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RAINER BROMME, STEPHANIE PIESCHL & ELMAR STAHL 

EPISTEMOLOGICAL BELIEFS AND STUDENTS’ 
ADAPTIVE PERCEPTION OF TASK COMPLEXITY

INTRODUCTION

Epistemological Beliefs

Epistemological beliefs are usually defined as beliefs about knowledge and 
knowing. One of the most widely used framework within educational psychology 
(Buehl & Alexander, 2001; Hofer & Pintrich, 1997), among others widely used 
(Niessen, Vermunt, Abma, Widdershoven, & van der Vleuten, 2004), comprises four 
identifiable and more or less interrelated dimensions of beliefs. According to Hofer 
and Pintrich (1997) the first two dimensions represent the “nature of knowledge”: 
(a) the certainty of knowledge is focused on the perceived stability and the strength 
of supporting evidence, and (b) the structure of knowledge describes the relative 
connectedness of knowledge. The other two dimensions describe the nature of 
“knowing”: (a) the justification of knowledge explains how individuals proceed to 
evaluate and warrant knowledge claims, and (b) the source of knowledge describes 
where knowledge resides, internally and/or externally. In the remainder of this paper 
we will primarily refer to this framework, although, from the beginning alternative 
frameworks have been proposed (for an overview with an emphasis on the assumed 
dimensions, see Buehl, 2008). More recently, Greene, Azevedo, and Torney-Purta 
(2008), for example, proposed an alternative framework in which “justification”, 
either personal or by authorities, was proposed as the core epistemic dimension, 
whereas beliefs about the simplicity and certainty of knowledge are coined 
“ontological” because they refer to learners’ assumptions about the structure of the 
categorical representation of the world. In a similar vein, Bromme, Kienhues, and 
Stahl (2008) have argued that epistemological judgments are based on topic- and 
domain-related ontological assumptions. Both propositions point to the interplay 
between epistemological beliefs and topic- and domain-related knowledge, because 
ontological assumptions are very abstract knowledge about a domain. In the present 
study the interplay between epistemological beliefs and domain-specific knowledge 
is investigated.

An important assumption in epistemological theories is that learners’ 
epistemological beliefs develop (or should develop) from the so-called “naïve” to 
“sophisticated” epistemologies (Hofer & Pintrich, 1997). The term “naïve” is used, 
for example, to indicate a person’s belief that the knowledge to be learned consists 
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of a stock of certain facts related to each other additively and whose veracity is 
guaranteed by an authority. Such facts, once found, mirror the world unambiguously. 
Through (formal) education people become aware that knowledge is, for example, 
more complex and relativistic thus resulting in a focus on the evaluation of different 
viewpoints (King & Kitchener, 2002). Persons with sophisticated perspective 
believe, for example, that the veracity of knowledge claims depends on context and 
is continuously established within social interactions, and that knowledge is rather a 
complex network of facts, theories and conjectures than a pure addition of true facts. 
They accept uncertainty and changeability of truth and the notion that knowledge is 
construed rather than given; however, this does not mean that it would be reasonable 
to conceive each knowledge claim in each context that way, for example, to doubt 
that the earth is (nearly) round. On the contrary, sophistication entails adaptability to 
contextual demands (Bromme, Kienhues, & Porsch, 2008; Elby & Hammer 2001). 
In the present study students’ adaptivity to differences between learning tasks when 
planning their use of a complex learning environment was investigated. Thereby, the 
assumed relationship between epistemological beliefs, domain-specific knowledge, 
and adaptive planning behavior was scrutinized.

An increasing number of empirical studies show that more sophisticated 
epistemological beliefs are related to more adequate learning strategies and better 
learning outcomes. For example, students’ epistemological beliefs have been found 
to influence their processing of information (Schommer, 1990), their academic 
performance (Schommer, 1993), their conceptual change (Mason & Boscolo, 2004), 
their quality of argumentation (Weinstock & Cronin, 2003), and their engagement 
in learning (Hofer & Pintrich, 1997). Although there are fewer studies concerning 
computer-based learning environments their results are encouraging as well. 
For example, Jacobson and Spiro (1995) found that learners with sophisticated 
epistemological beliefs were better able to learn and apply their knowledge 
after using a hypertext system than students with naïve epistemological beliefs. 
Additionally, epistemological beliefs were a good predictor of learning outcomes 
during hypertext learning (Bendixen & Hartley, 2003; Windschitl & Andre, 1998). 
There is also evidence that epistemological beliefs affect students’ information 
retrieval from the Internet (Bråten, Strømsø, & Samuelstuen, 2005; Hofer, 2004), 
especially in more open-ended tasks (Tu, Shih, & Tsai, 2008), and the understanding 
of multiple documents (Strømsø, Bråten, &Samuelstuen, 2008). With regard to self-
regulated learning, epistemological beliefs have also been related to the use of more 
self-reported (Cano, 2005; Dahl, Bals, & Turi, 2005; Neber & Schommer-Aikins, 
2002) as well as concurrently measured (Kardash & Howell, 2000) metacognitive 
strategies, better metacognitive comprehension monitoring (Schommer, 1990), and 
more metacognitively controlled help-seeking in a hypertext (Bartholomé, Stahl, 
Pieschl, & Bromme, 2006). 

How are epistemological beliefs related to metacognition? Most recent views 
on epistemological beliefs and learning conceive such beliefs as being involved 
in metacognitive processes of monitoring (Kuhn, 2000). For example, Kitchener 
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(1983) proposed three levels of cognitive processing: (a) cognition (all cognitive 
operations such as reading, memorizing, perceiving, computing), (b) metacognition 
(all cognitions that have cognitive operations as their subjects, for example 
comprehension monitoring), and (c) epistemic cognition (cognitions about the limits 
of knowing, the certainty of knowledge, or the criteria for knowledge). Only the 
epistemic cognitions are assumed to be involved in monitoring the epistemic nature 
of problems and the evaluation of solutions. To give another example, Hofer (2004) 
details how epistemological belief dimensions can be matched to components of 
metacognition. Beliefs about the nature of knowledge (certainty of knowledge 
and simplicity of knowledge) are assumed to share similarities with declarative 
metacognitive knowledge (Schraw & Moshman, 1995). Beliefs about the nature 
of knowing on the other hand (source and justification of knowledge) can be 
matched to the procedural component of metacognition, for example metacognitive 
monitoring (Schraw & Moshman, 1995). These models, concerned with structural 
aspects of epistemological beliefs (where they are located in the cognitive system), 
are promising but more functional theories about the impact of epistemological 
beliefs are rare (i.e., how do they exactly exert their influence?). 

The COPES Model

An encouraging theoretical framework that helps to specify such a functional 
relationship is given by the COPES model of self-regulated learning (Greene & 
Azevedo, 2007; Muis, 2007; Winne & Hadwin, 1998): Epistemological beliefs are 
conceptualized as important internal conditions for learning, which impact learners’ 
internal standards for metacognitive monitoring and control and, thereby, influence 
the whole learning process. More specifically, self-regulated learning according 
to the COPES model occurs in four weakly sequenced and recursive stages: (a) 
task definition, (b) goal setting and planning, (c) enactment, and (d) adaptation. In 
the task definition stage, a student generates her or his own perception about what 
the studying task is and what constraints and resources are in place. An important 
product of this stage is the student’s perception of the given goal of the task. Based 
on this perception the student generates idiosyncratic goal(s) and constructs a 
plan for addressing that study task in the second stage. In the enactment stage the 
previously created plan of study tactics is carried out. The adaptation stage pertains 
to fine-tuning of strategies within the actual learning task as well as to long-term 
adaptations. 

