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ABSTRACT

Charles Sanders Peirce (1839–1914) made a distinction between formal and 
informal reasoning, and argued that the formal reasoning processes of induction and 
deduction were not sufficient to explain those instances when individuals entertain 
new ideas to explain surprising facts. Peirce asserted the existence of another kind 
of reasoning, abduction, through which the individual generates a novel hypothesis 
to account for or explain surprising facts under consideration. The hypothesis 
represents an initial explanation that is both plausible, in the sense that it is the best 
explanation under the circumstances, and also provisional in the sense that it is open 
to further exploration. While research in mathematics learning has acknowledged 
the importance of hypothetical reasoning, few studies have identified the prominent 
role that Peirces’s theory of abductive reasoning may play in problem solving, 
and  fewer still have acknowledged how we as educators might help nurture and 
support abductions that our students make. This chapter addresses two key questions. 
(1) Why is it important that our students be able to make abductions when they solve 
mathematics problems? (2) How should educators help students develop reasoning 
habits that include abductive reasoning? 

INTRODUCTION

Accounts of mathematics learning have long acknowledged the need for learners 
to develop autonomous cognitive activity, with particular emphasis on the learner’s 
ability to initiate and sustain productive patterns of reasoning in mathematical 
problem solving situations (Burton, 1984; Cobb, 1988; NCTM, 2000; Schoenfeld, 
1985). Nevertheless, explanations of problem solving have often focused on the 
application of objective strategies and processes, providing little explanation of the 
subjective actions solvers often generate prior to introducing formal algorithmic 
procedures into their actions. For example, cognitive models of problem solving 
(Reed, 1999), while useful in providing microscopic analyses of cognitive processes, 
have been challenged because “they fail to recognize the need to place cognitive 
functioning in a broader perspective that takes into account aspects such as affect, 
motivation, attitudes, beliefs and intuitions, as well as social and cultural factors” 
(Verschaffel & Greer, 2003, p. 62). In particular, they seldom address aspects of the 
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solver’s idiosyncratic reasoning activity such as the solver’s selfgeneration of novel 
hypotheses, intuitions, and conjectures, even though these processes have been 
documented as crucial tools through which mathematicians ply their craft and thus 
are goals in the teaching of mathematics (Anderson, 1995; Burton, 1984; Carlson &  
Bloom, 2005; Mason, 1995; National Council of Teachers of Mathematics, 2000; 
Schoenfeld, 1985). Moreover, several researchers have documented that subjective 
actions play an important role in mathematics learning and have called for 
additional studies to examine the novel actions of learners (Cai, Moyer, & Laughlin, 
1998; Cifarelli, 1998; Mason, 1995; Reid, 2003; Rivera, 2008; Sáenz-Ludlow & 
Walgamuth, 1998).

The chapter begins by developing a rationale for how Peirce’s theory can be 
considered to examine problem solving processes. The second part of the chapter 
summarizes the mathematics education research that has been conducted on 
abduction. The third part examines the episodes of a college student solving a 
mathematics problem that involved a visual array, documenting and explaining 
the important role that abduction played in her solution. The fourth part discusses 
instructional implications for mathematics education.

ABDUCTIVE REASONING IN MATHEMATICS EDUCATION

Charles Sanders Peirce (1839–1914) made a distinction between formal and informal 
reasoning, and argued that the formal reasoning processes of induction and deduction 
were not sufficient to explain those instances when individuals entertain new ideas to 
explain surprising facts. Peirce asserted the existence of another kind of reasoning, 
abduction, through which the individual generates a novel hypothesis to account 
for surprising facts under consideration (Fann, 1970). The hypothesis represents an 
initial explanation that is both plausible, in the sense that it is the best explanation 
under the circumstances, and also provisional in the sense that it is open to further 
exploration. In contrast, Peirce viewed deduction as a process that explicates and 
clarifies hypotheses, deducing from them the necessary consequences; and induction 
as a process through which hypotheses are explored and tested for their explanatory 
merit and usefulness (CP 7.202–207; CP 8.209).1 According to Peirce, abduction is 
the only logical operation which introduces new ideas (CP 5.171).

