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FOREWORD

This book is about creativity in students working with mathematics in classrooms 
and teachers developing mathematics teaching for the benefit of their students. It is 
written for “teachers of Mathematics and researchers in Mathematics Education” 
by a team of mathematics teacher-researchers, focusing on the education of 
“underserved” students in the Bronx, USA. The authors write:

We are addressing ourselves to the teachers of mathematics who want to use 
research to reflect upon and improve their craft practice, and to researchers 
who are interested in uncovering riches of classroom teaching for research 
investigations. And most of all we are interested in those educators who see the 
urgent need for creative synthesis of research and teaching.

The book is eclectic and wide-ranging, drawing on literature, theory and research 
in Mathematics Education over several decades. It develops a theoretical model for 
practice referred to as the TR/NYCity model. The authors present the antecedents of 
the model, the philosophy of practice on which it is based and examples involving 
practice with teachers and students. They propose that the model addresses several 
‘gaps’: the Achievement Gap between different groups of students (e.g., Pisa, 2012), 
the Teaching Gap between methods of teaching (e.g., Stigler & Heibert, 2000) and 
the gap between Research and Practice whereby research is undertaken by and 
reported to academic researchers, having little relevance or interest for teachers for 
whom ‘teaching practice’ is their central concern (e.g. Hargreaves, 1996).

The model is underpinned by a number of themes: Arthur Koestler’s theory 
of bisociation, the main instantiation of which is the “Aha moment”; Laurence 
Stenhouse’s theory of research as a basis for teaching in which a ‘Stenhouse Act’ 
is both a teaching act and a research act; and theories of creativity, traceable to 
Poincaré and Hadamard. In particular the model proposes a synthesis of Koestler and 
Stenhouse theories by which a teacher seeks to create Aha moments of mathematical 
understanding through Stenhouse acts. Central to the model is the use of student and 
teacher reflection as part of the act in which they engage. Fostered by the teacher, 
student reflection enables students to think beyond the procedural means of getting 
the solution to a problem, to the rationale for procedures they use and the possibilities 
of alternative solutions. An aim for student learning is that engagement at this meta-
level promotes aha moments of understanding (the cognitive) from which students 
derive pleasure and motivation (the affective). The teacher meanwhile is reflecting in 
a similar way, looking critically at her own approaches to fostering students’ creative 
involvement, and seeking alternative approaches to achieving student understanding.

Creativity in the classroom is centred on problem-solving approaches through 
which students are introduced to mathematics and engage in dialogue with each 
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other and the teacher. The associated practice of teaching is fundamentally a research 
process, in which a teacher engages in design of tasks and classroom activity, and 
the reflective interaction with students that feeds back to the design process. Several 
chapters include teaching sequences in which this process is exemplified and 
critiqued. The authors emphasise that the interactive process, fostering aha moments, 
has a cognitive/affective duality in which students’ reasoning is challenged in ways 
that reduce their antipathy for mathematics.

While the TR/NYCity model, focuses centrally on students’ learning through 
critical reflection in problem solving, its more global significance lies in its teacher-
researcher dialectic. The TR-act is a research act designed simultaneously to offer 
a classroom approach (the teaching act) rooted in dialogic mathematical problem 
solving and to critique the approach (a research act) in and from practice. Both acts 
are inquiry-based (involving the asking of critical questions), with a meta-level of 
inquiry (the TR act). The teaching sequences offered are annotated throughout to 
point out the stages of this reflective critiquing process.

It is hard to do justice, in a short space, to the complexity of the ideas in this book. 
I encourage the reader to engage with these ideas, taking a critical position and 
reflecting at the same time on their own teaching/research practices.

REFERENCE

Hargreaves, D. (1996). Teaching as a research-based profession: Possibilities and prospects. Teacher 
Training Agency Annual Lecture, Teacher Training Agency, London.

Barbara Jaworski
Loughborough University, UK
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INTRODUCTION

The book Creative Enterprise of Mathematics Teaching-Research submitted for 
readers’ consideration and enjoyment presents the results and methodology of 
work of the teaching-research community of practice, TR Team of the Bronx. It 
is directed towards two audiences, teachers of Mathematics and researchers in 
Mathematics Education. We are addressing ourselves to the teachers of mathematics 
who want to use research to reflect upon and improve their craft practice, and 
to researchers who are interested in uncovering riches of classroom teaching for 
research investigations. And most of all we are interested in those educators who 
see the urgent need for creative synthesis of research and teaching. The two central 
themes of the book are the methodology of TR/NYCity model of teaching-research 
and creativity, more precisely, creativity of the Aha moment formulated by Arthur 
Koestler (1964) in deeply powerful but little known theory of bisociation exposed 
in his work The Act of Creation. Both themes are introduced in Unit 1 as the basic 
thematic threads permeating and organizing this exposition. Unit 1 contains also 
Chapter 1.3 which describes the student population of the Bronx as one of many 
educationally “underserved” communities in US and in the world plagued by the 
increasing Achievement Gap in general, and in mathematics learning in particular 
(Pisa in Focus, #36, February 2014). TR/NYCity model has been formulated with 
the focus on improvement of learning mathematics within “underserved” student 
population necessary to bridge the Achievement Gap. Thus TR/NYCity is a 
framework of inquiry in Mathematics Education characterized by the substantive 
quality of Stenhouse (Rudduck & Hopkins, 1985), that is its “acts of finding” are 
undertaken to benefit directly and in equal measure not only research community, 
but also others outside of that community, in our case, students in ours and others’ 
classrooms.

Arthur Koestler defines Aha moment that is bisociation as “the spontaneous 
flash of insight, which…connects the previously unconnected frames of reference 
and makes us experience reality at several planes at once…” (p. 45). We define the 
bisociative framework as the framework composed of two or more “unconnected 
frames of reference”, which might be joined by the discovery of a “hidden analogy” 
through Aha moment of bisociation (p. 179). Since teaching-research is composed of 
two generally, and unfortunately, separate “frames of reference”, teaching practice 
and education research, ripe in our opinion with “hidden analogies”, TR/NYCity 
Model is a bisociative framework of inquiry with enhanced possibility to facilitate 
creative Aha moments both for students and teacher-researchers.

The first coordination of teaching-research practice with Koestler theory of 
bisociation is done by Vrunda Prabhu (Unit 2) to whom this volume is dedicated. 
Unfortunately she passed away during her work on Koestler creativity in the 
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classroom. Prabhu coordination and recognition of TR/NYCity as a bisociative 
framework has profoundly transformed our view on the methodology itself and 
its role in Math Education, especially on the role of student creativity in the 
improvement of learning mathematics among “underserved” student population and, 
as a consequence, in bridging the Achievement Gap. One of the central aspects of 
Prabhu’s work has been the exploitation of cognitive/affective duality characteristic 
for Aha moments (Czarnocha, 2014) in service of eliminating negative habits and 
attitudes of students to mathematics. She found support for her quest in Koetler’s 
assertion that “The creative act…is an act of liberation – the defeat of habit by 
originality” (p. 96).

The recent papers of the team collected in references of the Epilogue show the 
further directions of investigations into implications and role of Koestler creativity 
in mathematics classrooms.

TR/NYCity model finds it “niche” within the inquiry frameworks formulated by 
Eisenheart (1991) and re-introduced into Mathematics Education by Lester (2010). 
These authors postulate existence of three different framework of inquiry: theory-
based framework, practice-based framework and a conceptual framework. Whereas 
the first two frameworks are in general separate from each other, the third one 
incorporates elements of both, while pointing to the essential role of justification 
in this framework. Our insistence on the balance in the work of TR/NYCity model 
between research knowledge of the profession and craft knowledge of the teacher 
finds its expression in the conceptual framework of Eisenheart and Lester with the 
bisociation leading to creative Aha moments as its central justification.

Incorporation of bisociation into the definition of TR/NYCity model allows 
to understand Stenhouse acts which are “at once educational act and a research 
act” as bisociation-in-action (Rudduck & Hopkins, 1985). Important examples of 
classroom pedagogies, which have the quality of Stenhouse acts are discussed in 
Unit 3 Tools of Teaching-Research.

We can formulate now the new definition of TR/NYCity Model as the conceptual 
bisociative framework of Design Research conducted by the classroom teacher, 
whose aim is to improve the process of learning in the classroom, and beyond – 
the characteristic of the “substantive nature” of teaching-research. The details of 
this methodology are obtained as consequences of the definition. The original TR/
NYCity definition, which led us to contemporary understanding, is placed at the 
opening of Chapter 1.1.

Our exposition in the volume is divided into five units, which introduce the 
reader into practice of TR/NYCity methodology, as well as into results obtained 
with its help. Following Unit 1, which sketches the main thematic threads of the 
volume, we present Unit 2 Creative Learning Environment (CLE). Unit 2 contains, 
in its majority, a collection of TR reports of Vrunda Prabhu describing the process 
of her search for CLE in classrooms of mathematics, which culminates in the 
coordination of her practice with Koestler theory in Chapter 2.4. Coordination of 
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teaching practice with an appropriate theory is an essential bisociative act within 
TR/NYCity model. We expand the discussion of this process in Chapter 3.2.

Unit 3, Tools of Teaching-Research introduces reader to methods and techniques 
utilized later in Unit 4. It is composed of two parts, Chapters 3.1–3.3, which focus 
on preparation, conduct and assessment of a classroom teaching experiment, and 
Chapters 3.4–3.9 which focus on the chosen set of pedagogical strategies: Teaching 
Research Interviews, Concept Maps and Discovery method of teaching. All three 
strategies support the formation of Stenhouse acts and they express the bisociativity 
of TR/NYCity model. We direct this unit to the attention of teachers of mathematics 
as a point of entry into mathematics teaching-research. The TR tools introduced 
here open the pathway through Unit 4 of TR Design, which together with Unit 2 
constitute the central nucleus of the presented work.

Unit 4, Teacher as Designer of Instruction: TR Design invites the reader to the 
exploration of the principles and practice of the Teaching-Research Design as one of 
the methodologies of Design Research in Mathematics Education.

The types of TR Design are discussed in the extensive introduction to the unit. 
The introduction continues the discussion of different frameworks of inquiry within 
Design Research initiated in Chapter 1.1 and applies it to the characterization of 
the types of TR Design and related with it, classification of Stenhouse acts. The 
collection of teaching experiments and teaching-research investigations in Unit 4 
contains examples for all three types.

Unit 4 starts with the discussion of Koestler’s theory in the context of problem 
solving in Chapter 4.1 and leads toward synthesis of bisociation with Piaget theories 
of conceptual development. It demonstrates that processes of reflective abstraction 
such as constructive generalization and interiorization may be built on bisociative 
foundations. Although each chapter in Unit 4 typically has its own theoretical 
framework, Chapter 4.1 is designed to unify these different frameworks of concept 
development with Koestler’s theory of creativity.

The chapters of the unit present three modes of teaching-research activity. 
Chapter 4.2 presents our “daily” TR activity in the context of teaching rates and 
proportions, Chapter 4.6 reports two teaching experiments focused on the iterative 
classroom design of learning trajectories, and last two chapters present two teaching 
experiments of different TR Design types.

Unit 5 Teaching-Research Communities illuminates TR/NYCity model from 
the point of view of teaching-research community of practice and its development. 
Whereas different aspects of the TR community of practice were touched upon in 
different chapters of the book, here we focus on the expansion of the TR community 
to new academic disciplines and cultural/educational environments The introductory 
review of learning communities sets the ground for the first two chapters of the unit, 
which report on the expansion of TR community of practice from its original domain 
of mathematics into mathematics/English interphase (Chapter 5.1), and expanding 
further to the learning community of three courses “linked” together through the 



xviii

INTRODUCTION

mathematically-based theme Part of a Whole (Chapter 5.2). The closing chapters 
of the unit as well as of the whole book address the professional development of 
teacher – researchers (PDTR) in two very different cultural educational environments: 
amongst the teachers of community schools in Dalit villages of Tamil Nadu, India 
and among the mathematics teachers of five European countries participating in the 
international project supported by the Socrates program of the European Community. 
Chapter 5.3 signals further development of TR/NYCity Model into TAR, that is 
Teaching-Action-Research composed of Teaching-Research in the school and 
Action Research in the surrounding it village community conducted by the teachers 
of the school. This development took place during the PDTR in Tamil Nadu, India.

The complexity of the mathematical classroom has been recognized since the 
works of Anne Brown (1992), Collins (1992) and Wittman (1995) introduced the 
principles of Design Research into Mathematics Education. The variety of themes 
addressed by TR/NYCity Model conveys the degree of complexity encountered in 
the mathematics classroom of “underserved” student population. Consequently, the 
book and its story can be accessed in several ways: through particular articles and 
their specified themes, through the inquiries into specific themes e.g. interaction 
between learning mathematics and language, development of proportional reasoning 
as a gateway to algebra, problem solving in the context of Koestler theory, the 
affective role of creativity in transforming negative attitudes to the subject e.t.c. It 
can also be read as the guide or the handbook facilitating individual or team entry 
into teaching-research.

Many of the chapters contain teaching sequences whose effectiveness has been 
investigated through several iterations. They can be adapted to particular conditions 
of the classroom, expanded and experimented with at will. Generally, presented 
teaching sequences are accompanied by teacher annotations made either on the basis 
of professional craft knowledge or appropriate theory or both. The aim of annotation 
is to bring the reader closer to our work, and in particular to the “technology of 
thinking” (Chapter 1.1) – the process of integrating the teaching craft knowledge 
with theories of learning, conceptual development or Koestler creativity. Stenhouse 
acts are the products of that integration.

The work presented here has taken 15+ years of classroom investigations, 
designs, reflections and re-designs within the community of TR Team of the Bronx. 
With this volume we take the voice in the discussions on the role of teachers in 
research as well as on the role of researchers in the classroom; more generally 
on the teaching practice-research divide. The highlights of the discussion show 
surprising absence of knowledge of, and respect for the work of the teacher. Our 
colleague, Erich Wittmann (1999), in his effort to convince research community 
to take on research upon teaching sequences, which hasn’t been noticed till now, 
observes that

…the design of teaching has been considered as a mediocre task normally done 
by teachers and authors of textbooks. To rephrase Herb Simon: why should 
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anyone anxious for academic respectability stoop to designing teaching and 
put himself on one level with teachers? The answer has been clear: he or she 
usually wouldn’t.

One can similarly ask, what self-respecting master teacher of mathematics would be 
interested in collaboration with the academician who needs to “stoop” to collaborate 
and think together? The answer has been clear: he or she usually doesn’t. The result 
is a deep divide between research-and teaching practice which undermines any effort 
to improve learning, and to large degree it is rooted in the issue of the “academic 
status.”

Interestingly enough, 5 years later, there appear calls for the active participation 
of teachers in the design and construction of Learning Trajectories in the context 
of Common Core effort in US. Clements and Sarama (2004, p. 85) note “that 
learning trajectories could and should be re-conceptualized or created by small 
groups or individual teachers, so that there are based on more intimate knowledge 
of the particular students involved…”. Since teaching sequences are the essential 
component of learning trajectories and their design depends on the level of 
knowledge of particular cohorts of students, teachers’ designs are necessary for any 
planned improvement of learning. However, as Susan Empson (2011) notes “We 
know very little about how teachers do these things, in contrast to what we know 
about children’s learning…”; “these things” being to “understand, plan, and react 
instructionally, on a moment-to-moment basis, to students’ developing reasoning” 
and coordinate these interactions with learning goals (Battista, 2010) of the learning 
trajectory.

The present volume responds to these concerns by demonstrating that teachers of 
mathematics, if freed a bit from the negative constraints of academic respectability, 
can design learning trajectories as they always did, and investigate their design 
through the iterations natural to teachers’ semester or yearly work using JiTR 
methods. It shows how we, teachers, think, how we design and how we teach, and 
investigate at the same time with the help of TR/NYCity methodology, especially 
how we “understand, plan, and react instructionally, on a moment-to-moment 
basis, to students’ developing reasoning” (Empson, 2010) and coordinate these 
interactions  with learning goals called for by Battista (2010). Thus the answer 
to Steffe (2004, p. 130) who asks “Whose responsibility is it to construct learning 
trajectories?” is: it is the responsibility of teacher-researchers working with theTR/
NYCity Model as the conceptual bisociative framework of classroom Design 
Research. The TR/NYCity Model’s emphasis on the balanced relationship between 
research and craft knowledge of teacher, eliminates the issue of “academic status” 
and substitutes it by the bisociative creativity of Aha! Moments.
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UNIT 1

THE MAIN THEMES OF THE BOOK

INTRODUCTION

The aim of this introductory unit is to present the foundations of the work, 
which are based upon two conceptual frameworks, TR/NYCity Model and Koestler 
theory (1964) of the Act of Creation The coordination between teaching practice 
and theory (here Koestler theory) – a fundamental component of teaching-research 
has taken place during the teaching experiment by Vrunda Prabhu and became one 
of the thematics threads throughout the book. The next two chapters present each 
of the frameworks separately, and the last chapter throws light upon the theme that 
appears in many chapters of the book, namely the cognitive and affective learning 
challenges, encountered in education of the “underserved” student population.

Chapter 1.1 presents the “skeletal” (Eisenheart, 1991) structure of TR/NYCity 
model, which underlines the full volume. We see here TR/NYCity model as a 
synthesis of practical and theoretical frameworks of inquiry reaching its completion 
as a bisociative conceptual framework. The bisociative nature of TR/NYCity reveals 
itself, with the help the Koestler’s theory of the Act of Creation, as the natural 
environment to support the creative teaching and learning. We lead the reader 
through its historic development as well as the constructive connections with work 
of Lewin, Vygotsky, Stenhouse and Eisenheart, each contributing to the formation 
and versality of the approach culminating with the Act of Creation of Koestler. It is 
the natural connection of TR/NYCity methodology with creativity that makes it a 
strong candidate as a methodology to close the Achievement Gap characteristic for 
the underserved student population.

We expand upon the TR Cycle and point out that its iterative nature joins the 
practice of research and the practice of teaching-research. We formulate the concept 
of Just-in-Time Research (JiTR) in analogy to (JiTT) Just-in-Time Teaching as a 
feedback loop between classroom challenges of the teacher and research knowledge 
of the profession. We argue that such a bottom – up relationship of teaching 
practice with research is necessary for research to be accepted and incorporated 
in the classrooms. Two themes complete the presentation of the methodology: 
the discussion of characteristic tools of the methodology (1) Discovery method of 
teaching and (2) development of thinking technology, which lead to Stenhouse TR 
acts as one of their expressions. The Discovery theme, while present in most of our 
TR investigations is discussed in Chapter 3.9, while Stenhouse TR acts we encounter 
again in the Unit 4.
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2

Chapter 1.2 presents an overview of contemporary research on creativity as a 
background to Koestler’s theory of creativity, the second main theme of the book. 
A central concept of creative research and Koestler’s theory turns out to be the 
affective-cognitive duality of the Aha moment (Czarnocha, 2014). The affective 
component of the duality suggests that facilitation of Aha moments might be a 
powerful pedagogical tool in changing student attitude to mathematics as well as 
to themselves as mathematicians. Since the experience of Aha moment is known 
to members of general population, its facilitation in any regular classroom creates 
the possibility of opening the research on, and practice of mathematical creativity 
by all students, in addition to gifted ones. The chapter discusses the issue in the 
section the Transition from Genius to the Classroom focusing subsequently upon 
bisociation theory of creativity by Koestler (1964). The author, Bill Baker expands 
the discussion to delve into the cognitive-affective duality where the mechanism 
of bisociation enters into Piagetian framework. This discussion is continued in 
Chapter 4.1 in the context of problem solving. The affective aspect of the duality is 
discussed within Goldin (2009) work in the area. However it is the Unit 2 of Vrunda 
Prabhu that needs to be read in conjunction with this chapter as the development-in-
practice of the very same duality.

Chapter 1.3, the last chapter of Unit 1 sketches the socio-economic-ethnic 
background of student population we teach in the Bronx together with the main 
academic difficulties our student experience. The chapter points to the fact that 
other similar centres of “underserved” student population in US, Europe and Asia 
demonstrate similar characteristics, so that the dydactic designs and artefacts 
formulated in the context of Bronx student population can work elsewhere, can be 
generalized. The issue of generalizations of the methodology is further developed in 
Chapters 1.1 and 2.3. The author addresses critical pedagogical issue of what works 
among the population and shows that the focus on creativity through facilitating Aha 
moments might indicate the correct route to close the Achievement Gap which at 
present can be detected throughout the world. The role of community of TR practice 
for that process is developed in the Introduction to the Unit 5.
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BRONISLAW CZARNOCHA

1.1. TEACHING-RESEARCH NEW YORK  
CITY MODEL (TR/NY CITY)

TR/NYCity Model is the methodology for classroom investigations of learning, 
which synthetizes educational research with teaching practice. It is conducted 
simultaneously with teaching and it aims at improvement of learning by the teacher 
of the class in the same classroom, and beyond.

INTRODUCTION

TR/NYCity Model is based on the careful composition of ideas centred around 
Action Research (Lewin, 1946) with the ideas centred around the concept of the 
Teaching Experiment of the Vygotskian school in Russia, where it “grew out of 
the need to study changes occurring in mental structures under the influence of 
instruction” (Hunting, 1983). From Action Research we take its focus on the 
improvement of classroom practice by the classroom teacher and its cyclical 
instruction/analysis methodology, and from Vygotsky’s teaching experiment we take 
the idea of the large-scale experimental design based on a theory of learning and 
involving many sites – different classrooms (Czarnocha, 1999; Czarnocha & Prabhu, 
2006). Vygotsky teaching experiment methodology introduced the possibility 
of viewing the classroom teacher as a member of a collaborative research team 
investigating the usefulness of research based classroom integration. The integration 
of these two distinct frameworks re-defines the profile of a teacher-researcher:

1. as an education professional whose classrooms are scientific laboratories, the 
overriding priority of which is to understand students’ mathematical development 
in order to utilize it for the betterment of the particular teaching and learning 
process;

2. who as a teacher can have the full intellectual access to the newest theoretical 
and practical advances in the educational field, knows how to apply, utilize and 
assess them in the classroom with the purpose of improving the level of students’ 
understanding and mastery of the subject;

3. who as a researcher has a direct view of, and the contact with the raw material 
of the process of learning and development in the classroom, acts as a researcher 
in the context of the daily work and uses that process to design classroom 
improvement and derive new hypotheses and general theories on that basis.
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The implicit vision underlying the profile is the conceptual and practical balance 
between researches and teaching, where both components of the educational 
profession are given equal value and significance; both the research knowledge of 
the researcher and the craft knowledge of the teacher are resources for the teacher-
researcher.

Admittedly, the proposed profile is ambitious, yet it’s doable, especially in the 
context of community colleges whose full time mathematics faculty have PhD 
level experience in mathematics, physics or engineering research and can relatively 
easily transfer those skills into classroom-based investigations of learning. On 
the other hand, given the progressing collapse of public education in US, the 
majority (80%) of freshman students who enter every semester into our colleges 
require remediation to be able to get to college level courses. The remediation 
starts on the level of arithmetic through algebra it constitutes 80% of our “bread 
and butter” courses. The placement into, and exit from remediation is decided by 
the university wide – standard exam. Consequently, the mathematics faculty of 
community colleges are intimately familiar with the issues of school mathematics. 
The composition of research skills with the craft knowledge of teaching elementary 
mathematics is at the basis of the formulation of TR/NYCity Model.

HISTORICAL BACKGROUND AND DEVELOPMENT OF TR/NYCITY MODEL

Stenhouse TR Acts

TR/NYCity owns its formal origins to Action Research of Kurt Lewin (1946) 
and Teaching Experiment methodology of Vygotsky. TR/NYCity model finds its 
completion in the bisociation of Koestler (1964) leading to the Stenhouse TR acts 
(Rudduck & Hopkins, 1985).

Lewin proposed the Action Research methodology in the context of the quest 
for improvement of “group relations”, a euphemism for interracial relations in US 
of 30ties and 40ties. He saw it as “…a comparative research on the conditions and 
effects of various forms of social action, and research leading to social action.” 
His Action Research cycle consisted of the stages (or steps) of diagnosis with plan 
for action, implementation of action, its assessment providing at the same time the 
basis for “modifying overall plan” and leading to the next cycle. It was however 
Stenhouse who introduced Action Research methodology into education profession 
as teaching-research in the inaugural lecture at the University of East Anglia in 
1979 presentation “Research as basis for teaching” – a theme whose importance has 
steadily grown till contemporary times. Already in early seventies of the last century 
he recognized that one of the possible explanations for the failure of research

…to contribute effectively to the growth of professional understanding and to 
the improvement of professional practice… was the reluctance of educational 
researchers to engage teachers as partners in, and critics of, the research 
results. (Rudduck & Hopkins, 1985)
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The extracts from the transcripts of seminars with the part-time MA students 
reveal his understanding of Action Research in terms closely related to TR/
NYCity model arrived at spontaneously through our work. He understood Action 
Research primarily as “the type of research in which the research act is necessarily a 
substantive act; that is an act of finding out has to be undertaken with an obligation 
to benefit others than research community” (p. 57), in our case, students in ours, 
and other classrooms. However, it’s the concept of “an act [which is] at once an 
educational act and a research act” (p. 57), that completes a stage in our development 
of thinking technology, that is the process of integration of research and learning 
theories with the craft knowledge of the profession anchored in practice. The 
bisociative framework (see below) of TR acts produces new mental conceptions, 
the product of thinking technology. These conceptions (e.g. schema, ZPD, hidden 
analogy, bisociation) become part of the discourse within the community of teacher-
researchers, tools to design methodology for improvement of classroom craft and 
for deepening one’s research interest.

It is surprising Stenhouse did not utilize Action Research cycles. It could be 
because the curriculum research he envisioned as conducted by teachers, apart from 
case studies, was to test hypotheses arrived at by curriculum research outside of the 
teacher’s classrooms (p. 50).

The second root of our methodology is anchored in the methodology of the 
Teaching Experiment of Vygotsky, which had a professional research team together 
with teachers investigate the classroom and was conducted “…to study changes 
occurring in mental structures under the influence of instruction” (Hunting, 1983). 
Interestingly, introduction of professional research into classroom by Vygotsky and 
his co-workers in the thirties was the fulfilment of the first part of the Stenhouse’s 
vision of the seventies who demanded “In short, (1) real classrooms have to be our 
laboratories, and (2) they are in command of teachers, not researchers” (p. 127). 
For the second part of Stenhouse vision we propose classrooms, which are in the 
command of teacher-researchers as the synthesis of both methodological efforts.

The Teaching Experiment methodology reappeared in the work of Steffe and 
Cobb (1983) as a constructivist teaching experiment, which was appropriated by 
Czarnocha (1999) for teaching purposes in high school class of mathematics, already 
as a tool of a teacher. Czarnocha (1999) realized that the constructive teaching 
experiment can easily become a teacher’s powerful didactic instrument when 
transformed into guided discovery method of teaching.

Design Science

The interest in the work of the professional practitioner of whom teacher is but one 
particular example has been steadily increasing in the second half of the previous 
century since the work of Herb Simon (1970), the Design of the Artificial. His work 
proposes the design as the “principal mark that distinguishes the professions from 
sciences” (pp. 55–58). Kemmis and McTaggart (2000) developed the principles 
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of Action Research, while Schon (1983) investigated the concept of a Reflective 
Practitioner through the process of reflection-in-action. Both frameworks had found 
applications in the work of teachers and researchers through joint collaborations, 
however the research/practice gap hasn’t been yet bridged.

The terms Design Experiment, Design Research or the Science of Design 
are often interchangeable and they refer to the professional design in different 
domains of human activities. It was introduced into research in Math Education 
by Ann Brown (1992), Collins (1992), and Whittmann (1995). Anne Brown had 
realized during her exceptional career that psychological laboratory can’t provide 
the conditions of learning present in the complex environment of a classroom 
and transformed her activity as a researcher directly into that very classroom as 
the leading co-designer and investigator of the design in the complex classroom 
setting. In her own words: “As a design scientist in my field, I attempt to engineer 
innovative classroom environments and simultaneously conduct empirical studies 
of these innovations” (A. Brown, 1992). She provided this way one of the first 
prototypes of design experiments which, theoretically generalized by Cobb et al. 
(2003), “entail both “engineering” particular forms of learning and systematically 
studying those forms of learning within the context defined by means of supporting 
them…”. The profession has followed her lead seeing the classroom design 
experiments as theory based and theory producing. Paul Cobb et al. (2003) 
assert that Design Experiments are conducted to develop theories, not merely to 
empirically tune what works. Design research paradigm treats design as a strategy 
for developing and refining theories (Edelson, 2002). Even Gravemeyer (2009) 
who defines “the general goal of Design Research to investigate the possibilities for 
educational improvement by bringing about and studying new forms of learning” 
hence stating it closer to substantive quality formulated by Stenhouse, yet he warns 
us that “great care has to be taken to ensure that the design experiment is based 
on prior research…” eliminating this way the designs anchored in prior practice. 
Unfortunately, the educational research profession cuts itself off by these restrictions 
from the source of profound knowledge contained in the tacit and intuitive craft 
knowledge of the teachers. Clearly, if the goal is improvement of learning, a more 
general framework is needed which recognizes both education research and teaching 
practice as two approaches of comparable significance, value and status.

Frameworks of Inquiry and the Unity of Educational and Research Acts

We find such a framework within the three frameworks of inquiry identified by 
Margaret Eisenhart (1991): theoretical, practical, and conceptual (Lester, 2010). 
Following Eisenhart, Lester (2010) posits three types of frameworks used in Math 
Education, first, the theoretical framework based upon theory i.e. the constructivist, 
radical constructivist and social constructivist theories discussed second, a practical 
framework, “… which guides research by using ‘what works’ … this kind of 
research is not guided by formal theory but by the accumulated practice knowledge 
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of practitioners and administrators, the findings of previous research, and often the 
viewpoints offered by public opinion” (p. 72). The third is a conceptual framework 
that can pull from various theories as well as educational practice.

The theoretical framework guides research activities by its reliance on a formal 
theory; that is, a theory that has been developed “on the theoretical, conceptual, 
and philosophical foundations” (Lester, 2010) by using an established, coherent 
explanation of certain sorts of phenomena and relationships—Piaget’s theory 
of intellectual development and Vygotsky’s theory. However, as soon as such a 
theory- based design undergoes a TR cycle, the initial determinative role of theory 
changes into the JiTR-approach (Just-in Time-Research; see below), which allows 
for the participation of craft knowledge based on the teaching experience in equally 
significant manner.

The Practical Framework is employed in what we refer to as ‘action research’ 
and as discussed, it has some common components with teaching-research.

For Scriven, [quoted in Lester (2010)] a practical framework guides research 
by using “what works” in the experience of doing something by those directly 
involved in it. This kind of framework is not informed by formal theory but 
by the accumulated practice knowledge of practitioners and administrators, 
the findings of previous research, and often the viewpoints offered by public 
opinion. Research questions are derived from this knowledge base and research 
results are used to support, extend, or revise the practice. (Lester, 2010)

However, the distinction that we make with Lester’s description of a practical 
framework and a framework for teaching research is that we, as researchers, view the 
goal of teaching-research to inquire into how theory and models of learning reflect 
upon what the teacher and student experience in the classroom. The question for the 
teacher researcher and supportive TR community is what needs to be transformed or 
changed in the existing theories or models in order to improve the fit between these 
frameworks and classroom practice?

The third and final framework considered by Lester is that of

a conceptual framework [that] is an argument that the concepts chosen for 
investigation, and any anticipated relationships among them, will be appropriate 
and useful given the research problem under investigation. Like theoretical 
frameworks, conceptual frameworks are based on previous research, but 
conceptual frameworks are built from an array of current and possibly far-
ranging sources. The framework used may be based on different theories and 
various aspects of practitioner knowledge. (Lester, 2010)

We argue that amongst the three frameworks for research present in philosophy 
of education research only the conceptual framework allows for the possibility of 
bisociative synthesis between teaching and research through Stenhouse TR acts.

Of special importance in working with conceptual frameworks is the notion of 
justification. A conceptual framework is an argument including different points 
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of view and culminating in a series of reasons for adopting some points and not 
others. The adopted ideas or concepts then serve as guides: to collecting data, and/ 
or to ways in which the data from a particular study will be analysed and explained 
(Eisenhart, 1991).

According to Lester (2010) “…too often educational researchers are concerned 
with coming up with “good explanations” but are not concerned enough with 
justifying why are they doing what they are doing…” (p. 73).

Our insistence on the balance between research and teaching practice, the 
basis for the unified Stenhouse TR acts, finds its justification and fulfilment in 
the bisociation of Koestler (1964) that is in “a spontaneous leap of insight which 
connects previously unconnected matrices of experience” (p. 45). A bisociative 
framework is the framework composed of “two unconnected matrices of 
experience” where one may find a “hidden analogy” – the content of insight 
(Chapter 1.2). Given the persistent divide and absence of deep connections between 
research and teaching practice, TR/NYCity constitutes a bisociative framework 
composed of “unconnected [in general] matrices of experience” of teaching and 
research, within which one can expect high degree of creativity on the part of the 
teacher-researcher through leaps of insight leading to the unified Stenhouse acts 
defined above. The process of coordination of TR/NYCity with Koestler bisociation 
theory is the guiding theme of Unit 2: Creative Learning Environment. Unit 2 
presents the search for classroom creativity by Vrunda Prabhu during which this 
coordination has taken place revealing “hidden analogy” between Koestler theory 
and Prabhu’s teaching practice.

We can state now a new definition of TR/NYCity methodology:

TR/NYCity Model is the conceptual bisociative framework of Design Research 
conducted by the classroom teacher, whose aim is to improve the process of 
learning in the classroom, and beyond – the characteristic of its “substantive 
nature”.

TR bisociative framework facilitates integration or, still better, synthesis of 
practice and research through instances or sequences of instances of Stenhouse acts 
which are “at once an educational act and a research acts” (Rudduck and Hopkins, 
p. 57). In what follows we will call them Stenhouse TR acts. The Stenhouse TR acts 
are the foundation stones of “thinking technology” discussed below within which 
their unity is naturally positioned. The facilitation of longer or shorter instances of 
Stenhouse TR acts can be reached from either teaching practice or from application 
of research to practice, as well as from both simultaneously. The “skeletal structure” 
(Eisenhart, 1991) of the TR/NYCity conceptual framework can be obtained as 
requirements and conclusions from the definition.

We discuss different designs of teaching experiments and TR investigations in 
Unit 4, The Teacher as a Designer of Instruction: TR Design, while in Chapter 3.2 we 
discuss “nuts and bolts” of classroom teaching experiment. The Introduction to Unit 4 
develops the “skeletal structure” of TR/NYCity as the consequence of the definition.
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TEACHING-RESEARCH CYCLE (TR CYCLE)

Just-in-Time Teaching (JiTT) and Just-in-Time Research (JiTR)

Teaching-Research cycle is the fundamental instrument in our work, which allows 
for the smooth integration of research and teaching practice within our conceptual 
framework. The difference from other similar cycles of Action Research or of the 
Design Experiment (Cobb et al., 2003) is simple: it allows the teacher-researcher to 
enter the classroom investigation from either of both directions, from research and 
from teaching. There is however, an important methodological trade off: whereas 
a Design Experiment researcher prepares the design of classroom intervention on 
the basis of prior research, the teacher-researcher uses Just-in-Time approach, that 
is research literature consultation takes place during the TR cycle, generally at the 
Analysis and Refinement nodes, when we either compare the results to assumed 
theory of learning, or when we search for adequate theoretical framework to 
understand the learning situation, or in any other unclear classroom situation.

Just-in-Time Teaching (JiTT) as expressed by Novak et al. (1999) is a teaching 
and learning strategy based on the interaction between web-based study assignments 
and an active learner classroom. Students respond electronically to carefully 
constructed web-based assignments which are due shortly before class, and the 
instructor reads the student submissions “just-in-time” to adjust the classroom lesson 
to suit the students’ needs. Thus, the heart of JiTT is the “feedback loop” formed by 
the students’ outside-of-class preparation that fundamentally affects what happens 
during the subsequent in-class time together. JiTT has been used well together 
with Peer Leader methodology (Mazur & Watkins, 2009).

Analogically, Just-in-Time Research (JiTR) is research and teaching strategy based 
on the “feedback loop” formed between the didactic difficulties in the classroom 
encountered by a teacher, and educational research results that may throw light into 
the nature of these difficulties. At this moment, the classroom teacher makes contact 
with the bisociative framework of TR/NYCity model.

Anchoring TR in TR cycle

It is in the introduction of educational research into the classroom that we differ from 
Action Research. The JiTR approach differs from standard educational research in 
that theory is repositioned from being a required foundation to the Just-in-Time 
solution for didactic difficulties in the mathematics classroom.

William J. Harrington, describing his work of a teacher-as-researcher in Laura R. 
Van Zoest (2006) states that, “Teachers do informal research in their classrooms all the 
time. We try a new lesson activity, form of evaluation, seating arrangement, grouping 
of students, or style of teaching. We assess, reflect, modify, and try again, as we 
consider the perceived consequences of changes we made.” Hence, there is a natural 
pathway that extends these informal activities into systematic research, offered by the 
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TR/NYCity model that successively progresses along Teaching-Research (TR) cycles 
of diagnosis, design of instruction in response to diagnosis, collection of relevant data 
and its analysis, and, ultimately, with the help of relevant external research results 
through JiTR approach, the redesign of interventions. The TR cycle, the explicit 
generalization of Action Research principles in the classroom, is particularly well 
fit into our work because of our work’s naturally cyclic structure via semesters or 
academic years. Since every teacher has an option of repeating to teach the same 
course to a new cohort of students, the TR cycle allows for the continuous process of 
classroom investigations of the same research question during consecutive semesters. 
The sequential iteration of TR cycles is one of the main methodological research 
tools of the TR/NYCity Model facilitating the process of integration of teaching and 
research into a new unit of professional classroom activity, teaching-research.

TR/NYCity requires a minimum of two full TR cycles within a context of a 
single teaching experiment to fulfil the requirement of improvement of instruction. 
In its insistence on the improvement of learning through cycle iteration, TR/NYCity 
incorporates and generalizes the principles of Japanese and Chinese Lesson studies 
(Huang & Bao, 2006).

Consequently, every teaching experiment of the TR/NYCity Model has a main 
teaching-research question, composed of two sub-questions:

• What is the state of the students’ knowledge under the impact of the new 
intervention?

• How to improve that state of knowledge?

The duration of the TR cycle can vary depending on intervention. In can last a 
year, a semester, and a couple of days or even one class. In its rudimentary form we 
can find it even in teacher-student inquiry dialogs (see example in Chapter 4.1).

Figure 1. The TR Cycle
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The bisociative creativity of the teacher reaches its fulfilment during this 
period of reflection and redesign spurred by the simultaneous consideration of 
data analysis results, relevant teaching experience, relevant JiTR results from 
professional literature and appropriate theories of learning or conceptual development. 
It is precisely at this moment when the new teaching-research hypotheses are formed, 
leading to new theories and investigations. The focus of this teaching-research 
activity is the investigation of student learning followed by the design of teaching, 
whose effectiveness is often investigated in the subsequent TR cycle.

Instructional Adaptability of the TR/NYCity Model via TR Cycle

The increased degree of flexibility created by this integration of teaching and 
research within a single “tool box” helps teachers reach new levels of instructional 
adaptability to student learning needs. In fact, the comparison of the adaptive 
instruction described by (Daro et al., 2011) with the TR cycle reveals a very high 
degree of correspondence:

For that [success of LT framework] to happen, teachers are going to have to 
find ways to attend more closely and regularly to each of their students during 
instruction to determine where they are in their progress toward meeting the 
standards, and the kinds of problems they might be having along the way. 
Then teachers must use that information to decide what to do to help each 
student continue to progress, to provide students with feedback, and help 
them overcome their particular problems to get back on a path toward success. 
This is what is known as adaptive instruction and it is what practice must 
look like in a standards-based system.

Every TR cycle consists of the following components:

• (1) The design of the instruction/intervention, in response to the diagnosis of 
student knowledge,

• (2) Classroom implementation during an adequate instructional period and 
collection of data; this incorporates problem-solving, guided discovery classroom 
discourse and design of interventions for diagnosed difficulties,

• (3) Analysis of the data, in reference to existing experimental classroom data, 
appealing to the general theory of learning through J-i-T approach and the teacher-
researcher’s professional craft knowledge,

• (4→1)	Design	of	the	refined	instruction	based	on	the	analysis	of	the	data	obtained	
in steps 1 through 3, leading to the hypothesized improvement of learning. The 
symbol	“4→1”	is	intended	to	convey	that	the	4th	step	in	the	cycle	is	equivalent	to	
going back to the 1st step in the cycle.

As a result, every such 1→2→3→4→1 is an instance of adaptive instruction – 
finding the level of students’ understanding through tests, homework assignments 
and one-on-one interviews, responding to the difficulties by the re-design of the 
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intervention, implementation and assessment. Consequently, the TR cycle is called 
for, as the theoretical framework of the teacher’s work in a mathematics classroom 
driven by the Common Core Standards. Transformations of the teacher’s pedagogy 
and improvements, based on research and evidence, have to take place exactly within 
such a framework. Chapters 4.2, 4.9 and 4.10 provide detailed examples of two (or 
more) full cycles of such an approach.

Generalization in TR/NYCity Model

One of the central questions asked of frameworks related to action research is the 
question about the generality of our assertions. How general is TR/NYCity? Why 
and how that what we understand in the Bronx, has any bearing anywhere else? In 
terms of the original definition at the beginning of the chapter, what is the nature 
of the word “beyond” in that definition?

TR/NYCity has three ways to generalize its findings:

1. By coordination with a theory whose correctness has been asserted in the 
profession. If we coordinate our findings with a theory, then they acquire degree 
of generality afforded to the theory, that is one can draw conclusions from the 
findings in terms of the coordinated theory of learning. These conclusions might 
be relevant, with proper modifications to any classroom situation to which that 
theory applies.

2. By running an artefact used in a TR investigation through many iterations with 
different cohorts of students. As a result, the artefact acquires large degree of 
generality, which provides the basis for its application to different new situations 
(Chapter 2.2).

3. A special window of generalizations opens up when we consider student 
populations with similar socio-economic status to the one in the Bronx. The 
similarity of the socio-economic status results in similar cognitive/affective 
challenges experienced by students to which similar adaptive interventions 
are needed (Kitchen et al., 2007) The successful generalization of TR/NYCity 
artefacts has been reached amongst Indian Dalits (downtrodden) of Tamil Nadu 
(Chapters 2.2 and 5.3) and in Poland amongst rural students of Southern Poland 
(Czarnocha, 2008).

The discussion of artefacts in the context of Design Research (Unit 4) brings 
forth an important clarification that its generalization can be obtained by expanding 
its application to similar student populations.

Thinking Technology

The dictionary definition of technology is “the application of scientific knowledge 
for practical purposes, especially in industry.” Thinking technology in TR/NYCity 
model is the process of integration of research results and framework with craft 
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knowledge of the teacher. This spontaneous process inherent for TR/NYCity model 
finds its elegant expression in Koestler bisociation theory and Stenhouse TR acts. 
It is a very subtle process, in which scientific concepts such as “hidden analogy” 
of Koestler become the critical tools, metaphors with the help of which we start 
to identify classroom situations, the term becomes a phrase with the help of which 
we, members of the TR team start communicate with each other in our own new 
language. In fact, by making the connection between scientific meaning and 
classroom situation we create the analogy between two generally separate matrices 
of thinking – hence the connection itself is a new bisociation, a possibility of new 
meaning.

One could conjecture that any process of coordination (as distinct from 
application) of a theory of learning with elements of teaching practice is the 
bisociative creative process during which new connections and therefore new 
meanings are made.

The process of coordinating research and teaching practice is facilitated by 
the duality inherent in the teacher-researcher work (Malara & Zan, 2002). The 
practice of teaching-research duality creates a new mental attitude promoting a 
novel design of instructional methodologies while, at the same time, requiring 
an investigative probe into student thinking, on the basis of which consequential 
teaching and research decisions are made. This duality is explored deeper in Units 2 
and 4. The exploration together with utilization of the duality is conducted by the 
classroom teacher-researcher. In this process, teachers are not solely engaged in 
research on learning, they are also engaged in the transformation of teaching 
on the basis of, and through that research. This means that they do not simply 
incorporate the results of research into their teaching practice but rather allow 
methods of research to become the methods of teaching leading to Stenhouse 
TR acts. Thus the route towards Stenhause TR acts is through the process of 
integrating research knowledge and craft knowledge in practice of teaching. 
In this process, teachers do not switch into a role of researcher, instead, they 
oscillate between the role of a teacher and the role of a researcher and fuse their 
efforts toward a new unit of professional activity – bisociative teaching-research 
with its Stenhouse TR acts.

TR/NYCITY AND THE DISCOVERY METHOD OF TEACHING

The discovery method of teaching has been the preferred instructional method by 
the teacher-research team working with and developing TR/NYCity methodology 
since its inception. The Discovery method of teaching has a fundamental role in 
the TR/NYCity model. This method was introduced into TR/NYCity via the Texan 
Discovery method created and formulated by R. L. Moore, a topologist brought 
up by the Chicago school of mathematical thought of the thirties. B. Czarnocha 
and V. Prabhu adopted this method during their NSF grant in calculus 2002–2006. 
However, our understanding of its role in TR classrooms came with time through 
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many TR investigations and teaching experiments. Using different approaches such 
a “guided discovery method”, “inquiry method” or “inquiry leading to discovery”, it 
has appealed to our imagination and practice as teacher-researchers because with its 
help we could lay bare student authentic thinking for our investigations.

On the one hand, from the educational aspect Discovery method provides 
learning environment best suitable for facilitation of bisociation. According to 
Koestler (1964) subjective, individual bisociation are more often encountered in 
the condition of “untutored learning”. The Discovery method is one of the closest 
classroom approximations of this condition. This approach to teaching relies on 
designing situations and using techniques, which allow the student to participate 
in the discovery of mathematical knowledge. These are authentic moments 
of discovery with respect to student’s own knowledge, which in the further 
development of methodology are related to subjective Aha! Moments of Arthur 
Koestler (Chapter 1.2).

On the other hand, from the research point of view, it is the best instrument, which 
opens the nature of student thinking to us, teacher-researchers for investigation 
through careful interaction. It allows us to investigate and to extend the scope 
of students’ ZPD, to help in eliminating misconception as well as in facilitating 
bisociations. Thus the process of TR together with Discovery method of teaching 
constitutes an extended in time Stenhouse TR act.

Creativity: From Bathos to Pathos – From Habit to Originality

The institution of creativity as the structural component generated within the 
learning environment provided by teaching-research has significant consequences 
beyond its cognitive importance.

Vrunda Prabhu has found out (Chapter 2.4) that student success in her classroom 
depended on three closely connected components of (i) cognition, (ii) motivation 
and (iii) self-regulated student learning (Prabhu, 2006). More specifically, when 
creativity is explicitly nurtured and facilitated in a mathematics classroom in the 
context of such an integrated learning environment, it can transform the habit of 
distaste toward mathematics into mathematical originality supporting Koestler’s 
assertion that “creativity means breaking up habits and joining the fragments into 
new synthesis” (p. 619). Moreover, according to Koestler:

The creative act, by connecting previously unrelated dimensions of experience, 
enables him [the inquirer] to attain a higher level of mental evolution. It is an 
act of liberation – the defeat of habit by originality.

Habitual dislike of mathematics is, at present, one of the main student obstacles 
for success in mathematics learning that could be eliminated with the help of that 
“act of liberation” providing a pathway from Bathos to Pathos, using Koestler 
metaphor (p. 96).
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Summary of the Argument

To summarize the argument, TR/NYCity is the generalization of Action research 
and of the Design experiment methodology (Design experiment methodology is 
seen here as the further development of the Teaching Experiment of Vygostsky 
school in Russia). In its original vision it was seen as the bridge between the 
two methodologies, which eliminates the limitations of both – a new integrative 
conceptual framework. By the same token, TR/NYCity is designed specifially to 
bridge the gap between research and teaching practice – one of the fundamental 
obstacles in the effective transformation of mathematics education. The need for 
such a bridge was indicated by the report of US National Research Council, How 
People Learn-Bridging Research and Practice (Donovan et al., 1999). We review 
below essential components of the research/teaching practice gap in our profession 
as seen by contemporary reports.

GAP BETWEEN RESEARCH AND PRACTICE

English (2010a) notes that the complexity of educational theory and philosophy, 
has lead to a gap between educators and researcher based upon concerns about the 
relevancy of such philosophies to educational practice,

The elevation of theory and philosophy in mathematics education scholarship 
could be considered somewhat contradictory to the growing concerns for 
enhancing the relevance and usefulness of research in mathematics education. 
These concerns reflect an apparent scepticism that theory-driven research 
can be relevant to and improve the teaching and learning of mathematics 
in the classroom. Such scepticism is not surprising…claims that theoretical 
considerations have limited application in the reality of the classroom or other 
learning contexts have been numerous…it remains one of our many challenges 
to demonstrate how theoretical and philosophical considerations can enhance 
the teaching and learning of mathematics in the classroom… (p. 66)

Harel (2010) and Lester (2010) both note that government funding agencies and 
panels created to direct government research efforts are increasing restricting their 
attention to quasi experimental-control group efforts with a goal of what works 
i.e. action research. They advance the hypothesis that more attention to research 
frameworks would perhaps counter the ideology that all research should be practical-
statistical i.e. scientific based methodology based upon a p value indicating success 
or failure i.e. ‘what works.’ Harel’s (2010) claim that attention to frameworks is 
lacking in educational research is due in part to his belief that there exists “…a 
feeling on the part of many researchers that they are not qualified to engage in work 
involving theoretical and philosophical considerations” (pp. 88–89). The issue that 
arises for those of us advocating for a more active role of teachers in integrating 
educational research and craft is that, if researchers feel they are not qualified then 
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how much more likely those teachers feel unqualified. That is, how can practical 
research methodology such as that used in action research be expected to integrate 
theory and practice in a meaningful way when its practitioners may feel unqualified 
to engage in theoretical considerations? This question is particularly relevant to 
us because we strongly believe in order for reform efforts, indeed, any research 
based pedagogy to actually improve education there must be a sustained effort in 
the school and that any such effort must involve the teacher and the researcher 
working together or a teacher-researcher to determine what works as well as to 
reflect upon why it does or does not work from both a practical craft level as well as 
through the lens of theoretical framework.

Another reason reform effort to improve mathematics education through 
theoretical considerations has floundered is that mathematical education theories 
are often appear impractical to the craft practitioner to implement i.e. theories that 
provide little guidance for instructional design but within the research community 
there are often contradictory positions about such efforts. The result is that reform 
efforts and counter reactionary movements tend to arise and disappear like last 
year’s fashion statements. Sriramen and English (2010) comment on an early 
attempt by mathematicians to change traditional mathematics called New Math 
which in the 50’s and 60’s tried to change the rigidity of traditional mathematic 
through a top down approach to pedagogical change. “One must understand that 
the intentions of mathematicians such as Max Beberman and Edward Begle was to 
change the mindless rigidity of traditional mathematics. They did so by emphasizing 
the whys and the deeper structures of mathematics rather than the how’s but in 
hindsight…it seems futile to impose a top-down approach to the implementation of 
the New Math approach…” (p. 21). Goldin (2003) notes how behaviourism led to 
a back to basics counter movement within mathematics education: “behaviourism 
was fuelling the ‘back to basics’ counterrevolution to the ‘new mathematics’, which 
had been largely a mathematician-led movement. School curricular objectives were 
being rewritten across the USA to decompose them into discrete, testable behaviours” 
(p. 192). Goldin (2003) also notes that constructivism has more recently displaced 
this back to basic reactionary movement. “Radical constructivism helped overthrow 
dismissive behaviourism, rendering not only legitimate but highly desirable the 
qualitative study of students’ individual reasoning processes and discussions 
of their internal cognitions” (p. 196). Yet he warns that the excessive of radical 
constructivism will render it impractical and unsuitable “Constructivists excluded 
the very possibility of ‘objective’ knowledge about the real world, focusing solely 
on individuals’ ‘experiential world’” (p. 193).

The point being that a top-down approach to educational reform by research 
experts has not succeeded and we venture will never succeed without first teacher 
buy in, but this is not near enough, in order for the craft practitioner to continue 
to implement reform methodology and to design instruction based upon theory, 
when the researcher goes back to academia the teacher must internalize the theory 
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and even more how such theory relates to design of instruction. Yet we consider 
that even this is not enough to sustain reform efforts especially with underserved 
populations that demonstrate serious negative affect with mathematics. The 
approach to educational research in which experiments have a beginning and an end 
is founded upon an underlying assumption that some truth can be found that will 
dramatically change educational practice. This assumption needs to be re-evaluated 
if educational craft practice is to actualize the benefits of research. We consider 
that a constant collaboration between educational researchers and teachers is needed 
and provides the best hope of actualizing change in educational practice to close 
widening gap between research and theory and the scepticism it has caused. Boote 
(2010) comments on the need for continual teacher development based upon design 
research in improving educational practice: “Indeed, the professional development 
of all participants may be more important and sustaining than the educational 
practices developed or the artefacts and knowledge gained” (p. 164). Examples of 
such an international professional development of teacher-researchers based on TR/
NYCity methodology are discussed in the Unit 5.

THE COMPARISON BETWEEN TEACHING-RESEARCH AND  
DESIGN-BASED RESEARCH

The discussion in this section is the continuation of the theme found in the section 
Frameworks of Inquiry and the Unity of Educational and Research Acts, which 
gets further clarification in the Introduction to Unit 4. Our aim here is to provide a 
detailed comparison between theoretical and practical frameworks as seen from the 
point of view of TR/NYCity, which we see as the conceptual framework creating the 
bridge between the two via TR cycle.

Research, in particular, design-based 
research

Teaching-research, in particular TR/NYCity 
model

Theory driven:
(EDUCATIONAL PSYCHOLOGIST, 
39(4), 199–201 Copyright © 2004, 
Lawrence Erlbaum Associates, Inc.
William A. Sandoval, Philip Bell
Design-Based Research Methods for
Studying Learning in Context: 
Introduction.)
Design-based research can contribute to 
theoretical understanding of learning in 
complex settings. Each of the articles by 
Sandoval, Tabak, and Joseph reveal how 
the design of complex interventions is 
an explicitly theory-driven activity.

Practice driven:
(Professional Development of Teacher-
Researchers, Rzeszow University, Poland, 2008) 
(Teaching Experiment NYCity Method. 2004)
Teaching-research is grounded in the craft 
knowledge of teachers that provides the initial 
source and motivation for classroom research; it 
then leads to the practice-based design. Its aim is 
the improvement of learning in the classroom as 
well as beyond.
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Use of Theories of Learning in Design-
Based Research:
(Educational Researcher, Vol. 32, No. 1, 
pp. 5–8), (Design-Based Research: An 
Emerging Paradigm for Educational 
Inquiry by The Design-Based Research 
Collective, 2003)
In addition, the design of innovations 
enables us to create learning conditions 
that learning theory suggests are 
productive, but that are not commonly 
practiced or are not well understood.

Use of Theories of Learning in Teaching-
Research:
(Dydaktyka Matematyki, 2006, v. 29, 
Poland, Teaching-Research NYCity Model. 
B. Czarnocha, V. Prabhu)
The design of innovation enables the teacher-
researcher to create the Creative Learning 
Environment based on teacher’s craft knowledge, 
which improves learning in the classroom and 
transforms habits such as misconceptions, into 
student originality (Koestler, 1964). Learning 
theories are used as needed to support teachers’ 
craft knowledge.

Focus of the Teaching Experiment in  
Design-Based Research:
(Journal for Research in Mathematics 
Education. 14(2) pp. 83–94, 1983, 
Cobb, P. and Steffe, L. P., The 
Constructivist Researcher as Teacher 
and Mod el Builder)
Cobb and Steffe assert that the interest 
of a researcher during the teaching 
experiment in the classroom is “in 
hypothesizing what the child might 
learn and finding [as a teacher] ways 
and means of fostering that learning”.

Focus of the Teaching Experiment in Teaching-
Research:
Proceedings of the epiSTEME Conference, 
Bombay, Homi Bhabha Institute, 2007, 
B. Czarnocha, V. Prabhu
Teaching-Research and Design Experiment – 
Two Methodologies of Integrating Research and 
Classroom Practice)
…The interest of a teacher-researcher is to 
formulate ways and means to foster what a student 
needs to learn in order to reach a particular 
moment of discovery or to master a particular 
concept of the curriculum (Czarnocha, 1999). 
Since, however, “such moments occur only 
within students’ autonomous cognitive structures, 
the [constructivist] teacher has to investigate 
these structures during a particular instructional 
sequence [in order to be of help to the students]. 
In this capacity, he or she acts as a researcher”.

Use of Iteration in design-based research:
(ICLS, 1, pp. 968–975, 2010,
Confrey, J., Maloney, A., The 
construction, refinement and early 
validation of the equi-partitioning 
Learning Trajectory)
…articulating, refining and validating 
is an “iterative process of research 
synthesis and empirical investigations 
involving” many types of evidence.
Step 1: Meta-research of the concept to 
create the prototype.
Step 2: Iterative refinement of the 
prototype

Use of Iteration in TR/NYCity model:
Step 1: Process of iteration, starting with the first 
iteration designed on the basis of teaching practice.
Step 2: Incorporation of research results as 
needed in between consecutive iterations.

It is the concept of iteration of the design from 
semester to semester together with the related 
refinement that can bring in now relevant 
research results illuminating the classroom 
situation or providing help in the design of 
appropriate set of assignments. 
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The TR cycle through its natural iteration of teacher’s activity from semester 
to semester provides the opportunity to move beyond the narrow “chicken or the 
egg”	 question	 of	 “What	 is	 the	 primary,	 or	 the	 more	 important	 realm,―research	
or practice?” and to creatively integrate design-based practice and design based 
research (see Unit 4).
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1.2. CREATIVITY RESEARCH AND KOESTLER

An Overview

INTRODUCTION

This section provides an overview of research on creativity in mathematics 
education: Koestler’s understanding of creativity, the role of creativity with 
mathematics students, especially those who do not view themselves as gifted and 
a discussion on the how to support a creative learning environment within the 
mathematics classroom. Leikin (2009a) notes that, creativity and giftedness are 
underrepresented topics in mathematics education research; one specific obstacle 
she specifies is a lack of shared understanding of creativity within the mathematics 
classroom and ways to promote such creativity. In this present book the authors 
put forth their work on creativity based upon the definition and supporting theory 
of creativity due to Koestler (1964) within the framework of teaching research 
experiments supported by learning communities in an effort to promote creativity 
research within the classroom-learning environment. At the heart of Koestler’s theory 
is the view that creativity involves the synthesis of previously unrelated frames 
of reference, hidden analogies that become apparent through one’s intuition in an 
often unconscious process during incubation. That process leads to the conscious 
illumination or realization of this previously hidden analogy. Furthermore, this 
process has a transformation effect upon an individual’s affect towards the area or 
subject of thought, in this case mathematics. Following Koestler we consider this 
process of synthesis to describe both the creative thought of professional-eminent 
mathematicians as well as the development of cognitive structures in both gifted 
and ordinary students. We are particularly interested in the benefits for student affect 
during the process in which an individual discovers for themselves new material or 
previously hidden analogies with students one might characterize as being resistant 
to mathematics i.e. those who have a negative affect or understanding of their ability 
in mathematics. Another central component to the work of Koestler is that there 
are strands of creative thought that cross the three domains of; humor, scientific 
and mathematical research and also, literary and artistic endeavours. Koestler refers 
to this notion as a Triptych. The role of the Koestler’s Triptych in this volume 
(Chapter 2) is not so much as to argue that creativity crosses domains rather that there 
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is an affective relationship between creativity in these domains that can be beneficial 
for student with a negative or resistant attitude towards their mathematical ability.

THE NEED FOR RESEARCH IN CREATIVITY IN EDUCATION

Leikin (2009a) notes that there is a dearth of research on creativity and gifted 
students and the relationship this has to talent loss,

nurturing mathematical promise is directed at preserving human capital, it 
allows the community to grow new generations of creative mathematicians 
scientists, and high-tech engineers who contribute to the further development 
of sciences, technologies, and various branches of mathematics…talent loss is 
a major challenge for every society. (p. 387)

Although we agree completely with Leikin’s thesis on the need for research with 
gifted individuals our goal is more in line with Silver’s (1997) view that creativity 
has a psychological aspect i.e. creativity is a disposition that is not restricted to 
a few gifted students, and as a result creativity should be introduced through-out 
instruction in mathematics,

persons creative in a domain appear to possess a creative disposition or 
orientation toward their activity in that domain. That is creative activity results 
from an inclination to think and behave creatively…this view suggests that 
creativity-enriched instruction might be appropriate for a broad range of 
students, and not merely a few exceptional individuals. (pp. 75–76)

Furthermore, we argue that accepting an educational culture in which a majority 
or significant minority of the population have no experience with the beauty and 
satisfaction of learning and discovering mathematics for themselves would result 
in a society with two tiers, in the lower tier are individuals who have access to ever 
more sophisticated technology yet less and less understanding of the basic principles 
upon which such technology is based. As eloquently stated by Koestler:

Modern man lives isolated in his artificial environment…his lack of 
comprehension of the forces…the principles which relate his gadgets to the 
forces of nature, to the universal order…his refusal to take an interest in the 
principles behind it. By being entirely dependent on science, yet closing his 
mind to it, he leads a life of an urban barbarian. (Koestler, 1964, p. 264)

Sriraman et al. (2011) points out that research on creativity within mathematics 
education with students who do not consider themselves gifted is essentially non-
existent, “There is almost little or no literature related to the synthetic abilities of 
‘ordinary’ individuals, except for literature that examines polymathy” (p. 120). The 
issue of polymathy or giftedness across domains will not be directly tackled but 
is inherent in the work we do following Koestler’s notion of the Triptych and his 
thesis that there are grey areas between the three domains of humor, science and 
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art-literacy. Specifically, we consider the role of humor and literacy endeavours in 
promoting affective aspects of students in their studies of mathematics. Our thesis is 
that when presenting mathematics to students from an underserved population or to 
any student with a negative attitude towards mathematics a creative and supportive 
learning environment must be established in order to transform the habitual negative 
affect expressed in the commonly heard phrases, “I hate math” or “I such at 
math” with a positive affect that allows for learning and even appreciation of the 
mathematical cognitive content. Furthermore, as Vrunda Prabhu was fond of stating, 
when an instructor begins to establish such a creative learning environment founded 
upon education research in creativity and cognition it will simultaneously engender 
creativity on the part of the students.

ROOTS OF CREATIVITY RESEARCH

Creativity plays a vital role in the full cycle of advanced mathematical 
thinking…Yet it is external to the theory of mathematics…Most 
mathematicians seem to be not interested in the analysis of their own thinking 
procedures…only a few explicitly attempt to describe ideas related to 
mathematical creativity. (Ervynck, 1991, p. 42)

The roots of contemporary research in mathematical creativity focus on the 
‘creative person’ (Leikin & Pitta-Pantazi, 2013) and are often traced to the work of 
H. Poincaré, and J. Hadamard. As noted in Liljedahl (2013), “Hadamard’s treatment 
of the subject of invention at the crossroads of mathematics and psychology is an 
extensive exploration and extended argument for the existence of unconscious 
mental processes. To summarize, Hadamard took the ideas that Poincaré had posed 
and, borrowing a conceptual framework of Wallas turned them into a stage theory. 
This theory still stands as the most viable and reasonable description of the process 
of mathematical invention” (p. 254). Wallas was a Gestalt Psychology and the 
resulting stage theory of creativity within a problem-solving environment includes: 
initiation (preparation) incubation, illumination and verification. The first stage is 
characterized by, “an attempt to solve the problem by trolling through a repertoire of 
past experiences” (Liljedahl, 2011, p. 52).

A problem-solving situation in which no idea or solution is forthcoming may 
lead to the nest stage of incubation, “one forces oneself consciously to work hard 
on a new problem or an idea. When no solution is forthcoming, the problem is put 
aside and one’s mind needs to relax to make the necessary connections” (Sriraman 
et al., 2011). The importance of the initial-preparation stage is because it, “creates 
the tension of unresolved effort that sets up the conditions necessary for the ensuing 
emotional release at the moment of illumination” (Lilijedahl, 2013, p. 254). In 
the view of Poincaré and Hadamard putting aside conscious work when blocked 
allows the solver to “begin to work on it at an unconscious level” (Liljedahl, 2013, 
p. 254) during the incubation stage. This creates the possibility of illumination, 
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“the manifestation of a bridging that occurs between the unconscious mind and the 
conscious mind…a coming to the conscious mind of an idea or solution.” Colloquially 
this is often referred to as the ‘Aha’ experience (Liljedahl, 2013, p. 255).

Koestler studies the creative experience of many eminent mathematicians and 
scientists he comments that Poincaré believed in divine influence or unconscious 
intuition that during incubation selects out of countless combinations of patterns and 
thoughts only the relevant or beautiful ones i.e. “the aesthetic sensibility of the real 
creator” (Koestler, 1964, p. 163). The following quote from the musing of Poincaré 
is used by Koestler to demonstrate what he considers the two essential characteristics 
of creativity first, an affective component in which, “the self is experienced as being a 
part of a larger whole, a higher unit-which may be Nature, God, Mankind, Universal 
Order…an abstract idea…the participatory or self-transcending tendencies” (p. 52). 
The second component is the synthesis of two frames of references previously 
considered independent:

One evening, contrary to my custom I drank black coffee and could not 
sleep, Ideas rose in crowds; I felt them collide until pairs interlocked, so to 
speak, making a stable combination. By the next morning I had established 
the existence of a class of Fuchsian functions, those that come from 
hypergeometric series. I had only to write out the results, which took but a 
few hours…and I succeeded without difficulty in forming the series I have 
called theta-Fuchsian. Then, I turned my attention to the study of some 
arithmetical questions apparently without much success…disgusted with my 
failure I went to spend a few days at the seaside, and thought of something 
else. One morning, walking on the bluff, the idea came to me…with just the 
same characteristics of brevity, suddenness and immediate certainty, that 
the arithmetic transformation of indeterminate ternary quadratic forms were 
identical with those of non-Euclidean geometry. (pp. 115–116)

THE TRANSITION FROM GENIUS TO CLASSROOM

Liljedahl (2013) points out that implicit in this view of creativity as an original 
product is that the discovery can be, “assessed against other products within its 
field, by the members of that field, to determine if it is original and useful” (p. 255). 
Liljedahl (2013) comments that as a result of Koestler and other’s treatment 
of creativity is that, “…creative acts are viewed as rare mental feats which are 
produced by extraordinary individuals who use extraordinary thought processes” 
(p. 255) i.e. “… creative processes are the domain of genius and are present only 
as precursors of the creation of remarkably useful and universal novel products” 
(p. 256). We note that the sentiment that creative mathematics is tied to mystical 
geniuses has been linked to limiting creativity in the math class. For example, 
Silver’s rather striking comment about the ‘genius’ view of creativity and how it has 
limited research into creativity in mathematics education:
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The genius view of creativity suggests both that creativity is not likely to be 
heavily influenced by instruction and that creative work is more a matter of 
occasional bursts of insight than the kind of steady progress towards completion 
which tends to be valued in school. Thus, there have been limited attempts to 
apply ideas derived from the study of creativity to the education of all students. 
(Silver, 1997, p. 75)

We note that any instructor of a remedial or first-year mathematics course frequented 
by non STEM (science, technology, engineering and mathematics) majors can 
probably relate to the frustration of having students equate their lack of mathematics 
fluency with a lack of God given talent and their strong conviction, that it is therefore 
not worth making a concerted effort.

Leikin and Pitta-Pantazi (2013) are even blunter than Silver in their critique of 
this so-galled genius approach to creativity as they comment on how the perception 
of creativity has changed with the dawn of research into creativity in the classroom: 
“Initially creative ideas were considered to be generated mystically…subsequently, 
the mystical approach was replaced by a pragmatic approach which was mainly 
engaged in ways of developing creativity” (p. 160).

Although we completely agree with the thesis put forth by Silver, Liljedahl and 
Leikin and Pitta-Pantazi that assert creativity should be part of every student’s 
experience in mathematics, we note that Liljedahl’s comment that Koestler’s 
treatise on creativity lends itself to the genius approach obscures the fact that both 
Koestler and Liljedahl emphasise the affective component of the creative experience, 
regardless of whether the product is original to the mathematical community or only 
novel to the individual solver. “Minor, subjective bisociative processes do occur on 
all levels, and are the main vehicle of untutored learning” (Koestler, 1964, p. 658). 
We also note that Koestler’s work provides a precise description of a mechanism that 
underlies the transformation between incubation and illumination; a mechanism that 
appears to be lacking in existing mathematical educational literature on creativity. 
This mechanism for the synthesis of planes of reference allows for a theoretical 
framework to study creativity within the social (classroom) situation as students 
create meaning of mathematics. That is when the individual discovers a product-
result that is new to themselves but known to the instructor, tutor etc.

The transformation of creativity from an analysis of eminent mathematicians to 
the classroom i.e. the transformation from the creative person and creative process 
in the field of mathematics to the creative person, creative process and creative 
environment (in the classroom) has led to a multitude of definitions and approaches 
to studying creativity.

Definitions of Creativity in Mathematics Education Research

The significance of creativity in school mathematics is often minimized 
because it is not formally assessed on standardized tests, which are designed to 
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measure mathematical learning. The problem with relating to students’ work as 
‘creative’ is rooted in the definition of creativity as a useful, novel, or unique 
product…Although according to the traditional view of creativity students’ 
work would not be considered as creative, the researchers agree that students’ 
discovery may still be considered creative if we examine the issue of creativity 
from a personal point of view, namely, whether the students’ discoveries were 
new for them. (Shriki, 2010, p. 162)

As noted by Shriki, “Eminent mathematicians such as Jacques Hadamard and 
George Pölya argued that the only difference between the work of a mathematician 
and that of a student is their degree” (p. 161). The integration of creative pedagogy 
within classroom mathematics for gifted or ordinary students of mathematics raises 
the issue of how does one define and then using this definition measure creativity.
Sriraman et al. (2011) like Shriki propose that, “a differentiation be made between 
creativity at the professional and school levels” and that creativity at the school level 
should include:

1. The process that results in unusual (novel) and/or insightful solutions(s) to a 
given problem

2. The formulation of new questions and/or possibilities that allow an old problem 
to be regarded from a new angle (p. 120).

We are entirely in agreement with Sriramen’s intention to extend the range of 
creativity to include classroom mathematics. However, the practical and theoretical 
issue that arises is not whether there should be a definition for creativity in educational 
mathematics but the plurality of definitions. Mann (2006) notes that educational 
research included over 100 definitions of creativity he claims that, “the lack of 
an accepted definition for mathematical creativity has hindered research efforts” 
(p. 238). R. Leikin has done much work on definitions and assessment of creativity 
focused on gifted students. For example, Leikin (2009b) notes two formulations 
of creativity in mathematics educational research that have been used to assess 
an individual’s propensity for creativity. The first is the ability for convergent 
and divergent thinking due to J. Guilford. “Convergent thinking involves aiming 
for a single correct solution to a problem, whereas divergent thinking involves the 
creative generation of multiple answers to a problem or phenomena, and is described 
more frequently as flexible thinking.” Her review also notes the definition suggested 
E. Torrance i.e. the capacity of an individual for flexibility, fluency, novelty and 
elaboration.

Fluency refers to the continuity of ideas, flow of associations, and use of 
basic and universal knowledge. Flexibility is associated with changing ideas, 
approaching a problem in various ways, and producing a variety of solutions. 
Novelty is characterized by a unique way of thinking and unique products 
of a mental or artistic activity. Elaboration refers to the ability to describe, 
illuminate, and generalize ideas. (Leikin, 2009b, p. 129)
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Silver (1997) did not like the focus on spontaneous illumination if it meant any 
diminishing of attention to the need for hard work and instruction, “creativity is 
closely related to deep flexible thinking in content domains; is often associated with 
long periods of work and reflection rather than rapid, exceptional insights; and is 
susceptible to instructional and experimental influences” (p. 75). Silver went on to 
propose that creativity is an essential component of problem solving and problem 
posing. We note that most of these definitions and the research based upon them 
are designed to separate gifted-creative students of mathematics from those who 
are not necessarily gifted. That is to distinguish between those students who are 
fluent-proficient and flexible problem solvers capable of understanding multiple 
representations that often diverge from the instructor presented approach. Silver 
(1997) admonishes educators to consider that a creativity-enriched instruction is 
appropriate for students not considered gifted and that instruction is an important 
components of establishing a creative learning environment, which we refer to as the 
attempt to democratizes creativity (Prabhu & Czarnocha, 2014). Shriki (2011) goes a 
step further stating that creativity should be part of all students learning experience:

It is widely agreed that mathematics students of all levels should be exposed 
to thinking creatively and flexibly about mathematical concepts and ideas. To 
that end, teachers must be able to design and implement learning environments 
that support the development of mathematical creativity. (p. 73)

It is important to point out here that both flexibility and fluency may not reinforce 
student creativity but diminish it. Koestler (1964) points out that that flexibility as 
a component of a “rigid and flexible variations on a theme” (p. 660) contributes to 
the formation of a habit, hence it may diminish originality and with it, creativity 
of an individual. Since “The creative act is…the act of liberation – the defeat of 
the habit by originality” (p. 96). Thus, acting out of a habit diminishes originality. 
The possible decrease of originality due to flexibility had been noted by Leikin 
et al. (2013) and by Kyung Hee Kim (2011). The theoretical issue that that arises, is 
whether Koestler’s definition can provide for a foundation to focus on the creative 
aspect of student originality, even with students who do not demonstrate fluency 
and whose flexibility and divergent thinking patterns are intermittent. In other 
words, how can creativity be integrated into a student’s attempt to give meaning to 
material presented in the classroom. A constructivist perspective would argue that all 
learning is essentially the self-discovery of what is known by others. For example, 
Sriramen et al. (2011) points out “The ability to create an object in mathematics is 
an example of mathematical creativity” (p. 121).

One of the tenets of this volume is that creativity is needed to reach all students 
of mathematics especially, those students who are resistant or do not consider 
themselves gifted in mathematics. Moreover, for sustained implementation of a 
creative learning environment teachers need to be involved in all phases of research; 
in our view the underlying deficiency in mathematics education is that researchers 
continue to believe that a holy grail can be found in a new pedagogy based upon a 
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learning theory that will be designed, implemented and assessed with input from 
teachers only at the implementation phase. This model has not worked in changing 
mathematics pedagogy from the traditional model of an active instructor lecturing 
to passive students to a creative learning environment because it cannot be sustained 
without direct input from teachers in design, implementation, assessment and 
a refinement cycle. Creativity and originality in the classroom must come from 
both the instructor and the students. Students must take responsibility for their 
own learning and instructors must take responsibility for researching that learning 
process to improve it while exploring theoretical aspects of their craft. In this 
situation the students will pick up the enthusiasm and motivation of their instructor 
and break their habits of learned failure through the creative originality. In turn their 
attempts to overcome their limitations at whatever level they are will inspire the 
instructor. In like manner educational research will benefit from the craft knowledge 
of instructors relating their work and findings to theories of learning and creativity. 
Another basic tenet of this work is that a sustained effort to implement a creative 
learning environment in the classroom requires a learning community of instructors, 
a support network of other like minded teacher-researchers to share the many joys, 
disappoints and the assessment of what works and does not work and to assist each 
other relate their work and findings to theoretical aspects of learning and creativity.

Question that arise and that will be addressed include; what is the nature of a 
creative learning environment, what is the relationship between creativity and 
conceptual or critical thinking? How does creativity enter into theories of learning? 
Certainly all students can be original and this original thought can diverge from what 
is presented in the classroom, students have intuition that comes into play in their 
effort to understand mathematics. The question of how to design, implement and 
assess such an environment using Koestler’s work underlies much of the material 
presented.

CREATIVITY AND KOESTLER

Koestler (1964) considers creativity as situated within a problem solving environment 
which he defines as, “bridging the gap between the initial situation and the target” 
(p. 649). The initial effort or preparation to bridge the gap occurs while, “keeping 
my eyes both on the target and on my own position” the search for a solution is 
characterized as, “searching for a matrix, a skill which will bridge the gap” (p. 651).

Bisociation

Koestler (1964) describes the main mechanism of creativity in terms of an analogy 
between two or more previously unrelated frames of reference: “I have coined the 
term bisociation in order to make a distinction between the routine skills of thinking 
on a single plane as it were, and the creative act, which … always operates on more 
than one plane” (Koestler, 1964, p. 36).
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The terms matrix and code are defined broadly and used by Koestler with a 
great amount of flexibility. He writes, “I use the term matrix to denote any ability, 
habit, or skill, any pattern of ordered behaviour governed by a code or fixed rules” 
(p. 38). He uses the same definition later, substituting the phrase pattern of activity 
in place of pattern of ordered behaviour. The encompassing nature of these phrases 
allows one to include most processes used in the mathematics classroom, the caveat 
being that there must be some underlying order to the patterned activity. Indeed, as 
Koestler states, “all coherent thinking is equivalent to playing a game according to 
a set of rules” (p. 39). It follows that the term matrix can be applied to all coherent, 
logical or rule-based thought processes employed by an individual learning 
mathematics:

The matrix is the pattern before you, representing the ensemble of permissible 
moves. The code which governs the matrix…is the fixed invariable factor in 
a skill or habit, the matrix its variable aspect. The two words do not refer to 
different entities; they refer to different aspects of the same activity. (Koestler, 
1964, p. 40)

Thus, for Koestler (1964), bisociation represents a “spontaneous flash of insight… 
which connects previously unconnected matrices of experience” (p. 45). That 
is a, “transfer of the train of thought from one matrix to another governed by a 
different logic or code” (p. 95). Examples of bisociation in Koestler’s work abound, 
and	range	from	humour	 to	some	of	 the	most	significant	scientific	discoveries.	He	
describes one such humorous illustration in a story about a student cutting and 
replacing the legs of a pompous science teacher’s chair. In this case, the matrices 
were the professor’s attitude of absolute authority and the law of gravity the science 
teacher was lecturing about, which the student understood well enough to apply in 
his prank. Bisociation is also used by Koestler to describe original inventions; for 
example, when Gutenberg fused together two matrices to invent the printing press, 
“the bisociation of the wine-press and seal, when added together, became the letter-
press” (p. 123).

The focus of the Act of Creation Theory is on the bisociative leap of insight, that 
is,	 an	Aha!	moment,	or	 a	moment	of	understanding,―a	phenomenon	 that	 can	be	
observed amongst the general population, and hence emphasizes, for example, the 
creativity of all students in a classroom setting or if one prefers the joy of learning. 
In this sense Koestler’s theory can be seen as a foundation for understanding 
educational research on creativity for all students including those who do not 
necessarily consider themselves gifted in mathematics.

Incubation and Illumination

Max Plank the father of quantum theory wrote…that the pioneer scientist must 
have a vivid intuitive imagination for new ideas not generated by deduction, 
but by artistically creative imagination. (Koestler, 1964, p. 147)
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The concept of the Incubation period embodies the belief that, “after attempting 
to solve a problem which needs wider knowledge and insight…a solution is more 
achievable if work on the problem is interrupted” (Sriraman et al., 2011, p. 123). 
It has been noted that there is a lack of research on the gestalt theory leading to a 
Eureka moment in the classroom:

The period of incubation eventually leads to an insight on the problem, to 
Eureka or the ‘Aha’ moment of illumination…Yet the value of this archaic 
Gestalt construct is ignored in the classroom. This implies that it is important 
that teachers encourage the gifted to engage in suitably challenging problems 
over a protracted time period thereby creating the opportunities for the 
discovery of an insight and to experience the euphoria of the “Aha” moment. 
(Juter & Sriraman, 2011, p. 48)

Koestler’s mechanism of bisociation could provide a useful tool for clarifying if 
not the process of incubation then instead the mechanism leading to illumination. 
Sriraman et al. (2011) note that the mechanism for incubation is poorly understood 
and advocates that a study of this mechanism would be beneficial for mathematics 
education. He reviews several theories of incubation and characterizes mechanisms 
underlying incubation as vague and complex. Liljehdahl (2009) reviews 
mathematicians whose most original discoveries ‘Aha’ moments come to them in 
non-mathematical activities such as, “showering, walking, sleeping, talking, cooking, 
driving, eating, waking, and riding the subway” (p. 65). Moments of illumination 
were reported through intuition in states between consciousness awareness and 
unconscious sleep and through the use of imaginative visual thought with pictures. 
Eureka moments were reported during mathematical activities involving the 
review and questioning of previous work especially where they notice gaps in their 
understanding. Sriramen notes the importance of illumination is that it can lead to 
insightful or creative thinking. “One theoretical reason for studying incubation is 
because it is closely associated with insightful thinking… understanding the role 
of incubation period may also allow us to make use of it more efficiently to foster 
creativity in problem solving, classroom learning and working environments” 
(Sriramen et al., 2011, p. 125).

Liljedahl (2009) highlights the affective aspect of illumination among 
prominent mathematicians notes that:

The prevalence of anecdotal comments pertaining to this strong emotional 
response along with the uniform absence of any mathematical detail in these 
same anecdotes leads to a final conclusion that the AHA! Moment is primarily 
an affective experience. That is what sets it apart from other mathematical 
experiences is not the ideas, but the affective response to the appearance of the 
ideas. (p. 67)

He reinforces and elaborates on the connection between the cognitive and affective 
components of creativity in particular illumination:



CREATIVITY RESEARCH AND KOESTLER

33

That is, what sets the phenomenon of illumination apart from other 
mathematical experiences is the affective component of the experienced, and 
ONLY the affective component. This is not to say that illumination is not a 
cognitive experience, for clearly it is. After all, it is the arrival of an idea that, in 
part, defines the phenomenon…while the affective component of illumination 
is consequential to the differentiation of it from other mathematical experiences, 
the cognitive component is not. (p. 264)

In his work with pre-service teachers who were ‘resistant’ to mathematics he notes 
that illumination or the “unexpected presentation of a solution filled them with 
positive emotions, precipitating changes in beliefs and attitudes, and encoding the 
details of the experiences” (Liljedahl, 2013, p. 264).

One might question the hypothesis that the affective component of illumination 
is of equal value to the cognitive for example the affective response may not last if 
the insight is determined not be valid or the material one thought one learned cannot 
be recalled during an exam. Is there a sharp distinction as painted by Liljedhal or a 
gradual shading of distinction a matter of degrees of affect as well as cognition that 
mark learning and creative work in math?

DEMOCRATIZING CREATIVITY

Prabhu and Czarnocha decided to bring the idea of teaching research experiments 
and their interest in creativity in mathematics education to students who had 
intermittent if any formal education in mathematics in the rural villages of India. 
This fruitful effort required that children who had limited exposure to or training 
in mathematics begin to engage in reasoning leading to formal math concepts. 
To accomplish this Prabhu focused on ‘democratizing’ the research and theory of 
creative research within the Teaching Research framework to provide a support 
learning environment that fostered creativity and ownership of ideas for students 
both women and their children who had limited experience with formal mathematics.

Much of the research on creativity in mathematics education has been focused on 
gifted students who have the talent to become research orientated mathematicians, 
the effort to bring such research into underserved communities and ordinary students 
has received less attention. The following assessment of a contemporary research 
effort on creativity notes:

Missing is information on what initiatives are in place to develop and facilitate 
mathematical creativity in underserved and under-identified populations. This 
type of discussion would be informative to the field of gifted education and 
counter the criticism that field is not inclusive. (Chamberlin, 2013, p. 856)

Our hypothesis is that, in order to bring such research into underserved communities 
one needs to address the democratization of creativity i.e. the role of creativity 
in learning with ordinary even resistant students who do not consider themselves 
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gifted. Yet much of the assessment and the underlying definitions of creativity focus 
on gifted students. Leikin and Pitta-Pantazi (2013) review educational research on 
gifted students which focuses on the affective domain of giftedness, that is the effect 
upon creativity of ‘personality variables’ such as self-concept and anxiety as well as 
‘personal-psychological attributes’ such as: self-regulated learning, self-evaluation, 
responsiveness to extrinsic rewards, mathematical inclination, self-promotion, and 
the ability to learn how to play the game as well as risk taking. They note that the 
literature is divided upon whether creativity is a subset of, or independent of such 
giftedness (p. 160).

If one considers that creativity is defined or strongly characterized by cognitive 
abilities such as: flexibility, fluency and originality and affective-personal properties 
such as motivation, self promotion, risk taking, the ability to be taught etc. then 
one is more likely to view creativity as a subset of gifted students or eminent 
mathematicians who display these qualities.

For Koestler (1964) the defining characteristics of creativity are both the affective 
self-transcendent ‘Aha’ moment and the cognitive synthesis of two previous 
independent matrices. These two criteria, one affective and one cognitive, both 
require a high degree of conscious attention what he refers to as the transition from 
habit to originality. In contrast, fluency for Koestler is related to what he refers to 
as an exercise in understanding, which like the cognitive theorist Anderson (1995) 
notion of ‘proceduralization’ all too often has an inverse relationship to conscious 
attention i.e. it can promote habit: “We may then, somewhat paradoxically, describe 
awareness as that experience which decreases and fades away with our increasing 
mastery of a skill” (Koestler, 1964, p. 155). In regards to flexibility, Koestler notes 
that, “some highly developed, semi-automatized skills have a great amount of 
flexibility – the results of years of hard training; but their practitioners are devoid 
of originality” (Koestler, 1964, p. 157). In our effort to bring creativity into the 
classroom environment with ‘ordinary’ students we, like Koestler, consider that 
attributes such as fluency and flexibility, which are used to identify gifted students, 
are some markers of creativity but do they do not define it. The act of creation, is 
the spontaneous leap of insight that connects frames, which are disconnect defines 
creativity and provides a framework for its facilitation. Thus, we have a theoretical 
foundation to consider creativity as a critical component of any self- learning process 
that contains both gifted and ordinary or even resistant students of mathematics.

The sentiment that the Eureka experience can be used and beneficial in the 
mathematics classroom during problem solving and learning with students in 
mathematics (not only gifted) is expressed by Sriramen et al. (2011):

understanding the role of incubation period may also allow us to make use 
of it more efficiently to foster creativity in problem solving, classroom 
learning, and working environment. Educators try to incorporate incubation 
periods in classroom activity in temporal pauses during classroom discourse 
or extended time periods for project related assignments…Incubation should 
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not be neglected in the classroom. Students should be encouraged to engage 
in challenging problems and experience this aspect of problem solving, till 
a flash of insight results in the ‘Eureka’ or ‘Aha’ moment and the solution 
is born…The benefits of incubation are completely evident. (Sriramen et al., 
2011, p. 125)

The concept that creativity is a central component of learning is not new, “Indeed, 
there is a sense in which all reasoned thinking, all genuine acts of figuring out 
anything whatsoever, even something previously figured out, is a new making, a 
new series of creative acts” (Paul & Elder, 2008, p. 8). The question that arises 
then is what is the relationship between learning and creativity? Our analysis of 
this issue which will involve a review of the learning environment according to 
Piaget, Koestler, Vygotsky and the cognitive theorist Anderson with a focus on how 
creativity and creativity research integrates into what Koestler would refer to as 
progress in understanding and Piaget would refer to as accommodation i.e. how an 
individual builds structures or schema. Specifically we are interested the relationship 
between Koestler’s bisociative mechanism of creativity and Piaget’s mechanism of 
learning ‘reflective abstraction.’

KOESTLER: LEARNING ENVIRONMENT FOR CREATIVITY

Koestler (1964) notes the lack of student engagement in math and science education 
due to scripted learning pedagogy based upon modelling problems from textbooks 
followed by students reiterating the techniques presented:

The same inhuman-in fact anti-humanistic-trend pervades the climate in 
which science is taught, the classrooms and the textbooks. To derive please 
from the art of discovery, as from the other arts, the consumer-in this case 
the student- must be made to re-live, to some extent, the creative process. In 
other words, he must be induced, with some proper aid and guidance, to make 
some of the fundamental discoveries of science by himself, to experience in 
his own mind some of those flashes of insight which have lightened its path. 
(pp. 265–266)

Koestler would allow that bisociation or originality (in the sense of Sriraman) is 
the essence of untutored learning: “Minor, subjective bisociative processes do 
occur on all levels, and are the main vehicle of untutored learning” (p. 658). This 
statement demonstrates two important viewpoints of Koestler that: (1) bisociation 
is an essential mechanism in the learning process, and (2) the subjective learning 
environment must allow for and approximate the conditions of ‘untutored 
learning’. We believe, as did Koestler, that students cannot engage in mathematical 
problem-solving until they, in some sense, discover mathematics for themselves. 
This leads us to explore the mechanism of bisociation as foundational to learning 
mathematics.
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For Koestler, bisociation explains the individual’s use of analogies in learning 
and discovery. The distinction between the Eureka moment of originality and routine 
thinking is in the degree of novelty or unexpectedness of the analogy used. He writes, 
“one of the basic mechanisms of the Eureka moment is the discovery of a hidden 
analogy; but hiddenness is a matter of degrees. How hidden is a hidden analogy” 
(p. 653).

CREATIVITY AND LEARNING: VON GLASERFELD

Von Glaserfeld’s position expressed here is a paraphrase of his work (Glasferld, 
1998) and represent in our view a striking parallel to Koestler’s theory of creativity. 
This supports the hypothesis that, “learning itself may be seen as a creative process 
in which meaning is constructed by the learner” (Bodin et al., 2010, p. 144). In 
theorizing how an individual learns new knowledge, Von Glaserfeld postulates that 
the ability to search for patterns, regulations, groupings and rhythms are innate. This 
process is accomplished through schemes, which we take to be essentially the same 
nature as Koestler’s matrix. A scheme from Von Glaserfeld’s view contains three 
components first, the recognition by an individual of a problem situation second, 
the association of an activity with this situation and third, an anticipated result from 
applying this activity. When an individual is presented with a problem that fits a 
scheme, they recall the appropriate activity and the present situation is assimilated 
into the existing structure what Koestler refers to as an exercise in understanding. 
In contrast, progress in understanding or the Piaget’s equivalent of accommodation 
takes place when the existing situation requires modification of the schema or no 
schema can be found that applies. Creativity enters the learning process in this 
last situation. As Koestler would describe it, the solver runs through all available 
matrices or schemes that may apply, not finding any that fit. Then they go through the 
incubation period in which selective attention is applied to features or characteristics 
of the situation that were previously overlooked or not focused on. Von Glaserfeld 
employs the Piaget terms of perturbation and disequilibrium to describe this. 
At some point intuition, good fortune or hints from a tutor leads the solver to an 
analogy between some characteristic of this problem to a previously overlooked 
matrix or schema that is relevant. What Koestler refers to as the hidden analogy, 
Von Glaserfeld describes this creative moment as an analogy to a previous situation 
that allows one to construct a hypothetical rule or concept that explains or sheds 
new light on the current situation. This hypothetical rule or principle if sufficiently 
verified becomes the code of the new matrix or scheme a process referred to as 
accommodation. This creative leap based upon analogy requires the ability to recall 
previous situations reflect upon their relevancy and compare these previous schemes 
to the present situation. The simultaneous selective attention required to focus on and 
compare aspects of the present situation and previous relevant-analogous schemes 
is for Von Glaserfeld a conceptual step, a generalization. This generalization from a 
specific problem situation is creative in that the analogous rule is hypothetical that 
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is a hypothesis created by the solver to be verified. Koestler’s cognitive mechanism 
underlying bisociation, i.e. the discovery of the hidden analogy, though without the 
affective component, appears to be similar to Von Glaserfeld description of creativity. 
The synthesis of two matrices certainly allows for the abstraction of a rule from a 
hidden matrix to apply to a present situation that result in the development of a new 
code and this process is certainly creative as well as developmental in Koestler’s 
model. In this light Von Glaserfeld’s description of creativity presents a foundation 
one may use to situate bisociation within the context of learning theory based Piaget, 
which is the content of Chapter 4.1.

Pedagogy: Affect and Creativity

Throughout the collaboration of Prabhu, Czarnocha, Dias and Baker, the TR team 
collectively reflected upon the challenge of providing an appropriate learning 
environment for students in remedial classes of mathematics in the City University 
of New York (CUNY) system. Although these students have had exposure to 
mathematics in their secondary education they have failed mathematics placement 
exams and required a review before entry into college level mathematics (open 
admissions). In this situation their background in mathematics was frequently not the 
issue but instead the affective issues of lack of consistent motivation, their anxiety 
and at times apathy for mathematics. These students tend to view mathematics 
as a rule based experience and interpreted problem solving through an only-one-
method-allowed frame in which the instructor as the authority was to provide to 
them (Woods et al., 2006). Prabhu conceived of the concept of the creative learning 
environment as methodology to motivate students and promote positive affect. The 
goal being to engage these students more fully in the learning process to get them 
to take ownership of their learning process, and to realize that their acceptance of 
failure is not helpful.

Shiriki’s (2010) claim that students at every level should be exposed to thinking 
creatively, and the attempt to democratize creativity, even for resistant students 
results in the need to deal with student affect. Yet research on affect is arguably 
less available than research on creativity: “Affective issues in mathematics 
teaching and learning have long been under-represented themes in research” 
(Cobb et al., 2011a, p. 41). This is perhaps due to the belief among mathematicians 
and educators that learning mathematics should exclusively focus on cognitive 
development:

Learning mathematics has been almost exclusively understood as a rational 
cognitive process of acquisition more or less along the lines the structure of 
mathematics makes available…Only when learning has failed, when it was 
difficult to understand why it failed due to some assumed misconception 
blocking the way, was it necessary and appropriate to think about the social/
emotional aspects of mathematics. (Seeger, 2011, p. 207)
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In this work the relationship between affect and creativity is explored in two aspects. 
The first is the creative learning environment; the social setting that provides support 
in the classroom for students to feel secure and valued enough to try their best. The 
creative learning environment is founded upon the social contract or relationship 
between the instructor and student. The goal of the TR team is a collaborative 
effort to reflect upon, and analyze pedagogy: classroom discourse, curricula and 
methodology in order to improve learning in the classroom. Thus, the TR team by 
supporting one another’s effort to establish a creative learning environment in our 
classrooms brings about improvement of learning. The second aspect of affect and 
creativity studies is the relationship between affect and cognition during the creative 
‘Aha’ moment of understanding. It has been noted that the creative experience of 
illumination has a transformative effect on student affect. For example, Sriramen 
et al. (2011) asserts that the experience of illumination can transform student affect 
“the ‘Aha’ experience has a helpful and strongly transformative effect on a student’s 
beliefs and attitudes towards mathematics and their capability to do mathematics” 
(p. 124). While Leikin’s understanding of illumination and other cognitive based 
experiences in learning by gifted students is eloquently stated, “the realization of 
intellectual potential by individuals improves their self-perception, crates a positive 
emotional background and causes satisfaction through the achievement of goals 
and by overcoming multiple challenges. The realization of potential determines to a 
great extent the future of the individual” (Leikin, 2009a, p. 386).

The hypotheses put forth by Leljehdal (2009) and (2011) that cognitive learning in 
general does not have the same affective component, as the experience of illumination 
is perhaps as controversial as it is tantalizing. The question that arises is whether the 
implementation of a creative learning environment that supports both the cognitive 
and affective aspects of illumination i.e. bisociation can transform students learned 
habits of failure to willingness to learn and ownership of their learning.

Prabhu’s work is profoundly shaped by her realization that the central problem 
of learning encountered with underserved populations in the mathematics 
classrooms is not so much cognitive as affective. It became clear to her that the 
main issue our students encounter is how to access their own intelligence and talent. 
Thus, Prabhu realized many students were limited more by their self-identification 
as failures in mathematics than by actual cognitive deficiencies. This self identity 
as a habitual failure was built upon painful memories of mathematics. The effort to 
democratize creativity is founded upon the belief that creativity within the learning 
process is important for remedial underserved mathematics students: “A remedial 
algebra student can exhibit creativity as often and as clearly as an advanced calculus 
student” (Applebaum & Saul, 2009, p. 276). Indeed creativity is not only important 
for learning it may well be a requirement for learning, as Goldin (2009) states, “An 
indifferent person cannot be a creator” (p. 184).

We now look at the question of what is the appropriate environment to 
promote creativity within cognitive development that promote positive affect: 
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“Affective pathways are likely to interplay importantly with inventive mathematical 
behaviour-curiosity or puzzlement, together with a sense of courageous adventure, 
may evoke invention, while feelings of excitement, wonder or dogged determination 
may contribute to …inventive acts” (Goldin, 2009, p. 187).

Creative Learning Environment: Social Contract

Sarrfay and Novotná (2013) relate Brousseau’s didactic contract to creativity within 
a mathematics classroom. They note that creativity when viewed as originality 
(Koestler) or inventiveness (Goldin, 2009), cannot be taught by an instructor: 
“Obviously a teacher can never teach the ability to invent new solutions (at least not 
directly); he/she can ask for it, encourage it, but cannot require it. This is one of the 
fundamental paradoxes of the whole didactical relationship” (p. 281). Sarrfay and 
Novotná (2013) characterize this didactic contraxt:

The didactic contract should not be understood as a real contract formulated 
and signed by the teacher and his/her students, but as a didactical relationship 
that is established between the teacher and the student show act as if such a 
contract existed. (p. 283)

Prabhu (Unit 2) interpreted the didactic contract as a handshake and a compromise, 
in which the student’s role was to live up to their potential, through active 
engagement in the class discourse. This involves changing the traditional lecture 
format with its implied didactic contract of a teacher-authority figure displaying 
the correct, absolute and unalterable truth of mathematical knowledge to passive 
students with a didactic contract in which students take responsibility for their 
learning and the reaching of their potential.
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WILLIAM BAKER

1.3. UNDERSERVED STUDENTS AND CREATIVITY

INTRODUCTION

In this section we discuss the educational issues of immigrant students who 
frequently make up a sub-cultural often characterized by different language, race 
and a higher rate of poverty than the predominant culture. In addition to language 
these students frequently struggle with mathematics both cognitively and in the 
affect domain, alongside identity issues of what college means to the individual 
often being the first generation in their family to go to college. We also discuss the 
role of the instructor in promoting a creative learning environment that can transition 
students from habits of failure to discovery of their own excellence. A transition that 
is vital when working with students who come from poverty and frequently lack 
exposure to the dream and expectations of college.

HOSTOS COMMUNITY COLLEGE AND DEVELOPMENTAL MATHEMATICS

Eugenio María de Hostos Community College was established in the South Bronx an 
inner city college in the City University of New York (CUNY) system to meet the 
higher educational needs of people who historically have been excluded from higher 
education. That is to provide access to higher education leading to intellectual growth 
and socio-economic mobility. The college student profile indicates that the student 
body is approximately: 66% Female, 59% Hispanic, 23% Black, with 13% not 
known. Approximately 85% of entering student require remedial mathematics about 
59% of students have HS degrees while 15% have G.E.D and 21% have HS degrees 
from another country. In general they are young adults, as well as returning students 
of variety of ages. It should be noted that while the students represent a variety of 
immigrant and native cultures, language and racial background, a common denominator 
of the Bronx is poverty. New York State Department of Health data for 2012 indicates 
that the poverty rate of the Bronx was about 31% compared to 16% in the state as a 
whole; with about 44% of the children below age 18 living in poverty compared to 
23% for the rest of the state. The effect of poverty on completion of a High School 
(HS) degree is noted in (Kewal Ramani et al., 2011) as being even more important than 
race. Thus while Hispanic and blacks have almost twice the drop- out rates as white 
children; low income children are five times more likely to drop out of High School as 
high income children. Although the Bronx is increasing the home of charter schools the 
reality of children living in poverty and going to public schools mirrors a nationwide 
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trend that has been exasperated by the economic collapse of the global markets in 2008 
as reported in Washington Post article (Lyndsey Layton, May 28, 2015).

Tough (2015) notes that two trends in education in the U.S. the first is that many 
including minorities and immigrants make it to college but drop out all too often with 
debt and the second is that the wealth of the parent is a huge indicator of college 
graduation rate. Santiago and Stettne (June, 2013) report that Hispanic students indeed 
many minority students that do graduate from High School attend community college 
yet their graduation rate in community colleges is low and a real concern. There are 
many reasons for low graduation rates among minority, immigrant and low income 
students the high number of single mothers, students working to survive while trying 
to simultaneously earn money, court cases and homelessness are factors. Leonhardt 
et al. (2015) report on a study that documents the importance of the income level of 
the neighborhood you grow up in on determining ones graduation and success rate. 
An important academic factor for underserved students who often attend community 
colleges is the need for remediation in language and mathematics. Colleges place 
student in remedial mathematics when they are not proficient with H.S. algebra 
typically use placement exams. As pointed out by Lu (2013) while 60% of students 
entering community college require remedial courses many of these do not graduate: 
“Only 28% of two-year college students who took at least one developmental course 
earned a degree or certificate within 8.5 years, compared to 43% of non-remedial 
students.” The article goes on to say that states such as Florida, Texas, Connecticut and 
Colorado have made such courses optional. Indeed, as the recent article in the New 
York Times article “Is Algebra Necessary?” (Hacker, 2012) demonstrates, U.S. society 
is struggling with the issue of whether proficiency in algebra is indeed necessary. 
In addition to algebra placement exams cover pre-algebra or basic arithmetic skills 
and for those entering at this level of remedial (developmental) need the outlook is 
even less bright. A study conducted at the City University of New York (CUNY) in 
2005 (Akst, 2005) revealed that among those students who start their mathematics 
developmental sequence with arithmetic only 37% pass the subsequent course in 
developmental algebra. From this it may be inferred that the central source of their 
difficulties is what is known as the cognitive gap between arithmetic and algebra 
(Filoy, Trojano, 1985; 1989). This gap is real factor or barrier in these students’ 
educational process and subsequent social mobility. The U.S is not alone in this issue a 
report from PISA 2012 (PISA in Focus, #36, February 2014) documents the difficulties 
that European Union as well as some Asian countries have with mathematics and the 
negative effects that a lower socio economic level have on the results of the test.

IMMIGRANT-MARGINALIZED STUDENT GLOBAL ISSUE

The issues of teaching mathematics to diverse students within an inner city are not 
unique to the South Bronx, USA. Civil et al. (2012) state that, “The underachievement 
of certain immigrant groups has become a globalized phenomenon in the modern 
world” (p. 267). Civil and Planas (2011) consider how language differences can 
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engender, “language policies that are directed to immigrant students which are 
politically charged” (p. 38). Yet despite governmental pressures they note that 
second language minority students across the globe “find ways to overcome political 
restraints”	(p.	43).	Alrǿ	et	al.	(2009)	note	that	while:

Cultural Diversity has always been present in Denmark-as much as any 
other society. However, the recent increase immigration of people from non-
European, non-Western countries has exacerbated the discussion of cultural 
difference and multiculturalism, unfortunately the tone of such discussions has 
not necessarily been positive. (p. 14)

Civil (2010) reviews research on immigrant students in Europe and U.S. she quotes 
educators who characterize the state of minority students education as underserved: 
“African American and Latino students and poor students, consistently have less 
access to a wide range of resources for learning mathematics, including qualified 
teachers, advanced courses, safe and functional schools, textbooks and materials” 
(p. 1449). César and Favilli (2005) note that Italy, Spain and Portugal were emigrant 
countries until the late 70’s at which time African children began to immigrate to 
these countries with second language issues. They note the special role of teacher 
education in creating a, “social disposition that facilities the existence of an inclusive 
society” (p. 1163). In writing about equality in mathematics education Esmonde 
(2009) argue that, “mathematics plays a central part in governmental and corporate 
decision making and these decisions disproportionately affect marginalized people-
the very people who are less likely to have access to quality mathematics education: 
“Mathematical knowledge can therefore be an important component of struggles 
for social justice at home and abroad” (p. 1008). Tate (2005) furthers this argument 
stating that, “a disproportionate percentage of African American students are using 
curricula designed for low ability or non-college bound students” (p. 179).

William et al. (2009) look at immigrant students in a poor neighbourhood of 
U.K. they note the students who do decide to go to college are often the first and 
only in their family indeed their block to make that decision. For these students the 
decision to go to college is typically to either: a) become someone, b) the personal 
satisfaction of doing what interest them c) to obtain a vocation and hence satisfy the 
need of making money. For these students, as in many immigrant populations around 
the world, education is seen as a ticket out of poverty for themselves and often as 
single mothers for their new family. Difficult with remedial mathematics and entry 
into college math can be a rite of passage one, which they are often the first perhaps 
only members of their family to embark on.

MARGINALIZED STUDENTS AND POSITIVE SOCIAL INTERACTIONS

Social-cultural identity plays a major role in student acceptance or rejection of the 
mathematics classroom environment as well as the teacher acceptance or rejection 
of student behaviour,
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Students who come to school already speaking the school Discourse and 
behaving as teachers expect are provided more opportunities to learn than 
their peers are. …Those who do not embody these privileged ideas are often 
positioned as being deficient and difficult to teach and so report that their 
teachers do not seem to care whether they learn mathematics. (Edmonde, 2009, 
p. 1018)

For this reason a major component of reform pedagogy that is often applied to 
marginalized communities focuses on small group discussion, and discovery 
learning in which student create meaning working together. Edmonde (2009) reviews 
literature about the social interaction specifically in small groups of minority and 
marginalized students. He notes specific social processes that literature supports help 
with learning and achievement that include, “asking question, discussing problem-
solving strategies, observing someone else’s problem-solving strategies, teaching 
a peer, resolving a disagreement or conflict, and explain one’s thinking” (p. 1016). 
Other critical thinking skills that Edmonde lists as important for developing 
conceptual understanding include time spend reviewing and discussing, “multiple 
strategies and solution paths…explaining their thinking, asking specific questions 
and making connections” (p. 1028). Clearly the quality of the critical thinking and 
reasoning is the important factor. In contrast, Civil and Planas (2004) note that when 
a (middle school) teacher employed pedagogical activities that encouraged student 
discussion and participation in the mathematics classroom more popular students 
(those involved in athletics) were the centres of attention until the discussion became 
more academic when those who were recognized as gifted in mathematics became 
the focal point. They conclude that social exclusion of certain groups or types may 
occur during such pedagogy.

Creativity and Marginalized Students

In a review of literature on what stimulates creativity among marginalized students 
(Haley et al., 2006) suggests several characteristics: authenticity of the themes and 
tasks, novelty the sense that it was different, the role of a mentor and the freedom to 
explore. These authors study one program that prmpoted higher order thinking skills 
with disadvantaged students through the use of: computers, drama and Socratic 
thinking i.e. creative and critical-logical dialogue between teacher and pupil that 
required more than one word answers on the part of the student. The effects of 
this program included enhanced ability to: explain ideas; engage in conversation, 
problem-solving skills and increased confidence and motivation.

It was the firm belief of Prabhu that the pathway to reach underserved students 
was through their creativity; i.e. when students begin to enjoy thinking and 
reasoning within mathematics they transition from their habitual acceptance of 
failure to ownership of their learning and excellence of their potential. This creative 
process is both cognitive as students began to construct meaning of mathematics for 
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themselves and affective as they struggle with their image of themselves as someone 
who cannot do math or as a family member of immigrants and/or a racial group that 
traditionally has not gone to college. Common themes that run through literature on 
what works with serving the needs of these disadvantaged students include: quality 
student-teacher relationships, supportive administrations-schools or colleges and a 
sense of community for students eliminate within the context of high expectation 
of success. As a learning of community of teacher researchers in the South Bronx 
this work contains some of the results of our focus on the design of instruction 
and pedagogy within the mathematics classroom to encourage student creativity and 
engage them in their learning process.

Prabhu’s realization that underserved students in remedial mathematics must be 
reached through the affective domain simultaneous with the cognitive domain to 
complete a transition from habits of failure to excellence highlights the importance 
of the teachers role in promoting a creative learning environment as well as the 
relationship between affect and cognition.

The Importance of Affect on Student Cognition

As noted by Furinghetti and Morselli (2009): “The most important problem in 
research on affect in mathematics is the understanding of the interrelationship 
between affect and cognition” (p. 72). Studies on affect tend to employ at least the 
following three components beliefs, attitudes and emotions, “emotions are most 
intense/least stable, beliefs as most stable least intense and attitudes in between,” 
(Rosetta et al., 2006). Goldin (2009) attributes the lack of positive affect to be the 
main reason student drop out of challenging mathematics, “it was the affective 
dimension that in my view played the primary role” (p. 182). Goldin hypothesizes 
an internal representation system for an individual’s affect that is central to the 
relationship to problem solving and mathematics, “human affect serves as an 
internal representational system, encoding meanings, facilitating communication, 
and (like the cognitive representational system) contributing to or impeding 
mathematical power” (pp. 182–183). Goldin goes beyond the hypothesis that 
creating or illumination has a powerful effect upon an individual’s affect in asserting 
that “states of emotional feelings do not merely accompany cognition. Rather, the 
emotional feelings themselves have signification; that is they encode information or 
carry meanings” (2009, p. 186).

Polya’s first stage of problem solving ‘understanding the problem’ involves both 
reading the problem and relating or processing the information in a meaningful 
manner, successful solvers’ often reformulate the problem through, “…gestures, 
words, pictures, symbols sketches, examples and so on” (Furinghetti & Morselli, 
2009, p. 72). Students who cannot associate the problem information with an 
appropriate matrix or scheme will not be able to assimilate the information into 
the scheme. Either because they do not recall a relevant matrix or because the 
scheme they attempt to employ is inappropriate. At this point student beliefs 
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about their own ability can already be a factor many students chose the simplest 
strategy available, the one done immediately before by the instructor or focus their 
attention on superficial problem information that is within their safe zone. They may 
feel frustrated when their choice of strategy doesn’t work out particularly if they 
perceive that other students can solve the problem but they cannot. “The frustration 
may evoke useful problem-solving heuristics leading to…such as trying a simpler, 
related problem. On other occasions…the feeling may rapidly give way to anxiety 
or despair, and evoke avoidance strategies” (DeBellis & Goldin, 2006, p. 133). 
Thus, the affective experience of frustration during problem solving i.e. blind 
alleys because there is not available schema or matrix to assimilate the problem 
information can lead to searching for a new strategy. As noted by Schlöglmann 
(2009) humans when confronted with a situation that leaves negative affect tend 
to forget the experience we tend to suppress unpleasant memories and try to avoid 
such situation in the future. This statement about human nature and affect could help 
to explain the short memory span and avoidance behaviour of some students for 
mathematics problem-solving and mathematics classes in general.

The feeling of frustration during problem solving is what Goldin refers to as 
local affect “the rapidly-changing states of feeling that occur when participating 
in an activity…engaging in mathematics” (Goldin, 2009, p. 187). Strong emotions 
such as frustration or elations during problem solving can lead to global affect 
or the individual’s attitude towards mathematics i.e. math anxiety, the common 
reframes of “I hate math” or “I hate fractions.” Thus the period incubation when the 
solver cannot find an readily available matrix or scheme to assimilate the problem 
information can lead to the creative and transformative affective-illumination and 
cognitive-accommodation experience or to individuals who question their problem 
solving ability and a society that questions the importance of mathematics to real 
life. We now look at the question of what is the appropriate environment to promote 
creativity within cognitive development that promote positive affect.

TEACHER’S ROLE

“Traditional teaching methods involving demonstration and practice using closed 
problem with predetermined answers insufficiently prepare students in mathematics. 
Students leave school with adequate computational skills but lack the ability to 
apply these skills in meaningful ways. Teaching mathematics without providing for 
creativity denies all students, especially gifted and talented students, the opportunity 
to appreciate the beauty of mathematics” (Mann, 2006, p. 236).

