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ABSTRACT

Diagrams and physical manipulatives are often recommended as useful semiotic 
resources for visualising area and volume problems in which nonlinear reasoning 
is appropriate. However, the mere presence of diagrams and physical manipulatives 
does not guarantee students will recognise the appropriateness of nonlinear reasoning. 
Three case studies illustrate that the effectiveness of such semiotic resources can 
depend on whether they enable students to visualise, test and examine their existing 
incorrect mathematical approaches as they progress around the modelling cycle. 
Some students used diagrams and multilink blocks to test and reject incorrect linear 
and quadratic reasoning, whereas others who created diagrams did not use them to 
test their ideas, and persisted with incorrect linear or quadratic reasoning. 

Introduction

Figure 1. The Squidley warmup activity

Consider the following problem: Baby humans’ bodies are not proportional to adult 
humans’ bodies: a baby’s head is large in relation to its squat limbs, whereas an 
adult’s head is smaller in relation to its long limbs (Thompson, 1992). In contrast, 
baby seahorses resemble miniature replicas of their parents, with their scaled down 
body part shapes in similar proportions to each other as those of adult seahorses. 
The following “marine animal” named Squidley (see Figure 1), was constructed 
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from multifix cubes. Like seahorses, Squidley grows proportionally in shape. When 
he grows up, he will be twice as big as he is now. What will Squidley look like?

The answer of course, depends on what we mean by “twice as big”. If we mean 
that Squidley’s dimensions of length, width and height are doubled, then option A 
could be the answer, although option A’s volume is not twice as big, but eight times 
bigger than young Squidley, containing 32 multifix cubes to young Squidley’s four. 
If we mean that Squidley’s volume is doubled, then option B could be the answer 
as it contains twice as many multifix cubes as young Squidley, although option B is 
not proportional in shape to young Squidley, having grown only in one dimension 
(height). In fact, neither of these two options are correct if we intend to double 
Squidley’s volume while retaining the proportions in his shape: this would require 
multifix cubes with side lengths that are times bigger than those of young Squidley.

The above question highlights an important mathematical concept: that increasing 
the dimensions of a three-dimensional figure by a given scale factor does not yield 
a linearly proportional increase in volume. Instead, the change in volume obeys a 
cubic pattern as shown in option A above, which is 23 = 8 times bigger in volume 
when its dimensions are multiplied by a scale factor of 2. Many students and adults 
find this concept counterintuitive and misapply linear reasoning, saying for example, 
that option A must be twice as big in volume as its dimensions have been doubled. 
The misapplication of linear proportional reasoning to situations where non-linear 
reasoning is required has been described as “the illusion of linearity” (De Bock, 
Verschaffel, & Janssens, 2002). It occurs in many areas of mathematics (see for 
example, Shaughnessey, 1992), but is particularly prevalent in problems about 
scaling up or down the volume (and area) of geometrical figures, where students 
often assume that multiplying the dimensions of a three (two) dimensional figure 
by a factor of x will result in a new volume (area) that is also scaled up by a factor 
of x, rather than x3 (x2) (De Bock et al., 2002; Modestou, Elia, & Gagatsis, 2008;  
van Dooren, De Bock, Hessels, Janssens, & Verschaffel, 2005).

A common recommendation for overcoming misconceptions like the illusion 
of linearity is to visualise the scenario using diagrams (Polya, 1957; Schoenfeld, 
1994). In this chapter, we consider how students used diagrams and other semiotic 
resources (van Leeuwen, 2005) within a modelling activity about the scaling up of 
volume of fish. The mere presence of diagrams alone did not guarantee success in 
identifying the correct cubic relationship. Instead, our case studies suggest that the 
effectiveness of diagrams and other semiotic resources depends on whether they 
enable students to visualise, test and examine their existing incorrect mathematical 
approaches as they progress around the modelling cycle.

Factors in overcoming the illusion of linearity  
in area and volume 

Students’ difficulties with reasoning about scale and proportion in linear, area and 
volume problems are well documented (Lamon, 2007) and resistant to change, 
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continuing even into adulthood (De Bock et al., 2002). Researchers have investigated 
the effect of three factors in overcoming the illusion of linearity, with mixed results: 
the use of diagrams, problem contexts and metacognitive prompts (De Bock et al., 
2002; De Bock, Verschaffel, Janssens, van Dooren, & Claes, 2003; Modestou et al., 
2008).

