
A. Sáenz-Ludlow & G. Kadunz (Eds.), Semiotics as a Tool for Learning Mathematics, 155–179. 
© 2016 Sense Publishers. All rights reserved.

ADALIRA SÁENZ-LUDLOW

8. ABDUCTIon In PRoVInG

A Deconstruction of the Three Classical Proofs of  
“The Angles in Any Triangle Add 180°”

What the rigorous proof of a theorem, say the proposition about the sum of the 
angles in a triangle, establishes is not the truth of the proposition in question 
but rather a conditional insight to the effect that the proposition is certainly true 
provided that the postulates are true.
 Carl G. Hempel, Geometry an Empirical Science, 1956, p. 1637

ABSTRACT

This chapter is framed both within the Kantean notions of sensible and intellectual 
intuitions and within the Peircean notion of collateral knowledge and classification 
of inferential reasoning into abductive, inductive, and deductive. An overview of 
the Peircean notion of abduction is followed by a sub-classification of abductions 
according to Thagard and Eco. The constructive nature of the process of proving seems 
to involve not only deductive reasoning but also abductive reasoning. The later plays an 
essential role both in the anticipation of auxiliary constructions and in the construction 
of geometric arguments. The chapter presents a summary of Kant’s classification of 
the proposition “the angles in any triangle add 180°” as a synthetic proposition. It 
also presents a deconstruction of the three classical proofs of this proposition—the 
Pythagorean proof, Euclid’s proof, and Proclus’ proof. This deconstruction discloses 
both the Greek analysis-synthesis method of proving and the role of abduction in the 
analysis phase. It also argues that the deconstruction of classical proofs has pedagogical 
and epistemological value in the teaching-learning of geometry.

INTRODUCTION

The proposition “the angles in any triangle add 180°” plays a fundamental role in 
Euclidean geometry. It appears to state a simple fact, but this simplicity hides an 
intrinsic complexity. Kant classifies this proposition as a synthetic proposition rather 
than an analytic one. There are only three classical proofs of this proposition―the 
Pythagorean proof, Euclid’s proof, and Proclus’ proof. Reading these proofs entails 
no difficulty. Constructing them is another matter. Reading and constructing proofs 
are two different processes. The main goal of this chapter is to deconstruct these 
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three classical proofs to have an insight into the role of abduction in the creation 
of auxiliary lines to construct valid geometric arguments. This deconstruction 
illustrates the analysis-synthesis method of proving employed by the Greek 
mathematicians. This method is in essence a working-backwards strategy effective 
not only for proving geometric propositions but also for problem-solving (Proclus, 
1970). It illustrates that proving is a constructive process and, at the same time, it 
helps to answers questions often asked by students: Where do proofs come from? 
How do I start a proof? These questions indicate the cognitive need to have a general 
strategy, a heuristics to guide the proving process.

The chapter is divided into seven sections. The first presents a theoretical rationale 
to support the assertion that proving is a constructive process. The second argues 
that the production of proofs is the mind’s activity rooted in observation, sensible 
intuition, intellectual intuition, collateral knowledge, and inferential reasoning. 
The third presents, in a simplified form, Peirce’s classification of inferential 
reasoning into inductive, abductive, and deductive and focuses on the process of 
abduction. The fourth presents Kant’s examination of the proposition “the angles 
in any triangle add 180°” as a synthetic proposition. The fifth presents the Greek 
analysis-synthesis method of proving. The sixth presents a deconstruction of the 
three classical proofs and an examination of the role of abduction in the creation 
of auxiliary constructions and geometric arguments. The last puts into perspective 
the essential role abductive reasoning has in the analysis phase of the analysis-
synthesis method of proving. This section also brings to the fore the pedagogical 
value of deconstructing classical proofs to learn about the analysis-synthesis 
method of proving and to have them as paradigmatic illustrations of proving as a 
constructive process.

PROVING AS A CONSTRUCTIVE PROCESS

Hersh (1997) synthesizes new and old philosophical perspectives of mathematics 
into two essential ones—the absolutist and humanist perspectives. Under the first, 
mathematics is seen as a system of absolute truths independent of human involvement, 
and mathematical proofs are seen as external and eternal only to be admired and 
accepted. Consequently, the purpose of proofs is to certify the admission ticket for 
theorems and propositions into the catalogue of absolute truths. Under the second, 
mathematics is seen as a system of truths that are the product of playful, consensual, 
social, cultural, and historical human activity. 

What is the relation between these two philosophical perspectives about the 
nature of mathematics and the actual teaching-learning of proof and proving? The 
belief on either perspective is, consciously or unconsciously, transmitted from 
teachers to students. On the one hand, a teacher with an absolutist perspective will 
present students with the shortest and/or the more general proofs. These proofs are 
aesthetically pleasing and obvious only to those who have a holistic knowledge 
of the subject matter and who can appreciate their aesthetic value and conceptual 
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significance. The role of these proofs is mathematical persuasion and the acceptance 
of mathematical rituals (Hersh, 1993).

On the other hand, a teacher with a humanist perspective will analyze given 
proofs and construct new ones with the purpose of understanding mathematical 
propositions and their interrelations. The humanist teacher will choose and accept 
more enlightening proofs and not necessarily the more general and sophisticated. 
For this teacher, proving is a thought experiment, an inquiry process by which and 
through which valid logical arguments are constructed. The role of proofs is to 
develop reasoning and mathematical conviction (Hersh, 1993). Research studies on 
proof and proving in geometry, implicitly or explicitly, support and promote the 
humanist perspective of mathematics (e.g., Hanna, 1989, 1995; Mariotti, Bartolini, 
Boero, Ferri, & Garuti, 1997; Garuti, Boero, & Lemut, 1998; Douek, 1999, 2007; 
Duval, 2007; Mariotti, 2007).