We began our consideration of the role of the instructor with some reflections 
on constructivist’s pedagogy that underlies a shift from a classroom methodology 
based upon an active instructor lecturing to passive students to an environment 
with dynamic interaction and active student engagement As Sawyer (2004) notes, 
“The basic insight of constructivism is that learning is a creative improvisational 
process” (p. 14). Sarrazy and Novotná (2013) state the constructivist position on 



UNDERSERVED STUDENTS AND CREATIVITY

49

the role of the teacher as bring the guiding consciousness that helps students bring 
dead math back to life: “To achieve this revival, teachers must create situations 
in which they can show students the use, the interest, and other aspects of the 
mathematics” (p. 281). We consider that Koestler would share this view that, the 
role of education is to bring the thrill of original discoveries to the student by a 
reconstruction of the discovery process within the class. Bodin et al. (2010) argue 
that, “the teachers role is the key to creative thinking in the classroom” (p. 145). These 
authors agree with the constructivist assertion of Von Glaserfeld that creativity is 
integral to the learning process. That is, an individual is being creative whenever 
he/she creates new meaning for themselves, “children are being creative… when 
they produce something new to themselves, as when they construct meaning for 
symbols, signs and operations, make sense of a mathematical problem, devise a way 
of solving it.” Yet as noted by these authors pre-service teachers find it, “difficult 
to be specific about encouraging and assessing creativity in mathematics lessons” 
(Bodin et al., 2010, p. 144).

Leikin et al. (2013) note that “teachers consider themselves as a key factor in 
developing mathematical creativity without holding themselves accountable for 
concurrently hindering creativity…they are more likely to blame the educational 
system…” (pp. 210–211). Thus, the vagueness or lack of a clear definition of 
creativity within the learning process for ordinary students and pressure to complete 
a syllabus focused on procedural skills appears to leave those who search for 
creativity within the classroom at a loss. Shriki (2010) states that, “Although most 
teachers would agree that it is important to develop students’ creativity the literature 
indicates that creativity is not normally not encourage at schools” (p. 161). More 
to the point Shriki conclude that, “it should be noted that I could not find specific 
recommendations or guide lines aimed at providing teachers with an assessment 
tool for evaluating students’ creativity” (p. 162). The lack of a specific commonly 
accepted definition of creativity and its role in learning and by this we include the 
affective component results in teachers who teach the way they were taught. Goldin 
(2009) describe the affective side of the mathematics classroom experience that most 
of us can relate to:

School mathematics often presents an affective context for mathematics that 
is not very conducive to trust or intimacy…sometime the teacher seemed to 
place the highest value on speed and accuracy of routine computations…with 
painful negative consequences for the children’s self-esteem as they were 
neither especially fast and accurate nor neat. Opportunities for inventiveness or 
creativity were relatively infrequent, since mathematics tended to be presented 
as systems of rules to be learned and procedures to be followed. (p. 182)

Sawyer (2004) describes a creative learning environment based upon socio-
constructivist approach as one in which learning within the classroom is a process 
of co-construction where communication between members of the group provides 
meaning for new concepts. He describes creativity within the classroom in terms of 
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a transition from the mindset or didactic contract of, “The teaching as performance 
metaphor” to one an environment characterized as “improvisational performance” 
(p. 12). The importance of creative improvisation is that without such openness 
to student’s thoughts and ideas i.e. when the instructor scripts the discourse by 
following a text, “students cannot co-construct their own knowledge” (p. 14).

Norton and D’Ambrosio (2008) deliberate on the socio-constructivist viewpoints 
of Bruner and Vygotsky in which meaning is internalized through classroom 
discourse. They note that the teacher must be engaged in the assessment and 
refinement cycle in order to prepare lessions appropriate to support student creativity 
and learning i.e. “the teacher must continually establish meaning of the students’ 
language and actions so that the students’ actions guide the teacher…developing 
new hypotheses about students’; cognition while remaining open…in order to 
design tasks to provoke creative activity in the students” (p. 225).

Prabhu frequently notes the uniqueness in the Teaching Research cycle of the 
refinement stage where a bisociation occurs between two frames of reference: that 
one from the past cycle with the information about its instructional effectiveness with 
the one to envision for the next cycle, which aims at the elimination of the ineffective 
components in order to refine curriculum material classroom pedagogy and to reflect 
upon how the results gleamed reflect upon learning theories. We point out that this 
process necessitates the involvement of the teacher-researcher synthesizing the role 
of researcher with their craft experience to bring creativity into classroom and to 
reflect upon how what occurred in the classroom reflects upon learning theories. 
Thus, one goal is that an inspired instructor will bring motivation into the classroom 
and thus, students may experience the energy and enthusiasm for mathematics 
and the process of learning mathematics engendered by this process. In a teaching 
research experiment designed to support a creative learning environment the goal 
is for learning theory to assist teacher-researchers construct creative curriculum 
and pedagogy with assessment and refinement as part of the process. An equally 
important goal is to reflect upon the relationship of what occurs in the classroom to 
educational research on creativity and learning. Cobb et al. (2011) note that: “In my 
view, the most important contribution that theory can make to educational practice is 
to inform the process of making pedagogical and design decisions and judgements in 
particular cases” (p. 112). The guiding philosophy of teaching research to implement 
a creative learning environment is that teachers-researchers must simultaneously exist 
in both frames of reference (bisociation) otherwise creativity cannot be sustained, the 
transformation of students occurs one day at a time, brilliant insights and multi-year 
projects that provide for teachers to drink from the source of educational literature 
and theory is not sustainable. In the same article Cobb et al. (2011) states:

The increasing importance that we came to attribute to the teachers’ central 
mediating role is at odds with the way in which the teacher is backgrounded…
the teacher’s initiatives and her responses to students are treated as ancillary 
to the focus on students’ learning. (p. 114)



UNDERSERVED STUDENTS AND CREATIVITY

51

A creative learning environment necessitates a creative teacher-researcher not as 
an ancillary focus but as part of the central focus on the dynamic of the classroom 
and as an integral part of the research team. For none other than the teacher can 
bring creativity into the classroom with a sustained effort through assessment and 
refinement.

The teaching research paradigm for promoting a creative learning environment is 
founded upon teacher involvement in researching his/her own craft, as does action 
research (Benke et al., 2008). The distinction being that in teaching research the 
curricula and pedagogy of the instructor can change with time and circumstance as 
long as they are committed to a methodology to inspire students engagement in their 
classroom, reflect in a meaningful way on their actions and results and relate this to 
educational research on the phenomena way of teaching and student learning.

The effort to encourage student engagement within the classroom requires 
openness to student ideas, input and suggestions even when they take the instructor 
off topic, the instructor has to encourage and prod student to engage from day one 
promoting a social contract in which participation is expected however introductory 
college classes are all too often characterized by large size and thus students who 
have negative or low affect towards mathematics tend towards non-participation. 
In secondary education negative student affect is often observed during the 
transition from the small class size of primary schools to the large impersonal size 
of mathematics classes in middle or junior high school. This transition frequently 
marks the end of student’s positive affect towards mathematics (Athanasiou & 
Philippou, 2009). Even in small classes with students who are motivated it is 
frequently the case that one or two students dominate the classroom dialogue while 
weaker student and those with negative self images wait passively for another 
student to answer or go to the blackboard. Thus, the expectation that all students will 
participate is an essential component of the social contract that must be established 
in day one and reinforced throughout the class in order for students to live up to their 
potential i.e. their excellence.

The relevant question, at the heart of the social-constructivist argument that the 
instructor’s role is to create an environment in which knowledge is co-constructed 
through classroom dialogue is eloquently posed by Norton and D’Ambrosio (2008) 
“how a teacher can know whether a student has meaningfully imitated an action 
or whether she has simply mechanically repeated observed action that she was 
trained to follow. When does a teacher’s assistance generate meaningless habits, and 
when does it promote development” (p. 221). Student learning especially in social 
situations can be illusive, active participation in a discussion and supplying steps for 
the instructor on one day is often followed by ‘the next day effect’ in which blank 
stares greet an instructor’s attempts to get students to solve the same question.

Norton and D’Ambrosio (2008) suggest that an essential tool in the instructors’ 
repertoire is scaffolding which they characterize as, “selecting an appropriate task, 
directing the students attention, holding important information in memory and 
offering encouragement” (Norton & D’Ambrosio, 2008, p. 223). This description 
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of scaffolding provides a foundation for the learning community that was formed 
by Prabhu, Czarnocha, Baker and Dias to study the effects of inquiry based learning 
during problem solving with remedial students in the South Bronx (C3IRG CUNY 
Grant). Scaffolding and structuring of exercises can been seen in the work of Prabhu 
in the creative learning environment as well as the work on proportional reasoning 
with rate by Czarnocha, Dias and Baker. In particular scaffolding is important to 
support the foundational cognitive groundwork for bisociation as the instructor 
identifies the schemes-matrices that are to be synthesized and the concepts that are 
to be bisociated.

One goal of social constructivist learning is to support the creative process of 
students providing meaning to new concepts during problem solving. This goal 
focuses attention on how students understand and reformulate problem information. 
That is the process of “decoding” the original problem and the subsequent 
process in which the individual must “self represents a model” (Singer & Voica, 
2013). Koestler (1964) points out that much of the reasoning that mathematicians 
accomplish during illumination is through visuals and only much later expressed 
in and with much effort expressed in language. Prabhu employed the Fraction 
Grid a self-made visual display of the fractions in order to assist students give 
meaning to the measurement subconstruct of the fraction. While Professor Dias and 
Baker employed the two sided number line as a visual in order to give meaning to 
proportional reasoning for students transitioning into elementary algebra.

A final component of the Teaching Research Methodology to support and sustain 
a Creative Learning Environment developed by Prabhu and Czarnocha was a team 
of collaborative teacher-researchers. The collaboration occurred within the class 
as instructors worked with colleagues within mathematics and counsellors from 
student development to assist students with affective issues and self-regulated 
learning. However, it was the collaboration as a team of teacher-researchers that 
is most remarkable and distinctive. This team of collaborative researchers would 
be referred to as a community by Lin and Ponte (2008) that is, as a self-grouping 
through personal interest in educational research. “Communities are regarded as 
self-selecting, their members negotiating goals and tasks” (Krainer, 2008, p. 5).

The learning community (Unit 5) is not simply instructors lead by an educational 
researcher. A model we note would leave the instructors passive following the lead of 
the expert. The top-down model of an active instructor lecturing to passive students 
has been rejected by social constructivists as not being effective in producing 
a creative learning environment in the classroom. Following this logic the top 
down model of a researcher telling teachers how to create and assess pedagogical 
curriculum we believe needs to be reconsidered. That being said an excellent 
example of a top-down approach in which the researchers encouraged the teachers 
to be actively involved is the learning community described by Jaworski (2008). 
In this community the experts or didactians constantly met with and included the 
teachers in all phases: curricula and lesson plan development, implementation and 
assessment and of course refinement of the results.
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In our teaching research community the instructors function as both researchers 
and teachers the creativity and motivation engendered within the community 
is then brought into the classroom in an effort to infect the students through like 
minded dialogue with one another. The learning community has much in common 
with action research (Benke et al., 2008) however the goal is not just to improve 
student fluency. The teacher researcher operates on two frames of reference 
simultaneously reflecting upon curricula and pedagogy to influence student affect, 
engagement and creativity but also reflecting upon the learning theories that underlie 
learning and creativity within the classroom experience.

The bissociative nature of the TR NYCity model provides a well-equipped 
conceptual framework for understanding and analyzing both affective and cognitive 
aspects of student’s creativity in the learning process. As such it provides a 
foundation to motivate student transition from habits of failure to excellence.

The community of the TR team of the Bronx supports the transition from habits 
of failure to success. The members share the successes, joys and disappoints as 
well as the insights into how theories of learning can be interpreted and translated 
into craft practice. The importance of a learning community is not only to inspire 
the instructor to try new approaches, assess and refine her methodology in an effort 
to inspire student; it also provides a support network when the frustrations that 
students and instructors feel at low performance and inevitable poor test results lead 
to discouragement. The axiom that an instructor cannot give up on low performing 
students first, because everyone else already has, and second, because if you do they 
will give up on themselves necessitates a community.
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UNIT 2

CREATIVE LEARNING ENVIRONMENT

INTRODUCTION

Creative Learning Environment (CLE) contains the teaching-research (TR) reports 
of Vrunda Prabhu, the first among the Teaching-Research Team of the Bronx, who 
realized that the central problem of learning we encounter in the mathematics 
classrooms is not a cognitive one but an affective one. It became clear that the 
main issue our students encounter is how to access their own intelligence and 
smartness blocked by the negative affect, or old memories or even because the 
absence of elementary critical thinking skills which would open their minds (and 
hearts) to themselves. Ultimately Prabhu asserts: “Creativity in teaching remedial 
mathematics is teaching gifted students how to access their own giftedness”.

Five chapters of the unit provide an unusual opportunity to see the full scope of 
the development of CLE, the impact that process has upon the teacher-researcher 
herself (Chapter 2.5) and the manner in which her reflections are impacting 
practice of younger members of the team (Chapter 2.6).

Vrunda Prabhu led her teaching-research investigations along two parallel 
environments: in her home institution of the Bronx Community College (BCC) as 
well as in community schools of Dalit villages of Tamil Nadu, India. While both 
routes are intertwined in each chapter, Prabhu addresses the closely related question 
of generalizability of TR work directly in Chapter 2.2.

Having understood the role of negative affect in blocking student access to their 
own excellence, as she would put it, she started the design process of Creative 
Learning Environment through several directions. First, she deconstructed the 
concept of didactic contract to eliminate the ambiguity present in the term it acquired 
since the important work of Brusseau (1996). The Brusseau formulation of the 
contract is somewhat paradoxical as it cannot be recognized unless it is broken: the 
students can learn only when they accept that they will not to be taught everything; 
that they accept the necessity of engagement in an activity in which they can learn 
mathematics. As Sarazy and Nowotna (2013) point out, the “didactical contract 
should not be understood as a ‘real’ contract formulated and signed by the teacher 
and his/her students”. However, nothing short of true reality can anchor education in 
the Bronx or in Dalit villages of Tamil Nadu. Prabhu’s understanding of the didactic 
contract gets directly into the core of the paradox of how to facilitate true and wilful 
engagement in mathematics in the context of generally negative student attitude 
towards the subject. That is why Prabhu is seeking here the Didactic Contract as 
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a Handshake and a Compromise, whose content is the direct question to the class 
“What is your excellence, and are you falling short in fulfilling it?” following the 
goal stated at the first meeting: “Your excellence is the goal of this classroom. Are 
you ready to pursue this aim, jointly, throughout the course of the semester?” The 
aim of this approach is to get at the very centre of students’ resistance to learning, 
and turn it into their self-fulfilment through the commitment to develop their 
own potential. Ultimately, it is the Handshake of the student with himself/herself 
in mutual understanding of the commitment to reach their best. Compromise is 
needed as the strategy of dealing with one’s own resistance in the context of the 
Handshake. Together they express the conviction that without active, conscious, 
committed student participation in learning, no learning can take place, especially 
in college. Handshake and Compromise provide an inspiration and at the same 
time delegate an irreducible responsibility for maintaining the inspiration in the 
hands of the student. Therefore, the second aim of the teacher-researcher became 
the creation of such a learning environment in which student active participation 
will be assured. Her natural predisposition was to look for didactic inspiration in 
connecting mathematics with art and drama. She saw drama situations created in the 
mathematics classroom as the mediation milieu between mathematics and students. 
Creativity, doing art, participating in drama serves the purpose of engagement by 
students (see Chapters 2.2 and 2.3).

Creativity, Literacy and Numeracy approach of Chapter 2.2 was originally created 
by Prabhu for the women centred program Montessori for Mothers in Tamil Nadu, 
India and discussed closer in Chapter 5.3.1. The design of that program, which she 
saw as the generalization derived from separate classroom teaching experiments 
and investigations, prompted Prabhu’s deep reflection. She searched for the general 
answer to the question “where is the general character of the TR work hidden?” 
She found the Fraction Grid (FG) she designed as the didactic artefact to be the 
pure expression of generality derived from many different teaching situations and 
refined through craft knowledge and/or research knowledge of the profession. The 
integration of mathematics and art within FG shows also fascinating hyperbolic 
patterns, which allow to construct converging sequence of fractions, and to find the 
general pattern of those sequences already as a conscious practice of generalization 
by students. She formulated the new concept of artefact generalization within 
teaching practice for mathematics education. The general process of artefact 
generalization was formulated by Nagel (1979) as “an experimental law” or still 
earlier by Merton (1968) as an “empirical generalization” similar to other branches 
of science—”an isolated proposition summarizing observed uniformities of 
relationships between two or more variables” (Merton, 1968, p. 149). In the case 
of Prabhu’s considerations, the process of empirical generalization occurs on two 
levels: (1) as the results of refinement of the same artefact through many didactic 
activities, and (2) with the two variables have been the classroom environment in 
the Bronx and the classroom environment in community schools of Tamil Nadu.
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Her work warrants a new conjecture for the existence of two distinct routes of 
generalization within the teaching-research craft, one through the design of the 
artefact which embodies the experience of at least two or more didactic activities – 
the “empirical generalization”, and the second one, and through the creation of, or 
the coordination with a general theory, which can be discerned in specific situations 
under considerations.

She proceeded further in the chapter to characterize the mediation role of both 
art and drama between mathematics and the student, pointing out at the same time 
that the very process of mediation creates the favourable conditions for the fulfilment 
of Handshake and Compromise didactic contract. The search for the best theoretical 
framework to place Fraction Grid connected Prabhu with Brunner’s learning 
theories (Bruner, 1966) applied in the context of Zone of Proximal Development 
(ZPD) of Vygotsky (1987). She framed her classroom approach in terms of the 
Discovery method of teaching making contact with the realization of Brousseau 
and Novotna (2008) that the teacher cannot teach (at least directly) this ability of 
creating new solutions: he/she can demand it, expect it, motivate it, but cannot 
require it. The Discovery method, natural for TR/NY city model is an excellent 
method for the facilitation of student efforts in creating new solutions (Chapter 1.1).

This precisely was the Prabhu’s motivation for framing her teaching in terms of 
the discovery method; as a teacher-researcher she preferred the Discovery method of 
teaching aimed at the facilitation of the development of student schema of thinking. 
Appendix to that chapter contains the approach to teaching fractions based on the 
Fraction Grid whose initial idea led to the Creativity-Literacy-Numeracy program. 
She realized that FG as an artefact together with FG approach to fractions represents 
generalization derived from the particularities of each classroom situation, which 
can be effectively applied, therefore, in different learning environments.

Many authors have investigated the role of artifacts and their mediation in 
learning since the work of Vygotsky (1978) on semiotic mediation. In particular, 
Rabardel (1995) introduced the distinction between the artefact and the instrument 
paying significant attention to the development of its two aspects:

• Instrumentalisation, concerning the emergence and the evolution of the different 
components of the artifact, e.g. the progressive recognition of its potentialities 
and constraints.

• Instrumentation, concerning the emergence and development of the utilization 
schemes.

Both of them are dialectically related to each other within TR cycles leading to 
the Thinking Technology defined in Chapter 1.1.

Chapter 2.3 presents the second methodological tool Prabhu utilized for the 
formulation of CLE in the classroom that is problem posing/problem solving 
dynamics. This tool helped her to focus student’s attention on mathematics for a 
sufficient period of time, so that the students start enjoying the subject through 



UNIT 2

60

the use of cognition, positive affect, and desire to develop self-learning skills as a 
consequence of their problem solving activity. The new component was important 
to be included in the structure of CLE, as Prabhu’s classroom observations led her 
to the realization that the Handshake and Compromise didactic contract had to be 
supplemented by more direct attention to the issue of affect. Thus, her trajectory of 
CLE development intersects here with the work of Goldin and DeBellis (2006) that 
analysed in detail the relationship between cognition and affect.

Posing problems/solving problems is one of basic tools of teacher-researchers, 
with the help of which they can probe the inner structure of students’ cognitive ZPD 
in order to design our questions within, what Murray and Arroyo (2002) called, 
affective ZPD of the student. Moreover, the tool plays a standard double teaching-
research role: for the teacher-researcher, it allows to probe student understanding 
while investigating the scope of student cognitive ZPD relatively to the mathematics 
in question. For the students, it creates often necessary scaffolding leading to 
understanding and/or grasping the concept in question. When joined together 
with drama nature of interaction in the class, problem posing becomes classroom 
norm, so that next level exercises, when students design and pose new problems 
by themselves is easily assimilated and solved. Using revised Bloom’s Taxonomy 
(Krathwohl, 2002) where the Synthesis at the top of the Bloom’s pyramid has been 
substituted by Creativity, she can demonstrate how drama as the didactic tool in 
mathematics classroom can help to penetrate that pyramid top down, instead of 
passing through the traditional upward development.

Consequently, Chapter 2.3 presents the convergence and development of the 
threads introduced earlier, while at the same time it prepares the ground for the 
coordination of Prabhu’s practice with the Koestler’s theory in the next chapter. This 
subtle process of integration/preparation became possible when Prabhu amplified 
the instructional staff of her classroom to include two new teacher-researchers, the 
Vice President for Students Development in the Bronx CC, a specialist in student 
affect, as well as the librarian who was interested in self-regulated learning. 
Hence, the third component of the CLE developed by Prabhu was simultaneously 
collaborative teaching with two or more instructors in her class, each fulfilling its 
special role based on the individual’s expertise. That process merged the creativity 
of the instructors with the creativity of students. Note that each instructor, a librarian, 
student counsellor or a mathematician was expressing its own take upon the 
particular mathematics of the classroom, each with the same goal: to engage student 
in the process of understanding. Thus, the whole classroom worked with several 
different frames of discourse, that of instructors and that of mathematics and art. 
It is not surprising then that Prabhu, in her continuous creativity literature search, 
paid attention to the Koestler condition of the presence of two separate frames of 
reference for the occurrence of Aha! Moments – the spontaneous leaps of insight, 
the essence of creativity.

Chapter 2.4 of the unit presents Vrunda Prabhu full integration of the path she 
traversed through the search of CLE for the Bronx students with the Koestler theory 
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of the Act of Creation as the proposal for the CLE based on cognition, affect and 
self-regulated learning. The objective of the proposal has been to reverse the culture 
of failure through development of student ownership and enjoyment of mathematics. 
Three instructors were teaching the course collaboratively and simultaneously in 
one classroom: mathematics instructor, the Vice President for Student development 
who provided affective understanding of the situation while being mathematics 
friendly, and the librarian, the specialist in self-regulated learning. Together they 
have integrated cognition, affect and self-regulated learning into the basic core of 
the syllabus and its philosophy. Among many theories of learning coordinated with 
different aspects of the teaching experiment, Koestler theory together with Polya’s 
approach to problem solving was responsible for the design of the Creative Problem 
Set so that “bisociation was facilitated, as the creative leap that occurs when several 
frames of reference are held in simultaneous scrutiny and insight, apparent from the 
various simultaneous perceptions conveyed by the students…” Note the effective 
approach of the Prabhu/counsellor pair in creating slight perceptual shifts to keep 
the focus of inquiry described in Chapter 2.3. “The counsellor method was to switch 
the frame of reference, while keeping the underlying mathematical focus constant. 
For example, if the task were to calculate 1/2 + 1/3, the counsellor would switch the 
frames of reference from pizza to cookies to something else…” creating this way 
several different bisociative frameworks. Prabhu offered a series of assignments, 
which in her experience of the teaching experiment, helped students to develop 
an intuition and interest in bisociative thinking. She ended her discussion of this 
experiment which integrated her experience as a teacher-research in search of 
the CLE with Koestler theory with the following words: Creativity in teaching of 
remedial mathematics is teaching gifted students how to access their own giftedness.

We complete the presentation of Prabhu’s search for the Creative Learning 
environment with some pages from her Teaching-Research journal written 
contemporaneously with the conduct of the teaching experiment. She investigated 
in these pages the impact of the creativity principle, its reflective action upon 
herself as a teacher-researcher. She pointed to this unique spot of the TR cycle, the 
refinement stage where bisociative framework is obtained by confronting two frames 
of reference: the design and its effectiveness from the past cycle with the one to 
envision for the next cycle aiming at the elimination of the ineffective components, 
possibly with the help of an appropriate learning theory and relevant research results. 
The creativity principle applied to teaching is aimed at the transformation of the 
habitual teaching into the teaching of the teacher-researcher whose two components, 
teaching and research do constitute a powerful bisociative framework of action 
and thought. Prabhu proceeded to identify areas of her practice impacted by that 
principle. She saw it in the development of concept maps with the help of which she 
was transforming the design of instruction as impacted by the continuously changing 
knowledge of student mathematical thinking, the choice of the relationships within 
the schema of the relevant mathematics concepts to be emphasized, and through 
the educational research results that might throw light upon the best pedagogical 
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approach. The concept maps of Prabhu represent the next example of artefact 
empirical generalization, which we will call Prabhu Generalization. The unit closes 
with the work of the teacher-researcher apprentice from the younger generation to 
see how the principles of didactic contract formulated by Prabhu are shared and 
interpreted by the members of the team (Chapter 2.6).
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AND HOWARD PFLANZER

2.1. THE DIDACTIC CONTRACT, A HANDSHAKE  
AND A COMPROMISE

A Teaching-Action-Research Project

SUMMARY

Having understood the role of negative affect in blocking student access to their 
own, as she would put, excellence, Prabhu et al. started the process of Creative 
Learning Environment design through several routes. First, she deconstructed 
concept of didactic contract to eliminate the ambiguity present in the term it acquired 
since the important work of Brusseau. As Sarazy and Nowotna (2013) point out the

didactical contract should not be understood as a “real” contract formulated and 
signed by the teacher and his/her students, but but as a didactical relationship 
that is established between the teacher and the students who act as if such a 
contract existed…

However, nothing short of true reality can anchor education in the Bronx or in 
Dalit villages of Tamil Nadu. That’s why Prabhu et al. is seeking here a Didactic 
Contract as a Handshake and a Compromise, whose content is the direct question 
to the class “What is your excellence, and are you falling short in fulfilling it?” 
following the goal stated at the first meeting: “Your excellence is the goal of this 
classroom. Are you ready to pursue this aim, jointly, throughout the course of the 
semester?”

The Choice, a drama participatory script is an important example of the technique 
and the degree to which mathematics friendly drama scenes can impact student 
mathematical creativity. It was the tool with the help of which she was able to 
reinstate the Didactic contract of the Handshake. Handshake is an act of friendliness 
between the two people; Prabhu’s task has been to transfer that handshake to the 
space between the student and himself/herself. As a result, in the context of the 
enactment of the drama within the classroom, students relax their tightly held 
resistance to learning and convey their interests in a few words, thus reading the 
world of mathematics independently. Drama is the reconciling element (Freire, 
1973) mediating between mathematics and the learner.

It facilitates in rethinking the existing tension of prior mathematical experiences 
and resistance to learning that is a block preventing full access to creative memory. 
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Drama alleviates this resistance, freeing moments of access to creative memory. 
She finally attacks the sources of student resistance and she finds them in the 
traditional negative student classification in the classroom as well as in the society 
at large. Drama/mathematics connection gives her a handle on the negativity in the 
classroom; to address negativity at large, she proposes, imported from Tamil Nadu, 
TAR (teaching-action-research) as generalization of TR (Chapter 5.3), that is the 
process through which teachers of the school becoming at the same time community 
organizers along community’s transformation in the direction that takes the interest 
of children as its main criterion. One of the ways she proposes to impact the society at 
large is through New York Subway poster exhibition series Mathematics in Motion.

INTRODUCTION

In our classrooms, there might not readily exist a complete and clear understanding 
of the concept of the Didactic Contract (Brousseau, 1997) without the need for 
further explanation. The concept of Compromise might be interpreted differently 
among different individuals (Czarnocha, 2009). The word Handshake avoids these 
ambiguities. Two individuals start to move from their static position and work 
toward a handshake, making contact with each other’s point of view. Each evaluates 
the satisfaction of that handshake independently. In the present context of The 
Didactic Contract, a Handshake and a Compromise, a learner starts from his or her 
spontaneous (Vygotsky, 1986) understanding expressed in daily classroom actions 
and works toward a desired goal. The goal is the same for the instructor/teacher-
researcher and the student: excellence.

It is the beginning of the semester, and the entire first class meeting, if needed, is 
spent on many informal discussions including a reading for the semester (PROM/
SE, 2006) centred around the theme of a Handshake. “What is a Handshake?” is 
the persistent question posed by the teacher-researcher. Expressed more formally, 
the question to the students is “What is your excellence, and are you falling short 
of fulfilling it?” The first day of class is the most important. It is the day when 
the teacher-researcher is firmly stating the objective: “Your excellence is the goal 
of this classroom. Are you ready to pursue this aim, jointly, throughout the course 
of the semester?” Different forms of support, developed over the course of many 
teaching-experiments in a variety of classrooms over a period of more than five 
years are utilized. This includes Self-Assessment Reports, which allow a day-by-day 
self-evaluation of one’s own work ethic and attitude toward learning. The evolving 
learning or a lack thereof, is the gauge of satisfaction with one’s own Handshake 
with him or herself in the quest of one’s own excellence.

STATEMENT OF THE PROBLEM

Disenfranchisement from mathematics is at staggering proportions in developmental 
mathematics classes in the community colleges of the Bronx, and so is the 
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accompanying resistance to learning. Resistance toward mathematics, evident 
societally, creates an obstacle to learning that, in the classroom, presents a serious 
hurdle to counteract. Hence, there exists an urgent need for the handshake and 
compromise of the didactic contract – a critical need to reverse the resistance 
to learning by creative means of engaging learners to reconnect with the natural 
enjoyment of mathematics. Drama provides one such medium through which this 
communication can be initiated.

The Didactic Contract as a Handshake and a Compromise is the aim of 
the teacher-researchers in the classroom where the goal of the TR/NYCity 
methodology of teaching-research is the improvement of learning. Without active 
participation in one’s own learning, or, at times, with an active resistance to it, one 
violates one’s Handshake with oneself. As a result, the Handshake in the classroom 
environment is affected and each participant, teacher-researcher and student, can 
gauge the extent of its non-satisfactory status, with each party observing one’s own 
level of participation and continuously questioning one’s own dedication to their 
excellence.

SIGNIFICANCE OF THE PROJECT TO THE ACADEMIC DISCIPLINE

The present collaboration has had prior trials in developmental classes of the 
Learning Communities Project at Bronx Community College, where the professors 
staged a one-session participatory performance called The Choice. Students with 
tremendous bonding, created by a group of just nine taking three classes together 
as a learning community, had learned to avoid each other’s fears of mathematics 
well. Through that one-session performance, the instructor was able to cultivate the 
students’ courage and guide their first attempts at making contact with those aspect 
of mathematics they enjoyed. Via the participatory, dramatic intervention of The 
Choice, the team of teacher-researchers made great strides toward a possible a return 
to the students’ goal of excellence.

The booklet of end-of-term activities presented by each student to the Learning 
Communities, called Excellence in Discovery of Number was born through 
the intervention accomplished by The Choice. Having found pride in one’s own 
work, even while working to not allow it its full expression, the students had 
proudly described their own mathematics through such projects as Natasha’s Dots, 
Stephanie L’s Primes, Giselle’s Triangle, just to name a few. The break in the 
resistance to learning, permitting students to see and recognize the vision of their 
own mathematics through clear readings and writings, that occur in a friendly, public 
space of the classroom, even in the span of a single semester, works significant 
miracles in changing students’ attitudes toward mathematics. The significance of 
the collaborative work lies in its contribution to (i) the formation of a mathematics-
friendly community and a positive attitude towards mathematics in the classroom, 
and (ii) the investigation of the process of employing drama to involve people in 
mathematics. It is not known if it is commonly practiced as a teaching strategy in 
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other disciplines; however, it is definitely the case that drama is not a commonly 
embedded aspect in the teaching of mathematics.

BACKGROUND

The collaboration of two mathematics professors and a drama professor from three 
different colleges of the City University of New York (CUNY), one senior college 
and two community colleges located in the Bronx, was designed and implemented 
in 2008, to address common learning difficulties for students in a developmental 
mathematics class, as part of the Learning Communities Project at Bronx Community 
College, described earlier.

In the situation described above, the students’ combined resistance to learning 
obstructed the classroom didactic contract, or the handshake. This prevented the 
instructor from finding an inroad into the specific difficulties the students were 
having. By the enactment of The Choice, students’ spontaneous discussion about 
whether they prefer the flat screen TV or a visit to grandma in California, the situation 
in the classroom lightened from the usual mathematics they were accustomed to 
seeing and ignoring, while the instructor, careful to intervene when an opportunity 
presented itself, was able to pick up on students’ expressed interests. For example, 
Stephanie who in regular class was unable to tear herself away from her phone, 
relaxed her short attention span, and, for the most part of the hour forgot her phone, 
and started talking about the patterns in prime numbers. While a conversation 
about primes continued between the instructor and Stephanie L., Natasha, who 
was extremely timid, allowed herself to relax and talk about simpler patterns found 
in counting numbers. Sylvester, a self-proclaimed hater of mathematics, usually 
extremely reticent in class, decided to stand alone and defend his choice of a visit to 
grandma versus the flat-screen TV, insisting on firmly expressing his position.

The opportunity for classroom relaxation of long-held fears obstructing the 
possibility of a handshake in the learning process between instructor and students 
was created by the enactment of The Choice, and the conversations among the three 
instructors and the group of students.

Since December 2004, the TR/NYCity methodology developed and successfully 
practiced in the Bronx was incorporated into community development projects 
(TAR) in Tamil Nadu (TN), India. With lessons learned from The Choice, the team 
imagined many further avenues of collaboration in Tamil Nadu, India and the Bronx.

Utilizing Vygotsky’s ideas as the theoretical inspiration for the navigation along 
the Zone of Proximal Development (ZPD), aiming to achieve the passage from 
spontaneous to scientific concepts in the span of one semester to fulfil the goal of 
the improvement of learning, the TR/NYCity approach has consistently utilized the 
existing educational knowledge base for a state-of-the-art fix for the diagnosed need 
in the classroom. The latest such endeavour was a request to the program officer 
from one of the oldest philanthropies in India to design an adult literacy program 
for women in rural TN. Literacy of adult women is considered a failed enterprise in 
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some philanthropic circles, and even by some women’s organizations. However, the 
finding of the TAR project is to the contrary. Women are most vocal in expressing 
a deep desire for learning how to read and write, and, in turn, teach their children:

We like your methods, now we know we can draw … teach us your methods, 
we feel humiliated by the thumbprint.

THE OBJECTIVE

The objective of the collaboration has been to create an environment in which 
learners can overcome their long-held fears of mathematics and, in the light 
setting of drama and easy conversation, find their own desire to reconnect with 
mathematics. In such orchestrated conditions, the resistance to learning mathematics 
is weakened and, perhaps, even dropped. The conscious public absence of resistance 
to one’s own natural inclination for concepts such as Number and Space is the 
starting point for sustained action of eliminating one’s fear of mathematics and the 
subsequent resistance to its learning.

Through the acquired common knowledge of the background of the learners, the 
teaching-research team brainstorms and devises an everyday possible scenario, in 
which learners could easily imagine themselves, and in which they could casually 
begin participating. As they participate, the team accordingly adjusts the script to 
allow the learner further room for expression. Natural conversations start occurring, 
and the learner breaks through his or her resistance; the foundations for the 
handshake are beginning to establish.

The approach of utilizing drama to attain the intended objective, with the 
theoretical supports indicated above, while being useful to our own work, is 
validated by the work of Simon and Hicks (2006), among others. Pflanzer (1992) 
found that the creative approach works best in drawing out the latent imaginative 
possibilities of participants through the learning process by accessing their creative 
memories. Simon and Hicks (2006) make a case for “use the creative arts as a bridge 
to facilitate inclusion and open doors to those previously disenfranchised in the 
education system”. Role-playing, acting out the obscured troublesome issue that lies 
in one’s memory preventing learning to occur, is the tool that allows the team to 
create an effective bridge of assistance toward the act of learning and the creation of 
strategies to strengthen its affect. Quoting Gardner:

The current educational climate, with its emphasis on targets, standards, 
predetermined objectives and outcomes, favours a cognitive, rational style of 
learning, more dependent upon linguistic or logical-mathematical intelligences 
than, for example, musical, bodily-kinaesthetic, intrapersonal or interpersonal 
intelligences. (Gardner, 1999)

Allen (1995) points out that “our imagination is the most powerful faculty we 
possess”. Drama, utilizing the imagination, reconstructs our innate capability of 
connecting with mathematics, and one’s latent interest.
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THE METHOD AND ITS THEORETICAL BASIS

TR/NYCity model is the methodology of investigating student learning 
simultaneously with teaching, whose explicit goal is the improvement of learning in 
the classroom, and beyond (Czarnocha & Prabhu, 2006). TR/NYCity model operates 
on a sequence of cycles: design of the intervention, its implementation, collection 
and analysis of the data, redesign of the intervention, next implementation, and so 
on. It is expected that after a finite number of such cycles one find a successful 
intervention that leads to satisfactory level of understanding. However, after several 
such cycles in the developmental classes at the colleges of the Bronx, it became clear 
that the process is not converging to the satisfactory level of learning because of the 
students’ resistance to learning mathematics itself. The discussions with different 
cohorts of students in remedial classes revealed that their resistance is grounded 
in early childhood memories as well as in the social peer pressure realized by the 
perceived coolness of mathematically illiteracy. The teacher-researchers understood 
that their transformative teaching-research activity has to leave the confines of the 
classroom and transform the environment around the students. At that moment they 
transform themselves into teacher-action-researchers (TAR) – that is, teachers who 
undertake action research in order to transform the community surrounding the 
students.

In both TR and TAR,1 and whether in the design of instructional sequences or 
classroom teaching, the principle of discovery is essential for navigating the ZPD. 
Mahavier (a student of R.L. Moore) advises:

Always start in a way that allows each student an entry point, that is, a 
connection to students’ spontaneous concepts. Challenge and intrigue by 
changing the level of difficulty of problems, and increasing the complexity. 
(Mahavier, 1999)

The role of language in the development of concepts and in particular, 
mathematical concepts is extensively studied by Vygotsky (1986). In the present 
context, language working in the service of mathematics, impacts a change in the 
social environment of an individual impacting the individual’s learning.

The Vygotskian-supported drama scripts as a natural thought process facilitating 
the reading and writing of one’s self-learning aid mathematics. Given the inherent, 
perhaps, latent mathematical sense in each one, utilizing the scripts, the team 
enhances the possibilities of creating teaching-learning situations, whereby, the 
learner in the dramatized environment begins critical enquiry into his or her own 
learning, and, hence, reading and writing about oneself, or, one’s actions. Thus, the 
process of meta-cognition is introduced into the learner’s learning environment. The 
navigation of the zone of proximal development takes place in this engineered script; 
this dramatization provides the opportunity for an epiphany regarding one’s own 
learning potential.
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The project is named the Didactic Contract, a Handshake and a Compromise. 
The terms have had common usage in the learning and teaching for several semesters 
as follows.

The Handshake

The Learning Community: What’s Up? – A Handshake is the name given to every 
developmental mathematics class taught at Bronx Community College by one co-
pies since the spring of 2007, and at Hostos Community College since the fall of 
2007 by another co-PI. The need in the classroom arose from teaching developmental 
mathematics classes after a successful application of the methodology in Calculus 
classes (NSF-ROLE #0126141). Students in developmental classes exhibited such 
resistance to learning that more than half of the semester was spent trying to create 
an environment conducive to learning. It took that long for students to gain faith 
in the instructor. Until that point in time, the students’ resistance to learning was 
so high that the struggle to undermine the instructor’s attempts to teach was won 
by the students. The need for a didactic contract an active, conscious effort to take 
interest in one’s own learning, was solidified and the game plan was made clear to 
the students from the first day of class. Knowing the public fear of mathematics 
through the reading assigned on the first day (PROM/SE), students were in the new 
classroom environment where each was an active participant and supporter of the 
learning of the others. By the middle of the semester, any remarks of the kind, “I’m 
no good at math” had diminished significantly, almost to nil, without any intervention 
from the teacher-researcher, but from the immediate remark of a fellow classmate, 
stating, “Please do not offend your own self” (We’re paraphrasing here.) The sense 
of self-respect for one’s own capability to do mathematics was born. The Handshake 
was understood as it was intended, that is, as a handshake with oneself, one’s own 
Number Sense, and the classroom environment.

The Compromise

The Compromise is the composition of two rival principles, in which part of each is 
sacrificed to make the composition possible. In our context, the two rival principles 
are evident: people are very turned off by mathematics, and, yet, mathematics is 
a natural part of everyday life. One has to tune in to that reality in spite of the 
resistance. By acting the conflict out, with the help of drama exercises, students 
engage in learning, beginning to form the didactic contract with them. By acting out 
the situation during which students can join in the discussion, an avenue is created 
for students to honestly begin learning.

The collaboration between mathematics and drama is continued in the 
development of two external funding possibilities: NSF-ISE (Friends Are 
Everywhere: Building a Mathematics Friendly Community) and S.D. Tata Trust 
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(Educational Community of the Future: Mothers as Teachers and Learners, A New 
Perspective on Rural Education) for the teaching-research and teaching-action-
research projects in the Bronx and Tamil Nadu. In the submission to NSF, it is 
envisioned that the theme Mathematics in Motion will artistically embed mathematics 
into public life through posters displayed on MTA buses and subways in the Bronx 
as a pilot to be scaled up to all of New York City, if successful. In the exhibition 
of mathematically oriented posters in the subways, it is imagined that the current 
team would work with students of the project in dramatizing 3–5 minute scripts to 
be performed on the subway. All scripts have the same objective, of rekindling the 
natural love of mathematics and number puzzles that is not explicitly expressed.

The posters are colourful and attractive, like Polish theatre posters, and deal 
with mathematical ideas in daily life in unique ways such as simple puzzles, optical 
illusions and some basic but challenging mathematical ideas that are surprising 
for subway riders to think about. Topics may also include the inner workings of 
computers, using lively images of patterns in a binary system (using 0s and 1s). 
Another possible idea is for students to learn how to read distances on a street 
map using a key (let’s say a map of Manhattan), and then try to compare distances 
travelled underground to their destination on a subway map of Manhattan as a class 
project in one of the courses at the CUNY community colleges located in the Bronx.

A First Script-Sketch Example of a 2-Min Drama

Person 1 (P1): Number, its everywhere, isn’t it?
Person 2 (P2): Oh yeah, show me one place it is here.
P1:  Number in you, in me, in us, and look up there – Number in Mathematics 

in Motion
P2: 1, 2, 3, 4, la, la, la
P1: Counting numbers, eh?
P2: I have one and you have two, what ratio is me to you?
P1:  Let’s ask this fellow here. Kind Sir, I have one bread and you have two? 

What is the ratio of your breads to mine?
P2:  Oh, yeah, he’s pretty smart. Ask him another. How about this, I have 

three breads and she has four, what is the ratio of the breads of each of 
us? 1 to 2 to 3 to 4.

P1: I have no bread, what is the ratio of my bread to all of yours?
P2: He likes Zero.
P1: I like Zero and Zeno.
P2: Who’s Zeno?
P1:  The guy who said if Achilles runs faster than anyone else, who would 

win in the race with him and the Tortoise?
P1: Who would?
P2:  Think about it, for your homework. Email me your answer at the 

interactive Coffee Shop Community.
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Drama is a catalyst for creative problem solving because students can make 
decisions viscerally and logically as they negotiate a dramatic scene. In the 
interactive scene The Choice there was a logical progression leading to a choice 
for using financial resources available to a family for buying an HDTV or visiting 
their beloved grandma who lives in California. There was also the possibility 
of doing both in a more limited way with other options taken into consideration 
using a mathematical approach for making a life decision. This process applied to 
mathematical thinking in the student’s lives allowed them to practically divide the 
actual resources available and enhance their understanding of fractions and decimals 
in a real world decision.

The use of drama in the classroom helps students to overcome their fears of 
mathematics and graphically shows the relevance of mathematical concepts in their 
lives. Using drama as a means for unlocking the mathematical process can combine 
intuition, interaction exploring different approaches to a problem enhancing logical 
symbolic development in the fractional use of resources and time. There is a natural 
and understandable transitional bridge between drama and mathematical concepts 
that can promote understanding of mathematical relationships and their development 
from a new and different perspective.

A defined theatrical situation in the classroom enables the mathematical 
process. Theatre opens the mind emotionally/conceptually for the student to the 
creation of and use of mathematical symbols and numbers providing a basis for 
the teacher-observer’s response to the learning process and the redefinition of it 
through this interaction. It facilitates a more Frerian learning approach involving 
the teacher and the students in an ongoing practical dialogue relating to the abstract 
realm of mathematical concepts. Mathematical understanding and the student’s 
possession of the tools to negotiate life situations are essential for survival in this 
complex contemporary society. The mathematical process is logical and can be 
empowering when presented in a dramatic context. There can be an “aha” moment 
when the abstract numerical concept makes sense in the real world.

CONCLUSION

It is possible for the daily life of the classroom to be the basis for the Didactic 
Contract, A Handshake and Compromise, to be played out in the very same 
classroom. The Handshake and the Compromise is the “real” didactic contract with 
the class, using the words of Sarazy and Novotna (2013). Its aim is to offer the goal 
of excellence to students and to transfer the responsibility for maintaining it into 
students’ hands during the semester of the course. By utilizing drama explicitly in the 
classroom, or in the envisioned subway dramatization of Number and Space, the team 
attempts a rekindling of the natural love and understanding of these mathematical 
concepts that each of us and our students inherently possess, establishing a didactic 
contract, as a handshake and a compromise with oneself.
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Combining Drama with Mathematics is part of a general integrative theme 
Creativity – Language – Numeracy being implemented in the teaching-research and 
teaching-action-research community development project in TN, India. Creative 
memory (O’Hara et al., 1975) is seen as a key element in engaging researchers in 
discussion of adult learning. In the teaching-research approach, creative memory 
serves the dual process of being embedded in teaching and influencing learning. In 
the context of the enactment of the drama within the classroom, students relax their 
tightly held resistance to learning and convey their interests in a few words, thus 
reading the world of mathematics independently. Drama is the reconciling element 
(Freire, 1973) remediating between mathematics and the learner.

It facilitates in rethinking the existing tension of prior mathematical experiences 
and resistance to learning that is a block preventing full access to creative memory. 
Drama alleviates this resistance, freeing moments of access to creative memory. 
In the participatory style of the enacted drama, where teacher-researchers are on 
the lookout to build upon moments of discovery by students, the inroad created by 
the drama in the classroom, is the beginning of the mathematical joint exploration 
by student and teacher-researcher. Through drama students find their own voices 
in mathematics, they start naming the world of their mathematical experiences. 
In reading and naming the numerical/mathematical thoughts via the participatory 
drama, students break through the resistance to their own learning, creating/revealing 
moments of access to their creative memories.

The teacher-researchers pick up on the read/internalized numerical thought 
and build the necessary scaffolding for students to develop their newly expressed 
interests.

A collective annihilation of the fear of mathematics does not occur in the duration 
of a one-session participatory performance. It sows strong seeds of change on which 
the teacher-researcher has to work for the duration of the semester to foster the 
climate created by the participatory drama intervention. The outcome is rewarding.

 And then we understood
 It is not this
 And it is not that
 It is
  Neither this nor that
 It is
  Both this and that
 The Didactic Contract, a Handshake and a Compromise

NOTE

1 There is an essential difference between the two. Teaching-Research is the activity of teachers in the 
context of the mathematics classroom. Teaching-Action-Research (TAR) is the activity of teachers 
who decided to extend the focus of their work to include the village community around the school in 
order to transform it. See Chapters 1.1 and 5.3.
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VRUNDA PRABHU AND JAMES WATSON

2.2. FOCUS ON CREATIVITY –  
LITERACY – NUMERACY

INTRODUCTION

The TR/NYCity model of teaching-research has its origins at Hostos Community 
College (HCC) in the Mathematics/English-as-a-Second-Language (ESL) linked 
course teaching experiment, entitled ESL/Math Collaboration Toward Building 
the Family Model at Hostos CC1 (Chapter 5.1). In its 11th year of evolving 
development, a blending of themes has been its hallmark, with mathematics 
remaining	a	steady	focus.	In	the	teaching	experiment	above,	the	question	was,―would	
closely knit coordination of syllabi between the algebra course, with its algebraic 
language, and intermediate-level ESL, help students better learn English? The hope 
was that learning algebra with its highly syntactical language in coordination with 
learning the syntax of the natural language would help in mastering the latter.

TR/NYCity, designed as the composition of Action Research and Teaching 
Experiment, is useful for the conduct of classroom investigation, and, ultimately, 
yields utility beyond the classroom; the richness of the particularity of the classroom 
transcends its limitedness of scope, and the gulf between the particularity of the 
classroom, and the existing generality for which a solution is desired, is crossed 
slowly. In each repeated cycle, the particular results acquire sharper focus. Hence, 
in the teaching-action-research community development project, the request, in 
January 2009, was to design an adult literacy program for women, and it is the tools 
developed over several teaching experiments in mathematics classrooms that were 
of	help―the	elements	learnt	from	the	particularity	of	each	classroom	situation	that	
can serve the development of the broader general focus of literacy.

How does a methodology targeted to address the particularity of the classroom 
situation, generalize? What is the progression from particularity to generality? 
Answers to these questions outline the development of the Creativity-Literacy-
Numeracy theme, the evolution of the Learning-to-Learn2 materials and the power 
of the methodology.

The persistent theme in mathematics classrooms has been focused on how to 
engage students and continue to keep their own interest in learning. Creativity, in the 
form of observing and creating art, or participating in drama, serves the purpose of 
drawing in learners, to begin the engagement (engagement in learning requires the 
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suitable learning environment, and the desire on the part of the learner to utilize the 
created learning environment) in the learning of mathematics.

NSF-ROLE #0126141 (Introducing Indivisibles into Calculus Instruction) 
provided the climate for the development of the TR/NYCity model in depth. In a 
four-year-long Calculus teaching experiment, through repeated iterative attempts 
to get to the root of learning difficulties surrounding the concept of the definite 
integral, the methodology matured. The invitation of the TR/NYCity methodology 
for the professional development of teachers of community-based schools in rural 
Tamil Nadu, India via a presentation at an international conference (Czarnocha & 
Prabhu, 2004), reporting on successes in Calculus classrooms in the Bronx, 
extended the scope from academic classrooms to the community-based school. 
The community-based school is itself a classroom, and the boundaries are opaque. 
Children may range widely in age and across several grades, the teacher may 
require content and pedagogy reinforcement, and resources may be very scarce. The 
request of the historian of mathematics and community organizer to the teacher-
researchers of CUNY, was to deliver and incite “debates in education to the teachers 
of the community-based school.” Probing along directions opening up by interest 
of community members through repeated field visits and ongoing work, the way 
proposed itself by the expressed needs of adult women for their own learning, and 
the teaching of their children. This created the theme of Literacy. Then, naturally, 
since all women are daily agricultural labourers, and use numbers when dealing 
with money earned, or travelling along differently numbered bus routes, the link 
to Numeracy was readily made. Finally, the Creativity-Numeracy-Literacy theme 
emerged from within the work as the one that could meet the needs. Simultaneously, 
development of a literacy program was expressed by philanthropy to the teaching-
research team, as an unmet need.

Art and Neuroscience are emerging fields of research (Ramachandran & 
Blakeslee, 1998). Reading and writing, that is, recognition with comprehension 
of meaning, of printed symbols, and writing with comprehension and proper 
combination of symbols, at its core, is about decoding and forming a schema of 
symbols. In this context the symbols assume forms of letters or numbers, or art forms. 
Art, in its visual appreciation and as a hands-on immersion, develops observation 
skills and attention. Art, in one’s own experimentation with it, develops ease using 
tools like the pencil, the eraser, or the chalk. It develops the needed muscular 
dexterity that may not be common among adults who have never written or are not 
in the habit of writing. In its regular practice it develops discipline, and stillness of 
mind. In its progressive enjoyment, art is already in the early developmental stages 
of mathematical thinking. Art, as the mediator between letter and number, or to letter 
or number, has the following organizational principles along with the necessary 
attentional principle:

• Ratio
• Symmetry
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• Similarity
• Perspective
• Part-Whole Relation

Within the academic setting, the theme linking Art, Mathematics and Language 
has also been steadily emerging and developing. In Summer 2005, working with 
students from NYC public schools who had failed the Regents test, and would retake 
it after the immersion program (NSF-MSP#0412413), it was found that students’ 
difficulties with fractions originated from an absence of clarity about the relative 
sizes of fractions. Hence, in comparing 1/2 and 1/3 (of a unit), the common tendency 
was to focus on the numbers 2 and 3 and use the fact that 2 < 3, to arrive at the same 
relation between 1/2 and 1/3. Students were unable to visualize the relative sizes 
of fractions of a given unit. When, on a poster board two equal sized line segments 
were drawn, and one was divided into halves, and the other into thirds, relative sizes 
are made explicit. Starting with such preliminary classroom aids, the Fractions Grid 
was created by hand. The Fractions Grid (FG), shown below, is a series of 20 equally 
spaced parallel line segments of equal length, with successively increasing number 
of	 divisions,―each	 divided	 piece	 indicated	 by	 tick	 marks	 and	 labels	 (symbolic	
representation of the fractions a half and a third). Its usefulness was evident in 
students’ work (CUNY Collaborative Incentive Award, C3IRG 3 – Investigating 
Effectiveness of Fractions Grid and Fractions Domino in Community Colleges in 
the Bronx). Since then, it has been made electronic, and is a steady feature in use in 
the early study of fractions in developmental mathematics classrooms in the Bronx, 
and in the teaching-action-research project in India. The didactic tool connects art 
to mathematics quite naturally. While the entire class observes the FG, each one 
finds something that interests them on the tool, and discussion starts with what is 
observed in the art-form (the tick marks, the labelling, the space between tick marks, 
the shapes created on the paper), and, in an informal setting, this discussion is linked: 
what is observed is linked with the mathematical meaning of the observations. 
Language, via classroom discussion, forms the mediator, and the creation of word-
meaning begins (a unit of analysis outlined by Vygotsky) for linking that which 
is seen through the art of the FG with the mathematics behind it. Hence, for 
every operation, such as 1/2 + 1/3, the accompanying drawing runs parallel to the 
symbolic computations, and students, initially reluctant to draw, begin to see that the 
absence of clarity in computation is closely linked to an absent mental image of the 
computation. Thus, the iconic (Bruner, 1966) aspect of the Fractions Grid acts as the 
mediator in computations. As the instructional interchange continues, the art-form of 
the diagrams is a required supplement for operations on fractions.

Reluctant learners also begin to see the advantage the drawing has to offer, and 
those engaged in regular drawing begin to stop, saying, “I see it in my head.” An 
example of computations and the parallel drawings for addition of fractions is shown 
below.
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Figure 2. Adding fractions using the fractions grid

Elements of a discovery-based instructional sequence, entitled Story of Number: 
Fraction (C3IRG 3: Investigating Fractions Grid, Fractions Domino in Community 

Figure 1. The fractions grid
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Colleges of the Bronx) is included at the end of the chapter, where readers can see 
the integrative theme at work.

METHODOLOGY

The objective of the teaching-research methodology is improvement of learning. 
To know what needs to be improved, one studies the early stages of learning, and 
one diagnoses from the start the learning needs of students demonstrated by their 
thinking. The first figure in Chapter 1.1 supports the phase-cycle representation 
below.

Figure 3. A Representation of the TR Cycle as outlined by the TR/NYCity Model

TR/NYCity model is based on a careful composition of ideas centred around 
Action Research with the ideas balanced on the concept of the teaching experiment 
of the Vygotskian school of thought in Russia. While Action Research relies on 
the individual improvement of the teaching and learning in the classroom by the 
teacher, the teaching experiment of Vygotsky views the same classroom as juts one 
of the sites of a large-scale investigation of learning processes that may be designed 
using a general theory of learning (Czarnocha and Prabhu, Volume 2, #2, MTRJ, 
Logical Thinking in Calculus). Improvement of learning being the goal, requires 
knowledge of learning theories to adapt to the path of matching diagnosed, or 
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expressed, needs of learners with the goal. The impact of the utilization of learning 
theories finds its way into the instructional materials; the learning materials are 
designed with the theoretical aspects of the learning theories, and via the teaching-
research cycle (where investigation of learning is simultaneously being carried out 
along with teaching), these materials are tested against the promises offered by 
the theories of learning. The differences between what is promised and what is 
observed is witnessed, and, accordingly, refinements are made. Recalibrations of 
the initial design occur in the process of teaching. Since there are two iterations in 
any given learning semester, the generated materials in just one semester inform 
significantly.

What is the role of each of the theoretical facets of the employed methodology?

1. When we, as teachers, have in front of us, the task of educating our students to 
the maximum of their intellectual potential, we are confronting the problem of 
the navigation of the Zone of Proximal Development (ZPD) (Vygotsky, 1986). 
The ZPD is defined as the conceptual distance between what the student can 
accomplish by himself/herself and what the student can accomplish with the 
assistance of the teacher. In order to help students to reach the scope of their 
potential, we have to understand, and instructionally address, the nature of 
students ZPDs. Hence, navigation of the ZPD forms an integral part of the design 
of instruction as well as its conduct in the actual classroom. The instructional 
material has to contribute to the creation of such a learning environment. Bruner’s 
phases of concept formation (reversed, or in any unstructured way) utilized in the 
learning materials, positively influence learning, demonstrating the impact on the 
ZPD.

2. Bruner’s phases of concept formation along the concrete/enactive – iconic – 
symbolic strands are taken into account in the design of the instructional 
sequences (The instructional sequence, or discovery-based problem set, is Story 
of Number: Fraction, appended at the end of this article). Fractions Grid is an 
iconic instrument, which serves a double role: on one hand, through counting of 
the units, it promotes concrete/enactive facility of the Bruner’s developmental 
spectrum, and on the other hand it is the springboard to the development of the 
symbolic mastery on the opposite end of Bruner’s developmental spectrum. This 
is possible, since Bruner’s phases do not have rigid boundaries but continuously 
transform enactive into iconic and into symbolic. With the instructional sequence 
(Story of Number: Fraction), note that one goes from iconic, that is, from the 
Fractions Grid, to enactive, that is, counting the units – the reverse process of 
going from picture to enactment. In fact, counting as an elementary operation 
helps in operations on fractions. When each of the phases appears in the 
instructional material, the learner can also observe the parallel representations 
of the same concept, hence, not only does learning occur, but also there is scope 
for the learner to see greater connections, and inter-relationships, and begin the 
process of building the schema (Bruner, 1966) of the concept in question.
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3. Discovery-based learning (Story of Number: Fraction is a discovery-based 
instructional sequence) jumpstarts discovery. The mode of enquiry of all 
participants (students and teacher-researchers) is on the learning from the thinking 
process of the other. When the curiosity is fired enough to want to learn, one 
questions that which one does not understand, is willing to state openly one’s own 
understandings, and, in the ensuing dialog, one clarifies and rethinks one’s point 
of view, and discovers. The Mahavier-Moore (Mahavier, 1999) discovery-based 
instruction has been implemented since NSF-ROLE #0126141.

4. Schema of a concept is the network of the relationships between different 
components of the concept – procedures, rules, other concept-objects and so on. 
The mastery of the schema of a concept is expressed through the ease in navigating 
between different components and their relationships. The instructional materials 
and classroom discourse is geared toward the development of the schema.

5. Cognitive obstacles diagnosed in student learning are addressed via instructional 
interventions, and also have the possibility of determining whether the cognitive 
obstacle is an epistemological obstacle. The number line, generally documented 
in developmental mathematics textbooks as made of points, is the cognitive 
obstacle, which upon viewing the mathematical development of the concept, is 
also seen to be an epistemological obstacle.

CREATIVITY-LITERACY-NUMERACY SCHEMA

A schema of learning, loosely speaking, entails ways to tie together all loose 
ends so that which one learns is whole, well connected, coherent, cohesive and 
easy to put together, pull apart, treat in isolated pieces or reconnect some pieces 
together. What schema is inherently attempted to be developed via the Creativity-
Literacy-Numeracy integrative theme? It is the schema of meaning, inexpressible 
spontaneously. The schema of symbol-decoding and understanding connections 
between symbolic expressions is the mathematical aspect of the theme. Language 
mediates concept/schema formation from its art-forms to the symbolic forms. In 
the expression, by each student, of the art-form either observed or constructed by 
themselves, the communication clarifies, enables, strengthens nascent concepts, and 
then, symbols/computations link themselves with the art and the word, thus giving 
rise to word meaning (Vygotsky, 1966). Integration of the three aspects of the theme 
produces the supportive structure for word meaning or unit of analysis.

How does teaching-research prod into multiple beneficial aspects from diverse 
sources and integrate them to address classroom diagnosed needs? The theoretical 
and practical strength of the approach rests on the integration of theory and practice. 
For the Creativity-Literacy-Numeracy theme, three components are linked together:

• a medium other than a symbol
• a letter as a symbol
• a number as a symbol
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Number is symbolized art, and the symbol, both as letter or number, in the 
integrated theme, is deciphered and coordinated with art. The visual appeal offers 
greater receptivity/less resistance, and the nature of art is harnessed to be the scaffold 
to the abstract nature of letter and number as symbol.

Through repeated teaching of same, or similar, elementary mathematics concepts 
in remedial classes of mathematics to adult students, drama is seen as another 
creative aspect that could be utilized in the learning and teaching of mathematics. 
In combining drama and mathematics via a one-session participatory theatre 
performance (The Choice, Pflanzer, et al.), students, in an informal conversation 
about the drama being performed, live, reveal their interests, such as (student) 
Stephanie’s fascination for primes, (student) Natasha’s discovery of the simplicity of 
the counting numbers, (student) Nancy’s decoding a difficult pattern in the triangular 
numbers, or (student) Sylvester finally taking interest in fractions. These hints are 
enough for the teacher-researcher to make the next step, which in this case involved 
creation of exercises named for each student to continue to keep their interest and to 
introduce tantalizing mathematics, challenging and intriguing. Students, with their 
named concept (Stephanie’s primes, Natasha’s Dots, Nancy’s triangular numbers, 
Sylvester’s continued fractions) present their work on a poster board to the end of 
semester Learning Community Cohort. Students bring forth their learning along both 
the cognitive and affective track. The cognitive outshines the affective, the desire 
for consistent, sustained work is absent. The theme Creativity-Literacy-Numeracy 
casts a wide net, reaching out to learners to catch/attract them to learning. Within 
the means and possibilities of a semester or the trips of the teaching-action-research 
project, the theme moves forward slowly.

Number and art are the mediators in the design of literacy in Tamil; Art and 
Language, as communicating mathematical thought, is the mediator in the 
development of mathematical expression and mastery of computations with fractions 
among adult students in the Bronx. The theme Creativity-Literacy-Numeracy, so 
termed for the community development project in Tamil Nadu, is suitable in and 
out of the classroom in the Bronx. Under the Creativity category we include Art 
and Drama. Under the category of Literacy we include Language as means of 
communication of mathematical thought, and under the category of Numeracy lies 
reasoning with numbers, or ease of negotiating mathematical thought.

CONCLUSION

Over successive teaching experiments, learning of the teacher-researchers grows 
significantly, so that each little activity created to address perhaps just one 
student’s problem (perhaps isolated in the class, for example, comparing 1

2
 and 1

3
 

NSF-MSP), over a span of several teaching experiments acquires a focus sharp 
enough for the activity to become a didactic tool. The tool itself when used by 
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individual teacher-researchers has different results in the individual classrooms, and 
instructional materials, like Story of Number: Fraction, are created as the different 
team members teach to utilize the didactic tool better. The inclusion of GIS-based 
projects into the instruction further enhances the interconnectedness between Art, 
Language and Number in addition to continuing to seamlessly weave within the 
three representations (concrete/enactive-iconic-symbolic; Bruner, 1966). The aim is 
connecting students’ spontaneous concepts to their maximal reach, navigating the 
ZPD. Within the semester in which the activity was initiated, it goes through at least 
two teaching-research cycles and the activity acquires class-wide implementation, 
that is, what started as a navigation of ZPD of one student who could not determine 
the relative sizes of 1

2
 and 1

3
 (of a unit) acquires utility and learning for the entire 

class, and in the ensuing teaching-research the class group ZPD (Brown, 1992) 
begins to be navigated.

As the semesters proceed, the materials get further refined and so build up the 
Learning to Learn library. Thus, particularity to generality, that is, a TR-intervention 
in one classroom for a couple of students acquiring general utility, is an example 
of the power of the methodology. From the difficulty in comparison of relative sizes 
of 1

2
 and 1

3
 (of a unit) by a single student, one has arrived at the integrative theme of 

Creativity-Literacy-Numeracy, a theme applicable for a variety of general audiences:

1. Mothers of young children in TN, India to learn Tamil
2. Organizers in TN to learn English and engage in meaning of didactic contract
3. Creation of the Mathematics-Friendly Community in the Bronx

Diagnosed difficulty creates need for intervention by teacher-researchers. The 
intervention is studied for effectiveness and is tuned. While initiated for a single 
student, the whole class naturally uses it. Thus, as group ZPD is being studied, 
intervention is refined to address all learning difficulties that arise. Multiple 
diagnosed problems and multiple interventions by teacher-researchers are carried 
out, and the refinements to the intervention create a didactic tool (for example, 
Fractions Grid). Over semesters, in preparation for teaching-research materials for 
succeeding semesters, the tool and generated student data result in more refined 
tools/materials for the new semester, and these materials are now geared toward the 
whole class. The utilization of the materials in the classroom is already at a much 
more different level than in the previous teaching-research cycles, and hence learning 
is of a different kind and is helped by prior learning. Hence, Fractions Grid through 
the CUNY Collaborative Incentive Award3 tried out FG, Fractions Domino and GIS-
based projects simultaneously with only Fractions Domino being an intervention 
that was never tried out before.

Art and Number has an acquired meaning through FG, GIS-based projects, 
Fractions Domino, and it is seen how helpful Art is in the meaning creation in the 
context of Number. When literacy is requested by philanthropy in India at HBCSE, 
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2009, literacy is seen first as language, and then also for the art in the underlying 
letters, and the commonality is explicitly articulated between Creativity – Literacy/
Language – Numeracy/Mathematics.

The power of the methodology is the clarity of understanding arising from the 
careful methodical progression and subsequent action of the phases of the TR-cycle. 
Implementation of the intervention(s) in the classroom is followed by observation 
of moments of understanding, and learning from students’ learning creates the new 
materials. In this article, the power of the methodology is illustrated via the brief 
discussion of how the integrative theme of Creativity-Literacy-Numeracy evolved 
over several cycles of teaching experiments in the mathematics classrooms of the 
Bronx, and via the community development teaching-action-research project in rural 
Tamil Nadu, India. The spiral of learning evolves (i) as a focused, investigation 
targeted to the particularity of the classroom, (ii) over several teaching experiments, 
knowledge learnt from prior cycles necessarily generalizes to address these 
learning difficulties across learners. The precise focus, the scientific approach, the 
investigative quality of a classroom-based teaching experiment takes material and 
knowledge gathered from cycle to cycle and gears these features themselves for 
broader application. Thus, the source of the general emerging theme Creativity-
Literacy-Numeracy can be identified with the particular difficulty of identifying 
relative sizes of fractions (of the unit in question). Applications of such materials 
to the general problem of literacy or numeracy, thus, have at their disposal all the 
didactic tools effective for particularity.

The bidirectional nature of the TR/NYCity model results from the integration of 
two approaches, Action Research and Teaching Experiment of Vygotsky, into one 
coherent methodology. We call the methodology bidirectional because it allows 
to investigate student learning followed by the design of learning based on that 
investigation following the route: teaching practice àresearch àteaching practice.It 
offers the possibility of developing hypotheses and theories out of teaching practice, 
and at the same time, it offers the possibility of applying the results of research 
directly into the mathematics classroom practice through the properly designed 
classroom teaching experiment (Czarnocha and Prabhu, Vol. 2, #2, MTRJoL, 
Logical Thinking in Calculus).

In the present article, learning from several teaching experiments forms the 
basis for the design of materials on the basis of the Creativity-Literacy-Numeracy 
theme. Learning theories enter the context of the teaching experiment in the specific 
requirements to be fulfilled to address diagnosed learning needs.

NOTES

1 Hostos CC is the only bilingual English/Spanish College of the CUNY system with 80% Latino 
student population who need scaffolded transition from Spanish Basic Competency level to Academic 
proficiency. ESL/Math teaching experiment explored the role of mathematics as a mediator between 
these two registers.
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2 Learning to Learn is the collection of materials generated from the 7+ years of teaching experiments 
devised to address diagnosed learning needs in the classroom.

3 The CUNY Collaborative Incentive Award, Investigating the Effectiveness of Fractions Grid, 
Fractions Domino at Community Colleges in the Bronx, awarded to Prabhu, Czarnocha and Watson, 
was the understanding that for our students’ ratio is a distinct concept from part-whole relationship that 
underlies fraction. That knowledge is in agreement with the mathematical analysis of both concepts.
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APPENDIX A

Development of the Fractions Grid

Figure 4. Fractions grid (Lower segment: 0–1)
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Figure 5. Fractions grid continued (Upper segment: 1–2)
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APPENDIX B

Figure 6. Addition with fractions grid
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APPENDIX C

Story of a Number
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VRUNDA PRABHU, PETER BARBATIS AND HOWARD PFLANZER

2.3. THE POZNAN THEATRE PROBLEM

SUMMARY

The Poznan Theatre problem chapter is the first in the sequence of Prabhu’s TR 
reports, which inform about the discovery of Koestler’s bisociation for mathematics 
education. However, bisociation is mentioned as a “think aside” issue to be fully 
explored in the next chapter. Here she reports on the problem posing/problem 
solving dynamics as the didactic tool through which “to establish and sustain the 
learner’s attention on the practice of mathematics”. She experimented with this tool 
in the framework of ZPD characterized not solely by its two cognitive and affective 
dimensions, but also by the emergence of, as yet hidden, analogy with Koestler’s 
bisociation which acts also along those very same dimensions through the “defeat 
of habit by originality” connection. Poznan Theatre problem is then an example of 
the mediation role of drama in relation to mathematics. It represents the path from 
Creating to Remembering in the revised Bloom taxonomy, showing at the same time 
“how the creative learning environments invite student to think together, and, thus, 
contributes to the development of the thinking technology (Chapter 1.1).” What’s 
equally interesting is the process of classroom collaboration of three instructors, 
each a specialist in different domain of education process, creating together that 
environment in action. The third author posed a problem, the second and third author 
together, scaffolded the problem posing/problem solving process. Ultimately she 
states the answer to the general problem of “how do we bridge the disproportionate 
achievement gap existing among our Bronx students?” by posing and solving the 
problem through iterative refinements toward a steady state – which is, ultimately, 
the daily work and the underlying thinking technology of the enterprise of partnership 
between students and teacher-researchers.”

INTRODUCTION

Mathematics, as the creative expression of the human mind, is, intrinsically built on 
the processes of questioning, wondering why and how, and, through reflection and 
contemplation, gaining insight, supported by careful justification, into the answers 
to the questions posed. Problem-posing and problem-solving are, thus, the core 
elements of doing mathematics. In contemporary discussions about teaching and 
learning mathematics, this central aspect is hidden from sight; instead, the syllabus, 
the learning objectives, the learning outcomes, and similar structures are more 
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prominent, making mathematics seem like a set of objectives and, at times, explicitly 
referred to as a set of skills to be mastered by the student who is then considered 
proficient or competent in those skills. The high failure rate in mathematics starting 
as early as third grade of MSP-Promyse (2006), dislike of mathematics reflected not 
just among students, but societally, the low number of students seeking advanced 
degrees in mathematics are reflective of mathematics not being appreciated for what 
it is – the quest of the human mind toward knowing, and wanting to know why and 
how.

In the particular context of Community Colleges of the City University of 
New York (CUNY) located in the Bronx, and, analogously, for the large percentage 
of high school graduates who need remedial/developmental mathematics courses 
in college, problem-posing has to be frequently directly connected with the 
classroom curriculum. The objective is urgent: closing the achievement gap. The 
problem, as it exists, is that absence of proficiency in mathematics, measured by 
placement tests and mandated by the university, could actually prevent students from 
attaining proper general college education. The question is how to change this trend.

The Teaching-Research/NYCity model (TR/NYCity), described in detail in 
Chapter 1.1, is a methodology spearheaded by Bronislaw Czarnocha, initially, for 
the purpose of addressing the existing situation in the mathematics classrooms 
of the Bronx, which has evolved to speak to the needs of the much larger 
mathematics education community. TR/NYCity is the simultaneous investigation 
of learning and teaching, with the express purpose of improvement of learning in 
the immediate classroom and beyond. Given its deep and broad nature, finding 
inroads into the particularly difficult situation in the Bronx, the model is readily 
applicable to all classrooms with similar difficulties; for example, the relationship 
between particularity and generality is a built-in flexible mechanism within the 
methodology. The goal of improvement of learning entails the perpetually posed 
question,―what	 could	 be	 done	 to	 further	 facilitate	 and	 enhance	 learning?	 The	
TR/NYCity methodology is based on the Teaching-Research cycle presented in 
Chapter 1.1. This cycle encompasses a recurring nature that iterates over (i) the 
immediate learning difficulties diagnosed within the classroom carrying out a 
teaching experiment, as well as over (ii) time, such as semesters or years. Through 
both of these types of iterations, learning develops and materials are generated, 
which are, in turn, embedded back into the learning environment that gradually 
acquires greater robustness.

Over the period from 2006 to 2012, teaching experiments were conducted 
in	 remedial	 mathematics	 classes	 at	 two	 CUNY	 community	 colleges,―Hostos	
Community College (HCC) and Bronx Community College (BCC). These remedial 
mathematics teaching experiments were undertaken following the success of 
a calculus teaching experiment that took place in these same colleges (NSF-
ROLE#0126141). Between 2006 and 2010, the cognitively challenging materials 
continued to develop, and, in 2009, it was discovered that the markedly absent 
but necessary didactic contract (or handshake) on the part of the learners toward 
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their own learning continued to inhibit satisfactory progress. In 2010 the teaching-
research team expanded to include the Vice President of Student Development 
at Bronx Community College (BCC) who is also a counsellor. Affect, in the 
psychological sense, referring to student attitude, became a steady issue addressed 
daily, and with persistence and know-how. Success started becoming tangible. Over 
a two-year period, from 2010 to 2012, it became clear that for a learning environment 
to be effective, a careful simultaneous integration of attention to cognition, affect 
and self-regulatory learning practices is essential (Prabhu & Czarnocha, 2014).

In the present chapter, we provide two distinct examples of the interplay of the 
problem-posing/problem-solving dynamic. The first is named the Poznan Theatre 
Problem. A drama professor and an arithmetic course teacher-researcher posed 
the problem in the fall of 2010. The inclusion and content contribution of a drama 
professor in a mathematics classroom, taught by Vrunda Prabhu, was the second 
such intervention. In both cases, the intervention had a specific purpose described in 
Chapter 2.1. The second example of the problem-posing/problem-solving dynamic 
is explored through an elementary algebra course teaching experiment focusing on 
solving applications using rules of exponents.

WHY PROBLEM-POSING?

In his 2010 work, Knott states:

Recent developments in mathematics education research have shown that 
creating active classrooms, posing and solving cognitively challenging 
problems, promoting reflection, metacognition and facilitating broad ranging 
discussions, enhances students’ understanding of mathematics at all levels. 
The associated discourse is enabled not only by the teacher’s expertise in the 
content area, but also by what the teacher says, what kind of questions the 
teacher asks, and what kind of responses and participation the teacher expects 
and negotiates with the students. Teacher expectations are reflected in the social 
and socio-mathematical norms established in the classroom. (Knott, 2010)

The quote above sets the stage for problem-posing as an important constituent of 
everyday mathematics teaching. Of particular importance is the need to take into 
account the missing interest in mathematics, impacted by prior experiences and 
failures. In such a grim environment, there is a span of one short semester, during 
which the instructor has the opportunity to reverse this trend of negativity, develop 
a self-directed questioning attitude, and facilitate enjoyment and mastery of the 
intended mathematics material.

Vygotsky (1978) describes the Zone of Proximal Development (ZPD) as “the 
distance between the actual development level as determined by independent 
problem solving and the level of potential development as determined through 
problem solving under adult guidance or collaboration of more capable peers”. In 
the classroom environments we encounter, where, to be effective, the environment 
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requires a careful integration of attention to cognition, affect and self-regulatory 
learning practices (Prabhu & Czarnocha, 2014), the ZPD has to be “characterized 
from both cognitive and affective perspectives. From the cognitive perspective we 
say that material should not be too difficult or easy. From the affective perspective 
we say that the learner should avoid the extremes of being bored and being confused 
or frustrated” (Murray & Arroyo, 2002).

A major cause of the lack of satisfactory performance in remedial mathematics 
classes is absence of interest and the resulting absence of attention. Hence, a problem 
for the teacher-researchers is how to establish and sustain the learner’s attention on 
the practice of mathematics. During the 2010–2012 period, through formation of 
the elements of the creative learning environment, much insight was gained on this 
front. The counsellor was able, through his craft knowledge, to hold and sustain 
student attention on the problem or topic being taught/discussed by the mathematics 
instructor. The counsellor’s method was to switch the frame of reference, while 
keeping the underlying mathematical focus constant. For example, if the task was to 
calculate 1/2 + 1/3, the counsellor would switch the frames of reference from pizza 
to cookies to something else, maintaining student attention while focusing on the 
underlying mathematical concept.

DEFINING PROBLEM – POSING: FROM RESEARCH TO EFFECTIVE PRACTICE

Mathematics incorporates thinking technology, in which posing problems and 
attempting to solve them to the extent possible relying back onto the scope of 
knowledge accessible within it, is the foundation and basis of the discipline. Its 
clarity and transparency makes itself known to persons choosing to explore 
its language and challenge. Mathematics addresses the questions of why and how 
it uses minimal building blocks on which its edifice is constructed. Thus, at any 
level of study of mathematics, problem-posing and problem-solving are inextricable 
pieces of the discipline.

Within the TR/NYCity model, the effect of the TR cycle is that particularity 
of the classroom and the means undertaken to improve the nature of the learning 
in the given classroom become usable and adaptable tools for classrooms facing 
similar learning issues. Therefore, generality of usefulness from the particularity 
of usefulness is naturally achieved via the creation of teaching experiments 
designed and conducted with precise attention to the particular classrooms under 
consideration. Teaching experiments are also generally collaborative; in our case 
(a) two different Bronx community colleges face similar learning difficulties, and 
(b) a team approach is required to tackle the difficulties.

Problem-Posing Illustration 1

This is the second of the Drama and Mathematics collaborative interventions staged 
by a drama playwright Howard Pflanzer in a mathematics classroom of Vrunda Prabhu 
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at BCC. The intent is to increase student participation through active problem-posing 
in conjunction with problem-solving in a safe public space of the classroom. Students 
are given a set of ten problems based on the curricular topics but that are also of 
general interest. The problem set is called the Creative Problem Set and, in Koestler’s 
terms, this could be called thinking-aside tools, that is, they provide opportunity for 
free thinking and exploration on the part of the students, thus, increasing individual 
interest and voluntary engagement. Two issues are addressed here: the importance 
of this creative exercise from a developmental perspective, and its promotion for the 
establishment of an individually motivated work ethic on the part of the student. From 
the developmental perspective, Victoria Purcell-Gates lessons on literacy utilize a 
process of learning that students with weak mathematical thinking skills need. To 

Figure 1. The role of problem-posing and problem-solving in the  
improvement of mathematics learning
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tackle students’ undeveloped work ethic in studying mathematics, self-regulated 
learning is scaffolded, and a satisfactory didactic contract is intended. Problem-
posing in conjunction with problem-solving serves many important goals in the 
development of the totality of a successful educational endeavour.

The scenario was created by Howard Pflanzer, applied to the Creative Problem 
Set, with the intention of designing a lesson for the arithmetic class. This is the second 
instance of such a drama/mathematics collaboration in the classroom. The first one 
took place in the fall of 2008. The Choice: Grandma or Flat Screen TV, as it was 
called, was intended to create an avenue for a group of nine Learning Community 
students to let go of their scholarship resistance and begin to actively participate in 
learning. This staging was successful; for more details see Chapter 2.1. The Poznan 
Theatre Problem had a similar objective of increasing student participation in their 
own learning, as well as the additional goal of preparing the class for an impending 
visit by the Chancellor of the University.

Scene 1

A NYC artist visits Poznan. He has no phone with a GPS. He has a street map of 
Poznan. He has the following itinerary:

• Start at the Theatre of the 8th Day in centre – indoors – 7 pm.
• Production – abandoned soccer field – outdoors – 9 pm.
• Production – The Golem in courtyard of abandoned slaughter house – 11 pm.

How fast should he walk to be on time?
This scene together with the map of the region in Poznan, Poland became the 

source for a series of problem posing/problem solving activities.

Figure 2. Map of the artist’s walk for the problem in the classroom
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The artist is Howard Pflanzer, the third author of this chapter. He and the first 
author, Vrunda Prabhu, are collaborators in the Math and Drama scheme in teaching 
mathematics in the classroom and the community. Pflanzer has been requested 
to assist in the mathematics classroom. The class is expecting a visit from the 
Chancellor of the University and Pflanzer is preparing the class for it. The class 
is a group of about 25 bright youngsters, turned off from mathematics who have 
failed the mathematics placement exam for college level math course eligibility, 
and have been placed in a remedial arithmetic course. The students are considered 
at-risk, that is, their further college education depends on them being able to master 
the mathematics in question. The nation-wide results for remedial students are not 
encouraging. The second author, Peter Barbatis, is the Vice President for Student 
Development at the college. He has prior experience teaching remedial mathematics, 
and his expertise includes counselling. The first and the third author are collaborating 
on changing students’ attitudes toward learning of mathematics. He and the class 
instructor collaboratively teach the class, 50% of the instructional time each. The 
class trusts both instructors. There is an environment of enjoyment of mathematics 
created by the two collaborating instructors, and the students, to varying degrees, 
have displayed engagement and amusement.

Scene 2

From the large map of Poznan, brought to class, HP provides the following 
information:

On this map, 2 inches = 1050 meters

He begins asking the class questions. First, he reminds the class that the map uses 
different units for measuring length, and asks for the conversion between km and 
miles as well as between cm and inches. No one, including the instructor, knows the 
conversion. HP offers the next piece of information:

1 kilometre = 0.62 miles

Instructor uses the opportunity to just observe the class, imagining being one of the 
students. HP continues:

The distance from my hotel to the Theatre of the 8th Day is 2.5 inches, on the 
map. What time do I have to leave the hotel to be at the theatre at 7 PM, if I 
am walking at the speed of 3 mph? Also, the distance between the theatre and 
the abandoned soccer field, where the production is supposed to take place 
outdoors, is 4 inches, on the map. How fast should I walk if I am supposed to 
be there by 8:30 PM?
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The questions of HP are not answered with all the gusto that PB wishes, so, pretty 
soon, he jumps up and says, “Conversion! Conversion between inches and meters. 
What does it mean?” PB begins prompting the students, and the class, whose 
members trust him, begins answering. The play continues in this way, with HP 
asking the questions he’s created, and PB, guiding students from that question to 
the knowledge of facts and curricular material required to get to the answer of the 
question being asked.

What really happened here? Both were “experts” relative to the students. The 
experts created a path from the top of Blooms’ taxonomy, ploughing through 
intermediate phases to the bottom. Except two, previous to this example, most 
students had not had much of an opportunity to problem-solve in this way.

Figure 3. Revised Bloom’s taxonomy (Krathwohl, 2002) 
http://laurieodonnell.co.uk/wp-content/uploads/2011/03/Slide13.jpg

Students’ fear of mathematics, especially in the Arithmetic class, is the main 
inhibitor in their successful completion of the course. They have been placed into the 
course on account of their scores on the placement test which indicates non-mastery 
of operations on numbers. Given this background, the learners are to be drawn into 
problem-solving via the Poznan Theatre Problem, where the problem to be solved is 
a story created by the second author, and, in a way, directed, in the classroom, by the 
third author, while the first author is the official mathematics instructor. The title of 
the course was Creative Problem Solving.

On the first day of class students were asked to answer the following question 
aloud: What is mathematics? Spontaneous answers included, “It’s numbers” and 
“It’s problem solving.” In reply to the second response, the class was asked if 
problem-solving extends beyond the mathematics classroom, and at a later time, 

http://laurieodonnell.co.uk/wp-content/uploads/2011/03/Slide13.jpg
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the students were asked to explain their understanding of the term Creative Problem 
Solving. Ultimately, the objective was to get students to voice their interpretations of 
the meaning of the word creative.

Further Comments and Reflections

1. The following have to be taken into consideration when attempting to draw 
reticent learners out from silence, and, on a broader scale, to find an avenue for 
learners to surmount their emotional hesitation and learn how to learn, affirming 
their inherent capability to do and learn mathematics:
• Affect: the conscious subjective aspect of feeling or emotion; the experiencing 

of affective and emotional states;
• Psychomotor: reaction, idea, of or relating to mental states that affect motor 

capabilities, i.e.;
• Self-regulatory learning, where regulation is to be understood as a principle or 

condition that customarily governs behaviour;
• Cognition: knowledge, noesis, the psychological result of perception, learning 

and reasoning.
2. The Poznan Theatre Problem represents a path from Creating to Remembering 

in Bloom’s 2001 revised taxonomy of cognitive skills. It is an example of how 
the creative learning environments invites students to think together, and, thus, 
contributes to the development of the thinking technology. The second author 
posed a problem, and the second and third author, together, scaffolded the 
problem-solving and problem-posing process.

Students ability to, unconsciously, navigate through the problem, learning to 
incorporate the phases of Bloom’s taxonomy, or breaking up the problem from its 
entirety via Polya’s strategy, is realized by the Pflanzer-Barbatis enactment of the 
Poznan Theatre Problem.

Problem-Posing Illustration 2

In this example, the setting was an Elementary Algebra class. Students had trouble 
determining which rule of exponents needs to be applied to a given problem. There 
was a tendency to use anything arbitrarily without justification. The class problems 
were followed by a quiz, in which students had much difficulty in determining which 
rule was applicable for the exercise under consideration. Again, it was a matter of 
not being able to slow down the thinking sufficiently to observe the structure of the 
problem and the similarity of the structure with one or more rules. Students were 
asked to work on the following assignment:

Given the following rules of exponents

 an × am = an + m (1)
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an

am = an − m  (2)

 (an)m = an × m (3)

 a0 = 1 (4)

 
a−n = 1an  (5)

Make up your own problems using combinations below:

• Rules 1 and 2
• Rules 1 and 3
• Rules 1, 2 and 3
• Rules 1 and 4
• Rules 2 and 4
• Rules 1, 2 and 5
• Rules 1 and 5
• Rules 1, 2, 3, 4, and 5

Then, solve each of the problems you created.

In the work that students submitted they created problems that had only one term 
that required the use of, say Rule 1 (for example, an × am = an + m), and another term 
that required the use of Rule 2 (for example, a

n

am = an − m ), but there were no problems 

that had one term requiring the use of both rules (for example, x
8 × x9

x7
). This gave the 

instructor a point from which to develop problem-solving through deeper problem-
posing, that is, through dialogic think-aloud face-to-face sessions. Students were 
asked to observe the structure of the given problem and state the nature of the 
similarity to all those rules where similarity was observed. This interaction led to 
examples of posed questions that, in turn, allowed the teacher-researcher to construct 
more complex exercises.

CONCLUSION

The Poznan Theatre Problem is an example of how didactic contract, elaborated 
in Chapter 2.1 is attempted. Exponent is an example of active problem-posing 
leading to its successful integration by the learners. The mastery of the language 
of mathematics through self-directed attention to reading comprehension is an 
example of how the repertoire needed for problem-posing and solving needs to be 
consistently enriched.
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Continuous repetitions of the problem-posing/problem-solving dynamic increases 
learners’ catalogue for recognizing their own moments of understanding and the 
emerging patterns of internalized comprehension. Writing, as a medium utilized for 
learning to write, and writing to learn, makes the understanding enduring, concrete 
and reusable by learners.

Problem-posing is a constant in the discovery-oriented enquiry-based learning 
environment. For example, operations on integers such as addition and subtraction 
visualized via the number line forms the basis for ongoing questioning and interactive 
problem-posing between students and the teacher-researcher.

Algebra as the field of making sense of structure simultaneously with making 
sense of number provides opportunities for problem-posing along the path of 
Particularity ⇔ Abstraction ⇔ Generality on the Arithmetic-Algebra spectrum. 
In Algebra classes, it is harder to utilize concept scaffolding, and problem-posing 
occurs solely on the side of the teaching-research working to include triptychs in 
the learning environment mix. In the process, the triptych rows evolve into simpler 
usable forms.

The root of the general problem being posed is: how do we bridge the 
disproportionate achievement gap existing among our Bronx students? The TR/
NYCity model approach provides a mechanism – posing and solving this problem 
iteratively with ongoing refinements toward a steady state – which is, ultimately, the 
daily work and the underlying thinking technology of the enterprise of partnership 
between students and teacher-researchers.
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VRUNDA PRABHU

2.4. THE CREATIVE LEARNING ENVIRONMENT

SUMMARY

The chapter is the description of the teaching experiment designed to integrate 
cognitive and affective components of learning, supported by self-regulating learning 
practices, whose objective has been the reversal of the culture of failure through 
the development of student ownership of learning and enjoyment of mathematics. 
Prabhu presents three examples of students in her class illustrating different affective 
and learning issues in her classrooms. She presents an unusual team of TR composed 
of herself as the instructor, the VP for students – as an affective mediator – and the 
Librarian – the specialist in self-regulating learning practices – who taught together 
during the course. Each of them was contributing to classroom teaching situations 
within their own expertise creating together many bisociative Aha! Moments 
with students. The connection between Koestler’s theory and Prabhu’s classroom 
practices has been made by Prabhu during this teaching experiment.

The instructor taught both experimental and control classes. The data in 
terms of attendance, midterm results as well as the results of motivation scales 
(LASSI and MSLQ) show the extend of success in terms of improved attitudes to 
mathematics, goal setting, level of engagement and increase (not yet sufficient) 
in persistence. The description of methodology for such classroom collaboration 
is especially interesting as well as the examples of triptychs modelled to certain 
degree by the general Koestler’s triptych (Chapter 1.2). Prabhu’s triptychs were the 
first instructional assignments designed explicitly to facilitate student awareness of 
the possibility of bisociation. Students were exploring two different “matrices of 
experience” searching for hidden analogies and differences through the discussion 
of relationships between two pairs of the concepts in any of the triptychs. Through 
the integration of classroom practice with the Koetler’s theory, an avenue is created 
for learning beyond the semester of the course. The Koerstler’s triptych provides 
the context within which (1) ending of fear of mathematics as well as (2) the 
transformation of harmful repeating habits to originality via creative expression 
have become a real possibility. Finishing her expose in this chapter Prabhu asserts 
that “Creativity in the teaching of remedial mathematics is teaching gifted students 
how to access their own giftedness.”
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INTRODUCTION

Students in basic remedial mathematics classes are alienated and at risk of being 
lost from STEM fields. The teaching-research enquiry since 2006, for a conducive 
learning environment (LE), found that affect and cognition must be addressed in 
tandem, since the affective and cognitive pathways can mutually inhibit cognitive 
performance. Ownership of learning through a satisfactory didactic contract requires 
a learning environment based on the design principles of cognition, affect and self-
regulatory learning practices to reverse the currently negatively skewed culture 
surrounding students’ engagement with mathematics, and, consequently, their 
successful achievement of the desired learning objectives. Preliminary results and 
the significance of such a creative learning environment in our urban educational 
situation are discussed.

OBJECTIVE

Students in remedial mathematics at community colleges are at risk. Their success 
in higher education depends on overcoming obstacles to learning, many of which 
stem from attitude, related to affect perception, and detrimental to cognition. 
Nationally, approximately one-third of students entering colleges need remediation 
(Byrd & McDonald, 2005); as many as 41% of all community college freshmen 
are enrolled in remedial courses (Hoyt, 1999; McCabe, 2003). Differences between 
under-prepared college students and college-ready students include lower high 
school GPAs, lower confidence, lower self-predictions for completing college 
education; indicators that perpetuate a cycle of minimal accomplishment and low 
self-esteem (Boylan, 1999; Boylan, Bonham, & Bliss, 1994). Nationally, 47% 
of students requiring remediation graduate, while only 24% of students needing 
three or more developmental courses complete their program (Adelman, 1996). 
Failure to complete developmental classes remains the stumbling block to success 
(Boylan, 1999; Kraska, Nadelman, Manier, & McCormick, 1990). Ownership of 
learning is absent.

In this article we sketch out the design of a potential learning environment (LE) 
within a multi-cycle Teaching Experiment (TE) in remedial mathematics, more 
specifically, arithmetic, at an urban community college, whose objective has been to 
reverse the culture of failure through development of student ownership of learning 
and enjoyment of mathematics.

The teachers-researchers are a multidisciplinary team, comprised of:

i. A mathematician who is the instructor of the Basic Mathematics classes in 
question,

ii. The Vice President for Student Development who is a mathematics-friendly 
counsellor, and

iii. Academic Librarian whose expertise includes self-regulated learning.
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A successful learning environment integrates cognition, affect and self-regulatory 
learning practices.

THEORETICAL FRAMEWORK

The cyclic Teaching-Research NYC (TR-NYC) model (Czarnocha, 2002; 
Czarnocha & Maj, 2008) forms the theoretical framework of the teaching 
experiment. Revisiting the contents of Chapter 1.1, Figure 1 below sketches out 
the teaching-research cycle. The TR-cycle begins with diagnosis of learning. The 
red arrows indicate the first run through the phases of the cycle, while blue arrows 
indicate subsequent runs. Teaching-research integrates craft-knowledge of the team 
with research base of the profession. Individual teaching practice of each teacher-
researcher is our craft-knowledge, based on experience and a well-developed “know-
how” of teaching. The research knowledge we introduce into our teaching depends 
on the improvement task. Thus, pursuing the development of the guided discovery, 
we utilized the Zone of Proximal Development (ZPD) methodology of Vygotsky 
(1986) and the Moore-Discovery approach; to align teaching with the natural path 
of concept development we consulted the constructive pedagogy of Bruner laid 
out in The Acts of Meaning (1990), and to address affective obstacles we learned 
from Brousseau’s concept of didactic contract. The problem-solving approach 
of the current TE-cycle has integrated work of Polya, Bloom and Koestler in the 
design of the creative problem-solving environment facilitating student ownership 
of learning through integration of affective and cognitive components of learning 
(see Figure 1). Since such integration simultaneously addresses the two fundamental 
aspects of learning, it has a chance to close the achievement gap.

Students in Basic Mathematics classes have been exposed to the topics under 
consideration before, perhaps several times. According to Bloom:

To be physically (and legally) imprisoned in a school system for ten to twelve 
years and to receive negative classifications repeatedly for this period of time 
must have a major detrimental effect on personality and character development. 
(Stringer & Glidewell, 1967)

The effects of “negative classifications” are manifested in current mathematics 
classrooms as resistance to learning through disengagement. The classroom climate 
in its absence of readiness to learn is in urgent need of creating factors conducive to 
learning. Accustomed to a culture of failure, learners in developmental mathematics 
classes are prone to not knowing what they know. Repeated failures undermine 
learners’ trust in their own possibilities, distancing reality of achievement.

MODE OF ENQUIRY

The teaching-research mode of enquiry is discovery-based, that is, enquiry leading 
to discovery on part of all learners – students as well as instructors.
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What is the present classroom climate? What are the specific needs that warrant 
the designed learning environment?

Meet Yra, a freshman:

Yra has almost perfect attendance. Yra seems reasonably attentive (does not 
talk with others, fidget on phone, daydream, etc.) but never asks questions. 
When asked to do a problem on the board, Yra does it well; sometimes with 
a little help. She attends review sessions. There is no reason to be upset about 
Yra’s performance. But at the last review session, Yra turns worrisome. The 
Vice President asks if there are any questions, to which she responds, “Yes.” 
When asked what the question is, she states, “Fraction”. The mathematics 
instructor continues asking what exactly is troubling Yra about fractions, and 
she answers with the dreaded words, “Everything. Fraction”.

A student such as Yra is not just in need of the best teaching methodology that 
can help her cognitively, fluidly advance, Yra needs two other skills: (i) knowing 
how and when to ask questions, and (ii) not waiting to ask for help. The Student 
Success Manual planned for the next TR-cycle embeds a module on self-assessment.

Meet Ayn, also a freshman:

Ayn is a good student. She thinks well and has good attendance. When she 
had to be in the Dominican Republic for a court case she asked for work so 
she would not lose academic standing. Ayn is afraid of mathematics. Ayn had 
a turnaround moment. It was when the Librarian did his spontaneous speech 
on self-regulated learning, and the mathematics instructor followed by saying 
that she was not picking on her but wanted to let her know she was a very good 
student and she should not use phrases as “I am scared” because of the impact 
they could have on someone else in class. Ayn never said words of a similar 
nature. However, Ayn had not dropped her fear. At a review session at which 
Ayn was the only student to attend,1 the productive session had ended with 
Ayn and the instructor having a conversation about her performance, and the 
instructor mentioning that she was excellent on all counts except one; to which 
Ayn had replied with half a smile, “Yes I know, I am afraid”.

Ayn is not obstructed by absence of self-regulation in learning. She possesses 
reasonably good self-regulatory learning practices. Her thinking capability is openly 
visible to the entire class; hence, there are no cognitive hurdles. Ayn is anxious 
based on the fact that this is a “math” class. Ayn is acting under affective inhibition. 
Integration of the writing theme of Making Sense of Number with the concept map 
of the course has been included in the Student Success Manual as an effective tool to 
eliminate this type of an affective inhibition.

Meet Lida, another student in the class:

Lida dedication to assigned work, is well known in class. In class, it is certain 
her voice will be heard asking questions and answering questions. Lida 
could not do well on a two-hour test. She was exhausted. Lida was intent on 
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remembering, and the semester-long repeated requests of “just tell me how to 
do it” had not altered until the end of the semester. Lida had not been able to 
allow herself to undertake greater reflection on her computations and choose a 
strategy prior to engaging in computations.

Problem-posing pedagogy discussed at length in Chapter 2.3 and introduced 
through the Creative Problems Set in spring 2011, is being introduced as a regular 
classroom feature for group-work and development of metacognition to overcome 
cognitive blockage.

The three typical students under consideration demonstrate the need for a classroom 
climate conducive to accessing their own knowledge hindered by cognitive aspects 
such as not knowing where to start and how to proceed,2 affective aspects, such as 
fear of mathematics, and an absence of sufficient study skills. These three factors, 
addressed simultaneously, emerged as essential foundations for establishing a 
favourable atmosphere for effective learning (Barbatis et al., 2012); more specifically:

• Cognition, achieved by construction and implementation of well-scaffolded 
educational materials and classroom discourse, utilizing the theory of the Zone of 
Proximal Development (ZPD). ZPD was utilized via meaningful questioning in 
the classroom and instructional resources designed in accordance with Bruner’s 
theory of development of concepts along the concrete, iconic and symbolic forms, 
in this case, the Story of Number (Bruner, 1978).

• Affect, that is, classroom discourse and independent learning guided by 
development of positive attitude toward mathematics through instances and 
moments of understanding and enjoyment of problems at hand, extended by self-
directed means of keeping up with the changing attitude toward mathematics and 
its learning, in this case, the Creative Problems Set, and

• Self-regulated learning practices that include “learning how to learn”, productive 
and careful note-taking, daily attention to homework and asking questions, 
paying attention to metacognition and independent work, in this case, the Student 
Success Manual

The result of the one-time visit in fall 2010, by the Vice President with counselling 
expertise was promising; a sustained intervention was carried out in spring 2011 in 
the experimental class of Basic Arithmetic taught by the mathematics instructor. 
Another section taught by the same instructor without direct intervention of the team 
was the control class. The experimental class was conducted with the help of inquiry 
leading to discovery method, procedural-conceptual balance and with attention to 
problem-solving and problem-posing. The creation of trust between the teacher 
and students, based on the absence of negative classification and attention paid 
by all three instructors provided elements of the didactic contract. These, in turn, 
facilitated an increase in engagement, high-goal-setting and increased attendance. 
However, students did not develop enough persistence in achieving their learning 
goals. The next TR cycle will incorporate the conclusions of Barbatis (2006) dealing 
with persistence.
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Referring back to Figure 1, the centre of the map is the LE composed of four 
instructional components:

• Creative Problems Set, a set of 10 problems as thinking-aside-tools (Koestler, 
1964) for schema-building utilizing problem-solving and problem-posing;

• Story of Number, an instructional-sequence, utilizing Bruner’s concrete-iconic-
symbolic stages guides concept-formation;

• Making Sense of Number, the theme started explicitly in fall 2010 in the context 
of short essay writing assignments.

• Student Success Manual developed for Fall 2011 facilitated:
 ○ Sustainability of creative moments occurring in the classroom;
 ○ Thinking aside tools, analogous to Victoria Purcell-Gates’ findings in 

development of literacy;
 ○ Building undeveloped skills (such as multiplication tables via the prime 

number pyramid, concept of the unit through Achilles and Tortoise race, etc.)

Note the newly present integration of the three design principles of cognition, 
affect and self-regulation, woven across the components of the created learning 
environment. The Creative Problems Set was found to be interesting, and students 
enjoyed discussions with the teacher-researchers whether it was about the decimal 
system or the race. However, the “know-how” to continue these explorations 
independently is still needed.

THE DATA
The control group exhibited self-defeating attitudes early in the semester, poignantly 
reflected in sparse attendance. Students with sporadic attendance were questioned, 
and had failed the class before. They attributed non-attendance to prior failure. 
Performance of the control group is evident in the significant difference in the 
midterm grades of the two classes. Both classes were administered the LASSI in the 
second week of the semester and the Motivated Strategies for Learning Questionnaire 
(MSLQ) in the last week of classes. The teacher-researchers had already detected 
absence of self-regulation in learning practices and the MLSQ was selected over the 
LASSI to assist and assess. The Motivated Strategies for Learning Questionnaire 
(MSLQ), is extensively used to assess college students’ motivational orientations 
and their use of different learning strategies. MSLQ was chosen because it gives 
relatively good information about the level of student motivation and self-regulation 
of cognitive activity, which, accordingly to Pintrich et al. (1993) correlate well with 
the final grades in the course. Both qualities are in dire need of reinforcement among 
the majority of students in community colleges of the Bronx. Our aims were to find 
out to what degree a pedagogy focused on student creativity in the class can impact 
levels of their motivation and self-regulation, and as a consequence, their test scores 
as well.
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The intent was to measure critical thinking, motivation for conceptual change, 
beliefs about knowledge, intrinsic and extrinsic motivation, and willingness to 
seek help for class. The instrument helps faculty members know what study skills/
affective characteristics should be explored with students; further, it provides a 
better insight on our students. The theories of Bloom and Koestler where it expected 
that students own their learning by understanding the affective and cognitive 
components of learning will assist as they overcome their “negative classification” 
and self-perception.

Table 3. LASSI scores

Experimental Control

Anxiety 50.5 64.4
Attitude 40.7 37.3
Concentration 46.9 66.9
Info. Processing 53.1 58.4
Motivation 44 45
Self-Testing 40.2 51.9
Selecting Main Idea 44.5 67.4
Study Aids 34.8 58.5
Time Management 47.8 58.3
Test Strategies 47.7 63.4

Table 1. Students’ background

Experimental group Control group

Gender 61% female 64% female
Ethnicity 72% Latino; 7% Black; 21% 

Unidentified
78% Latino; 4% Black; 11% 
Unidentified; 7% White

Average Age 21 (range from 18 to 30) 23 (range from 19 to 36)

Table 2. Attendance

Experimental Control

Initial Enrolment 28 students 28 students
# with perfect attendance 7 students 1 student
Withdrawals 2 5
Attendance Rate 81.3% 61.3%
Midterm Grade Average 2.53 1.96
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The MLSQ is an 81 item self-reporting instrument containing 6 motivational sub-
scales and 9 learning strategies scales as follows:

Table 4. MLSQ distribution

Motivational scales Learning strategies scales

Intrinsic Goal Orientation (4) Rehearsal (4)

Extrinsic Goal Orientation (4) Elaboration (6)
Task Value (6) Organization (4)
Control of Learning Beliefs (4) Critical Thinking (5)
Self-Efficacy for Learning and 
Performance (8)

Meta-cognitive Self-Regulation 
(12)

Test Anxiety (5) Time and Study Environment 
Management (8)
Effort Regulation (4)
Peer Learning (3)

In the table below, scores from a preliminary MSLQ version are shown.

Table 5. Scores from a preliminary MLSQ

Motivational beliefs Self-regulated learning strategies
Self efficacy 

anxiety
Intrinsic Test

value
Cognitive regulated 

strategy use
Self-

learning

Experimental 5.0 5.4 4.7 4.1 4.0
Control 5.0 5.6 5.1 4.8 4.2

RESULTS

Successes were clear – improvement of attitudes toward mathematics reflected 
in attendance, goal-setting3 was more evident, higher level of engagement and 
increased but still not sufficient persistence. Preliminary data shows that early and 
sustained attention to affect in conjunction with cognition is essential in student 
retention, engagement and Just-In-Time study skills facilitation. Creativity-
Literacy-Numeracy, a useful medium for design of instructional interventions, 
found a powerful integration of craft-knowledge of teacher-researchers with their 
own wealth of research through the theory of Act of Creation (Koestler, 1964). 
Koestler’s approach of facilitating creativity is important in positively affecting 
both cognition and creating a mutually supportive affective-cognitive base. 
The affective-cognitive bridge, and the affective-cognitive-SRL practices bridge 
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continue to play an important part in the emerging model of Students-as-Partners-
in-Learning.

Classroom Methodology

The classroom had an open community environment. The class met twice a week. 
The instructor was present at all instructional sessions. She taught collaboratively 
with the VP/counsellor once per week. In the collaborative teaching sessions, 
the VP/counsellor found ways to keep the focus on enquiry while changing the 
perceptions involved through slight shifts of attention. For example, in the context 
of addition of fractions, the instructor’s emphasis was consistently on the number 
line to visualize the operation under consideration, while VP/counsellor intervened 
with several different examples such as one about a candy bar shared by two people 
each eating the fraction under consideration and questioning how much of the candy 
bar is left, the pizza that was meant to be shared between friends and planning 
time for painting the wall of a room. Through these gradual perceptual shifts of 
attention in which the focus of enquiry is held constant and the class environment 
is made light through some humour, the mathematics literacy base of learners was 
exposed to new situations with constancy in conceptual thinking. The environment 
had been effectively created for the bisociative act of Koestler to occur. Study skills 
are embedded within the Just-in-Time method, that is, students are provided with 
a supportive environment whenever they need it, and independent thinking was 
allowed and encouraged to flow.

The third collaborator, the librarian, provided library resources for the class, 
and there were sessions when the entire team interacted with the class at the same 
session; once, exclusively for the purpose of discussing the first author’s concerns 
about study habits. From this session he discovered that self-regulation in study 
skills would be a helpful inclusion into the classroom environment.

Three instructional approaches emerged, each arising from the natural inclination 
toward mathematics and problem-solving of each teacher-researcher on the team. 
There, of course, were differences in individual approaches, one being more 
procedural, another more conceptual, however, the commonality across instructional 
approaches, is the commitment and intent for learners to discover the underlying 
mathematical structures called for in each problem situation. The instructional 
approaches can all be explained using the theoretical perspective created by Arthur 
Koestler. Bisociation was facilitated, as the creative leap that occurs when several 
frames of reference are held in simultaneous scrutiny and insight, apparent from 
the various simultaneous perceptions conveyed by the students. Koestler’s work 
provides a theoretical foundation for creativity within in mathematics education; this 
innovative approach that will be explored further in succeeding semesters. Noting 
the effective approach of the VP/counsellor pair in creating slight perceptual shifts 
to keep attention on the focus of enquiry, it was also used while learning operations 
on fractions. The topics naturally progressed from problems involving operations on 
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fractions to those embedded with rules of exponents and fractional exponents. It was 
an exercise enjoyed by students; their attention was periodically directed to the use 
of rules of operations on fractions as a skill being learned. Further, the VP/counsellor 
scaffolded bisociation by bringing students’ attention explicitly to the distractors 
in the problems under consideration, and, jointly with students, examined ways of 
improving focus.

Interventions of drama and math in the classroom in the form of the Poznan 
Theatre Problem (Chapter 2.3) are further examples of the open community 
environment of the classroom. Professor Howard Pflanzer, a playwright and a 
drama professor, was invited to stage a one-session classroom interactive activity. 
His selection involved topics in the course curriculum in the context of theatre 
appearances in Poznan, Poland. He engaged students by asking them to solve the 
puzzle of reaching several theatres locations without a GPS, and only a street map in 
hand (see Chapter 4.2 for more details).

Making Sense of Number is the explicit overarching theme whether in classroom 
discussion or in the instructional materials, including homework. It is essential to 
maintain a multi-frame-of-discourse mode for the balance between enjoyment, 
cognitive penetration, and aesthetic appreciation. Creativity had emerged within 
the classroom as an organic development of the craft knowledge of the teaching-
research team; however, it was the support of Arthur Koestler’s The Act of Creation 
(1964) that provided the rich theoretical base where thinking and the development 
of creativity were rooted.

Design of Triptych – Based Assignments

The Act of Creation (Koestler, 1964) defines bisociation, that is, “the creative leap 
[of insight], which connects previously unconnected frames of reference and makes 
us experience reality at several planes at once.” Consequently, the creative leap of 
insight, or bisociation, can take place only if we are considering at least two different 
frames of reference or discourse.

How do we facilitate this process? Koestler offers a suggestion in the form of 
a triptych, which consists of “three panels…indicating three domains of creativity 
which shade into each other without sharp boundaries: Humour, Discovery and 
Art.” Each such triptych stands for a pattern of creative activity, for instance:

Comic Comparison ⇔ Objective Analogy ⇔ Poetic Image

The first is intended to make us laugh, the second to make us understand, and the 
third to make us marvel. The creative process to be initiated in our developmental 
and introductory mathematics urgently needs to address the emotional climate of 
learners, and here is where the first panel of the triptych comes into play – humour. 
Having found humour and the bearings of the concept in question, the connections 
within it have to be explored further to “discover” the concept in detail, and, finally, 
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to take the students’ individual breakthroughs to a level where their discovery is 
sublimated to Art.