Diagrams are often credited with helping students succeed in mathematical 
problem solving by enabling students to discover and examine underlying 
relationships (Pantziara, Gagatsis, & Elia, 2009) and generate new ideas (Diezmann, 
2005; Nunokawa, 2006), while reducing students’ cognitive load (Gibson, 1998; 
Koedinger, 1994). De Bock, van Dooren, Janssens, and Verschaffel (2002) report 
a study in which they found only slight advantages in presenting students with 
diagrams in problems dealing with scaling up and down length, area and volume. 
Secondary school students received questions like the following: 

Farmer Carl needs approximately 8 hours to manure a square piece of land 
with a side of 200 m. How many hours would he need to manure a square piece 
of land with a side of 600 m? (p. 69)

Half of the students were allocated to a diagram treatment group, in which they also 
received scale drawings on grid paper for each question; the diagram accompanying 
the above question showed two squares representing the two pieces of land. Students 
in the diagram treatment performed better on questions that required non-linear 
reasoning (area and volume questions), but this difference was very small: success in 
17% of the non-linear scaling up problems by the drawing group, compared to 13% 
correctness in the non-drawing group. In addition, this slightly higher performance 
on non-linear questions was mitigated by a similarly small but significantly lower 
performance on questions that required linear proportional reasoning by students who 
had been given diagrams, suggesting that the diagrams they presented to the students 
did not help students determine when non-linear reasoning was inappropriate.

In a follow up study, De Bock et al. (2003) switched from giving students ready-
made diagrams to encouraging students to construct their own for a similar set of 
problems. Students in the diagram treatment group were given partial diagrams to 
complete for each problem. For example, students were given a diagram of square 
Q, and were asked to draw a scale diagram of square R for the following question:

The side of square Q is twelve times as large as the side of square R. If the area 
of square Q is 1440cm2, what’s the area of square R? (p. 448)

Surprisingly, the students in the drawing condition performed significantly worse on 
the non-linear problems than those without the drawings, which De Bock et al. (2003) 
attributed to the very process of creating a scale drawing. They reasoned that when 
students drew a reduced copy of a geometrical figure, they would have measured a 
linear element such as its height or length, and divided that element by a linear scale 
factor, effectively activating a linear thought process. This could have enhanced 
the students’ inclination toward a linear model, rather than the quadratic or cubic 
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model that was required. De Bock et al.’s two studies highlight that diagrams are not 
in themselves effective or ineffective in helping students overcome the illusion of 
linearity as their success depends on the ability of the person viewing the diagrams 
to recognise the relevant structure portrayed. The diagrams in De Bock et al.’s two 
studies (2002, 2003) may have been ineffective in helping students overcome the 
illusion of linearity because the students did not know what mathematical structure 
to look for in the diagrams they were given or constructed. 

Modelling tasks which use real world contexts have been promoted as potentially 
useful means for developing linear proportional reasoning (e.g., Lamon, 2007) and 
non-linear reasoning (Treffers, 1987). However, De Bock et al. (2003) caution that 
merely setting a routine problem in a real world context doesn’t necessarily constitute 
a modelling task. De Bock et al. (2003) gave one group of students scaling up/down 
problems set in the context of Gulliver’s Travels to the Isle of Lilliputians, a world 
where all lengths are 12 times as small as those in Gulliver’s world, and another 
group solved mathematically equivalent problems presented as standard textbook 
formulations with no real world context. Students in the standard textbook group 
received questions like the one described above about the area of squares Q and R, 
whereas students in the Gulliver’s Travels group received questions like the following:

Gulliver’s handkerchief has an area of 1296 cm2. What’s the area of a similar 
Lilliputian handkerchief? (p. 448)

On finding that students in the Gulliver’s Travels group performed worse on the 
test than those in the standard textbook group, DeBock et al. (2003) reason that 
the Gulliver’s Travels problems were simply standard textbook questions that had 
been “dressed up” in a real world context (Blum & Niss, 1991). They suggest that 
greater success may be possible with modelling tasks that require more authentic 
performance-based assessment, such as filling a Lilliputian’s wine glass or making 
a Lilliputian handkerchief. 