The humanist perspective is extended when it is acknowledged that students often 
experience abductive reasoning. This reasoning is often reported as the students’ 
“Aha! moments.” Abductive reasoning is at the root of the construction of conjectures 
and the construction of mathematical arguments. It seems that it appears at young 
ages in arithmetical thinking (e.g., Sáenz-Ludlow, 1997; Reid, 2002; Norton, 2009), 
in proving processes (e.g., Arzarello, Andriano, Olivero, & Robutti, 1998; Ferrando, 
2000; Reid, 2003; Rivera, 2008), and in problem solving (e.g., Cifarelli & Sáenz-
Ludlow, 1996; Cifarelli, 1999; Rivera & Becker, 2007). This type of reasoning sheds 
light not only on the process of proving and problem solving but also on the process 
of teaching and learning.

Problem solving and proving rooted in the construction of logical arguments 
with the purpose of understanding and convincing oneself and others was an idea 
advanced by the ancient Greeks (cf. Kadunz chapter on argumentation, this volume). 
For example, Proclus asserts that every problem and every geometric theorem 
contains in itself five elements: (1) the enunciation states which premises are given 
and the conclusion sought; (2) the specification states axioms, known theorems, and 
definitions; (3) the construction and machinery adds what is needed in order to draw 
the conclusion sought; (4) the proof deduces the truth of the conclusion from the 
premises; and (5) the closing returns to the enunciation, confirming what has been 
demonstrated (Heath, 1956, vol. I).

Polya’s heuristics (1945/1973) for solving problems is in tune with Proclus’ 
insights about the process of proving mathematical propositions: (1) understand the 
proposition or problem, what is given and what is asked; (2) devise a plan, construct 
a diagram, make an orderly list, eliminate possibilities, use direct reasoning, work 
backwards; (3) carry out the plan, work carefully, discard it if it did not work and 
choose another; and (4) look back and reflect on what worked and what did not, 
and on the significance of the problem in the context of other problems. When we 
consider proving as a particular case of problem-solving, Polya’s heuristics can also 
be useful in the deconstruction proofs as well as in the production and reproduction 
of proofs. 
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Polya (1945/1973,1962/1985), Freudenthal (1973), and Hempel (1956) argue 
that proving is, at the same time, a process and a product. This view permeates 
their mathematical and pedagogical works when they motivate and guide the reader 
to construct logical arguments and to validate mathematical propositions. Hempel 
argues that proving, as a process, is essentially a conceptual analysis that discloses 
the assertions concealed in a given set of premises and the commitment one makes 
when they are accepted. Freudenthal argues that geometry, more than any other 
mathematical subject, disciplines the mind because of its closest relation to logic, 
and that it can only be meaningful when its relations are explored in the experiential 
space. For him, geometry offers opportunities to mathematize reality and to make 
discoveries.

In general, when problem-solving or proving, it is useful to have a heuristics, 
a method, a general procedure. Proclus’ and Polya’s heuristics are like road maps. 
They help to anticipate the territory and allow for the preparation of a plan to explore 
it. Road maps do not induce anyone to follow any major highway or any secondary 
road. They only insinuate different possibilities to get to the final destination. 
Heuristics, like road maps, only insinuate a plan of action to construct one or more 
arguments from which the conclusion of a proposition follows from the premises 
in a logical and valid manner. A heuristics may also facilitate the emergence of 
abductive reasoning.

Both Proclus and Polya consider the construction of geometric diagrams an 
essential step in the understanding geometric propositions because they unveil 
what is explicit or implicit in the premises. Another important step that naturally 
follows is the observation of geometric diagrams in order to coordinate and integrate 
geometric relations. Similar ideas about the observation of geometric diagrams are 
also expressed by Peirce and Mander. Peirce argues that “the geometer draws a 
diagram…and by means of observation of that diagram…he is able to synthesize 
and show relations between the elements which before seemed to have no necessary 
connection” (CP 1.383, emphasis added). Mander (1947), in his book “Logic for the 
Million”, argues that the observation of geometric diagrams complements perception 
and inference to give rise to recognition and differentiation. 

Both heuristics and geometric diagrams co-exist with abductive reasoning. 
This kind of reasoning aids the creation of conjectures, the conceptualization of 
auxiliary constructions, and the creation of novel ways of combining premises and 
collateral geometric knowledge. This is to say that heuristics, geometric diagrams, 
and abductive reasoning have a great epistemological value which is often not 
emphasized.

Actively producing a proof in contrast to passively reproducing a proof requires 
an insightful playing of the mind to conceptualize and re-conceptualize geometric 
diagrams in order to “see” geometric relations that facilitate a logical passage from 
the given premises to the conclusion. In the following section, we make an effort 
to comprehend the mind’s activity in the process of proving. To do this, we borrow 
from the epistemological perspectives of Aquinas, Kant, and Peirce. 
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MIND’S ACTIVITY IN THE PROCESS OF PROVING

Centuries ago, Thomas Aquinas (1266/2003, Summa Theologica, q. 85, a. 2) 
recognized that the mind performs two kinds of activity—internal and external. The 
internal activity is that activity that remains within a Person such as seeing with the 
mind’s eye. In this activity, the mind formulates to itself a model of something seen 
or never seen before. In contrast, the external activity is that activity that passes over 
to a “thing” outside the mind. For example, pointing, moving, manipulating, and 
encoding thoughts into external representations. The internal and external activities 
of a Person are interrelated and the latter somewhat manifests the former. Moreover, 
in the interaction with others, a Person constructs and co-constructs cycles of 
internal-external activity in a synergistic manner. 

This internal-external activity of the mind is not independent of the relation 
between the mind and the object of thought. According to Kant, the mind could 
create an object or be influenced by an object.

Theoretically, there are two ways in which a mind, or mode of knowledge, 
can be directly related to an object. If the object depends upon the mind, then 
the mind is active with respect to [the object],…such a relation is given the 
title of ‘intellectual intuition’. Alternatively, the mind may wait passively upon 
the object, and establish a relation to [the object] only in so far as [the object] 
affects the mind. This capacity of the mind to be affected by objects is entitled 
“sensibility,” and the product of such affection is “sensible intuition.” (Wolff, 
1973, p. 73, emphasis added)

According to Kant, when the mind creates an object, this object depends on 
the activity of the mind (the mind is in a creative mode) and he calls this relation 
intellectual intuition. When the mind is influenced by an object, this object is 
received by the mind (the mind is in a receptive mode) and he calls this relation 
sensible intuition. That is, when an object affects the senses directly, it produces 
a variety of sensible intuitions―a manifold of sensations and perceptions. This 
manifold carries with it two kinds of elements: (i) a subjective or material element 
(colours, taste, hardness, etc.), which has no cognitive value; and (ii) a formal or 
knowledge-giving element, which is the spatiotemporal organization and ordering 
of sensations that facilitates the formation of perceptual judgments (Wolff, 1973). 
Then the internal-external activity of a Person, mathematical or not, is intimately 
connected with intellectual intuitions, sensible intuitions, and perceptual judgments. 

