing 
how that student develops symbolic understanding over time.

The instrumental approach allows researchers to analyse a student’s use of 
a digital artefact, but it does not say much about the student’s mathematical 
understanding of a concept that she explores using the artefact. This may explain 
why the instrumental approach if often used in combination with another theoretical 
approach, and usually one that addresses epistemological concerns. For example, 
a strong tradition of French research combines the instrumental approach with the 
Anthropological Theory of Didactics (ATD) (Chevallard, 1999), which proposes a 
general epistemological model of mathematical knowledge that is based on human 
activity, and thus inscribed within social institutions. Its main theoretical tool is 
that of praxeology, which is structured in two levels: praxis includes the tasks to 
be solved as well as the techniques available to solve them; and, logos includes 
the technology (the discourse that describes, explains and justifies the techniques 
used) and the theory, which is the formal argument that justifies the technology. 
Since the tasks and techniques that arise in the use of digital technologies can be 
quite distinct from those in paper-and-pencil environments, researchers can study 
how they affect the students’ mathematical knowledge, that is, their description, 
explanation and justification of techniques. With an explicit focus on teachers, 
Lagrange (2011) uses ATD to analyse the ways that teachers take up innovative 
tools such as Casyopée, which introduce new techniques that compete with existing 
ones, thus requiring a reconsideration of praxeologies. Based on video recordings 
of meeting with teachers and of experimentations, Lagrange analyses how current 
praxeologies made it difficult for teachers to integrate Casyopée, especially those 
who were “mid-adopters”.

Kieran and Saldanha (2005) examine the way that CAS-based techniques, which 
are different from pencil-and-paper ones, act as a bridge between task and theory. 
They further argue that this bridging process requires that students explicitly interpret 
their work with the CAS, which allows them to justify the use of the discourse 
on the techniques. Similarly, with respect to students’ use of CAS, Drijvers et al. 
(2006) show how the use of CAS-based techniques give rise to a justification of 
the discourse on the techniques. Kieran and Damboise (2007) also combine the 
instrumental and anthropological approaches, but this time as a way to show how 
CAS “played three roles that were instrumental in increasing students’ motivation 
and confidence: generator of exact answers, verifier of students’ written work, and 
instigator of classroom discussion” (p. 105). ATD is the central theoretical framing 
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for the study of Solares and Kieran (2012), which analyses the epistemic and 
pragmatic values arising from one student’s interactions with a CAS while learning 
about the equivalence of rational expressions.

Psycharis (2006) combines the instrumental approach with Noss and Hoyles’ 
(1996) theory of situated abstraction, which also offers an epistemological 
counterpart to the instrumental approach. This theory seeks to describe how 
mathematical knowledge can be conceived as being both situated and abstract—that 
is, it is seen as arising out of particular contexts (how and where it is learned), yet 
it maintains certain mathematical invariants. Psycharis aims to study the dynamic 
manipulation schemes used by students in geometrical constructions and argues 
that the latter theory enables the examination of the specific way that mathematical 
knowledge develops. Panorkou and Pratt (2011) also use situated abstraction to 
describe how one pair of 10-year old student used Google SketchUp to develop a 
mathematical meaning of dimension. While the authors attend explicitly to the tools 
that students use during the two tasks, much like the instrumental approach would 
warrant, the analysis rests on identifying the situated abstractions that the students 
express verbally as they work. Lee, Cho and Lee (2012) use situated abstraction as 
a theoretical lens to study the mediation of embodied symbols in a combinatorial 
microworld.

Doorman, Boon, Drijvers, van Gusbergen, Gravemeijer and Reed (2009) combine 
the instrumental approach with “form-function-shift”, which permits an analysis 
of the interplay between tool use and conceptual development. They thus analyse 
grade eight students’ acquisition of the mathematical concept of function through a 
teaching experiment method, showing how a “form-function-shift” occurred within 
the instrumental genesis process.

A different approach, by Lozano, Sandoval and Trigueros (2006), combines 
instrumentation with enactivism to student the mathematics learning of students 
using the primary school programme Enciclomedia. Enactivism can account for 
a broader set of phenomena than can instrumentation, including the social and 
affective dimensions of the teaching and learning situation.

The instrumental approach has developed over time, especially as researchers 
have turned their attention to the role of teachers in a technology-based classroom, to 
focus on the construct of instrumental orchestration (Trouche, 2004), which relates 
to the way a teacher, for example, externally steers a student’s instrumental genesis. 
Orchestration is used in Kieran, Guzmán, Boileau, Tanguay and Drijvers’ (2008) 
study of whole-class discussion involving a CAS activity as a way of analysing the 
way the teacher steers the discussion through, for example, “notational re-voicing”. 
A similar study by Morera and Fortuny (2012) uses instrumental orchestration to 
analyse the whole class discussion involving a DGE. Their goal was to identify 
rich situations in terms of their potential contributions to student’s mathematical 
learning. They assert that the students’ progress centrally involves communicative 
nonverbal actions, and not just the verbal interactions that make up the list of types 
of instrumental orchestration. This suggests a need to complement this kind of 
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study with theoretical approaches that can account for the importance of nonverbal 
communicative actions.

Drijvers, Doorman, Boon, van Gisbergen and Reed (2009) study the types of 
orchestrations of three grade 8 teachers using an applet related to the concept of 
function. This framework allows them to identify six ICT-specific orchestrations 
and follow up interviews indicate that the teachers’ preferences for the types of 
orchestrations relate to their view on the teaching and learning of mathematics. 
Patsiomitou and Emvalotis (2010) draw on the insights of both instrumental genesis 
and instrumental orchestration to design a classroom intervention with secondary 
students in Greece using DGE. They show that the students’ reasoning skills (in 
relation to van Hiele levels) improved and explain this by analysing both the 
instrumentation and orchestration processes.

Documentational genesis is another evolution of the instrumental theory that 
focuses on how teachers’ work is developed with and on resources in a dialectic 
process where design and enactment are intertwined (Gueudet & Trouche, 2009). 
Psycharis and Kalogeria (2013) use this approach to study a prospective teachers’ 
documentational work in a technology-enhanced mathematics classroom. They 
identify the various factors involved in the teacher’s development of two new 
documents (a scenario and a worksheet), which include his limited understanding of 
the affordances of the software tool.

The theory of instrumental genesis focus on the relationship between tools and 
users. A different approach is offered in Chorney (2013), who argues for a material, 
post-human perspective in which the tool, the student and also the mathematics 
are not simply interacting as individual nodes in a graph. Instead, they form an 
assemblage in which, for example, the student and the tool can be seen as one 
ontological unit. He illustrates this by examining a DGE-student-circle assemblage 
as it changes over time.

Focus on mediation. Semiotic approaches are visible throughout the decade and, 
for the most part, increasingly become identified in terms of the theory of semiotic 
mediation (TSM), proposed by Bartolini-Bussi and Mariotti (2008). One exception 
can be found in the work of Berger (2008), who uses a semiotic approach, but one 
that is more specifically situated within the work of Peirce (1998). In this work, 
mathematics is seen as a semiotic system consisting of three components: a set of 
signs, a set of rules for sign production and a set of relationships between signs and 
their meanings. This socio-historical approach has much in common with Radford’s 
(2012), which also attends to the embodied and affective dimensions of knowing. 
Indeed, Swidan and Yerushalmy’s (2009) broad theoretical framing draws on 
Vygotsky’s (1978) socio-cultural theory of learning, which accords a significant role 
to the mediation of external artefacts that are transformed into internally oriented 
tools. These authors focus also on theories of embodiment, through Berger (2004) 
and Radford et al. (2005), and use Radford’s (2003) categories of attention, awareness 
and objectification to examine how students made sense of the accumulation 
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function in two different applications involving dynamically and visually linked 
representations of functions. Their case study of two 17-year old students enabled 
them to identify four different meanings for the accumulation function, which the 
authors argue were interiorized in the course of their operations in the microworld. 
Swidan and Yerushalmy (2013) use the same theoretical tools, but with an increased 
emphasis on how bodily activities are involved in the conceptualisation process 
and on multimodality, to analyse the way a pair of 17-year old students embody 
the convergence of the Reimann accumulation function in the Calculus UnLimited 
application.

A few papers draw on activity theory, which can be seen as an extension of 
Vygotsky’s work, as developed by Leont’ev, and which takes as its central unit 
of analysis activity, rather than the individual or even the group. Triantafillou and 
Potari (2006) used an ethnographic approach that draw on activity theory to study 
the uses of technology in the work place. A similar approach, informed by Vygotsky 
and Radford, was taken by Hassan, Fernandes and Healy (2014) to analyse the 
algebraic expressions of deaf students using the Mathsticks microworld. The authors 
show how the students were able to connect the visuo-gestural and dynamic digital 
representations, and highlight the importance of developing a shared sign for the 
concept of variable.

Early uses of TSM focused on how particular actions or presentations in a digital 
technology might enable students to develop associated mathematical meanings, 
which are presumably specific to that technology. For example, Keisoglou and 
Kynigos (2006) examine the mediation process of students working in trigonometry 
microworld; they specifically examine how students mediate representational 
registers. Similarly, Kynigos and Gavrilis (2006) focus on mediation in a microworld 
in which students construct sinusoidal periodic covariation. Arzarello and Paola 
(2008) combined TSM with the instrumental approach to study how students’ use of 
a graphing calculator, in addition to paper-and-pencil methods, affects the way they 
choose the independent variable. Olive (2011) also combines these two theories in 
his analysis of a one student makes sense of fractions using a DGE dynamic number 
lines. Chan (2012) uses the construct from TSM of the double semiotic link, relates 
the artefact with both the DGE-based task and the mathematical knowledge, of a 
mathematician working on tasks in Euclidean geometry, such as Haruki’s Cevian 
Theorem. The experience with dragging was seen as modifying his semiotic link 
between the DGE and mathematical knowledge.

Focusing on the role of feedback in Aplusix, Maffei, Sabena and Mariotti (2009) 
use TSM to perform an a priori analysis of the potentialities of the software. They 
also show, through excerpts of classroom discussion, how the semiotic process was 
triggered by the teacher’s interventions. Maffei and Mariotti (2010) extend this work 
to analyse the way tree representations in Aplusix make structural and procedural 
aspects of algebraic expressions emerge in a teaching experiment involving two 
ninth grade Italian classes. Maffei and Mariotti (2013) also use TSM to examine the 
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way in which the graph in Aplusix becomes a mathematics tool for students learning 
about algebraic equivalence.

The two papers described above highlight how TSM can be used not only to study 
the learning process, but also the teaching process. Indeed, the notion of a didactical 
cycle is mentioned explicitly in the latter paper, which provides explicit guidance for 
how teachers can guide the process of semiotic mediation both in terms of the use of 
discussions and in the design of tasks. Related to this, Arzarello and Paola (2007) use 
the notion of a “semiotic game” to describe how a teacher and her students navigate 
the process of semiotic mediation in a multimodal environment that involves 
graphing calculator signs as well as gestures, speech and visual representations. This 
research draws explicitly on the TSM, while also bringing in aspects of embodied 
cognition in order to privilege the role of gestures in mediation of meaning.

A Comment on Theories and Methodologies

Not all the papers we considered make explicit use of a theoretical perspective. 
These papers fall into two main types:

• Quantitative studies: examples include Lin and Chin’s (2005) comparison of two 
grade five students’ calculator-assisted learning of number sense in Taiwan; Pegg, 
Graham and Bellert (2005) study the effect of a computer-based system focusing 
on basic skills; Kimihno, Tatsuo, Hitoshi, Fumihiro, Yuichi and Mikio (2007) 
study of lower secondary students in Japan who were taught using a 3-D DGE-
based curriculum involving the use of 3-D dynamic geometry; Hosein, Aczel, 
Clow and Richardson (2008) comparison of students’ exploration using black-
box, glass-box and open-box software; Beatty, Bruce and McPherson (2011) show 
that the use of CLIPS (computer-based environment designed to focus student’s 
attention) improved increased pre-test scores. Ma, Xin, Tzur, Yang, Park, Liu 
and Ding (2014) evaluated the effects of an intelligent tutor system designed to 
support multiplicative reasoning on students with learning disabilities. Other 
related examples relevant to this category are discussed elsewhere in this chapter.

Studies of beliefs and/or preferences about the use of digital technologies: 
examples not discussed elsewhere in this chapter include Gkolia and Jervis (2006) 
on students’ attitudes to the integration of technology in mathematics; Özgün-Koca 
(2011) on prospective teachers’ views on the use of CAS.

With respect to the papers that do draw on theories, there has been significant 
development over the past decade, which suggests that the field of mathematics 
education related to digital technology has certainly matured; it has evolved from 
being an “experimentation niche” and has become an established domain of research 
that now carries a more solid message for the future. That being said, there remain 
important lacunae. We would like to highlight two of them. The first concerns the 
need to better integrate theories relating to tool use with well-known more general 
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and established theories. The second is the relative lack of parallel evolution in terms 
of methods, as can be seen in the fact that it was the explicit focus of only one PME 
paper over the past decade. Hosein, James, Clow and Richardson (2007) propose the 
method of remote observations for analysing learners’ mathematical activity with 
spreadsheets, a method that is especially well suited to on-line learning environments 
and that capitalises on current screen and voice capture technology. Elsewhere, 
Yerushalmy has used known linguistic theories of text analysis and extended them 
to analysis of interactive text (including dynamic diagrams); this work has informed 
the design and implementation on interactive text. Finally, given the increased use of 
neuroscientific methods in mathematics education research, such as fMRI and EEG, 
there may also be opportunities to employ such methods in the particular context of 
digital technology. We will return these two lacunas in the conclusion.

BROADENING THE PHENOMENON OF INTEREST

In their chapter on projecting trends in digital technology in mathematics education, 
Sinclair and Jackiw (2005) describe three ways of technology evolution in 
mathematics education. While the first wave focused almost exclusively on learners’ 
interactions with technology, the second wave consisted of technologies such as 
spreadsheets, graphing calculators, computer algebra systems and dynamic geometry 
environments, all of which are more transparently related to the school mathematics 
curriculum. The PME papers over the past decade involve mostly on second wave 
digital technologies, but these vary in terms of both their mathematical expressivity 
and their curriculum specificity. In particular, we can see the following evolution 
in second wave digital technology: (1) open digital technologies do not contain 
embedded tasks, though these can be developed alongside the technology (Logo, 
Cabri, Sketchpad, CAS), and are thus open to a wide range of potential actions and 
uses; (2) task embedded digital technologies contain embedded tasks, which direct 
the actions and uses to more specific purposes; (3) evaluative technologies provide 
feedback on students’ responses and actions. This evolution shows a growing increase 
in the accessibility of technology to the context of the mathematical classroom, 
moving towards an increased integration of the various practices of teaching, such 
as proposing problems and assessing student learning. In the following sections, we 
describe the PME research over the last decade in terms of these four categories.

Open Digital Technologies

The digital technologies in this section are often considered to be microworlds, in 
Papert’s (1980) sense of the term (see Healy & Kynigos, 2010). We consider in this 
section papers relating to the use of DGEs (such as Cabri, Sketchpad, Cinderella, 
Geometric Supposer, and not applets in which a student can simply drag the vertex 
of a triangle). We then examine papers focussing on CAS, spreadsheets and graphing 
calculators.
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Given the fact that DGEs are relevant not only for geometry, but also other topic 
that make use of geometric models, it may not be surprising that the research on 
the use of DGEs has broadened extensively. In her chapter, Mariotti (2006) focuses 
on the research involving DGEs in the context of the proving process. Some of the 
themes she discussed were also evident over the past decade. For example, Benítez 
Mojica and Santos-Trigo (2006) study the role of the DGE in high school students’ 
formulating and verifying of conjectures; Rodríguez and Gutiérrez (2006) find that 
the use of DGE helps high school students identify conjectures, but does not help 
them find deductive proofs. Samper, Camargo, Perry and Molina (2011) focus on 
how the use of DGEs by university students supports their abductive inferences, 
which they claim to be an important component of the process of justification.

Shifting away from prior concerns, but still focussed on the processes of 
experimenting and justifying, Leung and Or (2007) consider the diachronic nature 
of DGE objects and its effect on the way a secondary student engages in oral 
explanation and written proof, arguing that a more diachronic discourse may help 
bridge the empirical-theoretical gap that is much discussed in the literature. Also 
with an interest in the importance of invariance in the use of DGEs, Baccaglini-
Frank, Mariotti and Antonini (2009) provide a framework that describes the different 
invariants and show that students’ interpretations of these invariants play a stronger 
role in their process of discovery than in the generality of proofs.

The emerging importance of curriculum materials that support the use of DGEs 
can be seen in Patsiomitou and Emvalotis (2010), who show how secondary school 
students developed their van Hiele levels as well as their geometric reasoning skills 
through the use of a DGE, and place particular emphasis on the role of the Sketchpad-
based curriculum materials that were designed to promote conceptual change. 
Focusing more deeply on student’s instrumental genesis form the previous study, 
Patsiomitou (2011) identifies two obstacles that students face when they construct 
dynamic diagrams, and also show how students’ theoretical dragging can provide 
non linguistic warrants—in Toulmin’s sense—for the construction of a “dynamic 
proposition,” which is empowered in a dynamic geometry environment. The latter 
finding is an attempt to establish dynamic geometry as a context for geometric 
investigation that is strongly related to but also distinct from traditional Euclidean 
approaches, a goal that was first articulated by Goldenberg and Cuoco (1998), but 
that has not been much pursued, perhaps because of the pressure to use and evaluate 
DGEs within the context of current school curricula.

New themes in the research on the use of DGEs include a wider application in 
terms of strands of the curriculum and grade levels. For example, the following papers 
focus on the use of mathematical processes that are not specific to the proving process: 
Haja (2005) and Haug (2010) investigates the use of DGEs in problem solving, as do 
Jacinto and Carreira (2013), who study on an out-of-school problem solving context; 
Presmeg, Barrett and McCrone (2007) focus on the fostering of generalisation and 
the development of student norms; Sinclair and Crespo (2006) show that pre-service 
teachers who explore a DGE-based mathematical situation engage in better problem 
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posing than when they are given paper-and-pencil contexts. Several papers have 
focused on specific types of reasoning that might be promoted or encouraged by 
the use of DGEs: Papageorgiou, Monoyiou and Pitta-Pantazi (2006) study how the 
use of DGE helped students overcome the intuitive rule “more A – more B” in the 
context of finding the sum of the angles of a triangle and a quadrilateral; Baccaglini-
Frank, Antonini, Leung and Mariotti (2011) investigate how the use of DGE can 
help students understand proofs by contradiction; Samper, Perry, Camargo, Molina 
and Echeverry (2010) focus on students’ conditional thinking.

Because DGEs offer visual, kinetic, graphical and symbolic forms of expression, 
researchers have also investigated how these different forms are used and combined 
by students. For example, Patsiomitou and Koleza (2008) study the use of linked 
representations in a DGE to develop students’ geometric thinking; Ofri and Tabach 
(2013) inquire into the effect of the multiple representations for a dyad of eight grade 
students exploring a problem situation related to functions; Ferrara and Ng (2014) 
investigate the multimodal affordances of a multitouch DGE that involves not 
only visual and symbolic representations, but also gestural interactions of students 
exploring calculus concepts; Similarly, Ng (2014) investigates high school students 
investigating calculus concepts using a multitouch DGE. The theme of how teachers 
and students talk about and share mathematics can be seen in the papers by Berger 
(2011), who focuses on discourse with DGE classroom, and Morera and Fortuny 
(2011), who investigate group discussion following the use of DGE.

A particularly important theme examines the way students interpret the dynamic 
images found in DGEs. While researchers have pointed to the power of continuously 
changing shapes (like the triangle whose vertex is dragged to form a whole family 
of triangles), it is still not clear how exactly students made sense of these images (as 
many example, or as an invariance) and what effect this has on their thinking (see 
Battista, 2008). Talmon and Yerushalmy (2006) examine students’ conceptualization 
of dragging studying the tension between the appeared figure, the figure-image and 
the additional knowledge that the software designers computed, and determines the 
behaviour of the dragged figures. Olivero (2006) studies the use of showing/hiding 
constructions as a way of helping students see geometrically significant features 
of a construction. Patsiomitu and Emvalotis (2009) propose the LVAR model of 
visualisation to study how students’ use of a DGE affects their spatial reasoning.

Beyond the traditional focus on high school geometry, the use of DGEs has been 
studied in a growing variety of contexts. Gol Tabaghi and Sinclair (2010) described 
sketches that were designed to help undergraduate students learn about eigenvectors 
and eigenvalues. Lew and Yoon (2013) focus on quadratic equations; Ferrara and 
Mammana (2014) make use of a 3-D DGE to examine how students make sense of 
moving back and forth between 2-D to 3-D shapes. At the elementary school level, 
Olive (2011) describes upper primary school children working with fractions on a 
dynamic number line. Other papers already mentioned include: Sinclair, Moss and 
Jones (2010) on grade 1 children explored intersecting and parallel lines; Sinclair 
and Kaur (2011) on grades 2/3 children’s thinking about symmetry; Kaur (2013) on 
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kindergarten children’s thinking about angle; Kaur and Sinclair (2014) on grades 2–3 
children learn about triangle identification. Finally, Papadopoulos and Dagdilelis 
(2009) report on grades 5 and 6 students using a DGE in combination with other 
digital technologies including MSPaint and GeoComputer (an electronic geoboard) 
to explore the concept of area. The authors found that the 36 students using the 
digital technologies developed more strategies for estimating the area of irregular 
shapes than the 62 students working in a paper-and-pencil environment. Huang 
(2012) compared the results of fifth grade students using an enriched curriculum 
that integrated Cabri-3D to teaching volume measurement with students using 
only physical manipulatives and found that the former group performed better on a 
follow-up test.

Researchers have also continued to investigate the use of other technologies 
such as symbolic manipulators (in the form of CAS), spreadsheets (focusing on 
manipulations of numbers) and graphing algebra tools (graphing calculators or 
applications emphasizing multiple representations of expressions in algebra or 
calculus). Kieran and Saldanha (2005) study secondary students’ reasoning about 
equivalent algebraic expressions and found that getting them to interpret their own 
work with the CAS was beneficial, Drijvers et al. (2006) argue that confronting CAS 
with paper-and-pencil algebra can be powerful in students’ developing techniques 
that can lead to theoretical thinking. Yiasoumis, Mattheou and Christou (2009) 
show that 11th grade students improved their performance on analytic tasks related 
to the concept of limit after using a CAS-like applet. Sacristan and Kieran (2006) 
investigate student conjecturing with a CAS, describing how one high school student 
used CAS to test a conjecture regarding the general formula for xn+1. Based on 
an analysis of a pair of university students working on quadratic approximations, 
Berger (2008) argues that CAS can facilitate the learning of mathematics because 
it functions as a tool for semiotic activity. Sevimli and Delice (2013) find that CAS 
helps students develop their concept image of definite integrals more than in a paper-
and-pencil environment. In 2014, Sevimli and Delice conducted a comparative study 
and found that students in CAS-integrated group had less misconceptions related to 
“negative area” in the definite integral.

Other research elaborating on the use of well-known digital technologies includes 
spreadsheets: Ainley, Bills and Wilson (2005) focus on the design of “purposeful” 
tasks using spreadsheets and find that the secondary students’ perception of the 
purpose of the task affected the way in which the technology was used by the students, 
which in turn affects the way the tool becomes transparent (in the sense of Lave & 
Wenger, 1991) for the students; Son and Lew (2006) describe the way in which six 
grade 10 students working in pairs used a spreadsheet to make hypotheses about a 
complex real-world problem, which would not be easy to solve in a paper-and-pencil 
environment, and the process in which they justify their discoveries—the teacher 
was found to play an important role in this process of justifying; Calder (2009) 
examines the visual tensions when mathematical tasks encountered in a spreadsheet; 
Challis, Jarvis, Lacicza and Monaghan (2011) found that spreadsheets were the 
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digital technology that fit best with the objectives of the activities of undergraduate 
staff and students.

Another type of digital technology that continued to receive attention during the 
past decade is the graphing calculator: Pierce’s (2005) study the influence of three 
secondary teachers, who used a particular textbook designed to teach linear functions 
through the use of graphing calculators, on students’ algebraic understanding; 
Lew and So (2008) investigated two high school students’ problem solving with a 
graphing calculator and found that the digital technologies help them make empirical 
and deductive justifications; Getenet and Beswisk (2014) study pre-service teachers’ 
use of a graphing calculator to understand and describe the properties of logarithmic 
functions as the bases vary; Swidan and Yerushalmy (2013) study the personal 
meanings for the definite integral that arise from high school students’ use of Calculus 
Unlimited (CUL), which is a dynamic and multi-semiotic graphing environment. 
Instead of focusing on a particular mathematical topic, Hegedus, Dalton, Cambridge 
and David (2006) describe the new patterns of participation (how students interact 
amongst themselves and with the teacher) that emerge out of students’ use of Simcalc 
in a graphic calculators’ networked classroom.

In a few studies, a combination of digital technologies was involved. For example, 
Fuglestad (2005) studied students’ choice of software tools on given problems and 
found that only one half of them were able to choose the most appropriate tool 
for the problem; Jungwirth (2006) investigate a classroom in which multiple digital 
technologies were used, including CAS, spreadsheets and DGE, and found that when 
these digital technologies were used, “doing” dominated in the classroom, whereas 
“done” dominated the classroom when no digital technologies were used; Hong and 
Thomas (2013) studied undergraduate students’ difficulties with a local or interval 
perspective of functions in a classroom where the lecturer used DGE, CAS as well 
as graphing software. Also focusing on an undergraduate context in which multiple 
digital technologies are used, Oates, Sheryn and Thomas (2014) study the design 
of a digital technology integrated undergraduate course in view of identifying its 
strengths and weaknesses. Finally, Pinkernell and Bruder (2013) focus on whether 
the use of digital technology in general (especially CAS and graphing calculators) 
in the classroom hinders the mastery of basic concepts and argue that it does not as 
long as teachers use methods that also involve mental mathematics exercises as well 
as repetition.

Despite the recent resurgence of programming in education, there have been 
few studies in the PME proceedings. Baccaglini-Frank, Antonini, Robotti and Santi 
(2014) report on a students’ use of Mac-Trace, which is a drag-and-drop Logo-based 
programming environment. Cho, Song and Kim (2007) report on the design of an 
integrated DGS and Logo microworld that enables the creation of planar curves. 
At the undergraduate level, Buteau, Muller and Marshall (2014) report on a study 
conducted with students who were involved in a year-long course in which they 
designed, programmed and used microworlds to learn and do mathematics. They 
found that through these activities the students developed the fifteen theoretically 
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identified competencies (such as “to programme mathematics” and “to visualise 
mathematics”) and that choosing their own topics was key to the development of 
these competencies.

Several PME papers have focused on the use of MaLT, which is a 3-D 
programming environment that also enables dynamic manipulation. For example, 
Kynigos, Psycharis and Latsi (2009) used a microworld developed in MaLT with 
20 grade seven students to explore their meanings of the concept of angle. They 
argue that the tools in the microworld enabled the students progressively coordinates 
the different facets of the concept in 3-D space. Continuing this work, Latsi and 
Kynigos (2011) studied 12 year-old students’ novel meaning of angle as a result of 
changing virtual perspectives of their constructions. Also using MaLT, Moustaki 
and Kynigos (2011) studied engineering students’ activities on three phases of tasks 
and showed how their success was related to the opportunities for visualising and 
spatial reasoning afforded by the microworld design. Also focusing on both 3-D 
and programming, Markopoulos, Kynigos, Alexopoulou and Koukliou (2009) used 
the Cruislet microworld, which uses GIS (geomgraphical information systems) with 
a Logo programming language and enables learners to navigate 3-D geometrical 
spaces. The authors describe how 12 grade 10 students constructed meanings related 
to vectors, coordinates and functional relationships.

Several new microworld environments that are not 3-D have also been developed 
and researched over the past decade. Geraniou, Mavrikis, Kahn, Hoyles and Noss 
(2009) describe the development of a microworld called eXpressor for expressing 
generality as well as insights from trials with students. Their iterative design 
highlighted five main elements of the microworld: (1) the need to provide a rationale 
for generality; (2) offering model construction and analysis simultaneously; (3) 
scaffolding the transition from number to variables; (4) attending to specific cases 
while also gaining awareness of the general; and (5) reflecting on expressions that 
have been derived from the model construction.

Also with a focus on algebra, Hewitt (2010) describes the Grid Algebra 
environment, which is designed to help students learn to solve equations and develop 
fluency with formal algebraic notation. He shows how a carefully sequenced set of 
activities helped a class of 9–10 year-old students gain confidence in the reading 
and writing of notation, despite their young age. With a focus on algebra, but at a 
higher level, Psycharis, Moustaki and Kynigos (2009) studied 17 year-old students’ 
use of the MoPiX environment, which enables students to construct virtual models 
consisting of objects whose properties and behaviours are defined and controlled 
by the equations assigned to them. They describe the students’ development of a 
structural conception of the notion of equations.

In the context of inferential statistics, Prodromou (2013) describes a study 
conducted with 14 to 15 year-old students using the dynamic statistics software 
Tinkerplots. The author describes four phases of informal inferential reasoning in 
statistical modelling and simulation process and shows how the software helped 
foster the development of the students’ logic of inferences over these phases.
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Task-Embedded Digital Technologies

As evidenced by the recent ICMI Study on Task Design, this is an area of growing 
importance. An upcoming volume focused on task design and technology (Leung & 
Baccaglini-Frank, to appear) should provide a state-of-the-art overview of theoretical 
and empirical developments in this area. In the PME proceedings over the past 
decade, a small number of papers have focused explicitly on task design. One 
was Leung (2014), who considered task design with a DGE, with a specific focus 
on how tasks can be designed to help students notice and appreciate invariance. 
Yerushalmy and Shubash (2009) examine the unique features of tasks constructed 
using interactive diagrams to examine the learning of 15 year-old students working 
on two algebra and functions activities (one with which they were familiar (quadratic 
function) and the other not (difference function)). In the computational environment 
tasks come with examples that are either semi-random or can be generated by the 
user. The researchers found that random, non-structured sequences of examples 
were more difficult to acquire at first, but that the determined students could use 
them to leverage conceptual understanding.

Salle (2014) investigates the learning process of two sixth-grade students using 
animated worked-out examples in the domain of fractions. Using some quantitative 
data, the author argues that the worked-out examples are effective for pair learning 
and that the self-explanation prompts given to the students played an important role 
in their learning, as exemplified by a qualitative analysis. Naftaliev and Yerushalmy 
(2009) investigate whether and how tasks designed upon printed diagrams vs. 
interactive diagrams, or upon video clips vs. interactive animations, create different 
contexts for mathematics problem solving. Concentrating on high-school tasks in 
functions and algebra the researchers explore the ways in which problem solvers use 
sketchy interactive diagrams designed to encourage the problem solver to transform 
sketchy information into conceptual learning.

Jones and Pratt (2005) used the Visual Fractions microworld, in which users can 
create, manipulate, destroy and connect fractions (as well as operations, relations 
regions and Boolean flags) on the screen, to investigate the meanings for the equal 
sign that two thirteen year-old girls constructed. They found that the microworld, 
along with the tasks they were given, enabled the girls to create the meaning of 
equivalent for the equal sign. Lavy (2006) used a microworld that was created 
within the Logo-based Microworld Project Builder environment. She found that 
the 14 students who solved the problem in a traditional environment had the same 
percentage of success as the 78 students who saw the visualisation of the problem in 
the microworld, but that the visualisation distracted the latter group’s attention away 
from the proper handling of the solution. Lee, Cho and Lee (2012) study the use of 
a combinatorial microworld. They find that the embodied symbols help students 
perform better on most tasks when comparing pre- and post-tests.

Suh and Moyer-Packenham (2007) compare the use of physical and virtual 
manipulatives in 36 grade 3 students’ learning of fractions and found that students 
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using the virtual manipulative performed showed statistically significant positive 
result. Using Dual Code theory, they also showed that the students’ using the virtual 
manipulatives used more pictorial and numeric representations in explaining their 
work and the ones that did not used more algorithmic approaches.

Finally, Fesakis and Kafoussi (2009) provide a good transition between this 
section and the next in that it examines the effect of two combinatorics microworlds 
(using the Scratch programming environment) on 30 kindergarten children’s 
activities, where one of the microworlds is evaluative in that is provides scaffolding 
and feedback on students’ mistakes and the other is not. They found no significant 
difference in children’s performance on either microworld, nor on children’s 
performance with physical manipulatives, but note that the children using the 
evaluative microworld did not make use of the scaffolding.

Evaluative Digital Technologies

Evaluative feedback has long been a feature of computer-based learning, but has been 
restricted to providing right/wrong, single-input feedback on solutions to exercises 
or problems. Such evaluative feedback does not fit well with current interactive and 
collaborative technologies, which support multimodal forms of interaction, and not 
just symbolic ones. Over the past decade, a few PME papers have studied novel 
approaches of evaluative feedback (for the student as well as for the teacher).

There were several papers focused on Aplusix, which is a learning environment 
for algebra that includes embedded tasks as well as evaluative feedback Chaachoua, 
Bittar and Nicaud (2005) describe the work they carried out in trying to identify 
students’ conceptions of linear equations in order to provide diagnostic information 
that could eventually be used to automatically produce suitable tasks for students. 
They tested their model with 342 Brazilian students aged 13–16 year-old and 
found that it cohered well with the teachers’ opinions of the students’ algebraic 
understanding. Maffei and Mariotti (2006) conducted a teaching experiment with 
three 9th grade classes in Italy and found that the use of Aplusix was effective not 
only in terms of decreasing the number of errors that students made, but mainly 
at improving students’ attitudes towards their errors. Another diagnostic model 
was used by Gonzalez-Calero, Arnau, Puig and Arevalillo-Herráez (2013). They 
investigate two pairs of 15–16 year-old students’ performances on an intelligent 
tutoring system (Hypergraph Basic Problem Solver) focused on solving arithmetic-
algebraic word problems.

Other evaluative approaches aim to provide students formative feedback. Wu, 
Wong, Cheng and Lien (2006) described a computer-assisted learning environment 
called InduLab in which students learn how to perform inductive tasks (such as 
discovering properties of the angles of a triangle). It provides several tools for 
helping the learner to induce target properties, including a data table. Fujita, Jones 
and Miyazaki (2011) describe a web-based flowchart platform designed to help 
secondary school students overcome circular arguments in mathematics. They 
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claim that with the support of the teacher on the structural aspects of a proof, the 
feedback from the platform helped learners begin to overcome circular arguments. 
Kelly, Heffernan, Heffernan, Goldman, Pellegrino and Solfer-Goldstein (2014) 
conducted a randomised-controlled trial of 63 seventh graders in which 30 students 
used a web-based homework system that provided immediate feedback as well 
as detailed item reports to teachers. They found that the students using the web-
based homework outperformed the others in the post-test that was given, which the 
authors explain in part by the fact that these students could attempt each homework 
question multiple times.

Using activity theory, and drawing on the assessment literature, Broughton, 
Hernandez-Martinez and Robinson (2013) investigate the used of computer-aided 
assessment (CAA), which provides evaluative feedback on students’ solutions. They 
found that such evaluative might be effective for low-level goals, but that it does not 
inspire students to continue the learning cycle and explore new learning goals.

Critical Review of the Three Types of Technology Broadening

Especially within the first type of technology broadening (open digital technologies 
and task embedded digital technologies), there has been a strong presence of research 
at the elementary school level. Several of the examples in the first category involved 
digital technologies that were initially designed for use at the high school level, such 
as DGEs. Others arose principally from changes in digital technology hardware, such 
as the development of programmable toys and of touchscreen devices. In contrast, 
all of the examples in the third type of technology broadening (evaluative digital 
technologies) focused on the secondary school of undergraduate level. This may be 
related to the very different assessment practices in the later grades.

Almost all the digital technologies that were studied were mathematically 
specific. There are a growing number of digital technologies, however, especially 
games, that are also being brought into the mathematics classroom. In addition 
to the Sim 2 paper that we discussed earlier, another PME paper related to non-
mathematical games was that of Lowrie, Jorgenson and Logan (2012), who 
investigate gender differences in game that primary school children like to play. 
They found that girls preferred to play games that require logic and problem solving 
and boys preferred games that contain maps—these gender differences were more 
pronounced in non-metropolitan locations.

TEACHING WITH TECHNOLOGY

Compared with research on student learning with technology, research on the 
teacher has not been as well developed. This can be seen by the nascent theory 
development in this area that began with the descriptive framework of TPACK, 
which includes technology knowledge as additional to pedagogical and content 
knowledge that teachers may use in their teaching practices. More recently, as 
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evidenced in Clark-Wilson, Robutti and Sinclair (2014), new theories that provide 
a more analytic lens on the role of the teacher in teaching with digital technology, 
stemming largely from the theories of instrumental genesis and instrumental 
orchestration, but also in Ruthven’s (2014) framework for analysing the expertise 
that underpins successful integration of digital technology.

In the PME papers over the past decade, researchers have examined both the 
knowledge that teachers might need to teach with technology and the way teachers 
learn to use digital technologies in the classroom, both in pre-service and inservice 
contexts. There have also been studies that highlight some of the productive practices 
that teachers engage in when teaching with digital technologies.

Inservice and Pre-Service Teacher Knowledge as it Relates to  
Digital Technologies

Several papers investigated teachers’ “pedagogical content knowledge” (PCK) as it 
relates to particular topics or technologies, often pointing to their deficiencies. For 
example, Akkoç, Bingolbali and Ozmantar (2008) point to the difficulties that a pre-
service teacher has with the derivative at a point. The authors assert that the teacher’s 
limited content knowledge, combined with her lack of experience in using graphing 
calculators, prevented her from appreciating how the graphing calculator could be 
used to teach the concept.

Bretscher (2012) presents a case study of a secondary school teacher using a 
spreadsheet to teach linear sequences. She summarises the different advantages that 
the teacher noticed (such as feedback to the student), but also highlights certain 
potentially problematic aspects of the teacher’s actions, such as her choice to not 
point out the differences between standard notation and spreadsheet notation. In 
addition, Bretscher argues for a reframing of TPACK, writing that it “may be better 
understood as a transformation and deepening of existing mathematical knowledge 
rather than as a new category of knowledge representing the integration of technology, 
pedagogical and mathematical knowledge” (p. 83). In a similar vein, Rocha (2013) 
offers an alternate framework for investigating the teaching mathematics with 
technology, which she calls Knowledge for Teaching Mathematics with Technology 
(KTMT), and which she argues provides a more dynamic model of teacher growth 
than does TPACK.

Teachers’ Views of Digital Technologies

In this subsection we consider papers concerned with teachers’ perceptions of digital 
technologies in terms of how they viewed their affordances or potential use, as well 
as attitudes about the use of digital technology in teaching mathematics.

Ball and Stacey (2005) investigated four teachers’ initial use of CAS. They 
describe the issues that the teachers identified at the end of the school year, such 
as the lack of intermediate steps available when CAS is used and the pressure of 
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external examinations. Ball and Stacey (2006) focus on one teacher’s early use of 
CAS to show how he moved from a functional to a pedagogical use of CAS and 
how he came to appreciate the pedagogical possibilities of CAS. Pierce and Stacey 
(2009) studied the classroom implementation of TI-Nspire in classrooms where 
lesson study was used, which gave them high quality insight into the pedagogical 
affordances of the digital technology. They focus especially on the availability of 
multiple representations.

Berger (2012) shows how two inservice teachers differed in the way they used 
a DGE; one used it as a tool with which to make sense and the other as a tool 
with which to explore various aspects of given functions. Lagrange (2011) shows 
how teachers differ in the way they take up innovative software. Tan and Forgasz 
(2006) compare teachers’ view of the use of graphing calculators in Singapore 
and Australia, showing that the latter teachers were more enthusiastic about their 
use, perhaps because they are mandatory in the grade 12 examinations in Victoria, 
Australia. Kuntze and Dreher (2013) found that the 39 pre-service and 65 inservice 
teachers in Germany differed in terms of the use of digital technology, with the 
former being very optimistic and the latter showing very little use.

Taking a more longitudinal approach, Thomas’ (2006) research spanned ten years 
and involved over 300 secondary New Zealand teachers’ attitudes towards the use 
of digital technology. He found that while there are many more computers available 
in schools, access remains a key obstacle for teachers. He also found a change in 
terms of the kind of software teachers used, away from content-specific programs 
and towards generic software—especially the spreadsheet. Finally, he argues that a 
teacher’s attitude is a key factor in whether or not teachers integrate the use of digital 
technology in the mathematics classroom.

Teacher Learning and Professional Development

There have been several studies on the use of digital technologies in both pre-service 
and inservice education. In terms of the former, researchers have examined pre-
service teachers in on-line environments (Borba & Zulatto, 2006; Goos & Bennison, 
2006; Flores, Escudero, & Sánchez Aguilar, 2014) and in communities of practice 
(Amado & Carreira, 2006). In terms of more specific topics Ozmantar et al. (2011) 
studied the development of pre-service teachers in linking multiple representations; 
Sinclair and Crespo (2006) investigated the use of technology to help pre-service 
elementary teachers pose better mathematical problems; and, Okumus and Thrasher 
(2014) focused on pre-service elementary teachers’ use of the dynamic statistics 
software, Tinkerplots.

In terms of inservice teachers, researchers have investigated teachers’ professional 
development in relation to the use of digital technology within a community of 
practice (Fuglestad, 2007; Besamusca & Drijvers, 2013) as well as teacher learning 
through virtual simulations (Meletiou-Mavrotheris & Mavrou, 2013). Researchers 
have also studied inservice teachers’ problem solving capacities (Haja, 2005) as well 
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as how they use dragging as an organizer for conjecturing in a DGE (Camargo, Samper, 
Perry, Molina, & Echeverry, 2009). Psycharis and Kalogeria (2013) undertook a case 
study of the documentational work of one inservice teacher preparing a lesson for his 
colleagues. The authors argue that the two new documents that the teacher developed 
were constrained by three factors; (1) the inherent difficulty of developing teaching 
materials; (2) the difficulties in knowing the affordances of the microworld that had 
been chosen; and (3) the teacher’s knowledge and experience,

Teachers’ Practices Involving Digital Technology

Instead of trying to change teachers’ understanding or use of digital technology, 
several studies have been concerned with teachers’ current practices. These studies 
usually aim to highlight the complexities of teaching with technology as well as the 
novel practices that teaching with technology entail. For example, Jungwirth (2006) 
examines how teachers are using a variety of different digital technologies (including 
CAS, spreadsheets and DGEs) in their practices and how this differs from their 
off-line practice. Lerman and Zevengergen (2007) examine current teachers’ use 
of interactive whiteboards, highlighting how they differ from their anticipated use. 
Sinclair and Wideman (2009) study how secondary teachers use TI-navigator, and 
show how changes in their practice (in relation to criteria that the authors developed 
for effective use) were related to the teachers’ conception of mathematical teaching.

Kieran, Guzman, Boileau, Tanguay and Drijvers (2008) examine teachers’ 
orchestration in a whole class CAS discussion, highlighting the specific moves that 
the teacher makes in facilitating this discussion. Arzarello and Paola (2007) highlight 
the role of the teacher in the semiotic game of the classroom, that is, in using the 
different semiotic mediators that emerge from interactions with digital technology. 
Hollebrands, Cayton and Boehm (2013) highlight the pivotal teaching moments in 
secondary classrooms involving the use of DGE (such as technology confusion and 
incorrect technology use), describing how teachers respond to these moments and 
what impact it might have on the students.

In the future, the novel approaches, both theoretical and methodological, of 
research such as Herbst and Chazan (2015) would seem worth pursuing in the context 
of studying teacher practices. Their approach involves using digital animations of 
classroom scenarios designed to breach certain norms of teacher practice—these 
norms then become topics of discussion and reflection, as well as sites of insight into 
teachers’ practical rationality.

CONCLUSION

In this final section we highlight some overall issues and point to some productive 
directions for future research. Following the structure of our chapter, we begin with 
the issue of innovation, which we found to be less well-represented than we had 
anticipated. There are several reasons why this might be the case, one being that it 
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can be difficult to be successful in publishing PME papers that involve the use of 
innovative technology because the theoretical implications of the innovation are not 
yet well understood—and yet a solid theoretical framework is a strong requirements 
for PME papers. It may also be that innovative technologies tend to require detailed 
explanations, which leave little room for the inclusion of other sections of the 
typical PME paper. Finally, while innovative technologies would be described and 
critiqued within a PME paper, the mathematics education literature does not yet have 
a strong tradition of technology design (see Schoenfeld, 2008). Indeed, only one 
paper focused exclusively on the very important and theory-laden choices involved 
in designing new digital technologies. One way of increasing research on innovative 
technology may be to connect more strongly with some of the research in technology 
education, where the focus on design is more developed.

An issue related to design is the fact that there are an increasing number of new 
digital technologies that frequently get called by the same name (such as DGEs) 
but that can differ substantially. Even small differences can have an important 
effect on teaching and learning (see Mackrell (2011) for a discussion of the small 
by significant differences between Cabri, Sketchpad, Cinderella and Geogebra and 
well as the earlier Talmon and Yerushalmy (2004) on the different understanding 
of dragging that students develop when using Cabri, Sketchpad or Supposer). 
Researchers need to pay attention to these differences and, perhaps, to find more 
helpful ways—especially for teachers—of communicating their results.

In terms of theory, we have noticed a tendency for researchers to combine two 
or more theoretical perspectives in order to adequately account for their research 
contexts. Sometimes general theories of learning must be combined with theories 
that provide more of a focus on the use of tools and their role in teaching and 
learning. We see a need to better articulate theories of learning with theories of tool 
use, which is currently done, for the most part, by combining approaches. Also, 
perhaps more importantly, we see a need to find ways of incorporating affective 
dimension, which is one of the long-standing and oft-mentioned motivations for 
using digital technologies in the first place.

Connected to innovation, but also to theorizing, is the issue of methodology. 
Again, there was only one paper in the past decade that focused specifically on new 
methodological approaches to studying the use of digital technology in mathematics 
education. This was an area highlighted by Lerman (2006) as being an area of 
future potent research. With the increased use of digital tools used to collect and 
analyse data, and the ever-increasing sophistication of theory, we hope to see more 
methodological innovation in the future.

Given the changes we have seen over the past decade, we anticipate a continued 
growth in the development of small, tangible software that are geared to niche 
“markets” such as students with disabilities and homeschoolers and mixed classroom. 
While in its infancy now, we also anticipate a burgeoning of design and research on 
e-textbooks as well as on new forms of digital assessment. This will have an impact 
on future research on teachers using technology in the classroom, in part because 
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there will be changing demands on their expertise: while they may not have to learn 
how and when to use powerful, comprehensive packages, they will have a new 
challenge of choosing and integrating a variety of different tools. When these tools 
become integrated in the form of e-textbooks, there will be new research questions 
that arise about the role of the teacher in the digital classroom.
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LUIS RADFORD AND RICHARD BARWELL

8. LANGUAGE IN MATHEMATICS 
EDUCATION RESEARCH

INTRODUCTION

In the past few decades, language has become an active focus of investigation in 
educational research, including research in mathematics education. Such a focus is 
a symptom of a relatively recent paradigmatic shift whose chief characteristics are 
a new understanding of the student and an increasing awareness of the complexities 
of learning contexts, such as, notably, the complexities arising from cultural and 
linguistic diversity. This paradigmatic shift appeared as the field attempted to move 
away from the two main models that emerged and evolved during the educational 
progressive reform of the early 20th century (see also Lerman, 2006).

The first of the two main models was the “transmissive model.” With its intellectual 
origins in behaviourism, this model was promoted by bureaucratic pedagogues 
who focused on implementing mass education to efficiently address the demands 
of industrial and business production (Tyack, 1974). Two of the contemporary 
heritages of this model are a methodical and detailed curriculum and the obsession 
with systematic “objective” assessments. The second main model was the “child-
centered” educational model. Intellectually rooted in a romantic pedagogy, this 
model focused on the child’s interests and intellectual potential. “Progressivism,” as 
this model came to be known, promoted the idea that “knowledge is … [a] personal 
acquisition, obtained by learning from experience” (Darling & Nordenbo, 2002, 
p. 298) and meant “promoting discovery and self-directed learning by the student 
through active engagement” (Labaree, 2005, p. 277).

Although language is not absent from these models, it does not appear as a central 
research problem. And when it does appear, it is generally related to problems 
surrounding the investigation of students’ conceptualizations. Language is considered 
as a kind of window to see indirectly what is happening in the student’s mind as, 
for instance, in Piaget’s conservation tasks. When students’ conceptualizations are 
perceived to be incorrect, language is often then seen as an obstacle or barrier to 
the effective communication of the desired knowledge or structures. Language, 
however, is clearly more than a window or an obstacle; language, talk, text and the 
production and interpretation of symbols are integral to the creation of learning, 
teaching and assessment, particularly in mathematics. In Piaget’s conservation 
tasks, for example, language is not simply a neutral conduit for conveying thoughts 
between experimenter and subject; the tasks are constituted through linguistic 
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processes. For language to move to the forefront as an educational research problem 
on its own, it was necessary to move beyond the conception of humans as Cartesian 
problem solvers promoted by progressive models. This move, from which emerges 
the idea of homo communicans and that opens up new spaces in which to conceive 
of the student in new terms, was not merely accidental. It responded to fundamental 
changes of a social, cultural, historical, and economic nature. As Paul Kelly puts it 
in his book Multiculturalism Reconsidered,

With the retreat of European empires […] and, much more significantly, with 
the collapse of the old European empires following the Second World War, 
there has been a transformation of that earlier colonialist legacy […]. European 
states—especially the old colonial powers such as Britain, France, Holland, 
Belgium and, to a lesser extent, Spain and Portugal—became multicultural 
states as a consequence of colonial retreat […] In the British case, the retreat 
from empire began a process by which immigration from former colonies 
transformed the country into a multiethnic and multiracial society. (Kelly, 
2002, p. 2)

The result is that today “All modern states face the problems of multiculturalism 
even if they are far from endorsing multiculturalism as a policy agenda or official 
ideology” (Kelly, 2002, p. 1; emphasis in the original). Although multiculturalism 
was a predominant feature of life in Ancient Greece and Rome, contemporary 
multiculturalism with its central interest in language is truly new. As Gress (1999) 
points out, “The [ancient] Greeks never learned foreign languages” (p. 565). He goes 
on to say that

For the Greeks of the archaic and classical eras—from Homer to Alexander—
encounters with the other were encounters with the marvelous or the dangerous. 
They took place in the framework of an evolving anthropology of curiosity 
and difference, accompanied and complemented from Herodotus on by an 
overarching dichotomy of Greek versus barbarian. (Gress, pp. 562–563)

To understand contemporary multiculturalism’s interest in language we should 
add that the paradigmatic shift alluded to above has also been entangled with 
changes in new forms of production and colonization brought forward by global 
capitalism where “money, technology, people and goods […] move with increasing 
ease across national boundaries” (Hardt & Negri, 2000, p. xii). These new global 
forms of production have been accompanied by a variety of unprecedented kinds of 
virtual interaction and communication. Within the new global context of production 
and modes of human interaction, individuals from other cultural formations have 
ended up acquiring a central place—an ontological one, in fact—in the manner in 
which individuals have come to understand themselves. However, “the appearance 
of the Other,” as we may term it, has not been a neutral experience. It has 
brought with it new questions about identity, power, ethnicity, multiculturalism, 
multilingualism, etc.
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Perhaps the contemporary global context of production in which we live is 
leading us to experience a somewhat similar historical phenomenon as the one 
the 16th century Spaniards experienced when they confronted the multitude of 
communities of what is now called the American continent. That is, when they 
discovered a substantially different other and, along with it, they also discovered 
that gods, customs, morals, language, and worldviews may have a different order 
than the one they grew up with and knew. In his book The Conquest of America, the 
Bakhtinian specialist Todorov (1984) points out the strong need that Christopher 
Columbus felt to rename all things. For Columbus, language was an instrument 
through which things were possessed and individuals subjugated. Talking about the 
first island he found in his travels, Columbus said, “I gave [to the first island] the 
name of San Salvador, in homage to His Heavenly Majesty who has wondrously 
given us all this. The Indians call this island Guanahani” (Todorov, 1984, p. 27). 
And he went on to tell the King the names he had given to the other islands. Todorov 
comments:

Hence Columbus knows perfectly well that these islands already have names, 
natural ones in a sense (but in another acceptation of the term); others’ words 
interest him very little, however, and he seeks to rename places in terms of 
the rank they occupy in his discovery, to give them the right names. (Todorov, 
1984, p. 27; emphasis in the original)

Naming things—which Columbus did through notarial acts written ceremoniously 
in front of the perplexed natives—provided him with a means to possess things and 
people. The difference between us and Columbus and the conquerors is that we are 
asking questions about power and culture within an array of new sensibilities. How, 
in our contemporary multicultural settings—in a culturally diverse classroom, for 
instance—could language not be an instrument of subjugation and possession? We 
will come back to this question later. For the time being, let us summarize the 
previous comments by noting that the invention of homo communicans—that is, the 
constitutive insight that what humans are is deeply entangled with, and rooted in, 
the individuals’ historical and cultural communicative relationships with others—
has not been embedded in epistemic questions only (e.g., how we name things, 
how we know things) but also in questions of alterity, power, identity, culture, and 
politics.

In this chapter, we review PME research on language from the past 10 years 
and offer a critical appraisal of this work. To begin, in the next section we set out 
an overview of the relevant research, looking at both the major themes that have 
appeared, as well as the different theoretical approaches to language that have been 
deployed. In the remaining sections, we discuss three themes in more depth: the 
role of language in mathematics conceptualization; cultural dimensions, such as the 
role of language in mediating between the individual and society, and, in particular, 
questions of power and authority in mathematics education; and language diversity 
in learning and teaching mathematics.
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OVERVIEW

In the first PME Handbook, there was no chapter explicitly devoted to language as a 
focus of research. Questions of language are most salient in Lerman’s (2006) chapter 
on socio-cultural research and in Gates’s (2006) chapter on equity and social justice. 
Lerman’s (2006) categories of socio-cultural research, for example, include:

• Cultural psychology, including work based on Vygotsky, activity theory, situated 
cognition, communities of practice, social interactions, semiotic mediation.

• Ethnomathematics.
• Sociology, sociology of education, poststructuralism, hermeneutics, critical 

theory.
• Discourse, to include psychoanalytic perspectives, social linguistics, semiotics. 

(p. 351)

It is apparent even from these brief characterizations that language is pretty central 
both explicitly (e.g., social interactions, discourse, semiotics) and more implicitly 
(e.g., as a key aspect of both Vygotskian and poststructuralist theory). Meanwhile, 
Gates (2006) includes a brief discussion of “Language, discourse and critical 
consciousness” as part of a section on the third decade of PME. In this section, he 
highlights contributions on language, the politics of discourse, and critical studies, 
with most emphasis on the issue of multilingual classrooms.

It seems, then, that in the first 30 years of PME, questions of language can best be 
described as an emerging theme: both Lerman and Gates highlight their absence in 
the early days of PME and their increasing presence in the third decade. In the past 
10 years of PME, however, there are more than 150 research reports, contributions 
to research forums and plenary lectures devoted to language-related topics. Given 
the linguistic turn described in our introduction, it is perhaps no surprise that PME 
research has attended to the kinds of questions we have mentioned.

For this chapter, then, we have compiled a corpus of contributions to PME 
conferences from 2005 to 2014, consisting of research reports, plenary presentations 
and research forums. Research reports are, of course, the primary form of contribution 
to PME and most reflect the work of the members. Plenary presentations represent 
substantial contributions that discuss specific topics in more depth. Research forums 
offer multiple perspectives on a given topic and, although individual contributions 
can be somewhat brief, the overall contribution of a research forum can be 
substantial. We will refer to all three forms of contribution as ‘papers’. We did not 
include short oral presentations, posters, discussion groups or working groups, since 
these activities are only represented by brief, single-page reports that lack important 
detail.

The corpus consists of papers that explicitly address language issues, or for 
which language is a relevant feature. Papers that explicitly address language, for 
example, include contributions on multilingual mathematics classrooms, the role of 
mathematics classroom interaction in learning or teaching mathematics, or the nature 
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of mathematical discourse. In some papers, some aspect of language is identified as 
a factor within a broader research focus, such as the role of classroom discussion 
within a paper focused on teaching for equity in mathematics outcomes. In total, the 
corpus consists of 153 papers, for which we conducted two classificatory analyses. 
The first analysis looked at the substantive focus of each paper. The second analysis 
looked at the theoretical framework used in each paper. In the rest of this section, 
we summarize the outcomes of these analyses, in order to situate the thematic 
discussions which make up the rest of the chapter.

For the first analysis, a general emergent classification, conducted with the 
help of NVivo software, examined research topics within the corpus. This analysis 
highlighted four main conceptual categories . Of course, conceptual categories 
may overlap. Table 1 provides the main conceptual categories along with their 
corresponding common core:

Table 1. Main categories and their core

Conceptual category Core

Cultural dimensions Focus on the relationship between individual 
and society; language, mathematics, and 
culture; cultural discursive routines; and 
multilingualism.

Language and conceptualization focus on language and conceptualization; 
language in collective participation and in 
embodiment; representations and symbol 
use, and Vygotskian semiotics.

Mathematics as discourse and mathematics 
discourse

Focus on mathematics discourse or 
mathematics as discourse; the investigation 
of students’ discourse and teachers’ 
discourse.

Theoretical approaches to language Focus on theoretical approaches to language; 
problems of hermeneutics, the theoretical 
relationship between language and thinking, 
and the role of language in the construction 
of knowledge.

Figure 1 shows the distribution of papers according to these categories. In the 
NVivo software terminology, a “source” corresponds to a document made up of 
excerpts coming from papers of a same PME conference. An excerpt (or “unit of 
sense,” comprising usually one or more paragraphs from a paper conveying the 
general focus and meaning(s) of the paper) is called a “reference.” The ongoing 
analysis of references gives rise to conceptual categories (called “nodes” and “sub-
nodes”) that NVivo displays in the form of a “tree” (see Figure 1). Thus, within the 
general category (or “node”) “Language and conceptualization” is a sub-node called 
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“Representation and symbol use.” From Figure 1 we see that, from the pool of the 
153 surveyed papers, 13 references fall under “representation and symbol use” and 
that the 13 references come from 7 PME proceedings (“sources”). The topic that 
has the biggest number of references is “ideology, power, agency, and gender.” It 
contains 28 references coming from the 10 PME surveyed proceedings. The NVivo 
distribution of nodes provides us with a possible view of the research landscape on 
language in mathematics education research.

Figure 1. NVivo tree showing main nodes and sub-nodes, as well as sources 
and references in nodes and sub-nodes

Although this categorisation has guided our work in this chapter, we do not 
discuss every category or subcategory, preferring to restrict ourselves to areas in 
which the field has developed the most.

For our second analysis, we attempted to identify the principal theoretical 
orientation for each paper. This process was not always straightforward; some 
papers had a rather general theoretical basis involving references to a variety of 
ideas and authors, while a few papers had no identifiable theoretical framework 
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at all. Nonetheless, the majority of papers referred to one or two key sets of ideas 
as the basis for the research they reported, in some cases fairly briefly as part of 
a literature review, in other cases more elaborately. Some papers, of course, were 
entirely devoted to theoretical considerations. We further grouped the theories into 
higher-order categories, although distinctions between the different groupings are 
not necessarily especially clear. Any approach with fewer than five instances was 
recorded as ‘other’. The results are summarised in Table 2.

Table 2. Theoretical orientations in PME papers  
on language topics from 2005–2014

Theoretical orientation

Sociocultural 48
Discourse analysis 22

Sociopolitical 11

Informal/everyday language 9

Teachers’ practice 9

Constructivism 7

Embodied cognition 5

Other 23

Total 134

The most striking observation arising from this fairly crude analysis is the 
prevalence of sociocultural theory as the basis for much PME research on language 
in mathematics education. This finding is particularly striking given Lerman’s 
(2006) charting of the then recent rise of sociocultural perspectives across all 
PME research reports, not just those focusing on language. This work falls largely 
within the Vygotskian tradition, in which language is understood as a tool, and as 
mediating between subject and object in the production of mathematical meaning 
(e.g., Berger, 2005).

In more recent years, Sfard’s development of Vygotskian theory in particular 
has formed the basis for numerous PME papers. Sfard (e.g., 2008) argues that 
mathematical thinking is an individual form of mathematical communication, 
reflecting Vygotsky’s claim that development occurs first intermentally and then 
intramentally. Sfard’s approach develops this idea in terms of participation in 
mathematical discourse as forming the basis for individual mathematical cognition, 
with learning conceptualised as change in discourse. Sfard has subsequently 
proposed a categorisation of mathematical discourse into four aspects: endorsed 
narratives, routines, word use and visual mediators. This work has informed almost 
20 research contributions at recent PME meetings, including work on dynamic 



L. RADFORD & R. BARWELL

282

geometry environments (Sinclair & Kaur, 2011; Berger, 2011; Ng, 2014), fractions 
learning (Wille, 2011), the concept of limit (Güçler, 2011), and the concept of square 
root (Shinno, 2013). Sfard’s work on identity in mathematics has also informed a 
number of contributions (e.g., Nachlieli, Heyd-Metzuyanim, & Tabach, 2013).

Several other interpretations of sociocultural theory have been proposed 
and used in the past 10 years. Radford has an approach that draws on semiotics, 
embodied cognition and dialectical materialism but which is fundamentally rooted 
in Vygotskian theory (Radford et al., 2005; Radford, Miranda, & Guzmán, 2008; 
Radford, 2011, 2014). Others have drawn on Gee’s (discursive) theory of cultural 
models (Setati, 2006; Kleanthous & Williams, 2010); activity theory (e.g., Ohtani, 
2007); and communities of practice (e.g., Hunter, 2008). Finally, some papers draw on 
Bakhtinian concepts, often in combination with Vygotskian theory (Mesa & Chang, 
2008; Radford, Miranda, & Guzmán, 2008; Williams & Ryan, 2014) although not in 
all cases (e.g., Barwell, 2013).

The second most frequent theoretical orientation groups together various forms 
of discourse analysis. This category includes: papers drawing on positioning theory, 
such as Herbel-Eisenmann and Wagner’s (2005) analysis of textbooks, Sakonidis 
and Klothou’s (2007) analysis of students’ written work, or Skog and Andersson’s 
(2013) investigation of pre-service teachers’ discourse; papers drawing on discursive 
psychology, such as Barwell’s (2007, 2008) analyses of how mathematical thinking 
is constructed in the discourse of mathematicians and of mathematics education 
researchers; papers drawing on Halliday’s systemic functional linguistics and his 
notion of mathematical register, including Leung and Or’s (2007) study of students’ 
explanations, Herbel-Eisenmann, Wagner and Cortes’s (2008) analysis of lexical 
bundles, and Gol Tabaghi and Sinclair’s (2011) study of pre-service teachers’ 
diagramming practices.

The socio-political orientation covers contributions that mainly draw on 
sociological theories, including Fairclough’s critical discourse analysis (e.g., 
Thornton & Reynolds, 2006; Le Roux & Adler, 2012; Le Roux, 2014), Goffman’s 
participation frameworks (Hegedus et al., 2006), and Bernstein’s theory of framing 
and pedagogical practice (Knipping & Reid, 2013). The total shown for socio-
political papers is likely to be somewhat understated, since several other papers, 
particularly listed under discourse analysis or socio-cultural theory suggest at least 
socio-political leanings, even if the theoretical framework is not explicitly socio-
political in nature (we comment more on this issue later in the chapter). This kind of 
orientation is relatively recent, following the changes to the PME constitution around 
ten years ago, which allowed research to address topics in addition to psychology 
for the first time.

The remaining categories are less represented and sometimes less well theorised. 
Several papers were based on a general theoretical distinction between everyday 
or informal language and mathematical language (e.g., Amit & Jan, 2006; García-
Alonso & García-Cruz, 2007; Bardelle, 2010). Another group of papers focused on 



LANGUAGE IN MATHEMATICS EDUCATION RESEARCH

283

teachers’ practices (Chen & Chang, 2012), or teachers’ knowledge or understanding 
in relation to their teaching (Adler & Ronda, 2014), or look at the orchestration 
or conceptualization of mathematics classroom discussion (e.g., Kahn et al., 2008; 
Morera & Fortuny, 2012; Wang, Hsieh, & Schmidt, 2012). A handful of papers were 
based on the theoretical notion of embodied cognition (e.g., Bjuland, Cestari, & 
Borgersen, 2008; Edwards, 2010; Warren, Miller, & Cooper, 2011).

Finally, ‘other’ incorporates a wide variety of theoretical orientations to language 
that occurred relatively rarely. Some notable examples include Lunney Borden’s 
(2009) use of decolonizing methodologies; Heinze et al.’s (2009) use of Cummins’ 
theories of bilingual education to investigate the performance of language minority 
students in Germany; and Shinno’s (2013) analysis of semiotic chaining.