Peirce’s theory of hypothesisbased reasoning is helpful to explain how learners 
develop plausible explanations to address ‘surprising situations’ they find 
themselves faced with. This chapter thus takes to heart Cobb’s (1988) assertion that 
solvers actively construct new knowledge in problem solving situations when “their 
current knowledge results in obstacles, contradictions, or surprises” (Cobb, 1988,  
p. 92). Hence, genuine problem solving situations can be viewed as opportunities for 
problem solvers to reason abductively as they generate problem solutions.

The view that abduction may play an important role in mathematics learning 
and problem solving is not new. Abduction has been mentioned within various 
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theoretical perspectives. For example, von Glasersfeld (1998) described abductions 
as accommodations that help stimulate and structure the learner’s novel actions. 
According to von Glasersfeld, “abduction appears in accommodations of action 
schemes on the sensorimotor level as well as in subsequent levels of concrete and 
formal mental operations”, calling them “the mainspring of creativity” (p. 9). Hence, 
a focus on the learner’s abductions in problem solving situations may help provide 
an explanation for the formation and modification of the learner’s schemes.

The idea that the solution of a problem may involve hypothesisbased reasoning 
of the type theorized by Peirce is useful if one adopts a constructivist broadbased 
view of problem solving in which solvers continually buildup their mathematical 
knowledge. For example, while solving a problem, the solver might experience 
an unanticipated difficulty that requires further reformulation of the original 
problem. Silver referred to this process as withinsolution problem posing (Silver, 
1994) where the essence of the problem, as viewed through the eyes of the 
solver, has undergone a change and must be reformulated in order for the solver 
to proceed. The solver may reformulate the original problem as a collection of 
several ‘smaller problems’ that can be addressed and solved individually, and then 
organize his/her actions accordingly ‘to break the problem up’. In this example, 
the solver’s reformulation derives from their changing perceptions of what is 
problematic and awareness of the need to reorganize their goals and purposes for 
action. Hence, the reformulation indicates a plausible yet provisional action on 
the part of the solver to solve the original problem. If the solver’s reformulation 
is hypothesized-based and has as its goal the explanation of some aspect of 
the problematic that requires further investigation, then the reformulation may 
involve abductive reasoning. 

The work of Polya (1945) is consistent with the view that problem solvers may 
engage in abductive or hypothesis-based reasoning while in the course of solving 
a problem. Specifically, Polya identified heuristic reasoning as “reasoning not 
regarded as final and strict but as provisional and plausible only, whose purpose 
is to discover the solution of the present problem” (Polya, 1945, p. 113). Further, 
Polya cited the usefulness of varying the problem when solvers fail to achieve 
progress towards their goals because the solvers’ consideration of new questions 
serves to “unfold untried possibilities of contact with our previous knowledge” 
(Polya, 1945, p. 210). Hence, solvers who engage in hypothesis-based reasoning 
are: (1) cautious in their reflections about appropriate courses of action to carry out;  
(2) always looking to monitor the usefulness of the activity they plan to carry out; 
and, (3) willing to adopt a new perspective of the problem situation when their 
progress is impeded. 

A good example of students demonstrating abductive reasoning in solving a 
problem is found in Reid (2003). Reid illustrated how two students, Jason and Sofia, 
solved the Handshake Problem (determine the number of handshakes exchanged 
from among n individuals) by reformulating the problem to examine a particular 
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case. From this particular case, Jason then hypothesized a rule to solve the general 
case. Specifically, the students solved the problem for the case of six people, first 
using a diagram to count the number of handshakes (15) and then finding that they 
could get the solution by summing the numbers from 1 through 5 (Figure 1). 

Figure 1. The students’ diagrams (adapted from Reid, 2003)

Then Jason and Sofia tried to solve the problem for N=26 people. Jason got the 
correct answer of 325 using his calculator to compute the sum 1 + 2 + …+ 24 + 
25 = 325. Sofia claimed to “know an easier way”, noticing that the sum could be 
computed more efficiently by first grouping numbers that sum to 26, and made a 
diagram to sum the numbers (Figure 2). 