For Kant, a judgment, in general, is an act of the intellect in which two ideas, 
comprehended as different, are compared for the purpose of ascertaining their 
agreement or disagreement (Wolff, 1973). Judgments are usually expressed in 
propositions composed by subject, predicate, and copula (i.e., a word or set of words 
that act as a connector between the subject and the predicate of the proposition). 

Borrowing from Kant, Peirce argues that perceptual judgments on the particular 
and concrete contain general elements from which one can intuit general patterns, 
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universal propositions, and principles (CP 5.180–212). Perceptual judgments, he 
says, are also related to the more deliberate and conscious processes of inferential 
reasoning, and this reasoning is continuous and carries with it the vital power of self-
correction and refinement (Peirce, 1992, Vol. 1). 

For Peirce, all knowledge is a self-corrective process of continuous refinement. 
He contends, following Kant, that there is nothing in the intellect that has not been 
first in the senses (CP 8.738). He argues that realities compel us to put some things 
into very close relation and others less so. But in the end, it is only the genius of 
the mind that takes up all those hints of sense, adds immensity to them, makes 
them precise, and shows them in intelligible forms of intuition of space and time  
(CP 1.383).

Both Kant and Peirce deeply value the epistemological power of observation. 
They consider that observation is tied to judgment, and that judgment is tied 
to intentionally planned reasoning. Peirce contends that any inquiry activity 
fully carried out by a Person is rooted in observation and perceptual judgment.  
For example, he argues, that when different people observe a geometric diagram, they 
are able to “see” different relations, some perceived by the senses and some inferred 
with the aid of collateral knowledge. He also considers that this collateral knowledge 
is a prerequisite in the apprehension and the construction of new meanings (Peirce, 
1992, Vol. 2). Consequently, it can be said that geometric diagrams, observation, 
sensible intuitions, intellectual intuitions, collateral knowledge, and inferential 
reasoning (induction, deduction and abduction) are essential components in the 
process of proving. 

There is no doubt that visual imagination, visual observation, and visual thinking 
play an epistemic role in the observation of geometric diagrams (Arnheim, 1969; 
Giaquinto, 2007). These diagrams are in essence icons of possible relations. They 
have the potential to bring to the fore logical connections between the explicitly or 
implicitly given in the premises of a geometric proposition and the Person’s collateral 
geometric knowledge. These connections are essential in the conceptualization and 
re-conceptualization of geometric arguments to reach, in a convincing and valid 
manner, the conclusion of the proposition. Thus any given proof of a geometric 
proposition is the product of the internal-external constructive thinking process of 
the mind.

PEIRCE’S CLASSIFICATION OF INFERENTIAL REASONING

Peirce, logician and mathematician himself, argues that one of the tasks of logic is 
the classification of inferences. He also argues that inferences and logical arguments 
are at the very heart of mathematical inquiry and that inferences are also at the very 
heart of the proving process. By inference he means any cognitive activity that could 
be internal or external, not merely conscious abstract thought (Davis, 1972).
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Peirce retraces inferential reasoning from the simplest forms of sensation and 
perception to the most elaborated forms of semiotic activity. He considers that each 
inference draws upon former ones making logical inferences a historical process that 
requires continuity and time (Davis, 1972; Sheriff, 1994; Colapietro, 1989).

In general, Peirce’s classification of inferential reasoning borrows from Kant’s 
notion of perceptual and intellectual judgments. Figure 1 shows his classification of 
inferences into ampliative (synthetic) and into explicative (analytical). He subdivides 
ampliative reasoning into inductive and abductive, while explicative reasoning is 
classified only as deductive.

For centuries, inductive and deductive reasoning were known as the only forms of 
inferential reasoning. Less than two centuries ago, Peirce recognized a new form of 
reasoning that was neither inductive nor deductive. He called it abductive reasoning. 
He describes it as an inference through which and by which the mind, indirectly, 
comes to know the existence of an object by means of the active relation of the 
mind with the object (material or conceptual), relation that is based on intellectual 
intuition. This intellectual intuition regards “the abstract in concrete forms by the 
realistic hypostatization of relations” (CP 1.383, emphasis added). 

Figure 1. Peirce’s classification of inferential reasoning  
(diagram adapted from Peirce 1878)

For Peirce, to interact with the world, in any way, is to make judgments of 
inductive, abductive, and deductive nature. Induction evaluates and shows that 
something is actually operative; abduction merely suggests that something may be 
(may-be or may-not-be); and deduction explicates and shows that something must 
be (Fann, 1970, p. 51). 

Prior to Peirce’s recognition of abduction as a form of inference, the meaning of 
‘abduction’ was encoded in syllogisms in which the minor premise was only probably 
true (better known as apagoge). In his early work, Peirce also focused on syllogisms 
and on the role of the character of specific cases and classes (CP 2.508, 511). A case 
S might be a member of a class P and have a number of characters M. See Chart 1.
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Induction Abduction Deduction

S’ S’’ S’’’, etc. taken at 
random as M’s

Any M is, for instance, 
P’P’’P’’’, etc. Any M is P

S’ S’’ S’’’, etc. are P S is P’P’’P’’ S is M .

:. Any M is probably P :. M is probably P :. S is P

Chart 1. Peirce’s induction, abduction and deduction in terms of syllogisms

Later, he describes his classification of inferential reasoning in terms of rule, 
case, and result (CP 2.623–625). Chart 2 pulls together the three types of inferences 
with the illustrative example given by Peirce. While in induction the general rule is 
deduced and in deduction the general rule is given, in abduction the general rule is 
temporarily chosen. In other words, abduction is the step between a fact (case) and 
its cause or origin (general rule). Therefore, abduction, for Peirce, is the provisional 
entertainment of a rule or hypothesis (that must undergo further testing) to explain 
that the particular case will follow by deductive inference.