The common thread that runs through the majority of theoretical frameworks 
adopted in PME research on language in the past 10 years is the idea that language 
is central to the processes of mathematical thinking, learning and teaching and, as 
such, is the link between the individual and the social. In this work, language is 
neither the means of transmission of mathematical knowledge, nor the learner’s 
means of expression of their individually constructed schemas. Rather, it is through 
language that both learners and teachers are historically and culturally constituted as 
learners and teachers of mathematics. As we shall discuss in the remaining sections 
of the chapter, the predominant theoretical orientations necessitate, often implicitly, 
or at least, often without being fully developed, a central place for otherness, often 
termed alterity. In the next sections, we look in more depth at three main thematic 
foci for PME research on language in the past 10 years: ways of conceptualizing 
language and mathematics; cultural dimensions of language and mathematics; and 
language diversity in mathematics education.

WAYS OF CONCEPTUALIZING LANGUAGE AND MATHEMATICS

In this section, we discuss PME research that examines language in collective 
participation and in embodiment, representations and symbol use, and Vygotskian 
semiotics. We focus, in particular, on the role that is ascribed to language in the 
students’ and teachers’ mathematics conceptualization. Although there seems to be 
an agreement that “Language is an important tool in the construction of mathematical 
knowledge” (García-Alonso & García-Cruz, 2007, p. 258), we still need to 
understand how mathematics education researchers conceive of the relationship 
between language and conceptualization.

Natural Language and Mathematical Language

Several papers in our corpus deal with the problem of the relationship between 
natural language and mathematical language. Various terms of have been used for 
natural language, including ‘informal language’ and ‘colloquial language’. Some of 



L. RADFORD & R. BARWELL

284

these papers stress the influence of natural language on the students’ understanding 
of mathematical concepts. For instance, Fernández Plaza, Ruiz Hidalgo, and Rico 
Romero (2012) show that the students’ mathematical concept of limit of a function 
at a point is influenced by colloquial uses of terms such as “to approach,” “to tend 
toward,” “to reach,” and “to exceed” (2012, p. 235).

In a study dealing with the concept of monotonicity, Bardelle (2010) refers to the 
students’ frequent “misuse of mathematical language” (p. 183) and the students’ lack 
of awareness that mathematical terms have a specific scientific meaning:

[The] interviews show that Matteo and Filippo understand the concept of 
monotonicity of a function but they cannot answer correctly because they do 
not realize that the term ‘increasing’ is a scientific one and hence it has just 
one well determined meaning. Matteo and Filippo give their own interpretation 
of the term. (Bardelle, 2010, p. 181)

In another investigation, Bardelle (2013) shows also the influence of natural 
language on the mathematical understanding of universal statements (e.g., “Not 
all A is B”): “the interpretation of verbal statements in a mathematical setting may 
happen to be based on everyday context and not on a mathematical one” (p. 71).

Expanding on Bardelle’s work, Ye and Czarnocha (2012) carried out an 
investigation that “confirms, in a spectacular fashion, the impact of natural language 
on the mathematical understanding of negation by identifying, during the student 
interview, a source of misconception initiated from incorrect French/English 
translation” (Ye & Czarnocha, 2012, p. 235).

It is, therefore, clear that there is an influence of natural language on students’ 
mathematical conceptualizations and that one of the problems is that students do not 
seem to be aware of the fact that the meanings of natural language do not necessarily 
coincide with those of mathematical language. Drawing on the work of Shuard and 
Rothery (1984), García-Alonso and García-Cruz (2007) suggest a distinction between 
“(1) those terms which have the same meaning in both [everyday and mathematical] 
contexts; (2) those terms whose meaning changes from one context [to] the other; 
and (3) those terms which are only seen in a mathematical context” (p. 258). Bearing 
this typology in mind, they carried out an investigation of four popular textbooks 
among high school teachers, and analyzed the meaning of 27 terms pertaining to 
statistical inference in everyday use as well as in the mathematical context (e.g., 
“population,” “sample,” and “confidence level”). They concluded that, often, 
“definitions that appear in the textbooks do not correspond to their mathematical 
meaning but instead to the one in their everyday use” (p. 263). The problem is thus 
not only the students’ but also the textbook authors’.

The co-occurrence of mathematics and everyday language in the classroom, not 
only in its oral dimension but also in its written one, has led some researchers to 
investigate the impact of natural language on the understanding and performance of 
students (see, for example, Ilany & Margolin, 2008). Bergqvist (2009, p. 146) noted 



LANGUAGE IN MATHEMATICS EDUCATION RESEARCH

285

that “In order to read texts in mathematics it is necessary to be able to recognise 
which category words belong to in order to be able to interpret them correctly.” 
Bergqvist endeavoured “to identify PISA mathematics items for which student 
performance is influenced by reading ability” (Bergqvist, 2009, p. 145).

Let us try to pose the problem in a more general manner. To do so, let λ1 and 
λ2 be two semiotic systems (a contemporary natural language and a contemporary 
language of “mathematics,” respectively). To a semiotic system λ we can associate 
the “concepts” or “ideas”’ i that individuals express, convey, and manifest with and 
through λ. Thus, i1 is the system of ideas associated to with λ1 and i2 is the system of 
ideas associated with λ2. With a few notable exceptions (e.g., Baber & Dahl, 2005; 
Lunney Borden, 2009; Edmonds-Wathen, 2014), PME language researchers seem 
to be, to an important extent, asking questions not about the relationship between 
λ and i, but about the influence of λ1 in i2 (Bergqvist, 2009; Fernández Plaza, Ruiz 
Hidalgo, & Rico Romero, 2012) or the interference of λ1 in λ2 and i2 (Bardelle, 2010, 
2013; Ye & Czarnocha, 2012).

For Makar and Canada (2005), the problem revolves around the pedagogical 
use teachers can make of the students’ use of λ1 and i1 in moving towards λ2 and 
i2 Their research is about the concept of variation with prospective teachers. In a 
task from a post-interview, the prospective teachers were showed “weights for 35 
different muffins bought from the same bakery, and asked what subjects thought 
their own (36th) muffin might weigh. The set of data for the 35 muffin weights 
were shown in both a boxplot and a histogram” (Makar & Canada, 2005, p. 276). 
Makar and Canada note that the subjects resort to terms of natural language to 
convey ideas of distribution (e.g., “bulk of this data,” “concentration of data,” data 
“really clustered,” or, as in other interviews, “scattered” or “bunched” data, when 
the interviewed subjects referred to data presented in dot plots). They conclude by 
saying that the:

informal use of language needs to be given a greater emphasis in research on 
statistical reasoning […] There are several reasons for this. For one, teachers 
need to learn to recognize and value informal language about concepts of 
variation and spread to better attend to the ways in which their students use 
this same language. Secondly, although the teachers in this study are using 
informal language, the concepts they are discussing are far from simplistic 
and need to be acknowledged and valued as statistical concepts. Thirdly, the 
scaffolding afforded by using more informal terms, ones that have meaning 
for the students may then help to redirect students away from a procedural 
understanding of statistics and towards a stronger conceptual understanding of 
variation and distribution. (2005, pp. 279–280)

At the practical level, PME mathematics education researchers seem to recognize 
that natural language may be both a source of interference and a support in the 
development of mathematical language and ideas. Even “vague language” may 
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prove to be important: “vague language fosters construction of new mathematical 
ideas” (Dooley, 2011, p. 287; see also Tatsis & Rowland, 2006).

Previous studies have focused on the identification of linguistic functions 
to which students resort to express mathematical ideas in natural language. For 
instance, in research about pattern generalization of figural sequences, Radford 
(2000) identified two such functions, termed deictic and generative action functions 
of language. Radford focused on students’ sentences like “OK. Alright, look. You 
. . . one has to add (pointing to a figure on the paper) . . . you always add 1 to the 
bottom, right?” He argued that the deictic function and the generative action function 
of language were at the root of the students’ mathematical generalization. Through 
terms like “top” and “bottom,” the deictic function of language provides students 
with the possibility to notice and refer to key parts of a perceptual term in order to 
imagine non-perceptual objects and their mathematical properties. The argument 
is that perception is somehow oriented by the meaning of deictic linguistic terms, 
suggesting thereby potential manners by which to look at, and attend to, objects in 
our environment. The “generative action function” refers to

the linguistic mechanisms expressing an action whose particularity is that 
of being repeatedly undertaken in thought. In this case, the adverb ‘always’ 
provides the generative action function with its repetitive character, supplying 
it with the conceptual dimension required in the generalizing task. The 
relevance of generative action functions can be acknowledged by noticing that, 
in our example, generality is objectified as the potential action that can be 
reiteratively accomplished. (Radford, 2000, p. 248)

In other words, in λ, the adverb “always” plays a similar role as the universal 
quantifier ∀ plays in λ2.

Consogno, Gazzolo, and Boero (2006) identified an additional linguistic function, 
which they termed the Semantic-Transformational Function (STF) of natural 
language. It refers to

the construct that accounts for some advances of [the students’] conjecturing 
and proving process. The student produces a written text with an intention 
he/she is aware of; then he/she reads what he/she has produced. His/her 
interpretation (suggested by key expressions of the written text) can result 
in a linguistic expansion and in a transformation of the content of the text 
that allow advances in the conjecturing and proving process. (pp. 353–354; 
emphasis in the original)

The Relationship between λ1 and λ2

Naturally, the fact that students can start thinking mathematically within λ1 
(the semiotic system of a natural language) does not mean that λ2 (the semiotic 
system of a contemporary language of “mathematics”) can be dismissed. And 
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reciprocally: it would be a mistake to think that a mathematical activity within λ2 
is independent of λ1: there is a limit to what can be mathematically expressible 
within λ1. Natural languages have not been created to calculate and to carry 
out relatively complex computations. Nor have they been created to investigate 
theoretical properties of Banach spaces or abstract topologies, for instance. The 
standard contemporary mathematical language to which students are exposed in 
school mathematics has acquired, since the Renaissance, an operational dimension 
it never had before. There was a rupture indeed in the conception of language in 
the Renaissance that led to the development of two different paths. On the one 
hand, there was a humanist trend that sought to remove from language the barbaric 
dimensions of scholastic Latin and other previous linguistic formations. The 
humanistic trend ended up in a research program whose goal was a simplification 
and purification of language, the identification of the various parts of discourse, a 
systematic approach to grammar, and a general theory of the structures of thought 
(Cassirer, 1963). Grammar, “was taken to provide access to the bases of thought 
itself” (Reiss, 1997, p. 23). On the other hand, the Renaissance witnessed the 
emergence of a new scientific language epitomized in the works of Galileo and 
the abacist mathematicians. The chief characteristic of this language was to reason 
in an operational manner.

Although both conceptions of language in the Renaissance take different 
directions, they each rest on a formidable cultural abstraction. On the one hand, 
there is a progressive development of the idea of a general grammar that in its 
reasonability, that is, in its appeal to a supposedly general and universal reason, 
applies to any particular language. On the other hand, there is a search for an 
efficient language where unknowns, variables, and parameters, and their operations 
can be carried out regardless of the reference—a minimalist language in which the 
subject vanishes.

The extinction of the subject is one of the most impressive accomplishments 
of the contemporary mathematical semiotic system. Such a semiotic system, that 
endlessly keeps scaring students and sometimes teachers as well is voiceless. Yet it 
cannot work alone. As Vergnaud notes, “No diagram, no non-linguistic symbolism, 
no algebra can fulfill its function without a linguistic accompaniment, even if it 
remains internal or inner only” (2001, p. 14). In short, even in its most developed 
form, λ2 depends on λ1: “Natural language is a metalanguage of all symbolisms” 
(p. 14). Natural language and the language of mathematics play different roles. 
With their own specificities, each one of them provides individuals with access 
to different layers of mathematical consciousness. They provide individuals with 
different forms of expressiveness and aesthetic experience.

How has this relationship been understood by PME researchers interested in 
language issues? As we have already noted, the predominant theoretical perspective 
used in PME language research draws on sociocultural theory, and for the most part 
the relationship between colloquial and mathematical discourse is framed by ideas 
from this theoretical tradition.
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For Sfard (2010), the route to the development of mathematical language is 
through changes to colloquial language:

If mathematics is a discourse, then learning mathematics means changing 
forms of communication. The change may occur in any of the characteristics 
with the help of which one can tell one discourse from another: words and 
their use, visual mediators and the ways they are operated upon, routine ways 
of doing things, and the narratives that are being constructed and labelled as 
“true” or “correct”. Since uses of words and mediators create a tightly knit 
web of connections, we should probably consider this system in its entirety, 
even when interested in only some of its elements. In research on learning 
any mathematical concept, therefore, nothing less than the whole discourse of 
which the given concept is a part would suffice as a unit of analysis. (p. 218)

Sfard’s approach construes individual learning in terms of change in individual 
communication, including thinking, which she considers to be communication with 
oneself. Her approach has been adopted and developed by many contributors to 
PME over the past 10 years.

For example, Sánchez and García (2011) examined the think-aloud responses of 
14 pre-service primary school teachers to a set of nine questions about the properties 
and definitions of regular quadrilaterals. Sánchez and García analyzed the students’ 
responses by looking for moments of ‘commognitive conflict’ (using a portmanteau 
word coined by Sfard to underline the fusion of communication and cognition in her 
theory). According to the theory, moments of commognitive conflict will arise due 
to the differential use of language in colloquial and mathematical discourse. Sánchez 
and García were able to show that such moments did arise for the participants in 
their study, and related them to the ‘confrontation’ of mathematical and socio-
mathematical norms. For example, one such confrontation was:

between the [Mathematical Norm] related with defining expressed in the 
criterion of minimality and the [Socio-Mathematical Norm] ‘everything you 
see in a figure that goes with the presentation of a task has to necessarily 
indicate something’. It leads students to incorporate descriptive features/
aspects, coming from the task presentation, in some of their responses that are 
neither necessary nor relevant (for example, length of the side). (p. 110)

This position appears to be based on a couple of important assumptions: first, 
that there is a clear separation or dichotomy between colloquial and mathematical 
language; and second, that teachers can make use of students’ colloquial language to 
bridge to mathematical language and meaning.

Barwell (2013), however, argued that the relationship between colloquial and 
mathematical discourse (for which he used the terms ‘informal’ and ‘formal’ 
language) must be seen as dialogic. In particular, he argued that the implicitly linear 
sense of development from informal to formal mathematical language is problematic. 
Referring to data from a class of 10–12-year-olds, he concludes:
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A dialogic perspective on formal and informal language in mathematics 
classrooms highlights a relationship between formal and informal that is not 
uni-directional. Rather than steady progress from informal to formal, these 
students work at both. The teacher, too, must make skilful use of varying 
degrees of formality. Of course, students need to learn formal mathematical 
language as part of learning mathematics, but this does not mean that informal 
language disappears; nor is it simply a scaffold to reach more formal language. 
Both are necessary; they will always be in tension. (p. 79)

Embodiment

In truth, the situation is more complex than insinuated above. As research on 
embodiment suggests, in the classroom processes of conceptualization, students and 
teachers resort to more than colloquial and mathematical languages. They resort to 
gestures, body posture, kinaesthetic actions, artefacts, and signs in general. Instead 
of being epiphenomenally surplus to teaching and learning, these embodied and 
material resources are an important part of classroom activity. As Warren, Miller, and 
Cooper (2011) report, “the use of gestures (both by students and interviewers), self-
talk (by students), and concrete acting out, assisted students to reach generalisations 
and to begin to express these generalisations in everyday language” (p. 329).

The proper cognitive and epistemological understanding of embodiment and 
material culture has been the object of an active line of research in PME. At the 
theoretical level, Edwards, Rasmussen, Robutti, and Frant (2005) led a working 
session in PME 29 to discuss the role of conceptual metaphor and conceptual 
blends, and language and gestures in the construction of mathematical ideas and 
in teaching, learning, and thinking. In the same PME conference, Arzarello and 
Edwards (2005) organized a Research Forum on “Gesture and the Construction of 
Mathematical Meaning.” The Research Forum led to a Special Issue in Educational 
Studies in Mathematics (Edwards, Radford, & Arzarello, 2009) where the need of a 
“multimodal approach” is argued:

Crucial to the production of knowledge is the individual’s experience in the 
act of knowing and the fact that this experience is mediated by one’s own 
body. However, this return of the body to epistemology and cognition does not 
amount to a disguised form of empiricism. Conceptual ideas are not merely 
the impression that material things make on us, as Hume (1991) and other 
18th century empiricists once claimed. The return of the body is rather the 
awareness that, in our acts of knowing, different sensorial modalities—tactile, 
perceptual, kinesthetic, etc.—become integral parts of our cognitive processes. 
This is what is termed here the multimodal nature of cognition. (Radford, 
Edwards, & Arzarello, 2009, p. 92)

A great deal of research on multimodality has revolved around the understanding 
of the relationship between gestures and language in the students’ conceptualizations 
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(e.g., Askew, Abdulhamid, & Mathews, 2014; Edwards, 2010, 2011; Edwards, Bolite 
Frant, & Radford, 2010; Edwards, Bolite Frant, Robutti, & Radford, 2009; Hegedus, 
Dalton, Cambridge, & Davis, 2006; Ng, 2014; Radford, 2011; Radford, Bardini, 
Sabena, Diallo, & Simbagoye, 2005; Robutti, Edwards, & Ferrara, 2012). Arzarello 
and his collaborators have investigated the role of gestures in the evolution of 
students’ mathematical signs. Thus, in Arzarello, Bazzini, Ferrara, Robutti, Sabena 
and Villa (2006), the authors investigate “the genesis of written signs starting from 
specific gestures, progressively shared within the group.” They suggest that gestures 
have various functions: “understanding the situation, looking for patterns or rules, 
anticipating and accompanying productions of written representations, drawings and 
symbols necessary to solve the problem” (p. 73).

There has also been an interest in understanding the role of the teacher’s gestures 
on the students’ gestures and conceptualization. For instance, in their PME 32 paper, 
Bjuland, Cestari, and Borgersen (2008) asked the following research question: 
“What kinds of communicative strategies does an experienced teacher use in her 
dialogues with pupils, introducing a task that involves moving between different 
semiotic representations?” (p. 185) They found that: “The [teacher’s] gestures make 
the connection between the semiotic representations, figure and diagram” (p. 185). 
In the same PME conference, Radford, Miranda, and Guzmán (2008) dealt with a 
similar problem, cast in terms of the role of multimodality in the classroom evolution 
of meanings. Following the idea of conceiving of gestures as signs that constitute 
a genuine semiotic system on its own (Radford, 2002), Radford, Demers, Guzmán, 
and Cerulli (2003) suggest seeing gestures as embodying different views, voices, 
and meanings, much like words in natural language. Their analysis shows how, in a 
very subtle way, the students’ gestures come to echo, with their own intonation, the 
teacher’s gestures. The echoing of the teacher’s gestures and the personal intonation 
that students bring forward opens up possibilities to generalize previous gestures. 
Within this context, gestures in particular, and multimodality in general, are 
conceived of as polyphonic, and the joint teacher-students classroom transformation 
of meanings appears as heteroglossic:

Borrowing a term from M. M. Bakhtin, we want to call the transformative 
process undergone by the students’ meanings as heteroglossic, in that 
heteroglossia, as we intend the term here, refers to a locus where differing 
views and forces first collide, but under the auspices of one or more voices (the 
teacher’s or those of other students’), they momentarily become resolved at a 
new cultural-conceptual level, awaiting nonetheless new forms of divergence 
and resistance. (Radford, Miranda, & Guzmán, pp. 167–168)

In general terms, we can reformulate the question of language and conceptualization 
as follows. Instead of a relationship between two semiotic systems (natural and 
mathematical languages) and their corresponding (interrelated) conceptualizations 
alluded to in the previous section, conceptualization emerges in activities underpinned 
by a range of perceptual, tactile, kinesthetic, and other sensorial multimodal channels 
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in dialectical interaction with semiotic systems (natural languages, mathematical 
languages, gestures, diagrams, etc.).

The systemic understanding of such interaction and the political forces that 
underpin the evolving relationships require more research that may complete the 
substantial number of PME investigations dealing with representations and symbol 
use (e.g., Misailidou, 2007; Verhoef & Broekman, 2005; Walter & Johnson, 2007), 
language and conceptualization (Armstrong, 2014; Baber & Dahl, 2005; Mellone, 
Verschaffel, & Van Dooren, 2014; Mesa & Chang, 2008; Meyer, 2014; Planas & 
Civil, 2010; Ruwisch & Neumann, 2014; Viirman, 2011) or classroom discourse 
(e.g., Asnis, 2013; Berger, 2005; Gholamazad, 2007; Le Roux, 2014; Sfard, 2010). 
Such a systematic understanding could also benefit from the interesting question 
of the role of society and culture in conceptualizations in natural and mathematical 
languages (e.g., Lunney Borden, 2009; Clarke & Mesiti, 2010; Clarke, Xu, & Wan, 
2010; Edmonds-Wathen, 2010; Morgan & Tang, 2012).

CULTURAL DIMENSIONS OF LANGUAGE AND MATHEMATICS: 
AUTHORITY, POWER, AND COLLECTIVE DISCOURSE

In this section, we bring together the question of language as it appears in discussions 
where the focus is on ideology, power, agency, and gender, including the relationship 
between the individual and society; the question of language, mathematics, and 
culture; and cultural discursive routines. The topic of language diversity is addressed 
in the next section.

There is a growing sensitivity in PME research about the manner in which language 
embeds, conveys, perpetuates, and shapes ideological stances and social relations, 
like power. There is also a growing sensitivity in understanding the often subtle 
mechanisms through which language affords or constrains agency, and structures 
views about gender. Although the questions about ideology, power, agency, and 
gender are not necessarily related to multilingualism, it is in multilingual contexts 
that they often become more salient.

As mentioned previously, in our count, discussions about ideology, power, agency, 
and gender appear centrally in 28 papers. One of the main concerns is the manner 
in which students position themselves and also how they come to be positioned by 
current classroom practices, discourses, and texts (Herbel-Eisenmann & Wagner, 
2005; Esmonde, Wagner, & Moschkovich, 2009; Moschkovich, Gerofsky, & 
Esmonde, 2010; Skog & Andersson, 2013). Another important concern is to 
describe and understand inclusive discursive practices and practices that exclude 
or marginalize students (e.g., Hunter, 2013; Hunter, Civi1, Herbel-Eisenmann, & 
Wagner 2014; Moschkovich, Gerofsky, & Esmonde, 2010). This “political/
ideological” line of inquiry rests on a broad conceptualization of language that goes 
beyond the investigation of the relationship between language and the development 
of mathematical understanding to focus on “how language in the mathematics 
classroom illustrates power relationships” (Thornton & Reynolds, 2006, p. 273). 
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Power relations can appear in the manner in which communication happens in the 
classroom (e.g., Adler, 2012; Brown, 2011, Civil, 2012; Chapman, 2009; Hussain, 
Threlfall, & Monaghan, 2011; Radford, 2014; Wagner, 2014), but also in more 
subtle ways, as for instance in how teachers assess their students’ achievements 
(Sakonidis & Klothou, 2007), how authority is asserted through lexicological 
choices (Herbel-Eisenmann, Wagner, & Cortes, 2008), or in how students’ activity 
is constrained by recourse to the passive voice and nominalisations (Morgan & Tang, 
2012). Behind the “political/ideological” line of inquiry is, of course, a conception 
of teachers and students that—at the most general level—rests on beliefs about 
the relationship between the individual and society, and about the nature of power 
and authority. As two theoreticians of power in classrooms noted a few years ago, 
“different understandings and practices of authority have been shaped for over a 
century by conflicting ideological belief systems” (Pace & Hemmings, 2007, p. 10). 
How, then, do language-minded mathematics education researchers publishing in 
PME proceedings tackle the question of power and authority? The answer is both 
difficult and easy.

The answer is difficult in the sense that in the PME language papers dealing 
with power there is rarely any specific theorization of the meaning of power and 
authority. A relatively elaborated instance appears in Herbel-Eisenmann, Wagner, 
and Cortes’s (2008) paper, where the authors refer to Pace and Hemmings (2007), 
who define authority as “a social relationship in which some people are granted the 
legitimacy to lead and others agree to follow” (p. 6; emphasis in the original). Pace 
and Hemmings’s definition—inspired by Max Weber’s work and more precisely 
by Mary Haywood Metz (1978)—highlights an asymmetrical relation between 
the manner in which individuals act towards each other, and the social distinction 
between those who are granted legitimacy to lead and those who are expected 
to follow. The definition, however, is too abstract. Authority is eradicated from 
its context. Furthermore, the only explanation that is given for the existence and 
practice of authority is that authority serves to maintain a “moral order” (2007, 
p. 6; emphasis in the original) which, to make things worse, is equated with “shared 
purposes, values, and norms intended to hold individuals together and guide the 
proper way to realize institutional goals” (2007, p. 6). This definition of authority 
turns out to be very rationalist, simplifies the idea of moral order as something 
transparent and politically neutral, and portrays individuals as merely consenting 
and negotiating agents.

At the same time, the question about how language-minded mathematics 
education researchers publishing in PME proceedings tackle the question of power 
and authority has a relatively easy answer. It is easy in the sense that through the 
papers we see that power and authority are thematized along the lines of a reaction 
to transmissive teaching. Let us explain.

In transmissive teaching, the teacher appears as the holder of authority and the 
students as those who follow the authority of the teacher. The implicit conception of 
authority and power of transmissive teaching takes as its starting point the idea that 
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the cultural mission of the teacher is to ensure that knowledge, values, and norms 
are properly passed on to the students. Likewise, the cultural mission of the student 
is to receive or appropriate this knowledge, values and norms. “In this view,” Henry 
Giroux notes, “authority is frequently associated with unprincipled authoritarianism” 
(Giroux, 1986, p. 25).

The remedy against the affliction of authority is usually found in the students’ 
freedom and autonomy. Freedom and autonomy—the two chief Western categories 
that have defined the idea of the human subject since the emergence of manufacturing 
capitalism in the 16th century (Beaud, 2004; Kaufmann, 2004; Radford, 2012)—are 
considered to provide the basis for students’ escape from authority, and the central 
condition for students’ emancipation and authentic learning.

This story is not new—and this is something on which we would like to insist, as 
it is only by understanding the educational story behind authority and its antithetical 
position, i.e., freedom and autonomy, that we believe we may be able to go beyond 
the predicaments in which the political/ideological research on language seems to 
be immersed today. Authority on the one hand, and freedom and autonomy on the 
other, were the axes around which the proponents of the two main models of the 20th 
century pedagogical reform mentioned in the introduction envisioned and organized 
their corresponding pedagogical programs. In the case of the transmissive model, 
authority provided the hierarchical relationship between teachers and students 
that was required to put in motion a specific form of knowledge production and 
reception. In the case of the progressive model, authority appeared as something 
to be overcome through the nurturing of the student’s freedom and autonomy (see, 
e.g., Neill, 1992). In searching to promote the student’s freedom and autonomy, 
progressive educators built their pedagogy through a dichotomy between teachers 
and students. This dichotomy offered the conceptual and methodological basis for 
their pedagogical action.

We should not jump to the conclusion that this is past history. The two main 
pedagogical programs of early 20th century educational reform have not disappeared. 
On the contrary: both have evolved under the influence of new societal and historical 
demands. The progressive model has moved from a discourse entrenched in the 
student to a discourse about students. However, the move from the singular to the 
plural, that is, the move from a child-centered pedagogy to a children-centered one, 
where collective discourses are emphasised, does not amount to a change of view of 
the learner. The move, as we shall see, is cosmetic, not ontological. More profound 
changes are noticeable in the transmissive program. In its search for efficiency 
and alignment with neo-liberal global capitalism’s forms of material production, 
the transmissive program has undergone a profound refinement. It has developed 
sophisticated technologies of control to monitor students’ achievement (e.g., through 
regional, national, and international tests) and the teachers’ implementation of a 
technical, prescriptive curriculum. Ironically, the curriculum of the transmissive 
model is not shy about advocating for students’ engagement in their learning. One of 
the best examples is the Ontario mathematics curriculum. Yet, in practice, students’ 
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engagement remains more often than not a purely rhetorical move. We do not need 
to go far to find other examples. Referring to the American educational context, the 
historian of education, David Labaree, argues that today “It is hard to find anyone in 
an American education school who does not talk the talk and espouse the principles 
of the progressive creed” (Labaree, 2005, p. 277). However, as Labaree notes, 
“We talk progressive but we rarely teach that way. In short, traditional methods of 
teaching and learning are in control of American education” (Labaree, 2005, p. 278). 
And referring to the endless war between progressives and bureaucratic, efficientist, 
transmissive pedagogues, he concludes that “The pedagogical progressives lost” 
(Labaree, 2005, p. 278; see also Kantor, 2001).

The lost war of the progressive model is a recurrent theme in many PME papers, 
even if the theme is not formulated explicitly in this way. Brown (2011), for 
instance, having in mind not only the UK context in which he works, but also the 
contemporary educational context at large, complains that teachers find themselves 
working under governmental demands that seek to promote prescriptive curricula 
that favour some social groups. “Specifically,” Brown (2011) notes, teachers 
“work to curriculums that mark out the field of mathematics in particular ways 
that favour certain priorities or groups of people” (p. 190), confining students and 
teachers to the sphere of cultural reproductive agents. Wagner (2014) makes a 
similar point: “I consider it unfortunate that mathematics classroom practices tend 
toward closed dialogue in which children are not invited to see the possibility of 
multiple approaches and possibilities” (p. 63). And he did not miss the opportunity 
to complain about the lack of autonomy with which students are left in traditional 
transmissive classrooms: “Teachers too frequently fail to raise the possibility of 
students’ autonomy” (p. 63).

It is, however, in empirical papers that the reaction to the traditional transmissive 
model is most salient. It is there that the question of students’ participation (or the 
lack thereof) comes to the fore (e.g., Høines & Lode, 2006; Hunter, 2007; Hodge, 
Zhao, Visnovska, & Cobb, 2007).

These empirical papers also show a great concern for understanding the role 
that teachers may play in promoting students’ dialogical participation in collective 
discussions (e.g., Hunter, 2008; Mesa & Chang, 2008; Chapman, 2009; Gilbert & 
Gilbert, 2011; Sánchez & García, 2011; Morera & Fortuny, 2012; Toscano, 
Sánchez, & García, 2013; Adler & Ronda, 2014; Cavanna, 2014; Hung & Leung, 
2012; Thornton & Reynolds, 2006). For instance, Thornton and Reynolds (2006) 
investigate the extent to which Grade 8 Australian students have opportunities to 
express themselves and submit ideas to the classroom. A closer look at the analysis 
shows that the students’ opportunities for participation are still carried out against 
the background of the teacher-students dichotomy championed by the progressive 
reformers. Thornton and Reynolds (2006) contrast Noemi’s classroom—that is, the 
classroom they investigated—to many of the TIMSS 1999 video classrooms, which 
“featured reproductive discourse, with the apparent goal of students being to guess 
what was in the teacher’s mind” (p. 275). They remark: “In Noemi’s classroom 
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students see themselves as active participants in learning, who have power over both 
the mathematics and the discursive practices of the classroom” (p. 277). They go 
on to say: “Power is located with students” (p. 277). With power on the side of the 
students, the teacher’s authority has finally vanished.

Chapman (2009) offers us a similar view. As in the case of Thornton and Reynolds 
(2006), she poses the problem against the backdrop of the war between traditional 
mathematics classrooms and reformed classrooms. In a clear and succinct way, 
she summarizes how discourse is conceptualized in current reform mathematics 
education perspectives: “Discourse, as promoted in current reform perspectives 
of mathematics education, is not about classroom talk intended to convey exact 
meaning from teacher to student; instead, it is about communication that actively 
engages students” (Chapman, 2009, p. 297). Of course, there is nothing wrong 
with this. As Giroux notes, “student experience is the stuff of culture, agency, and 
self-production and must play a definitive role in any emancipatory curriculum” 
(1986, p. 36). To see the teacher-students dichotomy appear we have to consider 
the following part of the citation that we highlight in italics: “…instead, it is about 
communication that actively engages students in a way that allows them to construct 
new meanings and understandings of mathematics for themselves” (Chapman, 2009, 
p. 297; our emphasis). The second part of the citation tells us who is in control 
of the means of classroom knowledge production. It reveals that the conception of 
classroom discourse is still based on the teacher-students dichotomy. It is the students 
who, through their engagement in classroom communication, have to understand 
mathematics for themselves. This is what empowerment seems to be about.

Lee (2006) also stresses the need for students to take control of the means of 
classroom knowledge production. She pleads for an approach that engages students 
in classroom discourse and that is oriented towards helping them express and explain 
their ideas, so that “They take ownership of their ideas and become able to control 
and use them” (Lee, 2006, pp. 7–8; our emphasis).

In sum, contemporary progressive (or reform) views of mathematics classroom 
interaction revolve around the old progressive idea of students’ participation. 
Although this is certainly a commendable idea, we see that students’ participation is 
understood against the backdrop of a dichotomy between teachers and students. This 
dichotomy, the progressive pedagogues feel, is required in order to guarantee the 
overcoming of the teacher’s authority. At the epistemological level, the dichotomy 
serves to define a specific form of knowledge production in the mathematics 
classroom, which is based on the idea that students have to gain control over, and 
ownership of, knowledge and its mechanisms of production.

How does the teacher understand the operating dichotomy that promises to set the 
students free from authority? Noemi, the teacher in Thornton and Reynolds’s (2006) 
investigation, says:

My aim in my Mathematics classroom is for students to regard Mathematics as 
an art which belongs to them, a means of regarding and interpreting the world, 
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a tool for manipulating their understandings, and a language with which they 
can share their understandings. My students’ aim is to have fun and to feel in 
control. My role is primarily that of observer, recorder, instigator of activities, 
occasional prompter and resource for students to access. Most importantly, 
I provide the stimulus for learning what students need, while most of the 
direct teaching is done by the students themselves, generally through open 
discussion. (Thornton & Reynolds, 2006, p. 278)

As we can see, the teacher conceptualizes herself as a resource, providing the 
students with occasional stimuli. In other PME papers, the teacher appears as a 
“facilitator” (Chapman, 2009, p. 298) or “guide” (Hodge, Zhao, Visnovska, & Cobb, 
2007, p. 42) of the subjective expression of the students. There is a generalized 
patriarchal view of the teacher, who is reduced to playing a shepherding role—
teachers appear as scaffolders, observers, and room-makers-for-students-to-think-
and-act. They are there to promote student achievement and established forms of 
academic success. But the progressive model does more than that: most importantly, 
it provides teachers with technologies of subjectification to conceive of themselves 
as shepherds and facilitators.

We can try to go further and ask the question about how the teacher conceptualizes 
the students. The previous cited passage provides us with some interesting elements 
with which to answer the question. Understanding knowledge—mathematics, in this 
case—as something that can be possessed, the teacher conceives of the students 
as potential possessors. The teacher wants the students to regard mathematics as 
something that “belongs to them” (Thornton & Reynolds, 2006, p. 278).

Let us notice that this stance is not typical of teachers like Noemi. As we have 
seen, researchers also expect the students to understand mathematics for themselves; 
they are expected to take ownership of their ideas. The same goes for the Theory of 
Didactical situations, where teachers are advised not to show the students the answer. 
As Brousseau notes, if the teacher shows the student how to solve the problem, the 
student “does not make it her own” (Brousseau, 1997, p. 42). Since how to solve the 
problem is not “her own,” in this line of thinking the student cannot be said to have 
achieved a genuine mathematical understanding.

In brief, the progressive (reform) model and the theories and pedagogies it has 
inspired tend to look at the students through the lenses of the students-as-private-
owners paradigm. That is, the students are conceived of as subjects of a specific 
form of “knowledge production that equates doing and belonging: what belongs 
to the students is what they do by themselves. What they do not do by themselves 
does not belong to them” (Radford, 2014, p. 5; rephrased). Within this context, 
understanding is featured as the epistemic equivalent of belonging: Understanding is 
the product of the students’ own cogitations and deeds. The students’ understanding 
is the product of their own labor—not the teachers’. How indeed—the question 
runs—could students understand something that they did not themselves produce? 
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In the same way as we labor in society to acquire and possess things, students 
labor in the classroom to possess/understand knowledge. Hussain, Threlfall and 
Monaghan (2011) attempt to introduce a new approach to mathematics teaching and 
learning: “This paper introduces an approach to mathematics teaching and learning 
which we feel transcends the usual teacher-centered versus student-centered 
dichotomy by integrating two kinds of mathematics classroom discourse, the 
authoritative and the dialogic” (2011, p. 1). The solution that they envision is based 
on a partition of authority—sometimes authority rests with the students, sometimes 
it rests with the teacher. They continue:

It is proposed that mathematics teaching and learning should engage students 
in dialogic communicative approaches to empower them to articulate their 
ideas and to take more responsibility, but that in order to enable students to 
build mathematics competences effectively it is also proposed that the teacher 
should at times involve periods of authoritative discourse on topics prompted 
by the dialogic discourse. (Hussain et al., 2011, p. 1)

The question of authority is again posed against the background of the opposition 
of teacher and students. The solution exists in the alternation of authority, a 
compromise between the two camps at war—the transmissive (traditional) and the 
progressive (reform) camps.

In his PME 38 plenary talk, Radford (2014) suggested a dialectical approach that 
puts at the center the idea of teaching and learning as a single process in which 
teachers and students work together—an idea captured in the term joint labour:

In joint labour teaching and learning are fused into a single process: the process 
of teaching-learning—one for which Vygotsky used the Russian word obuchenie. 
In this sense, teachers and students “are simultaneously teachers and students” 
(Freire, 2005, p. 76). They are simultaneously teachers and students, but not 
because both are learning (Roth & Radford, 2011). They are, of course. However, 
the real reason is because teachers and students are labouring together to produce 
knowledge. (pp. 10–11)

Here knowledge is neither something that teachers possess and pass on to the 
students (the transmissive model) nor something that students acquire through their 
own personal deeds (the progressive model). Knowledge is not something to possess; 
like music, it is a kind of evolving space to attend (“fréquenter” as Guillemette, 
2015, p. 76 says), visit, and enjoy. More precisely, knowledge is a diverse cultural-
historical set of potentialities that, through the teacher-students’ joint labour, enables 
actions, imaginations, interpretations and new understandings.

This perspective moves away from the conception of the teacher as a shepherd 
discussed previously:

regardless of how much the teacher knows about [mathematics], she cannot set 
[mathematical] knowledge in motion by herself. She needs the students—very 
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much like the conductor of an orchestra, who may know Shostakovich’s 10th 
Symphony from the first note to the last, needs the orchestra: it is only out of 
joint labour that Shostakovich’s 10th can be produced or brought forward and 
made an object of consciousness and aesthetic experience. (Radford, 2014, p. 11)

Although teachers and students do not play the same role, they work together. 
They need each other. “Teachers and students are in the same boat, producing 
knowledge and learning together. In their joint labour, they sweat, suffer, and find 
gratification and fulfillment with each other” (Radford, 2014, p. 19).

LANGUAGE DIVERSITY IN MATHEMATICS EDUCATION

The perceived increase in language diversity in contemporary classrooms must, 
for education, be one of the most salient legacies of colonialism and globalization. 
There are two aspects to this legacy. First, the increasing movements of people 
around the world, initially as a result of colonial policies, more recently as a result 
of globalization, mean that classrooms now rarely fit the presumed ideal in which all 
students speak one and the same language. In developed countries, these circumstances 
have often come as something of a shock, leading to concepts like ‘superdiversity’ 
(Vertovec, 2007; see Barwell, 2016, for a more extended discussion in the context 
of mathematics education) as societies and, in particular, education systems struggle 
to come to terms with the presence of multiple languages and cultural backgrounds. 
The second aspect of the legacy of colonialism and globalization, however, is that 
the Eurocentric view of ‘normal’ societies as unilingual, with one language unifying 
one nation, is finally itself being overturned. A plurilingual view of society is no 
surprise to the ‘rest’ of the world, where living with multiple languages is the norm. 
Much as the peoples of the Americas must have been surprised to learn that they 
were ‘Indians’, so the ‘discovery’ of language diversity implies a complex and 
problematic relationship with otherness.

A focus on language diversity, including topics such as mathematics learning in 
multilingual classrooms, in bilingual education programs or of immigrant second 
language learners have featured at PME for some time. Indeed, in his paper at 
PME29, the first year of our current survey, Barwell (2005) reviewed research 
reports with a focus on language diversity from the previous 10 years. He identified 
13 research reports in that period, indicating a good level of interest in topic of 
growing prominence. In our current survey, we have identified 21 papers addressing 
this topic, suggesting a degree of growth in work in this area. These papers cover a 
range of national contexts (Australia, Canada, Catalonia-Spain, Germany, Malaysia, 
New Zealand, Philippines, South Africa, Tonga, USA) and sociolinguistic settings, 
including bilingual classrooms, indigenous learners, immigrant learners, and 
multilingual societies. This work addresses several interrelated topics.

Several contributions examine aspects of students’ mathematics learning in the 
context of language diversity, looking at how their mathematical understanding is 
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linked to practices like code-switching (e.g., Manu, 2005; Planas, Iranzo, & Setati, 
2009; Planas & Civil, 2010) and the challenges of word problems given in an 
‘imported’ language (Verzosa & Mulligan, 2012). There has also been work seeking 
to understand students’ perspectives on learning mathematics in a language other 
than their home language (Setati, 2006), and the perspectives of ‘local’ students 
on practices designed to support immigrant learners in their mathematics classes 
(Planas & Civil, 2008).

Another strand of research continues the search for a link between language 
proficiency and mathematics achievement. Some of the early work on this topic was 
reported in PME in earlier decades (e.g. Clarkson, 1996; Clarkson & Dawe, 1997). 
Recent papers include two quantitative studies conducted in Germany (Heinze et al., 
2009; Prediger et al., 2013), as well as Essien and Setati’s (2007) investigation of 
the effects on mathematics scores of an intervention designed to improve a group of 
South African students’ proficiency in English.

Several researchers have reported their work with teachers to develop more 
effective tasks or teaching methods (Poirier, 2006; Nkambule, Setati, & Duma, 2010; 
Hunter, 2013) and Civil (2008) has also reported on similar work with parents. Lim 
and Ellerton (2009) reported teachers’ views as part of their examination of changes 
to language policies in Malaysia.

Finally, three papers have examined the relationship between grammatical 
structures of indigenous languages and the related affordances for mathematical 
thinking and learning (Lunney Borden, 2009; Edmonds-Wathen, 2010, 2014).

This work reflects the kinds of tensions arising in mathematics classrooms 
in contexts of language diversity discussed by Barwell (2012a, 2012b, 2014), 
including tensions between home and school languages, between formal and 
informal mathematical language, and between language for learning and language 
for getting on in the world. Barwell draws on Bakhtin (1981) to theorize these 
tensions as reflecting an inherent tension in language. Bakhtin uses the metaphor 
of centripetal and centrifugal forces to conceptualize the nature of language both as 
diverse and constantly new and different (called heteroglossia), and as striving to 
reflect an ideal of purity and perfection (known as unitary language). Hence, most 
of the papers mentioned above subscribe to an idea of mathematical language as a 
stable, unified register or discourse, when it can instead be seen as multiple, diverse 
and unstable.

Bakhtin’s understanding of language is based on relationality and, in particular, 
dialogue. Thus heteroglossia is not simply the presence of difference, but rather the 
relations and interactions between these differences. For Bakhtin, these interactions 
are dialogic in nature, meaning that they involve more than one perspective at once. 
Dialogue arises between languages, discourses, utterances or voices and is what 
make meaning possible. Fundamental to this view of language is the role of alterity. 
Difference requires otherness but, as we have seen, difference is also the source of 
an unavoidable tension within language. Whenever students must learn mathematics 
in a second language, or a language they do not use at home, they are learning 
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mathematics with an Other’s language (Barwell, 2013). And language, in Bakhtin’s 
theory, is not just language, it is ideology—a worldview. Thus, learning mathematics 
in another language, or in multiple languages, is not just a question of getting 
through the language to the mathematics that lies beneath; rather, each language, 
or a particular variety of language or languages, offers a different mathematics 
(Edmonds-Wathen, 2014). A key question for the work reviewed in this section, 
then, is: How do PME researchers interested in language diversity deal with the 
fundamental issue of otherness in their research?

There are, inevitably, a variety of responses to this question apparent in the 
different papers. In some cases, the learner is the Other. For example, in Heinze 
et al.’s (2009) carefully designed quantitative study conducted in Germany, the 
goal was to understand the relationship between the language proficiency of 
immigrant students and performance in mathematics, such as in a high-stakes 
mathematics test. The assumption is (reflecting, we presume, the national policy 
context in Germany) that many immigrant students do not speak good German and 
should learn to do so in order to succeed in mathematics. Heinze et al. found some 
links between proficiency in German and mathematical performance. The students’ 
proficiency in their home language, was not evaluated, however, despite much 
research showing that home language proficiency can also be an important factor 
in school success (e.g. Cummins, 2000). Immigrant students are characterized in 
terms of ‘foreignness’—they are either migrants, or their parents are migrants, 
or they speak a foreign language at home (Heinze et al., 2009). (The study also 
found no difference between migrants and non-migrants on basic arithmetic 
performance.)

The othering of immigrants is also apparent in Planas and Civil’s (2008) paper. 
They worked with a secondary school mathematics teacher who was implementing 
‘reform’ teaching practices, which included problem-solving and collaborative 
group work. Planas and Civil report on interviews with some of the ‘local’ students, 
which reveal how they see immigrant students as language learners rather than 
mathematics learners:

Helena [high achiever]: They put us in small groups and they say that this way 
we will learn more mathematics, but the real reason is that they do it so that 
those from outside get a chance to practice our language. I don’t think this is 
right because I think that these decisions should be based on the mathematics. 
(Planas & Civil, 2008, p. 125)

Moreover, while there was interest from local students in the alternative 
mathematical methods displayed by the immigrant students, the prevailing view was 
that the immigrant students should learn ‘our’ methods.

It seems that the key basis for the construction of immigrant students as other 
is the perception that they do not speak the classroom language ‘correctly’ or are 
not proficient or simply speak differently. Khisty (2006) discusses this issue in 
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some depth, in the context of Spanish/English bilingual students in the USA (not 
necessarily immigrants). She proposes a sociocultural view of learning in which 
learning mathematics is understood as socialization into the language of the 
mathematics community. She uses this perspective to look for explanations for 
underachievement:

Academic discourse competence in this broader sense is acquired through 
active participation in the community that uses that discourse, and through 
interactions with a more capable other (Vygotsky, 1986). The lack of discourse 
competence suggests academic failings. […] Without the academic discourse 
or language, students are systematically excluded or marginalized from 
classroom curricula and activities. (Khisty, 2006, p. 436)

She also argues that the “denigration” (p. 437) of students’ home language 
amounts to an additional form of alienation from school and from mathematics and 
“silences students’ voice” (p. 437). Khisty’s argument is one of the more carefully 
developed positions apparent in the papers in this section. Nevertheless, it is not 
without some underlying tensions, at least when viewed from the perspective of 
Bakhtin’s theory. In particular, it is based on a view of mathematics and mathematical 
discourse as something students should learn. The nature of mathematical discourse 
is not itself questioned; students should learn it and will benefit from it. It appears 
that the students simply need to learn mathematical discourse, and hence the 
educational problem is to create suitable conditions (reflecting the progressive 
view of education). In fact, learning mathematical language also means learning 
a particular worldview; it means becoming a particular kind of person and could 
thus be seen as a kind of colonization of the mind. This tension is an example of 
the problem of moving beyond both transmissive and progressive approaches to 
teaching and learning mathematics.

An alternative approach to alterity is to assume from the start that language has 
a political dimension. Setati (2006), for example, assumes that “The political nature 
of language is not only evident at the macro-level of structures but also at the micro-
level of classroom interactions. Language can be used to exclude or include people 
in conversations and decision-making processes” (p. 98). In her interviews with five 
South African students about the language they preferred to use to learn mathematics, 
three preferred English and two did not express a preference. The students all spoke 
four or five different languages. For Setati, a preference for English can be related 
to the political role of English; the students saw English as an international language 
and therefore as a “route to success” (p. 99) and in some cases preferred it even when 
they acknowledged that they would understand mathematics better if it were taught 
in one of their home languages.

Civil (2008) in her work with Mexican-American parents also sees language as 
political. Her study reveals how the language policies in South-West USA which 
enforce a strong preference for English in schooling serve to marginalize the parents 
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in her study. They are less able to attend class when their children are young, or to 
support their children in mathematics. They also noticed that their children were 
often grouped with other learners of English, so reducing their chance to interact 
with English-speakers, and they often studied mathematics they had previously 
learned in Mexico.

In both these studies, then, it is language itself that is seen as the Other. In Setati’s 
study, English, although widely used in education in South Africa, is seen as the 
language of ‘international’ and of ‘social goods.’ In order to succeed, the students 
felt that they must learn this language, even to the detriment of their understanding 
of mathematics. In Civil’s paper, the parents report how the use of English (in a 
particular way), positions them as different, and so as less capable. In both studies, 
English is colonizing students of mathematics and, as a result, may marginalize 
and alienate them. Indeed, in the case of the students in South Africa, they may 
be alienated from the very languages they speak at home. Again, then, there is a 
tension, between the many ways students have of talking about mathematics, 
including the different languages they may know (mathematical heteroglossia), and 
the educational ideal of a single language of instruction for mathematics.

A third approach to alterity is to attempt to understand the Other better. Three 
papers reported studies focused on analyzing the linguistic structure of other 
languages, particularly indigenous languages in Canada and Australia. Edmonds-
Wathen’s work (2010, 2014) draws on the concept of linguistic relativity, which 
assumes that the structures of language influence ways of thinking. For Edmonds-
Wathen, this principle applies to mathematics. In the first of her papers, she reports 
on her work in a remote community in the Northern Territory, Australia, in which 
mathematics is taught in an indigenous language called Iwaidja. She sets out how 
spatial language in English is structured very differently from in Iwaidja (Edmonds-
Wathen, 2010). In the second paper, she looks at the structures relating to number 
in various languages around the world to show how presumed universal features of 
mathematics are actually culturally and linguistically specific.

In her paper, Lunney Borden (2009) describes some of her work with Mi’kmaw 
schools in Nova Scotia, Canada. Her experiences illustrate the alienating effects 
of an English-language perspective on mathematics. For example, she describes 
how the English concept of ‘middle’ is not easily translatable into Mi’kmaw, so 
that a student asked in English to show the middle of something may appear not 
to understand the mathematical notion, when in fact it is language that is most 
relevant. Edmonds-Wathen characterizes well the deeper issue at stake in all three 
papers:

It is difficult to avoid a deficit perspective in a discussion of people not 
using numbers because Western culture and mathematics education values 
quantification so highly. Nevertheless, it also does learners a disservice if 
their prior learning and conceptual development is not taken into account by 
mathematics educators. This is particularly relevant for remote Indigenous 
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Australian children who enter a compulsory school system that is largely 
designed and taught by English-speaking non-Indigenous people who learnt 
their own number words from their parents within their own cultural milieu. 
(Edmonds-Wathen, 2014, p. 437)

Much as Columbus named the new world in his own image, as part of the process 
of conquest and appropriation, so mathematics has also been named by Eurocentric 
thinkers. Recognizing that this naming can itself be a form of colonization, however, 
makes it possible to consider alternative positions. In Edmonds-Wathen’s and 
Lunney Borden’s work, the Other is relative; the ‘English-speaking non-Indigenous 
people’ are others to Iwaidja people or Mi’kmaw people and vice versa. The Other 
is no longer singular, identified with the oppressed, the marginalized, the alienated; 
there is a relation—Bakhtin’s ideas would suggest a dialogic relation—through 
which each constructs the other, although of course this relation is not necessarily 
equal (see the section on cultural dimensions).

Given the complex relationship between language, mathematics teaching and 
learning, and alterity, what (again) can teachers do? And how, for that matter, can 
researchers conduct their research in a way that does not marginalize and alienate (if 
this is even possible)?

For some, the answer to both these questions can be found in the concepts of 
voice and dialogue. Khisty (2006) explicitly draws attention to the role of student 
voice in supporting mathematics learning and concludes by raising questions about 
how teachers position themselves in relation to students’ home languages:

Do teachers and others understand and appropriately consider the political 
implications of which language is used and how? Do they view it as a learning 
resource or as something that does not have a place in mathematics classrooms, 
that should be ignored? Do they genuinely value the home language, do they 
recognize that differential status among students, including language status, is 
detrimental to students’ learning, and do they seek ways to equalize language 
status? Do they seek ways to validate what students’ have to say even when 
they do not speak the dominant language of instruction? (p. 438)

Khisty’s questions point towards approaches to teaching that involve dialogue 
between languages, as well as between the voices of students, the teacher and 
mathematics. Nkambule, Setati and Duma (2010), for example, working in a South 
African classroom of 46 Grade 11 students analyzed what happened when the 
teacher used dual language versions of mathematics problems. All of the students 
and the teacher spoke multiple languages and were grouped according to the main 
language they used at home. The mathematics problems were presented in English 
and one of isiZulu, isiXhosa, Sepedi or Sesotho. Nkambule et al.’s analysis shows 
how the use of multiple languages supported the students to invoke ‘horizontal 
mathematization’; that is, to make links between the mathematics in problems and 
their own experiences of similar situations. The study sets out a teaching strategy that 



L. RADFORD & R. BARWELL

304

values students’ home languages, as well as their interpretations of the mathematics 
problems.

Poirier (2006), in a contribution to a research forum, describes her contribution 
to mathematics curriculum development with a school board in Nunavut, the 
Canadian province with a majority Inuit population. She recognizes the dangers of 
the situation:

If we want to re-examine the Inuit curriculum and develop learning activities 
adapted to the Inuit culture, the researcher who is not a member of that 
community can not do that alone. The risk of developing activities that will not 
be suitable, or well-adapted, is too great. (p. 110)

She describes how, to mitigate these risks, she worked collaboratively with a 
team of four Inuit teachers and three Inuit teacher trainers. Her approach is highly 
dialogic, with the team exploring Eurocentric and Inuit mathematical concepts and 
ways of thinking, each in relation to the other. She reports the comments of a member 
of the school board:

This research proposal is also a unique project in the history of KSB research 
specifically addressing curriculum questions in a minority, bicultural, and 
bilingual situation. As described in your paper, the dual phenomena with two 
cultures in contact in a learning environment, and in a school setting using 
the subject of math, is like an unexplored expedition to a foreign area of the 
universe of learning. (Betsy Annahatak, Curriculum development department, 
Kativik School Board, September, 2002). (Poirier, 2006, p. 112)

These remarks suggest that a degree of dialogue was established, although 
there remains an underlying sense of tension arising from the dominant nature of 
Eurocentric mathematics and European languages.

Lunney Borden (2009) has perhaps gone furthest towards a fully dialogic 
approach. Having taught for many years in Mi’kmaw schools, she drew on 
decolonizing methodologies, engaging in discussions with Mi’kmaw elders to 
develop an acceptable approach to her research. An important aspect of decolonizing 
methodologies is questioning the way research itself—frequently a colonizing 
activity—is conducted. The outcomes of her research, then, not only challenge 
Eurocentric notions of mathematics, but challenge Eurocentric approaches to 
research.

Mathematics education is still mostly conceived of in terms of unquestioned 
forms of alterity. What is transmissive education, if it not a form of colonization of 
the mind? Perhaps less obviously, progressive education can be seen in the same 
light: the imposition of a particular view of students, teachers and mathematics. The 
starting point for the development of a more dialogic approach is the awareness 
of the value of the Other, and an acceptance of heteroglossia as a normal state of 
affairs. This position suggests the need not just for a more effective approach to 
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teaching mathematics in the context of language diversity, but also the need for a 
more ethical approach.

CONCLUSION

In this chapter, we have surveyed research on language published in PME conference 
proceedings from 2005 to 2014. We have discussed some of the main trends, such 
as language and conceptualization, questions surrounding authority and power, and 
language diversity. In this conclusion we ask the question: What is missing in current 
research on language?

What is missing, we think, is the constitution of a language of critique that may 
help us move from the two models of the early 20th century educational reform 
that continue to inform educational practice today. We have lived for more than a 
century pulled by a transmissive conception of education and a children-centered 
notion of education that, in the end, has been engulfed by schooling tailored to 
respond to the needs of contemporary capitalist forms of production. It is against 
the backdrop of the century-long struggle of these two models of educational 
reform that an important line of research on language has been moving for some 
time towards questions of power, authority, student participation, and equity. These 
questions have often been dealt with along the lines of a neo-liberal “redistributive” 
pedagogy. That is, a pedagogy that seeks to re-order the structures of knowledge and 
power in order to ensure “equal opportunities for all to learn through accessing both 
the mathematics curriculum and qualified teachers” or “equality of mathematical 
achievement outcomes across student groups” (Hunter, 2013, p. 97).

Although commendable on several counts, this pedagogy falls short of questioning 
the societal forces that produce inequalities and oppression. It fails to question, for 
instance, the mathematics curriculum, its political and economical orientation, and 
the kind of subjectivities it favors. While this critique has been made by Walkerdine 
(1988) and Giroux (1989) some 30 years ago (and developed in more recent work 
by, for example, Appelbaum, 2012; Valero, 2007; Walshaw, 2014), it is not well 
developed in PME research on language (or in PME research in general). Yet, it is 
within a redistributive pedagogy that questions of power or language diversity are 
often formulated in the PME proceedings: they are often formulated as the search 
for pedagogical actions that capitalize on minority group languages to lead the 
members of these groups to dominant mathematics. Language diversity becomes 
a tool to attain, maintain, and affirm Western mathematics. What is missing here, 
we suggest, is a critical language that could help us understand that the tensions 
between languages, or between forms of language, are not simply the source of 
pedagogical or ontological challenges: they are political, through and through. 
Such a critical language should help us transcend the shortcomings of redistributive 
pedagogy and to go beyond the conception of knowledge as something politically 
neutral to be possessed, the conception of students as private owners and teachers 
as technical implementers of a prescribed curriculum (shepherds, scaffolders, 
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observers, instigators, helpers, etc.). As one of the reviewers put it, “so-called reform 
classrooms risk to privilege privileged students again.” Instead of conceiving of 
teachers as curriculum technologists whose role is to promote conventional forms of 
academic success, we argue for a conception of teachers as intellectual practitioners 
who critically problematize the knowledge and values that they and the students 
bring to, and co-produce in, the classroom. We argue for a conception of teachers 
as critical agents who acknowledge the fact that classrooms are first of all places of 
conflict and resistance and that it is out of conflict and resistance that subjectivities 
are formed and transformed, the teachers’ included. Such an approach would connect 
the research in our first theme (on language and mathematical conceptualization) 
with research in our second and third themes (on language, power, authority and 
language diversity).

What remains to be done to address the challenges we have highlighted in PME 
research on language in mathematics education, we think, is the elaboration of a 
new emancipatory conception of knowledge, authority and power. To do so, we need 
to start working from a non-substantialist perspective. That is, we need to think of 
knowledge, authority, and power not as “things” that people have or lack. We might 
be better off thinking of authority and power as rather a set of fluid and always 
moving relations that are enacted as individuals engage in human life. Authority and 
power are at the heart of the social practices of the division of labor and the tensions 
that result from the manner in which persons, groups of persons, and communities 
envision, define, and pursue their individual-societal purposes and truths. It is 
through human practices that authority and power are produced (not in situ, but 
historically). In turn, authority and power come to shape, embrace, and orient these 
practices, thereby making it possible that “certain forms of subjectivity, certain 
object domains, certain types of knowledge come into being” (Foucault, 2000, p. 4).

What is also missing in PME research on language and discourse, then, is a 
vision of teachers and students where authority is not an authoritarian relationship 
but rather a communal social and cultural construction “that expresses a democratic 
conception of collective life, one that is embodied in an ethic of solidarity, 
social transformation, and an imaginative vision of citizenship” (Giroux, 1986,  
pp. 22–23). Power and authority should rather serve as methodological lenses to 
critically reflect on the school values that we promote, nurture, and convey, as well 
as the kinds of rationalities and ways of knowing that we privilege. By looking at 
power and authority in this way, we may become reflectively able to notice those that 
we exclude, allowing us to envision more encompassing inclusive and just courses 
of action. Such a conception of authority and power may also allow us to rethink the 
positions, stances, and ideologies we come to embrace and promote in the school 
and beyond. We need to rethink the forms of classroom knowledge production and 
the forms of human collaboration that could be consonant with an emancipatory 
critical pedagogical agenda.
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9. PROOF AND ARGUMENTATION IN 
MATHEMATICS EDUCATION RESEARCH

INTRODUCTION

In the chapter on proof in the previous PME Research Handbook, Mariotti (2006) 
observed that there had seemed to be “a general consensus on the fact that the 
development of a sense of proof constitutes an important objective of mathematics 
education” and also “a general trend towards including the theme of proof in the 
curriculum” (p. 173). A decade later, Mariotti’s observations are equally, if not more, 
applicable: there is currently a widespread agreement among mathematics educators 
on the significance of proof in students’ learning of mathematics, with a number 
of educational policy documents or curriculum frameworks in different countries 
calling for an important place for proof in all students’ mathematical experiences and 
as early as the elementary school (see, e.g., the U.S. Common Core State Standards 
for School Mathematics (CCSSI, 2010) and the most recent National Mathematics 
Curriculum in England (Department for Education, 2013)).

It has been suggested that mathematics education research has influenced or 
even pressured curriculum authors into giving proof a place in the mathematics 
curricula of different countries (Hoyles, 1997; Mariotti, 2006). There are several 
arguments for the importance of proof in students’ mathematical experiences from 
the beginning of their education. These arguments have been elaborated in various 
publications including PME reports (e.g., Stylianides & Stylianides, 2006; Yackel & 
Hanna, 2003), so we will not repeat them here. Yet, there is a big difference between 
recommending or accepting the idea that proof should have an important place in 
school mathematics and realizing this recommendation for all students.

During the past few decades mathematics education research has cast light 
on many different issues related to proof, thus generating useful knowledge with 
implications for teaching practice. However, there are still many open debates in 
the field and important research questions remaining to be addressed. Over the 
past decade in particular there has been an upsurge of research activity related to 
the teaching and learning of proof, including many articles in all major journals in 
the field, a number of books or edited volumes (e.g., Stylianides, 2016; Stylianou, 
Blanton, & Knuth, 2010), and an international study conference on proof that was 
conducted under the auspices of the International Commission on Mathematical 
Induction (ICMI) (Hanna & de Villiers, 2012).
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The PME community is, and continues to be, a main contributor to debates and 
research advances in the area of proof, with a plethora of relevant reports published 
in the PME proceedings following the period covered by Mariotti’s (2006) review. 
Our aim in this chapter is to review and reflect on major research advances of the 
PME community in the area of proof, based primarily on the PME proceedings 
during the period 2005–2015. A review of PME research on argumentation and 
proof focusing on post-elementary education and covering the period 2010–2014 
can be found in Sommerhoff, Ufer and Kollar (2015). More comprehensive reviews 
of the state of the art in the field as a whole can be found in Harel and Sowder (2007), 
and in Stylianides, Stylianides and Weber (2016).

In what follows, we explain our decision to widen the scope of this review by 
considering issues related to argumentation and proof rather than just proof, and we 
discuss the meanings of these two key terms. We describe also the methodology we 
followed in the review and how the rest of the chapter is organized.

Argumentation and Proof

The concepts of argumentation and proof have been discussed in detail by 
Mariotti (2006, pp. 181–184) who also presented part of the debate about whether 
the relationship between the two concepts can be more productively viewed as a 
possible rupture (e.g., Duval, 1989) or as a possible continuity (e.g., Boero, Garuti, & 
Mariotti, 1996). No matter which position one takes in this debate, with which the 
PME community has engaged from its early stages as illustrated by the previous 
two references, the following points stand: (1) argumentation and proof are closely 
related, and (2) considering both argumentation and proof helps draw attention 
to a wider range of important processes related to proving than when considering 
them separately. Indeed, these two points, together with the increased attention 
that argumentation and proof have received at PME conferences over the years 
and elsewhere (e.g., Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012), have 
guided our decision to address in this chapter issues related to both argumentation 
and proof.

There seems to be a fairly shared understanding among researchers about the 
meaning of argumentation, a term which is generally used to describe the discourse 
or rhetorical means (not necessarily mathematical) used by an individual or a 
group to convince others that a statement is true or false (e.g., Boero, Garuti, & 
Mariotti, 1996; Duval, 1989; Krummheuer, 1995). Thus argumentation focuses on 
the epistemic value of a given statement and can embody a link between the process 
of ascertaining (i.e., the process employed by an individual to remove his or her own 
doubts about the truth or falsity of a statement) and the process of persuading (i.e., 
the process employed by an individual or a group to remove the doubts of others 
about the truth or falsity of a statement) (Harel & Sowder, 2007). Argumentation 
is often situated in the context of a broader mathematical activity which has been 
described using different terms (e.g., proving or reasoning-and-proving) and can 
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involve the following: exploration of examples or particular cases, generation or 
refinement of conjectures, and production of arguments for these conjectures 
that may not necessarily qualify as proofs or support the development of proofs 
(e.g., Buchbinder & Zaslavsky, 2009; Komatsu, 2011; Lockwood, Ellis, Dogan, 
Williams, & Knuth, 2012; Morselli, 2006; Stylianides, 2008; Zaslavsky, 2014; 
Zazkis, Liljedahl, & Chernoff, 2008).