Figure 2: Sofia’s grouping strategy

By grouping the numbers in this way, Sofia is demonstrating the Gauss method 
for summing n consecutive integers. Sofia reasoned that there were 13 such sums, an 
assertion that is incorrect. There are actually only 12 such sums, totalling 312, and a 
middle number of 13, so that the total sum is 325. 

Sofia:	 So it is. . (Reid, 2003, p. 6)

Sofia’s calculation, 
 
was incorrect. However, Jason focused on her 

result of 338, comparing it to what he knew to be the correct answer, 325.

Jason:	� That can’t be right. But you were close.

Jason:	� Maybe it’s the number times half the number, hmm subtract half the 
number?

Sofia:	 You lost me.

Jason:	 Because that would work, 338 subtract 13, which is half of 26, is right. 

Jason’s use of the word “maybe” indicates the beginning of a hypothesis about 
a more general rule, (“Maybe it’s the number times half the number, hmm subtract 
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half the number?”). His use of the word “because” suggest the beginning of an 
explanation of why Sofia’s calculation was close (“Because that would work, 338 
subtract 13, which is half of 26, is right.”) 

According to Reid, Jason used abductive reasoning to arrive at the general rule

			     
� (1)

[The number of handshakes is] the number [of people] times half the number, 
subtract half the number. (Reid, 2003, p. 6)

From the specific case:

Because that would work, [the number of handshakes for 26 people is] 338 
subtract 13, which is half of 26, is right. (Reid, 2003, p. 6)

In other words, Jason hypothesized a general rule that helped explain how Sofia’s 
result was “close”. He verified the rule in the specific case (by revising Sofia’s 
calculation accordingly) and then tested the rule for other cases.

The preceding example, while showing that abduction may play an important role 
in problem solving situations, also indicates the intricacies of assessing abductions 
as examples that fit with Peirce’s definition, a point that has been echoed by Mason 
(1995). According to Reid, the difficulty lies in the fact that Peirce focused on 
different aspects of abduction at different times in his writings. Hence, trying to 
identify precisely the particular components to Peirce’s theory can be challenging. 
For the example provided, “The abduction is used (as the later Peirce would suggest) 
to explore (in finding a formula) and to explain (why Sofia’s method gave an answer 
that was close)” (Reid, 2003, p. 6).

The following section will elaborate on these challenges and also summarizes 
the various ways that abduction has been interpreted by researchers in mathematics 
education. This discussion will help provide further context and rationale for 
studying the role of abduction in mathematical problem solving. 

STUDIES OF ABDUCTION IN MATHEMATICS  
EDUCATION RESEARCH

Reid (2003) examined the writings of Peirce and noted how he emphasized different 
aspects of abduction at different times. Reid found that Peirce focused on the logical 
form of abduction in his earlier writings (CP 2.508; 2.623), emphasizing syllogisms 
and the role of characters of specific cases and classes to summarize the process. Reid 
then documented how in his later writings (CP 5.197), Peirce emphasized abductive 
reasoning in terms of the purposes and needs satisfied by the reasoning, thereby 
providing a more elaborate description of how abductions, though provisional, 
explain the surprising facts under consideration. The two characterizations of 
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abduction proposed by Reid (2003) provide a useful lens through which to view the 
research that has been conducted. 

Some of the studies of abduction within in geometry microworlds such as Cabri 
and Geometer Sketchpad (Arzarello, Olivero, Paola, & Robutti, 2002; Baccaglini-
Frank, 2009) exemplify the first category of abduction as described by Reid. These 
studies focus on the logical form of abduction, considering abduction as a logical 
modality that supports the development of conjectures (Hoffman, 1999).2 For 
example, Arzarello et al. (2002) examined dragging practices in the Cabri geometry 
environment and how, through continued feedback, they support the solver’s 
emerging conjectures about the problem being solved. In this context, abduction is 
viewed as a logical operation that mediates a hierarchy of various dragging routines 
and thus “rules the transition” in cognitive focus that occurs when the solver moves 
between actual experiences (exploringconjecturing) and emerging theoretical ideas 
(proving results) (p. 67). While Arzarello et al. focused their attention on subjects’ 
use of dragging schemes during the development of conjectures, Baccaglini-Frank 
(2009) documented how the subjects’ use of particular dragging schemes induced 
patterns of abductive reasoning, thus suggesting a source of how abductions originate 
in the Cabri environment. 