Here’s an example of the triptych assignment used by Vrunda Prabhu in her 
Introductory Statistics class:

Trailblazer ⇔ Outlier ⇔ Originality4

⇔ Sampling ⇔
⇔ Probability ⇔

⇔ Confidence Interval ⇔
⇔ Law of Large Numbers ⇔

Lurker/Lurking Variable ⇔ Correlation ⇔ Causation

The triptych below is an example of student work:

Trailblazer ⇔ OUTLIER ⇔ Original
Random ⇔ SAMPLING ⇔ Gambling
Chance ⇔ PROBABILITY ⇔ Lottery

Lurking Variable ⇔ CORRELATION ⇔ Causation
Testing ⇔ CONFIDENCE INTERVALS ⇔ Results

Sample Mean ⇔ LAW OF LARGE NUMBERS ⇔ Probability

Triptych assignments facilitate student awareness of connections between 
relevant concepts and, thus, further support understanding. However, what maybe 
even more important is the accompanying discussions that help break the “cannot 
do” habit and transform it into original creativity; below is a triptych completed by 
a student from a developmental algebra class:

Number ⇔ Ratio ⇔ Division
Part-Whole ⇔ Fraction ⇔ Decimal

Particularity ⇔ Abstraction ⇔ Generality
⇔ Variable ⇔

Multiplication ⇔ Exponent ⇔ Power

The use of triptychs in the mathematics classroom brings back the game and 
puzzle-like aspects inherent in mathematics. What is the connection between the 
stated concepts? What other concepts could be connected to the given concepts? 
Given the largely computational nature of the elementary classes, and the students’ 
habit of remembering pieces of formulas from previous exposures to the subject, 
a forum for making sense and exploring meaning is created to help connect prior 
knowledge with new synthesized reasoned exploration. The question “how”, 
answered by the computations, is augmented with the “why” through the use of 
mathematical triptychs. Student responses to the algebra triptych designed and 
implemented by the teacher-researcher Bronislaw Czarnocha indicate the germs of 
student creativity:
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Table 6. Student responses to an Algebra Triptych

Factory ⇔ ⇔ Factor ⇔ ⇔ Polynomial

1.  Starting point for the factor. A variable for the polynomial
2. Breakdown into factors One way to solve the… …polynomial is to factor.
3.  The relationship between 

a …
… factory and a factor is that 
the factory has sameness

…equation and equality

4. Puts together an equation Breaks down into smaller 
numbers

Numbers turn into a 
different equation

5.  A factory…is an equation 
of some sort that you need 
to factor to get an answer

Then factor has to do with 
polynomial, it’s an equation like 
polynomial which you have to 
factor

To get the answer to 
whichever polynomial 
problem.

6.  A factory has many 
numbers of boxes so it can 
be distributed to the stores

A factory and factor is the same 
because…

… A polynomial is 
distributed to the 
unknown factor.

The creativity of students came into play, especially on the transition from 
the first column to the second, when they wanted to establish a relationship 
between a factory, – a place that produces things, with the concept of a factor in 
mathematics. The cognitive links can be seen through such phrases as “Factory 
is an equation…”, “has many boxes to be distributed…”, and “One way to solve 
the polynomial is to factor.” Through this analogy, the student is conveying and 
solidifying his or her understanding that the polynomial gets distributed, or, in other 
words, factored into “those boxes.”

Each triptych needs to undergo several TR cycles of design refinements, 
triangulated by short semi-structured interviews, to get to the precise meaning of the 
used metaphor. Nevertheless, even from the first cycle of student responses, one can 
already see the potential richness of creative mathematical thinking geared towards 
finding connections between related concepts of the triptych. However, positioning the 
triptych within a sequence of classroom work or homework assignments in an efficient 
way, so that it provides the necessary facilitation of the related concepts discussed in 
the classroom, does require special creative attention on the part of the instructor.

Significance

The study provided the potential to positively benefit many students, combatting 
the ubiquitous and long-standing disinterest in mathematics accepted by society 
at large, as well as the disenchantment and disenfranchisement from education, 
especially, of young men and women in urban public universities such the City 
University of New York.
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The “win-win” situation for participants was created by the presence of the 
counsellor in the classroom allowing:

• On the cognitive front, to devise a curricular resolution to the long standing 
epistemological obstacle of the real number;

• On the affective front, to address the resilient student perceptions of long-standing 
apathy toward mathematics;

• The creation of a comprehensive learning environment that integrates cognition-
affect-SRL-practices (Barbatis, 2008) and extends the model of changing  
student-perceptions through the teaching-research methodology, Students-as-
Partners-in-Learning;

• The recognition of creativity as the primary engine of discovery in learning, 
whether mathematics or metacognition, that facilitates the ownership of learning, 
and where challenges are well-scaffolded to enhance student achievement 
(Csikszentmihalyi, 1997).

Through the integration of classroom practice with Koestler’s bisociation, an 
avenue is created for learning beyond the semester. Koestler’s triptych with the three 
planes – Humour, Discovery and Art, supporting the bisociative act of creativity, 
provides the path from Bathos to Pathos, the needed ending of fear of mathematics 
and the transformation of repeated habit to originality via creative expression.

Teaching-research is existentially bisociative, balancing perspectives, 
understanding local complexity in isolated precision, achieving a holistic coherence, 
choosing most fitting research footholds for learning difficulties. This approach 
adapts existing research, to produce better student learning in the classroom and 
to achieve the goal of actual improvement of learning. The design principles of the 
theoretical framework reflect the integrative unity across academic disciplines for 
a “win-win” situation that, in benefiting the particularity of the classroom, in its 
refinement through adaptation, stands to benefit a general problem.

Creativity in the teaching of remedial mathematics is teaching gifted students 
how to access their own giftedness.

A NOTE ON HOW TO READ THE LEARNING ENVIRONMENT CONCEPT MAP

Naturally, the concept map, Figure 1, is very complex because it reflects the very 
complex reality of a remedial mathematics classroom. Yet within that complexity, 
one can distinguish three separate primary LE components surrounding the main 
content component of the course, the Story of Number – a teaching sequence 
addressing arithmetic and algebra. Each of the first three LE components is designed 
to bridge affect, cognition and self-regulation skills; the Creative Problems Set and 
the methodology of teaching called Making Sense of Number are integrated within 
the Student Success Manual, which guides students through the development of self-
regulatory skills. More precisely, the concept map shows upward directed branches 
stemming from each of these three primary components explaining the content or 



THE CREATIVE LEARNING ENVIRONMENT

121

the method utilized by each, and downward directed branches showing the relation 
each component makes with cognition, affect and self-regulatory learning, the 
three essential factors described in the article. Each branch can be investigated 
separately paying attention to particular concepts (in boxes) and to connecting 
phrases (no boxes). One can proceed down or up along the branches, depending on 
preference. For example, the Creative Problems Set connects cognition with affect 
by facilitating enjoyment in problem-solving and, thus, in learning mathematics, 
that, in turn, leads to improved performance. Continuing upwards, one can see that 
the Creative Problems Set is composed of standard curriculum problems, problem-
posing and problem-solving and facilitates creation of new problems by students 
themselves. Each of the components is supported by research literature such as 
Blooms taxonomy of cognitive skills, Polya’s method of development of strategies 
and Koestler bisociation. All three primary components contribute to the increase 
of enjoyment with, reflection upon and ownership of mathematics content. On the 
other hand, the fourth and main cognitive component, the Story of Number teaching 
sequence, is constructed with the help of the Discovery Method guided along 
classroom ZPD, where the degree of cognitive challenge is regulated via precision 
of language and historical development of the concept in mathematics. Like the first 
three, it contains an analogous branching structure.

To summarize, the methodology of each LE component is sketched in the upper 
part of the concept map. The Story of Number is the teaching sequence in arithmetic 
and algebra built out of smaller particular sequences, with the help of a particular 
theory of concept development. The Creative Problems Set acts, naturally, through 
a problem-solving approach that leads to the development of conception accordance 
with Bloom’s recently refined taxonomy. The Student Success Manual consists of 
student sample work from previous semesters, which are used as “thinking aside 
tools”. Making Sense of Number is an approach that facilitates concept development 
through discussions and writing assignments. 

NOTES

1 It was a very important session because, it was only that session that allowed the instructors to 
complete all topics on the Math 01 and Math 05 curriculum.

2 This is the question that is explored in the problem-solving grant, more specifically, Polya Steps 2 
and 4.

3 One student in the experimental class of Arithmetic determines to master Arithmetic and Algebra and 
starts a general interest in the class both experimental and control to do so.

4 Two examples of facilitating the discussion along the triptych Trailblazer—Outlier – Originality are 
in the Appendix to this chapter. For a more detailed explanation detailed explanation of the Triptych 
methodology in action see Chapter 2.5.
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APPENDIX

Koestler Triptych

The three panels of the rounded triptych…indicate three domains of creativity which 
shade one into each other without sharp boundaries: humor, discovery and art…
Each horizontal line across triptych stands for a pattern of creative activity, which is 
represented on all three panels;

comic comparison – objective analogy-poetic image.

The first is intended to make us laugh; the second to make us understand; 
the third to make us marvel. The logical pattern of the creative process is the 
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same in all three cases: it consists in the discovery of hidden similarity. But the 
emotional climate is different in the three panels:: the comic simile has a touch of 
aggressiveness, the scientist’s reasoning by analogy is emotionally detached, i.e. 
neutral.; the poetic image is sympathetic or admiring, inspired by a positive kind of 
emotion…The panels on the diagram meet in curves to indicate that there no clear 
line dividing them (Koestler, 1964, p. 27).

Examples of the Triptych Methodology in Action

The application of the triptych methodology depends on the teacher’s interpretation 
and didactic need. The central role of the methodology is to facilitate students’ 
discovery of hidden analogies between two pairs of concepts along the triptych 
with the aim to free them from some of the affective obstacles and to release their 
originality in the classroom. We are presenting two examples of application of the 
triptych methodology by two different instructors, the first one having more emphasis 
on the cognitive aspects of the path, while starting with a comic representation of the 
notion of the Trailblazer. The second example recognizes the presence of the triptych 
pathway within the general classroom approach and it focuses primarily on affective 
issues along that path.

One can use the elements of the definitions of three concepts found in a standard 
dictionary such as Miriam Webster or Oxford dictionaries of English language:

• Trailblazer: a person who makes a new track through wild country, a pioneer, 
innovator, ground breaker.

• Outlier: a statistical observation that is markedly different in value from the others 
in the sample; a person whose place of business and residence is far removed 
from others.

• Originality: the ability to think independently and creatively; the quality of being 
novel or unusual

Example 1. The Donald Duck as a trailblazer

A comic example of the trailblazer could be the image, a short video from a YouTube 
or digitally designed for the class of Donald Duck trailblazing new skis on a slope 
covered with snow, while other ducks related to the character are observing the 
process and attempting to follow. The comic aspect is reached by counterpoising 
an idea of “the person who makes a new track through the wild country, a pioneer” 
with the known qualities of the Donald Duck. The aim of the discussion is to find 
the hidden analogy between the scene and “a statistical observation that is markedly 
different in value from others in the sample”. For example, students might make 
the connection between the outlier as a statistical observation with the reality and 
the uniqueness of the Donald Duck. They can ask whether every trailblazer is an 
outlier or whether anyone living far away would be a trailblazer. Having reached 
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that understanding along the first bisociative transition, students turn their attention 
to the second bisociative transition in the context of the relationship between outlier 
and originality. They may inquire whether every outlier is an original person, 
possibly making the connection between the quality of a trailblazer as a pioneer and 
the quality of originality via being an outstanding outlier.

The aim of the assignment was to focus student attention on the bisociative 
frameworks and the discovery of hidden analogies between them.

Example 2. Classroom Outliers

The second instructor who used the triptych in the classroom changed the position of 
trailblazer and outlier in her understanding of the classroom dynamics to

Outlier–Trailblazer–Originality

The three components of the triptych are the three stages of learning that students 
have to pass during the class. As instructors, it is our responsibility to help students 
to traverse this pathway from left to right. along the triptych. This can be achieved 
through the class dialogue using humour, drama, contract and compromise. Every 
instructor has basic contract with the class regarding syllabus, grading policy, 
lateness, absentees, homework etc. which is considered the class norm.

Classroom Outlier: We know that the main obstacle for our students’ success 
is their own negativity towards learning, fear or anxiety about math, lack of self-
confidence, lack of motivation etc. in all different levels. Some of them have no 
idea how to be a student, hence, for example, unable to see the connection between 
punctuality, absentees and passing the class. They never complete homework, are 
not prepared, do not participate and hence feel like outliers in the classroom.

The instructor can focus on their plight by simply addressing one of the issues at 
a time using humour, not discipline. For example, giving compliment if the outlier 
participates or asking him/her something outside the subject matter that has the 
relevance for the student. Once the outlier is closer to the class norm then the work 
starts on the trailblazer quality.

Classroom Trailblazers: I believe that all students have a potential to become 
a pioneer or an innovator even though some are unaware of it. Both humour and 
spontaneous drama during the class can be used to recognize or enhance the 
trailblazer quality. Suppose that after the test-1 the instructor asked the students to 
compare the questions in the test with previous class notes, homework exercises or 
review notes. Most students agree that they look similar and one student (outlier) 
says they are not same. The chances are very high that the class will try to convince 
the outlier how these are similar, comparing exercises, steps, rules etc. helping the 
student to find the “hidden analogy” between the two. Once awareness is created 
about the similarities, there is a clear strategy for improvement. Success of students 
as trailblazers in the class environment is within their reach. During this drama, the 
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lecture time might be compromised but this social interaction is excellent tool for 
addressing the affect issues of the class.

Classroom Originality: Students’ increased belief into their own trailblazer 
quality in the context of their class, they start producing their original work. Their 
success is evident.
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VRUNDA PRABHU

2.5. THE REFLECTIONS OF THE TEACHER-
RESEARCHER UPON THE CREATIVITY PRINCIPLE

SUMMARY

In this unusual piece of her Teaching-Research diary, Prabhu presents a dual 
approach to the Creativity Principle, when she explores the creativity of herself as 
a teacher-researcher working on the facilitation of creativity in her classrooms. She 
shows through self-reflection the very process through which the creativity principle 
transforms the habitual teaching practices into teaching-research. She presents her 
main findings in that process, the concept map of the course, the narrative and the 
discovery method of teaching. The development of the concept map for the course, 
which with time acquires the general quality through the dialectical relationship 
between herself as learner from students, and as their teacher, becomes for her the 
backbone through which the meaning of mathematics is conveyed. She emphasized 
the narrative as the medium through which she has appropriated Koestler’s triptych 
for mathematics as the tool with the help of which students are searching for meaning 
between different concepts. Finally, she describes the process through which the 
creativity principle enters the discovery-based method of teaching. Discovery based 
method signifies the classroom instruction proceeding through student inquiry into 
nature of mathematical concepts, which may lead to discovery of new connections 
between them.

The teaching-research cycle generates the creativity principle by its repeated 
iterations. This means that in the iterations, the teacher-researchers, while trying 
to match diagnosed learning needs with appropriate instructional solutions, have 
the opportunity to “escape more or less automatized routines of thinking and 
behaving” (Koestler, 1964), and to begin connecting a “previously unconnected 
matrix of experiences” allowing “reality to be experienced on several frames 
at once”. Practical examples of how this transformation from habit to originality 
begins for me, as a teacher-researcher, is in the scrutiny that I must place on the 
prescribed syllabus I am expected to teach. It has been habitual to teach it the way 
it has been prescribed. However, when I put the table of contents of the textbook 
into a concept map, I begin seeing that my own mathematical knowledge begins 
guiding me to make rearrangements, so that the organization of topics can flow 
from one to another based on mathematical sense. Making sense of what is taught 
and making it meaningful is very important in my approach, because I have clearly 
recognized, as many have before me, that learning is slow at first but catches on and 
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changes its momentum very quickly; for example, a similar observation is described 
by Mahavier (1999). In previous reports I described actual instances of students 
making sense, extrapolating meaning and discovering concepts through inquiry via 
activities and guided exercises that I facilitated.

The creativity principle aimed at a transformation of the habitual teaching 
practices of the teacher-researcher plays an essential role. Detailed illustrations of 
manifestations of the creativity principle are described below.

1. The creativity principle is tangible in the ways in which the materials used in 
the classroom begin to change; first, the concept map evolves from its original 
prescribed form (the official syllabus) into a natural progression of beautiful 
mathematics starting from just 1, and 0, and flowing as seamlessly as possible 
through the entire list of topics given in the syllabus. For me, the development 
process of the concept map is directly equivalent to the teaching process itself 
because one of the main factors in its evolution is the collection of questions 
asked by the students as well as their expressions of difficulty of certain topics. 
For example, many students have a difficult time with multiplication tables. To 
address this challenge, the instructional sequences entitled Story of Number, for 
an arithmetic course, and Story of Number in Abstract, for an algebra course, 
contain the Prime Number Pyramid component, a creative tool that aims to enable 
students to construct multiplication tables on their own.

2. The creativity principle is implicit in teaching; more precisely, the teaching process 
necessitates learning from students. This occurs by paying careful attention to 
what students say. For example, when a memorized fact is heard from a student, 
I ask the student “Why is it so?”, and determine whether the student understands 
the meaning of the idea and how to support it, or is just repeating a memorized 
claim. This allows me to address the issue on the spot, and, sometimes, to design 
materials that demonstrate the meaning of the concept in question. The Fraction 
Grid is a good example of a teaching tool, built as a result of such an interaction, 
to address students’ expressed difficulties comprehending sizes of fractions. 
Shifting focus from traditional one-sided teaching to the bidirectional integration 
of teaching and learning, the students and I begin developing mutual trust that 
allows and encourages students to freely express their thoughts; the classroom 
becomes a safe space where a “thinking partnership” is not just a phrase but is the 
expected form of classroom discourse.

3. Narrative becomes a useful, interesting and meaning-producing tool in the 
integrated teaching-learning process. Bruner, in The Culture of Education (1996), 
states that it is through narrative method that one both organizes and constitutes 
one’s experience of the world. In describing narrative as a discourse, Bruner 
states, “Narrative is discourse and the primary reason for it is that there is a 
reason for it that distinguishes it from silence” (p. 121). The learner is drawn 
into a narrative communicating her or his understanding precisely at its current 
stage allowing further development through continuing discourse. “By using 
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narrative…as our organizing principle we show new learners…how to make 
claim of mathematical territories by populating the landscape with fictional 
things engaged in purposeful activity” (p. 123). Narrative became an aspect of my 
teaching simply by choosing to name the inquiry-based instructional sequence 
I was developing Story of Number. Shortly after, the concept map, developed 
through the evolution of the syllabus, was a “story” itself, conveying the natural 
relation of the mathematical concepts in the teaching sequence to the methods 
of instruction. However, there still remained the important matter of linking the 
narrative process to a continuing quest into a deeper learning on the part of the 
student. This was going to be accomplished by requesting students to write a 
short one page essay called Making Sense of Fraction, after the discussion of 
fractions was almost completed. This somewhat narrow written exposition led to 
the end-of-semester essay in which students wrote about how they make sense 
of numbers, in general, reflecting on how it was taught over the duration of the 
course, providing specific examples of how they made sense of numbers in daily 
life. This essay was entitled, Making Sense of Number. Between 2010 and 2012, 
when I co-instructed the course with the college’s Vice-President for Student 
Development and Academic Librarian who has been on the teaching-research 
team for a long time, regularly observing the evolution of teaching strategies in 
real-time, our joint insight into the methodology, as teacher-researchers, led to an 
even broader and deeper learning experience. We found that student engagement 
was high eliminating any classroom affect concerns allowing me to expand the 
concepts taught in a typical arithmetic course to a significantly more advanced 
level. During the same time we found a theoretical match for our classroom 
discovery,―Arthur	Koestler’s	Act	of	Creation.	This	connection	suggested	another	
novel way of bringing the creative principle into classroom teaching. Koestler 
posits that Humour, Discovery and Art are three shades of Creativity. Setting the 
goal of Discovery as the central concept, we began to use Koestler’s triptychs to 
create another gateway into our students’ thinking and meaning absorption. Using 
Koestler’s approach of incorporating narrative into the classroom, we created our 
own triptychs for the purposes of enhancing the teaching-learning process in a 
way that allows students to take small chunks of course material and examine 
them deeply, making sense out of them. Students were then asked to write a few 
sentences about how they perceive the connections between the concepts, allowing 
me to analyse their understanding. Then the current triptychs were viewed by the 
whole class along with triptychs created by students from previous semesters 
providing the current students with an opportunity to rethink their own triptychs. 
This time the reflection was based on a library of triptychs created by over 60 
students allowing the current students to recreate the stories of their own learning 
of the concepts. Students have continuously found this exercise very interesting 
and expressed interest in using triptychs in other classes such as anatomy. They 
claimed that it gave them greater confidence, or, that it made the concepts and 
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their interconnectedness clearer. Our version of a triptych consists of a central 
column holding the relevant mathematical concept, corresponding to Koestler’s 
placement of the “discovery” aspect. The left column contains the related instances 
of “humour” described by Koestler as “the back entry into the inner workshop of 
originality”, and the right column is the contextual interpretation of the “art” aspect 
of the creativity principle, For Koestler, “art” is the sublimation of “discovery”. In 
the beginning the students are provided with a triptych in with, for example, eight 
central topics of the course in the “discovery” column. Together, as a class, we 
complete two of these rows, with the entries in the “humour” and “art” columns 
supplied by me. However, through class discussion I can assess their grasp of 
how all three concepts work together within the triptych. Furthermore, having 
the students write a couple of sentences, using examples, describing their view 
of the connections, supports the discussion. The association of “simple words” is 
now taken to a new level illuminating the interconnectedness within a particular 
triple; the words have meaning linking them pairwise to each other, in addition 
to the presence of a single thread of meaning underlying all three. Based on the 
class discussion the connections are already somewhat clearer to the students, 
so, to contribute a few meaningful written statements, they need to inquire even 
further into the triptych. In this way, the environment for inquiry and for the 
facilitation of bisociation is created. Bisociation is the term coined by Koestler to 
distinguish it from association, where bisociation is the flash, or a creative leap, of 
insight that connects previously unrelated frames of reference allowing reality to 
be experienced on several frames at once. The stage for bisociation is set through 
the triptychs.

The application of the creativity principle in the classroom is now a useful and 
usable tool for both the teacher–researcher and the learners. The resulting learning 
process is a search for meaning and inquiry with the intent of discovery, and provides 
all of the new instruction aspects that transform the classroom.

A VIABLE TEACHING METHOD

To demonstrate the viability of our respective teaching approaches we must answer 
the following questions:

1. What are the principles of design?
2. Where do they come from?
3. What are some examples that demonstrate our approach and the application of the 

principles of design?

The targeted principles of design for my instruction have always been the inquiry 
or discovery based method of learning. However, the classroom climate had not 
been conducive to learning via this method, hence, over a period of continual 
teaching-research experimentation, a way had to be found to transform the remedial 
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mathematics classroom into one where the discovery method could be successfully 
implemented. The classroom climate needed to be grounded in simultaneous 
attention to cognition, directions of problems, meaning of symbols, meaning of 
problem structures, and the synthesis of all these to achieve the students’ goal to 
“solve a given problem.”

Typically, at the end of each problem completed by a student, the instructor carried 
out a whole class reflection and discussion addressing the following questions:

• What were the rules employed?
The only rule turns out to be the order of operations.

• What cognitive, or procedural, elements were used?
 The grasp of the meaning of each symbol along with the correct interpretation of 
the meaning in a given context was the main cognitive requirements.

• How was the structure of the problem taken into consideration?
 A solution to the problem required a careful reading and clear comprehension of 
the problem, followed by making sense of each symbol correctly and determining 
which portions of the string of symbols needed to be addressed in what priority.

• Was the solution obtained correctly?
 This consisted of checking what was done, followed by each student’s individual 
silent reflection with the objective of identifying component errors, if any, or 
addressing more general misconceptions of the meaning of the problem or of the 
totality of the string of symbols involved.

As students, one by one, completed these problems with the instructor’s 
facilitation, the complaints, negative affect and a general resistance in the room 
subsided. The following day the topic of radicals was introduced. This topic, based 
on the instructor’s prior experience, is another commonly negatively received 
mathematics classroom topic. However, this time the climate was strangely different. 
Students were determined and intense in their thinking, and, when it was time to end 
the class, those students who complained earlier were continuing to work on more 
problems. Discovery had arrived in the remedial algebra classroom!

Vrunda Prabhu
Mathematics Department
Bronx Community College
City University of New York
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OLEN DIAS

2.6. REFLECTION AND CASE STUDY OF CREATIVE 
LEARNING ENVIRONMENT

INTRODUCTION

The bisociative framework of the Teaching research method supports a creative 
learning environment (CLE) in the classrooms. The essential goal of our teaching 
research team was to design research in our respective classes, which promotes 
creating learning environment. In the different chapters of the Unit 2, Vrunda Prabu 
gave several examples of CLE in her classes that she had provided to improve 
learning. The goal of improving the educational environment for students is 
characteristic of learning communities as expressed by Jaworski, “The motivating 
principle on which all agreed was our desire to develop better learning environments 
for students in mathematics at the levels of schooling in which we were associated” 
(Jaworski, 2008, p. 316). A common theme of the work Jaworski (2003, 2006, 2008) 
is that within a learning community or community of inquiry teachers through 
reflection upon practice undergo a shift or critical alignment (Jaworski, 2006) in 
which reflection upon practice leads to an attitude of being open to change. The 
shift from practitioner to a reflective practioner is the essence of the bisociative TR 
experiment in which lessons and methods are designed, tested and reflected upon by 
the Teacher Researcher.

We see that the central theme in improving the learning for underserved students, 
is Prabhu’s insight of a creative learning environment which will transition 
the students from habits of failure to excellence. An essential component of this 
transition is affect, and as pointed out by Furinghetti and Morselli (2009), “purely 
cognitive behavior is rare in performing mathematical activity: other factors, such 
as affective ones play a crucial role” (p. 71). The authors Goldin (2000, 2002), 
DeBellis and Goldin (2006), Goldin et al. (2011) and Lomas et al. (2012) all 
highlight the many dimensions of affect such as student motivation, beliefs, attitudes 
and self-identity and its role in learning and problem solving. Yet the literature on the 
teacher’s role in supporting positive student affect within the classroom especially 
within the underserved community is lacking. In Chapter 2.1, Prabhu introduces the 
concept of “Didactic contract, a Handshake and a Compromise” to make her class, 
a creative learning environment where student and the instructor have the same goal 
“excellence” via the participatory, dramatic intervention of The Choice. While in 
Chapter 2.2, she created an artefact a didactic tool (ex. fraction grid (FG) etc.) for the 
students which is a by-product of the several TR cycles and her conscious reflections 
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upon it and hence presents a new concept of “particularity and generality”. Her CLE 
is to use the fraction grid (FG) to fulfil the role of a mediator between the art and 
mathematics to enhance learning. “Problem-posing and Problem-solving” is another 
didactic tool used by Prabhu in Chapter 2.3 and in addition she team taught the 
class with a drama professor, manage to create an interesting and supportive learning 
environment. Pozman Theatre problem is a perfect example of a mediation between 
drama and mathematics. Chapter 2.4, she emphasized in creating a conductive 
learning environment, based on the principle of cognition, affect and self-regulatory 
learning practices to promote student’s engagement in mathematics classrooms. This 
time she involves a counsellor and a librarian to address the affect and self-regulated 
learning respectively. Her teaching experiment cycle on problem solving integrates 
the work of Polya, Bloom and Koestler.

Keeping in mind the common theme of creative learning environment of this 
chapter, which was beautifully illustrated by Prabhu in the first four sections, 
I discuss through examples how these different ideas play roles in my classroom 
to improve learning and push my students towards excellence. Unlike Prabhu, I 
have no new outside resources added to my classroom environment. Classroom 
dialogues, everyday unscripted drama and guided discovery method are my main 
tools used to achieve the above-mentioned goal. The TR team is a tremendous source 
of encouragement and support for me. The often intense team discussions centred 
on student’s participation, methodology of the lesson, discovery method etc. has 
given me opportunities to improve my lessons and teaching practices and help me to 
become a better teacher researcher. I want to extend the same wonderful opportunity 
to my student who needs the support system from a learning community, since many 
lack family support and self-esteem.

In the preceding teaching research experiments (Chapters 4.2–4.5) Czarnocha, 
Dias and Baker as well as Prabhu (Unit 2) the focus is on cognition and creativity, 
the affective component of creativity and the Aha moment is understood as causing 
positive affect in students (Liljedahl, 2013), also noted by Koestler (1964) in 
research. Following Cobb’s (2011) dictum that the best place to conduct research on 
learning is the classroom in the following work I review my role in the classroom as 
a reflective practitioner to support learning with underserved often resistant students. 
Teaching research team suggest that research especially teacher’s narratives about 
their classroom methodology, reflecting upon supporting and creating positive 
learning environments in the classroom is central to Stenhouse’s vision of action 
research (McLaughlin et al., 2006) and in our case of teaching research experiments.

My Classroom

In a typical semester I teach at least one remedial course since majority of our 
freshmen students are placed into these course. In an urban community college 
serving minority students in the Bronx the students are mostly non-traditional 
and minority students. Many work full time to support children, parents. In most 
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cases, they are first generation college students who often have a weak academic 
background they do not typically receive a lot of emotional support outside the 
classroom. Academically they often lack good study habits, discipline, and frequently 
they do not have a strong goal or aim in life and thus, retention is a very real concern. 
They often carry tremendous amounts of negative experiences with them not just 
in mathematics but also in their personal life. Responses such ‘I hate math’, ‘I hate 
fractions’, “Me and math do not get along’, ‘I am an early childhood education 
major, so I do not need math’, ‘when will I ever use algebra in real life’ etc. are 
common complaints in the remedial mathematics class. The Bronx is among the 
poorest district in U.S. and hence student struggle with many aspect of life including 
finding and staying in a home environment including hunger. The instructor must 
address both the emotional and educational need of the student simultaneously, 
so the student can perform better in the class and eventually be successful in life. 
Before mathematics topic is taught, it is more important to teach how to be a student. 
Then help them to find a better student within himself or herself and finally push 
them towards excellence in mathematics.

Teaching Research within Creative Learning Environment

Teaching research has two essential goals: improvement in learning and working 
towards excellence. So every teacher researcher is a firm believer of the practice 
of teaching and learning where instructor and students constantly teach and learn 
from each other in order to achieve excellence. This can be attained in a creative 
learning environment: which is informal, pleasant, safe, fun and at the same time 
also informative.

Didactic Contract: A Handshake and a Compromise in My Class

In Chapter 2.2, the concept of Didactic contract, Handshake and a Compromise is 
introduced and discussed (Sarrazy & Novotná, 2013). Here I provide an illustrative 
classroom dialogue and narrative to explain what these concepts mean to me and 
how I use them to influence my class-learning environment. Usually the didactic 
contract begins on the first day of classes, when an instructor hands a syllabus 
to the student, which can be considered a contract between them. The instructor 
expects the students to abide by this contract. This contract may include policies 
on attendance and lateness, grading, classroom behaviours etc. and of course the 
mathematics topics. In my opinion it becomes a handshake or mutual agreement 
if instead of forcing the contract on them, their input is also a part of the contract. 
For example if class participation or going to the blackboard is expected of them, 
and then they should be given assurance that if they are unable to perform the task 
at hand, instructor or the classmates will give hint or help. Once the students feel 
safe and respected, the instructor is rewarded with the handshake. The handshake 
cannot be demanded but can be achieved by a fair act and mutual understanding 
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where both party (instructor and students) are part of the class contract and working 
towards the same goal “excellence”. High impact practices also calls for setting the 
acceptable classroom rule together, which is an excellent example of a handshake.

Any issues or situation during the class can turn into a handshake with a little 
give and take, a Compromise. There is no need to repeat the same method that is 
proven to be ineffective, instead learn from it and negotiate. For example, you are 
scheduled to give a test next week on Monday but students are resisting because they 
have other examinations or other reasons. The instructor could say “fine, I will give 
the examination by the end of the next week but I will cover another two sections 
and add them to the test”. Two scenarios will play out in the class, either they will 
change the mind and are willing to take the examination on Monday or they will 
accept the latter date feeling good about themselves. It boosts their confidence and I 
have nothing to lose, whatever is the outcome, students are part of the decision and 
hence it turn out to be a handshake through compromise, a win-win situation for all. 
Life is full of compromises, negotiations, deals and handshakes then why not in a 
mathematics class.

Teaching Research Methodology: Affect

After an initial contract and handshake, one mantra all students should understand 
and repeat in their head is that “I will try my best because I cannot do more than 
that” and “the instructor will help me with all that she can do legally, and to the best 
of her ability.” I repeat this mantra almost daily to some student during the class, 
I will not settle for less and neither should they.

Daily Drama Use to Create a Learning Environment in My Class

The failure of student in mathematics is all too often considered socially acceptable 
in U.S. In addition, our students lack study skills, have poor study habits, no family 
support, and plenty of financial problems, children’s demands and family obligation 
to name a few. This creates tremendous obstacles in the learning of mathematics 
and in general in getting a degree. A creative and innovative approach “everyday 
unscripted drama” mixed with humor has the potential to transitions these habits 
and attitudes of failure (Koestler, 1964) to creativity and student excellence. Vrunda 
Prabhu has used “drama” to motivate the students. She and a drama professor 
joined forces to reverse the resistance of learning mathematics using scripted drama. 
I also believe that drama is a good thing to introduce in mathematics class, not 
only scripted but also unscripted, just-in-time drama.

By definition a drama is an exciting, emotional, or unexpected series of events or 
set of circumstances and is synonymous with incident, scene, crisis, excitement or a 
thrilling experience. Crisis, excitement and, incidents are part of life and everyday 
these circumstances take place in our life and in the life of our students. If a student 
has a sick child at home or parent in the hospital or is going through a domestic 
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issue, how can they learn math if these issues are not addressed? Again if “I hate 
math” or “I am not good at math” attitudes are not dealt with, learning is highly 
unlikely. Once a student complains that he is unable to sleep well, since he had a 
recurring dream where he sees numbers circling, it deserves instructor’s attention. 
Fear is a powerful force, which can play trick with one’ head and numb the person to 
act in a responsible way. Fear by definition is an unpleasant emotion caused by the 
belief that someone/something is dangerous; is synonymous with panic and a panic 
stricken student is in no condition to learn anything. Avoiding the situation or the 
student is not an option for me. It is my belief that when something is unpleasant, it 
can be discussed, explored in order to reverse the belief or at least lessen its impact. 
Not trying is like burying your head in the sand and pretending it does not exist. 
I try to address the fear of math, personal crisis and excitement through unscripted 
small drama during the class.

It is human nature to become open in a safe and comfortable environment to 
a sympathetic ear. Let say one student comes to the class all excited and informs 
that it is her birthday. First of all, just because she shares with me or with the class 
this information is a sign of her comfort zone. I believe today she talked about her 
birthday, soon or in near future she will share an answer to a math problem. Well, 
I have two options ignore or wish her “Happy Birthday” out loud. The first option 
reduces her comfort zone and second option increases her comfort zone. My choice 
is clear, use the just in time drama to the advancement of learning by increasing 
comfort level of students.

Class Dialogues

a) Drama and Humour to influence student affect:

Suppose a student boldly confesses during a lesson that “I hate math”. Again two 
choices: Ignore and use it (just in time drama) to teach something else (just in time 
teaching research act). I will jump in with my both feet in the water (an education 
act). A classroom dialogue that follows after such a statement is recorded below 
which addresses the fear and the resistance of learning mathematics:

Instructor: Who else hate math. (few more hands)
Instructor: In the scale of 1 to 10, how much?
Students: 10, 9, 5, 8 etc. (All different level of hate)
Instructor: Why do you hate math?
Student #1: I do not like numbers.
Student #2: I am not good at it.
Student #3: I do not need it, it is hard, and who cares?
Instructor:  Do you have children? Suppose your child comes and tells you, 

he hates school and does not to go to school anymore. What 
would you say to him?

Student #3: I will tell him, no discussion, You have to go to school.
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Instructor: Tough. But why does he have to attend school?
Student #3: Because it is good for him to study and get higher degrees.
Instructor:  Really, You belief that, really. (smile at him with strong eye 

contact) (The whole class burst into laughter)
Student #3: You made your point.
Instructor: Who likes math? Can you explain why?

Instructor Note:
(There will be few students willing to explain. That explanation can be used to show 
that fear or unpleasant emotion for mathematics can be conquer by studying and 
spending more time practicing exercises. Without imposing my idea, student stop, 
reflect, discuss and learn from each other. The advices from their peer are more 
valuable and make perfect sense to them. Transition from resistance to math learning 
to willingness to learn was made by appealing to the student’s conscience. Through 
the dialog, I was able to draw a connection between research act and education act.)

b) Drama and humour to increase student engagement:

To increase the participation during the class and facilitate active learning, I 
strongly encourage students to show their work on the blackboard. Sometimes 
students are hesitant for various reasons, either the student has no idea what to do 
or does not want to get embarrass for writing wrong answer. In these situations, I 
would sit with the student to guide him towards appropriate steps then ask to display 
the correct result on the blackboard. This way the student feels confident and also 
an important part of the class. Eventually students realize that “not going to the 
blackboard” is not an option but still I want them to volunteer for this task. I recall a 
conversation about this during the semester, which went as follows:

Instructor: who will volunteer to do the work?

Instructor Note:
(While asking that question, I was looking at a particular student called Mark, 
hoping he will agree. He came late and he was not working on the problem. In my 
opinion he needed a little push. So I decided to supply one).

Instructor:  Well class today is the male day. Each male student has to do at 
least one exercise.

Mark:  But professor yesterday was the male day since I did the work.
Instructor:  Yes you are absolutely correct but I have decided that today will 

be the male day also, tomorrow will be the female day. Today is 
a good day for males.

Instructor Note:
(Immediately four male students got up and started to work on the blackboard. 
I realize that male vs female competition (drama) is a good idea for the future 
classroom. Actually the next day I did not hear any objection from the females either. 
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It should be made crystal-clear that if they need help, I will be there to guide them 
(a handshake). Once they start, they will finish it with or without my help, no one 
leaves unfinished task. By the end of the semester this is the class norm, if I have an 
eye contact with a student, he/she will automatically get up and start working on the 
blackboard).

c) Class dialogue to creative Learning Community

Emotional support is essential in order to improve learning. Man is a social animal 
and needs the support, approval of his peers, family, friend and whole community 
in general. Our students need this type of community especially in a remedial 
mathematics class, which is supportive and have best interest for that individual. 
A learning community that have the same fear, concern and problems and therefore 
it understands and support the student, where students feel safe and open about 
their fear and have the opportunity to bond with each other. This community of 
students in a proper learning environment can move towards excellence under the 
watchful eye of the instructor. The strength of the bond between the teacher and 
student depends on instructor ability to convey his/her genuine concern for the 
students and a strong faith on their capabilities. The learning community can be 
form using mutual respect, common aim, similar interest, and well-being of all 
individual involved. Once again everyday drama, handshake are an excellent tools 
towards achieving this goal.

Instructor Note
(Students are working in a group of three and a female student (Sara) walks in late. 
She seems upset and talking to herself or may be to her friend (June) sitting next to 
her but very softly. I was unable to hear even though she sat in the first row. Finally 
one sentence caught my attention “What is the point of all this?” Once again I face 
two options: address or ignore the student’s behaviour. I decided to address it).

Instructor: What is the matter?
Sara:  remember yesterday I did not come to class because I have to 

repeat the MRI. Now the doctor is sending me for another test. 
He is suspecting a tumor. Anyway why should I study, I will be 
sick soon.

Instructor:  Since the doctor is not sure, so it could be a good new.
Sara: But he is suspecting something.
June: Did he say that you may have a tumour?
Sara: No.
June: So why worry. Enjoy today.
Instructor:  June is correct. Start worrying, when the doctor gives you a 

reason.
June:  Everything will be fine, let us do the work. Take out your 

notebook and I will help you.
Sara: All right if you say so.
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Instructor Note:
(Both started to work on the given problem and I did not hear the concern about the 
tumour that day. By showing my concern for her wellbeing, I open the dialog and June 
was able to convince Sara to enter into a supportive learning environment. Everyday 
real life drama cannot be ignored in an educational setting; we must provide both 
emotional and intellectual need of the student for their success, especially if student 
lacks family support structure.)

Reflection and Analysis of Classroom Interactions as a Cornerstone of TR

One of the goal of the TR/NYCity methodology of teaching research is the 
improvement of learning for both instructor and students. The improvement of 
learning can be maximized through constant conscience reflection and discussion or 
interaction. A teacher who quests for excellence in teaching and learning becomes a 
teacher researcher by analyzing each situation carefully and encourages the students 
to do the same through class dialogue. Guided Discovery class dialogue enables 
teacher to learn about each student’s level of understanding, so the Teacher can 
reflect and adjust the lesson to help student to cross ZPD. As the ultimate purpose of 
a teacher researcher is to minimize the gap between the research act and education act 
through reflection, analysis and making correction, i.e. the critical alignment from a 
teacher to a reflective practitioner of mathematics an essential tool in this transition 
is guided discovery in which the instructor helps students to transition from learning 
and to excellence by prodding them to create meaning through reflection upon and 
discussion of mathematics.

Case Study: Foundation for Creative Learning Environment

To influence student affect, to actually witness a transition from acceptance of 
failure to a motivated student requires hard work often without noticeable payback. 
That being said there are many success stories and each one carries within it the 
seeds of hope.

A pilot course in statistics for struggling students. The semester started as usual 
with enthusiasm to apply my new and improved ideas. One of the classes was a 
statistics class, a pilot class for the students who had not passed the CUNY exit 
from remediation exam. After several unsuccessful attempts to pass the examination, 
the college allowed them to take this pilot with built in tutorial i.e. a supplemental 
instruction class where the a peer leader is present during the entire 4.5 hours of 
instruction time and he/she conduct 1.5 additional hour without the instructor where 
group work is encouraged. Students close to graduation can be placed in this class.

I started with 15 students and after two weeks, two of the students stop coming 
and another student could not commit to this course because of his demanding job. 
Unfortunately, the students did not officially withdraw from the class, which is a 
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very common mistake among our students. The remaining 12 students were more 
or less serious about passing this class and had lots of interesting personalities. Two 
women with college age children of their own are mother figures, one female had 
a chip on her shoulder hence was frequently upset with the world. The rest were 
students with serious math issues but were motivated to pass the class. Mark was one 
of my student in this class.

Mark’s story. My classes are not lecture style, students are expect to participate 
during the lesson and display their answers on the blackboard. I try to create a 
learning environment where students are free to ask questions, tell me their story, 
jokes etc. a very informal classroom. This is a story of a student named “Mark”. 
I knew Mark from my previous class, which was at least 2 years ago. He had 
repeated two different levels of remedial mathematics courses several times. He is 
a jolly fellow who never quite learned to be a motivated student. He comes from a 
broken family and is the first person in his family to attend a college. Failure is a norm 
and he learned to accept it gladly. He lives in the moment. During the first month 
of the semester he came late more than 30 minutes every day without exception. 
Of course he had good excuses but once inside the classroom, he participated and 
usually gave correct answers.

In his mind, lateness should not be a problem because he did learn something in 
that short period of time that he attended class. He was happy to be able to solve one 
or two problems, and completely refused to think about what he had missed in the 
beginning of the class. As a result he failed the first two tests. Even though I remind 
him about his lateness every day in a joking way, I realized it was not working and 
decided to try a different tactics.

After the class, I talked to him about his plan for passing the class. Dialogue to 
influence student affect- motivation”

Instructor: Mark what is going on? Is everything okay with you?
Mark: Yes professor, why do you ask?
Instructor: “Do you want to pass this class?”
Mark: Yes of course.
Instructor: Good, what else can you do to achieve this?
Mark: Study?
Instructor: Great but start with coming to the class in time, okay.
Mark: Okay professor, I will do for you.
Instructor: Please do it for me. See you to tomorrow.

Instructor Note:
(I believe in creating a pleasant learning environment, where students are willing 
to listen to me and eventually learn something from me. Obviously this was not 
enough for Mark. I needed to show him how to be more effective, he was unable to 
see why it is important to be in time. In his mind, he can do math even if he is not on 
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time. I have to help him create a learning environment for himself which starts from 
the beginning of the class time. Mark is a good guy and he want to “do it for me”. 
I decided to use this emotion to help him.

To my disappointment, he did not show up next day but following day he comes 
only 20 minutes late. I decided to make a big deal out of it. I express my gladness 
that he decided to come and one of the mother-figure students even congratulated 
him on being 10 minutes earlier than his usual 30 minutes late. The entire class 
clapped.

Actually this class was very supportive of each other, not so much in the math 
topics but by giving encouragement to their fellow classmates. I call all this a class 
drama but I tolerate it because I have their attention and as soon as the drama ends, 
learning begins.

I never gave up on Mark, gently and constantly I reminded him from time to 
time the importance of punctuality and hard work etc. I was happy to see that Mark 
scored 75 in the third test. He was overjoyed and once again the entire class was 
happy for him. Actually before the third test, he announced that he is definitely going 
to pass).

After Class Dialogue of student beginning the transition from acceptance of failure 
to motivation:

Instructor: Mark, you passed examination, great work.
Mark: Did not I tell you that I will pass?
Instructor: I know, you kept your word.

Instructor Note:
(Now Mark felt confident and this time most of class did better. After receiving their 
grades there was a discussion about the importance of studying and completing 
the work. They compare, brag the number of hours spend on studying for this test. 
I was the silent listener and a happy Instructor. Once again this class drama is very 
beneficial even though it take few minutes of the precious class time).

Once I went to the class with a plan to cover a heavy topic and could not wait to 
start the class on time. With only six students I taught my lesson for 10 minutes and 
then assigned some work for them to complete in their in class. After several minutes 
I requested a volunteer to display their work on the blackboard. Mark volunteered 
but while standing in front facing the blackboard, it seems that he is trying to listen 
to some voice or noise and shook his head as if he is trying to shake a fly off his 
face. Then he looks back at the class and turned his head again towards the board. 
This action was repeated at least four times. The students were alarmed and asked 
him several times what is happening. Meanwhile another student Joe walked in and 
Mark and Joe burst into laughter. The class demanded the explanation. Joe is always 
on time except that day, so when Mark texted him to ask his whereabouts, Joe said 
he is in the class and that confused Mark completely. Anyway the class had a good 
laugh. I was getting frustrated that this class drama was taking too much of my 
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teaching time. After all this drama I continued the lesson and class agreed to wait 
additional 15 minutes to order to complete the material.

Instructor Note:
(This was the first time in my entire teaching career that it took almost 30 minutes in 
order to bring the whole class to a point where all were ready to learn. But once that 
perfect moment came, I was able to convince them to wait additional 15 minutes to 
finish my lesson and THEY WERE WILLING. I had their full attention. Patience and 
flexibility is important. Mark and three other students did work on the blackboard 
with the help of their classmates. It is not “what you say matters” but “how you say 
it” and may be “when you say it”).

By the end of the second month, students were comfortable trying new things and 
helping each other with math topics. Before the fourth test, I gave a package of 
review exercises. The college was closed for five days; therefore I reminded them 
I will collect it on the day of the fourth test and grade, so show the work even if 
there are 40 multiple choice questions. Most of the student returned the package 
with work shown except Mark. He insisted he had all work on separate paper at 
home and wanted an extension. I did not give him any answer but the next day he 
came to class with the papers and showed me the proof that he did finish his work 
I took his package but told him that I would not give him full credit.

Instructor Note:
(My intention was that student will do the work, well and Mark did it, he learned 
something and he passed the fourth exam with a 70. I was pleased but did not want 
him to relax and let down his effort).

During the last week, I requested the class to complete the student evaluation for 
this class. Mark informed me that he had done it already and I am a great professor. 
I laughed and told him he can prove that I am a great professor if he passes this 
class with good grade (since his average grade was close to “D” but actually he 
thought he was failing the class). He looked at the class and said, “Just because I fail 
does not mean you are a bad professor”. I cannot believe how comfortable he was to 
say that he may fail. He did work hard at the end of the semester. I administer five in-
class examinations and one departmental final examination and his final grade was 
“C”. I felt like I managed to reach him finally. The class did well, only one student 
failed since his job was too demanding and he did not come to the class most of the 
time.

TR Team comment. Persistence, patience, an interest in students and the ability to 
constantly push them towards their own excellence are essential components of the 
approach of Dias revealed in this case study of Mark whose excellence was that he 
passed a college level math course with a grade of C. The transition from acceptance 
of failure to motivated student is made difficult in the case of Mark by his self 
identify as a person who cannot pass mathematics.
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UNIT 3

TOOLS OF TEACHING-RESEARCH

INTRODUCTION

Vrunda Prabhu remarked at the end of Unit 2 that Teaching-Research, just like 
mathematics is not a spectator sport. Unit 3 develops that view in an effort to 
encourage colleagues, teachers of mathematics in schools and colleges to pick up 
the mantle of this unusually creative bisociative approach to teaching and research. 
Involvement in teaching-research is not particularly difficult especially taking into 
account again the comment of William J. Harrington, describing his work of a 
teacher-as-researcher in Laura R. Van Zoest (2006)

Teachers do informal research in their classrooms all the time. We try a new 
lesson activity, form of evaluation, seating arrangement, grouping of students, 
or style of teaching. We assess, reflect, modify, and try again, as we consider 
the perceived consequences of changes we made.

Unit 3 is seen as the bridge between our daily “informal research” and advanced 
teaching-research we have been developing and presenting. The first two 
chapters, Chapter 3.1 on the development of teaching-research questions and 
Chapter 3.2 on how to approach teaching experiment (TE), emphasize informality 
while addressing formal concepts of teaching-research question and of the teaching 
experiment leading to the more formal Chapter 3.3, which addresses issues of 
assessment.

The focus of these three chapters is on the consistency between the development 
of the teaching-research question, implementation and conduct of TE, and its 
assessment. The discussion here tends to be informal and originating primarily in 
the craft knowledge of the authors. We emphasize the consistency and coherence of 
the relationship between three components as the expression of TE’s integrity. This 
emphasis is especially important for practice based designs, which do not support 
itself by prior research (Chapter 1.1, Unit 4). We discuss the design and conduct 
of TE in the context of planning our next teaching experiment whose aim is to 
understand the process of facilitation Aha moments in a regular class of mathematics. 
Among the issues discussed we underline the central for us role of coordination of 
teaching practice with available research at the nodes of Analysis of the data and 
Refinements of intervention. It is based on the sense of discernment of similarities 
and differences.



UNIT 3

146

Chapter 3.3 on Qualitative and Quantitative Assessment breaks with that 
informality and provides the literature background for the teaching experiment 
(TE) emphasizing two of its aspects, cognitive and socio-cultural. The qualitative 
method is followed by a quantitative assessment approach explaining this subtle 
process of introducing quantitative measures of concept development into classroom 
investigations. The next Chapters 3.4–3.9 take the reader into a different direction, 
that is towards three powerful pedagogical approaches, each of which can be, in 
the hands of teacher-researchers, the generator of Stenhouse TR acts, that is those 
act which are “at once an educational act and a research act”: Teaching-Research 
interviews, Concept maps and Discovery method of teaching.

Whereas a clinical interview is a dialogue between a researcher and student, 
during which the researcher tries to understand student’s mathematical thinking 
and to uncover misconceptions, the teaching-research interviews are those clinical 
interviews that investigate and deal with student misconceptions and, as a result can 
improve pedagogy in the teacher-researcher’s class or in other classes.

In simpler words, teaching-research interviews not only investigate the state 
of understanding or mastery of mathematical procedures, the goal of research but 
also, having discovered student difficulty with a particular concept during the 
interview, they correct it or deal with it immediately as the expression of teacher’s 
responsibility. It is the unification of teaching and research in the context of an 
interview and as such, TR interview is a Stenhouse TR act. Eric Fuchs, the leading 
author of Chapter 3.4 presents the development of the method and its successes in 
dealing with particularly challenged students of mathematics in the context of an 
NSF grant.

Concept maps, the theme of three independent yet closely related Chapters 3.5–
3.8 have not been much discussed in Math. Education literature although their use 
in science and other disciplines has been extensive. Concept maps are an excellent 
artefacts addressing primarily conceptual understanding of mathematics. It can 
generate very precise Stenhouse TR acts by serving as the developmental didactic 
tool on one hand, and the assessment of conceptual development – on the other. Each 
section of the chapter throws a different didactic light upon that duality. For Prabhu 
Chapter 3.6, concept maps are the guides in her investigations of the structure of 
student ZPD while developing their schema of thinking, for Haiyue Chapter 3.7 they 
are the assessment tools of student conceptual development. Her survey of student 
appreciation of the methodology shows a significant support for concept maps as 
simultaneous teaching and research methodology. Roberto Catanuto Chapter 3.8 
utilizes them to create the bisociative framework out of the topic of the course and 
of student interests in search of the “hidden analogy” between the two, which will 
make the subject matter closer to student heart. He finds it in three iterations.

Chapter 3.9 on the Discovery method of teaching closes Unit 3 Tools of TR. It 
is our main instrument with the help of which a teacher researcher can investigate 
authentic mathematical thinking of a student. At the same time, it (and its variants 
like PBL) is the closest approximation to the condition of the “untutored learning” 
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pointed by Koestler as the environment where bisociation and its ultimate 
expression, Aha moment can usually take place (Chapter 1.1). Chapter 3.9 explores 
the background of the Discovery method, its cognitive and socio-cultural aspects 
and places it at the centre of Math wars and of the division between traditional and 
reform pedagogies. Here we see the Discovery method in terms independent of the 
division but in terms of the environment facilitating creativity of students and of 
teachers. 
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3.1. HOW TO ARRIVE AT A  
TEACHING-RESEARCH QUESTION?

INTRODUCTION

This chapter presents three different routes to the formulation of the teaching-
research (TR) questions practiced in the community of teacher-researchers of the 
Bronx. The differences and similarities among them are interesting. On the one hand, 
their natural development in the context of improving the general quality of teaching 
is described by Vrunda Prabhu, followed by William Baker’s discussion that carries 
a higher level of specification in the context of a large scale teaching experiment 
involving many students from different sections of the course in both colleges. On 
the other hand, the teaching-research questions formulated by Bronislaw Czarnocha, 
based on a colleague’s request, that address logical quantifiers, are presented in 
their outmost concreteness and particularity. It is interesting to note the different 
styles of teaching-research employed by each contributor. While Prabhu’s approach 
focuses on the depth of student involvement in the enquiry (“The enquiry will go 
as deep as the student will allow it…”) leading to the series of iteration cycles, 
each creating a different motivational environment such as A Handshake, Didactic 
Contract, Students as Partners in Learning and Mathematical Creativity,1 Baker 
seems to prefer approaching the formulation of teaching-research questions starting 
with the methodology (“I may have a general goal or area of interest in mind, with, 
perhaps, a clearly defined methodology of research, that I intend to narrow down to 
a yet undefined investigational focus”). On the other hand, Czarnocha favours the 
formulation of a teaching approach based on the preliminary analysis of classroom 
observations and the questions raised by this analysis. The three contributions are 
communicated in a relatively informal narrative style that better illuminates the train 
of thought of each contributing teacher-researcher.

THE PROCESS OF ARRIVING AT THE TEACHING-RESEARCH QUESTIONS

Vrunda Prabhu

In hindsight, I recognize that as an instructor of mathematics (as a graduate assistant, 
or a professor), I have always had teaching-research questions; however, it is only 
in the process of becoming a teacher-researcher that I understood the meaning of 
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those questions and their significance to my teaching practices and to my students’ 
learning processes. “What are teaching-research questions?”, “What is a teacher-
researcher?” and “What is teaching-research?” are the key questions that I want to 
address.

The teaching-research questions start from quite general questions arising 
obviously in the teaching, or in students’ exams, or other written work. These 
general questions get refined further and further until one arrives at the essence of 
the teaching-research questions. At the very essence, the teacher-researcher is in 
complete synchronized togetherness with the thinking of the students with whom 
the mathematical obstacle resides. In the process of refining the teaching-research 
questions from their original crude and general state, the teacher-researcher is deeply 
involved in the investigation of student thinking. The classroom atmosphere and the 
nature of the discourse at this stage is highly infused with and driven by the teacher-
researcher’s questioning mode. The questions within the teacher-researcher’s mind 
include “What is it that bothers the students?”, “What is not clear to them?”, “What 
did I say that sparked that particular comment from the student?” and “When I say 
such and such, how exactly are the students responding?” Any response is quickly 
seized and acted upon to discover its origin, and, if the student is able to explain 
the origin, the nature of the obstacle becomes less opaque to the teacher-researcher. 
The teacher-researcher develops exercises, activities and conversations designed to 
target the specific issues that he or she recognizes as the trouble areas, and then 
investigates students’ responses to the questioning inherent in the appropriately 
crafted activity, exercise or conversation. The dialog that has started between the 
teacher-researcher and the class, from the formation of the TR question in its first 
manifestation through its various stages of refinement, is a process whereby all 
participants, the teacher-researcher and the students, are actively learning about each 
other’s thinking. The teacher-researcher has the active responsibility of drawing in 
all participants without any loss of stature among all students. The goal is to create 
a supporting atmosphere in the class resembling that of a graduate student seminar 
where both faculty and students are free to express their views in a friendly, critical, 
and nurturing environment, where ideas are free to be expressed without fear.

Through the above process, the teacher-researcher becomes much more aware of 
the various required cognitive connections that are not being made by the students 
and the causes for the absence of these connections. Is it a deep obstacle stemming 
from a misunderstanding of basic mathematics topic? Is it an issue of absence of 
understanding of the language of the question? Is it a chronic misinterpretation of 
words and phrases? Is it the habit of not expressing clearly to oneself the meaning 
of the mathematics presented? The teaching-research dialogue leaves very little 
uncovered on either the part of the teacher-researcher herself/himself or that of 
the participating apprentice teacher-researchers since the classroom of the teacher-
researcher is gradually being transformed into a laboratory where every single 
person is in the process of enquiry. The enquiry will go as deep as the student will 
allow it, however, no student will be a silent participant, or a non-thinking member 



HOW TO ARRIVE AT A TEACHING-RESEARCH QUESTION?

151

of the experiment, anymore. Each one will be confronted with the set of questions 
that are, in many ways, particularly applicable to their own situation and these 
sets of questions will have non-empty intersections with those of the others in the 
teaching-research team.

The teaching-research question is the beginning of the teaching experiment and 
the introduction to the teaching-research methodology for a person new to the field. 
“Learning” about teaching-research from a book or an article without engaging in 
the actual practice is analogous to being a “spectator in a sport”. Just as we remind 
our students that mathematics is not a spectator sport, we must remind ourselves 
that teaching-research is not a spectator sport. It is a sport in which one learns strictly 
by doing. The teaching-research question in its most basic form is where the trip 
begins. Then, as we continually refine our question based on the knowledge we 
gain from our students, utilize what is available in the professional literature that is 
applicable to our situation, analyse our students’ work, design and redesign our own 
curricular interventions, we are actively conducting the next cycle of the teaching-
research methodology.

A PERSONAL NARRATIVE OF TEACHING RESEARCH FORMULATIONS

William Baker

For me, the idea of teaching-research grows through an organic relationship 
between teaching and educational research. By this, I mean that I rarely begin an 
investigation or a teaching-research cycle with a clearly defined research goal in 
mind. Instead, I may have a general goal or area of interest in mind, with, perhaps, 
a clearly defined methodology of research, that I intend to narrow down to as yet 
undefined investigational focus. For example, I may note a classroom interaction and 
how a student’s comment goes against the grain of all that I am trying to accomplish, 
and, yet, I later ponder whether the student’s spontaneous comment reveals some 
grain of truth that needs to be addressed in order to better reach and engage the 
students. I have noted how an entire class may have a personality that appreciates 
some aspect of a methodology and rejects or fights another, and, hence, I have had 
to alter my methodology of instruction midstream. Finally, reviewers’ comments, 
especially negative ones, have inspired me to synthesize different methods of 
educational research and broaden my perspective that, in turn, leads to a heightened 
awareness of my educational practice.

The first educational teaching experiment I was involved in focused on 
establishing a learning community with English as a second Language (ESL) students 
who needed Elementary Algebra skills. At a bilingual English-Spanish institution, 
whose stated mission involves assisting Spanish speaking immigrants to obtain an 
Associate’s Degree, it was noticed that many students were admitted to the college 
requiring an intermediate level of ESL and elementary algebra instruction. Thus, 
these courses were linked together by the fact that the same students were taking 
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both courses, and, naturally, the instructors cooperated with each other in lesson and 
curriculum planning. The description of these teaching experiments together with 
their analyses can be found in Chapters 4.5 and 5.1.

Here, I am presenting the development of my teaching-research question 
concerned with student development and mastery of the concept of fractions. This 
research question grew organically out of my interest in the relationship between 
the use of language, especially written language, in the classroom, and mathematics 
proficiency that itself was a product of an earlier work. The data obtained from 
this teaching-research cycle showed that, for the partial tests on whole numbers, 
decimals, proportion and percent, the two independent variables, use of language and 
mathematics proficiency, were both significant and, thus, contributed significantly in 
predicting student performance on application problems during the comprehensive 
final exam. On the other hand, the written thought on the partial exam for fractions 
did not add significantly to understanding student performance.

The question that arose was, “Why are fractions different?” Why is it that the 
ability to abstract, in written form, the relevant strategy and to outline steps students 
need to solve a problem does not correlate with performance when the problems 
have a fraction while such a correlation was clearly evident for problems involving 
decimals, whole numbers and other non-fractional components. The explanation 
of Sfard and Linchevski (1994) about how understanding fractions represents a 
transition from operational to structural thought provides a good foundation for 
my observation of students’ difficulties with such problems (Chapter 4.1). These 
authors focus on the historical transition from arithmetic to algebra, and concentrate 
on the operation associated with fractions, or the initial view of fractions, that 
is, the quotient of whole numbers, and, more generally, integers, as the “primary 
process” (p. 97). The structural understanding of fractions comes about through 
processes different and separate from those of whole numbers. As an instructor of 
adult students who require a transition through this cognitive divide on the way 
to college level mathematics, I am witness to frequent expressions of dislike, fear 
and dread of working with fractions resulting in the inability to solve one or two 
step application problems that contain fractions. This very common and familiar 
observation suggests that the structural complexity of the fraction concept overloads 
students’ intuitive cognitive processes. For example, most students readily solve a 
rate problem such as:

Juan drove 60 miles per hour for 4 h ours, how far did he drive?

Their intuition while working with a primary process involving whole numbers is, 
in the words of Vygotsky, “spontaneous,” in the sense that it requires little conscious 
reflection.	However,	the	story	is	quite	different	when	students	are	presented	with	a	
problem like:

Juan drove 60 miles per hour (mph) for 4 2
5

 hours, how far did he drive?
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Given this structurally identical problem, students who get this problem incorrect 
frequently convert the mixed number to an improper fraction and then give up, or 
guess the appropriate operation. Their focus is on applying the rules (“secondary 
processes”) relating to the fraction concept and not on the structure of the problem. 
Their intuitive understanding of the rate problem is temporarily misplaced. Students 
who get this problem correct often convert the fraction into a decimal. Let us now 
consider this problem:

Tanisha has to drive 6 miles to school. If she had already driven 4 5
9

 miles how 
much farther is the school?

Given a problem like the one above, these same students will again convert the 
mixed number into an improper fraction, and then, once again, guess the operation, 
usually choosing division or multiplication because these operations involve less 
structure than subtraction. Thus, when dealing with fractions, especially those that 
cannot be readily converted to a decimal, students end up choosing an operation for 
solving the problem depending upon which of the fraction operations is easiest as 
opposed to their intuitive understanding of the problem structure.

The next group of teaching-research cycles focused on statistical analyses 
of student solutions of exercises with fraction content in pre-algebra towards 
a goal of reflecting upon an existing educational model describing how students 
learn fractions based upon the work of Kieren (1976). In this model, the primary 
understanding of the fraction concept begins with partitioning, or the part-whole 
sub-construct, and this sub-construct is built upon to develop an understanding of 
fractions as ratios, operators, quotients and objects that have a placement on the 
number line addressing the concept of “measure.”

In the first cycle of this teaching-research experiment we followed the work of 
Charalambous and Pitta-Pantazi (2007) who employed statistical analysis of problem 
sets designed to evaluate student proficiency with the sub-constructs of Kieren’s 
model and the corresponding procedures that were added to extend this model by 
Behr, Lesh, Post and Silver (1983). The work of Charalambous and Pitta-Pantazi 
(2007) was introduced into work of the the teaching-research team in the context of 
the Community College Collaborative Grant (C3IRG/CUNY) , “Fraction Grid and 
Fraction Domino: Investigating Effectiveness at Community Colleges of the Bronx” 
awarded to V. Prabhu, B. Czarnocha and James Watson in 2007. Charalambous 
and Pitta-Pantazi used their quantitative analysis to verify Kieren’s model as well 
as the extensions described by Behr et al. Our work, on the other hand, verified 
Kieren’s underlying hypothesis that the part-whole sub-construct is the foundation 
for the other fraction sub-constructs; it demonstrated a secondary layering of these 
sub-constructs. Thus, the foundational knowledge of the part-whole model was the 
most readily understood conceptual representation of fractions used by students to 
understand the other representations of fractions. Directly below this sub-construct 
were the ratio and operator sub-constructs. Finally, underneath the ratio and operator 
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interpretations lie the most difficult sub-constructs of quotient and measure, the 
meanings of which are derived from all of the above mentioned constructs. These 
subtle details in our understanding of student schema were published in Baker et al. 
(2009) and in Baker and Czarnocha (2013).

In the second cycle we used quantitative data from the problem set of 
Charalambous and Pitta-Pantazi (2007) to study and interpret the Behr et al. 
(1983) extension of Kieren’s fraction model through the lens of the procedural and 
conceptual knowledge divide. These results indicate that student learning builds 
upon previous knowledge of conceptual or procedural knowledge to learn more 
difficult material. In particular, foundational knowledge for learning new concepts 
and procedures is not restricted to conceptual knowledge and, thus, it appears that 
students use whatever knowledge has already been obtained when trying to solve 
problems containing new information. This quantitative analysis by, Baker et al. 
(2012) suggests that both of the two educational models outlined by Haapasalo 
and Kadijevich (2000) are present in student learning. The first of these views 
foundational conceptual knowledge as the pathway to procedural knowledge 
(Educational Approach), and the second, converse model, presents procedural 
actions as the building blocks that are reflected upon and internalized to form new 
conceptual knowledge (Developmental Approach). Both of these converse models 
have their place in student learning, depending upon the relationship between the 
corresponding procedural and conceptual knowledge.

At about this time we began work on a grant for problem-solving and my 
interest shifted to (i) how can students use their knowledge of fractions to assist in 
proportional reasoning, that is, problem-solving with proportions, and (ii) Vrunda 
Prabhu’s strong support of Discovery Learning in the classroom environment 
founded upon Koestler’s Theory of Creativity, and her belief that students’ creativity 
should be supported to engage them in the learning process. This path shifted my 
attention away from the sequence in which curricula should be presented toward 
reflections upon my classroom learning environment. Although the concept 
that instructors should teach less and allow students to work and discover in the 
classroom was not entirely in my comfort zone, I realized that the traditional method 
of modelling correct problem-solving behaviour does not translate into students with 
good problem-solving skills. In fact, I had become increasingly convinced that only 
students assisted by such a methodology are already the best students. In contrast, 
the students at the lower, or more basic, portion of the spectrum often demonstrate a 
passivity to learning mathematics, and strongly prefer to simply watch the instructor 
or some expert tutor show them correct solutions. On the one hand, these students 
need much structure when left on their own with a computer software program. 
They can frequently be observed surfing the net behind the instructor’s back; when 
asked to work in groups they are observed having intense social debates about life’s 
many deep and sophisticated problems, and, yet, mathematics sadly was not on their 
agenda. On the other hand, they appear to have learned to be passive in mathematics 
courses and are reluctant to take up the pen and write notes; when given a problem 
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to solve they may spend the entire time slowly rewriting the problem from the board 
rather than engage in problem-solving. Therefore, modelling and remodelling of 
correct problem-solving behaviour by the instructor can be seen as allowing these 
students to disengage from the cognitive thinking required for active participation 
in mathematics.

In one teaching-research cycle within the problem-solving grant, we focused 
on student intuition, especially related to Kieren’s fraction sub-constructs, and 
how such intuition led to proportional reasoning skills (Doyle et al., 2016). The 
methodology of this research was a hybrid of both quantitative and qualitative 
reasoning designed to trace a statistical path for a hypothetical student learning 
trajectory towards proportional reasoning, and then observe and describe student 
reasoning within that trajectory via qualitative analyses. In this work, teaching-
research that employs an effort towards the use of Koestler’s Triptych with 
humour, guided discovery and a focus on student participation and creativity in the 
classroom dialogue is investigated. In these dialogues, bisociation is considered as 
a mechanism through which students make analogies, streamline and coordinate 
processes, promoting the development of the underlying concepts that support the 
associated analogy or generalization.

HOW DOES AN IDEA FOR A TEACHING-RESEARCH QUESTION ARISE?

Bronislaw Czarnocha

A colleague of mine from another community college at CUNY had sent a fascinating 
student response to the homework assignment in a freshman calculus course to try 
in my classroom. My colleague wanted, out of professional curiosity, to check how 
students in his class of calculus would relate to a simple logical argument. His 
assignment was:

Are the following arguments valid? Explain.

(a) All raining days are cloudy.
 Today is not cloudy.
 Today is not raining.

(b) All banana trees have green leaves.
 That plant has green leaves.
 That plant is a banana tree.

(c) Some students go to the beach for spring break.
 I am a student.
 I go to the beach for spring break.

A fascinating response of a student, call him or her S1, is shown below this 
paragraph. It is fascinating because the student did not notice the internal structure 
of the argument; instead he or she had assessed the validity of each particular 
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statement within each argument. Moreover, the validation discussed the empirical, 
everyday meaning of statements. Thus, in the first line, the student does not see “All 
raining days are cloudy” as part of the argument composed of three sentences but he 
or she views it as an individual statement whose truth has to be checked, opposed to 
being taken for granted as the assumption of the total argument. A similar approach 
is observed for all components for each of the three arguments.

My immediate question, from the teacher’s point of view, was, “How can I 
guide that student toward the correct view of the total argument, and to assessing 
its validity from its internal structure?” Moreover, how am I going to achieve this in 
a calculus course that, by the standard design, doesn’t address logical issues as part 
of instruction?

As a researcher I had several additional questions: Was this an isolated incident, 
or does it represent a common misconception? What would other student responses 
be, and do these responses reveal some pattern that could help me, as a teacher, to 
find the proper route of instruction for this particular student? Is there anything in the 
literature that would help me understand the nature of this initial response?

I assigned this problem using the same three arguments in my calculus class 
and I received yet another response of the same type. This responses, however, 
came from quite a good student, call him or her S2. This suggested that I might 
be witnessing a more general phenomenon than simply an idiosyncratic error of a 
particular student.

(a) All raining days are cloudy.

• S1:  Yes, the statement is valid; all raining days are cloudy. If it is raining there 
should be clouds, but that doesn’t mean every cloudy days are raining.

• S2: No, because it can be raining when it’s sunny.

(b) Today is not cloudy.

• S1:  We often have no cloudy days in summer. But sometimes the weather is cloudy 
or raining. Today is cloudy, so statement is invalid.

• S2: Yes, because today might be sunny.

(c) Today is not raining.

• S1:  Today is cloudy but not raining. Not every cloudy weather rains. So today is 
not raining. The argument is right.

• S2: Yes, because today might be sunny.

(a) All banana trees have green leaves.

• S1:  Yes, this argument is true. All banana trees have green leaves. Bananas grow 
in places where it is summer. All trees have green leaves in summer, so banana 
tree has green leaves either.

• S2: no, some might have other leaves.
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(b) That plant has green leaves.
• S1:  Not every plant has green leaves. Our nature has colourful plants. So this 

statement is invalid.
• S2: Yes, that statement can be true.

(c) That plant is a banana tree.

• S1:  We cannot say that every plant is a banana tree .We can find thousands of 
plants in the world. This statement is not true.

• S2: The plant can be a banana tree.

(a) Some students go to the beach in spring break.

• S1:  Yes, this argument can be valid for some students. Spring break is kind of 
the beginning of summer. So some students can go to beach and enjoy their 
spring break.

• S2: This is valid because it’s possible.

(b) I am a student.

• S1: I study Computer Science at College so I’m a student.

(c) I go to the beach in spring break.
• S1:  I like to be with my parent in vacations. Spring break is a kind of vacations 

for students who study college. I don’t go to beach in spring break. But that 
doesn’t mean that “I never go to beach.”

The correct approach and solution was provided by another student in my class, S3:

(a) All raining days are cloudy.
 Today is not cloudy.
 Today is not raining.

• S3:  This statement is valid. If ALL rainy days are cloudy, then it can’t be raining, 
if it is not cloudy.

(b) All banana trees have green leaves.
 That plant has green leaves.
 That plant is a banana tree.

• S3:  This statement is not valid. All banana trees have green leaves, but not all 
plants with green trees are banana trees. So a plant with green leaves can be 
other than banana tree.

(c) Some students go to the beach for spring break.
 I am a student.
 I go to the beach for spring break.

• S3:  This statement is not valid. Some students go to the beach in Spring break, not 
all students go to the beach in Spring break.
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I begin to notice what is happening as I am learning from those of my students 
who responded correctly. They clearly understand the distinction between “all” and 
“some.” As student S3 says, “If all raining days are cloudy, then it can’t be raining if 
it is not cloudy.” In other words, if a day is not cloudy then it can’t be raining. This is 
the strength of the assertion that “All raining days are cloudy.” Hence, if “all raining 
days are cloudy,” the case mentioned by student S2, “it can rain when it’s sunny,” 
cannot exist.

In the second argument, S3 notices that even though we describe “all” banana 
trees, “all banana trees” are only “some” trees amongst all the trees with green leaves. 
The third argument is also resolved by understanding the difference and relationship 
between “some” and “all”.

The observations above are very useful and are the beginning of the creation of 
an interesting teaching-research question. “All” and “some” are logical quantifiers. 
It is known that students have problems understanding their meaning, those 
statements that include them and the associated operations. I noticed this problem 
on another occasion: when I was looking at my students’ ability to properly negate 
simple quantified statements. In fact, students appeared to have much more trouble 
with negating statements with the general quantifier “all” than with the existential 
one “some”.

Now, the questions from the teacher in me to the researcher in me are “How do 
I instruct students S1 and S2 so that they can understand the arguments in the same 
way as student S3? Can it be done? How does the understanding of an argument 
develop?” If I can answer those questions, then I can lead any student along the best 
path for learning the meaning and use of logical quantifiers.

The researcher in me responds, “If there is a path of learning that starts where the 
students S1 and S2 are, then it’s quite probable that there should be mixed responses of 
students containing both understanding of the abstract internal relationships within 
the argument, as well as particular localized meaning of its components.”

There was one response of such a mixed nature amongst the responses of my 
colleague’s students:

(a) All raining days are cloudy.
 Today is not cloudy.
 Today is not raining.

• S4:  The argument is valid. Nearly almost every day is cloudy, and if it is not 
cloudy, usually there is no rain. Even though there are some exceptions, we 
can conclude that today is not raining because it’s not clouded.

It is apparent that this student is still relying on a comparison with a real 
everyday weather situation. However, at the same, the student is arriving at the 
significance of the “all” quantifier with the help of simple statistical reasoning. In my 
opinion, the most important observation here is that S4 sees the internal structure of 
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the argument. It’s possible that seeing this structure allows him or her to understand 
the importance and the power of the “All raining days are cloudy” phrase.

I believe that my instructional path has to have two steps to serve two consecutive 
student needs. First, a student has to arrive at an understanding of the whole structure 
of the argument, and, second, the student has to clearly understand the relationships 
within this structure to be able to draw the correct conclusion. This will be my 
instructional hypothesis.

Before I proceed, I need to consider whether it’s possible to grasp the totality 
of the internal structure and, at the same time, not to understand the particular 
relationships between its components? Maybe, the grasp of the totality automatically 
forces the person toward the correct understanding.

The response of student S5 below indicates that simply grasping the existence of 
the argument’s structure does not lead to the desired detailed understanding of that 
structure:

(a) All raining days are cloudy.
 Today is not cloudy.
 Today is not raining.

• S5: These arguments are not valid because it don’t have the same meaning.

(b) All banana trees have green leaves.
 That plant has green leaves.
 That plant is a banana tree.

• S5: These arguments are valid because they are all related.

(c) Some students go to the beach for spring break.
 I am a student.
 I go to the beach for spring break.

• S5: These arguments are valid because one argument leads to another.

This supports my original hypothesis of the need for a two-step instruction; the 
first step is aimed at assisting the student in reaching the grasp of the totality of the 
argument, and, the second step serves to clarify the argument’s inner inter-component 
relationships. Let us now go back to my research laboratory – my classroom.

The teaching experiment suggested by these reflections has not been realized as 
yet due to the curricular organization of the department’s course offerings. However, 
several years after these notes were made, while teaching an Introduction to College 
Mathematics course, the first college-level mathematics course for liberal arts 
students, the difficulties with the quantifiers “all” and “some” were again revealed 
during the introduction to the Logic component of the course. In this instance the 
students were not only expected to understand the roles of the quantifiers but also 
the associated negation operation. The difficulties were further exacerbated by 
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some language barriers with which many Hostos bilingual students, whose primary 
speaking language is not English, are faced with. To address the issues that Hostos 
students were having with logical quantifiers, the investigation titled Negation 
of Universal and Existential Quantifiers Revisited (Ye & Czarnocha, 2012) was 
conceived. The associated teaching-research question was composed, as always, of 
two components:

1. What are the students’ difficulties in understanding negation of quantified 
propositions in the bilingual context?

2. What are the possible routes of improvement of students’ understanding and 
mastery of the negation of quantified propositions?

NOTE

1 Each of these motivational environments is discussed in more detail in Unit 2.
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BRONISLAW CZARNOCHA

3.2. HOW TO APPROACH A TEACHING 
EXPERIMENT?

TEACHING EXPERIMENT AND TR CYCLE

The general principles of TR Design, and therefore of classroom teaching 
experiments conducted by teacher-researchers are discussed in the next chapter as 
well as in Unit 4. The aim of this chapter is to discuss the type of questions and 
decisions that a teacher-researcher must take in the context of daily teaching and 
classroom research, the proverbial “nuts and bolts” issues of the design and conduct 
of Teaching Experment (TE).

The Teaching Experiment is imbedded into the TR Cycle. We start with diagnosis 
of our students knowledge and/or attitudes as the initial benchmark for our TE. Of 
course, every teacher knows how to construct a diagnostic test, however here we 
refine the standard methods a bit, so that the questions we ask can give as precise 
information as possible about that particular concept whose learning improvement 
we want to accomplish. Simlarly, in the case we are interested in affective changes, 
we design a survey or use that scale assessment which best corresponds to the 
attitudes we would like impact. Whereas designing a particular TE, we have good 
idea what aspects of learning we want to address in general, the diagnostic test gives 
us more precise information about the particular cohort of students, both as a cohort 
and as different individuals. Next we need to design an intervention, which we hope 
will efectuate learning improvement we wish to facilitate. For example, as a result 
of reflection while writing this book, our TR team of the Bronx, the community 
of teacher-researchers came to the conclusion that the next neccessary step in the 
design of Creative Learning Environment (CLE) is to investigate the process of 
facilitation of Aha moments in the classroom with the help of Koestler’s theory and 
their possible impact upon student cognitive and affective dimensions. Diagnosis 
of our students’ motivation and attitudes to mathematics can be obtained with the 
help of Motivated Strategies Learning Questionnaire (MSLQ) Prabhu used in her 
experiment (Chapter 2.4). The assessment of students’ cognitive growth should cast 
a wide net because it is hard to predict before the experiment where and how the 
impact of the acts of creation will be registered in students’ mathematical knowledge.
Whatever examples we will design, we will keep them for the refinements of next 
iterations. They become our artefacts with the help of which we will be able to 
generalize our work to mathematics classrooms with other student cohorts of similar 
characteristics (Chapter 2.1).
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The question of design of intervention as well as its implementation at the next 
cycle is interesting and challenging. Using TR experiments to support CLE one can 
not cause the acts of creation that is Aha moments, one can only facilitate their 
occurrence; maybe one can increase their frequency. A very special feature of the 
Koetler’s definition “a spontaneous leap of insight which connects previously 
unconnected matrices of experience” (p. 45) is that it points to previously unconnected 
matrices of experience as forming the cognitive structure of the creative environment, 
which we call a bisociative framework. We can use that hint in choosing the parts of 
the curriculum where such bisociative framework is already given creating higher 
possibility for the Aha moment. The second hint provided by that theory for us, 
teachers, is the word analogy” or better, “a hidden analogy” which is grasped at 
the Aha moment. My students need to be good at grasping analogies and that need 
becomes my first guiding idea for the type of mathematical examples I need to design 
to develop this skill. A good example are Prabhu’s triptych exercises in Chapter 2.4. 
The third direction pointed by the discussion of bisociativity is problem solving 
approach because, as Baker argues in Chapter 4.1, the two unconnected matrices 
for a problem solver is (1) the matrix of solver’s experience till encountering the 
problem, and (2) the matrix of the encountered problem. These two create the 
bisociative framework around problem solving often ripe with possibilities for Aha 
moments.

There is also work to do in the affective dimension. Our expectation, based on 
Prabhu preliminary results in Chapter 2.4 is that increased number of Aha moments 
in the classroom will impact positively upon students negative habits in parallel with 
Kostler’s assertion: The act of creation is the act of liberation. The defeat of habit 
by originality (p. 96). We are counting on the positive impact of Aha moments as 
reported in the literature (Liljedahl, 2003) to defeat habits of the type “I am not good 
in mathematics “or “thinking about mathematics tires me “in other words we want 
our students to be able to welcome the benefit of their own creativity. That means 
that we have to create learning environment which also welcomes mathematical 
creativity. And that leads directly to the role of classroom discourse, especially in 
the context of the Discovery method during which we would like not only to be able 
to facilitate the discovery but also become more clear about the process of thinking 
that led to it. We see here how the cognitive/affective duality of the Aha moment 
(Chapter 1.1) forces the transformation of pedagogy along both dimensions. The 
central method in the search will be facilitation, that is creation of such a learning 
environment around our students that can promote their search for hidden analogies. 
Facilitation is the process similar to scaffolding, except that it has to be more precise 
so as to never limit too much student freedom of their authentic grasps, aha moments, 
but to focus their attention on where the search for illumination by the hidden analogy 
might be more effective (Chapter 4.1). We’ll be using here Discovery method as the 
approximation to Koestler’s condition of “untutored learning “when according to 
him, individual, subjective bisociations can take place.
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Such facilitating Socrates dialogues of which many one can encounter within 
our TR reports become the central pedagogical tool in the classroom, and, in our 
experience they have been the best millieu when Aha moments have taken place in 
our classrooms. For a teacher-researcher, Socratic dialogues can become Stenhouse 
TR acts because, on one hand they, as educational acts, enable student to make 
progress in his/her understanding, and on the other, they can show the structure of 
thinking that led to that progress, as research acts. Consequently, we will have two 
techniques of facilitation, teaching sequences of examples and TR Socratic dialogues 
within the discourse of the classroom. However, we also know, we will feel the 
pressure of time because, of course, facilitating dialogues takes more class time that 
a lecture and our syllabi are already overcrowded and overstretched; one has to 
be very careful with the full lesson plan not to get lost in investigations of student 
thinking and learning without “covering” the material. Clearly one can’t spend too 
much of the course’s syllabus time so one have to be very precise in organization of 
teaching.One either will have to limit facilitated searches to a one class/week cycles 
or to focus on certain areas of the course only.

However we can see already the thread of the relationship that starts at the 
formulation of the TR question and through design and implementation of TE takes 
one straight into assessment creating at the same a conceptual consistency and 
coherence of the design,1 the theme of the next section.

Internal Consistency and Coherence of TE

The central quality of the design, which assures the internal consistency of the TE 
is the relationship between the TR question, the nature of new intervention and 
methods of assessment. This relationship provides reliable answers to the research 
questions asked. In simple words this means that (1) what you implement during the 
intervention has the opportunity to answer the question and that (2) the method of 
assessment can assert to what degree the data, quantitative or qualitative, answer that 
question. Both consistency and coherence are especially important in TR practice 
based designs when there is no theory nor previously done research to guide the 
teacher-researcher.

That means, that while one designs a teaching experiment, one must decide

1. what type of intervention may respond to the TR question?
2. where could there possibly be an impact of your experimental intervention in 

student thinking, and then
3. one needs to design an assessment tool that would allow to measure that impact.

All of this has to be done in the context of designing the intervention itself, what 
kind of pedagogy will you institute, what activities and/or new assignments will 
you use and what impact will you be aiming for. That means that the teaching-
research question and the related methodology during the intervention as well as 
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its assessment have to be designed and developed together. A close example of the 
process demonstrating its step-by-step design is the LELT in Chapter 4.8.

The conjectural nature of the TR/NYCity frameworks as Design Research 
(Chapter 1.1, Intro Unit 4) allows for the process of mutual accommodation of these 
three TE components within several TR cycles. That suggests that final fit between 
them can be obtained sometimes after their completion, not in advance (Chapters 5.1 
and 4.9). We discuss this issue below more extensively.

Priori and Posteriori Design of TE

One can approach the TE design from two ends of its duration: planning it from the 
beginning (priori method) or formulating it out of the revealed patterns of practice 
after the full teaching experiment was conducted (posteriori method). Mixed method 
have also been realized and observed. The priori and posteriori classification 
is closely related to the division of teaching experiments into exploratory and 
affirmative. In the exploratory design, we don’t know precisely what will be and 
where to look for the desired changes, or more precisely, what aspect of learning 
will reach the improvement we hope for. Such TE designs are usually practice based, 
here ESL/Algebra TE of Chapter 5.1 or Calculus modelling TE of Chapter 4.9. Here 
the full design of the teaching experiment together with the needed precision of the 
TR questions reveals itself after TE is completed. On the other hand, the affirmative 
designs are designed to check (confirm or reject) a precise and formulated a priori 
hypothesis.

A clear design of the priori method in this volume is Chapter 4.10 where the 
strong theory-based design of integrating learning of algebra with learning of 
different forms of writing has been fully developed, including teaching sequences, 
in advance of the teaching experiment. On the other hand, Chapter 4.9 describes 
posteriori design for the concept of Riemann integration. In this type of TE, the 
teacher-researcher moves slowly, one step at a time while transforming the 
instruction at several critical dimensions. At each different assignment of that course 
to the teacher, the course becomes the subsequent iteration of that particular TE. 
The designs of activities as well as of pedagogy are transformed at each Analysis 
and Redesign nodes of the TR cycle. They are redesigned so as to better facilitate 
educational aim of the teacher. One of such moments occurred in Chapter 4.9 when 
the teacher gave up on instruction through traditional method of limits of upper 
and lower sums of rectangles in favour of approximating areas by sequences of 
upper rectangles and of trapezoids. Chapter 5.1, on the other hand describes a mixed 
approach, where the pedagogy of design in creating large educational spaces within 
classroom for the interaction of English language and algebra was not very clear 
beyond the close interaction of the syllabi and language. As a result, the instructors, 
teacher-researchers they didn’t know where the possible observable impact of that 
interaction can be found. Consequently, the teaching-research question of that TE 
was incompletely formulated, and it acquired its full meaning only at the completion 
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of the experiment and collected data. It resulted in a very interesting hypothesis of 
existence of the relative Zone of Proximal Development (rZPD) between ESL and 
algebra. Here the data must have been collected along as many as possible tracks 
(a wide net) of assessment to catch possible variations, which were actually caught 
in a long term English essay assignments of the experimental cohort. Such a TR 
“fishing expedition” is very exciting and involves very creative teaching but has to 
be conducted with the utmost attention to the impact upon students, and teacher-
researcher’s craft knowledge is the primary source for the ethical decisions involved 
in such posteriori designs.

Incorporation of Teaching Experiments (TE) or Teaching-Research Investigations 
(TRI) into Classroom Curriculum

One of the central questions for the TE design is how to incorporate the design 
into the standard curriculum of the classroom, the process of “covering” required 
material and, often the standard type of exams imposed either by the central 
authorities or a policy of the department. The process of utilizing standardized 
final exam in conjunction with teacher-designed semeter tests and homework for 
the quantitative data has been discussed by Baker in Chapter 3.3. As TR/NYCity 
embraces both the issue of cognitive as well as affective development, the TE 
design may involve the change in pedagogy from one the teacher is accustomed to, 
to the new approach dictated by affective requirements of that design. Earlier we 
discussed the example of how the cognitive/affective duality dictates the structure 
of the creative learning environment in which creativity of Aha moments is well 
received.

Thus for example, Unit 2, Creative Learning Environment describes a series of 
teaching experiments, whose aim was to investigate formulation of a new didactic 
contract focused on students’ taking responsibility for their learning through 
their change of attitude to mathematics. Consequently, Unit 2 concentrated on 
the transformation of affective dimension of instruction based on facilitation 
of student creativity and it involved a corresponding transformation of teacher’s 
pedagogy througout the whole course. The transformation of the pedagogy of the 
course was also involved in the English as a Second Language (ESL)/Mathematics 
teaching experiment of Chapter 5.1, however it concerned primarily the cognitive 
dimension of learning. The basic design of that teaching experiment required 
incorporation of some methods of teaching English language into mathematics 
classroom simultaneously with incorporation of some mathematics concepts into 
ESL classroom, both to enable intensive interaction between the two subjects. 
It also required the transformation of instruction by both participating instructors 
throughout the whole semester long course.

More often than not, however, classroom teaching research experiments involve 
certain limited components of classroom syllabus. For example, the teaching 
experiment investigating understanding of single quantification by students of the 
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first college level course Introduction to College Mathematics for Liberal Arts 
majors (Czarnocha & Ye, 2012) – the realization of the research question formulated 
in Chapter 3.1 involved just one theme of the course. The change of instruction 
was implemented only in 3–5 of its classes. Since, however, the topic has been 
scheduled to be taught only during 2 class meetings, the conduct of this TE required 
reorganization of the larger part of the syllabus in order to free additional class time, 
without the negative impact on learning other topics of the course. The pressure of 
time forced upon the teacher-researcher by the need “to cover” the syllabus’ material 
has been mentioned above.

Teaching and Collection of Data

Teaching during the conduct of TE in your classroom is slightly different than in a 
regular classroom The difference is in the increased focus both on your own didactic 
choices and actions as well as on student responses – ultimately you would like 
your hypothesis or conjecture to be fulfilled, and to the degree to which the results 
depend on teacher’s performance, one certainly wants to impact it by increased 
awareness of events in the classroom. Increased awareness is also necessary as it 
gives us the opportunity to react if the classroom discourse and learning deviate 
significantly from one’s aims. Such moments are very valuable in creating a 
bisociative framework in the classroom.

During the run of the TR Cycle the data are usually hidden in our classroom 
assignments, tests, quizzes and specially designed assignments to ascertain students’ 
understanding and mastery of concepts addressed by our TE. The reliance solely on 
standard tests is possible but not very useful in terms of systematic improvement 
of learning. Ultimately, we are interested in the holistic improvement of learning 
of what involves both conceptual understanding and procedural mastery. However, 
in majority of the cases, student learning outcomes and related final exams in 
mathematics assess primarily procedural knowledge and to tease out the conceptual 
change from them is difficult, but not impossible. Chapter 4.10 presents the method 
designed by Baker who employed quantitative analysis, using the grades of partial 
exams (tests during the semester), and conceptual writing exercises together with 
grades on homework writing assignments as independent variables, while the results 
on the final – as dependent variables. To cast the wide net for assessment of cognitive 
learning both quantitative and qualitative analysis are needed. And that brings us to 
TR interviews (Chapter 3.4), one of the primary tools for the collection of qualitative 
data. The difference between standard clinical interviews and TR interviews is 
that the latter must also teach to improve learning of the subject, in agreement 
with the definition of TR/NYCity model. Thus TR interviews can be conducted 
outside of the class for example with the smart board equipment which offers the 
possibility of audio and video collection of data, or they can be conducted directly 
in the class. It’s not difficult to incorporate TR interviews into classroom discourse. 
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In many situations these investigative dialogues occur spontaneously; they have to 
be noticed and their text sketched into the TR Notebook as soon as possible after the 
dialogue. The role of TR Notebook has been explored by Prabhu and Nunez (2008). 
The second method of collecting qualitative data is to analyse student responses, 
misconceptions with the help of a theory of learning. However, before we can use a 
theory of learning we have to coordinate that theory with events in our classroom. 
This is the moment when we can utilize JiTR consultation if our craft knowledge 
is not helpful. It can be used to understand a particular student misconception or to 
interpret larger qualitative data from the class.

JiTR coordination means that we have recognized the components of classroom 
situation within the possible theory and/or identifed theoretical terms of the theory 
within classroom work. Such a process can be a bisociative process because just at 
this junction we see the attempt to connect two “matrices” of experience of Koestler, 
the learning theory and classroom practice which were not connected till the conduct 
of TE. Here is the possibility of the creative moment for the teacher, the Aha moment 
that might reveal the hidden analogy between the two – exactly the process whose 
example is documented in Chapter 2.4. Once that process of identification has taken 
place and impacted our thinking technology (Chapter 1.1) we can use the terms 
suggested by the theory to orient oneself anew in the classroom. We can formulate 
our TR questions and analyse obtained answers already in terms of the theory, hence 
in a more general framework, which at the same time can guide our next steps. 
The same principles of JiTR apply for the analysis of the final data from TE. If we 
are convinced that craft knowledge doesn’t give us any more guidance, then we 
switch to research consultation. It is good in the process of searching data base of the 
profession to know as precisely as possible what concept or issues we are seeking 
help with. The node of redesign of intervention after the first analysis of the data 
can become a bisociative framework when we are solving the problem of learning 
improvement. We are bisociating here the previous design, which gave us a limited 
result with a new one, unknown yet but with certain new requirements. The solution 
may be an Aha moment.

NOTE

1 We see consistency as a “steadfast adherence to the same principles, course, form, etc”. and coherence 
as “the quality of forming a unified whole” (Mirriam Webster).
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WILLIAM BAKER

3.3. QUALITATIVE AND QUANTITATIVE ANALYSIS

INTRODUCTION

Typically, for a teaching experiment, the accepted methodology used to assess 
learning and conceptual development is based on one-on-one interviews with an 
observer prompting, recording and analysing the vocalizations of a child engaged in 
a problem solving activity. The teacher-researcher must extend such an assessment 
to a classroom environment consisting of many students, not necessarily children, 
engaged in problem solving. The need to analyse and interpret the conversational 
flow between the instructor and students as well as numerous interactions among 
the students distinguishes the analyses of conceptual development in classroom 
teaching experiments from those employed in clinical studies that commonly focus 
on an individual learner’s solution activity, and, therefore, can be quite a daunting 
task. The clinical interview methodology must be expanded to include a focus on the 
didactic contract between the student and teacher including affective issues. Along 
with such qualitative approach we present a different use for a common quantitative 
method ANOVA in order to study and predict what can be described as students’ 
hypothetical learning trajectories. Analysis of class lectures are typically organized 
around a theoretical model of how the concepts are learned and hence sequenced 
by the instructor. Statistical or quantitative analysis can be used to map out how a 
plurality of students experience relationships between concepts.

TEACHING EXPERIMENT

Qualitative Cognitive Research

Ernest (1997) notes that qualitative research has “begun to dominate research in 
mathematics education. Although its roots go back a long way, in mathematics 
education this paradigm emerged in Piagetan-style research based on clinical 
interview methods” (p. 22). This method for qualitative interpreting cognitive 
aspects of student learning in clinical interviews is based upon by analysis through 
the lens of a theoretical framework underlying a teaching experiment. Battista 
et al. (2009) refer to such qualitative research as qualitative cognition focused 
research which they describe as, “research that focuses on describing cognition 
attempts to account for individual students’ and teachers’ actions, reasoning, and 
learning” (p. 222).
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Glasersfeld (1995) characterizes a teaching experiment as one in which a child is 
given a problem and an observer converses with the child in an effort to understand 
the child’s mental thought process during the problem solving activity. As such, 
this methodology is based upon conjectures about what the observer considers the 
child’s reasoning process: “The task of characterizing someone else’s concepts is 
necessarily a conjectural one. One cannot enter into another’s head to examine what 
conceptual structures he or she has associated with certain words” (Glasersfeld, 1995, 
p. 54). In the teaching experiment model, Glasersfeld refers to these conjectures as 
inferences based upon the observer’s characterization of mental operations. These 
inferences are conjectural in the sense that their focus is on the, “mental operations. 
Since these operations are never directly observable, they can only be inferred from 
observation” (1995, p. 70).

This model for investigating the process of learning, appealing to the principles 
of the scientific method, is empirical, in the sense that is based upon observation and 
interpretation of the results with a reasoned hypothesis gleamed from existing theories. 
Ultimately, the results either support and confirm existing theories or contradict 
them, and, as such, paves the way for new insights and understandings of existing 
theories. Through this procedure, as Glasersfeld states, “the resulting hypothetical 
model achieves a high degree of plausibility and predictive usefulness” (Glasersfeld, 
1995, p. 17). As noted by Steffe and Thompson (2000) such methodology was not 
always accepted and did not emerge in the U.S. until about 1970 its acceptance was 
in part because, models of learning and methods of analysis of learning “were needed 
that included an account of the progress students make as a result of interactive 
mathematical communication” and the recognition that such methodology and 
models were need because, “a large chasm existed between the practice of research 
and the practice of teaching” (p. 270). Thus, teaching research owes much and builds 
upon teaching experiments while following the ideas and goal of design research i.e. 
reflecting upon all aspects of the classroom situation, the teacher’s thoughts about 
students, the curricula as well as students learning process. Steffe (1991) expressed the 
goal of a teaching research experiment as first, “to learn the mathematical knowledge 
of the involved children and how they construct it” (p. 178) and second, “to formulate 
a model of learning” (p. 178) that explains the learning process observed. The role 
of the researcher was to, “make decisions about what situations to create, critical 
questions to ask and the types of learning to encourage” (p. 177).

Qualitative Social-Cultural Research

As educators became concerned with a focus on the mathematics classroom as a 
unit of study clinical interviews outside the classroom environment as a research 
methodology were expanded to include observation and analysis in which, everyday 
mathematical instruction and learning processes are central to research or as 
expressed by Bartolini-Bussi (2005) the didactic relationship between the teacher 
and the student is the unit of analysis. This type of research is termed by Battista et al. 
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(2009) as qualitative social-cultural research and described as a methodology that, 
“supplements cognitive psychology’s description of individual cognition by situating 
individual learning (a) in the context of students …in the academic/cultural practices 
of schools; and (b) as occurring while classroom norms and discourse develop”  
(p. 223). The emergence of the classroom as a focal unit of analysis, a reoccurring 
theme of teaching research is based upon Cobb’s (2011) dictum that there is no 
substitute for, “sustained, direct engagement with the phenomena under investigation” 
(p. 11). As opposed to cognitive psychologist in a teaching experiment who minimize 
the role of the instructor to one who provides tasks that provide the opportunity 
for student cognition, “we start with the assumption that teaching does not cause 
learning. Rather, teaching involves promoting the likelihood of students learning 
particular mathematics…An important part of the teaching process is giving tasks 
designed to elicit the use of certain assimilatory schemes that the students have 
available” (Simon et al., 2010).

Qualitative research based upon the social classroom environment focuses 
on the position of Vygotsky and Russian educators that, “children form scientific 
concepts as a result of receiving instruction in specific school subjects and that the 
processes of mastery can be studied only in the context of these subjects” (Cobb & 
Steffe, 2011, p. 24). Cobb et al. (2011) describe the personal transition from teacher 
researcher with a qualitative cognitive focus to a researcher that includes a social 
focus:

The increasing importance that we came to attribute to the teachers’ central 
mediating role is at odds with the way in which the teacher is back-grounded…
It is apparent from the transcribed excerpts…that the teachers actions…were 
crucial. However, the teacher’s initiatives and her responses to students are 
treated as ancillary to the focus on students’ learning. (p. 114)

This extension of qualitative research to include the didactic contract between 
teacher and student expands the methodology from clinical interviews to include 
research studies based upon the observation and analysis of, “ordinary classes, with 
small or no intended intervention of the researchers in the design of the lesson” 
(Bartolini-Bussie, 2005, p. 299). Qualitative social-cultural research opened the 
research door for design research on methodology of instruction, curricula as well 
as qualitative research on affective issues like student and teach beliefs, insights and 
motivation during observation of the didactic contract playing out in a classroom. 
The work of Prabhu and Dias (Unit 2) in which they presents narratives of student 
involvement during their transition to ownership of their learning potential is an 
example of teaching research that is qualitative social-cultural.

Classroom Teaching Experiment

In the classroom teaching experiment the instructor plays a dual role, both as an  
agent of development, promoting reflection upon the solution activity, as well 
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as an observer, noting, interpreting and analysing students’ comments and 
participation in the class dialogue. The goal is to interpret not only an individual 
student’s understanding through his or her comments but also the effect his or her 
explanations have on other students. Thus, the social aspect of class discourse 
involves instructor-student as well as peer-to-peer interaction. In this setting, it is not 
only the realizations of an individual student that are of importance but also whether 
and how other students in the class appear to accept and grasp one another’s insights. 
On the one hand, insight into an individual’s conceptual development is, perhaps, 
best understood in a one-on-one setting, as in the clinical teaching experiment. For 
a classroom instructor, a theoretical model explaining reflective abstraction that 
is reflection upon solution activity that does not incorporate the social learning 
environment playing out in their classroom is not useful. For a clinical researcher 
of classroom learning or teacher-researcher another tool at his or her disposal is 
statistical analysis of the relationships between information both conceptual and 
procedural learned by the students.

QUANTITATIVE ANALYSIS TO TEST HYPOTHETICAL MODELS

Wilkins and Norton (2009) note that teaching research involving dialogue with one 
or two children is frequently used to develop models of cognition and conceptual 
schema development that are then used to modify instructional strategies. Following 
Kilpatrick (2001), Wilkins and Norton advocate for quantitative analysis of the 
conceptual models developed in these clinical settings. They acknowledge that such 
quantitative research is subject to the limitations that come with trying to analyse 
concept development by taking into consideration a set of exercises given at one time. 
Thus, tests do not provide insight into the nature of student realization and the processes 
of concept development. They write, “Such tests are inferior to teaching experiments 
in building models of students’ ways of operating” (p. 151). However, these limitations 
do not render the results invalid; indeed, as eloquently stated by Wilkins and Norton 
(2009), quantitative analysis is an effective and appropriate methodology for testing 
hypothetical models of learning that are to be used with a large number of students in 
the classroom situation. In this, Wilkins and Norton follow Kilpatrick (2001) insisting 
that, “as mathematics education researchers we are obliged to quantitatively test our 
hypotheses whenever possible” (p. 150). One area in which hypothetical models of 
learning meet classroom pedagogy is learning trajectories or hypothetical learning 
trajectories. The goal of such research is “creating and maintaining connections 
between research and curriculum development as integrated, interactive processes, 
using a broad range of scientific methodologies” (Clement & Santana, 2004,  
p. 81). A hypothetical learning trajectory (HLT) integrates conjectures based upon 
models of learning into classroom instruction: “An HLT consists of the goal for 
the students’ learning, the mathematical tasks that will be used to promote student 
learning, and hypotheses about the process of the students’ learning” (Simon & 
Tzur, 2004, p. 91). When the conjectures about processes of student learning involve 



QUALITATIVE AND QUANTITATIVE ANALYSIS

175

the relationship between concepts based upon the principle of causality, as in, for 
example, when students build their knowledge of a new concept upon foundational 
conceptual knowledge of earlier concepts or similar previous knowledge, and the 
conclusion of such research is a trajectory through the curriculum based upon how 
student understanding of these concepts and their relationships is realized, then 
quantitative analysis based upon correlation can be an effective tool in mapping out 
these trajectories.

Correlation Analysis: Causality of Conceptual Knowledge

The quantitative method described below involves statistical analysis to test the 
principle of causality between the understandings of two concepts, or variables, X 
and Y, that have been quantified for a sufficiently large sample size. The analysis 
employs the straightforward statistical measures of the means of each of the two 
variables and the correlation between them. It is based upon the assumption that 
the mean scores of the two variables are significantly different, verified by a two 
sample t-test, and the principle of causality for students’ understanding of Y as a 
result of understanding of X, expressed as X ⇒ Y. Such causality may be measured 
by demonstrating that the mean of X is significantly higher than that of Y, and that 
the correlation between them is both positive and significant. As noted in Baker 
et al. (2012). “Given a positive and significant correlation between two variables 
when there is a significant difference between them, it is reasonable to conclude 
that the variable students find easier, concept X, has substantial potential to be used 
in acquiring knowledge of the variable they find more difficult” (p. 40). Indeed, the 
square of the correlation coefficient gives a quantitative measure of the variation 
of one variable explained by the other. “R2 indicates the percent variation of Y 
explained by the variation of X. This will be written as X ⇒ Y (R2 %)” (p. 47). For 
example, two different concepts X and Y, and given that a mean difference t-test of 
X and Y indicates students score significantly higher on X than Y and the correlation 
coefficient between them is significant (every correlation is assigned a p-value) and, 
say, the regression coefficient R=0.6, thus, the square of this value (0.36) represents 
the percent of variation in Y due to variation in X. As an instructor this can be 
interpreted to suggest that 36% of students proficient in employing concept X on 
an exam will be proficient employing concept Y. We write X ⇒ Y (36%) in this 
situation. It can be useful in analysing causality that variable Y be tested after (in 
time) variable X, however, this is not required as long as students are statistically 
more proficient with variable X than variable Y.

Causality of Conceptual Knowledge: Multivariate Analysis

Many hypothetical models of learning generated through teaching experiments 
and educational research involve more than two variables and the extension of 
the principle of causality through correlation analysis is referred to as multivariate 
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analysis and, also, a fairly straightforward, yet slightly more involved, statistical 
tool. In the simplest multivariate analysis there are two dependent variables, say X 
and Y, that are both significantly easier for students than an independent variable, 
say Z. We, however, suspect that one of these variables dominates the other, that is, 
to say we suspect that students who know X well do not substantially benefit from 
instruction in variable Y. Perhaps, there are disagreements among educational theory 
as to whether Y promotes conceptual understanding of variable Z independently of 
the presence of variable X. The results of the multivariate analysis will, first of all, 
confirm that these variables are significantly correlated with variable Z and, secondly, 
will determine whether the existence of variable Y adds a significant amount of 
predictive value to the variation of Z explained by variable X. Thus, given X and Y as 
independent variables that correlate significantly with Z, one variable may dominate, 
say X, and the other, Y, may not add significantly to X’s predictive value of Z, or 
they may work together, and in this case the presence of Y adds significantly to the 
explained variation in Z. In this situation, statistical analysis provides an adjusted 
regression coefficient for the two variables working together and we write X + Y ⇒ Z 
(R2 %). The following description is meant for those not familiar with this technique 
which we have used in several places in this book:

To consider the effect that several independent variables have on a dependent 
variable a multiple linear regression analysis or analysis of variance (ANOVA) 
will be used. The F-value, or F-ratio, is an indicator of the strength of the 
relationship between the independent and dependent variables and the p-value 
determines whether the model is significant. Assuming the model is significant 
the adjusted R2 value determines the percent of the dependent variable 
explained. A comparison of the adjusted R2 value with the square of the 
correlation coefficient between each independent variable and the dependent 
variable reveals the extent to which the independent variables work together. 
However, more precise information is obtained from the significance or 
p-values and beta values of each independent variable. When the independent 
variables are all significant, they work together for predicting or explaining 
the dependent variable. The second indicator of how the independent variables 
interact is the beta value. The beta value is a measure of how much influence 
each independent variable has in predicting or explaining variation in the 
dependent variable. For example, a beta value of 0.5 for X indicates that for 
every unit change of a standard deviation of X, there is a corresponding 0.5 or 
50% change of a standard deviation in Y. (Baker et al., 2012, p. 47)

EXAMPLES

A teaching research experiment built upon this statistical analysis is presented in 
Chapter 4.6, which describes how to design writing exercise in mathematics according 
to different theories of learning. In two separate multivariate analyses the independent 
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variables X, Y were taken from students’ scores on partial exams during the semester 
while the dependent variable Z was taken from the departmental final at the end of 
the semester. In the first analysis, the independent variable X was proficiency with 
procedures while the independent variable Y was students’ score on explaining in 
writing how to perform these same procedures and the dependent variable Z was 
student performance on these procedures during the final exam. In the second analysis 
the independent variables X and Y were student performance on application problems 
and their written explanations of how to solve such problems (when no actual numbers 
were present) on partial exams during the semester while the independent variable Z 
was their performance on application problems on the final. The research question 
was whether written language used to express and promote student reflection upon 
mathematics was statistically significant in retention of their ability to solve procedures 
and word problems; statistical significance, in the sense that written thought (X) 
independent of student proficiency to perform procedures and application problems 
during the semester (Y), when considered alongside such proficiency contributed 
significantly to student performance on the final exam (Z). Thus, the research question 
concerned the relationship between written thought about mathematics and proficiency 
with mathematics. This statistical analysis is also used in the chapter to map out a 
learning trajectory through student knowledge of fractions (rational number sense) 
towards understanding of proportional reasoning. In this analysis, the independent 
variables are the various sub-concepts of the fraction concept: part-whole, operator, 
quotient and measure, and the dependent variable is student proficiency with proportion 
examples. The question in this analysis is to what extend does student understanding of 
these fraction sub-concepts predicts their understanding of proportions.
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ERIC FUCHS AND BRONISLAW CZARNOCHA

3.4. TEACHING RESEARCH INTERVIEWS

INTRODUCTION

This project is based on a study assessing the effectiveness of teaching research 
interviews in mathematics with urban high school students. The subjects of the 
study were public high school students enrolled in the Mathematics and Science 
Partnership in New York City (MSPinNYC), a multi-year program funded by the 
National Science Foundation.  The methodology was geared to a target population 
consisting of the lowest third performing in Math A Regents exams. 

The researchers conducted over 40 clinical interviews with a target population 
consisting of the l6 lowest performing students. As a result of the intervention, 
the target population’s average grade in the Regents exams increased by 40%, 
compared with only 20% for the non-target population. Through the interviews, 
the researchers were able to obtain insight into the students’ thought processes, to 
pinpoint misconceptions, to develop a dialogue and to raise the students’ confidence 
in mathematics.

The data collected from the interviews pointed to patterns of misconceptions 
common to groups of students. The researchers used that information to improve 
their own pedagogy and the pedagogy of other teachers in the program. Teaching 
research interviews are defined as those clinical interviews that could be used to 
improve pedagogy. In the rest of this document, MSPinNYC is referred to by its 
popular name, MSP.

Definitions

A clinical interview is a dialogue between a researcher and a student during which 
the researcher tries to understand the student’s mathematical thinking and uncover 
misconceptions. Teaching research interviews are those clinical interviews that 
investigate and deal with student misconceptions and, can improve pedagogy in the 
researcher’s class or in other classes.

Czarnocha and Prabhu theorized that in order to understand students’ 
mathematical thinking and to deal with the students’ reasoning associated with 
patterns of mistakes, it is necessary to conduct one-to-one clinical interviews with 
selected weak students. To the extent that the mathematical errors uncovered during 
the interviews result from misconceptions common to a group of students, the 
researchers could use the knowledge derived from the interviews to improve their 
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own pedagogy and to avoid students’ errors from becoming fossilized and turning 
into misconceptions. By sharing their findings with other practitioners, teacher 
researchers could help improve mathematical pedagogy of those practitioners. 
Consequently in this paper, the interviews conducted are referred to as teaching 
research interviews.

Interviews are becoming an important tool in numeracy projects because of their 
value in helping teachers understand student’s thinking while they are working on 
a problem (Heirdsfeld, 2002). Heirdsfield corroborates Hunting’s statement that 
clinical interviews “allow students to be teachers.”

A teacher can learn a lot not only about a weak student’s mathematical thinking, 
but also about a strong student’s reasoning. An eighth grader interviewed by 
Wheatley was shown seven different problems involving arithmetic computations 
and applications on proportions, fractions, and geometry (Walbert, 2001). Using 
videotaping and interview transcripts, Wheatley found that while the student 
learned common procedures and how to apply them, the student failed to make 
connections between concepts and unknown situations. Hunting (1997) contrasts 
the similarities and differences of clinical interviews used as part of mathematics 
research vs. interviews used in mathematics classroom for assessment purposes. 
The interviewers should have strong interviewing skills and sound pedagogical 
content knowledge of mathematics. They should also know what types of questions 
to ask, how to answer student’s questions and be capable of interpreting and making 
connections of students’ answers (Hunting, 2002).

