BRONISLAW CZARNOCHA

4.8. LEARNING TRAJECTORY

Linear Equations

INTRODUCTION

Iteration has emerged as one of more important methodological processes within the
environment of evidence-based Common Core standards. Its importance increases
together with the goal to formulate effective student learning trajectories, that is,
those theoretical pathways of learning mathematical concepts that come closest
to actual student learning. The following definitions of “iteration” from Merriam-
Webster and Oxford dictionaries refer explicitly to the successive approximations
to a desired solution of the problem. The Merriam-Webster Dictionary defines
“iteration” as “a procedure in which repetition of a sequence of operations yields
results successively closer to a desired result.”” The Oxford English Dictionary
provides a similar definition emphasizing the term’s mathematical undertones:
“A repetition of a mathematical or computational procedure applied to the result
of a previous application, typically as a means of obtaining successively closer
approximations to the solution of a problem.”

Educational research needs iteration in order to formulate, refine and tune learning
trajectories from a collection of fragmented and diverse research results concerning
the concepts in question. For example, Confrey’s formulation of the “equi-
partitioning learning trajectory” relies on 600 different research pieces (Confrey,
2010). To transform such a large amount of research results into a smooth working
teaching sequence facilitating student understanding and mastery of a given concept
requires the successive approximation approach to revamp, change and improve
the components of the teaching sequence while at the same time creating smooth
connections between them.

The iteration methodology used by teachers in the construction of effective
teaching sequences is very natural because of the cyclical nature of the teacher’s
workload assignments (Wittmann, 1999). Teachers can, and often do, teach the same
course from one semester to another, or from one academic year to another, creating
an environment in which any teaching sequence of a given concept can be iteratively
refined over several application cycles. The integration of this natural cycle of work
with the teaching-research cycle (TR cycle) discussed in the Chapter | creates an
extremely powerful methodological tool tailor-made to address the complex question
of learning trajectories.
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Often, when the current authors” work based on the TR cycle is presented to
an audience of educational researchers, the most common question is “What is the
difference between your cycle and the design research cycles?”

The difference is subtly profound. The standard design research cycle as well as the
APOS theoretical framework cycle (Asiala et al., 1996), that served as the formative
basis of the TR cycle created by the current authors, initiate from theoretical models,
infer theoretical results, and, then, apply these models to the classroom setting. The
TR cycle, on the other hand, starts most often from practice in a particular classroom
setting, and its aim is the improvement of learning and related teaching in the very
same classroom, and beyond. The theory here is a by-product of iterated practice,
and it’s not the main objective. Although seemingly insignificant, this change of
the starting position for iterated investigation results in significant changes in the
research methodologies. Table 1 presents a sample side by side comparison between
the methods, aims and results of standard academic research versus the classroom-
driven TR model.

LEARNING TRAJECTORIES

The concept of a Learning Trajectory has acquired recently new importance as the
organizing principle of the new Common Core Standards in Mathematics (CPRE,
2011). There are several definitions of a “learning trajectory” within the research
profession (Baker et al., 2012) indicating that the concept didn’t yet “condense”
(Sfard, 1992) sufficiently in its development. Therefore, one has a certain amount
of freedom in focusing one’s own investigation on different aspects of the construct.
For the purpose of this work the authors adopt Clements’ definition:

The learning trajectory (LT) of a particular mathematical concept consists of three
components:

* A specific mathematical goal,

* A developmental path along which students’ thinking and comprehension
develops and,

* Asetofinstructional activities that help students move along that path (Clements &
Sarama, 2009).

The idea of LTs has a wide range of applications. It can be an excellent
assessment tool precisely informing the teacher about the successful pathways of
mathematical thinking of his or her students as well as about their weaknesses. At
the same time, it can serve as a tool, a map or a guide constructed, preferably, by
the teacher and for the teacher, providing information about possible trajectories
for learning improvement strategies, asked for explicitly by the designers of the
approach (Figure 1, Center, Daro et al., 2011). Active implementation of the LT
framework in the development of curriculum facilitates intense discussions about
the effectiveness of the relationship between abstract research and practicing
teachers toward the support of the Common Core effort. “Whose responsibility
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Table 1. Comparison of standard academic research and the TR model

Standard research (Design-Based
Research) model

TR model (TR-NYC model)

Theory-driven:

“Design-based research can contribute
to theoretical understanding of learning
in complex settings” (Sandoval, p. 00).

Each of the articles by Sandoval, Tabak,
and Joseph reveal how the design of
complex interventions is an explicitly
theory-driven activity.