Metacognitive prompts and scaffolds are a third means for helping students 
overcome the illusion of linearity as they can encourage students to become more 
conscious of their misapplication of linear reasoning. Students are often unconscious 
that they are misapplying linear models whereas others knowingly apply them without 
realising they are not appropriate (Esteley, Villarreal, & Alagia, 2004). De Bock  
et al. (2002) gave one group of students a metacognitive prompt intended to provoke 
cognitive conflict to problems such as, “A wooden cube with an edge of 2 cm weighs 
6 grams. How heavy is a wooden cube with an edge of 4 cm?” (De Bock et al., 2002, 
p. 71). The prompt offered two possible solutions for the students to choose between, 
one of which misapplied a linear model, and the other used appropriate nonlinear 
reasoning. For example, the two solution options accompanying the above question 
were (a) since the edge doubled, the weight also doubled, and (b) a cube with an 
edge of 4 cm will contain eight cubes with edges of 2 cm so the weight needs to be 
multiplied by eight. The study yielded significant, positive results but did not enable 
students to overcome their misconceptions completely as some students in the 
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metacognitive treatment group continued to misapply the linear model afterwards. 
Moreover, the study found that students who originally applied the linear model 
“everywhere” started to do the same with the non-linear model, generalising it to 
inappropriate situations and effectively replacing one model with another. 

Modestou et al. (2008) used a different metacognitive prompt to encourage 
students to question their spontaneous application of the linear model. Students were 
given sets of three questions comprising one that required nonlinear reasoning, one 
that required linear reasoning, and an unusual question that could have more than 
one correct answer. After solving all three questions, the students were asked to 
identify which (one) of the three questions yielded a given numerical answer. In each 
case, the question requiring linear reasoning was the correct match, but if students 
had misapplied linear reasoning to the nonlinear question, they would have obtained 
the same numerical answer (though incorrect). Almost half of the students who had 
initially misapplied a linear model to the nonlinear question ended up selecting the 
correct problem for the given answer, which suggests that the metacognitive prompt 
forced them to reconsider and correct their initial misapplication. However, a quarter 
of the students who misapplied a linear model selected the nonlinear question (which 
is incorrect), which suggests that the metacognitive prompt also led to mistakenly 
rejecting a correct application of the linear model. 

This section has reviewed three factors (diagrams, metacognitive prompts and 
problem contexts) that may help students overcome the illusion of linearity. In the 
next section, we consider how all three factors can be incorporated into a theoretical 
framework based on modelling cycles.

Theoretical framework: Modelling cycles and semiotic Bundles

The theoretical framework used in this chapter draws on two constructs: modelling 
cycles (e.g., Lesh & Doerr, 2003; Niss, Blum, & Galbraith, 2007; Stillman, Galbraith, 
Brown, & Edwards, 2007) and semiotic bundles (Arzarello, Paola, Robutti, & 
Sabena, 2009). Mathematical modelling involves the complex coordination of 
processes that can be depicted around the modelling cycle as shown in Figure 2. The 

Figure 2. The modelling cycle
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modelling cycle begins in the real world, where one determines which features of 
the real context are mathematically relevant to the problem, and incorporates these 
relevant features from the real world into a mathematical model. This model is then 
used to find a mathematical result, which is in turn interpreted back into the real 
world context. The fitness of the model is then assessed, and if necessary, the cycle is 
entered into again in pursuit of a model that incorporates more relevant information 
from the real world. Such cycling continues until the modeller is satisfied with the 
mathematical model that has been created.