All four stages are embedded in the same general cognitive architecture. In the 
centre of this architecture are processes of metacognitive monitoring and control 
that students are assumed to use to self-regulate their learning process according 
to perceived task demands. If and how these processes occur depends on five 
constituents whose acronym gave the model its name, namely conditions (C), 
operations (O), products (P), evaluations (E) and standards (S). Conditions (C) pertain 
to external task conditions (e.g., task complexity) as well as to internal conditions 
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(e.g., epistemological beliefs) and are assumed to directly influence learners’ internal 
standards and their operations. Operations (O) include all cognitive processes that 
learners utilize to solve a learning task and which create internal or external products 
(P) (e.g., written answers). Students’ goals are represented as multivariate profiles 
of standards (S) (e.g., targeted level of understanding). As a result of metacognitive 
monitoring, evaluations (E) are generated based on a comparison of students’ 
products and standards. When a learner notices discrepancies she or he is able to 
perform metacognitive control by executing fix-up operations. To summarize, the 
COPES model describes how students might adapt their self-regulated learning 
process to important external conditions such as task complexity. Furthermore, it 
specifies the impact of learner-related internal conditions such as epistemological 
beliefs.

The Present Study

Based on the COPES model but with a special focus on the impact of epistemological 
beliefs on adaptivity to task complexity, the present study explores if epistemological 
beliefs affect processes of metacognitive calibration. 

Traditionally, calibration refers to the accuracy of a person’s subjective 
metacognitive judgments (e.g., their judgments of learning (JOL) regarding the 
confidence in recall) regarding their own objective performance (e.g., in a recall task 
of paired associates such as “ocean-tree”; example taken from Nelson & Dunlosky, 
1991). Multiple measures of accuracy have been suggested in the literature on 
traditional calibration: The most frequently used method is relative calibration 
(Nelson, 1996) which denotes the degree of association between judgments and 
performance (e.g., the Goodman-Kruskal’s Gamma correlation used by Nelson & 
Dunlosky, 1991). Additionally, indices of absolute calibration are often computed 
that indicate the exact degree of over- or underconfidence of judgments in relation 
to performance (e.g., bias score, see Schraw, 1995). Furthermore, measures of 
discrimination denote the ability to discriminate between the occurrence and the 
nonoccurrence of an event, for example predict correct versus incorrect performance 
(see Weingardt, Leonesio, & Loftus, 1994). 

For the present study, we transferred the methodology of traditional calibration 
research outlined above to a new context (for more detail see Pieschl, 2009): We 
define metacognitive calibration as the alignment between learners’ subjective task 
definitions, goals and plans (measured by the COPES questionnaire, see below) 
and objective task demands, more specifically task complexity (operationalized 
by Bloom’s revised taxonomy; Anderson et al., 2001, see below). Therefore, 
metacognitive calibration in this sense denotes the degree of adaptivity to task 
complexity. Note that our definition of calibration is conceptually different from 
the traditional one, but that the same methods are applied: We assume that students 
discriminate between tasks of different complexity by indicating different task 
definitions, goals and plans. And we assume that students systematically calibrate 
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their task definitions, goals and plans to task complexity, for example by planning 
more elaborate learning strategies for more complex tasks.

Assuming that epistemological beliefs affect metacognitive calibration as outlined 
above implies not only main effects of epistemological beliefs but also potential 
interactions between epistemological beliefs and task complexity. To illustrate the 
potential main effects of epistemological beliefs imagine a learner with a naïve 
belief that knowledge is simple and stable. As epistemological beliefs are assumed 
to directly influence the learner’s internal standards, the learner might set quite 
superficial goals (e.g., “The goal is achieved if I have memorized the facts”; “I will 
complete this task in a short time”) compared to a more sophisticated learner who 
believes that knowledge is complex and relative (e.g., “I have to deeply understand 
the subject-matter in order to apply it”; “I will need much time to complete the 
task”). To give another example, epistemological beliefs are also assumed to directly 
influence the learner’s operations; thus, a more naïve learner might also plan rather 
superficial learning tactics and strategies for task completion (e.g., memorizing) 
compared to a more sophisticated learner who might plan strategies of deeper 
elaboration (e.g., critically evaluating). 

To illustrate potential interactions with task complexity, consider that such 
differences might become more pronounced for more complex tasks. Specifically, 
if learners are confronted, for example, with the complex task of writing a pro- and 
contra- argumentation about a controversial topic, this task might be interpreted in 
multiple ways. A student who believes that knowledge is uncertain (sophisticated 
belief) would probably plan to verify each argument by searching for additional 
information, whereas a more naïve student would probably take each argument at 
face value. For a very simple task like a factual question on the other hand, these 
potential differences should be smaller, that is, students with naïve beliefs are 
assumed to approach such task superficially because they are assumed to have a 
general bias to underestimate task complexity and thus might approach all tasks 
too superficially. On the other hand, students with sophisticated beliefs should be 
able to accurately diagnose task demands and thus also plan adequately superficial 
strategies. Therefore, it was hypothesized that students with more sophisticated 
epistemological beliefs should show a better fit between external task demands such 
as task complexity and their self-regulated learning process. 

Within a large project (for an overview: Bromme, Pieschl, & Stahl, 2010; Pieschl, 
Stahl, & Bromme, 2013) this general assumption about epistemological beliefs as 
important predictor of metacognitive calibration was tested with regard to each 
stage of self-regulated learning as defined in the COPES model. The present study 
– as well as an exploratory study already conducted (Stahl, Pieschl, & Bromme, 
2006) – focused on the first two preparatory stages of self-regulated learning, that 
is, on COPES’ task definition and goal setting and planning. All studies within this 
large project have common elements, that is, students work with (or plan to work 
with) a hypermedia information system on “genetic fingerprinting”. This topic was 
chosen because it was judged inherently interesting by students, there was sufficient 
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variance in students’ epistemological beliefs towards this topic, and because this 
domain contains certain facts (e.g., “DNA contains four bases: adenine, cytosine, 
guanine, and thymine.”) as well as controversial issues (e.g., “Should we compile 
comprehensive data bases of DNA profiles?”). Additionally, in all studies within 
this large project students have to complete (or plan to complete) learning tasks with 
different levels of complexity according to Bloom’s revised taxonomy (Anderson 
et al., 2001). In this theoretical framework, task complexity is not defined 
quantitatively (e.g., by the number of necessary operations), but rather by the quality 
of the required cognitive processes. For example, factual questions, such as “What 
is the capital of Germany?” (correct answer: Berlin), are always considered simple 
because they just require recall of information from long-term memory. This even 
holds if task difficulty (i.e., the proportion of incorrect solutions in an empirical 
sample) is high (e.g., “What is the capital of Mongolia?” correct answer: Ulaanbaatar) 
or if a lot of similar questions need to be answered (e.g., questions about the capitals 
of all countries in the world). On the other hand, questions that require more complex 
cognitive elaboration processes, such as evaluating evidence (e.g., regarding the 
suitability of DNA analysis methods) with regard to some standards (e.g., error-
proneness regarding lab results or statistical analyses), are always considered more 
complex – independently of task difficulty.