“In addition, the design of innovations
enables us to create learning conditions
that learning theory suggests are
productive, but that are not commonly
practiced or are not well understood”
(Author, 0000)

Cobb and Steffe (1983) assert that

the interest of a researcher during the
teaching experiment in the classroom is
“in hypothesizing what the child might
learn and finding [as a teacher]| ways
and means of fostering that learning”.

Articulating, refining and validating
is an “iterative process of research
synthesis and empirical investigations
involving” many types of evidence:

Step 1. Meta-research of the concept to
create the prototype;

Step 2. Iterative refinement of the
prototype. (Confrey, 2010)

Practice-driven:

Teaching-research is grounded in the craft
knowledge of teachers that provides the initial
source and motivation for classroom research;
it leads to the design-based practice and, the
primary aim is the improvement of learning in
the classroom and beyond.

The design of innovation enables the teacher-
researcher to establish a creative learning
environment based on teacher’s craft knowledge
that improves learning in the classroom

and transforms students’ habits (such as
misconceptions) into student originality
(Koestler, 1964). Learning theories are used as
needed to support teachers’ craft knowledge.
(Prabhu & Czarnocha, 2006)

“...the interest of a teacher-researcher is to
formulate ways and means to foster what a child
needs to learn in order to reach a particular
moment of discovery or to master a particular
concept of the curriculum (Czarnocha, 1999)”.
Since, however, “such moments occur only
within students’ autonomous cognitive structures,
the [constructivist] teacher has to investigate
these structures during a particular instructional
sequence [in order to be of help to the students].
In this capacity, he or she acts as a researcher”
(Prabhu & Czarnocha, 2007)

Use of iteration in the TR-NYC model:

Step 1. Process of iteration starting with the

first iteration designed on the basis of
teaching practice.

Incorporation of research results as
needed in between consecutive iterations.
It is the concept of iteration of the design
from semester to semester together with
the related refinement that can allow

for the immediate implementation of

the naturally relevant research results
illuminating the current classroom
situation and providing further insight
into the design of appropriate sets of
assignments.

Step 2.
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LEARNING TRAJECTORY

is it to construct learning trajectories?” asks Steffe (2004, p. 130). Battista (2004,
p- 188) states, “to implement instruction that genuinely and effectively supports
student construction of mathematical meaning and competence teachers must not
only understand cognition-based research on students’ learning, they must also
be able to use that knowledge to determine and monitor the development of their
own students’ reasoning.” Empson (2011) adds a layer of complexity to the current
research on learning and invites one to think seriously about how to support teachers
to incorporate knowledge of children’s learning into their purposeful decision-
making about instruction. Clements and Sarama (2004, p. 85) note, “that learning
trajectories could and should be re-conceptualized or created by small groups or
individual teachers, so that they are based on more intimate knowledge of the
particular students involved...”

Thus, in agreement with Kieran, “it is [only] the teacher who can affect to
the greatest extent the achievement of one of the main purposes of the research
enterprise, that is, the improvement of students’ learning of mathematics” (Kieran
et al., 2013). Therefore, the search is on for the most effective routes of joining
educational research with classroom teaching (Kieran et al., 2013). Kieran also
addresses the variety of differences shared by researchers and teachers that make
collaboration challenging (Kieran et al., 2013). It makes sense, therefore, to focus on
what is common between researchers and teachers involved in classroom teaching-
research. Our assertion is that the concept of iteration as a component of the research
methodology is common to both.

THE METHOD OF ITERATION

This presentation is focused primarily on the methodological aspects of the proposed
route of research/teaching integration showing an essential methodological trade
off necessary (though not sufficient) for teachers’ buy-in in the LT approach. The
discussion describes the method of iteration for learning trajectories during the
process of their research-based construction (Confrey & Maloney, 2010). The
TR cycle of the TR-NYC model (Czarnocha & Prabhu, 2006) is the theoretical
framework within which iteration is effectuated in classroom teaching-research.
Two consecutive examples of the process are presented for the Learning Trajectory
for Linear Equations (LTLE) under construction in the context of the Integrated
Arithmetic/Algebra Course Teaching-Experiment being conducted at present at an
urban community college.

The desired goal is the sequence of instructional problems and strategies that
produces the most optimal effective understanding and mastery of the relevant
mathematics (linear equations, in this case) in the classroom. Each new iteration of
the teaching sequence is produced at the analysis of the data node of the TR Cycle
through its major or minor refinement. The refinement may consist in the change
of component strategies, their sequencing or the changes in learning environment.
The changes are suggested by the analysis of learning in the previous cycle, the
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craft knowledge of the teacher-researcher as well as through the relevant research
results.