In contrast to the rather consistent meaning attributed to argumentation in the 
field, the meaning of proof has been subject to debate among researchers at PME 
conferences and elsewhere (e.g., Balacheff, 2002; Reid, 2005; Stylianides, 2007; 
Weber, 2014). Some of these researchers have reviewed definitions of proof used 
in different research studies thus illustrating the multiplicity of perspectives in 
the field, while others proposed specific definitions of proof and discussed their 
affordances or domains of application in mathematics education research. Different 
definitions may be better suited to serve different research purposes; this implies 
that it may be neither possible nor desirable for all researchers to adopt a common 
definition. Yet, it is important that researchers specify their perspective on proof 
so as to facilitate understanding of their claims or findings (Balacheff, 2002; Reid, 
2005; Stylianides, 2007).

Accepting the importance for such specificity, we describe our perspective on 
proof, without however suggesting that this is better than alternative perspectives. 
We begin with Mariotti’s (2006) observation that “the crucial point that has emerged 
from different research contributions [in the field of mathematics education] concerns 
the need for proof to be acceptable from a mathematical point of view but also to 
make sense for students” (p. 198; italics added). Following up on this observation, 
we define proof in the context of a classroom community as a mathematical argument 
for the truth or falsity of a mathematical statement that meets both of the following 
criteria, where criterion 1 reflects a mathematical consideration and criterion 2 a 
student consideration (Stylianides, 2007):

• Criterion 1: An argument qualifying as a proof should use true statements, valid 
modes of reasoning, and appropriate modes of representation, where the terms 
“true,” “valid,” and “appropriate” are meant to be understood with reference to 
what is typically agreed upon nowadays in the field of mathematics, in the context 
of specific mathematical theories.

• Criterion 2: An argument qualifying as a proof should use statements, modes of 
reasoning, and modes of representation that are accepted by, known to, or within 
the conceptual reach of students in a given classroom community.

While not comprehensive, this definition is sufficiently “elastic” to allow 
description of proof across different levels of education, which is a pressing 
issue given the (positive) trend towards making proof part of the mathematics 
curriculum beginning from the elementary school grade levels. Also, the definition 
integrates different perspectives on proof discussed in the literature. These include, 
for example, the view of proof as a logical deductive chain of reasoning linking 
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premises with conclusions in the context of a mathematical theory (e.g., Healy & 
Hoyles, 2001; Knuth, 2002; Mariotti, 2000), as well as others that highlight 
the cognitive or social aspects of proof thus viewing proof as an argument that 
establishes the truth or falsity of a statement for a person or a community (Harel & 
Sowder, 2007) or as an argument that is accepted by a community at a given time 
(Balacheff, 1988).

Methodology for the Review and Chapter Organization

As we noted earlier, our aim in this chapter is to review and reflect on major research 
advances of the PME community in the area of proof, based primarily on the PME 
proceedings during the period 2005–2015. We used the following two complementary 
and partly overlapping approaches to identify which reports to include in our review. 
The term “report” refers in this chapter to any published piece in the proceedings 
with length more than 1 page (such pieces could be labelled in the proceedings as 
plenary papers, plenary panels, research reports, research forums, discussion groups, 
or working sessions).1

• Approach 1: We included all of the reports with any of the keywords “proof/
proving” and “argument/argumentation” in their titles or abstracts, though we did 
filter out few reports where the use of these terms was incidental (as, e.g., in the 
phrase “In this paper we make the argument that…”).2

• Approach 2: We included all of the reports that were listed under the domain 
“Proof, proving and argumentation” in the section typically called “Index of 
Presentations by Research Domain” and found in volume 1 of the proceedings.3 
The particular domain under which a report is listed is specified by the authors of 
the report at the point of submission.

Approach 1 offered a rather objective way of identifying relevant reports, while 
Approach 2 gave voice to authors themselves to indicate whether they considered 
their reports to be primarily about argumentation and proof. Interestingly, a 
considerable number of reports were identified by only one of the two approaches; 
this emphasizes the complementarity of the approaches and helps justify our choice 
to consider in the review the union of their returns.

Over 160 reports qualified for inclusion in the review, with more than 80% of 
them being categorized into the following three general themes according to the 
approximate ratio 2:2:1. The bulk of this chapter is a discussion of reports under 
these three themes.

• Theme 1: Research on student conceptions and learning;
• Theme 2: Classroom-based research; and
• Theme 3: Research on teacher knowledge and development.

The reports that did not fit under any of these themes addressed a large variety 
of topics that defied broader grouping. Yet, one topic received relatively more 
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attention than others, and so we comment on it briefly. This concerned the 
place or treatment of concepts related to argumentation and proof in curricular 
resources, notably mathematics textbooks. The studies on this topic were typically 
empirical and took the form of comparative analyses of textbooks in different 
countries (e.g., Miyakawa, 2012) or of different textbooks in the same country 
(e.g., Dolev & Even, 2012). Their findings showed a multiplicity of approaches to 
the place and treatment of argumentation and proof in textbooks not only across 
but also within countries. In educational contexts where teachers rely rather 
heavily on textbooks for their everyday planning and teaching, these findings 
raise a concern about the presumably large variation in the learning opportunities 
offered to students in different classes, even within the same country, depending 
on which textbook their teachers follow.4 A recently published journal special 
issue on the place and treatment of concepts related to argumentation and proof 
in mathematics textbooks (Stylianides, 2014) offered a forum for more reports 
of empirical findings in this area and for discussion of methodological issues 
surrounding textbook analyses.

In the sections that follow, we discuss separately the three themes. In each section, 
we begin with a general description of the theme and any sub-themes within it, 
we continue with review of the reports belonging to the theme, and we conclude 
with a reflection on the state of PME research within the particular theme, including 
possible directions for future research.

THEME 1: RESEARCH ON STUDENT CONCEPTIONS AND LEARNING

General Description of Theme 1

In this section, we review the PME reports that focused primarily on issues of learners’ 
conceptions when engaging in argumentation and proof. Although the set of studies 
reviewed for this theme included some research on mathematicians’ strategies and 
conceptions, the vast majority of studies focused on students’ conceptions and 
learning in secondary and undergraduate grade levels. There were a smaller number 
of studies focused on middle school students and even fewer studies with elementary 
school students. The reports reviewed go beyond reporting that students at particular 
levels have difficulty engaging in proof; collectively, they reveal aspects of learners’ 
perspectives on proof and proving and add nuance to our understanding of learners’ 
conceptions when engaging in proving.

Among the reports we reviewed, there were three related sub-themes:

• Students’ conceptions of proof and the proof process;
• Experts and novices’ use of examples in argumentation and proving; and
• Knowledge, tasks, and tools that promote success in generating proof.

In what follows, we review separately reports belonging to each sub-theme. We 
conclude with a reflection on the state of PME research within Theme 1.
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Review of PME Reports Belonging to Theme 1

Students’ conceptions of proof and the proof process. A relatively large number 
of reports discussed results of studies to learn more about students’ conceptions 
when generating or validating proofs. A feature of many of these studies is that they 
approached their research from what one could call an actor-oriented perspective 
(Lobato, 2003), where students’ conceptions are considered without reference to, 
or grounding with, expert or normative conceptions. The importance of capturing 
students’ perspectives is underscored in Knapp and Weber (2006), whose study 
of Advanced Calculus students’ proving led to a reconceptualization of Weber’s 
(2001) construct of strategic knowledge for proof. In Weber’s original framing of 
the construct, strategic knowledge for proof was the body of strategies, heuristics, 
and techniques known and utilized by the prover with the implicit goal of using this 
knowledge to attain a proof by any means. Knapp and Weber reframed the construct 
to be strategies, heuristics, and techniques that are used to attain students’ goals of 
proving, as students’ goals may range beyond simply attaining a proof.

Fried and Amit (2006), reporting on a sub-study of the large-scale, comparative 
Learners’ Perspective Study (Clarke, 2001), investigated eighth graders’ perspectives 
on proof. They argued that students’ positioning as mathematical authorities 
influences their confidence in determining whether their written argument is a proof. 
They highlighted an important point from their findings: positioning students as 
distinct from mathematical authorities can perpetuate students’ beliefs that there is 
a definitive notion of “proof” and that they do not have agency to construct their 
own conceptions of proof. They further challenged mathematics educators to help 
students “see that their continual debate, defining, and self definition is a normal 
state of affairs in mathematics” (p. 119).

Another study by Kunimune, Kumakura, Jones and Fujita (2009) of lower-
secondary students (eighth and ninth graders) contributes to the existing body of 
literature on students’ understandings of proof and generality (e.g., Chazan, 2000; 
Ellis, 2007). Their sample consisted of approximately 400 students, who responded 
to written survey items that aimed to assess their conceptions of algebraic proof. 
The researchers found that students who were consistently successful in producing 
algebraic proofs did not necessarily recognize the generality of their proofs. An 
inability to recognize the generality of a proof may suggest that students do not 
conceive of proof as a means for establishing truth. Coupled with the work of 
Fried and Amit (2006) discussed above, these findings suggest further that abilities 
to produce a proof do not need to go hand-in-hand with understanding a proof’s 
specific role in the discipline of mathematics. Bieda’s (2011) work illustrates similar 
complexity to students’ conceptions of argumentation and proof as shown in the 
studies of Fried and Amit, and Kunimune et al.; Bieda showed that middle grades 
students’ conceptions of what makes an argument convincing for showing the truth 
of a given statement involves both explanations of why a statement is always true 
and specific instantiations of the true statement to illustrate the phenomenon to the 
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reader. Additional information regarding the findings of this study can be found in 
Bieda and Lepak (2014).

Some additional studies focused on advanced students and mathematicians’ 
processes for generating proof. Edwards (2008, 2010) employed embodied 
cognition perspectives to better understand expert (advanced doctoral students 
and mathematicians) proof processes. Edwards found her participants evoked a 
conceptual metaphor of “proof is a journey” as they thought aloud when doing a 
proof. Wilkerson (2008) also found that embodiments (a term used by the author 
to describe examples, constructions, and prototypes) emerged in think alouds when 
mathematicians were interpreting a proof relating to new content to make sense of. 
This suggests that examples may play a similar role for novices and possibly relates 
to the extensive work on students’ use of examples in argumentation and proving 
reviewed earlier.

Alcock and Weber (2005) illustrated, with two case studies selected from the 
interviews of 11 undergraduates, that learners might take either a referential or a 
syntactic approach to attempting proof. In the referential approach, the prover uses 
particular or generalized instantiations of the statement to guide formal inferences. 
Those who attempted the proof syntactically tended to stick with manipulating 
formally stated facts without the use of examples to guide their process. From their 
analysis of the case studies, Alcock and Weber discovered that students who took 
a more referential approach had a more difficult time producing formal proof from 
their intuitions. However, those who approached proof more syntactically tended to 
generate proofs without a good sense of the meaning of those proofs. Students with 
more syntactic attempts also tended to describe general decision rules about when to 
use particular proof techniques.

Zazkis, Weber and Mejia-Ramos (2014) investigated the kind of thinking that 
is needed to move from referential attempts at proof to a successful proof product. 
They identified three kinds of action employed by students as they worked on formal 
proof from informal arguments: syntactifying, re-warranting, and elaborating. In 
brief, syntactifying involves taking statements from a more informal register and 
transforming them into a form suitable for a formal proof; re-warranting involves 
identifying a deductive reason for a step from an informal, non-deductive justification; 
and elaborating involves adding detail to the formal proof to clarify ideas from 
the informal argument. From analyzing interviews with 73 undergraduates, they 
concluded that students who employed all three activities were highly likely to 
successfully produce a proof. Only in 14% of cases where a student did not use all 
three activities was a proof produced.

The studies reviewed in this sub-theme add richness and nuance to our 
understanding of students’ conceptions of proof and the proving process. Although 
many of the studies illustrate that learners may hold conceptions that impede 
successful performance in producing a convincing argument or a proof, several 
also illustrate that students can have sophisticated conceptions of proof while their 
abilities to produce proof may not be as robust. Additionally, several of the studies 
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contribute ways of describing and naming students’ conceptions and actions during 
the proving process that can build shared understanding within the field as well as 
generate further research.

Experts and novices’ use of examples in argumentation and proving. The reports 
we reviewed in this sub-theme generally aimed to identify how example use can 
be a productive, generative part of the argumentation and proving process. This 
focus is an evolution from the body of existing literature documenting students’ 
over-reliance upon empirical evidence when proving, reflecting a general interest 
about the pedagogical value of examples in mathematics. The research reported 
here speaks to the practices of example use across a range of participants engaged 
in argumentation and proof; half of the papers focused on example use by middle 
school students (Chrysostomou & Christou, 2013; Ellis, Lockwood, Dogan, 
Williams, & Knuth, 2013; Lin & Wu, 2007) and high school students (Buchbinder & 
Zaslavsky, 2013), whereas the other half examined practices with example use by 
undergraduates (Morselli, 2006; Watson, Sandefur, Mason, & Stylianides, 2013) as 
well as by professional mathematicians (Antonini, 2006; Ellis et al., 2013). As such, 
this collection of reports represents a significant body of literature to inform the 
field about the nature of students’ (and mathematicians’) example use and supports 
further inquiry into this common practice of proving.

Several of the papers in this sub-theme focused on identifying types of example 
use that emerged in students’ or mathematicians’ argumentation and, in some cases, 
identifying which types led to desirable outcomes (e.g., a proof). The researchers 
tended to use qualitative approaches with small numbers of participants to gather 
rich data about example use. One of the studies with a larger sample was that of 
Morselli (2006), who conducted interviews with 47 university students and found 
that participants’ argumentative processes could be classified into four profiles: 
(1) work exclusively through algebraic manipulation; (2) short explorations with 
examples and shift to algebraic proof; (3) extended explorations with examples 
leading to reasoning about the conjecture; (4) unfocused explorations with 
examples. She identified, in particular, that participants exhibiting argumentation 
habits categorized into the fourth profile were less successful than other students. 
This suggests that exploration with examples can be very productive for proving as 
long as the exploration is focused and purposeful.

Similarly, Lin and Wu (2007) found that the type of examples students 
investigate influences successful conjecturing. They posed conjecturing tasks in 
interviews with sixth grade students, where students were asked to conjecture what 
other geometric invariants would exist under the conditions shown in the given 
examples (see Figure 1). Figure 1 includes one example considered to be typical, 
meaning that the example showed the typical representation in textbooks. A second 
example, of the conjunctive type, satisfied all of the given conditions as well as 
other conditions. The extreme example, the third example, was one that satisfied 
all of the givens, but also contained some boundary features such as very large or 
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small angle measures. The researchers randomized the order in which the examples 
were organized for each interview. During the interview, the researchers noted 
the number of conjectures generated as the participants considered each example, 
as well as noted each conjecture. A key finding was that conjectures students 
generated while analyzing extreme conjectures were fewer in number and more 
likely to be incorrect than if they conjectured from observations of conjunctive or 
typical examples. Otten, Gilbertson, Males and Clark (2014) raised questions about 
the influence of the typical example accompanying claims to be proven in geometry 
textbooks, which they called a case of general with particular instantiation. The 
findings of Lin and Wu suggest that, as Otten et al. hypothesized, the features of 
given examples influence the kinds of generalizations that students make. In cases 
where students are asked to reason from examples to prove a given conjecture, it 
may support students’ argumentation process if a range of examples are provided 
for their review or if students are encouraged to generate their own examples so that 
they can determine which features are variant under the given conditions.

Figure 1. A conjunctive, a typical, and an extreme example  
(derived from Lin & Wu, 2007, p. 211)

Ellis, Lockwood, Dogan, Williams and Knuth (2013) compared the example choice 
and use of middle school students with that of expert provers (mathematicians). 
Their analysis focused exclusively on the practices of successful provers within 
each participant group, and characterized example choice and use of successful 
provers. Their findings suggest that successful provers insightfully navigate a range 
of examples. Experts (mathematicians) tend to reflect upon the utility of a particular 
example before choosing it and exhibit more metacognitive awareness of the utility 
of examples in the proving process.

The work of Buchbinder and Zaslavsky (2013) illustrates that students’ notions 
about the role of empirical evidence in determining the validity of a claim are complex 
and nuanced. They conducted dyad interviews with seven pairs of ninth and tenth 
grade students, and provided them arguments to discuss. While students generally 
recognized the limitations of arguments that over-rely upon empirical evidence, 
they also tended to believe a statement to be true “unless proven otherwise”; that is, 
students had particular difficulty accepting a claim to be false when it was initially 
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shown to be true with confirming examples but then a counterexample was found 
that disproved the claim.

In summary, the studies reviewed within this sub-theme showed the important 
role examples play in the proving practice of experts and suggest ways to support 
novices in using examples strategically to support the generation of conjectures 
and proof. Further, these studies suggest more work is needed to better understand 
learners’ beliefs about the use of examples in the argumentation and proving process 
as well as the efficacy of interventions aimed at developing learners’ sophistication 
in using examples.

Knowledge, tasks, and tools that promote success in generating proof. The third, 
and final, subcategory of reports within Theme 1 discussed aspects of students’ 
knowledge that relate with their success in generating proofs, and tasks and tools 
that can promote students’ competencies in generating proofs. Further discussion 
of tasks and tools for teaching argumentation and proof can be found in Theme 2, 
which focuses more on classroom-based studies discussing teachers’ actions and 
interactions between teachers and students. The studies reviewed in this theme 
address questions about students’ thinking and experiences during the learning 
process.

One question that emerged in many of the reports in this subcategory could be 
stated as, “What is the knowledge students need to be able to generate mathematical 
proof?” Hsu (2010) investigated the relationship between students’ performance 
on geometrical calculation items, such as those to find missing measures, and 
geometrical proof generation questions. Calculation and proof generation items were 
paired so that they referred to the figures. Similar in scope to the well-cited Healy 
and Hoyles (2000) study, Hsu surveyed over 900 eighth- and ninth-grade Taiwanese 
students and found, unsurprisingly, that ninth graders performed better overall on 
both types of items. However, of note was that students did better on geometrical 
calculation items after completing a related geometry proof task (where the order 
of tasks was systematically varied). The order in which the participants received 
the calculation item or the proof generation item did not matter for performance on 
the geometry proof task. These findings suggest that generating proof may lead to a 
deeper understanding of the content.

Ufer, Heinze and Reiss (2008) reported on a study of knowledge needed for 
doing geometry proof, particularly the correlations among key predictors, identified 
through a review of the literature, and geometry proof performance. They collected 
survey responses from over 300 students who were enrolled in the highest track 
within the German secondary school system (Gymnasium). The survey consisted 
of proof generation items of various difficulty levels, where difficulty was based on 
the number of steps in the proof, and questions assessing knowledge of basic facts 
and problem solving skill. Using a linear regression model, the researchers showed 
that the three cognitive predictors (declarative basic knowledge, procedural basic 
knowledge, and problem solving skill) all significantly predicted geometry proof 
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performance. While declarative knowledge was found to be the most significant 
predictor, problem solving skill was the least. The authors cautioned against an 
interpretation of these findings that there is little relationship between students’ 
problem solving skill and their ability to generate proofs. Indeed, some studies have 
yielded valuable information about the process of generating proof by considering 
proof construction as a problem-solving task (see Weber, 2005). Rather, the authors 
highlighted that proving involves processes such as associative thinking that may 
not be a part of problem solving and suggested that the strength of a student’s 
declarative knowledge likely determines her or his success in producing a proof. A 
later paper by the same authors (Ufer et al., 2009) provides additional information 
about how students’ performance in producing proof is enhanced by the quality 
of their geometrical knowledge, particularly the availability of perceptual chunks, 
defined as mental associations between prototypical figures and mathematical 
concepts.

Some other studies discussed the importance of students’ declarative knowledge 
of definitions for better performance in generating proofs. Dickerson and Pitman’s 
(2012) work shows that knowledge of definitions and ability to use definitions 
in proof is challenging even for advanced students. Of the five undergraduates 
interviewed, none were able to make a clear distinction between a mathematical 
theorem and a mathematical definition and many generated arguments solely from 
their concept images (Tall & Vinner, 1981) rather than the concept definitions. 
Haj Yahya, Hershkowitz and Dreyfus (2014) found similarly problematic findings 
regarding high school students’ understanding of geometric concept definitions.

Several studies in this sub-theme discussed aspects of students’ thinking and proofs 
after the implementation of tasks or activities designed to improve students’ proof 
competencies. Lin’s (2005) plenary talk on his work studying the effects of refuting 
and the colouring strategy on students’ skill to engage in proof was frequently cited 
in the PME papers reviewed for this theme. Lin found from his sample of Taiwanese 
ninth graders that the colouring strategy, where students would use colored pens to 
highlight given diagrams or draw information from the given statements, promoted 
better performance in completing proofs. However, he cautioned that these findings 
suggest that the colouring strategy diverts students’ attention to extraneous features 
of the diagram or irrelevant information from the givens. Theme 2 provides further 
discussion of studies on the colouring strategy.

There were a few other studies of note describing particular tasks that promoted 
meaningful engagement in argumentation and proof. Mamona-Downs (2009) 
showed positive effects in undergraduates’ ability to articulate their reasoning and 
refine their arguments after reading and interpreting selected work from peers. 
Beitlich, Obsteiner and Reiss (2015) discussed how secondary students read heuristic 
worked examples, a special type of textual pedagogical example where an imaginary 
peer reveals their thinking, including missteps, while completing a proof. In particular, 
this contribution used eye-tracking data to study how students attended to multiple 
representations in the argument. Their results showed that students spent the most 
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time reviewing pictorial representations, and subsequently showed to have better 
comprehension of what was presented in pictures than in the symbolic or verbal parts 
of the argument. Brockmann-Behnsen and Rott (2014) investigated the effects of a 
structured training given to two classes of approximately 30 eighth-grade students in 
a German secondary school compared with two similarly-sized classes of their peers 
who did not receive the training. The training consisted of educating students about 
the structure of argumentation, such as developing the ability to distinguish claims 
from evidence, and on problem-solving heuristics, such as working backwards. 
Using pre-post test design, the treatment students performed significantly better on 
geometry proof tasks than their counterparts in the control classes. Finally, the work 
of Cramer (2014) suggests that logical games may foster equitable participation 
in argumentation, based on her analysis of students’ participation in classroom 
argumentation using Habermas’ theory of communicative action.

In addition to investigating the influence of tasks on proof performance, a range 
of studies focused on learners’ interactions with various tools during proving tasks. 
Several papers discussed the potential of Dynamic Geometry Environments (DGEs) 
for supporting students’ investigation of geometric conjectures and moving from 
informal argumentation to proof. Notably, Baccaglini-Frank, Antonini, Leung and 
Mariotti (2011) refined Leung and Lopez-Real’s (2002) notion of pseudo object 
through observations of high school students’ work with a DGE, where they defined 
pseudo object as “a geometrical figure associated to another geometrical figure either 
by construction or by projected-perception in such a way that it contains properties 
that are contradictory in the Euclidean theory” (p. 83). The pseudo object emerged 
through the actions of construction and dragging, mediating students’ reasoning 
within the DGE and their theoretical knowledge of Euclidean geometry.

Rodriguez and Gutiérrez (2006) studied undergraduate mathematics students’ use 
of a DGE while proving, particularly how these students used a DGE to produce 
deductive arguments as solutions of geometry proof problems. They sought to 
find differences between students’ performance when proving without tools and 
when using a DGE. The authors found that a DGE helps students to identify and 
empirically check conjectures, but it does not provide an advantage over paper-and-
pencil when students bridge informal arguments to proof.

Antonini and Martignone (2011) investigated novice and experts’ argumentation 
when explaining the pantograph machine (Figure 2). Designed with pedagogical 
aims, this machine consists of “two leads fixed in two plotter points of an articulated 
system composed by some rigid rods and some pivots” (p. 41) and performs 
geometric transformations. They interviewed three pre-service teachers, two 
university students, and one early career mathematician as they attempted to identify 
and justify the transformation performed by the machine. The mathematician, unlike 
the other participants, only referenced features of the physical drawing performed 
by the machine if he had difficulty identifying the law embodied by the machine’s 
structure. Similar to DGEs, the learning environment afforded by the pantograph 
exposes the nature of students’ declarative knowledge.
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Figure 2. Scheiner’s pantograph and its products  
(derived from Antonini & Martignone, 2011, p. 42)

Reflection on the State of PME Research within Theme 1

Taken together, the papers reviewed for this theme added many important insights 
to our understanding of students’ knowledge, skills, and beliefs for argumentation 
and proof, especially with regard to students’ understanding and use of examples 
in argumentation and proof. The findings from these studies come from research 
conducted with a range of methodological approaches. However, our review noted 
two interesting features of the set of studies that should be taken into account when 
considering research that builds upon these studies.

The first feature was the predominance of research on secondary students’ 
argumentation and proof within the domain of geometry: of the studies we reviewed 
for this theme, about 40% focused solely on argumentation and proof in secondary 
school geometry. The second feature was the focus on participants at the upper end of 
the novice/expert continuum: another about 35% of the studies we reviewed involved 
undergraduate students, advanced doctoral students, or mathematicians. A minority 
of papers reviewed addressed issues of learning argumentation and proof in school 
settings other than secondary school and in domains other than Euclidean geometry. 
If argumentation is a practice that complements, or can complement, learning 
throughout the school mathematics curriculum, as many curriculum standards 
documents suggest (CCSSI, 2010; NCTM, 2000), more attention should be paid to 
students’ understanding of argumentation and proof in domains beyond geometry.

Many of the studies presented at PME over the past decade illustrate how learning 
to prove, even in upper level mathematics, continues to be a persistent challenge for 
students. However, continued research is needed because engaging in argumentation 
is a key activity for developing a foundation of mathematical knowledge that can 
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be applied to learning more mathematics and to doing mathematics in a range of 
contexts (CCSSI, 2010). There is an emerging interest in research on student thinking 
in a variety of activities related to argumentation beyond producing an argument or 
proof, such as pattern generalization (Lockwood, Ellis, & Knuth, 2013) or proof 
comprehension (Samkoff & Weber, 2015; Weber, 2015). The promise of this research 
is, in part, to gain insight to students’ conceptions in a range of proof-related activities 
and investigate relationships between competencies in, for example, comprehending 
a proof and producing a proof. Moreover, this research may suggest a variety of 
activities that can be incorporated throughout experiences in K-16 mathematics that 
address students’ development in adopting argumentation as a habit of mind.

THEME 2: CLASSROOM-BASED RESEARCH

General Description of Theme 2

In this section, we review those PME reports that dealt with the role and status of 
argumentation and proof in the classroom. In comparison to Theme 1, the classroom 
context played out more prominently in the reports under Theme 2.

Some of these reports aimed at understanding the role and status of argumentation 
and proof in ordinary classrooms (with a focus on students and/or teachers), while 
others presented and discussed teaching experiments where specific strategies and/
or tasks were developed and used in order to improve the teaching and learning 
of argumentation and proof. Accordingly, we organize our review of PME reports 
belonging to Theme 2 under the following sub-themes:

• Students’ processes of argumentation and proof;
• Teachers’ ways of dealing with argumentation and proof in the classroom; and
• Interventions aimed at improving the teaching and learning of argumentation and 

proof.

The last part of this section will be devoted to a reflection on the state of PME 
research within Theme 2.

Like in Theme 1, the most represented educational level among the identified 
reports was secondary school, especially its upper part (grades 8–13). Also, the most 
prevalent mathematical domain was again geometry, followed by arithmetic and 
elementary number theory. Only few studies referred to other mathematical domains 
such as probability.

Review of PME Reports Belonging to Theme 2

Students’ processes of argumentation and proof. As outlined in the Introduction, 
researchers in mathematics education agree that argumentation and proof are closely 
related (e.g., Durand-Guerrier et al., 2012). Thus, considering together students’ 
argumentative and proving processes is highly relevant.
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A series of PME reports focused primarily on students’ argumentation processes 
during classroom activities. Among them, Douek (2006) studied the evolution 
from everyday to scientific concepts (from a Vygotskyan perspective) in the 
context of elementary school mathematics. Douek highlighted the key role played 
by argumentative activities in fostering concept development: “[A] continuous 
development of argumentative skills allows to nourish the backing of mathematical 
reasoning on other (and easier to master) kinds of reasoning. As a result, argumentation 
can effectively move the everyday concepts/scientific concepts under the teacher’s 
guide” (p. 456). This study linked argumentation and concept development, thus 
showing that argumentation is not only a crucial step towards proof, but it has also 
an educational value in itself. In a similar way, Stoyanova Kennedy (2006) examined 
conceptual change as it took place through argumentation in a fifth grade class 
working on the theme of finite and infinite sets as a community of mathematical 
inquiry. The author presented and discussed the key phases of the activity, starting 
from the orientation phase, where spontaneous conceptions about finite and infinite 
sets emerged, to the building phase, where students collaborated to verbalize some 
solutions, to the conflict phase, where contradictions emerged, to the synthesis phase, 
where a resolution was found that gave birth to a new conceptual formation. More 
recently, Fielding-Wells and Makar (2015) analyzed class situations of epistemic 
argumentation, defined as a discourse that seeks the truth through critical reasoning 
and justification. They argued that epistemic argumentation is a fruitful activity that 
may have the following effects: supporting access to the cognitive and metacognitive 
processes that are typical of expert performance, supporting the development of 
communicative competencies, supporting the achievement of mathematical literacy, 
supporting the enculturation into the practices of mathematics, and supporting 
rational reasoning.

Another series of PME reports focused on the crucial link between argumentation 
and proof. These studies relied primarily on the idea of cognitive unity (Boero, 
Garuti, & Lemut, 2007), defined as the continuity between the processes of 
conjecture production and proof construction. Martinez and Li (2010) focused on 
the conjecturing process of grade 9–10 students in the domain of arithmetic. They 
defined conjecturing as a complex process “that involves the production of several 
mathematical statements; from which, one of the conjectures emerges as a conjecture 
to prove; and, through which a person comes to believe the likely truth-value of the 
conjecture to prove” (p. 269). The authors observed students producing conjectures 
during classroom activities, noting that, before reaching the conjecture to prove, 
students explored the problem and tested examples and/or counterexamples. Such a 
process led them to dismiss or accept conjectures and also to find out mathematical 
relations that would be employed in the subsequent proving phase. This is well 
aligned with the hypothesis of cognitive unity. The authors emphasized that the 
conjecturing phase is a complex and rich process and advocated the diffusion of 
conjecturing and proving activities in the US, where the curriculum has traditionally 
centred primarily on proof production and appreciation. Fujita, Jones and Kunimune 
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(2010) investigated the extent to which complex geometrical construction tasks 
may foster a cognitive unity between conjecturing and proving. Their data derived 
from classroom experiments carried out in Japanese lower secondary schools. 
They analyzed excerpts from group discussions using Toulmin’s (1958) model for 
argumentation. They found that, when students were asked to produce conjectures 
and prove them, cognitive unity was not automatic. Their study also suggested 
the importance of designing teaching sequences where students, sharing their 
mathematical arguments with peers, gradually develop their “appreciation of how to 
use already known facts to proceed with further investigation” (p. 15). This links the 
study also to the last sub-theme, which concerns intervention studies.

The aforementioned studies all acknowledge the importance of students’ 
interactions during the argumentation and proving processes. Matos and Rodrigues 
(2011) even more explicitly focused on proving in the classroom as a form of social 
practice. The authors adopted the social theory of learning perspective, according to 
which mathematics is a situated and social phenomenon. Consequently, the construct 
of community of practice was central to their work. The authors analyzed excerpts 
from group interactions in a grade 9 teaching experiment on geometry, focusing on 
the use of diagrams. Their analysis showed that, although a group may be seen as 
a community of practice where students share the same concern for the task and 
develop a shared practice, the members of the group can behave differently in terms 
of participation depending on their level of mathematical competence. The analysis 
showed further that the converse can also happen: “all the members of the team 
increased their ownership of meaning in different degrees depending of the degree of 
participation” (p. 183). The analysis highlighted also the complexity of the proving 
process in groupwork and the key role of the teacher in suggesting the use of the 
diagram as a powerful means for “sharing and increasing the ownership of meaning 
of proof” (p. 183). The crucial role of the teacher in fostering students’ engagement 
with argumentation and proof has been discussed in many PME reports, some of 
which we review next.

Teachers’ ways of dealing with argumentation and proof in the classroom. Scholars 
agree that teachers should set up proper actions so as to arouse students’ need for 
proof and proving (e.g., Zaslavsky, Nickerson, Stylianides, Kidron, & Winicki-
Landman, 2012). Indeed, teachers face many challenges when dealing with proof 
in the classroom (e.g., Lin, Yang, Lo, Tsamir, Tirosh, & Stylianides, 2012): For 
example, teachers must establish suitable socio-mathematical norms, choose 
or design appropriate tasks and manage them in the proper way so as to foster 
understanding, and guide the students towards deductive thinking without turning 
proving into a “ritual” activity. Teachers must also be able to establish a proving 
culture in the classroom. One key point is the way proof is introduced in the 
classroom and what the role and purpose of such a treatment is: Furinghetti and 
Morselli (2011) distinguished between teaching proofs and teaching by proof, with 
the aim of proof in the second case being to promote understanding.
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Several PME reports addressed the role of the teacher in fostering students’ 
engagement with argumentation and proof. Most studies focused on teachers’ 
interactions with students. Huang (2005) compared Hong Kong and Shanghai 
lessons on the Pythagorean theorem using video recordings of lessons. The study 
showed that Hong Kong teachers tended to value visual verification, while Shanghai 
teachers were keen to present a deductive argument that met the standard of proof. 
In terms of interacting with students and involving students in the proving process, 
Shanghai teachers made more efforts to involve students into proof construction. 
These findings may be interpreted in terms of the influence of the Confucian and 
British cultural traditions on the educational settings of Shanghai and Hong Kong, 
respectively. This study highlighted the role of cultural issues in examinations of the 
teaching of proof, brought to the fore the crucial dialectics between visualization 
and deductive reasoning, and took into account not only the status of proof in the 
classroom, but also the way teachers promote students’ involvement with proof.

Several reports (e.g., Azmon, Hershkowitz, & Schwarz, 2011; Rigo, Rojano, & 
Pluvinage, 2008; Schwarz, Hershkowitz, & Azmon, 2006) addressed the role of the 
teacher when interacting with students, under the theoretical assumptions that social 
interaction must have a key role in mathematics instruction and that argumentation 
may foster concept development. Schwarz et al. (2006) identified recurrent patterns 
of interaction between two teachers and their students dealing with probability 
concepts in eighth grade. One of the teachers (whom they called teacher A) played a 
mediating role, while the other (teacher B) called for short and quick answers, with 
no provision for argumentation and in a sort of Socratic dialogue: “[W]ith teacher A, 
students feel obligated to support claims by explaining; they are used to crystallize 
ideas by reaching agreement and negotiating mathematical meanings; with teacher 
B, students are committed to tune to the teacher’s questions and to adopt her 
explanations as theirs” (p. 71). In a further study by the same group of researchers, 
Azmon et al. (2011) conducted a quantitative analysis to explore the relationship 
between teacher-students patterns of interaction in the same two classes and 
individual students’ subsequent argumentative processes. They found that students’ 
explanations in the two classes differed not in terms of correctness, but in terms of 
richness, with richer explanations offered in the class of teacher A. An interpretation 
of these findings is that in teacher A’s class there were socio-mathematical norms 
concerning students’ responsibility for elaboration on their explanations and 
engagement in knowledge construction. The study highlights the importance of the 
mediating role of the teacher and suggests the significance of educating teachers so 
that they can efficiently manage discussions in their classrooms.

The mediating role of the teacher was discussed also by Cusi and Malara (2009), 
who studied grade 9–10 students’ conscious use of algebraic language through 
teaching experiments on proof in elementary number theory. Drawing on the idea of 
cognitive apprenticeship (Collins, Brown, & Newman, 1989), the authors affirmed 
that the teachers should serve as a “role model,” thus fostering students’ development 
of those skills that are crucial for proving. The research was carried out in two steps: 
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in the first, the authors analyzed the teachers’ interventions when leading students 
to prove, highlighting positive and negative behaviours; in the second, the authors 
drew, from their previous analysis, a characterization of the theoretical construct 
of teacher as a role model. Some characteristics of the teacher as a role model are 
the following: (a) stimulating students’ attitude of research and acting as an integral 
part of the class in the research work; (b) acting as a practical/strategic guide and 
as a reflective guide in identifying effective practical/strategic models during 
class activities; (c) maintaining a balance between semantic and syntactic aspects 
of algebraic language; (d) acting as an “activator” of interpretative processes and 
anticipating thoughts; (e) acting both as an “activator” of reflective attitudes and as 
an “activator” of meta-cognitive actions. This is a useful characterization that may 
also have implications for teacher education.

Other studies addressed the role of guide played by the teacher. Ubuz, Dinçer and 
Bulbul (2012, 2013, 2014) presented a series of research reports on the structure of 
argumentation during teacher-students interactions. Their research was conducted 
in undergraduate mathematics courses and data analysis was performed using 
Toulmin’s model for argumentation. Their findings suggested that the teacher plays 
a crucial role, providing guide-backing (approving warrants, backing or intermediate 
conclusions given by students) and guide-redirecting (proposing examples or 
suggestions when the students get stuck or do not start the argumentation from a 
good point).

Finally, Rodríguez and Rigo (2015) studied the emergence of a culture of 
rationality in the classroom, adopting an ethnographic approach and employing 
Toulmin’s model as an interpretative lens. They defined the culture of rationality as 
being made up of standards of sustentation (those arguments that a given community 
employs to sustain mathematical facts and those recurring practices that are used in a 
given community) and trajectories of participation and distribution of responsibilities 
(the succession of interventions of the class actors in the argumentation process). 
The authors examined episodes from classroom teaching, highlighting the nature 
of arguments (always backed by mathematical considerations) and the recurrent 
trajectories of participation (dialectic exchanges between the teacher and the 
students). This study contributes to the description of a culture of rationality in 
the classroom and, in the authors’ own words, highlights the role of the teacher in 
promoting the development of such a culture: “how the teacher negotiates her own 
rationality practices—an objective that, by way of dialogical exchange, involves the 
students by means of constant questions, not only about what but also about why—
and how this enculturates her students in that rationality” (p. 93).

Interventions aimed at improving the teaching and learning of argumentation 
and proof. Setting up interventions (i.e., planning task sequences and devising 
learning strategies) for the teaching and learning of proof is a crucial theme of 
research in the teaching and learning of argumentation and proof, as evidenced by 
the recent ICMI Studies 19 “Proof and proving in mathematics education” and 22 
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“Task design in mathematics education.” Lin, Yang, Lee, Tabach and Stylianides 
(2012) discussed principles for task design for conjecturing, proving, and the 
transition between conjecture and proof. Regarding conjecturing, the authors 
highlighted the importance of providing students with an opportunity to engage in 
observation, construction, and reflection. Regarding proving, the authors pointed 
out the importance of promoting the expression of arguments using different modes 
of argument representation (verbal arguments, symbolic notations, etc.), asking 
students to create and share their own proofs and to evaluate proofs produced by the 
teacher. Furthermore, regarding the transition from conjecture to proof, the authors 
suggested that the teacher should establish “social norms that guide the acceptance 
or rejection of participants’ mathematical arguments” (p. 317).

Within this general strand of research, a number of PME reports dealt with 
interventions aimed at promoting students’ approach to argumentation and proof. 
These studies are important, as they bring to the fore a third main element of 
classroom-based research besides students and teachers, namely tasks. Also, 
these studies help illustrate the link between theoretical and applied research 
by examining how theoretical ideas can be turned into proposals for classroom 
implementation.

An example of the shift from theoretical considerations to classroom 
implementation is found in a collection of reports including a research forum 
(Boero, 2006; Boero, Douek, Morselli, & Pedemonte, 2010; Boero & Morselli, 
2009; Boero & Planas, 2014) concerning the possible adaptation of Habermas’ 
(1998) construct of rational behaviour to study different aspects of proving 
and other mathematical activities. The construct of rational behaviour deals 
with the complexity of discursive practices in the intersection of three kinds of 
rationality: epistemic (relating to the development of knowledge and questions 
about the validity of judgments), teleological (relating to strategic choices and 
corresponding actions to achieve a set goal), and communicative (relating to the 
reflective use of language oriented toward understanding). The work of Boero 
and his colleagues illustrates how an important theoretical construct from outside 
mathematics education can be conveniently interpreted and flexibly adapted to 
offer, in combination with other constructs, a new and promising perspective into 
the study of discursive practices related to proving. An interesting aspect is the 
fact that this construct, integrated with other theoretical tools such as Toulmin’s 
model for argumentation, may provide a comprehensive frame that allows one to 
(1) better analyze students’ proving processes and (2) plan and carry out innovative 
classroom interventions. Within the integrated model proposed by Boero et al. 
(2010), two levels of argumentation are outlined: the meta-level, concerning the 
awareness of the constraints related to the three components of rational behaviour 
in proving, and the level concerning the proof content. Thus, students’ enculturation 
into the world of theorems is a long-term process where the teacher must create 
occasions for meta-level argumentations aimed at promoting students’ awareness of 
the epistemic, teleological, and communicative requirements of proving.
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Another example of theoretical considerations that inform task design is offered 
in a series of research reports by Cheng and Lin (2006, 2007, 2008). The authors 
proposed and tested a learning strategy, called “reading and coloring,” aimed at 
helping students to take into account all of the necessary information to develop 
a proof. The strategy derives from theoretical considerations about the cognitive 
processes underlying multi-step proof production and is explicitly addressed to low 
achievers in proving. The authors emphasized that the strategy should be cultivated in 
line with the following two design principles: the strategy must provide an operative 
tool to students, and the strategy must be in continuity with the teacher’s regular 
teaching approach. The strategy, tested in geometry grade 9 courses, was found to be 
efficient in reducing memory workload when organizing several steps into a proof 
sequence. The strategy is not efficient when colours may cause visual disturbance 
and for those students who have difficulty in devising intermediate hypothetical 
conditions. For those students who do not perform hypothetical bridging thinking, 
Cheng and Lin (2008) proposed a different learning strategy called “step-by-step 
unrolled reasoning.”

Another strand of research focused on the development of tasks to foster students’ 
approach to argumentation and proof, with an emphasis on the process of proving 
and meta-level knowledge about proof (e.g., Heinze, Reiss, & Groß, 2006; Kuntze, 
2008; Miyazaki, Fujita, & Jones, 2014). Heinze et al. (2006) proposed worked-
out examples as a tool for helping students to learn argumentation and proof. 
Drawing on Boero’s (1999) description of the phases of the proving process and 
on Schoenfeld’s (1983) idea of teaching heuristic methods in problem solving, the 
authors set up a learning environment based on heuristic worked-out examples. The 
study was carried out in grade 8. The sample comprised of 243 German students, 
who were divided into an experimental group (150 students) and a control group (93 
students) according to their performance on a pre-test on reasoning and proving and 
a questionnaire about their interest towards mathematics. The control group received 
regular instruction on proving, while the experimental group followed a learning 
path that guided exploration and more reproductive phases. Heuristic worked-out 
examples were embedded into stories: students could follow the proving process 
of hypothetical characters, accompanied by meta-level comments and explanations. 
Moreover, students were involved in self-explanation activities by working with 
short texts including blanks. In the words of the authors, “heuristic worked-out 
examples provide scaffolding and might on the other hand encourage students to 
perform their own mathematical activities” (p. 279). The findings showed that the 
learning path based on heuristic worked-out examples is particularly efficient for 
low-achievers.

The work by Heinze et al. focused on proving as a process and on the idea of 
offering students some element of meta-level knowledge about proof. In the same 
vein, Kuntze (2008) set up a learning environment, called the “topic study method,” 
where students were asked to write texts on different aspects of the proving process 
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so as to foster their proof-related meta-knowledge. For example, students were 
asked to evaluate argumentations of hypothetical characters containing mistakes, 
or to comment on mathematicians’ quotations about proof. In the first part of the 
study, 232 grade 8 participants were split into two groups – one following the topic 
study method and the other following the heuristic examples method (Heinze et al., 
2006). The findings showed that the two methods are comparable in efficiency. 
In the second part of the study, 153 university students were assigned to different 
groups: 24 received no specific training on proof, 22 solved geometry tasks without 
proving, 18 worked with the topic study method, and 89 worked with heuristic 
worked-out examples. Students who worked with the topic study method scored 
significantly better than the first two control groups and comparably with those 
who followed the worked-out examples method. Kuntze (2008) found that the topic 
study method might improve students’ proof-related meta-knowledge. The study 
also opened up for reflection a possible correlation between meta-knowledge and 
proof competence.

Miyazaki et al. (2014) addressed the issue of setting up efficient introductory 
lessons to proof. In order to help students appreciate the structure of a proof, they 
proposed to combine two pedagogical ideas: flow-chart proofs (showing the “story 
line” of the proof) and open problems (see Figure 3). Proof construction was an open 
problem in the sense that students could “construct multiple solutions by deciding the 
assumptions and intermediate propositions necessary to deduce a given conclusion” 
(p. 228). The use of flow-chart proving was tested in grade 8, in a teaching experiment 
of nine lessons: during the first four lessons students constructed flow-chart proofs 
in open problem tasks; during two lessons they constructed a proof by reference 
to a flow chart in a closed problem task; during three lessons they refined proofs 
by placing them into flow-chart proof format in a closed problem situation. The 
findings showed that such an approach might foster an understanding of proof. More 
precisely, the flow chart proof helped students identify necessary conditions and 
combine them to reach conclusions.

Figure 3. An example of flow-chart proving in an “open problem” situation 
(derived from Miyazaki et al., 2014, p. 227)
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Reflection on the State of PME Research within Theme 2

The review of reports belonging to Theme 2 reveals some common trends and a 
consensus among scholars on some key issues concerning the teaching and learning 
of argumentation and proof. The first issue is the deep interconnection between 
argumentation and proof and the benefits of addressing argumentative activities. This 
is also linked to the growing consensus about the importance of social interaction 
when doing mathematics (e.g., Schwarz, Dreyfus, & Hershkowitz, 2009). Another 
key issue refers to the importance of providing students with opportunities to 
appreciate the process of proving, and not only proof as a final product. To this end, 
proving is conceptualized as a special case of problem solving (e.g., Weber, 2005), 
thus suggesting the importance of meta-knowledge (Boero et al., 2010; Kuntze, 
2008) and heuristics (Heinze et al., 2006). Further research should study the role of 
heuristics and meta-knowledge and ways of promoting them. It should also aim to 
address the link between long-term argumentative activities and consequent proving 
competencies.

Other issues emerging from our review in this section concern task design. The 
research reports we reviewed proposed and tested tasks or task sequences aimed at 
improving students’ approach to argumentation and proof, with a focus on proving 
as a process. These reports paid special attention to the theoretical considerations 
that guided or underpinned task design. The field would benefit from more research 
that would use theoretical ideas to design practical tools for use in the classroom and 
in the service or particular learning goals in different areas including argumentation 
and proof (Stylianides & Stylianides, 2013).

THEME 3: RESEARCH ON TEACHER KNOWLEDGE AND DEVELOPMENT

General Description of Theme 3

The PME reports falling in this theme addressed a range of issues pertaining to the 
nature of teachers’ knowledge or the development of teachers’ knowledge, with a 
relative balance in focus between preservice and inservice teachers and between the 
elementary and secondary school levels. The issues addressed could be categorized 
into the following sub-themes:

• Teachers’ knowledge of argumentation and proof (nature and development);
• Teachers’ knowledge of teaching argumentation and proof (nature and 

development); and
• Teachers’ beliefs related to argumentation and proof.

In what follows, we review separately reports belonging to each of these three 
sub-themes. The first sub-theme received by far the most attention in the PME 
proceedings we reviewed, and this is reflected in the space we have devoted to it. 
We conclude with a reflection on the state of PME research within Theme 3.
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Review of PME Reports Belonging to Theme 3

Teachers’ knowledge of argumentation and proof (nature and development). The 
reports in this sub-theme have predominantly examined the nature of preservice 
elementary teachers’ mathematical knowledge about different aspects of 
argumentation and proof (e.g., Zazkis & Zazkis, 2013), though there are also 
examples of studies with inservice teachers including secondary mathematics 
teachers (e.g., Gabel & Dreyfus, 2013; Tsamir, Tirosh, Dreyfus, Barkai, & Tabach, 
2008). Also, there are few studies that specifically aimed to develop teachers’ 
knowledge about argumentation and proof (e.g., Gholamazad, 2007; Reichersdorfer 
et al., 2012). Most of the studies were conducted in mathematics courses in teacher 
education or professional development programs, with data collection being directly 
linked to or forming part of research participants’ coursework, supplemented in few 
cases with individual interviews.

Overall, the contributions made by the reports in this sub-theme fall in one or 
more of the following three categories: (1) Empirical findings about the nature of 
teachers’ mathematical knowledge about argumentation and proof (What do teachers 
know?); (2) Empirical findings about the effectiveness of interventions designed to 
enhance teachers’ mathematical knowledge about argumentation and proof (How 
can teachers’ knowledge be developed?); and (3) Theoretical or methodological 
contributions to research on the nature or development of teachers’ mathematical 
knowledge about argumentation and proof. We present few examples of reports to 
illustrate these contributions.

The report of Zazkis and Zazkis (2013) is an example of a report that made 
a contribution within categories (1) and (3). The research was conducted in a 
mathematics course for preservice elementary teachers, with the data comprising the 
written responses of 24 preservice teachers to a task in an elective course assignment. 
The task presented a scenario in which two characters (presumably students) had 
opposing views about the truth or falsity of a mathematical generalization, which 
was actually false but this piece of information was not revealed to solvers. The 
research participants were asked, first, to imagine and write a dialogue in which the 
two characters attempted to convince each other of their viewpoint, and, second, 
to comment on their dialogues thus distinguishing between the argumentation 
attributed to the characters and the argumentation that participants themselves 
considered appropriate. Only one third of the participants indicated clearly that the 
generalization was false, with many considering the generalization as “not totally 
wrong” or “only partly correct.” Also, many participants created characters that 
were not convinced by a single counterexample and found certain counterexamples 
more convincing than others. While with these dialogues participants demonstrated 
good understanding of the different forms that students’ argumentation might 
take, participants did not clarify in their commentaries whether they themselves 
considered these forms of argumentation mathematically appropriate, which raises 
concern about their understanding of the power of a single counterexample to refute 
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a generalization. A similar concern derived from the findings of other PME reports 
with preservice elementary teachers (e.g., Zeybek & Galindo, 2014).

To examine preservice teachers’ mathematical knowledge, Zazkis and Zazkis 
(2013) used a task that was both mathematical, as it asked solvers to comment on 
their written dialogues thus demonstrating their own mathematical knowledge about 
argumentation and proof, and connected to teaching, as it put solvers in a situation 
of imagining and articulating different arguments students might offer or consider 
to be convincing for the particular generalization. This task is an exemplar of a 
special category of tasks that Stylianides and Stylianides (2006) called “teaching-
related mathematics tasks” and defined as follows: “These are mathematics tasks 
that are connected to teaching, and have a dual purpose: (1) to foster [or assess] 
teacher learning of mathematics that is important for teaching, and (2) to help 
teachers see how this mathematics relates to the work of teaching” (p. 205).5 In 
their report, whose contribution is mainly theoretical and thus illustrative of category 
(3), Stylianides and Stylianides (2006) argued that teaching-related mathematics 
tasks might serve as a means to promote or assess inservice or preservice teachers’ 
knowledge of mathematics, including argumentation and proof, by taking seriously 
the idea that these are adults who are, or are specifically preparing to become, 
teachers of mathematics. Interestingly, many reports that addressed aspects of 
teachers’ mathematical knowledge about argumentation and proof did not offer a 
compelling argument about why and how these aspects are, or could be, essential for 
mathematics teaching.

While the majority of reports that made a contribution within category (1) involved 
(preservice) elementary teachers and identified weaknesses in their mathematical 
knowledge about argumentation and proof, reports that examined (preservice or 
inservice) secondary mathematics teachers’ knowledge also identified weaknesses 
(e.g., Gabel & Dreyfus, 2013; Tsamir et al., 2008). For example, in a study with 50 
inservice secondary mathematics teachers Tsamir et al. (2008) found the following: 
Although all research participants correctly proved or refuted six given statements 
using different predicates and quantifiers and they also correctly recognized the 
validity of given symbolically-presented proofs for each of those statements, only 
about half of them identified as invalid a symbolically-presented argument that was 
not general.

Few reports made a contribution within category (2), which concerns empirical 
findings about the effectiveness of interventions to enhance teachers’ knowledge. 
Gholamazad (2007) engaged preservice elementary teachers in writing down 
dialogues between two imaginary characters: “EXPLORER, the one who tries to 
prove the proposition, and WHYer, the one who asks all the possible questions 
related to the process of proof” (p. 266). Analysis of the created dialogues showed 
that such an activity was efficient in leading preservice teachers to “explain why 
and how to do instead of just doing” (p. 271). The study of Reichersdorfer et al. 
(2012), which involved 119 preservice secondary mathematics teachers, also made 
a contribution within category (2). Using an experimental research design with 
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pre- and post-tests and random allocation of participants in four intervention groups, 
the researchers examined the effect on participants’ argumentation skills of two 
collaborative learning settings (one with and another without a collaboration script) 
and two instructional approaches (one based on heuristic worked examples and 
another based on authentic problems). Key findings included the following: there 
was no significant difference between the effects of the two collaborative settings; 
the instructional approach based on heuristic worked examples was more effective 
for the development of a certain kind of argumentation skills that the researchers 
characterized as “low level” (e.g., schematic argumentation skills based on a routine 
application of simple rules); the instructional approach based on authentic problems 
was more effective for the development of a different kind of argumentation skills 
that the researchers characterized as “high level” (e.g., evaluating and proving 
or refuting conjectures). This research cast some light on the complex network 
of factors that might determine the efficacy of an intervention aiming to enhance 
teachers’ (and possibly other individuals’) argumentation skills.

Teachers’ knowledge of teaching argumentation and proof (nature and 
development). The reports in this sub-theme collectively examined various aspects 
of preservice or inservice teachers’ knowledge of teaching argumentation and proof, 
with attention paid to both the nature and the development of that knowledge. Some 
aspects of knowledge of mathematics teaching that were addressed by the reports 
related to knowledge of students, which we define broadly as knowledge of how 
students learn or understand argumentation and proof (including knowledge of 
common student conceptions or misconceptions); other aspects related to knowledge 
of pedagogical practices, which we also define broadly as knowledge of how to 
support or assess students’ learning or understanding of argumentation and proof.6

Overall, the reports in this sub-theme make the point that, while teachers’ 
knowledge of teaching argumentation and proof has weaknesses (some of them 
having their roots in limitations of teachers’ mathematical knowledge about 
argumentation and proof), improvement of this knowledge is possible. Such an 
improvement can be purposefully engineered in the context of teacher education 
or professional development courses, or it can happen more naturalistically in the 
context of teachers’ own professional practice. We present few reports to exemplify 
aspects of this general point.

Monoyiou, Xistouri and Philippou (2006) examined the nature of inservice 
elementary teachers’ knowledge of pedagogical practices, with a focus on teachers’ 
assessment of different kinds of student arguments. Specifically, they conducted 
semi-structured interviews with 16 teachers who were asked to mark on a given 
scale different kinds of student arguments for three mathematical generalizations. A 
key finding was that most teachers gave high marks to empirical arguments, which 
were generally marked at least as highly as valid arguments.

The report of Barkai, Tabach, Tirosh, Tsamir, and Dreyfus (2009) is an example 
of a study on the development of teachers’ knowledge of students. The research was 
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conducted in a professional development course for inservice secondary mathematics 
teachers, which aimed to enhance participants’ knowledge of mathematics and 
mathematics teaching related to argumentation and proof. Barkai et al. compared 
participants’ responses before and after the course to the part of a questionnaire that 
asked them to suggest as many valid and invalid arguments they thought their students 
would offer for six given statements using different predicates and quantifiers. At the 
end of the course participants’ suggestions of valid and invalid student arguments 
had increased both in number (by about 50%) and variety. Specifically, participants 
could offer more valid arguments presented verbally, more invalid arguments based 
on numerical examples, and more invalid arguments with a repertoire of symbolic 
lapses. These findings imply that the participants improved their ability to anticipate 
valid and invalid student arguments expressed with different modes of representation.

Barkai et al. (2009) purposefully engineered the development of teachers’ 
knowledge in a professional development course, which may be viewed as an 
intervention of long duration. Cirillo (2011) studied in a more naturalistic way 
the development of a teacher’s knowledge of teaching argumentation and proof. 
Specifically, Cirillo documented the classroom experiences of a beginning 
secondary mathematics teacher, with strong mathematical background, across his 
first three years of teaching proof in a geometry class of 15–16-year-olds. With this 
longitudinal interpretive case study Cirillo cast some light on the challenges faced 
by beginning teachers in learning to teach proof (even when their mathematical 
knowledge is not a problem) and on the rather long journey that individual teachers 
might have to persevere through in order to independently develop their pedagogical 
practices.

Teachers’ beliefs related to argumentation and proof. The reports in this sub-theme 
have focused predominantly on secondary mathematics teachers (mostly inservice) 
and have examined teachers’ beliefs about the place or purposes of argumentation 
and proof (or related concepts) in school mathematics (e.g., Chua, Hoyles, & Loh, 
2010; Dickerson & Doerr, 2008; Iscimen, 2011), including teachers’ views about 
pedagogical practices related to proof (Dimmel & Herbst, 2014; Miyakawa & 
Herbst, 2007). We review the findings or broader methodological contributions of 
some reports in this sub-theme.

The reports of Chua et al. (2010) and Dickerson and Doerr (2008) both focused 
on the beliefs of inservice secondary mathematics teachers. The first was a 
questionnaire-based study with 29 teachers who took a 9-hour workshop on pattern 
generalization and were asked to write their thoughts about the purposes of written 
justification in pattern generalizations; the second was an interview-based study 
with 17 teachers concerning their beliefs about the purposes of proof in school 
mathematics. A key finding of Chua et al. (2010) was that, while almost 60% of 
the teachers in their study viewed the purpose of a justification to be explanation, 
only one teacher mentioned conviction, which is generally recognized to be a 
core purpose of proof. Chua et al. interpreted this finding with reference to the 
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following distinction between “justification” and “proof” and to the typical form 
that justification takes in students’ work with pattern generalizations:

A proof is a form of justification given to establish the validity of the rule, but 
not all justifications are proofs… [In pattern generalization] the explanations 
provided by learners for justifying how they derive the rule are far less formal 
than what is expected of in a formal proof. (p. 279)

Dickerson and Doerr’s (2008) study focused on proof, and so their findings are 
not directly comparable to those of Chual et al. A key finding of Dickerson and Doerr 
was that some teachers believed a major purpose of proof in school mathematics was 
to develop students’ thinking skills and that proofs that deviate from the normative 
form may undermine this purpose.

Iscimen (2011) examined the development of teachers’ beliefs about the place 
of proof in school mathematics during a geometry course for preservice middle 
school teachers. Although the course did not focus on proof per se, it did offer 
plenty of opportunities for participants to engage with proof. Iscimen’s findings 
were based on case studies of six participants who started the course with varying 
knowledge and beliefs about proof. Over the duration of the course participants 
started to appreciate the value of proof and its explanatory power for themselves 
as teachers. Yet, they questioned the value of proof for their students and their 
students’ ability to engage with proof. Similar disappointing findings concerning 
preservice secondary mathematics teachers’ beliefs about the place of proof in 
school mathematics were reported by Hallman-Thrasher and Connor (2014), though 
the participants in their study were teacher candidates with STEM backgrounds 
and thus not typical preservice secondary mathematics teachers who usually are 
mathematics majors.

Dimmel and Herbst (2014) examined inservice secondary mathematics teachers’ 
views about the appropriate level of detail in a proof being scrutinized during a 
lesson. The researchers used a novel methodological approach to elicit teachers’ 
views that involved use of comics-based, animated representations of lessons 
in an experimentally controlled way. Findings, derived from application of the 
methodological approach with a sample of 34 teachers, showed that teachers held 
different views about the appropriate level of detail in a proof depending on the 
kind of statements used in a proof. For example, teachers reacted unfavourably to 
lesson episodes that showed a teacher asking for explicit justification of statements 
that were tacitly warranted by a diagram, whereas they favoured asking for 
explicit justification of statements that were tacitly entailed by definitions. In an 
earlier study that used again representations of lessons to elicit teachers’ views 
about normative practices in instruction, Miyakawa and Herbst (2007) found that 
secondary mathematics teachers did not always consider that a proof was the best 
way to convince students about the truth of a theorem. Rather, teachers valued 
spending time on other kinds of arguments (including empirical) so as to raise 
students’ epistemic value of the theorem. These findings may help explain some of 
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the teacher pedagogical choices and assessments of student work that we reviewed 
earlier (e.g., Monoyiou et al., 2006): teachers may privilege the kinds of arguments 
that raise students’ epistemic value of the theorem rather than uphold the norms of 
the discipline. The findings offer further some insight into the possible sources of 
student misconceptions related to the power of a proof to establish conclusively the 
truth of a theorem (e.g., Fischbein & Kedem, 1982) and illustrate the tension that 
may exist between argumentation and proof (e.g., Duval, 1989).

Reflection on the State of PME Research within Theme 3

The focus of PME research on the nature of teachers’ mathematical knowledge about 
argumentation and proof, with an emphasis on limitations of that knowledge and 
with less attention being paid to ways of developing that knowledge, reflects the 
state of research on teachers’ mathematical knowledge more broadly (e.g., Ponte & 
Chapman, 2008). It also reflects a general trend in mathematics education research 
whereby a disproportionally larger number of studies have identified problems of 
instruction (limitations of teachers’ mathematical knowledge being a case in point) 
than those studies that have aimed to offer solutions to some of these problems 
(Stylianides & Stylianides, 2013). More research is thus needed on the development of 
teachers’ mathematical knowledge about argumentation and proof, with the designed 
interventions taking explicitly into account the idea that effective mathematics 
teaching requires teachers not only to have good mathematical knowledge but also 
to be able to use flexibly that knowledge as they support students’ learning (e.g., 
Ball, Lubienski, & Mewborn, 2001).

Of course good mathematical knowledge is in itself insufficient for effective 
teaching (e.g., Kilpatrick et al., 2001), and so a coordinated approach to improving 
the teaching of argumentation and proof would have to consider also other teacher-
related factors, notably, teachers’ knowledge of teaching argumentation and proof 
and teachers’ beliefs about the place or purposes of these concepts in school 
mathematics. Indeed, some PME reports reviewed earlier and reports published 
elsewhere have shown that beginning teachers with good mathematical knowledge 
still face serious challenges in trying to teach argumentation and proof (e.g., Cirillo, 
2011; Stylianides, Stylianides, & Shilling-Traina, 2013). They have shown further 
that teachers tend to have negative beliefs about the appropriateness of proof for their 
students or about their students’ ability to engage with proof (e.g., Iscimen, 2011; 
Knuth, 2002), as well as beliefs that may foster proof-related misconceptions among 
students (e.g., Miyakawa & Herbst, 2007). Teacher education and professional 
development programs have a key role to play in preparing or supporting teachers 
to teach argumentation and proof. Teachers themselves can also view their teaching 
practice as a context for ongoing inquiry and development (e.g., Ponte & Chapman, 
2008), provided of course that they believe in the importance of argumentation and 
proof for their students’ learning.
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CONCLUSION

What this review affords us is a chance to consider the collective approach that has 
been taken to address the persistent challenge of improving students’ experiences 
with argumentation and proof in school mathematics, and to reflect on how the 
intellectual resources of the field are being used to address this challenge. In the 
conclusion of the previous review of PME reports published during 1976–2005 
concerning mathematics education research on proof, Mariotti (2006) cautioned 
against investigations into the teaching and learning of proof being divorced from 
the reality of the classroom. It is significant, then, that one of the major themes 
that has emerged from our review of PME reports published during 2005–15 
features classroom-based research. However, while we (as a field) have gained more 
knowledge over the past decade about the nature of argumentation and proof in the 
mathematics classroom, the findings of PME and other relevant reports show that 
the typical school experience of students and the treatment of argumentation and 
proof in textbooks (e.g., Stylianides, 2014) continue to fall short of what is needed to 
achieve the intent of educational policy documents or curriculum frameworks (e.g., 
CCSSI, 2010; Department for Education, 2013).