Studies that fit Reid’s second category include those that focus on the structure 
of abductions and its role in inquirybased activity (Rivera, 2008; Ferrando, 2006). 
For example, Rivera (2008) characterized complete abductions as those hypotheses 
that undergo a series of developmental transformations that eventually result in 
generalized rules. Similarly, Ferrando (2006) characterized students’ learning of 
calculus concepts in terms of abductive cycles of reasoning.

This second set of studies appear more useful to interpreting Peirce’s theory to 
examine problem solving since they focus on how individuals form and transform 
their actions as needed while solving a problem. In particular, the abduction is viewed 
as a source for generating and organizing the exploration that follows. In this way 
the individual modifies his or her solution activity so that subsequent explorations 
become opportunities to develop new goals that reformulate the original problem. 
The individual can then express (or carry out) this reformulation to examine 
particular cases.

The comments above suggest that being aware of abduction in the context of 
problem solving enables a focus on the evolving structure of one’s activity as he 
or she elaborates and extrapolates his or her ideas. Designing studies that focus the 
individual on these structuring processes would seem to provide a means to examine 
not only the interconnections among the individual’s abductions but also among 
his or her inductions and deductions. According to Peirce, abductions interconnect 
with deductions and inductions. Once the explanatory hypothesis has been generated 
the individual must develop and formulate the hypothesis so that it can be tested 
(CP 7.202–207; CP 8.209). This is the deductive phase, which may involve slight 
modification of the original hypothesis through clarification and refinement, to render 
it testable (CP 7.202–207; CP 8.209). Once the hypothesis has been conformed, 
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the hypothesis can then be tested through further action to determine its usefulness 
(CP 7.202–207; CP 8.209). This is the induction phase, the result of which places a 
degree of acceptance on the hypothesis. 

Viewing a problem solver’s actions under the lens of Peirce’s theory of abduction 
may provide a useful framework with which we might be able to clarify and 
make better sense of the seemingly meandering actions that solvers sometimes 
demonstrate. However, we need to be careful in adopting only one point of view. 
There are many views of hypothesisbased reasoning, not all of which are compatible 
with Peirce’s definition of abduction. For example, Magnani (2009) argues for the 
inclusion of nonexplanatory hypotheses in his definition of abduction. Hypotheses 
and conjectures made by individuals have always been acknowledged as important 
processes in problem solving. It is thus important to keep in mind Peirce’s notion 
of abduction and its interconnections with inductive and deductive reasoning as a 
powerful theoretical lens through which we can view the problem solving activity of 
individuals in a coherent manner. 

The following section examines the episodes of a college student solving a 
mathematics problem that involved a visual array of numbers. The analysis focused 
on the student’s solution activity from initial problem formulation through eventual 
solution, highlighting episodes where she appeared to demonstrate abductive reasoning.

PROBLEM SOLVING INTERVIEWS

Sarah came from a graduate class in Mathematics Education taught by the researcher, 
at a southern university in the United States. Observing college students solving 
mathematics problems has proven to be an effective way of modelling the processes 
of problem solving (Carlson & Bloom, 2005; Cifarelli, 1998; Schoenfeld, 1985). 
In addition, studying the problem solving of graduate students can be useful in 
explaining a developmental range of actions (Carlson & Bloom, 2005; Cifarelli & 
Cai, 2005). Observing such solution activity is important to capture in view of the 
broad range of processes that appear to encompass abductive reasoning. 

Sarah was interviewed by the researcher on 3 occasions during the semester. 
During the interviews, she solved a variety of word problems while ‘thinking aloud’. 
Sarah worked individually in solving the problems and was given as much time 
as she wished to complete the tasks. Interviews were videotaped for subsequent 
analysis.