The Iteration Trade-Off

Since, generally, every teacher has an option of teaching the same course every
semester to a new cohort of students, the TR cycle allows for the continuous process
of classroom investigations of the same research question during consecutive
semesters or academic years. The TR-NYC model asserts that two such consecutive
cycles constitute a single unit of activity explicitly aimed at the improvement of
learning (Czarnocha & Maj, 2008). Two cycles are needed to enable the refinement
of the particular LT from one iteration to the next. A methodology for construction
and validation of a learning trajectory had been thoroughly described by Confrey
and Maloney (2010) in the case of the Equi-partitioning Learning Trajectory.
According to Confrey and Maloney, articulating, refining and validating is an
“iterative process of research synthesis and empirical investigations involving”
many types of evidence. Their research sequence starts with the significant research
effort in the design of the first prototype. The iterative process is the second step
of the research.

Within the TR-NYC model, the iteration becomes the primary methodological
tool, while the initial learning trajectory is designed more on the basis of the teaching
craft knowledge of the mathematics teacher than on the basis of the relevant research
results. The fine tuning of the learning trajectory to the needs of the student cohort
through the incorporation of the research knowledge into the design process takes
place during the consecutive iteration phases while fulfilling the requirements of
adaptive instruction (Daro et al., 2011). It is the concept of iteration of the design
from semester to semester together with the related refinement that can produce
relevant research results illuminating the classroom situation or providing help in the
design of an appropriate set of assignments.

Thus the initial theoretical period of gathering available research required for
standard research is not necessary for the classroom teacher-researcher designing
learning trajectories because it can be transformed into its “just-in-time” utilization
at each refinement node of the TR cycle. The “just-in-time” manifestation occurs
along the iteration cycle. This change of emphasis in the role of research as the
starting point of investigation to its “just-in-time” consultation is one of the necessary
conditions for the incorporation of research into classroom practice.

ADAPTIVE INSTRUCTION

The process of iterative refinement of the teaching sequence associated with a given
learning trajectory introduces, in a natural manner, a new type of instruction that
adapts itself to students’ state of knowledge. It’s a promising concept in that it has an
application to every student in the class and, thus, it ideally accounts for learning for
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all students. The process of adaptive instruction outlined by Daro (2011) corresponds
to nodes of the TR cycle. For example, “the determination where students are in
their progress and the kind of problems they might have along the way” (Daro et
al., 2011) corresponds to the Diagnosis node of the TR cycle; “finding out what
to do to help students to continue to progress” (Daro et al., 2011) corresponds to
Design/Redesign node of the intervention to address learning challenges; providing
“students with the feedback to help them to get back upon the road to success” (Daro
et al., 2011) corresponds to the Data Analysis nodes followed by the Diagnosis node
again, and next the Redesign node. Thus, if there is a need to help students with their
immediate problems, the TR cycle may be traversed a couple of times within one
class. The paradigmatic example in Chapter 4.1 is a good illustration of several TR
cycles taking place within a short classroom dialogue lasting only several minutes.
This unity of research investigation and adaptive teaching is possible through the
development of thinking technology within the practice of the teacher-researcher
touched upon in Chapter 4.1.

CONSTRUCTION OF A LEARNING TRAJECTORY

The construction of a learning trajectory for linear equations through three iterations,
demonstrated below, provides an illustrative example of the method.

The Learning Trajectory for Linear Equations (LTLE) has been designed on the
basis of algebra classroom teaching craft mathematical knowledge of the teachers
and triangulated with the Learning Trajectories Display of the Common Core State
Mathematics Standards developed by Confrey et al. (July 2010). The design of LTLE
is the adaptive response to the observed challenges of students with the following
problem:

Solve for y in terms of x:

3x-2y=6 (1)
Students’ recorded solution:
3x-2y=6
—3x
-------------- (2)
-2y=6
y = —

The First Iteration LTLE, pictured in Figure 2, was designed to respond
specifically to student difficulties described above. It outlines the necessary
prerequisite and sequential knowledge to understand the central concept “solve
for x in terms of y” as well as new concepts dependent on that understanding.
The concept map is designed in the environment of the Institute for Human and
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Machine Cognition CmapTools at http://cmap.ihmc.us/. The oval shaped components
represent the concepts, or mathematical objects, that are joined by propositions
describing relationships between them. The concepts “solve for x” and “solve for x
in terms of y” represent encapsulated or reified procedures.

Teaching-Research Diagnosis

The reasons for the erroneous solution include (a) absence of awareness of the
functional relationship between the variables x and y, evidenced by transforming the
problem to a simpler equation with one unknown leading to (b) misapplication of
the variable as a specific unknown, (¢) the absence of understanding the algebraic
meaning of the equality symbol “=" evidenced by adding “-3x” to one side of the
equation only, and, finally, as it was demonstrated by the teacher-researcher Vrunda
Prabhu, (d) careless reading. The LTLE consists, therefore, of three separate but
connected learning trajectories of (i) the variable as an unknown (broken arrow
————— » (pink) in Figure 2 above), (ii) the variable as a general number (black in
Figure 2 above) and (iii) the variable in a functional relationship (broken arrow
————— ¥ (green) in Figure 2 above) (Ursini & Trigueros, 2011).