The creation of the mathematical model can be regarded as the development of a 
semiotic bundle (Arzarello et al., 2009), which consists of signs that mathematically 
express relevant real world information from the problem situation. The notion of a 
semiotic bundle is predicated on Peirce’s notion of a sign, which is something that 
“stands to somebody for something in some respect or capacity” (Peirce, 1931/1958, 
vol. 2, paragraph 228), and is defined as follows: 

A semiotic bundle is a system of signs—with Peirce’s comprehensive notion 
of sign—that is produced by one or more interacting subjects and that evolves 
in time. Typically, a semiotic bundle is made of the signs that are produced by 
a student or by a group of students while solving a problem and/or discussing 
a mathematical question. (Arzarello et al., 2009, p. 100)

Mathematical semiotic activity involving such signs are not necessarily confined 
within strict boundaries of separate modalities, but are spread across speech, 
inscriptions, gestures, glances and so forth (Radford, 2009; Arzarello et al., 2009). 
Consequently, a semiotic bundle includes not only instances of signs and sign 
systems, but also the coordination of and interrelationships between sign systems 
across multiple modalities. 

Arzarello et al. (2009) often uses the term “semiotic resource” has in place of the 
terms “sign”, “sign system”, or “representation”. van Leeuwen (2005) clarifies the 
idea of a semiotic resource as emphasising the semiotic potential of a sign or sign 
system: 

In social semiotics resources are signifiers, observable actions and objects that 
have been drawn into the domain of social communication and that have a 
theoretical semiotic potential constituted by all their past uses and all their 
potential uses and an actual semiotic potential constituted by those past uses 
that are known to and considered relevant by the users of the resource, and by 
such potential uses as might be uncovered by the users on the basis of their 
specific needs and interests. (p. 4)

We also adopt the term “semiotic resource” in this chapter to emphasise the semiotic 
potential of the diagrams and physical manipulatives students employed during 
problem solving to visualise mathematical structures.

The semiotic bundle approach enables us to consider the diagrams and physical 
manipulatives students use not as independent semiotic resources, but in relation 
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to other inscriptions and semiotic resources that they also develop. We use both a 
synchronic analysis (which considers the relationships between semiotic resources 
activated at the same time) and a diachronic analysis (which considers the evolution 
of semiotic resources activated over time) (Arzarello et al., 2009) to study how 
students’ diagrams and physical manipulatives evolve in conjunction with other 
semiotic resources. The evolution of a semiotic bundle over time is similar to Duval’s 
(2006) notion of conversion, where a representational transformation involves a 
change in register (e.g., from graphical to algebraic), but not in the mathematical 
object. A number of researchers (e.g., Kaput, 1989; Thomas, 2008) have highlighted 
the ability to translate fluently between and sometimes within different semiotic 
resources as an important component of mathematical meaning making.

This theoretical framework of modelling cycles and semiotic bundles encompasses 
all three factors (diagrams, problem contexts and metacognitive prompts) that were 
previously identified in the literature as potentially productive ways of overcoming 
the illusion of linearity. In the first step in the modelling cycle (Figure 2), the 
real world context encourages students to create a mathematical model (via some 
semiotic bundle) that has a meaningful real world purpose. The diagrams (and other 
semiotic resources) that may be created to describe the mathematical model in step 2 
may encourage students to test their model in step 3. And this testing and subsequent 
comparison of the output from the model in light of the real world context may 
lead students to re-examine their mathematical reasoning in steps 3 and 4. Thus, 
modelling activities give students the opportunity to experience the potential benefits 
of all three factors by going through the modelling cycle in a more holistic way than 
in the “dressed up” textbook problems (Blum & Niss, 1991) used in the studies by 
De Bock et al. (2002, 2003) and Modestou et al. (2010).

Description of the modelling activity

The Snapper problem (Yoon, Radonich, & Sullivan, in press) is a modelling activity 
concerned with the fair division of snapper fish of different sizes. It begins with 
a warmup involving the Squidley question (see Figure 1) to engage students in 
using physical images related to scale, proportions and volume. After the warmup, 
students read the Snapper problem statement (see Figure 3) and work on the problem 
in groups of three for about 45 minutes. 