The reports of research on students’ conceptions of argumentation and proof and 
of classroom-based research reviewed in Themes 1 and 2, respectively, focused 
more on post-elementary school students, while the reports of research on teachers’ 
knowledge and development reviewed in Theme 3 focused more on elementary 
teachers (notably preservice). What might this variation in focus between the reports 
belonging to the three themes imply for the status of proof in school mathematics 
or for researchers’ priorities/assumptions regarding that status? The scarcity of 
classroom-based studies at the elementary school level may be due, for example, 
to the fact that argumentation activity in most elementary classrooms is sparse. Yet, 
the same reason could be offered as a justification for the need of more classroom-
based research at the elementary school level that would aim to elevate the status 
of argumentation and proof in elementary classrooms (e.g., Yackel & Hanna, 2003; 
Stylianides, 2016).

While the classroom-based research reviewed in Theme 2 generally took a wider 
view of argumentation and proof, exploring what might be involved in helping 
students appreciate the process of proving and argumentative activity, the research 
on teachers’ knowledge and development reviewed in Theme 3 focused primarily on 
teachers’ understanding of proof as the final product of an argumentative activity. 
This is problematic because the teachers’ role in teaching argumentation and proof 
is multifaceted and not restricted only to judgements of whether different arguments 
meet the standard of proof (e.g., Herbst, 2006).

The research on students’ conceptions reviewed in Theme 1 and the research on 
teachers’ knowledge of argumentation and proof reviewed in Theme 3 both placed 
more emphasis on documenting difficulties that students or teachers have with 
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argumentation and proof rather than on developing effective ways to address some 
of these difficulties. This observation is in agreement with the state of the art in 
the field as a whole (Stylianides et al., 2016). Design-based research might offer a 
promising approach to respond to the need for developing effective ways to address 
students’ and teachers’ difficulties with argumentation and proof (Stylianides & 
Stylianides, 2013). Since at the heart of design-based research is to iteratively 
design and investigate classroom-based interventions (e.g., Cobb, Confrey, diSessa, 
Lehrer, & Schauble, 2003), the methodology provides an opportunity to engineer 
situations that address questions about students’ and teachers’ conceptions of 
argumentation and proof in the “messiness” of real classrooms at the school and 
teacher education levels, respectively.

Finally, we consider what could be new themes in research about argumentation 
and proof in school mathematics given the premium put on argumentation and proof 
in different curriculum frameworks. One theme might focus on ensuring students’ 
equitable access to learning opportunities related to argumentation and proof. Given 
the complex social dynamics at play inside mathematics classrooms (e.g., Chazan, 
2000) and the difficulties teachers face in managing classroom dialogue which is at 
the core of meaningful learning in mathematics (e.g., Stein, Engle, Smith, & Hughes, 
2008), it is important that the field investigates ways of empowering teachers to 
support all of their students to meaningfully participate in argumentation and proof 
in the mathematics classroom. Another theme might concern productive ways for 
assessing students’ capacities to not only engage in producing proof, but also to 
engage in processes that are “on the road” to proof. Research such as the studies 
reviewed in Theme 1 on students’ use of examples or studies published elsewhere 
(e.g., Zaslavsky, 2014; Zazkis et al., 2008) might support further work into how 
teachers can identify students’ approaches to example use and then act upon their 
assessments. In addition, as educational policy documents have featured specific 
standards regarding knowledge for argumentation and proof (c.f., CCSSI, 2010), 
the research community may need to offer a response about meaningful ways to 
practically assess students’ knowledge and understanding of these mathematical 
practices.

NOTES

1 Our decision to restrict this review to reports longer than 1 page implies that we did not consider any 
short orals or poster presentations.

2 The search function was not available in the 2010 Proceedings and we were thus unable to search for 
our keywords in the abstracts of that year. Instead, we looked for keywords in the titles of the 2010 
Proceedings.

3 We were unable to apply Approach 2 for the 2008, 2014, and 2015 Proceedings (which did not include 
the specific index) and for the 2010 Proceedings (which did not include page numbers or volumes 
where the relevant reports could be located).

4 Of course, this is not to say that different classes that are taught by the same teacher who uses the same 
textbook will necessarily receive the same learning experiences (see, e.g., Even, 2008).
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5 The notion of “teaching-related mathematics tasks” was further developed and elaborated in 
Stylianides and Stylianides (2014) under the slightly modified term “pedagogy-related mathematics 
tasks.”

6 Our definitions of these two kinds of teachers’ knowledge of mathematics teaching draw on the 
respective definitions of similar kinds of teacher knowledge discussed in Kilpatrick, Swafford, and 
Findell (2001, pp. 370–372).
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KEITH WEBER AND ROZA LEIKIN

10. RECENT ADVANCES IN RESEARCH ON 
PROBLEM SOLVING AND PROBLEM POSING

INTRODUCTION

The goal of this chapter is to describe recent advances in mathematical problem 
solving, as they were represented in research reports from the annual international 
conferences for the Psychology of Mathematics Education. Delimiting the scope 
of this chapter was a challenge. If we believe Halmos (1980), that the heart of 
mathematics is problem solving, and deVault (1981), that “doing mathematics 
is problem solving” (p. 40), then mathematics education could sensibly consist 
entirely of the psychological and didactical study of problem solving. Indeed, 
if we interpreted every investigation that involved individuals engaging in non-
routine mathematical tasks or exploring their perceptions of such tasks as an 
investigation in mathematical problem solving, then the large majority of PME 
research reports would be classified this way. In this book chapter, we limited our 
search to PME research reports that focused on the processes of solving or posing 
problems, including what might be learned from engaging in these activities and 
how such activities could be implemented in the classroom. Even with this more 
restrictive search, we found over 200 research reports in the last decade satisfying 
this criterion. Consequently, we do not aim to provide a comprehensive review of 
all the articles written on problem solving. Rather, we instead discuss what we as 
a field have learned in several areas that we, the authors, subjectively judged to 
be important. Specifically, we chose to organize our chapter around the following 
themes: (i) problem solving and problem posing as a research tool; (ii) studies on 
problem solving including problem solving processes and strategies and problem 
solving competences and expertise in problem solving; (iii) the activity of problem 
posing; and (iv) teaching problem solving and posing.

The current PME Handbook builds on the previous Handbook of Research on 
the Psychology of Mathematics Education (Gutiérrez & Boero, 2006) that surveyed 
the first thirty years of research presented at the PME conferences, ending in 2006. 
The aim of the current volume is to describe advances in mathematics education 
research that have occurred since the previous volume a decade ago. However, the 
previous volume did not contain a chapter on problem solving. As it would clearly 
be infeasible to extend our literature review to PME’s inception (1976), we chose 
to reference several volumes that represented the state of the field around 2004, 
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including Cai, Mamona-Downs and Weber (2005), and begin our review of PME 
Proceedings in 2004.

State of the Field Around 2004

In this chapter, we distinguish between four broad traditions of problem solving 
based research: Problem solving as a research tool; problem solving as an object of 
study; problem posing as an object of study; and problem solving as a didactical tool. 
Here we clarify what we mean by those terms and discuss the state of the field within 
these research traditions circa 2004.

By problem solving as a research tool, we are referring to studies in which 
students or teachers are faced with a problem solving task but the researcher is not 
interested in their problem solving behavior on the task per se. Rather, the researcher 
uses participants’ work on the problem solving task as an opportunity to investigate 
some other construct, such as their understanding of the concepts involved in the 
task or their beliefs about mathematics as a discipline. We do not give extended 
focus on this topic in this chapter, as significant studies in this regard will most likely 
be covered in other chapters of this volume, although we do discuss studies that we 
found to be particularly noteworthy.

By problem solving as an object of study, we are referring to research on what 
occurs in the processes of problem solving (as opposed to whether students learn 
content from problem solving or researchers can learn about students’ understanding 
by assigning them a problem solving task). In particular, how do students solve 
mathematical problems and how can these skills be taught? Schoenfeld (1992) 
provided an exemplary literature review clarifying the research knowledge base 
of mathematics education in the early 1990s, including a discussion of what are 
widely accepted as the four components of mathematical problem solving: resources 
which refer to the mathematical contents and understandings that the problem 
solver has access to, heuristics which refer to techniques or rules of thumb that 
will not necessarily lead to a solution but are likely to provide the problem solver 
with an insight that is useful for solving a problem, metacognition which refers to 
the problem solver’s propensity to understand the problem and form a plan before 
engaging in computations and monitoring his or her progress as they work on 
the problem, and beliefs which refer to what the problem solver thinks about the 
nature of mathematics and how this influences his or her mathematical reasoning. 
We refer the reader to Schoenfeld (1992) for a more comprehensive review. Since 
that time, other researchers have elaborated Schoenfeld’s problem solving model 
by considering issues such as individuals’ affective states, orientations, and values, 
as well as how the components of Schoenfeld’s model interact during the problem 
solving process. Perhaps the most notable improvement is the more refined problem 
solving model presented by Carlson and Bloom (2005) and Goldin’s focus on how 
the role of emotions and affect guide the problem solving process (deBellis & 
Goldin, 2006; Goldin, 2000).



RECENT ADVANCES IN RESEARCH ON PROBLEM SOLVING AND PROBLEM POSING

355

By problem posing as an object of study, we are acknowledging that problem 
posing is recognized as an important activity in its own right. Problem posing 
not only has a dialectic relationship with problem solving (i.e., in solving a large 
problem, we often pose and solve smaller ones, and in posing a problem, we often 
consider problems that would be challenging to solve), but problem posing is 
sometimes used as an activity to advance students’ understanding and reasoning 
in its own right.

By problem solving as a didactical tool, we are referring to research where 
problem solving is not the goal of instruction, but rather a means to obtain some 
other end, such as conceptual understanding. Schroeder and Lester (1989) originally 
defined this as teaching via problem solving, referring to this as an important but 
(at the time) overlooked area of problem solving research. Since that publication, 
many instructional interventions use problem solving as a tool to elicit students’ 
understandings, introduce conflict, motivate new concepts, or invite students to 
invent or define new concepts. (See, for instance, Rasmussen and Marrongelle’s 
(2006) discussion of how problems can advance these classroom goals). Indeed, 
the use of problem solving to teach new mathematics is a central part of many 
contemporary instructional methodologies and theories, including the constructivist 
teaching experiment (Simon, 1995) and Realistic Mathematics Education (RME) 
(Gravemeijer, 1994).

Critical Research Shifts in Problem Solving Research

When Schoenfeld (1992) published his review of problem solving research 
in the early 1990s, much of problem solving research involved observing how 
students applied (or failed to apply) domain-general heuristics to solve non-routine 
problems in domains such as algebra, geometry, and number theory. In 2005, 
Cai, Mamona-Downs and Weber (2005) published an edited volume on current 
research in problem solving that illustrated shifts in the topics and methods of 
mathematical problem solving research. Among the trends noted in this volume 
were calls to consider practical issues the teacher must face when integrating 
problems in mathematics classrooms (Leikin & Kawass, 2005; Silver et al., 2005), 
how problem solving and problem posing interact (Cifarelli & Cai, 2005), problem 
solving in domain specific areas such as proving (Weber, 2005), and expanding 
the scope of problem solving tasks to domains such as exceptionally challenging 
problems (Grugnetti & Jaquet, 2005).

In this subsection, we discuss how problem solving has continued to evolve since 
Cai, Mamona-Downs and Weber’s (2005) edited volume, both in terms of what is 
being investigated and in the methodologies used to investigate it. Here we identify 
several trends and cite representative PME research reports that are emblematic of 
these changes. For the sake of brevity, we do not discuss these articles in any depth. 
Rather our aim here is to give the reader a sense of the broader types of research 
related to problem solving that are being conducted. We cite the related articles to 
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provide the reader with direction in case the reader is interested in studying these 
trends further.

There are more recent studies on the practical difficulties that the teacher faces 
when implementing problem solving activities in his or her classroom. Researchers 
have continued to venture out of laboratory settings and toward examining the 
complexity of implementing problem solving in classroom practice. Some 
researchers are concerned with the mathematical and pedagogical knowledge 
that teachers need to implement problems effectively in their classrooms (e.g., 
Barabash, Guberman, & Mandler, 2014; Levav-Waynberg & Leikin, 2006), with 
Chapman (2012) and Foster, Wake and Swan (2014) proposing practice-based 
models of the mathematical knowledge that is necessary for teaching problem 
solving effectively. Other researchers have analyzed the complexity and practical 
difficulties involved in orchestrating problem solving lessons in a manner that 
is consistent with reform-oriented documents (dePaepe, De Corte, & Verschaffel, 
2006; Fritzlar, 2004). Zodik and Zaslavsky (2004) have analyzed effective 
dispositions and actions that a tutor modeled to promote effective problem solving 
with his students.

Some research on problem solving tends to focus on domain-specific, rather than 
domain-general, problem solving processes. Some researchers on problem solving 
have focused on identifying strategies and disposition for solving certain types of 
problems, rather than identifying heuristics that might be useful across a wide range 
of mathematical content (e.g., look at simple cases). Domains that were investigated 
included measurement estimation (Hurang, 2004), geometric area (Mamona-
Downs, 2006), algebraic functions (Mousolides & Gagatsis, 2004), problem solving 
with dynamic geometry software (Haug, 2010; Leikin, 2004), proof reading (Tay 
et al., 2014), proof writing (Torregrosa & Quesada, 2008; Weber, 2004), and 
unconventional Fermi problems (Albarracín & Gorgorió, 2012).

There is a wider range of methodologies to investigate problem solving.Most 
reports published in the volume of Cai, Mamona-Downs and Weber (2005) 
investigated students’ problem solving using verbal protocol analysis or video-
recording students’ or teachers’ work as they solved problems in situ. In a desire to 
increase the number of participants in their research, some researchers have attempted 
to infer students’ problem solving processes from the written records of their work 
(e.g., Assmus, Forster, & Fritzlar, 2014; Mousolides & Gagatsis, 2004), with the 
researchers sometimes using modified worksheets to make students’ reasoning and 
metacognition more transparent (Leppaho, 2008; Quek, Toh, Leong, & Ho, 2014). 
Others have adopted tools from semiotics (Arzarello, 2006) or cognitive science, 
such as brain imaging (Leikin, Waisman, Shaul, & Leikin, 2012, 2014) and eye-
tracking (Obersteiner et al., 2014, Andrà, Arzarello, Ferrara, Holmqvist, Lindström, 
Robutti, & Sabena, 2011), to investigate problem solving processes.

The goals of problem solving have become more expansive. In Schoenfeld (1992) 
and Cai, Mamona-Downs and Weber (2005), the didactical goals associated with 
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problem solving generally consisted of improving students’ abilities to solve 
problems or to learn some mathematical content. However, in the research reports 
that we have reviewed, we found problem solving also used for fostering creativity 
(Amit & Gelat, 2012; Vale et al., 2012), valuing and validating graphical reasoning 
(Gonzales-Martin & Camacho, 2004), promoting equity and diversity (Powell, 
2004), increasing students’ agency (Radu, Tozzi, & Weber, 2006), eliciting students’ 
social values (Shimada & Baba, 2012), and improving their values and identity 
(Park, 2014).

Technology has influenced the problems that we pose and the strategies that 
students use to understand these problems. We discuss this trend in more detail 
later in this section. This wide array of research aims and methods will be present 
throughout our chapter. In the concluding section, we discuss the strengths and 
weaknesses of the heterogeneous approaches to researching problems solving in 
mathematics education.

Characterizing Mathematical Problems and Problem Solving

Starting with Polya’s (1945) How to solve it, many researchers focused on questions 
such as, “what is a mathematical problem?”, “how can problems be characterized?”, 
and “how can problems be classified?”. To Polya (1945), solving a problem 
was associated with overcoming some difficulties to deduce something that was 
previously unknown to the problem solver. Schoenfeld (1985) provided a similar 
description, defining a problem as a task in which the solver did not possess an 
algorithm to complete. Hošpesová and Novotná (2009) noted that there was not a 
shared definition as to what constitutes a word problem. They followed Verschaffel, 
Greer and De Corte (2000) in treating word problems as “verbal descriptions of 
problem situations wherein one or more questions are raised the answer to which 
can be obtained by the application of mathematical operations to numerical data 
available in the problem statement”. Hence to Hošpesová and Novotná, a word 
problem could be solved by a sequence of correctly ordered operations. On the 
contrary Son (2005) proposed a different definition of problem, identifying a 
problem as a task or problem that does not have accompanying solutions or answers 
presented. Hence, Son’s description is broader than Hošpesová and Novotná’s as it 
might include traditional exercises.

More recently, mathematics educators have explored the link between problem 
solving and mathematical modeling (e.g., English & Watters, 2005; Mousolides & 
English, 2008; Peled & Bassan-Cincinatus, 2005) and problem solving and problem 
posing (Cifarelli & Cai, 2006), often including modeling eliciting activities and 
problem posing as problem solving tasks. This expansion of problem solving 
extends some previous descriptions of problem solving. With problem posing, one 
is not deducing what is unknown but is instead deciding on what might be valuable 
or interesting to deduce.
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With mathematical modeling, one is not merely applying operations but often 
making assumptions that specify what operations make sense and what the quantities 
in the operations should be (e.g., Schukajlow & Krug, 2012). According to English 
and Watters (2005), “a modeling problem is a realistically complex situation where 
students engage in mathematical thinking (beyond that of the traditional school 
problem) and generate conceptual tools needed for some purpose. Modeling 
problems foster and reveal children’s mathematical thinking thus enabling teachers 
to capitalize on the insights gained into their children’s mathematical developments” 
(ibid, v. 2, p. 302). Other researchers have considered solving non-standard 
‘problematic’ problems (Dewolf, Van Dooren, Hermens, & Verschaffel, 2013), 
addressing real-life situations (Bonotto, 2009) that require the solver to incorporate 
real world knowledge not explicitly stated in the problem task.

In our review of the research reports of PME, we found most studies treated the 
constructs of problem and problem solving as commonly accepted, often implicitly 
adopting the similar conceptualizations of Polya (1945), Schoenfeld (1985) and 
Carlson and Bloom (2005). Given the expansion of the constructs of problem and 
problem solving in recent mathematics education research, specifying what one 
means by problem and problem solving would add clarity to the field.

Changes in Problems Design and Capacity Associated with Uses of 
Technology in School Mathematics

In recent years, there has been a rapid advance in the quality of educational 
technology in mathematics and the access that students have to this technology. We 
first discuss how technology has changed the types of problems that we can give 
to students and then describe how the presence of technology changes the way that 
students solve problems.

Han and Chang (2007) explored problem solving with a computer algebra system 
(CAS) with eight secondary students from Korea. These students were observed as 
they completed three types of problem solving tasks: modeling in algebra, finding 
patterns in integration, and optimizing the surface area or volume of a particular solid. 
Using CAS advanced the level of complexity of the tasks that students were able 
to solve. Moreover, the students showed great interest in solving more complicated 
modeling problems with the CAS. Kieran and Guzman (2009) and Guzmán, Kieran 
and Martínez (2011) also explored how a CAS can expand the types of problems 
that students can address. They presented one teacher with a task where he used 
CAS to simplify algebraic expressions of the form xn – 1 for many natural numbers 
n then used these results to form conjectures and write a proof. By engaging in this 
activity, the teacher came to appreciate how CAS can enable more sophisticated 
activities for students, including those that involve conjecturing and proving.

Leikin (2004) developed a framework on the quality of a mathematical problem 
based on several seminal works in problem solving (Polya, 1981; Schoenfeld, 
1985; Charles & Lester, 1982) using four conditions (1) having motivation to 
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find a solution; (2) having no readily available procedures for finding a solution; 
(3) making an attempt and persists to reach a solution; (4) the task or a situation 
has several solving approaches. Leikin stressed that these criteria are relative and 
subjective; for instance, a task that is cognitively demanding for one person may 
be trivial for another. She argued that use of a dynamic geometry environment had 
the potential to raise the quality of mathematical tasks with all four criteria. Lavy 
and Shriki (2007) explored problem posing supported by a dynamic geometry 
environment as a means for developing mathematical knowledge of prospective 
teachers. They found that these problem posing tasks in this environment led 
prospective teachers to examine definitions and attributes of objects, form 
connections between objects, and evaluate the validity of their arguments. 
Nonetheless, the prospective teachers were reluctant to pose difficult problems in 
which they could not find a conventional proof for their solution. This illustrates 
how a dynamic geometry environment expands the problems that prospective 
teachers will pose while the demands of formal proof may narrow them.

With respect to how technology may influence the problem solving process, 
Naftaliev and Yerushalmy (2009) explored how the use of printed diagrams or 
interactive diagrams create different contexts for mathematics learning. The 
interactive diagrams made it possible to address a given graph as a sketch that reveals 
the “big picture”. The process of concept construction was based on the students’ 
decision to change the representation of the data, build a focused collection of data, 
expand existing or build new representations. By exploring two students’ solution 
processes to an algebra problem, Lew and So (2008) documented how graphing 
technology influenced students’ problem solving processes. In particular, the 
technology allowed the students to evaluate the effects of introducing assumptions, 
explore the graphical consequences of changing assumptions, and test their 
conjectures using graphs. The authors argued that such exploration would simply be 
infeasible using only paper and pencil.

Jacinto and Carreira (2013) conducted a study in which they investigated problem 
solving activity within the context of a web-based beyond-school competition. By 
exploring four different solutions from students who employed GeoGebra, a dynamic 
geometry software, the authors found different levels of mastery of the mathematical 
and technological content. This illustrates that the benefits that technology can 
bestow on the problem solving process depends on the background of the individual 
student.

PROBLEM SOLVING AND PROBLEM POSING AS A RESEARCH TOOL

As noted in the introduction to this chapter, problem solving is commonly used 
as a research tool for exploring different aspects of mathematical reasoning, 
learning and teaching. Here are some representative examples. Some researchers 
have used problem solving tasks to infer students’ understanding of mathematical 
concepts. Barmby, Harries, Higgins and Suggate (2007) illustrated how mathematical 



K. WEBER & R. LEIKIN

360

understanding can be assessed by seeing what connections students form between 
symbolic procedures and informal problem solving situations. Barmby et al. (2007) 
equated mathematical understanding with participants’ ability to cope successfully 
with ‘open’ problem solving situations where what is required is not obvious. 
Deliyianni, Elia, Panaoura and Gagatsis (2009) used Confirmatory Factor Analyses 
on a large sample of 1701 primary and secondary school students of students 
working on problems concerning decimal numbers to infer their understanding of 
decimals. They performed a similar analysis to infer students’ understandings of 
fractions.

Similarly, some researchers have used problem solving tasks to infer students’ 
general mathematical abilities. Ryu, Chong and Song (2007) analyzed mathematically 
gifted students’ spatial visualization ability with regard to three-dimensional 
figures; the research team asked these students to mentally rotate these figures 
given their two dimensional representations and perform other tasks that required 
mental visualization. Park, Ko, Lee and Lee (2011) analyzed the analogies that 
mathematically gifted students would create in statistics by using problem posing 
as a research tool. The gifted students were asked to construct similar problems in 
statistics.

Other researchers have used problem solving to uncover conceptual gaps in 
students’ understanding. In a study by Gervasoni et al. (2011), the researchers utilized 
problem solving to identify and explain difficulties in mathematics of children 
who were judged as having a strong understanding of two digit numbers based on 
traditional measures. By giving these students a specially designed problem solving 
task, Gervasoni et al. demonstrated that these students could not identify 50 on a 
number line. Still other researchers have used the problems that teachers pose in 
their classrooms as a means to infer their goals of instruction. Hiraoka and Yoshida-
Miyauchi (2007) proposed a framework for creating or analyzing Japanese lessons 
from the viewpoint of mathematical activities, illustrating their framework by 
analyzing a specific lesson on fractions. These authors illustrated that although few 
problems were posed in the lesson that they explored, the purpose of these problems 
was to advance students’ understanding of the mathematical content.

Finally, some researchers have used problem solving for the purposes of cross-
cultural comparisons. Yuan and Presmeg (2010) presented high achieving secondary 
students from China and the United States with problem posing tasks as a lens for 
investigating different levels of creativity between these two groups of students. Yuan 
and Presmeg found that while United States students were better able to articulate 
their problems, the Chinese students were less likely to produce trivial problems 
and more likely to produce problems requiring a creative solution. In a study by 
Smith, Gerretson, Olkun, Akkurt and Dogbey (2009), the researchers examined 
whether combining causal (how events cause changes in the situation described in 
the problem) and outcome related elements (that can be computed based on the 
story described in the problem) with mathematical content improves mathematical 
word problem solving performance. The researchers found significant differences 
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among the formats (schema and situation models), as well as between genders and 
countries.

Among the studies presented in the PME volumes the authors used different 
criteria for the selection of problems used in their studies. The criteria were clearly 
related to the purposes of having students engage in the problem, the mathematical 
content of the activity, and the types of participants of the research. Among these 
criteria, the authors used the complexity of the problem as associated with problem 
familiarity or similarity to another problem and the complexity of the problem 
solution (Jiang & Cai, 2015).

In summary, the majority of the PME research reports that we reviewed involved 
individuals solving or posing problems in a variety of ways. However, in many of 
these cases, the problem solving and problem posing tasks were used as a research 
tool for addressing issues aside from problem solving. These issues include the 
types of students reasoning in different branches of mathematics, differences in 
mathematical reasoning of a particular type (e.g., critical or creative reasoning, 
analogical or inductive reasoning, generalization and visualization) of different 
groups of participants, exploring mathematical difficulties associated with concrete 
mathematical concepts, properties and procedures. This makes sense. If a researcher 
wants to analyze a student’s understanding or reasoning, then the researcher 
will probably avoid giving that student a task that he or she could use a standard 
algorithm to complete, as the execution of an algorithm reveals little about that 
student’s cognition. It is usually more productive to give students a challenging non-
routine task.

STUDIES ON PROBLEM SOLVING

In this section, we discuss research on strategies and approaches for solving 
problems and then competencies and expertise associated with solving mathematical 
problems.

Strategies and Approaches for Solving Problems

A number of researchers have tried to advance Schoenfeld’s (1985, 1992) problem 
solving model by identifying specific strategies that students use to solve problems. 
For instance, some researchers have illustrated how students used their experiences 
solving previous problems to inform their work on future problems. Uptegrove 
and Maher (2004) described how five students first asked students to consider the 
number of 4-tall towers made with two colors as well as the number of such towers 
that have exactly one color being used r times. Later, these students were asked to 
count the number of pizzas made with r toppings when there were four toppings to 
choose from. In the latter case, the students identified similarities between the pizza 
task, the tower task, and Pascal’s triangle, and used these similarities to develop 
a more efficient way to solve the problem. Powell (2006) described how students 
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formed similar relationships between the Pizza and the Towers problem with a 
structurally isomorphic Taxicab problem (i.e., how many ways are there on a city 
block grid map to get from one specific point to another specific point). As a point 
of contrast, Karp (2006) studied the problem solving of 117 secondary students who 
were taught mathematics in a similar manner. Karp found that when these students 
solved structurally similar absolute value problems, for the most part they saw no 
relationship between the two problems. Uptegrove and Maher’s (2004) and Powell’s 
(2006) research occurred in a special longitudinal study in which students could 
revisit the same task and were given unlimited time to work on individual tasks, 
suggesting that experiences such as those may be useful for students recognizing 
similarities between structurally isomorphic tasks. Based on observing 89 primary 
school students solving a pair of isomorphic tasks, Assmus, Forster and Fritzlar 
(2014) developed a theoretical model of how students can recognize analogous tasks 
consistent with the account above. In particular, in this model, the role of reflecting 
on one’s solution to a problem (often led by prompting from an interviewer) was 
integral in students’ construction of analogies- the extended time and revisiting in 
Uptegrove and Maher’s (2004) and Powell’s (2006) research environments may 
have encouraged the reflection that Assmus, Forster and Fritzlar considered to be 
important.

A second area of investigation is the role that social processes play in solving 
problems. In his analysis of a group of secondary students successfully solving a 
problem, Powell (2006) documented that no single student’s contributions would 
be sufficient to obtain a solution leading him to argue that the social cognition 
generated in the group was needed to solve the problem. Tatsis and Koleza (2004) 
examined the critical role that social processes played in students developing an 
understanding of the elements of a problem solving task and documented the roles 
that different students played in negotiating that meaning. In studying 40 fifth grade 
students solving a problem in pairs, Lange (2012) focused on cooperation acts 
that he found to be specific to problem solving, such as presenting an incomplete 
solution to one’s work for another student to build on as well as evaluating and 
finding errors in a partner’s work. What these studies have in common is that 
the processes that students used working collaboratively transcended individuals’ 
efforts in problem solving and accounted for the benefits of collaboration on 
problem solving tasks.

A third area of investigation has been documenting the complexity of trying to 
model the problem solving process. Czocher (2014) observed that most frameworks 
of how students solve model-eliciting problems were cyclic and iterative. However, 
in her analysis of four university engineering students completing modeling-eliciting 
problems, she found that students’ problem solving processes were neither cyclic 
nor iterative. Consequently, Czocher called for the development of a more fine-
grained model that can account for the often messy behavior of students completing 
modeling tasks. Other researchers have documented how students’ self-regulation 
(Marcou & Lerman, 2006) and confidence (de Hoyos, Gray, & Simpson, 2004) play 
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a critical role in their decision-making processes, even though such factors are not 
currently included in some existing models of students’ problem solving.

A fourth area of investigation concerns identifying domain specific reasoning 
strategies. Na, Han, Lee and Song (2007) explored mathematically gifted 6th grade 
(age 12) students’ problem solving approaches on conditional probability, a topic 
which they had not yet studied. The questions were of the form, “find the probability 
of an event B given that A happened”. Na and colleagues classified students’ 
solutions strategies into three approaches: (i) finding P(B) and ignoring whether 
A occurred, (ii) finding the probability of A and B both occurring, or (iii) finding 
P(B|A) and attempting to provide a valid reason for this. The researchers found that 
the way the question was framed influenced the strategies that were used. Pehkonen 
and Kaasila (2007) focused on the understanding and reasoning in a non-standard 
division task. The following non-standard division problem was used: “We know, 
that 498/6 = 83. How could you conclude from this relationship (without using long 
division algorithm) what is 491/6?” When analyzing students’ problem solving 
strategies, the researchers concluded that division seems not to be fully understood: 
only one fifth of participants produced a completely correct solution and the 
central reason for mistakes was insufficient reasoning strategies. In a similar study, 
Panoutsos, Karantzis and Markopoulos (2009) analyzed 16 sixth graders strategies 
for solving real life problems involving ratio. Students’ reasoning appeared not to 
follow a predetermined path, but varied their approaches depending on the structure 
and qualitative features of the task. In some cases, students reverted to incorrect 
reasoning strategies such as addition. These results complement the findings of an 
earlier study by Van Doreen, De Bock, Vleugas and Verschaffel (2008). In their 
study, these researchers demonstrated that students would be less likely to make 
naïve mistakes about operator choice if they were asked to classify the problem 
prior to solving it. This research team had other investigations into how wording and 
context could alter problem solving performance. Van Dooren, De Bock, Janssens 
and Verschaffel (2005) showed that students’ problem solving behavior strongly 
improves when the non-linear problem is embedded in a meaningful, authentic 
performance task whereas experience does not improve students’ performance 
when the non-linear problem is offered as a word problem. Dewolf, Van Dooren, 
Hermens and Verschaffel (2013) asked whether students attend to and profit from 
representational illustrations of non-standard mathematical word problems. These 
non-standard problems were originally presented in Verschaffel et al.’s (1994) study 
to upper primary school children. The current study analyzed how illustrations that 
represent the problematic situation helped higher education students to visualize the 
problem situation and solve it more realistically. The researchers found no effect of 
the illustrations on the realistic nature of their solutions.

Rott (2011) explored the problem solving processes of fifth graders solving a 
particular task called the Beverage Coasters task. The Beverage Coasters task was 
difficult for these students as it involved covering area, a concept that students 
had not yet discussed in their curriculum. An analysis of the problem solving 
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processes of 32 students working in pairs on a geometry task was performed using 
Schoenfeld’s (1985) model for the analysis of problem solving strategies. Only 
one of those students showed behavior that was coded as planning and none of the 
students attempted to verify his or her solution. Only two pairs had full access and 
found correct solutions. Rott found a significant correlation between the students’ 
problem solving behavior and their success. Papandreou (2009) investigated 
preschoolers’ semiotic activity during their solving arithmetic problem concerning 
the addition of seven quantities. Based on the analysis of 117 preschoolers’ drawings 
in combination with their verbal descriptions, Papandreou produced 16 “notation 
types” distributed in four main categories: letters or words, pictograms, arbitrary 
non-conventional symbols and numerals. The researcher recommended integration 
of drawing in preschoolers’ mathematics education. Fesakis and Kafoussi (2009) 
examined whether and how computer microworlds and manipulatives could 
influence kindergarten children’s capabilities in combinatorial problems. They found 
that children could solve combinatorial problems without applying any systematic 
strategy. The microworld did not seem to have a significant impact on their problem 
solving strategies, although the children participating in the experiment did use 
the microworlds and manipulatives to make sense of their solutions and showed 
significant decrease in errors.

A final category of studies concerns the types of processes that students might 
engage in to improve their problem solving performance. Kolovou, van den Heuvel-
Panhuizen and Elia (2007) performed a quasi-experimental study on how primary 
school students solved non-routine puzzle-like word problems. The study showed 
that the online learning environment and writing down the solution procedure had 
a significant positive effect on students’ problem solving performance. Jacinto and 
Carreira (2013) analyzed students’ problem solving activity within the context 
of a web-based beyond-school competition devise for GeoGebra supported 
approaches: Using GeoGebra to obtain, interpret, validate, and explore a solution. 
These approaches are consistent with Polya’s (1945) problem solving stages of 
implementing a plan and looking back. The results of this study were consistent with 
previous research that the dragging capabilities of dynamic geometry software can 
facilitate understanding a problem and planning a solution path (Healy & Hoyles, 
2002; Hölzl, 1996), illustrating how technology can change the way that students 
reason about problems.

Problem Solving Competencies and Expertise

Problem solving expertise is usually considered by studying “experts” – that is, 
individuals or groups of individuals who exhibit superior performance in problem 
solving. This population often includes mathematicians (e.g., Schoenfeld, 1985) 
but can also include students that were “excelling in mathematics and generally 
gifted students” (Leikin, Waisman, Shaul, & Leikin, 2012, 2014). Before 
proceeding further, it is important to note that both what constitutes an “expert 
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mathematician” and a “mathematically gifted student” are usually based on vague, 
ill-defined, and not universally shared categories by researchers (deFranco, 1996; 
Leikin et al., 2012, 2014). Previous research has demonstrated that the expertise 
of highly successful problem solvers includes the ability to focus attention on 
appropriate features of problems, having a more robust representation and mental 
imagery of mathematical concepts and situations, having more images, and having 
the capacity to strategically switch efficiently and effectively between different 
images (Carlson & Bloom, 2005; Hiebert & Carpenter, 1992; Lester, 1994). The 
strategic use of representation systems and choice of solution methods is often 
based on the problem solver’s experience and ability to classify problems. The 
expert problem solver “knows into which category the problem should be placed 
and knows which moves are most appropriate, given that particular type of 
problem” (Sweller, Mawer, & Ward, 1983, p. 640). Experts also have the ability to 
monitor their progress, marshal heuristics when they do not know how to proceed, 
and hold productive beliefs about mathematics (Schoenfeld, 1985, 1992). In this 
section, we report further work in this area as well as researchers who wish to 
extend the notion of problem solving expertise to include other constructs.

Some researchers have attempted to focus on components of expertise that students 
need to be taught and compare those that will naturally emerge if students are put in 
the right environments. For instance, Rott (2012) examined 64 fifth grade students 
solving problems and found they spontaneously used heuristics such as drawing 
diagrams and working backwards and that these heuristics played an important role 
in some students’ solutions. He argued that these findings imply that, as a field, we 
do not have a good sense of what young students are capable of doing. Mousolides 
and English (2008) and Doyle (2006) arrived at a similar conclusion when they gave 
model-eliciting tasks to fourth and fifth grade students. These students were capable 
of using strategies such as organizing their data, building representations, and posing 
productive problems, despite not having extensive experience in these areas. These 
findings all suggest that even young children may have problem solving capacities, 
but special tasks are required to elicit them.

Andrà et al. (2011) used an eye-tracking methodology to examine how students 
with different levels of mathematical expertise read different mathematical 
representations- formulas, graphs and words. They used eye tracking to highlight the 
ongoing process of making sense of mathematical representations during problem 
solving. The study indicated quantitative and qualitative differences between the 
novice and expert group. Waisman, Leikin and Leikin (2015), used event related 
potentials (ERP) methodology, the brain activation associated with mathematical 
problem solving. They focused on the adolescents who differed in the combination 
of expertise in school problem solving and general giftedness. The researchers 
presented all participants learning-based and insight-based problems. They defined 
insight-based problems as ones that have a relatively simple solution which is difficult 
to discover until a solver changes his or her way of thinking (Weisberg, 2015), 
which solutions are usually based on the understanding of the problem structure 
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and on intuition, and thus are unexpected and surprising. Patterns of individuals’ 
brain activation associated with solving learning-based and insight-based problems 
were explored by measuring the strength of electrical potentials (measured with ERP 
procedure) and their scalp distribution. Waisman, Leikin and Leikin demonstrated 
that patterns of brain activation of experts who are generally gifted differed from 
those of experts who were not identified as generally gifted. They also demonstrated 
that these differences are task-dependent and differ for learning-based and insight-
based problems.

Researchers who study problem solving have sought to expand the attributes 
of what makes an expert problem solver. In the introduction to the PME plenary 
panel, Gravemeijer (2007) argued for a holistic way of understanding expertise 
in problem solving. He claimed that the qualities of a successful (expert) students 
should not only be comprised of being able to produce solutions to problems, but 
also include notions such as: perseverance of effort, a willingness to engage with 
challenging problems, an ability to transfer knowledge to new contexts and novel 
problem solving situations, a broad awareness of mathematics around us, creativity 
and flexibility in thinking, and an ability to explain their thinking. Success in solving 
a variety of novel problems accompanied by a willingness to do so can be considered 
a critical feature of students who are developing their problem solving expertise.

To add to the list of expert problem solving competencies, Lee, Kim, Na, Han 
and Song (2007) examined how mathematically gifted students utilize induction, 
analogy and imagery. The subjects of this research were 6th and 8th graders receiving 
education in an academy for the gifted attached to a university. They demonstrated 
that induction, analogy and imagery played important roles in making mathematical 
discoveries by the study participants. Rott (2013) was curious if it was reasonable 
to say that students could have expertise at solving problems when they were as 
young as twelve years of age. Rott compared the problem solving strategies of fifth 
and sixth graders who were adept at solving problems with those who were not. 
His study demonstrated that the young expert problem solvers showed superior 
performance in all of the tasks that they completed as well as higher “mental 
flexibility” in executing the processes, which seemed to distinguish them from the 
novices without this expertise. Based on these findings, Rott (2013) suggested that 
the abilities to use inductive evidence, form analogies, and exhibit mental flexibility 
should all be considered as components of expertise, especially when analyzing the 
capabilities of children.

Another characteristic that can be considered as related to problem solving 
expertise is mathematical creativity. Amit and Gilat (2012) highlighted the 
importance of creativity, showing it was a critical component of fifth graders solving a 
modeling eliciting problem. Leikin and Lev (2007) introduced multiple solution tasks 
as a lens for observing mathematical creativity. In this perspective, expert solution 
spaces were defined as the most complete sets of solution strategies known at the 
moment. Leikin and Lev developed a scoring scheme for the evaluation of creativity 
based on the number of different problem solving strategies used by a student as well 
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as rating how uncommon the students’ solution sets were. Using their framework, 
the authors distinguished between generally gifted, students who were proficient 
in problem solving, and typical students. They also found that presenting students 
with unconventional tasks provided a better lens into students’ creativity. Similarly, 
Amit and Gilat (2013) also analyzed the process of mathematical modeling through a 
creativity lens. The participants were mathematically talented primary school students 
who were members of “Kidumatica” math club. The researchers found that students’ 
creative skills as manifested in the diversity of their significant mathematical ideas 
and the variety of approaches led them to create, invent and discover significant 
conceptual tools. Leu, Lo and Luo (2015) assessed the mathematical creativity 
of preservice Taiwanese teachers. Participants’ performance on three cognitive 
dimensions of divergent production: fluency, flexibility, originality, as well as on 
overall mathematical creativity for each item were also discussed.

While the standard components of traditional expertise—the flexible use of 
robust representation systems, the application of a wide range of metacognition, 
and the ability to monitor or self-regulate one’s work—continue to influence how 
researchers analyze problem solving research, other constructs, such as persistence 
and creativity, also are recognized as important. We concur that there should be more 
research in these emerging areas.

STUDIES ON PROBLEM POSING

Currently problem posing is recognized as an important mathematical activity and 
there has been a concerted effort to make problem posing play a more prominent 
role in mathematics instruction (Singer, Ellerton, & Cai, 2013, 2015). However, in a 
curricula study of Chinese and United States textbooks, Jiang and Cai (2014) argued 
that that problem posing plays a minor role in both countries, with few problem 
posing tasks appearing even in reform-oriented textbooks. In this subsection, we 
discuss recent trends in research on problem posing.

In 2011, Singer, Ellerton, Cai and Leung organized a PME research forum on 
problem posing in mathematics learning and teaching. One aim of this research 
forum was to discuss critical perspectives on problem posing and to provide 
critical organization and structure to problem posing research. A contribution 
towards this goal was Kontorovich and Koichu’s (2009) proposed comprehensive 
framework of mathematical problem posing. Their framework consists of four 
facets: resources, problem posing heuristics, aptness, and social context in which 
problem posing occurs. The notions of resources and heuristics largely were direct 
problem posing correlates of Schoenfeld’s (1985) problem solving framework. 
The notion of aptness considered whether the posed problem met the purposes or 
intention of the problem posing exercise. The notion of social context analogizes 
loosely with Schoenfeld’s (1992) notion of mathematical practices, in that what 
counts as a suitable or good problem would depend on the knowledge of the 
audience and the social norms of the community receiving it. Kontorovich and 
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Koichu’s framework is notable in that it suggests directions for problem posing 
research in each of these areas.

Some researchers have examined the role that problem posing has played in 
problem solving. For instance, Armstrong (2014) studied four groups of three middle 
school children solving a particularly challenging mathematical problem. She found 
that each group frequently posed problems to facilitate their investigations, with 
the four groups collectively posing 62 problems. The problem posing activities 
helped students clarify the task they were solving, make sense of and make use 
of the hypotheses of their investigations, and form and test plans for how their 
investigations could proceed. These results are consistent with a study by Cifarelli 
and Cai (2006), in which these researchers observed one pair of students solving two 
open-ended problem solving tasks in which the students were posed with a situation 
and asked to develop mathematical relationships. The students in their study posed 
problems to develop and test the mathematical relationships that they generated. 
Bonotto (2009) reported similar findings when she asked students to solve problems 
that required the incorporation of real world knowledge. Both Armstrong (2014) 
and Cifarelli and Cai (2006) noted the diversity of problems that the students posed, 
cautioning researchers not to pose a single model for how problems should be posed, 
and both remarked on how the social roles inherent in collaborative problem solving 
encouraged problem posing.

A second trend concerns the cognitive processes used by teachers in posing 
mathematical problems for didactical purposes. Harel, Koichu and Manaster 
(2006) explored how 24 middle school teachers could design a story problem 
whose solution can be found by dividing 4/5 by 2/3. They found that 60% of their 
sample was able to produce some answerable questions but only 20% were able to 
successfully complete Harel et al.’s task. One strategy used by both successful and 
unsuccessful teachers was that of utilizing reference points: focusing on an easier 
task (e.g., posing a simpler computation that would yield 4/5 as a solution) and then 
attempting to transform this into a problem that met the criteria of the task. Pelczer, 
Voica and Gamboa (2008) asked 18 first year university students to pose related 
problems about sequences (e.g., an = 2n is a sequence) increasing in difficulty. Their 
results paralleled the findings of Harel et al. (2006). They found students largely 
used a selection-transformation-pose strategy in which they generated a problem and 
then attempted to transform the problem to obtain more difficult problems. While 
this strategy worked well for some students, it produced uninteresting problems 
for others. Jiang and Cai (2015) investigated the impact of sample questions on 
the sixth grade students’ mathematical problem posing. They evaluated students’ 
posed problems according to their solvability, similarity to sample problems and 
their complexity level. This research is notable in that it calls for and introduces a 
framework to evaluate the utility of posed problems.

A third category of studies explores the benefits that students can gain from 
engaging in problem posing. Yuan and Presmeg (2010) found a correlation between 
advanced high school students’ problem posing abilities and their score on a creativity 
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test, supporting the claim that there is a relationship between problem posing and 
creativity. Powell (2004) hypothesized that having students from marginalized 
groups participate in activities such as problem posing could increase their agency. 
Radu, Tozzi and Weber (2006) found support for Powell’s claim. They analyzed an 
after-school program of mathematical problem solving for middle school students, 
focusing on how the teacher-researchers’ actions expanded students’ participation. 
They found that encouraging students to pose problems led them to take ownership 
of the mathematical investigations and increased students’ understanding. Bragg 
and Nicol (2008) found that engaging preservice teachers in problem posing tasks 
led them to adopt more desirable beliefs and attitudes toward teaching mathematics 
and Bonotto (2006) illustrated the potential that problem posing has for increasing 
content understanding.

TEACHING PROBLEM SOLVING AND PROBLEM POSING

We break this section into four parts. First we report the influence that teachers’ 
perceptions of problem solving have on instruction. Second, we describe the effects 
that interventions had on students’ problem solving performance. Third, we discuss 
various efforts to educate teachers to use problem solving effectively in their 
classroom. Finally, we discuss how problem solving is sometimes used as a tool to 
teach new mathematical concepts.

Teachers’ Perceptions of Problem Solving and its Influence on Their Teaching

The ways in which teachers use mathematical problems in the classroom are central 
in evaluating the quality of mathematics teaching. Henningsen and Stein (1997) 
stressed the importance and the difficulty of teaching high-level mathematical 
problems with high cognitive demand. However, it is not sufficient for mathematics 
educators simply to supply practicing teachers with rich mathematical problems. 
Which problems teachers choose to use and how they implement these problems 
are necessarily influenced by their own understanding of the mathematics involved, 
their pedagogical goals, and their beliefs about mathematics, teaching, and the 
capabilities of their students.

In this section, we first analyze the knowledge and beliefs of teachers and how 
this impacts on their use of problem solving activities in their classrooms. Shajahan 
(2005) examined the problem solving competency of prospective teachers in a 
dynamic geometry environment. He found that teachers’ subject matter played a 
significant role in how they interpreted, solved, and appreciated the problem. 
Sullivan, Clarke, Clarke and O’Shea (2009) investigated the relationship between 
the way three teachers in Australia implemented tasks in fifth and sixth grade 
classrooms in order to explore the links between tasks, teacher actions, and student 
learning. They found that the three teachers implemented the tasks in different ways. 
Two teachers modified the task to reduce its complexity and encouraged a single 
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solution method for students, while the other encouraged multiple solutions. Sullivan 
et al. suggested that it was the latter teacher’s increased mathematical confidence in 
her ability that led her to allow more room for exploration in the classroom. These 
findings are broadly consistent with Chapman (2012) and Foster, Wake and Swan’s 
(2014) claims that teaching problem solving requires deep mathematical knowledge 
on the part of the teachers and more work on what specific knowledge is required 
is needed.

Chapman (2011) investigated prospective teachers’ ways of making sense 
of mathematical problem posing [PP] and the impact of posing various types of 
problems on their learning. Chapman highlighted five perspectives of problem 
posing and nine categories of PP tasks important to support teachers’ development 
of proficiency in problem posing knowledge for teaching. Klinshtern, Koichu and 
Berman (2013) explored how mathematics teachers posed problems for students 
in their teaching. The majority of the teachers identified themselves as problem 
posers as they taught. This challenged previous research that teachers did not pose 
problems as they taught. Klinshtern et al. also looked at strategies that teachers used 
to pose problems, such as elaborating upon an existing problem, combining ideas, 
and shifting contexts.

A second group of studies explored teachers’ perceptions and evaluations of 
problems, as well as their suitability for teaching. Applebaum and Leikin (2007) 
examined teachers’ conceptions of mathematical challenge in school mathematics. 
They found that the teachers possessed a broad conception of mathematical challenge, 
including the relative and contextual nature of challenge based on the intended 
audience for the problem. The teachers, however, were not always convinced of 
the possibility of incorporating challenging mathematics in everyday classrooms. 
Jacobson, Singletary and De Araujo (2011) explored United States secondary 
teachers’ conceptions of what constituted an integrated curriculum. The study found 
that the teachers needed to engage in fairly sophisticated problem solving behavior 
to recognize the mathematical connections between the problems in that curriculum. 
Koichu, Katz and Berman (2007) and Sinclair and Crespo (2006) examined what 
prospective teachers thought was a beautiful problem. Both research teams found 
that prospective teachers expressed a wide range of conceptions of what constituted 
a beautiful problem. Interestingly, Koichu, Katz and Berman reported that the 
correlations between problem difficulty, beauty, and challenge were very small for all 
the problems, suggesting that to prospective teachers, these constructs are relatively 
independent of one another. (For an interesting comparison, Inglis and Aberdein 
(2015) found that mathematicians appraised qualities of mathematical proofs, such 
as simplicity, utility, and aesthetics, as relatively independent constructs).

The Effect of Instruction on Students’ Problem Solving Performance

Two PME research reports presented large-scale studies that summarized the 
curricular impacts of students’ problem solving ability. Cai and his colleagues 
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(2014) compared the performance of high school students in the United States who 
were taught using the Connected Mathematics Program (CMP), a curriculum rich 
with problem solving tasks, with those who were taught in a traditional fashion. 
The 11th and 12th grade students who used the CMP performed better on multi-step 
problems than those who did not, demonstrating that the CMP had a long-term effect 
on students’ abilities to solve problems. Eade and Dickinson (2006) described the 
effects of implementing a Realistic Mathematics Education (RME) based curricula 
in English middle schools. Eade and Dickinson found students’ problem solving 
abilities improved after receiving the RME curriculum after one year, but they also 
identified practical issues that teachers faced while implementing it, such as having 
vocabulary and methods to measure student improvement, a reluctance of students 
not to rely on symbolic manipulation, and a lack of support to help students who 
struggle in learning this new curriculum.

Two other smaller scale studies explored the effect of instruction on improving 
students’ problem solving abilities. Rubio and Del Valle (2004) proposed a sequence 
of steps that students can apply when reading algebraic word problems, finding that 
students’ performance on such problems improved as they internalized and applied 
these steps. The results of a study in one classroom with 49 ninth grade students 
by Lee and Yang (2013) suggested that instruction in cognitive and metacognitive 
strategies had a statistically significant effect on students’ problem solving 
performance in probability.

Teacher Education and Problem Solving

Collet, Bruder and Komorek (2007) analyzed the effects of a teacher development 
program that sought to connect the learning of mathematical problem solving with 
self-regulation. These researchers found that their instruction influenced teachers’ 
in-class behavior a year later, enabling them to use problem solving in a more 
productive manner. Boero, Guala and Morselli (2013) argued that in mathematics 
teaching, teachers may see different mathematical domains as compartmentalized 
with no connections between them. These dispositions may prevent teachers from 
discussing problem solving in a productive manner or encouraging strategies that 
draw on connections between mathematical domains. In order to help teachers see 
connections between mathematical domains, teacher education must encompass 
suitable tasks that allow the problem solver to incorporate connections between 
mathematical domains. The authors suggested analytic geometry as a possible 
starting point, as this seems to be one area in which teachers do see connections (in 
this case between algebra and geometry).

Chapman (2005) described a teaching experiment in which she attempted to 
help preservice teachers construct pedagogical knowledge of problem solving. 
The participants were asked to interact with peers in cooperative social settings. 
They were asked to find similarities among the given problems without solving 
them, analyze the problem in terms of where students might reach impasses and 
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what insights they might generate, and solve an assigned problem. They were 
then asked to reflect on their experiences to select a problem appropriate for a 
secondary school student. The initial knowledge of the participants indicated that 
most of them made sense of problems in terms of the traditional, routine problems 
they had previously experienced. The participants understood the problem solving 
process in a way consistent with the traditional classroom way of dealing with such 
problems. Chapman (2013) also evaluated the effectiveness of teacher education 
directed at developing mathematical problem solving knowledge for teaching. The 
study demonstrated the importance of the awareness of cognitive aspects involved 
in the problem solving process, as well as of perceiving problem solving as a way of 
thinking in facilitating teachers’ knowledge of problem solving.

Nicol, Bragg and Nejad (2013) examined the types of problems that preservice 
teachers create, what they noticed and attended to, and the challenges they 
experience when designing mathematical problems within the context of a teacher 
education course. The researchers attempted to help preservice teachers by giving 
them criteria for a “good” problem that included: the problem requires more than 
remembering a fact of reproducing a skill, students learn mathematical content 
by doing the task and teachers learn about students’ reasoning from the students’ 
attempts, and there are several acceptable answers (taken from Sullivan & Lilburn, 
2004). Nicol, Bragg and Nejad suggested that the preservice teachers found it 
difficult to design open-ended problems.

Problem Solving as a Didactical Tool

Many researchers, particularly those using modeling activities or the perspective 
of Realistic Mathematics Education (RME), use problems or investigations to 
help students learn and understand mathematical content. In this subsection, we 
review successful interventions in this regard. Shabhari and Peled (2012) described 
a realistic modeling approach using theoretical ideas from RME for teaching the 
concept of percent. They implemented this instruction in a seventh grade classroom 
where students were asked to work on a sequence of activities designed to invoke 
the concept of percent; these activities included having students price individual 
items so that they summed to a desired amount. Through analysis of classroom 
transcripts, the researchers documented how students’ understanding of percent 
grew as they participated in these activities. These seventh graders also did better 
on a posttest on percent than a control group of seventh graders who received 
traditional instruction using a conventional textbook unit on percent.

Dougherty and Slovin (2004) attempted to help elementary students solve 
word problems. They taught these students how to represent the situations in word 
problems using generalized diagrams that represented the relationships between 
the parts and the whole in the word problems that they were solving. Dougherty 
and Slovin illustrated how working through problems led students to internalize 
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this technique of solving problems, eventually developing representation systems 
similar to those commonly used to solve algebra problems.

Bonotto (2006) conducted a quasi-experiment in which she compared a traditional 
and an innovative way to teach decimals to students. Her innovative instruction 
was based on the premise that students should solve and pose realistic problems 
about decimals related to their real world situations and critically interpret their 
solutions to the problems they solved. The instruction was successful. The two 
classes receiving her innovative instruction outperformed two control groups on an 
assessment concerning decimals, both in items on practical realistic problems (e.g., 
problems concerning the Euro) and in terms of pure abstract mathematics (e.g., 
order these three decimal values). Ilany, Keret and Ben-Chaim (2004) developed 
a model of teaching preservice teachers the concepts of ratio and proportion 
using authentic investigative activities. They implemented their instruction with 
11 preservice teachers, asking them to engage in investigations that elicited 
proportional reasoning. The preservice teachers showed robust improvement on a 
proportional reasoning assessment and also demonstrated more productive attitudes 
related to the importance of teaching students about proportional reasoning.

Connolly and Nicol (2015) illustrated how problem solving could be used to 
teach financial literacy to middle school students. The instructors designed activities 
based on students’ prior knowledge and interests. The students were especially 
motivated during the financial problem solving role-play exercises, confirming the 
expectations of the instructors. This research found considerable variation between 
the financial lessons different students were taught at home and also in the student’s 
experience and ability to work with financial math concepts. This highlights how 
instruction drawing from students’ prior experiences may yield heterogeneous 
responses based on their diversity of experiences.

Delikanlis (2009) explored the use of historical problems in problem solving 
activities with secondary school students. These problems were chosen to 
incorporate historical aspects of the mathematical development in support of a 
method of teaching mathematics that comes closer to a humanity education and 
to engage students in a challenging problem solving activity. Papageorgiou (2009) 
conducted a study aimed at proposing and assessing an instructional intervention 
that integrates both inductive reasoning problem solving and the development of 
mathematical concepts. The examined teaching program included problem solving 
activities directed at developing students’ abilities in solving problems that require 
the use of inductive reasoning. The findings revealed a significant improvement in 
students’ use of inductive reasoning for problem solving for the group of students 
who received the training. Maher (2011) suggested supporting the development 
of mathematical thinking through problem solving and reasoning. Her findings 
were based on the results of longitudinal and cross-sectional studies that followed 
the mathematical thinking and reasoning of cohort groups of students who were 
thoughtfully engaged in doing mathematics in and out of classrooms. Aspects of her 



K. WEBER & R. LEIKIN

374

learning environment that she found critical to her success were having students be 
the arbiter of the correctness of solutions, encouraging sense making, and allowing 
students to spend extended time on the problem solving tasks in the study (see 
Powell, 2004, 2006 who reported on data from the same longitudinal study for a 
further description of this specialized problem solving environment).

Abtahi (2015) focused her attention on the zone of proximal development 
(ZPD) and the affordances of mathematical tools. Abtahi found that the physical 
properties and perceived affordances of mathematical tools act as mediators between 
children’s physical actions and their mathematical problem solving and that this is 
recursively related to their perception of the tool and of the task. These findings also 
suggest that the ZPD may expand as children participate in collective interactions 
with mathematical tools that involve the use of guidance provided by the physical 
properties of the tools in the process of solving problems.

SUMMARY AND DIRECTIONS FOR FUTURE RESEARCH

In this concluding section, we would like to propose areas of problem solving 
research that we think can be particularly fruitful given our review of the literature. 
First, we believe that there is a bifurcation of research. Some researchers focus 
on problems that are clearly defined and have unambiguous solutions that can be 
obtained by the application of valid calculations and deductions. However, especially 
recently, many other researchers have explored open-ended and sometimes ill-
defined problems. The latter problems often involve the solver to incorporate his or 
her real world understanding, make reasonable assumptions, and provide answers 
whose correctness depends on the real world understanding and the assumptions 
that they invoke. Modeling eliciting activities are a prominent example of these 
types of problems. Key research questions include: Can we identify the similarities 
and differences between the processes and dispositions needed to address these 
problems effectively? Are there different learning goals associated with these 
problems than with traditional well-defined problems? Are conventional problems 
better at establishing deductive connections between pure mathematical concepts 
and are open-ended problems better at helping students see mathematics as relevant 
to their lives? At a minimum, we implore researchers to be clear about which kinds 
of problems they are discussing in their research reports. If not, there is the risk of 
building an incoherent and inconsistent body of research.

Second, we believe more research is needed on the relationship between 
technology and problem solving. In this chapter, we have documented how 
technology can expand the kinds of problems that we can reasonably give students 
and influence the kinds of solutions that they obtain. We think it would be useful to 
address the following: For which problem solving processes using technology are 
there analogous processes that can be used without technology? Some processes, 
such as dragging in dynamic geometry environments (as discussed in Jacinto & 
Carreira, 2013) or exploring families of functions (as discussed in Lew & So, 
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2008), do not appear to have analogs in traditional problem solving with paper 
and pencil. What other problem solving strategies afforded by technology are 
unique to that environment? Given that technological competence affects one’s 
use of technology (Jacinto & Carreira, 2013), should technical competence with 
educational technology be included in our models of problem solving expertise? 
And if so, how should the technological competence related to problem solving 
be taught to students? How can technological environments be used in developing 
problem solving expertise? Can technology in mathematics education support 
model eliciting activities?

Third, problem posing is continuing to emerge as an important frontier on 
problem solving research. Further investigations into the relationship between 
problem solving and problem posing are needed. Following Kontorovich and 
Koichu’s (2009) model for problem posing, we can ask: What are the heuristics 
for posing good problems? Given that a key component of problem posing is 
recognizing aptness, more research on what experts think is an apt problem is 
needed. Do experts even agree on what a good problem is? Further, given the 
importance of problem posing in instruction (e.g., Klinshtern, Koichu, & Berman, 
2013), how do we as researchers decide what is a good problem? How do we as 
researchers go beyond judging problems as trivial or interesting (e.g., Yuan & 
Presmeg, 2010) and develop robust assessment tools for evaluating problems in 
a more sophisticated manner? As Kontorovich and Koichu (2009) argued, we are 
only beginning to consider how social factors affect problem choice. Given the 
diversity of behavior that has been observed in expert mathematicians’ practice 
(e.g., deFranco, 1998; Weber, Inglis, & Mejia-Ramos, 2014), do all mathematicians 
utilize the same competencies when posing problems? Do all gifted children?

Fourth, recent research has seen an expansion of what counts as problem solving 
expertise (e.g., Gravemeijer, 2007) and what constitutes an expert problem solver 
(e.g., Leikin et al., 2012, 2014). In particular, some researchers have highlighted 
the importance of creativity in problem solving and problem posing (Amit & Gelat, 
2012; Leikin & Lev, 2007; Yuan & Presmeg, 2010). This invites the following 
questions: What are the specific processes by which creativity enables problem 
solving and posing? To what extent can mathematical creativity be taught to students 
and what are effective ways to teach creativity?

Fifth, we have found relatively few international comparison studies in the 
literature, but those that do exist find differences in the ways that problem solving is 
taught (Jiang & Cai, 2014) and in the problem solving abilities of students (Yuan & 
Presmeg, 2010) across different cultures. Given these differences, it is important 
to resist the temptation to aggregate our findings about students’ behavior and the 
effectiveness of instructional interventions on studies that occurred in different 
countries until more international comparisons are conducted.

Finally, while research has documented the immense complexity of preparing 
teachers to implement problem solving tasks in the classroom, we are only beginning 
as a field to design instruction to help students do this. Hence, like many areas of 



K. WEBER & R. LEIKIN

376

mathematics education, there exists a large gap between theory and practice in 
problem solving research. Studies such as Collet, Bruder and Komorek (2007), 
who investigated the actions of teachers as a result of their teacher development 
program, are difficult, but necessary if our research is to improve the mathematical 
achievement of our future students.
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11. REFLECTIONS ON PROGRESS IN 
MATHEMATICAL MODELLING RESEARCH

INTRODUCTION

The terms, models and modelling, have been used variously in the literature, 
including in reference to solving word problems, conducting mathematical 
simulations, generating representations of problem situations (including constructing 
explanations of natural phenomena), creating cognitive representations while solving 
a particular problem, and engaging in a bidirectional process of translating between 
a real-world situation and mathematics (e.g., Cai, Cirillo, Pelesko, Borromeo Ferri, 
Borba, Geiger, Stillman, English, Wake, Kaiser, & Kwon, 2014; Doerr & Tripp, 
1999; English & Halford, 1995; Gravemeijer, 1999; Greer, 1997; Lesh & Doerr, 
2003; Romberg, Carpenter, & Dremock, 2005).

A frequently made distinction in the literature when discussing modelling is that 
between modelling and application. Stillman (2012, p. 903) describes this distinction 
as follows:

With applications the direction (mathematics > reality) is the focus. “Where can 
I use this particular piece of mathematical knowledge?” The model is already 
learnt and built. With mathematical modelling the reverse direction (reality > 
mathematics) becomes the focus. “Where can I find some mathematics to help 
me with this problem? The model has to be built through idealising, specifying 
and mathematising the real world situation.

Related to this distinction between applications and modelling are the two main 
strands in which modelling is promoted in educational settings: modelling as content 
and modelling as vehicle. According to Julie and Mudaly (2007), “[m]athematical 
modelling as content entails the construction of mathematical models of natural 
and social phenomena without the prescription that certain mathematical concepts, 
procedures or the like should be the outcome of the model-building process” 
(p. 504, italics added), meaning that modelling is considered to be a learning goal 
in itself. Modelling as a vehicle on the other hand takes a more methodological and 
instrumental view of modelling in that modelling is used to achieve other curricular 
objectives, as for example expressed by Ilany and Margolin (2008) “that development 
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of modelling skills is one of the important aims of mathematics curriculum, and 
serves as a pedagogical central tool” (p. 210).

Although the notions of mathematical models and modelling are understood 
and used in many various ways, educational research in this area typically uses 
or develops some general description of the process of mathematical modelling 
(Kaiser, Blomhøj, & Sriraman, 2006). One of the three prevailing general 
descriptions in the literature summarises in a schematically and idealised way 
how the modelling process connects the extra-mathematical world (domain) and 
the mathematical world (domain) (Blum, Galbraith, & Niss, 2007) through the so 
called modelling cycles. One of these modelling cycles featured prominently in the 
literature is the one found in the work of Blum and his colleagues (e.g., Blum & 
Leiss, 2007). Their perspective describes a modelling cycle that incorporates the 
processes of “constructing, simplifying/structuring, working mathematically, 
interpreting, validating, and exposing” (p. 25). However, modelling cycles reported 
in the literature can be quite diverse and highlight different aspects of the modelling 
process depending on the purpose and focus of the particular research (Borromeo 
Ferri, 2006; Haines & Crouch, 2010).