The three component trajectories of the LTLE just discussed are shown in different
colours on the first iteration concept map above (see Figure 2). The pink - - - - - » one
leads along the process of generalization, from a formally similar equation in one
variable to a corresponding equation in two variables. This trajectory is useful if
the class has mastered solving simple one variable equations. Otherwise, the second
trajectory, shown in ————# (green), is available via the graphing component of the
schema, that connects the challenge of the problem with its foundations within the
concept of a variable, meaning of equality and the functional relationship between x
and y. The cognitive fragility of the left upper rectangle in the concept map is well-
known in the literature. Filloy and Trojano, for example, observe that the increase of
algebraic content along the pink vertical arrow intersecting this rectangle is a serious
problem for students because the solution of the more complex target equation departs
from that of simpler equations such as 4x + 2 = 6 (Filloy & Trojano, 1989; Ursini &
Trigueros, 2009). The simpler linear equations enjoy more accessible arithmetic
interpretations. Filloy and Trojano (1989) coined the term “Didactic Cut” to refer to
the associated cognitive step. The two horizontal pathways indicate abstraction from
and the generalization of a one-variable equation to a two-variable equation — an
arduous process according to many investigations focused on problems that students
have with generalization as they begin to study algebra in middle school. Most studies
conclude that generalization is a difficult obstacle for the majority of these students
(Bell & Malone, 1993; Arzarello et al., 1994; Bednarz & Janvier, 1994; Radford &
Grenier, 1996; Bolea et al., 1998a, 1998b). The alternative graphing trajectory, shown
in dark grey (green), develops the concept of “solving for y in terms of x” through
transformation of a standard form of an equation into a known functional relationship
y=mx+b.
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The third component trajectory, shown in black, joins the concept of the variable
as an unknown to the discovered difficulty along the theme of algebraic equality “="
through a series of “scale balance” type of problems. The assumed equilibrium of
the scale in such problems is the metaphor for algebraic equality “=". The possibility
of distinguishing three different learning progressions within the concept map
demonstrates the versatility of such an integrated concept map/learning trajectory
for classroom teachers and its usefulness in addressing diverse learners. According
to (Ursini & Trigueros, 2009), the best, flexible development of the schema of the
variable is to engage, in coordination, the three subschema: (1) variable as a specific
unknown, (2) variable as a general number, (3) variable in a functional relationship.
This implies the use of all component trajectories, because all three sub-schema are
involved in the problem.

Instructional Sequences for the First Iteration

Here, we provide two small instructional sequences, which were used in the design
of the first iteration.

We begin with the Teaching Sequence of Mathematical Activities that are meant
to propel a student along the pink trajectory of generalization. The trajectory uses
a “writing mathematics approach” to increase the meta-cognition and reflection
upon the methods of solution. The aim of this sequence is to lead the student in the
direction of development of generalization from a simple equation in one variable to
the corresponding equation in two variables. The idea is to focus student’s attention
on the similarity of the solution procedure for one variable to the solution procedure
for the task of “solving for y”.

Problem 1

Solve for x. As you solve write every step you make in the solution. Look at the
three descriptions, collect similar actions in the three examples and write them as
one set of steps that apply to all three problems.

(lay2x+7=15

(1b) —4x + 8 =-28
(le)5x=3=12

My general set of steps is

Problem 2

Look at the following three examples that are similar but different from the
previous set, and solve for x in terms of y by applying your general set of steps from
Problem 1 to these three equations. Write your steps carefully and keep careful
track of their order.
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(2a) 2x +y =15
(2b) —4x +y =28
(2¢) 5x—y=12

Problem 3

Now, solve for y in terms of x (note the change of the instruction) by applying your
general set of steps to these three equations. Write your steps carefully and keep
careful track of their order.

(Ba)2x+y=15

(3b) 4x +y=-28

(Be)Sx—y=12

Write the general description of steps for the instruction “Solve for y in terms

of x’)

Problem 4
Solve for y in terms of x:

(4a)dx +2y=12
(4b) 6x -3y =15
(4c) 2x+3y=15
(4d) 2x+3y=15

What is the critical computational difference between the last two and the first
two problems?