The Snapper problem was designed to encourage students to overcome the illusion 
of linearity and to develop non-linear (in this case, cubic) models of reasoning about 
the fair distribution of snapper fish. Its design was influenced by six principles for 
designing Model-Eliciting Activities (Lesh, Hoover, Hole, Kelly, & Post, 2000), 
which are a type of problem noted for encouraging students to go beyond their 
initial, primitive ways of thinking, to develop more sophisticated mathematical 
interpretations of real world situations (Lesh & Doerr, 2003). The Snapper problem 
satisfies the reality principle as it is set within the realistic context of dividing up a 
catch of fish. It satisfies the model construction and model generalisation principles 
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by requiring students to create a generalisable mathematical model (in this case, an 
argument) that can be used to solve the problem, rather than merely a single numeric 
solution, such as “8 small fish = 1 large fish”. By giving students the physical 
manipulatives of multilink cubes to test out their ideas, the problem also satisfies 
the self-assessment principle. It also satisfies the model documentation principle as 
students are required to document their mathematical model in the form of a letter 
to Joe. Finally, the problem elegantly maps the context of a fishing trip to the need 
for a mathematical model about cubic reasoning with volume, so that it satisfies the 
simple prototype principle.

Classroom implementation and data collection

We implemented the Snapper problem in four classes at a large New Zealand tertiary 
institution. The students in all four classes were taking an elementary mathematics 
course for foundation studies—that is, they were studying towards tertiary degree 
entrance qualification as they had not achieved the tertiary level entry requirements 

Figure 3. The problem statement for the fishing trip MEA
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from secondary school. The students worked in groups of three on the Snapper 
problem during a 90-minute class: about 60 minutes of the time involved the students 
working on the problem in their groups, and the remaining 30 minutes involved 
students presenting their group solutions to the class. A researcher and the class 
lecturer were present in the classroom for each implementation. They interacted with 
the students to facilitate group discussion and encourage them to use physical blocks 
and drawings to test out their ideas but they refrained from telling that or explaining 
why one large fish was worth 8 small fish. 

During the in-class presentations, at least one group of students in each of the 
four classes gave correct reasoning that showed that one fish of length 54cm was 
worth eight smaller fish of length 27cm with proportional dimensions. Students and 
the lecturer were given the opportunity to ask presenting groups questions about 
their solutions: some question and answer interchanges occurred in each class, but 
there was no in-depth whole class discussion. After the session, the students then 
completed written individual solutions to the Snapper problem in their own time. 
Forty-six students handed in their individual solutions one week after the 90-minute 
class. We collected the written work from the 19 groups in the four classes, the 46 
individual written solutions, and researcher field notes of the student presentations. 
In this chapter, we present three case studies of three groups (comprising three 
students each) from one of the classroom implementations: Case study 1 involves 
Liv, Liz and Pania’s group; Case study 2 involves Dee, Jan and Lea’s group; Case 
study 3 involves Del, Lyn and Mac’s group. We use both the data from their in-class 
group work and their individual letters to analyse their modelling cycles. 

Data analysis

Field notes and data from the students’ written group work were used to construct 
a description of the groups’ progress during the classroom implementation. We 
analysed the group and individual solutions to assess the effectiveness of the 
mathematical argument, taking into consideration the written language, diagrams, 
tables, numerical examples, and algebraic expressions used by students. We also 

Figure 4a & 4b. Two drawings showing a linear and quadratic model drawn by  
Liv, Liz and Pania during in-class group work
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sorted the individual and group letters into three categories. The first category 
included those that demonstrate no understanding of the cubic relationship between 
snapper volume and linear scale factor. The solutions in this category do not use a 
cubic model to describe the relationship between the volume of the large fish and the 
small fish – instead they use either linear reasoning, saying the large fish is worth 
2 small fish, or they consider some aspect of area instead of volume. The second 
category of letters demonstrate a partial understanding of the cubic relationship 
by correctly reporting that one large fish is worth eight small fish, but have weak 
or incorrect arguments to support or explain why this was so. The third category 
of letters demonstrate conceptual understanding of the cubic relationship between 
snapper volume and linear scale factor by articulating a convincing argument based 
on correct cubic reasoning for why one large fish is worth eight small fish. 

For each diagram, we analysed how the students had incorporated the diagram 
into their written argument, the accuracy of the dimension proportions represented 
in the diagrams, and the mathematical understandings expressed. 

Results

Three case studies show how students used diagrams and physical manipulatives 
to visualise fish while working on the Snapper modelling activity. For each case 
study, we describe how the semiotic resources they created facilitated (or not) their 
progression around the modelling cycle during classroom groupwork and subsequent 
individual written work. 