The interviews might be helpful in providing not only a good assessment of a 
selected student’s knowledge, but also an understanding the student’s reasoning 
associated with mistakes. To the extent that a student’s false reasoning leads to 
constantly repeating the same mistake, that mistake could be a “fossilized mistake” 
or “misconception.” By interviewing several students, the interviewers could 
uncover patterns of mistakes common to groups of students.

At the individual student level, the interview could be helpful in eradicating a 
student’s fossilized errors and in leading that student on a correct path of mathematical 
thinking for the particular topic. An added benefit is the student’s enjoyment in 
discovering the logic of a concept that used to be a source of confusion in the past. 
Naturally, when the misconception in a certain mathematical area is replaced by 
understanding, one would expect that in the future the student would score higher 
when that area of mathematics is encountered in an examination.

To better understand the MSP students’ mathematical thinking, Czarnocha, 
Prabhu and Fuchs experimented with one-on-one teaching research interviews in 
the summer of 2005. Two years later, Fuchs and Menil conducted a qualitative 
research at Leman College with the lowest performing MSP students. Their work 
was guided by the following questions: Why did students solve a problem in a 
certain way? How did the students arrive at their results? What types of mistakes did 
the students make, and what were their misconceptions? (Ambrose, Nicol, Crespo, 
Jackobs, Moyer, & Haydar, 2003).
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Not entirely to their surprise, the two researchers found that the high school 
students in the MSP program had the same difficulties as their college students 
enrolled in remedial pre-algebra and algebra classes. The theoretical underpinning 
of the research consists of socio-cultural theory, the sociology of emotions, elements 
of educational psychology and error detection and correction in mathematics.

MATH AND SCIENCE PARTNERSHIP IN NEW YORK CITY (MSPINNYC)

The Math and Science Partnership in New York City (MSPinNYC), referred in this 
document by its popular name, MSP, was a 13 million dollars project, budgeted 
for the period September 15, 2004 through August 31, 2011. The grantor of MSP 
was the National Science Foundation (NSF); the applicant, and the recipient of 
the grant was the City University of New York (CUNY). The principals under the 
application number 0412413 were CUNY university professors several specializing 
in mathematics, physics, chemistry and education: Pamela Mills, Annette Digby, 
Francis Gardella, Linda Bey- Curtis, William Sweeny and Vrunda Prabhu.

MSP was formed to address a number of serious problems confronting the 
Mathematics and science secondary education in the NYC school system: 
(1) shortages of mathematics and science teachers, especially experienced teachers 
in schools characterized by poverty and by students historically underrepresented in 
mathematics and science; (2) extremely low retention rates among teachers; (3) high 
failure rates among students who take the 8th grade mathematics exam and required-
for-graduation state mathematics and science Regents examinations; (4) lack of 
preparedness of high school graduates for college level work; and (5) schisms and 
poor communication between schools, between (some) university campuses, and 
between science, mathematics and education faculties.

To address these problems, the MSPinNYC used the strategy of a Micro/Macro 
approach for reform at both the local level and system wide. At the local level, 
twelve hub schools were created. Each hub school served as a clinical site for teacher 
training, and an exemplar for excellence in mathematics and science education. The 
hub schools were developed by teams of college faculty and secondary teachers 
working closely together in a novel model for professional development to create 
cultures within the schools invested in teaching as a collaborative enterprise and 
research-driven classroom practices. Collaborative teaching teams of faculty and 
teachers worked during the summer with high school students who have failed a 
Regents exam. These teams continued through the school year with collaborative 
lesson development and collaborative research on classroom learning.

CUNY Schools of Education was changed to include more collaborative 
teaching practice and a greater reliance on the scholarship of teaching. New pipelines 
for recruiting talented mathematics and science undergraduates into a career 
of teaching were created. To create reform system wide, the MSPinNYC Macro 
approach included an Advisory Board of statewide policy makers, a Council of 
eminent scholars in mathematics and science education, and a ‘jobs-alike’ structure 
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to bring together the leadership at the public school and college levels. Important 
questions of policy were raised and addressed, informed by both the scholarly and 
the local perspectives. The MSPinNYC Micro/Macro strategy provided a new 
model to approach systemic reform in large and complex systems.

The MSP teams consisted of CUNY college professors in math and science 
and high school teachers in these disciplines teaching at the at hub schools. The 
teaching research interviews discussed in this document were conducted by two 
mathematics professors, Eric Fuchs (EF) and Violeta Menil (VM) who each worked 
for three summers in the MSP project. In addition, during those years, Fuchs worked 
in MSP during in school year as well observing classes and collaborating with the 
mathematics teachers on the team. The interviews were conducted during Fuchs’ and 
Menil’s third summer on the project.

We should also mention the MSPinNYC2 project builds on the original 
MSPinNYC. The new program, with new partners joining most of the original 
partner, seeks to extend and deepen a promising program called the Peer Enabled 
Restructured Classroom (PERC), which was piloted during the earlier work. 
MSPinNYC2 is built on the premise that students could learn a lot from other 
students who had passed the course one year earlier, and were able to overcome the 
same difficulties their younger peers are faced with.

The PERC program restructures 9th grade STEM courses to have 7 or 8 
Teaching Assistant Scholars facilitate group work on a daily basis. TA Scholars 
are average-achieving, i.e., not honors, 10th graders who passed the course and 
the associated required state exit examination during the previous year and are 
concurrently trained in a TA Scholar course led by the same teacher as the 9th 
grade class. Pilot studies with PERC during the MSPinNYC project suggested 
that the program reduces failure rates, closes achievement gaps, and improves 
graduation rates.

TEACHING RESEARCH INTERVIEWS

The idea for this research arose in the summer of 2005 from an initial MSP 
collaborative work with Czarnocha and Prabhu, who postulated that teaching 
research interviews might provide a better assessment of students’ knowledge than 
the analysis of results obtained from the weekly mock Regents exams that were 
administered to all the students in the program. Besides helping students discover 
and correct their own misconceptions, Czarnocha and Prabhu postulated that the 
teaching interviews could help students develop metacognition in their mathematical 
reasoning.

In a typical elementary school mathematics class, after learning a new topic, the 
students are given homework in the form of worksheets to practice the concept they 
just learned. The teacher collects the worksheets and corrects them at home. When 
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observing classrooms, we saw many instances of children receiving the corrected 
homework, look at their grade and depositing the corrected sheet in their backpacks. 
If the corrections were really acted upon, one would expect that on a second try, 
all students would get 100% or very close to it. Unfortunately, this rarely happens. 
Because of time constraints, teachers, who “have to cover the curriculum,” rush to 
the next topic.

In the mind of the students, the non-corrected errors become fossilized, and 
ultimately translate into misconceptions of the types analyzed in this document. There 
is a large body of literature devoted to the topic of mathematical misconceptions 
and learning from errors and misconceptions (Ryan & Williams, 2007; Swinson, 
1992; Swan, 2001; Bell, 1982). Recognizing that college students in developmental 
mathematics and college algebra make the same mistakes repeatedly, Lerch (2002) 
addresses methods of “unfossilization” for building new pathways to older knowledge.

Naturally, in order to correct misconceptions, one has to uncover them first. It is 
interesting that typical mathematics misconceptions, such as the ones discussed in 
this document are common to large groups of students. Hunting (1997) states that 
“Understanding the mathematical workings of children’s minds is now a priority 
for teachers, schools, and systems, as well as for academic researchers.” Hunting 
discusses the use of clinical interviews as an assessment strategy, and the advantage 
of clinical assessment methods over the traditional assessment instruments and 
describes the characteristics of an effective clinical interview.

The data gathered from effective clinical interviews should be used not only 
for “unfossilizing” interviewee’s misconceptions, but to the extent that the 
misconceptions uncovered are characteristic to a large group of students, that data 
should be used to improve pedagogy and to avoid future students’ misconceptions 
from occurring in the first place.

Thus, we define as teaching research interviews those clinical interviews that 
gather data on students’ misconceptions in a way that could be used to improve 
particular student learning as well as general pedagogy in the classroom. We 
hope that research papers such as this one will be used to disseminate our and 
other researchers’ findings about students’ mathematical misconceptions and lead 
practitioners to an improved pedagogy that prevents misconceptions of being created 
in the first place.

THE RESEARCH QUESTIONS

This research was premised by three questions:

• To what extent can teaching research interviews help teachers understand their 
students’ mathematical thinking?

• If teaching research interviews help teachers understand their students’ 
mathematical thinking, how can they be used as a useful pedagogical tool?
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• To what extent are teaching research interviews useful with low-performing 
students in math?

The impetus for the research came from the low retention and graduation rates 
of students enrolled in the associate degree programs at two CUNY Bronx-based 
community colleges: BCC and Hostos. As documented by the CUNY Office of 
Institutional Research and Assessment (OIRA), less than 22% of a typical freshmen 
cohort in these colleges was awarded the associate degree at the end of 6 years 
(OIRA, RTGI_0001).

RESEARCH PURPOSE AND ASSUMPTIONS

A primary goal of this research was to use teaching research interviews to identify 
and possibly correct misconceptions and areas of weaknesses in the mathematical 
thinking of the bottom third of MSP Math A students. A secondary goal was to 
determine if teaching research interviews and follow-up activities could help 
increase the percentage of students from the target population who passed the 
Regents examination.

The following assumptions guided this research study:

• It is possible to identify early in the program the bottom third of Math A students 
who are “doomed to fail” the Regents exam.

• Teaching research interviews can help uncover student misconceptions, areas of 
weaknesses and faulty mathematical thinking.

• Addressing student misconceptions and correcting these weaknesses are 
instrumental in raising the passing rates of Math A students in the Regents exam.

THEORETICAL FRAMEWORK

A framework for understanding teaching and learning in a democracy is 
provided by the intersection of three major components: knowledge of subject 
matter and curriculum goals, knowledge of teaching and knowledge of learners 
(Bransford, Darling-Hammond, & LePage, 2005). The first two components are based 
on Shulman’s article on the professionalization of teaching (Shulman, 1987).

The Emotional Aspect of Teaching

Based on Collins’s sociology of emotions, Tobin explains that good teaching is made 
up of successful interactions that are charged with positive emotions; bad teaching 
is made up of unsuccessful interactions that are charged with negative emotions 
(Tobin, 2006).

Hargreaves argues that the emotional dimension of teaching is largely ignored or 
underplayed by the policy makers (Hargreaves, 1998). Like painters, good teachers 
are born, not made!
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Cultural Responsive Teaching

Research shows that “teachers’ attitude and expectations, as well as their knowledge 
of how to incorporate the cultures, experiences, and needs of their students into 
their teaching, significantly influence what students learn and the quality of their 
learning opportunities (Banks, Cochran-Smith, Moll, Richert, Zeichner, LePage, 
Darling-Hammond Duffy, Andh McDonald, 2005).

Villegas and Lucas (2002) state that because of the diversity of the student 
population, responsible educators continuously tailor instruction to individual 
children in specific cultural contexts.

MATHEMATICAL DIFFICULTIES

In community colleges in the Bronx, the students’ mathematics difficulties are 
compounded by many years of inadequate mathematics education. The researchers 
found many similarities in the way mathematics is approached by their community 
college remedial mathematics students and their MSP students. Students have 
difficulty with fractions and order of operations. They struggle with word problems 
and with mathematical logic, and they want to be shown the algorithmic way of 
“how to” solve a problem rather than “why.” Low literary skills are also a serious 
impediment, particularly in word problems.

Type of Mathematical Errors

For simplicity’s sake, this research project distinguishes among three types of 
student errors: careless errors, calculation errors and conceptual errors. Careless 
errors result when students rush. Calculation errors typically occur when students 
are tired or are working under pressure. Conceptual errors (misconceptions) result 
from a fundamental misunderstanding of a concept. Based on the researchers’ 
experiences, conceptual errors are due to the reliance on memorization and 
algorithms, overdependence on calculators and lack of understanding.

Error Detection and Correction

Conceptual errors in mathematics are insidious. Students acquire them along the 
way and keep reinforcing them so that they become “fossilized”. An undetected or 
uncorrected conceptual error becomes part of the student’s mathematical construction. 
Without outside intervention, most students cannot correct their mathematical 
conceptual errors. In his Winning at Math guide, Nolting states “...it is not the fault 
of the students if they have not been taught how to study math. Even students taking 
general study skills courses are often not taught how to study and learn it” (Nolting, 
2002). Students who understand and analyze their errors can capitalize on that 
knowledge and thus achieve a better understanding of the subject. (Borasi, 1994).
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METHODOLOGY

The researchers were not privy to data on the students’ prior performance. They 
selected the target population based on the average of the first two mock Regents 
tests given at the end of the first and second week of MSP in the summer of 2007. 
Of the 51 Math A students enrolled in the program at Lehman College campus, 
the researchers selected the 16 lowest scoring students. The classroom teachers 
corroborated our selection of the target population. The target population’s average 
score was 44.0, compared to 54.5 for the rest of the students. The students in the 
target population were then assigned the codes TP1 through TP16. The test results 
of the target and non-target population were compiled and analyzed weekly and at 
the end of the program.

Conducting Teaching Research Interviews

Each student in the target population was individually interviewed several times 
during the summer program. The goal of the first interview was to establish a 
rapport with the students. The students felt comfortable enough to describe their 
career aspirations, college plans and attitude toward math. Some expressed their 
discomfort with mathematics, while others stated that they simply do not understand 
it. After the first interview, all the students expressed their eagerness to meet with 
the interviewers again.

In a typical interview, one researcher conducted the interview while the other 
took notes; in subsequent interviews, the researchers changed roles. Students were 
asked to explain why and how they solved different multiple-choice questions in 
the mock Regents exam that they had taken. The researchers asked the students for 
evidence and explanations and at times asked them to solve a similar problem. They 
also examined the students’ work, and notes in their exam books. After identifying 
misconceptions, the researchers discussed the errors with the students and guided 
them to arrive at the correct solutions.

Interaction with Classroom Teachers and Tutors

Following the teaching research interviews, the researchers conveyed their findings 
to the teachers and tutors enrolled in the program. The researchers also conducted 
professional development sessions with the tutors during which they suggested ways 
of correcting students’ misconceptions.

RESULTS AND FINDINGS

As a result of the intervention, the percentage of low-performing students who 
passed the Regents or who obtained grades for high school graduation increased 
significantly compared to the previous years. The target population’s average grade 
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in Math A Regents increased by 40%. This compares to a 20% increase in the average 
grade of the non-target population.

Below are some common student misconceptions identified though the teaching 
research interviews:

Order of Operations

All the students in the target population relied on the mnemonic PEMDAS 
(Please Excuse My Dear Aunt Sally) when deciding what operations to do first. 
Many erroneously believed they should always do addition before subtraction, 
since the letter A comes before the letter S in that mnemonic. Similarly, since 
the letter M comes before the letter D in the mnemonic PEMDAS, some students 
answered that 8 ÷ 2 × 4 = 1. Below is an excerpt of a teaching research interview 
we conducted with a student, whose code name was TP3. Appendix A contains 
a more complete version of this interview, as well as the interviewers’ related 
comments.

EF:  Please explain your reasoning. How much is 4 − 2 + 1?
TP3: I was afraid you’d ask me hard questions. The answer is 3, obviously.
EF:  Are you sure?
TP3: Um, let me see. Oh, now I remember. The answer is 1.
EF: There can’t be two answers to that question. Is it 3 or 1?
TP3:  It’s definitely 1. You do the order of operations with Please Excuse my 

Dear Aunt Sally or PEMDAS. The letter A comes before S, so you add 
first.

EF: I see. How much is 8 ÷ 2 × 4?
TP3: You see, M comes before D in PEMDAS, so the answer is 1, right?
EF:  Hmm, let’s see… You are right that A comes before S in the word 

PEMDAS. But if you have 4 dollars in your pocket and you spend 2, 
how much would you have left?

TP3:  I see what you’re doing. I’ll be left with 2 dollars, and if I were to add 
another 1, I’d have 3 dollars, right?

EF:  Therefore 4 − 2 + 1 ought to be equal to 3, not to 1. That means you did 
the subtraction first, since it came first. You did addition second, since it 
came second.

TP3:  It makes sense with money. But in math, the rules for order of operations 
are set by PEMDAS—I remember this is what Ms. K. told us in grade 
5, and this is what Mr. G told us in grade 10. Isn’t that so?

Pedagogical implications. Mnemonics (PEMDAS, FOIL, SOHCAHTOA) provide 
an easy way for some students to remember how to perform certain operations 
algorithmically, without understanding the why, i.e. the governing concepts. We 
should be cognizant, however, of the dangers and implications associated with 
teaching with mnemonics. Examples:
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• Some students use FOIL (First, Outer, Inner, Last) when multiplying two 
binomials precisely in the order prescribed, without understanding that the order 
of the terms in the resulting polynomial does not matter. These same students are 
lost when they have to multiply a binomial by a trinomial.

• As seen from the interview with TP3 that is provided in the appendix, teaching 
PEMDAS does more damage than good. We encounter college students 
performing operations in the wrong order (example: multiplication before 
the preceding division, or addition before the preceding subtraction) precisely 
because they rely on PEMDAS.

Operations with Signed Numbers

When asked to evaluate −4 −2, some students provided the answer 8. They 
“remembered” that two negatives give a positive, and confused −4 −2 with (−4) (−2).

Most students did not learn about negative numbers until the first class in 
pre-algebra. By that time, they were confused with many mathematics concepts. 
Introducing negative numbers simply added to their confusion.

Pedagogical implications. Consideration should be given to teach the negative 
numbers in the early grades. Children should learn to count forward and backward 
on a number line centered at 0, rather than starting at 1. It is easier for a child to “see” 
the integers on a vertical number line (emulating temperatures centered at zero, or 
elevators in an office building with several floors below ground level), rather than 
on a horizontal number line.

Division by 0

Many students correctly answered 0 to the operation 0 ÷ 6; however, they gave the 
same answer for the divisions 6 ÷ 0, or 0 ÷ 0.

One student explained, “When I divide six apples to two people, each one will get 
three apples; but, if there are zero takers, I can keep the six apples.” Obviously, the 
student confused the quotient with the remainder.

Pedagogical implications. Rather than being taught that division by zero is “not 
defined”, or “cannot be done”, students could discover themselves why division by 
zero cannot be performed. For example, using calculators, students could be guided 
how to plot the results of dividing the number 8, for example, by x. The resulting 
hyperbola will help students understand not only why division by zero is not defined, 
but also understand the concept of “limit.”

Operations with Fractions – Addition and Multiplication

We found that a group of interviewed student, performed fraction addition by adding 
numerators separately and denominators separately.
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 Example: 1
2

1
4

2
6

+ =

Pedagogical Implications. Since we cannot add apples and oranges, we cannot add 
feet and inches, pounds and ounces, hours and minutes, quarters and dimes! These 
types of examples illustrate the need for a common denominator in fraction addition/
subtraction.

Example: How many nickels you get from one quarter and 3 dimes?

Answer: 1
4

5
20

=  and 3
10

6
20

= . Therefore, 5
20

6
20

11
20

+ = , or 11 nickels

Operations with Fractions – Multiplication and Division

We found that many students rely on cross-multiplication as a must-do tool when 
working with fractions, to the point of “when in doubt, cross multiply!” Thus, they 
end up cross-multiplying, not only when dividing, but also when multiplying two 
fractions…Cross-multiplication as a way to perform fraction multiplication is a 
prevalent misconception among most students we interviewed.

Other students “remembered” that when working with fractions, you “always” 
need a common denominator. However, those students did find a common 
denominator not only in fraction addition or subtraction, but also unnecessarily 
obtained a common denominator when multiplying or dividing two fractions.

Example of a student’s work: 1
4

1
5

5
20

4
20

20
400

× = × =

Pedagogical Implications. The researchers believe that cross-multiplication is 
useful when solving proportions or when verifying the equivalence of two fractions. 
The pedagogical challenge is to teach a methodology that is valid in some instances, 
while at the same time works to prevent misusing it in those instances when it is not 
valid. Would one use a knife instead of a fork when eating?

Fractions of a Number, Equivalent Fractions and Proportionality

Students struggled when trying to solve a word problem that required the use of 
proportions. They lacked a sense of magnitude when working with fractions and 
such as “If 5 workers assemble 9 computers a day, how many workers are required 
to assemble 27 computers in a day?”

The excerpt of the interview with TP4 illustrates the misconception associated 
with a fraction of a number and fraction comparison.

TP4:  You’re right. I got that. So since in the cafeteria they cut the pizzas in 
eight, each time I eat a slice I eat an eighth.
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EF:   Yes, that is called an eighth of a pizza; naturally, it assumes that all slices 
are of the same size. Let’s forget about pizza at least until lunchtime, but 
let’s stay with the fractions.

 What do you think is bigger; one half or one quarter?
TP4:  Half is always larger then a quarter. Half a dollar is 50 cents; a quarter is 

only 25 cents.
EF:  True when you compare half a dollar with a quarter of a dollar. But 

would you rather have half of my salary or a quarter of Bill Gates’s 
salary?

TP4: Come on, don’t make me laugh!
EF:  Precisely, so when we talk about fractions, we refer to a part of a whole, 

i.e. one third of an apple is smaller than one half of an apple that is of 
the same size.

TP4:  I got that. This is why in class they said that you can’t add, or even 
compare, apples with oranges.

Pedagogical Implications. From interviews with the students, we uncovered 
several areas of confusion and misconceptions in understanding fractions and 
proportionality:

• Students refer to fractions as numbers, rather than parts of a whole. Indeed, on 
a horizontal number line, the half is located to the right of the quarter, half of 
a dollar is more than a quarter of a dollar; consequently, the students wrongly 
concluded that one half is always larger than one quarter. The aha! moment for 
TP4 happened when one of the researchers asked him whether he would prefer 
half the researcher’s money or a quarter of Bill Gates’s money. In the same 
way that we teach children that 3 hours is more than 5 minutes, and that 5 is 
larger than 3 only when they refer to the same objects, we should get students to 
understand the importance of the of what question when dealing with fractions: 
one third of one hour is more than one half of one minute.

• The next step is for the students to understand, without computing, the concept 
of a fraction of a number: one fifth of 10 equals 2, two fifths of 10 equals 4, three 
fifths of 10 equals 6, and to continue the pattern by themselves without stopping 
at four fifths of 10. Thus, a student should understand why seven fifths of 10 
equals 14, rather than multiplying 7 times 10, and than dividing 70 by 5.

• After the fraction of a number, the next concept that requires a thorough 
understanding is that of equivalent fractions: 1

3
 of a number is the same as 2

6
 of 

the same number.

Area and Perimeter

Students were shown a picture of a rectangle, with the number 3 next to one side, 
and the number 5 next to an adjacent side, and they were asked: “Please find the 
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perimeter of the rectangle shown below!” Some students answered 15, some students 
answered 8, while some students stated that more information is needed.

Pedagogical Implications. From the interviews it appears that since the concepts 
of perimeter and areas might be taught at the same time, some students confuse 
the two. We also concluded that the students who answered 8 “remembered” that 
to calculate the perimeter you have to add the numbers shown. Consequently, they 
were adding the given numbers 5 for one side and 3 for the other side without fully 
understanding that calculating the perimeter requires adding the dimensions of all 
the sides of a given shape. Ultimately the students who needed more information 
did not know the properties of rectangles, or more generally of parallelograms (i.e. 
opposite sides are equal).

Generally, when two concepts, such as perimeter and area, have too much in 
common, it is advisable to teach them separately to avoid future misconceptions.

The Equal Sign

Since they do not see the meaning of, for example, 2 8 20 1
2

+ = × , in algebra many 

students have difficulty solving for x the equation 2 20 1
2

+ = ×c .

Pedagogical implications. More than 80 years ago, Renwick (1932) explained that 
the children’s misconception concerning the equal sign is due to improper teaching 
of arithmetic: Students associate the equal sign with a command to perform an 
operation or, later on in their studies, as separating an expression from its “answer.” 
Consequently, they do not understand what does it mean the equality between two 
expressions.

Les résultats indiquent que la méthode d’enseigner l’arithmétique avait amené 
beaucoup des élèves à se tromper sur la fonction du signe “=” d’abord elles 
avaient considéré comme un commandement toute indication d’une opération, 
ce qui les avait empêchées de reconnaître comme formant une unité toute 
expression contenant une telle indication; ensuite elles avaient adopté le signe 
“=” comme un expédient pour séparer une expression de sa “réponse.” De cela 
il s’ensuit que des affirmations qu’une expression en égalait une autre, étaient 
pour elles inintelligibles.

[The results show that the method used in teaching arithmetic brought many 
students to confusion on the meaning of the “=” sign. Initially the students 
regarded the equal sign as a command to perform a certain operation; that 
prevented them from understanding the role played by the equal sign when 
dealing with algebraic expressions. Later on, the students concluded that the 
equal sign separates between an expression and its “answer.” Consequently, 
the statement that one expression equals another did not make any sense].
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Teaching at early age the meaning of the comparison symbols (equal, greater than, 
smaller than) and assuring that the students use the equal sign if and only if the left 
side is equal to the right side, would go a long way in avoiding the misconception 
associated with the role of equal sign in mathematics.

Distributivity Property

Some students equated 3(2x + 3) with 6x + 3. Not understanding that that 3(2x + 3) 
is equivalent to (2x + 3) + (2x + 3) + (2x + 3), they distributed the3 only to the first 
term in the parenthesis.

Pedagogical Implications. Students who distribute only to the first term in 
parenthesis do not understand the meaning of distributivity, and later, in middle 
school, are unable to solve linear equations. We believe that mental math in elementary 
school, such as multiplying by distributing, will help the students understand how 
to distribute correctly. For example:

 3 × 12 = 3(10 + 2) 

 3 × 12 = 3(10 + 2) 

 3 × 12 = 3(10 + 2) 

At a more advanced level, students will understand that 3 × 232 = 3(200 + 30 + 2); 
in the last exercise, they will realize that there are 3 groups of 200, plus thee groups 
of 30, plus 3 groups of 2.

FUTURE RESEARCH

The following questions should be addressed in future research:

• Should teaching research interviews be conducted in elementary school, 
middle school, and/or high school? There are obviously issues of manpower, 
compensation, scheduling.

• Should teaching research interviews be conducted by the classroom teachers 
themselves, or by outsiders?

• Should teaching research interviews be conducted with high-performing students 
as well? How should those interviews be structured?

• How could the teaching research interviews be used with remedial mathematics 
students in community colleges?

• What are the most efficient ways to translate the information derived from 
teaching research interviews into improved mathematics pedagogy?
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CONCLUSIONS

Based on this project, the researchers concluded the following:

• Teaching research interviews are useful for uncovering students’ misconceptions 
and weaknesses.
 Used properly, teaching research interviews may constitute an important 
pedagogical tool for the teachers.

• The power of teaching research interviews would be greatly enhanced when used 
in conjunction with other pedagogical tools.

• Collaboration between teachers and tutors is vital: exchanging information about 
individual students’ strengths, weaknesses and misconceptions and discussion of 
joint strategies to promote error correction and enhance learning is of paramount 
importance.
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APPENDIX A – EXCERPTS FROM TEACHING INTERVIEWS  
WITH SELECTED STUDENTS

Excerpts from a Teaching Research Interview with a Student Designated as TP3

EF: Nice to meet you, TP3. How do you like math?
TP3:  To tell you the truth, I don’t really hate math. I don’t understand it, and 

I didn’t get much help with it.
EF: Sorry to hear that. What profession do you have in mind for your future?
TP3:  Engineering or law. I hope I won’t have to take more math classes for 

them.
EF:   For engineering you will. To help you out, let’s look at some simple 

questions, okay?
 Please explain your reasoning. How much is 4 − 2 + 1?
TP3: I was afraid you’d ask me hard questions. The answer is 3, obviously.
EF:  Are you sure?
TP3: Um, let me see. Oh, now I remember. The answer is 1.
EF: There can’t be two answers to that question. Is it 3 or 1?
TP3:   It’s definitely 1. You do the order of operations with Please Excuse my 

Dear Aunt Sally or PEMDAS. The letter A comes before S, so you add 
first.

EF: I see. How much is 8 ÷ 2 × 4?
TP3: You see, M comes before D in PEMDAS, so the answer is 1, right?

http://www.learnnc.org/lp/editions/pcmath/1252
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EF:  Hmm, let’s see… You are right that A comes before S in the word 
PEMDAS. But if you have 4 dollars in your pocket and you spend 1, 
how much would you have left?

TP3:  I see what you’re doing. I’ll be left with 2 dollars, and if I were to add 
another 1, I’d have 3 dollars, right?

EF:  Therefore 4 − 2 + 1 ought to be equal to 3, not to 1. That means you did 
the subtraction first, since it came first. You did addition second, since it 
came second.

TP3:  It makes sense with money. But in math, the rules for order of operations 
are set by PEMDAS – I remember this is what Ms. K told us in grade 5, 
and this is what Mr. G told us in grade 10. Isn’t that so?

EF: We’ll discuss that more next time.

Interviewer’s Comments:

TP3 relies on the mnemonic PEMDAS to determine the sequence of operations. The 
student did not see a relationship between mathematics in school and mathematics 
in real life.

In a subsequent meeting with the two researchers, TP3 discovered the logic 
associated with the order of operations. When faced with the question 10 − 2 × 4, 
TP3 used the example of two friends going to McDonald’s, eating food for $4 each, 
and paying with a $10 bill, thus resulting in $2 change.

EF:  I see that you wrote 10 − 2 × 4 = 2. How did you come up with the 
answer 2?

TP3:  First, I multiplied 2 × 4 = 8, then I subtracted 10 − 8 = 2. I did the 
multiplication first, and then the subtraction.

EF: Good job! Did you use the same acronym PEMDAS like last time?
TP3:  Forget about PEMDAS! I don’t need rules that work only half the time! 

And besides, 10 represent dollars, while 2 represents people. You can’t 
subtract people from dollars, can you?

Excerpts from a Teaching Research Interview with a Student Designated as TP7:

VM:  TP7, let’s see how you evaluate the algebraic expression ab − b2 when  
a = 3 and b = −1.

 I want you to explain to me as you write the solution, okay?
TP7:  Okay. First, I write the whole algebraic expression as is: ab − b2. Then, 

I replace the letters with the values assigned, and then I simplify it as 
follows:

ab b− = −( ) − − = − +2 23 1 1 3 1( )

VM: Why did you evaluate −(−1)2 as 1?
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TP7:  Because 1 raised to any power is just 1, and two negatives equals 
positive, right?

VM:  Yes, but I’m interested in your thinking on that.
TP7: All right, all right, I didn’t get it!
VM: Could you to explain to us the meaning of (−1)2.
TP7: (−1)2 means −1 times −1 equals −1.
VM: Great! Now −3 −1 equals what?
TP7: −4 and so ab − b2 is −4 and not −2.
VM:  Fantastic! Now you got it right. See, I’m interested in how you’re 

thinking about that.

Interviewer’s Comments

At first, TP7 confused between −(−1)2 and −1. Later, that was clarified.

Excerpts from a Teaching Research Interview with a Student Designated as TP4:

EF:  Good day, TP4. Sorry to pull you out of the class. 
TP4:  Actually, I checked with some of my friends. They told me that they had 

a better time with the two of you, instead of sitting in the class.
EF:  Are you telling me that you don’t like the classes that much?
TP4:   I’ll tell you the truth, I think I first learned fractions in grade 3 or 4, and 

then in 5, and again in 6, 7, 8, and so on and I’m still confused a bit. I 
wish there were no fractions at all!

EF:  That’s funny, would you like to eat at lunch a whole pizza, rather than a 
slice or two?

TP4:  You’re right. I got that. So since in the cafeteria they cut the pizzas in 
eight, each time I eat a slice I eat an eighth.

EF:  Yes, that is called an eighth of a pizza; naturally, it assumes that all slices 
are of the same size. Let’s forget about pizza at least until lunchtime, but 
let’s stay with the fractions.

 What do you think is bigger; one half or one quarter?
TP4:  Half is always larger then a quarter. Half a dollar is 50 cents; a quarter is 

only 25 cents.
EF:  True when you compare half a dollar with a quarter of a dollar. But 

would you rather have half of my salary or a quarter of Bill Gates’s 
salary?

TP4: Come on, don’t make me laugh!
EF:  Precisely, so when we talk about fractions, we refer to a part of a whole, 

i.e. one third of an apple is smaller than one half of an apple that is of 
the same size.
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TP4:  I got that. This is why in class they said that you can’t add, or even 
compare, apples with oranges.

EF:   Precisely. Let’s cut the apple here in two equal parts, and let’s cut one of 
these halve in halves again. What do you get?

TP4:   That one half is the same as two quarters, or if we continue further is the 
same as four eights.

EF:  Great! But, let us not forget, that all this fractions were parts of the same 
apple, referred to the same whole.

Interviewer’s Comments:

By the end of the interview, TP4 was proud that he could calculate fractions of a 
number. He also exhibited proportional thinking, by being able to solve the problem 
such as “If 5 workers assemble 9 computers a day, how many workers are required 
to assemble 27 computers in a day?
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VRUNDA PRABHU, HAIYUE JIN AND ROBERTO CATANUTO

3.5. USE OF CONCEPT MAPS IN 
CLASSROOM RESEARCH

INTRODUCTION

Concept map approach is a highly effective tool for the development and assessment 
of student conceptual understanding of mathematics and as such it belongs to the 
category of Stenhouse TR acts (Chapter 1.1). Teaching-research expands the utility 
of concept mapping to teacher’s own reflection upon the coherence of the curriculum; 
Chapter 3.7 describes its use by a teacher-researcher as a guide in the formulation of 
a coherent curriculum out of the prescribed topics of remedial mathematics course, 
Chapter 3.6 is a full scope description of concept maps as assessment tool, while 
Chapter 3.8 describes use of concept maps by the teacher as the tool of finding the 
“common denominator” between the theme of the class and student interests.

Concept map is a graphical representation of knowledge and its construction 
within a particular domain. It is a network consisting of nodes and labelled lines. 
Nodes contain concepts, usually in boxes or circles. The relationships between 
concepts are indicated by connecting line segments or arrows. The labels in the lines 
are called linking phrases, and indicate how joined concepts are related. The linked 
concepts together with labels indicating the connecting phrases form a meaningfull 
statement. Together, this whole network of concepts and linking phrases represent 
student schema of knowledge relatively to the main concept to be understood 
mastered. Contemporary interest in concept maps dates to the work of Novak who 
saw them primarily as the assessment tools (Novak & Gowin, 1984). Concept maps 
have been extensively used in science education (Horton et al., 1993) but their usage 
in mathematics education has only slowly been acquiring momentum. Important 
in this respect was the use of concept maps in the context of modelling by Clark 
and Lesh (2003). The authors point out to the dual role of the concept maps as an 
education act and as a research act:

using concept maps as a model-eliciting activity for teachers not only allowed 
teachers a tool to make sense of their own thinking but it was [also] purposeful 
in that teachers were designing concept maps to serve as curricular guides for 
student model-eliciting problems.
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More complete approach to the assessment of student teachers’ knowledge using 
concept maps has been investigated by Afamasaga-Fuata’l (2009). He points out to 
the role of refinements through iteration in student teachers’ construction of their 
concept maps confirming the central role of iteration in the TR/NYCity model, 
which has been pointed out in Chapters 1.1 and 4.3. Chapter 5.1 by Vrunda Prabhu 
develops and provides examples of artefact generalization through its iterated 
refinements with different cohorts of students. A concept map can address either an 
individual concept, a group of concepts or the conceptual organization of a thematic 
unit of the curriculum.

The concept map as the scaffolding guide both for a teacher and for a student has 
been one of central aspects of concept mapping for Prabhu. It guided the pathway of 
questions and hints which can be used by the teacher in facilitating student discovery 
of a particular connection between relevant concepts.She demonstrates importance 
of concept maps:

• as a means by which to provide students a snapshot of the big picture;
• as a way for teacher-researchers to design the problems in the instructional 

sequence; the structure of the concept map representation of the schema outlines 
the pedagogical design that will be implemented in the course;

• as an environment within which analysis of word meanings can begin and progress 
toward a shared understanding (Bruner, 1990).

Prabhu central interest here is in the facilitation of construction of students’ 
schema of thinking by using the concepts maps of the full course as well as concept 
maps of the particular concepts. She guided herself in this work by the concept 
of Zone of Proximal Development created by the scientific concepts of the course 
concept map and the spontaneous concepts of students (Vygotsky, 1987).

The same concept maps can be also be used as a complete classroom or homework 
exercise in formulation of the full schema. Students might get a concept map either 
with empty concept boxes with individual relationships between concepts indicated 
or with concepts indicated but missing the relational phrases. Their task is then to 
find the missing concepts in the first case, and missing relationships – in the second 
case. The third exercise in this series might be the construction of the full concept 
map from a given list of concepts (Chapter 3.7). Chapter 3.7 gives a full description 
of the concept map as the assessment tool together with the method of assessing 
and grading them. The author of this chapter, Haiyue Jin, a Chinese educator from 
Nanging Normal University educated in Singapore has been specially invited to 
present the knowledge of a Singapure school of concept mapping initiated by Wong, 
K.Y. It is interesting to note the responses of students of the experimental cohort to 
the questions of the Attitude Towards Concept Map questionnaire designed by Jin 
and administered to all students in the cohort:

1. In which aspect do you think concept mapping is helpful?
2. Can you summarize your major achievement during this concept mapping period?
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Students found that concept mapping was beneficial for review, memorization, 
problem solving and understanding. Aside from its use as an assessment technique, 
students found, responding to the question 2, that concept mapping helped with 
conceptual learning. They also reported that they better understood particular 
concepts when they were placed in a larger picture. In the discussion of results Jin 
comes to the realization on the basis of these student responses that concept mapping 
can also serve as the instructional tool during a regular class. Her results confirm our 
own understanding of concept maps as Stenhouse TR acts (Chapter 1.1).

Chapter 3.8 by the teacher-researcher Roberto Catanuto from a school in 
Switzerland presents newly formulated technique of using concept maps as 
medium for the “dialogue” between the teacher and students leading, in a three 
iterations, to the discovery of a common aspect “common denominator” between 
student life interests and the mathematical topic or theme of the class curriculum. 
Catanuto asks a central question, how can educator build an effective connection 
between the topic of the curriculum and interests and attitudes of students. The 
same question has been addressed, albeit differently, by several authors in this 
volume. Prabhu addresess it in Chapter 2.1 via imbedding relevant mathematics 
in a dramatical scene while Stoppel in Chapter 4.9. who searched, in the calculus 
context, for a proper modelling approach to fit student inclinations and interests 
finds mathematical exhibition organized by ministry of education to be the medium 
creating the necessary connection.

Robert Catanuto addresses it through “communication” between two concept 
maps. The steps described by the author bear certain analogy to the construction of 
the bisociative framework, consisting of MH (Mind Home) of a student representing 
students interests and attitudes, and of the Topic Concept Map (TCM) created by 
the teacher. Iterated extentions of each of the concept maps are aimed at finding the 
conceptual connections between the topic to be taught and the student interests, that 
is the “hidden analogy” introduced in Chapter 1.2.
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3.6. PICTORIAL SCAFFOLDING IN THE SCHEMA 
CONSTRUCTION OF CONCEPTS

INTRODUCTION

Understanding of concepts is a common theme of study across disciplines. In 
particular, the study of how concepts are understood is undertaken in mathematics 
education, mathematics, cognitive psychology, artificial intelligence, pattern 
recognition, and man-machine cognition. This chapter describes such an 
interdisciplinary approach that utilizes aspects from several disciplines in the pursuit 
of increasing understanding of mathematics among students in remedial classes. 
The concept of fractions has, unfortunately, become a topic, which students, young 
and not-so-young, love to hate. A large-scale study (PROMYSE, 2006), focusing on 
assessing students’ knowledge and understanding of fractions, consisting of 200,000 
students in 60 districts across Ohio and Michigan, reporting on the low passing rates 
among third through twelfth graders points out some of the likely sources for the 
troublesome situation:

• Third grade is likely the problem; little important learning in crucial areas of 
fractions takes place there;

• Large numbers of students are not learning crucial foundations like fraction 
equivalence and common denominators;

• Little more fractions-related material is learned in high school yet students are 
being sent on from eighth grade without adequate knowledge.

While the entirety of mathematics, as well as some more specific mathematical 
topics, including fractions, are intriguing puzzles, their intrigue might remain 
inaccessible to students given their prior negative experiences with mathematics. 
The preparatory deficit is very detrimental, as the PROMYSE study demonstrates:

They are not learning enough to prepare them for the world they will face. They 
are not getting a chance to do all that they are capable of. In important ways, 
they are not making the grade even while they make their grades. (PROMYSE, 
2006)

In a NSF-ROLE #0126141 study (2002–2006), Introducing Indivisibles into 
Calculus Instruction, concept maps were envisioned as assessment tools, and, this 
was based on the use of concept maps in science education as a research tool in the 
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original work by Novak (1984). They are intended “as a graphical representation of 
the psychological structure of knowledge within the subject producing the map”.

Since then, our attention has been focused on utilizing the power of concept maps, 
as a way of assisting learners in the construction of the schema of concepts forming 
a bidirectional route:

• From spontaneous concepts to scientific concepts, and
• From scientific concepts to spontaneous ones.

The effectiveness of the approach was suggested by Vygotsky (1987) who asserts 
that “…the development of child’s spontaneous concepts proceeds upward, and the 
developing of his scientific concepts downward…” (p. 193) leading to the integration 
between the two within students’ ZPD.

In this article, the use of concept maps is demonstrated in the following ways:

• as a means by which to provide students a snapshot of the big picture;
• as a way for teacher-researchers to design the problems in the instructional 

sequence; the structure of the concept map representation of the schema outlines 
the pedagogical design that will be implemented in the course;

• as an environment within which analysis of word meanings can begin and progress 
toward a shared understanding (Bruner, 1990).

In each case the process of meaning-making is facilitated by the use of the 
concept maps as pictorial scaffolding. Bruner (1990), in Acts of Meaning, supports 
this approach, and writes that organization of mathematical knowledge, which for 
students in college-level basic mathematics courses has been difficult, is enhanced 
via the pictorial scaffolding of the concept maps.

In the middle of the semester, closer to the early part, a very bright student with a 
disability, upon seeing the concept map shown in Figure 1 below, asked, “This is our 
syllabus?” After a few moments, in a very disbelieving voice, he asked again, “Are 
you serious? This is our syllabus?” When asked why he would have this question, 
he replied that he had never imagined a syllabus as a picture. Clichés about pictures 
are well-known, however, the concept map serves an important role for students. 
It promotes the idea that the subject of Mathematics is not overwhelming; that it is 
not a “bunch of stuff to be memorized”. It presents Mathematics as a subject that 
investigates big ideas deeply rooted in us that, after being continuously questioned 
and scrutinized, have stood the test of time. Students and teacher-researchers together 
use the concept map syllabus as a tool with which they:

• Navigate their teaching throughout the semester, altering the concept map as 
needed, should such a need arise;

• Test their developing understanding;
• Communicate with each other in meaningful ways, across a non-intimidating 

medium, where words are few, and sense of what the other is trying to say can be 
made easier and quicker.
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CONCEPT MAPS AND STUDENT SCHEMA OF THINKING

Concept maps in the TR-NYCity approach are used for the construction of schemas 
of concepts that either students or teacher-researchers themselves are trying to master. 
This two-fold use of the concept map illustrates how the TR-NYCity methodology 
works,	from	theory	to	practice	and	practice	to	theory―via	a	bidirectional	route.

Vygotsky’s (1987) theoretical perspective offers clear solutions. All learners 
possess intuitive, or “spontaneous,” concept knowledge. The focus of the teaching 
environment is the creation, in the mind of the student, of an understanding of 
the mathematical, or “scientific,” concepts. The latter concepts are referred to 
and utilized as the working knowledge. Vygotsky’s theoretical viewpoint, as it is 
used within the TR-NYCity methodology, manifests itself as the investigation into 
the design of the needed scaffolding from the diagnosed spontaneous knowledge 
to the required scientific knowledge via the Discovery Approach (Czarnocha & 
Prabhu, 2007a).

The discovery-based development of instruction that progresses from 
spontaneous to scientific knowledge, with clearly articulated conventions and 
embedded concepts used as a common basis by the mathematical community, 
allows students to construct new desired concepts mathematically validated at each 
stage. This process ensures, via the above progression, that the students are not 
accidentally lead to deep misconceptions that are difficult to clarify and that leave 
scars that have multiple negative repercussions. An example of such a mathematical 
concept is that of irrational numbers. An important hallmark of irrational numbers 
was proposed by Dedekind (1901), vis-à-vis Dedekind cuts. Dedekind defines this 
cut in the following way:

If all points of the straight line fall into two classes such that every point of the 
first class lies to the left of every point of the second class, then there exists one 
and only one point which produces this division of all points into two classes, 
this severing of the straight line into two portions.

The concept is difficult, often introduced in higher mathematics and, as such, 
outside of the scope of most elementary mathematics books. However, many of 
those same elementary expositions assume Dedekind’s construction and one of its 
important corollaries, neither of which is explicitly addressed or even stated as an 
assumption. Hence, in such expositions, there appears to be a jump, or a gap, in the 
reasoning process. A logical step is missed and, when this omission is not clarified, it 
creates, in the mind of the learner, a navigational difficulty towards the conclusions 
that follow. However, in the TR-NYCity approach, where the appropriate connections 
are explicitly articulated, students’ difficulties with the navigation of concepts and 
the understanding of numbers on the real number line are significantly decreased 
(Prabhu & Czarnocha, 2007).

The concept map in Figure 1 below, that appears on the first page of the Instructional 
Sequence, Story of Number (Prabhu & Czarnocha, 2007), serves the purpose of 
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providing a snapshot of the schema of the concepts addressed in the course. This 
concept map is repeatedly visited throughout the semester. Thus, students who are 
typically unaccustomed to seeing any connection between fractions, percent and 
decimals, now have the capability of constructing and immediately seeing their own 
created connections through classroom instruction. The underlying proportional 
reasoning inherent in the interrelated concepts takes on new meaning as a mechanism, 
or a tool, whose use can be extended to situations where students would have had 
difficulty knowing how to begin the process of attempting a solution.

Simultaneously, the concept map is revised at each iteration by the teacher-
researcher to address encountered difficulties of student, and, more generally, 

Figure 1. Concept map providing students with a snapshot of the course
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by student process of learning. The concept map (Figure 2) represents the next 
iteration of the concept map, based on different conceptual organization. The 
comparison of two maps is significant: whereas the first one addresses itself to the 
structure of arithmetic and is therefore based on the basic concept of operations 
on whole numbers extended later in the course to operations on fractions, the 
second concept map is of arithmetic as an entry to algebra based on the concept 
of a number and ratio – as the comparison of numbers. This structural change 
of the concept map and related organization of syllabus is dictated by focusing 
the discussion more on mathematical relationships than operations. Thus each 
concept map of the particular course corresponds to a different role played by the 
same concepts.

Figure 2. Second iteration of the concept map of the course
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The three following concept maps in Figures 3, 4 and 5, are utilized explicitly 
as schema building tools, directed primarily to students, as conceptual scaffolding 
and are examples for the development of students’ schema of thinking. According 
to Skemp (1987), schematic learning provides a triple advantage over rote 
memorization, in that we are:

1. Learning efficiently what we are currently engaged in;
2. Preparing a mental tool for applying the same approach to future learning tasks 

in the same field;
3. When subsequently using this tool, we are consolidating the earlier content of the 

schema.

Methods of Algebraization of the Concept of Ratio

In the concept map in Figure 4, the concept of the ratio changes its role from a 
basic concept in the schema of a number, as in Figure 3, to its own subschema that 
indicates steps of finer level approaches to algebraization of an arithmetic problem, – 
one of the central themes of the arithmetic/algebra divide that causes many problems 
for students in both middle/high school and community college settings. This 
concept map, serving as a guide for the development of the instructional sequence, 
indicates a potential need for a separate subschema for the concept of equality 
to be introduced, while, at the same time, re-asserting ratio’s central position by 
reappearing at the end of one of the branches of the algebraization process as the 

Figure 3. Sketch of the ratio concept within the general schema of a number
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slope of a line (m in mx + b = 0) inherent to the linear equation concept. The two left 
branches emanating from the ratio concept provide a good scaffolding support for 
students’ individual development of an algebraic angle of thinking. Ratio can be used 
both as a scientific concept whose structure is given to be explained by students, or 
as a facilitator of relevant spontaneous concepts that need to be developed before 
they can be smoothly integrated with the scientific ones. In either case, conclusions 
can be drawn from students’ responses about the process of schema development in 
an individual student’s mind. Understanding of the details of that development can 
be helpful in refining the instructional approach for the mathematics classroom.

The pictorial nature of the concept map, as illustrated above, greatly assists in 
accomplishing all three points described by Skemp. Moreover, Skemp outlines 
additional advantages of schema based learning as follows:

A schema more than a concept, greatly reduces cognitive strain. Moreover 
in most mathematical schemas, all the contributory ideas are of very general 
application in mathematics. Time spent in acquiring them is not only of 
psychological value (meaning that present and future learning is easier and 
more lasting), but of mathematical value as well. (Skemp, 1987)

The concept maps in Figures 3, 4 and 5 are thus to be viewed as the seeds of schema 
formation.

The Place Value Concept

The place value concept map below shows the connections among three different 
aspects of the decimal system notation: (1) cycles of units, tens, hundreds, (2) powers 

Figure 4. The subschema of the ratio concept
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of ten and (3) place value. Colour differentiation among the three concepts 
enhances the distinction among the concepts themselves while focusing attention 
on the connections between them wherever the colour is changing. This concept 
map is designed primarily as an instructional tool for student use around which the 
classroom instruction is built; it is very concrete and explicit in its content.

Another example of the usefulness of a concept map is demonstrated below, 
focusing on the process of working with decimal points, another dreaded and 
misconception-laden topic. The following concept map, in Figure 5 below, was 
found very useful by students in two consecutive semesters.

The decimal fraction concept map is designed in a similar style, showing 
three different aspects of the decimal fraction: (1) the decimal point, (2) decimal 
expansion and (3) the decimal alignment in addition and subtraction operations. 
General multiplicative technique of positioning the decimal point is absent since the 
understanding of its meaning is on a higher level of abstraction than its motion due 
to multiplication of the decimal fraction by powers of 10, and is to be addressed with 
a separate concept map.

Figure 5. Place value concept map
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SUMMARY

Concept maps, as used in our work, accomplish the following:

• Facilitation of learning, via the integration of theory and teaching practice in the 
TR-NYCity methodology of teaching-research;

• Eliciting, capturing, archiving, and using “expert” knowledge, via the cyclical 
creation and refinement of instructional sequences for commonly accepted 
difficult concepts;

• Planning instruction via the use of the instructional sequence in actual classroom 
teaching;

• Assessment of “deep” understanding via the periodic standard assessment 
instruments such as quizzes and tests, in addition to regular questioning in 
classroom discourse;

• Research planning via the cycles of teaching-research extending over several 
semesters and colleges.

ACKNOWLEDGEMENTS

This Research Project was supported by the Community College Collaborative 
Incentive Award (C3IRG 4) funded by the City University of New York.

Figure 6. Decimal fraction concept map



V. PRABHU

212

REFERENCES

Czarnocha, B. (2002, October 25–28). Teacher-researcher for the 21st century [Short Oral Report]. 
Proceedings of the 24th Annual Meeting of NA-PME, Athens, GA.

Czarnocha, B., & Prabhu, V. (2007). Investigating the effectiveness of FractionsGrid, FractionsDomino 
in developmental mathematics courses in the community colleges of the Bronx. CUNY Collaborative 
Incentive Award.

Czarnocha, B., & Prabhu, V. (2007). Teaching-research NYCity model. Dydaktyka Matematyki, 29, 
251–272.

Czarnocha, B., & Prabhu, V. (2008). Story of number in abstract. Work in Progress.
Dedekind, R. (1901). Essays on the theory of numbers. Chicago, IL: Open Court Publishing Company.
Novak, J. D. (1998). Learning, creating, and using knowledge: Concept maps as facilitative tools in 

schools and corporations. Mahweh, NJ: Lawrence Erlbaum Associates.
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York, NY: Cambridge University 

Press.
Prabhu, V., & Czarnocha, B. (2008). Mathematics in motion: Excellence in the discovery of number.
PROMYSE. (2006). Promoting rigorous outcomes in mathematics and science education. Making 

the grade: Fractions in your school (Research Report Vol. 1). East Lansing, MI: Michigan State 
University.

Skemp, R. (1987). The psychology of learning mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates.
Vygotsky, L. (1987). Thought and language. Cambridge, MA: MIT Press.

Vrunda Prabhu
Mathematics Department
Bronx Community College
City University of New York



B. Czarnocha et al. (Eds.), The Creative Enterprise of Mathematics Teaching Research, 213–228. 
© 2016 Sense Publishers. All rights reserved.

HAIYUE JIN

3.7. CONCEPT MAPS

Learning Through Assesment

INTRODUCTION

A concept map is a two-dimensional pictorial depiction of knowledge. It has 
been used extensively as an assessment technique of conceptual understanding, 
especially in science education. But its value is more than that. Students can learn 
during concept mapping. This chapter introduces a group of eighth grade students’ 
reflections on their two-month experience with concept mapping. The findings 
indicate that the students had significant positive attitudes toward the use of concept 
mapping in mathematics. They generally agreed that concept mapping helped them 
to better understand the mathematical concepts presented in the class by clarifying 
the relations with other relevant concepts. Implications for teachers’ adoption of 
concept mapping in school settings are also discussed.

For the last three decades, concept maps have been used quite extensively in 
educational settings as an effective technique for organizing and presenting 
information. Its use as an assessment tool has been explored in mathematics 
education as well (Afamasaga-Fuata’I, 2009; Mansfield & Happs, 1991; Williams, 
1994). When concept maps are used as an assessment technique, rather than a static 
product, they take on a different larger role, which is of great value to mathematics 
educators and curriculum designers. Student-constructed concept maps achieve 
exactly that by shifting the focus toward the construction process and its meaning 
to the students. This chapter is grounded on an experimental study in which concept 
map construction was used as an assessment of secondary school students’ conceptual 
understanding in mathematics. It focuses on the mapping processes rather than the 
mapping products.

This chapter explores observations of the activity of students’ construction of 
concept maps and their attitudes toward concept maps as educational tools. The 
findings suggest that concept mapping can be a worthwhile tool in a teachers’ 
repertoire of assessment of students’ learning. Implications for the use of concept 
maps in classroom settings are also discussed.

LITERATURE REVIEW

A concept map is a graphical representation of knowledge within a particular 
domain. It is a network consisting of nodes and labelled lines. Nodes correspond 
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to key terms that represent concepts. They are usually enclosed in boxes or circles. 
The relationships among the concepts are indicated by connecting line segments 
or arrows. The labels on the lines are called linking words or linking phrases, and 
indicate how the joined concepts are related. The linked concepts together with 
labels indicated along the connectors form a meaningful statement. This statement 
is called a proposition. Ruiz-Primo (2004) considered the proposition as the basic 
unit of meaning in a concept map, and the basic unit used to judge the validity of the 
conveyed relationship between any two concepts.

From its inception, in the early 1970s, concept mapping was described as an 
assessment technique to trace students’ conceptual development (Novak, 2005). 
Since then, many efforts have been made toward the exploration of the concept 
map’s use for diagnosing conceptual understanding and detecting conceptual 
development. Broad theories exist to support its use for capturing the attributes 
of an individual’s knowledge structure. In cognitive psychology, it is generally 
agreed that human knowledge is stored in memory as information packets, or 
schema (Jonassen, Beissner, & Yacci, 1993). When learning occurs, an individual 
incorporates new information into his or her schema through assimilation and/or 
accommodation (Piaget, 1977). The balance between these two processes conveys 
the idea of how knowledge develops in the mind. Studies into concept formation, 
concept acquisition, and conceptual learning in mathematics (Sfard, 1991; Skemp, 
1986) also support the pattern of relations among mathematical concepts and the 
equilibration processes. Thus, the concept map, with its specific features (nodes, 
links, linking phrases, and structure), may be viewed as an explicit representation 
of individuals’ knowledge structure. Once the knowledge structure is represented 
externally, it can be assessed by others. It is generally recognized that concept maps 
offer an effective way to track students’ learning through structural complexity 
and quality of propositions (Hasemann & Mansfield, 1995; Pearsall, Skipper, & 
Mintzes, 1997).

Different activities and applications of concept mapping can be found throughout 
literature. Ruiz-Primo, Shavelson, Li, and Schultz (2001) provided a systematic 
description of the mapping formats and characterized the tasks along a continuum, 
from high-directed to low-directed, according to who chooses the concepts, who 
links the concepts, who generates the linking phrases, and who structures the concept 
map. The lower the direction of the concept map-based task, the more opportunities 
it will have to reveal students’ conceptual understanding. However, free-style 
mapping is too open-ended, and presents difficulties for researchers in developing 
a reliable scoring system since different students may provide quite different sets of 
concepts and relationships (Jin, 2007; Ruiz-Primo, Schultz, & Shavelson, 2001). By 
comparing the limitations and strengths of different mapping tasks, the experimental 
study reported in this chapter used a low-directed concept mapping format, with a 
given concept list. The concept list could guide the students to focus on a specific 
knowledge domain; at the same time, the students were free to make connections 
among the concepts and label the lines with their own words.
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Mansfield and Happs (1989a, 1989b) reported on a project involving a group 
of eighth grade students. In this project, concept mapping was employed to probe 
students’ understanding before and after a teaching sequence on the topic of parallel 
lines using a pre-/post-test design. To get the students prepared for the concept 
mapping task, the researchers provided a brief training. After that, the students were 
required to construct a map using ten concepts, related to the subject of parallel lines, 
in a given concept list. Though it was acknowledged that concept mapping was a 
difficult task for young students and a brief introduction may not be sufficient for 
them to construct informative concept maps, most of the eighth grade students were 
able to construct a concept map. The researchers could gather meaningful information 
about the students’ conceptual understanding and conceptual development through 
the analysis of the concepts and propositions in the student-constructed concept 
maps. No detailed information about the students’ concept mapping process was 
mentioned in the papers. But the findings encouraged further study with young 
students.

Afamasaga-Fuata’I (2006, 2009a, 2009b) conducted a series of case studies using 
concept maps to trace perspective teachers’ conceptual knowledge of certain topics, 
in	 particular,―matrices	 and	 systems,	 length	 and	 volume,	 and	 fractions.	After	 a	
period of learning a topic, the perspective teachers were required to generate a list of 
concepts for the topic and construct a map showing their understanding of the inter-
connectedness between the concepts. After each concept map, they presented it to 
the class or the researcher(s). Through discussions and negotiations, the perspective 
teachers further revised and expanded the maps. The progressive maps were 
collected and then compared by the researcher. Cycles of refinements in the student 
teachers’ concept maps were documented.

SAMPLING AND PROCEDURES

The participants of the experimental study discussed here consisted of a class 
of 48 eighth grade students (24 female students and 24 male students). They 
were selected by convenient sampling from a junior middle school in a town in 
the Jiangsu province, China. The students’ mathematics test scores, from exams 
administered during their seventh and eighth school year, were collected to gauge 
their performance. The tests, altogether six, were all graded on a 100-point scale. 
Their scores were highly correlated (the correlation coefficient, r1, ranged from 
0.926 to 0.950, p	<	0.001;	Cronbach’s	α2 = 0.989), indicating that the tests measured 
a common feature about the students’ mathematics achievement. For each student, 
the mean of the student’s raw test scores was taken as an indicator of his or her 
school mathematics achievement (SMA).

Since concept maps have not been extensively used in mathematics classrooms 
in China, the experimental study first trained the participant on the techniques 
of constructing informative concept maps. The four mathematical topics addressed were 
algebraic expressions, equations, triangles, and quadrilaterals. The student- 
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constructed concept maps were analysed by considering both Novak’s traditional 
methods (Novak & Gowin, 1984), including number of links and proposition score, 
and	methods	adopted	 from	 the	Social	Network	Analysis,―density	and	numbers	of	
incoming and outgoing links (Jin & Wong, 2013). No criterion map was produced 
for scoring the students’ maps through comparison since Ruiz-Primo and Shavelson 
(1996) had found different criterion maps may lead to different conclusions.

Students’ attitudes toward concept mapping were collected through a self-
designed Attitude Toward Concept Maps (ATCM) questionnaire combined with an 
interview. The questionnaire was designed following Mohamed’s (1993) attitudes 
toward concept mapping questionnaire in science. Some items were adopted from 
Kankkunen’ study (2001) in which the students’ opinions about concept mapping 
were gathered through inquiry and interviews. The questionnaire utilized a six-point 
Likert Scale, with the following categories: Strongly Disagree (SD), Disagree (D), 
Slightly Disagree (LD), Slightly Agree (LA), Agree (A), and Strongly Agree (SA). 
By using this six-point Likert Scale, the researcher forced the students to choose an 
option from either side of the agreement spectrum, not allowing a neutral response. 
Interviews were conducted with selected students. For the students who were not 
interviewed, the interview questions were assigned as an open-ended written task at 
the end of the study. The interview, together with the open-ended written task, made 
it possible to focus research attention more directly on students’ process of concept 
mapping, and to provide additional information about the students’ attitudes toward 
concept mapping supplementing their responses on the ATCM questionnaire.

FINDINGS

Observations of Participants’ Concept Mapping

This section includes observations made during both the student training and concept 
mapping stages.

During the training, the students, first, treated concept mapping as a simple 
drawing task instead of a test of their mathematical understanding. They provided 
only brief and general linking phrases in their maps. For example, one of the students 
initially constructed a proposition that in written form reads, “A triangle may be an 
isosceles triangle”. When asked to explain what she meant by may be, the student 
said, “when it has two equal sides, it is an isosceles triangle; when it has no equal 
sides, it is not an isosceles triangle.” In general, when prompted, most of the students 
could add more links to their concept maps. This finding suggested that the students 
needed further training before they can construct meaningful concept maps that can 
be used to represent their levels of understanding. Hence, more detailed training 
(Jin & Wong, 2010) was provided before the concept mapping tests.

After the training, four concept mapping tests were administered, consisting 
of free-style mapping using ten or eleven given concepts. The tests were given 
on different days. Students were given 30 minutes to complete each test. It was 
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noticed that, after the students worked on the mapping tasks for about 10 minutes, 
some of them put the test paper aside, indicating that they were done; while some 
others seemed to have been struggling with the possible connections. The researcher 
checked several students’ maps, privately, during the test time, and inquired as to 
what their specific difficulties with the mapping test were. Most of them said they 
could not find more connections among the given concepts, but, at the same time, 
were unsure whether they had included all the expected connections. During one of 
such informal exchanges, the researcher provided a prompt: “How about exponents 
and like terms? Is there any relation between them?” The student thought for a while, 
then seemed suddenly enlightened, and started to add the link. As a result, for all four 
concept mapping tasks, after the students had worked on constructing their drafts of 
concept maps for about 25 minutes, the researcher provided four or five prompts to 
the class to assist with the task. Given the prompts, most students added information 
to their concept maps.

Examples of Well-Constructed and Poorly-Constructed Concept Maps

The correlation coefficients between the students’ school mathematics achievements 
(SMA) and their proposition scores for the four topics ranged from 0.709 to 0.753, 
with p < 0.01, indicating that the students’ ability to build informative concept maps 
did, to a certain extent, reflect their mathematics achievement. Focusing on the topic 
of triangles, Figures 1 and 2 are examples of a well-constructed concept map and 
a poorly-constructed concept map, respectively. Carefully comparing the two, one 
may gain more insight into the usefulness of student concept mapping in addressing 
their conceptual understanding.

Figure 1 shows that the student possessed a comprehensive understanding 
of the concepts. All of the eleven given concepts were involved in the map. The 
most inclusive concept, triangle, was placed at the centre with special types of 
triangles around it. The links from triangle to the six special types of triangles were 
labelled with definition-based linking phrases. The relationship between acute-
angled triangle and equilateral triangle was indicated. The student noted out that 
an acute-angled triangle whose angles are all equal to 60° is an equilateral triangle. 
The relations between the other triangles were not shown in the concept map, 
indicating that the student may find the relationship between acute-angled triangle 
and equilateral triangle more obvious than the others. Angle was placed close to 
acute-angled triangle, right-angled triangle, and obtuse-angled triangle, since these 
different types of triangles are categorized using their angles. Isosceles triangle 
and equilateral triangle both have special properties of median and midline. This 
might be the reason that the student placed median and midline right below the two 
triangles. Symmetry axis was placed near isosceles triangle. This is reasonable since, 
among the special types of triangles, isosceles triangle (considering an equilateral 
triangle as a special case of an isosceles triangle) is the only one that always has one 
axis of symmetry. The student constructed 25 links for the 11 given concepts. The 
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number of links constructed is greater than most of the other students’ concept maps. 
The propositions in the concept map are all correct, and some even indicated deeper 
insights into the relationships. Therefore, each proposition was assigned a score  
of 2; the entire map earned a proposition score of 2 × 25 = 50.

Figure 2 shows an example of a poorly-constructed concept map. Although it 
included all 11 given concepts, much fewer links were constructed in this map 
relative to the one in Figure 1.

Figure 2. An example of a poorly-constructed concept map for triangle concepts  
(translated from Chinese)

Triangle was placed at the centre of the concept map. Seven concepts were placed 
around it. The links between triangle and the seven concepts were all labelled 
with definition-based linking phrases. However, no connections among the seven 
concepts was shown in the map. Equilateral triangle was placed below isosceles 
triangle since, as recognized by the student, an equilateral triangle is an isosceles 
triangle with a 60° angle. Median and symmetry axis were, most likely, the last two 
concepts added to the map. On the one hand, there seemed no space in the student’s 
map for the two concepts to connect directly to triangle. On the other hand, the 
relationships of median and symmetry axis with equilateral triangle seemed to be 
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the most obvious to the student. Thus, he simply linked the two concepts with the 
equilateral triangle. The student did not seem to have attempted to construct further 
connections among median and symmetry axis and other concepts in the map. It 
appears that the student was satisfied with his map since no concept was isolated. 
As a result, only ten links were constructed, each with a varying proposition score. 
This concept map earned a proposition score of 0 + 2 + 1 + 1 + 0 + 2 + 1 + 2 + 1 
+ 2 = 12. This is far less than the obtained mean class proposition score of 25.75. 
The linking phrases used indicate that the student does possess some understanding 
of the relationships; however, he did not express his ideas clearly. For example, he 
linked triangle to midline with the linking phrase “the midpoints of two sides.” He 
may know that a midline is a segment connecting the midpoints of two sides of a 
triangle, but did not explicitly state that a midline is a segment in the linking phrase. 
In practice, some instructors may wish to reduce this strict requirement of detailed 
linking phrases.

ATCM Questionnaire

The questionnaire covered the following five aspects:

• Ease of constructing concept maps (ease);
• Confidence with concept mapping (confidence);
• Enjoyment of concept mapping (enjoyment);
• Usefulness of concept maps (usefulness), and, finally,
• Preference of using concept map for further study (preference).

The Cronbach’s alphas of the five aspects, except for ease, were higher than 0.70, 
showing that these aspects have acceptable internal consistency. The ease-related 
items	had	low	internal	consistency	(Cronbach’s	α	=	0.339),	possibly	because	they	
did not belong conceptually to the same aspect. The mean scores of the other aspects 
ranged from 4.16 to 5.06, showing different levels of students’ agreement. The 
results are shown in Table 1 where the different aspects are shown in a descending 
order according to their means.

Table 1. Cronbach’s α, means and standard deviations (SDs) of the five  
aspects of the Attitudes Toward Concept Mapping (ATCM) Questionnaire

Aspects Cronbach’s α Mean S.D.

Usefulness 0.724 5.06 0.20
Preference 0.867 4.37 0.20
Enjoyment 0.830 4.22 0.35
Confidence 0.724 4.16 0.88
Ease 0.339 / /
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The students shared a significantly positive view toward the usefulness of 
concept maps. All 48 students agreed that using concept maps one can clearly 
describe relationships among mathematical concepts. Over 90% of them indicated 
that constructing concept maps is, indeed, an effective assessment technique. They 
generally thought that concept maps appropriately reflect their understanding of 
mathematical ideas, and considered the maps a fair tool for gauging their conceptual 
achievement. Although it was found that with prompts students could add more 
propositions to their concept maps, from the students’ perspective, concept mapping 
had its value as an assessment technique. The students readily admitted that they 
could benefit from concept mapping. For example, more than 90% of the students 
concurred that concept mapping is helpful for understanding mathematics concepts, 
and that they could see more clearly how concepts are related after building a concept 
map. Eight students strongly agreed that they are able to come up with new ideas 
when engaged in concept mapping. These eight students include both high and low 
achieving students, suggesting that students of different academic levels can benefit 
from concept mapping.

The preference aspect measures the students’ preference of using concept maps in 
their further study of mathematics. In general, the students’ responses to this aspect 
were positive. Majority of the students indicated that they would like to use concept 
maps in their further study, and hope that their teachers can use concept maps to 
teach mathematical concepts. However, more than 40% of the students indicated 
slight agreement only. There are two possible reasons for this hesitation. First, even 
though the students seemed to have a desire to use concept maps, as was evident 
from their appreciation of the maps’ usefulness, they were uncertain whether they 
would continue to use this technique by themselves. Secondly, as was discovered 
through the informal talks, students generally viewed problem-solving as the most 
important issue in learning mathematics. They did not think that concept mapping 
is helpful for problem-solving. Among the students who indicated disagreement to 
the items related to preference, most were female students. For example, among the 
six students who showed disagreement to the item “I’d like to use concept map in 
mathematics,” five were female students. This finding suggests that male students 
may have higher preference for further use of concept maps. The gender difference 
needs to be studied further.

The students indicated moderate enjoyment toward concept mapping. They 
showed the strongest disagreement on the item “I find concept mapping boring”. 
Only 7 out of the 48 students slightly agreed with this item. More than 80% of the 
students agreed that concept mapping is interesting. About three quarters agreed they 
liked spending time on concept mapping. The students’ responses to these items 
consistently suggest that they did enjoy concept mapping.

With respect to the confidence level, students seemed relatively insecure in their 
ability to construct and utilize concept maps. However, they admitted that given 
more practice they would be able to assemble better concept maps.



H. JIN

222

The ease aspect actually dealt with levels of easiness, anxiety, and time-
consumption issues. Most of the students admitted that concept mapping is 
challenging, but more than half of them denied that they felt anxious when they were 
asked to construct a concept map. This is likely due to the students’ awareness that 
their concept map scores would not be used to judge their performance in school. 
The students held different views on whether concept mapping is an unusually time-
consuming activity. It was noted that among the eight students who chose strongly 
disagree to this item, six were male students; while, among the seven students who 
chose agree or strongly agree to this item, only two were male students. It appears 
that the female students in this study required more time to construct concept maps 
compared to male students. This study did not aim to study gender differences, but 
such differences might prove to be a fruitful area for future research; for example, 
to further investigate Edwards’ (1993) finding that female students produced 
significantly more complex concept maps than male students.

In summary, the above findings about students’ attitudes toward concept 
mapping encourage further exploration of the utility of concept maps as an 
assessment technique of conceptual understanding, as well as a learning strategy 
in mathematics.

Interview and Open-Ended Written Task

Twelve students were selected for interviews, based on their school mathematics 
achievement level. Six students were high-achieving and the other six were low-
achieving students. The interviews were conducted one-on-one. Each interview 
took about 15 to 30 minutes and was audio-taped. The interview questions were 
provided to the remaining 36 students as an open-ended written task at the end of the 
study. They were given 30 minutes to write down their answers. The interviews and 
the open-ended written task together provided rich information about the students’ 
thoughts and opinions about the use of concept maps as an assessment technique, a 
learning strategy or, even, a teaching method. Below are two of the most revealing 
questions posed to the students:

Question 1: In which aspect(s) do you think concept mapping is helpful?

• (A) help with review,
• (B) help with memorization,
• (C) help with problem-solving,
• (D) support understanding of concepts,
• (E) others (please specify), or
• (F) no use at all

Please indicate your answer by selecting one or more of the choices above, and 
provide your explanations below.
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Question 2: Can you summarize your major achievements during this concept 
mapping period?

Table 2 below summarizes the results of students’ responses to Question 1. The 
percentages are shown in parentheses below each choice, and typical corresponding 
explanations (translated from Chinese) are also provided.

As is demonstrated in Table 2, students agreed that concept mapping benefited 
their learning of mathematics in different ways. The students’ responses to Question 2 
were mostly positive. The positive statements reflected (A), (B), (C), and (D) 
choices of Question 1. Students indicated that concept mapping would be beneficial 
for review, memorization, problem-solving and understanding. Questions 1 may 
have influenced students’ answers to Question 2; this is an unintended limitation 
of the design of the questions. Below are some examples of students’ responses to 
Question 2 (translated from Chinese):

• With concept mapping, I know I have not fully understand the concepts; concept 
mapping helps me to better understand the concepts learned; it is also helpful for 
the learning of new concepts.

• With concept mapping, it becomes easier to remember the concepts. It is better 
than learning the concepts individually.

• Now I know mathematical concepts are related and I know different connections 
among concepts; concept map helps me to organize the concepts I have learned.

• At first, I find concept mapping complex and it has nothing to do with problem 
solving. After I get familiar with it and did concept mapping for several times, I 
find problem solving is actually quite easy. When I encounter a complex problem 
which I don’t know where to start, I construct a concept map in mind, go from 
one concept to another, then to other concepts, the problem becomes easier. I will 
continue to use concept map for my further study.

• Concept mapping is a kind of training on divergent thinking. When I see a concept, 
I am able to link it to other concepts. With such experience, I know to look at a 
problem from different perspectives.

• Concept mapping makes mathematics learning interesting; the concepts are not 
abstract and boring terms anymore.

• With concept mapping, I can easily find the connections between concepts. It 
helps me to review and consolidate the knowledge I’ve learned. It helps me to 
understand concepts and digest them. I think concept map can not only used for 
mathematics but other subjects as well; for example, some difficult and abstract 
concepts in physics. By doing so, I can easily understand the concepts. I want to 
construct a huge concept map in the future. It can include concepts in primary 
school, secondary school, and high school; while for secondary school, it covers 
secondary 1, 2, and 3, the same for primary school and high school. For each 
grade, I will put all the concepts into a concept map and put it in my space. So 
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others can use it for study, and they can then learn mathematics, chemistry, and 
physics better.

Three students provided neutral to negative responses:

• Concept mapping is just so-so. Though it did not help me too much in learning 
mathematics, it did help me a little bit.

• I do not think concept mapping is helpful for solving problems. When I try to solve 
a problem, the relevant concepts will come to my mind naturally. I will then solve 
the problem step by step. I will not think about other concepts.

• I don’t think I will draw concept maps in most cases because it is too troublesome 
and time-consuming.

The student who provided the second negative response to Question 2 above 
was one of the top students in the class. He had his own learning method that had 
proved to be effective for him, since he earned high scores on mathematics tests. 
Thus, he was reluctant to adopt this new technique. The other two students who 
gave negative responses were two academically weak students. Their mathematics 
teacher, who was also the teacher in charge of the class, commented that these two 
students were not motivated to study in general. Perhaps, this lack of motivation 
carried over to their opinion of the concept mapping activity, and explains their 
reluctance to make the effort to incorporate concept mapping into their studies.

DISCUSSION

Although, in this study, concept maps were used primarily as an assessment 
technique, the findings, especially the information about the students’ attitudes 
toward concept mapping and their perceptions of the usefulness of concept maps, 
suggest important applications of concept maps as educational tools.

Training for concept mapping. The observations during the training and the 
concept mapping stages showed that, when the students were new to concept 
mapping, they generally had difficulty understanding the purpose of concept 
mapping and seemed unable to include as much information as they knew about the 
concepts; they needed time to get familiar with this technique. Hence, training on 
concept mapping solely for assessment purpose is not economical and practical for 
school education. Existing studies have shown that concept maps can be an effective 
teaching strategy. For example, in 1993, Horton and her colleagues published a 
meta-analysis of research concerning the effectiveness of concept mapping as an 
instructional tool for science teaching (Horton, McConney, Gallo, Woods, Senn, & 
Hamelin, 1993). The results of this meta-analysis showed that concept mapping 
had positive effects on both students’ achievement and attitudes. Therefore, it is 
suggested that teachers start by introducing concept maps in classroom teaching, for 
example, for lesson display and information integration. During this introductory 
time students can gradually familiarize themselves with the attributes of concept 
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maps and the general concept mapping process. After that, teachers can expand the 
function of concept mapping as an assessment tool or a learning strategy.

Students’ experiences with concept mapping. After working with concept maps 
for two months, students generally appreciated its use in mathematics. Aside from 
its use as an assessment technique, over three quarters of the students indicated 
that concept mapping helped them with conceptual learning. For example, one of 
the concept mapping tests required the students to construct a map with concepts 
related to equations and functions. Equations and functions were taught in separate 
chapters in secondary schools in China but their connections were not made explicit 
in the students’ textbooks. Most students did not rigorously reflect on the relations 
between them. On the concept mapping test, they were forced to think hard about 
the connections between the given concepts. The students reported that they better 
understood the concepts when they were placed within a bigger picture. During the 
interviews and on the written task, students also pointed out that concept maps helped 
them remember different mathematical concepts by clarifying their relationships to 
each other.

Concept mapping provides a valuable opportunity for learning through assessment, 
with its many unique virtues. It is a promising instructional tool for teachers who 
wish to elevate their students’ conceptual learning and appreciation of mathematics.
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ROBERT CATANUTO

3.8. THE METHOD LEARNING ROUTES

INTRODUCTION

After the preschool age, a person must usually enter a long period of directed 
institutional curriculum of learning, which can span twelve years or more. A child 
gets into this school stage with a large range of ideas, attitudes and established 
ways of approaching the world, activities, peers, family and many other everyday 
life aspects. This background heavily affects the way he or she thinks and learns. 
In	 many	 situations,	 this	 intellectual	 heritage	 is	 almost	 unmodifiable	 (Gardner,	
1993). Sadly, the encounter between this personal background and the rigor of the 
curriculum	creates	situations	where	the	student	can	be	classified	as	lazy	or	affected	
by an attention disorder. In extreme situation, he might even no longer be able to 
attend school at all (Levine, 2003). Many solutions addressing this problem exist 
(Levine, 2006), although most of them remain unexploited.

This article does not address the topic of what should be taught inside educational 
institutions, but it proposes a way of how a young mind may be invited to get in 
touch with curriculum topics chosen by the school. The proposed method mainly 
addresses situations where learning may be slow and difficult. The examples shown 
at the end of the paper deal specifically with mathematics.

As	a	side	note,	there	is	a	large	amount	of	scientific	evidence	which	asserts	that	
learning evolves better when the student is actively interested and involved in the 
process. The reader is referred to the famous works of Bruner (1960, 1966) and 
Montessori (1986) and the bibliographies therein.

The rest of this work is organized as follows: the following section explains 
the method proposed, its main steps and implementation. The next section shows 
concept maps collected by the author from a group of his students, along with 
a series of iterations through which such concept maps, constructed by both the 
teacher and the students, are progressively expanded. This process and its outcomes 
are then analysed. The final section draws certain conclusions and proposes possible 
directions for future research.

THE METHOD

A general learning situation can be summarized in this way: a student is about to 
face a new topic (where the topic may be theoretical, practical, or an ability, a mind 
habit or something else). Of course, this topic is not already inside the mind of the 
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student, or it may exist there to a somewhat larger or smaller extent and deepness. In 
any case, an improvement is advisable, for a number or reasons, depending on the 
specific	situation.

Let’s place some starting focus questions to tackle this issue:

a. How far is the student’s mind from the topic? And how can we better describe 
this distance?

b. As stated above, if we suppose the topic must be taught, how can an educator build 
an effective connection between the topic and the student? And, very importantly, 
how can we build a practically usable connection, not only a theoretical one? 
By practically usable we mean a learning path which is seen viable by both the 
educator and the student, and, mainly, by the student. Education at its core should 
be regarded as meaningful especially by the student.

Step 1: The Internal Home of a Learner

A student always starts every learning attempt moving from his/her own internal 
home: as addressed in a variety of research studies (Gardner, 1993; Levine, 2002) 
and bibliographies therein. This is what we call internal home,―the	entire	set	of	
mind habits, memories, social and cultural heritage or traditions, personal theories 
about the world, other people in the world and family, things and fundamental 
philosophical issues a person always carries inside hidden in all of their actions. 
Moreover, not only do the starting conditions of students differ that way but also 
the learning approaches they employ to acquire new knowledge. This is famously 
summarized in the ground-breaking work of Gardner (1981) and, more recently, 
in his work of 2006. So, how can we represent this internal universe of a young 
student in a practical way? Usually, teachers have little time to pay attention to this 
fundamental problem, even when they are really aware of its importance.

Our	first	proposal	here	 is	 that	 the	 teacher	 (or	 the	educational	staff	as	a	whole)	
should try to represent the internal intellectual environment of the student using 
concept maps (Novak, 2010). Concept maps are a graph-like tool which has very 
good characteristics to allow for both a deep understanding of the subject studied 
(be it a person, an idea or whatever else) and a gentle learning curve to begin with.

Briefly,	 a	 concept	map	has	 two	key	 features	 (Novak,	 2006):	 a	 central	 concept	
to be analysed, and a focus question which should drive the attention both of the 
concept map builder and the concept map reader.

So, how to construct the concept map of the student internal home?
A widely used tool in educational settings is useful for this goal. CmapTools 

collects many of the features needed to depict the internal home of a learner in an 
easy way to be implemented. Here we propose two ways this can be accomplished, 
but of course many others may arise in the future:

(a) The teacher explicitly asks each student to realize a concept map which 
represents him or herself: this is a key step, and can also arrive after a short initial 
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training of students to get acquainted with the tool (very easy to use, honestly). The 
student should be invited to place him/herself as the central concept of the map. The 
map can follow these sample focus questions:

• What would you like to spend most of your time on – say weekly – if you could 
decide your weekly planning entirely on your own? (this way of placing questions 
reflects	 the	assumption,	well	known	 in	pedagogy	–	and	 in	everyday	 life	–	 that	
humans learn topics better if they are more interested in them);

• Try to describe yourself showing attitudes, qualities, family, friends, and hobbies 
and so on; try to describe your projects about your desired future job, what kind 
of people you would like to be surrounded by or work with or play with or live 
with, etc.

Of course, these questions may heavily vary with respect to the age and other 
personal conditions of the students. A similar approach to the one here is depicted in 
Barringer (2010) where the authors suggest the following questions:

1. If you were to design your desired day, what would you be doing?
2. What parts of school are easiest for you and why?
3. What are your affinities – those things you love to do or learn about?

(b) The teacher devotes a certain amount of time to building concept maps of 
the students’ internal homes. We think this way is slower and, moreover, has a 
fundamental lack: it describes the students’ internal world the way the teacher sees it 
and not the way the students do. This is very prone to misunderstandings and might 
lead to failures. We understand, however, that time constraints in today educational 
settings are strict and so this second way can be more viable than the former.

After a while, the internal home of the student is described by a concept map. 
Taking advantage of the graph-like nature of concept maps, we suggest to represent 
them via the usual graph notation: MH = {V, E} where MH stands for the Mind’s 
Home of the student, V is the set of all the concepts the students placed in the map, 
and E is the set of all the links the student drew to connect concepts to one another. 
CmapTools offers an appropriate range of built-in functions which allow to group 
together and list concepts and linking phrases, applying the prescribed notation.

Before going any further, the teacher has to sketch a concept map of the topic he/
she wants to teach, as large and detailed as possible. This will be addressed as the 
Topic Concept Map (TCM).

Step 2: The Route to the Topic, or the Learning Route

After	 the	first	 step,	 the	 staff	 has	 the	 student’s	mind	concept	map.	 In	 a	 sense,	 the	
teacher has a deeper knowledge of the student, and this knowledge is easily and 
conceptually schematized.

Now what? Let’s address to a frequent situation, and, also, the least desirable one: 
the topic to be taught is not inside the MH graph of the learner. Otherwise stated, in 
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a less formal fashion, the learner does not see it in his/her practical and theoretical 
world of interests. Now, irrespective of the difficulty of the situation, the concept to 
be taught is, in the end, a concept on its own. So let’s place it in the MH graph as an 
isolated node, that is, one that has no link with any other concepts sketched by the 
student. The second key step of the method must now be undertaken.

We recall a somehow strict similarity to the backward problem solving process 
described in Polya (1981): you have a mathematical problem carrying some data and 
you should get to a solution, which is not directly linked to those data (where directly 
means with just one logical step). Otherwise stated, you have to build a multi-step 
connection between the desired result and the actual data you have. Our analogy 
with the educational problem becomes clearer now: the student MH cannot actually 
be one-step connected with the topic but it might be with a multi-step process. How 
can	these	subsequent	steps	be	built?	In	order	to	solve	this	issue	we	define	here	the	
second key concept of our method.

Taking another similarity with a well-known concept in psychology, the Zone 
of Proximal Development (ZPD) by L. Vygotsky (1986) we use here what we call 
the Node of Proximal Learning (NPL). Taking whichever of the nodes (= concepts) 
written in the MH, the student may be now asked to list topics which he/she is 
interested in learning, connected to those concepts inserted by him/herself.

Of course, new concepts may appropriately be proposed by the teacher him/
herself to students, to check their reactions. This will eventually lead to a set H made 
up of lists of “desired” topics. The teacher now has to choose the most appropriate 
topics from those lists, add them to the MH map and see if any of those topics 
associate to the topic to be taught (or, stated in set like language, if the intersection 
between the TCM and the MH maps is now not zero).

Two situations may arise:

a. The intersection is not zero; hence the teacher and the student have built together a 
meaningful multistep connection between MH and TCM. The educational process 
begins	with	the	very	first	step	where	the	student	and	the	teacher	now	agree	upon;

b. The intersection is still zero, hence two steps have to be undertaken: the teacher 
tries to reformulate the TCM taking into account the {MH + H} set he/she now 
has. On the other hand, the student tries to do the same with his/her MH + H 
concept map. After that, the teacher searches again for possible intersections 
between {MH + H}2 and TCM2;

c. (a) The process goes back to (a) again, until a non-zero intersection arises. After 
a non-zero intersection is found between {MH + H} and TCMi at the ith step of 
the process, a multistep connection between the original MH and TCM is done. 
We would like to stress here that this connection is now meaningful, simply by 
construction, since it has been built both by the teacher and the student, who has 
enlarged his or her MH step-by-step until getting in touch with the borders of the 
TCM, reshaped by the teacher. The topic to be taught should make now sense to 
him/her, since it belongs to this expanded {MH + H}.
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IMPLEMENTATION AND EXPERIMENTS

We propose here a summarizing chart where the method can be viewed in its  
main steps:

1. Assessment of the starting internal condition of the student/learner: this is 
accomplished via the generation of a concept map of the MH (Mind Home) of the 
student where his/her main personal characteristics are schematically depicted; 
the concept map realization is better left up to the student, since it will mirror his/
her way of thinking;

2. Making the TCM (Topic Concept Map) of the topic to be taught by the teacher/
educator: this TCM is better assigned to the teacher/educator, since it mirrors the 
way he/she sees the topic, and so it will eventually highlight important differences 
between students’ and teachers’ ways of thinking;

3. Searching of the conceptual route between {MH + H} and TCM via subsequent 
linking nodes (Nodes of Proximal Learning), eventually building a meaningful 
learning route.

Data Collected

The author worked with a group of 16 students, divided in two different classes, 
9 in the first year, and 7 in the second. They were between 16 and 18 years old, in 
a Swiss high school, where the author is currently a teacher of Mathematics and 
Physics.

Initially, the students were asked to produce an original MH-map, about their 
personal interests, while the teacher decided to write a TCM-map about lines. This 
is a very important and wide-spanning topic across both the Math and Physics 
curriculum taught by the teacher. He didn’t know in advance what the students’ maps 
would have been. Hence, he decided to keep the TCM-map as general as possible, in 
order to suitably expand it to reach a connection with the several MH-maps.

All of the students in the first year were conveniently trained to using the IHMC’s 
software called CmapTools, while the students of the second year were free to 
choose between this software and other less professional ones, because of hardware 
constraints. Not all of them could use laptops, but all of them use tablets daily.

The author decided that this activity should have been totally voluntary for 
students, meaning that they might opt out at any time they wished. This was regarded 
as an extremely important option, because the activity was dealing with maps about 
personal interests, and this was an effort to better connect students’ personal lives 
and schools as institutions.

In the following figures, the author chose to report in detail only the entire 
iteration process of two students. This has been decided because their maps were 
optimally showing the whole learning process, and the two students actively 
collaborated with the author in the experiment.
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Iteration 1

The following picture represents the TCM from the teacher.

Figure 2. Student A’s MH map

Figure 1. The lines TCM

The following pictures represent the initial MHs from the two chosen students.

This map describes the interest of this student (A) for motorbikes and girls. The 
map is simple and plain. The author proposed the student to regard the node about 
motorbikes as his Node of Proximal Development (NPL), as described earlier.

The next map describes the interest of the student (B) for photography, tennis, 
travelling and electronics. In this case, the chosen NPL was the node about 
electronics (see Figure 3).

Unfortunately, the second year students decided not to carry on the activity after 
the first iteration step because of the proximity of the final examinations. The author 
chose not to force them to continue.
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Iteration 2

The second iterative step followed, where the author concentrated his attention on 
those maps that were still not directly connected to the TCM. The following figure 
represents TCM2 where the author expanded the map to reduce the distance from 
the MH of the students, in terms of nodes and links. The figure reports added nodes 
and links, highlighted in dark grey (green). They represent the starting traits of the 
desired learning routes.

Figure 3. Student B’s MH map

Figures 4 and 5 represent the extended concept maps of the students in this step. 
We report here the maps of the two students, where the NPLs chosen in the first 
iteration have been represented in light grey (yellow), while the nodes added by the 
students are represented in dark grey (green).
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Iteration 3

We move on to the third iteration step, where the author concentrated his attention 
on closing the gap between his TCM-map and those created by the students. The 
following figure represents TCM3 where the author further expanded the map to 
reduce the distance from the MHs of the students, in terms of nodes and links.

Figure 5. Student B’s extended concept map

Figure 4. Student A’s extended concept map
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The figure shows added nodes and links, highlighted in dark grey (green). 
The links and nodes in grey (orange) are the final nodes directly connected to the 
students’ MHs. These nodes are common across the TCM-map and the students’ 
maps. They represent the final traits of the desired learning routes and the major 
practical goal of the Method.

Figure 7. Student A’s extended concept map linking to TCM3

Figures 7 and 8 represent the extended concept maps of the two students in this 
step. All the other maps were either connected to the extended TCM or belonged to 
students that refused to proceed with the experiment.

Finally, the following chart summarizes the percent of students’ maps connected 
to the TCM-maps at the ith iteration.

Table 1. Percent of students who achieved the required connection

Iteration 1 Iteration 2 Iteration 3

Percent of connected maps 12.50% 31.25% 43.75%
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Figure 9. Bar chart of students who achieved the required  
connection after the ith iteration

Analysis of the Maps Collected

We can draw a few important observations about the maps built by the students and 
their interaction with the proposed Learning Routes method:

• The maps encourage much stronger bonds between students’ personal web of 
interests and the topic chosen by the teacher out of the curriculum. This entails 
both the way the teacher could frame this part of the course and the way the 
students approach it. Indeed, it could be much easier to structure tests, decide 
which tools to use, how to divide the workload among students, when the teacher 
knows in such great a detail how students’ interests are connected to the current 
topic;

• The students who were able to connect their personal maps to the TCM after the 
first iteration showed a much deeper sense of collaboration and willingness to 
work with the teacher on the topics discussed. They raised more questions than 
usual during classes, asked for more details about the topic, and most importantly 
decided to dig deeper into it in the near future;

• The emotional engagement of the students involved in the project was greater 
than usual. Even though such characteristic is somehow difficult to measure, the 
author certainly registered a few indicators that the engagement of those students 
who wanted to actively participate in the project was increasing over time. For 
example, they asked more questions about the topic, and spent more time around 
Math related topics during normal school hours; for the whole duration of the 
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project they asked many more questions of the teacher about mathematical topics 
and problems, such as the visual and numerical relations between power, torque 
and RPM.

Finally, we consider the following as very important observations:

• The students who had their maps connected to the TCM right at the first iteration 
step, are those who already show a good amount of interest for Math and Math 
related subjects or topics. The author is already carrying on some extra activities 
with these students, like computer programming courses;

• The students who had to go through more than one iteration step also had the 
chance to extend their understanding of the topics, so the author considers this 
learning method as really useful, at least, for increasing participation among the 
students involved;

• The students could not see the TCM-maps in advance. This was done because the 
author wanted to afford students maximal freedom when writing their thoughts 
about interests and Math related topics. On the other hand, the teacher could 
reshape his TCM-map after each iteration, in order to link it to the MH-maps of 
the students.

The author would like to add another perspective about the Learning Routes 
Method. The work of Czarnocha Bronislaw and Vrunda Prabhu about mathematical 
creativity offered the author a new insight and perspective about his own work. From 
Prabhu and Czarnocha (2014), we could see that the bisociative act is strongly linked 
to the ability of seeing the connections between previously unconnected matrices 
of experiences. We could regard the word experience here as key in the whole 
picture of our work. Learning at school is too often disconnected from the everyday 
life experiences of the student. Our work is directly aimed at building stronger 
connections between topics and students’ lives. The bisociative act provides a new 
intellectual and emotional experience that fuses together previously disconnected 
concepts. We believe that this approach could provide a strong boost for changing 
students’ attitudes and approaches to learning in a formal school setting.

CONCLUSIONS AND FUTURE WORK

To the best of our knowledge, this has been the first experiment carried on using 
the method proposed by the author. We want now to draw three main important 
observations:

1. Students showed much more involvement in working around Math and Math 
related topics. They were prone to engage in deep discussions with the teacher 
and provided good observations. They also faced the problems posed in Math 
with greater grit and stronger resilience.

2. The inner nature of the method proposed clearly invited students to dig deeper 
into the topics studied. They had to discover new subtopics about the main theme, 
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eventually building new connections between these subtopics. This, in turn led 
them to reach a better ability to analyse the main theme of the map.

3. The MH + TCM map gave the students a much clearer way of looking at personal 
interests and curriculum topics. They tried to make the best out of the CmapTools, 
exploiting especially the visual representation of knowledge promoted by this 
medium.

Finally, the author plans to explore in the future:

• How making explicit the visual approach to learning elicited by the author’s 
method enhances a deeper conceptual understanding of the topics by the students. 
Tackling learning visually could spawn new insights into it, as already studied 
in many literature studies, for example the work of Ritchhart R. and Perkins D. 
(2008)

• How this approach might lead to deeper thinking habits in students that are interest-
driven, personally relevant, and also able to spark a better metacognitive attitude 
in them. That means students should become more prone to think about their own 
thinking, seeing what they visually represent more and more meaningful;

• How students might engage in collaborative discussions about common interests, 
shared among two or more of them and the TCM-maps created by the teacher. 
This could lead the class to generate interest-powered groups, built upon sharing 
common topics in the personal MH-maps.
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WILLIAM BAKER

3.9. DISCOVERY METHOD AND  
TEACHING-RESEARCH

INTRODUCTION

In Unit 1 we reflected upon the gap between research and practice and reviewed 
recent efforts to close this gap by reconceptualising mathematics education research 
as a design research (Unit 4). In Chapter 1.1 we began a discussion about the 
essential role of discovery learning in conducting teaching research, in this chapter 
we reflect upon discovery learning as an important tool in the effort by constructivist 
pedagogy to reform mathematics education. The Discovery approach to teaching 
relies on designing situations and using techniques which allow the student to 
participate in the discovery of mathematical knowledge. The main assumption 
behind the technique is the belief that learning can be accomplished more fruitfully 
if the student discovers knowledge by himself or herself rather than through direct 
instruction or rote learning. As noted (Unit 1) implicit in establishing a creative 
learning environment in the mathematics classroom is a focus on student creation 
of meaning for themselves i.e. guided discovery or inquiry learning. In Unit 4 we 
present examples of curricula material designed to be used in a discovery learning 
environment with rates by Czarnocha and a classroom lesson that employs guided 
discovery by Dias. We note that a creative learning environment with a focus on 
student cognition during the creation of rediscovery of mathematics is the ideal 
environment to observe such mechanisms of creativity and learning as bisociation 
and reflective abstraction (Unit 4) and in that unit Baker presents an analysis about 
student bisociations during a class lesson on proportional reasoning. 

TRADITIONAL AND REFORM PEDAGOGY

The top down model of instruction or direct instruction is based upon the assumption 
that a mathematics teacher is the authority has claim to the ultimate interpretation of 
content knowledge which they will impart to students who will listen and learn. This 
approach has been rejected by constructivists who argue that the goal of classroom 
discourse is to promote student construction of knowledge. This necessitates a 
transition away from this top-down approach in which the teacher lectures to passive 
students. Yet, so many reform efforts are based upon a top-down approach in which 
teachers are supposed to passively accept a new theory inspired agenda: 
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Many government driven curriculum reforms, in Brittan and elsewhere, 
assume that the central powers can simply transmit their plans and structures 
to teachers who will passively absorb and then implement them in ‘delivering 
curriculum.’ (Ernest, 2010, p. 40) 

MATH WARS

The so called mathematics wars were a result of the implementation in California 
of curricula based upon the National Conference of Mathematics Teachers (NCTM) 
1989 publication of Curriculum and Evaluation Standards. These standards were 
themselves based upon constructivist pedagogy and sparked a controversy in the 
mathematical educational community (Klein, 2007; Raimi, 2006). This controversy 
sparked among other things duelling web-sites named ‘Mathematically Correct’ 
and ‘Mathematically Sane’ (Goldin, 2003). Although subsequent standards (2000) 
Principles and Standards for School Mathematics and (2006) Curriculum Focal 
Points were seen as more balanced and did much to calm the debate, the controversy 
over the effectiveness of constructivist pedagogy and in particular discovery 
learning, which is at the heart of Koestler’s viewpoint that mathematics needs to 
be rediscovered by the student, continues. However, the controversy engendered 
by efforst to implement and assess discovery learning continues. Klahr and Nigam 
(2004) study the theoretical cornerstone of constructivist reform efforts that 
knowledge discovered by a student is more valuable or permanent than that taught 
by a teacher. They employed two groups on the extreme ends of the spectrum one 
with basically no teacher intervention and the other with all aspects of the class 
pedagogy were teacher controlled and they report that their result call into question 
the validity of this claim. Dean and Kuhn (2006) essentially repeat this experiment 
through a longer time frame and their analysis was different: 

The present study, note, does not purport to demonstrate the merits of 
engagement/practice methods, compared to direct instruction, with regard 
to efficiency of instruction. Our intention is not in establishing how fast the 
strategic understanding examined here can be acquired, but rather how well 
it can be acquired. Student in the two practice conditions spent much greater 
‘time on task’ than those in the direct instruction condition. Given that this 
practice led to significant and lasting gains in strategic understanding for the 
majority of students, do we then need to ask whether such gains in strategic 
understanding could not be accomplished more quickly. (p. 395)

Discovery and Inquiry Based Learning 

In understanding the failure of California’s educational effort to implement 
constructivist pedagogy i.e. discovery learning into the classroom one can point out 
the lack of objective truth in the ‘ism’ of mathematics education (Goldin, 2003). One 
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can also point to the lack of teacher development, e.g. student teacher preparation: 
“Just getting student teachers to realize this…represents a significant step forward 
from the naive transmission view of teaching and passive-reception view of 
learning many student-teachers arrive with” (Ernest, 2010, p. 40). Theoretically 
the argument to shape the extent of discovery learning will revolve around the 
nature of learning by imitation not the imitation of meaningless rules perhaps but 
the transition or stepping from what one knows to new knowledge attributed by 
Norton and D’Ambrosio (2008) to Vygotsly as opposed to the view as presented 
by an instructor, tutor or textbook etc, that to understand one must recreate or 
rediscover math for oneself. Kirschner et al. (2006) suggest that the nature of non-
intervention instructional techniques, “caused a much larger cognitive load and led 
to poorer learning than worked-examples practice” (p. 80). Indeed these authors 
contend that “algebra students learned more studying worked examples of algebra 
than solving the equivalent problems” (p. 80). Hmelo-Silver et al. (2007) disagree 
with the conclusion of Kirschner et al. (2006). These authors suggest, two major 
flaws with Kirschner et al.’s argument. The first is a pedagogical one:

Kirschner and colleagues have indiscriminately lumped together several 
distinct pedagogical approaches—constructivist, discovery, problem-based, 
experiential, and inquiry-based—under the category of minimally guided 
instruction. We argue here that at least some of these approaches, in particular, 
problem-based learning (PBL) and inquiry learning (IL), are not minimally 
guided instructional approaches but rather provide extensive scaffolding and 
guidance to facilitate student learning. (p. 99)

Meyer (2004) extends the scope of inquiry beyond the dynamic of all or nothing 
i.e. complete non-intervention or teacher explanation and re-explanation of 
curriculum to include guided discovery methods in an effort to study the underlying 
premise that: “learning is an active process in which learners are active sense makers 
who seek to build coherent and organized knowledge” (p. 14). Concerning the 
relationship of discovery learning to teaching pedagogy Meyer (2004) comments 
that, “although guided discovery required the most learning time, it resulted in 
the best performance on solving transfer problems” (p. 15) and “Children seem 
to learn better when they are active and when a teacher helps guide their activity 
in productive directions” (p. 16). Meyer (2004) suggests that: “The challenge of 
teaching by guided discovery is to know how much and what kind of guidance 
to provide and to know how to specify the desired outcome of learning” (p. 17). 
Meyer (2004) concludes that the ultimate measure of teaching pedagogy should be 
cognitive not behavioral: “Methods…should be judged not on how much doing or 
discussing is involved but rather on the degree to which they promote appropriate 
cognitive processing” (p. 17). 

Laursen et al. (2014) study the effects of inquiry based learning (IBL), a guided 
discovery methodology with a focus on in depth rather than extent of material. 
Their statistical analysis revealed benefits for female students: 
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This study exemplifies both the challenges and promise for implementation 
of IBL. We detect robust, meaningful differences in self-reported gains and 
attitudes among students in IBL, relative to those in non-IBL courses. Rigorous 
statistical modelling techniques linked student gains clearly to the pedagogy, 
showing that IBL benefits all students even as it levels the playing field for 
women, who are often under-served by college mathematics courses. (p. 415) 

In Lausen et al. (2013) and Laursen (2013) the authors report benefits of IBL that 
are long lasting for students including minority students who are traditionally low-
achievers in mathematics. 

CONSTRUCTIVISM AND MATHEMATICS EDUCATION

Lesh and Sriraman (2010) note two recent, significant revolutions in mathematics 
education first, the ‘technological revolution’ and second the ‘constructivist 
revolution.’ It is to the second revolution we now turn our attention. The success of 
constructivist in educational literature can be evidenced not only by the attention 
it has received, the subsequent or related movements as well as by the extent to 
which mathematic educational groups such as the NCTM have supported the 
incorporation of constructivist based language into their standards. As Lesh and 
Sriraman (2010) state, “we are all constructivists” (p. 129). Thus, the success of 
this movement in literature leaves it open to the critique, if we are all constructivists 
why hasn’t there been any global improvement in mathematics education? More 
to the point why is the gap between research and practices so hard to overcome? 

Richardson (2003) ponders this question noting that the transformation of 
education theory into educational practice has always been difficult and “...less 
than satisfactory...” (p. 1623) but reflects that nature of constructivism has made 
that transition particularly difficult. In this view, the transition from the tradition 
top-down approach of classroom management to a student centred focus is difficult 
because there is an inherent gap between this theory, curricula and methodology to 
successfully implement it. Karagiorgi and Symeou (2005) suggest the reason behind 
this gap is that while constructivism may be the dominant theory of learning it is not 
nor does it say anthing about how to design instruction. 

Richardson (2003) expresses the view that much of what has been used to define 
constructivist pedagogy is based upon what it is not, i.e. not direct instruction, not 
telling the answer. Thus, one role of design science or teaching research based 
upon constructivist philosophy is to fill in this gap between what not to do and 
what to do in the math classroom. Another relevant question that Richardson 
poses is whether student construction of meaning during the traditional lecture 
format should be viewed as a meaningful component of a constructivist classroom? 
Karagiorgi and Symeou (2005) note the pedagogical issue of what exactly is and 
is not constructivist methodology arises in term instructional design, i.e. what is 
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constructivist curricula and how does one design constructivist based learning 
material, “Instructional designers are thus challenged to translate the philosophy 
of constructivism into actual practice” (p. 17).

Richardson reflects upon issues such as where does constructivist pedagogy 
begin, what distinguishes it from traditional lecture format. As Lesh and Sriraman 
(2010) suggest with the statement, we are all constructivist, she asks, does any good 
teacher by necessity employ constructivist pedagogy? 

We also note that efforts that rely upon discovery learning have a tendency to 
design tasks to challenge the student and thus promote reasoning and construction of 
meaning. This must on the practical level be balanced against student’s need to pass 
standardized exams. Thus, the design of constructivist pedagogy is often received 
with scepticism because of its focus on what is, “not being assessed on these state-
wide or national standardized tests” (Richardson, 2003, p. 1629).

Guided Discovery Learning and Creativity

Koestler (1964) posits Humour, Discovery and Art as three shades of the creativity 
principle, the triptych. The method of the triptych was used by V. Prabhu “to create 
another entry route into thinking-making-meaning in the mathematics classroom” 
(Chapter 2.4). She utilized triptychs designed for the discovery of several fundamental 
concepts in her course. The centre “discovery” column of the triptychs contains 
the relevant mathematical concepts, the left column consists of related instances 
of “humour” described by Koestler as “the back entry into the inner workshop 
of originality”, and the right column is the contextual interpretation of the “art” 
aspect of the creativity principle. The environment for inquiry is created within a 
classroom with humour and dialogue that supports the drama required to bring about 
positive student affect in an effort to prepare for engagement in cognitive inquiry 
and reasoning. The use of the triptychs in the mathematics classroom brings back 
the puzzle nature inherent in mathematics. Prabhu followed the guided discovery 
method outlined by Mahavier (1997) who adapts a close to pure discovery form of 
learning utilized by R. L. Moore (Zitarelli, 2004) for graduate level mathematics 
courses to a guided discovery based format that he (Mahavier) utilizes in a variety of 
undergraduate mathematics courses including remedial algebra. 

The aim of the discovery method in the classroom is to facilitate students’ authentic 
discoveries in mathematics. Since an authentic discovery (untutored learning) is, 
according to Koestler, a result of bisociation, such discovery is, naturally, a creative 
act. Therefore, creativity underlies the teacher-researcher’s teaching as well as the 
students’ learning in the discovery-based classroom. The bisociative acts of students 
during guided discovery learning in the classroom is observed and analyzed by the 
teacher researcher. These observations can lead to bisociative acts of the teacher-
researcher in analyzing student rediscovery of mathematics. These bisociative acts 
of teaching and research can be seen as a unifying factor between the concept of 
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the NYC teacher researcher model and the creative learning environment (Unit 1 
and Unit 2)

Role of Instructor 

The role of the teacher is to create favorable conditions for moments of 
discovery i.e. bisoication and learning. Hope for the success of this technique 
as an instructional tool is grounded in the belief that the process of discovering 
knowledge offers students both enjoyment and a mental exercise which will be 
of lasting quality. The transformation from habits of failure to excellence noted 
by Prabhu. In order to create such conditions, to support the process of student 
engagement and rediscovery of mathematics important tools for instructors are 
scaffolding of curricula and class dialogue. We now turn to the issue raised by 
Norton and D’Ambrosio (2008) of what is appropriate scaffolding and role for 
teachers in constructivist pedagogy. Gilles and Haynes (2011) argue that “teachers 
play a key role in promoting those interactional behaviors that challenge children’s 
thinking and scaffold their learning” (p. 349). These authors note however that, 
“guided discovery often ends up as teacher direction” (p. 350). They review 
literature on teacher dialogue that suggests direct instruction of facts accounts 
for, “over 80% of teachers’ total classroom talk” (p. 350). They study the role 
of the instructor in promoting student explanation and discourse and suggest 
that, “the greatest amount of correct and complete student explaining occurred 
in the classroom where the teacher did the most to elicit student explaining…by 
inviting students to explain and elaborate on their ideas” (p. 352). Abrahamson  
et al. (2012) also study the question of how instructors guide students to re-discover 
mathematics. They note effective teacher discourse involves probing students to 
justify and explain their comments and actions, make suggestions and hints for 
further action when students are lost, highlight central concepts or declarative 
information in problem situation students overlook, introduce concepts required 
the student does not recognize as relevant, discuss relationships between student 
reasoning and relevant concept, focus student attention on actions or properties of 
concepts and situations the student is pondering that underlie a possible strategy, 
in general providing the feedback necessary to solve problems and reach the upper 
limit of their ZPD. The instructor discourse also has a role in getting students to 
review their work and reflect upon underlying concepts and their relationships or 
principles employed to dictate actions and strategy. 

Guided discovery pedagogy can be presented as a problem sequence designed 
to reach some didactic goal, i.e. a learning trajectory (LT) such as Czarnocha’s rate 
sequence in Unit 4 which guides students along an LT of conceptual understanding of 
the rate concept. Guided discovery pedagogy can also take the design of classroom 
problem solving session, as a Socratic dialogue between teacher and a student(s) or 
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as a dramatized problem situation as in the rate sequence offered by Dias in Unit 
4 who employs a compare and contrast format to lead the classroom into critical 
thinking about the key features of a problem situation that can be used to suggest 
an appropriate strategy. While the class discourse by Baker in Unit 4 is designed to 
promote classroom bisociation between the common concepts involved in different 
methods of solving a proportion increase problem.
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UNIT 4

TEACHER AS THE DESIGNER OF INSTRUCTION

TR Design

INTRODUCTION

Unit 4 presents the designs of TR investigations and teaching experiments 
conducted by teacher-researchers in their classrooms. It represents three type of 
TR activity: daily classroom TR investigations (Chapters 4.2–4.5), construction of 
learning trajectories through iterated classroom teaching experiments (Chapters 
4.6–4.8) and two teaching experiments of opposite types (Chapter 4.9) and 
(Chapter 4.10).

We introduce shortly the elements of Design Research practiced by the Math 
Education profession below as the background for the presentation of principles 
of the TR Design. We find the “niche” for the TR Design within the notion of the 
conceptual framework introduced by Eisenhardt (1991); we follow with short 
descriptions of particular chapters in each unit.

DESIGN RESEARCH

The terms Design Experiment, Design Research or the Science of Design are 
often interchangeable and they refer to the professional design in different 
domains of human activities. It was introduced by Ann Brown (1992), Collins 
(1992), and by Whittmann (1995) into research in Mathematics Education. Anne 
Brown had realized during her exceptional career that psychological laboratory 
can’t provide the conditions of learning present in the complex environment 
of a classroom and transformed her activity as a researcher directly into that 
very classroom as the leading co-designer and investigator of the design in the 
complex classroom setting. In her own words: “As a design scientist in my field, 
I attempt to engineer innovative classroom environments and simultaneously 
conduct empirical studies of these innovations” (Brown, 1992). She provided 
this way one of the first prototypes of designs experiments which, theoretically 
generalized by Cobb et al. (2003), “entail both “engineering” particular forms of 
learning and systematically studying those forms of learning within the context 
defined by means of supporting them…” The profession has followed her lead 
seeing the classroom design experiments as theory based and theory producing. 
Paul Cobb et al. (2003) assert that Design Experiments are conducted to develop 
theories, not merely to empirically tune what works. Design research paradigm 
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treats design as a strategy for developing and refining theories (Edelson, 2002). 
Even Gravemeyer (2009) who states that “the general goal of Design Research 
[is] to investigate the possibilities for educational improvement by bringing about 
and studying new forms of learning” hence in terms closer to the substantive 
quality of Stenhouse, yet he warns us that “great care has to be taken to ensure 
that the design experiment is based on prior research…” eliminating this way 
the designs anchored in prior practice. Unfortunately, the educational research 
profession cuts itself off by these restrictions from the source of profound 
knowledge contained in the tacit and intuitive craft knowledge of the teachers. 
The restrictions are lifted only in the context of the conceptual (as distinct from 
theoretical) framework introduced by Eisenheart (1991) and restated by Lester 
(2010) as one of three frameworks of inquiry within Math Education.