A further prevailing general description of modelling refers to modelling 
competence, modelling competency or modelling competencies (Blomhøj & Jensen, 
2007; Chapter 3.3 in Blum et al., 2007; Maass, 2006). Modelling competency 
is often directly or indirectly defined by drawing on or referring to a view of 
modelling expressed in terms of a modelling cycle. Blomhøj and Jensen (2003), 
for example, refer to a modelling cycle in terms of a “mathematical modelling 
process”, which they define as follows: “[b]y mathematical modelling competence 
we mean being able to autonomously and insightfully carry through all aspects 
of a mathematical modelling process in a certain context” (p. 126). Also Maass’ 
(2006) definition refers to a “modelling process”, drawing on the work by Blum 
and Kaiser (1997) and listing a number of sub-competencies to specify modelling 
competencies: “Modelling competencies include skills and abilities to perform 
modelling processes appropriately and goal-oriented as well as the willingness to 
put these into action” (p. 117).

The last of the popular notions of models and modelling we noted is the 
models and modelling perspective typically addressed through model-eliciting 
activities (MEAs; Lesh & Doerr, 2003). Here, a model is a “system of elements, 
operations, relationships, and rules that can be used to describe, explain, or predict 
the behaviour of some other familiar system” (Doerr & English, 2003, p. 112). 
From this perspective, modelling problems are realistically complex situations 
where the problem solver engages in mathematical thinking beyond the usual 
school experience and where the products generated often include complex 
artefacts or conceptual tools that are needed for some purpose, meaning-making, 
or to accomplish some goal (Lesh & Zawojewski, 2007). When students work on 
modelling problems they engage in activities that iteratively develop and refine 
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their models through multiple cycles of descriptions, interpretations, conjectures 
and explanations, often in interactions with other students (Lesh & Doerr, 2003).

Efforts have been made to clarify and differentiate various approaches to 
mathematical models and modelling (Blomhøj, 2008; Kaiser & Sriraman, 2008; 
Kaiser, Sriraman, Blomhøj, & Garcia, 2007). According to Kaiser and Sriraman 
(2006), different perspectives on, and approaches to, mathematical modelling can 
be classified as realistic or applied modelling; contextual modelling; educational 
modelling (with either a didactical or conceptual focus); socio-critical modelling; 
epistemological or theoretical modelling; or cognitive modelling. For a detailed 
discussion of these perspectives, the interested reader can see the studies by Kaiser 
and Sriraman (2006), by Kaiser, Blomhøj and Sriraman (2006), by Sriraman, Kaiser 
and Blomhøj (2006), and by Kaiser, Sriraman, Blomhøj and García (2007). Indeed, 
these different aspects and interpretations of models and modelling highlight the 
point raised at the 2014 PME Forum on the topic (Cai et al., 2014), namely, that 
researchers have come to the agreement that there is no unified perspective on what 
counts as a modelling activity, reflecting Lesh and Fennewald’s (2013) reference to 
a conceptual confusion.

Aim of the Chapter

The aim of this chapter is to provide an overview of the research presented in the PME 
proceedings during the period 2005–2015 focusing on different aspects and issues 
involved in the teaching and learning of, and through, mathematical modelling. The 
chapter is intended to be both a review in the sense that it summarises the research 
presented in the proceedings, and to provide a road map for follow-up reading 
about this line of research reported by the PME community. In addition, the chapter 
attempts to highlight some challenges and possibilities for future research in the 
field.

Criteria for Selection

In reviewing the PME conference proceedings from 2005 to 2015 we identified in 
total 37 papers to consider (see Table 1 for the distribution of the selected papers 
across the proceedings). We selected the papers using word searches on key words 
and phrases such as model, modelling, application, realistic, real-world, real-life, 
etc. In addition, we examined the titles and read the abstracts, again paying attention 
to key words and phrases, and also skimmed those papers that appeared borderline 
with respect to modelling. We excluded papers that were neither Research Reports 
nor part of a Research Forum, that is, we did not consider those papers that were 
presented as Short Orals, as Posters, or as part of Discussion or Working Groups. 
Papers that appeared to address models and modelling from the perspective of 
mathematising a real-world situation were reviewed. Papers that used a different 
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notion of modelling such as in reference to a framework or to a pedagogical guide 
(e.g., models of teacher education, curriculum models, or developing models of 
students’ mastery of various topics) were also excluded.

Table 1. Distribution of papers included in the review

Proceeding Number of papers

PME 39 2
PME 38/PME-NA 36 4
PME 37 7
PME 36 4
PME 35 1
PME 34 3
PME 33 6
PME 32/PME-NA 30 3
PME 31 1
PME 30 4
PME 29 2

After substantial analysis of the focus and content of the PME papers of the 
past decade, four broad categories became apparent for structuring the chapter, 
namely: perspectives on models and modelling, curricular and instructional 
approaches in fostering modelling competence, the inclusion of generic processes, 
and approaches to models and modelling in teacher education. Of course, there 
are other possible ways in which we might have structured this chapter including 
the perspectives on modelling we noted at the beginning of this chapter (e.g., 
modelling as vehicle and modelling as content). However, the categories we 
decided upon appeared the most salient, despite several papers appearing in more 
than one of these broad categories.

PERSPECTIVES ON MODELS AND MODELLING  
ACROSS THE PERIOD 2005–2015

First, it should be noted that some of the reviewed papers do not explicitly state 
the view of modelling adopted in the research and often key notions are not or 
implicitly defined. Hence, identifying the actual perspectives taken in the reported 
research was at times challenging. Nevertheless, as might be expected we found 
considerable diversity in perspectives on models and modelling used during this 
period.
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Models and Modelling with a Focus on Model-Eliciting Activities

In their review of the range of modelling perspectives in the 2014 Proceedings, 
Geiger and Kaiser noted the enduring popularity of the models and modelling 
perspective advanced by Lesh and his colleagues many years ago (e.g., Lesh & 
Doerr, 2003; Lesh & English, 2005). Lesh and English (2005) addressed Trends in 
the evolution of models and modelling perspectives on mathematical learning and 
problem solving (p. 192) as part of a Research Forum on Theories of Mathematics 
Education.

A good deal of the research within the models and modelling perspective found 
in the PME proceedings during the period 2005–2015 use model-eliciting activities 
(MEAs), which are activities that purposefully put students in meaningful situations 
where they are confronted with a need to develop or recall a model (c.f. Freudenthal, 
1983). MEAs also aim to make students’ previous experiences and models visible 
to themselves, their peers and teachers, as well as making their models explicitly 
articulated objects that can be reflected upon and discussed (Lesh, Hoover, Hole, 
Kelly, & Post, 2000).

Studies in the 2005 Proceedings that adopted the models and modelling 
perspective (with the use of MEAs) include those of Schorr and Amit as well as 
English and Watters. Typically these researchers presented in-depth analyses of 
students’ mathematical learning as they worked an MEA in small group situations. 
This learning involved the students in generating the mathematical ideas from 
the problem itself rather than being supplied with the core ideas by the teacher or 
textbook.

The study by Mousoulides, Pittalis and Christou (2006) presented twenty 
11-year-olds working with an MEA aimed at assisting students to develop and use 
an understanding of the concept of average. By applying interpretative techniques 
to analyse students’ responses from various sources, the authors concluded that 
students with no prior experience in modelling activities could effectively apply 
their informal mathematical knowledge to solve a modelling problem. The social 
interactions within groups enhanced the learning process and the generation of 
mathematical knowledge.

In a somewhat similar study, Mousoulides and English (2008) investigated the 
mathematical developments of ten-year-old students in Cyprus and Australia as they 
worked a complex MEA focusing on interpreting and dealing with multiple sets 
of data. The research revealed that the students in both countries adopted similar 
approaches to create models to solve the problem, regardless of their different cultural 
and educational backgrounds as well as being inexperienced in modelling. The 
students progressed through a number of modelling cycles in working the problem, 
with each cycle exhibiting successively more sophisticated thinking, namely: from 
initially focusing only on subsets of information, to applying mathematical operations 
in dealing with the data sets, and finally, to identifying trends and relationships.
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Another example of research presented in the PME Proceedings drawing on the 
models and modelling perspective is the work by Amit and Gilat, who co-authored a 
collection of papers (Gilat & Amit, 2012; Gilat & Amit, 2013; Amit & Gilat, 2013; 
Gilat & Amit, 2014) that used MEAs to investigate different aspects of creativity and 
the development of creativity in gifted students. The authors used qualitative methods 
to analyse students’ work on MEAs in terms of their creative thinking abilities. Their 
analysis involved categorizing students’ modelling abilities in a schematic diagram 
of appropriateness, mathematical resourcefulness (fluency, flexibility, elaboration), 
and inventiveness or originality (Amit & Gilat, 2013; Gilat & Amit, 2014). Taken 
together, Amit and Gilat’s research presented in the PME proceedings reveals that 
student engagement in modelling processes encouraged students to creatively 
utilise their fluent thinking skills as well as their skills in elaborating, refining, and 
generalising.

Modelling Cycles

Graphical representations of modelling as an iterative cyclic process connecting the 
disjoint “world of mathematics” and “the real world” (outside of mathematics) at least 
date back to Pollak’s (1979) discussion about “The interaction between mathematics 
and other school subjects”. In terms of research into the teaching and learning of 
mathematical modelling this conceptualisation of modelling has proven productive 
(c.f. Blum, Galbraith, & Niss, 2007). Two of the current frequently used references 
to this perspective on modelling, and found in the reviewed PME proceedings, are 
those of Blum and colleagues (e.g., Blum & Leiss, 2007) and Galbraith and Stillman 
(2006).

Huang (2012) adopted the modelling cycle proposed by Galbraith and Stillman 
(2006) as a research framework in a teaching experiment on the integration of 
modelling in the calculus courses of university engineering students. Specifically, 
the author investigated the mathematical modelling processes and mathematical 
competency of first-year engineering students as they engaged in an optimisation 
problem aimed at reducing transportation costs. Using this framework, the author 
presented the results of the analysis as transitions between different phases in 
the modelling cycle during the students’ problem solving activity, namely, the 
transitions of real-world situations – real-world models – mathematical models – 
mathematical solutions – real-world meaning of solution. The author concluded that 
the introduction of the modelling activity in the calculus course provided students 
with opportunities to learn mathematics in a new and different way. Students’ 
engagement in the activity further made it possible to identify some of the students’ 
mathematical shortcomings, something that would not be possible in a more ordinary 
teaching setting.

In the same Proceedings, Schukajlow and Krug (2012) investigated the multiple 
solutions and modelling approaches of 9th-grade students while solving complex 
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problems. These researchers viewed modelling as engaging students in simplifying 
complex situations through mathematising and working mathematically. In this 
study, the cyclic conceptualisation of modelling was a key structuring factor for the 
designed learning environment in which the study was conducted.

Grigoraş and Halverscheid (2008) used a cyclic view of modelling to investigate 
how 11 to 13 year-olds moved back and forth between the real and mathematical 
domains as they worked on the classical travelling salesman problem. The research 
focused on identifying the links established by the students between the two domains, 
what mathematical tool the students used, and the patterns of students’ arguments 
and working procedures. Although “[i]t was often not clear whether the students are 
in the mathematical world or in the rest of the world” (p. 111), the authors found that 
the students established links between a graph-based representation in the real world 
(a map of Germany) and mathematics by extracting basic and important concepts 
and aspects of graph theory.

Modelling Competency

Two papers were identified as applying the notion of modelling competency 
as an analytical framework, namely, the research of Huang’s (2012) reviewed in 
the previous section and that of Brand’s (2014). Brand applied a holistic and an 
atomistic approach (c.f. Blomhøj & Jensen, 2003) to foster students’ mathematical 
modelling competencies. Using a pre- post- and follow-up-test design, students’ 
modelling competency was measured in a test designed to capture students’ overall 
modelling competency as well as three sub-competencies of mathematical modelling 
(simplifying/ mathematising, working mathematically, and interpreting/ validating). 
The results showed that although both approaches foster students’ modelling 
competency and sub-competencies, they each have their strengths and weaknesses. 
Although the analysis revealed that “[a] general superiority of one approach could 
not be stated” (p. 191), the data indicated that the holistic approach is more effective 
for students with weaker performance in mathematics.

Realistic Mathematics Education

Three of the reviewed papers applied the mathematics domain-specific instructional 
theory of Realistic Mathematics Education (RME) developed in the Netherlands 
(Freudenthal, 1983). Central to the RME perspective are rich, meaningful, and 
imaginable situations that provide the learner with a context functioning as a 
hotbed for the development of mathematical procedures, tools, and concepts 
(van den Heuvel-Panhuizen & Drijvers, 2014). Working from this perspective, 
Bonotto (2009) used genuine advertisement leaflets to study the relationships 
between school mathematics and mathematics incorporated in real-life situations. 
Studying fifth-grade students’ (10-year-olds) engagement in modelling and problem 
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posing, Bonotto concluded that, due to the rich variation of students’ experiences 
from outside school, the posed problems created and formulated by the students 
showed remarkable originality and involved both different and complex aspects. In 
addition, when the students subsequently solved and discussed the posed problem, 
they shifted to problem critiquing, that is, “the children attempted to criticize and 
make suggestions or correct the problems created by their classmates or the results 
obtained” (p. 198).

Doorman, Boon, Drijvers, van Gisbergen, Gravemaijer and Reed, H. (2009), 
also based their research within the RME tradition, using both qualitative and 
quantitative analysis of two teaching experiments to investigate grade 8 students’ 
acquisition of the mathematical concept of function. The study focused on the 
potential of the integration of computer tools in instructional sequences on 
the learning of function and the simultaneous tool acquisition and concept 
development. The authors’ analysis of students’ engagement in an activity centred 
on comparing two cell-phone offers, showed that form-function-shifts (c.f. Saxe, 
2002) could be detected in the intertwined processes of acquisition of the computer 
tool and learning about functions. According to Doorman and colleagues (2009), 
the results indicate that instructional sequences using multimedia environments 
support the co-emergence of external representations and mathematical concepts; 
this emergence appeared to be independent of the computer tools used in the 
design of the sequence.

The study by Van Stiphout, Drijvers and Gravemeijer (2013) also drew on the 
RME perspective, and more specifically on the notion of emergent modelling, which 
is an instructional design heuristic of the RME theory (c.f. Gravemeijer, 1999). Van 
Stiphout and colleagues investigated to what extent the mathematics textbooks in the 
Netherlands support students’ development of conceptual understanding in algebra. 
The analysis of two textbook series covering grades 7–10 revealed two distinct 
didactical tracks within the books: one track following the RME approach and one 
track with a more traditional approach introducing new concepts as ready-made 
mathematics. In addition, the authors also concluded that the textbooks featured a 
considerable number of activities focusing on the exploration of contextual problems. 
On the other hand, there was little emphasis on activities that promote emergent 
modelling in terms of supporting students in developing more formal mathematical 
relations and concepts.

Mathematical and Cognitive Perspectives

The 2014 PME Forum included a discussion on mathematical perspectives and 
cognitive perspectives on models and modelling. A mathematical perspective 
was referred to as asking fundamental ontological and epistemological questions 
about the nature of modelling, especially the relationships between the real world 
and the world of mathematics. Examples of different approaches to addressing 
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issues from these perspectives are presented. However, the following three core 
questions were cited as of special importance from mathematical perspectives on 
models and modelling:

• If we view mathematical modelling as a bidirectional process of translating 
between the real-world and mathematics, what are its essential features?

• Which of those essential features differentiate mathematical modelling from 
problem solving in school mathematics?

• From the viewpoint of a practitioner of mathematical modelling, what are the 
essential competencies and habits of mind that must be developed in students 
to allow them to become competent mathematical modellers? (Cai et al., 2014, 
p. 146).

An example of modelling from this mathematical perspective includes Pelesko’s 
(2014) reference to “the art or process of constructing a mathematical representation 
of reality that captures, simulates, or represents selected features or behaviours of 
that aspect of reality being modelled” (p. 150). A “good mathematical model” was 
thus considered to be “both an instrument, like a microscope or a telescope, allowing 
us to see things previously hidden, and a predictive tool allowing us to understand 
what we will see next” (p. 150).

Connected to the mathematical perspective, the cognitive perspective focuses on 
the particular cognitive processes and abilities that come into play and facilitate 
the transforming of a real-world problem or situation from outside of mathematics 
into a mathematical counterpart. The 2014 Forum presenters were invited to address 
the following aspects regarding the cognitive perspective, although not all of these 
issues were examined, at least not in substantive detail:

• What are factors that have an impact on students’ formulation of researchable 
questions in modelling situations?

• If we view mathematical modelling as ill-structured problem solving, how 
does one convert an ill-structured problem into a well-structured problem with 
specified research questions?

• What are cognitive differences between expert modellers and novice modellers? 
(p. 147).

In addressing some of these questions, Borromeo Ferri and English (2014) 
examined the overall modelling process in terms of whether it is cyclic or linear, a 
rather frequent debate in the literature. They came to the conclusion that modelling is 
of a cyclic nature rather than rigidly linear, as is borne out in numerous studies (e.g., 
English, 2010; English & Mousoulides, 2015). Drawing on Kaiser and Sriraman’s 
(2006) classification of modelling in terms of five core perspectives, Borromeo 
Ferri and English (2014) proposed cognitive modelling as a sixth core perspective 
in addition to: “realistic or applied modelling”, “contextual modelling” that is 
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akin to the MEA approach, “educational modelling, socio-critical modelling, and 
epistemological modelling” (p. 154).

Other Perspectives on Models and Modelling

In addition to papers using and drawing on the perspectives on models and 
modelling discussed above and in the introduction to this chapter, our review of 
PME Proceedings revealed a number of other perspectives and approaches adopted 
in research focusing on aspects involving modelling.

A couple of the reviewed papers discussed modelling from what can be described 
as a French didactical tradition. For example, in their theoretical work, Bosch, 
García, Gascón and Ruiz Higueras (2006) described the evolution of the research 
domain “modelling and applications” (p. 209), using the Anthropological Theory of 
Didactics (ATD) as an analytical tool. Emerging from Brousseau’s theory of didactic 
situations (e.g. Brousseau, 1997), the theory of didactic transposition (Chevallard, 
1991), and anthropological considerations, ATD seeks to provide a unitary theory of 
didactic phenomena centred around the “conception of knowledge as a practice and 
a discourse on practice together – that is, as a praxeology – along with a pragmatist 
epistemology which gives a prominent place to praxis” (Chevallard & Sensevy, 
2014, p. 38, italics added).

Bosch and colleagues’ analysis presented the developments of research in 
mathematical modelling, with an attempt to link the different aspects of mathematical 
modelling with the various levels of codetermination provided by the ATD (e.g., 
thematic level, discipline level). The result is a proposed reformulation of the 
modelling processes from the point of view of ATD. Based on their analysis and the 
main tenets of ATD the authors claimed that all mathematical activity is a modelling 
activity by itself, and that modelling is not restricted to one aspect of mathematics. 
As a consequence, Bosch and her colleagues further proposed to reformulate the 
modelling processes as general processes of reconstruction and integration of 
praxeologies of increasing complexity.

Another interesting perspective on the difficulties and challenges secondary 
students’ might encounter when engaged in modelling was provided by Boero and 
Morselli (2009). The authors focused on the use of algebraic language in modelling 
and proving, and employed an adaptation of Habermas’ (2003) construct of rational 
behaviour to describe and analyse various groups of students’ modelling behaviour. 
By interpreting students’ modelling activity in terms of epistemic rationality 
(consisting of modelling requirements), systemic requirements, teleological 
rationality and communicative rationality, they argued that the Habermasian-based 
framework provides teachers and researchers with a set of indicators to guide 
educational design and classroom choices when students are engaged in modelling 
and proving using algebra as a tool.
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CURRICULAR AND INSTRUCTIONAL APPROACHES TO 
DEVELOPING MODELS AND MODELLING

Returning to the 2014 Forum, a number of issues related to both curricular and 
instructional approaches were raised for attention, although not all were addressed. 
In introducing the Forum, Cai empathised that in devoting an appropriate amount 
of time to mathematical modelling tasks, teachers need to consider, among others, 
which aspects of a task to emphasize, ways to organize students’ work, how to cater 
for students of different levels of expertise, and how to support students without 
thinking for them.

With respect to the curricular approaches, the following questions were highlighted 
for consideration:

• Looking within existing mathematics textbooks, are there activities specifically 
geared toward mathematical modelling?

• Is it possible or even desirable to identify a core curriculum in mathematical 
modelling within the general mathematical curriculum?

• In Common Core State Standards for Mathematics (CCSSM) in the United 
States, mathematical modelling is not a separate conceptual category. Instead, 
it is a theme that cuts across all conceptual categories. Given this orientation, 
how might mathematical modelling be integrated into textbooks throughout the 
curriculum? (2010, p. 147).

Issues pertaining to instructional approaches included:

• What does classroom instruction look like when students are engaged in 
mathematical modelling activities and what inquiry-based pedagogies have 
emerged?

• What mathematical-modelling tasks have been used in classrooms, and what 
are the factors that have an impact on the implementation of those tasks in 
classrooms? (p. 148).

Answering the above questions has been an increasingly complex endeavour and 
remains a challenge. Since the beginning of the 1990s modelling was becoming 
increasingly more emphasised in documents governing the mathematics curricula 
worldwide (Blum & Niss, 1991), a trend that has been sustained to this day (Blum 
et al., 2007). Blum and Niss (1991) proposed the following six possible modes for 
implementing modelling in the mathematics curriculum: the separation approach; 
the two-compartment approach; the island approach; the mixing approach; the 
mathematics curriculum integrated approach; and the interdisciplinary integrated 
approach.

Related to these six modes of implementation, Blomhøj and Jensen (2003) 
discussed how to best support students in developing their mathematical modelling 
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competence by juxtaposing the “two extreme positions” (pp. 128–129) of the 
holistic approach and the atomic approach. The essence of the holistic approach 
is that modelling is best learned by engaging with complex problems that demand 
the students work through the whole modelling process. In the atomic approach on 
the other hand, the students first practise the different sub-processes involved in 
modelling and analyse pre-existing models mathematically, before they engage in 
more complex modelling activities. The notions of the holistic and atomic approaches 
are also elaborated and used in a comparative study by Brand (2014), who found 
no overall significant differences between groups of students being subjected to 
teaching according to the two approaches in terms of performances measured on 
modelling sub-competencies. However, as noted earlier, depending on the level of 
students’ performance in mathematics generally, Brand’s results indicated that the 
choice of approach could have differences in terms of students’ learning outcome.

As evident from the previous section, a range of approaches to developing 
students’ modelling abilities was evident across the PME Proceedings in the period 
reviewed. On the one hand, the studies report on the possibilities and potential in 
activities and instructional sequences for students to learn modelling as a goal in 
itself, as well as a vehicle to learn specific mathematical content. On the other hand, 
the research also highlights some of the issues involved in the teaching and learning 
of, and through, modelling from both teachers’ and students’ perspectives. It is also 
apparent that the age group targeted has been predominantly the secondary years of 
schooling and beyond, with limited studies addressing younger students. Looking 
across the school levels in the PME Proceedings, there seems to be a gradual shift 
from more exploratory studies on the potential and possibilities of modelling 
(modelling as a goal in it self) at the lower levels to studies more focused on learning 
mathematical content (modelling as a vehicle) at the higher levels. We now briefly 
showcase the modelling research focusing on primary years, secondary years, and 
the tertiary level respectively.

Primary Years

One paper focusing on modelling in the primary classroom is the study by 
Mousoulides and English (2008), reviewed briefly earlier. The activity (an MEA) was 
purposefully designed so that the students needed to interpret and find relationships 
in and between, given tables of data. This task was structured to encourage students 
to explore the notion of rate and proportional reasoning, and to present and illustrate 
their results in visual and written forms. The classroom teacher gave no formal 
instruction or direct inputs to the students during their working of the activity. As 
mentioned previously, the findings revealed similar approaches to tackling and 
solving the problem by the students in the two countries. Specifically, the students 
were observed to progress through multiple modelling cycle iterations, taking into 
account more information in doing so: initially focusing on a subset of information 
leading to contradictory results, to later beginning to use mathematical operations 
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consistently on all multiple datasets, to finally identifying trends and relationships 
in the data. The authors also noted that the students spontaneously began engaging 
in self-evaluation by “constantly questioning the validity of their solutions, and 
wondering about the representativeness of their models” (p. 428), which supported 
the students to develop and advance their models in a productive way.

Mousoulides, Pittalis and Christou (2006) used a sequence of two MEAs in a 
class of twenty 11 year-olds with no previous experiences in solving problems in a 
mathematical modelling context. The two MEAs were similar in the sense that both 
activities were intended to provide the students with opportunities to develop models 
for solving problems by using statistical reasoning and to explore and organize data. 
No formal instruction was provided to the students as they engaged in the MEAs. The 
activities were implemented in the following stages (c.f. Lesh et al., 2000): students 
read an article or text with the purpose of letting the students familiarize themselves 
with the context of the MEA; a whole class discussion of the reading and readiness 
questions followed; students worked in groups of three or four on the MEAs; they 
shared and compared their work with the rest of the class; students returned to their 
groups to revise and refine their models; and a whole-class discussion on the key 
mathematical ideas and processes developed in the activity concluded the learning 
experiences.

In comparing the students’ work on the two activities the authors noted that many 
of the students were able to identify some structural elements of the problem in the 
first activity in such a way that they could transfer, modify, and apply their models 
to the second activity. The authors also stressed that “[a]n important conclusion of 
the present study is that the participating students were able to work successfully 
with mathematical modelling problems when presented as meaningful, real-world 
case studies” (p. 207). The activities and their implementation supported students 
in applying their prior and informal knowledge in approaching and analysing the 
problem, preserving students’ freedom and autonomy.

Related to the above studies, Bonotto (2009) also illustrated the potential for 
learning in modelling activities at the primary level, as we reviewed previously. 
Bonotto argued that taking an approach that explicitly draws on students’ experiences 
originating from outside school will motivate and create a genuine interest in the 
students. Her findings revealed that fifth- grade students could formulate and solve 
more original and realistic problems than normally would be found in mathematics 
textbooks. As in the study by Mousoulides and English (2008), the students in 
Bonotto’s research also spontaneously started to engage in critiquing their own and 
their peers’ work as they tried to solve the problems created in the class.

Secondary Years

Working with 12–16 year-olds in an exploratory study, Albarracín and Gorgorió 
(2012) used mathematical modelling and Polya’s (1945) four steps to introduce 
Fermi problems with a focus on problem comprehension and the application of 
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problem-solving strategies. The six problems used in the study, referred to as 
“inconceivable magnitude estimation problems” (p. 13), required students to 
estimate the value of a substantially large real magnitude that was well beyond the 
range of their regular daily experience. The problems all had or were presented in 
a real-world context. Three examples of the problems used are: How many tickets 
could we sell for a (sold-out) concert in the school schoolyard? How many people 
are there in a demonstration? How many SMS messages do Catalans send to each 
other in one day? (p. 14). The students wrote individual explanations about which 
steps they would follow to solve the problems, and were explicitly instructed not 
to make any calculations. The analysis of the procedures the students suggested 
revealed a number of different categories of strategies in solving the problems. 
Approximately half of the total number of the procedures suggested by the students 
were considered to be productive in solving the problems. The authors concluded 
that because these strategies displayed aspects of modelling, this type of problem 
could be a useful tool for introducing modelling processes into the classroom, 
supporting the argument made by Ärlebäck (2009).

Doorman and his colleagues (2009) applied a modelling framework (RME) to 
design an instructional sequence in a multimedia environment aiming to support the 
co-emergence of external representations and mathematical concepts in students’ 
learning of functions. The authors based their design on one of the principles of the 
RME perspective, namely, “[o]pen questions cast in realistic problem situations offer 
students opportunities to develop tentative situation-specific external representations. 
These representations give rise to (informal) models and new mathematical goals 
emerge” (p. 449). The authors found that the multimedia environment indeed did 
support the students in developing more formal conceptualisations of functions from 
their initial more intuitive understandings. This result illustrates what in RME is 
referred to as emergent modelling (c.f. Gravemeijer, 1999).

Adopting a refinement of Chevallard’s (1989) notion of mathematical modelling, 
Martinez and Brizuela (2009) conducted a case study analysis of three grade 
9/10 students. Chevallard (1989) originally described mathematical modelling 
as comprising three stages: (1) Identification of variables and parameters; (2) 
Establishing relationships among variables and parameters; and (3) Working the 
model to establish new relationships (Martinez & Brizuela, 2009, p. 113). According 
to Martinez and Brizuela, the non-linearity of modelling processes and the complexity 
of students’ work occur at all different stages of modelling. Their findings led the 
authors to a refinement of Chevallard’s original three stages by adding the stages 
of Interpretation of the problem and Production of competing hypotheses, to the 
mathematical modelling process.

Tertiary Level

Studies at the tertiary level include Huang’s (2012) study, reviewed previously. The 
study revealed the difficulties the university students experienced in transitioning 
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between different modes of mathematical representations and the classifications 
of variables and parameters as known or unknown, implicit or explicit, and as 
independent or dependent variables. This difficulty to transition between modes of 
representations is in line with what Kertil, Delice and Aydin (2009) concluded from 
their study of pre-service teachers engaged in modelling.

Trigueros, Possani, Lozano and Sandoval (2009) constructed a research 
framework (which Lester, 2005, would refer to as a construction scaffold) that 
incorporated a 3UV model (c.f. Trigueros & Ursini, 2003) to study how the use 
of models influenced the development of university students’ understanding of 
linear equations. This framework enabled them to simultaneously focus on the 
development of students’ conceptual tools in decision-making situations when 
engaged in a modelling problem, and the different dimensions and roles played by 
the students’ use and understanding of (algebraic) variables. The authors highlighted 
the motivating aspect of modelling and how students’ understandings of, and abilities 
to use, variables became more explicit and visible during their modelling activities, 
compared to working with more traditional activities.

In another study Trigueros and Lozano (2010) discussed the effectiveness of 
using modelling as a teaching strategy to develop university students’ ideas about 
linear dependence and linear independence. Using the APOS theory (Dubinsky & 
McDonald, 2002), the authors analysed how students’ schemas evolved during 
their work with modelling activities. The study was conducted within a course 
on Linear Algebra with 35 students in Mathematics, Engineering and Economics 
programs, in Mexico. The results showed that students’ engagement in modelling 
had a positive effect in the evolution of their linear dependence and independence 
schemas, as it provided a means for students to associate concrete meanings with 
abstract mathematical concepts. Hence, the authors concluded that the use of a 
modelling approach as a didactic strategy is useful to guide students’ acquisition of 
new concepts and modelling techniques.

Czocher (2014) studied the work of four engineering majors enrolled in a course 
on differential equations. The author addressed the cyclic nature of modelling and 
questioned whether mathematical modelling is a “regular, quasiperiodic process” 
(p. 353). Czocher transformed the modelling diagram of Blum and Leiss (2007) 
into stages of model construction and transitions among stages and produced 
MAD-diagrams (c.f. Ärlebäck, 2009). The results showed that “the mathematical 
thinking involved in mathematical model construction is not sequential nor [sic]
quasi periodic” (p. 359). Czocher thus concluded that the findings should lead to a 
revision of the conceptualisation of modelling as cyclic in nature as manifested in, 
for example, Blum and Leiss (2007).

Modelling and Project Based Learning

Some of the papers reviewed used modelling in the context of project work. For 
example, in the study of the effects of interdisciplinary project work on students’ 
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perception of mathematics, Dawn, Stillman and Stacey (2007) used a pre-post design 
and analysed the quantitative data from 409 Singaporean students aged 12–14, who 
participated in a 12–16 week interdisciplinary project. The project engaged students 
in designing an environmental friendly building and incorporated learning from 
mathematics, science and geography. Using measures from an Interconnectedness of 
Mathematics Scale and a Belief & Efforts in making Connections Scale, the authors 
found a small improvement in students’ appreciation of interconnectedness after 
participating in the project work. It was concluded that “[s]tudents after the project 
work were somewhat more likely to appreciate mutual reinforcement of learning 
among mathematics and other subjects” (p. 191). However, the analysis showed 
no positive effects of interdisciplinary project work on students’ willingness and 
initiative to actually make an effort to connect mathematics and other subjects.

Using the theoretical lens of Activity Theory, Araujo, Santos and Silva (2010) 
studied groups of students engaged in defining, developing and working on a 
mathematical modelling project. As part of their assessment in a one-semester 
university course on functions, derivatives and integral calculus, students worked in 
groups to develop mathematical modelling projects. The projects commenced with 
negotiating themes to investigate, followed by agreeing on a topic and questions to 
address, and then engaging in modelling to resolve the questions formulated. The 
paper presented data from one group of students gathered during the development 
phase of the projects, and through interviews that took place three years after the 
end of the course. By adopting the theoretical constructs of motives and objects of 
the activity from Activity Theory, the authors concluded that students had different 
motives in the activity The authors maintained that it is important to explicitly 
track the object of an activity since it is a key element in promoting expansive 
transformation (the process in Activity Theory describing learning) in the activity.

More recently, Hernandez-Martinez and Harth (2015) applied activity theory 
analysis to group work in mathematical modelling within an undergraduate 
engineering course. With a focus on the group’s social interactions, the authors 
concluded that a major factor in students’ mathematical learning during collaborative 
work is the quality of peer interactions, which is dependent on the students’ 
communication and interpersonal skills.

Returning to project work, Villarreal, Esteley, Mina and Smith (2010) reported on 
the developments of three experienced in-service secondary mathematics teachers 
from the same school, while designing a mathematical modelling project for their 
students. Specifically, defining project work in line with Blomhøj and Kjeldsen 
(2006), the aim of the study was to explore how the teachers understood, created and 
implemented mathematical modelling projects in their classrooms and the decisions 
they made during the design of the projects. Based on their results, the authors 
highlighted the time-demanding nature of designing a long-term mathematical 
modelling project. Among the difficulties the teachers faced during modelling 
project design, was the need to control and foresee possible student difficulties, the 
latter being evident at every decision they made during the design of the projects. 
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The authors also identified a ‘paradox’ in the work of the teachers: while on the one 
hand they wanted to stimulate their students, on the other hand, they provided strict 
guidelines in their proposed projects and included very few opportunities for their 
students to be creative.

Use of Technology

Researchers interested in the teaching and learning of, and through, mathematical 
modelling have tried to acknowledge both the potential as well as the challenges 
technology’s integration offers. Indeed, a number of issues regarding the place 
and use of technology in modelling were raised already by Blum and Niss (1991), 
although with reference mainly to desktop computers and computer hardware. 
More recently, however, one concrete example is provided by Siller and Greefrath 
(2010) who extended the work of Blum and Leiss (2007) on modelling cycles, 
by introducing the concept of modelling in mathematics with technology. In 
doing so, they added a “third world of technology” to the existing two worlds of 
“reality” and “mathematics”. This third world inhabited, for example, by computer 
algebra systems (CAS), spreadsheet and dynamic geometry software (DGS), 
represents the “‘world’ where problems are solved through the help of technology” 
(p. 2137). A more general theoretical conceptualisation integrating perspectives of 
mathematical modelling and technology (in a wide sense) is discussed by Williams 
and Goos (2013). In their chapter, the authors argue that mathematical modelling 
should be “conceived as adding “theoretical thinking” to real, practical problem-
solving activity” (p. 566). They use that conceptualisation to situate modelling 
and technology within a neo-Vygotskyan perspective, while they suggest that 
“mathematics inevitably […] appears alongside and even fused with, technologies 
in the solution of problems”. Williams and Goos (2013) also refer to the powerful 
contemporary technologies “which expand the language of mathematics, and allow 
learners wider scope for theoretical thinking and modelling in practice” (p. 566).

In reviewing the PME Proceedings with regard to research on using technologies 
in the teaching and learning of modelling, modelling was predominately used as a 
vehicle for learning specific mathematical content. The technological tools typically 
supported the modelling process by providing easy access to modes of manipulations 
and modes of representations, and hence technological tools could be thought of as 
a vehicle for (doing) modelling. One example is the study by Lagrange and Artigue 
(2009), who developed a grid for designing and then analysing the “potentialities, 
as a tool for functional modelling” of Casyopée (p. 467). Casyopée, a technological 
tool developed in the ReMath research project connects in a meaningful and 
curriculum related way a symbolic and a dynamic geometry window, allowing better 
“connecting and integrating theoretical frames in technology enhanced mathematics 
learning” (p. 466). The authors report on an experiment with two eleventh-grade 
classes, who worked on a teaching and learning scenario. The scenario included 
sessions on the capabilities of the environment’s symbolic window and quadratic 
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functions, on students’ knowledge of geometrical situations, and on students’ work 
with the software to activate their algebraic knowledge for solving an optimization 
problem. The authors concluded that although general theories of mathematics 
education are influential, it is necessary to develop “local frames, like the grid”, 
in “piloting in a precise way the design of artefacts or the use of these” (p. 471) in 
solving modelling problems.

Son and Lew (2006) showed how tenth-grade students worked in a spreadsheet 
environment to model the effects on the concentration of chlorine in a swimming 
pool with different initial concentrations of chlorine and different sized daily-added 
doses of refills. The students were reported to successfully use pencil and paper to 
derive the basic algebraic recurrence formulas, but that these relationships conveyed 
little meaning and understanding for the students. However, by using a spreadsheet 
environment to investigate the derived formulas to produce tables and graphs, the 
authors claim the students were able to more accurately understand the meaning of a 
model of how the chlorine concentration varied in the different scenarios. As well as 
concluding that with respect to time, the concentration of chlorine did not depend on 
the initial amount of chlorine in the swimming pool, but that the long time behaviour 
only depended on the daily amount of chlorine added, the students were also able to 
use their generated tables and graphs to justify this claim.

GENERIC PROCESSES SUCH AS METACOGNITION AND AFFECT

Also featured in the PME papers was a focus on generic processes, with metacognition 
and affective issues being prominent.

Cognitive and Affective Issues

As noted in the introduction to this chapter, modelling is considered to involve 
many higher-level skills. Dahl (2009) illustrated this feature in her analysis of 
the eight mathematical competencies developed in the Danish KOM project 
(e.g., Niss & Jensen, 2002). Based on the five distinct levels of understanding 
of the SOLO Taxonomy, Dahl defined a competence progression and used this 
on the stated intended learning outcomes in curricula documents ranging from 
compulsory to tertiary level. In terms of this framework, the modelling competence 
and sub-competencies describing what it means to do mathematical modelling are 
all categorized as level 4 or level 5. Related to these are affective dimensions of 
mathematics and modelling, dimensions that are often not easy to change. This 
issue is illustrated in the results by Dawn, Stillman, and Stacey (2007) on the effects 
of interdisciplinary project work on students’ perceptions of mathematics. Their 
results indicated that engaging in a 12–16 week interdisciplinary project did not 
have a positive effect on students’ beliefs about mathematics and its relationship to 
other subjects, nor on students’ willingness to make an effort to connect mathematics 
to other subjects.
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Schukajlow and Krug (2012) focused on both cognitive and affective issues in the 
context of modelling in a series of papers presented in the reviewed PME proceedings. 
At PME 36, the researchers considered the essence of a modelling activity to be 
“simplifying a complex situation that is presented in the task, mathematizing and 
working mathematically to reach a mathematical result” (p. 60). They completed 
a quasi-experimental study that investigated 138 German 9th graders’ values, self-
regulation, and self-efficacy expectations before and after a five lesson intervention. 
The intervention focused on teaching advocating single or multiple solutions to 
modelling tasks. The students were divided into two groups that were subjected to 
two different teaching scripts centred around working with modelling problems. 
One script emphasised multiple solutions and different results as a consequence 
of students’ making different estimates of missing data combined with explicitly 
prompting them to find more than one solution. In the second script, the emphasis 
on multiple solutions was lacking. Five-point Likert scales were used to measure 
students’ self-perceptions: self-regulation (6 items); self-efficacy (4 items); and value 
(3 items). Although the five lesson intervention improved students’ self-regulation, 
self-efficacy and values in both groups, the analysis showed no significant statistical 
differences between the two groups in the students’ values, their self-regulation, 
or their self-efficacy. However, the authors found significant statistical differences 
between the numbers of solutions the students developed in the respective groups. 
It was concluded that encouraging students to find multiple solutions while solving 
modelling problems is a worthwhile strategy, which has a positive impact on their 
self-image and values.

The very same research setting was also used in the paper by Schukajlow and 
Krug presented at PME 37 (Schukajlow & Krug, 2013). This time the authors aimed 
to explore whether treating multiple solutions while solving modelling problems 
results in more frequent planning and monitoring activities, and whether the 
development of multiple solutions has a positive influence on students’ planning 
and monitoring activities. By using a questionnaire on planning and monitoring 
developed by Rakoczy, Buff and Lipowsky (2005), the authors concluded that there 
is a positive influence of treating and developing multiple solutions on students’ 
planning and monitoring activities.

In the second study by Krug and Schukajlow-Wasjutinski in the 2013 PME 
proceedings (Krug & Schukajlow-Wasjutinski, 2013), the focus was on examining 
students’ interest in working with tasks connected to everyday situations. The 
participants in the study were 9th and 10th grade students from Germany, who 
were randomly assigned to two experimental groups. Both groups were assigned 
12 problems: four modelling problems; four word problems; and four intra-
mathematical (pure mathematical, without any connection to reality) problems. 
Students in experimental group 1 first solved problems and then reported on their 
task-specific interest regarding these problems, while students in the second group 
first reported on their task-specific interest, and then solved the tasks that were used. 
The authors concluded, in contrary to previous research findings (see for instance 
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Schukajlow, Leiss, Pekrun, Blum, Müller, & Messner, 2012), that students have 
lower interest in modelling problems than in the other two types of problems. A 
suggested reason for this finding is that students do not regularly solve modelling 
problems in the mathematics class, and may be unsure of their ability to solve such 
problems. Comparing the measures of the two groups, the analysis also showed that 
task-specific interest across all types of problems decreases if measured after the 
tasks have been worked on.

Creativity

The interplay between mathematical modelling and creativity is a theme that has 
been explored in a series of co-authored papers by Gilat and Amit (Gilat & Amit, 
2012; Gilat & Amit, 2013; Amit & Gilat, 2013; Gilat & Amit, 2014). In a case 
study investigating the potential of real-life modelling activities in simulating 
students’ creativity, Gilat and Amit (2012) analysed the work of two mathematics 
high achieving students (aged 10 and 13) as they individually engaged in two 
sequences of modelling activities. The data collected and analysed consisted of 
researchers’ notes of students’ working of the modelling activities, recordings 
of the presentations of the students’ working together with the discussion that 
followed, and recorded post-interviews with the students. The students were found 
to iteratively refine their thinking and models through multiple cycles; results 
were presented in terms of cognitive- and affective characteristics involved in the 
students’ modelling processes. Cognitive characteristics identified were flexibility, 
combination, and analogy whereas the affective characteristics were motivation 
and interest, self-efficacy and perspective, and metacognition and self-reflection. 
The authors concluded that “[t]he findings clearly show some cognitive and 
affective characteristics that could establish the foundations for creative process 
development methodology using MEAs” (p. 272). It was suggested that working 
with non-routine modelling problems, like MEAs, can simulate students’ creativity 
in solving problems using mathematics.

Along the same lines, Amit and Gilat (2013) analysed the creative thinking of 
85 mathematically gifted students (5th–7th grade) in terms of fluency, flexibility, 
originality, and elaboration. The results revealed that student engagement in the 
modelling process encouraged the students to utilise their fluent thinking skills, 
as well as to stimulate students’ elaboration skills, including refinement and 
generalization.

To investigate the more long-term effects on students’ creativity of engaging 
in modelling activities, Gilat and Amit (2013) conducted an experiment involving 
71 school students (5th–7th grade) who were members of a mathematics club for 
gifted students. The participants were divided into an experimental/intervention 
group (47 students) and a control group (24 students). Students in the intervention 
group worked with modelling activities for a period of 9 months, while students in 
both groups worked with other mathematics and creativity enrichment activities. 
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By using the Torrance Test of Creative Thinking (TTCT), the authors adopted a 
pre- post- test design to examine the possible impact of the students’ engagement 
in the modelling activities. The analysis revealed that students in the experimental 
group scored significantly higher on the creativity test than students in the control 
group, although both improved their scores. Further, the results also indicated that 
the girls in the experimental group were more creative than the boys, although these 
differences were not tested for statistical significance.

The paper by Gilat and Amit (2014) presented at the joint conferences of PME 
38 and PME-NA 36 is a continuation of their paper from PME 37 that aimed to 
further reveal the cognitive abilities exhibited by students engaged in a creative 
modelling activity. The paper elaborates rather extensively on the methodology of 
the study as well as on the different phases in the qualitative analysis undertaken. 
An intervention study with 71 gifted students (5th–7th grade) participating in 75 
minute weekly sessions in a mathematics club, including four workshops based 
on MEAs, was implemented. The data collected included videotapes, classroom 
observation, and modelling products. The iterative and interpretative analysis of 
the data yielded three core categories and a number of subcategories describing the 
cognitive abilities that the students applied and activated as they engaged in the 
modelling activities. The categories identified were mathematical appropriateness 
(consisting of the three subcategories of knowledge, documentation, and utility), 
mathematical resourcefulness (with the subcategories involving fluency, flexibility, 
and elaboration), and inventiveness or originality. The authors claimed that the 
findings may provide both a better theoretical and practical understanding of the 
larger concept of mathematical creativity.

Parental Engagement

Another somewhat different affective dimension was studied by Mousoulides 
(2014) in his paper Using Modeling-Based Learning as a Facilitator of Parental 
Engagement in Mathematics: The Role of Parents’ Beliefs. Mousoulides reported 
on the findings from a large study on “connecting mathematics and science to the 
world of work by promoting mathematical modelling as an inquiry based approach” 
(p. 263). He focused on: (a) parents’ beliefs about inquiry-based mathematical 
modelling and parental engagement, and (b) the impact of a modelling-based 
learning environment on enhancing parental engagement. Mousoulides presented 
the results from semi-structured interviews with 19 parents from one elementary 
school. He found that parents hold strong positive beliefs on engagement in their 
children’s learning, an appreciation of the modelling approach for bridging school 
mathematics and home, and a strong willingness to collaborate with teachers when 
they integrate modelling in their teaching. With regard to the research on parental 
engagement in school (mathematics), the author claimed that there is a need for 
researchers to expand their definitions of such engagement towards a dimension 
related to the inclusion of modelling and inquiry based initiatives.



L. D. ENGLISH ET AL.

404

MODELS AND MODELLING IN TEACHER EDUCATION

Returning to the 2014 PME Forum, further issues for consideration were raised with 
respect to teacher education, namely:

• Are there programs worldwide which successfully support pre-service and in-
service teachers to teach mathematical modelling, and what are the features of 
these successful programs?

• What level of familiarity with disciplines other than mathematics is it necessary 
for pre-service and in-service teachers to have in order to successfully teach 
mathematical modelling? (p. 148).

Within the studies of teacher education examined, there were few that addressed 
interdisciplinary or extra-mathematical knowledge requirements for successfully 
teaching mathematical modelling directly. As the Forum noted, it is well documented 
that teachers have difficulties with mathematical modelling given that teaching 
becomes “more open and less predictable” when students engage in such activities 
(p. 148). The Forum concluded that initial and in-service teacher training, as well 
as curriculum documents, has tended not to provide opportunities for making 
mathematical modelling an integral component of students’ learning.

In providing some initial thoughts on teacher education, Stillman and Kwon 
(2014, p. 165) reviewed related research including studies of interdisciplinary or 
extra-mathematical knowledge requirements for teaching modelling. Few such 
studies addressed these requirements directly, although several did allude to 
the necessity for teachers, including those in elementary classrooms, to have the 
background knowledge to develop their students’ modelling abilities. Other findings 
have suggested that pre-service teachers tend to isolate modelling from the real-
world situation in focus, or activated their real-world knowledge and attempted to 
incorporate this into their modelling (Widjaja, 2013).

In another study in the 2014 Proceedings, Barabash, Guberman, and Mandler 
addressed the depth of knowledge required by primary school teachers in learning 
modelling. Focusing on interdisciplinary perspectives of expert mathematics 
teachers in primary school, the researchers investigated the question: Is “deep 
mathematical knowledge of primary school mathematics a necessary basis for the 
understanding of the concept of mathematical model?” (p. 90). They concluded 
that successful teachers of modelling demonstrated “higher levels of mathematical 
insight” and that a deeper understanding of the required mathematical knowledge 
is needed (p. 94).

RECOMMENDATIONS FOR ADVANCING THE FIELD

The aim of this chapter has been to provide an overview of the research presented in 
the PME proceedings during the period 2005–2015, focusing on issues pertaining 
to the teaching and learning of, and through, mathematical modelling. Based on the 
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research reported in the PME community, we now close this chapter by suggesting 
a few challenges and possibilities for the research field in the near future.

Broadening Models and Modelling within Multidisciplinary Contexts

Reflecting critically on the 14 research questions posed in the 2014 PME Forum 
on mathematical modelling, it could be concluded that some advances have been 
made during the last past decade by the research field as a whole. There remain, 
however, many questions in need of further attention. It is beyond the scope of this 
chapter to identify more than a few of these; indeed, questions regarding models and 
modelling evolve as the world changes. Furthermore, issues for further attention 
depend in large part on the meaning and conceptualisation of mathematical models 
and mathematical modelling. Some questions worthy of consideration include: Do 
we need to rethink how we conceive of models and modelling, especially given 
their increased prevalence in today’s world? How are they interpreted and applied 
in addressing local and global issues? One only has to reflect on the increased 
applications of modelling in efforts to understand and predict core national and 
global events. Indeed, modelling is an essential tool in so many aspects of our 
lives: predicting the national impact of economic downturns, forecasting growth 
in business and industry, and anticipating the consequences of dam spillage during 
heavy rains, are only a few examples.

The increased global prevalence of models and modelling was highlighted in a 
recent chapter on “Problem Solving in a 21st-Century Mathematics Curriculum” 
by English and Gainsburg (2016). They emphasised the importance of developing 
students’ appreciation of how models are represented mathematically and 
technologically in many fields, including engineering, finance, manufacturing, and 
agriculture. Given that so many aspects of modern life have been mathematised using 
modelling, students need to be aware of, and understand how, such mathematisation 
shapes their daily lives.

In helping students become more mathematically aware, English and Gainsburg 
recommended selecting contexts that approximate real-world situations and 
foster students’ appreciation of learning through classroom problem solving. 
This recommendation supports one issue we consider in need of further research, 
namely, the increased use of interdisciplinary contexts. Such contexts would 
appear especially important with the increased focus on STEM education, in 
particular, from an integrative perspective (e.g., US STEM Taskforce Report, 
2014; Vasquez, 2014). The Report adopts the view that STEM education is far 
more than a “convenient integration” of its four disciplines, rather, it encompasses 
“real-world, problem-based learning” that links the disciplines “through cohesive 
and active teaching and learning approaches” (p. 9). The Report argues that the 
disciplines “cannot and should not be taught in isolation, just as they do not exist 
in isolation in the real world or the workforce” (p. 9). Mousoulides and English 
(2011) expressed similar sentiments: “How we might assist students in better 
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understanding how their mathematics and science learning in school relates to the 
solving of real problems outside the classroom and how we might broaden students’ 
problem-solving experiences to promote creative and flexible use of mathematical 
ideas in interdisciplinary contexts?” (p. 25).

One example of how this challenge might be met is through the selection of 
appropriate engineering contexts. Engineering and engineering practice provide an 
ideal basis for creating problems that are meaningful to students and enable them 
to see how their school learning of mathematics, science, and technology relates 
to real-world problems (e.g., Barrett, Moran, & Woods, 2014; English, 2015a; 
English & Mousoulides, 2015; Moore, Stohlmann, Wang, Tank, Glancy, & Roehrig, 
2014). Further research is needed that explores how interdisciplinary contexts can 
foster students’ appreciation and learning of models and modelling, including ways 
in which modelling is increasingly evolving in many domains.

In addressing more interdisciplinary contexts, consideration also needs to be 
given to modelling with younger learners. Traditionally, modelling has not featured 
prominently in the elementary grades despite research showing young learners’ 
capabilities in this area (e.g., English, 2015b; Lehrer & Schauble, 2000, 2002, 
2012; Mousoulides & English, 2011). The elementary school years are ideal for 
implementing interdisciplinary modelling problems, given the rich contexts of 
numerous cross-curricular themes and investigative topics. For example, students 
can develop models for improving the water quality of their local creek, for designing 
the reconstruction of damaged bridges, for sourcing water during shortages, and for 
assessing the impact of cyclones in selecting suitable new coastal resort site (e.g., 
English, 2009, 2015b; English & Mousoulides, 2015). Lehrer and Schauble’s work 
(e.g., 2005; 2015) provides further rich examples of how younger learners can deal 
with modelling problems in interdisciplinary contexts with a particular focus on 
science and mathematics.

Greater and More Effective Use of Technologies

A number of advances in technology are available today, many of which are highly 
relevant for modelling and its applications. Research has shown how technology 
can play a pivotal role in supporting and promoting mathematical modelling (e.g., 
Gravemeijer, Lehrer, Van Oers, & Verschaffel, 2013; Hamilton, Lesh, Lester, & 
Brilleslyper, 2008; Lagrange & Hoyles, 2009; Mousoulides, 2013; Mousoulides, 
Christou, & Sriraman, 2008). Yet there is still limited emphasis on the affordances 
of technology among the PME contributions (e.g., Son & Lew, 2006; Doorman 
et al., 2009). The question remains why technology’s infusion in modelling is still 
limited, even when research claims that computer-based learning environments can 
contribute to developing students’ modelling competences (Mousoulides, 2013).

In his discussion document on the ‘ICMI Study 14: Applications and modelling 
in mathematics education’, Blum (2002) stated a significant question, which still 
remains unanswered: “How should technology be used at different educational 
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levels to effectively develop students’ modelling abilities and to enrich the students’ 
experience of open-ended mathematical situations in applications and modelling?” 
(Blum, 2002, p. 167).

In trying to provide some guidelines for answering aspects of Blum’s (2002) 
question, it might be useful to think of the availability of contemporary tools, including 
a broader definition of technologies, not just software. At the software level, recent 
advances in the use of dynamic geometry environments (e.g., Sketchpad, Geogebra, 
Cabri), programming tools for younger students (e.g., Scratch), simulation and 
microworld environments (e.g., Simcalc), and spreadsheets open new venues for 
rethinking the teaching and learning of modelling, especially when considering that 
a number of these environments (e.g., Simcalc, dynamic geometry environments) 
are rich enough, to be considered as modelling activities by themselves. At the 
hardware level, advances in virtual and augmented reality, 3D representations, data 
loggers (virtual labs), tablets and mobile devices, make it easier to rethink the use of 
technology in the teaching and learning of mathematical modelling.

The above technology can facilitate students’ modelling in numerous ways. For 
example, computer programming environments for younger students, dynamic 
geometry, and computer algebra systems can be used to simulate and model a real- 
world problem, with simulations examining the various parameters in a model. 
Further, using data logging equipment provides an opportunity to collect data to 
validate models, especially when students deal with problems that involve real-life 
data. Virtual and augmented reality environments can be used to engage students in 
complex mathematical modelling situations, thereby facilitating greater access to 
abstract and quite difficult mathematical ideas and processes.

Of course, using technology in the teaching and learning of mathematics can 
be a complex process in itself (e.g., Artigue, 2002; Lagrange & Artigue, 2009; 
Lagrange & Hoyles, 2009; Vandebrouck, Monaghan, & Lagrange, 2013). It is not 
a simple matter of making available computers and software to school children and 
teachers, rather, we should be careful not to lose sight of the mathematical modelling 
processes per se.

To better examine the complexity of integrating technology into classrooms there 
is a strong need for longitudinal studies with mathematics teachers and students who 
use technology in mathematical modelling. There is also the need to design studies 
that use mixed research methods to examine how modelling processes are influenced 
by the use of technological tools (e.g., Lagrange & Hoyles, 2009; Mousoulides, 
Sriraman, & Lesh, 2008). Studies can also address whether some modelling processes 
cannot be developed without technology (Blum, 2002), as well as investigations that 
explore the variations in students’ developed models when using (or not using) tools 
like augmented reality or microworlds/ programming environments.

As this chapter has attempted to show, the PME research community has been 
active in the field of models and modelling over the past decade, opening up new 
avenues for further work. We have highlighted just a few areas of the many that 
warrant increased attention from the international community. With models and 
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modelling becoming more pervasive throughout societies as they grapple with 
increasingly diverse and pressing global challenges, the importance of models and 
modelling as a core curriculum component cannot be underestimated.
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12. RESEARCH ON MATHEMATICS-RELATED 
AFFECT

Examining the Structures of Affect and Taking the Social Turn

INTRODUCTION

In the first Handbook of Research on the Psychology of Mathematics Education 
(Gutiérrez & Boero, 2006) Gilah Leder and Helen Forgasz began the chapter on 
Affect and Mathematics Education with an overview of research on affect outside 
and before PME. They noted that, although affect has often been claimed to 
be somewhat forgotten, there has been continuous interest in this field since the 
1920’s. Looking at this history they identified three phases of research – the first of 
which was focussed on observable facets of affect, measurement of attitude, and its 
relation to behaviour. The second phase shifted the focus on the role of cognition 
in the structure and shaping of attitudes. And the last phase has been studying the 
structure and function of affective systems. These same phases were reflected also 
in PME research on mathematics related affect. They also identified that there were 
four repeated themes in PME affect research: measurement of affective factors, 
descriptive studies, comparisons of affective and cognitive variables, and a small 
number of theoretical papers. They also observed some decline of PME research on 
affect over the period 1996–2005.

In this chapter, we review the more recent development of affect research in PME 
proceedings from 2005–2015. First, we discuss how relevant articles were selected 
for inclusion in this chapter. For the years where author indicated domains of 
research were included we used these to identify relevant papers. For the remaining 
proceedings we used careful reading of article titles and keyword searches of the 
electronic proceedings. After closer reading and deliberation we made the final 
selection for inclusion or exclusion of papers. For example, we excluded papers that 
focussed on student conceptions from a cognitive perspective. The result was a total 
of 188 Research Reports and papers from two Research Fora spanning the period 
2005–2015.

From these 188 papers we attempted to extract information regarding a) the 
theoretical frameworks that were used, b) the findings regarding some classical 
questions of affect research, c) any new research questions or areas of interest 
that may have emerged, and d) the methodological approaches used to study 
mathematics related affect. More specifically, for each paper we identified the key 
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concepts and theoretical framework used, the methodological approach and research 
design, the number of research subjects and their grade level, and the key affect 
related conclusions. Not all papers had a clearly explicated theoretical frame and 
the research design was sometimes difficult to determine. These difficulties may be 
partly due to the constraints posed by PME format.

From this analysis a number of themes emerged pertaining to both classic 
questions and new interests in affect research. In what follows, we present the results 
of this analysis in the form of these themes.

IN SEARCH OF A SHARED THEORETICAL FRAMEWORK

In the research of mathematics related affect, the lack of a shared terminology has 
been raised repeatedly (e.g., Furinghetti & Pehkonen, 2002; Hannula, 2011, 2012; 
McLeod, 1992). This same issue was an important element in the PME 2004 research 
forum on affect, where Gerald Goldin (2004) said:

We do not now have a precise, shared language for describing the affective 
domain, within a theoretical framework that permits its systematic study. 
(p. 109).

In their chapter in the first handbook, Leder and Forgasz (2006) also discussed 
the issue of concepts and their definitions. Drawing from research within and outside 
mathematics education, Leder and Forgasz listed concepts used for researching 
affect and presented several definitions. Specifically, they presented McLeod’s 
(1992) classification of mathematics related affect research into domains of beliefs, 
attitudes and emotions and Goldin’s (2002) definition for emotions, attitudes, beliefs 
and values, ethics and morals as the four subdomains of affect. They also discussed 
the variety of definitions given for attitude.

Over the ten years of PME that are the focus of this review, research on 
mathematics-related affect has continued to use these concepts frequently and 
often either explicit or implicit reference was made to McLeod’s or Goldin’s 
frameworks. While some papers address the issues of defining these constructs more 
specifically, more thorough theoretical discussions have often taken place outside 
of PME publications. We make reference to these publications, when the echoes 
of these discussions can be heard in PME papers. In what follows we organize our 
discussion of definitions around McLeod’s (1992) categories of beliefs, attitudes, 
and emotions, adding to this the category of motivation as an important category 
(Hannula, 2011, 2012).

Resolving the Conflict between Attitudes and Beliefs

According to Hannula (2011, 2012), one of the key problems in the terminology 
of mathematics related affect is the incompatibility of the two most frequently 
used concepts – attitudes and beliefs. While McLeod (1992) identified beliefs and 
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attitudes as two main domains of affect, definitions of attitude typically see beliefs 
as an aspect of attitude.

In their 2010 journal article Di Martino and Zan (2010), in an effort to organize 
the different definitions for attitude in mathematics education, identified three 
types of definitions: (1) attitude as positive or negative degree of affect, (2) 
emotions and beliefs as two components of attitude, and (3) attitude as consisting 
of cognitive (beliefs), affective (emotions), and conative (behaviour) dimensions 
(see also Zan & Di Martino, 2009). This tripartitive attitude framework has 
been used in PME articles (e.g., Barmby & Bolden, 2014) and there is strong 
empirical support for the framework. For example, Pampaka and Wo (2014) used 
a Rasch model and data from multiple surveys with total of 17,448 respondents 
to identify the dimensions of attitude. Their results confirmed that attitude could 
be decomposed into the affective, conative, and cognitive components. How it is 
used in the literature is, however, not always clear – is it being used as an umbrella 
term or as a narrower concept? When attitude is used as an umbrella term, beliefs 
are one subcategory of it. However, when the term attitude is used in the narrow 
sense, attitudes and beliefs are two separate categories of affect.

Critically on Beliefs

Influential frameworks for research on mathematics-related beliefs are Bandura’s 
(1977) self-efficacy (e.g., Chang & Wu, 2012, 2014; Panaoura, Gagatsis, 
Deliyianni, & Elia, 2009) and Ernest’s (1989) view of mathematics (e.g., Beswick & 
Callingham, 2014; Erens & Eichler, 2013, 2014; Halverscheid & Rolka, 2007). 
However, these frameworks seem to be fairly fixed and we found no attempt to 
develop these frameworks further. We found two theoretical papers that elaborated 
the concept of teacher’s beliefs in more detail. Both of these were critical of the 
notion of inconsistency between teachers’ beliefs and practices.

O‘Donovan (2015) proposed a simple definition for beliefs as “what people think 
(or hope) are true (or probably true)” (p. 307), which—as he acknowledges—is not 
a new definition for beliefs. What is more interesting is his discussion of Fives and 
Buehl (2012) taxonomy on how beliefs influence teacher action in three different 
ways:

[as] interpretive filters – a layer of unconscious assumptions or habits that 
implicitly filter experiences and perception; frames within which problems 
are dealt with – this is the level at which ideological beliefs define or frame 
problems and situations that arise; and, action guides which motivate teachers 
to act. (pp. 307–308)

He then discussed the apparent discrepancy between teacher beliefs and teacher 
behaviour, pointing out that beliefs “need not be connected in a rigorously logical 
and coherent system either” (p. 309). Rather, he supports Thagard’s (2000) analogy 
of “beliefs being like rafts floating at sea forming mutually supportive clusters, as 
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opposed to being arranged hierarchically” (p. 309). He also discussed how behaviour 
need not be wholly driven by beliefs. If behaviour is merely influenced by beliefs, 
it allows for other internal or external non-belief factors to also influence actions, 
providing an explanation allowing consistency of teacher beliefs.

Skott (2010), posed an even more fundamental criticism towards the traditional 
belief research. His main criticism was targeted at the explanatory model provided 
for the discrepancies between teachers’ beliefs and practices. Skott saw belief 
research as assuming (teacher) beliefs to be objectified (Sfard, 2008), and having 
an impact on their practice, and that this assumption leads to blaming teachers for 
being inconsistent and not enacting their espoused beliefs. He recommended belief 
research to “make a social turn” and focus on teacher patterns of participation and to 
redefine beliefs as “value-laden, reified patterns of participation” (p. 198). We will 
return to the issue of social turn later.

Expanding Emotions

One of the recent developments of research on emotions is to study several different 
emotions in one study. The Leder and Forgasz (2006) review did not find reason to 
discuss variation in emotions beyond the positive – negative dimension. However, 
we found an increasing interest in the multidimensionality of emotions in research 
presented in the last 10 years of PME. One influential source for these elaborations 
has been Pekrun’s (e.g., Pekrun, Elliot, & Maier, 2006) framework of academic 
emotions (e.g., Heinze & Frenzel, 2010; Schukajlow, 2015). Further, Pesonen and 
Hannula (2014) traced these roots of multidimensional view of emotions further 
back to the literature of basic emotions (e.g., Ekman & Friesen, 1971). Another 
approach to multidimensionality of emotions has been Goldin, Epstein and Schorr’s 
(2007) framework of archetypal affective structures (Alston et al., 2008).