Sarah’s Solution of the Number Array Task

During the second interview, Sarah solved the Number Array task (Figure 3). 
The Number Array task is discussed extensively in Becker and Shimada (1997), 
including a detailed description of typical patterns students will see in the array. 
Samples of the various mathematical relationships students typically construct are 
provided in Table 1. 
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Find as many relationships as possible among the numbers

1 2 3 4 5 6 7 8 9 10

2 4 6 8 10 12 14 16 18 20

3 6 9 12 15 18 21 24 27 30

4 8 12 16 20 24 28 32 36 40

5 10 15 20 25 30 35 40 45 50

6 12 18 24 30 36 42 48 54 60

7 14 21 28 35 42 49 56 63 70

8 16 24 32 40 48 56 64 72 80

9 18 27 36 45 54 63 72 81 90

10 20 30 40 50 60 70 80 90 100

Figure 3. Number array task

Table 1. Samples of relationships constructed by students solving the number array task 

1.  All numbers on the left-to-right diagonal are squares (1, 4, 9., …, 100)
Relationships about the spatial arrangement of numbers.
2. � The numbers are symmetrically arranged about the left-to-right diagonal 

numbers 
Relationships about the sums of numbers.
3.  Sum of numbers in any row is a multiple of 55
4. � Sum of two numbers in a row or column that located symmetrically about a 

pivot number is two times the pivot number.
Relationships about the products of numbers.
5.  The number in the mth row and nth column is m × n
6.  For any rectangle or square array, the products of the end numbers are equal.
7. � For any square array, the products of the numbers on the two diagonals are 

equal 

Sarah began by focusing on simple relationships that had to do with the symmetry 
of the numbers. Sarah explored several of the fairly simple patterns such as those 
drawing from the symmetry of the arrangement of numbers, and simple arithmetic 
relationships. For example, she noticed that any entry in the table can be found by 
multiplying the row number by the column number, relationship #5 in Table 1 (e.g., 
12=3×4). In addition, in any 2×2 block, the product of the diagonal entries are equal, 
and that the result holds true for any square block, N×N, N>2. 
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After identifying several additional simple patterns, she focused on finding more 
mathematically sophisticated relationships. Episodes of her verbal statements are 
presented to refer to and support the assertions made by the researcher. (Italicized 
comments within the episodes indicate inferences of the researcher regarding the 
nonverbal gestures made by the student.)

Sarah: Let’s see … (long reflection) … I was wondering about those square 
numbers on the diagonal going from left to right (points to the sequence 1, 4, 
9, 16, …, 81, 100). They seem to relate to the dimension of the square blocks, 
… I don’t know, … Maybe they relate to the sums of these blocks I had earlier 
(points to the 2×2, 3×3, 4×4 blocks). So, let’s check it. 

Sarah proceeded to examine the sum of the entries of each NxN block that 
contained the square numbers on the diagonal (Figure 4). From her analysis she 
developed an informal method to find the sums of the entries of the NxN blocks 
going down the main diagonal (Figure 5).

Sarah: So, for a 1×1, I get a sum of 1 (points to the sequence of square numbers 
on the diagonal). For a 2×2 (points to block [1, 2 : 2, 4]),3 I get a sum of 9 … 
but what happened to 4? It appears to have been skipped! (several seconds of 
reflection). Okay, let me try this, I will write down the sequence of squares of 
all numbers, all in a row (writes the following sequence of square numbers: 1, 
4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225). So, the first number, 
1, tells the sum of the very first matrix, a 1×1. And the first 2×2 has a sum of 9. 
…. So, I skipped over 4 to get the next sum (crosses out the 4 in the sequence), 
going from 1×1 to a 2×2, a sum of 9. The 4 gets skipped? Interesting!

Figure 4. Examples of 2×2 and 5×5 blocks on the diagonal 
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Figure 5. Sarah’s skipping to find sums of block entries

With her actions, Sarah sensed a new problem to solve – she thinks that there 
could be a relationship between the sequence of square numbers on the diagonal 
of the array and the successive sums of the entries of N×N blocks. Sarah was able 
to continue her ‘skip’ method to generate the sequence of sums of the entries of all 
NxN blocks.