Research Questions – Hypotheses

In the present study, three research questions were addressed based on these theoretical 
considerations. The first questions pertain to adaptation to task complexity: (a) Do 
students discriminate between tasks of different complexity? We predicted that students 
would discriminate significantly between Task Levels of different complexity in their 
task definitions, goals and plans and that this would be evident in their answers in 
the COPES-questionnaire (Hypothesis 1). In short (for more information see method 
section), scales of the COPES questionnaire indicate task definitions, goals and plans 
either for deep or for superficial processing. (b) Do students calibrate their task 
definitions, goals and plans to task complexity? We predicted that students would 
calibrate their answers on the COPES-questionnaire significantly to task complexity 
and this would be evident by a systematic relationship between students’ answers in 
the COPES-questionnaire and Task Levels of different complexity. More specifically, 
we predicted that students would judge all variables indicating deep processing more 
important for more complex tasks and all variables indicating superficial processing 
less important for more complex tasks (Hypothesis 2). 

Further question pertain to the impact of personal characteristics: (c) Are these 
discrimination and calibration processes related to students’ learner characteristics? 
First, we predicted effects of epistemological beliefs. More specifically, we 
predicted that students with more sophisticated epistemological beliefs would 
judge all variables indicating deep processing more important across all tasks 
and would judge all variables indicating superficial processing less important 
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across all tasks (Hypothesis 3; main effects). Additionally, we predicted that these 
differences between “sophisticated” and “naïve epistemological beliefs would be 
more pronounced in more complex Task Levels (Hypothesis 4; interaction effects). 
Second, we predicted similar effects of prior domain-specific knowledge. Prior 
domain-specific knowledge showed a crucial impact on learning processes in 
most other studies (Lind & Sandmann, 2003; McDonald & Stevenson, 1998). The 
COPES model (Winne & Hadwin, 1998) predicts a similar functional relationship 
for prior domain-specific knowledge as for epistemological beliefs. In this study, 
we systematically compared two Prior Knowledge Groups: Biology students 
with high prior biology knowledge and humanities students with almost no prior 
biology knowledge. More specifically, we predicted that students with higher prior 
domain-specific knowledge would judge all variables indicating deep processing 
more important across all tasks and would judge all variables indicating superficial 
processing less important across all tasks (Hypothesis 5; main effects). Additionally, 
we predicted that the differences between high and low prior domain-specific 
knowledge would be more pronounced in more complex Task Levels (Hypothesis 6; 
interaction effects).

METHOD

Procedure

The present study was conducted in two sessions. During the first online session, 
students filled in questionnaires about their domain-general (EBI; Jacobson & Jehng, 
1999) and domain-dependent (CAEB; Stahl & Bromme, 2007) epistemological 
beliefs, which took them about 15 minutes. Sixty-five biology students and 64 
humanities students completed these online-questionnaires. The second face-to-face 
session was held in groups with a minimum of 3 students and a maximum group 
size of 12 and lasted approximately one hour. Not all students continued; 52 biology 
students (80% of the original sample) and 50 humanities students (78% of the original 
sample) participated in this second session where they had to fill in paper-pencil-
questionnaires. First, students had to answer a Short Knowledge Test about molecular 
genetics and the Self-Rated Prior Biology Knowledge item. Then, all students read a 
factual introduction1 to molecular biology which adequately contextualized students 
to the topic of “genetic fingerprinting”. In the main part of this session, students 
evaluated six learning tasks of different complexity according to Bloom’s revised 
taxonomy (Anderson et al., 2001: remember, understand, apply, analyze, evaluate, 
and create) with the COPES-questionnaire. Tasks were presented in random order. 

Participants

Students who participated in both sessions constitute the final sample. All students 
were selectively recruited to ensure two levels of biology knowledge. Biology 
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students were recruited during regular courses in biology; humanities students were 
recruited by a posting at the psychological institute. All students received 10 Euros 
reimbursement. Although the advanced students of biology were no “real” experts 
in the specific topic of “genetic fingerprinting” (Chi, 2006), they can be considered 
discipline experts (Rouet, Favart, Britt, & Perfetti, 1997) because they know the tools 
of their discipline, for example how to interpret an electrophoretogram. Students of 
humanities on the other hand can be considered novices (Chi, 2006).

The 52 biology students’ (35 female) mean age was 22.10 years (SD = 2.19) and 
they studied on average in the 3.00rd semester (SD = 0.28) biology or related majors. 
The 50 humanities students’ (43 female) mean age was 23.61 years (SD = 4.47) and 
they studied on average in the 4.24th semester (SD = 2.24) psychology or other 
humanities. Biology students significantly outperformed humanities students on a 
Short Knowledge Test (see below; t (100) = 20.63, p < .001, Cohen’s d = 4.08; 
biology students: M = 7.23, SD = 1.06; humanities students: M = 2.16, SD = 1.40; 
8 points maximum). Furthermore, they also possessed higher Self-Rated Prior 
Biology Knowledge (see below; t (99) = 5.60, p < .001, Cohen’s d = 1.11; biology 
students: M = 2.79, SD = 0.73; humanities students: M = 1.90, SD = 0.87; on a scale 
from 1 (very low) to 5 (very high)). Thus, these two quasi-experimental groups of 
students (Prior Knowledge Groups: biology vs. humanities students) were used as 
predictor variable in all subsequent analyses to explore the effects of prior domain 
knowledge.

Measures

Short Knowledge Test Background knowledge in molecular biology was tested 
with eight multiple-choice questions (Cronbach’s α = .89) that were developed with 
the help of a domain expert. Sample item: “What does the abbreviation PCR stand 
for?” Multiple-choice options: “(1) Protein Coupling Reaction, (2) Phosphate Chain 
Reaction, (3) Polymerase Chain Reaction, (4) Polysaccharide Chain Reaction, (5) 
Phosphate Coupling Reaction, or (6) I don’t know.” Each question had one correct 
answer (in the example in italics).

Self-Rated Prior Biology Knowledge Students were also asked to self-assess their 
own knowledge in genetics with the item: “I estimate my prior domain-specific 
knowledge in genetics to be” Answers could be given on a Likert-type scale ranging 
from 1 (very low) to 5 (very high). 

Epistemological beliefs For the measurement of epistemological beliefs the 
distinction between explicit-denotative and associative-connotative aspects of 
epistemological beliefs was used. The distinction has been proposed by Stahl and 
Bromme (2007) because of the often reported problems of measuring epistemological 
beliefs in a reliable way (Niessen et al., 2004; Strømsø et al., 2008). The two aspects 
of epistemological beliefs are not necessarily in accordance with each other and they 
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have to be measured separately.
The explicit-denotative aspects of epistemological beliefs were measured with an 

adapted version of the Epistemological Beliefs Instrument (EBI; Jacobson & Jehng, 
1999) that comprises items such as “If scientists try hard enough, they can find the 
answer to almost every question” that had to be rated on a Likert-type scale ranging 
from 1 (totally disagree) to 7 (totally agree). The original instrument consists of 
61 items. However, for this study only items that refer to epistemology in a strict 
sense were selected, more specifically from the scales certainty of knowledge 
(9 items), omniscient authority (5 items), and simple view of learning (3 items). 
Furthermore, we added 4 items from Wood and Kardash’s (2002) questionnaire and 
2 items from our own lab. The exploratory factor analysis of these 23 items of the 
adapted EBI applied to the sample of the present study yielded one factor explaining 
35.91 % of variance; this scale was labelled EBI-definitude. This scale measures 
whether students assume that absolute answers are attainable or whether knowledge 
is indefinite (9 items, Cronbach’s α = .76; sample items are “For most scientific 
research questions there is only one right answer.”, “Most words have one clearly 
defined meaning.”). 