Induction Abduction Deduction

Case 
These beans are from 
this bag.

Rule
All the beans from this 
bag are white.

Rule
All the beans from this bag 
are white.

Result
These beans are white.

Result
These beans are white.

Case
These beans are from this 
bag.

:. Rule
All the beans from this 
bag are white.

:. Case
These beans are from 
this bag.

:. Result
These beans are white.

Chart 2. Peirce’s inferential classification in terms of rule, case and result

In his early work, Peirce emphasizes the differences, in logical form, between 
induction, abduction, and deduction. In his later work (e.g., “Lectures on Pragmatism”, 
CP 5.14–212), he shifts the emphasis to the function satisfied for each kind of reasoning. 
The logical form of abduction is then reduced to 

C The surprising fact, C, is observed
A implies C But if A were true, C would be a matter of course
A Hence, there is a reason to suspect that A is true
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At this point in time, abduction becomes, for Peirce, and “explanatory hypothesis”. 
Then his criteria for a good abduction comes to include, at least, that which “must 
explain the facts” (CP 5.197). He then argues the difference between his three forms 
of inference as follows: abduction explains the case by introducing a new rule; 
induction evaluates the consequent by comparing the conclusion drawn from it to 
experience; and deduction draws necessary conclusions from the consequent of the 
abduction 

In recent years, philosophers and semioticians had come to the realization that not 
all abductions are of the same nature. Some would require a higher level of creativity 
and intellectual sophistication while others require a higher level of thinking to see 
intellectual connections. Chart 3 presents recent sub-classifications of abductive 
reasoning.

Thagard (1978) classifies abduction into overcoded abduction/hypothesis and 
abduction proper. By overcoded abduction he means an abduction for which the 
hypothesized rule is not a genuine creation of the mind, but rather it is automatically 
or semi-automatically encoded in the case. That is, when a Person proposes an 
overcoded abduction his effort is in the isolation of an already encoded rule to which 
the case is correlated. In contrast, by abduction (proper) he means that the Person’s 
effort is in the novel creation of a rule.

Peirce
1878

ABDUCTION
Provisional hypothesis suggesting that something may-be or may-be-not

Thagard
1978

Overcoded Abduction 
Hypothesis implicitly 

encoded 

Abduction (proper)

Eco
1983

Overcoded Abduction 
Hypothesis implicitly 

encoded

Undercoded Abduction
Hypothesis 

selected from a set 
of equiprobable 

possibilities

Creative Abduction
Hypothesis invented 

ex novo

Chart 3. Thagard’s and Eco’s sub-classification of Peirce’s abduction

Eco (1983/1988) continues Thagard’s sub-classification and further subdivides 
abduction (proper) into undercoded abduction and creative abduction. By undercoded 
abduction he means an abduction in which the Person’s effort is in the selection of a 
rule from a series of equiprobable rules put at his disposal by his current knowledge 
about the world. By creative abduction he means those abductions in which the 
Person’s effort is in the ex-novo creation of a rule; for example, Copernicus’ new 
conceptualization of the relation between the motions of the sun and the earth. 
These abductions are revolutionary discoveries that change established scientific 
paradigms (Kuhn, 1962). 
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In geometry, abduction, in any of its forms, plays a role in the conceptualization 
of auxiliary constructions, in the observation and visualisation of relations implicit 
in geometric diagrams, and in the conceptualization of geometric conjectures. It also 
plays a role in the selection, coordination, and organization of collateral knowledge 
to generate geometric arguments to prove geometric propositions in a logical, valid, 
and convincing manner. 

KANT’S ANALYSIS OF THE PROPOSITION “THE ANGLES IN  
ANY TRIANGLE ADD 180°”

In this section we present Kant’s analysis of two geometric propositions: (1) a triangle 
has three sides, and (2) the sum of the angles in any triangle is 180°. His examination 
of these two propositions illustrates the distinction between analytic and synthetic 
propositions and between a priori and a posteriori propositions. We acknowledge 
the philosophical debate about the usefulness of this distinction in different fields 
of knowledge. Nonetheless, in this chapter, this differentiation brings to the fore 
insights into the nature of the proposition about the sum of the interior angles of 
any triangle. Kant’s philosophical analysis provides us with a mathematical insight 
into the complexity imbedded in the mathematical simplicity of this fundamental 
proposition of plane geometry. It also sheds light onto the question often asked by 
students, “Where do definitions and theorems come from?” According to Kant, they 
come from intellectual intuitions.

Kant contends that geometry, being a branch of mathematics, contains a priori 
analytic and a priori synthetic truths about space and things in space (Wolff, 1973). 
For him, mathematical propositions are the result of judgments and intellectual 
intuitions a priori to experience. The analytic-synthetic and the a priori-a posteriori 
distinctions, combined, yield four types of propositions: analytic a priori and analytic 
a posteriori; synthetic a priori and synthetic a posteriori. 

Kant argues that analytic propositions depend on the actual meaning of the words 
that constitute them. Therefore, these propositions cannot be considered a posteriori 
to experience. The predicate of an analytic proposition is inherent to the subject of 
that proposition. Thus, all analytic propositions are a priori since we only need to 
consult the meanings of the words used. 

He also argues that new knowledge is possible only through synthetic a priori 
propositions. The predicate of a synthetic a priori proposition is not inherent to 
the subject of that proposition. Nonetheless, some knowledge can also be achieved 
through synthetic a posteriori propositions because concrete cases allow us to gain 
insight into the general pattern. 