More generally, Lesh and Sriraman (2010) propose “…re-conceptualizing the field 
of mathematics education research as design science akin to engineering and other 
interdisciplinary fields…” (p. 123). The term design science is meant to distinguish 
investigations of artefacts, tools and conceptual systems created by humans from 
scientific inquiry into natural phenomena. Thus, design science or the derived notion 
of design research includes inquiry into thinking and learning, the artefacts or tools 
used to support these process i.e. the “…where, why, how and with whom curriculum 
materials or programs of instruction need to be modified for use in a variety of 
continually changing situations…” (p. 125). The object under investigation include, 
processes of learning, artefacts, tools and programs designed to support these 
processes as well as the theories and conceptual models that underlie these processes 
i.e. the “…complex conceptual systems that underlies the thinking of student(s), 
teacher(s), curriculum developers(s) or some other educational decision maker(s).” 
In the design research paradigm testing of tools used to promote reform pedagogy 
are linked to the theory and models upon which the artefact is based. As Lesh and 
Sriraman point out, “when the artefact is tested, so are the underlying conceptual 
systems” (p. 125).

Amit (2010) notes that the genesis of design research involved extending the work 
of mathematics educational researchers involved in teaching experiments towards 
two goals: “…increase the relevance of cognitive science laboratory experiments 
to teaching, learning and problem solving activities in real school situations… to 
provide stronger theoretical foundations for projects, which design educational 
software, courseware, or other tools and artefacts such as assessment systems” 
(p. 147). Wittman (1995) comments on the lack of educational research on the tools 
or teaching curricula involved in teaching research,

At best teaching units have been used as more or less incidental examples in 
investigating and presenting theoretical ideas…Why should anyone anxious 
for academic respectability stoop to designing teaching and put him-or herself 
on one level with teachers? The answer has been clear. He or she usually 
wouldn’t. (p. 365)
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As teacher researchers we argue in favor of research on the methodology and 
curricula used by teachers to implement conceptual models of learning and 
development. We agree with Cobb assertion that one needs to continually study 
first-hand phenomena one wishes to learn about. We consider an analogy between 
(1) the creative learning environment focused on student reasoning during problem 
solving within the classroom and a community of inquiry conducting research on the 
methodology, and (2) tools or artefacts teachers employs to implement constructivist 
or other models of conceptual development. As one seeks the optimal didactic 
contract between teacher and student for learning the other seeks the optimal didactic 
contract between teacher and researcher to provide tools built upon theory to support 
such learning.

Lesh and Sriraman (2010) note that a basic tenets of design research is that 
inquiry should include an iteration of cycles, “in order to develop artefacts + designs 
that are sufficiently powerful, shareable, and re-useable, it usually necessary for 
designers to go through a series of design cycles in which the trial products are 
iteratively tested and revised…” (p. 127). This because without repetition-iterations 
as well as replication, the results of single study or teaching experiment conducted 
whether in a clinical setting or classroom will not be sufficiently generalizable to 
be relevant in other settings, “the challenge to solve practitioner problem ignores 
the fact that very few realistically complex problems are going to be solved by 
single isolated studies” (p. 128). A central component of teaching research is this 
cyclic methodology however, we point out that a good teacher is constantly adapting 
instruction to her/his class. To suggest that a given class is the same from one 
day to another that different topic cause the same level of cognitive difficulty is 
largely ignored in the design research position that a tool or artefact can succeed in 
improving education. Wittmann (1995) points out the polarity between the role of 
teachers and researchers while calling for the more research into design of curricula.

The design of substantial teaching units and particularly of substantial 
curricula is a most difficult task that must be carried out by the experts in the 
field. By no means can it be left to teachers, though teachers can certainly 
make important contributions within the framework of design provided by 
experts, particularly when they are member of or in close connection with a 
research team…there should exist strong reservations about ‘teachers centres’ 
wherein teachers meet to make their own curriculum. (p. 365)

This rather provocative statement is certainly not going to directly heal the 
divide between theoretical research and the craft of teaching yet it brings up 
an interesting point. As teacher researchers implementing a creative learning 
environment, the role of the researcher is one of producing ‘meta thought’ 
i.e. reflection upon what works and what does not. The teacher introduces the 
student to a structure that assists with reflection upon and the coordination of 
his or her intuitive thoughts. In like manner educational theory or models assist 
the instructor reflect upon and coordinate their thoughts about what worked 
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and what did not in the classroom, why and how to improve it. In one situation 
creativity is a result of bisociation between previous often spontaneous 
knowledge with a given problem situation. In the other, creativity is the result 
of bisociation between theory and the problem situation of establishing an 
environment conductive to student reasoning in the classroom. In one, the 
teacher role is to trace the hypothetical and actual learning trajectories of their 
students encouraging reflection upon the what, when, how and why of student 
action while in the other case the researcher is engaged in promoting meta 
reflections on the part of the teacher, what was she doing, how did she go 
about doing it and why was it important to establishing a creative learning 
classroom environment. This close proximity of two bisociative frameworks 
in teacher-student interactions create a subtle opportunity for simultaneous 
and coordinated “thinking together”. While the student thinks about the 
mathematical problem at hand, the teacher thinks about student thinking 
while working on that problem. Thinking together moments are didactically 
important because they help to establish high precision of scaffolding, what can 
lead to the joint Aha moment of bisociation. First we have the act of the teacher 
who grasps the correct scaffolding step, followed by the student who grasps the 
teacher’s hint as the “missing analogy” to solve the problem. However, since 
the teacher finds out about the correctness of the hint only at the moment when 
the student has its Aha moment realization, they can participate in the joint Aha 
moments of the student and the teacher.

THE TEACHING-RESEARCH DESIGN

The Teaching-Research (TR) Design is based upon two principles discussed in 
Chapter 1.1:

• The substantive aim to improve the process of learning in the classroom
• Bisociativity of Teaching-Research.

TR bisociative framework facilitates integration or, still better, synthesis of 
practice and research through instances (or sequences of instances) of Stenhouse 
acts which are “at once an educational act and a research acts” (Ruddock & Hopkins, 
1985, p. 57). In what follows we will call them Stenhouse TR acts. The Stenhouse TR 
acts are the foundation stones of “thinking technology” (Chapter 1.1) within which 
their unity is naturally positioned. The facilitation of longer or shorter instances of 
Stenhouse TR acts can be reached from either teaching practice or from application 
of research to practice, as well as from both simultaneously.

The Principle of the Bisociative Nature of TR

• The principle of bisociativity of TR design suggests problem solving in the context 
of “inquiry based discovery method/guided discovery” as the teaching approach. 
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Chapter 4.1 by Bill Baker provides an extensive analysis of the bisociativity 
inherent in the act of problem solving, as the methodology of teaching, so that the 
majority of our TR designs involve teaching sequences of problems designed to 
reach understanding and mastery of the relevant concepts and techniques.

• The special role played by the Discovery method of teaching in the context of 
TR/NYCity is discussed in Chapters 1.1 and 3.9. On one hand, it provides the 
bisociative framework for a student, and on the other, it serves as the research 
instrument allowing a teacher-researcher to investigate student thinking.

• Chapter 1.2 discusses extensively the relationship of bisociation with affect 
exploring the implications of Koestler’s remark: the creative moment is an act 
of liberation, of “the defeat of habit by originality”. Czarnocha (2014) suggests 
that the cognitive/affective duality of the Aha! moment is its essential quality, 
explored in this volume by Prabhu in Unit 2.

This cognitive/affective duality of the Aha moment suggests a careful attention 
of the design to the interaction between student ZPD of Vygotsky and student Zone 
of Proximal Affect (Murray & Arroyo, 2002). The possibilities of expanding ZPA 
through facilitation of cognitive Aha moments is suggested both by empirical 
(Liljedahl, 2013) as well as theoretical (Koestler, 1964) observations. These 
possibilities are of intense interest of educators in the “underserved” communities. 
What are the conditions in which facilitation of bisociative creativity can overcome 
the impact of negative affective habits detrimental for the development of student 
potential? – is the fundamental question of teacher-researchers of the Bronx.

The Principle of Improvement of Learning

The principle of improvement in the TR classroom imposes additional structures 
to the TR Design, the most important being the TR cycle iterations of the design. 
It requires at least two iteration of TR Design process because only then the 
opportunity for the improvement of the original design arises, aided by JiTR results. 
The Analysis and Redesign node of the TR cycle offers a bisociative framework 
similar in its nature to problem solving bisociative framework (Chapter 4.1) In this 
juncture TR Design meets Anne Brown (1992) in her self-reflection on her own 
activity: “As a design scientist in my field, I attempt to engineer innovative classroom 
environments and simultaneously conduct empirical studies of these innovations”.

Correspondingly, TR Design is geared to answer two connected teaching-
research questions guided by the substantive quality:

• What is the effect of a given “engineered” intervention?
• What are the routes to improve upon the effect through its redesign?

The Learning Trajectories (LT) research framework which has underlined 
Common Core designs of instruction in UK and US pushed the number of iteration 
of the TR cycle into as many as are required to produce the learning trajectory 



UNIT 4

258

well adapted to the classroom level of knowledge. The principle of improvement 
facilitates the bisociative quality within the process of TR Design via problem 
solving involved in the process of improvement by the teacher, which takes place at 
the Analysis and Refinement nodes of the TR cycle (see below).

The process of adaptation of LT instruction to the particular needs of the 
classroom whose essential description fills up the centre of the TR cycle (Fig.1) 
requires teachers to be deeply familiar with cognitive processes of learning, 
diagnose student state of understanding, discover its missing links and use the 
knowledge of research to design the corrective activities – a substantial component 
of daily TR activity in service of improvement of learning. Once the reflective 
aspect upon that classroom activity, which results in formation of new hypotheses 
and refinements to the design, supplements adaptive instruction, teacher obtains the 
entry into the full TR/NYCity process.

Science of Design and Practice of Design

According to Wittmann (1995) the practice of design by teachers existed long 
before the general principles of design formulated by Herb Simon came under 
the scrutiny of educational research. He states that “many of the best units were 
published in teachers’ journals, not in research journals, and were hardly noticed by 
the research community.” That implies that original components of Design Research 
have been formulated by practicing teachers. Therefore, in addition to the Science 
of Design described by Cobb et al. (2003) as: theory-based, theory producing and 
theory testing, of interventionist and conjecture driven nature as well utilizing 
extensively cycles of iterations, we can formulate the Practice of Design which 
originates primarily in teachers’ craft knowledge and its aim is improvement of 
learning in the teacher’s classroom and beyond, through the design and re-design of 
a teaching sequence or any other artefact.

Practice of Design originates with the design of additional exercises for students 
in need of a reinforcement of a particular concept, which are done daily by a teacher, 
followed by the assessment of their impact and possible refinement based on craft 
knowledge. The reflection upon observed, accumulated patterns and results by 
the same teacher leads to the formulation of an idea or guiding principles for the 
development of the prototype design which will be more systematically tested in the 
full classroom unit of relevant mathematics. It is important to underline that these 
initial moments of the formulation of the design depend essentially on the natural 
cycles of teacher’s work: daily, semester long and year-long teaching cycles, when 
we repeat our instruction with different cohorts of students. These natural teaching 
cycles become, for a reflective teacher, TR cycles for the refinement of the designed 
prototype. Generalization of practice through the artefact generalization formulated 
by Prabhu in Unit 2 is one of the essential elements of the Practice of Design. The 
collection of designs in this volume contains three designs anchored in the Practice 
of Design: Unit 2 where the coordination with a theory took place during the conduct 
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of the teaching experiment, Chapters 4.9 and 5.1 where the coordination with 
theory took place after the design was implemented. Those were posteriori designs 
introduced in Chapter 3.2. In each of the cases it was the nature of the implemented 
design that directed us to search for an appropriate theoretical framework.

Generally, systematic JiTR consultation and interaction starts taking place at 
the appropriate node of the TR cycle and leads through several iterations during 
which both the craft knowledge of the teachers as well as JiTR results and learning 
theories are involved and integrated within the produced artefact. Thus an artefact, 
the teaching sequence is produced, whose iterations in different classrooms provide 
similar level of artefact generalization as “systemic variations” in design experiment 
(Cobb et al., 2003).

Both Science of Design and Practice of Design relay on the iteration of TR 
cycles, both have “interventionist and conjectural nature”. They differ in the 
point of entry upon the TR iteration cycle, the method by which they utilize 
research and in the ultimate goal of the design work. Science of Design seeks 
the general theory from where the improvements might be designed, while 
the Practice of Design seeks the learning improvement in the same or similar 
classrooms, while a possible general theoretical insight comes as a by-product 
of the improvement process. Ultimately the Science of Design and Practice of 
Design methodologies converge through their iteration cycles to the principles 
of Teaching-Research Design, which encompasses both, while creating the 
conceptual bridge between them.

We discussed extensively three frameworks of inquiry in Math Education: 
theoretical, practical and conceptual (Lester, 2010) in Chapter 1.1. Correspondingly, 
there are three routes through which classroom acts of the teacher can assume the 
unified precision of Stenhouse TR acts. Each of the routes corresponds to a particular 
type of TR Design.

Type A – based in practice: A teacher-researcher can start from the educational 
act of teaching a concept, which through the analysis of student responses and JiTR 
activity becomes a TR act in that it teaches and at the same time investigates student 
thinking during the process of learning from the educational act (while being open 
to an aha moment occasioned by an instance of the bisociative framework created 
by that simultaneity). Similarly, practice-based TR Design originates in daily work 
of the teacher, possibly through an artefact, which, after several cycles of iterated 
refinements with different cohorts makes a contact with appropriate research through 
JiTR method.

Type B – based on previous research: A researcher can start from the research 
act whose aim is to investigate certain aspect of student learning in a classroom 
or in clinical setting, which through, possibly cyclical “constructivist teaching 
experiment” of Cobb and Steffe (1983/2011) and its teaching episodes becomes a 
TR act (Czarnocha, 1999).

Type C – A mature teacher-researcher, whose thinking technology has had 
a chance to develop through several of such iterated constructivist teaching 
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experiments, can create classroom situations, which in their inception are unified 
into one TR act fulfilling both roles Chapter 4.5.

TR DESIGN IN THE CONTEXT OF CHAPTERS IN UNIT 4

Unit 4 opens with the extensive discussion of Koestler’s bisociation in the context 
of problem solving by Baker in Chapter 4.1. Its aim is to prepare the ground for 
understanding the creativity of the teaching sequences and methodologies of 
teaching in chapters of the unit. Having clarified the bisociation process he proceeds 
to outline the relationship of bisociation with three theoretical frameworks often 
utilized in Math. Education research: Piaget theory, Vygotsky and Anderson 
theories. Special attention should be directed towards two last sections of the chapter 
where the relationship between bisociation and reflective abstraction is carefully 
explicated showing that processes of reflective abstraction such as interiorization 
and constructive generalization can be realized through Aha moments of bisociation.

Chapter 4.2–4.5

The sequence of following chapters has been planned to compare different types 
of design related to similar themes. Chapter 4.2, the Introduction to Comparative 
Study of Three Approaches to Teaching of Rates, discusses three different designs 
pertaining to proportional reasoning and including rates, proportions and percent: 
Dias’ practice-based design A, Baker’s theoretically based design B and Czarnocha’s 
design based both in practice and in a theory, the design type C. The introduction to 
the chapter provides an in depth literature background to the collection and grounds 
the practice-based component of their designs in an appropriate theoretical niche 
exemplifying JiTR method of analysis.

Chapter 4.3 presents a practice-based design, which uses guided discovery 
method to facilitate student understanding. Its author, Olen Dias, a reflective 
practitioner insists in her design on the facilitation of student reflection for every 
problem discussed in the class. Her methodology is problem posing/problem 
solving oriented through the simultaneous discussion of different problem solving 
techniques. Similarly to work of Vrunda Prabhu, the attention to affect is one of the 
strong points of the design.

Chapter 4.4 presents the attempts to incorporate bisociation-inspired methodology 
into the discussion of percent. Baker creates a bisociative framework composed out 
of percent concept and its money-wise application and is able to facilitate an Aha 
moment with one of the students. At the second part of the section, he is using 
understanding gained by that student to extend the impact of the student’s insight to 
the whole class.

Chapter 4.5 with Czarnocha as an author has both practice – based and theory-
based origins. It operates explicitly as the conceptual framework where his 
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experience as a mathematics teacher suggests to him arithmetic/algebra integration 
as means to facilitate student processes of generalization, while his experience as a 
researcher suggest process/object duality theories (Tall, 2000) as both design and 
explanatory framework.

His discussion boasts of a precise Stenhouse TR act facilitated through the 
question

“Juan got a raise to $30/hr. If you know the number N of hours Juan works, how 
would you calculate his total pay now?” Its aim was to reinforce understanding of 
multiplication through verbalization of the procedure while investigating students’ 
ability to cross from additive to multiplicative structure. Student responses data 
allowed to focus attention on those of them who had difficulty in that process.

Chapter 4.3–4.6

Present two examples of learning trajectories produced by our TR Team in response 
to the important question posed both by many researchers as well as designers as 
to whose responsibility is the design of LT’s for the classroom and what is the role 
of research in the design. Each trajectory in the chapter has a deep connection with 
research yet realized in a very different manner and belongs to a different type of TR 
Design. We argue, on the basis of the presented designs that teacher-researchers in 
any educational institution can design effective LT’s using JiTR method if they are 
provided with reassigned time from a teaching course and organizational support.

Chapter 4.7 Baker presents here a design type B of an LT as a consequence 
of an application and adaptation of the long line of educational research into the 
structure of schema of fraction. Since that research line has concerned primarily 
learning of children, it had to be reconceptualised for learning of adults with the 
help of quantitative techniques (Doyle et al., 2016). Baker presents a rational 
number trajectory through the many different conceptual understandings for 
fraction or rational number notation beginning with the part-whole conception or 
construct. The arrows represent relationships between the constructs of a fraction 
that were hypothesized by theory and verified in section 1 by quantitative analysis 
of student’s work. In addition to investigated statistical tendencies for the design of 
the learning trajectory, he also provides excerpts from classroom teaching-research 
interviews (Chapter 3.4), which support the design. The teaching-research interviews 
were conducted during the implementation of the second iteration of the TR cycle.

Chapter 4.8 Czarnocha presentation of the LELT (Linear Equations’ Learning 
Trajectory) is in the context of the further discussion on the differences between 
research and teaching-research, which in his opinion, disappears with subsequent 
iterations. He sees the essential trade off from the research as the basis of the design 
to JiTR approach within the design as one of the necessary conditions for teachers’ 
buy-in for the incorporation of research into classroom teaching. LELT is the TR 
Design type A. The need for and the first idea for the learning trajectory on the 
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subject, which originated during reflection upon the persistence of student errors in 
the question: “Solve for x in terms of y”, was based on teacher’s craft knowledge of 
teaching. The original design was triangulated with Confrey et al. (2010). A careful 
reader will notice two JiTR moments during two iterations.

Czarnocha’s LT is composed of different approaches whose aim is students’ 
reflective abstraction upon the processes involved in solving linear equations. These 
different methods or teaching sequences are incorporated into the design of LT 
through subsequent iterations of a teaching experiment. Under the second iteration 
are translations from verbal statements which require algebraic expressions to 
readily solve; such translations are at the heart of the transition from an arithmetical 
or operational understanding to a structural one. One might solve a statement 
such as: 4 more than a number is 12 through reversal of the arithmetical process 
of addition. Yet translation of this statement into algebra and employing algebraic 
manipulations requires less cognitive load. This problem sequence employs language 
to assist students understand the initial stage of the variable concept as a solution to a 
statement (single variable linear equation). In the first iteration Czarnocha presents a 
problem sequence that requires students to generalize a simple linear equation with 
one variable: ax + b = c (solve for x) to those of the form: ax + b = cx +d (solve for 
x) as well as to linear equations in two variables: ax + by = c (solve for y in terms 
of x). This abstraction of the process of solving a linear equation promotes schema 
development through the intermediate stage. In the third iteration the solver is asked 
to compare different equations and different solution strategies for solving a simple 
one-variable linear equation.

Chapter 4.9

The search for effective “real world problems” approach is the theme of Chapter 4.9. 
It is the “purest” practice-based design of the collection, TR design type A whose 
complete structure appears only after the successful third experimental iteration. 
Table 2 of the chapter shows 4 different dimensions characteristic for the complex 
design: technological medium, structure of classroom activities, connection to 
reality dimension and the approach to Riemann integration. Classroom activity 
and reality connection constituted two central dimensions which required longest 
time of detailed experimentation.

The series of three iteration of the design is addressing the question of formulating 
effective instruction for modelling a graph of the function obtained from a “real 
world” situation. Lehrer and Shauble (2003) assert that modelling emphasizes the 
connections between mathematics and science (or between mathematics and “real 
world”), which are usually regarded as separate objects. Clearly, referring back to the 
definition of bisociation and of the bisociative framework, it follows that modelling 
is a bisociative activity within the bisociative framework created by two traditionally 
separate domains of mathematics and “real world”. Therefore, the pathway traversed 
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by the teacher-researcher in this chapter represents the search for the best learning 
environment for the bisociative nature of the mathematics and science of calculus 
to fully reveal itself to students in the context of Riemann sums. What’s interesting, 
at the last iteration the teacher adds a very strong motivational element: the public 
Gallery exhibition of mathematics and the posters prepared by teams of students. 
The teacher realized, similarly as Prabhu in Unit 2 that apart from cognitive and 
technological issues, affective ones need to be addressed with equal force.

The difficulties with computer based media Computational Algebra Systems 
(CAS) or Graphic Calculator (GC) during modelling that took significant period of 
time for the teacher to find the solution for are familiar and have been recognized 
by Johnson and Lesh (2003). In particular, they emphasize difficulties with coding 
and organizing relevant information in forms that are recognizable by the computer. 
Hannes Stoppel solves this difficulty by the hint cards with relevant algorithms, 
interestingly, however, only after a short period during which he wanted to eliminate 
technology completely from the classroom. While he consulted several Tall papers 
encouraging use of technology in calculus classes (Tall, 2002, 2003), he came up 
with a “compromise” of JiTT solution providing algorithmic hint cards.

From the cognitive point of view, however, the most interesting is the “dialog” 
between successive student cohorts of different iterations with the teacher concerning 
tools of modelling the area under the curve: two sets of rectangles of Upper and 
Lower series which theoretically define the Riemann integral or two different 
modes, rectangles of one type and trapezoids. It was only at the third iteration, when 
the trajectory of student thinking vis-à-vis this concept revealed itself to the teacher 
through spontaneous questions of students: first consider different types of series to 
show the invariance of the limit, and only then to modify the type of the series you 
take.

From the social point of view that is individual-versus-group work, the reflective 
teacher-researcher apprentice arrived at well balanced and well-reasoned organization 
of learning in accordance with the similarity of the level of thinking in the class. As 
a result, there were several working groups as well as individuals working alone in 
the classroom. The third iteration had the highest passing rate with everyone passing 
with the grade 4–6 in the scale 1–6.

Whereas we don’t know whether students had Aha moments within that 
bisociative framework, we know it was a fully satisfying class both to students 
and the teacher. Its components were: strong mathematically related motivation, 
streamlining the use of computer based devices (CAS or GC) with carefully designed 
scaffolding, if needed, a cognitive pathway that’s close to student thinking and the 
work organization which takes into account the variety of levels of thinking in the 
classroom.

Clearly, the report is of a master teacher for whom substantive aim to improve 
the learning of the integral in his classroom pushed him into unknown terrain in the 
search for successful teaching. What was the nature of his success?
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Chapter 4.10

In this section Baker and Czarnocha presents TR Design of the type B addressing 
one of the most important domains of TR activity, the relationship between learning 
mathematics and learning language. The experience of teaching in a multilingual 
environment made the teacher-researchers particularly sensitive to the role of language 
in learning mathematics. The hypothesis of the teaching experiment Arithmetic/
Algebra was that use of writing as an explanatory tool in mathematics will raise 
student level of abstraction in the context of problem solving. Our expectations were 
based on Vygotsky’s concept of ZPD, which was constructed as a generalization of 
three different in content but similar in structure, learning transitions: from verbal 
to written language, from native to foreign language and from arithmetic to algebra 
(Vygotsky, 1987, p. 196). The similarity of transitions suggested integration of an 
appropriate cognitive development theory with the corresponding development 
of written exercises producing at the same time a teaching sequence based on the 
integration. The first iteration confirmed the hypothesis, the second iteration made 
it more precise. The chapter suggests a natural question: could the impact be in 
reverse? Could mathematics writing improve writing skills per se? Chapter 5.1 from 
the next unit provides the answer to that question.
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WILLIAM BAKER

4.1. KOESTLER’S THEORY AS A FOUNDATION 
FOR PROBLEM-SOLVING

INTRODUCTION

Steffe suggests that researchers in teaching experiments should act as instructors:  
“A distinguishing characteristic of the technique is that the researcher acts as a 
teacher” (Steffe, 1991, p. 177). The implementation of constructivist pedagogy 
requires that students must be encouraged and guided to construct knowledge, to 
discover and create meaning of mathematics themselves. To be successful in this 
endeavour clearly students need to act in the classroom, we suggest that for research 
about teaching to be effective the instructor needs to be an active participant in 
the research and ideally a synthesis of these roles occurs. In this unit we present 
lessons and lesson plans that demonstrate how teachers can design methodology 
that integrates research and craft practice in the bisociative framework of teaching 
research.

The theoretical foundation to support much of our teaching research experiments 
specifically those in this chapter is taken from; the work of Koestler on creativity, 
the material on concept development from Vygotsky as well as research inspired 
by Piaget (Sfard, Dubinsky) while the work of Anderson will provide a basis for 
the cognitive psychology driven approach to problem-solving. In addition the work 
of Glaserfeld and Cifarelli will provide insights from problem solving schema 
development based upon Piaget.

We have noted (Chapter 1.2) how mathematics educators such as Sriramen  
et al. (2011) and Leikin and Pitta-Pantazi (2013) have called for adapting the genius 
view of creativity in pure mathematic research to include the processes of students 
rediscovering mathematics for themselves. This would extend the study of creativity 
into research in mathematics education. We also note that (Chamberlin, 2013) and 
Shiriki (2010) consider the need for the study of creativity in mathematics education 
to include not only gifted students but also students who may be viewed as resistant 
to mathematics as well as the underserved populations of students who all too 
frequently do not perform well in mathematics.

In an effort to adapt Koestler’s insights on creativity into the daily working 
of the mathematical classroom we follow the synthesis of creativity and schema 
development due to Glaserfeld (1998). Glaserfeld’s thesis is that creativity represents 
an integral component in the construction of any new knowledge. This thesis of 
Glaserfeld based upon the theories of Peirce provides us with an avenue to connect 
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Koestler’s ‘biscociative’ mechanism of creativity and the Piaget based mechanism 
of learning ‘reflective abstraction’ to analyze how students construct knowledge.

BISOCIATION

Koestler (1964) describes the main mechanism of creativity in terms of a code and a 
matrix, or a frame of reference. These terms are defined broadly and used by Koestler 
with a great amount of flexibility. He writes, “I use the term matrix to denote any 
ability, habit, or skill, any pattern of ordered behaviour governed by a code or fixed 
rules” (p. 38). He uses the same definition later, substituting the phrase pattern of 
activity in place of pattern of ordered behaviour. The encompassing nature of these 
phrases allows one to include most processes used in the mathematics classroom, 
the caveat being that there must be some underlying order to the patterned activity. 
Indeed, as Koestler states, “all coherent thinking is equivalent to playing a game 
according to a set of rules” (p. 39). It follows that the term matrix can be applied 
to all coherent, logical or rule-based thought processes employed by an individual 
learning mathematics:

The matrix is the pattern before you, representing the ensemble of permissible 
moves. The code which governs the matrix…is the fixed invariable factor in 
a skill or habit; the matrix its variable aspect. The two words do not refer to 
different entities; they refer to different aspects of the same activity. (Koestler, 
1964, p. 40)

Creativity occurs when an individual observes an analogy between two or more 
previously unrelated frames of reference: “I have coined the term bisociation 
in order to make a distinction between the routine skills of thinking on a single 
plane as it were, and the creative act, which … always operates on more than one 
plane” (Koestler, 1964, p. 36). Thus, for Koestler (1964), bisociation represents a, 
“spontaneous flash of insight …which connects previously unconnected matrices of 
experience” (p. 45).

The creative process of bisociation, that is, the “transfer of the train of thought 
from one matrix to another governed by a different logic or code” (p. 95) is also used 
by Koestler to describe original inventions. For example, when Gutenberg fused 
together two matrices to invent the printing press, “the bisociation of the wine-press 
and seal, when added together, became the letter-press.” (p. 123). Koestler, indeed, 
extends the range of these terms beyond problem-solving activities or creative 
inventions, to cover entire studies of science, citing such examples as Kepler’s 
creative discovery of the laws of planetary motion resulting from his attempt at 
the, “synthesis of astronomy and physics which during the preceding two thousand 
years had developed on separate lines” (p. 124).

The focus of the Act of Creation Theory is on the bisociative leap of insight, 
that is, an Aha! moment, or a moment of understanding―a	phenomenon	that	can	
be observed amongst the general population. It is our thesis that bisociation can 
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be used to draw insights into the creativity of all students in a classroom setting. 
Thus, Koestler’s theory can be seen as the foundation for understanding educational 
research on creativity and insights into learning i.e. the rediscovery of mathematics 
in the general classroom.

Learning Environment for Bisociation

Koestler would allow that bisociation is the essence of untutored learning: 
“Minor, subjective bisociative processes do occur on all levels, and are the 
main vehicle of untutored learning” (p. 658). This statement demonstrates two 
important viewpoints of Koestler that: (1) bisociation is an essential mechanism 
in the learning process, and (2) the subjective learning environment must allow 
for and/or approximate the conditions of “untutored learning”. We believe, as did 
Koestler, that students cannot engage in mathematical problem-solving until they, 
in some sense, discover mathematics for themselves. This leads us to explore the 
mechanism of bisociation as foundational to learning mathematics, ideally within 
a creative learning environment that guides or supports the discovery process of 
students (Chapter 3.9).

For Koestler, bisociation explains the individual’s use of analogies in learning and 
discovery. The distinction between the Eureka moment of originality and routine 
thinking is in the degree of novelty or unexpectedness of the analogy used. He 
writes, “one of the basic mechanisms of the Eureka moment is the discovery of 
a hidden analogy; but hiddenness is a matter of degrees. How hidden is a hidden 
analogy” (p. 653).

As teacher researchers with the goal of improving learning through a discovery 
based methodology and integrating Koestler’s work into our classrooms we now 
study bisociation separating the mechanism itself from the affective experience 
in order to employ and analyze it in classroom practice. We also integrate 
Koestler’s sense of an untutored learning with the work of Vygotsky who makes 
the classroom learning environment pivotal. This allows us to speak of bisociation 
within a mathematics classroom in which a methodology of guided discovery but 
not necessarily completely untutored learning is employed. Koestler, Vygotsky, 
cognitive theorist and theories of learning influenced by Piaget all consider problem 
solving as the underlying environment for learning. Thus, we extend our focus 
from the work of Koestler and Vygotsky to include insights on problem-solving 
and learning from the work of Anderson (cognitive theory), Von Glaserfeld, Sfard, 
Dubinsky and others (Piaget based theories of concept and schema development).

The Mechanism of Bisociation

In his 2012 work, Berthold describes Koestler’s concept of bisociation as a 
foundation for the study of computational creativity, where he separates the 
transcendental Aha! moment from the mechanism of bisociation, that is, the 
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simultaneous synthesis of the matrices (Berthold, 2012). Berthold describes several 
instances of bisociation: “The most natural type of bisociation is represented by 
a concept linking two domains” (p. 3). In this case, the concept is understood as 
being represented in both domains simultaneously. Berthold notes that a small 
subset of the concepts (as opposed to an individual concept) contained in separate 
matrices can also be viewed as linking the matrices or domains simultaneously. 
A third type of bisociation is a link formed by a structure between concepts that 
can be represented in two matrices: “In both domains two subsets of concepts can 
be identified that share a structural similarity” (p. 5). One might imagine such a 
situation as an isomorphism of these structures. In this approach, the transfer of 
concept(s) or structure(s) of concept(s) between any two matrices or independent 
frames of reference is an example of bisociation.

Subjectivity in Bisociation

The work of Berthold distinguishes the mechanism of bisociation from the 
requirement that the individual experiences an Eureka moment based solely 
upon their own cognitive effort. An issue that arises in applying this mechanism 
of bisociation to learning is how independent (objectively) do the matrices have 
to be. This is especially relevant with students experiencing difficulty learning 
mathematics. Koestler considers the situation subjectively, that is, entirely dependent 
upon the level of the individual understanding: “Thus, the degree of independence of 
the matrices … which combine in the solution of a problem can only be judged with 
reference to the subject’s mental organization” (p. 657). Koestler makes an inverse 
relationship between the subjects’ previous knowledge in solving a problem with the 
amount of learning or creativity required. His view is expressed in his distinction 
between an exercise of understanding, that is, an association of a problem situation 
to a familiar habitual matrix of thought, and progress in understanding, when the 
solver does not recall any familiar matrix or schema to interpret the information 
given in the problem. We review Koestler’s distinction between association and 
bisociation, as well as relevant literature on schema development, in order to 
situate this dynamic within the context of Piaget’s concepts of assimilation and 
accommodation. At present we note that Koestler’s distinction between habitual 
associations and creative bisociations rests upon the degree of consciousness in 
discovering the hidden analogy: “Among the criteria which distinguish originality 
from routine are the level of consciousness on which the search is conducted, the 
type of guidance on which the subject relies and the nature of the obstacle” (p. 654). 
The subjective nature of bisociation, as dependent upon the mental organization and 
proficiency of the learner, leads us to review literature on stages of learning. We also 
note that Koestler’s inclusion of level of consciousness is a unifying factor with (1) 
Vygotsky’s theory of concept development in which reflective consciousness is the 
distinguishing factor between spontaneous and scientific concepts, and (2) models 
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based upon the work of Piaget in which the mechanism of concept development is 
reflective abstraction.

The Hidden Analogy in Problem-Solving

If one were to look up the word analogy, it will be most commonly defined 
as a ‘correspondence in some aspect between otherwise dissimilar things.’ As 
commented, for Koestler, the dissimilar criteria is subjective, that is, dependent 
upon the level of understanding of the problem solver. When a solver recognizes the 
given problem information as analogous to a known schema, the association leads to 
routine,	habitual	thought―an	exercise	in	understanding.	In	contrast,	when	no	such	
analogous schema comes to mind the solver begins to search through their mental 
collection of operators-matrices that in some way may have some correspondence 
to the present situation. This process of finding a hidden analogy is described by 
Koestler as:

bring[ing] successive perceptual or conceptual analyser-codes to bear on the 
problem; to try out whether the problem will match this type … the subject 
looks for a clue the nature of which he does not know, except that it should be 
a clue … a link to a type of problem familiar to him…he must try out one frame 
after another to look at the object before this nose, until he finds the frame into 
which it fits, i.e. until the problem presents some familiar aspect-which is then 
perceived as an analogy with past experience and allows him to come to grips 
with it. (pp. 653–654)

CREATIVE DISCOVERY AND CONCEPT DEVELOPMENT  
WITHIN PROBLEM-SOLVING

The Problem-Solving Environment

Koestler’s theoretical foundation for creativity and, to a wider extent, learning 
itself, is based upon problem-solving: “Problem solving is a gap between the initial 
situation and the target … It means firstly, searching for a matrix, a skill which will 
bridge the gap” (pp. 650–651). Problem-solving leads to progress as opposed to 
merely an exercises in understanding when,

the situation resembles in some respects other situations encountered in the 
past, yet contains new features or complexities which make it impossible to 
solve the problem by the same rules of the game which were applied to those 
past situations. When this occurs we say the situation is blocked. (p. 119)

Vygotsky (1986), like Koestler and Anderson, situates learning, or more specifically, 
concept development, with the framework of problem-solving. He writes that, 
“concept formation…is an aim directed process…for the process to begin, a problem 
must arise that cannot be solved otherwise than through the formation of a new 
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concept. Although problem-solving is one of largest branches of mathematics 
education, much of what is understood as problem-solving comes from cognitive 
psychology (Lester, 1983). The cognitive theorist Anderson (1996) asserts that, “all 
cognitive activities are fundamentally problem solving in nature … human cognition 
always purposeful, directed to achieving goals, and to removing obstacles to those 
goals” (p. 237). Anderson (1996) lists three traits that characterize problem-solving: 
(1) goal directedness, (2) sub-goal decomposition, and (3) operator selection, where 
“the term operator refers to an action that will transform the problem state into 
another problem state. The solution of the problem is a sequence of these known 
operators” (p. 238).

Anderson and Koestler both base their models, in part, on the earlier work of the 
psychologists Kohler with chimpanzees in captivity. Kohler noticed that primates 
who played with sticks and reached out of their cages for food would eventually 
learn to use sticks as a tool. For Koestler, this spontaneous synthesis is an example 
of bisociation to extend their reach. Anderson describes this behaviour in terms of 
cognition, using the stick (the operator) to extend one’s reach (obtaining the goal) 
(pp. 237–244). Anderson’s use of the term operator can be viewed as equivalent to 
an individual’s use of their internal matrices to formulate an action during problem- 
solving. By this we mean that Koestler understood his framework as describing 
routine problem-solving as well as creative activity, “the hum-drum routine of 
planning and problem-solving in daily life” (p. 651). However, Koestler’s use of 
the matrix includes more than just a skill or action: “I shall use the word matrix to 
denote any ability, habit or skill, any pattern of ordered behaviour governed by a 
code of fixed rules” (p. 38). Anderson purports that an individual acquires operators 
to obtain a goal in one of three manners. The first is through direct instruction, the 
second is by discovery, and the third is using analogy to previous solutions (p. 244). 
Thus, for Anderson, there is a sharp distinction between analogy and discovery 
used in what he calls ‘insight’ problems.

The unification of creativity and concept development, and indeed, all cognition 
within the framework of a problem-solving environment leads us to simultaneously 
consider the work of Vygotsky, Piaget and Anderson and authors of concept 
development theories based on the work of Piaget.

Vygotsky: Conscious Reflection and Scientific Concepts

Vygotsky’s framework focuses on the development of structural or scientific 
concepts, such as those of algebra generalized from the arithmetical concepts that 
arise spontaneously. This transition is marked by an individual’s ability to reflect 
upon one’s thinking process. He writes, “in spontaneous concepts the child is not 
conscious of them because his attention is always centred on the object to which 
the concept refers, never on the act of thought itself” (Vygotsky, 1986). In this 
reference Vygotsky’s use of the word consciousness indicates the awareness of 
one’s thought process, “we use consciousness to denote awareness of the activity 
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of the mind – the consciousness of being conscious” (Vygotsky, 1986, p. 171). 
This meta-consciousness, or reflection upon one’s thought process, in Vygotsky’s 
framework comes into existence simultaneously with scientific concepts, “reflective 
consciousness comes to the child through the portals of scientific concepts” 
(Vygotsky, 1986, p. 171). Furthermore, these scientific concepts are inherently 
embedded in a schema or hierarchy of concepts, “a concept can become subject 
to conscious control only when it is part of a system” (p. 171). Thus, the learner’s 
development, as they reflect upon their actions during algebraic and mathematical 
reasoning, is dependent upon formation of schema which for Vygotsky (in contrast 
to Koestler) is built within a cooperative relationship between the teacher and the 
learner.

Vygotsky: Role of Education in Concept Development – Zone of Proximal 
Development

In contrast to Koestler, Vygotsky (1986) has a strong focus on the role of education 
in concept-schema development:

Instruction is one of the principal sources of the schoolchild’s scientific 
concepts and is also a powerful force in directing their evolution. (p. 157)

School instruction induces the generalizing kind of perception and thus plays 
a decisive role in making the child conscious of his own mental processes. 
Scientific concepts, with their hierarchical system of interrelationships, seem 
to be the medium within which awareness and mastery first develop. (p. 171)

This consciousness as suggested by Vygotsky arises with adolescence, during the 
middle school years of education when students are required to, and many struggle 
to, learn fractions, and proportional and algebraic reasoning. Koestler (1964) 
considers such consciousness as essential to originality and creativity in the search 
for an operator-matrix to solve a problem:

The search for the appropriate matrix is never quite random…among the criteria 
which distinguish originality from routine are the level of consciousness on 
which the search is conducted. (Koestler, p. 654)

The importance of education in Vygotsky’s framework is due in part to his 
observation that when presented with direct instruction assistance some students, 
“could with cooperation solve problems … while other could not” (Vygotsky, 1986, 
p. 187). Vygotsky labels this phenomena the child’s Zone of Proximal Development 
(ZPD), defining it as “the discrepancy between the child’s mental age and the level 
he reaches in solving problems with assistance” (p. 187). The role of education in 
Vygotsky’s framework is to present problems on the upper structural level of the 
individual’s ZPD, and then provide them with guidance in reaching that goal. To the 
constructivist like Koestler, who believes that learning only has meaning when the 
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individual reinvents or relives the process of discovery, Vygotsky would counter that 
guided learning, even when students follow instruction without grasping the essential 
processes, is valuable within the individual’s ZPD. He states that “to imitate, it is 
necessary to possess the means of stepping from something one knows to something 
new” (Vygotsky, 1986, p. 187).
Our own teaching-research experience, as facilitators of ‘guided inquiry leading to 
discovery’ method allows us to find the space of freedom within which, we can, in 
the context of a student’s ZPD, eliminate the possibility of imitation and approximate 
the conditions of “untutored learning” necessary for Koestler’s bisociation as the 
tool to “reinvent or to relive” the process of discovery.

Progress in Understanding

Koestler (1964) characterizes progress in understanding as a process that results  
in, “the formulation of new codes through the modification and integration of 
existing codes by…empirical induction, abstraction and discrimination, bisociation” 
(p. 619). In contrast to progress in understanding, Koestler asserts that an, “exercise 
or application of understanding … becomes an act of subsuming the particular event 
under the codes formed by past experience” (Koestler, 1964, p. 619).

We outline several distinguishing features that Koestler draws between association, 
as an exercise in understanding, and bisociation, as progress in understanding.

• Consciousness: Association may involve conscious thought and reflection; 
however, bisociation is marked not only by such thought but also by intuition led 
discovery. In the discovery classroom this guidance is supplied by the instructor, 
leading the student to the upper limit of their ZPD. For Koestler, such guidance 
must come from the individual’s intuition: “a further criterion of the creative act 
was that it involves several levels of consciousness” (1964, p. 658).

• Independent Matrices and Novelty of Task: Association occurs, “within the  
confines of a given matrix,” while, in contrast, “bisociation involves independent 
matrices”	(Koestler,	1964,	p.	658).	We	have	noted	that	this	criterion	is	subjective,―
matrices that are separate for students at one level, may have already been 
synthesized for more advanced solvers. For Koestler, progress in understanding 
occurs when the solver encounters a new or novel task. In this framework, when 
a solver is faced with such a novel situation in which there does not exist any 
associated matrix, then he or she begins searching for a hidden analogy, a matrix 
with some analogous aspect to both, that will give some meaning to the situation, 
allowing them to come to grips with it.

Thus, Koestler allows that the problem information itself is a matrix, a reality that 
may be confusing for the solver, and the hidden analogy is the other independent 
matrix. While it does happen that two matrices are synthesized as in the development 
of the printing press, progress in understanding, the creative bisociative act includes 
the discovery of a previously hidden analogy and the synthesis of past experiences 
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with new problem situations in such a manner as to give meaning to the present 
situation.

Associations occur when the solver recognizes the task as familiar and leads to, 
what Koestler would refer to as, the condensation of learning into habit. He writes: 
“The matrices that pattern our perceptions, thoughts and activities are condensations 
of learning into habit” (Koestler, 1964, p. 44). Anderson describes this process in 
terms of the solver’s ability to associate the declarative problem information with an 
appropriate operator-matrix. With practice this process becomes a more automatic 
procedural response with less reliance upon the conceptual problem information. 
Anderson refers to this as proceduralization, which, he believes, requires less 
cognitive load that is, “the procedure becomes more and more automated and rapid” 
(Anderson, 1996, pp. 274–275). For Koestler (1964) this transition is an anathema 
to the creative process:

When life presents us with a problem it will be attacked in accordance with 
the code of rules which enabled us to deal with similar problems in the past … 
when the same task is encountered under relatively unchanging conditions in 
a monotonous environment, the responses will become stereotyped, flexible 
skills will degenerate into rigid patterns, and the person will more resemble an 
automaton, governed by fixed habits. (pp. 118–119)

SCHEMA THEORY: ASSIMILATION AND ACCOMODATION

For Koestler (1964) the end result of learning is construction of matrices or schema to 
make sense of our environment: “We learn by assimilating experiences and grouping 
them into ordered schemata, into stable patterns of unity in variety. They enable us 
to cope with events and situations by applying the rules of the game appropriate to 
them” (p. 44).

Steele and Johanning (2004) note two types of learning commonly discussed by 
schema	 theorists―assimilation	 and	 accommodation.	 They	 consider	 assimilation	
to be a type of generalization when one extends an existing cognitive structure 
without significant change while accommodation requires reconstruction of an 
existing cognitive structure. Norman and Rumelhart (1976) consider the situation 
when existing schema serve as the basis for new ones leaving basic structure or 
relationships unchanged a process they refer to as ‘schema tuning’; in Koestler’s 
terminology, the code of the matrix remains basically unchanged, and this process 
does not result in the creation of new matrix/schema. In contrast, more creative 
forms of accommodation occur, “when existing memory structures are not adequate 
to account for new knowledge, then new structures are required, either by erecting 
new schemata specifically designed for the troublesome information or by modifying 
(tuning) old ones” (Norman & Rumelhart, 1976, p. 45). As Cifarelli notes, when 
one’s previous or “current knowledge results in obstacles, contradictions surprises” 
(Cifarelli, 1998, p. 241).
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Von Glasersfeld (1989), reviewing the work of Piaget, cooments that:
[The] construction of a scheme … consists of three parts:

1. Recognition of a certain situation…
2. Association of a specific activity with that kind of item…
3. Expectation of a certain result (p. 65).

The ability of a student to recognize a previous schema that relates to the situations 
is viewed by math educators as the first (recognition) stage in the development of 
problem-solving (Cifareli, 1998). Educators frequently employ repetition leading 
to internalization and thus the ability for recognition of problem schema. This is 
often accompanied by problem solving sequences with increasing difficulty or 
level of structure and abstraction (Steele & Johanning, 2004) e.g. Czarnocha  
(4.6 Chapter 4.5). The question that arises from a constructivist pedagogical view is 
when does repetition lead to rote memorization?

Von Glaserfeld (1989) points out that accommodation may begin when solution 
activity or the choice of an operator does not bring about the expected result. 
More precisely, he states that such an obstacle, “generates a perturbation and 
disappointment, and perturbation is one of the conditions that sets the stage for 
cognitive change” (p. 127). In this view the essence of constructivist pedagogy and 
creativity within education begins with perturbation or disappointment i.e. the lack 
of ability of the solver to recognize or associate a previous matrix-schema to a given 
situation.

Creativity, Reflection and Abstraction

Von Glaserfeld (1989b) postulates that the ability to search for patterns, regulations, 
groupings and rhythms is innate, “the ability and, beyond that, the tendency to 
establish recurrences in the flow of experiences; this, in turn, entails at least two 
capabilities, remembering and retrieving (re-representing) experiences, and the 
ability to make comparisons and judgements of similarity and difference” (Von 
Glasersfeld, 1989a, p. 128). This innate ability underlies Von Glaserfeld’s argument 
that creativity is involved in the learning process, when the learner is presented 
with a cognitive conflict, reviews a past situation or a pattern from past situatiosn 
and then abstracts a rule or code from this pattern that can be used in the present 
situation. This abstraction process for Von Glaserfeld is a creative and in our view 
comparable to Koestler’s description of the discovery of the hidden matrix. It is 
considered by Von Glaserfeld as a central mechanism in the learning process. As 
such is comparable (in intent if not content) to Simon et al. (2004) description of 
Piaget’s notion of reflective abstraction based upon an individual’s reflection upon 
their solution activity and the abstraction of underlying relationships:

Thus, within each subset of the records of experience (positive or negative 
results), the learners mental comparison of the records allows for recognition 
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of patterns, that is, abstraction of the relationship between activity and 
effect. Because both the activity and the effect are embodiments of available 
conceptions, the abstracted activity-effect relationship involves a coordination 
of conceptions … Note the activity and the effect are conception-based mental 
activities, our interpretation of Piaget’s notion of coordination of actions.  
(pp. 319–320)

The view expressed by Simon et al. (2004) that learning is a result of reflection 
upon solution activity and abstraction of relationships suggests that Koestler 
and Von Glaserfeld’s description of creativity would be included as such 
activity. We note however that, the focus of Simon et al. (2004) description of 
reflective abstraction is on Von Glaserfeld’s third stage of schema formation 
that is, when the solver compares the results of his/her solution activity with 
their expected outcome. In contrast, Koestler’s bisociation as the discovery of 
a hidden analogy focuses on the first stage i.e. recognition of an appropriate 
matrix yet both would be included as reflection of solution activity and both 
require abstraction of underlying principles and hence both can be considered 
as reflective abstraction when defined loosely as, “a means of classifying 
and characterizing problem solving activity” (Tracy Goodson-Epsy, 1998,  
p. 226).

Piaget: Reflective Abstraction

Piaget’s mechanism for conceptual development is called reflective abstraction 
and, as used in mathematics education is associated with conscious reflection and 
abstraction of solution activity (Simon et al., 2004). Piaget focuses his attention on 
the individual’s reflection upon and abstraction of processes or actions rather than 
concepts. According to Piaget, construction of schema or cognitive change:

proceeds from the subject’s actions and operations, according to two processes 
that are necessarily associated: (1) a projection onto a higher level (for example, 
of representations) of what is derived from the lower level (for example, an 
action system), and (2) reflection, which reconstructs and reorganizes, within a 
larger system, what is transferred by projection. (Piaget & Garcia, 1989, p. 2)

Piaget refers to these two processes as constructive generalization and reflective 
abstraction. He clarifies their role in the construction schema:

First, projection essentially establishes correspondences at the next higher level, 
associating the old contents that can be integrated within the initial structure 
but permitting it to be generalized. Second, these first organizations also lead 
to the discovery of related contents, which may not be directly assimilated into 
the earlier structure. This makes it necessary to transform that structure by 
means of a constructive process until it becomes integrated within a larger, and 
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therefore partially novel, structure. This mode of construction, by reflective 
abstraction and constructive generalization, repeats itself indefinitely, at each 
successive level so that cognitive development is the result of the interaction 
of a single mechanism. (Piaget & Garcia, 1989, pp. 2–3)

Piaget’s description is perhaps influenced by his intention to explain individual and 
historical development as parallel to one another and thus it has a one directional 
approach in which a lower less structured plan is always projected into a higher 
structured one and then coordination occurs to re-organize or constructively 
generalize the schema. In contrast Koestler’s mechanism of bisociation allows for 
the synthesis of two matrices without consideration of a higher or lesser structure. 
Furthermore, this description by Piaget and Garcia appears to imply a certain time 
period for coordination to re-organize one’s schema while Koestler’s bisociation 
is instantaneous. However, both descriptions involve two planes of reference that 
are related to one another presumably by concepts that upon reflection results in 
abstraction of relationship or codes that allow for progress in understanding or 
accommodation of one’s existing schema.

Dubinsky (1991) studies Piaget’s mechanisms of reflective abstraction with 
respect to actions and processes within the process/object duality of concept 
development. Dubinsky considers and names specific forms of reflective abstraction: 
interiorization, coordination, generalization, reversibility and encapsulation. 
Interiorization involves the internalization of processes or actions, while reversibility 
involves reflection upon the inverse of a known process. The strength of this important 
contribution by Dubinsky is that specific types of reflective abstraction are named 
and spelled out which assists the instructor-researcher in designing curricula and 
methodology to encourage and promote such thought in the mathematics classroom. 
However, for our conceptual framework this effort to categorize specific instances 
of reflective abstraction removes the focus from problem solving activity in which 
creativity and learning occur. That is, Koestler’s main concern of how the solver 
recognizes or an appropriate matrix and the similar issue raised by Piaget of how 
one schema is used to constructively generalize another are not directly addressed.

Bisociation and Reflective Abstraction

Within Koestler’s problem-solving framework, when the solver encounters a novel 
problem and cannot directly associate a relevant or analogous matrix, he or she 
begins searching for a matrix-operator based upon some aspect of the problem 
information. If, during the coordination of problem information with previous 
matrices, the solver realizes that the concepts and structures of a simpler, more 
concrete, or more readily understood matrix can be generalized to the current 
situation, bisociation is achieved. At this phase, in the solver’s mind, the better 
understood concept structure exists simultaneously in both frames of reference, 
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and the stage for schema formation, or constructive generalization, is set. One 
may view the problem situation as an emerging matrix being structured by the 
bisociative action of the generalization.

Like Simon et al. (2004), we consider the comparative process between the 
mental records (matrices) of thought with the problem information as coordination, 
employing Koestler’s understanding of this mental activity; that is, one during which 
the solver is searching through existing matrices, comparing each to the declarative 
information presented by the problem to be solved. The term coordination, in this 
context describes this flux of comparisons in the solver’s mind, in his or her attempt 
to find a match between some known matrix and some aspect, of the problem 
structure. This search sets the stage for the bisociative realization that previously 
unrelated concepts and structures can, indeed, be associated with the problem at 
hand. This, coordination prepares the way for bisociation which, in turn, provides 
meaning to the solver’s choice of operator. We note that coordination continues after 
an operator is chosen, as the solver compares his or her memory of how the operator 
correlated with the current situation and, consequently, how the current situation is 
connected to the ultimate problem goal, Simon et al (2004).

In the event that no effective operator-matrix can be identified, the solver, with 
external (tutor, instructor, or peer) or intuitive guidance, may revisit a similar but 
simpler problem situation, invoking a matrix that is appropriate for a simpler, more 
concrete or better understood problem situation that resembles the given situation. 
This initial or primary matrix is then projected (generalized) into the current 
problem situation. In this process, the concepts/structure of the initial matrix is 
bisociated with the existing problem situation (emerging matrix), a direct result of 
which is an operator or relevant action for the solver. Constructive generalization 
occurs when the actions directed by the solvers understanding of the initial matrix 
are coordinated with the problem information and goal.

PROCESS-CONCEPT DUALITY

The transition from spontaneous to scientific concepts in the work of Vygotsky has 
a parallel in theories influenced by the work of Piaget in which there is a transition 
from a process to an object understanding. This feature based upon Piaget’s insight 
that, with sufficient exposure and use of “actions” or processes an individual will 
internalize these processes enabling them to reflect upon and thus treat what was 
essentially procedural knowledge as “thematized objects of though” which can then 
be assimilated into an individual’s schema (Tall et al., 2000, p. 224).

Tall et al. (2000) attributes educational focus on process/object duality to the 
work of Dubinsky and Sfard: “The transformation of a process into an object took 
new impetus in the work of Dubinsky and Sfard” (p. 234). Although we utilize the 
work of both these authors, the work of Sfard is more focused on the transition from 
arithmetic to algebra.
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Operational to Structural

Operational to Structural: History and Individual Development of Algebra Sfard 
and Linchevski (1994) like Piaget and Garcia (1989) trace out the transition from 
operational to structural thinking in both the historical development of arithmetic 
and algebra as well as through the lens of individual growth in mathematics. Thus, 
they operate under the thesis that individual growth in mathematical understanding 
parallels the historical development i.e. an operational view precedes a structural 
understanding.

More specifically Sfard and Linchevski (1994) trace the growth of a concept 
from an operational understanding of arithmetic, algebra and mathematics as 
computational actions, procedures, and algorithms to a structural understanding 
in which these processes are themselves considered existing, real objects that can 
themselves be acted upon. From an operational viewpoint an algebraic expression 
such as 5x −7 would be viewed as an algorithm containing: an unknown quantity 
‘x’ and two procedures or actions to be performed once the value of the unknown 
variable has been revealed. From a structural viewpoint this expression is an object 
named a binomial, more generally a polynomial, for which there are rules that 
govern how such objects can be combined. Sfard and Linchevski (1994) considers 
that the operational view precedes the structural view and that the capacity 
of structural conception is a distinct advantage for the solver able to make this 
transition: “What happens in such a transition may be compared to what takes 
place when a person carrying many things in her hands decides to put all the load 
in a bag” (p. 94).

Student growth in mathematics can be explained as a transition from a spontaneous 
understanding of concepts or operational understanding of actions and processes to 
a more scientific and structural understanding. In this light the instructor’s role can 
be to guide them through their ZPD from where their understanding is to a more 
structural level. As we have noted Vygotksy viewed the development of scientific 
concepts and its associated structure as developed in an educational setting. The 
student’s ability to assimilate new information or accommodate new structurtal 
growth is dependent upon where they are in this developmental process e.g. Dias 
(4.2 Chapter 4.3). For this reason Piaget and Garcia, Sfard, Vygotsky as well as 
cognitive psychologists all postulate stages of learning or concept development 
that are useful in classify and interpreting student experience in the mathematics 
classroom.

STAGES OF CONCEPT-SCHEMA DEVELOPMENT

Piaget and Garcia: Intra Stage

Piaget and Garcia characterize the initial or intra stage by, “a concentration on 
repeatable actions or a correct operation…These remain isolated and analyzed and 
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comprehended only in terms of their properties taken individually and irrespective 
of others” (p. 175, Piaget & Garica, 1989). These authors characterize subjects in 
this stage as having limited ability to make deductions based upon sometimes faulty 
internal matrices-processes and inability to coordinate these process, “an absence 
of coordination…and the presence of errors…as well as gaps in the consequences 
subjects are able to deduce (p. 174). In short, “without the capacity to inset it in 
a system of conditions or consequences, which would extend its application”  
(p. 175).

Sfard (1991) would characterize the first stage as beginning with learner’s who 
need to carry out one-step at a time actions using pencil and paper and ending 
with an internalized process. She borrows the term “internalization” from Piaget 
to describe an internalized process as one that, “can be carried out through mental 
representations” (p. 18).

Challenges for Constructivist Pedagogy with Weak Problem Solvers

Less proficient solver often chose operator based upon whatever operator was 
used in the previous problem a phenomena cognitive psychologists refer to as 
“temporal proximity” (Anderson, 1995). When the choice of operator is based 
upon declarative problem information (concepts) their rational can be hazy, and 
they become easily, “surprised by complications that might occur” (Goodson-Epsy, 
1998, p. 224). At this level of understanding the solver has only a vague sense 
about what analogous matrix may be appropriate. In such a situation their previous 
understanding of schema provides an unstable source for: choosing, planning or 
evaluating an action or operator(s). Their choice of an operator-action is tenuous, 
one step at a time, without understanding to guide their actions and choices. Thus, 
when an operator does not immediately work i.e. at the first sign of difficulty they 
become discouraged and give up i.e. admit defeat. Their lack of confidence and 
interest prevents them from searching for a different strategy or a different operator 
which in turn limits their lack of ability to reflect upon, “elaborate, re-organize 
and re-conceptualize their solution activity while engaged in mathematical problem 
solving” (Cifarelli, 1998, p. 241).

The paradox for constructivist pedagogy is that philosophically it believes students 
only learn or create knowledge when they must accommodate new information or 
demonstrate progress in understanding i.e. in situations where solvers must, modify 
an existing representations, matrix or schema and yet it precisely such situations that 
weak solvers experience the most anxiety.

Intermediate ‘Inter’ Stage

Piaget and Garcia (1989) characterize the inter stage by, “the capacity to deduce 
from an initial operation, once it is fully understood, others which are implied 
by it or to coordinate it with other similar ones” (p. 174). At this level actions or 
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“operations become organized into systems…which include certain transformations 
of the operations themselves” (p. 174). Thus, one distinguishing mark of this stage 
is the reflective abstraction referred to by Dubinsky (1991) as ‘coordination’ of 
processes another is ‘reversibility.’ Piaget and Garcia (1989) refer to these abstracting 
processes as transformation and consider ‘negation’ or ‘reciprocities’ as, “two 
possible forms of reversibility that is the common characteristic of all operations 
and their compositions, hence that essentially mark the progress between intra and 
inter-operational systems (p. 177).

However, the intermediate stage is still limited to a within structure coordination 
of processes, “but there are still fairly limiting restrictions on the compositions 
possible…a strictly step-by-step approach” (Piaget & Garcia, 1989, p. 176).

At this stage of reflection and abstraction solvers can, “reflect upon their 
potential solution activity and generate anticipations about its results without the 
need to actually carry out the particular actions with paper-and-pencil” (Cifarelli, 
1998, p. 246). More detail is added to this basic theme by Sfard (1991) who notes 
the leaner “becomes more and more capable of thinking about a given process 
as a whole without feeling an urge to go into details…the leaner would refer 
to the process in terms of input and output.” As a result of this reflection and 
abstraction this stage is characterized by, “combining, making comparisons and 
generalizing…growing easiness to alternate between different representations of 
the concept” (p. 19).

The intermediate stage of concept development for Vygotsky is ‘complex 
thinking’ this stage is marked by relationships between concepts which are ‘coherent 
and objective’ and yet in which, “ideas are based on experience and associations 
rather than logic or a system but the learner is able to abstract actual attributes of 
the idea” (Berger, 2004, p. 11). Berger (2004) identifies many different types of 
errors students make that fit the different types of association solvers make between 
declarative or conceptual problem information and appropriate operators:

• Surface Associations in which a keyword, or other part of a problem is focused 
on to the exclusion of other more relevant concepts and thus an inappropriate 
operator is chosen.

• Errors due to complementary concepts in which the solver recognizes the 
appropriate matrix and yet the matrix involves complementary or related concepts 
that the student cannot distinguish between or properly identify.

• Associations switching errors when the solver employs a matrix-operator instead 
of its inverse that is required. Lamon (2007) refers to such errors as “non-
conservation of operation,”

• Incomplete association errors occur when the solver makes a required association 
to a matrix-operator but, he/she applies it incorrectly due to lack of coordination 
with other concepts-processes.
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A Paradigmatic Example

In this example finding the domain of f(x) =  was understood by the student but 
they had difficulty finding the domain of the function 

Note that it is the spontaneous responses of the student from which the teacher-
researcher creates/determines the next set of questions, thus, balancing two 
frames of reference, his/her own mathematical knowledge and the direction taken 
by the student. Thus this example of a TR act balances pedagogy influenced by 
constructivist theory that students need to construct, discover or create their own 
meaning with student responses.

The student prompted by the teacher-researcher’s questions, balance their 
understanding-matrix for finding the domain of f(x) =  with the new problem 
situation.

The problem starts with the function f(x) = . The teacher asked the students 
during the review: “Can all real values of x be used for the domain of the function

?”

Student (S): (1) “No, negative x’s cannot be used.” (The student habitually confuses 
the general rule, which states that for the function  only non-negative values can 
be used as the domain of definition, with the particular application of this rule to

.)

Teacher (T): (2) “How about x = –5?”
S: (3) “No good.”
T: (4) “How about x = –4?”
S: (5) “No good either.”
T: (6) “How about x = –3?”
Student, after a minute of thought: (7) “It works here.”
T: (8) “How about x = –2?”
S: (9) “It works here too.”
A moment later the student adds: (10) “Those x’s which are smaller than –3 can’t 
be used here.” (Elimination of the habit through original creative generalization.)
T: (11) “How about g(x) = ?”
Student, after a minute of thought: (12) “Smaller than 1 can’t be used.”
T: (13) “In that case, how about h(x) = ?”
S: (14) “Smaller than a cannot be used.”(Second creative generalization)

Analysis

The	 student	 makes	 an	 incomplete	 association	 from	 the	 matrix	 of	 finding	 the	
domain of a function such as f(x) =  to this problem situation which involves a 
transformation of the previous situation (the argument within the square root, x+3) 
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In lines (6) and (8) the instructor employs concrete counter examples to provide a 
perturbation, or a catalyst,	for	cognitive	conflict	and	change.	“…perturbation	is	one	
of the conditions that set the stage for cognitive change” (Von Glasersfeld, 1989a, 
p. 127).

In lines (6) – (9) the student reflects upon the results of the solution activity. 
Through	 the	 comparison	 of	 the	 results	 (records)	 they	 abstract	 a	 pattern,―“the	
learners’ mental comparisons of the records allows for recognition of patterns” 
(Simon et al., 2004).

Evidence of the abstraction of the principle that the transformation of the 
argument x+3 beneath the square root shifts the domain 3 to the left is given in line 
(10). Thus, this realization can be seen as reflective abstraction in the sense of Simon 
et al. (2004). In that the solution activity of substitution was projected into and 
coordinated with the solver’s knowledge of the domain of the square root function 
it is also an example of reflective abstraction according to Piaget and Garcia (1989). 
In that solution activity through substitution with the students matrix or schema 
of evaluating x − a is coordinated or integrated by the student with the student’s 
understanding (matrix) of the domain of the square root function their realization in 
line (10) can be viewed as bisociative in nature.

In lines (11) and (12), the perturbation brought about by the teacher’s questions, 
leads the student to enter the second stage of the Piaget and Garcia’s Triad. The 
student understood that the previously learned matrix or domain concept of radical 
functions, with proper modifications, extended to this example. They student was 
then able to reflect upon this pattern and abstract a general structural relationship 
in line (14). Thus, the student’s understanding of finding the domain of a square 
root has undergone constructively generalization to accommodate transformation 
providing evidence of the structural understanding noted by Sfard (1991) and the 
third stage of the Triad (Piaget & Garcia, 1989).

The TR act of the teacher manifests itself in the scaffolding which led the 
student to the cognitive conflict between the two frames of reference. In the first 
case, the data driven results obtained through the matrix-process of substitution was 
synthesized with their limited matrix of the possible domain of a radical function. 
This bisociation, and the resulting abstraction, led to a more complete understanding 
of the possible domain for specific functions. This represents a transition from 
the first to the second stage of the Triad. Continuation of this questioning process 
led to further creative moments of understanding, in which the student was able 
to synthesize their understanding of the domain for two separate special cases of 
radical functions. This bisociation, and the resulting abstraction into structural 
understanding (line (14)), suggests that the student had crossed the ZPD from the 
second to the third stage of the Triad relatively to the concept of the domain of the 
square root function.

Trans Stage: In the final trans stage of schema development is characterized 
by the ability to not only coordinate processes but also synthesize them into new 
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structures: “There are not only transformations, but also syntheses between them, 
leading the way to the building of new structures” (Piaget & Garcia, 1989, p. 178).

Sfard (1991) describes structural thought within problem solving as the ability to 
understand the structure, the conceptual relationships inherent in a problem solving 
schema as opposed to a one-step at a time sequential approach:

the operationally conceived information, although absolutely indispensible 
and seemingly sufficient for problem-solving, cannot be easily processed. This 
kind of information can only be store d in unstructured, sequential cognitive 
schema, which are inadequate for the rather modest dimensions of the human 
working memory. (p. 28)
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OLEN DIAS, WILLIAM BAKER AND BRONISLAW CZARNOCHA

4.2 COMPARATIVE STUDY OF THREE APPROACHES 
TO TEACHING RATES

SUMMARY

This chapter has a special aim and organization. It presents the comparative study of 
three different approaches to the same theme of proportional reasoning, in particular 
of the concept of the rate. The idea for the study is related to the Chinese Keli lesson 
study method (Huang & Bao, 2006), whose one of the approaches is the observation 
of two classes taught by different instructors and presenting different approaches 
to the same theme (CTRAS 5, 2013) followed by the discussion comparing the 
instructional approaches. Both instructors as well as the observing team of teachers 
participates in, usually heated, discussions. The chapter starts with the review of 
literature background for the theme of proportional reasoning as well as with short 
characterization of each of the approaches taken by instructors. Remarks of the 
members of the team follow.

INTRODUCTION: RATES AND PROPORTIONAL REASONING

Norton and D’Ambrosio (2008) discuss the role of the teacher in assisting students 
cross their zone of proximal development (ZPD) within the context of a teaching 
experiment, which, following Steffe and Thompson (2000) they take to be one 
in which the teacher must continually establish student understanding of 
content and adjusting pedagogy to best suit this understanding.

Norton and D’Ambrosio consider that the essence of the teacher’s role is to serve 
as a consciousness that assists in directing the student until he/she can direct their 
own actions during problem solving. Scaffolding is one of the most important tools 
the teacher can use to guide discovery learning. Mariotti (2009) describes this role 
as one in which the teacher uses tools or artefacts to mediate between the student’s 
understanding and their potential i.e. to develop genuine understanding that is linked 
to the artefact but able to be generalized and thus detached from the artefact.

Thus, the artefact, scaffolding or methodology used by the teacher provides 
external assistance until the learner moves towards internalization and self-help. 
The role of the teacher involves not only setting an appropriate task for the students 
but also directing their attention to appropriate matrices that can be used in the 
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present situation i.e. to lead them towards bisociation that is the discovery of a 
previously hidden analogy. When this does not work, the teacher can simplify the 
task, perhaps choosing a simpler problem in which the underlying concepts and 
problem structure are clearer more readily grasped. On the other hand if the problem 
involves the coordination of several processes the teacher may lessen the cognitive 
demand by leading the student one step at a time. In answer to Richardson (2003) 
question about what constitutes constructivist pedagogy, Norton and D’Ambrosio 
(2008) consider on the one hand a classroom setting in which the teacher sets the 
goals then encourages student activity to reach these goals while filling in gaps 
i.e. maintaining conscious control over the goals and the activity; on the other 
hand, they postulate a setting involving group work in which the students negotiate 
goals and sub-goals without guidance or minimal guidance by the instructor. If 
the essence of constructivist pedagogy is student construction of knowledge these 
authors note that Vygotsky (1997) would make a distinction between intelligent and 
conscious imitation of students that allows for construction of meaning as opposed 
to rote training that, “… results in meaningless … habits” (p. 221). In this they are 
similar in nature with Koestler’s distinction between an exercise in understanding 
i.e. Piaget’s notion of assimilation and Koestler’s progress in understanding i.e. 
Piaget’s notion of accommodation. In this dynamic it is not the cognitive difficulty 
of the material that dictates creativity and learning of the individual per se but rather 
the sole valid measure is the quality of the reflection. In this sense a constructivist 
classroom is essentially distinguished by effort to promote conscious reflection 
during problem solving as opposed to efficiency through repetition i.e. what 
Anderson (1995) would refer to it as “proceduralization.”

Huang and Bao (2006) struggle with the question posed by Richardson (2003); 
of how to promote constructivist pedagogy. Their approach builds upon action 
research, case studies in which educational experts gather to reflect and analyse 
how to assist, “… teachers not only to develop an understanding of mathematical 
tasks and how the cognitive demands evolve during a lesson, but also to develop 
the skill of critical reflection on their own practice…” (p. 280). These authors note 
that it is naive to think that a professional development workshop i.e. top-down 
approach can transform a teacher into an expert who is capable of reform pedagogy. 
Huang and Bao approach for teacher development employed experts involved in a 
community of inquiry undergoing cycles of reflection and refinement on teacher 
lessons as oppose to expert’s lessons i.e. design science.

In the following work three teacher researchers Czarnocha, Dias and Baker 
follow the inspiration of Huang and Bao (2006) and review each other’s lessons and 
methodology in order to understand the role of the instructor within a constructivist 
pedagogical framework or, if you will, acting as a community of inquiry into the 
promotion of a creative learning environment. We review and critique lesson 
plan as teacher researchers with the main focus on the conceptual framework(s) 
involved.
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PROPORTIONAL REASONING

The three lessons all involve applications of ratio, rates etc. The setting within 
educational	 research	for	understanding	students’	difficulties	with	rates,	 ratios	are	
typically referred to as proportional reasoning. For Piaget, proportional reasoning 
marked the beginning of formal operational thought because it involved second 
order thinking about the relationship between two ratios (Inhelder & Piaget, 1958). 
Proportional reasoning has been described as a foundation or core of algebra 
and higher mathematics (Berk et al., 2009; Lo & Watanabe, 1997). Despite the 
importance of proportional reasoning in subsequent math courses, educators 
point out that, “… a high percentage of college students fail to manifest formal 
operational performance on the appropriate tasks” (Adi & Pulos, 1980, p. 150). 
Lamon	(2007)	affirms	that	the	lack	of	ability	to	reason	proportionally	is	widespread	
when she notes, “a sense of urgency about the consistent failure of students and 
adults to reason proportionally … my own estimate is that more than 90% of adults 
do not reason proportionally …” (p. 637).

Informal Proportional Reasoning

The transition from unstructured spontaneous arithmetical thought to structural 
algebraic thought within the contexts of ratios and rates has also been described as 
a transition from intuitive to formal proportional reasoning. Mathematical educators 
lament that students intuitive reasoning tends to be disregarded in mathematics 
classrooms instead of built upon (Fernandez et al., 2010; Christou & Philippou, 
2002; Singh, 2000).

Multiplicative Conceptual Field

Proficiency with multiplication is also used by educators to describe the transition 
from informal reasoning about proportions, frequently built upon an additive 
approach called building up to a more functional or multiplicative approach 
(Caddle & Brizuela, 2011; Fernandez et al., 2010).

The “multiplicative conceptual field” of Vergnaud was designed as a holistic 
approach to analyse the many concepts in mathematics that relate to proportional 
reasoning, “a situation cannot be analysed with the help of just one concept; at 
least several concepts are necessary” (Vergnaud, 1994, p. 46). For Vergnaud the 
advantage of a comprehensive model to study proportional reasoning is the ability it 
affords researchers to analyse the connections between topics that would otherwise 
be treated as separate, “It is difficult and sometimes absurd to study separately 
the acquisition of interconnected concepts… it would be misleading to separate 
studies on multiplication, division, fraction, ratio, rational number… they are not 
mathematically independent of one another…” (Vergnaurd, 1983, p. 127).



O. DIAS ET AL.

290

Vergnaud’s model also contains the intuitive or qualitative reasoning that is 
typically associated by students with outside the classroom activities as it seeks to 
understand and, “to account for the knowledge contained in most ordinary actions…
the fact that this knowledge is intuitive and widely implicit must not hide the 
fact that we need mathematical concepts and theorems to analyse it” (Vergnaud, 
1994, p. 44). Vergnaud’s concept of a multiplicative conceptual field underlies the 
learning trajectory of Baker (Chapter 4.6).

Czarnocha Rate Sequence

Czarnocha’s rate sequence is an example of a designed instructional task i.e. an 
artefact used as the instructional foundation to implement a methodology of 
discovery learning. Thus, Czarnocha would employ this sequence as a scaffolding 
tool in which the student would be given minimal guidance working in small groups, 
individually perhaps as a take home assignment. The teaching experiment has had 
several cycles and Czarnocha outlines the first two in this section.

The conceptual model Czarnocha uses is based upon the constructivist theories 
of Piaget and assumes a process/object duality (Tall et al., 2000). This model is 
based upon the work of APOS (action-process-object-schema) theory (Czarnocha 
et al., 1999; Arnon et al., 2013; Sfard, 1991, 1992). These theories view learning 
through the lens of a cycle that begins with procedures acting upon existing 
concept knowledge. These procedures are then internalized into processes which 
themselves become concepts or objects of thought to be acted upon and ultimately 
assimilated into the learner’s schema. The effect of this process upon a learner’s 
schema is described by Sfard (1991) as a transformation that begins with an,  
“…unstructured, sequential cognitive schemata, which are inadequate for the 
rather modest dimensions of the human working memory…” (p. 26) and ends with 
a hierarchical structure of concepts with relationships. The APOS model predicts 
that as concepts or object become assimilated into an individual’s schema, the 
organization-coordination or structuring of these concepts leads to good problem 
solving skills. Sfard and Linchevski (1994) study the transition from arithmetical to 
algebraic thought from both an individual and historical development, and the rate 
sequence of Czarnocha is designed to encourage the transition of student thought 
from an unstructured arithmetical nature to a structured algebraic one. This rate 
sequence begins with encouraging students to use their innate ability to recognize 
patterns (Glaserfeld, 1998) and through repetition and reflection upon their action to 
internalize their knowledge i.e. the ability to reflect upon, verbalize and generalize 
to other relevant problem situations. The transition along the process/object duality 
continues in this conceptual model with the ability to condense their internalized 
knowledge of what operation is required with what concepts to symbolic form as 
required in the sequence.

The methodology that Czarnocha employed was discovery learning with minimal 
guidance is the natural fit in constructivism. The scaffolding of the exercises is 
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designed through repetitions and pattern recognition to promote internalization of 
the process of multiplication to find the total primary amount i.e. distance given rate 
and secondary amount and then to find the rate through division of the primary by 
the secondary amount etc… Sfard (1991) and Dubinsky (1991) would refer to this 
internalization of knowledge of a process as “interiorization.”

Dias Rate Sequence

As previously noted Cobb (2011) attaches much importance to “…sustained, direct 
engagement with the phenomena under investigation… be it young children’s 
understanding… the collective mathematical learning of the teacher and students in 
a classroom, or the learning of a professional teaching community” (p. 11). In this 
situation we analyse the class dialogue of a lesson plan of a rate sequence as designed 
and implemented by Dias in her classroom. The artefact or object of design research 
is not simply the sequence of problems presented but includes the methodology 
of the lesson presentation during the class i.e. the teacher guided class dialogue. 
“Whether or not one considers all learning of mathematics to be discourse-based, 
analysis of discourse-including genres of speech and the inherent argumentation, in 
mathematics classrooms, is an important area in which there is growing literature 
and interest” (Presmeg, 2003, p. 132).

Dias considers the role of the instructor to be a mediator between students’ 
understanding and the structural understanding that the instructor believes they 
are capable and required to attain, i.e. the upper level of the students’ ZPD. Her 
lesson plan requires active participant through scaffolding class dialogue in order 
to encourage students’ cognitive growth which is marked or accentuated when 
the student’s intuitive frame of reference meets the instructors’ structural frame of 
reference, at which point bisociation between underlying concepts may occur.

Dias’ would agree with the Treffinger’s (1995) assessment that “traditional 
views of steps and stages for students to follow in solving problems must be re-
examined… we must call into question the prescriptive, step-by-step lockstep for 
problem solving… an effective framework must be flexible and dynamic” p. 309. 
Her insistence that students participate at every stage of the class dialogue is 
founded upon her belief one the one hand that, one cannot demonstrate a prescribed 
solution path and on the other that, “creativity can be expressed among all people” 
and that “people can function creatively, while being productive to different levels 
or degrees of accomplishment or significance” (Treffinger, 1995, p. 302). In 
particular Dias agrees with Prabhu’s assertion that student creativity is essential to 
the transformation of resistant students, especially those in underserved populations, 
from habits of the acceptance of failure to the self-confidence required to take 
responsibility for one’s learning.

Dias’s lesson demonstrates repeated attempts to encourage active participation 
by students to reflect upon solution activity. More specifically, after providing a 
problem-situation i.e. the goal, Dias leads students to suggest appropriate solution 
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activity and then to reflect upon how such activity may reach the goal (Simon 
et al., 2004). The scaffolding dialogue Dias employs to stimulate reflection upon 
solution activity is based upon understanding existing conceptual knowledge or 
declarative problem information and comparing/contrasting problem types. The 
focus on existing conceptual information and its relationship to appropriate strategy 
synthesize theoretical aspects of problem solving and conceptual development in 
order to assist student with the Cifarelli’s (1998) first stage of problem solving i.e. 
‘recognition.’ In which the solver can “…recognize characteristics of a previously 
solved problem in a new situation and believe that one can do again what one did 
before” (Goodson-Espy, 1998, p. 224). Class dialogue that focuses on comparative 
analysis between problem structures can be seen as critical thinking – the basic 
essence of meta-strategic thought about what strategies one employs (Kuhn, 1999). 
Bailin (1987) and Paul and Elder (2008) point out such critical thinking can pave 
the way for creative thought. In the dialogue Dias encourages students to verbalize 
their synthesis between their conceptual understanding of the concept of the rates 
and time with the required operations. Such critical analysis paves the way for 
reflection that hopefully leads the learner to, “…abstract a relationship between their 
activity and its effect” (Simon et al., 2004, p. 320). This abstraction will hopefully 
serve as, “…a means of classifying and characterizing problem solving activities” 
(Goodson-Espy, 1998).

Proportional Reasoning with Percent Lesson: Baker

The proportional (percent) reasoning lesson plan of Baker, like that of Dias is based 
on class dialogues but also on the proper utilization of the unexpected teaching 
moments supplied by the students comments. The instructor believes that the 
dialogue is critical in motivating and focusing student reflection upon problem 
solving activity.

In this student-centred lesson, student comments dictate the flow of the lecture. 
When a student offers a solution strategy the instructor presents it to the class. 
However, when another student chooses not to follow the reasoning of the first, 
immediately his misconceptions or limitations are used as a teaching moment. Then 
instructor follows the alternate solution path provided by the second student and 
solution activities are discussed in the class in detail. The purpose of this activity 
is first and foremost to encourage and to show appreciation for student’s creativity 
and secondly to show alternate solution paths towards the same goal. The students 
are seldom shown multiple routes for the same destination which in turn promotes 
the misconception that the correct and the only answer to the problem must be 
memorized, which leads to math anxiety. After all multiple solutions are discussed 
and displayed, students engage in the “compare and contrast” activity to achieve 
higher level understanding.



COMPARATIVE STUDY OF THREE APPROACHES TO TEACHING RATES

293

Finally these methods are compared based upon the relationship between the 
underlying complementary concepts of: original amount, increased amount, increase, 
and percent increase.

This methodology is based upon the belief that it is critical that students take 
ownership of the problem process. In order to accomplish student participation 
in the classroom, the teacher must be flexible with different ideas and dialogues. 
He/she must adapt to their understanding, as expressed through their comments, 
questions and suggestions. The reader may note that in this dialogue Baker is acting 
as a researcher in the teaching experiment in that he prompts Bella to explain her 
thought processes that were based on part-whole construct. He interprets her answer 
theoretically by placing her onto the initial stage of the concept development and he 
acts as a teacher in creating a dialog among their peers to explain how a part-whole 
construct could be used to solve that problem – a Stenhouse TR act.

TR TEAM COMPARISON OF METHODOLGY

The lesson plan of Czarnocha relies heavily upon student discovery with minimal 
instruction or student-instructor dialogue. The transition from intuitive arithmetical 
to structural algebraic thought is encouraged through a step-by-step sequence of 
problems, in which students are first expected to use their innate ability to recognize 
patterns in order to internalize the three relationships between the complementary 
concepts of rate, with the primary and secondary unit quantities. These are done 
separately as three cases i.e. multiplication of rate with the secondary unit amount to 
obtain the primary quantity. The sequences employ increasing levels of abstraction 
as the student transitions from the need to perform the action required to written 
explanations of what needs to be done.

The teaching sequence of examples given by Czarnocha is designed to promote the 
transition from an operational or arithmetical thinking to a structural (Sfard, 1991) 
understanding of the relationships between the complementary rate concepts i.e. the 
formulas. This lesson sequence first encourages “interiorization” of a particular rate 
formula and then challenges the student towards encapsulation or reification through 
comparison of the different representations of the rate formulas.

In other words the coordination of these schema (formula representations) is 
designed to transition students to the second and third stage of the Piaget and Garcia 
Triad (1989) in which the transformations or schemes are coordinated into structures 
i.e the rate formulas are understood as being three faces of the same structure. We 
note that the design of Czarnocha’s teaching sequence of rate problems has a dual 
objective in addition to promoting conceptual development and that is to provide the 
teacher researcher information on the students’ thinking process.

The lesson of Dias is based upon strong student-instructor dialogue to 
rediscover mathematics that requires students to transition along their ZPD 
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towards a structural understanding. The guided-dialogues also help the students 
to rediscover their own mathematics inherent capability and use this knowledge 
to the present situation. By making the students aware of their comfort zone in 
mathematics and its strength is a powerful tool, which can be used to reduce math 
anxiety. The goal is for the students to be able to recognize problem situations 
and associate these situations with strategies, operators or processes that will 
lead them closer to their goal. The underlying conceptual or declarative problem 
knowledge is highlighted in this dialogue as the features the solver needs to reflect 
upon in order to discern their action. Both Baker and Dias use class dialogues as 
discovery tools.

Sfard (1991) describes an unstructured schema as sequentially linked together 
with a focus on step-by step operations to be carried out. In much the way Anderson 
(1995) would describe, production rules as encoded, “…crystallized problem-solving 
operators as condition-action rules” (p. 249). That is a sequence of conditional if 
such and such a situation linked with then perform such an such an operation. The 
difficulty for a problem solver without conceptual or structural understanding is 
described by Sfard (1991) as “…the operationally conceived information, although 
absolutely indispensible and seemingly sufficient for problem-solving can only be 
stored in unstructured, sequential schemata, which are inadequate for the rather 
modest dimension of human working memory. Consequently, the purely operational 
ideas must be processed in a piecemeal, cumbersome manner… in the sequential 
cognitive schema there is hardly a place for assimilation of new knowledge, or what 
is called meaningful learning” (p. 26).

We note that, the teaching sequence of Czarnocha has an extremely detailed step-
by-step scaffolding of exercises focusing on one step solutions for each of the three 
strategies or three representations of the rate formula. Thus, Czarnocha’s sequence 
does not require students to switch between formulas, comparing or coordinating 
these schemes in multi-step problems until late in the exercise set. The objective is to 
promote reflective abstraction on the relationships between the three complementary 
rate concepts, in order to promote structural schema development in the sense of 
Sfard. In contrast the lesson plan of Dias requires students to compare different 
schema or formula representations and to coordinate between these different 
schemas in multi-step within eight exercises. The intent of the lesson plan of Dias is 
to encourage student reflection between problems of similar and different structure 
(schema) using concepts as the distinguishing features of recognition. The class 
reflection was on solution activity with the goal to promote student’s ability to 
recognize such problem situation

In the lesson of Baker the students are asked to reflect upon their solution strategy 
as well as the thoughts and comments of other students and the relationships between 
different methods. Dias employs multiple strategies in her lesson, in particular the 
two sided number-line to provide a visual of rates i.e. the coordination of two distinct 
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units or dimension (distance and time) in solving the rate problems as proportional 
reasoning. However, the focus of the lesson presented is on the comparisons of 
different types of rate problems. In Baker’s lesson the focus in not on comparison of 
distinct problem types but instead on comparison of different methods to solve the 
same problem.

The instructor’s role is to find teaching moments that build upon student 
comments and questions. That is, to build upon student understanding to present 
an appropriate strategy and to compare this strategy with strategies presented by 
other students. Baker’s lessons demonstrate a teacher acting as a researcher in that 
mistakes by a student are capitalized on, the instructor as a researcher in a teaching 
experiment prompts Bella to expand upon her part-whole knowledge and integrate it 
into this problem situation. Although Bella is unable to do so the teacher-researcher 
(acting like a teacher) solicits the correct response from another student Ashley that 
solves the problem in a method consistent with Bella’s part-whole construct. Acting 
as both a teacher and researcher (TR act), Baker then tries to get the students to 
understand the relationship between these methods. Chris has a bisociative insight 
as she understands the percent increase (and the 4000 base) are the same in both 
methods and thus are equivalent – a hidden analogy. In this lesson, a two-sided 
number line provides a visual diagram to explain Chris’ insight that the different 
methods are essential the same to the remainder of the students in the class.

The lesson plans of both Dias and Baker are designed to encourage student 
engagement and participation in the classroom. The lesson of Dias has a focus on 
‘student recognition’ of problem types (schema) in the terminology of Koestler 
student bisociation between the declarative information (problem situation) and the 
appropriate operator-matrix or schema. The objective is to transition students from 
their level of understanding to the structural level required to solve such problems 
i.e. to cross their ZPD as rapidly as possible.
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OLEN DIAS

4.3. RATE AND PROPORTION TEACHING SEQUENCE

INTRODUCTION

Years of teaching remedial mathematics has taught me that traditional, or lecture, 
method do not always work with our students. Modelling a solution repeatedly and 
expecting the student to mimic without understanding doesn’t help either. When a 
question involving rates and proportions is asked, I am confident that a few students 
will be able to give the correct answer. In this situation, an instructor writes the 
answer on the blackboard, the students copy the answer and believe they understand, 
that is, they perceive that the displayed answer makes perfect sense to them, thus, 
they move on to the next question. Due to a lack of discussion and reflection in 
this learning environment, students struggle to understand the concepts and, instead, 
attempt to memorize the steps. They get frustrated easily when they cannot solve 
the next series of questions. Students’ participation is limited in this situation. The 
“Aha!” moment of realization and/or the “act of creation” moment are neither 
noticeable nor appreciated.

I wanted to increase class participation and the students’ involvement during the 
development of the lesson. During our research on problem solving, I decided that 
class dialogues and disclosure within the lesson will serve as a vital tool to engage 
students in reasoning about mathematics. Through constant discussion, students will 
reflect on their thinking process and identify previous knowledge of related concepts 
needed for the current problem. Comparative analysis, generalization and pattern 
recognition are essential components of class disclosure that allows students to 
associate the current problem information with an operator/matrix. The goal of this 
thought process: recognition of the problem concepts and features, coordinating these 
problem concepts with appropriate operator using previous knowledge or forming a 
new association with their intuitive knowledge of whole numbers (generalization), 
then using this new found idea to solve the problem through estimation of the 
outcome and other processes of constructive generalization; that is, creating an 
atmosphere or a classroom culture of a conscious reflection on the problem activity 
(Glasersfeld, 1989). The coordination of the mental record/matrices with the past 
experience, such as mastery of whole numbers and related operation, and the 
problem information leads the students into the realization that they can project/map 
or generalize the matrix into the present situation in a way that gives meaning to their 
choice of operators during problem solving. Koestler considers this new realization 
or connection a hidden analogy. My aim is to stimulate schema/matrix formation 
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by first, encouraging them to coordinate problem features with past knowledge 
(matrix) that leads to the selection of the appropriate operator and, second, to guide 
them to reflect upon solution activity involving their chosen operator comparing the 
expected result with the result obtained and the problem goal.

My lesson utilizes the guided discovery method of learning through class dialogue 
with tight sequencing of problems to minimize confusion due to incorrect choice of 
operator. The student’s most common error will be computational, which can be 
easily corrected by other students. During the lesson, not much reflection is done 
on the actual answer. Unlike most text books’ approaches, that direct the students to 
work with structurally similar problems to find the appropriate code through pattern 
recognition, I prefer to mix different types of problems to help students coordinate 
a given problem with the correct and specific code. The sequencing of the questions 
is very important; students compare and contrast the subsequent problems with the 
previous ones, and develop new schema or operator using analogy to their previous 
knowledge, such as a solid familiarity with operations on whole numbers (Anderson, 
p. 204). As the problem structure becomes harder and involves higher level of 
cognitive understanding, coordination of different problem codes (more abstract, 
multi-level) with difficult/complex and abstract issues is required in order to form 
a schema.

In this lesson, participants are expected to actively participate in the discussion 
that	eventually	unveils	the	goal	of	the	lesson,―the	concepts	of	rate and proportion. 
The goal is to enable the students to formulate a schema or a structural identity 
through pattern recognition, comparison and contrast and intuitive knowledge. 
I involve conscious reflection (Vygotsky, 1986; Piaget & Garcia, 1991) and the 
process of “abstraction and discernment” to help students organize their thoughts 
and foundational knowledge to come up with a structure for the current task. These 
steps involve reaching the upper level of their Zone of Proximal Development (ZPD) 
through reflection upon solution activity that adds meaning to the learning process.

This methodology is heavily influenced by Koestler’s work on creativity 
and Glasersfeld’s work (1989, 1995) on how students construct schema via 
constructivism. Glasersfeld (1989) notes that “construction of a scheme… consists 
of three parts – recognition of a certain situation, association of a specific activity 
and the expectation of a certain result.” Thus the class discussion I present circulates 
around these three steps using guided discovery. I prefer to proceed slowly, breaking 
a sample problem into smaller parts, in order to discuss the approach to each step in 
the solution sequence. First, students identify the problem features, then, building 
on their initial/basic knowledge of whole numbers and the associated operations, 
new vocabulary and concepts are introduced as needed. Students are expected to 
rely on their intuitive knowledge, looking for any patterns, decide on an operator, 
reflect upon the outcome or results of the chosen operator, and, through this process, 
abstract an appropriate schema.

I then want to see whether the students can apply their emerging schema in a slightly 
different setting using a sequence of correct exercises. Students play a vital part in 
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structuring the lesson while I control the flow and the direction of the discussion. I do 
not allow the students to wonder off and strive to keep them on topic. The following 
lesson is designed to be presented over a period of two consecutive sessions.

At the end of each exercise, I present a visual Vertical Line method to set up 
proportions and to coordinate the processes and concepts involved in the proportions, 
since students are very comfortable with solving proportions. This helps students 
coordinate the two units (the two different matrices), and, eventually, obtain a more 
formal and structural understanding of proportions.

Below is a little clip of class dialogue where the students are engaged in this 
reflective discussion.

RATE AND PROPORTION: FIRST ITERATION

Exercise #1: Juan is making $24/hour as a carpenter. At this rate how much will 
he earn in 40 hours?

Class Discussion:

Instructor (I): “What does at this rate mean?”
Student (S): “Same rate as $24 per hour.”
I:  “So, rate means how much he makes?”
S:  “Yes.”
I:  “Minor change; here, rate is how much he makes in one hour. This is actually 

called unit rate, because the word per	means	one	unit,―hour,	in	this	case.	So,	if	
you are driving your car at 60 mph. Is this a unit rate?”

S:  “Yes.”
I:  “Great! Now, what is given and what do we have to find?”
S:  “In one hour he makes $24, and we have to find how much he makes for 40 

hours.”
I:  “So the answer will be in dollars? Yes or no?”
S:  “Yes.”
I:  “Which of the following operations will NOT give the answer:  ?”
S:  “Subtraction and division.”
I:  “Excellent! Justify your answer.”
S:  “Subtraction and division will give a smaller number.”
I:  “In other words, you are saying that the correct answer will be a big number. 

Great! Give me the answer.”
S:  “960.”

Instructor’s Notes:
This class dialogue is focused on the first step of schema formation (Glasersfeld, 
1989),—understanding problem information and relating it to previous knowledge 
(rate-matrix to choose an operator). Estimation and student’s intuitive knowledge of 
whole numbers (rates and operations) are used to select the operator.
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I:  “960 bananas? Then it is wrong answer.”
S:  “Professor, you know. It is in dollars. OK. It is 960 dollars.”
I:  “Alright; now it makes sense. Let’s see: we had unit rate and time and we 

performed multiplication. Can you please write the rule in your own words? And, 
later, at the end of the class, I will collect your rules.”

TR Team Reflections:

In this first example the mediating dialogue serves to focus students on the underlying 
rate concept. Specifically the questions, “What does, at this rate mean” and “What 
operation will not give you the answer” highlight not only on the rate concepts but 
also its relationship to the operation chosen. Dias hopes that by such conscious 
reflection students will internalize this relation and enable them to generalize it to a 
new problem situation.

Instructor’s Notes:
After the class discussion on each exercise, I also show my students a vertical line 
method, which is visual and more mathematically structured and straight forward. 
Although not much discussions or reflections are done here, visual presentation 
is the right side of the triptych, an artistic point of view (Koestler, 1964). It also 
reaffirms their new schema.

Table 1. Alternate method: Proportion using the vertical line method

Exercise #2. Jose is driving at the average rate of 75 mph (maybe he is late for 
something) for  hours before he stops for a rest. How far has he travelled?

Class Discussion:

Instructor’s Notes: 
Exercise #2 tests the ability of the students to apply the previous emerging schema to 
a similar but slightly more difficult problem due to the added structure of a fraction 
in the problem information.
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I:  “Is this similar to problem #1 (see the previous problem presented)?”
S:  “No! This one is hard. It has a mixed number.”

Instructor’s Notes:
As expected, the students do not see the connection between the problem structures; 
this is due to the presence of the mixed number which makes their intuitive knowledge 
of whole numbers more difficult to access and utilize.

I:  “Hmm. What was my question? Did I ask whether this is hard or easy?”
S:  (laugh)

Instructor’s Notes:
Little humour goes a long way, left side of the triptych.

I:  “I see the issue. So, let’s assume for a minute that it is just 3 hours instead of . 
Can you read the revised problem with 3 hours?”

S:  “Jose is driving at the average rate of 75 mph for 3 hours before he stops for rest. 
How far has he travelled?”

Instructor’s Notes:
I use students’ intuitive knowledge of whole numbers to illustrate the structural 
similarity with the previous rate exercise.

I:  “Now, tell me if this version is similar to problem #1.”
S:  “It seems similar.”
I:  “Similar? How?”
S:  “We have to find the total distance, and, in the previous one, we had to find the 

total price.”

Instructor’s Notes:
They relate to total amount, not to unit rate. They may or may not understand the 
rate concept, or are unable to verbalize it. Although I am not sure what the case is, 
I decide to move on.

I:  “Excellent! So what should be done in order to find the solution?”
S:  “Multiply, like in the previous exercise.”

Instructor’s Notes:
The class has made the association between the two problems, understanding both 
of them as multiplication to find the total. The class dialogue has helped them 
coordinate the problem information with their emerging rate matrix.

I:  “OK. Multiply 75 with   

.”
S:  “Change into improper fraction.”
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I:	 	“And	we	must	find	LCD.	Yes	or	no?”
S (several): “No! No! We do not need LCD.”
I:  “Great!! Just checking if you are awake. Great. Give me the answer. Can you 

please write your answer in the blackboard?”

Figure 1. Student’s Solution

I:  “If you notice a pattern in the solution process for the last two exercises, please 
construct and write down the formula.”

Instructor’s Notes:
Verbalization of the solution activity, with a focus on the why, and appropriate 
terminology in the choice of operator is designed to promote schema formation.

Eventually, a student will volunteer and write the following on the blackboard:

Total Value = Unit Rate × Time

As usual, I will show the class several alternative approaches.

Table 2. Alternate Solutions for Exercise #2
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TR Team Reflections:

The second example is designed to test the hypothesis that a focus on the underlying 
concepts and the sequential order of the problems will allow students to recognize the 
structural similarity between them despite the increased cognitive demand added by 
the mixed number. Sfard and Linchevski. (1994) hypothesize that it is the structural 
complexity of fractions as distinct from whole numbers that make them difficult for 
students to work with. In this second problem student understanding is superficial as 
they do not realize the structural similarity between the first and second problem i.e. 
they both require multiplication of the rate with the time. In this teaching research 
act Dias realizes that the students have not internalized the connection between the 
concepts of rate and time with the operation of multiplication, i.e. the connection 
remains within the domain of their intuitive reasoning and they have not experienced 
sufficient conscious reflection upon this relationship to make the bisociation. Thus, 
Dias adapts the instruction by simplifying the cognitive demand i.e. by replacing 
the mixed number 3  hours with the whole number 3 hours. The students then 
realize the structural relationship between the problems as one of finding the total 
distance or total dollars and with prompting they vocalize the associated operation 
of multiplication.

Dias’ questioning about what operation and her insistence that students express 
the relationship between rates, time and total distance of price in written form or 
formula can be seen as an attempt to assist students generalize and abstract their 
spontaneous or intuitive understanding of the relationship between rate, time and the 
total distance or price into a more structural (Vygotksy, 1997).

Exercise #3: Henry treated his 15 friends for his birthday party. He spent a total of 
$330 for the dinner. On average, how much did he spend on each person?

Class Discussion:

I: “Is this similar to exercises #1 and #2?”
S: “No, unit price is not given.”

Instructor’s Notes: Note the discernment,—students do recognize the difference.

I: “Then what is given?”
S: “Total money and the total number of people.”
I: “So, to find the missing unit rate what operation can we use?”
S: “Divide… Divide 330 by 15… Divide 15 by 330. No. That makes no sense.”

Instructor’s Notes:
This is a very common error. However, the students can correct themselves; intuitive 
knowledge of whole numbers and division help the decision. My goal is to guide 
them from intuitive choice of operators with whole numbers to verbalization, that 
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is, the use of correct terminology in words, and, thus, towards a higher level of 
abstraction. Further class discussion unveils the problem features. I am trying to 
model problem solving behaviour.

Class Discussion Continued:

I: “OK. But why?”
S: “You cannot divide 15 by 330.”
S: “No, you have to divide total amount into 15 people.”
I: “Excellent. So, what is the answer?”
S: “22… 22 dollars.”
I: “Well, what is the formula for the unit rate?”
S: “Divide total cost by number of people.”

Instructor writes on the blackboard:

Unit Rate  = 
Total Cost

Total Number of People

Instructor’s Notes:
Using an appropriate sequence of exercises is very important. The sequence 
encourages student reflection during the coordination of information with previous 
knowledge as they compare the current problem situation with previous ones. It 
allows students to move toward a higher abstraction level.

Table 3. Alternate Solutions for Exercise #3
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Exercise #4: Alda’s friend told her that she paid a total of $25 for 15 boxes of the 
same cereal. How much did she pay for each box?

Instructor’s Notes:
In this exercise, I want to see if the students can understand the similarity with the 
problem code from the previous exercise in a slightly more difficult situation; note 
that the result of this division is not a whole number.

Class Discussion:

I: “Can you solve this?”
S: “Yes. Yes. Divide.”

Instructor’s Notes:
They readily make the connection; hence they understand the problem code (division) 
for the unit rate. However, they will experience difficulty with the actual calculation 
process.

I:  “Great! After you get the answer, explain how would you know whether it is 
correct or not.”

S: “Multiply unit rate by 15. The answer should be 25.”

Table 4. Solutions for Exercise #4

TR Team Reflections:

In exercise 3 and 4 Dias presents an inverse problem situation in which students 
must divide units to find the rate. Both examples are given within the domain 
of whole numbers and the students readily grasp the relationship between the 
declarative problem information and the required strategy of division to find the rate. 
As in problem 1 and 2 Dias ends the mini-sequence with a structural formula. The 
alternate methods Dias presents are divided into methods the students commonly 
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present when asked to show their work on the board and as such show hypothetical 
learning trajectories that students may follow on their own initiative within this 
rate lesson(s). The instructor alternative method utilizes a table to help students 
organize the problem information into a pattern or format in which they can apply 
proportional reasoning. This method is frequently accompanied by a visual two 
sided vertical number line and emphasis on the visual table and number line is a 
trade-mark of Dias. Sfard (1991) would claim that visualization supports a structural 
understanding of mathematics, “Mental images, being compact and integrative, 
seem to support the structural concepts…Visualization, therefore makes abstract 
ideas more tangible, and encourages treating them almost as if they were material 
entities” (p. 5). Leaving aside the issue (Sfard, 1991; Presmeg, 2006) of whether 
visualization assists in abstraction and generalization we note that Koestler (1964) 
considered visualization to be the language of creativity within mathematics for 
many eminent mathematicians and physicists.

Exercise #5: Alda wants to buy cereal and is looking for a sale. One supermarket 
is selling 3 cereal boxes for $5.25. If she decides to buy 12 boxes, how much does 
she have to pay?

Instructor’s Notes: This exercise has much harder cognitive level and my hunch is 
that students will need a significant amount of help leading them to the answer.

Class Discussion:

I: “Is this problem similar to either #1, #2 (total value), #3 or #4 (unit rate)?”
S: “Somewhat. There are three numbers in the problem.”

Instructor’s Notes:
As expected, students are lost.

I: “I mean, can you use the above formulas?”
S: “No, the price of three is given instead of unit price. Time is not given.”
I:  “Great! This is just called rate. As you have mentioned that there is no unit rate. 

Is it possible to somehow find it with the given information?”
S: may be.
I: “I am waiting.”
S: “Divide the price by three.”
I: “Is that the final answer?”
S: “No. We have to find the price of 12 boxes.”
I:	 	“Okay,	work	with	somebody	and	find	the	solution.	Two	steps:	first	find	the	unit	

rate and, then, the total price. Remember that since this problem is about price and 
quantity	and	we	have	to	find	the	total	cost,	time	is	not needed. Previously, we had 
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total distance = distance per hour × time in numbers of hours. Now we have total 
cost = cost per box × number of boxes, and, hence, a similar exercise.”

Instructor’s Notes:
Students face tremendous difficulty to associate and coordinate two different 
processes. Before they start to feel frustrated, I decided to give the steps to them.
After some discussion, the class arrives at the formula:

Unit Rate = Total Value
Number of Boxes

Instructor:
“Let us summarize. Can you please write the formulas you have just learned?”
Student writes the following on the board:

Total Value = Unit Rate × Number of Hours

Unit Rate = Total Value
Number of Boxes

Instructor:
“Notice that in each problem we have total value, unit rate and number of items 
(number of hours, number of boxes, etc.). Please re-write the formulas using these, 
more general, terms.”

Total Value = Unit Rate × Number of Items

Unit Rate = Total Value
Number of Boxes

Instructor’s Notes:
Writing and rewriting the formulas is a helpful exercise for assisting the abstraction 
of viable solutions and is good for long term memory. This activity is an extra push 
in order to reach the goal of internalizing the concept that promotes students to 
enter the third and structural stage of concept development.

Instructor continues: “What is the formula used in the vertical line method?” 
One student immediately replies, “Is this a trick question? There is no formula.” 
Instructor responds, “Just checking if you all are with me.”

Instructor’s Notes:
At this stage, students have the formulas and steps for the questions. They will work 
in groups and after some time, one student will write the answer on the blackboard.
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TR Team Reflections:

In exercise 5 the students need Dias to prompts them in order to recognize the division 
rate structure from exercise 3 and 4 and project this into problem 5. This projection 
of an existing scheme into a new problem situation followed by coordination is 
an example of “reflective abstraction” (Piaget & Garcia, 1991). In this exercise 
there are two critical dialogue prompts or scaffolding questions the first asks, is it 
possible to find the rate with the given information? This prompt focuses student 
attention on the necessity of finding the unit rate the structure of this problem that 
most resembles exercises 3 and 4. The second prompt occurs immediately after. 
“Is that the final answer?” With this prompt the students immediately realize they 
need to find the second rate and compare (coordinate) these rates to determine the 
answer. The students ability to immediately vocalize the required steps despite not 
being able to do so without prompting suggests they are in what Tzur (2007) refers to 
as the participatory stage, “A mathematical understanding that depends upon being 
prompted for the activity at issue” (p. 277).

Exercise #6: A nurse makes $35 per hour and she receives a check of  
$402.50 before any tax deductions. How many hours did she work to earn this 
money?

Comment: Students recognize quickly that this is a division problem but correctly 
building the quotient is a more challenging task. After allowing some group 
discussion time, students’ solutions are written on the board for examination by the 
whole class.

Table 5. Solutions for Exercise #5
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Exercise #7: An apprentice bricklayer earns $18 in 12  of an hour. How many hours 
does he have to work to make $288?

One student provides an incorrect solution: “Divide 288 by 18, obtaining 288
18

 = 
16 hours.”

I: “Can we check the answer?”
S: “Yes, it is correct since 18 × 16 = 288 dollars.”

Instructor’s Notes:
The students have learned the code associated with the problem. They can coordinate 
the operator but are unable to recognize and use that code-schema when a mixed 

The resulting formula is expressed by the students and validated by the instructor:

Quantity (# of Items) = Total Value
Value of One

Total Value
Unit Rate=

Table 7. Solutions for Exercise #7

Table 6. Student Solutions for Exercise #6
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number is present in the problem information. They can’t assimilate the fraction 
knowledge with the current schema. This suggests their rate schema is transitioning 
from the spontaneous-intuition to a more structural understanding.

I:  “But why are you multiplying 16 by 18, 18 is not the unit price? Unit means 1, 
that is, 1 hour.”

S: “Okay, then we do not have unit rate.”
I:  “If you get paid $18 dollars for ½ hour, how much many you will make in 1 

hour?”
S: “$36”

Instructor’s Notes:
It is easy to understand money and the fraction ½. Proportional reasoning 
(intermediate stage) without a formal proportion works well.

I: “Is this called unit rate?”
S: “Yes!”

Instructor’s Notes:
At this cognitive level, it is helpful to remind the students that this is not a unit rate 
problem, and that this means that they first have to find the unit rate, and then find 
the number of hours.

I, the instructor, summarize our findings, and compile and place all derived 
formulas on the board for reference.

Table 8. Summary of Rate Formulas

Exercise #8: A typist typed 40 wpm during the first session. During the second 
session the typist typed faster at the rate of 60 wpm for 30 minutes. All together she 
typed 2600 words. How long was the first session?

Class Discussion:

Instructor’s Notes:
After it was explained to the students that wpm stands for word per minute, I first 
ask them to figure out how many words are typed in one minute. I instruct them 
to note that there are two sessions mentioned here and request that they write the 
information given for each session in two different columns. This exercise requires 
inverse algebraic reasoning, a much higher level of cognitive maturity; hence I used 
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the visual representation (artistic side of the triptych) for the problem information. 
The table helps to organize their thoughts and problem features, so operator selection 
process will be easier.

Table 9. Preliminary Student Work for Exercise #8

Instructor (I):
“Can you find the number of words typed during the first and the second session 
each?”

Student (S):
“Pretty sure; and it is 60 × 30 = 1800 words.”

Instructor’s Notes:
Student has no problem using the correct code to select the operation and calculate 
the missing number. Now the output of this action has actually become the input of 
the other, making the question complex. So, I am guiding the class through all of the 
steps.

I: “Now we know everything about session 2, is this the final answer?”
S: “No. We have to find the time for first session.”
I:  “To find the time, we must know the other two values. The unit rate is 40 wpm; is 

the number of words = 1800 or 2600?”
S: “2600.”
I: “Please read again to make sure.”
S:	 	“2600	words	 in	 total,―session	 1	 and	 2	 combined.	 Subtract	 1800	 from	 2600,	

which is 800 words.”

Instructor’s Notes:
In this lesson the student first used the concept of unit rate, and the time to find 
the total words. Then the student realize that part + part = whole and the inverse 
operation (subtraction) to find 800 words. The coordination of these two matrices 
can be viewed as a bisociative moment of realization for the class guided by the 
instructor.

I: “So, 800 words is the answer?”
S: “No. We have to find time.”
I: “Fine, give me the final answer.”
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Table 10. Solutions for Exercise #8

TR Team Reflections:

In exercise 8 the students again need to associate a previous problem structure and 
then coordinate information to obtain the final solution. Dias again helps the students 
organize the information with a table and the students readily associate the correct 
operation-multiplication yet they need assistance and only after several prompts are 
they able to grasp the role of the given problem information 2600 words with the 
result of the multiplication 1800 and how to employ (coordinate) this information to 
find the solution.