Case Study 1: Diagrams and Multilink Cubes Generate Multiple Modelling Cycles

During the classroom implementation, Liv, Liz and Pania initially argued that one 
large fish of length 54cm was indeed worth two small fish of length 27cm, and drew 
one long fish that was 54cm in length, with another shorter fish only 27cm in length 
inside it (see Figure 4a). They then realised that their diagram showed two fish that 
were not proportional in shape: the larger looked liked a stretched out version of the 
smaller, whose width was the same. This led them to revise their argument to saying 
that the larger fish was worth four small fish, and they drew a diagram of four small 
fish fitting into the area of the large fish (Figure 4b). They began writing up their 
solution, thinking they had found the correct solution. 

They informed the researcher that they were finished, at which the researcher 
asked them to articulate their argument to each other using the multilink blocks. 
Liv Liz and Pania initially used the configuration of blocks shown in Figure 5a to 
show, that one large fish was worth four small fish, in accordance with the diagram 
they had drawn in Figure 4a. However, Pania soon noticed that the two “fish” they 
had constructed were not proportional in shape in the 3-dimensional representation. 
Pania realised in an Aha! moment (Liljedahl, 2005) that there are “two sides to each 
fish”, which she explained as flesh on both sides of the bones, and that they had 
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neglected to consider the thickness of the fish. This led to a new configuration of 
blocks shown in Figure 5b, which demonstrated that when one considers the third 
dimension of thickness, the volume of one large fish is worth eight small fish. In Liv, 
Liz and Pania’s final letter, they justified their final recommendation of eight fish 
with the statement, “We used the cubes to help us work this out”.

The diagrams and physical multilink cubes helped Liv, Liz and Pania to go 
through the modelling cycle more than three times, as each successive visualisation 
led to testing then revising their mathematical model or argument (see Figure 6). 
We have constructed diagrams showing the extent to which students in each case 
study progressed around the modelling cycle in Figures 6, 12 and 14. In each case, 
the students begin in the real world context of the fishing trip, and mathematise the 
problem by creating a model: the arrow from “real world” to “model world” indicates 
this process. As shown in Figure 2, progression around the modelling cycle ideally 
involves all four processes between and within the real and model worlds, often 
with multiple iterations. However, the students in our case studies did not always 
complete full cycles, and often only carried out a subset of these four processes. 
The labels on the arrows in each of the modelling cycle diagrams are numbered to 
indicate the chronological order of the processes.

The individual written solutions that were handed in one week later revealed that 
the individual students had different levels of understanding of their group’s final 
argument. Pania’s individual solution incorporated diagrams of the multilink cubes 
to show the three dimensions of the fish, which she then used to devise a numerical 
example to illustrate how to apply her mathematical argument (see Figure 7). 

Liz also articulated in her individual solution that they had to take into consideration 
the thickness of the fish by doubling the amount of flesh on each side. She drew the 
following diagrams to illustrate this point (see Figure 8).

Figure 5. Two configurations of multilink cubes for representing the  
volume of fish used by Liv, Liz and Pania during the in-class group work
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In contrast to Pania and Liz, Liv’s individual solution reveals a limited 
understanding of the reasoning for why one large fish was worth 8 smaller fish. She 
drew scale diagrams of two cube configurations that were meant to represent the two 
fish (see Figure 9a). 

Liv’s diagram of the “cubes” in fact only shows a 2-dimensional representation 
of squares, rather than cubes. These diagrams have the correct number of squares 
appropriate for the argument, but do not portray the correct proportions in terms 

Figure 6. The modelling cycles entered into by Pania, Liv and Liz during group work
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Figure 7. Pania’s diagrams in her individual final letter

Figure 8. Liz’ diagrams in her final individual letter

of shape of the collections of squares, as the diagram of the larger “fish” has 
doubled in width, but quadrupled in length, while the dimension of depth (which 
isn’t shown) presumably stays the same. Figure 9b shows a redrawn version of her 
diagram to identify the four parts she drew using different colours more clearly. 
Liv’s diagram suggests that she remembered the group’s agreement that 8 was the 
mathematical result, but did not understand or remember the group’s argument as 
to why it was so. 
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Case Study 2: Algebraic Equation and Diagrams Lead to Different  
Modelling Cycles

During the classroom session, Dee, Jan and Lea created a mathematical model (see 
Figure 10) that used a score combining the fish’s length, width and height using 
additive relationships: Score = Length – (Height + Width). When they applied this 
score to two hypothetical fish, one whose three dimensions are double that of the 
other, they found that their model gave scores of 39 and 19.5 respectively, indicating 
that the large fish is worth twice that of the small fish.