To capture the associative-connotative aspects of epistemological beliefs about 
knowledge in the domain of genetics a semantic differential, namely the Connotative 
Aspects of Epistemological Beliefs (CAEB; Stahl & Bromme, 2007), was used. This 
instrument consists of 24 pairs of antonymous adjective as items; on each item the 
degree of association could be rated on a 7-point scale. Sample item: “Knowledge 
in genetics is: simple (1) – complex (7)”. The exploratory factor analysis of the 24 
items of the CAEB yielded two factors explaining 50.39 % of the variance, namely 
CAEB-texture and CAEB-variability. The factor CAEB-texture encompasses beliefs 
about the structure and accuracy of knowledge (9 items loaded on this factor). 
Sample items are “Knowledge in genetics is: from 1 (precise / sorted / exact / etc.) 
to 7 (imprecise / unsorted / vague / etc.)”; Cronbach’s α = .82. The factor CAEB-
variability encompasses beliefs about the stability and dynamics of knowledge (5 
items loaded on this factor). Sample items are “Knowledge in genetics is: from 1 
(irrefutable / flexible / completed / etc.) to 7 (refutable / inflexible” / uncompleted / 
etc.)”; Cronbach’s α = .67. 

These three factors, namely EBI-definitude, CAEB-texture, and CAEB-variability, 
were used as predictor variables in all relevant subsequent analyses to explore the 
effects of epistemological beliefs. 

Tasks Six tasks of different complexity according to Bloom’s revised taxonomy 
(Anderson et al., 2001) were presented. This taxonomy distinguishes between six task 
classes affording cognitive processes of different complexity (in order of ascending 
complexity): (a) remember, (b) understand, (c) apply, (d) analyze, (e) evaluate, and (f) 
create. For the present study, one task for each Bloom category was constructed and 
selected in a cyclic process. First, two experts in biology searched through relevant 
textbooks for adequate tasks and constructed additional tasks for all categories. 
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Second, the resulting pool of about 100 tasks was independently categorized by 
five raters into the six Bloom categories; these raters were blind to the experts’ 
categorization. For 39 tasks all raters immediately agreed, for further 25 tasks four 
of the raters agreed; the remaining tasks were either rephrased and re-categorized (15 
tasks) or deleted from the pool. Third, based on content considerations six tasks per 
Bloom category were selected for an exploratory study (Stahl et al., 2006). Fourth, 
for the present study only the most prototypical task for each Bloom category was 
chosen based on participants’ categorizations in the Stahl et al. (2006) study. 

As simplest remember task a multiple-choice question about how to split DNA 
was selected; the answer only required recall of facts. As understand task a multiple-
choice question about which errors in STR (Short Tandem Repeats) profiling could 
cause an erroneous match was used; to answer this question an understanding of the 
whole process was necessary. The apply task required constructing a father’s DNA 
profile from the profiles of his wife and his biological daughters in a table; knowledge 
about the heredity of DNA had to be applied to this concrete problem. The analyze 
task required to detail the STR analysis process step-by-step and outline potential 
problems; it required participants to have a detailed mental model of the whole 
process. The evaluate task asked to evaluate the impact of DNA degradation on 
different methods of DNA analysis in an open answer format; it required knowledge 
about this topic as well as critical thinking. The most complex create task required 
describing the consequences of a law change that would allow the analysis of coding 
DNA regions in an open answer; this task required original and creative thinking.

All six tasks were presented in random order to each participant. Participants did 
not solve these tasks but had to evaluate each task with the COPES questionnaire. 
In this study students’ adaptation to these Task Levels of different complexity was 
explored (remember, understand, apply, analyze, evaluate, and create).

The COPES Questionnaire The COPES questionnaire (Stahl et al., 2006) 
measures students’ judgments regarding their preparatory stages of self-regulated 
learning, namely task definition, goal setting and planning (Winne & Hadwin, 1998) 
and consists of 46 items. The whole questionnaire was administered in this study 
for each task, but only 18 items were further analysed, namely those items where 
participants of an exploratory study (Stahl et al., 2006) demonstrated significant 
discrimination and calibration. These items cover most facets of self-regulated 
learning (i.e., conditions, operations, evaluations, and standards).

Two of these items required short open answers; students had to estimate the 
number of concepts (estimated concepts) and the time needed for task completion 
(estimated time). One item (Bloom classification) had a forced-choice format 
with six alternative answers that represent the Task Levels of different complexity 
according to Bloom’s revised taxonomy. 

The remaining fifteen items were rated on 7-point Likert-type scales, mostly 
ranging from very unimportant (1) to very important (7); these fifteen items were 
subjected to an exploratory factor analysis on the present sample that explained 62% of 
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variance and yielded three meaningful factors: Deep Processing (8 items, Cronbach’s 
α = .89; sample item: “Imagine you would have to actually solve the present task. 
In your opinion, how unimportant or important is it to employ the learning strategy 
of ‘elaborating deeply’?”), dealing with Multiple Information Sources (5 items, 
Cronbach’s α = .82; sample item: “… In your opinion, how unimportant or important 
is it to concentrate on information about ‘multiple perspectives’?”), and Superficial 
Processing (2 items, Cronbach’s α = .63; sample item: “… In your opinion, how 
unimportant or important is it to employ the learning strategy of ‘memorizing’?”). 
These results indicated that the items were not grouped together according to the facets 
of the COPES model but rather according to three different approaches to learning. 

These three COPES factors, namely Deep Processing, Multiple Information 
Sources, and Superficial Processing, as well as the three single items, namely 
estimated concepts, estimated time, and Bloom classification, were used as dependent 
variables in all subsequent analyses, each repeatedly measured six times for the six 
Task Levels representing the Bloom categories. No theoretical assumptions were 
made about the importance of these factors and items for the tasks of different 
complexity; rather the students’ opinions were important.

RESULTS

Descriptives and Interrelations Regarding Learner Characteristics

The two Prior Knowledge Groups (biology students vs. humanities students) did 
not differ in their domain-related epistemological beliefs measured by the CAEB. 
On average students believed that knowledge in genetics is quite structured (CAEB-
texture: M = 3.33, SD = .80; on a scale from 1 = structured – 7 = unstructured) but 
tentative (CAEB-variability: M = 3.04, SD = .85; on a scale from 1 = variable – 7 
= static). However, with regard to the definitude of knowledge in general (EBI-
definitude) the Prior Knowledge Groups differed significantly (F (1,100) = 10.55, 
p < .01, d = .64): Humanities students believed much less (M = 2.59, SD = .71) in the 
definitude of knowledge in general than did biology students (M = 3.09, SD = .84; 
on a scale from 1 = knowledge is indefinite – 7 = absolute answers are attainable). 

Furthermore, the domain-general scale of the EBI (EBI-definitude) was not 
correlated significantly to any of the domain-related scales of the CAEB. However, 
the two domain-related scales were significantly interrelated (r = -.52, p < .001): 
A strong belief in structured knowledge in genetics (low value on CAEB-texture) 
was related to a strong belief in static knowledge in genetics (high value on CAEB-
variability, the inverse relationship is due to the construction of the CAEB scales. 
Both endpoints point to a more ‘naïve’ view). 

Do Students Discriminate between Tasks of Different Complexity?

We hypothesized that students should discriminate between tasks of different 
complexity which should be evident in their significantly different answers in the 
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COPES questionnaire regarding different Task Levels (Hypothesis 1). To test this 
hypothesis, we computed a MANOVA for the three COPES factors (Deep Processing; 
Multiple Information Sources; and Superficial Processing) with Task Levels as 
repeated-measure factor. We computed similar ANOVAs for the three remaining 
single items (estimated time; estimated concepts; and Bloom classification). Thus, 
we expected seven main effects of the repeated-measure factor Task Level (six 
univariate main effects plus one multivariate main effect). 