Instructor’s Notes: The role of Problem 1 is to introduce the solution procedure
for a simple and familiar case that consists of subtraction of a number from both
sides followed by the division of the result. The role of the Problem 2 is to expose
students to the variation in the procedure when an integer from the Problem [ set is
changed into the second variable, y. Problem 3 changes the task from “solving for
x " to “solving for y”; students are expected to transfer the procedure from Problem
1 and Problem 2 accounting for the change. In the second iteration, problems
(3b) and (3¢c) were changed from —4x + y = =28 to —4x + 2y = 28, and from
Sx —y =12 to 5x — 2y = 12, respectively. The aim of that change was to incorporate
the division by the numerical coefficient of the variable y. Two examples of the type
are needed to indicate the difference between answers using only integers and those
using fractions. Fractions are one of the main obstacles students experience en route
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to algebraic thinking.

Using the Scale Balance Manipulative: Reinforcing the Meaning of the Algebraic
“="and Extending the Method across the Didactic Cut (Filloy & Trojano, 1989)

The details of the teaching sequence meant to develop the idea of algebraic
equivalence are presented here.

A) Solve the equation by removing weights from the scale in such a way so that the
scale remains balanced (at an equilibrium). Describe the steps you are taking to
keep the scale balanced.

B) Solve the equation algebraically by the Equivalence Principle.

C) What other equivalent equations can you make out of this one?

D) Solve for x:
0.75x+0.5=2
E) Solve for x:

1 2 5
—X + _ = —
3 3 3
The Didactic Cut
A) Solve the equation by switching the weights from one side to another in such a
way so that the scale remains balanced (at an equilibrium). Describe the steps
you are taking to keep the scale balanced.
B) Solve the equation algebraically by the Equivalence Principle.

Figure 5. The scale balance manipulative I

386



LEARNING TRAJECTORY

Figure 6. The Scale Balance Manipulative I1

C) What other equivalent equations can you make out of this one?

D) Solve for x:
52x—-3.6=22x+6.4

E) Solve for x:

3. .,3_5 5
4 T8 T4t

Instructor’s Notes: Each of the Scale Balance problems starts from the concrete
problem that can be solved by changing the weights while keeping the balance
at equilibrium followed by the request to solve the same problem algebraically.
Description of the steps is intended as the transition to algebraic operations followed
by the reinforcement of the Equivalence Principle. Finally, the practice of technique
is extended to decimal and fractional numerical coefficients, a well-known Achilles
heel of remedial students of mathematics.

The Second Iteration

The teaching experiment leading to the second iteration had been conducted during
the fall 2012 semester at Hostos CC. Analysis of the results of the implementation
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of the first iteration along with observed student difficulties suggested the following
needs:

1. A development of an auxiliary trajectory of algebraic notation;
2. An increase in the complexity of numerical coefficients from integers to signed
decimals and signed fractions;
. A much stronger emphasis on the discovery of numerical relations, and
4. Introduction of literal equations as the scaffold for the procedure “solve for x in
terms of y”.

98]

The refinements (1), (3) and (4) are indicated in blue in the Second Iteration
concept map (see Figure 3). The need to emphasize numerical relations as the
background for algebraic problem-solving suggested a new point of view for
the entire curriculum of the Arithmetic/Algebra course. Until this moment the
curriculum was based solely on the generalization/particularization relationships
between arithmetic and algebra. The new point of view has been provided by the
discussion of the curriculum of V. Davydov (Jean Schmittau & Anne Morris, 2004),
that takes mathematical relation as the foundation of the approach. The curriculum
of the course then became a composition of two principles: generalization (algebraic
expressions, polynomials, rational functions) and algebraic relation underlying
theory of equations and functional relationships.

Example of Exercises, Which Focus Attention on the Numerical Relationships

The design follows the idea that a process and its inverse reinforce the reflective
abstraction, and, hence, the development of the concept; in this case, the concept of
the numerical relationships.

Problem1. Translate the verbal statement into an algebraic one:

(la.)) Twice a number is equal to 16 []
(Ib.) 0.5 of a number is equal to 10 []
(Ic.) Twice the number increased by 5 is equal to 11 []
(1d.) The negative of twice the number decreased by 8 is equal to negative 4 [J

Problem 2. Express the relations between indicated pairs of numbers verbally:

* Two numbers are related additively if they are related by addition “+”

* Two numbers are related multiplicatively if they are related by multiplication “x”

* Two numbers are related additively and multiplicatively if both addition “+” and
multiplication “x” are involved.

(2a)  What is the additive relation between the numbers 4 and 15?
(2b)  What is the multiplicative relation between the numbers 4 and 15?
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(2c)  What is the additive relation between the numbers —4 and 15?
(2d)  What is the multiplicative relation between the numbers —4 and 15?
(2e)  What is the additive relation between the numbers —4 and 15?