Kant analyzes the proposition “a triangle has three sides” (1) as an a priori 
analytic proposition, and the proposition “the angles in any triangle add 180°” 
(2) as an a priori synthetic proposition. These two propositions seem simple and 
straightforward to students but not so to philosophers and mathematicians. Chart 4 
summarizes Kant’s analysis. 
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Kant considers that the truth of propositions (1) and (2) is known prior to any 
physical experience. Proposition (1), he says, is by necessity analytic because it 
merely reveals logical relations between the meaning of the words, and its denial 
involves a contradiction. Proposition (2) is a synthetic universal proposition because 
it reveals something substantive about the character of space (Wolff, 1973). This 
means that the predicate of the proposition (i.e., 180°) is not inherent to the subject 
of the proposition (i.e., the angles in a triangle), and its denial does not result in a 
contradiction.

Both propositions are independent of experience in the minds of mathematicians 
who construct, or some would say, discover them. However, for school students 
of different ages, the first proposition is simply a definition to be accepted. Some 
students believe the truth of the second proposition only after measuring angles of 
triangles in the real world or after proving the proposition. Consequently, it can be 
said that for students, who encounter geometry for the first time, the truth of the 
second proposition is a posteriori to experience. Nonetheless, one thing is certain. 
Students inherit this a priori synthetic proposition from the mathematicians. 

Proposition (2), whether it is synthetic a priori or a posteriori, is fundamental 
to Euclidean geometry. This proposition and its proof were first credited to the 
Pythagoreans. Later, Euclid presented a different proof—Proposition 32, Book 1 
of The Elements. Even later, Proclus presented another proof in his Commentaries 
to the Book 1 of The Elements. In Section 6 we present a deconstruction of these 
classical proofs. This deconstruction not only brings forward the Greek analysis-
synthesis method of proving but it also sheds light into the role of abduction in the 
process of proving. 

Reading and understanding a given written proof of a mathematical proposition 
is a linear deductive process. However, one thing is to read and understand a 
written proof and quite another is to produce it. To produce a proof is to engage 
in a nonlinear process of thinking which interconnects abductive, inductive, and 
deductive inferences. This process seeks to generate, at least, one geometric 
argument to logically justify the conclusion. Thus a written proof is only the product 
of a thinking process—the process of proving. 

ANALYSIS-SYNTHESIS METHOD OF PROVING

The justification of a mathematical proposition can be done directly or indirectly. 
The direct method starts with the given premise P and then arrives at the conclusion 
Q using inferential reasoning and appropriate collateral knowledge. This method 
is symbolically expressed as (P → Q). When done indirectly one could either use 
the contrapositive method or the contradiction method. The contrapositive method 
negates the conclusion and then arrives at the negation of the premise. This method 
is symbolically expressed as (− Q → − P). The contradiction method starts with 
the acceptance of the premise P and the negation of the conclusion (− Q) and, from 
this conjunction a contradiction of a statement or principle within a mathematical 
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system is pursued (C <  − C). This method is symbolically expressed as [(P <  − Q) →  
(C <  − C)]↔[P→Q].

Then it is not by chance that Mariotti, Bartolini, Boero, Ferri, and Garuti (1997) 
propose a system-definition of mathematical theorems as the triad (statement, proof, 
theory within which the statement makes sense). This is to say that a proof of a 
mathematical proposition does not happen in isolation but in the context of a system 
of mathematical concepts. This system contains, among other things, principles, 
axioms, definitions, and theorems that, in one way or another, are associated with 
one another (Hempel, 1956).

Producing a proof of a mathematical proposition is to produce a mathematical 
argument to prove that once the premise is accepted as true in a mathematical system, 
then the conclusion that follows need to be true in that system. There is no doubt that 
some mathematical arguments are more difficult to produce than others. One of the 
reasons is that some mathematical propositions, for example universal propositions, 
are stated in a single sentence (subject-verb-predicate), and the predicate is not 
inherent to the subject of the proposition.

They are a priori synthetic propositions in Kant’s sense. For example, “Prime 
numbers are infinite”, “ 2 is an irrational number”, or “The angles in any triangle 
add 180°.”

In order to produce a mathematical argument to prove any of these propositions, 
the mind is forced either: (i) to generate ex novo a mathematical contradictory 
argument, or (ii) to start “backwards” from the predicate and construct reversible 
inferences in order to arrive at some general mathematical principle and, then, 
reverse the inferences. This backwards method of proving was conceptualized by 
the Greeks and was called the analysis-synthesis method. Proclus (1970) contends 
that even the more obscure problems in mathematics can be pursued through this 
method. He also contends that Plato taught this method in his Academy even though 
it does not mean that he discovered it.

Heath (1921/1981, vol. 2) explains that the analysis-synthesis method has two 
well differentiated phases: (a) the backwards phase or analysis and (b) the forward 
phase or synthesis. The analysis phase traces back an acknowledged fact or principle 
starting from the desired conclusion. The synthesis phase reverses the steps of the 
analysis. In order to do this, each step of the chain of inferences in the analysis phase 
has to be unconditionally reversible. 

In analysis we assume that which is sought as if it were already admitted, and 
we inquire what it is from which this results, and again what is the antecedent 
cause of the later, and so on, until by so retracing our steps we come upon 
something already known or belonging to the class of the first principles, 
and such a method we call analysis as being solution backwards. However, 
in the process of synthesis we reverse the process. That is, we take as already 
done that which was last arrived at in the analysis and, by arranging in their 
natural order as consequences what before were antecedents, and successively 
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connecting them one with the other, we arrive finally at the construction of 
what was sought. (Heath, 1921/1981, vol. 2, p. 400, emphasis added)

The analysis-synthesis method is different from the indirect methods of proving 
either by contrapositive or by contradiction (Heath, 1921/1981, vol. 2). This method 
of proving seems to have been used in the classical proofs of the proposition “the 
angles in any triangle add 180°.”

The Pythagorean proof of this proposition is often presented in geometry 
textbooks. It starts by giving the auxiliary construction and then the deductive 
argument follows. Reading and understanding this proof entails almost no effort 
because of its aesthetic simplicity. After all, the written proof (the final product 
of the proving process) is only a linear deductive organization of abductive and 
deductive inferences that were previously generated to construct a viable and logical 
geometric argument. However, the abductive nature of the auxiliary construction is 
anything but linear, and it is left unexplained. Thus the creative nature of the proving 
process is left untouched and implicit.