Figure 10. Excerpt from Dee, Jan and Lea’s group letter written  
during the classroom implementation

Figure 9. Diagrams (and redrawn version) in Liv’s individual final letter
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During the group presentations at the end of the classroom presentation, Dee, Jan 
and Lea were exposed to three other groups’ solutions that argued that one large fish 
is worth eight small fish in terms of volume—a result that was at odds with their 
solution. Dee’s individual solution that was handed in one week later presented the 
same mathematical score as the group’s, although this time, she did not demonstrate 
the score on hypothetical fish dimensions, nor did she communicate how many small 
fish the large fish was worth under this scoring system.

In contrast, Jan’s individual solution was markedly different to the group’s 
solution. She wrote that reviewing other solutions led her to believe that one large 
fish is worth eight small fish, and drew the diagram in Figure 11 to explain why.  

Figure 11. Diagram from Jan’s individual written solution

Figure 12. Dee and Jan’s modelling cycles during group work and  
in Dee’s individual solution
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Note that this type of diagram, which combined the shape of the fish with the multifix 
cubes was not drawn by any of the other students in Jan’s class, either during the in-
class groupwork nor in individual written letters that were handed in one week later. 
Lea didn’t hand in an individual solution.

Dee and Jan’s individual solutions indicate different experiences in the extent to 
which they engage in the modelling cycle (see Figure 12). 

During the classroom implementation, Dee and Jan only engaged in half of a 
modelling cycle, as they developed the linear score, then ran it to find a result. They 
were exposed to different arguments that yielded different results to their model, but 
only Dee used this information to revise her model and test and interpret it again.

Case study 3: Algebraic Equation and Diagram with a Quarter Modelling Cycle

During the classroom implementation, Del, Lyn and Mac’s group created a 
mathematical argument that relied on the product of the fish girth and length:  
Score = Girth × Length (see Figure 13). They argue that multiplying the two measures 
(girth and length) of each fish, then dividing the product of the larger by that of the 
smaller will reveal how many small fish the big fish is worth. 

Figure 13. An excerpt from Del, Lyn and Mac’s group letter
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This model is not useful as it compares the surface areas of the two fish rather 
than the volumes of the two fish, and thereby yields the result that a fish whose 
dimensions are double that of a smaller fish is worth only four smaller fish. Although 
Del, Lyn and Mac acknowledged that this method compares surface areas, they did 
not test their method on any fish, and thus, did not realise that their method claims 
that one large fish is worth four small fish, rather than the eight small fish argued by 
most of their classmates. 

Thus, even when they were exposed to the correct answer of eight, they did not 
have a point of reference to compare this amount with their own. Del, Lyn and Mac 
all handed in individual written letters with the same argument about Girth × Height, 
and none of the letters ran the model to find out how many small fish the large fish 
was worth. The group’s modelling process can be described as undergoing only one-
quarter of a modelling cycle (see Figure 14), in that they developed a mathematical 
model, which they visualised through diagrams and an equation, but they never went 
beyond this initial step. 

Figure 14. The quarter of a modelling cycle entered into by Del, Lyn and  
Mac during group work and subsequent individual written work

Discussion

Liv, Liz and Pania’s case study supports findings in the literature that students tend 
to misapply a linear model in scale problems when nonlinear reasoning is more 
appropriate (e.g., De Bock et al., 2002; De Bock et al., 2003; Modestou et al., 
2008). Indeed, they began  by assuming that one large fish was worth only two 
smaller fish as its length was doubled. However, it also offers a different slant into  
De Bock et al.’s (2002, 2003) finding that students’ use of diagrams has little effect 
in overcoming the illusion of linearity: Liv, Liz and Pania’s use of diagrams helped 
them test and reject their linear model, by enabling them to visualise the second 
dimension of width, and thereby adopt a quadratic model. Their subsequent use of 
the multilink cubes enabled them to test and reject a quadratic model and develop an 
argument for adopting cubic reasoning.