The repeated-measure MANOVA for the three COPES factors (see Table 1 
descriptives; Table 2 results) showed a multivariate main effect for the repeated-
measure factor Task Levels which was replicated univariately on each single COPES 
factor (Deep Processing; Multiple Information Sources; and Superficial Processing). 
Exploring this question in more detail, we additionally compared the adjacent Task 
Levels statistically (after Bonferroni correction with alpha p < .01). 

Table 1.Means and standard deviations (in brackets) for all dependent variables (rows) with 
regard to all Task Levels (columns)

Dependent Variable RE UN AP AN EV CR

Deep Processing
2.62

(1.18)
3.17

(1.05)
4.62

(1.16)
5.23
(.93)

4.86
(.99)

4.76
(.92)

Multiple I. Sources
2.28

(1.04)
3.24

(1.16)
2.98

(1.05)
3.57

(1.28)
3.84

(1.07)
5.56
(.92)

Superficial Pro.
5.52

(1.51)
3.94

(1.70)
4.05

(1.39)
4.21

(1.28)
4.10

(1.24)
2.71

(1.18)

Estimated time
7:42

(13:07)
9:49

(11:47)
44:19

(76:59)
52:39

(51:26)
38:13

(61:23)
37:11

(64:46)

Estimated concepts
2.11

(2.17)
2.51

(2.18)
4.20

(4.11)
5.85

(4.89)
5.12

(4.15)
4.99

(11.07)

Bloom classification
1.17
(.48)

2.39
(1.33)

3.28
(.91)

3.31
(1.32)

3.75
(1.34)

5.05
(1.01)

Task Levels: RE = remember, UN = understand, AP = apply, AN = analyse, EV = evaluate, 
and CR = create; Dependent Variables: Multiple I. Sources = Multiple Information Sources 
and Superficial Pro. = Superficial Processing.

For the COPES factor Deep Processing remember and understand (F (1,101) = 
22.91, p < .001, η2

p = .18), understand and apply (F (1,101) = 126.99, p < .001, η2
p = 

.56), apply and analyze (F (1,101) = 26.28, p < .001, η2
p = .21), and analyze and 

evaluate (F (1,101) = 9.47, p < .01, η2
p = .09) tasks differed significantly. This means 

that students successfully discriminated between Task Levels of different complexity 
except for the two most complex ones (evaluate and create). Furthermore, the 
descriptive values (see Table 1) show that they considered Deep Processing less 
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important for the most complex tasks (evaluate and create) than for the moderately 
complex analyze task. For the COPES factor Multiple Information Sources, the 
following Task Levels differed significantly: remember vs. understand (F (1,101) 
= 70.64, p < .001, η2

p = .41), apply vs. analyze (F (1,101) = 31.01, p < .001, η2
p= 

.24), and evaluate vs. create (F (1,101) = 194.37, p < .001, η2
p = .66). Thus, students 

successfully discriminated between four Task Levels: the simplest remember task, 
the little more complex understand and apply tasks, the moderately complex 
analyze and evaluate tasks, and the most complex create task. For the COPES factor 
Superficial Processing, the following Task Levels differed significantly: remember 
vs. understand (F (1,101) = 79.87, p < .001, η2

p = .44) and evaluate vs. create (F 
(1,101) = 105.75, p < .001, η2

p = .51). Thus, students successfully discriminated 
between three broader Task Levels: the simplest remember task, a range of moderately 
complex tasks (understand, apply, analyze, and evaluate), and the most complex 
create task (for descriptives see Table 1).

The repeated-measure ANOVAs also indicate significant effects of the repeated-
measure factor Task Levels for each of the three remaining single items (estimated 
time; estimated concepts; and Bloom classification; see Table 2). Exploring these 
results in more detail, we report all significant differences between adjacent Task 
Levels (for descriptives see Table 1). For the variable estimated time, the following 
Task Levels differed significantly: understand vs. apply (F (1,101) = 22.72, 
p < .001, η2

p = .18). Thus, students successfully discriminated between two Task 
Levels: simple tasks (remember and understand) and complex tasks (apply, analyze, 
evaluate, and create). For the variable estimated concepts, the following Task Levels 
differed significantly: understand vs. apply (F (1,98) = 22.70, p < .001, η2

p = .19) and 
apply vs. analyze (F (1,98) = 18.21, p < .001, η2

p = .16). Thus, students successfully 
discriminated between three Task Levels: simple tasks (remember and understand), 
the mid-complex apply task, and complex tasks (analyze, evaluate, and create). For 
the variable Bloom classification, the following Task Levels differed significantly: 
remember vs. understand (F (1,94) = 69.94, p < .001, η2

p = .43), understand vs. apply 
(F (1,94) = 30.43, p < .001, η2

p= .25), and evaluate vs. create (F (1,94) = 64.43, p < 
.001, η2

p = .41). Thus, students successfully discriminated between four Task Levels: 
the simplest remember task, one little more complex understand task, a range of 
moderately complex tasks (apply, analyze, and evaluate), and the most complex 
create task.

Do Students Calibrate their Judgments to Task Complexity?

We hypothesized that students should calibrate their judgments to task complexity 
which should be evident in systematic relationships between students’ answers in 
the COPES-questionnaire and Task Levels of different complexity (Hypothesis 2). 
To test this hypothesis, we computed intra-individual Goodman-Kruskal Gamma 
correlations (G) between the Task Levels and each dependent variable (in all 
cases: n = 6, for six Task Levels) to diagnose calibration. These correlations were 
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Table 3. Calibration indices indicating the relationship between the dependent variables 
(rows) and Task Levels of different complexity

Dependent Variable Index M (SD) Significance G

Deep Processing .60 (.41) t (101) = 14.69***, d = 1.46 .54
Multiple Information Sources .95 (.70) t (101) = 13.70***, d = 1.36 .74
Superficial Processing -.61 (.88) t (101) = -7.03***, d = .69 -.55
estimated time .65 (.55) t (101) = 11.96***, d= 1.18 .57
estimated concepts .51 (.72) t (101) = 7.13***, d = .71 .47
Bloom classification 1.23 (1.02) t (101) = 12.23,***, d = 1.21 .85

*** p < .001; M = mean; SD = standard deviation; d = Cohen’s d; G = Goodman-Kruskal 
Gamma correlation, in this column the G values that correspond to the calibration indices 
(“Index”) are reported (reverse Z-transformation of the mean calibration indices).

Table 2.Repeated-measure (M)ANOVAs regarding the effects of Task Levels

F df df error p partial η2

repeated-measure MANOVA across Task Levels for the three COPES factors
Task Levels (multivariate) + 60.22 15 87 < .001 .91
 Deep Processing 148.38 5 505 < .001 .60
 Multiple Information Sources 169.86 5 505 < .001 .63
 Superficial Processing 62.78 5 505 < .001 .38
separate repeated-measure ANOVAs across Task Levels for the three single items
Estimated time 17.15 5 97 < .001 .47
Estimated concepts 19.66 5 94 < .001 .51
Bloom classification 258.06 5 90 < .001 .94

+Multivariate effects; all values according to Pillai’s trace; univariate effects indented.

subsequently Z-transformed into calibration indices. We determined significance by 
statistically testing the magnitude of these average indices against zero. We expected 
six calibration indices of significant size, one for each of the six dependent variables 
(Deep Processing; Multiple Information Sources; Superficial Processing; estimated 
time; estimated concepts; and Bloom classification).