Instructor’s Notes: Note that the two problems above are “quasi” inverse processes
of each other: (1) verbal statement - - -¥» algebraic relation, and (ii) numerical
relation - - =% verbal relationship. In addition, the second iteration contained a
component addressing “literal equations” as a scaffold for the “solve fory” task.

The Third Iteration

The central improvement for the third iteration was to significantly increase the
impact of the “algebraic relations” approach. This resulted in grounding the whole
lower half of the trajectory in algebraic problem-solving (see Figure 4). This,
in turn, leads up to the algebraic solution methods of systems of simple equations
with two unknowns. Inclusion of Davydov’s ideas is an example of “just-in-
time” employment of new learning theory and related research results. After this
basis has been established, the instruction along the upper half of the trajectory
readily follows. The “scale balance” manipulative had been taken away for two
reasons:

e It didn’t make much of an impact on student understanding of the equivalence
principle;

* The public software is not sufficiently developed to imitate the algebraic procedure
of solving such equations.

Instead, a small algebraic teaching sequence had been designed employing, once
again, the process and its inverse method. It is presented below.

Problem 1. Decide which of the pairs of equations below are equivalent and explain
the reasons for your decisions?

(1a) El:x-5=3 E2:x-5=3
(1b) El:x-5=3 E2:x+2=11
(1c) El:x—-5=3 E2:x=8
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(1d) El:3x=9 E2: 6x=12

(le) El:3x=9 E2: 9x =27

Problem 2. Each of the two columns below contains a triplet of equations. Is the
first equation in each column equivalent to that column’s last equation? Explain the
reasons for your answers

(A) 2x—-6=12 B)2x-6=12
2x=18 4x -2=24
x=9 4x =36

Conclusion: In order to solve the equation of the type ax + b = ¢ we need to

Instructor’s Notes: The problems above require use of the equivalence principle
to decide whether the pairs of equations are equivalent. This way the role of the
principle is clarified and then it can be applied in the context of a standard set of
problems where the principle is used to obtain solutions.

CONCLUSION

This chapter presents a work in progress. Our aim here has been to demonstrate
the process of constructing a formal learning trajectory and to show that a teacher
in the classroom can accomplish it. The assessment was primarily done through
class observation, results and difficulties of students in their homework
assignments and tests. As soon as we arrive at the learning trajectory we are
intuitively satisfied with, we will establish more precise assessment measurements
and extend their application to other sections of the course led by different
instructors. The presence of the teaching-research community in the school
described in the Unit 5 is central in the process of tuning and applying the trajectory
beyond the initial classroom.

REFERENCES
Adi, H., & Pulos, S. (1980). Individual differences and formal operational performance of college
students. Journal for Research in Mathematics Education, 11(2), 150—156.

Adjiage, R., & Pluvinage, F. (2007). An experiment in teaching ratio and proportion. Educational Studies
in Mathematics, 65, 149-175.

390



LEARNING TRAJECTORY

Asiala, M., Brown, A., DeVries, D. J., Dubinsky, E., Mathews, D., & Thomas, K. (1997). A framework for
research and curriculum development in undergraduate mathematics education research. Collegiate
Mathematics Education II, 3, 1—32.

Baker, W., Czarnocha, B., Dias, O., & Prabhu, V. (2012). Learning Trajectories from the Arithmetic/
Algebra divide. Proceedings, NA-PME, 35, Kalamazoo, MI, USA.

Baker, W., Czarnocha, B., Dias, O., Doyle, K., Kennis, J., & Prabhu, V. (2012) Procedural and conceptual
knowledge: Adults reviewing fractions. ALM International Journal, 7(2), 39-65.

Baker, W., Dias, O., Doyle, K., Czarnocha, B., & Prabhu, V. (2009). A study of adult students learning
fractions at a community college. Annals of Polish Mathematical Society 5th Series: Didactica
Mathematicae, 32, 5-41.

Behr, M. J., Lesh, R., & Post, T. R. (1992). Rational number, ratio and proportion. In D. Grouws (Ed.),
Handbook on research of teaching and learning (pp. 296-333). New York, NY: McMillan.

Behr, M. J., Lesh, R., Post, T. R., & Silver, E. A. (1983). Rational number concepts. In R. Lesh &
M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 91-126). New York, NY:
Academic Press.

Ben-Chaim, B., Fey, F. T., Fitzgerald, W. M., Benedetto, C., & Miller, J. (1998). Proportional reasoning
among 7th grade students with different curricular experiences, Educational Studies in Mathematics,
36, 247-273.

Berk, D., Taber, S. B., Gorowara, C. C., & Poetzl, C. (2009). Developing prospective elementary teachers’
flexibility in the domain of proportional reasoning. Mathematical Thinking and Learning, 11,
113-135.