Instructor’s Notes (including a plan for the second iteration): 
Class was active, most students were involved. For the second iteration, after each 
type of question, I will ask the students to come up with their own similar exercises 
which they will solve as a group before moving to the next concept. Each group will 
present their answers on the blackboard. This activity will improve understanding 
and reinforce higher order thinking. It takes the student from the surface procedural 
knowledge to a more complex internalized understanding.
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WILLIAM BAKER

4.4. PROPORTIONAL REASONING AND PERCENT

INTRODUCTION

Schoenfeld (1992) notes that constructivism rooted in Piaget is grounded in the 
belief that “…learning proceeds through construction not absorption” (p. 340). He 
surmises that teacher beliefs directly influence their pedagogy, he notes a teacher 
who believed that, “…mathematics is fixed and predetermined, as dictated by the 
physical world” (p. 349) would not tend to focus on the process of learning and 
construction of knowledge but rather regard math as, “…a finished product to be 
assimilated.” The importance of objective truth in mathematics education was raised 
by radical constructivism.

In the first iteration of teaching-research on problem-solving, Baker employed 
a traditional lecture format but with a strong focus on problem-solving. Thus, 
problems were posed in a step-by-step fashion with frequent repetition, sequencing 
similarly structured problems as a means of concept scaffolding. Thus, the lesson 
format would have been much the same as presented by Dias, and the intent as 
in both Czarnocha and Dias was to transition students as rapidly as possible from 
a spontaneous-arithmetical understanding i.e. their intuitive reasoning with whole 
numbers to a structural-algebraic one.

The guiding principle was to assist students cross their ZPD from a spontaneous 
understanding of simple patterns toward more complex algebraic thought processes. 
The instructor’s role was to present students with a goal, suggest solution activity 
when needed and ultimately make sure the students experienced a structural 
understanding i.e. objective truth. The essence of constructivism pedagogy was that 
as an instructor I believed student participation in problem solving was critical, so on 
the one hand student engagement was essential on the other hand the transformation 
to algebraic solution strategy was a must.

TRANSION FROM TRADITIONAL TO REFORM

In a traditional methodology the instructor presents solution activity in depth and 
tends to avoid diversions and the possibility of cognitive conflict, by focusing on 
one solution method, typically the structural i.e. the most condensed and abstracted 
process to efficiently solve any structurally similar problem. The emphasis on one 
method results in a lack of comparative analysis between different possible methods 
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of solving problems, fostering the common students’ view that, for any given 
problem in mathematics, there is only one correct method of solution, or, at least, a 
single proper one that is approved by the teacher. As a result, students tend to accept 
that the best path to success is to focus on the collection of rules and steps presented 
in the classroom.

In my view this lack of reflection did not appear to promote any progress in 
understanding, evidenced by, what is frequently referred to as, the next day effect,―
students did not recognize similar problem structures during the following class 
session. Furthermore, the strong focus on one method appeared to discourage 
students from sharing other methods, especially those based upon their intuition, 
limiting the class discourse.

BISOCIATIVE TEACHING RESEARCH MOMENT

One day, I presented an exercise similar to the second exercise in Dias rate sequence 

(Jose drives 75 mph for  hours, how far does he drive). I was hoping and expecting 
that a student would understand the need for multiplication. However, the class was 
silent until a student suggested an answer similar to alternate solution 1. That is they 
separated the whole number multiplying 75 times 3 and the fraction of the rate, one-
fifth of 75 and added the results.

Initially I was rather annoyed the student had presented an alternate method that 
might confuse other weaker students but I came to believe that to assist students 
cross their ZPD it is not important to focus on where they should be i.e. the structural 
understanding of multiplication of a rate with time, rather the primary focus should 
be build upon where they are. The essence of constructivism pedagogy is for the 
instructor to present material at the students’ level and engage them with reasoning 
at their level.

The structural understanding which previously was a must for each problem 
presented remained the goal but I have come to the view that presenting a finished 
process to students does not help them understand or cross their ZPD as much as 
promoting reasoning at their level. This has led to a transformation from pedagogy 
designed to show students a method of solving a problem to a class methodology 
designed to explore student solutions and difficulties.

Instead of being concerned about the confusion caused by different or alternate 
solutions a central component of this methodology is to compare and contrast 
different student approaches in the classroom.

In the lesson presented the reader may note that the teacher does not initiate any 
fixed method of solution yet goes out of his way to develop a solution strategy based 
upon the foundational part-whole understanding of fractions that answers student 
difficulties with another student’s solution strategy. Both solution strategies are fully 
developed with prompting by the instructor so that students can create meaning 
along different learning trajectories.
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This iteration of a problem-solving teaching-research cycle is based on the 
belief by Baker that no matter how many times an instructor models correct 
problem-solving behaviour, students do not internalize the solution process; they 
must discover and create meaning for themselves. Progress in understanding, 
the transition from the initial to the intermediate stage of concept development, 
and beyond, requires student reflection on solution activity. Applying Koestler’s 
theory to the framework of problem-solving, this reflection involves coordination 
of matrices of past experience with given problem information that, by means of 
intuition, leads to the bisociative Aha moment, where a previously hidden matrix is 
understood as analogous. The combination of reflection upon solution activity and 
the resulting cognition is referred to, by Piaget (1989), as reflective abstraction, 
and is seen by constructivists as the foundation for learning at the abstract level of 
mental thought, and the eventual genuine schema development. Glasersfeld notes 
that, “…whatever results the reflection upon these mental processes produces, are 
then called reflective abstraction… The material, from which these abstractions are 
formed, consists of operations that the thinking subject itself performs and reflects 
upon” (1995, p. 69). Within this framework, the desired progress in understanding 
still necessitates Koestler’s bisociation through recognition of hidden analogies and 
re-appropriated association. However, it also includes reflection upon the expected 
results of the newly recognized operator-matrix with the actual results obtained.

The presented set of dialogues denotes edited versions of actual class discussions. 
They exemplify how ordinary moments of students’ realizations during class 
discourse, led by the instructor, along with peer guidance, can be viewed not only 
as bisociative acts on the part of each individual student, but also as significant 
moments of understanding influencing the attitude of the entire class and contributing 
to a positive learning environment. Such conclusions about student behaviour and 
development, stemming from the instructor’s intuition and supported by discussions 
among the members of the teaching-research team, are at best conjectural and only 
approximate reality.

One might say that assuming something as given or not is exclusively the 
subject’s business. Hence, at best an observer can make educated guesses, 
taking into account – as does any experienced diagnostician – several 
indications collected over an extended period of observation. (Glasersfeld, 
1995, p. 17)

The class methodology, or the pedagogy, to promote reflection on solution activity 
involves a focus on student errors through peer engagement and the encouragement 
of alternate solutions. After a student’s question or incorrect answer provides 
insight into the underlying conceptual misunderstanding, the teacher’s questions 
are designed to induce cognitive conflict among these underlying concepts, leading 
the student, with the assistance of peers, to the correct solution. The student’s 
questions and vocalization of reasoning provide a measure of their level of concept 
development by revealing the associations they apply. The reflection that occurs 
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during the solution activity is designed to help students cross the ZPD by clarifying 
and abstracting the underlying concepts, enabling the student to discover and 
create meaning for the notation, rules and procedures, with they are expected to be 
proficient (Vygotsky, 1997).

The reflection and abstraction upon these underlying concepts can often be 
described in terms of the processes of constructive generalization and reflective 
abstraction, such as reversal of inverses and coordination (Dubinsky, 1991). The 
bisociative moments of understanding can be viewed as providing meaning to these 
reflective processes, which allow the solver to condense the sequential collection of 
operators-matrices into a structural matrix-schema (Sfard, 1991).

COMPARATIVE ANALYSIS AND BISOCIATOIN: BASE ANDPERCENT-INCREASE

In this session the instructor (T) is going over percent increase which had been 
briefly discussed in a previous class by the tutor who used a particular method one 
student was not comfortable with. The instructor compares two methods of solving 
this problem. For students whose reflection and abstraction allow, the common 
concepts of the base and the percent-increase in both methods are bisociated between 
these methods.

Problem: A car dealer pays $4000 for a used car and sells it for $5000. Find the 
percent increase or, equivalently, the percent profit.

Class Discussion.
T: How should we do this problem?
 (Silence)
T: OK, how do we set this problem up? What formula do we use?

Ray: Last time we used  .

T:	 	OK,	so	how	do	we	fit	the	problem	information	$4000	and$5000	into	this	
formula?

Ray: We put the 5000 on top and the 4000 on bottom.

T: OK, anyone, is this correct? ? Does everyone agree?

Bella: No, the 5000 should go on the bottom
T: Why?
Bella: Because the 4000 is a part of the 5000
T: Does everyone agree is 4000 the part of the base 5000?
 (Silence)

In this situation a lack of understanding of the complementary concepts of 
amount and base has led Bella to a surface association (Berger, 2004) in which her 
conceptualization of the part-whole representation of a fraction does not allow for 
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a situation where the amount is larger than the base thus, she appears to be in the 
initial stages of concept development. The teacher seizes on this misrepresentation 
for a learning moment.

T: Alright guys, what are the correct-mathematical terms for percent problems?
 (Silence)
T:  OK, which of these two numbers did we say was the base, the 4000 or the 

5000?
Ray: The 4000.
T: Why?
Ray: Because it came first, it is where you start.
T:  Correct, the base is the original or starting point, the one that comes first in 

a time sequence. So in this problem the $4000 came first; it is the base, and 
then it was increased to $5000.

Chris: Is the base always the smaller of the two numbers?
T:  In percent increase, yes, because it starts at some point and increases; but in 

percent decrease it’s the other way around.

Ray, although his language is not mathematical can re-represent, or re-construct 
from memory (Cifarelli, 1989), an appropriate solution activity. Thus, he is in the 
intermediate stage of problem solving demonstrating correct techniques (imitation) 
and an ability to verbalize, not yet necessarily using correct math vocabulary for this 
pseudo-concept level.

Chris’s question reveals that she is formulating a matrix-schema for percent 
increase questions: she understands there are two complementary concept-quantities 
and, with the instructor’s guidance, she begins to discern between them, to identify 
which goes where.

T:  Let’s go back to the question raised by Bella: If $4000 is the base and goes 
on the bottom then what is the part, or amount, that goes on the top?

Instructor’s Notes:
At this point I realized that Ray understands his method but that Bella is at an 
initial stage focused on the need for the problem to be interpreted, though the part-
whole construct of a fraction i.e. the numerator must be less than and a part of the 
denominator. I intend to lead the class through an appropriate method based upon 
a part out of a whole construct and thus address Bella’s concern. However, I first 
need the class to focus in the relationships between the complementary concepts of 
base and amount before they can relate these to the fractional conceptualization of 
part-whole.

Ray: The $5000.
T:	 	Well,	Bella	does	not	understand	this,	and	I	can	see	her	point,―how	can	the	

part be larger than the base?
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Ray: But the tutor did the problem like this, using the larger as the part.
T:  Well yes, you can do the problem like this but we had better not call the 

$5000 the part, it would have to have another name which maybe we would 
call the increased amount while the $4000 is the original amount or base. 
Let’s hold off on the $5000 for a minute and answer the question raised by 
Bella what is the part or more correctly the amount of increase?

Ashley: The part would be the $1000.
Bella: Why is it not the $4000?
Ashley: Because the $1000 is the increase
T:  So we start at the base of $4000 then the amount of increase from this base 

is $1000 and thus we use these numbers in the formula to find the percent 
increase.

The instructor then writes:

T:  So in this method that Ashley is using where is the 5000? Why do we not 
see it?

Ashley: We use it to get the 1000.
T: Correct
Ashley with the instructor’s direct question (scaffolding) has realized that the 
amount of increase $1000 (analogous to the part conception) can be used with the 
base of $4000. Ashley’s realization was made with such little effort that it resembles 
more of an association, or assimilation, of information, that is, a recognition of this 
information, “…as an instance of something known” (Glasersfeld, 1995, p. 62).

Ashley’s realization, as progress in understanding or an association (assimilation) 
made as a result of answering the instructor’s direct question, focused the attention 
of the class on this previously hidden association. It had a bisociative effect on the 
classroom environment. That said, not all students understood Ashley’s association 
between the $1000 and the partial amount of increase, as evidenced by Bella’s 
subsequent question,

Bella: “Why is it not the $4000?”

Thus, Bella, unlike Ashley and many other students in the class who appeared 
to understand this association, is struggling to coordinate her part-whole 
conceptualization of a fraction with the complementary concepts of amount and 
base. It appears that this coordination is taking her out of her comfort zone in which 
the problem information must fit neatly into an existing proportional matrix without 
undue analysis.

Ray: But the tutor did it using the 5000 over 4000.
T:  Yes, we can use this method also; however, understand that 5000 is not the 

amount of increase, it’s what we might call the new increased amount.
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Instructor’s Note:
It appears that Ray’s difficulty is not so much a lack of understanding of Ashley’s 
association; instead, he does not see its relevance and his understanding is sufficient 
for him. It is important for him that I demonstrate his method to validate it.

T (to class): Let’s work out both methods together and compare them. First, in the 
method that Ray does, we place the 5000 on top we have (writes on the board):

T:  In this case, 5000 is called the increased amount and 4000 is called the 
original amount, or base, and we are finding what percent of the original 
4000 is 5000. Cross multiplying, we get (writes on board):

T:  In the second method, using the amount of increase of 1000, on top we have 
(writes on board):

T:  In this case, 1000 is the increase from original amount, or base, of 4000 and 
we are finding the percent increase. Cross-multiplying we have (on board):

T: So, now are these answers the same or not?
Chris:  Yes, they are the same, because with the 125% we need to subtract the 

100% to get the answer, and then they are both 25%
T:  Good; does everyone understand this?
 (Silence)

Chris’s realization that the two approaches yield the same result is a bisociative 
moment for her, as the 25% exists as a concept simultaneously in both planes-
matrices, or methods of solution. In contrast to Ashley’s realization that $1000 was 
equivalent to the partial amount of increase, and, therefore, could be coordinated 
with the percent increase, which most of the class understood, the class does not 
appear to grasp Chris’ realization.

The teacher employs a visual to help students understand Chris’ realization
T: Let’s see this problem solution through the number line:
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T:  Guys we agree that when we increase $1000 from the $4000 this is a 25% 
increase, this is the bottom part of the diagram. Okay?

 (Silence)
T:  In the method used by Ray we start at the 100% or $4000 and increase to 

the $5000 which is 125% as represented in the top part of this diagram. 
Then we subtract to find what percent increase, which is what?

Chris: 25%.
T: Yes the difference or percent increase is 125%−100% = 25%.
T:  Class its important note that either way using Ray’s method or the 1000 

increase over the 4000 method we get the same percent increase of 25%!

The visual provides students with insight into where the proportions used in each 
method came from, how they are related to one another, and why a proportional 
percent can be improper. Thus, the image allows the student to coordinate the 
concepts of dollars and percent with each other, and, more abstractly, the concepts of 
base (100% as the original base $4000), the increased amount (125% as the percent 
increase $5000) and the amount of increase (25% as the percent of increase). With 
this diagram, Chris understood.

Most of the students understand these two methods as completely different frames 
of reference, preferring one or the other. However, Chris, with the assistance of the 
visuals, has abstracted and, thus, bisociated the common underlying concepts of 
the base and percent-increase, and understands these as analogous methods. She 
understands that the $1000 of increase from the base of $4000 corresponds to a 25% 
increase. We use the term bisociation as a mechanism for the transfer of analogous 
concepts between (synthesized, or integrated into) two frames of reference, and, 
thus, existing simultaneously in both planes of thought.

Figure 3. Visualization of the Percent-Proportion Relationship
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T:  Look guys, in one method we first subtract to find the 1000 and then use 
this over 4000 in the formula and then cross multiply, in the other method 
we first use 5000 in the formula over 4000 and cross multiply and then 
subtract.	Either	way,	we	need	two	steps,―a	subtraction	and	the	proportion.

Most, but not all, students nod their head. The verbal comparison of the two 
methods, as essentially the same two-step process with interchanged steps, leads 
to the third stage of learning. At this level, the individual can verbalize not only 
the solution activity but compare and contrast different methods and, thus, begin to 
classify these different problem activities; this is the trans-stage, as referred to by 
Piaget and Garcia (1989). This abstraction of problem characteristics and concepts 
in a matrix is an essential component in progress in understanding, and facilitates 
the solver’s ability to recognize and associate similar problem situations with this 
matrix.

Analysis:
Ray understands a method presented by a tutor which some members of the class 
have not seen. He explained this method using a part-whole analogy for setting up 
a percent proportion but when he then employed the increased amount over the 
original base amount he confused Bella whose part-whole construct knowledge is 
limited to proper fractions in which a part is a subset of a whole. Bella appears to be 
at an initial or beginning level of proportional reasoning as her incorrect i.e. surface 
association of 4000 as the part and 5000 as the base does not appear to be corrected 
even with Ashley’s explanation that 1000 is the part because it is the increase. 
Ashley unlike Bella engages in reflective abstraction as she is able to project her 
part-whole construct into this problem situation and associate the difference between 
the quantities given with the part 1000 as directed by the need to find the percent 

Figure 4. Chris’ Bisociation: Base $4000 and percent increase 25%
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increase. Chris makes the bisociative realization that two steps (solve a proportional 
and subtract) are required to find the percent increase in either method i.e. the 
concept of the based 4000 and percent increase 25% are same in each method.

TR Team Reflection:
How can one say that Chris’ realization that the two methods obtained the same 
answer was a bisocication? Was there an ‘Aha’ moment? The instructor Baker 
confirms that her affect i.e. as she had a spontaneous insight that was noticeable. 
The discussion continued grappling with the issue of whether and to what extend 
the mechanism of bisociation (simultaneous existence of concepts in two frames 
of reference) can be separated from the affective-illuminative experience known 
as the Eureka moment. A resulting hypothesis of this discussion for classroom 
pedagogy centred on creativity within guided discovery is that, the mechanism of 
bisociation is necessary for the affective experience but the affective experience may 
not necessarily accompany the mechanism of bisociation.
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BRONISLAW CZARNOCHA

4.5. RATE TEACHING SEQUENCE

INTRODUCTION

The teaching experiment Integrated Course of Arithmetic and Algebra has been 
designed in response to the challenges that freshmen community college students 
experience while learning algebra. As the recent New York Times article “Is Algebra 
Necessary?” (July 28, 2012) demonstrates, the seriousness of the challenges is 
formidable, both at CUNY and nationwide. The study conducted at the City University 
of New York (CUNY) in 2005 (Akst, 2005) revealed that among those students who 
start their mathematics developmental sequence with arithmetic only 37% pass the 
subsequent course in developmental algebra. From this it may be inferred that the 
central source of their difficulties is what is known as the arithmetic/algebra divide 
(Filoy & Trojano, 1985, 1989), which explains the general hurdles students encounter 
in the transition from arithmetic to algebra. Around 75–80% of incoming freshmen to 
CUNY community colleges are experiencing these challenges. The central argument 
for the success of the teaching experiment in accomplishing students’ understanding 
and mastery of algebra is based on creating very close connections between the 
two domains throughout the syllabus of the course. The connection bridges are 
either teacher-student classroom dialogues or problem teaching sequences, whose 
solutions facilitate student development of mathematical thinking from concrete 
arithmetic representations to general algebraic formulations. The Rate Teaching 
Sequence, that is a sequence of problems addressing understanding and mastery of 
the rate concept, is one such bridging technique within the syllabus that leads to a 
progression from working with elementary numerical computations to manipulating 
symbolic algebraic formulae through generalizations of the former. The Rate 
Teaching Sequence was originally designed for the elementary arithmetic course. 
However, its didactic usefulness became apparent in the context of the integrated 
arithmetic/algebra course where it allowed the concept of proportional reasoning to 
be recognized as a gateway to algebra.

The integrated course syllabus is intense since it combines two courses into 
one. The course meets four times per week for one hour and fifteen minutes. The 
intensity of learning requires that special cohort of developmental mathematics 
students chosen among freshmen who can sustain the heightened degree of effort. 
The aim of the teaching experiment is to assess the effectiveness of the new syllabus 
and the associated pedagogy as well as to determine an adequate cohort of students 
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by choosing optimal values of the required placement test (see below) results in 
arithmetic and algebra, a test taken by all students entering CUNY. The ultimate goal 
of the research is to find, through several iterations, the proper student sub-cohort for 
whom the final teaching sequences bring about the best results. After establishing 
the correct benchmarks at this level the process can be applied to standard sections 
in the college while simultaneously incorporating pedagogies needed to address the 
challenges for the remaining students, outside of the established cohort.

This chapter describes one of the three threads similar to the Rates Teaching 
Sequence as it appears in its first iteration followed by a fully redesigned Rates 
Teaching Sequence for the second iteration.

PRINCIPLES OF THE DESIGN

The theoretical aspect of the design of the teaching sequence has been based on 
what is known as the process/object class of Piagetian theories of conceptual 
mathematical development (Tall et al., 2000), in particular, on Sfard’s reification 
theory (Sfard, 1992) and Dubinsky’s Action-Process-Object-Schema (APOS) theory 
(1991, 2001). Sfard (1992) sees the transition between operational and structural 
understanding of the related concepts (as in the transition between arithmetic and 
algebra) as proceeding in three steps:

First there must be a process performed on the already familiar objects, then 
the idea of turning this process into a more compact, self-contained whole will 
emerge, and finally an ability to view this new entity as a permanent object 
must be acquired. These three components of concept development will be 
called interiorization, condensation and reification (Sfard, pp. 64–65).

A similar yet different characterization of that process is provided by Dubinsky’s 
APOS theory as described below by Tall:

A step-by-step action becomes conceptualized as a total process [and] is 
encapsulated as a mental object… the final part of the APOS structure occurs 
when actions, processes and objects… are organized into structures, which we 
refer to as schemas (Tall et al., 2000).

The process through which a schema becomes a cognitive object is called 
thematization (Piaget & Garcia, 1987) that is, involving the schema in different 
problem situations, so that all its components and transformations between them are 
clearly perceived and assimilated.

The Design: Three Strategies to Solve Rates Problems (Iteration 1)1

Three concepts: R – Unit Rate; T – Total Amount, N – Number of Units.
Strategy #1 (R, N given; T unknown)
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Juan is making $24/hour as a carpenter.

1. How much, in total, will he make in 1, 2, 7, N hours?

Table 1. R, N given and T unknown

Total Amount T ($) Calculations with the  
Unit Rate R = 24 ($/hour)

Number of Hours N

1
2
7
N

Thinking Reflection questions:
Recall the steps of the calculations you made above; thoughtfully look into the 
numbers in the table and answer following questions:

2. If you know the number N of hours Juan works, how would you calculate his 
total pay?

__________________________________________________________________ 
__________________________________________________________________
__________________________________________________________________
_
Now look back into last two problems, compare the steps of calculations and answer 
the question:

3. If the total pay is T, the rate in $/hour is R, and hours of work are N, how would 
you write the correct general formula governing this problem?

__________________________________________________________________ 
__________________________________________________________________
__________________________________________________________________
_

Application Exercises

To the student: Read every problem carefully and decide which strategy you will use 
to solve it.

Exercise #1. It costs Lovell $2400 for 12 credits at a community college. Find the 
cost per credit that he is paying.

Exercise #2. If Jorge jogs 25 km in 2.5 hours, what speed was he jogging with?

Exercise #3. The deer runs along the path in the forest, which has a distance of 1000 
yards. If the animal runs with the speed of 125 yards per second, how many seconds 
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will it take for the deer to get to the forest? Note that here the student may develop 
the formula

 
 (1)

Exercise #4. Travis goes roller blade skating at a rate of 8  miles per hour for  of 
an hour. How far does he go?

Exercise #5. Sheila’s pick-up truck gets 16 miles per gallon of gasoline, at this rate 
how far can she drive with 5  gallons of gasoline?

Exercise #6. Juana typed 225 words in 7  minutes. How many words did she type 
per minute?

Exercise #7. If you knew the rate in words per minute that Tanya was typing her 
Humanities term paper and you knew how many minutes she typed, how would you 
find the number of words she typed?

Exercise #8. Juan typed a paper 640 words long with the speed of 40 words per 
minute. How many minutes did that typing take?

DISCUSSION OF THE DESIGN (IMPLEMENTED FALL 2012)

Note the correspondence between the learning theory and the design of the 
assignment:

1. Computational exercises in the table are the process “performed on familiar 
objects” of Sfard’s theory (or actions of APOS);

2. Note that the reflective question #2, asking for a verbal explanation, investigates 
the student’s ability to recognize the process of multiplication of the rate by a 
number into a unified “more compact self-contained whole” interiorizing the 
process;

3. The ability to respond to the reflective question #3 checks to what degree does the 
concept of the rate becomes the structural component of the elementary schema 
within which the following formula is constructed:

  (2)

Several natural questions immediately arise during this thought sequence:
Question 1: If you claim that that this is the Rate Teaching Sequence, why don’t you 
start with the formula, which defines it?

 
 (3)
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Answer: Multiplication is simpler for our students than division, both conceptually 
and procedurally. That fact suggested the presentation of all formulas, so that 
the process of development takes place along each of them separately to be later 
unified into one formula. Moreover, since the concept of the rate appears each time 
in the context of appropriate formula, the process of encapsulation of that concept 
might take place simultaneously with the thematization of the whole schema. The 
investigation of that process will be extended during the second iteration to include 
“thinking aloud” interviews with chosen students to be conducted outside of the 
class.
Question 2: Isn’t it the case that the teaching sequence presented does not in any 
way suggest the unification or generalization of all three formulas, (1), (2) and (3), 
into one?
Answer: That’s true. This apparent shortcoming and several other features of the 
teaching sequence will be refined and re-thought before the 2nd iteration next 
semester

ANALYSIS OF RESULTS AND RESEARCH OBSERVATIONS  
(AFTER THE FIRST ITERATION)

The data of the first iteration consists of the following:

• collected Rate and Ratio assignment from 14 students;
• scores on the Algebra Final of 19 students;
• scores and work on the Arithmetic Final Exam of 19 students.

The main research question for the series of TR cycles of this teaching experiment 
is “What is the most effective Arithmetic/Algebra curriculum and associated 
pedagogy for significantly increasing student understanding and mastery of algebra 
at the college level?” Naturally, the complete answer to that question will take 
several cycles, since at each particular cycle only some of the main question’s sub-
components are addressed. In agreement with the definition of the TR-NYC model, 
many of the results are applicable specifically for a classroom environment where 
the teaching experiment is conducted. However, a significant amount of the research 
addresses more general issues and can be applied to all community colleges within 
CUNY as well as, perhaps, student populations in many other urban learning centres 
in the country. The analysis of the data led to the following research observations:

1. Use of theories of conceptual development in the design of student activities was 
very useful and showed that (a) there were students at each of the three levels 
of concept development, and (b) adaptive instruction strategies to help students 
reach the full understanding of the rate concept could be determined on the basis 
of their initial placement within the three levels. The two students placed at the 
first level of concepts development need strong reinforcement in the variable 
as a generalization of a number sub-concept, while those students placed in the 
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transition between levels benefit from reinforcement of multiplication as repeated 
addition sub-concept:

• Two students who, instead of replying with the majority answer of “$24 × N,” 
used the additive structure stating that “you have to add them all up.” It seems 
that those two students are at the yet unfinished process of progressing from the 
condensation level to the second level of understanding. The absence of student 
understanding of multiplication as repeated addition creates a cognitive obstacle 
for the creation of the “compact self-contained whole” needed here, accordingly 
to Sfard, 1992, to progress along the developmental trajectory;

• Two other students displayed even more elementary mathematical behaviour 
responding to the same questions. Instead of reasoning with the variable N to 
answer the question, they assumed a concrete value (N = 13) and calculated the 
total based on this value. For them, the concept of the rate didn’t progress beyond 
the first stage of development of using it only in concrete, elementary cases;

• Additional relevant information was provided by students’ results in the 
departmentally designed final exam, the results of which could be divided into 
standard three subgroups: the top 20%, the middle 40%, and the bottom 40% 
who failed the exam. The two students who originally placed in the first level 
of development failed the exam, while the two students who placed along the 
transition between the first and second level passed the exam, scoring within the 
second subgroup of the test results’ distribution.

2. COMPASS is an untimed, multiple-choice, computer-based test, consisting of 
four parts, designed to measure students’ knowledge of a number of topics in 
mathematics with the intention of proper placement. Placement into CUNY’s 
required basic math courses is based on results of the first two parts of the 
test, numerical skills/pre-algebra (M1) and algebra (M2). Numerical skills/
pre-algebra (arithmetic) questions range from basic math concepts and skills 
(integers, fractions, and decimals) to the knowledge and skills that are required in 
an entry-level algebra course (absolute values, percentages, and exponents). The 
algebra items are questions from elementary and intermediate algebra (equations, 
polynomials, formula manipulations, and algebraic expressions). At the time of 
this teaching experiment, the passing scores for M1 and M2 were 35 and 40, 
respectively. Based on the researchers’ professional experience, the cohort of 
students participating in the first TR cycle consisted of those who scored higher 
than 24 on M1. At the end of the semester, after the final results were tallied 
and combined with the instructor’s semester assessment, it became clear that 
the majority of those 40% of the students who failed the final exam were not 
sufficiently prepared to handle the intensity of learning. That led to the question 
of how to characterize this sub-cohort in terms of their original performance on 
the arithmetic and algebra placement tests. The analysis of the patterns provided 
an answer, which will be utilized in the second cycle. The placement prerequisite 
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scores were established to be as follows (where M1 and M2 are the arithmetic and 
algebra placement scores, respectively):

M1 > 24 and M1 – 9 < M2 < M1 + 9 and M2 < 40

The general observation of the placement scores of participants revealed that there 
was a smaller difference between the M1 and M2 scores among those who passed 
than those who did not. It was decided to limit that difference to no more than 9, 
leaving students with a double-digit difference outside of the sub-cohort. These 
empirical observations might be supported by the hypothesis that it is easier to cross 
the arithmetic/algebra bridge if the difference in knowledge of the two domains is 
not large. The second TR cycle will test this hypothesis.

3. The collection of the results below might be significant beyond the confines 
of the classroom where the teaching experiment was conducted. This set of 
observations from the results of the multi-part assignment, outlined immediately 
following this paragraph, is extremely important for the design of the syllabus for 
the course. The results of the assignment compared with the results of the Ratio 
Teaching Sequence (not discussed here but designed along similar principles) 
show that students have much less difficulty in arithmetic and algebraic problem 
solving incorporated into the sequences than with the development of conceptual 
understanding facilitated by their design. If indeed, the arithmetic and algebraic 
problem solving skills of our students are better developed than their generalization 
skills and, if this observation is confirmed in future iterations, then we may have 
to consider a significant change of the whole syllabus. The original design was 
based on the idea of algebra as a generalization of arithmetic (arithmetic à 
algebra). However, it may be useful to design the instruction based on the inverse 
process (algebra à arithmetic), which sees arithmetic as a particularization of 
algebra. This point of view is the basis of the designs in the Davydow school of 
thought in Russia (Schmittau & Morris, 2004). The significance of such a change 
of instruction on the level of developmental mathematics would, if successful, 
impact the instruction far beyond the confines of the current experimental 
classroom.

RE-DESIGN: RATES TEACHING SEQUENCE  
(SECOND ITERATION, SPRING AND FALL 2013)

The Three Strategies to Solve Rates Problems (2nd iteration)

Three concepts: R – Unit Rate; T – Total Amount, N – Number of Units.
Strategy #1 (R, N given; T unknown)
Strategy #2 (R, T given; N unknown)
Strategy 3 (T, N given; R unknown)
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The teaching sequences for each of the strategies are similar in design to the first 
iteration. To focus attention we will just present strategy #3 followed by the building 
of the schema of the rate formula.

Strategy #3 (calculation of rates, that is, T, N given and R unknown)

This strategy applies whenever we want to find the unknown rate R and we know 
both the total amount T and the number of units N. Solve the problems below and 
write the answers in the provided table.

3.1  You are earning $1000 in 4 weeks. What’s your unit rate in $/week? (How 
much do you make per week?)

__________________________________________________________________
__________________________________________________________________
_
3.2  A worker is making $2400 in 3 months. How much is he getting per month?
__________________________________________________________________
__________________________________________________________________
_
3.3  Juanita is earning D dollars in 5 hours. How would you calculate her wage 

in $/hour?
__________________________________________________________________
__________________________________________________________________
_
3.4  Marco, the salesman, sold S shirts for $200. How would you calculate the cost 

of 1 shirt?
__________________________________________________________________
__________________________________________________________________
_
3.5  Now look back at the last four problems. Compare the steps in the calculations 

and answer the question: If the total is T, the rate is R, and the number of 
units is N, how would you write the correct general formula governing these 
problems?

Table 4. T, N given and R unknown

Total T ($) Unit Rate R. Show your calculations and write your 
answers with the correct units of the unit rate

Number of units N

$1000  …$/week 4 weeks
$ 2400  …$/… 3 months

$ D  …$/… 5 hours
$ 200  …$/shirt S shirts
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3.6 (Solve in Table 5 below).

Instructor’s Notes: Table 5 generalizes the strategy to obtain different categories of 
rates by the same technique.

(a) A runner runs 8 km in 2 minutes. What’s his unit rate in km/min?
__________________________________________________________________
__________________________________________________________________
_
(b)  A car trip of 250 miles used 5 gallons of gas. How many miles/gallon did this 

car use for the trip?
__________________________________________________________________
__________________________________________________________________
_
(c)  Registering for classes you paid $1200 for C credits. Describe in words how 

would you calculate the cost of one credit?
__________________________________________________________________
__________________________________________________________________
_
(d)  A student can type a 540 word essay in M minutes. How would you find the 

rate, in words per minute, at which the student types?
__________________________________________________________________
__________________________________________________________________
_
Instructor’s Notes: Questions 3.7–3.9 aims at developing student problem solving 
schema through the strategy choice method.

3.7  Compare your method of calculation while using the Strategy #1, Strategy #2 
and Strategy #3. What is similar and what is different in all of them?

__________________________________________________________________
__________________________________________________________________
_

Table 5. Generalization of the strategy to different units

Total T Unit rate R. Show your calculations  
and the units of R

Number of units N

8 km 2 min

250 miles 5 gallons

$1200 C credits

540 words M minutes
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3.8 When would you apply each of the three strategies?
__________________________________________________________________
__________________________________________________________________
_
3.9  Fill in the missing cells in the table below; solve the following problems by 

applying the correct strategy (#1, #2 or #3).

Table 6. Strategy Choice

Unit rate R Total T Number of units N # of the strategy

7 ft./min 12 minutes

650 typed words 25 minutes

12.5 miles/hr. 250 miles

5000 miles 250 gallons

192 oz. 12 lb.

3 feet/yard 11 yards

Instructor’s Notes: The series A, B, C develop student use of decimals and fractions 
in each of the contexts – standard challenge for students in remedial mathematics. 
We will omit these exercises for the clarity of exposition

Instructor’s Notes: The aim of the following section is to develop mastery in 
transformation of the basic rate formula followed by its application to more complex 
situations. It is expected that students will encapsulate their understanding of rates 
as the schema of the single formula.

Synthesis of the Three Strategies into One Formula:

Write your previous answers/formulas to the questions:

Strategy #1 1.4  _____________________________________________________

Strategy #2 2.5 (a)  __________________________________________________

Strategy #3 3.5  _____________________________________________________

Fill out the table:
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Applications of the Rate Formulas to More Complex Problems

• I make $50/hour during the first 8 hours of work. I received an hourly increase 
for the next 5 hours of work. All together I received $725 for 14 hours of work. 
What was my hourly pay increase for the last 5 hours of work? What was my 
percent increase?

• A typist typed 40 words/min during the first session of typing. During the second 
session of typing, which lasted 30 min, the typist typed 60 words/min. Altogether 
she typed 2600 words. How long was the first session?

• David and his wife are driving from work to David’s parents’ house. The trip 
takes 2 hours and 30 minutes if David drives 60 mph. He knows that there is a 
good diner at exit 24, which is located at about 75% of the distance from work to 
his parents’ house. About how far is it to the diner from their jobs?

RESULTS AND ANALYSIS AFTER THE 2ND ITERATION

The 2nd iteration strongly confirmed the difficulty along the 2nd step of the 
development, that is, in making clear the relationship between the numerical series of 
examples and its generalization to the formula. Students, in general, were competent 
in numerical computations as well as in strategy choice exercises, thus, they had 
knowledge on both sides of the arithmetic/algebra transition but the transition itself 
was not clear: the success rate for the first cohort (Spring 2013) was a relatively 
low 31% (4 out of 13 students), while the second cohort (Fall 2013) demonstrated a 

Table 7. Algebraic transformations of the formula

Transformation 
of strategies

Word description. 
What will you do to 
transform the formula?

Computation Target, final 
formula/strategy

1à2?

1à3?

2à1?

2à3?

3à1?

3à2?
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similarly low success rate of 27% (5 out of 18 students). The approach those students 
took in the last problem of Table 2 exercise 1.1, “What is Juan’s total pay if the 
rate is $24/hour and he works N hours?” was to assume a certain value for N and 
calculate the total with that assumed value. These students did Exercises 2.3 and 
2.4 similarly. It is not clear for students how to integrate operations on a number 
with operations on a letter. This lack of clarity undermined student problem solving 
capacity. For example, a student who has no problem in the application of Strategy 
#3 in the numeric case of 3.1 and 3.2 but exhibits difficulty in exercises 3.3 and 3.4, 
mixing a variable with the number, responds with  (instead of ) and, in 3.4, the 
written answer reads “multiply # of shirts [S] by $200” instead of $  following the 
technique in 3.1 and 3.2.

For some of those students verbal expression of the computation was more natural 
than the symbolic, indicating a verbal/symbolic divide – the subject of Bruner’s theory 
of learning (Bruner, 1977). Not a single student was able to address independently 
the problems in Table 7 that involved operations on formulas. It could be that 
the measuring instrument, Table 6, is not well understood and needs refinement. 
It also may indicate that, although they mastered the developmental aspect of the 
variable, they could not deal with the “scientific” level of the concepts indicated 
by mathematical operations on them, quite possibly because of the weakness in 
dealing with formula (1) shown on page 3. That means that students’ mastery of 
the “scientific” level has to be addressed individually as part of the sequence so that 
an additional small series of problems developing this aspect must be added to the 
sequence to be implemented in the next iteration.

The transitional difficulty of students is interesting because it can be viewed 
through several different lenses in addition to the developmental one, offered by 
Piaget and Garcia (1989), as well as by Vygotsky (1987). In particular, Duval (2000) 
points to essential learning difficulties where two different representational systems, 
such as numbers and variables, interact. Students have to coordinate two meanings, 
the meaning of the number and the meaning of the variable – the generalization 
of the number, where the meaning of $  shirts has to be coordinated with the 
meaning of $  shirts. At the same time, the work of Koestler (1964) discussed in 
Chapter 1.3, suggests that the presence of such two different matrices of thought 
creates the favourable condition for facilitation of bisociation, that is, the creative 
leap of insight. It may be the case that general difficulties in the transition between 
two representational systems are due to the absence of the efforts towards creativity 
of both students and teachers. Clearly, the design of a sequence that addresses 
effectively the transitional issue between numbers and variables is the task for the 
next iteration. Looking at the whole Rates Sequence, this author’s hope is that, 
after dealing with the above-mentioned issue along with the issue of algebraic 
transformation of formulas, the sequence will be ready for testing in a larger number 
of sections of the course.
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TR Team Reflection:
Initially the team discussion focused on design of the teaching sequence: It was noted 
that, the teaching sequence demonstrate a slight lack of notational clarity and even 
internal consistency that might confuse a casual reader. For example the notation 
in table such as (1→2) may not be understood as clearly as writing out D=R×T and  
R =  also if the ultimate goal in Table 7 is to have students manipulate formulas 
then such a level of understanding should be required in all preceding tables. Thus, 
Tables 1 through 5 might have additional and final row that requires the coordination 
of three variables instead of only two.

The TR team discussion also focused on student reaction, in particular the 
relationship between the visual diagrams and the exercises that required a transition 
between language and algebra to promote structural algebraic thought. It was noted 
that one reason students may have experienced difficulty with 3.3 was that it was 
presented before Table 4 which provided a visual pattern of the schema. This is 
in contrast to the first two sequence sets in iteration 2 involving Tables 2 and 3 as 
well the first iteration set all of which the table was first. This conjecture is that 
a visual pattern provides the scaffolding needed by the student to associate the 
correct operator-matrix or schema. If visual pattern recognition plays a significant 
role in this sequence then language translation may even be secondary to this factor 
in promoting schema development. This hypothesis supports the importance that 
Koestler would place on imagery in creativity as well as Von Glaserfeld’s thesis that 
pattern recognition is innate to the human mind. We note that recognition of visual 
patterns may not necessarily be considered as creativity by either Koestler or Von 
Glaserfeld rather as intuition unless the solver demonstrates conscious reflection. As 
Von Glaserfeld points out creativity occurs when the solver generalizes the principle. 
In this sense Czarnocha’s exercise set provides excellent material for creative 
generalization of underlying relationships of the rate schema.

NOTE

1 The full design contains three such teaching sub-sequences, each for one of three representation of the 
formula Total = Rate × Number of units
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WILLIAM BAKER AND BRONISLAW CZARNOCHA

4.6. TWO LEARNING TRAJECTORIES

INTRODUCTION

In design research instructional design and research are interrelated, “the design of 
classroom learning environment serves as the context for research and, conversely, 
ongoing and retroactive analyses are conducted in order to inform the improvement 
of design” (Cobb et al., 2011, p. 75). The design of mathematical tasks or learning 
sequences of exercise and their analysis is a central component of research in 
mathematics education and ties together learning trajectories and design research. 
The design and assessment of sequences of mathematical tasks, and classroom 
methodology during their implementation, is a foundation for promoting discovery 
learning and a creative learning environment.

Simon and Tzur (2004) describe the importance of mathematical tasks in the 
classroom as, an important point of contact between the teacher and student and as 
playing a, “key role in the effectiveness of mathematical instruction” (p. 92). Two 
factors that guide the formulation of mathematical tasks, or teaching sequences 
is first, they must challenge students to engage in progress in understanding not 
simply exercise in understanding i.e. they should not focus on rote or routine tasks, 
“if students are challenged at an appropriate level they develop their cognitive 
abilities and engage in rich mathematical conversations” (Simon & Tzur, 2004,  
p. 92) second, there should be engagement of students in the concepts to be learned. 
In the teaching sequence of Czarnocha (Chapter 4.5) as well as the written exercises 
of Baker and Czarnocha (Chapter 4.10) the transition from exercise to progress in 
understanding is promoted by increasing abstraction from arithmetical exercises 
to algebraic thought through the use of language i.e. asking the solver ‘how would 
you solve such and such’ without numerical values the goal is to create a situation 
that requires reflection upon what one does instead of action. The goal of these 
exercises is to provide an opportunity for internalization of one’s actions.

Learning Trajectory

Simon and Tzur (2004) expand on the concept of a teaching sequence to formulate 
that of learning trajectories. For these authors a hypothetical learning trajectory 
(HLT) contains three essential components, first a goal for student learning, second 
a sequence of mathematical tasks and third a hypothesis about the process of student 
learning. They note that, “the teacher’s goal for student learning provides direction 
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for the other components, the selection of learning tasks and the hypothesis about 
the process of learning are interdependent” (p. 93). In like manner, Clements et al. 
(2011) define learning trajectories with a,

description of children’s thinking and learning in a specific domain and 
a related, conjecture route through a set of instructional tasks designed to 
engender those mental processes or actions hypothesized to move children 
through a developmental progression of levels of thinking, created with 
the intent of supporting children’s achievement of specific goals in that 
mathematical domain. (p. 129)

For Simon and Tzur (2004) a hypothetical learning trajectory should have:

1. A goal for student learning –conceptual development
2. A sequence of mathematical activities that will be used to promote student 

learning towards this goal.
3. A hypothesis about the process of student learning-conceptual development based 

upon learning theory.

Roots of Design of Instructional Sequences

Gravemeijer (2004) notes that theories for instructional design such as Gagne’s 
Principle of Instructional design that focused on how experts solved problems were 
in vogue in the 1960’ and 1970’s but faded from interest in part due to the rise of the 
constructivism with its focus on understanding student’s thought process:

The instructional design principles of the 1960’s and 1970’s do not fit reform 
mathematics instruction. The main problem is that the older design principles 
take as their point of departure the sophisticated knowledge and strategies of 
experts to construe learning hierarchies. Following a task analysis approach, 
the performance of experts is taken apart and laid out in small steps, and a 
learning hierarchy is constituted that describes what steps are prerequisites and 
in what order these steps should be acquired. (p. 106)

According to Gravemeijer (2004) (social) constructivism has resulted in a focus on 
the social classroom learning environment:

The reform pedagogy is elaborated in terms of classroom culture, social norms 
mathematical discourse, mathematical community, and a stress on inquiry and 
problematizing…it could be necessary to draw the attention to the curriculum 
counterpart of this innovative pedagogy. (p. 106)

An important center for development of learning sequences was the Freudenthal 
Institute “The design research at the Freudenthal Institute grew out of the desire 
to develop mathematics education which corresponded with Freudenthal’s ideal of 
mathematics as an human activity…That is to say, students should experience the 
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process by which new mathematics is learned as a reinvention process in which they 
themselves play an active role” (Gravemeijer, 2004, pp. 108–109).

Cobb et al. (2011) commenting on the work at the Freundenthal Institute with 
learning trajectories notes there was a strong focus on the learning of individual 
students:

The focus of the designers at the Freudenthal Institute…appeared to be on the 
mathematical learning of individual students…However, the acknowledged 
diversity in students’ reasoning tended to fade in the background when they 
outlined long-term learning trajectories that constituted the rationale for 
instructional sequence. (p. 80)

Despite this effort these Cobb et al. (2011) note with some regret this work has been 
largely overlooked in part because of a perception that a learning trajectory requires 
all students to learn in the same manner:

It is fair to say that our conceptualization of hypothetical and actual learning 
trajectories in terms of evolving mathematical practice has had remarkably little 
impact in mathematics education research…Several mathematics educators 
have critiqued our conceptualization of learning trajectories foe implying that 
all students in a classroom should follow a single learning path…this was 
an unfortunate interpretation given that our primary reason for recasting the 
notion of a learning trajectory in collectivist terms was to take into account the 
diversity in students mathematical reasoning. (p. 81)

A central thesis of design research and/or teaching research is that reflection upon 
student learning on sequences of tasks in the classroom by teachers and communities 
of teachers and researchers (TR team) will lead to improvement of teaching and the 
learning process. In other words creative bisociative acts of both teaching – research 
will provide the impetus for what Jaworski (2006) would call a ‘critical alignment’. 
In this scenario the role of the teacher is co-participate with the students as the lesson 
unfolds, managed by instructor–led class discourse and/or a learning sequence of 
tasks. Reflection upon the class lecture by the TR team and analysis rooted in theory 
assist the teacher develop and grow as a professional. Much of the work of Prabhu 
and Dias in Unit 2 and the previous work on rates and proportion of Czarnocha, 
Baker and Dias in Unit 4 can be understood in this light. The resulting conclusions, 
assumptions and hypothesis that develop can be referred to as a local theory of 
instruction i.e. what has worked in our setting.

Theory of Teaching and Learning Trajectories

Sztajn et al. (2012) comment on the lack of connection that may exist between theories 
of learning and teaching and the lack of theories of teaching: “Theories of learning 
can develop with no necessary connection to teaching, and theories of teaching are 
far common than their learning counterparts” (p. 147). The understanding of the 
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TR team about what works and why, analyzed through the lens of learning theories 
provides hypotheses and theories of effective instruction.

Gravemeijer (2004) comments that such local theories of instruction are critical 
in promoting task centred reform pedagogy:

Externally developed local instruction theories are indispensible for reform 
mathematics education. It is unfair to expect teachers to invent hypothetical 
learning trajectories without any means of support. In addition, it can be 
argued that without them, the chances to reconcile openness toward students’ 
own contributions and aiming for given end goals are very slim. (p. 108)

For Gravemeijer a local instructional theory must address two concerns first, how 
students are to use and interact with the activities or tools introduced and second a 
sense of how students conceptual develop is to proceed i.e. a theoretical framework. 
Inherent in this work is that reflection by the teacher and/or TR team is central 
to improvement in learning and teaching thus, the teacher or instructor must 
be comfortable with the methodology they employ in the class to implement the 
learning trajectory.

Baroody et al. (2004) note a range of beliefs about classroom methodology:
At one end of the direct to indirect continuum is the traditional skills approach. 

Consistent with a dualistic philosophy, a teacher in this approach serves as the 
authoritative source of knowledge and uses direct instruction and practices to impart 
the correct procedure. The aim of such an approach is the mastery of basic skills. 
At the other end of the continuum is the laissez-faire problem-solving approach. 
This is a process-orientated approach in that the aim is to develop mathematical 
thinking: learning content is secondary and incidental. As its underlying philosophy 
is extreme relativism – a teacher neither imposes solution procedures nor provides 
feedback on the correctness of solutions.

The first of the two intermediate approaches is the conceptual approach, the aim 
of which is mastery of basic skills with understanding. A teacher can use for example, 
highly structured guided discovery learning to lead students in a predetermined 
direction. Consistent with a pluralistic philosophy; teachers can tolerate even 
encourage alternate procedures, but they ultimately ensure the standard procedure is 
adopted. The second intermediate approach is the investigation approach. As a blend 
of the conceptual and problem-solving approaches, its aims are mastery of basic 
skills, conceptual learning, and mathematical thinking. The investigative approach, 
then is characterized by both meaningful and inquiry-based instruction, and by 
purposeful learning and practice. That is, a teacher uses worthwhile tasks to create 
a need to explore and use mathematics. As this approach is based on a philosophy 
of instrumentalism, teachers are concerned about students’ understanding and 
promote the use of any relatively efficient and effective procedure as opposed to a 
predetermined or standard one.

In this range of beliefs, those who hold to the traditional view often emphasize 
the need to complete the syllabus and to expose students to the full range of topics. 
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The emphasis on student learning and their thought process becomes more and more 
pronounced as one move through this spectrum.

Learning Trajectories and Curricula

Another use of learning trajectories is curricula development. Clements et al. (2011) 
comment and the relatively low performance of student in the U.S. on mathematics 
especially for children in “low rescores communities” (p. 128). They note the lack 
of research studies on curricula and call learning trajectory research based upon 
learning theories. In the work of Confrey et al. (2010) learning trajectories are taken 
as “researcher-conjectured” as opposed to teacher conjectured paths of learning. 
Furthermore, unlike the focus on individual student paths to cross their ZPD such 
researcher conjectured curricula have been employed to develop state-wide even 
nation-wide curricula in the U.S. referred to as the common core standards for 
matheamtics (Confrey et al., 2014). The use of researcher-conjectured pathways 
to develop state wide and nation-wide curricula runs counter to the emphasis on 
reflection upon individual student learning. As noted by Cobb et al. (2011) those 
who employ such methods can be criticized as insisting that all student must learn at 
the same level and pace.

The chapter on Learning Trajectories has several planes of discourse. It addresses 
fundamental student obstacles in high school mathematics education, the transition 
between arithmetic and algebra: proportional reasoning and linear equations. It is 
the summary of our efforts in this interphase (Chapters 2.4, 4.2, 4.10 and 5.1), which 
at the same time is one of the central student obstacles in our remedial sequence. 
The difficulties on that interphase are serious. Lamon (2007) affirms that the lack of 
ability to reason proportionally is widespread when she notes “… a sense of urgency 
about the consistent failure of students and adults to reason proportionally … My own 
estimate is that more than 90% of adults do not reason proportionally …” (p. 637). 
On the other hand, Hacker (2012), in response to the challenges students have with 
algebra, suggests elimination of the subject from the curriculum: “Of course, people 
should learn basic numerical skills: decimals, ratios and estimating, sharpened by 
a good grounding in arithmetic”. But algebra, the generalization of arithmetic is not 
necessary for workers, since “a definitive analysis by the Georgetown Center on 
Education and the Workforce forecasts that in the decade ahead a mere 5 percent of 
entry-level workers will need to be proficient in algebra or above”. NYT, 7/22/12.

The chapter provides the answer to the question “Whose responsibility is it to 
construct learning trajectories?” asked by Steffe (2004, p. 130). We concur with 
Clements and Sarama (2004) who note, “that learning trajectories could and should 
be re-conceptualized or created by small groups or individual teachers, so that they 
are based on more intimate knowledge of the particular students involved…” (p. 85) 
and the two discussed trajectories are an example of such a process. We do believe 
that the framework of Learning Trajectories is extremely useful to teachers of 
mathematics because it let them bring forth all of their craft teaching, often intuitive 
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experience to the table – learning trajectories can be seen from the side of practice as 
research-based teaching sequences. Use of JiTR approach in the context of natural 
for teachers’ iteration cycles, helps to assure the conceptual precision and coherence 
of teacher – produced learning trajectories.

While both trajectories address the interphase between arithmetic and algebra yet 
their designs are very different. The Number Sense/Proportional Reasoning trajectory 
design is of the type B, a research-based design showing at the same time the degree 
to which a standard Math Ed research can be conducted in classroom context by a 
community of teacher-researchers, who at the same time develop teaching sequences 
based on that research. Similarly to the design in the next chapter, this LT contains 
several distinct pathways depending on the cognitive knowledge of the student. Here 
we have an example of the quantitative research being supported by the qualitative 
analysis of classroom TR Interviews (Chapter 3.4). Note, that each TR interview 
sequence terminates only when involved students understand those very issues the 
instructor inquired about in the interview process.

The TR Design of the Linear Equations trajectory is C; it is based both on the craft 
knowledge of the teacher and preliminary research of Confrey and Maloney (June 
2010). The important aspect of this section is presentation of the JiTR approach 
formulated in Chapter 1.1, when the algebra research by Mexican researchers served 
as Just-in-Time-Research consultation. It played important role in demonstrating that 
the learning trajectory designed by the instructor on the basis of his craft knowledge 
contained in reality three different trajectories, which together formed the basis for 
the whole design. The choice of the particular sub-trajectory was left to the teacher 
and it depended on teacher’s assessment of students’ knowledge.
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WILLIAM BAKER

4.7. LEARNING TRAJECTORY

Rational Numbers Sense to Proportional Reasoning

INTRODUCTION

This section is intended to demonstrate how statistical, or quantitative, analysis 
can be used, alongside qualitative investigations of discourse, to study hypothetical 
trajectories and relationships between conceptual knowledge as students’ progress 
through rational number sense toward proportional reasoning. This chapter 
expands upon an earlier project whose results have been published in Doyle  
et al. (2016). Here, we include both statistical analyses of the data collected at that 
time and qualitative interviews used to determine a path, or a learning trajectory, 
moving through the rational number sub-constructs proposed by Kieren (1976) to 
proportional reasoning – a hypothesis suggested recently by Lamon (2007).

PROPORTIONAL REASONING

Community Colleges and Remedial Mathematics

Many community colleges (two-year or junior colleges) in the United States have 
an open admission policy and, as a result, give entrance/placement exams to assess 
students’ language and mathematics skills in order to determine college readiness 
in these disciplines. Students who place below college-level mathematics are 
commonly enrolled in remedial classes that review pre-algebra and elementary 
algebraic mathematics. Due to low retention and passing rates, these courses can 
serve as a barrier to students’ desired proper college education (Hagedorn, Siadat, 
Fogelo, Nora, & Pascarella, 1999).

Proportional Reasoning: Transition from Pre-Algebraic to Algebraic Thoughts

The transition from spontaneous arithmetical thought to the more structured 
reasoning required in algebra, as highlighted by Vygotsky (1986) and Sfard and 
Linchevski (1994), is frequently linked to student mastery of proportions and, yet, 
many college students fail to manifest effective formal proportional reasoning  
(Adi & Pulos, 1980). Proportional reasoning has been described as a foundational 
core of algebra and higher mathematics (Berk, Taber, Gorowarand, & Poetzl, 
2009; Lo & Watanabe, 1997). It is considered a prerequisite for success in science, 
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mathematics and nursing courses. However, college students often demonstrate an 
inconsistent ability for such reasoning (Thornton & Filler, 1981; Garfield & Ahlgren, 
1988; Hoyles, Noss, & Pozzi, 2001). Lamon (2007) affirms that the lack of ability 
to reason proportionally is widespread when she notes, “ a sense of urgency about 
the consistent failure of students and adults to reason proportionally … My own 
estimate is that more than 90% of adults do not reason proportionally” (p. 637). In 
the remedial pre-algebra course, proportions are covered after, and are related to 
the concepts of ratio and rate. This sequential presentation often leads students to 
view these topics as different entities despite the emphasis that educators place on 
the connections between them (Streefland, 1984, 1985; Lachance & Confrey, 2002; 
Behr, Lesh, & Post, 1992). Furthermore, many educators believe there is a strong 
link between proportional reasoning and the broader concept of rational number 
sense (fractions, operations on fractions and their applications) that could be utilized 
for effective instruction in mathematics (Shield & Dole, 2002; Behr, Harel, Post, & 
Lesh, 1992).

The Kieren Model

Kieren proposed that the concept of a fraction could be viewed as the composition of 
five related but distinct sub-constructs. In this model, understanding of the primary 
part-whole sub-construct is the foundation for the four secondary sub-constructs of 
ratio, operator, quotient and measure.

Figure 1. Recreation of the Model of Behr et al. (1992, p. 100)
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Thus, in Kieren’s model, ratio is considered as a sub-construct of fractions. An 
extension of this model to the corresponding fraction operations and problem solving 
was developed by Behr et al. (1983). For the sake of simplicity, this will be referred 
to as the Kieren-Behr model.

Kieren’s Sub-Constructs as the Foundation for Proportional Reasoning: Lamon

Adjiage and Pluvinage (2007) used quantitative analysis with equivalent forms of 
Kieren’s sub-constructs to investigate their role in proportional reasoning of middle 
school children. In a longitudinal study of students from grades 3 to 6, Lamon (2007) 
also used Kieren’s sub-constructs as a foundation, or a focal point, of instruction 
aimed at developing rational number sense and proportional reasoning. Thus, she 
followed an educational approach based on the Behr et al. (1983) extension of sub-
construct knowledge to proportional reasoning:

My hypothesis is that proportions arise in the study of rational numbers ... and 
that as one develops rational number sense through the various experiences with 
many personalities of the rational numbers, one learns to reason proportionally. 
(Lamon, 2007, p. 640)

Lamon’s (2007) research focus included determining the connections between 
these sub-constructs, and whether students’ competency related to these sub-
constructs facilitates proportional reasoning. She concluded that these different 
sub-constructs are, “essential characteristics of the rational numbers, but they are 
inextricably connected ... the measure sub-construct seemed to be the strongest 
because it connected most naturally with the others” (p. 659). Regarding the question 
of effectiveness of the sub-constructs for developing proportional reasoning, Lamon 
concludes that, “incorporating rational number interpretations other than the 
traditional part-whole meaning, will, in itself, be insufficient to facilitate meaningful 
learning” (p. 660).

Lamon’s assertion that the rational number sub-constructs are the basis of 
proportional reasoning led Doyle et al. (2016) to attempt to verify this assertion 
using both quantitative Wilkins and Norton (2009, 2010) and qualitative 
methodologies. Lamon’s statement that these sub-constructs are linked together, 
and that it is insufficient to develop proportional reasoning through a focus on only 
a single sub-construct, part-whole, for example, as well as her understanding that 
measure plays a crucial role in the development of proportional reasoning, provides 
the impetus for the present review of the data used by Doyle et al. (2016). The 
objective is to discern whether there is a pathway that student can practically follow, 
through the rational number sub-constructs leading to proportional reasoning. 
Specifically, what role does the measure sub-construct play in this hypothetical 
learning trajectory? We turn to the statistical analysis begun in Doyle et al. (2016) 
that uses multivariate linear regression techniques (ANOVA), and expand upon the 
results focusing on the possible learning trajectory through the rational number  
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sub-constructs. However, before we do so, we give a brief review of the rational 
number sub-constructs and the exercises that are used to evaluate their understanding; 
for more information, we refer the reader to Charalambous and Pitta-Pantazi (2007) 
and Baker et al. (2009, 2012).

Rational Number Sub-Constructs

The definition and exercises used to evaluate the mastery of the fraction sub-
constructs are, for the most part, akin to those used by Charalambous and Pitta-
Pantazi (2007). However, exercises were included from the adult curriculum for the 
ratio and operator sub-constructs to ensure that the exercise sets were appropriately 
challenging for adult students. The complete sets of exercises and the results of 
principal factor analysis (Cronbach’s alpha) and reliability tests (Cramer, Post, & 
delMas, 2002), as well as the Kaiser-Meyer-Olkin measure of sampling adequacy 
are presented in the appendix.

The part-whole sub-construct employs the symbol notation p/q to represent the 
partitioning of a whole entity, either continuously or discretely, into q equal parts 
and, then, taking p out of the total number of q shares of the entity. The part-whole 
sub-construct is used as a foundation for developing rational number sense in the 
mathematics curricula, and generates much of the language used for describing 
fractions (Behr et al., 1983). The mastery of the part-whole sub-construct was 
evaluated through two related exercise sets. The first set involved translating pictorial 
representations of part-whole relationships into symbolic numerical notation. The 
second set involved understanding written statements describing the process of 
taking parts of a whole.

The ratio interpretation of the symbol notation p/q involves a comparison 
between two quantities, p and q, and, as such, it is seen as a comparative index of 
the relative magnitudes of two numbers (Behr et al., 1983). Thus, when p and q 
represent two parts of a quantity, the ratio can be considered as separate from the 
other sub-constructs, and can be represented as a single numerical value. However, if 
p is taken to be a part of a total quantity q, the ratio and part-whole notation overlap 
with one another (Clark, Berenson, & Cavey, 2003). The ratio sub-construct used 
by Charalambous and Pitta-Pantazi (2007) involved three sets of exercises: the first 
set required students to represent part-part and part-whole relationships in fraction 
notation, the second involved the rate concept, and the third entailed comparisons 
of two ratios. Three exercises were included from the adult curriculum that required 
students to re-write a given ratio in simplest terms.

The operator concept is associated with applying a function to a quantity, that 
is, the process of taking a fraction of some given quantity. Thus, the operator 
sub-construct interpretation of p/q involves multiplication, or, more precisely, 
multiplication, or expansion, by p and division, or contraction, by q (Behr  
et al., 1992). Exercises used to evaluate the mastery of the operator sub-construct 
included three sets of exercises used by Charalambous and Pitta-Pantazi (2007). 
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The first set contained input-output machines in which the output is a fractional 
amount of the input quantity. The second set contained language statements that 
related the process of taking a fraction p/q of a quantity with multiplication by p 
and division by q. The third set involved taking a fraction of a quantity. Several 
iterations of this last type were added to this set of exercises. Charalambous and 
Pitta-Pantazi consider the measure concept to be interconnected with the relative 
size of a number. In particular, measure is evaluated through an understanding of 
partitions of the unit interval into segments that are then joined to represent the 
measure. In this sense, measure involves an application of the part-whole concept 
to determine the placement of the fraction p/q on an interval with designated units, 
by dividing the unit interval into q equal parts and aligning p such parts to obtain 
the location. Thus, the measure sub-construct can readily extend the part-whole 
process to include improper fractions. The measure sub-construct is a source of 
some contradiction and lack of clarity. Behr et al. (1983, 1992) tend to consider 
measure as an extension of part-whole. Lamon (2007) agrees, indeed she considers 
measure as the most central sub-construct because it is so connected to the others. 
However, the work of Charalambous and Pitta-Pantazi (2007) with children and 
Baker et al. (2009) with adults, both reveal that the measure sub-construct is the 
most difficult for students, and, that, out of all the secondary rational number sub-
constructs, it correlated the least with the part-whole. Determining the relationship 
of the sub-constructs to measure is, therefore, an important objective in this study.

The quotient sub-construct interprets the symbol p/q through the dual 
interpretations associated with partitive and quotative division (Behr et al., 1992). 
Exercises supporting both interpretations were taken from (Charalambous & Pitta-
Pantazi, 2007). The exercises used to evaluate mastery of proportional reasoning 
were not taken from the work of Charalambous and Pitta-Pantazi. Instead, they were 
taken from ratio, rate and proportion exercises that an adult student is typically 
required to be able to solve.

REVIEW OF ANALYSIS OF VARIATIONS (ANOVA)  
WITH MULTIPLE VARIABLES

While statistical correlations are sufficient to test the relationship between two 
variables, to consider the effect that several independent variables have on a 
dependent variable, a multiple linear regression analysis or analysis of variance 
(ANOVA) must be used. The F-value, or F-ratio, is an indicator of the strength of 
the relationship between the independent and dependent variables, and the p-value 
determines whether the model is significant. Assuming the model is significant the 
adjusted r2 value determines the percent of the variation in the dependent variable 
that can be explained by the independent variable(s). A comparison of the adjusted 
r2 value with the square of the correlation coefficient r between each independent 
variable and the dependent variable reveals the extent to which the independent 
variables work together. However, more precise information is obtained from 
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the significance communicated by p-values and beta values of each independent 
variable. When the independent variables are all significant, they work together in 
predicting, or explaining, the dependent variable. The second indicator of how the 
independent variables interact is the beta value. The beta value is a measure of how 
much influence each independent variable has in predicting or explaining variation 
in the dependent variable. For example, a beta value of 0.5 for X indicates that for 
every unit change of a standard deviation of X, there is a corresponding 0.5 or 50% 
change of a standard deviation in Y.

QUANTITATIVE RESULTS OF DOYLE ET AL. (2016)

Quantitative data was collected by six professors of mathematics acting as teaching 
researchers at two community colleges in the Bronx. The case set consisted of 334 
adult remedial students solving sets of problems that evaluated their knowledge 
of the Kieren sub-constructs as well as proportional reasoning. These results 
demonstrated that the part-whole construct was the most readily accessible sub-
construct, at 74%, followed by ratio, at 67%, operator at 62%, quotient at 55%, and, 
finally, measure at 49%; measure was the most difficult. The exercise set evaluating 
mastery of proportional reasoning was more difficult that any of the sub-constructs, 
at 29%. It was also determined that all sub-constructs and the proportional reasoning 
exercise set correlated significantly with one another, with p-value < 0.01. Thus, it 
made sense to ask whether the sub-constructs predicted, or explained, proportional 
reasoning. The results confirmed this hypothesis with the exception of the part-
whole sub-construct.

Quantitative Analysis of Rational Number Sub-Constructs

The results of Doyle et al. (2016) also suggest that knowledge of part-whole, operator 
and ratio may be used to promote the understanding of quotient, and that, in turn, 
knowledge of all four constructs, – part-whole, operator, ratio and quotient, may be 
used to promote knowledge of measure. If verified, this would provide quantitative 
evidence of a trajectory through the rational number sub-constructs. Accordingly, 
a multiple regression analysis with part-whole, operator and ratio as independent 
variables, and quotient as the dependent variable, was conducted using the same 
student data of Doyle et al. (2016). The analysis with these three independent 
variables resulted with an F-value of 30.4, with p < 0.001, with adjusted r2 = 0.256. 
These values indicate the presence of a significant model that predicts 25.6% of the 
variation in the mastery of quotient. This is substantially more than that explained 
by any of these variables alone. The significance and beta values indicate that ratio, 
with β = 0.27 and p < 0.001, is very significant and influential in explaining quotient. 
Operator is also significant but much less influential with β = 0.19 and p = 0.004. 
Part-whole is slightly less significant and influential than operator, with β = 0.17 
and p = 0.006.



LEARNING TRAJECTORY

357

Quotient and Measure

In order to extend this pathway to measure as well as investigate Lamon’s 
understanding of measure as the central construct in developing proportional 
reasoning through rational number sense, an analysis of variation (ANOVA) with 
part-whole, ratio, operator and quotient as independent variables was conducted to 
predict measure. A backwards multiple regression analysis eliminated the operator 
construct.

These results suggest that the pathway through the rational number sub-constructs 
to proportional reasoning begins with part-whole. It then appears to split into two 
paths,―one	proceeds	through	operator, the other through ratio leading to quotient 
and, then, measure.

This multiple regression analysis, with part-whole, ratio and quotient as the three 
independent variables, and measure as the dependent variable, with N = 334 resulted 
in an F-value of 38.8, p < 0.001 and the adjusted r2 = 0.306. These resulting values 
indicate a significant model that explains 30.6% of the variation in measure. The 
relatively high percent of measure explained by this multiple regression model with 
adults is in stark contrast to the small amount of measure explained for children, at 
4.84%, obtained in the study of Charalambous and Pitta-Pantazi (2007, p. 308).

Table 1. Beta (β) and Significance (p) values for the measure sub-construct (N = 334)

Predictor variable Beta p-value

Part-whole 0.19 p = 0.001
Ratio 0.25 p < 0.001
Quotient 0.27 p < 0.001

Thus, as suggested by Figure 1, part-whole is the primary, or foundational, 
concept in the rational number sense trajectory. Then, there is a secondary level 
containing ratio and operator. At this second level the path splits with one track 
proceeding through operator. This track has little influence in predicting student 
competency with quotient and none in predicting measure. In contrast, the alternative 
track through ratio is very influential in predicting student competency with quotient 
and measure. These results verify Lamon’s statement that ratio is more powerful 
than operator, at least, in predicting quotient and measure. It follows that the ratio 
concept should be introduced early in the curriculum because it is readily learned 
and more accessible to students, and should be used to assist student mastery of 
quotient and measure.

Formal Proportional Reasoning

Doyle et al. (2016) use multiple linear regression to predict formal proportional 
reasoning however there focus was wider and thus we recreate the essence of their 



W. BAKER

358

work here focused more narrowly on only the rational number sub-constructs 
as independent variables to predict or explain student ability with proportional 
reasoning. A backwards linear regression eliminated part-whole a result that agreed 
with the analysis of Doyle et al. (2016). The resulting multiple regression model 
with operator, quotient and measure as independent variables and 334 students to 
predict proportional reasoning yielded, F(3,257) = 39.6, p < 0.001 with adjusted 
r-square value of 0.375 reveal a highly significant model that explains 37.5% of the 
variance in proportional reasoning.

Table 2. Mean scores and standard deviations of the four sub-constructs (N = 334) 

Sub-construct Beta p-value

Operator 0.20 p = 0.001
Ratio 0.24 p < 0.001
Quotient 0.17 p = 0.004
Measure 0.20 p = 0.001

Figure 2. The trajectory structure: Rational number sub-constructs  
to proportional reasoning
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The beta values in Table 2 show that ratio, operator, quotient and measure are 
all influential and significant factors in explaining students’ formal proportional 
reasoning.

In Figure 2, the sub-constructs are arranged according to their mean score, and the 
pathways are those given through the correlations and statistical analysis reported 
in Tables 1 and 2. The foundational sub-construct of part-whole is influential in 
explaining student performance in the other more difficult sub-constructs but not 
proportional reasoning. Note that this result contradicts Figure 1. In Figure 2, 
the trajectory splits. One path proceeds through operator; this pathway does not 
have much influence in predicting the other rational number sub-constructs but is 
influential in explaining proportional reasoning. The other path proceeds through 
ratio; this path is influential in predicting quotient and measures, and, subsequently, 
each of these connected sub-constructs,―ratio, quotient and measure,―are 
influential in predicting student competency with proportional reasoning.

QUALITATIVE ANALYSIS

The quantitative analysis provides evidence of students’ learning pathways through 
the rational number sub-constructs toward mastery of proportional reasoning. Next, 
transcripts of small group sessions and classroom discourse are reviewed to gain 
further insight into the two trajectories strongly suggested by the above statistical 
analysis. The interpretation of these dialogues is accomplished using the theoretical 
foundations of problem-solving and creativity developed in earlier chapters. We 
review it for the readers benefit.

Theoretical Model for Proportional Reasoning within Problem-Solving

The theoretical problem-solving model developed in Chapter 1.3 relates concept 
development and problem-solving; we summaries it here for the reader’s benefit. 
According to Koestler (1964) a solver compares the given problem information to 
matrices of past experience and engages in selective attention to determine whether 
any problem information that does not fit the analogous matrix is miscellaneous 
or not. Students in the early stage of concept development are able to engage in 
this process of recognition (Cifarelli, 1998) as long as similar problems have been 
presented within the class lecture, or, as cognitive theorist would say, within short-
term memory. The ability to compare problem information with matrices of past 
experience from long-term memory requires coordination of several matrices of 
past experience with the problem information and the re-representation of past 
experience (Glasersfeld, 1995). Rather than simply recognizing that presented 
information matches a matrix at hand, the ability to coordinate problem information 
with past matrices of experience and to recreate the essential structure of an 
analogous, or best-fit, matrix to solve the current problem is heavily dependent upon 
the solver’s understanding of the concepts that exist in the code of the matrix. In 
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other words, such coordination is strongly contingent on the solver’s understanding 
of the structure of the problem-solving schemes. This model suggests a strong 
relationship between problem-solving and concept development, especially, in 
regard to an individual’s choice of strategy. A solver at a higher level of concept 
development will be capable of coordinating the problem information with a wider 
range of past matrices because he or she will understand which concepts, codes and 
structures may or may not be relevant to the given situation. Furthermore, since the 
choice of strategy is based more on reasoning about the problem information using 
the learner’s concept base, and less so on temporal proximity, copying, hunches or 
guess work, when the chosen matrix does not work, there is a greater likelihood 
that he or she will make real progress in understanding through synthesis and 
coordination of existing processes to find a proper solution strategy. In this model, 
when faced with a situation where no analogous matrix that fits the situation is 
immediately apparent or the chosen best-fit matrix does not lead to the desired 
goal, concepts play an important role in both the choice of strategy as well as the 
synthesis and coordination of matrices.

Rational Number Sub-Constructs and Proportional Reasoning:  
Qualitative Analysis

The first transcript was recorded early in the semester, before proportions were 
formally introduced. It conveys the discussion during a small group session during 
which the group leader (GL) attempts to arrive at the understanding of proportional 
reasoning appealing to the ratio and rate concepts. There were three students but 
only two gave responses. The two students are referred to using the pseudonyms 
Laura and Fran.

Problem 1: If 2 items cost $5.00 then how much will five items cost?

GL: What do we do first?
Laura: If 2 items cost $5 then 4 items cost $10.
GL: Good how did you get this?
Laura: I added.
GL: Okay, what do you do next?

After some waiting while the group is silent, GL continues: Can anyone else tell me 
what to do next?

Laura: I then add $2.50 to get the answer … (working it out) … $12.50!
GL: Very good, where did you get the $2.50 from?

The subsequent short period of silence indicates that Laura cannot verbalize her 
understanding.
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GL: Does anyone know? (Turning to other members of group)
Fran: Well, 1 item is $2.50.
GL: How do you know that?
Fran: I took half.
GL: Good, so we take half to find the cost of how many items?
Fran: It’s the price of 1 item.
GL:  Did anyone do it a different way? (Looking around at the work) What 

about you, Fran? How did you do this problem?
Fran:  Well, like I said, I know that 1 item is $2.50 so I multiplied by 5 to get the 

answer.
GL: Okay, good! Laura, why did she multiply by 5?
Laura: I’m not sure.
GL: Fran, can you explain why?
Fran: Because you want the cost of 5 items.

The additive approach employed by Laura represents foundational knowledge of 
addition of whole numbers employed in the ratio setting. Its use is spontaneous and 
intuitive for her; it is immediate and without much long thought. She then synthesized 
this process with the multiplicative process of taking one half of a quantity. The 
coordination of the ratio and operator concepts to solve this proportional reasoning 
problem demonstrates the use of two trajectories in Figure 2. Both lead to proportional 
reasoning, with one emanating from ratio and the other from operator. Taking half 
a quantity is an intuitive example of the operator construct and is unique among 
fractions, in that most solvers have a spontaneous understanding of this concept. 
Pitkethly and Hunting (1996) also note that, in their studies that, “knowledge of one 
half ... was quite robust” (p. 11).

Laura’s coordination of the additive ratio concept with the operator concept of 
half of a quantity is intuitive and spontaneous as evidenced by her inability to vocalize 
why she had chosen these procedures. Thus, Laura is transitioning from the first 
level of concept development, where her reasoning is spontaneous and immediate 
but it is difficult to convey, and to, therefore build upon. Fran is able to vocalize 
her reasoning that is based on the concept of a ratio for the task of finding half 
of a quantity. Fran understands this problem through a multiplicative construction 
(Vergnaud, 1983), which synthesizes the operator concept by evaluating five times 
a quantity with the ratio concept. This multiplicative conception of proportional 
reasoning uses the same two pathways in Figure 2 as Laura but is more informed 
and advanced. Indeed, the establishment of proportional reasoning is frequently 
said to begin with the transition from additive to multiplicative reasoning (Karplus, 
Pulos, & Stage, 1983; Singh, 2001; Behr et al., 1992; Lamon, 1993).

The second example is taken from a class discourse on multiplication of fractions 
and introduces the operator sub-construct. The students involved were given the 
pseudonyms Irene, James and Alison.
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Problem 2: In a company with 360 employees  respond to a survey, how many 
responded?

Teacher (T): Can anyone tell me what the first step is?

Irene: We multiply  by 360.
T: Good, how do you multiply these numbers?
Irene:  I wrote 360 over 1 and then multiplied by 4 to get 1440 and then divided 

by 9 to get 160.
T: Very good, can anyone besides Irene tell me why we multiply  times 360?
 (A short period of silence)
T: Okay, if we take of some number, what operation does this involve?
 (Another short period of silence)
T: Okay, if we take half of some number, what operation does this involve?
James: Dividing by 2
T: Okay, so taking  th would involve what operation?
James: Dividing by 9.

The instructor senses that the class is not really following the dialogue. He draws 
a circle with 9 equal parts to visually represent the division process as partitioning.

T: Okay class, if the entire circle is 360 who can tell me what each part is?
Allison: Each part is 40.
T: Good, and how many parts would we need for ?
Allison: We take four of them.
T: Yes, and how much is this?
Allison: It would be 160.

Irene recognizes the operator conception in the problem of taking a fraction of a 
quantity, and readily relates this to a multiplicative approach. However, neither 
she nor any of her classmates can vocalize a reason. In Irene’s case, and for many 
students in this intermediate stage, this phenomenon may be an illustration of the 
discrepancy between procedural proficiency and ability to verbalize one’s thoughts. 
Glasersfeld (1995) alludes to this interpretation:

The fact that conscious, conceptualized knowledge of a given situation 
developmentally lags behind the knowledge of how to act in the situation, is 
commonplace ... it is analogous to the temporal lag of the ability to re-present 
a given item relative to the ability to recognize it. (p. 106)

If this explanation is correct (the instructor certainly believed it was valid in 
Irene’s case) and Irene is able to recognize the need for multiplication but has not 
conceptualized this operator process enough to vocalize her reasoning then she 
may experience difficulty recreating this process. As the rest of the class does not 
appear to grasp Irene’s reasoning and she cannot convey it, the instructor generalizes 
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the intuitive operator concept of taking one half of a quantity. James follows this 
generalization but the instructor senses that the rest of the class is too silent and 
not engaged. As noted by Pitkethly and Hunting, (1996) the generalization of the 
operator concept of one half to other fractions can be difficult for students, in part, 
because computing half of a quantity is so intuitive, that students often prefer to view 
fractions only through iterations of this process and, thus, ignoring or avoiding the 
cognitive demand of fractions that cannot be represented in this manner:

The act of halving by subdividing is a scheme ... called algorithmic halving. 
This powerful strategy inhibits ... schemes to create fractions that have odd 
number denominators. (p. 11)

The instructor then employs the part-whole conceptualization to give meaning to 
the operator process of taking four ninths of a quantity; a strategy easily understood 
and followed by Allison and most other students. This presents a two-fold aspect of 
the operator	construct,―one	based	on	the	foundational	part-whole concept which 
is represented by the arrow from part-whole to operator in Figure 2, while the 
other is functional, in which the numerator and denominator are associated with 
separate operations. This line of thought contributes to the arrow from operator to 
proportional reasoning in Figure 2.

The final example is a transcript of a discussion that took place in a small group 
session addressing ways of finding quotients through equipartitioning (partitive 
division) and counting the number of groups that can be formed with a given number 
of objects (quotative division). This group session lead by a group leader (GL) was 
recorded	with	three	students,―Julia,	Allison	and	Gina,	when	the	class	was	covering	
multiplication and division of fractions.

Problem 3: If 6 ¾ lb. of meat is divided into packages and each package weighs ¾ 
lb. How many packages are there?

GL: Did anyone get this?
Julia: I got 9 packages.
GL: Good, how did you do it?
Julia:  I took 6 pieces and then took ¾ from each piece. This left 6 pieces each 

with a ¼ lb remaining. These make 2 more for a total of 8.
Allison: Where did you get the 9 from?
Julia: From the remaining ¾.
GL:  Remember there were 6 ¾ lbs. and we used only the 6, this left ¾ lb. which 

is one more package.
Allison: Okay.
GL: Did anyone do it differently?
Gina:  I did it by counting ¾ lb. is 1 package, then 1 ½ lb. is 2 packages. Thus 3 

lb. is 4 packages and finally 6 lbs is 8 packages and the remaining ¾ makes 
a total of 9.
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Gina points to the number line she has made with the help of the group leader (as 
shown in Figure 3 below)

Figure 3. Gina’s Illustration of her approach to the solution of problem 3

Allison: How did you get 3 lb. are 4 packages?
Gina: I doubled them.
GL: And you did the same to obtain the 6 lbs. makes 8 packages correct?
Gina: Yes.
GL: Allison how did you do it?
Allison: I divided.
GL: Okay why?
Allison: Because it says to divide it up into packages!

Julia’s work is a good example of quotative division as she begins with the 6 ¾ 
lbs and begins to partition this quantity these into packages. As this approach had 
never been presented in class, it represented a spontaneous and creative synthesis 
of her understanding of the problem requirement to divide 6 ¾ lbs into packages 
with her part-whole understanding evidenced by her comprehension of what it 
means to take ¾ of a whole, and coordinating this with her ability to keep track of 
remainders. Thus, referring to Figure 2, Julia’s reasoning illustrates the trajectory 
from part-whole to quotient followed by the path from quotient to proportional 
reasoning.

Gina, on the other hand, used an additive approach that is conceptually more 
readily understood; however, as the addition involved fractions, she employed the 
use of a number line to assist her in reaching a whole number ratio and proceed 
from there. Gina explained her work with the help of a number line following the 
method explained earlier by the instructor in the context of a different problem. The 
use of the number line to establish a relationship between the iterative processes of 
building up a fractional ratio to obtain a ratio of whole numbers, and proceeding 
with the simpler whole number ratio to get the final solution, helped Gina visualize 
the conceptual interactions and understand the relationship between the ratio and 
quotient sub-constructs.

Thus, the iterative process, beginning with the unit amount of ¾ lb. per 
package, followed by either the building up of units, as Gina did, or applying 
repeated subtraction, as Julia did, is essential for understanding division. This 
class discourse illustrates how the additive building up process underlies the 
relationships between ratio, quotient and measure in the process of proportional 
reasoning illustrated in Figure 2.
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CONSIDERATIONS

In Figure 1, the measure sub-construct is connected to the additive structure, yet 
in Figure 2, measure is closely related to ratio and quotient, both of which can be 
understood as part of a multiplicative structure. This raises the question of whether 
measure plays a dual role in both the additive and multiplicative structures of rational 
numbers,―a	 hypothesis	 supported	 by	 the	 class	 discourse	 in	 which	 the	 additive	
building up process connected the measure, ratio and quotient sub-constructs. 
Vergnaud (1983, 1994) introduced the concept of a multiplicative conceptual field 
as a holistic approach to the development of proportional and formal reasoning in 
mathematics. Lamon has commented that the encompassing nature of this concept 
has made it difficult to employ in mathematics educational research. We propose that 
Figure 2 may serve as a basis to map out the multiplicative conceptual field.

In the mathematics curriculum for adults reviewing pre-algebra, the sequence 
leading up to proportions includes whole numbers, fractions, decimals, and 
then ratios and rates. This sequential presentation often leads students to view 
these topics as different entities despite the emphasis that educators place on the 
connections between them (Streefland, 1984, 1985; Lachance & Confrey, 2002; 
Behr, Lesh, & Post, 1992). The relationships shown by Figure 2 strongly support the 
interconnectedness of the rational number sub-constructs in promoting proportional 
reasoning.
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APPENDIX

Exercise Sets
Ratio1

Component 1
#1.)  In a History class there are 2 male to every 3 female students, use fraction 

notation to write the ratio of male to female students in the class.*
#2.)  In a History class there are 2 male to every 3 female students, use fraction 

notation to write the ratio of female to male students in the History class.*
#3.)  Use fraction notation to write the ratio of female to total students in the 

History class.*

Component 2
#4.) Write the ratio 4 to 36 in simplest terms.* †
#5.) Write the ratio 48 to 16 in simplest terms.* †
#6.) Write the ratio 0.8 to 4 in simplest terms. †

Component 3
Juan and María are making lemonade. Given the following recipes whose lemonade 
is going to be sweeter?
#7.)  Juan uses 2 spoons of sugar for every 5 glasses of lemonade. María uses 1 

spoon of sugar for every 7 glasses of lemonade.*
#8.)  Juan uses 2 spoons of sugar for every 5 glasses of lemonade. María uses 4 

spoon of sugar for every 8 glasses of lemonade.*
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Component 4
Jose jogs each morning before work. Determine which of the following days he 
jogged at a faster rate. Please choose from the answers (a) Monday, (b) Tuesday or 
(c) Not able to determine from information given.

#9.)  On Tuesday he jogged a longer distance than he did on Monday. On both 
days he jogged exactly the same amount of time.*

#10.)  On Tuesday he jogged a shorter distance than he did on Monday. On both 
days he jogged exactly the same amount of time.*

#11.)  On Tuesday he jogged a shorter distance than he did on Monday. On Tuesday 
he jogged less time.

Operator2

Component 1
There were three exercises that evaluated the operator concept through functional 
input-output boxes.

#1.)  The following diagram represents a machine that outputs 2/5 of the input 
number. If the input number is 200 then what is the output number?*

#2.)  An input-output machine has outputs that are 1/5 of the input. If the input 
number is 480 then what is the output number?*

#3.)  An input-output machine has output that is 1/5 of the input. If the output is 
200, then find the input. †

Component 2
#4.)  Taking 2/5 of a number is the same as dividing the number by 5 and 

multiplying this result by 2; True or False? *
#5.)  If we divide a number by six and multiply by twenty-four this the same as 

multiplying by the fraction1/4; True/False? *
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Component 3
#6.)  A recipe calls for 1 ½ cup of flour. Which of the following expresses the 

amount of flour required for  of this recipe? *†

a) 3/2 ÷ 1/3
b) ½ ÷ 1/3
c) 3/2 × 1/3
d) 1 ½ − 1/3
e) not given

#7.) Find 4/5 of 7/8 of 40,000. *†
#8.) Find 3/5 of 5/8 of 4,000. †
#9.) Find half of  hours.

Measure3

Component 1
Locate the following numbers on the number line:
#1.) 1/6  #2.) 4/3  #3.) 5/6

Component 2
#4.) Locate the number “1” on the number line below:

#5.) Locate the number “1” on the number line below:

Quotient4

Component 1
#1.)  Three pizzas are shared equally among four students what fraction of a 

pizza will each receive? *
#2.)  It takes ¾ kg of apples to make one pie. How many pies can be made using 

20 kg? *
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Component 2
#3.)  A beach 3/7 miles long is divided into 6 equal parts. How long is each  

part? *
#4.)  Two pizzas were shared equally among a group of students. If each student 

received 2/5 of a pizza then how many students were there?
#5.)  If 3 pizzas are shared evenly among seven girls while 1 pizza is shared evenly 

among three boys. Who gets more pizza, a girl or boy? *

Part-Whole5

Component 1
#1.)  Given a picture of four triangles and five circles; the question is what fraction 

of the objects are triangles?
#2.)  Given a picture of a circle with 2 out of 5 equal parts shaded; the question is 

what fraction of the circle is shaded? **
#3.)  Given figure composed of seven squares, three of which are shaded; the 

question is what fraction of the squares are shaded? **
#4.)  Given five equivalent objects three of which are circled; the question is what 

fraction of the objects are circled?

Component 2
#5.)  Given a rectangle composed of six equivalent squares one of which is shaded; 

the question is what fraction of the squares are shaded? **
#6.)  Given four equivalent objects one of which are circled; the question is what 

fraction of the objects are circled? **
#7.)  Given a rectangle composed of six equivalent squares four of which are 

shaded; the question is what fraction of the squares are shaded? **
#8.)  Given a figure composed four equivalent objects three of which are circled: 

the question is what fraction of the objects is circled? **
#9.)  Given a figure with sixteen equivalent objects four of which are circled; the 

question is what fraction of the objects are circled? **
#10.)  Given a rectangle with 24 equivalent squares four of which are shaded; the 

question is what fraction of the squares are shaded? **

Component 3
#11.)  The fraction 2/3 corresponds to taking a chocolate bar, dividing it into three 

equal parts and taking two of these parts. True or False? **
#12.)  The fraction 2/3 corresponds to taking a set of objects dividing it into three 

equal parts and taking two of them. True or False? **



LEARNING TRAJECTORY

371

Formal Proportional Reasoning6

Component 1
#1.)  Hank drove 500 miles in 8 1/3 miles, what was his average speed or rate in 

miles per hour? **
#2.)  If ¾ cup of coleslaw contains 120 calories. How many calories are there in 2/5 

cup? **
#3.) If the ratio of  is  and b	is	4200	then	find	the	value	of	a. **
#4.)	 If	2/5	of	4000	is	equal	to	¼	of	some	number	then	find	the	number.	**
#5.)  If 0.5 ml of medicine are mixed with 2 ml of water to form a solution then 

what is the ratio of drug to water in simplest terms? **

Component 2
#6.) Which of the following fractions is closest to 1? **
 (A) 2/3  (B) ¾   (C) 4/5 (D) 5/6

#7.) Circle the smallest fraction: **
 (A) 2/11 (B) 3/13  (C) 4/23 (D) 5/6

*   Commonality with other exercises in the same set is more than 0.5.
**   The commonality value was at least 0.4.
†    Added by present authors and not found in (Charalambous and  

Pitta-Pantazi, (2007)

NOTES

1 The Kaiser-Meyer-Olkin measure of sampling adequacy for these 11 questions was 0.64 thus these 
4 components are accurate with 67% of the variation explained by these four components. The 
Cronbach’s alpha value for these 11 exercises was 0.67 thus the ratio exercise set is reliable.

2 Kaiser-Meyer-Olkin measure of sampling adequacy 0.672 with 57% of the variation explained by 
these three components. Cronbach’s alpha 0.645 thus operator is a reliable set of exercises.

3 Kaiser-Meyer-Olkin measure of sampling adequacy 0.621 with 63.3% of the variation explained 
by these three components. Cronbach’s alpha 0.618 thus measure is a reliable set of exercises. 
Commonality was at least 0.45 or above for all exercises.

4 The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.621; 53.2% of the variation was 
explained by these two components. Cronbach’s alpha was 0.49 thus quotient was not a reliable set of 
exercises.

5 The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.821 and 59.3% of the variation was 
explained by these three components. The Cronbach’s alpha value was 0.79 thus part-whole is a very 
reliable set of exercises.

6 The Kaiser-Meyer-Olkin measure of sampling adequacy was 0.75 and 51.3% of the variation 
was explained by these two components. The Cronbach’s alpha value was 0.70 thus the formal 
proportional reasoning exercises formed a very reliable set of exercises.
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4.8. LEARNING TRAJECTORY

Linear Equations

INTRODUCTION

Iteration has emerged as one of more important methodological processes within the 
environment of evidence-based Common Core standards. Its importance increases 
together with the goal to formulate effective student learning trajectories, that is, 
those theoretical pathways of learning mathematical concepts that come closest 
to actual student learning. The following definitions of “iteration” from Merriam-
Webster and Oxford dictionaries refer explicitly to the successive approximations 
to a desired solution of the problem. The Merriam-Webster Dictionary defines 
“iteration” as “a procedure in which repetition of a sequence of operations yields 
results successively closer to a desired result.” The Oxford English Dictionary 
provides a similar definition emphasizing the term’s mathematical undertones: 
“A repetition of a mathematical or computational procedure applied to the result 
of a previous application, typically as a means of obtaining successively closer 
approximations to the solution of a problem.”

Educational research needs iteration in order to formulate, refine and tune learning 
trajectories from a collection of fragmented and diverse research results concerning 
the concepts in question. For example, Confrey’s formulation of the “equi-
partitioning learning trajectory” relies on 600 different research pieces (Confrey, 
2010). To transform such a large amount of research results into a smooth working 
teaching sequence facilitating student understanding and mastery of a given concept 
requires the successive approximation approach to revamp, change and improve 
the components of the teaching sequence while at the same time creating smooth 
connections between them.

The iteration methodology used by teachers in the construction of effective 
teaching sequences is very natural because of the cyclical nature of the teacher’s 
workload assignments (Wittmann, 1999). Teachers can, and often do, teach the same 
course from one semester to another, or from one academic year to another, creating 
an environment in which any teaching sequence of a given concept can be iteratively 
refined over several application cycles. The integration of this natural cycle of work 
with the teaching-research cycle (TR cycle) discussed in the Chapter 1 creates an 
extremely powerful methodological tool tailor-made to address the complex question 
of learning trajectories.
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Often, when the current authors’ work based on the TR cycle is presented to 
an audience of educational researchers, the most common question is “What is the 
difference between your cycle and the design research cycles?”

The difference is subtly profound. The standard design research cycle as well as the 
APOS theoretical framework cycle (Asiala et al., 1996), that served as the formative 
basis of the TR cycle created by the current authors, initiate from theoretical models, 
infer theoretical results, and, then, apply these models to the classroom setting. The 
TR cycle, on the other hand, starts most often from practice in a particular classroom 
setting, and its aim is the improvement of learning and related teaching in the very 
same classroom, and beyond. The theory here is a by-product of iterated practice, 
and it’s not the main objective. Although seemingly insignificant, this change of 
the starting position for iterated investigation results in significant changes in the 
research methodologies. Table 1 presents a sample side by side comparison between 
the methods, aims and results of standard academic research versus the classroom-
driven TR model.

LEARNING TRAJECTORIES

The concept of a Learning Trajectory has acquired recently new importance as the 
organizing principle of the new Common Core Standards in Mathematics (CPRE, 
2011). There are several definitions of a “learning trajectory” within the research 
profession (Baker et al., 2012) indicating that the concept didn’t yet “condense” 
(Sfard, 1992) sufficiently in its development. Therefore, one has a certain amount 
of freedom in focusing one’s own investigation on different aspects of the construct. 
For the purpose of this work the authors adopt Clements’ definition:

The learning trajectory (LT) of a particular mathematical concept consists of three 
components:

• A specific mathematical goal,
• A developmental path along which students’ thinking and comprehension 

develops and,
• A set of instructional activities that help students move along that path (Clements & 

Sarama, 2009).

The idea of LTs has a wide range of applications. It can be an excellent 
assessment tool precisely informing the teacher about the successful pathways of 
mathematical thinking of his or her students as well as about their weaknesses. At 
the same time, it can serve as a tool, a map or a guide constructed, preferably, by 
the teacher and for the teacher, providing information about possible trajectories 
for learning improvement strategies, asked for explicitly by the designers of the 
approach (Figure 1, Center, Daro et al., 2011). Active implementation of the LT 
framework in the development of curriculum facilitates intense discussions about 
the effectiveness of the relationship between abstract research and practicing 
teachers toward the support of the Common Core effort. “Whose responsibility 
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Table 1. Comparison of standard academic research and the TR model

Standard research (Design-Based 
Research) model

TR model (TR-NYC model)

Theory-driven:
“Design-based research can contribute  
to theoretical understanding of learning 
in complex settings” (Sandoval, p. 00).
Each of the articles by Sandoval, Tabak, 
and Joseph reveal how the design of 
complex interventions is an explicitly 
theory-driven activity. 

Practice-driven:
Teaching-research is grounded in the craft 
knowledge of teachers that provides the initial 
source and motivation for classroom research; 
it leads to the design-based practice and, the 
primary aim is the improvement of learning in 
the classroom and beyond. 

“In addition, the design of innovations 
enables us to create learning conditions 
that learning theory suggests are 
productive, but that are not commonly 
practiced or are not well understood” 
(Author, 0000)

The design of innovation enables the teacher-
researcher to establish a creative learning 
environment based on teacher’s craft knowledge 
that improves learning in the classroom 
and transforms students’ habits (such as 
misconceptions) into student originality 
(Koestler, 1964). Learning theories are used as 
needed to support teachers’ craft knowledge. 
(Prabhu & Czarnocha, 2006)

Cobb and Steffe (1983) assert that 
the interest of a researcher during the 
teaching experiment in the classroom is 
“in hypothesizing what the child might 
learn and finding [as a teacher] ways  
and means of fostering that learning”.

“…the interest of a teacher-researcher is to 
formulate ways and means to foster what a child 
needs to learn in order to reach a particular 
moment of discovery or to master a particular 
concept of the curriculum (Czarnocha, 1999)”. 
Since, however, “such moments occur only 
within students’ autonomous cognitive structures, 
the [constructivist] teacher has to investigate 
these structures during a particular instructional 
sequence [in order to be of help to the students]. 
In this capacity, he or she acts as a researcher” 
(Prabhu & Czarnocha, 2007)

Articulating, refining and validating 
is an “iterative process of research 
synthesis and empirical investigations 
involving” many types of evidence:
Step 1.  Meta-research of the concept to 

create the prototype;
Step 2.  Iterative refinement of the 

prototype. (Confrey, 2010)

Use of iteration in the TR-NYC model:
Step 1.  Process of iteration starting with the 

first iteration designed on the basis of 
teaching practice.

Step 2.  Incorporation of research results as 
needed in between consecutive iterations.

      It is the concept of iteration of the design 
from semester to semester together with 
the related refinement that can allow 
for the immediate implementation of 
the naturally relevant research results 
illuminating the current classroom 
situation and providing further insight 
into the design of appropriate sets of 
assignments. 
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is it to construct learning trajectories?” asks Steffe (2004, p. 130). Battista (2004, 
p. 188) states, “to implement instruction that genuinely and effectively supports 
student construction of mathematical meaning and competence teachers must not 
only understand cognition-based research on students’ learning, they must also 
be able to use that knowledge to determine and monitor the development of their 
own students’ reasoning.” Empson (2011) adds a layer of complexity to the current 
research on learning and invites one to think seriously about how to support teachers 
to incorporate knowledge of children’s learning into their purposeful decision-
making about instruction. Clements and Sarama (2004, p. 85) note, “that learning 
trajectories could and should be re-conceptualized or created by small groups or 
individual teachers, so that they are based on more intimate knowledge of the 
particular students involved…”

Thus, in agreement with Kieran, “it is [only] the teacher who can affect to 
the greatest extent the achievement of one of the main purposes of the research 
enterprise, that is, the improvement of students’ learning of mathematics” (Kieran 
et al., 2013). Therefore, the search is on for the most effective routes of joining 
educational research with classroom teaching (Kieran et al., 2013). Kieran also 
addresses the variety of differences shared by researchers and teachers that make 
collaboration challenging (Kieran et al., 2013). It makes sense, therefore, to focus on 
what is common between researchers and teachers involved in classroom teaching-
research. Our assertion is that the concept of iteration as a component of the research 
methodology is common to both.

THE METHOD OF ITERATION

This presentation is focused primarily on the methodological aspects of the proposed 
route of research/teaching integration showing an essential methodological trade 
off necessary (though not sufficient) for teachers’ buy-in in the LT approach. The 
discussion describes the method of iteration for learning trajectories during the 
process of their research-based construction (Confrey & Maloney, 2010). The 
TR cycle of the TR-NYC model (Czarnocha & Prabhu, 2006) is the theoretical 
framework within which iteration is effectuated in classroom teaching-research. 
Two consecutive examples of the process are presented for the Learning Trajectory 
for Linear Equations (LTLE) under construction in the context of the Integrated 
Arithmetic/Algebra Course Teaching-Experiment being conducted at present at an 
urban community college.

The desired goal is the sequence of instructional problems and strategies that 
produces the most optimal effective understanding and mastery of the relevant 
mathematics (linear equations, in this case) in the classroom. Each new iteration of 
the teaching sequence is produced at the analysis of the data node of the TR Cycle 
through its major or minor refinement. The refinement may consist in the change 
of component strategies, their sequencing or the changes in learning environment. 
The changes are suggested by the analysis of learning in the previous cycle, the 
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craft knowledge of the teacher-researcher as well as through the relevant research 
results.

The Iteration Trade-Off

Since, generally, every teacher has an option of teaching the same course every 
semester to a new cohort of students, the TR cycle allows for the continuous process 
of classroom investigations of the same research question during consecutive 
semesters or academic years. The TR-NYC model asserts that two such consecutive 
cycles constitute a single unit of activity explicitly aimed at the improvement of 
learning (Czarnocha & Maj, 2008). Two cycles are needed to enable the refinement 
of the particular LT from one iteration to the next. A methodology for construction 
and validation of a learning trajectory had been thoroughly described by Confrey 
and Maloney (2010) in the case of the Equi-partitioning Learning Trajectory. 
According to Confrey and Maloney, articulating, refining and validating is an 
“iterative process of research synthesis and empirical investigations involving” 
many types of evidence. Their research sequence starts with the significant research 
effort in the design of the first prototype. The iterative process is the second step 
of the research.

Within the TR-NYC model, the iteration becomes the primary methodological 
tool, while the initial learning trajectory is designed more on the basis of the teaching 
craft knowledge of the mathematics teacher than on the basis of the relevant research 
results. The fine tuning of the learning trajectory to the needs of the student cohort 
through the incorporation of the research knowledge into the design process takes 
place during the consecutive iteration phases while fulfilling the requirements of 
adaptive instruction (Daro et al., 2011). It is the concept of iteration of the design 
from semester to semester together with the related refinement that can produce 
relevant research results illuminating the classroom situation or providing help in the 
design of an appropriate set of assignments.

Thus the initial theoretical period of gathering available research required for 
standard research is not necessary for the classroom teacher-researcher designing 
learning trajectories because it can be transformed into its “just-in-time” utilization 
at each refinement node of the TR cycle. The “just-in-time” manifestation occurs 
along the iteration cycle. This change of emphasis in the role of research as the 
starting point of investigation to its “just-in-time” consultation is one of the necessary 
conditions for the incorporation of research into classroom practice.

ADAPTIVE INSTRUCTION

The process of iterative refinement of the teaching sequence associated with a given 
learning trajectory introduces, in a natural manner, a new type of instruction that 
adapts itself to students’ state of knowledge. It’s a promising concept in that it has an 
application to every student in the class and, thus, it ideally accounts for learning for 
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all students. The process of adaptive instruction outlined by Daro (2011) corresponds 
to nodes of the TR cycle. For example, “the determination where students are in 
their progress and the kind of problems they might have along the way” (Daro et 
al., 2011) corresponds to the Diagnosis node of the TR cycle; “finding out what 
to do to help students to continue to progress” (Daro et al., 2011) corresponds to 
Design/Redesign node of the intervention to address learning challenges; providing 
“students with the feedback to help them to get back upon the road to success” (Daro 
et al., 2011) corresponds to the Data Analysis nodes followed by the Diagnosis node 
again, and next the Redesign node. Thus, if there is a need to help students with their 
immediate problems, the TR cycle may be traversed a couple of times within one 
class. The paradigmatic example in Chapter 4.1 is a good illustration of several TR 
cycles taking place within a short classroom dialogue lasting only several minutes. 
This unity of research investigation and adaptive teaching is possible through the 
development of thinking technology within the practice of the teacher-researcher 
touched upon in Chapter 4.1.

CONSTRUCTION OF A LEARNING TRAJECTORY

The construction of a learning trajectory for linear equations through three iterations, 
demonstrated below, provides an illustrative example of the method.

The Learning Trajectory for Linear Equations (LTLE) has been designed on the 
basis of algebra classroom teaching craft mathematical knowledge of the teachers 
and triangulated with the Learning Trajectories Display of the Common Core State 
Mathematics Standards developed by Confrey et al. (July 2010). The design of LTLE 
is the adaptive response to the observed challenges of students with the following 
problem:

Solve for y in terms of x:

 3x – 2y = 6 (1)

Students’ recorded solution:

 

 3x – 2y = 6
–3x

      – 2y = 6
         y = –3

 (2)

The First Iteration LTLE, pictured in Figure 2, was designed to respond  
specifically to student difficulties described above. It outlines the necessary 
prerequisite and sequential knowledge to understand the central concept “solve 
for x in terms of y” as well as new concepts dependent on that understanding. 
The concept map is designed in the environment of the Institute for Human and  
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Machine Cognition CmapTools at http://cmap.ihmc.us/. The oval shaped components 
represent the concepts, or mathematical objects, that are joined by propositions 
describing relationships between them. The concepts “solve for x” and “solve for x 
in terms of y” represent encapsulated or reified procedures.

Teaching-Research Diagnosis

The reasons for the erroneous solution include (a) absence of awareness of the 
functional relationship between the variables x and y, evidenced by transforming the 
problem to a simpler equation with one unknown leading to (b) misapplication of 
the variable as a specific unknown, (c) the absence of understanding the algebraic 
meaning of the equality symbol “=” evidenced by adding “–3x” to one side of the 
equation only, and, finally, as it was demonstrated by the teacher-researcher Vrunda 
Prabhu, (d) careless reading. The LTLE consists, therefore, of three separate but 
connected learning trajectories of (i) the variable as an unknown (broken arrow 

 (pink) in Figure 2 above), (ii) the variable as a general number (black in 
Figure 2 above) and (iii) the variable in a functional relationship (broken arrow 

 (green) in Figure 2 above) (Ursini & Trigueros, 2011).
The three component trajectories of the LTLE just discussed are shown in different 

colours on the first iteration concept map above (see Figure 2). The pink  one 
leads along the process of generalization, from a formally similar equation in one 
variable to a corresponding equation in two variables. This trajectory is useful if 
the class has mastered solving simple one variable equations. Otherwise, the second 
trajectory, shown in  (green), is available via the graphing component of the 
schema, that connects the challenge of the problem with its foundations within the 
concept of a variable, meaning of equality and the functional relationship between x 
and y. The cognitive fragility of the left upper rectangle in the concept map is well-
known in the literature. Filloy and Trojano, for example, observe that the increase of 
algebraic content along the pink vertical arrow intersecting this rectangle is a serious 
problem for students because the solution of the more complex target equation departs 
from that of simpler equations such as 4x + 2 = 6 (Filloy & Trojano, 1989; Ursini & 
Trigueros, 2009). The simpler linear equations enjoy more accessible arithmetic 
interpretations. Filloy and Trojano (1989) coined the term “Didactic Cut” to refer to 
the associated cognitive step. The two horizontal pathways indicate abstraction from 
and the generalization of a one-variable equation to a two-variable equation – an 
arduous process according to many investigations focused on problems that students 
have with generalization as they begin to study algebra in middle school. Most studies 
conclude that generalization is a difficult obstacle for the majority of these students 
(Bell & Malone, 1993; Arzarello et al., 1994; Bednarz & Janvier, 1994; Radford & 
Grenier, 1996; Bolea et al., 1998a, 1998b). The alternative graphing trajectory, shown 
in dark grey (green), develops the concept of “solving for y in terms of x” through 
transformation of a standard form of an equation into a known functional relationship 
y = mx + b.

http://cmap.ihmc.us/
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The third component trajectory, shown in black, joins the concept of the variable 
as an unknown to the discovered difficulty along the theme of algebraic equality “=” 
through a series of “scale balance” type of problems. The assumed equilibrium of 
the scale in such problems is the metaphor for algebraic equality “=”. The possibility 
of distinguishing three different learning progressions within the concept map 
demonstrates the versatility of such an integrated concept map/learning trajectory 
for classroom teachers and its usefulness in addressing diverse learners. According 
to (Ursini & Trigueros, 2009), the best, flexible development of the schema of the 
variable is to engage, in coordination, the three subschema: (1) variable as a specific 
unknown, (2) variable as a general number, (3) variable in a functional relationship. 
This implies the use of all component trajectories, because all three sub-schema are 
involved in the problem.

Instructional Sequences for the First Iteration

Here, we provide two small instructional sequences, which were used in the design 
of the first iteration.

We begin with the Teaching Sequence of Mathematical Activities that are meant 
to propel a student along the pink trajectory of generalization. The trajectory uses 
a “writing mathematics approach” to increase the meta-cognition and reflection 
upon the methods of solution. The aim of this sequence is to lead the student in the 
direction of development of generalization from a simple equation in one variable to 
the corresponding equation in two variables. The idea is to focus student’s attention 
on the similarity of the solution procedure for one variable to the solution procedure 
for the task of “solving for y”.

Problem 1

Solve for x. As you solve write every step you make in the solution. Look at the 
three descriptions, collect similar actions in the three examples and write them as 
one set of steps that apply to all three problems.
(1a) 2x + 7 = 15
(1b) –4x + 8 = –28
(1c) 5x – 3 = 12
My general set of steps is _____________________________________________
__________________________________________________________________
__________________________________________________________________
__
Problem 2

Look at the following three examples that are similar but different from the 
previous set, and solve for x in terms of y by applying your general set of steps from 
Problem 1 to these three equations. Write your steps carefully and keep careful 
track of their order.
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(2a) 2x + y = 15
(2b) –4x + y = –28
(2c) 5x – y = 12

Problem 3

Now, solve for y in terms of x (note the change of the instruction) by applying your 
general set of steps to these three equations. Write your steps carefully and keep 
careful track of their order.
(3a) 2x + y = 15
(3b) –4x + y = –28
(3c) 5x – y = 12

Write the general description of steps for the instruction “Solve for y in terms  
of x”______________________________________________________________
__________________________________________________________________
__
Problem 4

Solve for y in terms of x:

(4a) 4x + 2y = 12
(4b) 6x – 3y = 15
(4c) –2x + 3y = 15
(4d) –2x + 3y = 15

What is the critical computational difference between the last two and the first  
two problems?
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
_
Instructor’s Notes: The role of Problem 1 is to introduce the solution procedure 
for a simple and familiar case that consists of subtraction of a number from both 
sides followed by the division of the result. The role of the Problem 2 is to expose 
students to the variation in the procedure when an integer from the Problem 1 set is 
changed into the second variable, y. Problem 3 changes the task from “solving for 
x” to “solving for y”; students are expected to transfer the procedure from Problem 
1 and Problem 2 accounting for the change. In the second iteration, problems  
(3b) and (3c) were changed from –4x + y = –28 to –4x + 2y = –28, and from  
5x – y = 12 to 5x – 2y = 12, respectively. The aim of that change was to incorporate 
the division by the numerical coefficient of the variable y. Two examples of the type 
are needed to indicate the difference between answers using only integers and those 
using fractions. Fractions are one of the main obstacles students experience en route 
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to algebraic thinking.

Using the Scale Balance Manipulative: Reinforcing the Meaning of the Algebraic 
“=“ and Extending the Method across the Didactic Cut (Filloy & Trojano, 1989)

The details of the teaching sequence meant to develop the idea of algebraic 
equivalence are presented here.

A)  Solve the equation by removing weights from the scale in such a way so that the 
scale remains balanced (at an equilibrium). Describe the steps you are taking to 
keep the scale balanced.

B)  Solve the equation algebraically by the Equivalence Principle.
C)  What other equivalent equations can you make out of this one?
  ____________________________________________________
  ____________________________________________________

D)  Solve for x:
  0.75x + 0.5 = 2
E) Solve for x:

    

The Didactic Cut
A)  Solve the equation by switching the weights from one side to another in such a 

way so that the scale remains balanced (at an equilibrium). Describe the steps 
you are taking to keep the scale balanced.

B)  Solve the equation algebraically by the Equivalence Principle.