Constructing or producing a geometric proof, in contrast to reading or re-producing 
a proof, requires an active playing of the mind (internal and external) to bring into 
play auxiliary geometric constructions, to make geometric diagrams, and to observe 
and interpret them. In this process, it is also essential to bring into play appropriate 
collateral geometric knowledge to provide for the emergence of necessary logical 
relations from which the validity of the geometric argument follows. 

The next section presents a deconstruction of each of the three classical written 
proofs of the proposition “The angles in any triangle add 180°.” It is argued here 
that to prove this proposition the analysis-synthesis method was used by the 
Pythagoreans, Euclid, and Proclus. This deconstruction highlights the important role 
played by both abduction and collateral geometric knowledge. 

A DECONSTRUCTION OF THE THREE CLASSICAL PROOFS

It could come as a surprise that there are only three wellknown proofs of this 
fundamental proposition: the Pythagorean’ proof, Euclid’s proof, and Proclus’ 
proof. This small number of proofs is in sharp contrast to the large number of proofs 
constructed for another fundamental geometric proposition “The Pythagorean 
Proposition” (Loomis, 1940/1972). This contrast between the number of proofs for 
each proposition points to their different nature. In the first, the predicate (180°) is not 
intrinsic to the subject of the proposition (the angles in any triangle). In the second, 
the predicate (the sum of the square of the sides of a right triangle equals the square of 
its hypotenuse) is intrinsic to the subject of the proposition (a right triangle).

Pythagorean Proof and Euclid’s Proof

There are differences and similarities between these two proofs. Figure 2 presents 
them side by side. The Pythagorean proof (Figure 2a) uses the parallel postulate to 
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construct one-and-only-one auxiliary parallel line to one of the sides of the triangle 
which passes through the opposite vertex. Let’s notice that this parallel line is external 
to the triangle (Proclus constructs parallel lines interior to the triangle). To construct 
their logical argument, the Pythagoreans choose a side (BC) and its opposite vertex 
(A). Then, the other two sides of the triangle (BA and CA) are re-conceptualized 
as transversals to the parallel lines (BC and xy). Afterwards, the congruence of the 
alternate interior angles formed between parallel lines and their transversals is used 
to show the straight angle xAy is, in fact, congruent to the angles of the triangle. 
Therefore, the logical conclusion is that the sum of the angles inside the triangle is 
the same as the measure of the straight angle—180°.

The analysis phase of this proof is rooted in three overcoded abductions: (i) the 
selection of a side of the given triangle and the appropriate point through which 
the parallel line should pass (the vertex opposite to the side into focus); (ii) the 
construction of a parallel line to form a straight angle which is known to measure 
180°; and (iii) the congruence of the straight angle with the three interior angles of 
the triangle.

Once the side of the triangle and the vertex was chosen, the properties of the 
angles formed between parallel lines and transversals accounted for the relation 
between the measure of the sum of the interior angles of the triangle and that of the 
straight angle. 

The synthesis phase is the linear and deductive organization that captures the 
reverse order of the argument produced in the analysis phase. The synthesis phase 
starts with the hypothesized construction in the analysis phase and ends up justifying 
the hypothesized congruence of the straight angle and the sum of the interior angles 
of the triangle. 

It is obvious that the written proof in Figure 2a leaves silent the creative part 
of the proving process—the abductive reasoning that accounted for the auxiliary 
construction of the parallel line and the relation between the 180° measure of the 
straight angle and the sum of the interior angles of the triangle.

Figure 2b presents the Euclidean proof (Proposition 32, Book 1 of The Elements). 
In this proposition Euclid presents not one but two propositions. The first introduces 
the notion of external angles of triangles in contrast to the notion of interior angles. 
He states that an external angle is equal to the sum of the two opposite (remote) 
interior angles. The second states that the sum of the interior angles of a triangle is 
equal to two right angles.

In the proof of this proposition, Euclid introduces two auxiliary constructions. 
First, he extends one of the sides of the triangle (side BC) to construct the straight 
angle BCD. Second, he uses the parallel postulate to construct one-and-only-one line 
CE parallel to side BA and passing through vertex C. He, then, re-conceptualizes 
sides AC and BC as transversals to the parallel lines BA and CE. Subsequently, he 
uses the congruence of the angles formed between parallel lines and transversals to 
justify the relation between the external angle (<ACD) at vertex C and the sum of 
the two remote interior angles (<A1 and <B1). In addition, he justifies the straight 
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angle (<BCD) as the sum of the external angle ACD and the vertex angle C3. With 
this justification, he proves that the 180° measurement of the straight angle is also 
the measurement of the three interior angles of the triangle.

The analysis phase contemplated the auxiliary constructions that aided the 
formation of the geometric argument. These constructions were anticipated and 
hypothesized by means of abductive reasoning. The first overcoded abduction 
was the relation between the 180° measure of the straight angle and the sum of 
the measures of the angles of the triangle. A subsequent overcoded abduction was 
the extension CD of the side BC to construct a straight angle with vertex at C. Still 
another overcoded abduction was the construction of line CE parallel to the side AB 
and justified by the parallel postulate. These auxiliary constructions and appropriate 
collateral knowledge (the parallel postulate and the properties of the angles formed 
between parallel lines and their transversals) aided the formation of the geometric 
argument to justify both the measure of the exterior angle and the measure of the 
three interior angles of the triangle.

The synthesis phase was the linear and deductive organization of the reverse 
argument nonlinearly created in the analysis phase by means of abductive reasoning. 
This phase starts with the construction of an exterior angle and also with the 
construction of a parallel line to the side AB passing through its vertex C. Then the 
argument follows in a deductive manner.

Again, it also goes without saying that the written proof (Figure 2b) leaves silent 
the creative part of the process of proving—the abductive reasoning that led the 
construction of a parallel line and of a straight angle congruent to the sum of the 
three interior angles of the triangle.
It is worthwhile to observe two details about the Euclidean proof. First, the exterior 
angle and its measurement as the sum of the two remote interior angles were not 
absolutely necessary for the argument of the proof. Observing Figure 2b, the 
argument could have been made as follows:

• <BCD = 180° (measure of the straight angle)
<BCD = <C3 +<C1 + <C2.