Heinze and Frenzel’s (2010) study was exceptional also because of their focus on 
the relationships between trait and state type emotions. They found trait mathematics 
enjoyment to correlate with state mathematics enjoyment in mathematical 
and educational contexts and trait mathematics anxiety to correlate with state 
mathematics anxiety in mathematical context. However, state mathematical anxiety 
had no correlation with other mathematics anxiety variables.

Multiple Motivations

In McLeod’s (1992) framework motivation was perceived as a somewhat hidden 
subdomain of beliefs. This may explain why motivation was not, for a long time, a 
popular concept in mathematics education. Recently it seems to have gained more 
popularity in our field. Motivation research is conceptually diverse (Murphy & 
Alexander, 2000), and the diversity is reflected also in PME.

In our review, we found four main directions of research on motivation. First, 
there was research (primarily by Cypriot researchers) based on achievement goal 
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theory, which typically measures students’ inclination to focus on performance 
goals or mastery goals (Athanasiou & Philippou, 2006, 2009; Hannula & Laakso, 
2011; Marcou & Philippou, 2005; Mousoulides & Philippou, 2005; Pantziara & 
Philippou, 2006, 2007, 2009; Porras, 2012). We found also research that looked at 
student needs and goals more qualitatively. For example Erens and Eichler (2014) 
identified a multiple-layered hierarchical system of goals explaining teacher 
choices when teaching calculus, while Naresh and Presmeg (2008) analysed goals 
behind a bus conductor’s practice and motivation and Zazkis and Nejad (2014) 
analysed teachers’ perceptions of students’ intellectual needs. There was a number 
of studies which applied Schoenfeld’s (1998, 2010) framework for “goal oriented 
decision making” (Hannah, Stewart, & Thomas, 2013; Paterson, Thomas, & 
Taylor, 2011; Thomas & Yoon, 2011). The third important approach to motivation 
was to explore mathematical values (Bishop, 2001). Many of these papers came 
from the Third Wave project (Andersson & Österling, 2013; Seah, 2007, 2011, 
2013; Seah & Ho, 2009; Seah, Zhang, Barkatsas, Law, & Leu, 2014), but not 
all (Frade & Machado, 2008; Lin, Wang, Chin, & Chang, 2006; Wang & Chin, 
2007). The last significant category we found were studies that conceptualized 
motivation as interest (Krug & Schukajlow-Wasjutinski, 2013; Olson, Slavin, 
Olson, Brandon, & Yin, 2010; Rach & Heinze, 2011; Schukajlow 2015). Moreover, 
there was one study that used the extrinsic–intrinsic distinction in their analysis 
(Zeybek & Galindo, 2011).

THE SOCIAL TURN IN AFFECT RESEARCH

The ‘social turn’ in mathematics education (Lerman, 2000) highlighted the need 
to address mathematics-related affect through social theories. Hannula noted that 
“emotions are, by their very nature, linked closely both to the biological human body 
and to social systems” (2012, p. 155) and used this as an argument to acknowledge 
three different levels for theorizing about affect: the embodied, the psychological, 
and the social. In our review, we found an increased use of social theories in PME 
research reports and research fora.

Identity

One often appearing concept used in research on mathematics related affect 
over the last ten years has been identity. Many of the studies focused on identity 
construction and how it is influenced by peer interaction (Kotsopoulos, 2009), 
specific mathematical tools (Chorney, 2011) and practices in actual classroom life 
(Heyd-Metzuyanim, 2013). This social construction of identity was highlighted 
in studies also where ethnicity is at play (e.g., Mulat & Arcavi, 2009; Gorgorió & 
Prat, 2013)

Several papers have also discussed the bridging between the social identity 
theories and earlier theories of beliefs and attitudes. For example, Ingram (2009) 
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used a grounded theory approach to recognize students’ identifying stories in a study 
where she followed the same students for several years. She concluded that students 
engage in mathematics when their perceptions of what they want to achieve has 
not yet been realized. These perceptions are affected by the students’ views about 
mathematics, the context of the moment and the students’ feelings about being able 
to do mathematics. In other words, students’ beliefs about mathematics and self are 
important factors in their identity formation.

The bridging between the individual affect and the social identity was explicitly 
discussed in the 2010 Research Forum Identity and Affect in the Context of Teachers’ 
Professional Development (Frade, Rösken, & Hannula, 2010). The forum discussed 
a spectrum of theoretical and methodological perspectives, including the structured 
nature of affect and beliefs (Goldin, Rösken, & Törner, 2010), Lacan’s model of 
subjectivity and new teacher identity (Brown, 2010), the social nature of affect and 
a pragmatist perspective on identity formation (Frade & Meira, 2010), present and 
ideal teacher identity (Krzywacki & Hannula, 2010), and local and global affective 
structures (Gómez-Chacón, 2010). The Research Forum suggested the different 
theoretical frameworks to be complementary to each other rather than contradictory. 
Several contributions emphasized the inherently dynamic nature of identity. 
Krzywacki and Hannula (2010) wrote about positions available in the social context 
and a continuous negotiation between how one perceives oneself and the positions 
that are available. Based on a pragmatist perspective and on Vygotsky’s ideas, 
Frade and Meira (2010) provided a social theory that emphasizes discourse and 
semiotic spaces. Their perspective strongly rejects a dichotomy between “individual 
realms” and “social fields”, and they see both identity and affect as a combination 
of contingency and circumstance of social intercourse of the individual’s activity 
and life. Moreover, they share Gee’s perspective of people having multiple only 
temporally stable identities connected to “their performances in society” (Gee, 2000, 
p. 99 cited in Frade & Meira, 2010, p. 263).

Aside from the aforementioned research forum, Österholm (2009) approached 
the bridging of individual and social differently. He took two theoretical constructs, 
one individual (epistemological beliefs) and another social (communication) and 
analysed these systematically trying to create a coherent theoretical foundation 
for the study of relations between the two constructs. He concluded that it 
seems possible to join the theories of epistemological resources and discursive 
psychology, and presented some necessary additions and clarifications: (1) to 
include a model of the structure and utilization of mental representations, (2) 
that mental representations are primarily seen as describing the memory of prior 
experiences, and (3) that the utilization of prior experiences is seen as a central 
aspect of the contextualization of discourses. This suggested unification of theories 
was therefore seen as a good starting point for a continued development of theory 
and for future empirical studies.
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Norms

Another approach to the social nature of affect, has been through the 
sociomathematical norms, which were originally introduced by Yackel and Cobb 
(1996). For example, Toscano, Sánchez and García (2013) identified five socio-
didactic mathematical norms. Three of them were in some way related to the 
mathematical content and its learning and the other two are related to teachers’ role. 
Gilbert and Gilbert (2011) reported about developing effective sociomathematical 
norms in classrooms to support mathematical discourse and found that teachers 
who engaged students in the culturally relevant oral tradition of “talk-story” were 
better able to initiate and sustain a level of discourse that extended student learning. 
Liljedahl and Allan’s (2013) study can also be seen as an exploration of classroom 
norms. They used Fenstermacher’s (1986) concept of “studenting” to address those 
student behaviours that are not related to intentional learning. They described how 
grade 10 students were finding ways to game the norms the teacher was trying to 
establish in the class.

We also noted that researchers who use activity theory (e.g., Engeström, 1987) 
pay attention to affective factors, such as norms, but they often treat affect as a 
peripheral factor in their framework (e.g., Andrà & Santi, 2013; Goodchild, 2013; 
Tomaz 2013). On the other hand, Asnis (2013) successfully combined activity theory 
and identity theory to study teachers’ professional identity from a sociopolitical 
perspective.

Other Approaches

In addition to the social turn, Hannula (2011, 2012) identified the potential to research 
affect as a physiological phenomenon using embodied theories. So far, this has been 
rare. Andrá (2010) explored the non-linguistic modes of communication, such as 
body posture, prosody, and gesturing. From an explicitly embodied perspective, 
Cimen and Campbell (2012) measured psychophysiological data including 
electrocardiography (EKG) and respiration rate, which allowed them to observe the 
levels of relaxation of their research subject.

PME researchers have also introduced other frameworks for research on 
mathematics-related affect that do not fit within any of the above. For example, Ng 
and Andersin (2011) used the concept teacher empathy, and specifically mathematical 
empathy. They concluded that prospective teachers are empathetic in nature, and that 
they are able to relate affectively to struggling students. Yet, they rarely are able to 
relate cognitively.

Williams (2010, 2011, 2013) used Seligman’s (Seligman, Reivich, Jaycox, 
Gillham, & Kidman, 1995) concept of optimism to explain the role of positive 
affect and its construction in mathematical activities. Lewis (2011, 2012, and 2014) 
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has used reversal theory as a theoretical framework in his studies on disaffection. 
The reversal theory perspective has allowed him to discuss the complexities of 
motivation of disaffected students: they are “highly motivated, but their motivational 
needs are frustrated and unsatisfied by their experiences of school mathematics” 
(Lewis, 2011, p. 137). Both optimism and reversal theory address resilience, which 
is an important concept that gives some explanation why some students can better 
endure disappointments and difficulties in mathematics than some others.

Structure of Affect: Components and their Relations

A specific and often revisited issue of the theoretical framework of affect is the 
structure of affect. Originally Green (1971) suggested that beliefs would be organized 
in clusters around specific situations and contexts, more or less isolated from each 
other. This discussion has continued within PME, and there were also interesting 
empirical studies on the structure of mathematics-related affect.

Goldin et al. (2010) discussed the “structures of affect, motivation, and beliefs” 
summarizing their perspective as follows:

mathematical beliefs (a) have structure, (b) belong to structured systems of 
beliefs, and (c) are embedded in complex affective structures that are important 
to understanding students’ and teachers’ motivations and behavioural patterns. 
Those affective structures form an essential part of a teacher’s identity whether 
in terms of a social belonging or of a personal development. (p. 253)

Hannula (2011) claimed that empirical research on mathematics-related beliefs 
indicates an overall pattern, where positive (or negative) beliefs are related to each 
other and to positive (or negative) emotions and positive (or negative) motivation. 
Zan and Di Martino (2009) found such connections in their study that used a very 
open approach to student affect. They collected 1600 essays from 1st to 13th grade 
students with a title “me and mathematics”. In their analysis they observed that a 
negative emotional disposition was always linked to either a negative belief about 
mathematics (instrumental) or a negative self-belief (low perceived competence). 
There have also been several quantitative studies in PME confirming the relatedness 
of beliefs, emotional disposition, and motivation (e.g., Hannula, Kaasila, Laine, & 
Pehkonen, 2005; Tuohilampi, Hannula, Laine, & Metsämuuronen, 2014). In addition 
to identifying such correlations between students’ motivation, emotions and self-
beliefs Hannula and Laakso (2011) observed that the structure of beliefs was more 
coherent (i.e., scale reliabilities and correlations between variables were higher) in 
grade 8 than in grade 4.

Where are We with Theories?

Although the PME format limits opportunities for theoretical discussions we have 
seen a positive development with increased sensitivity to terminological variation 
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and more careful elaboration of concepts. The structural properties of affect have 
been taken into account and considered jointly rather than separately. There has 
also been a clear social turn, where not only the social influence is accepted, but 
researchers have also started using the theoretical tools that allow careful study of 
the social context. Moreover, the relationship between the individual level and the 
social level has been elaborated to some extent.

ROLE OF AFFECT IN MATHEMATICAL PROBLEM POSING 
AND PROBLEM SOLVING

Because problem solving is such an affective experience there has long been an 
interest in the relationship between problem solving and affective elements. Over 
the last 10 years this relationship has been explored through research reports 
looking at specific affective characteristics, relationships between multiple affective 
characteristics, and student and teacher belief change.

Four research reports looked at the relationship between problem solving and a 
single affective characteristic. Van Harpen and Presmeg (2011) compared US and 
Chinese student attitudes towards problem posing. They found that, despite neither 
group having any exposure to problem posing, the two groups of students had very 
different attitudes, with the US students focusing more on context and Chinese 
students more on mathematics. Seok and Choi-Koh (2015) looked at mathematics 
anxiety form a neuroscience perspective. They found that high mathematics anxiety 
students had longer reaction times and larger amplitude than low math anxiety 
students when involved in problem solving activities. Interestingly, they also found 
that both high and low anxiety students have larger amplitude in graph-to-algebra 
problem solving tasks than algebra-to-graph tasks. Williams (2013) found a strong 
association between students’ willingness to explore challenging mathematics 
problems and the ontogenesis of their confidence. Pesonen and Hannula (2014) 
looked at common emotional states during a solitary GeoGebra problem solving 
session. They found the most common states to be: neutral (40% of time), sad (34% 
of time), happy (15% of time) and angry (8% of time).

Three research reports looked at relationships between multiple affective 
variables and problem solving. Interestingly, all of these came from Cyprus. 
Panaoura et al. (2009) found that “multiple-representation flexibility, ability 
on solving problems with various modes of representation, beliefs about use 
of representations and self-efficacy beliefs about using them constructed an 
integrated model with strong interrelations in different educational levels” 
(p. 273). Michael, Panaoura, Gagatsis and Kalogirou (2010) found, in working 
with geometric shapes, that there were both differences and similarities among 
primary and secondary school students’ self-concept beliefs. Marcou and Philippou 
(2005) found a significant relationship between motivational beliefs and self-
regulated learning, as well as between self-efficacy, intrinsic goal orientation, and 
performance in mathematical problem solving.
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Looking only at the qualities of problems, Koichu, Katz and Berman (2007) 
found that undergraduates could judge a problem as beautiful if it was affiliated with 
mathematics associated with a high level of aesthetic value, it looked new, and its 
solution was accessible but included elements of surprise.

THE RELATIONSHIP BETWEEN AFFECT AND ACHIEVEMENT

The positive correlation between affective variables and achievement has been 
well documented in the mathematics education literature (e.g., McLeod, 1992). In 
the time since the last handbook we found PME articles that seem to add some 
new details to this relationship. This literature has been focused primarily on the 
specific relationships between motivation and achievement and self-efficacy and 
achievement.

With respect to the motivation-achievement dyad Pantziara and Philippou (2009) 
used Achievement Goal Theory (Elliot & Church, 1997) to try to identify exogenous 
and endogenous factors that influence students’ mathematical performance. Within 
their sample of 15 teachers and 321 students they found that the dominant exogenous 
factor influencing student performance was teacher practice, while the dominant 
endogenous factor was student motivation. Ufer (2015) found that specific motives 
play an important role in the activation of learning activities that go along with study 
success. In particular,

students from the more application-oriented financial mathematics programme 
reported stronger motives related to professional perspectives and application, 
while students in the regular mathematics programme agreed more to motives 
of engaging in mathematics problems and mathematics as a science. (p. 269)

Looking more at how to motivate students, Koirala (2005) in his mixed method 
research of 23 high-school freshman, found that the use of mathmagic motivated 
students to learn basic algebraic concepts and that “their engagement in mathmagic 
activities enhanced their understanding of variables and expressions” (p. 215).

With respect to the relationship between self-efficacy and achievement, 
Mousoulides and Philippou (2005) found that self-efficacy was a strong predictor 
of mathematics achievement among pre-service teachers. Nuancing this Hannula, 
Bofah, Tuohilampi and Metsämuuronen (2014) also confirmed a strong relationship 
between self-efficacy and achievement, but also that this effect is reciprocal and 
more strongly from achievement to self-efficacy. Moreover, the study found a 
weaker unidirectional effect from achievement to liking mathematics.

Aside from the role of motivation and self-efficacy, Eleftherios and Theodosios 
(2007), in looking at survey data from 1645 grade 10, 11, 12 students, found that 
love of mathematics is the factor which correlates most positively with mathematical 
performance and ability. Looking from the direction of low achievement, Heinze 
(2005) found that particularly low achieving students are not aware of the learning 
opportunities afforded by mistake-handling activities.



RESEARCH ON MATHEMATICS-RELATED AFFECT

427

GENDER AND AFFECT

In the Leder and Forgasz (2006) review, they noticed that, unlike other research on 
affect, research on affect and gender “has had a recognized and discernible impact 
on the development and delivery of mathematics instruction” (p. 412). Perhaps 
the consensus on the issue has been the reason that rather few studies on affect 
in 2005–2015 have focused on gender. Yet, some studies have provided additional 
details. Chiu’s (2009) analysis of TIMSS data confirmed the old results that 
affective, cognitive, and social factors influence gender difference in mathematics 
achievement, but a new observation was that the influence is different for 
measurement and algebra. Hannula (2009) used generalized linear models (GLM) to 
identify whether the variation of different beliefs was primarily individual, between 
classes or between genders, concluding that student confidence in mathematics and 
perceived difficulty of mathematics were primarily gendered.

A qualitative study of students’ narratives found a gender influence on students’ 
identity construction, but no difference was found between single-sex and 
coeducational schools (Simpson & Che, 2015). Gender differences in mathematical 
self-efficacy are well documented across many countries. Other gender differences 
may be more culturally specific. Gattermann, Haverscheid and Wittwer (2012) found 
that in addition to self-concept there are gender differences also in German students’ 
epistemological beliefs and Eleftherios and Theodosios (2007) reported that Greek 
girls believed more than Greek boys in a procedural learning approach. Leder 
(2009) conducted a survey of 90 Australian adults, who had been high achievers in 
mathematics (e.g., participants in mathematics Olympiads), to understand why so 
few of them had chosen mathematics-related careers. 

Forgasz, Leder and Tan (2013) explored the perceptions of the general public 
in nine countries regarding gender differences in mathematics through a survey 
distributed via social media while Gómez-Chacón, Leder and Forgasz (2014) 
approached 393 pedestrians. Both studies found relatively little evidence of gender 
stereotyping. However, when found, the traditional male stereotype prevailed.

HOW AFFECTIVE TRAITS DEVELOP

Affective traits do not exist ex nihlo. They are developed over time. Within the review 
of the PME literature this fact was explored both within the context of students and 
teachers.

Change of Students Affect

The overall declining trend of student affect was well documented early (e.g., 
McLeod, 1992). PME research over the last ten years, provided some additional 
detail to these observations. For example, students’ beliefs and attitudes have been 
found to be independent from their social status (Eleftherios & Theodosios, 2007). 
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Many studies confirmed a decline over the transition from primary to secondary 
school (Michael et al., 2010). More specifically, Athanasiou and Philippou (2006, 
2009) observed that student perception regarding their classroom culture also 
became more negative over this transition and Horne (2009) reported that student 
perception of their learning environment also becomes more traditional as they go 
to upper secondary level. Tuohilampi et al. (2014) provided additional detail, when 
they reported a general decline of enjoyment of mathematics during primary school 
years, whereas self-efficacy declined during lower secondary school years.

The outcome of this development – a negative affect – may become so fixated 
that it is impossible to change later (Melo & Pinto, 2007). Students who had failed 
in traditional classrooms felt ‘cheated’ when an outreach intervention was based on 
a constructivist approach when they wanted procedurally based activities instead 
(Ewing, Baturo, Cooper, Duus, & Moore, 2007). On the other hand, Lewis’s (2012) 
case study illustrated the motivational and emotional complexity of a disaffected 
students’ relationship to mathematics, where both positive and negative emotions 
weave in and out of their experience.

Some studies also reported cases of a more positive change in student affect. 
One effective way to promote more positive affect is through problem solving 
(Shimada & Baba, 2015; Williams, 2010) or modelling tasks (Schukajlow & Krug, 
2012) – possibly in a collaborative setting (Park, 2014). Also the instructional 
practices suggested by achievement goal theory (Pantziara & Philippou, 2007) or 
self-regulation and self-efficacy theories (Lavy & Zarfin, 2012) have been successful 
ways to promote a positive affective disposition.

Student beliefs are obviously influenced by the learning context and the teacher. 
Some research suggested that the development of students’ affective disposition is 
influenced by classroom ‘microculture’ (Lewis, 2014). Hannula (2009) identified 
that perceived teacher quality and enjoyment of mathematics were largely influenced 
by the classroom factor rather than individual difference or gender, and these beliefs 
were more positive in classes where the teacher had progressive teaching beliefs. 
Other studies showed that an error-tolerant classroom culture (Rach, Ufer, & Heinze, 
2012), mathematics teachers’ efficacy beliefs (Chang & Wu 2014), and teachers’ 
values (Frade & Machado, 2008) had a significant influence on student affect. 
Regarding teachers’ values Seah’s (2007) results suggested that rather than values 
per se, the alignment of teacher and student teaching-related values was beneficial. 
In a similar tone, Hernandez-Martinez (2008) showed that when students and 
lecturers engaged in common practices within their institutions, they co-constructed 
their identities and this in turn shaped the practices in which they participate.

A few studies had specifically looked at the role of the teacher in cases of 
underprivileged ethnic groups. Several studies showed how integrating cultural 
elements into mathematics classrooms impacted student affective disposition 
(Amit & Abu Qouder, 2015; Hunter, 2013; Kidman, Cooper, & Sandhu, 2013; 
Kidman, Grant, & Cooper, 2013). In such classrooms the teacher played a 
significant role not only in the mathematical meaning-making but also in the 



RESEARCH ON MATHEMATICS-RELATED AFFECT

429

reconstruction of identity (Gorgorió & Prat, 2013). What Lerman (2012) reminded 
us, was that the teacher’s role of a significant other in their identity construction 
was not limited to students of underprivileged ethnicity.

It has been long accepted that student affect is influenced not only by their 
personal experiences in school, but also by their other social environment (e.g., 
McLeod, 1992). One significant influence are parents, and this influence may last 
until adult age (Hannula, Kaasila, Pehkonen, & Laine, 2007). Chang and Wu’s 
(2012) study found that the socioeconomic background of the family and parenting 
styles were critical elements in the development of fifth-graders’ mathematics self-
efficacy. Some studies have reported successful interventions targeted at parents 
(Mousoulides, 2014). A comparative study between China and Australia indicated 
that Chinese students perceived parental influences to be stronger than students in 
Australia (Cao, Forgasz, & Bishop, 2005).

Change of Teacher Affect

A specific subset of how affective traits develop was a collection of research on 
how such traits change among teachers. With respect to preservice teachers, Rolka, 
Rösken and Liljedahl (2006) found that the problem solving environment within a 
preservice methods class had impact on the recasting of these preservice teachers’ 
beliefs about what mathematics is, and what it means to teach and learn mathematics. 
Bragg and Nicol (2008) found that involving preservice teachers in the design of 
open-ended problems similarly shifted “the ways they viewed mathematics and how 
it might be taught” (p. 201). More recently, Thanheiser, Philipp and Fasteen (2014) 
found that having preservice teachers find, modify, or develop tasks to use with 
elementary school students was both exciting and motivating to them as they saw 
relevance between the activity and their future career as teachers.

Erens and Eichler (2013) found that a shift from self-referred reflection to reflection 
of the classroom practice impacted preservice teacher’s perception of authority. That 
same year, Di Martino, Coppola, Mollo, Pacelli and Sabena (2013) found that future 
primary teachers have strong negative emotions towards mathematics, but they also 
have a desire to redeem these negative emotions. Bjerke, Eriksen, Rodal, Smestad 
and Solomon (2013) looked at the tensions experienced by preservice teachers—
specifically between their prior experiences and beliefs and what they were learning 
at university. Finally, Kuntze and Dreher (2013) looked at affect related to computer 
use and found that it was possible to improve views towards this in both preservice 
and inservice teachers.

With respect to changes in inservice teachers’ affect there was a large variety of 
change and affective factors without any convergence of focus. For example, Shy, 
Tsai and Chiou (2009) found that teachers were becoming more and more willing 
to work with gifted students. Meanwhile, Olson et al. (2010), testing alternative 
professional development programs, found that a focus on formative assessment 
actually had a greater effect on teacher change than a professional development 
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program that focused more on technology. Looking at teacher motivation, Zeybek 
and Galindo (2011) found that “professional development activities form complex 
interrelationships with teacher motivation consisting of intrinsic and extrinsic 
motivators” (p. 361). After participating in professional development built around 
communities of practice, Besamusca and Drijvers (2013) saw that teachers became 
more confident in their use of ICT. That same year, Goodchild (2013) found that 
“development is a slow extrapolation of practice based on shared ideas that, when 
supported by experience, are meaningful in the imagination of teachers” (p. 369). 
In the same study, he also found that teachers are dismissive of novel approaches 
suggested by mathematics education researchers. Based on the results of their 
study, Kidman, Grant and Cooper (2013) suggested that, when working within an 
indigenous context, a climate of collaboration among teachers was imperative to 
maximizing change. Kuntze and Dreher (2013) confirmed that it was possible to 
improve teachers’ views around computer use through professional development 
courses. And Oksanen and Hannula (2013), in a comparison of data from 2012 with 
similar data from 25 years earlier, found changes in mathematics teachers’ beliefs 
about teaching.

In addition to the aforementioned research reports, there were also relevant 
results presented in the 2007 research forum Researching Change in Early Careers 
Teachers (Hannula & Sullivan, 2007). For example, Sullivan (2007), in his 
introduction at the research forum, commented on the assumption that changes in 
practice relate to changes in beliefs, and it may be that changes in practice precede 
changes in orientation (Guskey, 1986). Consistent with this position, Zaslavsky 
and Linchevski (2007) were anticipating changes in teachers’ beliefs as they 
implemented an innovative program. Quite aside from this, Hannula, Liljedahl, 
Kaasila and Rösken (2007) explored therapeutic approaches to helping students 
cope with and change their negative mathematical affect. The results from their 
aggregated independent work showed that it was possible to change this negative 
affect through: (1) narrative rehabilitation, (2) bibliotherapy, (3) reflective writing, 
and (4) drawing schematic pictures. Finally, in his summary of the research forum, 
Hannula (2007) commented that the studies in the forum had been exploratory 
in nature—that there had been no clear hypothesises that could have been tested. 
Instead, the aim of the research had been to describe and understand the process 
of change. According to Hanula (2007), this was indicative of the low level of our 
understanding about teacher change to that point.

TEACHER BELIEFS AND PRACTICE (INSERVICE)

In a decade where teacher knowledge was extensively researched it is not 
surprising that there was also a complementary focus on teacher beliefs. In all, 
there were 24 research reports presented on this topic in the ten years from 2005 
to 2015, the majority of which were focused on the beliefs of inservice teachers in 
general and the relationship between beliefs and practice or beliefs about teaching 
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in particular. We remind the reader of the critical views about research on teacher 
beliefs discussed earlier.

With respect to beliefs and practice, Yates (2006) looked at the relationships 
between teachers’ beliefs, practices, and experiences with curriculum reform in 
their elementary grades. She found that reform experiences, age, qualifications, 
and length of mathematics teaching experience did not significantly affect their 
teaching practices. Surprisingly, she also found that the participants’ beliefs about 
the mathematics were unrelated to their beliefs about the teaching and learning 
of mathematics. However, the participants did differ in their beliefs and this was 
correlated to some of their child-centred practices. Finally, teachers holding strong 
views about the beauty of mathematics and those that scored well on constructivism 
used manipulatives more often, used worksheets less often, and used tests less 
frequently. Likewise, Hannula, Pipere, Lepik and Kislenko (2013), found that 
teachers’ beliefs and cultural context explained 15% of the variation in self-reported 
constructivist teaching practices. They also found that the school micro-culture did 
not provide any significant additional effect. Beswick (2008), on the other hand, 
found that the teachers in her sample had very realistic views of the extent to which 
their classrooms conformed to constructivist principles. Zachariades, Nardi and Biza 
(2013), found that the use of multi-step tasks with inservice teachers gave them 
insights into their pedagogical perceptions and intentions, as well as epistemological 
beliefs, and revealed discrepancies between the teachers’ stated beliefs and intended 
practice. Finally, Liljedahl, Andrà, Di Martino and Rouleau (2015), looking at the 
tensions teachers experience, including the tensions between their beliefs about 
practice, found that teachers do not simply manage these opposing forces, but also 
work at, and seek help in, resolving them.

Shifting now to teachers’ beliefs about teaching, Anderson and Bobis (2005) 
found that, although their participants seemed to be well-aware of what the reform-
based movement recommends regarding the teaching and learning of mathematics, 
some common responses were indicative of more traditional views of mathematics. 
For example, comments such as “I like my students to master basic mathematical 
operations before they tackle complex problems”, “a lot of things in maths must 
simply be accepted as true and remembered”, “if students use calculators they 
don’t master the basic maths skills they need to know” came from teachers who 
simultaneously were able to talk about the reform-based movements. Staying with 
this tension, Beswick (2009) looked at a case study of one mathematics teacher as 
an example of how some teachers can hold differing beliefs about the nature of 
mathematics, viewing it either as a discipline or as a school subject. Meanwhile, 
Zazkis and Nejad (2014) used script writing to look at teachers’ ideas about teaching. 
These scripts demonstrated their views of teaching as well as the traditional views 
they may be facing in their practice. Somewhat as an aside, Alexandrou-Leonidou 
and Philippou (2005) found that 5th and 6th grade teachers could only partially 
predict students understanding and reasoning in arithmetic and algebraic equations 
in different representation formats. They found that, contrary to the teachers` 
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perceptions, the students could manage word equations and story problems more 
easily than they could handle tasks represented by pictures and diagrams.

Aside from the research focusing on the relationship between beliefs and practice 
there were also three papers that looked more closely at the beliefs themselves. For 
example, Diamond (2014) found five categories of beliefs about transfer of learning 
in her participants, thereby both extending current conceptualizations of transfer 
and identifying new beliefs regarding students’ transfer of learning. In the same 
year, Frade, Lerman and Meira (2014) found that “teachers’ affective positionings 
towards others emerge from shared social scenarios, manifested in response/
reaction to such scenarios, and reflect their attempts to redescribe themselves in 
the eyes of others” (p. 105). Finally, Kuntze and Reiss (2005) found that cognitive 
constructivist and direct-transmission views of teaching and learning impacted 
the situated beliefs of teachers, as seen during their interpretation of videotaped 
classroom situations.

TEACHER BELIEFS AND PRACTICE (PRESERVICE)

The broad interest in teachers’ beliefs was not restricted to inservice teachers, with 
eight papers focusing on the beliefs of preservice teachers, some of which focused 
specifically on teachers’ beliefs about some aspect of mathematics education. For 
example, Bayazit and Aksoy (2011) found that the 22 teachers in their sample 
believed that analogies would contribute to student learning. Rahat and Tsamir (2009) 
looked specifically at high school teachers’ beliefs about errors in the mathematics 
classroom and found that the mathematical quality of a classroom depends on a 
teacher’s didactical beliefs about how to address errors. More recently, Hallman-
Thrasher and Connor (2014) looked at prospective secondary teachers with a STEM 
background and the views that they held about how mathematics should be taught. 
They concluded that the teachers’ views of what should be taught and how it should 
be taught was affected by their content experience.

Other papers focused on the relationship between prospective teachers’ beliefs 
and some other dimension of mathematics education. Gomez and Conner (2014) 
found that preservice teachers’ “affective responses while learning mathematics 
were a strong influence in the prospective teachers’ evolving professional identities” 
(p. 177). Goos (2005), also looking at identity (as users of technology), found 
that Valsiner’s (1997) zone theory was useful in understanding the relationship 
between teachers’ pedagogical beliefs, the teaching repertoire offered by their pre-
service course, and their practicum and initial professional experiences” (p. 49). 
Meanwhile, Flores and Carrillo (2014) looked at the relationship between a specific 
preservice teacher’s conceptions of mathematics teaching and learning and her 
specialized knowledge. Their findings indicate that this connection is visible in 
her intentions for a lesson. Beswick (2015), also focusing on a single pre-service 
teacher, found that his choices relied heavily on his beliefs. Beswick used this 
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result to argue that this blurs the boundary between beliefs and pedagogical content 
knowledge.

Finally, Di Martino and Sabena (2010) argued that we need to be cautious 
when discussing inconsistencies between beliefs and practice and that such 
inconsistencies may be external to a teacher with the true inconsistency being 
between the researcher’s and teacher’s assigning of words to meanings. Their 
research found this to be true with respect to inconsistent meanings assigned to 
the expressions “word problem” and “problem solving”, especially with respect to 
what makes good word problems.

NEW IDEAS

When doing this review, we started from our educated preconception of what are 
the important topics in the research area of mathematics related affect. As such, we 
found what we were looking for. In addition, however, we found things that we had 
not anticipated. For example, there was a large number of studies focusing on affect 
among tertiary level mathematics students (Andrà, 2010; Baldino & Cabral, 2005; 
Bjerke et al., 2013; Ufer, 2015) and specifically on the transition to the university 
(Di Martino & Morselli, 2006; Di Martino & Maracci, 2009; Rach & Heinze, 2011). 
And we found studies on tertiary level teachers’ affect (Hannah et al., 2013; Lerman, 
2012; Paterson et al., 2011).

Another emerging area of research was on the affect and identity of indigenous 
and immigrant students. For these groups there are specific issues that influence their 
affect and identity, for example their cultural needs (e.g., Cooper, Baturo, Warren, 
Catholic, & Grant, 2006; Howard & Perry, 2005; Tomaz, 2013) and paying attention 
to power (Baldino & Cabral, 2005; Skog & Andersson, 2013; Tomaz, 2013).

RESEARCH METHODS

Leder and Forgasz (2006) listed in their review common measures of attitude and 
beliefs. They identified Likert-scale questionnaires, interviews and observations 
as typical methods and a “near even split of qualitative, quantitative, and mixed 
methods” (p. 415). They also observed a trend towards more qualitative research. 
Over the period 2005–2015 Likert-scale questionnaires, interviews and observations 
were still typical methods. Almost half of the studies were qualitative, one quarter 
were quantitative, one fifth were mixed, with the remaining papers being theoretical. 
It should be noted that a handful of studies (Bragg & Nicol, 2008; Bruce, Flynn, 
Ross, & Moss, 2011; Hunter, 2013) used a design research method.

The size of studies was rather evenly distributed into five categories (Table 1). 
There was quite a large number of very small studies with one to five participants 
and these were typically qualitative case studies. When we take into account the 
clustered nature of typical data collected from intact classrooms, the statistical 
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power is typically sufficient to make solid conclusions only in studies that have 
several hundred participants.

Table 1. Frequency table of studies according to their size

Number of subjects in the study Number of studies Frequency (%)

1…5 34 21.25
6…20 29 18.13
21…100 41 25.63
101…500 33 20.63
500… 23 14.38

Total 160 100

While qualitative studies and case studies in general are valuable especially for 
exploring new ideas and for generating hypotheses, the progress of science needs 
also rigorous testing of hypotheses and the rejection of those hypotheses that do not 
survive such tests. It was somewhat worrying that the weight of the studies lay so 
strongly on small-scale and descriptive studies and experiments or quasi-experiments 
were quite rare in PME. One possible reason is that it is much more difficult to 
confirm solid results in an experiment than it is to observe something interesting in 
a qualitative case study. For example, Olson, Slavin, Olson, Brandon and Yin (2010) 
had to conclude that while participants in two different professional development 
programs did have some differences in knowledge gains, their experiments did not 
show any influence on teacher affect.

In a series of quasi-experimental studies on mathematical modelling the 
first results (Schukajlow & Krug, 2012) indicated that a learning environment 
combining directive instruction and group work has a positive influence on 
students’ self-regulation, self-efficacy and values. Moreover, while the treatment 
of multiple solutions guided the majority of students to develop multiple solutions 
and increased their self-regulation, it had no effect on students’ self-efficacy and 
values. More detailed experiments confirmed that intervention increased the 
number of solutions, but no hypothesized influence on affect was confirmed. A 
specific task processing intervention only decreased students’ task specific interest 
(Krug & Schukajlow-Wasjutinski, 2013) and no differential effects on three 
alternative treatments on students’ self-regulation could be observed (Achmetli, 
Schukajlow, & Krug, 2014). Also, the previously mentioned study reporting 
positive effects of the error-tolerant classroom culture on affect was a quasi-
experimental intervention study (Rach et al., 2012).

Increased computing power of tabletop computers has made path analysis and 
structural equation modelling (SEM) accessible to all researchers. The methodology 
requires quite large data sets, which may explain why these are not popular among 
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PME research reports on affect. Pantziara and Philippou (2006) collected data from 
302 grade six Cypriot students and their SEM analysis showed that fear of failure 
had a direct effect on students’ achievement and to their interest in mathematics, and 
an indirect effect on both variables via mastery and performance goals. Moreover, 
mastery goals were predicted by self-efficacy and performance goals were predicted 
by both, fear of failure and self-efficacy. And lastly, performance-approach goals 
facilitated interest in mathematics but proved to have a negative effect on students’ 
achievement in mathematics.

A Finnish research team reported results of a longitudinal, nationally representative 
data (grades 3, 6, 9; 5161 students). The sample size and the longitudinal design 
allowed simultaneous testing for the direction of causality between achievement and 
self-efficacy and achievement and enjoyment (Hannula et al., 2014).

In quantitative surveys, Likert-scales dominate the field. The few alternative 
approaches included semantic differential (Bernack, Holzäpfel, Leuders, & Renkl, 
2011) and selecting items from a list in a preference order (Löfström, Hannula, & 
Poom-Valickis, 2010). An interesting new quantitative approach has been to make 
discourse analysis quantitative (e.g., Asnis, 2013; Nachlieli, Heyd-Metzuyanim, & 
Tabach, 2013). Asnis (2013) analyzed an impressive text corpora of 17,724,172 
words from different sources, representing different communities: policy 
documents, newspaper articles, various education-related websites, and interviews 
with mathematics teachers. His tentative conclusion was that Israeli mathematics 
teachers’ “identity discourse [was] influenced most strongly by the governmental 
discourse, and also, at least to some degree, by conceptual-ideological discourse of 
educational establishment” (p. 47).

On the qualitative side, interviews and observations are the norm. Within this line 
of research, interesting new approaches that seem to suit the area of affect well, have 
been narrative inquiry (Coppola, Di Martino, Pacelli, & Sabena, 2015; Simpson & 
Che, 2015) and narrative reporting (Frade et al., 2014; Liljedahl et al., 2015). As 
an alternative, Rolka and colleagues used students’ drawings together with verbal 
expressions to study student beliefs about statistics (Bulmer & Rolka, 2005) and 
mathematics (Halverscheid & Rolka, 2006, 2007). Student drawings were used as 
the data also in a study by Varas, Pehkonen, Ahtee and Martinez (2012). We also 
found a 9-month ethnographic study involving Aboriginal students, their parents, 
Aboriginal educators, and non-Aboriginal teachers living in a remote Australian 
rural community in (Howard & Perry, 2005).

We also noted that among our data set a large variety of different mixed designs 
were used. However, the space allows us only to give two examples. Galligan 
(2005) study is an example of a mixed study with numerous data sets: eight 
lesson observations; pre and post-lesson semi structured interviews of teachers; 
teacher values questionnaire; teacher marking of student written work; student 
questionnaires; questionnaire given to teachers and moderators on their perceptions 
of students answers; other documents as necessary (Education Department approval 
forms; contracts, etc.); and two informal interviews with administrators of the 
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program. The other example is Vollstedt’s (2011) study, where stimulated recall 
interview data was analysed with a grounded theory approach to identify meanings 
given for mathematics and then a quantitative cluster analysis was performed to 
identify which meanings tended to appear together.

A number of studies used methodological triangulation, which can either confirm 
the validity of a new research instrument (Bernack et al., 2011; Löfström et al., 2010; 
Nachlieli et al., 2013) or allow a critical discussion of shortcomings of an instrument 
(Andersson & Österling, 2013).

New Directions

Leder and Forgasz (2006) expected physiological measures and new technologies 
to become more common in PME after 2005. We saw some changes happening 
towards this direction, but the studies were mostly just examples of possibilities 
rather than established methodological approaches. With regards to physiological 
measures, Cimen and Campbell’s (2012) study gave an example of what is possible 
in this realm. They used a wide spectrum of observational methods ranging from 
audiovisual, keyboard and screen capture, eye-tracking, and self-report data, to 
psychophysiological data including electrocardiography (EKG) and respiration rate 
data. Also Seok and Choi-Koh (2015) found a correlation between the anxiety scale 
results and EEG measurements.

A much more common use of technology has been to use it for recording 
audiovisual data. Especially with regards to research on affect, it is now rare to make 
observational studies without the support of video-recordings. Screen recordings 
(Chorney, 2011; Pesonen & Hannula, 2014) or screen captures (Hähkiöniemi, 
2011) can be used to record student’s use of dynamic geometry software. Moreover, 
students can use smartphones to take photographs to record their perspective of 
significant learning events (Seah, 2011) or their learning can be recorded digitally 
(e.g., Andersson & Seah, 2012; Larkin & Jorgensen, 2015). New software promises 
also relief from laborious coding of audiovisual data. Pesonen and Hannula (2014) 
report successful use of software to automatically recognize student emotions from 
video data.

One unexpected use of technology, has been recruiting respondents through social 
media (Forgasz et al., 2013). It allows an easy access to international population, but, 
as the authors discussed, there is the danger of the sample being skewed with respect 
to socioeconomic background and age.

One additional example of the novel use of technology, was the simulated 
classroom simSchool as research context (Meletiou-Mavrotheris & Mavrou, 2013). 
SimSchool simulates student behaviour using the Big Five model of personality 
(McCrae & Costa, 1996) and interpersonal circumplex theory (Kiesler, 1983). 
Using these theories each virtual student was programed with a unique personality 
leading some students to get frustrated (if a task was too difficult) or bored (if a task 
was too easy). Pre-service and novice teachers could use this simulation as a safe 
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environment for experimenting with teaching techniques, seemingly increasing their 
perceived instructional self-efficacy.

Another new direction in methodology was to use different projective techniques 
(e.g., Lewis, 2012). Instead of asking directly about a participant’s experiences 
or affect, they could be asked to redesign a lesson (Olson & Kirtley, 2005) or to 
imagine conversations with a colleague, a school principal, or a concerned parent 
(Zazkis & Nejad, 2014), or the researchers could examine the metaphors teachers 
(Oksanen, Portaankorva-Koivisto, & Hannula, 2014) or students (Taing, Bobis, 
Way, & Anderson, 2015) produced.

CONCLUSIONS

Reviews like this provide us as an opportunity to reflect on our progress. What have 
we accomplished as a research community? Where should we be heading next?

The review of the research reported at PME over the last ten years indicates a 
development in the theories of mathematics-related affect. The research tradition 
on attitudes, beliefs and emotions is reaching a level of sophistication suggested 
in McLeod’s (1992) article: affect has been examined as a system that interacts 
with learning and social context. The social turn, suggested by Lerman (2000), has 
taken place: research on identity has expanded rapidly, research on classroom norms 
(Yackel & Cobb, 1996) has emerged and there is some indication that activity theory 
(Engeström, 1987) is beginning to address emotions more explicitly. There is also 
some indication of new approaches – at least new within PME – of examining affect 
using theories that perceived affect as a psychophysiological phenomenon.

Such expansion of theoretical approaches may be fruitful, but only if the 
different approaches are able to communicate with each other. This requires that 
each researcher clearly explicates their theoretical approach and clearly defines 
the concepts they use – in a language that is transparent to researchers from other 
paradigms. One example is the ongoing discussion for alternative ways to explain 
the apparent discontinuities in teacher beliefs and between their beliefs and practices. 
This area will most likely benefit from a dialogue between the more traditional belief 
research and more recent social theories looking at the same question.

The research in and outside PME has accumulated solid evidence on the 
reciprocal relationship between student affect and achievement as well as about 
gender differences in mathematical self-efficacy. It was also well documented that 
student affect tends to decline during school, but that interventions can change this 
development. There is little need for work that simply repeats the same results. 
Future work in these areas needs to focus on rigorous testing of well formulated 
hypotheses.

Specifically important for a community like PME is to explore the cultural 
variation in mathematics related affect. For example, are the well-established 
findings – such as the ones mentioned above – truly universal, or are these findings 
limited to the most thoroughly researched industrialized countries.
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In this review, we identified two recently expanded research areas of mathematics-
related affect. Research on mathematics-related affect on tertiary level education 
is not a completely new area, but it seems to be expanding, especially research 
on mathematics teachers at tertiary level has been rare in the past. An even more 
prominently expanding area of mathematics education research is to study the affect 
of indigenous and immigrant populations. Although research on minorities can be 
seen as less relevant than research on large populations, such studies are important 
for testing how universal our findings are and deeply contextualised qualitative 
studies are also likely to produce new understandings of the underlying relations 
between affect and contextual factors.

Methodologically, we have seen a shift towards qualitative studies over the 
last ten years, cases studies being quite popular. This may be related to the social 
turn in affect research. As new theoretical approaches are used, the first stage of 
research is usually qualitative, as researchers need to generate an understanding of 
the phenomena before generating testable hypotheses. There are some examples 
of quantifying discourse analysis (Asnis, 2013; Heyd-Metzuyanim, 2013) and we 
expect larger scale quantitative studies employing social theories to increase their 
number in the future. A similar stage of numerous case studies may be expected also 
for studies using psychophysiological measures of affect.

While the general trend has been towards qualitative, the quantitative studies 
seem to be developing in their complexity. New software allows more complex 
analysis, which is a welcome development in a field where typical data is multilevel 
(individual and classroom level) and several variables need to be accounted for. 
One thing that seems to endure over time, is the popularity of Likert-type items for 
surveys.

Ten years ago, Leder and Forgasz (2006) forecasted an increase in studies 
using physiological measures and new technologies. Although such increase has 
been hardly visible in PME to date, we make the same prediction. Instruments for 
observing physiological measures have become cheaper and less intrusive. While 
cheaper technology makes such new data collection accessible for more researchers, 
the true potential for expansion comes from software that makes physiological 
data much faster to process and easier to interpret. Automatic analysis of facial 
expressions (Pesonen & Hannula, 2014) and large text corpora (Asnis, 2013) are 
only the beginning.
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NÚRIA PLANAS AND PAOLA VALERO

13. TRACING THE SOCIO-CULTURAL-
POLITICAL AXIS IN UNDERSTANDING 

MATHEMATICS EDUCATION

INTRODUCTION

Research is always carried out from a standpoint, an epistemological stance that 
shapes the ontological assumptions about what is being researched, even though the 
researchers might be unaware of or unconcerned about what it is. Despite apparently 
being evident, this assertion needs to be revisited when reviewing the insertion of 
socio-cultural approaches to mathematics thinking, learning and education in the last 
10 years of research in PME. The way in which theoretical tools and frameworks 
from other areas of study have been appropriated into mathematics education and 
how they have been transformed for the purpose of studying it are important issues 
in carrying out a research review. In this review we pay attention to the stances 
and assumptions that, together, articulate a logic about what it means to understand 
mathematics education as social and cultural. Connected to this, an initial observation, 
from which we derive the structure of this review, is the very same meaning that the 
category socio-cultural seems to have in the research community of PME – and 
more broadly in the international research in mathematics education. Our present 
investigation asks three leading questions:

1. What are the meanings that the authors who explicitly frame their research work 
as socio-cultural have given to this category?

2. Which are the identifiable directions and specific lines of concern in this body of 
research?

3. How have these meanings, directions and lines been enlarged and transformed in 
the span of 10 years?

It is our contention that there has been a growing adoption of socio-cultural 
frameworks in mathematics education research, and that such an expansion has led 
to important developments in the field, within and outside PME. This is not new; 
it continues along the path outlined by Gates (2006), among other authors, in the 
previous decades. We also argue, however, that there has been a move towards the 
configuration of a socio-cultural-political axis. While the progressive expansion of 
socio-cultural frameworks is not new, the clear featuring of the political framework 
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is undeniable. Thus, the configuration of such an axis is particular to the last decade. 
From the very beginnings of PME, there has been discussion about the socio-cultural 
aspects of mathematics education research: what defines a socio-cultural approach, 
what constitutes a socio-cultural trend in the history of PME… This discussion 
became evident in the first Handbook of Research on the Psychology of Mathematics 
Education, in the chapters by Confrey and Kazak (2006), Gates (2006) and Lerman 
(2006) and their review of ‘Social aspects of learning and teaching mathematics’ 
for the period 1977–2005. The intersecting perspectives adopted in these chapters 
respectively addressed: constructivism, the understandings of the social, equity issues 
and access, and socio-cultural research. To a certain extent these perspectives could 
be identified separately in research; however, things have changed a great deal since 
then. In the decade 2006–2015, the adoption of a series of related theories allowed 
researchers to address not only the micro-constitution of mathematical thinking, but 
also its macro-configuration within larger societal fields. Consequently, it is no longer 
possible or at least not feasible to demarcate the boundaries between what the social, 
cultural and political embrace, although particular theoretical tools may emphasize 
one aspect more than others. This expansion to incorporate the political contributes 
to realising the ambitions of a research field that provides deep understandings of the 
complexity of mathematics education in contemporary societies.

Institutionally, the engagement of PME with an emerging socio-cultural-political 
axis has had several key moments. One such moment can be located at PME31, where 
the theme of the conference was ‘School Mathematics for Humanity Education’. 
This took place just three years after PME28, where the theme had been ‘Inclusion 
and Diversity’. In his plenary in PME31, Breen (2007) emphasized the fact that 
“individuals do not operate outside of a context – the social and political are ever-
present in our teaching” (p. 76). Breen went on as follows:

Thinking about PME, one might argue that PME conferences have always 
been held with the express purpose of annually celebrating the light … We 
each have our own template of what that light looks like and how it should be 
explored, and we judge each other’s contributions against this template in our 
search for certainty. [D]evelopments indicate a welcome willingness on PME 
members’ part to look beyond the light of mathematics education and embrace 
the shadow as an integral part of our field. (pp. 76–77)

The metaphor of integrating light and shadow represents well the challenges 
that socio-cultural-political research poses to the field. This metaphor points to 
the importance of how decisions and choices are made on what to research, why, 
with whom and for what purposes. As researchers we have the power, privilege and 
responsibility to illuminate the complexity of mathematics teaching and learning 
both towards the details of children’s thinking processes in meaning mediation, 
and towards the broader significance of mathematics and mathematics education in 
contemporary societies. On tracing the paths of the socio-cultural-political axis in the 
last 10 years of research in PME, we will map out how these decisions and choices 
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have been made and how they have constituted lines of thought about mathematics 
thinking, teaching and learning.

We have organised the chapter in three main sections. In ‘Expanding views: 
what does the socio-cultural-political axis mean?’ we look at recent work that has 
contributed to an expansion of the socio-cultural views of mathematics teaching and 
learning, embracing the political views. From there we go to ‘Mapping the socio-
cultural-political axis: what is it like?’, where we provide an overview of some 
clusters of topics and findings in PME research. In the last section, ‘Moving the field 
forward: what is next?’, we discuss strengths, challenges, gaps, in addition to future 
directions in PME research and open this up to mathematics education research as 
a whole. Before we discuss the main sections, we will explain how we proceeded 
methodologically to conduct the research review.

REVIEWING RESEARCH: HOW DID WE PROCEED?

Reviewing academic literature also follows a logic. In our case, the logic adopted 
was framed by our knowledge of existing socio-cultural research in the field and its 
expansion in certain directions. Our three leading questions allowed us to identify 
the lines of concern, connections between those lines and who represents them, as 
well as the resonances between the perspectives expressed in particular papers. All 
this work around the state-of-the-art followed the stages of selecting (literature), 
organising (connections) and analysing (novelties). These stages were planned to be 
inductively accomplished, with the elucidation of connections and novelties being 
highly iterative in nature. We assumed that for any area of study to encourage the 
emergence of new ideas and trends, connections and advances between what has 
come to be known in the most recent past are necessary.

The selecting stage consisted of choosing the set of papers for the literature 
review. In this first stage, we drew on the whole of Plenaries, Panels, Research Fora 
and Research Reports (RRs), and identified and counted the papers that explicitly 
declared a theoretical perspective identifiable as socio-cultural for 2006–2015. 
Plenaries, Panels and Research Fora were read almost in totality in order to decide 
whether they added significant new debate to socio-cultural research. In the case of 
Research Fora, where a number of traditions are usually represented by a collection 
of short papers, we searched for evidence of such debate in at least one of the papers. 
Some more work was needed for the study of RRs. Six sets of PME Proceedings 
from this period include in their first volume an index of the authors of RRs within 
a system of research domains. This index helped us to trace the collection of RRs 
with socio-cultural approaches that were presented that year. For the Proceedings 
without an index of this kind, a selection of candidates from among all RRs came 
after reading titles, abstracts, introductions and references. We thus addressed the 
issue of how much, that is to say the relative weight of the socio-cultural approaches 
with respect to the total number of papers year by year. Later in this chapter we 
will provide the more generally obtained quantitative data. It is important to note 
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that, although many authors refer to socio-cultural theories in some form, we only 
considered work with explicit statements of justification for the relevance of these 
theories in the investigation reported. This option reflects our idea of the research 
that can genuinely be seen as socio-cultural in its orientation because social and 
cultural principles are declared in substantial ways.

From our reading of research papers, the observation that a number of articles 
were conceptually close to the socio-political emerged strongly. In a second stage of 
the review, the nuances in the interpretation of the socio-cultural and political were 
identified. This allowed us to follow the traces of authors and their work presented in 
the entire material, together with the connections with other authors. In this strategy 
of mapping the networks of relationships and authors, it was possible to identify 
the traces of major directions and lines of concern that delineate the socio-cultural-
political axis. Far from a rigid view of a structure, directions and lines of concern 
were explored as an interconnected system of ways in which socio-cultural-political 
PME researchers study and make sense of mathematics education and mathematics 
education research. This organising stage served not only to examine related insights 
in the sample of papers; it also guided the analysis of salient topics and issues for 
the purposes of delineating new paths of present and future socio-cultural-political 
research. In this respect, the analysis of new paths and emerging topics and issues 
in current research reveals our dynamic interpretation of the directions and lines of 
concern.

A third stage was to see, through the lines of concern, which topics and issues were 
addressed, and which new insights with respect to former research were provided in 
the papers. This analysing stage was planned to detect some of the newly integrated 
ideas in the context of PME that could be taken to the next period of follow-up socio-
cultural-political research. We privileged the detection of topics or themes instead 
of or complementary to the detection of methodologies and methods in the narrow 
sense of techniques. In relation to this issue it can easily be found that a wide range of 
empirical papers show a qualitative analysis of qualitative data, commonly based on 
the development of small-scale qualitative studies. From among these, many draw 
on specific methodological orientations with their own technical language such as 
grounded theory, discourse analysis, narrative analysis, ethnography, interpretivism 
or phenomenology. To detect major topics and issues, we looked for relationships 
in the socio-cultural papers selected from one set of Proceedings as a first step to 
guide the search in another set of Proceedings. All in all, we encountered a number 
of emerging topics and issues which indicate theoretical links among several papers 
and authors concerning the diversity of lines of concern identified. In this stage, 
therefore, the approach was centred on detecting topics and issues that somehow play 
a role in unifying and extending the socio-cultural-political lines of concern through 
the introduction of pioneering conceptualisations in the context of contemporary 
PME work.

On using this type of logic to review literature we were looking for alignments 
and recurrences in the theoretical perspectives and findings in the papers, thus 
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permitting the depth, breadth and progress of socio-cultural-political PME research 
from 2006–2015 to emerge to the surface. The intention was to map the field and 
not to give a detailed account of each single paper. Therefore, our review cannot be 
exhaustive on referring to each paper, nor can it be complete on detecting all the 
newly integrated topics and issues in and across the socio-cultural-political lines 
of concern. However, we hope that, on the one hand, authors can see their work 
represented in our mapping of the field and, on the other, the lines of concern, topics 
and issues examined provide a sufficiently rich state-of-the-art.

EXPANDING VIEWS: WHAT DOES THE  
SOCIO-CULTURAL-POLITICAL AXIS MEAN?

Twenty years ago, Lerman (1996) pointed to a central distinction in the study of 
mathematics education. The conceptualisation of the relationship between the 
individual and the social is the core difference between Piagetian inspired studies 
of mathematics education and socio-cultural studies. Lerman defined the latter as 
research involving “frameworks which build on the notion that the individual’s 
cognition originates in social interactions … and therefore the role of culture, 
motives, values, and social and discursive practices are central, not secondary” 
(p. 4). The focus on the classroom context and how it influences teaching and 
learning was an entry point for theories that went beyond the (social) constructivist 
assumptions on the effects of external factors – including other people – on 
individual cognition. In the second half of the 1990s, a series of conceptualisations 
from other fields of study (see Bartolini Bussi, 1998, for elaboration on this) had 
been incorporated into mathematics education in an attempt to give an account of the 
“individual in context”. Vygotsky’s cultural historical psychology was an important 
ground for further interpretation in the form of Cultural-Historical Activity Theory 
(CHAT) (Engeström & Middleton, 1996), together with the work of Lave (1988) on 
situated cognition, and the works of Lave and Wenger (1991) and Wenger (1998) 
on communities of practice. Less known but still in the same area were alternative 
discursive psychology approaches, in particular the work of Walkerdine (1988, 
1998). Sociological and political theories of education (Bernstein, 1990; Bourdieu & 
Passeron, 1977) had not been so broadly adopted in PME, even though they had 
started to provide a frame for dealing with problems emerging from contexts of 
mathematics education (Appelbaum, 1995; Mellin-Olsen, 1987; Skovsmose, 1994).

In the decade between 1996 and 2005, there is varied research on mathematics 
thinking, teaching and learning that could be identified as socio-cultural and which 
was part of PME, as reported in Lerman (2006). In the period 2006–2015, attention 
to mathematics and school mathematics as social, cultural and political gained 
recognition as a principle for a large number of PME researchers (i.e. the researchers 
who participate and present their work at PME conferences). Gates (2006) situates 
the origins of such recognition in the preparation of PME29 in 2005, when the 
International Committee decided to broaden the domains of research through the 
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inclusion of the category ‘Equity, diversity and inclusion’ for participants to submit 
their work. Moreover, during the General Assembly of that conference, a proposal 
was approved to remove from the PME constitution the preference to consult 
psychology as the fundamental field of scholarship for the PME community. Our 
analysis indicates that this opening up has enlarged PME research by adopting 
various integrated interpretations of the social, cultural and political in mathematics 
education. This trend has persisted over the last decade, articulating what we call the 
socio-cultural-political axis.

For further characterisation of the socio-cultural-political axis in this section, 
we first discuss the identifiable, constitutive directions and lines of concern within 
PME in relation to the expansion movement. The description of lines of concern 
serves as an initial survey of some of the work and authors that have contributed 
to socio-cultural research in forms that did not exist or at least were quite rare ten 
years ago. We then elaborate on the newer cultural-historical and socio-political 
trends in PME, addressing particularly some of the authors whose works have 
been crucial in grounding the socio-cultural-political axis. We finish this section 
by relating the newest orientations in PME to research in the broader international 
field of mathematics education (i.e. the research that has not been presented at PME 
conferences and reported in the PME proceedings, although some PME researchers 
may strongly draw their PME research from it).

The Micro-Macro Constitution of the Socio-Cultural-Political in PME

In the early nineties, the interest in understanding individual mathematical thinking 
in context was the beginning of how some of the approaches in PME research, which 
originate in the work of Vygotsky, would later result in the demise of the dichotomy 
between the individual and the social. More than 20 years later, a refined language 
to engage in such an endeavour has been achieved. A basic theoretical distinction has 
been constructed between saying that individual mathematical thinking is influenced 
by interaction with others, and saying that there is no thinking – mathematical or of 
any other kind – outside the relationship between the self and the other. The “social” 
is not simply a matter of the “influence” of “the other” on the “person” – as if 
these were entities with a recognizable separate existence. The inseparability of the 
individual – the I or the self – from the other – one and many, now and in a past that 
is constantly present – in the production of the material and symbolic world through 
practice is a grounding premise to think about humans, their life and activities.

The issue of the inseparability of the individual from the other is a basic 
assumption of Vygotsky’s cultural historical psychology rooted in Marx’s historical 
materialism. Opposing Western European rationalism, which places the defining 
element of humanity in thinking understood as inner, mental activity, historical 
materialism breaks with the idea of the individual as a monad and proposes a 
configuration of three elements – people in activity, artefacts and products of 
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activity, and systems of meaning – as the inseparable unit to think about the social 
world. This view has a number of implications for the notion of “individual in 
context” as a cultural-historical phenomenon rather than socio-cognitive or social 
psychological. Radford (2008a, 2008b) presents a delicate elaboration of the 
difference between the paradigms involved – socio-cognitive/social psychological 
and cultural-historical, – together with a discussion of how the long-established, 
two-way relationship between the individual and the social has raised the issue of 
the inseparability of the two.

Ideas about people in activity, artefacts and products of activity, and systems 
of meaning are tantamount to the newer cultural-historical and socio-political 
trends in the field, and are displayed in the papers that, in PME, can be mapped in 
relation to the socio-cultural-political axis. These are ideas that, expressed in diverse 
forms and with different emphases, have been present in many of the theories that 
mathematics education researchers have drawn upon in the study of mathematics 
thinking, learning and teaching in context. For example, Lave (1988, pp. 178–179) 
refers to three levels in the analysis of human cognition in social practice: the level 
of the lived experience, where people in activity, and activity and settings, are the 
constitutive elements of thinking-in-doing in everyday life; the level of the semiotic 
systems, with the structures they entail in a constitutive order of meaning; and the 
level of the dialectic relationship between the lived experience and the constitutive 
order in the generation of sense, meaning and thinking.

Our main point here is that, in 10 years of research outside and inside mathematics 
education, and inside and outside PME, more nuanced and rich languages to study 
thinking and education in mathematics outside of rationalist and socio-cognitive 
paradigms are now available. The original issue of understanding the “activity of the 
individual mind in context” from a social standpoint has been progressively unpacked 
and given precision by means of two major directions and several interrelated lines 
of concern. The two directions concerning the socio-cultural-political, which will be 
called “micro” and “macro” throughout the chapter, are complementary in that they 
dialectically connect local and systemic forces in contexts of mathematics education 
and mathematics education research.

In the direction of the micro-details of knowledge and meaning-making in cultural 
configurations, two lines have become evident in PME:

• The line of the micro-genetic analysis of semiotics, to which groups of scholars 
contribute, together and overlapping but also with some nuanced distinctions 
in their approaches to classroom activity in mathematics teaching and learning. 
Here we can mention the work of groups such as Radford and collaborators 
(e.g. Radford, Miranda, & Guzmán, 2008); and Arzarello and collaborators (e.g. 
Arzarello & Paola, 2007).

• The line of the micro-analysis of classroom discourse, in which a variety of 
research methods and central concepts coexist. Here we find the later work of 
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Sfard and her progressive turns toward participation and commognition, which 
have been researched by various scholars (e.g. Heyd-Metzuyanim, 2013); the 
work of Wagner, Herbel-Eisenmann and collaborators (e.g. Herbel-Eisenmann, 
Wagner, & Cortes, 2008); and that of Morgan and collaborators (e.g. Morgan & 
Tang, 2012).

As developed in the context of PME since 2006, the lines concerning semiotics 
and classroom discourse share important similarities in the light of attention paid 
to some primary notions. In particular, the more traditional assumption that people 
communicate as individuals has been replaced in both cases with frameworks around 
the idea of people communicating in activity across contexts of various kinds and 
through a variety of artefacts that are historically and socially realised.

A second direction studies the macro-details of the connections between the 
different participants in mathematics education and how they relate to each other 
in institutional arrangements in classrooms, schools, and outside schools. In this 
direction, work that adopts theoretical tools to study power becomes more evident. 
The study by Wagner, Herbel-Eisenmann and Cortes (2008) that we referred to 
above, for instance, is also about power. In the “macro” direction, however, power is 
taken to mean a decisive feature of broader social and political structures, while in 
Wagner et al. (2008) the decisive feature to be researched is the classroom discourse 
from the perspective of micro-level actions.

Again, this second direction has been expressed through different not mutually 
exclusive lines of study and intellectual traditions in recent PME research:

• The line of identities and identity-construction along different combined 
dimensions such as language, age, socio-economic status, immigrant background, 
race, ethnicity, gender, etc. Here we find the work of Barwell (2013) on language 
and language users, and the work of Lerman (2012) on socio-economic status and 
working-class students.

• The line of communities of practice in contexts of research such as teacher 
education, professional development or out-of-school mathematics. Here we find 
the work of Jaworski and Goodchild (2006) on mathematics teachers’ professional 
learning communities, and the work of Bose and Subramaniam (2011) on children 
knowledge-building communities.

• The line of ex/inclusion of particular groups of students from access to and full 
participation in school mathematics. Here we find the work on the creation of 
teaching and learning opportunities of Planas and Civil (2015) with bilingual 
immigrant children in urban contexts, and the work of Hunter and Anthony 
(2014) with Māori and Pāsifika students.