Charalambous, C. Y., & Pitta-Pantazi, D. (2007). Drawing a theoretical model to study students’
understanding of fractions. Educational Studies in Mathematics, 64,293-316.

Cifarelli, V. V. (1998). The development of mental representations as a problem solving activity. 7he
Journal of Mathematical Behaviour, 17(2), 239-264.

Clark, M. R., Berenson, S. B., & Cavey, L. O. (2003). A comparison of ratios and fractions and their role
as tools in proportional reasoning. Journal of Mathematical Behaviour, 22,297-317.

Clements, D., & Sarama, J. (2004). Learning trajectories in mathematics education. In D. H. Clements &
J. Sarama (Eds.), Mathematical thinking and learning, special issue: Hypothetical learning trajectories.

Clements, D., & Sarama, J. (2009). Learning and teaching early math: The learning trajectories
approach. New York, NY: Routledge.

Confrey, J., & Maloney, A. (2010). The construction, refinement and early validation of the equipartitioning
learning trajectory. ICLS, 1, 968-975.

Confrey, J., Maloney, A., & Nguyen. (2010). Learning trajectories display of the common core state
mathematics standards. Wireless Generation.

Cramer, K. A., Post, T. R., & delMas, R. C. (2002). Initial fraction learning by fourth-and fifth-grade
students: A comparison of the effects of using commercial curricula with the effects of using the
rational number project curriculum. Journal for Research in Mathematics Education, 111-144.

Czarnocha, B., & Prabhu, V. (2006). Teaching-Research NYCity model. Dydaktyka Matematyki, 29
(Krakow, Poland).

Czarnocha, B., Dubinsky, E., Prabu, V., & Viadokovic, D. (1999). One theoretical perspective in
undergraduate mathematics education research. In O. Zaslavsky (Ed.), Proceedings of the 23rd
Conference of PME, 1 (pp. 95-110). Haifa, Israel.

Daro, P., Mosher, F. A., & Corcoran, T. (2011). Learning trajectories in mathematics (Vol. 68). Research
Report.

Doyle, K., Dias, O., Kennis, J., Czarnocha, B., Baker, W., & Prabhu, V. (2014). The rational number sub-
constructs as a foundation for problem solving. ALM International Journal, 11(1)-21-42.

Empson, S. (2011). On the idea of learning trajectories: Promises and pitfalls. The Mathematics
Enthusiast, 8(3), 571.

Filloy, E., & Trojano, T. (1989). Solving equations: The transitions from arithmetic to algebra. For the
Learning of Mathematics, 9(2), 19-25.

Garfield, J., & Ahlgren, A. (1988). Difficulties in learning basic concepts in probability and statistics:
Implications for research. Journal for Research in Mathematics Education, 19(1), 44-63.

391



B. CZARNOCHA

Glasersfeld, E. V. (1995). Radical constructivism: A way of knowing and learning. In Studies in
mathematics education series. London: The Falmer Press.

Hagedorn, L. S., Siadat, M. V., Fogel, S. F., Nora, A., & Pascarella, E. T. (1999). Success in college
mathematics: Comparisons between remedial and non-remedial first-year college students. Research
in Higher Education, 40,261-284.

Hoyles, C., Noss, R., & Pozzi, S. (2001). Proportional reasoning in nursing practice. Journal for Research
in Mathematics Education, 32, 4-217.

Karplus, R., Pulos, S., & Stage, E. K. (1983). Proportional reasoning of early adolescents. In R. Lesh &
M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 45-90). New York, NY:
Academic Press.

Kieran, L., Krainer, K., & Shaughnessy, J. M. (2013). Linking research to practice: Teachers as key
stakeholders in mathematics education research. In M. A. Clements, A. Bishop, J. Kilpatrick, &
F. Leung (Eds.), Third international handbook of mathematics education (Vol. B). Dordrecht,
Netherlands: Springer.

Kieren, T. E. (1976). On the mathematical, cognitive, and instructional foundations of rational numbers.
In R. Lesh (Ed.), Number and measurement: Papers from a research workshop (pp. 101-144).
Columbus, OH: ERIC/SMEAC.

Kilpatrick, J. (2001). Where’s the evidence? Journal for Research in mathematics Education, 32, 421—
427.

Koestler, A. (1964). The act of creation. New York, NY: Penguin Books.

Lachance A., & Confrey, J. (2002). Helping students build a path of understanding from ratio and
proportions to decimal notation. Journal of Mathematical Behaviour, 20, 503-526.

Lamon, S. (1993). Ratio and proportion: Connecting content and children’s thinking. Journal of Research
in Mathematics Education, 24(1), 41-61.