Figure 5. The scale balance manipulative I
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C)  What other equivalent equations can you make out of this one?
   ____________________________________________________
   ____________________________________________________
   ____________________________________________________

D) Solve for x:
  5.2x – 3.6 = 2.2x + 6.4

E) Solve for x:

  

Instructor’s Notes: Each of the Scale Balance problems starts from the concrete 
problem that can be solved by changing the weights while keeping the balance 
at equilibrium followed by the request to solve the same problem algebraically. 
Description of the steps is intended as the transition to algebraic operations followed 
by the reinforcement of the Equivalence Principle. Finally, the practice of technique 
is extended to decimal and fractional numerical coefficients, a well-known Achilles 
heel of remedial students of mathematics.

The Second Iteration

The teaching experiment leading to the second iteration had been conducted during 
the fall 2012 semester at Hostos CC. Analysis of the results of the implementation 

Figure 6. The Scale Balance Manipulative II
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of the first iteration along with observed student difficulties suggested the following 
needs:

1. A development of an auxiliary trajectory of algebraic notation;
2. An increase in the complexity of numerical coefficients from integers to signed 

decimals and signed fractions;
3. A much stronger emphasis on the discovery of numerical relations, and
4. Introduction of literal equations as the scaffold for the procedure “solve for x in 

terms of y”.

The refinements (1), (3) and (4) are indicated in blue in the Second Iteration 
concept map (see Figure 3). The need to emphasize numerical relations as the 
background for algebraic problem-solving suggested a new point of view for 
the entire curriculum of the Arithmetic/Algebra course. Until this moment the 
curriculum was based solely on the generalization/particularization relationships 
between arithmetic and algebra. The new point of view has been provided by the 
discussion of the curriculum of V. Davydov (Jean Schmittau & Anne Morris, 2004), 
that takes mathematical relation as the foundation of the approach. The curriculum 
of the course then became a composition of two principles: generalization (algebraic 
expressions, polynomials, rational functions) and algebraic relation underlying 
theory of equations and functional relationships.

Example of Exercises, Which Focus Attention on the Numerical Relationships

The design follows the idea that a process and its inverse reinforce the reflective 
abstraction, and, hence, the development of the concept; in this case, the concept of 
the numerical relationships.

Problem1. Translate the verbal statement into an algebraic one:

(1a.) Twice a number is equal to 16   ___________________________________
(1b.) 0.5 of a number is equal to 10   ___________________________________
(1c.) Twice the number increased by 5 is equal to 11   _____________________
(1d.) The negative of twice the number decreased by 8 is equal to negative 4   
__________________________________________________________________
_
Problem 2. Express the relations between indicated pairs of numbers verbally:

• Two numbers are related additively if they are related by addition “+”
• Two numbers are related multiplicatively if they are related by multiplication “×”
• Two numbers are related additively and multiplicatively if both addition “+” and 

multiplication “×” are involved.

(2a) What is the additive relation between the numbers 4 and 15?
(2b) What is the multiplicative relation between the numbers 4 and 15?
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(2c) What is the additive relation between the numbers –4 and 15?
(2d) What is the multiplicative relation between the numbers –4 and 15?
(2e) What is the additive relation between the numbers –4 and 15?

Instructor’s Notes: Note that the two problems above are “quasi” inverse processes 
of each other: (i) verbal statement  algebraic relation, and (ii) numerical 
relation  verbal relationship. In addition, the second iteration contained a 
component addressing “literal equations” as a scaffold for the “solve for y” task.

The Third Iteration

The central improvement for the third iteration was to significantly increase the 
impact of the “algebraic relations” approach. This resulted in grounding the whole 
lower half of the trajectory in algebraic problem-solving (see Figure 4). This,  
in turn, leads up to the algebraic solution methods of systems of simple equations 
with two unknowns. Inclusion of Davydov’s ideas is an example of “just-in-
time” employment of new learning theory and related research results. After this  
basis has been established, the instruction along the upper half of the trajectory 
readily follows. The “scale balance” manipulative had been taken away for two 
reasons:

• It didn’t make much of an impact on student understanding of the equivalence 
principle;

• The public software is not sufficiently developed to imitate the algebraic procedure 
of solving such equations.

Instead, a small algebraic teaching sequence had been designed employing, once 
again, the process and its inverse method. It is presented below.

Problem 1. Decide which of the pairs of equations below are equivalent and explain 
the reasons for your decisions?

(1a) E1: x – 5 = 3 E2: x – 5 = 3
__________________________________________________________________
__________________________________________________________________

(1b) E1: x – 5 = 3 E2: x + 2 = 11
__________________________________________________________________
__________________________________________________________________

(1c) E1: x – 5 = 3 E2: x = 8
__________________________________________________________________
__________________________________________________________________
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(1d) E1: 3x = 9 E2: 6x = 12
__________________________________________________________________
__________________________________________________________________

(1e) E1: 3x = 9 E2: 9x = 27
__________________________________________________________________
__________________________________________________________________

Problem 2. Each of the two columns below contains a triplet of equations. Is the 
first	equation	in	each	column	equivalent	to	that	column’s	last	equation?	Explain	the	
reasons for your answers

(A) 2x – 6 = 12   (B) 2x – 6 = 12
  2x = 18        4x –2 = 24 
   x = 9            4x = 36
Conclusion: In order to solve the equation of the type ax + b = c we need to _____
__________________________________________________________________
__________________________________________________________________
__________________________________________________________________
___
Instructor’s Notes: The problems above require use of the equivalence principle 
to decide whether the pairs of equations are equivalent. This way the role of the 
principle is clarified and then it can be applied in the context of a standard set of 
problems where the principle is used to obtain solutions.

CONCLUSION

This chapter presents a work in progress. Our aim here has been to demonstrate  
the process of constructing a formal learning trajectory and to show that a teacher  
in the classroom can accomplish it. The assessment was primarily done through 
class observation, results and difficulties of students in their homework  
assignments and tests. As soon as we arrive at the learning trajectory we are 
intuitively satisfied with, we will establish more precise assessment measurements 
and extend their application to other sections of the course led by different 
instructors. The presence of the teaching-research community in the school 
described in the Unit 5 is central in the process of tuning and applying the trajectory 
beyond the initial classroom.
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HANNES STOPPEL

4.9. CALCULUS

Searching for a “Real World” Approach

SUMMARY

The theme of the chapter, modelling real world problems in freshman calculus 
were discussed in the Introduction to Unit 4. Here we would like to explore the 
research question of the chapter, what is the nature of the master teacher’s success 
in reaching his successful design. We will trace the development of the teacher’s 
thinking in the chapter from cycle to cycle to identify patterns of the changes.

Stage 1 (2005) Introduction of verbal problem reality together with given 
modelling analytic function.

The teacher is changing his approach from traditional lecture style at the urging 
of students who don’t see connection between involved concepts, question the 
usefulness of the integral in favor of approximation techniques by rectangles or 
trapezoids, and ultimately ask, how one would find the best function if its analytical 
form is not given. That remark motivates the teacher to design next approach, which 
is an elementary modelling problem with elements of the discovery method.

Stage 2 (2008) The second iteration of the course focuses on the first attempts 
at modelling the function from the graph. That step naturally implies Discovery 
method.

Stage 3 (2011) However, it is only at the third iteration when the transformation 
of the Learning Environment along several dimensions of the design makes it into a 
cognitive unit of thought, which convinces students that Riemann integration makes 
sense.

Multidimensionality of instructor’s efforts in the third stage is impressive: 
motivational gallery tour/poster preparation, diversifying the designed problems 
into modelling from the graph and modelling from the numerical data, new work 
organization in the classroom creatively and successfully addressing different 
students’ levels of preparation, JiTT hints card with GC algorithms.

The persistence of student difficulties with understanding the role of Riemann 
construction forces the teacher (1) to abandon the quest for understanding lower 
and upper sums in favor of rectangle and trapezoids methods in the third iteration 
of the course. He realizes that the new prescribed curriculum in the state of 
Westfalia in Germany has limited the mathematics exposition in calculus solely 
to continuous functions, which do not allow for the full argument justifying 
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necessity of lower and upper Riemann sums. He decides the concept of common 
limit between rectangle and trapezoid series to be the central goal of classrooms 
investigations. It’s only when students’ own reflection suggests a question, what 
would happen if one takes upper rectangles instead of lower ones, that the question 
of upper and lower sums is revisited with full collaboration and understanding by 
students.

The process of development through three stages with the third stage, usually 
significantly different from the first two in scope and generality of the effort, have  
been noted by (Czarnocha, 2013) and characterized as elementary learning  
trajectories, PG Triples. PG triples are simple manifestations of PG triad  
(Chapter 4.1).

Answering the posed research question concerning the nature of the successful 
design through practice, we could say, it should happen in three steps, which make 
up the simplest process of learning based on the triad of concept development 
by Piaget and Garcia (1987). As the second source of the teacher’s success one 
needs to point to a very tight relationship between students’ sense of interest 
and involvement in learning the concept. Each subsequent design in the series 
is motivated primarily by teacher’s reaction to student comments to the previous 
iteration. Such a close relationship can substitute, in the hands of a master teacher, 
a more precise but less intuitive formal assessment tools. Finally, one needs to 
direct readers’ attention to the multitude of teaching obstacles created by the 
design of curricula by the central authorities of a German state, such as Nordrhein-
Westfallen, which was gracefully dealt with by the instructor.

INTRODUCTION

For a long time, the question of how to design an effective introduction to integral 
calculus has been raised in mathematics education. In the past ten years, the author 
has taught four calculus courses at the 12th high school grade level in Germany. 
Many different aspects of each course were documented and analysed. For every 
successive iteration of the course, revisions of concepts and content, based on 
the observations made during the preceding course, were implemented. In this 
article, all four courses will be described and analysed. Weaknesses and strengths 
of the different approaches will be discussed in detail; changes and adaptations 
will be examined and evaluated. The observations strongly suggest that, in order 
to make students fully understand the meaning of the integral, it pays to choose a 
non-mathematical detour when introducing the topic. Additionally, we will show 
how graphic calculators (GC) and computer algebra systems (CAS) can support 
this aim.

The introduction to integral calculus almost always takes place in higher 
education. In Germany, integral calculus is studied during the last two years 
of high school providing students with the necessary qualifications to attend 
university. The calculation of areas between two graphs or between a graph and 
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the x-axis can be done before formally introducing integrals, with the help of GC 
or CAS (Stoppel, 2002; Stoppel, 2006; Stoppel, 2010; Ministerium für Schule 
und Weiterbildung des Landes Nordrhein-Westfalen1, 2008). However, integral 
calculus demands more. The deeper related mathematical background, that is, the 
connection between differentiation and integration expressed in the fundamental 
theorem of calculus, is expected to be understood; yet the questions of how to 
introduce the integral and how to approach the fundamental theorem at the high 
school level remain unrequited.

Usually, a sequence of integration lessons begins with calculating definite 
integrals, and then addresses the concept of the anti– derivative (Schmidt, Körner, & 
Lergenmüller, 2011, Section 4.1; Bigalke & Köhler, 2011, pp. 192–197; Brandt & 
Reinelt, 2007, pp. 154–156). There exist many different approaches to such a 
sequence. One popular way to introduce integration is by calculating series of upper 
and lower Riemann sums. Since series have been eliminated from the standard high 
school curriculum in Germany several years ago, we need to look elsewhere. The 
curricula of North Rhine-Westphalia still include upper and lower sums, but textbooks 
discuss them in separate disjoint places (Schmidt, Körner, & Lergenmüller, 2011,  
pp. 159, 160; Bigalke & Köhler, 2011, pp. 192–197; Brandt & Reinelt, 2007,  
pp. 157–161). Nonetheless, these topics are still viewed as proper qualifications 
intended to generally prepare students for university, independent of which subjects 
they choose to study later. As high school curricula diverge from university 
expectations, and these inconsistencies increase as years go by, universities will 
have to adapt their approaches to reflect students’ abilities. This especially applies to 
the introduction of basic concepts such as integral calculus.

This study is based on the development of lesson sequences of introduction 
to the definite integral in four different twelfth grade high school classes from 
2003 to 2011. Digital instruments are used in high school mathematics classes 
in different ways (Kultusminister Konferenz, 2009, p. 5). From 2003 to 2011, 
the curricula that incorporate the usage of digital media like GCs and CAS have 
significantly changed (current issue Ministerium für Schule und Weiterbildung des 
Landes Nordrhein-Westfalen, 2013, pp. 22–26). To be able to fully comprehend 
the development of epistemic actions (Hershkowitz, Schwarz, & Dreyfus, 2001) 
we tried to keep much of the structure of the topic of introduction to integral 
calculus as intact as possible.

Graphic Calculators (GC) and Computational Algebra Systems (CAS) were used 
because of their potential to bypass tedious calculations, when appropriate, and 
emphasize conceptual understanding instead. Furthermore, the employment of tools 
like GCs or CAS is prescribed in North Rhine-Westphalia in grades ten to twelve 
(Ministerium für Schule und Weiterbildung des Landes Nordrhein-Westfalen, 
2013) and is supported by Kultusminister Konferenz (2012).

Another development lays emphasis on the role of modelling as a general aim of 
mathematics education, and focuses on teaching methodology. This idea developed 
out of the cooperative work, as will be most evident in the last iteration of the course.
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The main lesson aspects analysed here are:

• Form of work
• Paths towards the definite integral
• Definitions of the integral, exactness from mathematical point of view
• Usage of media
• Duration

During and at the end of the sequence of lessons the above aspects were analysed 
via feedback from students during and after the introduction as well as instructor 
observations noted while planning the next version of the course.

The educational goals of the lesson sequence consist of a workable understanding 
of the following ideas:

• Definition and basics of the definite integral
• Theory and use of limits
• Approximations to areas between graphs of functions and the x-axis by geometrical 

figures (rectangles and trapezoids); and, that these approximations get better as 
the number of rectangles/trapezoids increases

• Calculations of areas reduced to areas above or below the x-axis
• The relationship and differences between arithmetic and graphical meaning of 

the integral
• The rigorous definition of the definite integral from the mathematical point of 

view

The approaches to the introduction of the definite integral were different in each 
of the four iterations. The first of these was used in 2003, and was motivated by 
a mathematical question about the calculation of the area between the graph of a 
function and the x-axis, and began with a study of linear functions followed by 
polynomials of degree two. Next, upper and lower Riemann sums were calculated 
for continuous, piecewise monotonic functions, leading to the Riemann integral.

In 2005, the introduction was driven by an application and modelling exercise. 
The modelling problems were presented along with the functions being used and 
challenged the students to use the given functions properly in their approximations 
of the area. The first approximation of the area between the graph of a function 
and the x-axis was discovered by students through exchange of ideas and lead to 
the sum:
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n=

∑ +
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−



1

The definition of the integral was reduced to differentiable functions.
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A study about the introduction to integral calculus is discussed in Thompson, 
Byerley, and Hatfield (2013). The study began with purely mathematical 
exercises stressing calculations as well as modelling exercises emphasizing 
applications of the same type used by us in the 2003 and 2005 sequences. The study 
reported that, sometimes, the students used computers for simulations. The authors 
recommended that curricula should be changed to allow for an appropriate use of 
CAS.

The introduction in 2008 started with a modelling exercise based on a picture 
without given measurement. The students had to determine the function from 
descriptions, and develop the procedure for the calculation of the area themselves. 
Subsequently, the upper and the lower sums were introduced, and the rest of the 
introduction was analogous to that of 2005.

After a detailed evaluation of the three iterations before, the integral was 
introduced in a quite different way in 2011. The students started with different 
topics in working groups. Every group had a look at an application of integral 
calculus where one will start with approximations and optimize results with integral 
calculus. The topics required different competencies, so that the students could be 
challenged in relationship to their capabilities associated with mathematics. After 
a variety of student-motivated approaches, the students found approximations 
of areas using rectangles and trapezoids, and, eventually, upper and lower sums. 
The students themselves, guided by the instructor, constructed the steps needed 
to evaluate the integral. Although the definition of the integral was the same as 
in the 2008 sequence, students were exposed to examples of continuous but not 
differentiable functions.

DETAILED LESSON SEQUENCES: FIRST ITERATION – 2003

Description

The introduction to integral calculus in 2003 took three periods of 45 minutes using 
the classical style, that is, by calculating upper and lower Riemann sums leading 
to the Riemann integral. As is typical, equidistant partitions of the intervals of 
integration were used and simple case integrals were evaluated (Stoppel, 2002, 
Chapter 5).

In the beginning, the students were lead to the problem of calculating the area 
between the graph of a function and the x-axis. Then, an intuitive mathematical 
question about a graph of a function came up. After a few hints, the students found 
an approximation using rectangles below, or partly above, the graph of the function 
as can be seen in Figure 1.

During the next few exercises students were finding difficulties in calculating 
sums of the areas.
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Figure 2. Transparency of an idea of the proof of 
i
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After a few geometrical considerations, such as those in Figure 2, and a proof of 

the equation 
i

n

i n n
=
∑ =
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1

1
2

( )  by induction, they found an equation for calculating the 

sum of areas of n rectangles above or below the graph of a function. This led to the 
following definition:

Definition: Let f: [a, b] ¦ R be a continuous, piecewise monotone function. A 
partition of the interval [a, b] is given by
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Figure 1. Upper and lower sums for various subdivisions of a  
linear function over the interval [0, 2]
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Furthermore, let Mi be the maximum and mi be the minimum of f(x) on the ith 

interval of the partition. Then, we call

U M b a
nn

i

n

i:= −



=

∑
1

the upper Riemann sum of f(x) relative to the partition Zn and

L m b a
nn

i

n

i:= −



=

∑
1

the lower Riemann sum of f(x) relative to the partition Zn.

Figure 3. Upper and lower sums for various subdivisions of polynomial  
with degree 2 for the interval [1, 2]

The following exercise was used as an example.

Exercise 1. The function f is given by f (x) = 3x + 4. Calculate the upper sums Un , the 

lower sums Ln , and the limits lim
n nL→∞

 and limn nU
→∞  for the intervals

(a) [0, 2], and (b) [0, b]. Note: we present here the calculations for the interval [0,2].
Solution:

 (a) Take I = [0, 2], then
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 It follows, that
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Then, the limits are lim lim
n n n nU L
→∞ →∞

= =14 .
The students then used the Maple CAS for calculations of upper and lower sums, 
applying an environment where one needs to enter the function and the interval 
parameters of limits and partition. They worked in small groups and had to calculate 
upper and lower sums for several more complicated functions while having the 
opportunity to get hints from the teacher. The exercises, along with Maple, allowed 
for and encouraged students to evaluate definite integrals without any formulas. The 
students arrived at the following definition:

Definition. A continuous, piecewise mo   notone function f: [a, b	→	R] is called 
Riemann-integrable over [a, b], if

lim lim
n n n nU L
→∞ →∞

=
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for any upper sum and any lower sum. If it exists, the limit is called the definite 
integral of f over [a, b] and is denoted by

a

b

f x dx∫ ( )

Students had to calculate more examples, some with rational functions, using 
Maple, before we reached the Fundamental Theorem of Calculus.

Observations and Remarks from Students

In 2003, the series of lessons was a purely mathematical introduction to the definite 
integral; the relation to applications was only briefly discussed in the very beginning. 
Only a few students understood the correlations between the CAS file and the 
mathematical background of the calculations.

It was difficult to convince the students of the importance of the formulas used to 
calculate upper sums and lower sums, because it was quite easy to evaluate using the 
CAS. They needed to be adverted.

The derivation of the definite integral was too theoretical and the students missed 
connections with the applications. Therefore, the sense of the integral was vague to 
the students, as was evident from students’ questions. Even more examples could not 
change the default attitudes of the students.

Through feedback, the students informed the instructor that the distinction 
between the upper sum and the lower sum appeared senseless, because lim lim

n n n nU L
→∞ →∞

=  
every time. Some of them did not realize the importance of Un and Ln, and were 
unable to grasp why one needs both of them. In high school in Germany, we stress 
that a function f is integrable if upper sums and lower sums for equidistant partitions 
of the intervals converge to the same value. Moreover, the students’ interest in 
Riemann sums was lowered when integration of polynomials was introduced. As was 
mandated in the curriculum, one does not have to use functions that are not integrable. 
In addition, because of the restriction to equidistant partitions of the interval for 
integration only a small class of functions is given for practice.

During the proof of 
i

n

i n n
=
∑ =

+
1

1
2

( )  the students were diverted from the main goal 

of the lesson calculations. During the calculations of upper sums and lower sums 
with the CAS some students still needed hints from the instructor.

DETAILED LESSON SEQUENCES: SECOND ITERATION – 2005

Description

The introduction to integral was revised for this course, and the focus was more 
grounded in reality utilizing modelling. To this end, the course started the introduction 



H. STOPPEL

404

to integral calculus with a verbal “real-world” exercise, for which the need for a 
mathematical procedure was clearly visible. During these teaching units the students 
only used a simple calculator.

The introduction took three 45-minute lessons. The first exercise was presented 
by a student teacher.

Exercise 1. The owner of a piece of land needs to sell a piece of it. To calculate how 
much money he should be asking for, he needed to measure the area first. However, this 
proved to be difficult because, even though it has three straight perpendicular edges, 
the fourth edge is along the coast of a stream, the shape of which can be very well 
described by the function f(x) = x3 + 2x2 + 3. The price of a square meter was about 
220 €. How much should the owner expect to earn with his area? (Refer to Figure 4)

The task includes an application. The students could only approximately determinate 
the area, because they did not know the integral yet. Thus, everybody exchanged 
some ideas for the solution, and they formulated three different approaches:

(I)  Both local extremes of the graph should be connected by a line segment. Then, 
the area of the resulting trapezoid should be calculated, as in Figure 5. The 
coordinates of the extremes can be only approximately determined.

(II)  The best possible horizontal line should be drawn through the inflection 
point. This new horizontal line, the given horizontal edge (along the x-axis), 
along with the two vertical lines that pass through the local extrema now 
form a rectangle. The area of this rectangle can be approximated and will be 
approximately equal to the area of the irregularly shaped region. This solution 
is shown in Figure 6.

(III)  The third approximation was almost a combination of (I) and (II). The interval 
along the horizontal edge opposite the stream (along the x-axis), between 
the x-coordinates of the extrema, is to be partitioned into 6 parts of the same 
length (which appears to be 0.25 in this case), and for every subinterval, the 
areas of the small rectangles with height f(0.25k), for k = 1, 2,…, 6, should be 
calculated. Afterwards, the sum of these areas should be added. See Figure 7.

Figure 4. A sketch of the layout of the owner’s land, from Exercise 1, that is to be sold
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Figure 6. The inflection point rectangle approach of students’ proposal II

Figure 5. The trapezoid approach of students’ proposal I
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Each idea was explored by the group that came up with it. Then, each of the three 
groups presented its results. After some discussion, the students recognized that 
version (III) would be the best one since the interval [0, 1.5] can be easily divided 
into a larger number of parts, and a better approximation for the area between the 
graph of f(x) and the x-axis can be obtained. Following this logic, they continued 
working with version (III).

Now, using method III, through pattern recognition, students were able to develop 
a formula for approximating the area between the graph of f and the x-axis that was 
easily generalizable for an arbitrary large number of subintervals. Next, the students 
attained better approximations of the area by making finer partitions with the aid of 
a calculator. As the subintervals used became smaller and smaller, students felt ready 
to formulate a more general algorithm to approximate the area for any interval. This 
line of reasoning lead to the definition of the definite integral. The convergence of 
the sum of areas of the sub-rectangles as ∆x → 0 was assumed. This definition of the 

Figure 7. The sum of sub-rectangles approach of students’ proposal III
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integral relied on the convergence of the series below, since it was now defined as 
the limit, as ∆x → 0, of the sum

i
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Later in the course, more complicated but differentiable functions were used, and the 
formal	definition	of	the	definite	integral	was	established	as	it	appears	below:

Definition. Let f : [a, b]	→	R be a differentiable function, let h b a
n

=
−  and let 

A f a i h hn
i
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= +( )
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1

 be the sum of the areas of the n rectangles based along the 

x-axis over the interval [a, b] with widths h and heights f (a + i h). Then,
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is called the integral of the function f over the interval [a, b] and is denoted by

a

b

f x dx∫ ( )

Finally, several different numerical integrals were evaluated using the definition, 
whereby one arrived at the Fundamental Theorem of Calculus.

Observations and Remarks from Students

In 2005, the introduction to integral calculus started with a mathematical modelling 
example. Inside his feedback one of the students pointed out that no one ever 
explained how one would be able to find he function in question. Furthermore, 
the figure in the example did not correspond to reality, so that from the students’ 
point of view, the connection between the integral and “natural problem” was not 
comprehensible. One of the arguments was, that the area might be determined almost 
exactly with sensible rectangles or trapezoids. A function is not able to describe a 
bank exactly and, certainly, not much better than rectangles or trapezoids. So why 
does anybody need the integral?

As the students remarked during a discussion of the introduction to integral 
calculus and their comprehension, the introduction did not really correspond to 
any real situation that might be used in real life. Because of that their motivation 
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for finding the solutions to given exercises and to understand the mathematical 
background was quite reduced.

DETAILED LESSON SEQUENCES: THIRD ITERATION – 2008

Description

The introduction took two teaching units of 45 minutes. In contrast to 2005, the 
course used a GC. Unlike the 2003 iteration of the course, we took extra care to 
avoid problems concerning the usage of CAS or GC. The introduction began with a 
modelling exercise. In contrast to 2005, the lessons started with a picture including 
an object with labels and some measurements (see Figure 9), but without the usage 
of any coordinate system. Hence, the first step was to re-envision this exercise within 
a useful coordinate system. The students were given the following instructions:

Exercise 1. The local government of the city of Weyhe needs help from a competent 
person. The owner of a property on the bank of Donuper pond would like to sell the 
area for 28 Euros per square meter. He and the city of Borgen have to agree on the 
buying price. Both of them want to measure the area using division into rectangles. 
Try to determine the area of the shaded region using your GC. Keep in mind that 
both parties must attain their wished and a compromise is an option.

Each student had to suggest a coordinate system and make an educated assumption 
about the function that describes the shape of the edge of the bank (polynomial of 
degree two). After several trials and hints from the teacher, many students were able 
to identify a graph of a function with the shape of the bank edge. They assumed that 
the bank might be described by a polynomial of degree two. This lead to a system 

Figure 8. The figure for Exercise 1 above; students are to  
evaluate the area of the shaded region
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of linear equations (SLE), and the students tried to solve the SLE themselves by 
hand or using their GC. One group of students, using rectangles, approximated the 
area above the graph of the function. Another group of the students used rectangles 
lying completely under the graph of the function. A third group used rectangles such 
that the graph of the function intersected each rectangle in the middle of the upper 
horizontal side. The students declared the third version as too difficult and neglected 
it. Afterwards, referring to an earlier introduced similar formula, they derived a 
general formula for calculation of upper sums and lower sums.

The students continued to solve more sum calculation exercises using their GCs. 
The use of a GC has not been crucial up until this point. Its only usefulness lied in its 
quick computation power. Most students did not have the required knowledge of a 
GC to suggest a more efficient use such as the creation of an algorithm. I shared my 
algorithm with the students.

Based on several calculation of different lower and upper sums for a fixed interval 
[a, b] under finer and finer partitions the students reached the hypothesis that

lim lim
n n n nU L
→∞ →∞

=

Therefore, the students decided to work with upper sums only and, after several 
more examples, constructed the formula below:

A f a i h hn
i

n

= +( )
=
∑

1

 , with h
b a
n

=
−

for the calculation of areas. This, in turn, led to the definition of the integral.

Observations and Remarks from Students

Some students had difficulties operating the GCs, although they had solved similar 
exercises before, while others solved the exercise quickly and presented their results. 
They clearly saw that upper sums and lower sums converge to the same limit. On 
the other hand, some students did not see the reason for doing both types of sums 
assuming that their equality is a given (One has to consider both upper sums and 
lower sums, or to restrict to one of them, if “simple” functions are used or only a 
graph is given).

In their responses about the quality of the lesson, students stated that the 
introduction was done too quickly and felt rushed and insufficient to understand 
the mathematical foundations and appreciate the theoretical background. In their 
opinion, the leap from example to understanding had been too short and inadequate; 
and more examples would have been helpful. They also conveyed that the use of the 
GC occurred too early and its usefulness was not clear. The GC has not been used 
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prior to this lesson, and even now, they felt that it was unnecessary and, at times, 
created more difficulties rather than assistance. The structure of the manual input of 
the algorithm into the GC was not clear to the students. They felt side-tracked by the 
input of the algorithm into their GC from the exercise sheet and did not recognize the 
connection to the upper/lower sum concept. They lost the connection to the starting 
point of the exercise.

In 2003, the problem with using GCs or CAS was slightly different. Students, 
most of whom did not have the skills to utilize a CAS, felt distracted by that 
technical part of the lesson and did not see the relationship between the CAS input 
and the concept of areas. The ability to simply provide students with a ready-made 
algorithm solved the problem of the lack of programing skills. However, a large 
chunk of time was still lost. For the next iteration, GCs or CAS will not be used at 
all in the introduction to the definite integral lesson. If an instructor decides to use 
one or the other, a more detailed lesson on the basics of the technology, as it relates 
to calculus, is necessary.

One of the goals set after the 2005 iteration was to improve students’ sense of 
the connection of the starting example and reality. Therefore, only the measures of 
the bank were given without a functional description. At the beginning, the students 
were divided into small working groups. Some of the students had a hard time, or 
no ideas at all, in determining the necessary function for the description of the bank. 

Figure 9. GC Instructions for calculating upper sums and lower sums  
(with a similar guide for TI-83 in English)
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Others insisted that is was necessary to determine this function. Many students had 
struggles developing an approach to finding this function. During the review, the 
students remarked that most of the difficulties were due to a lack of confidence and 
a deficiency of appropriate mathematical background. Some of them had problems 
recognizing the shape of the bank as a polynomial function of degree two. They 
suggested that the function used in such a first example should be more elementary 
and, thus, easier for them to recognize; for example, a linear function would convey 
the idea of the definite integral equally well.

Like in 2005, some of the students argued that, for this real-world problem, the 
calculation of the area only needed to be approximate, and that it was possible to 
accomplish this easier with figures like rectangles. Other students had an opposing 
view, and argued that the calculation was much easier, and, certainly, faster, with a 
function rather than with a large number of figures whose areas had to be computed 
separately and then added. These students appreciated the intended power of the 
integral for a problem such as this, and favoured the integral as the most efficient 
tool. It is worth mentioning that, while a similar argument came up amongst the 
students in 2005, almost all rejected the benefit of using a function to model the 
shape rather than a collection of differently sized squares and rectangles, claiming 
that the function approach is not more efficient and/or accurate.

DETAILED LESSON SEQUENCES: FOURTH ITERATION – 2011

In this instance, the introduction sequence consumed the largest amount of time 
relative to all of its previous iterations, with five 45-minute lessons. Unlike in the 
previous years, instead of aiming to arrive at the concept of upper and lower sums 
as the ultimate central tool, this time, rectangles and trapezoids were emphasized 
and heavily utilized for the approximation of the area between the graph of a 
function and the x-axis. This approach was more visual, familiar and intuitive for 
the students than the Riemann sums. This approach did not require the students to 
distinguish between upper and lower sums; this is an unnecessary task for the classes 
of functions addressed in the curricula of German secondary schools. Furthermore, 
the introduction took place in different student working groups with exercises of 
different levels, with different duty cycles within the working groups, phases of 
different styles and media usage for internal differentiation.

Because of the more complex structure of the lessons and an incorporation of 
many new ideas, compared to the earlier introductions to the integral described here, 
the following section is quite a bit longer and is subdivided into more subsections to 
clearly describe the different moving parts.

Development of Foundations for the Final Iteration

The introduction to the definite integral began with group work with a following 
gallery tour created by the Ministerium für Schule und Weiterbildung des Landes 
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Nordrhein-Westfalia (2007, pp. 87–121). These exercise motivate the conceptual 
development of the definite integral from a very different point of view. To illustrate 
the flow of the ideas involved, two examples are presented below along with the 
corresponding student solutions.

Exercise 1 – The Spirometer. To visualize the wave representing the rate of airflow 
during the breathing process of a human subject physiologists use a spirometer. The 
subject inhales and exhales into a mouthpiece connected to a device that measures 
the difference in air pressure which, in turn, is used to measure the rate of airflow. 
An example of such a curve is shown in the following figure:

Figure 10. An example of a graphic output of a spirometer.

The following figure shows an idealized example of such a spirometer output.

Figure 11. An idealized graph of the rate of airflow during a single inhalation phase

The above curve represents a single inhalation phase of a person at rest. This 
airflow rate curve can be approximated by a function f (x) measured in liters per 
second.

• Use the given graph of the function f (x) to describe the inhalation action in as 
much detail as possible.
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• Create a sketch of the graph of the function L (x) that describes the amount of 
air inhaled during a single phase, with L (x) measured in liters. Explain your 
procedure (Hint: When does the quantity of the inhaled air increases the most?).

• Make your best possible approximation of the amount of air inhaled by the human 
subject during the first three seconds.

• Is it possible to use the immediately preceding result to sketch a more accurate 
graph of L (x)?

• Use the graph to find the explicit form of the rate function f (x) and calculate its 
derivative. Interpret the meaning of the derivative in the context of this exercise.

• On three separate sets of axes, lined up vertically, (i) sketch f (x) in the center, (ii) 
sketch f ′ (x) below, and, in the uppermost space, (iii) sketch a new function F (x) 
such that F′(x) = f (x) and F(0) = 0

Exercise 2 – Amalgam. Ms. Schulze found out that dental amalgam fillings contain 
elemental mercury, and release low levels of mercury vapour that can be inhaled. High 
levels of mercury vapour exposure are associated with adverse effects in the brain 
and the kidneys. She wants to know whether her actual filling should be removed, so 
she is seeking more information about this topic. Some dentists believe that the levels 
of mercury present in the body as a result of amalgam fillings are constant and are 
independent of the size and the number of such fillings, while others hypothesize that 
these mercury levels are dependent on the numbers of amalgam fillings that a person 
has. In a scientific study, levels of mercury (Hg) concentration in the urine of patient 
P1 were measured before and during the first six months immediately following the 
removal of all of the patient’s mercury fillings, and recorded in a table below:

Table 1. Mercury concentration for patient P1

Number of days 0 2 30 60 90 120 150 180
Hg	in	μg/day 3.5 3.2 2.4 1.8 1.2 0.8 0.5 0.4

These results were then compared to the same type of measurements obtained from 
a different patient, P2 , whose fillings have not been removed. The level of mercury 
concentration in the second patient was almost constant at 3.5 µg/day.

• Illustrate the data graphically.
• Sketch the best fit line for the data from P1 .
• How much total mercury was excreted by each of the two patients at the end of 

the six-month period?
• Is there any way to obtain a more accurate result for the total amount of Hg 

excreted? Use different processes and display formats for your approximations.

Within the presentations in the gallery tour the students came up with two 
different ideas for the calculation of the area between the graph of a function and 
the x-axis,―(i)	using	rectangles	and	(ii)	using	trapezoids.	The	gallery	tour	inspired	
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students to formulate ideas that they further developed on their own afterwards. 
The teacher did not provide students with quick answers or formulas, nor did they 
expect him to. The instructor was able to utilize and build upon students’ original 
thoughts, naturally leading to the formulation of the concept of the definite integral. 

Figure 12. The solution poster for Exercise 1
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The solution posters created by the working groups are shown on the following page 
(see Figures 12 – 15).

After the gallery tour and a discussion of their results, the students had to calculate 
areas between a graph of a function and the x-axis, presenting their methodology and 
results on transparencies. They were given the graph of the function

f x x( ) = −





+
1
2

1
2

1
2

3

,

defined over the interval [0, 8] (see Figures 16 and 17). The students were not 
given the explicit definition of this particular function and were working only with 
its graph. They had to divide the interval into two, four and eight parts with the same 
base, then draw the appropriate rectangles or trapezoids, and, finally, reading the 
functions values from the given graphs, had to approximate the areas in question. 
Each of the two approaches was used by one half of the class. Students worked in 
groups of two for approximately twenty minutes. Two resulting transparencies are 
shown in Figures 16 and 17.

Figure 13. A closer look at the key student construction in the solution poster for Exercise 1

During the presentations, the students recognized that the sums of the areas of 
rectangles and trapezoids seemed to converge to the same value. Since it would be 
too tedious to verify their hypotheses by hand, they used a calculator to confirm their 
predictions.

Calculation of Areas

In groups of two or three, the students continued practicing approximating areas 
under the graphs of functions. One half of the class used trapezoids, as is prescribed 
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Figure 15. A closer look at the key student construction in the solution poster for Exercise 2

Figure 14. The solution poster for Exercise 2
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Figure 16. A worked out example of approximating the area between the function 

f x x s( ) = −
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 and the x-axis over the interval [0, 8] using rectangles as 

presented by students on a transparency

Figure 17. A worked out example of approximating the area between the function 

f x x( ) = −
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 and the x-axis over the interval [0, 8] using trapezoids as 

presented by students on a transparency



H. STOPPEL

418

in Exercise A, and the second half used rectangles, as is prescribed in Exercise B, 
and, now, with the added aid of GCs.

Exercise A. Using the same function whose graph was used before, now knowing that 

the function used is defined as f  : R →	R with f x x( ) = −
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, approximate 

the area between f (x) and the x-axis over the interval [0, 2], using trapezoids.

Exercise B. Using the same function whose graph was used before, now knowing that 

the function used is defined as f  : R →	R with f x x( ) = −
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, approximate 

the area between f (x) and the x-axis over the interval [0, 2], using rectangles.
Students were given hint cards, outlining the step-by-step calculator procedures, 

to assist them in working through the assigned exercises. The hint cards were 
designed specifically for the method of dividing the interval [0, 2] into four equal 
parts. From several previous examples, the students were already familiar with the 
necessary skills for using GCs to calculate sums.

After exploring their results using finer partitions of the given interval, the 
students noted that the sums of areas of the relevant rectangles and trapezoids 
seemed to approach the same limiting value. This reinforced their assumption 
that the limit of the approximations of the area between the x-axis and the graph 
of f (x) is independent of the types of figures used as well as the kinds of interval 
partitions, even if the subintervals are not equal. To check their assumption students 
used their GCs to approximate areas for different functions and different intervals. 
These exercises were not time consuming since, when working with GCs, they only 
needed to change the function definitions and the boundaries of the interval, and 
did not have to repeatedly input the entire general formula. Eventually, students 
formulated a general procedure for calculating the area between the graphs of 
a function f (x) over an interval I, where f (x) > 0 for all x Œ I, using smaller and 
smaller rectangles and trapezoids, eventually arriving at the formulation of the limit 
as ∆x → 0. Their conjectures were further reinforced by more different examples.

In basic courses, the types of functions studied are limited to differentiable ones, 
and one does not need to distinguish between upper and lower Riemann sums. 
However, one of the students asked:

Wie wäre es denn, wenn die Rechtecke nicht über, sondern unter dem 
Funktionsgraphen liegen würden?

[[What would happen if the rectangles would be drawn with the top sides 
above the graph instead of below?]]

This question led to the discussion of upper and lower sums, and further GC 
experiments. The experiment began with an example of a function f (x) defined on 
[a, b]. Students were permitted to use prepared hint cards for calculating upper and 
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lower sums using their GCs shown below. After several more calculations, students 
recognized that, for polynomial and trigonometric functions, the upper and lower 
sums appeared to have the same limits.

Reinforced by their results using upper and lower sums the class arrived at the 
definition of the definite integral analogous to the one described in the 2008 class.

Observations and Remarks from Students

In 2011, the current author was the instructor for the entire duration of the course. 
Furthermore, he had taught the same group of students during the previous year, and, 
thus, was able to divide the students into working groups with members of similar 
strengths, and distributed exercises that he found appropriate for a particular working 
group. In 2005, many students noted that the functions used for the exercises were 
visible on the worksheets and suggested that they should not be included, while 
others did not notice them at all, and the rest simply didn’t utilize them. The division 
into working groups was not criticised by the students, most of whom embraced the 
group work.

In 2011, the passage into rigorous mathematics was more careful and measured. 
We started with an illuminating presentation of area approximation exercises relying 
on a variety of methods developed by students themselves during their group work. 
Most of the students recognized the similarities in the approaches to finding areas 
under curves on their own, and, eventually, fully understood the reliability of the 
rectangle/trapezoid areas accumulation methodology for approximating areas 
between the x-axis and the graph of a given function. Aided by the functionalities of 
the GCs, students were able to calculate the areas almost exactly and arrived at the 
concept of the definite integral based on their own observations and ideas.

The use of application examples and the freedom to develop different approaches 
themselves at the onset of the lesson sequence was praised by the students who then 
stated that this approach greatly contributed to their understanding of the topic. Even 

after revealing that f x x( ) = −
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, all of the students remained motivated 

throughout the development of the rigorous mathematical models. Students 
explained that they did not lose the connection to reality due to the motivation 
established by the initial real world examples. Some of the stronger and more vocal 
students remarked that they would have been distracted and side-tracked by an 
increased number of applications.

Beginning with the approximate calculation of areas using rectangles and trapezoids 
up to the introduction to upper and lower Riemann sums, almost every student was 
able to follow the topic. During the subsequent lessons, some of the students expressed 
having difficulties, just as they lost their sense of imagination. They emphasized 
the effectiveness of graphs in helping them visualize the theoretical aspects of the 
definite integral and to understand the meaning of the associated calculations.
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At the end of the entire course more class discussions took place. When asked about 
any difficulties or challenges they may have experienced utilizing their GCs during 
the lessons covering the introduction to the calculation of upper/lower Riemann 
sums, students said that they appreciated the visualizations and by hand calculations 
investigated during the gallery tour. They stated that they could transition smoothly 
to approximating areas under graphs of explicitly defined functions using a larger 
number of rectangles and trapezoids with the help of GCs, fully grasping the ideas 
behind the computations of the necessary limits, instead of blindly using the utilities 
of the GCs.

REFLECTIONS

Detailed lessons addressing the calculative approximations of integrals are not 
presently included in the high school curricula designed in North Rhine-Westphalia 
(NRW) or in Kultusminister Konferenz (2012), so students never need to perform, 
and, thus, understand such approximations of integrals by sums; see (Hijab, 2011), 
for example. In some federal states, like NRW, sequences are no longer included 
in the curricula, so that it is impossible to properly introduce differentiation and 
integration fully. As a result, the types of functions studied are limited. This does 
allow instructors to teach approximate calculation of integrals using rectangles 
and trapezoids over regular partitions (equal subdivisions) of the interval, and this 
material is already included in existing textbooks (Schmidt, Körner, & Lergenmüller, 
2011; Bigalke & Köhler, 2011; Brandt & Reinelt, 2007). Note that, in all iterations 
here, this topic was explicitly taught.

Replacing the Riemann sum approach by geometric approximations in 2005 
showed that the geometric method was more accessible to students. Leading the 
lesson sequence with approximating areas using upper and lower Riemann sums 
appeared to be much more difficult for students, and, since the functions used are 
relatively simple, one does not need to distinguish between the two, possibly causing 
more confusion; the geometric approach, which is valid for this class of functions, 
is simpler for students. At this level of calculus, any types of functions for which the 
convergence of upper or lower sums are not sufficient are not studied.

The inclusion of mobile GCs in 2008 and 2011 turned out to be more effective 
compared to the use of stationary CAS, since the students were more readily able 
to use GCs, the class could concentrate more on the mathematical details of the 
exercises and lectures, instead of allocating time specifically for mastering the CAS. 
One argument that the students mentioned against the use of CAS in 2003 was the 
“invisibility” of the encyclopaedia of syntax for the commands.

One of the big differences between the 2005 and the 2008 iterations is that, in the 
latter, the functions used in the introduction were not explicitly defined, and students 
relied on values they read from the graphs. Recall that in 2005 students referred 
to the explicitly defined functions as “unbelievable” or “irrelevant.” In contrast, in 
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2008, they had to find the appropriate functions that could be used to model the 
applications.

In 2008, the required manual input of GC commands appeared to be strange to 
the students. To address this, in 2011, a separate discussion of the tedious details 
and syntax of GC commands was substituted by hint cards. The students did 
not explicitly comment on the use of the hint cards, but there appeared to be no 
difficulties concerning the use of GCs. One could argue that detailed discussions 
concentrating on the syntax of GCs divert the students’ attention away from the 
intended learning goals of the exercises. The inclusion of hint cards seemed to be a 
great and effective alternative for dealing with any possible syntax issues students 
might have with GCs, allowing them to concentrate on the mathematical content of 
the exercises.

Another clear problem, present in 2003, 2005 and 2008, was the presence of skill 
gaps among different students within a given group during the group activities. This 
inequality within groups presented a challenge in addressing individual questions or 
misunderstandings of every student in the class. This issue was addressed in 2011.

In 2008, the GCs were used too early. The role of GCs was not meaningful for 
some students; some struggled with operating GCs altogether. This frustration stifled 
students’ engagement and understanding during the shift from the mathematical 
theory to the actual calculations of Riemann sums. Since the calculations relied on 
their ability to use GCs properly, those students who did not master this step, almost 
completely, lost the affiliation between the approximate calculations of sums and the 
idea of the integral.

Upon reflection and based on students’ remarks, the increase in time dedicated 
to the introduction of the definite integral in 2011 was justified and worthwhile. 
If students’ ability to remember details of a topic long after its presentation is 
increased then it is worthwhile to take more time and care during the initial 
introduction of the topic, reducing the need to repeatedly review the topic as the 
course progresses.

Carefully modifying the structure of the lesson sequences and reflecting on the 
outcomes over the four iterations described here allowed me to hypothesize about 
the effects of didactical changes within each sequence.

For example, efficient use of CAS or GCs allowed students to maintain focus on 
the main conceptual goals of the lessons by not getting lost in long and, sometimes, 
tedious calculations. This benefit was improved with the implementation of hint 
cards. Even though instructional media varied greatly over the four iterations, 
students had no problems adapting to them in 2011. In my opinion, instructors, 
or program directors, should carefully plan the role, and scope of use, of different 
media	 used	 in	 the	 classroom	well	 in	 advance	 of	 implementation,―several	 years,	
perhaps. It is crucial for students to get accustomed to new and different media, such 
as GCs or CAS.



H. STOPPEL

422

Another significant observation, based on instructor’s reflections and student 
comments, is that increasing the amount of time spent on the introductory lesson 
sequence has a positive effect.

Poster presentations appear to improve student motivation and participation, 
especially by incorporating group work into the classroom. Group work, in general, 
seems to foster higher student attentiveness and engagement. In 2011, this was 
amplified by the necessity of every student to present the results of their group to 
other working groups. By appropriating themselves to working groups, with the 
teacher’s guidance, taking into account the students’ level of mathematical ability 
and difficulty levels of the contents, students were able to choose suitable exercises.

See the summary table (Table 2) on the next page for a side-to-side comparison.

Table 2. Comparison of the four iterations of the definite integral lesson sequence

Year 2003 2005 2008 2011
# of Lessons 3 3 2 5

Media CAS, 
transparency, 
board

calculator, 
transparency,  
board

GC, 
transparency, 
board

GC, poster, 
transparency, hint 
cards

Classroom 
activity 
structure

single person 
working, two 
people working

two people 
working, group 
work

group work single person 
working, two people 
working, group 
work, gallery tour

Types of media 
exercises

students got 
completed files 
for the CAS  
and only had  
to run them

students  
calculated for 
small n with their 
calculator

students 
calculated for 
bigger n with 
their GC

same as 2008

Approximate 
calculation

calculation of 
upper sums and 
lower sums in 
every example

calculation of sums 
of numbers or 
areas of trapezoids 
or rectangles

same as 2005 same as 2005

Connection to 
application

beginning only, 
without repeated 
connections to 
reality

little relation  
to reality, 
constructed (not 
real) connection  
to reality

small relation 
to reality, 
not credible 
simplification

relation to reality 
from different points 
of view, credible 
because started from 
real life examples

Type of 
integral

Riemann upper 
and lower sum

rectangular, 
trapezoidal and  
with lim

n nA→∞
 and 

i

n

f a i h h
=
∑ +

1

( ) 

upper sum, 
lower sum, 
restriction to 
type 2005

same as 2005
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NOTE

1	 Ministry	 of	 Education	 and	 Training	 of	 North	 Rhine-Westphalia,―the	 school	 or	 the	 Ministry	 of	
Education of the German state of North Rhine-Westphalia and one of ten ministries of the North 
Rhine-Westphalian government.
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WILLIAM BAKER AND BRONISLAW CZARNOCHA

4.10. FROM ARITHMETIC TO ALGEBRA

A Sequence of Theory-Based Tasks

SUMMARY

The chapter deals with language in the mathematics classrooms, especially with 
mathematics remedial classrooms. It presents an unusual example of integrating two 
independent theories, the Sfard (1991) theory of reification and Shepard (1993)/
Shuell (1990) integrated theory of cognitive development and writing categories. 
In the first cycle it’s the TR Design Type A, from Practice; it uses problem types 
designed through practice and supports itself by a standard yet simple statistical 
analysis. However, in the 2nd cycle TR Design become of the type B, theoretically-
based on the results of the first cycle. In the first cycle we find the evidence of the 
actual impact of language enhanced instruction upon student final exam achievement.

The aim of the second cycle was to refine the intervention by aligning it closer 
to the theoretical pathway of concept development accordingly to process/object 
theories of conceptual mathematical development (Davis et al., 2000). That entailed 
coordinating writing exercises with a theory of mathematical development. The 
basic information about writing categories and about the stages of the reification or 
encapsulation closes the paper. However, the central piece of the paper is the second 
cycle  in which the stages of development are used to explain the written exercises 
in the Appendix.

The ultimate result of the study demonstrated that indeed written assignments have 
a significant impact upon problem solving and retention of algebraic knowledge. 
Chapter 5.1 asks exactly the reverse question namely, whether written assignments 
in mathematics can impact learning of English.

INTRODUCTION

This chapter presents an instructional sequence that is the first and second iterations 
of a teaching-research study on the effect of written thought to assist students 
transitioning from pre-algebra to algebra at Hostos Community College of the 
City University of New York (CUNY). This instructional sequence is aimed at 
community college students enrolled in remedial courses whose purpose is to help 
students reach the level of college mathematics. The adult students (18+ years of 
age) at HCC are about 75% female, 90% minorities; about 25% have never earned 
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a high school diploma, instead they have a General Education Diploma (GED) 
obtained by passing a state exam. Well designed use of language in our mathematics 
classrooms may offer help in grasping and in retention of these elementary yet 
challenging concepts.

The Case That: Written Thought Promotes Conceptual Thought in Mathematics

Mathematical educators who employ written thought to reflect upon problem 
solving activity often invoke the theoretical work of Vygotsky (Puagalee, 2001, 
2004; Bicer et al., 2013; Adams, 2010). Pugalee (2004) asserts that, “Vygotsky 
held that writing involved deliberate analytical action on the part of the producer. 
Written words require the writer to maximally compact inner speech so that it is 
fully understandable, thus making necessary the deliberate structuring of a web 
of meaning” (p. 28). Specifically, Vygotsky (1997) draws parallels between the 
conscious reflection required in the written expression of one’s thoughts as opposed 
to spontaneous verbal thought and the structural or scientific conceptual thought 
required in algebra as opposed to the spontaneous thought required in arithmetic. Bell 
and Bell (1985) note, “Public dissatisfaction with the educational system’s ability to 
deal with basic skills instruction has become a crisis of such magnitude that it affects 
all levels of education and defies easy solution.” (p. 211) They call for integration 
of expository writing into the math class writing to learn mathematics (WTLM) as 
one method of dealing with this crisis. Thus, they agree with Vygotksy’s thesis that, 
“Expository writing can become a ‘mode of learning’ that directly affects a student’s 
command of the subject matter” (p. 213). Aspinwall and Miller (1997) express 
their dissatisfaction with the lack of student conceptual understanding in calculus; 
“This lack of conceptual mathematical understanding in calculus is pervasive in 
this country. Students are moving through college mathematics curricula with little 
comprehension of concepts fundamental to mathematical thinking. College students 
memorize formulas, algorithms and procedures in order to solve routine problems 
and obtain correct answers” (p. 253).

These authors advocate for WTLM in developing, “students’ abilities to reflect 
on and speculate about subject matter” (p. 256). Educators who believe in writing 
as a mode of learning to address student difficulties with problem solving noticed 
that it promote the process of conscious reflection and encourages students to, 
“analyse, compare and contrast and synthesize relevant information” (Bicer et al., 
2013, p. 364).

First Cycle

The first cycle bordered on action research in that the instructor Baker was testing 
(statistically) the hypothesis that written mathematical thought considered as 
evidence of conceptual knowledge would be independent of procedural knowledge 
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in predicting how students would perform on a departmental final exam. This 
hypothesis came from the observation that students who performed well on 
computational problems during the semester often appeared to forget everything 
by the final exam. The goal as an instructor was to improve retention of student 
knowledge. Although there was no clear theoretical framework to support the 
written exercises during the first cycle there was a research goal in understanding 
the relationship between written conceptual thought and procedural thought during 
the semester and its effects on retention of student knowledge on the final exam. 
Thus the research focus was to weigh in on Powell and Lopez (1989) statement that 
despite the reasonableness of the claim that writing improves concept development 
in mathematics there has been, “...little evidence of students’ concept development 
or increased mathematical maturity has been proffered despite the reasonableness of 
this assertion” (p. 160).

Instructional Methodology

The pre-algebra course has a strong focus on computational modelling of procedural 
knowledge, and although many of the students do well enough to pass during the 
semester, they perform poorly on the departmental final exam. While the major area of 
concern was that of application problem-solving, students also displayed difficulties 
with retention of procedural knowledge. These writing exercises were designed to 
encourage the reflection and abstraction of underlying conceptual knowledge and 
principles that could guide student decisions during problem solving. They were 
short and relatively easy to implement following the advice of Meier and Rishel 
(1998) who note that, “keep in the first time we assign a writing project may well be 
the first time our students have been asked to write in a mathematics course” (p. 7).

The comprehensive departmental final exam did not contain any writing exercises, 
however, the partial exams contained written exercises, procedural problems and 
application problems.

TEACHING EXPERIMENTS OF FIRST CYCLE

In the first cycle, written thought on partial exams or homework given during the 
semester was found to be a statistically significant factor in predicting student 
performance as measured by the comprehensive final examination. Furthermore, 
this written thought was independent of students’ procedural knowledge (assessed 
during partial exams during the semester) in predicting their performance on the 
comprehensive final exam (Baker & Czarnocha, 2002, 2008). The writing exercises 
of the first cycle were based on authors’ craft knowledge.

Example 1. Compare and contrast how to multiply a decimal number by a power of 
ten with how you divide by a power of ten.
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Example 2. Compare and contrast the greatest common factors of two numbers with 
the least common multiples of these two numbers.

Example 3. Michelle and her friends buy the supplies for her church charity car 
wash, which charges $10 per car. If you know the number of cars they wash and the 
amount they spend on supplies how would you find the profit that they makes for the 
charity?

The statistical analysis involved correlation techniques and multivariate 
(ANOVA) analysis, with written conceptual thought and procedural proficiency 
as independent variables to predict or determine student proficiency with first 
procedural knowledge and second problem solving ability on the final exam. The 
first hypothesis being that written conceptual thought (being of an independent mode 
of learning and engagement) would assist in retention of procedural knowledge. 
For the second ANOVA with the same independent variable and dependent variable 
problem solving the hypothesis is that, these two types of knowledge would again 
work together yet independently in the schema formation required to retain problem 
solving ability.

When using two independent variables to predict a dependent variable, there 
are	 two	 important	 criteria	 to	 be	 considered,―first,	 both	 independent	 variables	
should demonstrate a statistically significant level of correlation with the dependent 
variable, and, second, the correlation between the two independent variables cannot 
be too high otherwise one variable will typically dominate and make insignificant the 
effect of the other. In this study, the departmental final exam, which tests procedural 
knowledge and ability for problem-solving (application or word problems) was 
separated into the procedural and problem solving components and these components 
were used as the dependent variable. The procedural component of the partial exams 
was one independent variable. The other independent variable was writing scores, 
obtained either from the partial exam or from homework assignments.

Resulting Data and Analysis

We analyse learning as taking place over the semester, using the scores for writing or 
procedural knowledge on the partial exams throughout the semester as independent 
variables. Written homework assignments were collected, graded and the results 
collected for two semesters, while written exercises on partial exams were recorded 
for three semesters.

When the data for the entire three semesters was combined (N = 117), the 
correlation between writing and the procedural component on the partial exams, as 
well as the procedural component of the final exam are listed in Table 1.

Table 2 lists the relevant correlations when procedural knowledge and written 
conceptual knowledge on the partial exams are compared to the application problem 
or problem-solving component of the final exam.
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Clearly, written thought on the partial exams satisfies the first criteria for success 
since it correlates well with the procedural and problem-solving component of the 
final exam however, it also correlates even higher with the procedural knowledge on 
the partial exams. Multivariate analysis revealed that written thought on the partial 
exam was not independent of procedural knowledge on the partial exam in assisting 
students retain this knowledge on the final. In contrast, such written thought was 
significant at the 0.05 level (p = 0.04) in assisting students in solving the application 
problems on the final exam. The R-value for the multivariate model with writing 
and procedural knowledge on the partial exams to determine problem solving 
on the final was R = 0.622. This represents a 6.4% increase in retention (DR2) of 
demonstrated ability for problem-solving on the final exam over the use of only 
procedural knowledge on the partial exams R = 0.603 (Table 2). The formula used to 
determine the decimal equivalent for the percent increase due to use of two variables 
R1 and R2 instead of only R2 is

DR2 = 
R R

R
1
2

2
2

2
2

-

Thus, written thought was statistically independent of procedural knowledge on 
the partial exams in assisting students in solving application problems but not for 
procedural proficiency on the final exam.

For the two semesters in which written homework assignments were given  
(N = 71), the correlation between these writing scores, the procedural component 
of the partials and the procedural component of the final exam are listed in Table 3.

Table 1. Total correlation results: Writing vs. procedural component  
(All correlations were significant at the 0.01 level)

Procedural on partials Writing on partials Procedural on final

Procedural on partial 1.0 0.855 0.683
Writing on partials 0.855 1.0 0.526
Procedural on final 0.683 0.526 1.0

Table 2. Total correlation results: Writing, procedural components and problem-solving  
(All correlations were significant at the 0.01 level)

Procedural on partials Writing on partials Procedural on final

Procedural on partial 1.0 0.855 0.603
Writing on partials 0.855 1.0 0.580
Procedural on final 0.603 0.580 1.0
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Table 3. Correlation results for two semesters?? with writing homework  
assignments: Writing, procedural components and problem-solving  

(All correlations were significant at the 0.01 level)

Procedural on partials Writing on HW Procedural on final

Procedural on partial 1.0 0.650 0.688
Writing on HW 0.650 1.0 0.547
Procedural on final 0.688 0.547 1.0

Again, written homework assignments correlated well with procedural knowledge 
on the final exam. Multivariate analysis revealed that such written thought was 
independent of procedural knowledge on the partial exams (p = 0.024) at the 0.05 
level. The R-value for this multivariate model was R = 0.715, which represents an 
increase of 8% in the procedural knowledge retained on the final exam over the 
amount when only procedural knowledge on the partial exams is used R = 0.688 
(see Table 3).

CONCLUSION

The written thought on the homework (example 1 and 2) was more in depth than 
that on the partial exams, the extended time allowed students to reflect more, and 
thus, we consider these results a more accurate measurement of student capability 
with written conceptual thought. In this light, the results for Table 3 indicate that 
written conceptual thought underlying procedural knowledge can be independent 
from procedural knowledge and that it can assist student in retaining such procedural 
knowledge for the final exam presumably the result of a deeper more integrated 
conceptual understanding.

The results of Table 2 suggest that written conceptual thought which included 
expressions of operator choice and coordination of steps to solve a problem 
(Exercise 3) as an independent variable is separate from and adds to student 
performance in solving application problems on the final. Thus, the ability to 
deal with and perform on computational-procedural problems is independent of 
the ability to explain underlying concepts and one’s choice of an operator during 
problem situations in predicting problem solving ability during the final exam. This 
suggests that written conceptual knowledge was helpful in demonstrating problem 
solving schema development. That written conceptual thought about operator 
choice (metacognition) would assist in predicting schema formation is in agreement 
with the work of Pugalee (2004) who noted that student who wrote about their 
solution activity during problem solving tended to be more efficient than those who 
did not or who did so verbally. “Students who wrote about their problem solving 
processes produced correct solutions at a statistically higher rate than when using 
think-aloud processes” (p. 43). In particular, the written expression of thought 
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was noticeable in promoting ‘statements’ by the students that were classified as 
metacognitive-orientation that is involving, “understanding how information in the 
problem relates to the problem-solving tasks” (p. 40) as well as statements about 
“performing local goals, monitoring goals and redirecting...” (p. 41). Pugalee’s 
thesis that written conceptual thought focuses students on metacognitive thought 
processes fits with our data results. If so this would appear to validate Vygotksy’s 
assertion that written thought promotes scientific concept development over verbal 
speech.

In contrast, the results of Porter and Masingila (2000) spread a ray of caution; as 
their results show that students who engaged in classroom dialogue of a conceptual 
nature did not perform statistically different than those who expressed their 
conceptual thoughts in writing. “If students who engage in non-writing activities that 
focus on concepts and involve discussion can achieve the same level of conceptual 
and procedural understanding as students who use WTLM activities and discussion, 
then mathematics instructors have a viable alternative to using writing activities” 
(p. 174). It would appear that the quality of the conceptual dialogue and the written 
expression of one’s thoughts is of tantamount importance. As noted by Bessé and 
Faulconer (2008) WTLM may not necessarily result in higher scores on standardized 
tests but will focus student attention to connections between mathematical objects 
and procedures. Our results suggest that while student assessment scores may not 
increase, such written conceptual thought is independent of procedural skill and 
helpful in promoting such test scores, it does not say students cannot engage in 
meaningful conceptual through class dialogue or other means

DESIGN EXPERIMENTS OF THE SECOND CYCLE

We decided to refine our previous approach by leaving the support of our craft 
knowledge and utilizing the reification theory of concept development Sfard (1991, 
1992).

The writing exercises used in the second cycle were based upon the research work 
of Shepard (1993) who synthesized the writing categories of Brittan et al. (1975) 
with cognitive stages of development due to Shuell (1990). As Shield and Galbraith 
(1998) note, “Shepard maintained that the development of understanding can be 
stimulated by moving students in to more demanding writing tasks” (p. 30).

In this second cycle, a sequence of instructional tasks that include written, 
geometrical and computationally based exercises (Baker & Czarnocha, 2002, 2008) 
were developed, through a synthesis of the stages of concept development via the 
lens of process/object duality presented by Sfard (1991, 1992), Sfard and Linchevski 
(1994).with the work of Sheppard. The goal being to bring the stages of Sfard 
which are representative of research on the transition from arithmetical to algebraic 
thought with the phases of learning due to the cognitive theorist Shuell in the work 
of Sheppard.
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MODELS OF DEVELOPMENT BASED UPON PIAGET

Davis et al. (2000) review several models of learning based upon and beginning with 
the work of Piaget, who focused on how actions or procedural knowledge become 
thematized objects of thought or concepts. According to the authors, these models 
all share a process/object duality in which learning mathematics is viewed as a cycle 
that begins with procedural knowledge acting on existing conceptual knowledge; 
followed by reflection that leads to clarification of procedural knowledge and the 
underlying concepts. This cycle ends when the process becomes integrated into the 
learner’s schema, and in this object form can itself be acted upon. This process of 
the assimilation of procedural knowledge into one’s conceptual schema, is called 
“the encapsulation (or reification) of a process into a mental object” (Davis et al., 
2000).

The terms encapsulation and reification are used by Dubinsky and Sfard, 
respectively, to express the final stage, or object level understanding, of a learner 
in their thoughtful and separate interpretations of Piaget’s process/object duality. As 
Davis et al. (2000) wrote, “The transformation of a process into an object took new 
impetus with the work of Dubinsky and Sfard” (p. 224).

In the model of Sfard, this process/object duality involves a transition from an 
operational to a structural understanding. The distinction between operational 
and structural is expressed by Davis et al., when they classify the “evaluation 
of an expression such as 2x + 3 for a numerical value of x as operational and the 
manipulation of such an expression as structural” (1999, p. 233).

In this article, we employ the model of Sfard because its focus on an individual’s 
transition from an arithmetical (operational) to algebraic (structural) understanding 
closely parallels the intent of our instructional sequence. For Sfard (1991, 1992), 
this transition is a three-step process, which begins with a procedural oriented stage 
called interiorization, and continues with the more abstract stages of condensation 
and reification.

TRANSITION FROM ARITHMETICAL TO ALGEBRAIC THOUGHT

First stage: Interiorization – Operational Understanding

The term interiorization, which is originally due to Piaget, is described by Sfard in 
terms	of	reflection	upon	procedural	knowledge―a	procedure	is	interiorized	when	
it “can be carried out through mental representations, and in order to be considered 
analysed and compared it needs no longer to be actually performed” (Sfard, 1991,  
p. 18). Dubinsky analysed the work of Piaget and the role of interiorization as well as 
other forms reflective abstraction in learning mathematics. He, similarly, described 
interiorization in terms of the internalization of actions or procedures:

First, an action must be interiorized. As we have said, this means that some 
interior construction is made relating to the action. An interiorized action is a 
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process. Interiorization allows one to be conscious of an action to reflect upon 
it and combine it with other actions. (Dubinsky, 1991, p. 107)

Tasks designed for students in the initial interiorization stage follow this sequence: 
(1) learning a new arithmetical process or action, followed by (2) applications that 
will require them to perform this action, and, as they become proficient, (3) they will 
be asked to reflect upon this process.

Intermediate Stage: Condensation

Condensation, the intermediate stage of development, is described by Sfard:

Condensation is a period of squeezing lengthy sequences of operations into 
more manageable units. At this stage a person is more and more capable of 
thinking about a process as a whole without feeling an urge to go into details 
… a learner would refer to the process in terms of input-output relations rather 
than by indicating any operation. (Sfard, 1991, p. 19)

In describing the effect of condensation Sfard also notes, “Combining processes, 
making comparisons and generalizations becomes much easier” (Sfard, 1991, p. 19).

Dubinsky mentions several types of reflective abstraction that an individual 
employs after the initial interiorization stage to conceptualize processes: first, 
generalization	of	a	process	or	schema,―“when	a	subject	learns	to	apply	an	existing	
schema to a wider collection of phenomena, then we say that the schema has been 
generalized”	 (Dubinsky,	1991,	p.	101);	 second,	 coordination	of	processes,―“two	
processes can be coordinated to form a new process” (Dubinsky, 1991, p. 104) and, 
third,	reversal	or	inverse	of	a	process,	for	example,―“subtraction	and	division	of	an	
equation” (Dubinsky, 1991, p. 105).

Tasks designed for students in this middle stage will require them to generalize 
the arithmetical processes they have learned to a more abstract algebraic setting 
that involves simple algebraic expressions and/or the ability to coordinate previous 
knowledge, whether conceptual or procedural, with the newly learned process.

Final Stage: Encapsulation – Reification: Structural Understanding

The term encapsulation is described by Dubinsky (close to the spirit of Piaget) as 
the “conversion of a dynamic process into a static object” (Dubinsky, 1991, p. 101). 
The effect of reification is described by Sfard as “convert[ing] the already condensed 
process into an object-like entity” (Sfard, 1992, pp. 64–65).

The final stage, in which the learner has arrived at a structural understanding in 
their transition from arithmetical to algebraic thought, is described by Davis et al., 
“… in algebra the symbols are now algebraic expressions” (as opposed to numerical 
values). They continue, “The symbols themselves can be manipulated algebraically 
and a finite number of such manipulations can be used to solve linear and quadratic 
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equations” (Davis et al., 2000, p. 236). Thus, the transition from arithmetical to 
algebraic thought begins with performing and interiorizing arithmetical operations, 
generalizing these into algebraic expressions, and, then in the final stage, an 
individual is able to use such expressions efficiently in problem-solving.

Operations at one level (in this case algebraic formulae as generalized 
arithmetical operations) become objects of thought at a higher level (algebraic 
expressions) which can themselves be manipulated. (Davis et al., 2000, p. 239)

The ability of an individual to demonstrate problem-solving skills, and its link 
to schema development in structural understanding, are highlighted by Sfard, 
“Unstructured and sequential cognitive schema … [which are] … inadequate for 
the rather modest dimensions of human working memory” are restructured and 
organized, “by turning sequential aggregates into hierarchical structures” (Sfard, 
1991, pp. 26–27).

The tasks designed for the final stage will involve the use of variables and 
manipulation of algebraic terms in solving application problems. Furthermore, 
students are asked to consciously reflect on the process of combining and sequencing 
these manipulations when solving algebraic problems. This conscious reflection will 
demonstrate students’ understanding of the hierarchical structure of the problem 
solving schema.

THEORETICAL FOUNDATION FOR WRITING EXERCISES

Writing Exercises

The development and implementation of writing exercises in this study follows, 
as in the previous cycle, Shepard’s philosophy on the relationship between written 
thought and conceptual development as eloquently set forth by Shield and Galbraith 
(1999) “Shepard maintained that the development of understanding can be stimulated 
by moving the student into more demanding writing tasks” (p. 30). Shepard uses the 
writing categories of Britton (Britton et al., 1975). The three Shepard-Britton writing 
categories that were used in this study to transition students out of early phases of 
learning and develop their conceptual thought are: generalized narrative, low-level 
analogic and analogic.

Shepard/Britton Writing Categories

Generalized narrative. In the generalized narrative category a students is “tied to 
concrete events but begins to detect a pattern … begins to see generalizations.” In 
this	category,	Shepard	recommends	that	students	be	asked	to	“explain	definitions	or	
procedures in one’s own words” (Shepard, 1993, p. 290).



FROM ARITHMETIC TO ALGEBRA

435

Low level analogic – LLA.  Unlike the initial generalized narrative stage, students 
can begin to understand new material beyond the examples used in the classroom. 
As one progresses in the intermediate stage the ability to recognize, explain and 
apply knowledge in more varied situations becomes possible. LLA phase requires 
students to use information in a more purely generalized manner. However, they do 
not recognize the logical, overriding structure inherent in the subject matter. Writing 
exercises in the LLA category required students to “explain how to solve a problem, 
or given an incorrect worked problem, student explains what was done wrong” 
(Shepard, 1993, p. 290).

Analogic writing category. In the analogic writing category students begin to make 
generalizations and to organize their knowledge into a schema. Shepard recommends 
that analogic exercises ask students to “explain how concepts are related, i.e. similar 
or dissimilar” (Shepard, 1993, p. 290).

INTEGRATION OF SHEPARD/SHUELL COGNITIVE PHASES 
WITH SFARD’S MODEL

In his article, Shepard (1993, p. 290) matches the writing categories of Britton et al. 
with the three cognitive learning phases described to Shuell (Shuell, 1990). We review 
the work of Shepard with the goal of integrating these cognitive learning phases with 
the stages of development of Sfard’s model. This will serve as a foundation for 
the instructional task sequence (including both written and computational exercises) 
used for transitioning students from an operational to structural understanding of 
algebra.

The Shepard-Shuell model of learning characterizes the initial phase as 
follows,―“the	 individual	perceives	 the	facts,	 terms	and	concepts	being	presented	
as isolated pieces of information. The learner does not see the organizing structure 
of this new knowledge and has little personal knowledge with which to relate it” 
(Shepard, 1993, p. 288).

The initial phase of the Shepard-Shuell model focuses on the lack of connections 
between new terms or definitions and previous knowledge. In contrast, the initial 
interiorization stage of Piagetian models focuses on an individual’s ability to 
reflect upon a procedure. Because conscious reflection upon new knowledge, 
whether a procedure or definition, is facilitated by (one might say begins with) the 
learner making relationships to previous knowledge, the initial stage/phase in both 
models describe a situation in which an individual is faced with new knowledge 
that has not been assimilated into their schema. Thus, we designate the initial 
phase of Shepard-Shuell as equivalent to the first, or the interiorization, stage in 
Sfard’s models.

In the intermediate learning phase of the Shepard-Shuell model:
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[The] learner begins to see relationships between (the previously isolated facts 
and terms and hence, begins to form a more meaningful internal structure. The 
learner is also becoming less dependent on specific, concrete examples as their 
conceptual knowledge becomes more abstract. (Shepard, 1993, p. 288)

Both Shepard and Sfard describe the intermediate stage as one in which the learner 
becomes less dependent upon specific examples and can generalize more readily to 
an abstract understanding of the knowledge presented. Thus, both demonstrate an 
individual that has begun to assimilate the new material into an appropriate schema 
and, hence, we designate the intermediate phase as equivalent to the middle stage of 
condensation.

The final phase of the Shepard-Shuell model is one in which new knowledge 
has become integrated into an existing schema; it can be readily accessed and 
efficiently used in problem-solving. While this terminal phase matches well with 
the final structural level of understanding in which an individual can efficiently 
employ and manipulate algebraic variables in a problem-solving environment, 
the advanced tautological writing category that Shepard matches with final phase 
is deemed inappropriate for the tasks presented. For one reason, the tautological 
writing category requires reflection beyond the domain of a one-semester pre-
algebra/algebra mathematics course: “producing a new system or method for solving 
certain categories of problems” (Shepard, 1993, p. 290). Furthermore, the goal of 
these tasks was to encourage the student’s ability to engage in algebraic thought, 
that is, the manipulation of algebraic expressions; although writing exercises may 
assist students in approaching this goal, the insistence that students reply in written 
language to questions at this level may hinder their ability to manipulate algebraic 
expressions. For these reasons, the authors replace the tautological writing category 
with an analogic transitional category; at this level, when asked to explain how they 
would manipulate variables in solving application problems, students’ answers may 
involve written (analogic) explanations, or they may transition to algebraic formulae. 
In such a case, written thought can be viewed as a tool, or vehicle, that carried the 
student to the desired destination; having arrived at the ability to engage in algebraic 
or structural thought they are engaging in the language of algebra, and the use of 
written language is no longer required.

Integrated Framework of Shepard-Shuell Cognitive Phases and Piaget-based 
Stages of Learning: Transition from Operational to Structural Thought

The primary objective of this article is to present an instructional sequence of tasks 
that begins at the operational level of understanding appropriate for students with 
an arithmetical thought process, and transitions to a structural, more algebraic, 
understanding of mathematics. This transition is marked by the use of reflective 
abstraction: generalization, coordination and reversal of process (Dubinsky, 1991), 
as well as the integration of newly learned processes with previous knowledge.  
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At the end of this transition the students’ structural understanding is measured by 
their proficiency to manipulate variables while solving application

APPENDIX-: INSTRUCTUIONAL SEQUENCE OF RATIO TASKS

The following tasks were designed to be done by pre-algebra mathematics students 
at a community college after a reading passage (see appendix for sample reading 
passage) and/or classroom lecture on ratios, the objective is to transition through the 
interiorization and condensation phases by promoting conscious reflection directly 
on processes and related processes/conceptual knowledge and thus attain to a more 
structural understanding.

Many of the following exercises involve an understanding between the part-part 
relation characteristic for the ratio and the part-whole relation (also used in ratio) 
characteristic of a fraction (presumed to be previous knowledge). Through the use 
of the operation of addition and the reverse process of subtraction these exercises 
assist in building and making connections between the ratio and fraction schema. 
Language is used to abstract these processes, strengthen students’ conceptual 
understanding and provide an entry way into algebra through written reflection 
that assists the transition from numerical to algebraic processes. A pictorial 
representation of this coordination between schemas can be viewed in concept map 
form in Figure 1.

Figure 1. Concept Map for Ratio, Fraction, Part-Part and Part-Whole

We employ the following objectives:

1. Actions applied to determine ratios; the operations of addition and subtraction 
applied to relate part-whole concepts involved in ratios and fractions.

2. Language used to abstract concept of ratios and equivalency to fractions
3. Use of variables in representing ratios and fractions

Part I: Early Interiorization, Interiorization and Early Condensation Stages

Writing Exercises – General Narrative

1. What is a ratio?
2. When is a ratio in simplest form?
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(EI-Stage/Critical Reading/Translation between comparative language and 
symbolic mathematical statements)1

3. Edwin’s age is triple the age of his younger sister Ericka. Write the ratio of 
Ericka’s age to Edwin’s age. (EI-stage)

Writing Exercises – LLA

1. Marica wrote a ratio of 7 female to 5 male students as 7/5 = 1 2/5. Explain what 
she did wrong. In the above situation, with 7 female and 5 male students, Sandy 
wrote the fraction of students that are female as 7/5. What did she do wrong?
(Critical reading to explain what was done wrong/early interiorization stage)

Geometry Exercise

Exercise 1.) Divide the following 16 boxes into two parts that are in a ratio of 3 to 5.

 (Interiorization -stage: student must work with concept of total boxes and process 
of forming ratio of two parts from this total)

Procedural and Application Exercises

Exercise 2.)
Edison has 120 pencils, 50 green pencils, 40 yellow and the rest blue.

• 2a.) Find the ratio of blue to green in simplest terms. (IandEC-stage)
• 2b.) Find the ratio of yellow to total in simplest terms.(I-stage)
• 2c.)What fraction of the pencils are yellow? (IandEC-stage)

Exercise 3.) If a team won 28 out of the total of 36 games played, find the ratio of the 
games won to the games lost in simplest terms. (Interiorization Early Condensation 
-stage)

(Interiorization Phase: In a specific situation, the student was asked to coordinate 
and sequence the actions/processes of, finding the ratio and using reverse operation 
of subtraction to find part-whole concepts in ratios. Students also asked to understand 
the equivalence of the part-whole concept in the ratio and fraction schema.)

Exercise 4.) Two sisters Sheyna and Kelly are measured by their father. Sheyna is 3 
feet tall while Kelly is 30 inches tall. What is the ratio of Sheyna’s to Kelly’s height 
in simplest terms?

(Exercises 4 Interiorization Phase: Critical understanding of ratios as involving 
quantities with the same units in specific situation—conversion of units required.)
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Susan has to take two subways and a bus to get to work. The first train takes half 
an hour, the second 5 minutes and the bus takes one quarter of an hour.

• (6a)  What is the ratio of her time on the first subway train to the second train in 
simplest terms?

• (6b)   What is the ratio of her time on the two subway trains to the time spend on 
the bus in simplest terms?

• (6c)  What is the ratio of her time spend on the first train to her total commute 
time in simplest terms?

• (6d)  What fraction of her total commute does Susan spend on the train?

(Exercise 6: Interiorization Phase: Critical understanding of ratios as involving 
quantities with the same units. Student asked to coordinate and sequence the actions/
processes of: finding the ratio, using operation of addition to find part-whole 
concepts in ratios. Students also asked to understand the equivalence of the part-
whole concept in the ratio and fraction schema. All in specific situation)

Exercise 7.) Franco and his younger sister Francis are to share amongst themselves 
a bag of pieces of candy. Franco being older is to get 4 pieces of candy for every 3 
pieces his younger sister receives. If Franco receives 12 pieces how many does his 
sister receive?

(Student must demonstrate pre-proportional reasoning by coordinating given 
numerical ratio with real life ratio situation to find unknown value; interiorization-
-early coordination stage)

Writing Exercises – Lower to Middle level analogic in interiorization and Early 
Condensation stage

1. Joanna was given a classroom ratio of 15 male to 25 female students. When asked 
to find the fraction of students that were female she wrote 5/3. What did she do 
wrong?
 (error made in a specific situation that involves the equivalence of the part-whole 
concept in the ratio and fraction schema. Student asked to explain the error. )

Geometry Exercise

1. Two sisters Francis and Debbie are sharing 16 bags of Halloween candy, Debbie 
being the older is getting twice as much as Francis. The grid below has 16 squares 
that represent the 16 bags of candy; divide these up into two parts in a ratio of 
(1:2) the smaller part for Francis and the larger twice the smaller for Debbie. How 
many bags does each girl receive?
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(Application problem in which student must coordinate, translation between 
language and mathematics and the process of dividing squares into two parts in 
ratio of (1:2); Interiorization and early condensation stage)

Part II: Condensation Stage

Procedural Exercises

1. Three brothers Ali, Baba and Paul share a sum of money in a ratio of 7:8:9. If 
Baba receives $1624 how much does Paul receive?
 (Student must disregard extraneous information and demonstrate pre-proportional 
reasoning by coordinating given numerical ratio with real life ratio situation to 
find unknown value)

Writing Exercises – Analogic

1. Stephanie knows the number of female and male students in a mathematics class. 
Describe how she would find the ratio of female to total students.
 (Analogic /Condensation-stage, in an abstract situation, the student is asked to 
explain, how to coordinate and sequence the actions/processes of, finding the 
ratio and use operation of addition to find part-whole concepts in ratios)

2. Professor Skinner knows the number of students in Melville High and the number 
of male students how would he find the fraction of students that are female?
 (Middle Leveel analogic in an abstract situation, the student is asked to explain, 
how to coordinate and the reverse operation of subtraction to find part-whole 
concepts and apply this in finding the finding a fraction)

3. Sarah has a total of x pencils in a case. If she gives out 12 of these pencils how 
would she find the ratio of pencils given out to those remaining?
 (Analogic/Condensation -stage, student must demonstrate encapsulation of the 
total concept into the variable x. Student must explain how to use the reverse 
operation of subtraction and given numerical part 12, to find the remaining 
part concept in ratio form. Alternatively, they may express the remaining part 
algebraically.)

4. Sharon has 25 pens, she gives x of these to Wendy, how can you find the ratio of 
pens Wendy has to those remaining?
 (Analogic/C-stage, student must demonstrate encapsulation of the part concept 
into the variable x. Student must explain in words or algebraically how to find, 
the part remaining using the given numerical total 25 and reverse operation of 
subtraction and express answer in ratio form.)

5. Josephina has x blue and y pink candies, when asked to write the fraction of 
candies that are pink she writes y/x. Explain what she did wrong.
 (Analogic/Condensation with some evidence of encapsulation of: part-part ratio 
concepts into variables. Student must explain error made by lack of addition to 



FROM ARITHMETIC TO ALGEBRA

441

convert part-part ratio concept into part-whole fraction concept. Situation is 
totally abstract with only variables but because it requires student to explain what 
was done wrong instead of generating the answer it is considered CandEE-stage)
 Translation between comparative language and symbolic mathematical 
statements.

1. Jorge’s age is twice Rick’s age, Debbie’s age is three times Rick’s age. Write the 
ratio of Debbie’s age to Jorge’s age.

2. James is two-thirds the age of his brother Charlie. Which of the following 
represents the ages of James to Charlie?

(A)  2:3 (B) 2:1  (C) 3:1 (D) 3:2 (E) Not Given

(Condensation phase – coordination of language with same process applied twice 
or existing fractional schema in specific situation.)

Part III: Encapsulation Stage

Exercise 1.) There are x blue and y yellow marbles in a bag.
(1a) Write the ratio of yellow to total. (CandEE-stage)
(1b) Write the fraction of yellow marbles. (E-stage)
(1c) Write the fraction of blue marbles. (E-stage)
(1d)How would you determine which fraction was larger? (Anal./E-stage)

 (Analogic, encapsulation of part-part ratio concepts into variables; students must 
use process addition on variables to convert them into part-whole concept in ratio 
form and coordinate with its equivalent part-whole concept in fraction schema)

Exercise 2.) Jorge and his younger brother Juan are sharing money. If Jorge gets 
twice as much as his younger brother Juan, who receives $x and together they have 
a total of T	dollars,	which	equation	below	can	be	used	to	find	x?

(A) T = 2x (B) T + x = 2x (C) T = 3x
(D) T = x (E) None of these

 (coordination of processes in abstract setting that requires use variables and 
manipulation of these variables – encapsulation)

Exercise 3.) Kelly-Ann has three times as much as her sister who has x dollars. 
Together they have a total SUM of money. Describe how you can find x.

Exercise 4.) Francis and Franklyn are sharing a total T candies. Francis receives 
three candies for every 2 that Franklyn receives, describe how you would find the 
amount of candy each one receives.

(Encapsulation -stage/Analogic-Transitional; students combine and integrate 
processes in abstract setting that requires use variable terms and manipulation of 
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these terms, as well as conscious reflection upon this process. Student’s answers may 
be written thought with variable terms or algebraic formulae.)

NOTE

1 Italicized instructor comments will follow certain exercises/sets of exercises in parenthesis, for the 
remainder of this section.

REFERENCES

Aspinweil, L., & Miller, D. (1997). Students’ positive reliance on writing as a process to learn first 
semester calculus. Journal of Instructional Psychology, 24, 253–261.

Baker, W., & Czarnocha, B. (2002). Written metacognition and procedural knowledge. Proceedings of 
the 2nd International Conference on the Teaching of Mathematics, University of Crete, Hersonissos 
Crete, Greece. Retrieved from

Baker, W., & Czarnocha, B. (2008). Procedural knowledge and written thought in pre-algebraic 
mathematics. Mathematics Teaching-Research Journal Online, 2(2), 28–47. Retrieved from http://
wf01.bcc.cuny.edu/~vrundaprabhu/TRJ/site/archivesnews.htm

Bell, E., & Bell, R. (1985). Writing and mathematical problem solving: Arguments in favor of synthesis. 
School Science and Mathematics, 85(3), 210–221.

Bessé, M., & Faulconer, J. (2008). Learning and assessing mathematics through reading and writing. 
School Science and Mathematics, 108(1), 8–19.

Bicer, A., Capraro, R., & Capraro M. (2013) Integrating writing into mathematics classroom to increase 
students’ problem solving skills. International Online Journal of Educational Sciences, 5(2), 361–369.

Britton, J., Burgess, T., Martin, N., McLeod, A., & Rosen, H. (1975). The development of writing abilities 
(pp. 11–18). London: MacMilliam.

Davis, G., Gray, E., Simpson, A., Tall, D., & Thomas, M. (2000). What is the object of the encapsulation 
of a process? Journal of Mathematical Behaviour, 18(2), 223–241.

Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Ed.), Advanced 
mathematical thinking (pp. 95–123) Dordrecht, Netherlands: Kluwer. Retrieved from http://www.
math.uoc.gr/~ictm2/Proceedings/ICTM2_Presentations_by_Author.html#B

Meier, J., & Rishel, T. (1998). Writing in the teaching and learning of mathematics (MAA, 48). 
Washington, DC: The Mathematical Association of America.

Porter, M., & Masingila, J. (2000). Examining the effects of writing on conceptual and procedural 
knowledge in calculus. Educational Studies in Mathematics, 42, 165–177.

Powell A., & López, J. (1989) Writing as a vehicle to learn mathematics: A case study. In P. Connolly & 
T. Vilardi (Eds.), Writing to learn mathematics and science (pp. 147–156). New York, NY: Teachers 
College Press.

Pugalee, D. (2001). Writing, mathematics, and metacognition: Looking for connections through students’ 
work in mathematical problem solving. School Science and Mathematics, 101(5), 236–245.

Pugalee, D. K. (2004). A comparison of verbal and written descriptions of students’ problem solving 
processes. Educational Studies in Mathematics, 55(1/3), 27–47.

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflection on processes and objects as 
different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

Sfard, A. (1992). Operational origins of mathematical notions and the quandary of reification: The case 
of functions. In E. Dubinsky & G. Harel (Eds.), The concept of functions: Aspects of epistemology 
and pedagogy (MAA Notes, 25, pp. 59–84). Washington, DC: Mathematical Association of America.

Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of Reification – The case of algebra. 
Educational Studies in Mathematics, 26, 191–228.

Shepard, R. S. (1993). Writing for conceptual development in mathematics. Journal of Mathematical 
Behaviour, 12, 287–293.

Shield, M., & Galbraith, P. (1998). The analysis of students expository writing. Educational Studies in 
Mathematics, 36, 29–52.

http://wf01.bcc.cuny.edu/~vrundaprabhu/TRJ/site/archivesnews.htm
http://wf01.bcc.cuny.edu/~vrundaprabhu/TRJ/site/archivesnews.htm
http://www.math.uoc.gr/~ictm2/Proceedings/ICTM2_Presentations_by_Author.html#B
http://www.math.uoc.gr/~ictm2/Proceedings/ICTM2_Presentations_by_Author.html#B


FROM ARITHMETIC TO ALGEBRA

443

Shuell, T. (1990). Phases of meaningful learning. Review of Educational Research, 60(4), 531–547.
Vygotsky, L. (1997). Thought and language (10th printing). Cambridge, MA: MIT Press.
Whalberg, M. (1998). The effects of writing assignments on second-semester calculus students’ 

understanding of the limit concept. Paper Presented at 3Rd RUMEC International Conference in 
Advanced Mathematical Thinking.

William Baker
Mathematics Department
Eugenio Maria de Hostos Community College
City University of New York

Bronislaw Czarnocha
Mathematics Department
Eugenio Maria de Hostos Community College
City University of New York



445

UNIT 5

TEACHING RESEARCH COMMUNITIES

INTRODUCTION: LEARNING COMMUNITIES

We have spoken of the traditional view of mathematics in the classroom in which 
the teacher is the authoritarian voice and students – passive recipients of his/her 
knowledge, and the alternate or reform view exposed by constructivists, as well 
as Koestler and most prominent mathematical educational institutions in which 
the focus is on the role of students as active participants in the construction of 
knowledge. Yet the reform movement in mathematics inspired by this view 
has led to controversy, even to math wars. It has been suggested that the lack of 
constructivist pedagogy to accompany theory has led to difficulty with teachers 
implementing it is in their classroom i.e. lack of clarity of the role of scaffolding 
and direct instruction in a discovery or constructivist mathematics classroom. 
Another claim is the resistance of teachers and students to change who have been 
predominantly exposed to the traditional methodology. Another reason which 
we now explore is that mathematics educational research to date has been itself 
grounded in a traditional methodology that discourages teacher participation and 
thus provides minimal incentive for substantive change. Towards this goal, we 
review mathematics educational research on learning communities or communities 
of inquiry which typically involve mathematics educational researchers collaborating 
with practicing teachers on an equal level e.g. teaching—research. We note that, 
learning communities may also be organized solely by teachers or teachers and 
administrator e.g. action research and students working together to become teachers 
e.g. study groups.

TRADITIONAL AND REFORM PEDAGOGY

In the traditional view of mathematics education research the educator provides 
theoretical foundation for reform or ideas for an area of study which the teacher 
implements in their classroom while the researcher reflects upon and then publishes 
the results. The teacher is seen as part of the experimental environment and thus 
a separation between research and practice is observed; “…in much mathematics 
education research, teachers are viewed as recipients, and sometimes even as means 
to generate or disseminate knowledge, thus conserving a distinctive gap between 
research and practice.” (Kieran et al. 2013, p. 361) This traditional separation or gap 
between research and practice expresses a reality of the very different environments 
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of theoretical research and classroom practice. Current research emphasizing 
collaborative efforts to study the mathematics classrooms i.e. the unit of analysis of 
educational research point out that closing this gap will potentially benefit not only 
teachers but educational researchers as well. “In most cases the worlds of teachers 
and researchers differ greatly, even if there are also cases where they work together 
so closely that the traditional roles begin to blur…The major question is: How 
can mathematics education research have an impact on mathematics classrooms, 
on students’ learning abilities, beliefs and interests? And how can researchers 
benefit from the rich body of knowledge and subjective theories that teachers have? 
(Kieran et al., 2013, p. 362).

THEMES OF LEARNING COMMUNITY RESEARCH

One theme of such literature is that action research, teacher-researcher efforts or 
collaborative efforts between educators and teachers is needed to close the gap 
between research and practice because substantial changes or implementation of 
constructivist or reform pedagogy requires that teachers become active participants 
in implementation of educational theory in their classroom. “With new research 
on educational change small and large, the important role of the participants in 
enabling, shaping and maintaining change processes has become more and more 
recognized…It is not surprising that action research is seen as one lever to better 
practices in mathematics. Action research promises to support the change of the most 
important change agent, to ground change locally where change is necessary, and to 
bring about personal growth that affords the retention of pursued changes” (Benke 
et	al.,	2006,	p.	283).	This	viewpoint	is	reflected	in	language	expressing	the	need	for	
teachers to be active participants or key stakeholders in educational research (Kieran 
et al., 2013). Jaworski (2006) expresses this view in her statement, “Theories help 
us to analyse or explain, but they do not provide recipes for action, rarely do they 
provide direct guidance for practice” (p. 188).

Despite the growing awareness of the need for such research Lerman and 
Zehetmeier (2008) note “There are few examples of either face-to-face or cross-
school networks research when compared to the rest of the body of research on 
mathematics teacher education” (p. 149). The statement that for the most part 
education research continue the focus on educators reviewing work of teachers 
practice as separate non collaborating agents within the mathematics community 
is substantiated by the review work of Adler et al. (2005) who state that, “Or 
focused analysis of papers in JMTE and JRME and in PME proceedings between 
1999 and 2005 forcefully bears out this claim. Of articles representing research 
that focuses on teacher education. 90% of JMTE articles, 82% of PME and 72% 
of JRME articles were of this type” (p. 371). According to Krainer (2014) despite 
the attention and sense of importance attached to such collaborative efforts the 
situation is not significantly improving. “Despite the efforts and continuous claims 
of how important teacher-researcher collaboration role is, teachers are most often 
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seen as more or less passive recipients of researchers’ knowledge production 
and sometimes as a means to produce knowledge” (p. 49). In this view, teams of 
action researchers, teacher researchers or collaborative team efforts of researchers 
and teachers are necessary if reform pedagogy is to be implemented. “In the past 
decades, we have seen the call for and implementation of reforms of education 
in many educational systems around the world…change will always fail until we 
find some way of developing infrastructure and processes that engage teachers…” 
(Benke et al., 2008, p. 288).

Another themes is that learning communities involving teams of teachers 
reflecting upon their practice (action research), or teams of teachers and educators 
(e.g. communities of inquiry) or in our case teachers who are also reflecting on 
our own classroom experience educators (teacher-researchers) is that the critical 
process of reflection upon one’s own practice is ideally suited for social analysis 
by a group or team of peers. One might go so far as to say that a social setting is 
essentially a requirement for most individuals i.e. teachers to engage in substantial 
reflection upon their practice. Reflection upon teaching practice, i.e. the classroom 
lesson experience as the unit of analysis, is a common perhaps defining feature 
of research on learning communities. We note that while student reflection upon 
the mathematical process has been extensively studied as leading to reification 
(encapsulation) to objects the same cannot be said for reflection leading to reification 
or teaching processes leading to objects or artefacts that can be used by teachers in 
their practice. “A further important element of any conception of action research 
is the notion of reflection…” (Benke et al., p. 285). The goal for the teacher is to 
develop a “reflective practice as a practice in which a practitioner is engaged in a 
constant conversation with his or her problem situation” (p. 286).

Another theme that emerges in the study of learning communities is that 
collaboration is essential for closing the gap between research and practice in 
order to make significant change in teacher attitudes. Just like the didactic contract 
between teacher and student in which student affect is a central factor in promoting 
participation in classroom discourse, the didactic contract between the researcher 
and the teacher is a necessity for a realignment of the role of the teacher to that of 
a co-participant in the inquiry process. The teacher needs to make a transformation 
from acceptance of student failure to problem situation observer and with collaborative 
partners in reflection to understand what is occurring in the classroom and come to 
a decision about what changes they think should and could be implemented. This 
transformation like that of the student has the goal of the teacher arriving at place 
where their attitude towards their craft is one of an educator who inquires as well as 
a teacher that imparts knowledge, nourishes and supports their students. Jaworski 
(2006) speaks of a “critical alignment” between the normal desirable state to one of 
inquiry and reflection. The normal desirable state is that rewarded and encouraged 
by the community of practice in whatever school environment the teacher works in. 
As Cobb and McLain (2010) point out teachers identifies and actions are to some 
extent a reflection of the, “…institutional settings of the schools and the districts 
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within which they work…the communities of practice within a school district 
whose enterprises are concerned with teaching and learning.” (p. 207). As noted by 
Jaworski (2006) these communities of practice result in normal desirable states that 
in which, “…participation here looks more like a perpetuation of the practice…an 
alignment that lacks a critical dimension” (p. 191). A critical alignment in contrast, 
“…includes some sense of teachers critiquing and trying to develop, improve or 
enhance the status quo (p. 191).

We have noted that difficulties for teachers with a traditional methodology to 
implement constructivist pedagogy includes the lack of a recipe or formula on 
how this is to be done. For example, the role of scaffolding in a lesson, too much 
promotes	 rote	 meaningless	 copying	 while	 an	 insufficient	 amount	 may	 result	 in	
student	 involvement	 in	discussion	without	significant	math	content.	For	example,	
Sherin (2002) reports of a teacher who, “…found that was relatively easy for her 
to get students talking and sharing their ideas about mathematics. However, it was 
quite another matter to understand, from the teachers’ point of view what to do 
with these ideas…in order to facilitate the discourse effectively” (p. 208). While 
reflection	 with	 colleagues	 upon	 one’s	 classroom	 methodology	 and	 experiences	
are a central and necessary component of learning communities, changes in one’s 
teaching methods especially those obtained in a community of practice can be 
difficult.	 As	 Schoenfeld	 (2006)	 comments	 “…teachers, like other professionals, 
develop a particular type of perception common to their profession” (p. 483). 
This perception or beliefs and habits do not readily change especially when not 
supported by existing communities of practice. In the words of Jaworski (2006) 
“…the	significance	of	normal	desirable	states	is	just	that	they	are	desirable	within	
the social practices in which they have been developed. It is hard to operate against 
such practices or to challenge them…” (p. 191). Although “Community building and 
networking represent the core factors fostering sustainable impact of professional 
development programmes” (Lerman & Zehetmeir, 2008, p. 149), one factor 
frequently noted that works against involvement in learning and action research is 
the time factor, “Action research requires a lot of time and energy from teachers” 
(Benke et al., 2008, p. 197).

Kieran et al. (2013) review case studies of various learning communities around 
the world, from teams of teachers doing cycles of action research involving 
planning, implementation, reflection and revision in Japan, to an adaptation of this in 
China involving a collaboration of an educational export with teachers to programs 
in U.S. and Norway in which the educators finance and set up a collaborative 
effort between researchers and educators. The example in Norway is taken from 
the work of Jaworski in which educators are referred to as those involved in the 
study of didactics. “Didacticians who are teacher-educators work with practicing 
or prospective teachers to enable a transformation of theoretical ideas and research 
findings into modes of teaching that are informed by theory and research. Here we 
see transformative work at two levels one between didacticians and teachers and 
one between teachers and students” (Jaworski & Huang, 2014, p. 174).



TEACHING RESEARCH COMMUNITIES

449

TR TEAM OF THE BRONX – THE COMMUNITY OF TR PRACTICE

The community of teacher researchers working with TR/NYCity model suggests an 
answer to the issues besieging Math Education profession mentioned above. The 
“critical alignment “of Jaworski is made explicit in the substantive bisociativity of 
the TR/NYCity conceptual framework (Chapter 1.1), which leads to the new unit of 
methodological analysis: Stenhouse TR acts.

In response to Kieran et al.’s (2013 p. 362) questions: How can mathematics 
education research have an impact on mathematics classrooms, on students’ learning 
abilities, beliefs and interests? And how can researchers benefit from the rich 
body of knowledge and subjective theories that teachers have? – we propose the 
integration of the two on the local classroom level with the help of JiTR method, 
motivated by the substantial quality of TR/NYCity methodology with the central 
research benefits arriving as by-products of the improvement effort. In simile to 
the work of Vrunda Prabhu who brought Koestler’s theory of the Act of Creation to 
the attention of teacher-researchers through her attempts to create a TR community 
around her classroom of remedial arithmetic. However, it is our conviction that this 
process of integration must go beyond the Action Research as well as beyond the 
researcher-teacher collaboration to reach balanced bisociative teaching-research 
centred around Stenhouse TR acts of the classroom teacher – the central actor in 
this process.

The community of the TR team of the Bronx has been in existence since 1997/1998 
when the first teaching-research experiment Algebra/ESL was conducted at Hostos 
CC, which investigated the impact of algebra learning on learning of English as a 
Second Language (Chapter 5.1) below. It is significant for the future development of 
the community that this first teaching experiment was conducted on the interphase 
of the bisociative framework created by Elementary Algebra and Intermediate ESL, 
generally two domains of knowledge that don’t have much connection with each 
other. The teaching experiment uncovered the hidden analogy of this bisociative 
framework to be coherence of thought and its written expression. Our interest in the 
mathematics/language interphase continues; Chapters 4.10, 5.1 and 5.2 develop this 
theme a bit further.

Mathematics and Language are at present two main academic challenges 
undermining the access to higher education among the students from “underserved 
population”, which underlie their Achievement gap. Achievement gap refers to the 
observed, persistent disparity of educational measures between the performance 
of groups of students, especially groups defined by socioeconomic status (SES), 
race/ethnicity and gender. The results of PISA 2012, for the first time segregated 
in accordance with occupations of parents shows the wide gaps between children 
of professionals and managers on one hand and the children of parents with 
“elementary” professions (according to OECD classifications (PISA in Focus 36) in 
many participating countries of Europe, Asia and Americas. Unfortunately, there is 
a general consensus that Math. Education Research community has been ineffective 
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for dealing with manifestation of the achievement gap, not only in US but also in 
other advanced countries of Europe and Asia. Thus the effective techniques and 
approaches developed in the Bronx, one of the four most underserved areas in US 
may address needs of student in similar socio/economic/ethnic environments as for 
example in Tamil Nadu, India (Chapters 2.2 and 5.3).

The importance of the teaching-research community of practice which has 
existed in the Bronx community colleges of CUNY has been indicated in many 
chapters of the volume as “thinking aside” comments mostly. However closer 
reflection upon instances of documented here interactions between different 
members of the TR team of the Bronx suggests that the central benefit of the 
community’s collaborative effort is in the mutual “cross-fertilization” of ideas 
grounded in members’ different theoretical views and practical experiences. That 
interaction together with JiTR method is the background of thinking technology, 
which leads to Stenhouse TR acts (Chapter 1.1). It also is the source for the creation 
of the language of the community composed of shared meanings. At the same time, 
within that common way of thinking each member develops its own theme in that 
shared space, which create interesting conceptual undercurrents throughout the 
discourse of the volume.

The examples of work of the TR community we encounter in Chapter 2.4, 
three teachers simultaneously leading the class of remedial arithmetic, as well as 
in Chapters 4.2–4.5 and 5.2, Czarnocha, Dias and Baker collaborate as a team of 
teacher researchers reviewing the rate sequence of Czarnocha and the lesson plans 
of Dias on rates as well as the proportion lesson given by Baker. This is an example 
of the teaching research modelled on the Chinese teaching research Keli method. 
The three professors acting as teachers develop and teach the same material in 
accordance with their understanding of educational theory. Then the group reflects 
upon the outcome and provided feedback for one another. After such a cycle of 
implementation, reflection and revision, the results are analysed through the lens of 
a conceptual framework built upon creativity and learning theories.

Prabhu argued forcefully for a creative learning environment to support student 
transition from habits of failure to excellence. The learning community formed 
around its nucleus of Czarnocha, Prabhu, Dias and Baker proved to be a fertile 
environment for cycles of teaching research i.e. implementation, assessment-
reflection and refinement or revision ideas of what worked and what did not. This 
has led to an understanding of the importance of having an attitude of inquiry, a 
willing to observe, reflect with others and being open to change that is at the essence 
of both a teacher and a researcher, as well as a teacher-researcher in establishing a 
creative learning environment in one’s classroom and with one’s colleagues.

The following two chapters paint the picture of TR community expanding beyond 
its birthplace that is mathematics into Mathematics/ESL interphase as well as into 
triple-phase of Mathematics/English/Freshman seminar. Both show the impact of 
mathematics learning upon, traditionally, outside domains.
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Chapter 5.1 belongs to the series of teaching-research reports from the mathematics/
English interphase – an important bisociative framework, which however, in the 
context of bilinguality of our student population, is also very political. The theme of 
ESL and Spanish/English bilinguality became more difficult to study and to impact 
given the political environment in NYC since the turn of the century.

Algebra/ESL teaching experiment brought forth quite unexpected yet statistically 
significant impact of learning algebra upon learning English as a Second Language. 
The impact was noted in the long term essay writing by the experimental cohort, 
which had shown remarkable increase of coherence and cohesiveness in students’ 
final drafts over drafts of similar thematically essays written by previous cohorts 
of the language instructor. The increase of coherence was mediated by the 16% 
increase of all connectors and subordinating clauses. The role of these particles of 
language is to form connections beween diferent facts and concepts. Formation 
of connections between ideas results in the increase of coherence of a piece of 
writing. To understand the process more clearly we bring back a significant result 
of Chapter 4.10 which agreed with observation of Pugalee (2004) thesis that written 
conceptual thought focuses students on metacognitive thought processes. Together 
with observation of Bossé and Faulconer (2008) that writing in mathematics may 
not necessarily result in higher scores on standardized tests but will focus student 
attention to connections between mathematical objects and procedures, we are led 
to the following conjecture.

Since the schema of algebraic concepts, that is the network of relationships 
between them is much more precise than the schema organization of language 
on the level of Basic Competence of Cummins (1980), working in language with 
mathematical concepts lends itself to rapid syntactical development, meaningful 
because based on mathematical understanding. That development manifested on 
the level of connectors allows the student to organize her thinking in writing with 
increased coherence and cohesiveness of the written expression. We conjecture 
here the existence of algebra ZPD which is on a higher, conceptually, level than 
ZPD of student’s syntactical component of language development, which together 
form relative ZPD (rZPD) between algebra and language. The conjecture is in 
agreement with Krashen’s input hypothesis, which states that learners progress in 
their knowledge of the language when they comprehend language input that is 
slightly more advanced than their current level. Krashen called this level of input 
“i+1”, where “i” is the language input and “+1” is the next stage of language 
acquisition (Krashen, 1977).

We conjecture also existence of a reverse relationship as well that is the situation 
when language development is at a higher level, relatively, than the development 
of the relevant mathematical concept of the student. Then mathematics writing 
will be of significant help in the process of understanding of mathematics. While 
contemporary research literature certainly confirms the usefulness of writing for 
the development of mathematical thinking its understanding in terms of interaction 
between ZPD’s of different nature is missing.
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Chapter 5.2 expands the Mathematics/English language TR framework to 
Mathematics/English/Freshman seminar framework. It’s interesting in several 
aspects:

• Its theme, Part of Whole is borrowed from the definition of a fraction and properly 
generalized to the whole learning community so that its meaning is found as 
much in the developmental English as in the Freshman seminar.

• This two cycle TE approached from socio-cultural perspective is a very good 
example of developing the ability to generalize across different domains – a 
possible bisociative framework.

• It reflects upon the development of meaning of education for the Bronx student as 
an underserved student population.

• It brings in concerns and methods Vrunda Prabhu was addressing in Unit 2, and 
in particular, the didactic contract she introduced in her repertoire of motivational 
means.

The chapter deepens our understanding presented in Chapter 1.3 of the nature of 
difficulties underserved student population has been experiencing in fitting into the 
educational system as well as the role TR/NYCity model can play in overcoming 
them.

The last two chapters closing the unit address professional development of TR 
communities in two different socio/ethnical domains.

Chapter 5.3 reports from professional development of teachers of mathematics in 
Dalit villages of Tamil Nadu, India.

The report contains the information of a new concept within TR practice, that 
of teaching-action-research (TAR). TAR is the integration of classroom teaching-
research with action research addressing the issues in the village community 
which negatively affect learning of students in their schools. It was formulated and 
implemented in several TR cycles at the request of local grassroots organizers and 
it provides a new model of community involvement in education of its child. The 
second direction of professional development was directed to women, section Focus: 
Women Tamil Nadu reports from the application of TR/NYCity model to literacy 
campaign, who were embarrassed to have to sign their different documents with a 
thumb. The impact upon self-assertion of women was dramatic: “Now we know we 
can draw. We like your methods.”

The chapter strongly relates to and provides evidence for Vrunda Prabhu’s 
considerations of artefact generalization so that it could be applied in classrooms 
beyond its initial development in Chapter 2.1.

Chapter 5.4 investigates process of development of the teacher-researcher. It is 
based on the international project supported by the Socrates Comenius 2.1 grant 
of the European Commission in 2005–2008, called Professional Development 
of Teacher-Researchers. It represents a direction for systematic involvement of 
teachers into teaching-research practice. However, the methodology used in PDTR 
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has to be refined for its next cycle to account for its new bisociative nature and 
the methods of facilitation of Aha! moments.
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BRONISLAW CZARNOCHA

5.1. ALGEBRA/ENGLISH AS A SECOND LANGUAGE 
(ESL) TEACHING EXPERIMENT

INTRODUCTION

A teaching experiment in correlating the instruction of courses in Elementary 
Algebra and Intermediate ESL is described whose results suggest a measurable 
transfer of thought organization from algebraic thinking into written natural English. 
It is shown that a proper context to situate this new effect is (1) the Zone of Proximal 
Development (ZPD) of L. Vygotsky and (2) a new concept of the “Relative ZPD” 
characterizing the relationship between the ZPD of arithmetic/algebra and ZPD 
of native/foreign language. The chapter is the amplification of the Czarnocha and 
Prabhu (2002) paper with the same title.

The relationship between teaching mathematics and English as a Second 
Language (ESL) has been the topic of many papers and presentations (Anderson, 
1982; Birken, 1989; Connolly, 1989; Luria & Yudovich, 1971). Yet the literature 
and research on the subject suffer from several shortcomings. First, the majority 
of the research deals with the role of language in learning mathematics, leaving 
the reciprocal relationship, that addresses the influence of learning mathematics 
on the development of language, almost totally unexplored. Furthermore, while 
several benefits of writing as an instructional tool in teaching mathematics, such as 
better understanding of conceptual relationships (Birken, 1989) or the facilitation 
of “personal ownership” of knowledge (Connolly, 1989; Mett, 1998) have been 
proposed, there has been, until recently, little evidence to explicitly demonstrate 
these benefits (Powell & Lopez, 1989). Finally, there is a relative absence of 
theoretical considerations that could provide a context in which to properly situate 
the reciprocal relationship between the development of mathematical understanding 
and mastery of language.

ESL related literature presents us with more or less the same situation and focuses 
on the role of the mathematics instructor as “a teacher of the language needed to 
learn mathematical concepts and skills” (Cummins, 1980). The methodology of 
classroom practice based on this principle was formulated in (Dale & Cuevas, 1987). 
An important theoretical distinction in the area of second language acquisition has 
been introduced by Cummins in (Cummins, 1980), who asserted that the process 
of language acquisition has at least two distinct levels: (1) the Basic Interpersonal 
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Language Competency (BILC) level of everyday use, and (2) the Cognitive 
Academic Language Proficiency (CALP) level.

This presentation addresses the shortcomings listed above. A brief discussion 
of certain ideas of Vygotsky in (Vygotsky, 1986) outlines a context in which the 
relationship between mathematics and language can be situated. This is followed by a 
new and interesting result obtained during a teaching experiment at CUNY’s Hostos 
Community College, in which an Elementary Algebra course was pedagogically 
linked with an ESL course. The findings of this experiment suggest a potentially 
powerful influence of mathematical reasoning on the development of descriptive 
writing.

THEORETICAL BACKGROUND

The existing literature contains sporadic hints about the relationship between 
mathematical understanding and the acquisition of language. Recognizing the 
similarities between writing skills and problem-solving skills, as pointed out by 
Kenyon in (Kenyon, 1989) this relationship can be appreciated by the necessity of 
mastery of a common set of problem-solving strategies. This point of view, that 
doesn’t take into account the peculiarities of each of the disciplines, is strongly 
supported by Anderson’s Adaptive Control of Thought theory (Anderson, 1982).