• The line of society and the politics of mathematics education and mathematics 
education research. Here we find the work of Walshaw and Anthony (2006) on 
the power of discourse and hegemonic discourses of power, and the work of Setati 
(2006) on the critical role of language ideologies in institutions of mathematics 
teaching and learning.
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The identification of these two distinct – but related – directions in PME work 
allows us to organise the diversity of theoretical and empirical frameworks in use for 
the understanding of mathematics education as social, cultural and political. The logic 
of this organisation is represented in Figure 1. As researchers choose to focus on the 
micro-dimensions of the constitution of mathematical thinking and learning, cultural-
historical approaches with an emphasis on semiotics or on classroom discourse are 
productive ways of researching. Complementarily, as researchers choose to direct 
their gaze towards the constitution of thinking, learning and education in relation 
to the broader systems of signification that articulate the practices of mathematics 
education in society, a socio-political trend would offer ways of linking mathematics 
education practices to broader macro-issues and dimensions. In that case the study 
of identities, communities of practice, processes of ex/inclusion, and the linkage 
between society, politics and mathematics education become productive. This logic 
of moves towards the micro-details, and the macro-tendencies provides a different 
way of thinking about the field of the socio-cultural-political as complementary 
analytical moves, rather than boundary crossing between discrete, not connected 
categories and problems.

We will now further elaborate on the micro-macro constitution of the socio-
cultural-political axis by referring to some of the PME works that have made 
important contributions to the grounding of theoretical tools and analyses with 
emphasis on one of the levels – micro or macro, – but with explicit mention of the 
two of them. We will map the newly arrived PME cultural-historical and socio-
political research. This body of research is critically confronting some of the taken-
for-granted relationships between interaction and knowledge in ways that may be 
seen as one of the features of contemporary PME work.

Figure 1. Representation of elements of the socio-cultural-political axis

Newer Cultural-Historical and Socio-Political Trends in PME

The micro-macro constitution of the socio-cultural-political axis has been possible 
through the number of works that, for the last decade of PME research, have included 
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neighbouring disciplines such as sociology, history, philosophy, anthropology, 
political science and linguistics. The study and inclusion of related disciplines 
have allowed an expansion of what is meant by “the individual’s cognition being 
originated in social interactions” (Lerman, 1996, p. 4) in terms of the inseparability 
of the individual from the other. In line with the issue of inseparability, what is 
new in contemporary socio-cultural PME research is the dual emphasis on how 
mathematics learning occurs (i.e. the nature of interaction) and what mathematics 
learning is (i.e. the nature of knowledge and learning). Such an emphasis has led to 
changes in earlier socio-cultural interpretations of cognition as socially occurring 
and individually being. In the last decade, the interpretations of cognition in which 
the social is only considered in part of the “story” – learning is socially shaped 
but the products of learning shape the individual rather than the social – have been 
largely problematised. A move has taken place from viewing the social as only part 
of the “story” to conceptualising cognition as unified processes of cultural, social, 
historical and political induction into communities of thinking and practice. This 
newer conception of cognition as socially occurring and socially being appears in 
works of the micro and macro directions.

In order to explain more carefully the expansion of PME socio-cultural research 
and the micro-macro constitution of the socio-cultural-political axis, for this part 
of the chapter we have chosen influential work within two newly-established PME 
trends: the cultural-historical and the socio-political. Our analysis of the PME 
literature over the period 2006–2015 mostly relates the emergence of the cultural-
historical trend to works on the micro level of semiotics and classroom discourse, 
and that of the socio-political trend to works on the macro level of identities, 
communities of practice, ex/inclusion processes, society and politics (see Figure 1). 
We indicate some of the authors who have been contributors to the advancement of 
either cultural-historical or socio-political ideas in recent PME research.

The rise and development of cultural-historical orientations in the context of PME 
can be illustrated through the research presented by Luis Radford and collaborators. 
Earlier in this chapter, we related Radford to the body of socio-cultural-political 
research in the direction of the study of knowledge and meaning-making at 
the micro level of specific cultural configurations, and particularly to the line of 
semiotic analyses of practices in the mathematical culture of the mathematics 
classroom. This is certainly an important part of the work by Radford inside and 
outside of PME. Nevertheless, his theoretical work on possibilities and boundaries 
of cultural-historical orientations in mathematics education research has also 
served to reinforce the complementary character of the two directions, micro and 
macro, in the constitution of the socio-cultural-political. The problem is not only to 
examine the configuration of local practices but also to consider broader cultural and 
historical forces – including the intellectual traditions in the field – intervening in the 
configuration, development and study of such practices.

In his plenary at PME38, Radford (2014) observed a cultural and historical concept 
of the individual, and reflected on the production of mathematical knowledge as a 
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historically-based social process. In that plenary, Radford highlighted the decisive 
role given to culture, history and society in the understanding and formation of 
knowledge and thinking: knowledge is always articulated and enunciated in social, 
cultural, historical and political conditions, and these are the conditions that structure 
how it is materially accessible in culture. Some years before, in his commentary for a 
PME Research Forum, Radford (2010) reflected on the cultural and historical nature 
of theory and knowledge in mathematics education research:

Theories in mathematics education reflect and refract implicit specific 
national-cultural “world views”. They are unavoidably immersed in those 
symbolic systems of cultural significations... of the symbolic structures of 
society structures from where (implicitly or explicitly) our theories draw their 
views of what constitutes a good student, a good teacher, and, of course, a good 
researcher. (pp. 169–170)

When reviewing PME research with a focus on what is mathematical knowledge 
and learning from the perspective of its historical construction, we encountered the 
term objectification very frequently over the last decade in socio-cultural research 
on meaning-making in the mathematics classroom. This is how Radford calls the 
social process involved in becoming progressively aware of the cultural logic of 
mathematical entities and knowledge. Radford and collaborators have taken many 
initiatives to illustrate how the cultural theory of knowledge objectification, as a 
strong socio-cultural and historical framework to think about the ontology and 
epistemology of mathematics teaching and learning (Radford, 2008b), works and 
what it adds to the understanding of mathematics teaching, learning and thinking 
processes. For example, Radford, Bardini and Sabena (2006) show how the 
objectification of generalisation in mathematical tasks requires the coordination of 
eye, word and gesture in a rhythm. The latter provides ways for students to become 
gradually aware of the moves involved in generalising. Radford, Miranda and 
Guzmán (2008) examine how students recreate cultural and historical mathematical 
meanings around the objectification of Cartesian graphs in school mathematics. 
Radford (2011) reports another investigation in which young children interact with 
different manifestations of school knowledge constructed around early algebraic 
thinking by means of material artefacts and gestures.

A related but not identical research agenda is the socio-cultural path taken by 
some Italian groups interested in a semiotic analysis of mathematics teaching and 
learning embedded in the idea of classroom activity. With a variety of topics of 
concern, the semiotic analysis undertaken in mathematics classrooms shows how 
learning unfolds in the interaction of individuals and groups in a space of action, 
production and communication – the APC space (e.g. Arzarello, Bazzini, Ferrara, 
Robutti, Sabena, & Villa, 2006). The APC space is built up in the mathematics 
classroom as a dynamic system, where the different components – body, physical 
world and cultural environment – are integrated into a unity that reports on the 
embodied and cultural nature of the mathematical concepts. Further elaborating on 
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Vygotsky’s activity theory, the issue of mediation in mathematics learning through 
specific social classroom practices and cultural frameworks of rationality is taken up 
in Arzarello and Paola (2007).

The study of the expansion movement and of the micro-macro constitution of 
the socio-cultural-political axis also points to the rise of socio-political orientations 
in PME. Here, the dynamics of power in mathematics education and mathematics 
education research is examined in relation to a variety of notions such as identity, 
positioning, disposition and agency, often borrowed from neighbouring disciplines 
and placed in relation to issues of social class, gender, age, race, ethnicity or language. 
In her introduction to the PME38 Panel (Phakeng, Halai, Valero, Wagner, & Walshaw, 
2014), Phakeng (formerly Setati) traced the rise of the socio-political trend back to 
the intellectual tradition of critical mathematics education:

In his paper entitled, ‘Critical mathematics education for the future’, 
Skovsmose (2004) argues that while mathematics education can empower, it 
can also suppress, and while it can mean inclusion, it can also mean exclusion 
and discrimination. Mathematics education, Skovsmose explains, does not 
contain any strong ‘spine’, because it can collapse into forms of dictatorship 
and support the most problematic features of any social development, or it 
can contribute to the creation of a critical citizenship and support democratic 
ideals. (p. 56)

The rise and development of socio-political orientations in the context of PME can 
be illustrated through the research presented, often in collaboration, by Lerman and 
Jorgensen (formerly Zevenbergen). Lerman and Jorgensen have contributed to the 
body of socio-cultural-political research in the direction of the study of connections 
between participants in mathematics education at the macro level of institutional 
arrangements in classrooms, school and out-of-school, and in respect of the lines 
of identities and ex/inclusion of groups of students. However, their investigations 
are especially valuable because they have contributed to widening, reinforcing and 
connecting the various lines of concern in the configuration of the macro direction 
of socio-cultural-political research.

In the introduction to the Research Forum entitled ‘Sociological frameworks in 
mathematics education research’ in PME33, Lerman (2009) indicated the importance 
of drawing on the work of authors such as Bernstein, Bourdieu or Foucault in order 
to “discuss how such [sociological] frameworks can shape our research questions 
and methodologies and form a basis for change in mathematics education” (p. 217). 
These frameworks are expected to help to examine what is mathematical knowledge 
and learning from the perspective of its political construction in ways that can 
complement the role and use of the philosophical frameworks previously used and 
revisited by Skovsmose (1994). More generally, in a number of PME collaborations, 
Jorgensen and Lerman (e.g. 2006, 2007) drew on sociology to understand the 
(educational) role of mathematics and knowledge in society, and the problematic 
nature of (school) mathematical knowledge. In these works, the investigation of a 
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pure historical subject, whose ideal cannot be empirically found, is replaced with 
the investigation of concrete dynamic subjects engaged in attempts to reconstruct 
meanings and relations of power in culture, in the spaces of mathematics classrooms.

Even if classrooms have remained the privileged site for PME socio-cultural-
political research over the last decade – although with efforts to include non-
prototypical classrooms, – some of the socio-political research traces the political in 
relationships among people and institutions beyond the classroom. Walls (2006), for 
instance, addresses the impact of standardised tests on students’ learning and their 
identities as mathematics learners. In a primary school community, she investigated 
the accounts of children, parents, teachers and managers on their perception of 
Year 5 Aspects of Numeracy Test in Queensland, Australia. Using a Foucauldian 
framework, Walls traced how testing was not just a way of detecting what children 
know mathematically, but rather a way of comparing and differentiating them, 
creating hierarchies and, thus, in/excluding some. The test was seen “as a major 
event in school and home life in its perceived authority to tell the truth, that is, to 
objectively measure and rank each child. In this perception, school management 
and teacher behaviour were modified, pupil identity reworked, and relationships 
within families adjusted” (Walls, 2006, p. 359). This type of research reveals that the 
different technologies of mathematics education – including testing – affect children 
and their identities, but also many of the participants in the network of practices of 
mathematics education.

Another feature of the newer PME socio-political trend is the view of systems of 
meanings and activity as changeable by the people involved in them. When focusing 
on the social and political conditions that constitute school mathematics, and on how 
such conditions are partially made accessible to marginalised groups in the dominant 
culture, a number of studies have emphasized the transformative dimension of 
power by conceptualising ideas of change, resistance and agency. In Jorgensen 
(2015), mathematics teaching and learning are seen in terms of progressive access 
to dominant worldviews and induction into mainstream cultural systems in ways 
that leave room for alternative realities. Jorgensen explores two rural schools and 
shows teachers who move to the very limits of the mainstream culture to modify 
interpretations of mathematics and professional learning. While the stories of 
successes and failures provided by the teachers’ activity in these schools remind us 
of the lights and shadows in Breen (2007), the appreciation of power as “positive” 
refreshes the principles of the critical theory pioneer project by Skovsmose (1994) 
and outlines the consideration of Foucault (1980).

So far we have characterised the socio-cultural-political axis in the context 
of PME by (1) pointing to two main identifiable directions – with respect to the 
emphasis on either micro or macro levels of analysis; (2) describing a number of 
researched lines of concern in relation to these directions; and (3) illustrating two 
influential theoretical orientations which cross over lines of concern and, by doing 
so, contribute to the conceptualisation of the socio-cultural in newer forms, namely 
the cultural-historical and the socio-political (see Figure 1). The ways in which we 
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have characterised the socio-cultural-political axis offer an idea of its richness and 
complexity. This is a complexity that goes beyond describing different dimensions, 
combinations between them and zones of intersection, as the geometrical image 
of an axis might suggest. We are documenting constructions in development, 
which depend on the dynamics of theories and groups of researchers continually 
contributing new analyses and interpretations to the field.

Some Evidence of the Socio-Cultural-Political Axis Outside PME

We have discussed the emergence and vitality of the newer cultural-historical 
and socio-political trends in PME research, as well as their transversal role in the 
configuration of the directions and lines of concern of the socio-cultural-political 
axis. However, it is fair to say that socio-cultural-political research is not a PME 
creation, at least not solely. The traditional perspectives for which mathematics 
education research is primarily linked to the search for didactical responses to 
technical problems, faced by students in their learning and by teachers in their 
teaching, currently coexist close to the newest perspectives that address problems in 
the field which are of a political or ideological nature.

When looking at the whole field of mathematics education research, cultural-
historical and socio-political trends are identifiable along with renewed interpretations 
of the relationship between the individual and the social in ways that demand a variety 
of theories which originated in other fields. Several of the international initiatives 
on how to move the field forward through the adoption and recontextualisation of 
theories from other fields have been driven by researchers who are active in the PME 
community. In their report of the ICME Survey Team on ‘The notions and roles 
of theory in mathematics education research’, Assude, Boero, Herbst, Lerman and 
Radford (2008) indicate the potential and some of the benefits of using theories of 
an “external type” rooted in sociology or anthropology. Another initiative in pushing 
the integration of disciplines for the development of theories and perspectives in 
mathematics education research can be found in the section ‘Social, political and 
cultural dimensions in mathematics education’ of the Third International Handbook 
of Mathematics Education, in the chapter by Jablonka, Walshaw and Wagner (2013). 
These authors provide a critical overview of how diverse social, political and cultural 
theories are allowing us to widen our contemporary perspectives of mathematics 
education and mathematics education research. This chapter actually addresses the 
extent to which notions from literary theory, discourse analysis, social linguistics, 
sociology, positioning theory and postmodern approaches were also present in the 
PME proceedings from 2007 to 2010.

Additional evidence of the constitution of the socio-cultural-political axis outside 
of PME comes from initiatives on how to move the field forward through theorizing 
work. In this respect, the theorizing work in a collaboration between Roth and Radford 
(e.g. 2011) has had an enormous impact in that it has contributed to frame CHAT 
perspectives (Engeström & Middleton, 1996) in mathematics education research. 
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Through the conceptualisation of mathematics thinking and learning as dynamic 
systems of meanings and activity, these authors have challenged the psychologically-
based distinctions between the individual and the social. Their work is simultaneous 
with the theoretical revision of the affordances and hindrances of social and cultural 
psychology in mathematics teacher education research. In this respect, the third 
and the fourth volumes of The International Handbook of Mathematics Teacher 
Education, edited respectively by Krainer and Wood (2008) and Jaworski and Wood 
(2008), illustrate the international opening up of a significant part of mathematics 
teacher education researchers to cultural-historical and socio-political perspectives, 
and more generally the theoretical interrogation of dominant ideologies at work in 
teacher education research designs. In her introductory chapter of the fourth volume, 
Jaworski (2008) refers to this opening up to theorizing within newer terrains from 
outside psychology:

[T]here has been a shift. One obvious difference is that constructivism has 
moved from a largely cognitive, psychological focus to take into account 
social contextual and institutional factors... In parallel, socio-cultural theories, 
rooted in the work of Vygotsky and followers have become better known and 
understood in mathematics education, with a challenge, implicit or explicit, to 
constructivism… and social, cultural, political and policy issues have become 
more evident in the mathematics education literature... [P]erspectives of 
teacher educators have moved into more social frames... with recognition also 
of the wider influences of system and society. (p. 4)

Particularly in relation to socio-political perspectives, Valero and Zevenbergen 
(2004a) challenged the socio-cultural-psychological approaches by offering 
sociologically-oriented alternative ways to theorize mathematics education and 
mathematics education research. At the time of writing, the collaborative project 
of that book – which was linked to their participation in PME activities – remained 
unique in many senses. It meant bringing together authors from different parts of 
the world, socio-cultural traditions and emerging critical political perspectives, 
sharing the challenge of rethinking mathematics education research in relation to the 
political, economic and social conditions of schooling and other institutions with a 
role in the regulation of practices on the micro level. The book chapters provided a 
number of early responses to why mathematics educators and mathematics education 
researchers should care about power, equity, social justice and critical pedagogy. 
In their introduction, Valero and Zevenbergen (2004b) anticipated the need for the 
revision of the socio-cultural-psychological dominant orientations in socio-cultural 
research toward the inclusion of the political:

[I]t is possible to identify another trend strongly rooted in sociology, critical 
theory and the politics of education. This trend stands on the assumption that 
mathematics education is, in essence, a social and political practice. This 
practice is social because it is historically constituted in complex systems of 
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action and meaning... This practice is political because the exercise of power, 
both in it and through it, is one of its paramount features. (p. 2)

Gutiérrez (2013) outlined the enormous potential for the field, the socio-political 
turn having been initiated in the ways of thinking about mathematics teaching, 
learning and education, but also in the critical ways of thinking about research 
and research methodologies. As in Valero and Zevenbergen (2004b), Gutiérrez 
distinguishes between socio-cultural approaches to mathematics education research, 
with an emphasis on understanding psychological processes from a social base (in 
which the social is only a part in the “story”), and socio-political approaches, with an 
emphasis on understanding social and political processes on their own. She argues 
that, although socio-cultural-political issues still remain under-researched in the 
field, the dominance of socio-cultural-psychological orientations in socio-cultural 
research is being reduced. There are now more authors who are bringing power 
and mathematics (education) together, and placing issues of equity to the fore in 
their investigations. These investigations pose crucial challenges to the whole field, 
which is however still operating under poorly articulated approaches and agendas 
surrounding issues of equity, and threatened by tacit deficit-based beliefs that not all 
students and groups can learn.

In a similar way to the refinement of theoretical language to study the cultural 
constitution of mathematics education practices, the theoretical language to grasp 
the political in mathematics education has also become more nuanced. Nowadays, 
the adoption and recontextualisation of a variety of tools to study power have been 
brought to the field of mathematics education. Besides the interest in thinking about 
pedagogies that help improve the achievement of students from socially minoritised 
groups who have not succeeded in mathematics, the field is producing more solid 
analyses of why and how mathematics education practices, in a broad network inside 
and outside the school, operate inclusion/exclusion and differentiation of groups and 
learners. Examples of this type of work can be found in recent special issues of 
international journals, such as Educational Studies in Mathematics, on social theory 
in mathematics education (Morgan, 2014a), or ZDM on socio-economic influences 
on mathematical achievement: what is visible and what is neglected (Valero & 
Meaney, 2014).

MAPPING THE SOCIO-CULTURAL-POLITICAL AXIS: WHAT IS IT LIKE?

Overall, the absolute and relative frequencies of the socio-cultural RRs indicate 
a stable high representation of this domain for the last decade of PME. While in 
Lerman (2006), the result was that “the number of Research Reports classified as 
socio-cultural has grown substantially from 1990 onwards” (p. 353), in 2016 it 
can be said that the domain has become firm and consolidated, and it represents 
between a quarter and a third of the total RRs, by year and across years. To gain a 
more complete picture, it can be added that we also identified about a total of thirty 
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Plenaries, Panels and Research Fora as contributing to the socio-cultural-political 
axis in any of the identified directions, lines of concern and/or newer trends (see 
Figure 1) for the period 2006–2015.

The reality created by the numbers above points to the extent, in intensity and 
volume, of socio-cultural-political research. But these numbers are poor data in terms 
of understanding how the socio-cultural-political axis has been framed in PME over 
10 years. In the previous section, we presented the existence of two major related 
directions, a diversity of lines of concern and two newer trends with a role in the 
rise and development of the socio-cultural-political axis inside and outside PME. We 
argued that these directions, lines of concern and newer trends cross over different 
topics of study in the field, groups of researchers and intellectual traditions around 
the world. Below, we map some of the topics newly addressed within the socio-
cultural-political axis. These topics cross over more than one line of concern (i.e. 
semiotics, classroom discourse, identities, communities of practice, ex/inclusion and 
society and politics), and provide a window to PME contemporary socio-cultural-
political research.

Knowledge Creation and Knowledge Use

The question of what mathematics is in/for teaching/learning is addressed through 
a series of topics of knowledge creation, knowledge use, frameworks and field 
development, which are present in practically all lines of concern through a number 
of papers. Although all papers are theory-building in some form, we refer here to 
those that search for evidence and arguments mostly in theory.

An example of this type, in the micro-direction of meaning mediation in 
classroom settings, is Hershkowitz, Tabach, Rasmussen and Dreyfus (2014). These 
authors expand the idea of knowledge agent to knowledge agency by considering an 
empirical bottom-up approach. The study combines two approaches – Abstraction 
in Content and the Documenting Collective Activity – to place knowledge and its 
mechanisms at the core of research on classroom discourse and the teaching and 
learning processes involved in it. Some more papers of this type can be found in 
the Research Forum in PME37 by Tabach, Nachlieli, Heyd-Metzuyanim, Morgan, 
Tang and Sfard (2013) on the development of “strong” discursive research. Different 
issues around the theory of commognition (Sfard, 2008) are addressed to make the 
argument that mathematics is a discursive activity and that mathematical objects 
result from the ways of communicating about them. In this framework, mathematics 
knowledge is conceptualised as the development of mathematical ways of using 
discourse, and mathematics learning as participation in a certain discourse. In 
particular, this means that mathematics knowledge is a kind of discourse, and 
consequently discourse is a topic of research in its own right, not a window to 
something else. This standpoint raises questions concerning how participation in 
one discourse is subject to participation in other discourses. Drawing on a socio-
cultural-political agenda, we see the relative status of different discourses and the 
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access to them by different participants situated as strong lines of reasoning for 
commognitivist research at present and in the years to come.

Another example of work about knowledge creation and knowledge use, with 
emphasis on the movement toward the socio-political in classroom discourse research, 
is the Plenary by Morgan (2009) in PME33. The question of what is mathematical 
knowledge and learning is here linked to the questions of what is language and 
what is discourse. Morgan addresses the need to connect the various perspectives 
in mathematics education research for the construction of powerful theoretical tools 
that can help gain insight into ways of integrating social structures and individual 
processes. She refers to the analytical challenges posed by the integrated study of the 
social and the individual as follows:

My concern with social inequalities precludes adoption of a perspective that 
denies or ignores the influences of social relationships and structures on 
individual experience and achievement. My personal search for theory has 
thus been shaped by a need to understand how individual and social may 
be connected... Theories of learning and activity based in the Vygotskian 
tradition offer powerful ways of understanding such connections... However, 
because many of my questions seek to address the uneven distribution 
of knowledge and educational success, I intend to focus here on the 
contributions of sociolinguistic, discursive and sociological theory to my way 
of understanding. (p. 51)

In her research, Morgan draws on a variety of theories such as linguistics and 
social semiotics, critical discourse analysis and social theory. The articulation of 
these three “toolboxes” allows her to unfold an analytical strategy in which any 
classroom data are understood through knowledge of the immediate context of the 
practice and knowledge of the broader socio-cultural context shared by participants 
in this practice. Within this framework, classroom interaction is investigated 
along with more general social practices and larger structural arrangements of 
education that frame the particular contexts of mathematics education. Morgan’s 
work constitutes a perspective that binds the micro direction of classroom discourse 
and semiotics sensitive analysis to the macro political structuring, that is, “how 
mathematics education functions in society for individuals and for various social 
groups” (Morgan, 2014b, p. 130). As in the case of commognition, where the 
combination of communication and cognition in the very same name of the theory 
grasps the unity of the individual and the social, Morgan’s social semiotics assumes 
the socio-cultural-political principle of inseparability.

Some more papers centred on theoretical issues of knowledge creation and 
knowledge use, now located in the direction of the politics of mathematics education 
and mathematics education research, can be found in the Panel by Phakeng et al. 
(2014) in PME38. The hypothetical case of building a new school project in 
South Africa intending to provide mathematics education to improve the living 
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conditions of children in a poor marginal area is used as a basis for a discussion of 
how mathematics education research, with its many discourses, relates to concrete 
social contexts and makes theory work for action. One of the foci of the papers 
in that panel is the ways in which discourses about what counts as an adequate 
organisation of mathematics education in schools are constituted by the social, 
political, material and cultural conditions of the schools, communities and countries. 
A second focus is the approach to theory and theorizing as the preceding necessary 
stage for performance and political action toward more democratic dynamics in the 
case of the imagined South African school. Similarly to Jorgensen (2015), theory 
and theorizing are viewed as transformative tools for the development of alternative 
more equitable worlds.

Community Work and Participant Development

The conceptualisation of theory as action, present in many papers regarding 
knowledge creation and knowledge use, is linked to another prominent topic in socio-
cultural-political PME research: community work and participant development. As 
further interpretations of Lave and Wenger (1991) and Wenger (1998), there are a 
number of papers that move their focus towards communities of practice, identity, 
ex/inclusion and the politics of mathematics education. Some of these papers engage 
with community work, community development and action for social change, both 
in school and out-of-school contexts.

Mathematics education research has expanded to include a variety of cultural, 
historical and political considerations that have led some researchers to become 
engaged in intense community work with groups of students, teachers and families. 
This topic of research has been addressed by Civil and Planas with data from 
very different political contexts but similar methods and findings. These authors 
have presented a number of RRs of their work together and with their own teams 
in Arizona and Catalonia about the mathematics education of minority groups of 
students in the relationship between schools, families and other groups of students 
(e.g. Planas & Civil, 2008). In the RR by Phakeng, Bose and Planas (2015), a case 
is made concerning research on the relationship between educational policies and 
ideologies of mathematical achievement of language minority groups in contexts 
of poverty, with direct participation and political action by the team of researchers. 
An example of this type is the work with families and after-school programmes 
conducted by Civil (e.g. 2008, 2012). With a focus on the role that language plays 
in the mathematics classroom placement of some of the children, in her Plenary in 
PME36 Civil (2012) reports issues of parental engagement in mathematics education 
for Mexican-American working-class communities of the US. She reflects on how to 
establish bridges between home and school for mathematics learning and teaching 
with attention to the diversity of social practices, institutional discourses and out-of-
school identities that students meet and struggle with:
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Largely due to the restrictive language policy affecting the schools where my 
work was located, I became interested in the interplay between language and 
mathematics, particularly for students whose home language is different from 
the language of schooling... The tension between in-school and out-of-school 
mathematics often goes hand in hand with what forms of mathematics are 
more valued... I see three elements at play as I reflect on opportunity to learn 
in the context of non-dominant communities: the nature of the mathematics 
problem; the language(s) involved; and the valorization of knowledge. (p. 45)

An increasing number of PME papers over the last decade have addressed issues 
of community work and participant development, while bringing out the tensions and 
possibilities of “bridging” communities and discourses during the research process. 
In Cooper, Baturo, Duus and Moore (2008), a researcher-teacher collaboration for 
the teaching of mathematics in vocational education for indigenous blocklayers in 
Australia is analysed. Thinking about the relationship between three main actors –  
researchers, an experienced blocklaying teacher, and indigenous, blocklaying 
students – in the context of vocational education, the concept of communities of 
practice (Wenger, 1998) is fruitful. In this research, the notion of community does 
not only include the series of practices of learning in school, but also extends beyond 
the school as practices of blocklaying happen outside vocational education and are 
important for the Torres Strait Communities to which students belong. The analysis 
of mathematics learning in such a context demonstrates that learning extends to 
community service, and in this way in-school and out-school practices are connected 
in a sense of community. In this broad sense of community, also including the 
participation of the researchers, new initiatives that would allow students to make 
sense of mathematics in blocklaying could emerge.

In Planas, Iranzo and Setati (2009), the analysis of classroom events with bilingual 
students in Catalonia is part of a community project with mathematics teachers in 
schools with a high percentage of working-class students learning the language of 
instruction. In the project, classroom events are examined and selected for inclusion 
in mathematics teacher education programmes to be conducted by the researchers 
under the principle that the use of the students’ languages has positive effects on 
the increase in mathematical participation and learning. Developmental work with 
teachers is also present in the shared design, implementation and evaluation of 
the pedagogic practices and tasks in a sequence of lessons for the exploration of 
mathematical participation, in line with issues of authority and power, and the ways 
in which these are encoded in classroom discourse. Planas and Civil (2015) report 
the learning of some of the teachers who were engaged in that project for several 
years, and who gained awareness of the extent to which issues of authority and 
power are pervasive in their lessons. On the basis of these teachers’ accounts about 
the criticality of the language practices in their classrooms, developmental work is 
conceived as a site where practices and identities can be modified in ways that allow 
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us to imagine new forms of mathematical participation for all students, regardless 
of their dominant languages. This is therefore another example of study where 
theorizing is expected to promote change and identity work by students, teachers, 
and also researchers.

Teachers, Student Teachers and Teaching

With respect to communities and developmental work, a large number of papers 
address teachers and student teachers in studies that have been conducted in different 
parts of the world. Johnsen Høines and Lode (2006) examine the initial education of 
mathematics teachers in Norway and the use of post-teaching, collaborative, subject-
based discussions as part of conversations in teaching practicum as a powerful 
learning setting. Student teachers and their tutors were invited to collaborate with 
the researchers. The intention of the collaboration was to explore the qualities of 
the conversations after a period of students’ practicum to learn about the different 
aspects of the practice of a mathematics teacher. Inspired by Alrø and Skovsmose’s 
(2002) proposal of learning as dialogue, they found that the institutionally dominant 
evaluative discourse in teacher education can be challenged by an ongoing 
investigative dialogue. The former is the type of discourse to which student teachers 
are often subjected, due to the fact that many conversations on their activity when 
they meet students during practicum are of an evaluative nature. The collaboration 
in the setting introduced by the researchers and among the researchers, tutors and 
student teachers, opens up for conversations that explore possibilities for what the 
student teachers could have done in the practicum. The emergence of a new possible 
conversation challenges the power of institutionally framed traditions, and offers a 
new rich collective learning opportunity not only for student teachers, but for tutors 
and researchers alike.

Adler and Ronda (2014) also bring to the fore the complexities of stimulating 
dialogue and participation in either a mathematics lesson or a teacher education 
context in South Africa. In their report, they explain a framework for describing 
teachers’ mathematics discourse in instruction to be used later in teachers’ 
professional development. This framework provides for a responsive and responsible 
description of the teacher as a professional who is in the process of challenging 
pedagogies and increasing her or his professional knowledge by paying attention 
to the opportunities for dialogue and interaction with students in the classroom, and 
to how these opportunities can be provoked and supported by the use of particular 
types of mathematics discourse in instruction. Under the influence of the literature 
on teaching dilemmas (Adler, 2002), Adler and Ronda elaborate on teacher 
development, classroom discourse and learner participation as the core elements of 
their teaching and teacher education framework.

Another example of a paper, this time on the knowledge and preparation of the 
mathematics teacher educators, is Jaworski and Goodchild (2006). These authors 
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present findings from a developmental research project, again in Norway, that seeks 
to create knowledge and improve practice in mathematics learning and teaching 
by developing inquiry communities between teachers in schools and mathematics 
teacher educators in a university setting. The powerful idea of inquiry communities 
in the collaborative work between teachers and teacher educators has the broader 
potential to inform about how learning opportunities can be created in the mathematics 
classroom. In her PME36 Plenary, Goos (2012) similarly reflects on the idea of 
community of inquiry as a resourceful way of understanding the creation of learning 
opportunities in a variety of settings in mathematics education. In particular, Goos 
traces out certain questions for possible future research trajectories in mathematics 
teacher education that consider connections between different communities of 
inquiry and their cultures:

Calls for improvements to mathematics education are implicitly based on the 
assumption that well prepared mathematics teacher educators are available 
who can foster change in teachers’ practices... The ethical, social, political 
and intellectual challenges inherent in bringing about this type of change are 
well known. However, much less is known about the professional preparation 
of the mathematics educators who undertake these tasks, or about how they 
continue to learn throughout their careers... Creating opportunities to learn 
across interdisciplinary boundaries may lead to new understanding of how to 
integrate the mathematical and pedagogical expertise of community members 
to enrich mathematics education. (p. 80)

Digital Technologies and Pedagogies

The ways in which teachers and students use technologies (commonly called 
ICT) as tools for mathematics teaching and learning have been examined from 
a variety of perspectives and theories in the last two decades of PME research. 
There is, however, an emerging topic in the examined PME papers over the last 
decade regarding the beginning of socio-cultural-political research concerning the 
study of the role, use and effect of digital technologies in mathematics teaching 
and learning within schools across a range of sites and socio-cultural backgrounds. 
Some of these papers provide micro-level findings of the complex communication 
and meaning-mediation processes involved in the production and interpretation of 
signs (e.g. gestures, drawings, natural talk, mathematical register) when working 
with technology. While ICT tools are interpreted as crystallizers of historical forms 
of thinking available in contemporary societies, the analyses are focused rather on 
how these tools mediate students’ mathematical thinking and learning, as well as 
particular pedagogies of mathematics teaching. Dynamic geometry packages are, for 
instance, analysed as elements of culturally produced forms of thinking, doing and 
teaching mathematics in educational settings.
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An example of this type of work on the micro level is the investigation by Geiger, 
Dole and Goos (2011) in Australia on the integration of digital technologies, such as 
electronic calculators, into classroom practice for numeracy teaching. This research 
adopts a critical framework for the understanding of numeracy in the connection 
between mathematical knowledge, dispositions and cultural tools, for the purposes 
of their use and relevance in dimensions of life such as the personal/social, work and 
citizenship. ICT as part of numeracy allows the well-documented gap to be bridged 
between, on the one hand, school knowledge and learning and, on the other, out-of-
school knowledge and action. In this respect, ICTs are studied and used as mediation 
tools not only for learning but also for social action in relation to differential access 
and outcomes. The influence of a Bourdieuian approach is clear in how Geiger and 
colleagues relate differential access and outcomes to the various structuring practices 
that serve to recognise and validate particular dispositions and skills within schools 
and classrooms.

Also under a socio-cultural approach but now completed with a Bernsteinian 
analysis for an investigation on a macro level, Lerman and Zevenbergen (2006, 
2007) examine how the digital divide affects students, families, educational 
institutions and classroom pedagogies. In their 2007 RR, these authors present a 
study of the ways in which teachers use interactive whiteboards in their classrooms 
in the curricular context of the Australian New Basics. Despite the potential of using 
the tool to enhance student learning, the analysis of a number of lessons showed a 
restricted approach in its use, for quick lesson introduction preceding whole class 
teaching. Interviews with teachers indicated that the approach observed was based 
on assumptions about students, mathematics learning and technologies. These 
teachers failed to recognise serious questions in terms of equity concerning the 
experiences and access to computers and ICT programs in the home. In the 2006 RR, 
the Bernsteinian framework for the same three-year research project is introduced 
to reflect on the potential role of technologies to support numeracy learning for all 
students with a focus on disadvantaged learners in particular. The notions of visible 
and invisible pedagogies, together with those of recognition and realisation rules, are 
considered in relation to “the digital divide” between children from middle-class and 
working-class homes. It is concluded that newer forms of pedagogy based on ICT 
innovation and the related approved pedagogic interactions need to be made visible 
in the schooling contexts of mathematics education:

Research shows that working within a progressive paradigm, that is, where the 
pedagogy is invisible, but mitigating the weak framing through strengthening 
some of the features of the pedagogy can make a substantial difference to 
the success of disadvantaged students... We conjecture that, without explicit 
awareness by teachers of the implications of different forms of pedagogy on 
different social groups the aims of the New Basics in terms of more equitable 
outcomes are not likely to be met. (p. 55)
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Out-of-School and Workplace Mathematics

From our presentation of some clusters of topics in contemporary socio-cultural-
political PME research, it would certainly be inaccurate to infer that these clusters 
were not present to some extent in earlier times. Even though we may deal 
with areas of study that have persisted since earlier time spans, our purpose in 
this chapter is to show what is new from the perspective of what is being added 
to the micro and macro directions identified in PME socio-cultural-political 
research. In this respect, a further topic in different papers over the last decade is 
the investigation of mathematics out of school, and particularly of mathematics 
cultures other than school mathematics in the workplace. When looking at what 
persists, we find a first type of studies that primarily give continuity to the socio-
cultural studies of children’s out-of-school mathematics and adults’ mathematics 
in the workplace under situated cognition approaches that were already common 
in PME in the nineties. When looking at what is new, we find a second type of 
studies that expand long-established approaches by including cultural, social and 
political considerations, along with issues about valorisation/status of knowledge 
in the sense indicated by Civil (2012). We have only identified a few studies of the 
latter type in our literature review, but we see it as the beginning of an opening of 
this topic to the socio-cultural-political axis.

In two related papers, Bose and Subramaniam (2011) and Subramaniam (2012) 
report a study on children’s everyday mathematical knowledge associated with 
participation in work activities. In India, it is common for children in low socio-
economic positions to undertake different kinds of work. Conversations with 
school children age 10–12 living in a slum in Mumbai showed how arithmetic 
strategies based on the values of the currency that they operate with allow children 
to complete certain complex calculations. Their knowledge of measurement units 
used in packages and products that they manage are also present in their calculation 
strategies. The research confirms what has been found in previous studies of the 
transition between school and out-of-school mathematical practices: while people 
show a quite sophisticated contextualised capacity for dealing with qualities and 
measurements, these do not necessarily transfer into the realm of formalised school 
performance. The issue remains of how teachers and educators can bridge this gap 
to open learning opportunities up to these groups of students. Together with the 
presentation of a variety of arithmetic strategies, an additional point is made: different 
strategies may be valued differently in mathematics classrooms depending on whose 
knowledge is being represented by them and whose participation may be favoured. 
In this way, the topic of out-of-school mathematics versus in-school mathematics in 
previous decades of PME work moves in a direction that studies power and issues 
of valorisation of knowledge more explicitly. As posed by Subramaniam (2012), the 
focus moves toward critical issues surrounding the relationship of school learning to 
knowledge accessed outside the school:
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Optimism about knowledge acquired by children outside school, especially 
mathematical knowledge, being a potential springboard for learning 
school mathematics is evident even in the early writings on ‘out-of-school’ 
mathematical knowledge... However, despite many studies exploring the 
contours of such knowledge and its settings, its integration with the school 
mathematics curriculum remains limited. (p. 107)

Regarding the study of adult workplace mathematics, in the last decade some papers 
have addressed mathematical activity in the workplace from a micro perspective 
where mathematics is embedded in the work context and is mediated through tools. 
While, in some of the studies examined on children’s out-of-school mathematics, the 
socio-political trend is visible, in the majority of studies on workplace mathematics 
the cultural-historical trend through a variety of interpretations of CHAT perspectives 
is common. CHAT perspectives are useful frameworks to analyse mathematics 
learning to become a professional within specific institutional settings that call for 
new forms of practice, knowledge and resources in the development of professional 
agency. Triantafillou and Potari (2006), for instance, report an ethnographic study 
in Greece with groups of technicians, some of them with vocational qualifications 
and others with an academic background. The detection of mathematical strategies 
in the activities of all the groups (e.g. locating a fault in an underground wire-
pair; installing and programming a telecommunication network; working in an 
Earth satellite station) is discussed in terms of what these results tell mathematics 
education research about differences in the valorisation of knowledge at school and 
in the workplace.

Social Views, Discourses and Values

Issues concerning valorisation of knowledge and knowledge users are strongly 
connected with the type of study that addresses mathematics in society and the 
framing of social views, discourses and values about mathematics and mathematics 
education. All these issues are highly related to the research domain on affect. 
Within the socio-cultural-political axis, however, this cluster of topics appears in 
papers mostly informed by discursive and sociological perspectives. Together with 
the papers that critically unpack official pedagogic discourses (e.g. Lerman & 
Zevenbergen, 2006, 2007), we find a few papers that address the role and use of 
“unofficial” media discourses in the wider cultural field. An example is the paper by 
Evans, Tsatsaroni and Czarnecka (2009). Here, the increasing use of mathematical 
images in distinct advertisements of nine English newspapers and the reproduction of 
certain public images of mathematics in the suggested messages are examined. These 
authors argue that such images in the media intertwine with pedagogical discourses 
of mathematics since both, as interconnected cultural productions, regulate people’s 
construction of identity and subjectivity. Their results raise questions as to how 
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different mathematical images are used in the media addressing audiences with 
different social classes:

We note the emergence of a trend – supported by our evidence – whereby 
mathematics equations or formulae are recruited as global communication 
technologies of subjectivity, shaping desire especially for those strata of the 
middle classes that are the most promising clients in the global consumers’ 
market. This emerging strategy might undercut the use of maths as a critical 
discourse for citizens. (pp. 23–24)

This type of investigations opens up clearly for the discussion of mathematics 
and broader (un)official political and economic discussion in society. It also raises 
questions concerning the extent to which mathematics education can and should 
currently provide a space for critique in society, particularly regarding how certain 
cultural productions (e.g. advertisements) work to cancel out initiatives designed to 
improve the level of mathematical knowledge in the general population.

In relation to social views and discourses entering the field of mathematics 
education, there is another group of papers focused on how social views, power 
relationships and discourses enter the culture of the mathematics classroom in 
the form of values and actions of valuing. Seah (2013) refers to the category of 
mathematical values as those linked to the convictions that have been emphasized 
in the tradition of Western mathematics. Rationalism, control and progress are some 
of the values emerging from the development of a large-scale study with teachers 
from a variety of cultural settings and backgrounds, who were asked to respond 
to what they find important in mathematics education. This study brought together 
research teams from eleven regions across the world, such as China, Hong Kong, 
Japan, Singapore and Sweden. Rather than interpreting the values identified as 
individual qualities of the teachers, Seah proposes an analysis based on values as 
the internalisation of dominant cultural ways of viewing the world (of mathematics 
education), with an effect on the enactment of specific dispositions to teaching and 
learning (mathematics). Similarly to what is claimed by Evans et al. (2009), Seah 
alerts us about the risks of accepting without critique the ways in which mathematics 
and practices and participants in mathematics education are valued in contemporary 
societies.

MOVING THE FIELD FORWARD: WHAT IS NEXT?

In a review chapter of this kind, we cannot consider that the review has been finished 
just because we have come to the end. The review of literature could have gone 
on and on, allowing more evidence of important discussions in contemporary 
PME socio-cultural-political research to be added. We are aware that important 
clusters of topics such as multilingual mathematics teaching and learning have not 
been directly addressed. At this point, however, we have already made our main 
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arguments: PME socio-cultural-political research over the last decade has matured to 
distinguish a variety of related approaches to conceive of mathematics education and 
mathematics education research as social, cultural and political. While a majority 
of prior PME socio-cultural research supported the idea that cognition is a socially-
originated individual process, and therefore focused on socio-cultural-psychological 
orientations, the domain has taken newer socio-cultural-political directions in 
support of the inseparability of the individual and the social. The study of works in 
these newer directions points to the constitution of a socio-cultural-political axis in 
the field inside and outside PME.

As an area of study develops, examining what kind of research and how it has 
been recently conducted is fundamental in order to be able to think about future 
work, and also to point to some of the gaps and priorities to be further researched. 
Our examination of papers has allowed us to identify some lines of concern, topics 
and issues in socio-cultural-political PME research for which there is an increasing 
amount of evidence, either theoretical or empirical. One of the findings from the 
analysis of contemporary socio-cultural-political PME work is that most of the 
studies reported are empirically oriented, and among these a majority are classroom-
based. These studies privilege analyses of data on students and teachers in their 
classroom environments in order to explore their processes of interaction and 
engagement with school mathematics. Here, the meanings of classroom interaction 
and discourse have gone through multiple rounds of refinement and interpretation 
in the last decade of PME for the development of knowledge about mathematical 
identities and many other related topics. What we want to outline is the fact that a 
majority of the classroom-based studies reported were conducted at the school level 
up to the students’ age of 16 years, and practically none at other levels or sites of 
mathematics education practice, such as pre-school education, higher education or 
adult education. It could be argued that research at these other levels and sites is 
the focus of other regular meetings of the field – such as the study group on Adults 
Learning Mathematics (ALM), or the Congress of Ethnomathematics. In any case, 
the lack of studies at these levels and sites constitutes a current gap in PME socio-
cultural-political research that needs to be filled. The institutional circumstances 
intervening on the different levels of mathematics education may lead to differences 
in the type of processes involved in classroom interaction, discourse, institutional 
framings, processes of in/exclusion and also the forming of mathematics in these 
contexts.

Excluding the papers which draw on data from research in classroom contexts, we 
have also seen that papers which report studies in out-of-school and/or vocational 
contexts are rare. This was not the case in the nineties, when several PME papers 
were regularly presented on this topic (see, e.g., the plenary by Schliemann, 1995, 
at PME19). Together with the exploration of the causes involved in the progressive 
misrepresentation of this topic, a planning needs to be undertaken to fill this research 
gap. Actions towards the construction of a more extended scientific community 
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with its researchers in connection with other scientific communities and researchers 
may be essential. The development of PME socio-cultural-political work depends 
greatly on the expansion and enrichment of research conducted in out-of-school 
contexts, for which strategic collaboration with other mathematics education 
researchers from communities entirely focused on this type of work would be very 
beneficial. There is a significant amount of out-of-school mathematics education 
research outside the context of PME, making important, foundational contributions 
to the field. In particular, international groups such as Mathematics Education and 
Society (MES) conduct regular conferences that have become a forum for research 
on the social, cultural, ethical and political dimensions of mathematics education. 
Out-of-school and non-classroom-based research on situations of poverty and 
inequity has an important presence in these conferences.

Yet another finding that deserves consideration concerns issues of geographic 
representation in relation to the location of the authors and participants in the 
studies examined. The production of socio-cultural-political PME papers has been 
concentrated in about a dozen countries over the last decade. Taking into account that 
what lies at the core of socio-cultural-political mathematics education research is the 
need to address the uneven distribution of knowledge and success, it is significant 
to note the uneven distribution of geographical representation and the silence 
coming from the low “ranked” countries. A majority of the studies reported refer 
to participants in countries like Australia, Canada, South Africa, United Kingdom 
and the US, while fewer papers report studies including participants in regions such 
as East and Middle East Asia, Eastern and Southern Europe, and Central and South 
America. When paying attention to some of these regions, it is not always the case 
that socio-cultural-political research is misrepresented there. In Southern Europe, for 
instance, a number of researchers from Greece, Portugal and Spain are developing 
influential work in the domain, but they present their studies in conferences other 
than PME. All in all, the development of the socio-cultural-political axis requires an 
increased representation of regions for a better understanding of the many social and 
political challenges faced by participants in mathematics education across different 
contexts worldwide. The inclusion of more diverse settings would certainly result in 
stronger conceptualisations of culturally-grounded notions and theories.

Based on our review we find that, although several of the socio-cultural-
political PME papers examined address important methodological questions, only 
some of them primarily consider these questions as a major topic of discussion 
and overtly elaborate on the need for, development and evaluation of particular 
analytical approaches. Thus, there remain a larger number of unexplored questions 
with respect to the possibilities, limitations and suitability of the variety of 
research methodologies that different authors use in their studies. One aspect of the 
reflexivity of research is researchers’ awareness of their own participation in the 
reproduction of particular cultural and political relations concerning mathematics 
education. This topic, raised many years ago in PME (Valero & Vithal, 1998), is 
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taken up by Baturo et al. (2008) when reflecting on research collaboration and 
methodologies that strive for de-colonial knowledge relations when studying 
mathematics education in/with indigenous communities. Alongside the strength of 
rigorous small-scale qualitative research, another feature of PME socio-cultural-
political research is that most qualitative research on mathematics classroom 
discourse typically focuses on a few episodes, and rarely provides quantitatively 
larger evidence (e.g. Herbel-Eisenmann, Wagner, & Cortes, 2008). Moreover, the 
adoption of long-term methodologies and comparative cross-cultural studies with a 
socio-cultural-political orientation has remained minimal. All these approaches and 
kinds of evidence are necessary to further advance the domain in the field.

In the previous section, we discussed the interrelated topics of knowledge creation 
and knowledge use to support their presence in practically all lines of concern 
in socio-cultural-political PME research through a number of papers. However, 
even in relation to these topics, our review revealed that conceptual theoretically-
based papers are less frequent than empirical papers. Few theoretical discussions 
on the emerging trends in research in PME form part of the proceedings. One of 
the exceptions is Brown (2009), who discusses Radford’s concepts of culture and 
subjectivity in his theory of knowledge objectification, from the point of view of 
what psychoanalytical frameworks to theorize learning may offer the field. This 
type of paper is quantitatively rare in comparison to papers centred on the analysis 
of empirical data, rather than on the discussion of the theoretical construction 
that precedes the identification of a particular construct. This finding has several 
implications for development of the field as a whole, and for the ways in which 
we are building the socio-cultural-political terrain. Due to the empirical tradition in 
mathematics education research, and particularly in PME, it is not surprising that 
the model of theory building for the development of the socio-cultural-political axis 
draws mostly on the accumulation of data and data analysis as an argument for 
the discussion of theory. There is, however, a substantive assumption in this way 
of building theory: it presupposes that socio-cultural-political phenomena can be 
directly observed or linked to something that can be directly observable. Cultural-
historical and socio-political approaches problematise those meanings of observable 
based on the search for external measures of constructs. Further elaboration on what 
can be designed to be observable, along with what kinds of observation matter and 
why, is still required.
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14. PRE-SERVICE AND IN-SERVICE 
MATHEMATICS TEACHERS’ KNOWLEDGE 

AND PROFESSIONAL DEVELOPMENT

INTRODUCTION

As Adler, Ball, Krainer, Lin and Novotna (2005) remarked in their landmark ICME 
survey report, research into mathematics teacher education was rather sparse until 
the mid-1990s. From its roots in mathematics and psychology – witness the name of 
the sponsor organisation of this handbook – the output of researchers in mathematics 
(or ‘mathematical’) education had previously been more directed, and often in an 
anecdotal way, towards learners, curricula, purposes and innovative instruction 
(Kilpatrick, 1992). The shift of attention towards – or at least, to include – teachers 
roughly coincided with the advent in the late 1980s of the ‘social turn’ (Lerman, 
2000) and growing attention to professional communities, and to the lives and roles 
of the actors within those communities. Ponte and Chapman (2006: see p. 462) 
confirm this chronology in the significant case of PME activity. By the mid-1990s, 
Tom Cooney, one of the leading researchers in the field, was able to comment: 
“Although it has been 30 years coming, it appears that the field of mathematics 
education is poised to seriously consider teacher education as a legitimate field of 
inquiry” (1994, p. 626). A clear and visible sign of this emergent interest in teachers, 
and mathematics teacher education in particular, as objects of research, is the 1999 
book Mathematics Teacher Education, edited by Barbara Jaworski, Terry Wood, and 
Sandy Dawson. The book was an outcome of activity in a PME Working Group on 
in-service teacher education between 1990 and 1994. Cooney’s claim was further 
vindicated when he himself was appointed founding editor of a respected journal 
devoted to the topic: the Journal of Mathematics Teacher Education, first published 
in 1998. One decade later, the coming-of-age of this field of research was evidenced 
in the four-volume International Handbook of Mathematics Teacher Education, 
with Series Editor Terry Wood.

Considering the scope of this present chapter, it is notable that teacher knowledge 
as such is given only passing attention in the aforementioned PME-rooted book 
(Jaworski et al., 1999), although some authors make reference to Shulman’s 
identification of the need for a kind of mathematical knowledge beyond confident 
(or even profound) knowledge of mathematics per se, and the index lists seven 
references to Shulman’s ‘pedagogical content knowledge’. The (relatively late) 
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emergence of mathematics teacher knowledge as a research field will be discussed 
further later in this chapter, but it is indicative that ‘teacher knowledge’ was not 
listed as a PME research domain1 in its own right until PME28 in 2004.

Our First Steps: Scoping the Task

Our commission was to write a critical overview of PME research into pre-service 
and in-service mathematics teachers’ knowledge and teaching development, in the 
years since the publication of the first Handbook (Gutiérrez & Boero, 2006). This 
earlier work included two chapters in a section entitled ‘Professional Aspects of 
Teaching Mathematics’: between them, the authors of these chapters surveyed PME 
research into mathematics teachers’ beliefs, knowledge, learning and classroom 
practices. Our brief is less comprehensive than theirs, and (accordingly) we have 
just one chapter in which to tell our story.

A team of researcher-colleagues of the first author undertook a content-appraisal 
of PME Proceedings between 2006 (Prague) and 20142 (Vancouver) inclusive, 
searching on keywords such as teacher knowledge, teacher belief, teacher education, 
educator education, professional development, professional growth. The relevance 
of the various PME outputs was then confirmed, or otherwise, by a rapid inspection 
of each paper. The same team then entered key features of each paper, such as 
student education-phase, teacher career-phase, methodology, sample size (where 
relevant) and relevant keywords. This search identified 975 candidate outputs to 
be considered in our survey, and the need to reduce this number significantly was 
apparent, but it is worth noting here that about two-thirds of these studies concerned 
in-service teachers. The first blunt instrument to be applied in the reduction process 
was to restrict reading to four types of papers, namely: Research Reports, Plenary 
Presentations, Plenary Panels and Research Fora. This was not because we believed 
that the ‘best’ research was reported in these outputs, but because the single page 
made available to authors of other presentations and group activities, such as Short 
Oral, Poster Presentation, Discussion Groups and Working Sessions, restricts the 
detail that it is possible to report in a written account (as opposed to the ‘live’ 
presentation). Around 530 papers remained, and our next decision was a tighter 
focus on our brief – teacher knowledge and teaching development – as indicated in 
the title of our chapter. With this in mind, we eliminated those papers whose focus 
was on teacher beliefs or teacher practices, unless they also engaged significantly 
with teacher knowledge and/or teachers’ professional development. This was a 
difficult but pragmatic choice, and does not deny the complex interaction between 
all these elements in the effort to understand teachers and teaching. Even then, we 
were left with 130 papers on teachers’ professional development and 220 on teacher 
knowledge, with the intention of reducing both to about 50 papers, in line with the 
number of papers cited in the Ponte and Chapman (2006).

In the case of the 220 papers on teacher knowledge, this final reduction (to 53) 
was achieved with the assistance of several colleagues of the second author with 
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relevant expertise, mostly in the UK and Norway, who were able to evaluate each 
of the outputs in detail against criteria such as the methodological thoroughness and 
theoretical coherence of the paper, and its relation to established work in the field. 
In the case of the 130 papers on teacher professional development, the team of the 
first author prioritised those on the learning of in-service and mathematics teacher 
educators (MTEs), reflecting a growing interest in MTE learning and professional 
development. One Plenary Address, two Plenary Panels, and four Research Fora 
relevant to this focus were retained, together with seven Research Reports related 
to MTEs’ learning. Then, according to the main research questions of the remaining 
papers, we divided these papers into theoretical reports, teachers’ learning outcomes, 
and learning processes through several rounds of group discussions. Finally, 42 
representative papers on teacher professional development are cited in this chapter. 
The 95 papers which then underpin our survey are included in the reference list for 
this chapter.

MATHEMATICS TEACHER KNOWLEDGE

As we noted in the introduction to this chapter, the investigation of mathematics 
teacher knowledge is a relative latecomer to the field of mathematics teacher 
[education] research. The contents pages of early issues of the Journal of Mathematics 
Teacher Education bear out this observation, as does the Editor’s retrospective on 
the first volume in particular (Cooney, 1998) which makes no specific reference to 
mathematics teacher knowledge. By contrast, and as a rough estimate, something 
like a third or more of all articles published in JMTE in recent years have addressed 
mathematics teacher knowledge, focusing on aspects such as knowledge to teach 
particular topics or content domains, the use of particular resources or technologies 
to develop teacher knowledge, the impact of a particular teacher education program, 
and efforts to theorise the nature of mathematics teacher knowledge itself; and this 
trend has been paralleled in the Proceedings of PME Conferences.

Before proceeding to survey the PME outputs identified for close attention, we 
note that papers with an exclusive focus on either elementary or secondary schooling 
each accounted for about one third of the 220 papers on mathematics teacher 
knowledge, with the remaining third mainly unspecified or mixed. The kindergarten/
pre-school phase and tertiary education were under-represented by comparison, with 
three and four papers respectively. While tertiary teaching was the focus of several 
papers identified in the initial keyword search, few took tertiary teacher knowledge 
as their principal theme.

These 220 papers with a focus on mathematics teacher knowledge exhibited a 
geographical bias with a Euro-North American axis. Specifically, the first authors of 
almost a half were institutionally-located in Europe3 or the Middle East, and about a 
quarter in the USA or Canada, with about 10% in each of Australasia and the Far East, 
5% in South America, and only one paper originating in Africa. This distribution 
would account for the dominant voice in the current discourse around mathematics 
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teacher knowledge, within but also beyond PME, in which the influence of Lee 
Shulman and knowledge-categories (Shulman, 1987) is very powerful. This remark 
is not at all a criticism of that particular ‘take’ on mathematics teacher knowledge, 
but there is the possibility that the deluge of Shulman-influenced papers drowns the 
particular wisdom and insight to be gained from alternative cultural perspectives on 
the topic (see e.g., Lee, Huang, & Shin, 2008).

Organisation of the Survey on Mathematics Teacher Knowledge

Scrutiny of the papers targeted for detailed attention revealed a great many 
characteristics, orientations and topics. In order to organise the survey in a coherent 
and manageable fashion, the following account of PME research on mathematics 
teacher knowledge is organised into four main sections, namely: theories of 
mathematics teacher knowledge; elaboration of mainstream theory; growth of 
mathematics teacher knowledge; and aspects of mathematics teacher knowledge (in 
particular the choice and use of representations and examples, teacher noticing and 
attention to ‘big ideas’, and teaching with technology). The distribution of space is 
indicative of the prevalence of these issues in the 53 ‘representative’ papers.

Theories of Mathematics Teacher Knowledge

The seminal work of Lee Shulman and his colleagues in the 1980s underpins most of 
the frameworks currently in use for conceptualising mathematics teacher knowledge. 
Shulman’s tripartite conception of teachers’ knowledge of the content that they 
teach includes not only knowledge of subject matter, but also pedagogical content 
knowledge, as well as knowledge of curriculum. Subject matter knowledge (SMK) 
refers to the “amount and organization of the knowledge per se in the mind of the 
teacher” (Shulman, 1986, p. 9); and pedagogical content knowledge (PCK) consists 
of “ways of representing the subject which makes it comprehensible to others…[it] 
also includes an understanding of what makes the learning of specific topics easy or 
difficult …” (Shulman, 1986, p. 9). In addition to his taxonomy of kinds of teacher 
knowledge, Shulman (1986) also draws out three forms of such knowledge, viz. 
‘propositional’, ‘case’, and ‘strategic’.

A Research Forum at PME33 brought together teams of proponents of three 
prevalent post-Shulman theories of teacher knowledge, each being articulated first 
around 2003, together with two commentators (Ball, Charalambous, Thames, & 
Lewis, 2009b; Ball et al., 2009a; Rowland & Turner, 2009; Davis & Renert, 2009a; 
Even, 2009; Neubrand, 2009). The first of these theories, Mathematical Knowledge 
for Teaching, (Ball, Thames, & Phelps, 2008; Ball et al., 2009c) refines and re-
configures the three kinds of content knowledge – subject-matter, pedagogical and 
curricular – identified by Shulman (1986). This (MKT) framework, developed by the 
group at Michigan University, has already been adopted (or adapted) by numerous 
researchers as a theoretical framework for their own enquiries, and it would be 
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reasonable to describe MKT as the dominant theoretical framework in current 
research in the field. In the MKT deconstruction of Shulman, SMK is separated into 
‘common content knowledge’ (CCK), ‘specialized content knowledge’ (SCK) and 
‘horizon content knowledge’ (HCK). CCK is essentially ‘learners’ mathematics’, 
applicable in a range of everyday and professional contexts demanding the ability to 
calculate and to solve mathematics problems. SCK, on the other hand, is knowledge 
of mathematics content that mathematics teachers need in their work, but others do 
not. On the other hand, they suggest that knowing about typical errors in advance, 
thereby enabling them to be anticipated, is a type of pedagogical content knowledge 
which they call ‘knowledge of content and students’ (KCS). In MKT, horizon 
content knowledge includes knowing what mathematical experiences precede those 
in a given grade-level, and what will follow in the next, and subsequent, grades.

The second theory, the Knowledge Quartet (KQ), similarly underpinned by 
Shulman’s work, arose from observation, codification and classification of teachers’ 
actions in the classroom, specifically those that could be construed as being informed 
by their mathematics subject matter knowledge or pedagogical content knowledge. 
The KQ identifies three categories of situations in which teachers’ mathematics-
related (‘foundation’) knowledge is revealed in the classroom: these categories, or 
dimensions, of the KQ are named ‘transformation’, ‘connection’ and ‘contingency’ 
(Rowland, Huckstep, & Thwaites, 2005). The first two of these dimensions are 
evidenced in the ways that the teacher represents and exemplifies the mathematics 
in focus, and how they sequence material to smooth the path of learning; the third 
dimension, contingency, attends to how the teacher’s knowledge is mobilised as they 
‘think on their feet’ in response to unanticipated events in the course of instruction.

A third approach to understanding mathematics teacher knowledge, mathematics 
for teaching (Davis, 2010), takes a more critical stance towards the legacy of 
Shulman’s theoretical framework, in that the latter suggests (though not necessarily) 
a cognitive, individual perspective on an entity (teacher knowledge) which is only 
meaningful in social contexts. (This critique resonates with e.g., Hodgen, 2011; Proulx, 
2010). Mathematics for teaching is rooted in complexity theory and approaches its 
enquiries through ‘concept studies’, a group setting for the collaborative sharing, 
exploration and enhancement of teachers’ knowledge, explained and exemplified in 
an account (Davis & Renert, 2009b; Davis, 2010) of the collective unravelling by 
such a group of the concept ‘multiplication’, in monthly meetings over a two-year 
period. Concept study enquiry into mathematics-for-teaching begins from the stance 
that the professional knowledge in focus is mostly tacit, and most profitably viewed 
in terms of participation, and as an ‘active disposition’ than an ‘in the head’ asset.

The task assigned to the three research teams at the PME33 Research Forum 
was to present a reading of two 10-minute video segments through the lens of their 
particular theory of teacher knowledge. The three analyses (Ball et al., 2009b; 
Rowland & Turner, 2009; Davis & Renert, 2009a) are not incompatible, and at times 
they coincide (e.g., in attention to selecting and sequencing examples) but their 
emphases are, as would be expected, very different. In her commentary, Even (2009, 
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p. 148) asks: “Are the different perspectives compatible? Do they complement each 
other?” In a recent article, Rowland, Turner and Thwaites (2014) have answered the 
second question in the affirmative with respect to MKT and the KQ, arguing that 
“In the Knowledge Quartet, the distinction between different kinds of mathematical 
knowledge is of lesser significance than the classification of the situations in which 
mathematical knowledge surfaces in teaching. In this sense, the two theories are 
complementary, so that each has useful perspectives to offer to the other” (p. 320). 
Turner (2010) supports this claim in her PME34 paper, a KQ-based analysis of 
longitudinal records of one teacher’s approach to teaching addition, by explicit 
reference to MKT concepts such as SCK and KCS.

In their PME34 paper, Proulx and Bednarz (2010) adopt the situated view of 
MTK, having already illustrated in Proulx and Bednarz (2009) that such knowledge 
is embedded in their classroom practice. They present findings from a program for 
inservice teachers with some features in common with Davis’ concept study. The 
authors report that their approach leads to new mathematical comprehensions, and 
that some beliefs concerning ‘mathematical norms’ are being brought to the surface, 
and challenged.

Although the organization of teacher knowledge into categories of one kind or 
another might be convenient to try to capture and articulate distinctions between 
knowledge-types, the boundaries between different categories is usually fuzzy, 
promoting from the outset disputes about what exactly characterizes different 
knowledge-types, and indeed whether the supposed boundaries exist at all. In 
their extensive review, Depaepe, Verschaffel and Kelchtermans (2013) summarise 
this debate and the attempts to resolve it. In her PME38 plenary address on the 
professional knowledge of (prospective) mathematics teachers, Gabriele Kaiser 
(Kaiser, Blömeke, Busse, Döhrmann, & König, 2014) raised once again the 
‘paradigmatic differences’ in conceptualisations of mathematics teacher knowledge 
(and PCK in particular) as ‘in the head’ in one view, and ‘situated’ in another, as 
captured by Depaepe et al. (2013, p. 22):

Advocates of a cognitive perspective on PCK believe it can be measured 
independently from the classroom context in which it is used, most often 
through a test. […] Adherents of a situated perspective on PCK, on the contrary, 
typically assume that investigating PCK only makes sense within the context 
in which it is enacted. Therefore, they often rely on classroom observations ….