However, Del, Lyn and Mac’s groupwork supports De Bock et al.’s (2002, 
2003) finding: Del, Lyn and Mac used diagrams to construct their inappropriate 
model of Girth × Length, but they never applied this to a specific instance, so 
never experienced the cognitive perturbation from seeing a different result to those 
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presented by their peers (unlike Jan in the second case study) that could have led to 
them revising their mathematical model. This case study emphasises that the use of 
diagrams to construct a model doesn’t guarantee the testing of that model. In fact, an 
appealing diagram (especially when accompanied with an algebraic equation) may 
lull one into a false sense of security that one has something that “looks right”, even 
if it is not. 

The second case study of Jan and Dee adds a further insight—that experiencing 
cognitive perturbation from comparing one’s results to different results from other 
models doesn’t guarantee one will revise one’s model. Both Jan and Dee experienced 
cognitive perturbation at the end of the classroom presentations, as the result from 
their model stated that one large fish was worth two small fish, which was at odds 
with most of the other group presentations that stated it was worth eight small fish. 
Only Jan responded to this dissonance by creating a new model; Dee’s individual 
approach was to ignore the dissonance by removing the result (1 big fish = 2 small 
fish) from her letter, and simply handing in the inappropriate, untested model.

The 3-dimensional nature of the multifix cubes seemed to be most effective in 
helping students articulate an argument based on cubic reasoning. The multifix 
cubes helped Liv, Liz and Pania’s group appreciate the third dimension of depth 
(or thickness) of the fish, which they had previously ignored in their drawings. In 
contrast, the 2-dimensional diagrams were often limiting in this regard, as they lend 
themselves to portraying two dimensions of length and width, thereby activating 
an area, rather than volume thought process. Jan’s revised model described in her 
individual letter used a diagram that superimposed the 2-dimensional shape of the 
area of a fish onto a 3-dimensional representation of multilink cubes to reason about 
why eight small fish was worth one big fish. This diagram suggests that the multilink 
cubes used by other groups in their class presentations were particularly effective 
semiotic resources for helping Jan see that one large fish was not worth two small 
fish, but eight.

However, just like diagrams, the physical manipulatives of multifix cubes do not 
automatically guarantee that students will be able to perceive the 3-dimensional 
structure portrayed. Indeed, Liv’s individual letter suggests that she remembered the 
presence of multifix cubes in her group’s argument as to why one large fish is worth 
eight small fish, but she couldn’t reconstruct the mathematical argument on her own. 
In distorting the diagram of the “blocks” to fit her assertion that there are 32 blocks 
in the large fish, compared to 4 blocks in the small fish, Liv reveals that she doesn’t 
truly appreciate the impact of the the fish’s third dimension (depth or thickness) on 
its volume. Thus, the effectiveness of physical manipulatives, like diagrams, partly 
lies in whether students can use them to attend to the mathematical structure that is 
appropriate for the problem.

Together, this trio of case studies suggests the theoretical semiotic potential of 
diagrams and physical manipulatives in overcoming the illusion of linearity lies in 
whether or not they enable students to visualise, test and examine the mathematical 
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structures they describe in their mathematical models. In modelling terms, these 
semiotic resources are potentially useful if they enable one to progress through of 
the steps in a modelling cycle, beginning with formulating a mathematical model 
using the semiotic resources, running the model and examining the results, then 
comparing the results to information in the real world and if necessary, developing 
another model. Lesh et al. (2000) advocate designing activities that have some form 
of “self assessment”, whereby students can determine for themselves whether their 
solution is on the right track, without having to appeal to the teacher or textbook for 
confirmation. Our case studies suggest that one way of fulfilling the self assessment 
principle may be to encourage students to construct and manipulate semiotic 
resources that have the semiotic potential for enabling students to visualise, test and 
examine their mathematical approaches. 
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