We found significant calibration indices for all dependent variables (see Table 3). 
For example, the positive correlation of G = .54 between students’ answers regarding 
Deep Processing and Task Levels indicates that students judged Deep Processing to 
be quite unimportant for simple tasks and of ascending importance for more complex 
tasks (for descriptives see Table 1). Similar positive relationships were detected 
for Multiple Information Sources, estimated time, estimated concepts, and Bloom 
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Figure 1.Calibration graph depicting students’ Bloom classifications (Y-axis) as a function 
of Task Levels of different complexity (X-axis). The dotted line represents the hypothetical 

“line of perfect calibration” (perfectly correct classifications).

classification (Table 3). The negative correlation of G = -.55 (see Table 3) between 
students’ answers regarding Superficial Processing and Task Levels on the other 
hand indicates the following: Students judged superficial processing to be quite 
important for simple tasks and of descending importance for more complex tasks. 

In addition to relative calibration (see above), absolute calibration was explored 
for students’ Bloom classifications. This was the only instance where absolute 
calibration could be analysed within this study. For all other dependent variables 
we had no comparative standard indicating what constitutes correct answers. But 
for Bloom classifications, students’ classifications could be directly compared to 
the correct classifications (see methods section). Students on average classified 
47.17 % of the six tasks correctly (M = 2.83, SD = 1.26) which is significantly more 
than could be randomly expected (namely one out of six; t (97) = 14.35, p < .001, 
Cohen’s d = 1.45). The corresponding calibration graph (see Figure 1) shows that 
students slightly overestimated the complexity of simpler tasks (remember – apply) 
while they underestimated the complexity of more complex tasks (analyze - create) 
compared with hypothetically perfect classifications (indicated by the “line of 
perfect calibration” in Figure 1).
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Are these Metacognitive Discrimination and Calibration Processes Related to 
Students’ Learner Characteristics?

To test our hypotheses regarding learner characteristics and discrimination, repeated-
measure analyses were computed including all learner characteristics simultaneously. 
More specifically, a repeated-measure MANCOVA was computed across the three 
COPES scales (Deep Processing, Multiple Information Sources, and Superficial 
Processing) with Task Levels as repeated-measure factor, the epistemological 
beliefs scales (EBI-definitude, CAEB-variability, and CAEB-texture) as covariates 
and the Prior Knowledge Groups (biology students vs. humanities students) as 
factor. Additionally, repeated-measure ANCOVAs were computed separately for 
each of the remaining single items (estimated concepts, estimated time, and Bloom 
classification) with the same covariates, repeated-measure and between-subject 
factors.

To test our hypotheses regarding learner characteristics and calibration (also 
see interaction effects above), correlations were computed between the calibration 
indices of all dependent variables (Deep Processing, Multiple Information Sources, 
Superficial Processing, estimated concepts, estimated time, and Bloom classification) 
and the epistemological beliefs scales (EBI-definitude, CAEB-variability, and 
CAEB-texture). Additionally, the calibration indices of all dependent variables 
were statistically compared between Prior Knowledge Groups (biology students vs. 
humanities students). 

Note that even though in all cases all learner characteristics (epistemological 
beliefs scales and Prior Knowledge Groups) were simultaneously included in the 
analyses, we report the results separately: We will first report all results regarding 
epistemological beliefs, namely the results regarding main effects (Hypothesis 3) 
and the results regarding interaction effects (Hypothesis 4). Subsequently, we will 
report all results regarding prior domain-specific knowledge, namely the results 
regarding main effects (Hypothesis 5) and the results regarding interaction effects 
(Hypothesis 6). We will only report the significant results but we will point out the 
number of non-significant effects in each analysis.

Effects of Epistemological Beliefs We hypothesized that more sophisticated 
beliefs should be associated with judging all variables indicating deep processing 
more important across all tasks and with judging all variables indicating superficial 
processing less important (Hypothesis 3). Therefore, we expected a total of 
twenty-one main effects (18 univariate main effects of three epistemological belief 
scales regarding six dependent variables and 3 multivariate main effects of three 
epistemological beliefs scales).

In the MANCOVA across the three COPES factors we found a significant 
multivariate main effect of CAEB-variability (F (3,95) = 2.85, p < .05, η2

p = .083) 
that was univariately replicated significantly on the COPES factors Deep Processing 
(F (1,97) = 5.23, p < .05, η2

p= .051, Figure 2, top) and Multiple Information Sources 
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Figure 2. Calibration graphs depicting students’ judgments on the COPES factors Deep 
Processing (top) and dealing with Multiple Information Sources (bottom) as a function of 

Task Levels (X-axis) and CAEB-variability (median-split; lines).
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(F (1,97) = 7.58, p < .01, η2
p = .072, Figure 2, bottom): Students, who considered 

knowledge in genetics variable (sophisticated view on CAEB-variability) also 
considered Deep Processing and Multiple Information Sources more important across 
all Task Levels than more naïve students. Note that these effects were visualized by 
median-splitting the scale CAEB-variability (Figure 2), but that CAEB-variability 
was included as covariate in the analyses! 

Additionally, the ANCOVA for the single item Bloom classification indicates a 
significant main effect of CAEB-variability (F (1,90) = 4.59, p < .05, η2

p = .049, 
without Figure): More sophisticated students who believed in variable knowledge 
in genetics classified tasks in more complex Task Levels (especially analyze tasks). 
To summarize: We found four significant main effects in the expected direction, all 
of the scale CAEB-variability; all other main effects of epistemological beliefs were 
not significant.

We hypothesized that the effects of epistemological beliefs would be more 
pronounced on more complex Task Levels (Hypothesis 4). Therefore, we expected 
a total of twenty-one interaction effects (18 univariate interactions between Task 
Levels and three epistemological belief scales regarding six dependent variables 
and 3 multivariate interactions between Task Levels and three epistemological 
beliefs scales). Additionally, we expected a total of eighteen significant correlations 
with calibration indices (for each of three epistemological beliefs scales with six 
dependent variables). 

In the MANCOVA across the three COPES factors we found a significant 
univariate interaction between CAEB-variability and the repeated-measure factor 
Task Levels for the COPES factor Multiple Information Sources (F (5,485) = 2.34, 
p  < .05, η2

p = .024, Figure 2, bottom). The above-mentioned main effect of CAEB-
variability was most pronounced for the Task Levels remember through analyze, 
while it disappeared for the more complex tasks evaluate and create. Furthermore, 
we found one significant correlation with a calibration index: More naïve beliefs in 
the definitude of knowledge in general (EBI-definitude) were significantly associated 
with higher calibration indices regarding estimated concepts (r = .26, p = .009). To 
summarize: We found two effects indicating interactions between epistemological 
beliefs and task complexity (Task Levels), both counterintuitive. All other interaction 
effects and effects on calibration were not significant.

Effects of Prior Domain-Specific Knowledge  We hypothesized that more domain-
specific knowledge should be associated with judging all variables indicating deep 
processing more important across all tasks and with judging all variables indicating 
superficial processing less important (Hypothesis 4). Therefore, we expected a 
total of seven main effects (6 univariate main effects of Prior Knowledge Groups 
regarding six dependent variables and 1 multivariate main effect of Prior Knowledge 
Groups). However, we found no significant main effects of prior domain-specific 
knowledge at all.
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We hypothesized that the effects of prior domain-specific knowledge would 
be more pronounced on more complex Task Levels (Hypothesis 6). Therefore, 
we expected a total of seven interaction effects (6 univariate interactions between 
Task Levels and Prior Knowledge Groups regarding six dependent variables and 
1 multivariate interaction between Task Levels and Prior Knowledge Groups). 
We found a significant multivariate interaction between the Task Levels and Prior 
Knowledge Groups (F (15,83)  = 2.03, p < .05, η2

p = .268) that was univariately only 
replicated on the COPES factor Deep Processing (F (5,485) = 2.94, p < .05, η2

p= .029, 
Figure 3): Biology students judged Deep Processing to be of ascending importance 
from remember tasks through analyze tasks and their judgments reached a plateau 
for analyze, evaluate and create tasks. Humanities students did not discriminate on 
such a fine-grained level. They judged Deep Processing to be quite unimportant for 
remember and understand tasks and quite important for all more complex tasks. 
Furthermore, we found one significant difference in calibration indices (t (100) = 
2.09, p = .039, d = .41): Biology students (calibration: M = .65, SD = .83) displayed 
significantly higher calibration indices with regard to estimated concepts than 
humanities students (calibration: M = .36, SD = .56). To summarize: We found 

Figure 3. Calibration graph depicting students’ judgments on the COPES factor Deep 
Processing as a function of Task Levels (X-axis) and Prior Domain Knowledge Groups 

(biology students vs. humanities students; lines).
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two effects indicating interactions between prior domain-specific knowledge and 
task complexity. All other interaction effects and effects on calibration were not 
significant.