Sarah: So, for the first 3×3 (points to [1, 2, 3 : 2, 4, 6 : 3, 6, 9]), I already did 
this over here, so it is 36. So, in going from the 1×1 to the 2×2 to the 3×3, we 
go from 1, to 9, to 36 – so we skipped over the 16 and the 25 (she crosses out 
the 16 and 25 in the square number sequence), a skip of 2 in this sequence!! 
So, okay, if this is true, then it looks like we will skip over the next 3 square 
numbers, and that should tell us the sum for a 4×4 should be equal to 100 
(crosses out the 49, 64, 81 in the square number sequence) – that is what I 
have over here!! Cool! So, for a 5×5, we skip over the next 4 numbers in the 
sequence, (points to the sequence 121, 144, 169, 196) and get 225 – yes, I got 
that one earlier for the 5×5. (Figure 6)

Figure 6. Sarah’s skipping to find sums of block entries

Sarah then looked to make sense of her method with some further exploration.

Sarah: I wonder why this skipping works? Let’s see it another way, for the 
6×6, we add the entries in the rows to get 21+42+…+126 = 21(1+2+3+4+5+6) 
= 21×21 = 441. Do we get 441 by skipping the next 5 in the square 
sequence? (Sarah extended her original sequence beyond 225, crossed out 
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the corresponding ‘skips,’ and got a result of 441 as the next number in the 
sequence) (Figure 7). But also, I notice that 21 over here (points to the factored 
form 21• (1+2+3+4+5+6)) is the sum of the first 6 numbers in that first row. 
Yes!

In the last statement she makes, Sarah noticed that the sum of the row entries is the 
sum of the numbers from 1 through 6. She then makes a projection in her thinking 
to a general case:

Sarah: So to find the sum of these N×N blocks, I bet you just need to look at 
the sum of 1 to N and then square that total to get the sum. 

This is the first evidence that Sarah had made an abduction, that she had 
hypothesized the calculation she had carried out for the 6×6 block could be 
generalized to N×N blocks. However, the abduction appeared to have its source in 
her earlier comments: 

Sarah: Let’s see it another way, for the 6×6, we add the entries in the rows to 
get 21+42+…+126 = 21(1+2+3+4+5+6) = 21×21 = 441. Do we get 441 by 
skipping the next 5 numbers in the square sequence? 

So Sarah had a sense of the general in the particular and her hypothesis about 
summing the numbers from 1 to N resulted from her deductions made by reflecting 
on the results of her factoring of the sums:

Sarah: I notice that 21 (points to product 21• (1+2+3+4+5+6)) is the sum of 
the first 6 numbers in that first row. Yes!

Figure 7. Sarah’s diagram of her computation of sums in a 6×6 block

This enabled Sarah to re-state her hypothesis: In order to find the sum of entries 
in an N×N block, she needed to sum the numbers from 1 through N, and square the 
result. Sarah then looked to test her hypothesis on an 8×8 block (Figure 8).
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Figure 8. Sarah’s computation of the sum for the 8×8 block

Sarah: Let’s try a big one, say 8×8. So, I guess that it would be …. 1+2+… 
+8 = 36, I don’t know why I am adding these individual numbers since I know 
that the sum is (8×9)/2, and then I take 362? So that comes out to be … 1296. 
And does it check with my skipping over here? Let’s see, so for 8×8, I first skip 
6 over 21 to get 282 for 7×7, and then skip 7 more to get the one for 8×8, … 
so 7 more is 35, and the next one is 36! So my algorithm seems to work! The 
algorithm is pretty efficient for larger numbers, beyond all of these (pointing 
to the array) – how about a 100×100 grid! – But I thought that the skipping 
relationship was pretty cool!

DISCUSSION

This chapter addressed two questions. (1) Why is it important that our students be 
able to make abductions when they solve problems? (2) How should educators help 
students develop reasoning habits that include abductive reasoning?