Lamon, S. (2007). Rational numbers and proportional reasoning: Towards a theoretical framework
for research. In F. K. Lester, Jr. (Ed.), Second handbook of research on mathematics teaching and
learning. Greenwich, CT: Information Age Publishing.

Lo, J. J., & Watanabe, T. (1997). Developing ratio and proportion schemes: A story of a fifth grader.
Journal for Research in Mathematics Education, 28(2), 216-236.

MacGregor, M., & Stacey, K. (1997). Students’ understanding of algebraic notation. Educational Studies
in Mathematics, 33(1), 1-19.

Pitkethly A., & Hunting, R. (1996). A review of recent research in the area of initial fraction concepts.
Educational Studies in Mathematics, 30(1), 5-38.

Schmittau, J., & Morris, A. (2004). The development of algebra in the elementary mathematics curriculum
of V.V. Davydov. The Mathematics Educator, 8(1), 60-87.

Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects
as two sides of the same coin. Educational Studies in Mathematics, 22, 1-36.

Sfard, A., & Linchevski, L. (1994). The gains and pitfalls of reification — The case of algebra. Educational
Studies in Mathematics, 26, 191-228.

Shield, M. J., & Doyle, S. (2002). Investigating textbook presentations of ratio and proportions. In
B. Barton, M. Pfannkuch, & T. Michael (Eds.), Proceedings Mathematics in the South Pacific. The
25th Annual Conference of the Mathematics Education Research Group of Australia (pp. 608-615).
University of Auckland, New Zealand.

Sierpinska, A. (1993). The development of concepts according to Vygotsky. Focus on Learning Problems
in Mathematics, 15(2, 3), 87-107.

Sierpinska, A. (2005). Beyond the apparent banality of the mathematics classroom. New York, NY:
Springer.

Simon, M. A., & Tzur, R. (2004). Explicating the role of mathematical tasks in conceptual learning:
An elaboration of the hypothetical learning trajectory. Mathematical Thinking and Learning, 6(2),
91-104.

Singh, P. (2000). Understanding the concepts of proportion and ratio constructed by two grade six
students. Educational Studies in Mathematics, 43, 271-292.

392



LEARNING TRAJECTORY

Steffe, L. P. (2004). On the construction of learning trajectories of children: The case of commensurate
fractions. In D. H. Clements & J. Sarama (Eds.), Mathematical thinking and learning, special issue:
Hypothetical learning trajectories.

Streefland, L. (1984). Search for the roots of ratio: Some thoughts on the long term learning process
(Towards... a theory). Educational Studies in Mathematics, 15(4), 327-348.

Streefland, L. (1985). Search for the roots of ratio: Some thoughts on the long term learning process
(Towards... A Theory) II: The outline of the long term learning process. Educational Studies in
Mathematics, 16(1), 75-94.

Thornton, M. C., & Fuller, R. G. (1981). How do college students solve proportion problems? Journal of’
Research in Science Teaching, 18(4), 335-340.

Ursini, S., & Trigueros, M. (2011). The role of variable in elementary algebra: An approach through
the 3UV Model. In R. V. Nata (Ed.), Progress in education (Vol. 19, pp. 1-38). New York, NY:
Novascience Publishers.

Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics
concepts and processes (pp. 127-174). New York, NY: Academic Press.

Vergnaud, G. (1994). Multiplicative conceptual field: What and why? In G. Harel & J. Confrey (Eds.),
The development of multiplicative reasoning in the learning of mathematics (pp. 41-59). Albany, NY:
SUNY Press.

Vygotsky, L. (1997). Thought and language (10th printing). Cambridge, MA: MIT Press.

Wilkins, J. L. M., & Norton, A. (2009). A quantitative analysis of children’s splitting operations and
fraction schemes. The Journal of Mathematical Behaviour, 150—-161.

Wilkins, J. L. M., & Norton, A. (2010). Students’ partitive reasoning. The Journal of Mathematical
Behaviour, 181-194.

Wilkins, J. L. M., & Norton, A. (2011). The spitting loop. Journal for Research in Mathematics Education,
386-416.

Wittmann, E. C. (1999). Mathematics education as a design science. In Mathematics education as a
research domain: A search for identity (pp. 87-103). Netherlands: Springer.

Bronislaw Czarnocha

Mathematics Department

Eugenio Maria de Hostos Community College
City University of New York

393



	4.8. LEARNING TRAJECTORY:
Linear Equations
	INTRODUCTION
	LEARNING TRAJECTORIES
	THE METHOD OF ITERATION
	The Iteration Trade-Off

	ADAPTIVE INSTRUCTION
	CONSTRUCTION OF A LEARNING TRAJECTORY
	Teaching-Research Diagnosis
	Instructional Sequences for the First Iteration
	The Third Iteration

	CONCLUSION
	REFERENCES