DISCUSSION

Discrimination and Calibration

The empirical data of the present study confirm Hypothesis 1. The repeated-measure 
factor Task Levels elicited significant main effects on all dependent variables 
(Deep Processing, Multiple Information Sources, Superficial Processing, estimated 
concepts, estimated time, and Bloom classification). This means that students in fact 
discriminate between tasks of different complexity as evident in their significantly 
different answers on the COPES questionnaire.

The empirical data of the present study also confirm Hypothesis 2. Task Levels 
of different complexity were significantly correlated with scores on all dependent 
variables. This means that students in fact calibrate their answers in the COPES 
questionnaire systematically to task complexity. More specifically, they consider 
all indicators of deep processing (Deep Processing, Multiple Information Sources, 
estimated concepts, estimated time, and Bloom classification) more important 
for more complex tasks and they consider indicators of superficial processing 
(Superficial Processing) less important for more complex tasks.

Therefore, the results regarding the first two research questions are consistent 
with the COPES-model (Winne & Hadwin, 1998) that assumes that students 
systematically adapt their learning process to external conditions. Furthermore, 
these results are mostly consistent with those of previous empirical studies 
about task complexity (e.g. Gall, 2006; Klayman, 1985; Rouet, 2003; Winne & 
Jamieson-Noel, 2003). Most of these studies focused on the enactment of learning 
strategies and indicate that learners demonstrate good self-regulation for simple 
tasks but less adequate self-regulation for complex tasks. The results of this 
study are consistent because in all cases learners processed different complex 
tasks differently and systematically adapted their (planned) behavior to task 
complexity. However, the results of this study are inconsistent with regard to 
the quality of students’ self-regulation: While results from other studies indicate 
insufficient self-regulation for complex tasks the results of this study indicate that 
students are well aware of the special demands of complex tasks and plan to use 
adequate approaches. One potential explanation for this inconsistency concerns 
the different stages of learning: Students might be able to plan adequate self-
regulation based on their adequate metacognitive knowledge about tasks and 
strategies (this study) but they might be unable to enact the planned approaches, 
for example due to cognitive overload or due to production or motivation deficits 
(other studies). 
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One directly related open issue concerns the absolute quality of students’ 
calibration. Even though students in general are quite successful at discriminating 
and calibrating (see above) they might be still far from perfect. Overestimating the 
complexity of simple tasks might not be detrimental for learning, just not be the 
most parsimonious way to solve these simple task. Misjudging the complexity of 
more complex tasks on the other hand might have more detrimental effects. Not only 
would the answer be less adequate, but also the gained understanding would be more 
superficial than required. Data from this study (as well as from the corresponding 
exploratory study; Stahl et al., 2006) tentatively indicates that students might in fact 
underestimate the complexity of very complex tasks – which would be in line with the 
finding of less adequate self-regulation for more complex tasks in other studies (see 
above). For example, the calibration graph depicting students’ absolute calibration 
for the item Bloom classification indicates that students classify complex tasks into 
less complex Task Levels than warranted (Figure 1). However, this interpretation 
requires further caution because of our definition of task complexity: Bloom’s revised 
taxonomy (Anderson et al., 2001) assumes a cumulative hierarchy. But empirical 
results – testing Bloom’s original taxonomy (Bloom et al., 1956) – show that the 
most complex tasks can often not be discriminated with regard to complexity or 
difficulty (Kreitzer & Madaus, 1994; Kunen, Cohen, & Solman, 1981). On the other 
hand empirical results strongly support the hierarchical order of less complex tasks, 
especially for understand, apply, analyze, and create (Gierl, 1997; Kreitzer & Madaus, 
1994; Kunen et al., 1981). To conclude this argument: Bloom’s revised taxonomy 
may define task complexity a bit too fine-grained because for some complex levels 
very similar cognitive processes might be adequate for students. However, this 
potential problem does not invalidate our conclusion that students in general could – 
or probably should – consider indicators of deep processing even more important for 
complex tasks than they currently do – for analyze through create tasks.

Another issue concerns methodology transfer of calibration measures: Recall the 
major conceptual differences between traditional conceptualizations of calibration 
(i.e., accuracy of metacognitive judgments regarding one’s own performance) 
and our conceptualization of calibration (i.e., alignment between students’ task 
definitions, goals and plans and the external variable task complexity). Presumably, 
learners possess more metacognitive awareness about their own internal cognitive 
processes (traditional conceptualizations) than about the fit of these processes 
with the external world (our conceptualizations). Therefore, if we compared these 
conceptually different indices we would expect higher indices of relative calibration 
in traditional calibration research. Thus, it is surprising that we detected indices 
of relative calibration (Goodman-Kruskal Gamma correlations) within this new 
application context that range from G = .47 to G = .85. The size of these calibration 
indices would even be considered substantial if compared to calibration indices 
from the traditional calibration paradigm (e.g. G =.38 for immediate and G = .90 for 
delayed confidence judgments; Nelson & Dunlosky, 1991). 
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Epistemological Beliefs

The empirical data of the present study partly confirm Hypothesis 3 (main effects 
of epistemological beliefs). More sophisticated beliefs in variable knowledge in 
genetics (CAEB-variability) were significantly associated with judging variables 
indicating deep processing more important (for the dependent variables Deep 
Processing, Multiple Information Sources, and Bloom classification). However, no 
significant effects were detected for other epistemological beliefs scales (CAEB-
texture and EBI-definitude) or other dependent variables (Superficial Processing, 
estimated time, and estimated concepts). To summarize: All detected main effects of 
epistemological beliefs (n = 4) point in the hypothesized direction, but the majority 
of the hypothesized effects was not significant (n = 17).

Regarding the significant effects, most likely students who believe that knowledge 
is variable and dynamic automatically consider all kinds of tasks more complex per 
se (effect on Bloom classification). In order to counteract this perceived complexity 
and in order to adequately deal with the perceived variability of knowledge they 
might plan deep elaboration approaches (effects on Deep Processing and Multiple 
Information Sources). It could be said that these sophisticated students discriminated 
between tasks on a higher level. These results are in line with other empirical 
results indicating beneficial main effects of sophisticated beliefs (Bartholomé et al., 
2006; Kardash & Scholes, 1996; Mason & Boscolo, 2004; Mason & Scirica, 2006; 
Schommer, 1990; Schommer, Crouse, & Rhodes, 1992; Schommer-Aikins & Hutter, 
2002; Muis, 2007). For example, in other studies concentrating on the preparatory 
stages of learning, students with sophisticated beliefs perceived the affordances of 
ill-structured tasks more accurately (King & Kitchener, 2002) and set more adequate 
goals (Bråten & Strømsø, 2004; Ryan, 1984). 