Reporting findings from the 16-country Teacher Education and Development 
Study (TEDS-M), and its follow-up TEDS-FU, Kaiser (2014) proposed that these 
two studies suggest a way that the cognitive and situated conceptions of PCK 
can be integrated. The TEDS-M theoretical framework of teachers’ ‘professional 
competencies’ begins from Shulman-type categories, but also includes an affective 
dimension, and extends (like the Knowledge Quartet) to include beliefs related 
to mathematics and mathematics teaching and learning, as well as metacognitive 
factors. Using instruments developed (or adapted) for the purpose, these aspects 
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of prospective teachers’ professional competencies were surveyed. Various 
kinds of comparison of competencies, and some ranking, between countries or 
groups of countries are reported, and some of these findings are related to cultural 
characteristics of the countries in question (Hofstede, 1986). For example, it was 
found that prospective teachers from more collectivistic-oriented countries hold more 
static views about mathematics (as a theory and a set of rules), whereas prospective 
teachers from individualistic countries are more associated with a dynamic view (as 
a process). The follow-up TEDS-FU study investigated how mathematics teachers’ 
professional knowledge develops as they begin their teaching careers, and how 
this professional knowledge can be investigated in a more performance-oriented 
way. Practice-oriented, situated indicators of teacher expertise such as ‘perception 
accuracy’ (related to ‘noticing’ – see later), knowledge-based reasoning, and rapid 
identification of errors in the classroom, were annexed to the existing TEDS-M 
theoretical framework. These were assessed using web-based instruments requiring 
participants’ responses to items related to short teaching sequences viewed online. 
The researchers found, inter alia, that the ability to notice classroom situations 
adequately, and to reason appropriately, are strongly related to both aspects of 
disciplinary knowledge (both mathematical and pedagogical). On the other hand, 
the ability to recognise student errors depends more strongly on content knowledge 
than on pedagogical knowledge.

While the studies reported by Kaiser do indeed integrate both in vitro and 
practice-based approaches to evaluating mathematics teachers’ professional 
knowledge, they both reflect a view that such knowledge can be evaluated – 
‘measured’, in fact – on the basis of teachers’ individual responses, out of the 
classroom, to suitable test/questionnaire items. The ‘paradigmatic differences’ in 
conceptualisations of mathematics teacher knowledge, and how teachers are best 
supported and enabled to grow professionally, remain intact. We return to the issue 
of knowledge growth later.

Elaboration of Mainstream Theory

Papers presented at PME include a number of proposals for the elaboration, or 
modification, of extant theories of mathematics teacher knowledge, as outlined in 
the previous section. While such studies usually add to acronym-overload in the 
field, some draw attention to gaps or conflicts in the mainstream teacher knowledge 
discourse. Both Chapman (2012) and Foster, Wake and Swan (2014) take up a 
critique that Shulman’s framework and its derivatives focus on knowledge of 
mathematical concepts at the expense of problem solving proficiency. Chapman 
proposes a four-part framework of ‘mathematical problem-solving knowledge 
for teaching’ (MPSKT), namely knowledge: of problems; of problem solving; of 
instructional approaches; and of students as problem solvers. In a study with 11 
practising secondary school teachers, it was found that the participants held different 
(up to six) different conceptions in relation to each of the four PS dimensions. 
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Foster et al. (2014) propose a more conservative adaptation of Ball et al.’s (2008) 
MKT framework, in which each occurrence of ‘content’ is replaced by ‘concepts 
and processes’ (thus e.g., ‘knowledge of concepts and processes and teaching’). 
They then report a case study of two problem-solving lessons taught in the context 
of a lesson study-based professional development program. Their analysis of lesson 
observations and post-lesson discussions leads them to offer observed aspects of 
the three PCK-components of the MKT model from a process perspective. In a 
somewhat similar adaptation, or application, of the MKT framework to pedagogical 
knowledge of technology, Getenet, Beswick, and Callingham (2015) propose 
a mathematics – specific version of the TPACK framework (Mishra & Koehler, 
2006: see later in this chapter) named Specialised Technological and Mathematics 
Pedagogical Knowledge (STAMP), which somehow blends the two frameworks to 
take advantage of the affordances of both.

Cooper (2014) proposes a radical re-versioning of MKT by locating the Michigan 
theory within Sfard’s (2008) commognitive epistemological framework, which views 
thinking as a form of communication. In this commognitive embedding of MKT, 
each of the MKT components (CCK, etc.) becomes (or is viewed as) a discourse, and 
the theory as a whole is renamed Mathematical Discourse for Teaching (acronym: 
MDT). A significant theoretical distinction in Cooper’s data analysis is that between 
discourses (and meta-discourses) concerning mathematics and those concerning 
pedagogy, each of which has its own keywords, mediators, routines and narratives 
(with reference to Sfard’s characteristic features). He proceeds to an analysis of a PD 
session on the notion of parity, arguing that two kinds of ‘knowing’ (about parity) 
can be discerned in the data, corresponding to the two discourses.

Features of the MKT theory that have attracted considerable attention from 
researchers are the Common/Specialized content knowledge distinction (CCK/
SCK) and, to a lesser expend, horizon content knowledge (HCK). One approach to 
the CCK/SCK distinction question is theoretical argument. Another, less common 
approach is to design test items purporting to activate/assess one or either of these 
constructs, but not the other as far as possible. Of course, the construction of such 
items will initially draw upon theoretical conceptualisations of the two constructs in 
the first instance, and eventually define them when used as instruments to measure 
those constructs. Drageset (2009) presented findings from a Norwegian study 
investigating “the existence of SCK and CCK as two separate constructs” (p. 475) 
as regards Norwegian primary and lower-secondary teachers. Twenty-seven test 
items (derived from the Michigan Learning Mathematics for Teaching item bank) 
were administered to 356 teachers; 10 of the items were deemed to test SCK, the 
others CCK. A rather brief statement of correlation analysis of the test responses 
concludes that the two constructs are “connected, but still sufficiently different 
empirically to indicate that there are two different constructs” (p. 479). We note 
that Michigan-based Schilling (2007) had found that “sometimes SCK shows up as 
a separate factor in factor analyses and sometimes it does not” (p. 106). The debate 
continues.
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In a paper pre-dating MKT (Ball et al., 2008) and Depaepe et al.’s (2013) PCK 
survey, Chick, Baker, Pham and Cheng (2006) proposed a literature-based three-part 
framework for PCK based on the interaction between pedagogical and ‘pure’ content 
knowledge (CCK, perhaps). The components are labelled ‘Clearly PCK’, ‘Content 
Knowledge in a Pedagogical Context’ and ‘Pedagogical Knowledge in a Content 
Context’. Several components of each dimension are identified and listed. The 
adequacy of the framework is tested empirically by reference to questionnaire and 
interview data concerning decimals from 14 upper-primary teachers. The authors 
conclude that the framework was adequate, with some redundant components in the 
case of their sample.

Another group of papers apply and elucidate aspects of the Knowledge Quartet 
theory of mathematics knowledge in teaching. Petrou (2008) uses the framework 
in an investigation of Cypriot pre-service teachers’ knowledge in relation to their 
classroom practice. Her case study analysis raises for attention issues in connection 
with one pre-service teacher’s lesson on fractions, in particular concerning 
representations of fractions and fraction-related division structures. Whereas other 
PME researchers cite the KQ in their theoretical framework, the most detailed 
elaborations of KQ-theory are by Turner (2008, 2009, 2011) and Rowland (2010, 
2011). The Contingency dimension of the KQ – associated with teachers’ responses 
to unplanned and unanticipated events in their mathematics classrooms – receives 
particular attention in these papers. Rowland (2010) highlights the potential for 
teacher learning presented by contingent events, especially in post-lesson reflection-
on-action (Schön, 1983), and within teacher education programs. He exemplifies 
this potential with an incident in which a trainee teacher is surprised by a Grade 2 
student’s division of a rectangle into quarters. Turner (2009) takes up the same 
developmental theme regarding contingency, with reference to a longitudinal study 
in which beginning teachers learned to analyse their own teaching using the KQ 
as a tool. Drawing on an international resource of KQ-analyses of mathematics 
teaching at elementary and secondary levels, Rowland (2011) presents a taxonomy 
of ‘triggers’ of contingent events, the main components being students’ responses to 
questions and tasks, teachers’ in-the-moment insights, and the use of pedagogical 
tools, including technology. Finally, Turner (2008) draws out social, community-of-
practice factors in the development of mathematics teaching in early-career teachers, 
and the interaction of such factors with the kind of critical reflection supported by 
the KQ.

Growth of Mathematics Teacher Knowledge

Several PME papers address the growth of mathematics teacher knowledge and 
how it comes about, approaching the issue from a number of directions. Three such 
papers evaluate the effect of pre-service education, of teaching experience, and of 
a particular PD program. Blömeke and Kaiser (2008) reported findings from an 
international study (MT21, a precursor of TEDS-M) of the efficacy of pre-service 
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mathematics teacher education. Participants were 849 German student teachers in 
three cohorts representing the beginning, middle and end of teacher education (over 
5–7 years), who took a situation-based assessment of their knowledge of mathematics, 
of mathematics pedagogy, and of general pedagogy. Findings confirmed significant 
knowledge growth between the first and third cohorts, although much less so in 
general pedagogy than in the two mathematics-specific domains. Blömeke and 
Kaiser raise the caveat that quasi-longitudinal designs make assumptions about 
cohort comparability.

In their paper, Doerr and Lerman (2009) address the growth of knowledge 
for teaching mathematics as a consequence of experience of teaching. Lesson 
observations and interviews with one teacher participant (Cassie) in a four-year 
longitudinal study support the claim that the role of commonplace pedagogical 
routines (‘local strategies’ such as a particular rubric to support students’ mathematical 
writing) shifted from procedural tools to conceptual principles for instruction. Doerr 
and Lerman point to the vital role of interactions between the project teachers, and 
between them and the researchers. The roles of reflection and teacher-community 
participation once again emerge as crucial.

In the third paper, Seago, Carroll, Hanson and Schneider (2014) examine the 
impact of a topic-specific two-year PD program (Learning and Teaching Linear 
Functions – LTLF) on teachers’ understanding and teaching of linear functions. 
An experimental design involved 63 teachers and 1645 students in California. 
Multiple instruments, including questionnaires, observations and tests, were used to 
assess relevant teacher knowledge, teacher practice and student knowledge before 
and after the intervention. The ‘impact analyses’ found modest short-term (only) 
improvements in the intervention teachers’ knowledge for teaching mathematics, 
but student-related aspects of their teaching were enhanced, relative to the control 
group.

Verhoef and Tall (2011) report research in the Netherlands on lesson study as 
an approach to mathematics teacher learning. Three upper-secondary teachers took 
part in two lesson study cycles on ‘derivative’ over one school year. Questionnaires 
administered at the beginning and end of the year probed beliefs about educational 
goals, teaching methods, and associations with the derivative concept. An exit 
interview elicited views about students’ understanding. It was found that the potential 
benefits of Lesson Study were undermined by other ‘controlling’ influences such 
as curricula, ingrained habits, textbooks and student examination preparation. The 
study seems to confirm the need for caution in transplanting LS to western cultural 
contexts.

Gilbert and Gilbert (2009) take up the theme of teachers’ “systemic, intentional 
analysis of their own practice” (p. 76) within a Professional Learning Community 
(PLC) as an effective means of transforming practice. They report findings from a 
project in which high school teachers worked together on GAMUT4 tasks designed 
to highlight the mathematics that teachers use in their teaching. The paper shows 
how the tasks are sequenced and ‘layered’ so that each part has potential to deepen 
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and extend participants’ mathematical thinking in relation to earlier parts. The same 
authors develop the notion of school-based PLCs in their PME37 paper (Gilbert & 
Gilbert, 2013), in which they describe the development within a PLC of Educative 
Curriculum Materials (ECMs) envisaged as guides for teachers to support teacher 
learning and lesson planning. Taken together, the two papers illustrate the value of 
collaborative work on carefully-designed tasks, and of PLC networks, as a means of 
developing mathematics teacher knowledge in organic and sustainable ways.

In their introduction to the PME35 Research Forum on the use of tasks in 
mathematics teacher education, Sullivan and Zaslavsky (2011) offer a useful 
taxonomy of such tasks,5 making the broad distinction between those that resemble 
tasks that could be used with school students and those that are peculiar to teacher 
education (such as analysis of videos of teaching). In a contribution to that Research 
Forum, Chazan, Herbst, Sela and Hollenbeck (2011) articulate a rather novel 
approach to the representation of classroom practice in which animations are used to 
present classroom scenarios for consideration and critique by (in this instance) pre-
service teachers. The animation in question concerned a student’s unexpected (and 
correct) approach to solving a particular linear equation. It typifies both a contingent 
situation (c.f. the Knowledge Quartet) and a provocation of specialised content 
knowledge (c.f. Mathematical Knowledge for Teaching) with rich learning potential 
for the PSTs.

Noh and Kang (2007) also explored the contribution of ECMs to the development of 
mathematics teacher knowledge, but in their case the ECMs were published ‘reform-
oriented’ curriculum materials developed for use with school students, specifically 
the NSF-funded curriculum Contemporary Mathematics in Context (CMIC). Twelve 
high school teachers participated in individual, task-based interviews with the 
researchers, using CMIC problems on rate of change. It was found that although 
many of the participants held a procedural view of derivative, most demonstrated 
ability to move between different representations of rate of change – a strong feature 
of CMIC. Although the specific findings reported are appropriately tentative, a social 
and distributed view of MTK (and its development) necessarily assigns significance 
to the role of ECMs in professional settings.

The teaching of proof has exercised PME researchers over the years (see 
Stylianides, Bieda and Morselli, Chapter 9, this volume) but rather less attention has 
been given to the related teacher knowledge. Drawing on observation and interview 
data from a three-year case study, Cirillo (2011) presents a beginning teacher (Matt) 
with a strong mathematics background. Initially, Matt doubted that it was possible to 
teach proof, but by the third year he likened himself to a ‘sherpa’ who had climbed 
the ‘mountain’ (proof) many times in the past, and who now accompanies his 
students on the same journey. Cirillo emphasises that Matt’s secure subject matter 
knowledge was not sufficient to enable him to teach his students how to prove, 
calling for studies of teachers with proven success at doing so.

Whereas reflecting on teachers and teaching practice is now a commonplace 
means of achieving growth in professional knowledge, the value of studying and 
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understanding learners can be another, lately neglected, means to the same end. In 
his PME Plenary address, Doug Clarke (2013) pointed to a resurgence of interest in 
Piaget’s clinical interview (e.g., Ginsburg, 1997) in Australia and New Zealand, “as a 
professional tool for teachers of mathematics” (Clarke, 2013, p. 19; emphasis in the 
original). Clarke reports that regular use of a research-based, one-to-one interview 
by teachers with their students has contributed to growth of their subject matter 
knowledge (SCK and HCK in particular) and pedagogical content knowledge, 
in particular knowledge of students’ mathematical understanding, thinking and 
reasoning.

The growth of MTK clearly falls within the remit of the second major focus of 
this chapter – teachers’ professional development – and some of the approaches 
addressed in this section will be revisited later in this chapter, with the focus directed 
more towards the development of teaching practice.

Aspects of Mathematics Teacher Knowledge

Apart from the elaboration of theory and attention to the growth of professional 
knowledge, PME outputs on MTK in the decade under consideration have clustered 
around particular themes, three of which we review below: namely, teachers’ choice 
and use of representations and examples; teacher noticing and attention to ‘big 
ideas’; and teaching with technology.

Choice and use of representations and examples. In his exposition of the concept 
of PCK, Shulman (1986, p. 9) referred to “the most useful forms of representation of 
those ideas, the most powerful analogies, illustrations, examples, explanations, and 
demonstrations”, and so the selection and use of representations and examples for 
pedagogical purposes has been central to the notion of PCK from the outset. These 
two aspects of PCK are distinguishing components of the Transformation dimension 
of the Knowledge Quartet (Rowland et al., 2005), and very visible in the exposition 
of specialised content knowledge in the Mathematical Knowledge for Teaching 
framework (Ball et al., 2008; p. 400). Although particular PME papers tend to focus 
on just one of these aspects of mathematics teachers’ knowledge and practice, the 
two are intimately connected. For example, Turner and Rowland (2007) describe 
how a teacher’s last-minute switch from symbolic (numerals) to spatial (100-square) 
representation of two-digit numbers in a lesson on subtraction caused her prepared 
examples to ‘misfire’ in her ‘how-to’ explanation.

Multiple representations and cross-national comparisons feature in many of the 
papers on representations. Drawing on video classroom data from the Learners 
Perspective Study, Huang and Cai (2007) report analysis of the representations 
used by teachers in high-performing schools in Shanghai, China and California, 
USA, in 10 lessons (each) on linear functions. Huang and Cai (2007) cite NCTM 
(2001) in stating that teachers’ selection of pedagogical representations reflects 
their knowledge and beliefs about mathematics teaching and learning. It was found 
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that the US teacher drew on multiple representations in most lessons, frequently 
more than three (e.g., graphic, symbolic, tabular). By contrast, the Chinese teacher 
normally used only one or two types of representation, with verbal and numerical 
representations predominating. The US teacher used numerical representations 
least. The authors suggest that these differences may explain a separate finding 
regarding Chinese/US students’ preference for abstract/concrete representations in 
problem solving. The US teacher’s practice is consistent with the notion inherent 
in the paper of Koh and Kang (2007) discussed earlier, that the promotion of 
multiple representations by ECMs such as CMIC is beneficial for both students 
and teachers.

This cultural difference might explain the claim of Dreher, Kuntzer and 
Lerman (2012) that “fostering students’ competencies in dealing with multiple 
representations should be a central goal” (p. 212). In another ‘inter-cultural’ study, 
British and German pre-service teachers (PSTs) answered a questionnaire in which 
they rated various items about multiple representations in the teaching of fractions. 
They detected a difference, deemed to be cultural, in that the British PSTs favoured 
use of multiple representations, irrespective of their mathematical appropriateness, 
in the interest of providing for students’ individual learning differences. The 
German PSTs, by contrast, had concerns that multiple representations could confuse 
students.

Investigating teachers’ knowledge to discriminate between different representations 
to achieve particular learning goals, papers by Barmby and Milinković (2011) 
and Milinković (2012) explore British and Serbian PSTs’ choice between several 
alternative representations (such as sets, number line, area and arrays) to represent 
different entities and relations, for students of different ages. Their responses were 
indicative of the participants’ SMK and PCK, but also the stress placed on particular 
representations in the two countries. Deher and Kuntze (2015), and also Way, Bobis 
and Anderson (2015), conclude that knowledge about representations, and how to 
use them in assessing and developing conceptual understanding (of fractions, in 
these papers) should be an explicit focus in mathematics teacher education.

Concerning the choice and use of examples in mathematics teaching, two 
rather different, extended contributions stand out as ‘state of the art’ reviews at the 
beginning and end of the PME decade under consideration. The first, Bills, Mason, 
Watson and Zaslavsky (2006), is the paper associated with a Research Forum on 
‘exemplification’ at PME30, co-authored by several leading researchers in the field. 
The scope of the paper includes different meanings of ‘example’; a historical survey 
of the pedagogical use of examples; theoretical perspectives, including the notion 
of ‘personal example space’ (Watson & Mason, 2005); teachers’ selection and use 
of examples, with reference in particular to the work of Orit Zaslavsky and her 
collaborators; the learner’s perspective, the role of examples in concept formation 
and problem solving, including non-examples, counter-examples and generic 
examples; research perspectives, including instructional design and theory building; 
and pointers for further research. The notion of generic example (otherwise called 
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a prototype or paradigm) as a provocation to concept formation and reasoning is 
recurrent throughout the paper, and was subsequently the focus of a Working Session 
on Generic Proving (Leron & Zaslavsky, 2009) at PME33. In recent years, the 
notion of ‘variation’ in pedagogical exemplification has entered more fully into the 
discourse of instruction, following psychologist Ference Marton’s perception that 
we learn from discerning variation, and what varies in our experience influences 
what we learn. The provision of examples must therefore take into account the 
‘dimensions of variation’ (Marton & Booth, 1997; Watson & Mason, 2005) inherent 
in the objects of attention. Western thinking on this notion is also being linked to the 
practice of bianshi (‘variation’) within Chinese pedagogical practice (Gu, Marton, & 
Huang, 2004).

At the PME30 meeting, Zaslavsky, Harel and Manaster (2006) also contributed a 
paper on a secondary teacher’s treatment of examples in a lesson on the theorem of 
Pythagoras as indicative of teacher knowledge, citing work by Zaslavsky and Peled 
some ten years earlier on teachers generating examples. At PME33, Sinitsky, Ilany 
and Guberman (2009) reported on pre-service teachers’ ability to generalise and 
explain from fractions-examples.

Drawing on her sustained research into the topic, Orit Zaslavsky gave a PME34 
plenary address on mathematical thinking with and through examples (Zaslavsky, 
2014). The paper is organised around consideration of three inter-related settings – 
spontaneous example-use, evoked example-production, and provisioning of 
examples – with reference to the body of Zaslavsky’s work investigating them. 
Students’ (and especially teachers’) spontaneously-generated examples can be 
problematic (Rowland, Thwaites, & Huckstep, 2003) but they can also be productive 
– Zaslavsky cites the student who wrote 5 + 6 + 7 + 8 + 9 to exemplify a rule for 
summation of 5 consecutive integers, and then represented the sum as (7 – 2) + 
(7 – 1) + 7 + (7 + 1) + (7 + 2), thereby providing insight into the rule. The second 
setting illustrates an expanding comprehension of the concept ‘periodic function’ 
at a PD workshop resulting from the provocation formula ‘Give an example of…, 
and another one…, and now another one, different from the previous ones…’. The 
design of teacher-provided examples relates to aspects of teachers’ content and 
pedagogical knowledge, and needs to take into account what the learner is likely 
to (and subsequently does, or does not) “see” in the example(s). The key didactic 
consideration here is ‘transparency’ and genericity.

Teacher noticing and attention to ‘big ideas’. The notion of Horizon Content 
Knowledge (HCK) made explicit in the MKT framework (and c.f. Shulman’s (1986) 
‘vertical curriculum knowledge’) includes a synoptic perspective on mathematics 
enabling the teacher to look beyond the subject-matter immediately in focus to see 
the ‘big picture’. Kuntze et al. (2011) report two studies from an EU-funded project 
related, respectively, to assessing and developing German PSTs’ (elementary and 
secondary: N=117) knowledge of Big Ideas. The paper lists key characteristics of 
(the researchers’ perception of) Big Ideas, such as potential to support conceptual 
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understanding and meta-knowledge of the nature of mathematics. Their projects 
focused on three such Big Ideas (e.g., ‘argumentation and proof’). Although the first 
study identified weak access to content linked to these Big Ideas, the second found 
that related professional knowledge and awareness of Big Ideas can be built up in 
professional development courses. Nicol, Bragg and Nejad (2013) report a Canadian 
study in which six elementary PSTs were asked to adapt a task on reasoning with 
fractions in order to make it more accessible, or more challenging. Their analysis of 
the PST’s proposals indicates that none takes into account the big mathematical ideas 
in the original problem, specifically the relationship of a fraction to the ‘whole’. These 
authors frame their finding in the context of teachers’ noticing and attention (Mason, 
2002) when considering/preparing tasks for the classroom. Papers by Pang (2011) 
and Vondrová and Žalská (2013) take up this ‘noticing’ theme, with regard to Czech 
PSTs’ analysis of videotaped mathematics lessons. In a previous study, Vondrová 
and Žalská (2012) had found that PSTs pay little attention to ‘mathematics-specific 
phenomena’ (MSPs) when observing a full mathematics lesson. In this one, six short 
video clips were shown, so that a greater ‘density’ of MSPs were present in the 
material viewed, but the PSTs’ ability to notice them was not significantly improved. 
Rather, their attention was mainly guided by generic motivational concerns. The 
authors ask the telling question: would practising teachers be more likely to notice 
the MSPs? Pang’s (2011) paper reports very similar findings with PSTs in Korea, 
although it does note some improvement in sensitivity to mathematics-specific 
aspects of what they observe later in a case-based teacher preparation course in 
which such classroom events were regularly analysed and discussed.

Teaching with technology. Despite the very significant presence of digital 
technology in mathematics education research and practice, little progress has been 
made to date in integrating pedagogical knowledge of technology into frameworks for 
mathematics teacher knowledge, or in conceptualising mathematical knowledge of 
technology-for-teaching. In her PME36 paper, Bretscher (2012) turns to the TPACK 
framework (Mishra & Koehler, 2006) as a candidate to achieve this integration, 
and presents an analysis of the use of a PowerPoint presentation, an interactive 
whiteboard and a spreadsheet by one of three case study teachers in a lesson on nth 
terms of sequences. She concludes that TPACK is a useful tool for the purpose of 
including consideration of technology factors in the analysis of mathematics teacher 
knowledge, but that “the central TPACK construct may be better understood, not as 
a new category of knowledge …. but rather as a transformation and deepening of 
existing mathematical knowledge for teaching using technology” (p. 89). Ruthven 
(2014, p. 380) has subsequently suggested that TPACK “provides a rather coarse-
grained tool for conceptualising and analysing teacher knowledge; one that generally 
needs to be supplemented by other systems of ideas to accomplish analysis to the 
depth required for effective professional development and improvement”.

Two studies by Kuntze and Dreher (2013) used questionnaires to investigate the 
PCK of 39 PSTs in relation to computer use in mathematics teaching, and how it 
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can develop in pre-service education; and also the views of 65 practising teachers 
about such computer use, and the extent to which they used it themselves for 
various purposes. The questionnaires were in part informed by a distributed view of 
teacher knowledge, to include relevant ‘tools’, and a framework of Martin (2012) of 
pedagogical functions of educational technologies (viz. ‘connection’, ‘translation’, 
‘off-loading’, and ‘monitoring’), which has some potential to enhance the existing 
technology-free theoretical frameworks for MKT. Findings from the study indicate 
that the PSTs were moderately optimistic about computer use at the beginning of 
their course, but that their lack of technology-related PCK rendered them unable, on 
the whole, to be specific about actual applications. At the end of the course, 25 PSTs 
who had chosen a computer-related unit showed significant gains in technology-
related PCK and positive attitudes, whereas the remainder did not show such gains. 
As for the practising teachers, it was found that, on the whole, they lacked optimism, 
experience and PCK in relation to computer use. Clearly comparison between the 
pre-service and in-service cohorts is problematic, but the first study offers some 
hope that PCK for technology use is learnable.

Mathematics teachers’ professional learning in relation to technology use is taken 
up in a wide-ranging Research Forum paper by Clark-Wilson et al. (2014) which 
introduces (with several examples) a number of theoretical frameworks, at different 
levels of generality, underpinned by the theory of Meta-Didactical Transposition, 
a model for the analysis of teacher education which was itself the focus of a 
PME37 Research Forum (Aldon et al., 2013). Although teacher knowledge is not 
foregrounded in the paper, examples of teachers’ learning/practice trajectories 
“provide insight into how the particular features and functionalities of the different 
digital mathematical tools impact upon teachers’ motivation and confidence to 
integrate them into classroom teaching involving mathematical digital technologies” 
(p. 102). These ‘cases’ also illustrate the use of different theories including TPACK 
(see above) and also Pedagogical Technology Knowledge (PTK) (Thomas & Hong, 
2005). In contrast to TPACK, PTK relates specifically to mathematics teacher 
knowledge, and incorporates the understanding of the principles and techniques that 
enable teachers to design and manage instruction likely to promote mathematical 
learning with technology.

TEACHER PROFESSIONAL DEVELOPMENT

We turn now to mathematics teacher professional development. Llinares 
and Krainer (2006) concluded that programs aiming to promote teachers’ 
learning addressed their awareness of mathematical process and content, and of 
children’s mathematical thinking. Llinares and Krainer also identified the factors 
which promote or hinder teachers’ learning as: structure of teachers’ learning; 
mathematical tasks used in teachers’ learning; support network; engagement in 
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extended conversation about teaching and learning mathematics; time spent; and 
action research on teachers’ beliefs and practice.

In considering PME research in the decade since Llinares and Krainer’s review, 
we focus on the professional development of in-service mathematics teachers, 
hereinafter teacher professional development (TPD), in relation to the “knowledge 
construction or the incremental refinement of practice or both” (Clarke, 2009, p. 85). 
This part of our review emphasises the refinement of teacher practice, especially 
practice influenced by teachers’ newly constructed knowledge. The review of PME 
studies specific to TPD includes 130 papers with this geographical distribution: 
about one third of the first authors were institutionally-located in North America, 
about a quarter each in Europe (6% in UK) and Asia, about 12% in Australasia, 5% 
in South America, and 2% in Africa. It is worth noting that roughly half of the 130 
papers come from English-speaking countries such as America, Canada, UK, and 
Australia.

Organisation of the Review on Teacher Professional Development (TPD)

Three theories of teacher knowledge were elaborated in the previous section, but 
theories of TPD are still in process of development. The following sections address, 
in turn: theoretical perspectives on TPD; description of TPD; interpretation of TPD; 
and prediction of TPD. We also review PME research on mathematics teacher 
educators’ education – an emergent TPD-related theme.

Theoretical Perspectives of Teacher Professional Development (TPD)

In the plenary panel at the PME33, Clarke (2009) summarised the mainstream 
theoretical perspectives in mathematics teacher education and addressed issues 
related to the bridge between research and practice via mediation of different 
theoretical perspectives. Perspectives on mathematics teacher education can 
generally be described as either researching TPD from the cognitive or the socio-
cultural perspective; viewing theory as a static entity or an evolving process; or the 
opposing or complementary nature of theories. These three perspectives structure 
the following review of PME studies specific to TPD during 2006–2014.

Researching TPD from the cognitive or the socio-cultural perspective. Ponte 
(2009) claimed that cognitive theories have been the dominant view in teacher 
education. For example, Tzur (2007), from a cognitive perspective, asserted 
that TPD is “progress from intuitive to formal ways of thinking about teaching” 
(p. 143). He further pointed out that the learning progression does not only refer to 
behavioural changes but also to a paradigm shift in teachers’ thinking from know-
what to know-how. Muñoz-Catalán, Climent and Carillo (2009) attempted to make 
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an analogy between student learning and teacher learning about teaching. They 
adopted the hierarchical stages of interiorisation, condensation and reification from 
Sfard (1991) to elaborate TPD. Muñoz-Catalán et al. showed that teachers are more 
inclined to take students’ learning difficulties into account and adapt teaching plans 
that can meet students’ need during the condensation stage.

While recognising this dominant cognitive perspective, Ponte (2009) pointed out 
the emergence of theories that emphasise social processes and how they influence 
TPD (e.g., social interactions between participants, communities of practice, and 
activity structures involving participants). Llinares and Krainer (2006) also claimed 
that investigations of TPD increasingly consider social and organisational aspects. 
Ponte and Chapman (2006) further elaborated sociocultural theory, based on the 
work of Vygotsky, which has become prominent in the PME community and has 
evolved as one of the more productive lines of work regarding teachers’ practices. 
The review of PME studies specific to TPD between 2006 and 2014 also reveals 
the increasing interest in socio-cultural perspectives. For example, Ohtani (2009) 
adopted activity theory, one of the socio-cultural theories commonly used to interpret 
TPD, to argue that Japanese Lesson Study could be a successful approach. Likewise, 
Jaworski and Goodchild (2006) used activity theory as the framework with which to 
analyse issues and tensions with respect to the essence of TPD occurring within an 
inquiry learning community.

Viewing conception of theory as static entity vs. evolving process. In the panel, 
Clarke (2009) applied the definition proposed by Niss (2007, p. 1308) to elaborate 
the static conception of theory as “an organised network of concepts (including 
ideas, notions, distinctions, terms, etc.) and claims about some extensive domain, 
or a class of domains, consisting of objects, processes, situations and phenomena”; 
The TEDS-M study (Kaiser et al., 2014) was judged to be conducted under the static 
perspective which mainly evaluated the content and pedagogical content knowledge, 
and the learning opportunities, of practising teachers. By contrast, due to the demands 
of new situations and research purposes, Clarke (2009) proposed that “theories need 
to be fluid and evolving” (pp. 87–88), e.g., in the context of online distance courses 
for teachers (Borba & Zulatto, 2006).

The opposing or complementary nature of theories. Different theoretical 
perspectives on teacher professional development, like those of teacher knowledge, 
need not be in opposition. Thus Clarke (2009) viewed “alternative theories as 
potentially complementary rather than necessarily opposed” (p. 91). One example 
of complementary alternative theories could be seen in the Interconnected Model 
of Teacher Professional Growth (Clarke & Hollingsworth, 2002), using four 
domains of teachers’ professional growth identified by Guskey (1986). Clarke and 
Hollingsworth (2002, p. 947) identified “the specific mechanisms by which change 
in one domain is associated with change in another. The interconnected, non-linear 
structure of the model enabled the identification of particular ‘change sequences’ 
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and ‘growth networks’, giving recognition to the idiosyncratic and individual nature 
of teacher professional growth”.

In this review we find that theories are, for the most part, introduced by the 
researchers, and that theories of mathematics learning have their analogies in 
theoretical perspectives on mathematics teachers’ learning. If there were be a 
comprehensive theory of TPD, relevant to multiple contexts and situations, what 
would be the necessary functions of such a theory? Our review suggests that they 
would be: to describe what teachers have learned; to interpret how teachers learn to 
refine their practice; and to predict TPD (that is to design, evaluate, and research it). 
We now consider each of these three functions in turn.

Description of Teacher Professional Development (TPD)

For the most part, PME research which described the refinement of teacher practice 
also interpreted the processes of refinement. Here we will emphasise the following 
four foci: expert teachers; beginning teachers; inquiry-based teaching; and raising 
teachers’ awareness of students’ thinking.

Expert teachers. The meaning of ‘expert’ is interpreted in different ways because 
different aspects of teachers’ expertise are valued within different cultures and 
societies (e.g., Berliner, 2001). A PME36 Research Forum on Conceptualizing and 
Developing Expertise in Mathematics Instruction focused on teacher expertise and 
its development (Li & Kaiser, 2012), in which Ponte (2012) and Lin (2012) portrayed 
their perspectives about expert teachers implementation of the new curriculum 
in Portugal and their long-term participation in teacher professional development 
programs in Taiwan, respectively. They both considered expert teachers to be 
being those who employed student-centred teaching, including selecting tasks and 
conducting classroom discussions before and during teaching. About the selection of 
tasks, Ponte (2012) claimed the expert teacher “is able to select and perhaps adjust 
suitable tasks, …, involving students actively in mathematical work, stimulating 
them to develop their own strategies, concepts, and representations” (p. 126), 
effectively an elaboration of Lin’s (2012) “designing and using tasks that support 
rich mathematics thinking” (p. 133). About conducting classroom discussions, 
Ponte (2012) indicated that expert teachers should “conduct classroom discussions 
that create opportunities for negotiation of meaning, development of mathematical 
reasoning, and institutionalization of new knowledge” (p.127); consistent with Lin’s 
(2012) “purposely selecting and sequencing students’ solutions for whole class 
discussion; critically questioning and using students’ errors or misconceptions for 
discussion; responding to students’ questions adequately” (p. 133).

Lin (2012) further proposed that the expert teacher would create and allocate 
creative assignments after lessons. Likewise, also in the Forum, Leikin (2012) 
claimed that “expertise in mathematics instruction is characterised by fluency, 
flexibility, originality and elaboration” (p. 143): she referred to creative teaching; 
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giving concrete empirical examples to elaborate these concepts, and to support 
her claim. It is notable that, in different contexts and from diverse viewpoints, 
Ponte, Lin and Leikin all proposed similar characteristics of expert teachers. 
Nevertheless, whether each society has a coherent definition of the expert teacher 
is still under investigation. The emphasis has shifted to whether there is only one 
view of what an expert teacher is within one society. Pang (2012) argued that even 
in the same society, the description of an expert teacher might differ depending 
on one’s role; e.g., Korean mathematics educators usually considered expertise in 
mathematics instruction from the perspective of “mathematics-specific analysis 
ability”, whereas educators in general in Korea considered expert teachers from 
the perspective of a “specific case-based pedagogy” (p. 136). This seems to be an 
important issue when developing expertise in mathematics instruction within one 
society in the future.

Beginning teachers. At a PME31 Research Forum entitled Researching Change 
in Early Career Teachers, Hannula and Sullivan (2007) focused on ways in which 
teacher educators might facilitate effective change in beginning teachers. It was 
proposed (p. 151) that beginning teachers might be in need of change if they:

1. Have fixed views of the nature of mathematics and limitations in relevant 
mathematics discipline knowledge;

2. Have anxieties about mathematical knowledge and teaching that can be potentially 
constraining and even disabling;

3. Are unfamiliar with desired pedagogies and curriculum, not having experienced 
these as school students themselves; and

4. See learning to teach as a short-term, once-only event as distinct from a career-
long process.

Point 1 is similar to Leikin’s (2006) intuitive thinking about mathematics 
teaching. The unfamiliarity with pedagogy and curriculum in Point 3 is the opposite 
of the “fluency” proposed by Leikin (2012), and the lack of experience as a student 
seems to be contrary to “awareness of children’s mathematical thinking” claimed 
by Llinares and Krainer (2006). Furthermore, Points 1 and 3 are related to the 
concept of teacher efficacy. Chang and Wu (2007) studied 64 beginning elementary 
teachers’ sense of efficacy related to mathematics teaching, finding that those who 
had majored in mathematics or science showed greater efficacy. Hannula, Liljedahl, 
Kaasila and Rösken (2007, p. 154) summarised the therapies aiming to reduce the 
mathematics anxiety of pre-service teachers into four types: narrative rehabilitation; 
bibliotherapy; reflective writing; and drawing schematic pictures. Whether these 
strategies could also be adopted for beginning (and more experienced) teachers is 
an interesting issue for future research. Additionally, it should be noted that point 
4 deals with societal-based issues, which vary between countries; the correlation 
between beginning teachers’ willingness to refine their teaching and their stance in 
relation to point 4 is also worth future investigation.
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In addition, to enhance teacher efficacy and reduce mathematics anxiety, 
the Research Forum concluded: “One fruitful approach is to engage innovative 
mathematics teachers as experts or facilitators (teacher-researchers) for new projects” 
(p. 175); examples could be seen in Wang and Chin (2007) who investigated the 
ways mentors intervene in the mathematics teaching of practice teachers, and the 
principles and underlying values for their interventions.

Inquiry-based teaching. Inquiry-based teaching is widely promoted in mathematics 
education around the world, e.g., in European countries, implementation of inquiry-
based learning in day-to-day teaching has been reported by Maass, Artigue, 
Doorman, Krainer and Ruthven (2013). Teachers’ competence with inquiry-
based teaching is often identified as a key indicator of expertise in mathematics 
instruction. For instance, the view of what makes an expert teacher in Portugal 
was portrayed by Ponte (2012) as a teacher who is able to select, and perhaps 
adjust, suitable tasks, especially exploratory tasks, that involve students actively in 
mathematics work, stimulating them to develop their own strategies, concepts and 
representations. These are inquiry-based learning tasks. Chapman (2010) maintains 
that “Inquiry, as a basis of teaching, is being associated with notions of learner-
focused, question driven, investigation/research, communication, reflection, and 
collaboration” (pp. 361–362). Chapman reported the experience of a group of 
elementary teachers in “researching” how to adopt inquiry-based teaching in their 
classrooms. They developed an inquiry-teaching model, guided by their mentor 
to plan lessons for different grades. As a result, Chapman claimed, the teachers 
gained a deeper and more meaningful understanding of: inquiry-oriented teaching; 
questioning techniques that guide and enrich student thinking; posing thought 
provoking questions to motivate students to discuss and understand mathematics at 
a deeper level; and instructional strategies that allow students to assume ownership 
of their knowledge and knowledge construction.

Chin at al. (2006) reported a collaborative action research study on implementing 
inquiry-based instruction in an eighth grade mathematics class. An experienced 
teacher and a trainee teacher together carried out the action research, supported by 
an educator. After two-semesters, the trainee teacher gained a deeper understanding 
of the complex role of a mathematics teacher and had more confidence to conduct 
inquiry-based teaching on his own. The experienced teacher had also developed 
from being a novice at inquiry-based instruction to a confident teacher with the 
intention of communicating the teaching strategy to his peers.

Raising teachers’ awareness of students’ thinking. Studies focused on the 
intervention of using students’ thinking as the basis of professional development are 
still ongoing, and some examples are cited here.

Regarding the role of students’ mistakes in teachers’ learning process, Heinze and 
Reiss (2007) investigated the effects of teacher training on teachers’ ability to handle 
mistakes and assist students’ learning of reasoning and proof in geometry. They 
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conducted a quasi-experimental study and showed that students in the experimental 
group performed significantly better in the post-test.

Proulx and Bednarz (2009) invited teachers to explore the following fraction 
division task:

Is this procedure adequate/correct? Does it always work? How?

A variety of resources, mathematical, didactical and pedagogical, were used 
by teachers when making sense of this mathematical situation. Some approached 
the “same” situation from different perspectives, some came at it from different 
perspectives at different times, and some employed ways that implicitly had a 
double nature (e.g., mathematical and didactical). All those points of entry appear 
to play a role.

Goldsmith, Doerr and Lewis (2009) reviewed over 100 studies on teachers’ 
learning to challenge the issue: How do practising mathematics teachers continue 
to improve their teaching over time? They illuminated the “black box” of teacher 
learning by exploring teachers’ changing attention to and use of student thinking.

Interpretation of Teacher Professional Development (TPD)

In order to interpret how in-service mathematics teachers learn to refine their 
practices, three contexts in which they learn were identified in PME research: learning 
via teaching, via researching, and via participating in a learning community. We 
consider these in turn.

Teachers’ learning via teaching. A Research Forum at PME 31 (Leikin & Zazkis, 
2007) considered how teachers might learn through teaching. The main sources 
of teachers’ learning through teaching is their interaction with students, use of 
learning materials (such as textbooks and teachers’ guides), communication with 
colleagues and attending workshops. By giving opportunities for students to initiate 
interactions and by managing lessons according to students’ ideas, teachers also 
make opportunities for their own learning (p. 124). However, this way of learning is 
not always made explicit to teachers. Simon (2007) proposed that teachers’ current 
understanding imposes limits on what teachers can learn from their teaching. Tzur 
(2007) conceptualised such learning in terms of a change in anticipation. That is, 
whenever teachers direct their activities towards certain goals, such as correcting 
student mistakes, predicting student responses, providing students with experiences 
that differ from one’s own school experiences, resolving disagreements and/or one’s 
cognitive conflicts, satisfying school’s requirement to use software, improving 
one’s own mathematics, etc., they essentially learn through noticing unanticipated 
ways in which others (e.g., one’s students or peers) react to plans the teacher 



TEACHERS’ KNOWLEDGE AND DEVELOPMENT

505

executes (p. 144). Such reactions may become prompts for the teachers’ reflection 
on pedagogical/mathematical activity-effect relationships. That is, the teachers 
continually consider the extent to which their goal-directed teaching fosters certain 
effects, effects in the sense of inferred student/peer understanding. Whenever 
teachers noticed and revisited student/peer unanticipated actions, this prompted 
further reflection, hence they were learning. These three constructs: anticipation, 
reflection, and noticing, can powerfully explain the complex mechanisms, contexts, 
and stages in teacher change via teaching.

Teachers’ learning via researching. Research is one of the best methods for 
teachers to learn how to refine their teaching practice. The focal issues of research in 
the process of teachers’ learning can be collectively summarised from the discussion 
of the Research Forum at PME34 (Santos-Wagner & Chapman, 2010): (1) the goal 
is to develop teachers’ reflective, analytical and critical thinking, (2) the helpful tools 
for collecting data from teachers are reflection, noticing and biographical writing, (3) 
the stimulus to autonomous teacher disposition in relation to mathematics pedagogy, 
and (4) making use of teachers’ classroom practice and learning experience to help 
them to gain knowledge. In Llinares and Krainer’s (2006) review, they suggested that 
“in the future, we need more of these research-oriented stories, putting an emphasis 
on explaining phenomena by using empirical evidence as well as theoretical 
consideration. Action research by teachers (…) and corresponding action research 
by teacher educators (…), and we need identified efforts in the future (p. 451).” 
Therefore, teachers’ learning from research has been emphasised for its theoretical 
and practical importance in TPD.

The power of research for TPD is what “practice and theory can offer through 
learning processes of engaging teachers in research projects” (Santos-Wagner & 
Chapman, 2010, p. 354). In the context of research, teachers can be learners 
or researchers, depending on the goals they set. Traditionally, there are two 
methodological approaches to teachers’ learning through the process of research 
in PD; one is participating in a research project and the other one is conducting 
action research (including design tasks for classroom practice) connected with 
the teacher’s practice. These approaches are equally important in providing 
opportunities for learning with both theory and practice, although the actions taken 
in each research project might differ. Through engagement in a research project, 
teachers can quickly receive theoretical support from fellow researchers and follow 
the arrangement of the research design to learn. The majority of research in TPD 
can be categorised in this domain. However, with the other approach, conducting 
action research, teachers have to invest considerable effort in the process of linking 
theory and practice in order to improve their classroom practice (e.g., Serrazina, 
2010) or to refine their teaching (e.g., Chapman, 2010). Generally, action research 
can function in a mentoring structure where both participants, i.e., mentors and 
early career teachers, learn together (e.g., Chin, Lin, Ko, Chien, & Tuan, 2006), 
or in a cooperative community where all participating teachers learn from each 
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other in a systematic arrangement. For example, the experienced teachers learn to 
design tasks for enhancing their expertise in hierarchical stages to improve their 
design, take the experiences of their peer colleagues, and then develop further in 
participating in a design-based TPD program and conducting their own research 
(see Lin, Chen, Hsu, Yang, & Wu, 2013). This can also be found in lesson study (LS) 
group learning in which group member-teachers apply LS cycles to continuously 
refine their lesson (e.g., Robinson & Leikin, 2009). These studies of action research 
have one characteristic in common, in that they are all trying to stimulate innovation 
in teachers’ professional expertise.

Teachers’ learning via participating in learning community. Generally speaking, 
theories used to interpret TPD in learning communities are oriented to social and 
cultural perspectives. Review of PME papers with respect to TPD via participation in 
a community can be categorised into four main research topics: inquiry community, 
Lesson Study, design-based community, and online learning community.

The notion of inquiry community brings together characteristics of “being 
together” and “exploring” for triggering professional development. Fundamentally, 
the inquiry community involves an activity system where teachers are able to ask 
questions and seek answers to discover more about the teaching and learning of 
mathematics (Jaworski & Goodchild, 2006). To this end, Jaworski and Goodchild 
(2006) suggested that activity theory based on the work of Vygotsky can well 
articulate TPD in an inquiry community. They argued that activity theory offers 
a unit of analysis and the possibility of exploring the mediating elements and 
dialectical relationship between different tiers of participants and interactions with 
their environments.

Lesson Study entails a professional community where in-service teachers study 
lessons in depth on a school basis (Fernandez & Yoshida, 2009). Pang (2015) studied 
five in-service teachers and argued that lesson study motivates teachers to analyse 
the strengths and weakness of teaching approaches implemented in one class and 
to come up with alternatives. In principle, teachers should volunteer to participate 
in a lesson study community. However, in reality, Krainer (2011) argued that the 
participation can be regarded as quasi-required because socio-cultural commitment 
or pressure from principals plays a role in influencing the participation in such 
professional communities. Thus, Krainer (2011) concluded that culturally-situated 
theories such as cultural-historical activity theory, anthropological theory of 
didactics, and community of practice theory become promising theories that can 
be used to elaborate teacher learning in such professional environments. The use of 
those theories brings additional lenses in exploring and interpreting new aspects in 
the Lesson Study community.

Design-based community highlights design as an intervention approach by 
which teachers are involved in creating instructional tasks for student learning of 
mathematics. Design-based community does not only highlight learning through 
participating in practice as in Lesson Study, but also the facilitation of TPD by 
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bridging theory and practice so that teachers have a picture of how theoretical ideas 
can be incorporated into their teaching. Thus, Lin et al. (2012; 2013) adopted a three-
layer structure comprising grand theory, intermediate framework and a design tool 
(Gravemeijer, 1994; Ruthven, Laborde, Leach, & Tiberghien, 2009) for the design 
of professional programs, where the intermediate framework and design tool serve 
to coordinate and contextualise the theoretical insights from grand theory. Being task 
designers, teachers have opportunities to explore curriculum materials and student 
learning in detail, as well as to incorporate professional development materials into 
their designs, all of which become important sources for improving their teaching. 
The theory adopted for the investigation of TPD by Lin et al. (2012, 2013) is also 
aligned with situated learning theory, by which teachers development through 
interaction with others can be identified.

Online environments for teacher professional development have been seen as 
important for their potential benefits in responding to teachers’ needs during the 
last decade, as compared with face-to-face professional development. It is generally 
thought that these online TPD programs can provide learning opportunities for 
teachers at their convenience, and when they are needed (Dede, Ketelhut, Whitehouse, 
Breit, & McCloskey, 2009). Flores, Escudero and Aguilar (2014) use the term ‘online 
mathematics teacher education [OMTE]’ in their literature review of this emerging 
research area. They found that the main issues investigated include interactions 
among teachers in online settings, and teachers’ professional development (growth). 
The theoretical approaches employed in this area are partly extrapolations of tools 
designed originally for face-to-face settings, such as the concept of community of 
practice and mathematical knowledge for teaching. Some theoretical approaches 
are specifically designed for online settings, such as the concept of humans-with-
media (Borba & Zulatto, 2006) and the instructional model of online asynchronous 
collaboration.

The data collected for supporting teachers’ development in online environments 
include their written productions, teaching materials, and mathematical productions 
through graphing software, platform resources such as online forums, chat rooms 
and questionnaires, and digital recording artefacts. Lastly, the transformations of 
researchers in online environments can be summarised with reference to three 
aspects. One is that the way they access data is less intrusive than the methods 
used in a face-to-face setting, e.g., observations. Secondly, the efficiency of data 
collection and processing is higher than in a face-to-face setting. Thirdly, online 
environments create the need for researchers to create theoretical tools adapted from 
face-to-face settings.

Prediction of Teacher Professional Development and Processes—Design, 
Evaluation, and Research

Our survey found only a few papers which pinpoint the apparatus that can predict 
TPD. From a socially situated learning perspective, Hsu, Lin, Chen and Yang (2012) 
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proposed a coordination mechanism defined as the ability to innovate for teaching 
by transforming and coordinating sources of information observed and experienced 
in different learning environments. Based on this definition, Hsu et al. identified 
two kinds of coordination, namely coordination as making connections between 
others and personal ideas in a superficial way; and coordination as integrating 
sources of information into the creation of novelty. Similarly, Boesen et al. (2014) 
identified two kinds of interpretation of information in respect of their teaching. 
One is assimilation, which refers to the ways that teachers interpret information 
that is in line with their preference. The second is adaptation, which highlights the 
coordination of information into the learning process.

Lin et al. (2013) further grounded their study on the analysis of teachers’ 
intention to design tasks and evaluate them in alignment with the goals prescribed 
by professional development programs. Based on a case study, the analysis reveals 
three stages of teacher growth: self-expression; combining other ideas into personal 
design; and investigating the essences of mathematics learning. These can be used to 
evaluate and forecast teacher learning in design-based professional settings.

Although studies on TPD have a predictive orientation, the field in teacher 
education still lacks fundamental and comprehensive theories that can articulate 
and predict TPD outcomes appropriately across different professional settings. 
As suggested by Ponte (2009), this requires new theories about teacher education 
that can be used to design, evaluate and research processes of teacher education 
and development. We emphasise that design here does not only refer to planning 
and arrangement of professional programs by teacher educators, but also to an 
intervention approach of designing instructional tasks through which teachers have 
opportunities to improve their practice for better student learning of mathematics.

Various PME papers attempt to conceptualise TPD in terms of elements that 
can better explain, interpret and predict TPD. Sztajn, Campbell, and Yoon (2009) 
suggested that TPD should be designed, evaluated, and researched on the basis 
of four elements: goal, contexts, theories and structure. Goal involves the shared 
version of mathematics teaching and learning, understanding of mathematics 
knowledge for teaching, and equity and sense of self as a mathematics teacher. 
Contexts for TPD include curricular, participant background, teacher engagement 
in decision-making processes related to the intervention, participation attitudes 
(e.g., compulsory or voluntary), and the role of accountability in the community. 
With respect to theory, both teacher growth and instruction are involved. When 
structuring an intervention, there needs to be consideration of content and format 
to ensure how opportunities for learning are best organised and presented. Sztajn, 
et al. argued that conceptualisation contributes to a more careful examination of the 
fundamental aspects of TPD.

The prediction function also permits design, sustenance and evaluation of 
professional development programs on a large scale. Marrongelle, Sztajn and 
Smith (2013) made eight recommendations for the arrangement of large-scale, 
system-level implementation of professional development programs. They are 
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(1) to emphasise substance so that teachers have opportunities to engage in practising 
new content; (2) to enable teachers to create and adapt professional materials; 
(3) to design professional development programs utilising effective ways to organise 
learning experiences for mathematics teachers; (4) to build programs which provide 
a continuous and coherent set of experiences over an extended period of time; 
(5) to prepare and employ knowledgeable professional development facilitators; 
(6) to tailor to key role groups (e.g., department chairs, instructional leaders, school 
administrators and superintendents), ensuring that all understand the new content 
and practices; (7) to educate all stakeholders such as parents, politicians, school 
boards and so on; (8) to assess professional development programs continuously. 
These recommendations would ensure the successful implementation of high-
quality professional development programs.

Research on Mathematics Teacher Educators’ Education (MTEE)

Llinares and Krainer (2006) identified characteristics underlying research on 
mathematics teacher educators:

Mathematics teacher educators’ growth is viewed as a learning-through-
teaching process supported by reflective practice – growth through practice – 
and the use of theoretical references generated in the reflection on professional 
development of mathematics teachers to think and offer explanation on 
mathematics teacher educators’ growth. (p. 447)

They make reference to Zaslavsky and Leikin’s (1999, 2004) three-layer action/
reflection model, working contexts which allow different levels of autonomy in the 
development of mathematics teachers and teacher educators (Krainer, 1999), and 
Tzur’s (1999, 2001) four-focus model for MTE development. Consideration of PME 
studies during the last decade points to what and how mathematics teacher educators 
learn. Ten research reports, one plenary address and one plenary panel paper were 
related to mathematics teacher educators (though three of these papers discussed 
MTEEs’ views or dispositions and are not included in this review). Two discussion 
groups and one working session on mathematics teacher educators’ knowledge were 
held in 2012, 2013, and 2014, respectively, reflecting increasing interest in research 
on mathematics teacher educators’ knowledge.

Six of the nine papers in focus were classified as aiming to reveal or characterise 
mathematics educators’ learning outcomes (what-oriented-questions), the others 
as aiming to explore or comment on mathematics educators’ learning processes 
(how-oriented-questions). Concerning mathematics educators’ learning outcomes, 
educative power and disposition of mathematics educators are identified as 
another two categories in addition to knowledge. There were two papers related 
to mathematics educators’ knowledge. One concerned mentors, whose content 
knowledge, pedagogical knowledge and knowledge of students’ cognition were 
tested as part of their learning outcome (Lin, 2007). The other paper reviewed the 
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main issues investigated in online mathematics teacher education. Two categories 
were identified as a focus on analysing interactions among teachers, and a focus on 
teachers’ professional development in online settings (Flores, Escudero, & Aguilar, 
2014). These two issues can be treated as what mathematics teacher educators should 
know, and thus be classified as research on mathematics educators’ knowledge. 
However, mathematics educators’ knowledge did not extend to mathematical 
knowledge for educating in PME papers. Thus, Beswick and Chapman (2013) 
initiated a discussion of mathematics teacher educators’ knowledge in 2013, 
followed by a working session in 2014 (Beswick, Goos, & Chapman, 2014).

Two papers investigated what can be learned from mathematics teacher 
educators’ design, implementation, reflection and revision of their instruction, 
while one paper investigated mentors’ approaches to intervening in the mathematics 
teaching of trainee teachers. Mathematics teacher educators’ or mentors’ approaches 
include metacognitive awareness and discussion (Kalogeria & Kynigos, 2009), 
documentational work motivated by fieldwork activities (Psycharis & Kalogeria, 
2013), and interventions in (trainee) teachers’ teaching (Wang & Chin, 2007).

In the remaining four papers concerned with mathematics educators’ learning 
process, three categories of learning process were identified: understanding 
mathematics education research and practice; cooperatively solving pedagogical 
and educative problems; and participating in mathematics education research and 
practice.

Concerning the first category, Rhodes (2009) examined MTE’s ‘disequilibrium’ 
while observing, analysing, and discussing a mathematics content class for preservice 
teachers. He found that participants who experienced disequilibrium were analytical 
in their thoughts and struggled to reconcile their own teaching experiences with 
their observations. Thus, experiencing disequilibrium is a promising approach to 
educating MTEs.

Two papers address cooperatively solving pedagogical and educative problems. 
Reflecting on mathematics education research and its interrelation with mathematics 
teachers, Krainer (2011) concluded that researchers cannot transmit knowledge 
directly to practitioners, and proposed viewing researchers as stakeholders in practice 
and teachers as stakeholders in research as a way to increase the further development 
of both parties through collaboration. From this point of view, it appears that teachers 
and teacher educators can mutually support each other to solve pedagogical (how to 
teach) and educative (how to learn to teach) mathematics problems.

The other paper (Erbilgin & Fernandez, 2011) focused on how one university 
supervisor (mathematics teacher educator) supported mathematics teachers (mentors) 
to solve an educative problem, that is, how to mentor student teachers. They found 
that a program based on educative supervision developed the supervisory knowledge 
of the mentor and changed the mentor’s style of supervisory practice. This study 
demonstrated how an educative problem can be solved through researchers as 
stakeholders in practice and teachers as stakeholders in research.
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The fourth paper (Liljedahl, Williams, Borba, Krzywacki, & Gebremichael, 
2013) discussed the education of young mathematics education researchers, 
proposing that mentorship is required for them to develop a professional identify 
as scholars in their field. The issues related to mentoring young researchers beyond 
supervision were discussed. In particular, Liljedahl proposed that “there is room for, 
and need of, more explicit and active mentorship of our young researchers within 
our organization” (pp. 1–90). This implies that the learning of young researchers 
is viewed as participation in an academic community. That is, we shift our focus 
away from the individual acting on the world and onto the individual acting in the 
world (Lave & Wenger, 1991), so young researchers may move from peripheral to 
full participation in the (PME) community.

FINAL REFLECTIONS

We conclude with some thoughts arising from our survey of PME research on 
mathematics teacher knowledge and professional development in the decade since 
the previous overview.

Concerning mathematics teacher knowledge. Interest in mathematics teacher 
knowledge both within and beyond PME shows no sign of abating at the present 
time. In our survey we considered PME research concerning: theories of mathematics 
teacher knowledge; elaboration of mainstream theory; growth of mathematics teacher 
knowledge; and three particular aspects of mathematics teacher knowledge. Through 
Research Fora, Plenary Presentations and particular Research reports, mainstream 
theories of MTK have been thoroughly promulgated, elaborated and exemplified. 
There is scope for more effort to look for common ground, or complementarity, 
in the available theories, and PME is an ideal potential forum for doing so in an 
interactive and collegial context. Fundamental ‘paradigmatic differences’ between 
individual/cognitive and situated/social perspectives on MTK remain unresolved, 
and are perhaps unresolvable (in the sense of reflecting different world views). Most 
(but not all) theories of MTK naturally follow the lead of Shulman in identifying 
categories – of kinds of knowledge, or of situations in which it is manifested. The 
recent trend towards attempting to delineate the boundaries between such categories 
is interesting, even if potentially futile, but the interdependence of different aspects 
of knowledge also merits further study.

The theoretical understanding of MTK is intimately linked to designing efforts 
to promote its growth, and the papers reviewed present several fruitful approaches, 
of which structured reflection in a (teacher) learning community seems to be 
especially powerful. Indeed these are characteristics of the lesson study approach to 
the improvement of teaching and teacher knowledge; we can expect, and welcome, 
further investigation of the transfer of lesson study to diverse cultural, curricular and 
praxis contexts. Likewise, a distributed notion of MTK would recognise the crucial 
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contribution of Educative Curriculum Materials to a common-wealth of professional 
knowledge, and more work can be expected towards theorising and investigating the 
role of ECMs as a component of MTK, and a stimulus for its development.

Concerning teachers’ professional development. This review raises two substantial 
issues concerning the design, evaluation and investigation of TPD.

The first issue concerns the development of more fundamental and comprehensive 
theories to better describe, interpret and predict TPD in professional settings. Those 
studies orienting to culturally and socially situated learning perspectives attempt to 
articulate TPD in terms of becoming a member of a certain community in which they 
gradually learn the ability to communicate and act according to its particular norms 
(Cobb, 1992; Cobb, Yackel, & Wood, 1992; Yackel & Cobb, 1996). However, such 
studies might be limited in terms of elaborating TPD across different professional 
settings with different teacher backgrounds and populations. By contrast, studies 
on TPD orienting to the cognitive and psychological perspective do not consider 
how teachers appropriate sources of information, and how others such as teacher-
colleagues or students play a role in influencing TPD. Developing fundamental and 
comprehensive theories that embrace both social and cognitive perspectives for 
better elaborating TPD becomes the emergent issue in teacher education research, 
along with the identification of fundamental and comprehensive theories to underpin 
the arrangement and implementation and evaluation of large-scale professional 
development programs across different mathematics content, teacher attributes and 
cultural characteristics.

The second issue is about how teachers can learn effectively. Teachers’ learning 
via teaching, researching, and participating in learning communities have been 
reviewed in this chapter. Teachers’ current understanding imposes limits on what 
teachers can learn from their teaching (Simon, 2007). A design-based community 
which integrates research and participation in a learning community can better 
facilitate teachers’ learning. The studies of Lin et al. (2012, 2013) point to several 
requirements for developing such a design-based community: First, to develop a way 
to link research and practice perspectives in the program. As discussed earlier in this 
review, Lin et al. suggest a three-layer structure including grand theory, intermediate 
framework and a design tool (Ruthven, Laborde, Leach, & Tiberghien, 2009) for 
the design of professional programs. Secondly, to engage teachers in designing 
instructional tasks and to detect their pedagogical challenges, formulate instructional 
strategies to overcome these challenges, and then to test whether the strategies are 
useful or not in interaction with classroom students. In order to facilitate teachers to 
design tasks, Lin et al. (2102) propose three starting points: student misconceptions, 
standard ‘results’ in school mathematics, and engaging with student conjectures, 
each of which allows teachers to create tasks more easily. Thirdly, to develop 
strategies for enabling teachers to incorporate theoretical ideas into their design of 
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instructional tasks. The adaptation of the above three considerations could be taken 
into account for future research on designing TPD in various contexts.

Concerning mathematics teacher educators’ education. In general, papers relating 
to teacher educators’ learning paid more attention to learning outcomes than to their 
learning processes. From our review, ‘mathematical knowledge for educating’ – the 
knowledge of mathematics teacher learning or principles of designing educative 
tasks – has not been well structured. Ideas about investigating mathematics 
teacher educators’ competencies originated in research on mathematics teachers. 
Nonetheless, mathematics teacher educators’ goals, resources and orientations are 
different from those of mathematics teachers (Schoenfeld, 2011), in addition to their 
action, reflection, autonomy and networking. Moreover, mathematics educators’ 
power in communicating with teachers and reasoning for solving educative 
problems and connecting research and practice are less investigated (Yang Hsu, Lin, 
Chen, & Cheng, 2015). As for mathematics educators’ disposition, affective factors 
are seldom considered.

The meanings and goals of research and practice are different for mathematics 
teachers and teacher educators, but there can be synergy between them (Krainer, 
2011), and there is potential in developing mutually-supportive communities 
involving both groups.
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NOTES

1 A published list of research domains, or categories, enables authors to indicate the substantive focus of 
their research report submissions, and reviewers to indicate their substantive expertise. These domains 
are reviewed from time to time by the PME International Committee.

2 A similar search of the 2015 PME proceedings (identifying 27 additional papers for scrutiny) was 
undertaken after submission of the first draft of this survey, and is reflected in its content.

3 Of the 530 papers remaining after the one-page contributions had been eliminated (as described), none 
were from France, and so a distinctive ‘didactique’ perspective is necessarily absent from this survey.
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4 Guides for Accessing Mathematical Understanding for Teaching.
5 See also Zaslavsky and Sullivan (2011).
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