The results help provide an answer to the first question. Sarah developed an 
informal method to find the sum of entries in NxN blocks and then transformed her 
method into a more general method that both explained the results for the particular 
cases she had solved and also could be used to solve the problem for larger values 
of N extending beyond the array. Sarah’s solution activity is important for the 
following reasons. First, Sarah’s development of her informal method to compute 
the sums made use of a metaphor (Saenz-Ludlow, 2004), ‘skipping’, that named 
and explained her method for finding sums of entries in the various blocks, by 
‘skipping’ through a sequence of square numbers. With these idiosyncratic actions, 
she had constructed an informal method. She verified that the method appeared 
to work for other cases that could be generated from the array. This finding is 
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consistent with research that identifies informal methods as playing a prominent 
role in the development of formal algorithms (Cai, Moyer, & McLaughlin, 1998; 
Sáenz-Ludlow, 1995).

Second, abduction played a prominent role in her actions, and came about from 
her goal to explain why the ‘skipping’ method worked for computing the particular 
sums. With her abduction Sarah hypothesized a general method (rule), that then 
explained not only the particular cases within the array that she had already verified 
with ‘skipping’, but that could be used to compute cases that went beyond the actual 
array (e.g., “how about a 100×100?”). Specifically, her subsequent development of 
the general method involved her first making a subtle shift in her attention from 
validation and verification of the ‘skipping’ method for blocks of dimension 2×2, 
3×3 and 4×4, to efficacy considerations (why it appeared to work for the cases she 
generated). Exploring issues of efficacy for one’s problem solving actions is an 
important though under-utilized activity in most instructional settings. In Sarah’s 
case, this exploration with a view to explain the usefulness of her actions made 
possible her abduction. Her goal to examine her action in a new light provided for 
her an opportunity to unfold the process, and relate her informal ‘skipping’ method 
to operations on the row and column numbers. Her re-writing of the sum of row 
entries into factored form 21+42+…+126 = 21(1+2+3+4+5+6) = 21×21 = 441 
appeared to be the first indication of her abduction, hypothesizing that the results 
of applying her ‘skipping’ could alternatively be found by operating on the row 
and column numbers. Her reflection on the factored form to conclude that the 
sum of the numbers in parentheses represented the sum of the column numbers in 
the particular row indicated that she had made a deduction because these actions 
led her to state the hypothesis in a form that made possible further testing (“I bet 
you just need to look at the sum of 1 to N and then square that total to get the 
sum.”). In this way, she was able to generalize her method from skipping within 
a simple sequence to a formal algorithm that was more efficient for finding the 
sums of entries in N×N blocks beyond the 10×10 array. She proceeded to test her 
hypothesis (the rule) for cases she could verify (with ‘skipping’) within the 10 × 
10 array.  

Sarah’s abduction appeared to be an example of a creative abduction (cf.  
Sáenz-Ludlow chapter on abduction in proving, this volume; Eco, 1983) for the 
following reasons. First, her abduction of the general rule did not draw from 
consideration from among several equally probable hypotheses; rather, her hypothesis 
drew from her creative actions performed by reformulating her original problem of 
finding sums of entries blocks, to determining why the particular ‘skipping’ method 
worked. Second, while Sarah’s abduction was based on her stated goal to determine 
why the “skipping’ worked, she was quick to value the efficiency of the general 
rule over the ‘skipping’ method. Sarah’s consideration of efficiency in making her 
hypothesis would appear to be an example of a type of ‘aesthetic value’ that is a basis 
on which creative abductions are formulated (Eco, 1983).
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TEACHING AND LEARNING IMPLICATIONS

The results do not suggest an easy answer to the second question and must be treated 
with care in making particular recommendations for the teaching and learning of 
mathematics in K-12. It may be useful to reformulate the question as two separate 
related questions: 1. Can abductive reasoning be taught explicitly? and 2. Do certain 
kinds of tasks induce the solver’s use of abductive reasoning?

Can Abductive Reasoning be Taught Explicitly? 

The question of whether abductive reasoning can be taught explicitly is not easy to 
answer. Sarah demonstrated conceptual growth in her problem solving because she 
was able to selfgenerate and selfregulate most all of her solution activity with little 
prompting, skills that many students in K-12 find difficult to develop. Moreover, 
as Sinclair (2006) has remarked, abductions, with their air of uncertainty, can 
be risky for students to make in K-12 mathematics classrooms because it leaves 
them vulnerable to ridicule by peers (N. Sinclair, personal communication, 2006). 
However, there are some recommendations that might be useful. 