Then <C3 +<C1 + <C2 = 180° (transitivity property of equality)

• Since <C1 = <A1  (alternate interior angles between parallel lines AB and CE and 
the transversal AC)
 <C2 = <B1 (corresponding angles between parallel lines AB and CE and the 
transversal BD)

Then, <C3 +<A1 + <B1 = 180°

• Since <C3 = <C, <A1 = <A, <B1 = <B, then <C +<A + <B = 180°.
Then, the sum of the measures of the interior angles of any triangle is 180°

Second, instead of using the exterior angle to justify the sum of the interior angles, 
the argument could have been made in the reverse order. This is to say that the 180° 
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measure of the interior angles could have been proved first and then the measure of 
the exterior angle as the sum of the two remote interior angles could have ensued. 
Observing Figure 2b, the argument could have been made as follows:

• <ACD + <C3 = 180° (measure of the constructed straight angle)

• <A1 + <B1 + <C3 = 180° (the sum of the interior angles of the triangle is 180°) 

• Then <ACD + <C3 = <A1 + <B1 + <C3 (transitivity of equality)

• <ACD = <A1 + <B1
 (when equals are subtracted from equals, the remainders  

are equal)

• Then, the measure of an exterior angle of the triangle is the same as the sum of the 
measures of the two remote interior angles

The Euclidean notion of exterior angle, although not indispensable for the proof 
of the 180° measure of the angles inside the triangle, is an important notion that can 
be extended to any polygon. He not only stated the property of the sum of the interior 
angles of triangles but also the property of the exterior angles of triangles. In other 
words, he not only classified the angles of triangles into interior and exterior but also 
established a relation between these two kinds of angles. This creative abduction 
seems to have existed in the minds of the Pythagoreans. Heath (1921/1981, vol. 1) 
argues that we should not infer that the notion of external angle was not known to 
the Pythagoreans. He also asserts that more general propositions are also credited to 
them: (i) if n is the number of sides of a polygon, then the sum of the interior angles 
of a polygon is equal to (2n–4) right angles, and (ii) the sum of the exterior angles of 
any polygon is equal to 4 right angles.

Proclus’ Proof

Proclus’ geometric argument has some similarities and differences with the 
Pythagorean and the Euclidean arguments. Figure 3 presents Proclus’ proof. All three 
arguments are similar because they are based on the measurement of the straight 
angle and on the construction of parallel lines. Proclus’ argument is different from 
the other two because he makes the construction of parallel lines to two different 
sides of the triangle, rather than to only one side. Moreover, these lines fall inside the 
triangle rather than outside and they pass through an interior point on the remaining 
side rather than through a particular vertex.

Proclus first chooses a point M interior to a side of the triangle (BC) and then 
constructs parallel lines to the remaining sides (AB and AC). He joins M with A 
(opposite vertex to the side BC) and constructs line AM. He also uses point M to 
construct lines MK parallel to side AC and ML parallel to side AB. Then he re-
conceptualizes lines AM and BC as transversals to two pairs of parallel lines  
(MK//AC and ML//AB). Finally, he uses the congruence of the angles formed 
between parallel lines and transversals to prove that the straight angle BMC (of 
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measurement 180°) is also congruent to the sum of the angles in the triangle. 
Fundamental to Proclus’ geometric argument were the auxiliary constructions of 
the lines AM, ML (ML//AB), and MK (MK//AC). These auxiliary constructions 
were overcoded abductions to construct a straight angle congruent to the angles 
in the triangle. Appropriate collateral knowledge (the parallel postulate and the 
congruence of the angles formed between parallel lines and their transversals) aided 
in the justification of the congruence between the straight angle BMC and the angles 
in the triangle. 

In the analysis phase of this proof, abductions, auxiliary constructions, and 
collateral knowledge were essential. The first overcoded abduction anticipated the 
possible relation between the 180° measure of the straight angle and the sum of the 
angles in a triangle. The second overcoded abduction was the construction of two 
parallel lines, through an interior point of one side, and parallel to the other two 
sides. The third overcoded abduction anticipated a straight angle, with vertex at the 
above mentioned interior point, and congruent to the angles of the triangle. The 
properties of the angles between parallel lines and transversals accounted for this 
congruence.

In the synthesis phase, the nonlinear argument produced in the analysis phase 
was reversed to capture the argument in a deductive manner. Thus the written proof 
starts with the auxiliary constructions to arrive at the conclusion sought. Without 
the analysis phase it would have been impossible to imagine how to start the proof 
and how to incorporate viable auxiliary constructions. Therefore, it goes without 
saying that the written proof in Figure 3 also leaves silent the creative aspect of the 

Figure 3. Proclus’ proof
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proving process—the abductive reasoning that allowed the emergence of auxiliary 
constructions. 

SUMMARY AND CONCLUSIONS

The deconstruction of the three classical proofs indicates that, given the nature of 
the proposition, these geometers ingeniously called upon a working backwards 
strategy or what they called the analysis-synthesis method. Any other method of 
proving would have been impossible due to the universal nature of this proposition. 
We argued that abductive reasoning played a fundamental role in the construction 
of a straight angle and the relationship between its measurement and that of the sum 
of the three interior angles of the triangle. This is to say that abductive reasoning 
played a key role in the analysis and then the synthesis phases of each proof.  
Chart 5 summarizes the analysis and synthesis phases that we argued were essential 
in the proving process of this proposition.

The analysis phase of each proof was based on overcoded abductions grounded 
in collateral knowledge (the 180° measure of straight angles and the congruence 
of angles between parallel lines and transversals). The first overcoded abduction 
was the connection between the measure of the straight angle and the sum of the 
interior angles of any triangle. The second overcoded abduction was the possibility 
of constructing a straight angle with angles that were congruent to the angles of 
the triangle. This construction was abductively implied from the parallel postulate. 
The third overcoded abduction was the actual construction of a straight angle using 
parallel lines and the congruence of angles formed between parallel lines and 
transversals. 