A point of view that gives justice to the richness of relationships between 
thought and language can be found in some early works of Vygotsky (Vygotsky, 
1986). Following Vygotsky, thought and language exist in a “reciprocal relationship 
of development” (Kozulin, 1986). Vygotsky writes, “Communication presupposes 
generalization … and generalization … becomes possible in the course of 
communication” (Vygotsky, 1986). In other words, in order to communicate, we 
need to think; and in order to think, we need to communicate. Such a view opens, 
in a very natural way, the possibility that thought, in our case, more specifically, 
mathematical thought, has the potential to shape natural language. One of the 
ways through which this process can take place is across the Zone of Proximal 
Development (ZPD) (Vygotsky, 1986).

The ZPD arises in Vygotsky’s theory through his distinction between spontaneous 
and scientific concepts. It represents the depth to which an individual student can 
develop, with expert help, his or her spontaneous concepts concerning a particular 
task or problem, as opposed to his ability to do it alone.

Valsiner had noted that the development of the ZPD can be fostered even further 
if the environment is structured in a way that leads the student to use elements that 
are new and yet unfamiliar, but are reachable from his or her ZPD (Valsiner, 1993). 
One of the essential characteristics of the upper level of the ZPD, as compared to 
the level of the corresponding spontaneous concepts, is its higher degree of systemic 
structure. In the experiment explored here, the abstract character of elementary 
algebra had created exactly that type of ZPD with respect to the “spontaneous” level 
of natural English.
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EXPERIMENTAL REALIZATION

To confirm Vygotsky’s highly dialectical view one would need to clearly detect the 
presence of two different directions of developmental progression: the acquisition 
of the English language under the influence of mathematical thinking, and the 
acquisition of mathematical understanding under the influence of a sufficient grasp 
of the English language. While the main topic of the current discussion is the first of 
the two directions, we note that the importance of the second has been confirmed, 
for the first time, in a recent experiment by Wahlberg (Wahlberg, 1998). Measuring 
the level of students’ understanding of calculus when assisted by a systemic 
incorporation of essay writing, she observed a substantially higher increase in the 
experimental group as compared to the control group.

ELEMENTARY ALGEBRA/INTERMEDIATE ESL TEACHING EXPERIMENT

The general goal of the ESL sequence at Hostos is to develop what Cummins calls the 
Cognitive Academic Language Proficiency (Cummins, 1980), and, what Vygotsky 
calls the language of “scientific concepts”. Our experiment had two goals: to see 
how far algebra can help in that process, and to investigate the cognitive correlation 
in the acquisition of both. More precisely, the questions of the teaching experiment 
stated above were translated into the following goals:

• to formulate a series of tested instructional strategies for teaching English and 
improving critical thinking skills within both the mathematics and ESL courses;

• to analyse the degree to which the syllabi of the content courses need to be 
modified to incorporate language instruction;

• outline major problems encountered during the interdisciplinary collaboration;
• understand the learning process of English acquisition through the teaching of 

math in the context of our student population;
• to identify a series of hypotheses concerning the cognitive relationship between 

learning English and mathematics by students whose primary language is not 
English.

METHODOLOGY

A group of seventeen students was enrolled in an intermediate ESL class and in a 
remedial Elementary Algebra class taught in English. In the previous semester, these 
students passed the second lowest level ESL course as well as the first remedial 
mathematics course (Basic Arithmetic). The Algebra class was the only class they 
were taking in English, and, thus, constituted their only exposure to academic 
English. Although the classes were separate, the communication between the 
instructors was frequent and substantive, involving weekly meetings, exchange of 
materials, and mutual class visits. The methodology of the experiment was based 
on two assumptions. First, since we were interested in the influence of the algebraic 
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language upon the natural one, we needed to verbalize the symbolic algebraic 
language to the highest possible degree. That meant we needed to make the symbolic 
notation of algebra explicit in speech and/or writing – to verbalize the procedural 
steps and the content of algebraic thinking. Second, these elements, having been 
made explicit in their algebraic context, needed to be transferred into the context of 
the ESL class, both on the semantic and the grammatical level. As a result, student 
discussions in the Algebra class often, by design, involved a level of academic 
discourse somewhat above the students’ capacity at the given time. We hypothesized 
that it is this increased level of student effort to communicate the comparatively 
abstract mathematical ideas in English is at the root of their eventual linguistic 
improvement. At the same time, the ESL class deliberately involved discussions of 
the linguistic peculiarities of algebraic language, such as the role of word order and 
sentence structure with the aim of improving their mathematical reasoning skills. 
Below are examples of specific instructional strategies in both classes. A special 
attention was paid to the careful observation of cognitive difficulties experienced by 
the students during the actual process of learning. This was a way to reflect upon, 
improve, and increase our understanding of how teaching and learning takes place. 
In particular, we were interested in understanding the details of the developmental 
learning process in the context of collaborative instruction of mathematics and 
English. One of our main goals in using this methodology was to create a profile of a 
teacher-researcher paradigm at Hostos Community College through which:

• The teacher becomes engaged in critical reflection and experimentation of his/her 
own instructional practices,

• The instructor’s teaching practices are critically evaluated in relation to the 
available theoretical research, and

• The theoretical research is critically applied in the instructional context for further 
questioning and development.

We believed that this new profile would help us gather data and more successfully 
understand the challenges concerning the acquisition of English through content 
areas. Furthermore, it would allow for the formation of a supportive intellectual 
structure to address and to solve other present and future pedagogical issues such 
as shortening the remediation time of students enrolled in Mathematics and English 
courses.

NEW ALGEBRA INSTRUCTIONAL STRATEGIES

Verbalization of Algebraic Procedures

Example – Solving linear equations:

Solve 2x + 5 – 5 = 9–5 for x.
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Solution Steps (to be explicitly written by students)

2x = 4

x = 2

First, I add –5 to both sides of the equation 
in order to eliminate the +5 on the left side.

Second, I cancel the opposite numbers and 
add the like terms.

Third, I divide both sides by 2 in order to 
have X alone.

The answer is X = 2

Explication of Algebraic Symbolism Through Writing Paragraphs

Example:

(a)  Write a paragraph explaining the difference between 3×5 and 5×3. What does it 
mean to you that 5×3 = 3×5?

(b)  What is the difference in the meaning of the equality symbol in the following 
two expressions?

3×16 = 48 and x + 5 = 12

Analysis of Algebraic Rules and Principles

Example:

(a)  Compare the rule for the addition of signed numbers with different signs with 
the rule for the multiplication of signed numbers with different signs.

(b)  Write a paragraph addressed to a fellow student, who missed a couple of 
classes, explaining how to solve the problem below. Clearly verbalize to him/
her the order of steps in the procedure, warning against any possible errors and 
reminding him/her of the rules, which justify your steps in the solution.

Simplify

–2[2(3x – 5y) –3(y – x)] –4(2x + 3y)

Readings and Linguistically Adjusted Word Problems

One of the most important problems that became evident was the absence of 
sufficient readings about mathematics suitable for our students. To address this, a 
series of special word problems were developed. They were made out of paragraphs 
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from stories read in the ESL class. Additional explanatory paragraphs and questions 
about mathematics itself were 2x + 1 = 5 developed to assist student learning. For 
instance:

• What does it mean to you that 3×5 = 5×3?
• How do you differentiate the operation of subtraction from addition?
• What is the difference in the meaning of the equality sign in 22 × 3 = 12 and  

2x + 1 = 5?

These paragraphs of explanations were motivated by the advice from the 
mathematics educators L. Steffe and Smock (1975), in their work entitled 
Model for Learning and Teaching Mathematics. These authors proposed that a  
“…carefully arranged interplay between spoken words which symbolize a 
mathematical concept and the set of actions performed in the process of constructing 
a tangible representation of the concept should be mandated … A mathematical 
vocabulary should be developed… to explicate and provide embodiments for the 
concept.”

Example 1 – A literary word problem from a paragraph from The Pearl by John 
Steinbeck:

Kino awakened in the near dark. The stars still shone and the day had drawn 
only a pale wash of light in the lower sky to the east. The roosters had been 
crowing for some time, and the early pigs were already beginning their 
ceaseless turning of twigs and bits of wood to see whether anything to eat had 
been overlooked. Outside the brush house in the tuna clump, a covey of little 
birds chattered and flurried with their wings.

Kino’s eyes opened, and he looked first at the lightening rectangle that was 
the door and then he looked at the hanging box where Coyotito slept. His eyes 
wandered again to the rectangle of the door, to its familiar elongated shape. 
They doors were much shorter in width than in the height. Kino knew their 
dimensions by heart because it was him who made the doors when he and 
his wife, Juana, moved in here. The height was exactly three times the width, 
which made it a tall and narrow entrance. Sometimes, though rarely, Juana 
would cover the entrance with her long blue shawl whose lengths of four sides 
added to 32 units. The shawl fit exactly the opening of the door. He turned his 
head to Juana who lay beside him on the mat, the blue head shawl over her 
nose and over her breasts and around the small of her back. What were the 
dimensions of the shawl?

Example 2 – An explanatory paragraph utilizing a house cleaning analogy to 
demonstrate commutativity:
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The product of your work at home is the cleanliness of your house. If you do it 
carefully and with thought, you know that some actions must be taken before 
other actions. For example, you have to dust the surfaces before you clean the 
floor. Otherwise, you will have to clean your floor twice. This means that the 
action dust the surfaces and the action clean the floor are not commutative. 
The order in which you do them matters for the efficiency of your work. On the 
other hand, if you have two bedrooms, both coming out into the hall, it doesn’t 
matter which you clean first. The action clean the first bedroom commutes 
with the action clean the second room. Cleaning the two bedrooms is like 
multiplication. It doesn’t matter which number (or bedroom) comes first.

PHILOSOPHY OF TEACHING ESL BY THE ESL  
INSTRUCTOR – A NARRATIVE

As a reaction to both behaviouristic approaches to language teaching and to the 
traditional way I learned English in Spain, I, like many educators, argue that the 
teaching of linguistic forms and structures by themselves is inadequate in learning 
how to communicate in the target language. It is well known that we use language 
primarily to interact with one another in meaningful contexts. Language is the most 
precise means that we have to express feelings and opinions and to share information 
and experiences with each other. Therefore, I believe that the fundamental and final 
goal of second language acquisition is to become communicatively competent. That 
is to say, learners should be able to express and negotiate meanings with one another 
within everyday situations and social and academic environments.

I teach English holistically in my class. This means that I do not use the English 
language to teach isolated grammatical forms or structures. I use the English language 
to share and communicate interesting, challenging, and rich content, which I make 
sure relates to the students’ own experiences. Through this content, students become 
interested in participating and learn language in meaningful context. Then, they are 
able to learn specific structures and vocabulary in context, as well as to communicate 
with one another successfully. I integrate the four language skills: reading, listening, 
speaking, and writing, and I try to provide as many different learning modalities 
(text, graphics, pictures, sound, video, computer technology) as possible so that 
every student can choose the modality he/she feels most comfortable with. I also 
provide many opportunities for oral and written production, make sure students get 
enough challenging input in listening and reading, and try to make them feel relaxed 
in the class. I encourage students to think about how they best learn as I want them 
to become aware of their individual learning processes and to take responsibility 
for their own learning. Content, meaning, and fluency of ideas and thoughts always 
come first in my class. Accuracy and correctness come afterwards. The integration 
of algebra in my ESL class has simply reinforced and empowered my beliefs in 
meaningful, content-oriented ESL teaching and learning.
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New ESL Instructional Strategies

The goal of the mathematics related ESL exercises was to extend the meaning and 
application of algebraic words and concepts into natural English. In order to integrate 
the mathematical vocabulary and structures in meaningful contexts in my ESL class, 
I used the following five teaching strategies throughout the semester:

Strategy #1 Written Math Summaries with Activities

In the first place, I spent a considerable amount of time reading the textbook for 
Elementary Algebra and I familiarized myself with the mathematical concepts and 
terminology. Later, I wrote short summaries of each of the units covered in the math 
class syllabus. They included:

 1. Addition of signed numbers
 2. Subtraction of signed numbers
 3. Multiplication and exponent power
 4. Evaluating variable expressions and grouping symbols
 5. Solving linear equations
 6. Word problems
 7. The rules of exponents
 8. The rules of negative exponents
 9. Addition and subtraction of polynomials
10. Multiplication of polynomials
11. Factorization
12. Simplification of algebraic fractions

These summaries were primarily used in my ESL class as reading assignments. 
They included reading comprehension questions, oral activities for group work or 
class discussions, and short writing assignments. In creating these summaries and 
the accompanying activities, I had three goals in mind: (1) to simplify the language 
structures in the math textbook and make them more accessible to ESL students, 
(2) to integrate the specific grammatical structures taught in the intermediate ESL 
course into the context of mathematics, and, finally, (3) to insure that the four 
language skills (reading, listening, speaking and writing) were all integrated into this 
collaborative teaching effort. These summaries were developed during the summer 
of 1997 and were not part of the research carried out during the spring of 1997. 
Below is an example of such a summary presented as a reading exercise on the topic 
of addition of signed numbers:

In algebra, we talk about numbers in different terms. For instance, integers are 
numbers such as 1, 2, 3, 0, –1, –2, –3, etc. They can also be written as fractions. 
For example,  Rational numbers can be expressed in decimal forms such 
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as 1.5, 0.5, 3.55, etc. or as fractions such as  ,  ,  ,  ,  , etc., as long 
as the denominator is not zero. Therefore, rational numbers can be written as 
one integer divided by another integer. Since integers can also be written as 
fractions, we can say that all integers are rational numbers. However, not all 
rational numbers are integers.

Integers and rational numbers can either be positive or negative numbers. 
Zero (“0”) is at the middle of the number line. Positive numbers are to the 
right of zero on the line and negative numbers are to the left of zero on the 
line. When you owe money, your money is represented as negative numbers. 
When you make or earn money, you have a positive amount of money. Also, 
when you read the thermometer, the temperature below zero is expressed as 
a negative number. The temperature above zero is expressed as a positive 
number. Positive and negative numbers are opposite numbers. This means that 
they have the same magnitude, but different signs. They can be represented on 
different parts of the line.

When we add two signed numbers with the same sign, we add the magnitudes 
of the numbers and we keep the common sign in the answer. For instance, you 
have $100 (or +100) in the bank. Then, you deposit $30 (or +30) more. You’ll 
have a total of $130 (+130) in the bank. This money is positive because it is 
yours. How about the opposite? After that, you borrow $100 from your father 
(–100) because you need to buy some books. Then, you borrow $30 (–30) 
more from a friend because you want to go to the movies on Saturday evening. 
You’ll end up owing $130 (–130). This money is negative because you have to 
give it back. It does not belong to you.

When you add two signed numbers with a different sign, the rule is to find the 
difference between the larger magnitude and the smaller. Then, the sign of the 
number having the larger magnitude will be kept in the answer. For example, 
you make a deposit of $150 (+150) into your bank account one afternoon. 
Then, you go shopping and spend $50 (–50). This money is paid with your 
credit card and is directly taken from your bank account. You’ll end up having 
$100 (+100) left.

Reading Comprehension Questions

Please answer the following questions in complete sentences:

1. What is the difference between an integer and a rational number?
2. What is the difference between a positive and a negative number?
3. What do you need to do in order to add two signed numbers with the same sign?
4. What do you need to do in order to add two signed numbers with a different sign?
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Activities for Group Work or Class Discussion

1. Make a list of everyday situations where you can use positive or negative numbers 
(For example, reading the temperature).

2. Create a real life situation where you have to add three signed numbers with a 
different sign. Solve the problem for the situation.

Topics for Writing

Please write a clear and well-developed paragraph on each of the following topics. 
Provide specific examples where appropriate.

1. Discuss why all integers are rational numbers, but not all rational numbers are 
integers.

2. Discuss when the temperature on a thermometer can be expressed as a positive 
number and when it can be expressed as a negative number.

By reading and discussing the math summaries and by doing the corresponding 
activities, the ESL students had an opportunity to use the language of mathematics 
in oral and written form in the ESL class. This was particularly beneficial to my 
students because it gave them extra practice on manipulating math concepts and 
on talking and thinking mathematically. They were forced to talk and think more 
abstractly. I feel that this practice strengthened and enhanced the students’ critical 
thinking processes.

Strategy #2 Mathematics Vocabulary in Non-Mathematical Contexts

My goal was to integrate the math vocabulary in my ESL class expanding it into other 
linguistic contexts or domains. Once the students had grasped the vocabulary in its 
mathematical context, I tried to pull out those words and phrases from that context, 
showing the students that these words were also used in other everyday situations. 
I did this by creating short passages for reading or listening activities where these 
vocabulary words were used. At the same time, I tried to integrate passages with the 
grammatical structures that had to be covered in the intermediate ESL course. I also 
provided lists of sentences in which these words were used differently, with other 
meanings. And finally, I created ample opportunities for students to create their own 
sentences, using these words in oral and written production. Below is an example of 
such a reading comprehension passage, addressing the concepts of simple present 
tense and new vocabulary:

Mary counts her money five times every day. Today she realizes she has only 
ten dollars and sixty-two cents. That is all. She wants to buy a birthday present 
for her sister Anne, but she thinks she cannot buy much with the money she 
has. Finally, she decides that she is going to borrow some money from her aunt. 
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How much money is she going to borrow? She asks her aunt, “Could you lend 
me ten dollars?” Mary tells her aunt that she wants to buy a beautiful present, 
which costs $25 for her sister. Mary’s aunt immediately asks her, “What do you 
do with the money you earn every week? Do you spend it all? Don’t you save 
any?” Mary explains to her aunt that she doesn’t make much money at her job. 
She says that she earns very little each week. She feels embarrassed and says 
that living in NY is expensive. She says that she has a lot of expenses every 
month. “I have to pay so many bills like the rent, the phone, and the electricity 
bill every month and then I need money for food and clothes. Sometimes I 
can’t make ends meet.” Finally, Mary’s aunt agrees to lend her $10. Mary 
counts her money again. How much money does she have now? And how 
much money does she owe to her aunt now?

1. Underline the verbs in the passage that are in the Simple Present Tense.
2. Explain how the Simple Present Tense is used in affirmative and negative 

sentences. Give an example of an affirmative and negative sentence.
3. When do we use the Simple Present Tense in English?

Highlighted Vocabulary Words

Lend/Borrow/Earn/Save/Spend/Owe/Own

Borrow:  We borrow books from the library every month.
 He borrows a pen from me every day.
  He has a loan to pay back because he borrowed a considerable amount 

of money from the bank.

Lend: She lent me her copy of the article to read.
 He always lends us his car when ours breaks down.
 Could you lend me your pen for a second, please?

Earn: He earns a lot of respect every time he speaks in public.
 He earned $3000 by writing short stories.
 They all earned their bachelor’s degree last year.

Save: We should all learn to save.
 We will save time if we drive.
 Please save me! I am in danger!

Spend: He spent the afternoon reading a newspaper.
 They spend too much money on clothes every year.
 He spent three years in prison.

Owe: He owes me a favour.
 They owe her $20 for her work.
 They owe loyalty to their country.
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Own: Who owns that beautiful house over there?
 He owns a lot of property.
 He always drives the car that he owns.

Simple Present Tense Vocabulary Practice

Answer the following questions about yourself using these vocabulary words:
Lend/Borrow/Earn/Save/Spend/Owe/Own

 1. How often do you borrow money from someone?
 2. How many science degrees do you own?
 3. Why do we save money?
 4. What are some things besides money that you save?
 5. How do you spend your free time?
 6. Do you spend a lot of money on your summer vacation every year?
 7. Do you know anybody who owes a lot of money?
 8. Approximately, how much does this person owe?
 9. Is it important for you to earn a lot of money? Why?
10. Do you owe favours to some people? What kind of favours?
11. What is the best way to save money?

Listening Comprehension: Simple Present Tense and New Vocabulary

Answer the following questions based on what you heard and understood. Remember 
to respond with a complete sentence.

1. Why does Pepe go to the Dominican Republic?
2. How does Pepe pay for his airplane ticket?
3. How much money does Pepe spend on shopping and eating out?
4. What does Pepe realize when he gets back to New York?
5. What problem does Pepe have with his computer printer?
6. What is the best advice you can give to Pepe so that he can solve his problem?

The questions above refer to the following transcript:

Pepe goes on vacation to the Dominican Republic and spends $600 on his 
airplane ticket. He buys his ticket on the phone and adds this amount of money 
to his credit card. He already owes $200 on this credit card. As soon as he gets 
to Santo Domingo, he goes shopping and eats out with his friends. He pays 
all these bills with his credit card again. He spends approximately $250. He 
spends all this money with his credit card, and his debt increases.

When he gets to New York, he realizes that he has charged too much money on 
his credit card. He thinks he will not be able to pay back all the money he owes 
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at once. He tries to save some money when he receives his next paycheck, but 
he realizes that the money he makes is just enough to pay for his rent, his utility 
bills, and his monthly food expenses. All of a sudden, his computer printer 
breaks down and he is needs to buy a new printer, which costs $350. He has to 
use his credit card again because he doesn’t have enough cash.

Pepe is in trouble because he has spent more money than he makes and he does 
not know how he can pay back his debt. Could you think of a good solution 
to help him?

Strategy #3. Expressing Similar Mathematical Concept in Different Ways in 
English

Example (Solving Linear Equations)

Instructions: Fill in the blanks with the appropriate word. (The words in parentheses 
are not given to the students and appear as blanks)

x + 16 = 20

• Sixteen (added) to an (unknown) number (is) twenty.
• If an (unknown) number is (increased) by sixteen, the (result) is twenty.
• The (sum) of an (unknown) number (and) sixteen (equals) twenty.
• Sixteen (more) than an (unknown) number is (equal) to twenty.

These exercises allowed students to understand how a specific Math idea 
or concept could be phrased in many different ways in English. This provoked 
opportunities for students to think and internalize Basic English sentence structure.

Strategy #4. Word Order Exercises

Since Math sentences sometimes tend to be very complex and their word order is 
quite fixed, a lot of exercises were done on word order and sentence structure in 
the Math context. This allowed for serious thinking about what was said and how it 
was phrased. Students learned that the way concepts and numbers are put together 
in Mathematical language is essential for the understanding of that particular 
operation. As a consequence of paying so much attention to word order in Math, 
students became very sensitive to word order in English. For instance, after learning 
the logical order and steps required in order to apply math operations, students were 
better able to organize their writing in English.

Instructions: Put the following words and expressions (and punctuation marks) into 
the right order.
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1. temperature / in / by / +10 / The / decreases / evening / the / degrees
2. the numbers / multiply / He / the parentheses / the number / needs to / in the / 

outside of / the parentheses / by
3. much / How / you / your sister / to / money / owe / do / ?
4. makes / of / John / same / as / do / money / every month / the / I / amount
5. If / perform / the / using / you / numbers 12 and 4 / you’ll / multiplication / the 

number 48 / get

Serious thinking and discussion about what was said and how it was phrased 
accompanied these exercises. Students learned that the way concepts and numbers 
are put together in the algebraic language is essential for understanding algebraic 
operations. By paying attention to the word order in algebra, students became 
sensitive to word order in English.

Strategy #5. Editing Exercises

Finally, another important teaching strategy I used was the creation of editing 
exercises, based on students’ writing about math concepts. This was extremely 
valuable because it allowed for meaningful class discussions about the math concepts 
as well as about the use of certain grammatical items and vocabulary expressions. 
Students’ ideas were compared and contrasted, and little by little the students became 
more aware, and more sensitive to what and how they were expressing themselves 
in math and English.

Instructions: Please correct the following paragraphs, written by different students, 
not only for correct ideas but also for mistakes involving any of the grammar rules 
studied so far.

(xa )b ―  Student Statement: I think that raise a power to another, I need to put the 
variable and then multiply the exponent.

(xy)a ―  Student Statement 1: When you have two variable in the parenthesis  
and you raise to any power. You have to multiply each variable with same 
power.

    ―  Student Statement 2: I need to get each variable to the power separately. 
I need to multiply the variable with the raise power.

    ―  Student Statement 3: It is when you have two variable raising to a power. 
I solve this raising separately each variable to the power. For example, I do 
this because I multiply the variable by the exponent.

ASSESSMENT

A term-long (6-week) essay, written on a word processor, with 3 drafts discussed 
with the instructor was used as an assessment tool. The topic was In Between Two 
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Cultures; the students were supposed to compare and contrast their life experience 
in the Dominican Republic and in New York City.

Data Collection and Analysis

As has been stated above, the teaching experiment had two goals: to use algebra 
to help in the development of natural English, and to investigate the possibility of 
a cognitive relationship between the acquisition of both. Vygotsky suggests such 
a possibility when he asserts: “…one might say that the knowledge of the foreign 
language stands to that of the native one in the same way as knowledge of algebra 
stands to knowledge of arithmetic… There are serious grounds for believing that 
similar relations do exist between spontaneous and academic concepts” (Vygotsky, 
p. 160).

For the purpose of the present discussion, the main tool of analysis were the 
term-long essays on the topic In Between Two Cultures that the students wrote in the 
course of the semester. The process of writing was important because:

Written speech assumes much slower, repeated mediating analysis and 
synthesis, which makes it not only possible to develop the required thought, 
but even to revert to its earlier stages, thus transforming the sequential chain 
of connections in a simultaneous, self-reviewing structure. Written speech 
thus represents a new and powerful instrument of thought. (Luria & Yudovich, 
1971)

To	assess	the	changes	in	the	students’	written	mastery	of	English,	we	first	used	the	
holistic assessment of the ESL instructor – a standard way of judging student essays 
in English courses. Next, we translated this judgment into syntactic components. 
Finally, we compared these with the corresponding components in the essays of a 
control group. As our control group, we chose a past class taught by the same ESL 
instructor. The topic of the essay of the control group was Our Family Conflicts. 
This topic was judged to be the closest in meaning to the topic In Between the Two 
Cultures, assigned to the experimental group.

The judgment of the ESL instructor after reading all of the essays of the 
experimental group was that they were more cohesive. As cohesiveness is closely 
related	to	the	use	of	conjunctions―words	such	as	“because”,	“yet”,	“although”,	etc.,	
all the conjunctions used by all students in their essay were categorized, counted, 
and averaged by the total number of submitted pages by all students in each of 
the two groups (44 in the experimental and 45 in the control). The results were 
compared with the corresponding numbers from the control group. Our conclusion 
was that, on average, there was a 16% increase in the number of connectors and 
subordinating clauses in the essays of the experimental group. This confirmed the 
ESL instructor’s assessment that the term-long essays of the experimental group 
were more cohesive than the essays of the students who did not participate in the 
instructional link under discussion.
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*Examples of conjunctions for the different categories and types for Table 1:
Subordinating Conjunctions:

Time: when (the most common one) / as soon as / before / after / etc.
Cause: because (the most common one) / as / etc.
Purpose: in order that / so that / etc.
Condition: if / unless / etc.
Contrast: although / even though / etc.
Place: wherever / etc.

Transitional Words or Connectors:
Time: first / second / finally / etc.
Cause: therefore / as a result / in consequence / because of this / etc.
Contrast: however / nevertheless / on the contrary / etc.
Addition: in addition / moreover / also / etc.

Table 1. Comparison of the use of connectors in student essays

Category* Type* Experimental (Raw #/
Average per page)

Control % Difference

Time Total 228/5.18 217/4.82 + 7%
Subordination (When) 114/2.59 106/2.36 + 10%
Others 38/0.86 53/1.18 – 27%
Connectors 66/1.50 56/1.24 + 21%

Cause Total 181/4.11 152/3.38 + 22%
Subordination (Because) 140/3.18 118/2.62 + 21%
Others 20/0.45 20/0.44 + 2%
Connectors 21/0.48 14/0.31 + 53%

Purpose Total 29/0.66 20/0.44 + 48%
Condition Total 21/0.48 28/0.62 - 23%
Contrast Total 29/0.66 22/0.49 + 35%

Subordination 14/0.32 18/0.40 – 20%
Connectors 13/0.30 4/0.09 + 232%

Place Total 19/0.43 3/0.07 + 548%
Addition Total 46/1.05 38/0.84 + 24%

TOTAL 553/12.57 489/10.87 + 16%

Using a one-tailed proportion difference hypothesis test (refer to Table 3), the 
above data shows that the passing rate for the experimental group was statistically 
significantly greater than the passing rate for the control group with a p-value less 
than 0.005. As is shown, there was a 23% average increase in the passing rates 
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in the linked ESL classes. In a class of 20 students, a 23% increase in the linked 
ESL class passing rate translates to an average of 4.6 more students passing the 
class. Throughout the experiment we kept track of the students’ performance in 
their respective mathematics courses and did not observe any changes in the related 
passing rates. The stability of the passing rates in the corresponding math courses 
indicates that the linking of Algebra and Intermediate ESL was helpful in teaching 
English without jeopardizing the standards of the mathematics course.

These measurements provided an independent confirmation of the holistic 
assessment that the essays written under the influence of algebraic thinking 
were more cohesive and more thoughtfully written. Despite the novelty of this 
observation one should not be surprised by it. Algebra, as an abstract area, depends 

Table 2. Passing rates in the intermediate ESL classes taught by the  
ESL professor over a period of eight semesters

Semester Withdrawn Failed Passed Passing rate
(as a % of those who 
completed the course)

Spring 94 0 6 23 79%
Fall 94 1 19 12 67%
Spring 95 1 19 12 38%
Fall 95 2 13 16 55%
Spring 96 2 12 17 59%
Fall 96 7 9 10 53%
Totals/Average 13 78 90 53.6%
Spring 97 (LINKED) 3 3 11 79%
Fall 97 (LINKED) 0 5 15 75%
Totals/Average 3 8 26 76.5%

% INCREASE (LINKED – CONVENTIONAL) + 23%

Table 3. The results of a two sample proportion test using MINITAB

Sample X (PASS)   N (TOTAL) Sample Prop. (RATE)
    1   26          34  0.764706
    2   90        168   0.535714

Difference = p (1) – p (2)
Estimate for difference: 0.228992

95% lower bound for difference: 0.0936272
Test for difference = 0 (vs > 0): Z = 2.78  P-Value = 0.003
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heavily on the relationship between different concepts, ideas and mental actions. 
Connectors and subordinating clauses are those particles of language that are used 
to express the relationship between ideas, events or facts; these are words such as 
“because”, “in order to”, “finally”, “if…then…” They are used to express cause and 
effect relationships, conditions, reasons, and contrast; thus, they seem to be closely 
related to what is called a critical (or analytical) mode of thinking. Correct use of 
connectors determines the organization of ideas within an essay. The increase in 
the (correct) use of these linguistic tools meant that there was an increase in the 
number of relationships between ideas, resulting in better conceptual organization 
expressed by our students in their writing, making it more cohesive. The dense 
and complex mathematical relationships addressed in the Algebra course, when 
translated into natural language with the help of connectors, were able to penetrate 
the simpler language of descriptive writing, and the correlation of the ESL syllabus 
with the Algebra course induced an increase in the level of thinking effected by 
the ZPD.

The description of the experiment and its results is based on The Final Report 
of the ESL/Elementary Algebra Teaching Experiment: Mathematics and Natural 
Language Acquisition supported by the New Visions Program Grant of CUNY, July 
1998 – Merce Pujol, Bronislaw Czarnocha

REFERENCES

Anderson, J. A. (1982). Acquisition of cognitive skill. Psychological Review, 89(4), 369–406.
Birken, M. (1989). Using writing to assist learning in college mathematics classes. In P. Connolly &  

T. Villardi (Eds.), Writing to learn mathematics and science. New York, NY: Teachers College Press.
Connolly, P. (1989). Writing and ecology for learning. In P. Connolly & T. Villardi (Eds.), Writing to learn 

mathematics and science. New York, NY: Teachers College Press.
Cuevas, G. (1984). Mathematics learning in english as a second language. Journal for Research in 

Mathematics Education, 15(2), 134–144.
Cummins, J. (1980). The entry and exit fallacy in bilingual education. NABE: Journal of the Association 

for Bilingual Education, 4(3), 25–60.
Czarnocha, B., & Prabhu, V. (2002). The flow of thought across the Zone of Proximal Development 

between elementary algebra and English as a second language. Proceedings of the 24th Conference of 
the International Group for the Psychology of Mathematics Education, 2.

Dale, T. C., & Cuevas, G. J. (1987). Integrating language and mathematics learning. In J. Crandall (Ed.), 
ESL through content area instruction: Mathematics, science and social studies (pp. 9–54). Englewood 
Cliffs, NJ: Prentice Hall.

Kenyon, R. W. (1989). Writing is problem solving. In P. Connolly & T. Villardi (Eds.), Writing to learn 
mathematics and science (pp. 73–87). New York, NY: Teachers College Press.

Kozulin, A. (1986). Vygotsky in context. In L. S. Vygotsky (Ed.), Thought and language. Cambridge, 
MA: The MIT Press.

Luria, A. R., & Yudovich, F. (1971). Speech and the development of mental processes in the child. 
Baltimore, MD: Penguin Books.

Mett, C. (1998). Writing in mathematics: Evidence of learning through writing. The Clearing House: A 
Journal of Educational Strategies, Issues and Ideas, 62(7), 293–296.

Powell, A. B., & Lopez, J. A. (1989). Writing as a vehicle to learn mathematics: A case study. Writing to 
Learn Mathematics and Science, 157–177.



ALGEBRA/ENGLISH AS A SECOND LANGUAGE (ESL) TEACHING EXPERIMENT

473

Valsiner, J., & van del Veer, R. (1993). The encoding of distance: The concept of the zone of proximal 
development and its interpretations. In R. Rodney, K. Cocking, & A. Renninger (Eds.), The 
development and meaning of psychological distance. Hillsdale, NJ: Erlbaum.

Vygotsky, L. S. (1986). Thought and language (A. Kozulin, Trans.). Cambridge, MA: The MIT Press.
Wahlberg, M. (1998). The effects of writing assignments on second-semester calculus students’ 

understanding of the limit concept (Doctoral dissertation, Western Michigan University). Dissertation 
Abstracts International, 59(7).

Bronislaw Czarnocha
Mathematics Department
Eugenio Maria de Hostos Community College
City University of New York



B. Czarnocha et al. (Eds.), The Creative Enterprise of Mathematics Teaching Research, 475–486. 
© 2016 Sense Publishers. All rights reserved.

TED INGRAM, VRUNDA PRABHU AND H. ELIZABETH SMITH

5.2. “JUST TELL US THE FORMULA!”  
CO-CONSTRUCTING THE RELEVANCE OF 

EDUCATION IN FRESHMAN LEARNING 
COMMUNITIES

INTRODUCTION

Students and teachers alike bring their own individual perceptions of the relevance, 
intent and proper delivery of education, and the classroom provides a space to 
negotiate these diverse perceptions. The teaching-research paradigm allows teachers 
to prescribe certain interventions and improve student performance by systematically 
integrating these interventions over the course of an academic semester. We argue 
that students who find relevance in their education are more confident in approaching 
the problem-solving process and are, ultimately, more successful in all their courses. 
In this article we explore how education becomes relevant for students in two 
successive learning community cohorts that link three developmental courses: 
Freshman Orientation and Career Development (OCD), Developmental English, 
and Elementary Algebra. We achieve this type of student investment by infusing 
our teaching practices with a socio-cultural approach theoretically informed by 
Vygotsky, Bruner, Brousseau, Piaget and Garcia, and Sen.

As teachers, we view our teaching practice as an opportunity to create an 
environment conducive to learning in order to expand our students’ intellectual 
horizons. We concur with Bruner’s notion that learning is a process and not an end 
product; this foundational belief necessitates a constant continuous integration of 
concepts, readily filling out any existing gaps in notional schemas (Bruner, 1971). 
As teachers, we are interested in engaging our students and encouraging them to 
take part in the learning process. Our students, however, often come to our classes 
with the expectation that teachers are there to give them knowledge—subscribing 
to Freire’s “banking model” of education (Freire, 1973). Students demand, “Just 
tell us how to do the problem!” and claim, “I want to get an A in this class.” This 
conflict of perspectives between teachers and their students creates an ongoing 
tension in the classroom that must be constantly mutually negotiated in order to 
co-construct a shared understanding of the relevance of education. We observe that 
students who learn to view their education as a process that will continue even after 
the semester ends are more able to deepen their understanding of how education 
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can positively affect their lives; this, in turn, impacts their willingness to take risks 
as well as to make and learn from their mistakes. Here we examine our experiences 
of making education relevant to students in our freshman learning community at 
Bronx Community College (BCC), elaborating on the specific challenges we each 
encounter and the ways in which we have each chosen to address them.

THEORIZING THE RELEVANCE OF EDUCATION: HOW OUR LEARNING 
COMMUNITY REFLECTS A LARGER SOCIO-CULTURAL MILIEU

Bruner (1996) argues that, “what is done in school must be seen in the broader context 
of what society intends education to accomplish”; indeed, he explains that “culture 
shapes the mind and provides the toolkit by which individuals construct worlds 
and their conceptions of themselves and their powers.” Our learning community, a 
microcosm of the real world, is distinct from regular classrooms of roughly thirty 
students who get to know each other gradually over the course of a semester; rather, 
our learning community is similar to a small pocket of society that interacts closely 
with each other. As teachers, we bear witness to the impact of societal norms as 
well as the effects of public school culture on our students’ attitudes towards their 
education and their resulting academic performance. Our students participate in but 
do not actually create the educational systems; as teachers, we attempt to create a 
learning environment that reflects the goals of a quality education, that is, where 
students fearlessly engage in problem-solving and, under the watchful guidance 
of their teacher-researchers, develop into confident and independent thinkers. We 
attempt, in particular, to make the relevance of education transparent to our students. 
Aronowitz (2008) notes that “the large number of community colleges whose mission 
is now almost exclusively confined to preparing trained workers for the corporations 
with whom they have developed close relationships.” Bruner (1971), however, 
emphasizes the personal development of the learner rather than the corporations 
who need the trained workers; he writes, “The imparting of knowledge should be 
approached from the standpoint of equipping students with the skills that will enable 
them to achieve personal significance in their lives.”

We also wonder if our college students’ perceived inability to articulate the 
relevance of their respective educations may be a learned trait from years of public 
schooling. Manzo (2008) reports that:

Educators are still searching for the right blend of academic and developmental 
strategies for middle school students. More than a decade after a prominent group 
of middle-grades reformers set out to infuse higher academic standards into 
what critics deemed the touchy-feely world of middle schools, many teachers 
are still grappling with ways to motivate students to excel intellectually while 
helping them adapt to the dramatic physical and emotional changes that come 
with puberty. That mix of rigor, relevance and responsiveness, experts say, is 
crucial for guiding students, particularly those most at risk of dropping out, on 
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the path to high school graduation and later success. Too many schools serving 
sixth through ninth graders, however, have yet to find the right prescription 
for keeping those youngsters engaged at a time when their growing curiosity, 
independence, and need for the acceptance of their peers may lead them to act 
out or zone out in school. (Manzo, 2008)

Given the existing academic structure within which students operate, where the 
value of their work may not have been made explicitly evident to them, we wonder 
about the impact of learning in the college classroom. In his dissertation, The Role of 
Utility Value in the Development of Interest and Achievement, Hulleman “evaluates 
whether helping students see the value in their coursework contributes to interest and 
achievement” (Hulleman, 2007). The current classroom situation faced by instructors, 
as described by Hulleman, would resonate with most instructors: “interest in school 
tends to decrease over time, with students with lower competence beliefs reporting 
lower interest and motivation than students with higher competence beliefs” (Jacobs, 
Lanza, Osgood, Eccles, & Wigfield, 2002; Lepper, Corpus, & Iyengar, 2005). Thus, 
declining interest could also mean declining performance and commitment to their 
academic advancement. Hulleman points to the need for students to transition from 
situational interest towards developing individual interests. While we agree with 
Hulleman about the close connection between motivation and cognition, we claim 
that even with the intense efforts of instructors in creating a learning environment in 
which students can develop the needed individual interests, the instructor’s efforts 
are made difficult by the accepted societal norms and those that have become long-
standing habits, such as the absence of independent work and counter-productive 
behaviours like listening to music, texting, talking, and eating in the classroom.

How can we navigate our students’ learning as it currently exists towards the 
norm of the profession? We employ theoretical support from a variety of sources; 
Vygotsky’s socio-cultural approach and Bruner’s approach both support our 
instructional design (Vygotsky, 1986; Bruner, 1971, 1996). We developed our 
instructional materials using scaffolding. This maximizes the students’ passage from 
the spontaneous concepts the learners bring to the classroom with the scientific 
concepts with which the learners are expected to work. In the classroom learning 
environment, we create the support needed for the learners’ swift and efficacious 
passage through the Zone of Proximal Development. In the mathematics class, 
for example, this results in new instructional materials being produced that, in 
coordination with the concrete/enactive – iconic – symbolic phases of learning, also 
integrates exercises of written thought to allow language to act as a further aid in the 
development of students’ comprehension of concepts.

Second, how can we effectively hold students accountable for their own learning? 
We introduced Brousseau’s didactic contract into the teaching-research cycles in 
the fall of 2007 (Brousseau, 1997); incorporating the objective of a game has been 
helpful in determining and making explicit to students how significant and crucial 
their participation is to their performance. We also have students monitor their 
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individual progress via Self-Assessment Reports due at the end of the semester. 
In classroom language, the didactic contract is called a handshake, and we seek 
the handshake repeatedly over the course of the semester as a means of attaining 
excellence.

Third, how do we connect the individual interests of students with the mutual 
goals of teaching and learning? We focused on the common theme of Part of Whole 
in our fall 2008 learning community. The assignments in each of our three classes 
covered a range of activities and were geared toward building a schema. The foci, 
both in the various disciplines and within the same course, ranged to cover the aspects 
that were diagnosed as missing or in need of amelioration, creating opportunities 
to see the details of the structure present in all three classes. For example, in the 
mathematics class, students were shown how to factor an expression that was a 
difference of two squares. Then, in the first-year OCD course (see Example 1), 
students closely examined the connection between the submission of an unreadable 
term paper and the resulting grade. The overarching theme of Part of Whole was 
also personalized as a means of encouraging students to engage in their own creative 
interests so that they could see themselves as part of a whole. Over the course of the 
semester, each student developed a term paper that incorporated the following five 
writing exercises: (1) a short introduction of the student to the class; (2) a short essay 
on the college theme I Am BCC; (3) a students’ perspective of the research results 
from the Ohio and Michigan Mathematics and Science Partnership that reported on 
the low passing rates among third through twelfth graders on a fractions test; (4) 
a piece on My Interests; and (5) a commentary about the federal document, Tough 
Choice or Tough Times, which also provided a venue to inform students’ of the 
mathematical requirements in the various jobs and fields, and to create an additional 
interest, perhaps, motivated by the attraction of a well-paying job (if the latter was 
an attraction).

How do we pay attention to the details inherent in the structures of English, 
Mathematics and OCD classes? How, for example, do we learn to see the fraction 
we represent as a part relative to the whole? The Part-Whole relationship linking 
the three courses of the learning community arises from a prior diagnosis of a 
weak schema (Skemp, 1987) among students in developmental classes. In the 
sequential nature of mathematics, where building a schema is an essential part of the 
developmental process, and given that this is not a demonstrated proficiency for our 
students, the development of the schema takes the form of paying attention to the 
parts that comprise the whole totality of the different course contexts.

CHALLENGING OBSTACLES: GAUGING THE RELEVANCE OF  
EDUCATION IN OUR LEARNING COMMUNITY

The authors of Beyond the Banality of the Mathematics Classroom: Teaching 
Situations as Objects of Research point to the advantage of being anchored in 
theoretical frameworks that allow the classroom to be treated as a unit of analysis. In 
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our learning community, we have chosen to ground our pedagogy in a socio-cultural 
approach intended to improve learning. Through the creation of the appropriate 
learning environment and guided by a didactic contract, students create a natural 
space for the classroom situations to be studied as units of analysis over the course 
of the semester and across different courses. With the objective of collectively and 
individually improving learning, students create a shared understanding of their own 
relevance of education by reflecting upon classroom practices.

In our learning community, we, as community college professors, are 
simultaneously teachers and researchers who are attempting to change the teaching-
learning situation in the classroom. Utilizing the daily classroom situations as 
units of analysis, our team works across classes with students who need help. 
Our learning community constitutes a cohort of students who are enrolled in three 
linked courses: Orientation and Career Development, Developmental English 
and Developmental Mathematics. Our students’ standardized test scores are 
weak. Many students occasionally will admit that they just marked the answers 
to be finished with the test; however, on in-class assessment it is clear that the 
mathematical gaps in our students’ backgrounds are quite severe for many. Given 
the host of compounded difficulties, our teaching-research project naturally 
includes all the known ways of addressing our students’ diagnosed learning 
difficulties. We clearly distinguish our use of the term learning difficulties from its 
most prevalent use. The abilities of our students are diagnosed as being very high; 
however, the motivation and desire for learning is seen to be only sporadically 
present. The wide disparity of difficulties to be addressed are echoed by a range of 
students’ statement like:

• Why should I learn math? I hate it, and I have never been good at it.
• Just tell me what to do—what is the formula?
• Is there not an easy way, a shortcut?
• I don’t get it. I get it in class, but then when I go home, I don’t know how to start
• Am I even on the right track?

To understand the significance of giving due consideration to steadily working 
with students on realizing the importance of the relevance of education, it is easiest 
to understand the classroom dynamic from the standpoint of our three participating 
learning community courses: First-Year Seminar, English, and Mathematics. The 
theme we selected, Parts of a Whole, helps in creating an understanding that freshmen 
year is the first stage leading to the whole identity of becoming a professional. With 
this in mind, students understand that a personal transformation will occur during 
their educational journey. Students are expected to embrace the changes that will 
occur in behaviour, actions, and thinking; ultimately, these changes occur for the 
betterment of each individual student. In this classroom environment, we challenge 
students to leave their former unprofessional and counter-productive behaviours in 
the past. College is the pivotal time where these young adults will begin certain 
practices that will shape who they become in the future. In other words, practices 
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they adopt now will become habits in the future. The following scenarios exemplify 
how this can happen.

Example 1

In one incident, for a class assignment, students were expected to research a 
career and submit a five-page paper for a grade. After collecting the papers on the 
assigned due date the instructor returned to the office to begin grading. Thirty-
minutes into the task one student’s paper caught his attention. Let us call him 
or her Student A. Student A’s paper followed the parameters as outlined in the 
syllabus, but when the professor arrived to page 3 something was different. It 
appeared the printer he used began to run out of ink. Regardless of this obstacle, 
Student A continued to use the fading ink cartridge and submitted the paper. The 
professor’s initial reaction was to continue reading the paper hoping there was 
improvement in print quality in subsequent paragraphs. After stumbling through 
numerous sentences and squinting at the various paragraphs, the professor became 
frustrated and ceased the extra effort. Apparently the student did not exert the 
extra effort to find another printer. The professor subsequently formulated a 50% 
grade (acknowledging the 50% of the paper that was legible), with a lengthy note 
indicating the frustrations in the paper’s legibility and extending an offer for the 
student to resubmit the paper for a better grade. Given this same scenario with a 
resume and a potential employer, more than likely Student A would not have been 
given a second chance by an employer to resubmit a better quality document. This 
example supports the belief that students should always uphold high standards in 
all they do during their developmental collegiate years. Again, these experiences 
are the training grounds for how students will present themselves to future faculty 
as well as potential employers.

Example 2 (of the difficulty faculty faces in forming new successful habits with 
students)

Students typically are concerned with their assignment grade and fail to notice 
how they can become better students. As a community college instructor, it is not 
uncommon for faculty to teach multiple sections during a typical semester. As such, 
many instructors are responsible for over 120 students distributed throughout 4 
sections. Using the research paper as a class assignment, students are expected to 
complete a 3–5 page paper investigating and communicating different aspects of 
the journey towards their future occupational choice, and pose and answer related 
detailed questions. Amongst all of the sections, approximately 100 papers were 
submitted at the same time, during the week following midterms. As a former 
professional student, instructors understand first-hand the importance of feedback 
and students perceive instructors who grade papers with no comments as lazy and 
uninvested. To this end, we all made every effort to offer input or feedback on our 
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students’ papers, and in a timely manner. In addition, such information helps us 
remember each paper clearer should a student contest a grade. After the daunting 
task of commenting on each paper, we distribute the papers in class for students 
to only watch them bypass all comments and target the last page for the grade. 
Unfortunately, many students, not learning from their trivial mistakes or our 
suggestions to have a peer proofread their work, are only interested to know if they 
passed or failed. Students do not realize that they are doing themselves a disservice 
by ignoring our comments – a practice that would be just as detrimental in any of 
their future academic and professional endeavours. In conclusion, we would hinder 
our students’ educational growth by not offering comments, and encourage them to 
refer to our suggestions by providing the incentive to earn a higher grade for those 
students who resubmit their work with corrections.

Example 3

“Am I on the right track?” A student’s need for affirmation of his/her work from the 
teacher might perhaps be common at the beginning of the course; however, there is a 
pocket of students who may be unable to work without the outside confirmation for 
longer. A student might want to repeatedly have his or her work checked. It might be 
so intense that in the beginning of the essay the students may only have typed up the 
heading and title before asking their first question, “Am I even on the right track?” 
In a math class, during board work, he or she may have only written the equation to 
be solved and immediately ask, “Am I even on the right track?” The student’s work 
may also demonstrate an unclear connection between procedures and concepts. The 
conceptual writing exercises that take place in the computer lab demonstrate that the 
students who are in the habit of asking “Tell me what to do next” have to extricate 
themselves from this habit. In our experiment, one class has been shifted one day a 
week to accommodate students and allow them to receive more individual attention 
from the instructor. This certainly needs to be addressed. The learning environment 
should be sufficient enough to support the student in figuring out how to approach 
the problem at hand.

Example 4 (of the motivational approach used to reinforce the successful habits of 
the future)

After a particularly trying day, the instructor asked students to take a few minutes to 
respond to the following poem, entitled Indivisible Excellence1:

If my Excellence be Me
Indivisible from the rest of Me,
What competition does it have?
Headphones, earphones, cell phones,
Chatting, texting, sleeping,
Eating, day-dreaming,
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Asking questions just answered,
Is this the competition of Me to Me?
Am I to win the battle of Me with Me?
Is there to be a Handshake in this class?

There were ten student responses from a class of twelve students (two were absent). 
Of the ten students, the answer to the final question was provided by five students. 
Two students responded to the individual questions in the poem and provided a 
response to the whole poem. One student responded only to individual questions in 
the poem without responding to the whole. Their responses are below:

 1.  Yes. If I was to be more focused and determined the handshake can happen. I am 
just a little forgetful about the math I used to know;

 2.  This is an example of what goes on in our class. If one has a part of whole that 
shows excellences when speak or works but their other part of them that shows 
on the outside has habits such as chatting, texting, eat, then the two has to come 
to a freedom to accomplish good work;

 3.  I believe there shouldn’t be a handshake because one has to be responsible as an 
adult to be organized and on top of things;

 4.  Yes, because texting and day-dreaming takes over what I do in class. I could win 
a battle of me with me just by doing the opposite;

 5.  I think yes, because every person have its own responsibility to do and act like 
they know they are supposed to behave;

 6. I like the statement professor. There should be a handshake;
 7.  (Answers written next to the last three questions in the poem above) (i) Yes, 

(ii) Yes, (iii) Yes, because student need to know some class mates and study 
together or form study groups;

 8.  (Answers written next to the last three questions in the poem above) (i) No, 
(ii) Yes, (iii) I think there should be a handshake but we need to put effort in 
learning. Do all assignments and don’t let any distractors catch your attention;

 9.  No, there wouldn’t be the competition of me to me. If it was to be there wouldn’t 
be no negative to it. There will always be positive. Me to me would be a job well 
done. In fact me to me shouldn’t be competition. Me to me is supposed to be 
parallel to each other not perpendicular. Yes, there WILL be a handshake to this 
class;

10.  (Answer written next to line 3 in the above poem) I have no competition. I just 
try and do the best that I can in everything I do. (Answers written next to the last 
three lines in the poem) (i) No, (ii) Yes, (iii) Not each person is accountable for 
his/her work.

Example 5

Students were administered the Motivated Strategies for Learning Questionnaire 
(Duncan et al., 2005). There are two parts to the test consisting of a total of 81 
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questions. Part A asks 31 questions pertaining to Motivation and Part B asks questions 
pertaining to Learning Strategies. In response to the question: “I make sure I keep 
up with weekly readings and assignments for this course,” six students answered 
“Yes” and three answered “No”. The remaining three students were absent. These 
results demonstrate a clear connection between the students’ motivation and how 
they perceive their cognition.

Example 6

A student’s hostility can be transformed. This transformation can only be attained 
by repeated, deliberate and clear verbalizations of the instructor’s persistence and 
faith in students’ work. Students’ hostility, especially toward mathematics, is often 
directed at the instructor; this is common knowledge for any mathematics instructor 
with several years of teaching experience. Over the past five years, utilizing the cyclic 
teaching-research methodology in our mathematics classrooms, we have singled 
out the classroom environment as the primary platform to counter the obstacles for 
learning diagnosed in the first phase of the ongoing teaching experiment, helping 
it evolve each semester. In the Basic Mathematics courses, students have had prior 
exposure to the topics in question; however, the level of hostility is still somewhat 
tremendous. The need for rapid intervention in student morale affecting performance 
is significant and urgent.

As the semester progresses, we observe that students and teachers, in the process 
of adjusting to each other, begin to learn from each other. We hope that by the end 
of the semester, both students and instructors accomplish the goals of a quality 
education. The learning that occurs over the course of the semester illuminates the 
widely varying views of students on the absence of relevance of education that are 
both startling, disturbing and necessitate a change on the part of students and the 
instructors. However, this change, which must be facilitated by the instructor, is 
a slow and long process, and is affected continually and significantly not only by 
classroom dynamics but also by factors outside the classroom, such as juggling 
family and work responsibilities as well as managing personal and economic stress. 
A constant question we struggle with addresses the way we communicate the 
relevance of education to our students, who seem not to see eye-to-eye with us. The 
students’ intelligence and talent, so openly evident to the instructor, are disregarded 
by participating students, resulting in several conflicts whose negotiation is the 
integral part of the creation of a successful learning environment. At the end of 
the semester, the hope is that there is a profound common understanding of the 
relevance of education that is shared by both students and instructors.

CONCLUSION

We believe that students who experience a sense of absence of the relevance of 
education may not care about passing the course or, in extreme cases, even plan to 
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fail. As learning community instructors, we attempt to bring about a modicum of 
success through our concerted, regular efforts towards developing students’ belief 
in their own excellence; however, the success always leaves the desire for a greater 
success and, hence, the constant effort persists until the very end. By the repeated 
efforts of the instructional team, students are forced to face a cognitive conflict in 
which their fight/participation in their own failure is made explicit publicly (and 
sometimes not publicly), and they have the opportunity to take action upon the fear 
of mathematics or academia in general or other non-voiced, non-exhibited fears 
that prevent success. The responsibility of teaching and learning is inextricably 
connected and shared by students and instructors, and both groups are influenced 
by the existing societal environment. Lesch (2007) explores how “the structure of 
schools might be changed so that students in their formative years are able to learn in 
a manner that allows them to be more creative.” As Aronowitz states, education is a 
public good and absence of relevance of education among a significant student body 
is a matter of concern for the young minds and the society in which they mature. 
Aggressive and invested action towards fuelling a change that brings relevance back 
to education is, thus, a prerogative of benefit to everyone.

It is clear how the relevance of education is being developed in our classes; 
indeed, it is realized in the refusal of the instructors to give up in the face of students’ 
fierce resistance to learning and in the persistence of the instructional team to find 
ways to extend the possible partnership that has shown signs of promise, even if the 
progress is only fleeting at moments. However, each student has demonstrated their 
excellence, in no uncertain terms, at least once over the course of the semester in one 
of their three classes. This excellence has been diagnosed in clear but intangible terms 
and is stifled by the ever-present question mark students attach to the relevance of 
education, often failing to view the learning community they belong to as a microcosm 
of the “real world.” Our teamwork provides a wall of support for both instructors and 
students who are learners, struggling for self-expression, on their own terms, within 
the often clashing cultures of youth and academia. We observe that the repeated 
expression of public, tangible and non-judgmental support instils in students the 
expectation that they can meet the instructors’ standards and that excellence is within 
their reach. Such a realization creates some small but nevertheless positive steps in 
the direction of the attempted didactic contract or handshake.

Students’ absenteeism or, when they are present, the lack of focus and attention, 
along with an impulsive need for instant gratification that may come from “getting 
the solution” to a problem without the careful thought processes that require sustained 
concentration and active participation are built up over a long period of schooling 
and disinterest in their own work. Youth culture, where calling one another “loser” 
as a friendly chide, lends itself to pride in failure, and often awards academic failure 
as an achievement. To fail is to be rebellious. Students are rebelling against the 
system, and their rebellion is directed at the teacher in front of the classroom, yet it 
is without venom, without desire to hurt. The teacher is the personification of the 
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system. The students, especially the younger ones, want to enjoy and live in the 
moment. They strive to enjoy every minute. Hence, for them, every moment is joyful. 
For the instructor in the classroom, these responses can be deeply disturbing while at 
the same time, the physical and mental exertion is tremendous. As a result, teacher 
burnout can be intense. Our learning community was a class of only twelve students. 
One student, particularly engaged in enjoyment, asked the instructor: “Are we a fun 
class, Miss?” The instructor had replied to enquire, “What were you like in school?” 
He answered: “Yes, and there were 30 of us. The teacher didn’t have a prayer.” 
All of this was said with ease, absolutely no harshness or anger, just statement of 
facts. Learning by necessity requires silence. Especially in mathematics, learning 
requires a chain of thoughts to be built and followed, and the silence to allow for 
that train of thought. This silence is absent in youth culture and is taken up instead 
by the ubiquitous noise of texting, chatting, listening to music and other sensory 
distractions.

The relevance of education, seeing oneself as a part of a larger whole community, 
and working on one’s interests with a sense of belonging, are all concepts closely 
connected to both a quality education and a competition with oneself. As teacher-
researchers, we have the opportunity within a span of one semester to challenge 
our students’ long-held beliefs in their own shortcomings, and to inject a love of 
mathematics, English, and learning, in general, through the acts of writing and 
thinking together. The meaning that emerges may not be tangible to the spectator 
at the end of the semester, but, nevertheless, the joint effort creates meaningful 
partnerships that enhance the problem-solving process in mathematics and sciences, 
enhance creativity in language arts, promote the desire to learn and resonate with our 
students throughout their academic careers.

NOTE

1 This poem by Vrunda Prabhu had been included in the published collections: Vrunda Prabhu, Chosen 
Poems: Is there a Trick to Happiness? Vrunda Prabhu – The Teacher-Researcher of Life-in-Truth.
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VRUNDA PRABHU AND BRONISLAW CZARNOCHA

5.3. PROFESSIONAL DEVELOPMENT OF TEACHER-
RESEARCHERS (PDTR) IN TAMIL NADU, INDIA

Focus on Women in Community-Based Schools of Tamil Nadu

INTRODUCTION

We report on our investigation of the applications of the TR/NYCity model of 
mathematics teaching-research approach to teaching and learning in Tamil Nadu, 
India. The TR/NYCity methodology and the design experiment were presented 
during epiSTEMe-1 (Czarnocha & Prabhu, 2004). Immediately after the epiSTEMe-1 
presentation, outlining the outcomes of the methodology for the integration of 
practice and theory, the request for such an integration was initiated by Senthil Babu 
(then, present in the audience):

The teaching research aspect will be focused on the teacher volunteers who are 
in charge of the night schools. These volunteers need to be trained in localized 
content development of the curriculum of the night schools, aware of the 
necessity of keeping the contents alive in relation to the political-economic 
dimensions of the village; be trained in areas that will enable them to intervene 
in day to day events of the village.

Babu stated his vision: 

We	need	action	research	programmes	concerning	pedagogy,―but	not	merely	
concerning on teaching children better but how the night school as a total 
institution in a rural setting can become viable by incorporating the educational 
needs of the agricultural labourers and the fish and boat workers. The night 
school needs to be seen in totality not as fragmented centre of concerns for 
fragmented ideas. We need to create institutions that will sustain themselves, 
and spur out waves of change from there out to the big bad world.

His counterpart from Sathyamangalam, Karuppuswami, the head of the READ 
NGO, informed us last January, that the community is not interested anymore 
solely in the technical/mathematical knowledge of the teacher; now, a strong need 
arises for a new profile of the teacher, that of a community motivator and a social 
entrepreneur,―a	teacher,	who	can	work	along	the	cognitive	development	of	children	
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in the classroom towards the establishment and transformation of the community 
surrounding the school. These are new ideas, originating directly from India, that 
offer an exciting opportunity of self-transformation of the community, where 
intellectual and emotional needs of the community’s children are one of the basic 
principles and aims of this transformation. 

It turned out that many of the villages of the community-based night schools in 
question were situated in the path of the tsunami in Nagapattinam and Cuddalore 
region.

Reflection upon the requested task reveals a powerful vision where the 
TR methods of classroom enquiry into the process of teaching and learning 
mathematics, are integrated with the Action Research activities in the communities 
housing the night schools. The vision allows to ponder on the possibilities of social 
transformation of communities that is in agreement with the learning needs of the 
children of the communities. Consequently a natural teaching-research question 
arises: 

What is the methodological route to smoothly integrate mathematics teaching-
research focused on the improvement of mathematics teaching and learning 
with Action Research aimed at improving the socio-cultural and economic 
well-being of the community?

The present report describes the organization of the pilot teaching experiment 
in three different rural communities of Tamil Nadu, and its three stages: (1) 
Exploratory, (2) Workshop #1 – Mathematics and its pedagogy, (3) Workshop 
#2 – Mathematics and Psycho-Social Action Research. The report describes the 
preliminary results of mathematics workshops as well as a possible answer to the 
stated research question.

ORGANIZATION 

Exploratory Phase 

A grassroots community effort over several years had developed an infrastructure 
of community-based night schools aimed at changing the significant difference in 
the expected and actual academic performance of the children in the government-
run public schools. The teachers of the community-based schools are volunteers, 
with first-hand experience with both the social and educational circumstances of 
the children. The expressed need was the strengthening of their own mathematical 
and pedagogical expertise. The teacher-researchers familiar only with academic 
environments needed to understand the new experimental territory and to adjust 
their methods to the existing needs. This was accomplished in the exploratory  
phase by: 
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• Visits to several community-based night schools observing, taking field notes;
• Conversation with teachers about the difficulties they faced;
• Conversations with the coordinators.

Workshop #1 – Mathematics and Its Pedagogy

Three mathematical concepts were selected for the first teaching-research workshop: 
Signed Numbers, Fractions, and Beginning Algebra. The three concepts formed the 
basis for exchange of mathematical knowledge and pedagogy. All three topics were 
hands-on, manipulative-based; the teaching of the content was interactive, engaging 
the participants to discover, and to reflect upon (a) how they would use the method 
in their own class, (b) what problems did they foresee, and (c) what problems might 
be addressed through the approach. Some participants were able to experiment in 
their own night schools with members of the team as observers. Data collected from 
these mini-teaching experiments was helpful in further targeting the methods to the 
needs. The participants, aware of long-term teaching difficulties experienced in the 
classroom, questioned the efficacy of the methods to increase the rate of the process 
of learning, and the teaching-research team, aware of the knowledge of the field 
could (i) directly, through the manipulatives, demonstrate how this efficacy could 
occur, and (ii) through the theoretical linkage between the work of Piaget (Piaget & 
Inhelder, 1958), Bruner (1966) and Vygotsky (1987), demonstrate the theoretical 
foundation on which the increase in the rate of learning was based. 

Workshop #2 – Mathematics and Psycho-Social Action Research

The second workshop alternated the techniques of psycho-social action research 
with TR/NYCity to (i) provide an exposure of psychosocial methods, (ii) continue 
the content and pedagogy exchange, and (iii) underscore the importance of teachers’ 
own roles as teacher-researchers. What emerged was an integration, Teaching-
Action-Research (T-A-R), of the psycho-social and the mathematics teaching-
research methods, which is theoretically grounded in the concrete-iconic-symbolic 
developmental theory of concept formation (Bruner, 1966).

We continue to present new paths along which school/community integration 
can be accomplished in order to facilitate the main dream, answering the following 
central questions: 

How to bring up the children we encounter in the communities so that the whole 
enthusiasm, brightness and smartness stays with them into the teens, twenties, 
thirties, fifties, sixties and beyond? What would have to be the qualities of 
the teachers to be able to keep that flame of children alive and developing? 
What do teachers need to know? What attitude and knowledge do they need 
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in order to maximize the intellectual potential of the children? How village 
communities would need to be organized to make sure that the Spark of the 
Child grows unfettered to its full brightness? What are basic components of the 
required community transformation?

Learning Community of the Future is the village community with its community-
based schools that develop along parallel, mutually reinforcing tracks to assure the 
development of intellectual and emotional potential of its children as well as the 
development of the village’s social capital to their respective maxima.

FOCUS: WOMEN OF THE COMMUNITIES

Montessori-for-Mothers (M-f-M)

Every community of the T-A-R project always had a contingent of very active 
women. In some sites in the tsunami-affected region, mothers stood at the fence of 
the school for hours watching the education of their children, cheering when one’s 
child answered and encouraging those children that shied away. In October 2006, 
the women of the Salem and Erode communities expressed an even stronger interest, 
via their wish to educate their own children. Given that the community-based school 
is manned by one or two young teachers, and the number of children is large, with 
large age range, it would be better if the teacher(s) could focus their attention on 
the school-age children, and the younger ones could receive the needed educational 
nurturing from the parents at home. The idea of Montessori-for-Mothers (M-f-M), as 
the first bridge between the school and the community, was then born. 

The T-A-R approach to Montessori-for-Mothers has the dual purpose of reaching 
women and children simultaneously through addressing the following question:

How can the mother become a critical thinker in the process of creating an 
appropriate learning environment for her young child?

Any Action Research project works along the cycle of design, implementation, data 
analysis and re-design of the approach. The initial design of the M-f-M approach 
was envisioned to have three parts for the mother and one part for the child. In 
its first implementation, in January 2007, at four sites across the Salem and Erode 
districts of Tamil Nadu the following three parts were included:

• A discussion of three case studies of women across India who had been successful 
in using their own personal strength to combat oppression;

• Documenting their own life-map to begin the process of critical reflection upon 
their own lives;

• Design of Montessori materials: Tamil letters, words, numbers and colour cubes 
to enable the child and mother to begin reading the world through the word.
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The third part sets up the environment of learning for the child, and all three parts are 
meant to motivate the mother to create the required environment, while she herself 
learns.

The actual implementation of the M-f-M workshops at the four different sites 
has yielded an evolved new structure that could not have been envisioned prior to 
implementation, and much more robust. 

Given the harsh living conditions, the woman may not see many truths in her 
lifetime, and the spark of her child is the Truth she has definitely seen, and does not 
doubt. It is what she wants to preserve. It became apparent in every visit to every 
night/community-based school that the woman is crying out desperately for help 
in every which way she can. On the last visit it became clear that she is a quick 
learner – and she knows her mind. 

“Teach me your methods.” 
“Now I know I can draw.” 
While each such remark can be very difficult to digest and reconcile to academics, 

it is the existing reality. Three readings drawn from the real world of success stories 
where women had overcome their constant neglect and abuse via standing up for 
themselves, did not have the impact as had been anticipated by the teaching-action-
research team. The women of all the communities are ready and, in fact, hungry for 
education, for a decent life for themselves and their children. The neglect and abuse 
is a commonplace occurrence; the women were not affected by the narration of the 
three case studies. Instead, women listened and very carefully, but did not have many 
comments and asked from all of it exactly what they needed.

The Tamil alphabet was created by Ranganathan, an artist from Sathyamangalam. 
The felt fabric for several sets was provided, and together, in January 2007, the 
first movable Tamil alphabet was created by him. The women took immense labour 
over learning. Many said that they did not yet know, some guessed; they laughed 
and it was a game. Slowly, as each group kept exchanging the letters (there were 
104 women at four separate sites), the fear dropped, and they were recognizing the 
felt letters, feeling them, seeing them, speaking them. The group reinforced their 
courage to try, even when wrong, and they continued until they were happy, just 
wanting to get another new letter to learn. PalaniSamy, a grassroots organizer, a man, 
was actively involved in the creation of the environment that resulted. His desire 
to embrace the new with passion, energy, drive and the absence of the “me” was 
apparent as he moved from group to group, encouraging, joining in the game and 
prodding where needed. PalaniSamy as a model grassroots organizer was, perhaps, 
the key for the success of this particular site. The women liked the methods. 

At the fourth site, when the women had been given paper and pencils to “just 
draw,” they had sat quiet for a long time looking around. Then, one by one they said, 
“We do not know how to draw.” Urged by the teaching-action-research team, they 
slowly began. What emerged was comparable to the descriptions by Paulo Freire in 
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(Freire, 1998). One by one they got up to describe their drawing to the group and 
they said, “Now we know we can draw, we like your methods!”

Figure 2. Now we know we can draw, we like your methods!

It came as a big surprise, but, in retrospect, it makes perfect sense. They use 
their hands all the time, however, it is not for writing. They do draw rangoli; 
though, that is with powder. It can be seen made outside the houses, and this had 
prompted the thought that drawing would be liked by the women. In fact, at one 
tsunami shelter, a severely traumatized woman who did not speak, after much 
coaxing from the man and other women in the room, began drawing, and very 
methodically drew the grid before completing the rangoli. She definitely preferred 
the iconic representation. However, given one’s years of conditioning, the team’s 
teacher-researchers still had not made the connection that drawing on paper with 

Figure 1. Working with Tamil alphabet
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pencil would be difficult. It was the women’s remarks, one after the other, from 
several in the fourth group, that clarified, for certain, the landmark they had carried 
out that day. The re-design cycle includes roles that the participating women saw 
and found for themselves.

From the success of the three-pronged approach to M-f-M described above, along 
with community involvement, a larger project originated, addressing the following 
concerns:

• Older illiterate women in all sites and, especially, the fourth semi-urban site, 
directly expressed their desire to have such a program fully functional. They said 
that they felt humiliated by having to use a thumb impression, not being able to 
sign or read their own name, among other things. Furthermore, they noted, “We 
have seen our youth with certificates on which the caste brought about a rejection, 
so their interest was not in certificates.”

• Grandmothers who are unable to work stated they would like to set up little sites 
in their villages and take care of village children.

• Young mothers were seen as the potential beneficiaries of the program, however, 
the turnout was not restricted to the imagined age group. The intended beneficiaries 
were very excited about the project. In Ambedkar Nagar, Maheshwari, a young 
woman, a mother of two, a full-time agricultural labourer, who, with her 12 years 
of education, has been eager to take on the task of running a Montessori school 
for the children of the community. She has agreed, through her own initiative, 
to start a day Montessori Children’s Hut and all materials required for her were 
purchased by the teacher-action-researcher. 

The organizers are Tamil speakers and members of the community and are 
predominantly (all except one) men. When not in Tamil Nadu, the T-A-R team has 
only the e-mail contact with grass-root organizers as the means of communication 
with emerging M-f-M groups. 

SELF-HELP GROUPS

The existing self-help groups (SHGs) in most communities became the way to 
disseminate the M-f-M-derived needs. In particular, Alamelu, a young woman with 
a Bachelor’s degree from the Salem district, who for the past several years has been 
actively working setting up self-help groups, became the engine of the M-f-M. The 
SHGs organized by Alamelu are special. The women are actively working toward 
freeing themselves of any bonded labour, and are finding schemes to be self-
employed. In one particular village the situation is striking. The story is inspiring. 
Some of the women in the communities with the help of Alamelu organized a  
self-help group. Soon the other women formed two more self-help groups. While 
only the first SHG existed, the other women were supportive but reluctant to form 
their own. Six months and repeated visits later, Alamelu had all women in their own 
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self-help groups. The stories of the self-employed women of the self-help groups are 
fascinating and inspiring. What are the effects of the women of the self-employed 
self-help groups upon the community?

1. There are no child labourers.
2. All children attend school.
3. The men have stopped their drinking habits.

It is the women of these self-employed self-help groups that provided the answer 
to	the	teaching-action-research	question	set	by	the	community	organizers,―how	do	
we get back our self-respect?

The women were vocal in their sense of self. Self-respect means to not be afraid 
all the time. “At one time if a car had driven into our village late at night, we would 
have been afraid. Now let 10 cars drive in and we will not be afraid.” The sense of 
strength and self; the simplicity of the open camaraderie toward each other, toward 
the children and men of their own communities and to the visiting people are evident, 
as is their clear voices. Tesoriero (2006) confirms the extent of empowerment which 
in generally is reached by women of SHGs. An older woman laments spontaneously, 
“I sent my own children to be labourers. What did I know, I was illiterate too.” The 
self-employment created by the self-help groups generated the needed stability in 
their own lives to question and reflect upon their own actions, to be non- judgmental 
and supportive of new ideas. In the design of the Community of the Future, anchored 
on the community school, SHGs become one of the main supports towards unifying 
and integrating the life of the emerging community. Both Tesoriero (2006) and 
Agarwal (2007) point out to SHGs’ involvement and capacities to make positive 
changed in the village community matters leads to wide acceptance and support by 
men, and the whole community.

CONCLUSION

The aim of the teaching-action-research team to assist in finding solutions that 
were organic was accomplished within the first cycle of the work. Whereas we 
don’t have yet the final answers to the main questions concerning the necessary 
qualities of teachers working both as M-f-M educators of the mothers, teachers in 
the classrooms and the community organizers, we have the initial postulates, which 
together with the cyclic principle of the T-A-R methodology give justifiable promise 
to arrive at the sufficient knowledge of those conditions. The cyclic methodology 
of T-A-R, inherited here from Action Research, assures that after every cycle 
(analysis of the problem _ design and implementation _ collection of the data and 
their assessment _ analysis and refinement _ …), the implemented process can be 
improved or refined, new methods can be put into practice so that after several cycles 
one can arrive at the satisfactory conditions for the community transformation and 
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school learning. One can postulate therefore that the T-A-R teacher working in the 
community has to 

1. have knowledge about the principles of individual and community development ;
2. start teaching women through Montessori techniques which are deeply integrated 

with the daily activities and artefacts, women use in their life (not pencil and 
paper, but the ground and rangoli);

3. guide herself/himself by the learning theories that postulate development at the 
very concrete level leading to iconic level (Bruner theory);

4. avoid too early connection with other similar cases of women emancipation.

NEXT STEPS

The organic seeds have to be spread and the grassroots organizers along with 
the teaching-action-research team have to find the needed next steps. (Menaka 
Roy, 2004) suggests that the empowerment of communities takes place during 
the literacy campaign when literacy is linked to the development activities. The 
Teaching-Action-Research approach in Tamil Nadu rural communities has yielded 
a possible initial structure for the development of the Community of the Future: a 
Community-based school, women Self –Help Group and Montessori-for-Mothers 
program.

Communities of the Future is a living – in-action idea, initially born out of the 
experience of Tamil Nadu’s grass root organizers of rural Dalit communities, and of 
the Bronx mathematics teachers researchers. Their common central idea underlying 
the collaboration has been to build upon one principle, the primacy of the well-being 
of children in Dalit communities. On that basis, the new profile of the teacher had 
been established as the teacher who on one hand is attentive and competent relatively 
to the intellectual and emotional development of the child in the school, and on the 
other to the cultural, socio-economic needs of the community and its development. 
Such a teacher had been called the Teacher-Community Motivator by Arunthatiyars. 
The lens through which the teacher might be looking, to be in agreement with the 
main principle could be: how should the community be organized so that children in 
the school reach their true maximum?

At the next meeting/workshop a new idea was tried out with success, namely, 
Montessori for Mothers (M-f-M) workshop. The methodology of M-f-M assures 
that children intellectual needs are taken care from the early moments of life by 
the mother who becomes an organizer of knowledge for her child. It is expected 
that through practicing the method, the mother will acquire critical skills and 
consciousness, which will enable them to make appropriate changes in their families 
and communities. Community schools might be the places where the Montessori 
knowledge will be anchored.

Hence the first foundations of the Community of a Future are composed out of:
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• Community night school,
• Community of the night school, 
• Mothers of the communities practicing Montessori Method. 

Since the teachers in the school are in the central position, their education has to 
be very precise and adequately wide. It needs to involve the following themes:

1. Mathematics and mathematics teaching
2. Child and adolescent development
3. Montessori Method development and training
4. Analysis, Synthesis and Development of the communities
5. Teaching-Action-Research practice.

A new component had been added to the design of the Community of the  
Future,―Self-Help	 Groups.	 Those	 amongst	 them	 which	 have	 reached	 self-
independence that is bought themselves out of bondage and created means of 
support may have reached the consciousness to make them the underlying support 
for the emerging communities through placing in their utmost attention the life of 
community schools, possibly as the Mother Council Members, and place it with 
equal care to the life of Montessori Mothers. Consequently, SHG can become a 
complementary element to the teacher of the community school, which is envisioned 
as extremely aware and knowledgeable individual. Although literature materials are 
still scanty, the few that are available point out to the unusual volume of social capital 
residing in women’s SHGs, which can be utilized both in community development 
and in creating good education for community’s children.
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5.4. PDTR: THE DEVELOPMENT OF A TEACHER-
RESEARCHER

Formulation of a Hypothesis

INTRODUCTION

This final chapter is devoted to an essential question for any, so to say, emerging 
profession: can we actually describe and characterize the development that leads a 
teacher to become a teacher-researcher? Many sub-questions suggest themselves by 
this essential inquiry: Does this development depend on the particular approach to the 
craft of teaching-research? Can we effectively describe a profile of teacher-researcher 
(TR) in order to actually promote it? And, more specifically, can that development 
be institutionalized as a professional development of teacher-researchers? 

Before facing the main issue, let us first try to devote some reflections to the 
last question regarding institutionalization. Indeed, the problem of developing a 
professional	 figure	of	 teacher–researcher	can	be	viewed	from	the	 research	side―
that means that we observe the phenomenon of some teachers that are able to do 
more and better than others, and try to understand why and how this happens, and, 
in particular, which conditions favour such improvement of their abilities. But it can 
be viewed also from the policy-makers’ side. In this sense it becomes a part of the 
general issue of teacher training, and can be described as a sort of special goal to be 
pursued―that	of	preparing	gifted teachers. Our special interest is for mathematics 
teachers but it can be said that the same applies to every teacher. Moreover, an 
important distinction occurs between future and in-service teachers. 

Of course, when things are viewed from the policy-makers’ side, a central issue is 
always that of expenses (in several senses), so that any discourse has necessarily to 
compare outcomes with costs.

Generally speaking, when an investment is made in favour of gifted people, a 
more or less equivalent amount of resources is subtracted from other objectives; 
in our case, from the care of normal or poor people. This can certainly be a good 
choice, but has to be justified. 

The question becomes – why we turn our attention to gifted people? Possible 
answers are:

a. because it is easier;
b. because it is more rewarding;
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c. because it allows to directly raise the average value of some indicator of the 
whole population;

d. because it is a first step toward a more general goal concerning the whole 
population;

e. because it is a side goal with respect to the principal one, and we believe that it is 
reachable while the other is not.

We, the authors, are not trying to impose, or, even, suggest which of the above 
answers we instinctively support; our aim is to specify aspects that have to be taken 
into account, and to follow a path of logic and rationale to an informed opinion. One 
might argue, for example, that answers like (a) and (b) are to be considered inadequate 
to justify a discourse of institutionalization for teacher-researchers, while answer (c) 
is very unlikely. Usually, what happens is that when a subgroup of a population 
obtains high scores, then the average value remains stable or even decreases, and, 
in both cases, the global result is anything but desirable, since, in a phenomenon 
like the one we are speaking about, what really matters is an increase in the average 
value and perhaps a reduction in the variance. Answer (e) is realistic, but it can be 
considered as provisional and, therefore, requires continuous revisions of the policy. 
This leaves answer (d) as the most practical, interesting, and potentially persuasive. 
It can be said that it is the implicit motivation that lurks behind any serious attempt 
to promote the diffusion and the enhancement of teacher-researchers. We do believe 
that it should be a true priority to try to make the claim suggested by answer (d) as 
explicit as it possible, specifying in what sense a teacher-researcher can help the 
advancement of the whole class of teachers. 

Coming back to our main issue, we propose a model for the development of the 
teacher-researcher based upon four different principal sets of data:

1. The implemented design for the Professional Development of Teacher-Researcher 
(PDTR) realized by the EU Project supported by the Socrates grant awarded to 
the University of Rzeszow in Poland during 2005–2008;

2. The set of responses of the 26 participants of the PDTR to a questionnaire that 
was designed, distributed and collected in 2013;

3. Some excerpts from a previous case study (Mellone, 2011) focused on one of the 
teachers participating in the PDTR project;

4. Chapter 3.1 of the current book titled How to Arrive at a Teaching-Research 
Question?

PRINCIPLES OF DESIGN

From 2005 to 2008, seven different teaching-research teams from five different 
countries participated in the Krygowska PDTR (Professional Development of 
Teacher-Researchers) Project (supported by the grant Socrates Comenius 2.1 
Program No. 226685 –CP-1-2005-1-PL-Comenius-C21): Hungary (Debrecen), Italy 
(Modena and Naples), Poland (Krakow/Rzeszow and Siedlce), Portugal (Lisbon) 
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and Spain (Barcelona). Each team included between 10–15 mathematics teachers 
from different teaching levels, whose work was facilitated by the team coordinator, 
a mathematics educator from the participating university, and a team of mentors, 
made up mostly of Ph.D. students in mathematics education. The project as a whole 
employed three teaching-research experts who rotated among the teams, facilitating 
workshops, and one mathematics expert to coordinate the content of the associated 
mathematics courses. 

The design of the PDTR was based on several characterizations of teaching-
research formulated in Czarnocha (2002) and Czarnocha and Prabhu (2006), 
ultimately integrated into the definition and structure of the TR/NYCity model, as 
described in Chapter 1.1: 

i)  Research-teaching teams composed of researchers and teachers or instructors 
analyse the problem in question with the help of the available educational 
knowledge base and the empirical database; 

ii)  On the basis of the review of literature, an analysis of errors and intuitive knowledge 
of instructors, the research questions and the hypothetical developmental model 
concerning concepts in question is formed and the instruction is designed in the 
teams;

iii)  The introduction of the formulated pedagogy into instruction and its process of 
refinement take place through the instruction/analysis cycles, that are performed 
consecutively in order to better fit to the real ecological dynamics of the classes 
involved;

iv)  After participation in at least two such experiments, apprentices will be guided to 
design and to perform a teaching experiment on their own, with the simultaneous 
goals to improve their classroom practice and to contribute to the general 
educational knowledge base.

Czarnocha (2002) asserts that:

Professional Development of Teacher-Researchers is based on the careful 
composition of ideas centred on Action Research (Lewin, 1946) with the ideas 
centred around the concept of the Teaching Experiment of the Vygotskian 
school in Russia, where it “grew out of the need to study changes occurring in 
mental structures under the influence of instruction” (Vygotsky, 1962). From 
Action Research we take its focus on the improvement of classroom practice and 
its cyclical instruction-analysis methodology, and from Vygotsky’s Teaching 
Experiment model, we take the idea of the large-scale experimental design 
based on a theory of learning and involving many sites – different classrooms. 
…The proposed methodology provides the organizational structure within 
which the research investigation, classroom instruction and teaching-research 
professional development combine into a mutually supporting whole. The 
main tool of the professional development here is the large scale teaching 
experiment designed on the basis of a general hypothesis and conducted by 
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the research-teaching teams composed of the experienced teacher-researchers 
and interested and motivated teachers. The teaching experiment is designed to 
address a specific pedagogical difficulty, which is widely manifested among 
the given student population; it is conducted in the properly chosen sample of 
classrooms in a school, college or a school district. Apprentices of teaching-
research are the teachers who, together with their classes, participate in the 
experiment.

The PDTR project had two main cycles, each lasting one year. Each such 
cycle pair began with the introductory cycle whose main goal was to coordinate 
different TR methodologies of different teams with the aims and design of the whole 
project. This first main cycle was organized around individual classroom teaching 
experiments conducted by individual teachers mentored by the team coordinators and 
TR experts. The aim of the first main cycle of individual teaching experiments was 
to address the difficulties of students with the types of problems proposed by PISA 
international test, which at the time of the project has just gone through its first two 
mathematically focused cycles: 2000 and 2003. All participating teams were from 
the countries, whose results placed them below, or at the average of, the PISA test. 
All of the participating country teams reported significant educational difficulties, 
the understanding and resolution of which was the aim of the first main cycle, in 
accord	with	the	general	aim	of	the	TR/NYCity	methodology,―“to	improve	learning	
in the classroom, and beyond”. Thus, the first cycle was governed by the principles 
of Action Research as one of the components incorporated into the formulation of the 
TR/NYCity model. Each individual classroom investigation followed the TR cycle 
process described in Chapter 1.1. Furthermore, each investigation was composed of 
at least two such cycles to enable the systematic reflection upon the results and the 
refinement of the proposed interventions. Naturally, during the intervening year TR 
apprentices were participating in the systematic seminars devoted to the practice 
and theory of teaching-research where the conduct of teaching experiments was 
discussed, analysed and refined. Detailed examinations of the tasks of the different 
teams and the accompanying TR seminars revealed a clear common thread among 
the	various	practical	 tasks	 and	 the	 themes	of	 the	 theoretical	 seminars,―a	natural	
need and inclination towards a just-in-time approach of introducing and utilizing 
research results. For example, during the project teams’ individual 7th meetings, 
when the task in front of the TR apprentice was to design the diagnostic tests and 
analyse student errors, the corresponding TR seminar was focused on the process of 
error analysis; similarly, when the task for the each individual team’s 8th meeting 
was the design of the new instructional approaches addressing discovered pupils’ 
errors, the corresponding TR seminar was focused on different types of instructional 
strategies such as mathematical writing, inquiry method, short clinical interviews 
as well as other pedagogical techniques. The teaching designs and sequences that 
were developed during project team meetings were put into practice during the time 
between them. In addition, apart from the TR seminars, the participants held study 
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team meetings that were devoted to more informal discussions, analysis of results 
obtained in the classroom, and planning of future actions. 

The results of the individual teaching experiments were presented at the general 
project meetings that took place in the summer; the TR reports from the PISA centred 
investigation were collected in the first of the two books ultimately produced by the 
project,―Stefan	Turnau	 (Ed),	Handbook of Mathematics Teaching Improvement: 
Professional Practices that Address PISA, University of Rzeszow, 2008.

The second main cycle was envisioned as a large scale teaching experiment 
focused on the common teaching-research question formulated during the first cycle 
and was meant to involve all of the teams. However, due to the methodological 
difficulties attributed to the coordination of different cultural approaches practiced 
by different schools of teaching-research, such as the very specific approaches of the 
Italian School of TR, the Lisbon School, and the Barcelona School, with those of 
the TR/NYCity model, the second cycle was not fully implemented and was limited 
to an Italian-Hungarian collaboration (Navara, Malara, & Ambrus, 2010). Instead, 
the different project teams addressed their national concerns, and the findings were 
reported	in	the	second	book	produced	by	the	project,―Bronislaw	Czarnocha	(Ed.),	
Handbook of Mathematics Teaching-Research: Teaching Experiment―A Tool for 
Teacher-Researchers, University of Rzeszow, 2008. The conduct of the project and 
the difficulties encountered as seen by the Italian team are described in (Malara & 
Tortora, 2009).

THE SECOND ASSESSMENT

A new questionnaire, aimed at the assessment of the project’s overall experience was 
designed in 2013 and sent to all participating teachers. The aim of the questionnaire 
was to create a database of results that would allow one to make an assessment of 
the whole project, addressing more details and reaching well beyond the scope of the 
final	grant	project	report.	Twenty-six	of	teachers	involved	in	the	project	responded,	
and the analysis of their answers is one of the foundations for the model of teacher-
researcher development proposed here.

Since the teaching experiment is the basic tool of a teacher-researcher, in the TR/
NYCity model, we assume the presence of the concept of such a teaching experiment 
within the potential teacher-researcher’s individual activity as one of two criteria 
for establishing a teacher-researcher profile. The second criterion is the explicit 
acknowledgement of the public aspect of teaching-research either through the 
publication of the research, or teaching-research, reports, or a book. The reference 
to either of these two criteria in the responses to the questionnaire will be taken as 
evidence of entering the teacher-researcher profile. 

Although, we must acknowledge that there is a certain dissonance between the 
two criteria: there are teacher-researchers amongst the participants who have publicly 
published articles, either alone or together with university-based researchers that 
contain reflections rather than descriptions and/or analyses of teaching experiments 
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that are necessary to fulfil the second condition. There are also teacher-researchers 
who have done, or are planning to perform teaching experiments and, thus, fulfil 
only the first condition, with the expectation of fulfilling the second by an eventual 
publication.

We also acknowledge that the full hypothesis concerning the development of 
the teacher-researcher is formulated by the integration of information from the 
questionnaire data with the information provided in Chapters 3.1 & 3.2.

The presented profile and criteria differ significantly from those currently present 
in the teaching-research literature; in particular, in one of the best accounts of the TR 
developmental process by B. Jaworski in Mathematics Teacher Research: Process, 
Practice and the Development of Teaching (Jaworski, 1998). Jaworski, similarly to 
the more recent work of Herbert-Eisenman and Cirillo (2009), look upon TR activity 
primarily through the reflection upon practice motivated by the Reflective Practitioner 
framework introduced by Schön (1983). Whereas, of course, the process of reflection 
has been present in the work of teachers participating in PDTR, the questionnaire 
responses suggest that it is but one of the stages in reaching the development of the 
full profile of the teacher-researcher in accord with the TR/NYCity methodology 
characterized by the concept of the teaching experiment. This means that, although 
teaching experiment presupposes, almost by definition, the reflection upon practice, 
neither the reflection itself, nor the reflection-in-action discussed by Jaworski does 
necessarily lead to the concept of the teaching experiment.1

This fact suggests, of course, the question of the nature of the necessary conditions 
for a teaching-experiment as well as a clear characterization of the transition between 
the reflective practice and teaching experiment. The analysis of the questionnaire 
responses, presented later in this chapter, provides the basis for the hypothetical 
answer, that is, can be visualized via the following developmental path:

Master Teacher (MT)

Reflective Practitioner (RP)

Teacher-Researcher (TR)

The last transition is reaching the beginning of the formation of the full development 
of a Teacher-Researcher. A more detailed exposition outlining the specifics of the 
full formation of the TR profile is presented in Chapters 1.1, 3.1 & 3.2. 

The concept of the developmental sequence “MT  RP  TR” has been 
motivated by an analogy to the developmental Piaget and Garcia Triad formulated 
by the authors in (Piaget & Garcia, 1987) and touched upon in this volume in 
Chapter 4.1. The Triad of Piaget and Garcia is a mechanism of thinking leading to 
concept formation formulated on the basis of the thorough comparative analysis of 
the development of physical and mathematical ideas throughout history of science, 
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on the one hand, and the psychogenetic development of these concepts in a child, 
on the other (Piaget & Garcia, 1989). It is defined as the passage through intra-
operational, inter-operational and trans-operational stages:

Intra-operational stages are characterized by intra-operational relations, 
which manifest themselves in forms that can be isolated… Inter-operational 
stage is characterized by correspondences and transformations among the 
forms that can be isolated at previous levels…The trans-operational stages 
are characterized by the evolution of structures whose internal relationships 
correspond to inter-operational transformations.

The natural environment of the Piaget-Garcia Triad is, of course, the development 
of mathematical and physical concepts; however, it was also successfully applied in 
the analysis of the heroic fairy tales (Czarnocha, 2013), and in the analysis of the 
development of revolutionary consciousness (Czarnocha, 2014). Here we use it to 
model the different profiles of:

i)  the Master Teacher who is able to incorporate the new methodologies and 
teaching techniques into classroom without explicitly mentioning the process of 
reflection and/or teaching experiment; 

ii) the Reflective Practitioner who reflects upon his/own practice; 
iii)  the Teacher Researcher who thinks in terms of the teaching experiment and/or 

public presentation of TR results.

The distinction of the Teacher-Researcher profile is also motivated by the vision 
of a teacher as resonance mediator (Guidoni, Iannece, & Tortora, 2005), that is, 
one who is involved in the careful task of creating resonance between students’ 
cognitive needs and insights and the epistemological features of the mathematical 
content, the object of the teaching experiment. As highlighted in (Malara & Tortora, 
2009), teachers are influenced by important factors such as knowledge, beliefs and 
emotions. One of the goals of the PDTR project was to make the teacher become 
more and more aware of all these components, and empower him or her with the 
ability to change them, if and when necessary, driven by a deep understanding of 
pedagogical ideas and theories related to mathematics education. For this reason, 
as described in the first section of this paper, special sessions were organized 
during the project in order to introduce teachers to selected literature samples. 
These include papers focused on didactic-methodological aspects, on classroom 
practices, but also epistemological studies and mathematics oriented papers. One 
of the core idea of the PDTR was to try to favour the structural aspects of the 
mathematical contents, in Shulman’s sense (1986). For this reason, many working 
sessions involved teachers of all school levels. Indeed, in our view, the longitudinal 
way of perceiving mathematics curriculum could support teachers in moving from 
the specific mathematical content to teach toward both its roots and its possible 
developments and ramifications.
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METHODOLOGY

1. The set of TR apprentice responses was coded anonymously, stripped of names 
and national team membership.

2. Each response was searched for the excerpts which describe the responder’s 
conceptions concerning his/her understanding of the effect of PDTR and/or TR 
process, according to three stages: that of a master teacher, a reflective practitioner 
and a teacher-researcher who thinks in terms of the teaching experiment and/or 
public presentation of TR results. Recall that a master teacher is seen as a person 
who was able to incorporate the new methodologies and teaching techniques 
into the classroom without explicitly mentioning the process of reflection and/or 
teaching experiment.

Master Teacher Typical Responses 

• (MT1) Thanks to the PDTR experience, I have acquired a didactical style based 
on classroom discussions, the collective construction of meanings and concepts 
and the gradual shared formalization of their representation. …In particular, I 
have learnt to pay more attention to both the language used in the classroom and 
the relationship between different communication codes.

• (MT2) Based on my PDTR experience I prepare myself on my lessons more 
carefully (seeking for effective introductory examples, detailed lesson-plans with 
notes, reflecting on lessons, modifying my teaching ideas)

Reflective Practitioner Typical Responses

• (RP1) Now I am able to reflect on and to critically consider the teaching job and 
I face my doubts without fear.

• (RP2) I have developed the awareness that the construction of a free and trusting 
teacher–student relationship (where the teacher has no prejudice toward students 
and the students are not afraid of expressing their thoughts) allows students’ more 
solid learning and also their acquisition of high level competencies

Teacher-Researcher Typical Responses

• (TR1) Besides I am introducing the teaching experiment concerning calculating 
with the help of a soroban (a Japanese abacus of Chinese derivation). 

• (TR2) I am considering the need to investigate the effects of e-textbooks since 
the plans of the Ministry of Education is to introduce such textbooks widely. The 
question is to investigate positive and negative effects of such an approach.

As we explained in the previous section, here, we understand the intra stage as 
the stage of the Master Teacher, where often separate strategies and techniques have 
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been incorporated into the teacher’s repertoire without, necessarily, reflecting upon 
their development; the inter stage – as the stage where the reflection upon classroom 
practice can connect different instances and processes of teaching; and the TR stage, 
when the teaching experiment integrates the previous activities into the transcending 
structure of the mature complete classroom experimental framework.

The Evidence of Stages and Transitions between Them

The evidence of the transitions characteristic of the proposed developmental 
sequence are found in the fragments containing both stages of the transition.

Master Teacher  Reflective Practitioner:

• (MT¦RP 1) I usually find myself focusing more than before on students’ answers 
and behaviours, searching a way to give a constructive sense to their way of 
behaving; but above all I pay attention to how my way of working on students can 
influence them and their thinking processes. 

• (MT¦RP 2) Working in PDTR empowered me, increased my belief in myself. I 
am more courageous in speaking my mind. I treat problems investigated during 
PDTR as the long term projects for interested students.

Reflective Practitioner  Teacher-Researcher:

• (RP¦TR 1) The program showed me how to be a teacher and do classroom research 
at the same time and I think it proved this way of researching to be effective. My 
teaching has become more creative and I feel that I am often reflecting on what 
happened in the classroom. If something went well I try to remember and explain 
the reason for success. If something didn’t go as well, then I try to look for the 
reasons and try to find ways of improving.

• (RP¦TR 2) In these year I published a scientific paper with D. Iannece: D. Iannece, 
P. Romano “What does it mean to have a scientific approach for a teacher? A 
reflection” in Proceedings of the 5th International Colloquium on the Didactics 
of Mathematics, vol. II, ed. by M. Kourkoulos and C. Tzanakis, Rethymnon, 
Greece, pp. 409–419, ISBN 978-960-87898-3, and last year I contributed to a 
scientific paper with Pr. R. Tortora and Dr. M. Mellone in which we proposed an 
analysis of some interesting solving processes of 9-grade students engaged in an 
arithmetical task. It originates as an item of a national test that has proven to be 
very critical for Italian students…In those years I learned how much important is 
the reflection about the learning processes of my students and the reflection about 
my own activity. I tried to involve some of my colleagues at school, but they don’t 
really want to be involved. I’ve changed my ideas about the relationship between 
teacher and students and I am much more relaxed in the classroom, so that also 
my students really enjoy studying math.
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In the process of classification of reached stages, those TR practitioners who were 
found on the Master Teacher level without the comments about reflective practice 
were placed in the Master Teacher stage; those who were found on the Reflective 
Practitioner level but without comments about the teaching experiment were placed 
on the Reflective Practitioner level, and those who were found on the Teacher-
Researcher level were placed accordingly. Altogether, among the 26 respondents, we 
have found 9 on the Teacher-Researcher level, 9 on the Reflective Practitioner level, 
and 4 on the Master Teacher level. Some respondents could not be placed on either 
level indicating that the application and development of the new profile is limited by 
the amount of organizational work required from the teacher. Partial responses from 
these 4 participants are shown below:

In my opinion beside the normal teaching work it is very hard to make 
classroom researches. In the average classes we have only 3 lessons in a week, 
there is no time to try out new ideas. (Anonymous Respondent 1)

I think the combination of two elements, teaching and researching, is very 
effective for pupils and teachers but, at the same time, too tiring and difficult. 
The main problem in my opinion is the organization of school in Italy and 
perhaps in other countries. The innovative methodologies should be a goal of 
the whole scholastic system. Teaching maths through a research action requires 
a system that can support and help teachers. Instead the teachers are alone 
dealing with parents, colleagues, and headmasters. (Anonymous Respondent 2)

I don’t think there can be effective teaching without assessment. However, 
school practice is very unsupportive for such a work. We have to cover the 
material in short number of days; if he doesn’t he has problems with the 
director, parents, weak exam etc. There is no time for the search for effective 
methods to teach and its research. (Anonymous Respondent 3)

It is a difficult problem. Combining teaching and researching may work, but 
you need much more time to do some special work with students. And the main 
problem is, that we have no time enough: students have to learn certain things 
that are in the curriculum, and teachers have no time enough research their own 
activity in everyday hurry. (Anonymous Respondent 4)

REFLECTIVE PRACTICE _ TEACHING EXPERIMENT TRANSITION

At this point, the teacher profiles proposed and the data presented have shown 
interesting pictures of the international group of teachers involved in PDTR a few 
years after the end of the project. What we are going to see now is that the profiles 
presented and, most of all, the development among these profiles can actually 
describe the path that leads a teacher to become a teacher-researcher. Here we refer 
to other data, coming from a previous case study, of which one of the teachers 
involved in the PDTR was an object (Mellone, 2011). 
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Many different indicators, reflections and observations of this teacher were 
collected during the years of the PDTR. It is really interesting to notice that during an 
interview conducted with her at the beginning of the project, this teacher describes 
herself as an innovative teacher. She had already preferred an innovative approach in 
the management of her lessons by favouring interaction among students. Moreover, 
in the same interview, she explained how she usually allowed her students to work 
together in small groups and involved them in general discussions where they could 
speak openly and confront and discuss their mathematical methods and solutions. 
In this direction, the description that the teacher gave of herself at the beginning of 
the project fits very well with the Master Teacher profile, as proposed here. Indeed, 
we can argue that, well before the project, she was already able to incorporate new 
methodologies and teaching techniques into the classroom, but at that time she 
didn’t explicitly mention any particular reflections on her own practice, neither did 
she refer to any design for a teaching experiment.

Written during the project, exactly after one year from its beginning, we can read 
from her diary:

…My usual approach to Algebra was sustained by the unconscious hypothesis 
that instrumental understanding could generate relational understanding 
[...] structural thought is natural, but not spontaneous, so it is substantially 
a cultural acquisition and requires appropriate teaching mediation. I think 
that not only the teacher should be aware of these things, but she should use 
them by building environments that allow learners to develop conscious shifts 
between the two complementary kinds of thought.

At that time the teachers involved in the project were provided with some mathematics 
education research literature. She was referring particularly to Sfard (1991). In her 
words we can see how, from a starting reflection on the theoretical model studied, 
she moved to reflect on the teaching practice and on the actions to perform in the 
classroom setting in order to promote what she called the structural thought. These, 
along with other diary entries made by this participant (for more diary entries see 
Mellone, (2011) allow us to characterize her as a Reflective Practitioner at that point 
in time. Something changed later, as we can read from her diary:

Last year I proposed some investigation activities on natural numbers to look 
for properties and regularities, but I didn’t know exactly in which directions 
they would work. So I built the path step by step following the curriculum 
and pupils’ reactions. This year I have had the opportunity to rearrange 
systematically these activities and to utilize their potentialities. I have always 
thought of myself as a good teacher, but now I understand that this is a different 
way of being a teacher because I’m pursuing different goals.

The need and desire to better design her teaching actions is the support for another 
important step toward a well-organized teaching experiment. Indeed, in the expression 
rearrange systematically we can recognize the wish to organize the educational 
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environment of her classroom in a more framed way making her teaching actions 
explicitly consistent with the new goals she wants to pursue. Finally, some years 
after the end of the PDTR we can read from her questionnaire:

In these years I published a scientific paper with Pr. D. Iannece: D. Iannece, 
P. Romano “What does it mean to have a scientific approach for a teacher? A 
reflection” in Proceedings of the 5th International Colloquium on the Didactics 
of Mathematics, vol. II, ed. by M. Kourkoulos and C. Tzanakis, Rethymnon, 
Greece, pp. 409–419, ISBN 978-960-87898-3, and last year I contributed to a 
scientific paper with Pr. R. Tortora and Dr. M. Mellone in which we proposed 
an analysis of some interesting solving processes of 9-grade students engaged 
in an arithmetical task. It originates as an item of a national test that has proven 
to be very critical for Italian students…In those years I learned how much 
important is the reflection about the learning processes of my students and the 
reflection about my own activity. I tried to involve some of my colleagues at 
school, but they don’t really want to be involved. I’ve changed my ideas about 
the relationship between teacher and students and I am much more relaxed in 
the classroom, so that also my students really enjoy studying math.

The reference to her scientific papers, as well as to her organization of the teaching 
experiment using the items from the national test, frames her professional figure as 
a Teacher-Researcher. 

THE DEVELOPMENT OF RESEARCH QUESTIONS REVISITED

All three authors of Chapter 3.1 portray the characteristics of mature reflection 
upon classroom practice that have been incorporated into daily teaching practice. 
We can also recognize the process of incorporating and integrating theories of 
learning or research results into that reflection whose further refinement will lead 
to the formation of a thinking technology,2 as defined in Chapter 1.1, when research 
results and methodologies are smoothly integrated in the context of reflective 
practice with the craft knowledge of the teacher. The process of reflection on practice 
motivated by the aim of improvement of learning focuses on the formulation of 
the teaching-research question. This is a long process with an interesting structure. 
It is the process during which methodologies of research are incorporated into 
the classroom with the purpose of clarifying and refining the teaching-research 
question. Vrunda Prabhu incorporated the methods of clinical interviews into the 
structure of classroom dialogues which enabled her to investigate her students’ 
thinking and, on that basis, introduced changes in the curriculum. Bill Baker does 
statistical analysis on his partial exams during the semesters, compares it with 
data on the final exam and from the obtained data notices that everything works 
well except for fractions that leads him to engage in quite an extensive research 
program. Bronislaw Czarnocha replicates colleague’s set of logical arguments in 
his classroom, compares the responses and starts drawing first conclusions about 
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the structure of the possible teaching experiment. This suggests that, before a 
formal teaching-research experiment is conceptualized and proposed with the full 
coordination between the teaching-research questions and methods of assessment, 
an informal teaching experiment or other research techniques are being used as 
teaching methods to clarify and refine it, naturally promoting the development of 
the thinking technology amongst the practitioners. However, we stress that a further 
important characteristic of a teacher-researcher is his/her ability to autonomously 
implement teaching research experiments and to communicate them by means 
of scientific papers. A teacher-researcher is something very different from an 
educational researcher; indeed, for a researcher the choice of the theoretical 
framework is something that comes from research needs, while a teacher-researcher, 
having always in mind his/her responsibility as an educator of human beings, uses 
a theoretical framework according to his/her beliefs about the educational process 
and the mathematical content. In other words, the teacher-researcher walks on 
the boundary, selecting, time after time, his/her priorities between research and 
educational responsibility. 

In	 lieu	 of	 the	 above	 paragraph,	 the	 following	 questions	 arises	 naturally,―At	
what moment does the process of refining the informal teaching research questions 
culminate in a proper teaching experiment? 

Theoretically,	 the	 answer	 is	 obvious,―it’s	 at	 that	moment	when	 the	 teaching-
research question has the clarity that can be communicated, measured and assessed. 
In practice, usually, something external or spontaneous triggers that process; it 
might be bisociation between theoretical knowledge refined through practice and 
the environment. 

This bisociation, followed by the conduct of the designed teaching experiment is 
the completion of the development of the TR/NYCity profile of teaching-research. 

In case of Vrunda Prabhu, it was meeting the new VP for Student Development 
with inclination towards teaching mathematics and knowledge about motivation 
and self-directed learning methods that sparked the formal collaborative teaching 
experiment. In the case of Bill Baker, it was his role as a researcher on the Prabhu, 
Czarnocha (2007) C3IRG 4 CUNY grant, while in the case of Bronislaw Czarnocha, 
in his Algebra-ESL teaching experiment, it was the presence of the new Dean of 
Academic Affairs, Dr. Tony Baez, the only occupier of the OAA office at Hostos 
Community College who appreciated teaching-research and helped to spur the 
successful application of the grant supporting the teaching experiment.

NOTES

1 Teaching Experiment is seen in the TR/NYCity as distinct from the Design Experiment; the second 
one responding primarily to the needs of educational research, while the first one – to the needs and 
experience of teachers and teacher-researchers (see Chapter 1.1).

2 Thinking technology describes the culmination of the thinking processes suggested by research and 
integrated within teaching-research into classroom practice (see also Chapter 1.1).
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3 There was a significant change of the focus of the organization of the PDTR after the second year. 
Where until now each of the TR apprentice was designing individual teaching experiments in their 
classrooms whose goal was to improve certain of the competences or type of difficulties students 
have demonstrated, during the third year they are participating in the large scale teaching experiment 
designed collaboratively by the team, addressing a common issue, a common difficulty in their 
classroom. The overall goal of the large scale TE is similar as before, to formulate the innovative 
instruction, which improves students’ performance on PISA-like tests. However, the team has chosen 
a certain aspect of the problem and the individual teaching experiments performed in each of the 
classrooms are the components of the large research questions of the team. It is hoped that the set of 
research questions of all teams address the full scope of the project. Clear and effective communication 
within each team and across teams will be essential in this part. The role of the coordinator and of the 
management team will be to coordinate the results, questions and comments between different teams 
leading to the mutual reinforcement of results while taking into account the national specificities 
and cultural differences. The themes of the TR seminar will concern more general aspects and their 
coordination with the craft knowledge of teachers. Concurrent Research teams (previously Study 
Groups) meetings will have as their first priority, watching over the efficient conduct of the individual 
and team’s teaching experiments. Monitoring continues through the reporting system outlined in 
Section 5 of the Project Description. The members of the teams schedule the time for the preparation 
of research papers and presentations as well as for the preparation of TR peer-to-peer workshops for 
their peers. 
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APPENDIX A

The Second Assessment Questionnaire

“Dear PDTR participant:

Five years have elapsed since the end of the Krygowska PDTR project. We would 
like to know how you regard today your experience in that project. This is the reason 
of our sending to you this questionnaire, hoping that you find the time and the energy 
to respond in a most sincere way. Please do it up to the end of March and send back 
to us by e-mail. You may respond in English or, if you feel not comfortable in doing 
so, in your mother language.

QUESTIONNAIRE

1.  Since the end of PDTR, in September 2008, what have been your main professional 
and academic activities? (Have you been teaching in a school? Have you been 
involved in teacher education? Did you assume other professional roles? Have 
you finished or are about to finish an academic degree? Have you participated in 
other projects? Have you published research or professional papers?)

2.  In your view, your experience in PDTR had any impact that you notice on your 
professional or academic activity? Did you notice any changes in your teaching 
and/or in your relationship with other teachers? Have you been working alone, 
or continued to cooperate with other members of PDTR or new colleagues? 
Can you document such an impact with some episodes or other aspects of your 
professional or academic life? 

3.  The main thrust of PDTR was that teachers could be actively involved in doing 
classroom research and that, doing it, they could become better teachers, while 
at the same time improving student learning of mathematics. Do you think that 
these two elements – teaching and researching – may be combined together 
as PDTR did, may be combined better in other ways, or will be always very 
difficult to combine? Should one strive to combine them? Please, justify your 
response.

4.  After the PDTR project have you been involved in other initiatives (regional, 
national, European, or global) for the improvement of classroom work and 
above all for teachers development through action research methodology?

5.  Please report on an incident in your classroom that you find interesting enough to 
be examined, diagnosed, accounted for in the follow-up teaching, and discussed 
with others. Tell also of the action you took afterwards, if any. Have you realized 
new classroom teaching experiments? Please tell us about them and describe 
some of its episodes you consider important in your experience.
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BRONISLAW CZARNOCHA, WILLIAM BAKER AND OLEN DIAS

EPILOGUE

We want to express the hope, as parting words, that the reader has enjoyed the 
volume as much as we enjoyed writing, designing it and reflecting upon the 
knowledge it has brought to us. The realization that TR can be a bisociative framework 
characterized by the enhanced creativity explained to us significant number of 
new hypotheses and theories brought forward in the volume as byproducts of the 
TR methodology: bisociation of Koestler as the medium of reflective abstraction 
of Piaget (Chapter 4.1), hypothesis of the relative ZPD (rZPD) (Chapter 5.1) 
generalization within practice through the artefact refinements (Chapter 2.3), design 
of learning trajectories from classroom practice (Chapter 4.6), bisociative principle 
of the Creative Learning Environments (Chapter 2.4) and many others.

It often happens that authors, while designing the book with certain themes as 
its focus, they have to leave many new ideas out of that focus, in their initial raw, 
undeveloped state. To complete them is often beyond the scope of the book’s design 
so that to achieve the completion they have to be formulated, presented or published 
outside, in professional conferences and their proceedings, often simultaneously 
with writing the book itself. This happened also to us and starting from the PME38, 
where the research report by Vrunda Prabhu and Bronislaw Czarnocha (2014) 
suggested Koestler’s bisociation as the new definition of creativity in mathematics 
education, a stream of dozen of presentations and publications by our TR Team has 
been produced and appeared till now. We list them below.

Among the explored topics below we want to direct attention to the computer 
creativity domain based on mechanism of bisociation, the cognitive-affective 
duality of the Aha!Moment and the role of bisociation in the precise timing of the 
Aha!Moment.
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