Promote reflection and discussion in classroom discourse.  Abductions can occur 
only if the student has a secure sense of his or her role as a problem solver and is 
not afraid to express their ideas even if they may be incorrect. In order for students 
to become secure in their role as a mathematical problem solver, they must be 
provided with ample problem-solving opportunities that enable them to explore 
their understandings. Ferrando (2006) voiced the concern that students are often 
unwilling to explore the mathematics problems they are faced with and more often 
than not, give up working on a problem if they do not see an immediate strategy 
to pursue. Hence, we must carefully listen to students and observe what they do 
rather than conduct classroom activities based on our expectations of what we think 
they will say and do. Due to large class sizes, it is difficult for teachers to engage 
in the lengthy discussions represented in the interviews conducted in the study. 
However, more one-on-one communication can be facilitated using small group 
problem solving that invites students to share their thoughts about both the decisions 
they make and difficulties they face while solving problems. This in turn provides 
teachers with opportunities to respond to the problems and questions that students 
formulate.

Encourage proactive agency in problem solving.  Students must not only be able 
to develop ideas about the problems they face, they must be willing to present 
and defend them in classroom discussions. Sarah viewed herself as in control and 
aggressively switched course whenever unexpected problems arose. Instructional 
activities that allow students opportunities to share and defend their ideas for solving 
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particular problems prior to actual solving help develop self-advocacy in students 
and contribute to a proactive sense of agency. 

Do certain kinds of tasks induce abductive reasoning?  While Sarah performed 
well with the Number Array task and all of the other non-traditional task that she 
solved in other interviews, we must be careful in concluding that abductions can 
be stimulated through the use of particular tasks and problems. For example, one 
approach that has gained prominence in recent years involves the use of ‘open 
ended’ tasks to stimulate problem posing and solving (Becker & Shimada, 1997). 
The results suggest that our focus should be on the students’ mathematical thinking 
and learning, and helping them to open up and explore their own interpretations of 
mathematical situations. The ideas generated by Sarah were their own, self-generated 
to help her ‘make sense’ of the situations she faced, and seen by them as plausible 
explanations of the problems. While it is true that Sarah’s solution of the Number 
Array task involved problem posing and solving in an unfamiliar context, her initial 
ideas evolved into conceptually rich ideas that included new problem formulations 
and re-formulations, and conjectures about how potential solution activity would 
work out. In this way, she developed novel structures for her solution actions as she 
saw fit. In other words, the external structure of the task was less important for Sarah 
than her evolving of structure within her actions. These results suggest that while 
there can be a degree of novelty designed into the tasks we give students, the greater 
need is for mathematics educators to broaden their view of problem solving as 
learning opportunities and incorporate problem solving tasks that provide abundant 
posing and solving opportunities to our students so that they stretch and broaden 
their understandings as they solve problems. 
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notes

1	 Some of the Citations of Peirce that appear in this chapter are taken from The Collected Paper, 
Volumes 1–6, edited by Charles Hartshorne and Paul Weiss, Cambridge, Massachusetts, 1931–1935; 
and volumes 7–8 edited by Arthur Burks, Cambridge, Massachusetts, 1958. The standard format for 
citing Peirce has been used. For example, CP 5.172 refers to Volume 5 of The Collected Papers, 
paragraph 172.

2	 Since Hoffman (1999) argued that there is no logic of abduction in the sense of syllogistic logic when 
it comes to the generation of hypotheses, and that “logic” should be understood in the broader sense 
of “methodology”, these studies might be better described as studies that involve the methodological 
understanding of abduction.
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3	 A bracket notation is used to list the top to bottom rows of the block being considered. For example, 
the 2×2 is indicated by the sequence [1, 2 : 2, 4] and a 3×3 block is indicated by the sequence  
[1, 2, 3 : 2, 4, 6 : 3, 6, 9].
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