It is important to note that an infinite number of parallel lines to one side of 
a triangle can be constructed due to the fact that there are an infinite number of 
points outside the line containing any side. Which point should be chosen? The 
Pythagoreans and Euclid anticipated the strategic point to be the opposite vertex to 
the side chosen first. Through that point they constructed a parallel line to the side into 
focus. Proclus anticipated the strategic point to be any point between the two vertices 
of the side first chosen (thus he excludes vertices). From that point, he constructed 
parallel lines to the other two sides of the triangle (forming a parallelogram); he also 
constituted this point into the vertex of the straight angle. 

The synthesis phase was pursued after the analysis phase has produced a viable 
and logical geometric argument. This phase starts with the auxiliary constructions 
and pursues a chain of deductions by reversing their abductive reasoning in the 
analysis phase.

This is to say, they started with the auxiliary construction―a parallel line to an 
arbitrary side(s) of the triangle and passing through a particular point. What was 
the end goal of the construction? To form a straight angle with angles congruent to 
the (interior) angles of the triangle. Finally, they use the fact that the measure of the 
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Analysis phase of the proofs 
(overcoded abductions)

Synthesis phase of the proofs
(deductive reasoning)

First overcoded abduction: Association 
between a geometric fact and the 
conclusion sought out 
•  Could there be a connection between 

the 180º measure of the straight 
angle and the sum of the angles in a 
triangle? 

Auxiliary Construction (second and third 
abductions)

•  Construct a parallel line to one side 
of a triangle and passing through the 
opposite vertex to that side.

•  Determine the straight angle that can 
be formed with angles congruent to the 
angles in the triangle.

•  Construct two parallel lines to two sides 
of a triangle and passing through a point 
between the two vertices of the third 
side. 

•  Determine the angles between the 
parallel lines that are congruent to the 
angles in the triangle.

Second and third overcoded 
abductions: Possible Auxiliary 
Constructions 
•  Could angles congruent to the three 

angles in a triangle form a straight 
angle?

•  Could parallel lines to one side of 
a triangle and through its opposite 
vertex guide the construction of the 
desired straight angle?

•  Could parallel lines to two sides of a 
triangle and passing through a point 
interior to the third side guide the 
construction of the desire straight 
angle?

•  Is this constructed straight angle 
congruent to the angles in the 
triangle?

Geometric facts

•  Every straight angle measures 180º  
(two right angles).

•  A straight angle, congruent to the three 
angles of a triangle, can be constructed.

Plausible Conclusion 
•  The sum of the three angles in a 

triangle should be 180º because a 
straight angle can be constructed 
with angles that are congruent to the 
three angles of any triangle. 

Conclusion
•  The addition of the measures of the three 

interior angles of any triangle is 180º.

Chart 5. Outline of the analysis-synthesis geometric argument of the three proofs
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straight angle is 180° to conclude that the sum of the interior angles of any triangle 
should also be 180°. 

Why to deconstruct the three classical proofs of one of the most fundamental 
propositions of plane Euclidean geometry? Certainly it could appear to be a useless 
exercise. After all, the proofs are there; they are not too long; and they can be easily 
followed once you are given the auxiliary constructions. However, one could ask 
questions like “Why are these auxiliary constructions appropriate?” “Where do 
these auxiliary constructions come from?” or “Is there any other way to prove this 
proposition?” 

Being aware of the very essence of the proving process also entails being aware 
of how a proof is constructed. This awareness may encourage one’s mind to imitate 
similar thinking strategies or to generate new ones in other geometric situations. 
There is no wonder why some students ask, “Where do proofs come from?” How 
do I start a proof?” Intentionally or unintentionally, these students are asking for a 
method to direct their own thinking during the process of proving.

The deconstruction here presented brings to the fore a cognitive issue that seems 
to be also a pedagogical issue—the key role of proving in the development of 
mathematical thinking and mathematical understanding. A research question that 
could be investigated is whether or not the deconstruction of classical proofs could 
help students to become aware of the role of abductive reasoning in the process of 
proving and in mathematical thinking.

Mathematicians like Polya argue that students should not only be given proofs to 
be memorized but also the knowledge of “how” to go about proving. This, he says, 
will encourage the formation of habits of thinking and methodical work. He also 
encourages teachers and students to learn by guessing (i.e., abductive inference or 
hypothesis) and to learn by proving (1962/1981, vol. 2). 

Hanna (1989) also contends that learners should become aware of the need to 
reason carefully when building, scrutinizing, and revising mathematical arguments. 
She asserts that proving deserves a prominent place in the curriculum “because it 
continues to be the central feature of mathematics itself, as the preferred method 
of verification, and because it is a valuable tool for promoting mathematical 
understanding” (1995, pp. 21–22). 

The document Principles and Standards for School Mathematics (NCTM, 2000) 
advocates the teaching and the learning of geometry and, in particular, the teaching 
and the learning of proving in order to improve the development of students’ 
systematic reasoning. It also advocates the teaching of geometry in such a way that 
allows students to explore geometric figures, to generate geometric conjectures, and 
to construct logical arguments and counterarguments. 

More recently, the document Common Core State Standards for Mathematics 
(2012) also advocates the development of critical thinking, systematic reasoning, 
and habits of thinking. It argues that these are the most important competences to be 
developed in all students K-12 (Hirsch, Lappan, & Reys, 2012).



ABDUCTION IN PROVING

177

Proving, as a special type of problem-solving, is among the most powerful means 
to develop habits of thinking in students’ minds. Memorization of proofs, alone, has 
less chance of developing these habits. Some proofs are great constructions (some say 
discoveries) done by mathematicians. These proofs should be analyzed before being 
memorized to serve as paradigmatic examples. However, less sophisticated proofs, 
like those of simpler propositions which are constructed by students themselves, will 
have the greatest impact on their mathematical thinking. Polya emphasizes this point 
in a clear and simple manner. 

Your problem may be modest, but if it challenges your curiosity and brings into 
play your inventive faculties, and if you solve it by your own means, you may 
experience the tension and enjoy the triumph of discovery. Such experiences 
at a susceptible age may create a taste for mental work and leave their imprint 
on mind and character for a lifetime. (Polya, 1945/1973, preface of the first 
edition, p. v)
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