However, the number of non-significant main effects, especially regarding other 
dimensions of epistemological beliefs is surprising. There were no significant 
(main) effects of connotative beliefs about the structure of knowledge in genetics 
(CAEB-texture) and also of the denotative beliefs about the definitude of knowledge 
in general (EBI-definitude). Possibly beliefs about structural aspects (CAEB-texture) 
of knowledge in genetics have been conceived by our subjects as issues which apply 
to the field of genetics in general, while issues of variability (CAEB-variability) 
might be more topic-specific and therefore they might have been more important in 
order to decide how different learning tasks should be tackled differently. Note that 
in this study epistemological beliefs were also measured in a rather abstract way, 
especially regarding EBI-definitude which was measured for knowledge in general. 
This also might explain why there were weaker effects than we would have expected 
based on our predictions. Note, that these explanations may also be relevant for 
explaining the non-significant interactions between epistemological beliefs and task 
complexity (see below).

The empirical data of the present study do not confirm Hypothesis 4 (interaction 
between epistemological beliefs and task complexity). We expected that the effects 
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of epistemological beliefs would be more pronounced regarding more complex Task 
Levels. However, we found two effects that explicitly contradicted this expectation, 
namely the effects of CAEB-variability on Multiple Information Sources disappeared 
for the most complex Task Levels and more “naïve” beliefs in definite knowledge 
(EBI-definitude) were associated with higher calibration indices regarding 
estimated concepts. To summarize: All detected interaction or calibration effects of 
epistemological beliefs (n = 2) point in directions contrary to our hypotheses; the 
majority of hypothesized effects was not significant (n = 20 interaction effects; n = 
17 correlations with calibration indices).

These effects are inconsistent with our predictions as well as with previous research 
findings. In this study, students with more naïve epistemological beliefs appear 
to be better at adapting their task definitions, goals and plans to task complexity 
while sophisticated students showed less flexibility. On the other hand, we assumed 
theoretically that students with more sophisticated beliefs should be more flexible 
in their adaptations to task complexity (Hammer & Elby, 2002). Consistent with 
this theoretical assumption, previous empirical studies investigating the relationship 
between students’ epistemological beliefs and their calibration, found that sophisticated 
beliefs in gradual learning (quick learning, Schommer, 1990) as well as in complex 
knowledge (simple knowledge, Schommer et al., 1992) were associated with less 
overestimation of comprehension. Furthermore, the corresponding exploratory study 
from our lab (Stahl et al., 2006) also demonstrated that sophisticated beliefs were 
associated with better calibration indices in the preparatory stages of learning. 

One potential explanation for the counterintuitive effects detected in this study 
is related to the measurement of epistemological beliefs: The scale EBI-definitude 
reaches from views that knowledge is definite (naïve absolutist) to views that 
knowledge is indefinite (sophisticated relativist) but does not capture most 
sophisticated flexible evaluativist epistemologies (Kuhn, Cheney, & Weinstock, 
2000). Such an evaluativist position with regard to EBI-definitude would mean 
that although knowledge in general is considered indefinite such a person would 
be aware that some pieces of knowledge are well-validated by scientific inquiry 
and thus almost absolute answers are attainable in some cases. Most likely, students 
with such epistemological beliefs would give judgments in the mid-range of the 
scale EBI-definitude. The frequency distribution for EBI-definitude reveals that 
judgments in this sample range from very indefinite conceptualizations (relativist) 
to moderately definite ones (probably evaluativist); no very definite judgments were 
given. Students with moderately definite views on EBI-definitude – probably the 
most sophisticated students according to this proposed explanation – possess higher 
calibration indices than students who considered knowledge very indefinite. 

Regarding epistemological beliefs, we conclude that epistemological beliefs 
elicited fewer effects than predicted, but that our predictions of main effects were 
correct, at least regarding CAEB-variability: Sophisticated beliefs in variable 
knowledge in genetics were mainly associated with judging indicators of deep 
processing more important across all tasks. These effects are consistent with our 
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theoretical assumption that epistemological beliefs foster learning because they entail 
general assumptions about the forthcoming knowledge and task structures which 
have to be dealt with by the learner. Of course, the reported relationships between 
epistemological beliefs and task definitions, goals and plans are only correlational. 
Therefore we conceive the results with some reserve as evidence for our theoretical 
proposition about epistemological beliefs as standards for the calibration in the 
preparatory phases of learning as proposed in the COPES model. 

Prior Domain-Specific Knowledge

The empirical data of the present study does not confirm Hypothesis 5 (main effects 
of prior domain-specific knowledge). We expected that biology students with high 
prior domain-specific knowledge would judge indicators of deep processing more 
important and indicators of superficial processing less important across all tasks. 
However, we found none of the six expected main effect of Prior Knowledge 
Groups. The empirical data of the present study show an unexpected pattern 
regarding Hypothesis 6 (interaction between prior domain-specific knowledge 
and task complexity). We expected that the effects of prior knowledge would be 
more pronounced on more complex Task Levels. However, we found two effects 
just indicating more fine-grained and differentiated calibration of biology students. 
Prior Knowledge Groups showed an interaction with Task Levels on the COPES 
factor Deep Processing indicating more fine-grained discrimination of biology 
students. Furthermore, biology students displayed higher calibration indices with 
regard to estimated concepts. To summarize: The detected interaction or calibration 
effects of prior domain-specific knowledge show more fine-grained discrimination 
for students with higher domain-specific knowledge – which differs from the 
predicted pattern of interaction; however the majority of hypothesized effects was 
not significant.

Prior knowledge might have helped students to perceive more fine-grained 
nuances of differences in tasks while students without adequate domain-specific 
knowledge might have based their judgments on surface cues. These results are 
mostly consistent with those of previous empirical studies demonstrating that prior 
domain-specific knowledge has little quantitative impact (consistent with the small 
number of detected effects) but some qualitative impact (consistent with the detected 
effects) on planning processes: Experts seem to use more elaborate criteria to evaluate 
tasks and seem to judge task difficulty more accurately (Chi, 2006; Lodewyk & 
Winne, 2005). However, considering the ubiquitous impact of prior domain-specific 
knowledge on learning processes detected in other empirical studies, prior domain-
specific knowledge had surprisingly little impact on students’ preparatory stages of 
self-regulated learning in this study. A potential explanation concerns the domain-
specificity versus domain-generality of expertise: Students’ task definitions, goals 
and plans might be more dependent on domain-general approaches to learning (e.g. 
students’ metacognitive knowledge about tasks and adequate strategies) than on 
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prior domain-specific knowledge. However, we assume that prior domain-specific 
knowledge might become more relevant in subsequent stages of learning. 

IMPLICATIONS

These results imply that students are able to successfully monitor tasks with regard 
to complexity and seem to know reasonably well what kind of task definitions, goals 
and plans are adequate. Of course, it cannot be taken for granted that the planning 
and anticipation processes which were scrutinized here do really result in appropriate 
learning behaviour. Thus, if students should fail to enact appropriate strategies in 
the subsequent stages of learning, this should not be attributed to monitoring or 
knowledge deficits, but rather to production or motivation deficits. 

If these findings could be corroborated in further studies it would have some 
practical implications. If students (at least of this age group) are able to apprehend the 
complexity of tasks in advance, such capabilities could be used in instruction. In order 
to make students aware about their pre-existing knowledge and ideas (sometimes also: 
about their misconceptions) it might be helpful to ask them for reflections about the 
next tasks, similarly to the procedure with the COPES questionnaire of this study. 
Asking students why they judge some tasks as less complex than others and asking 
them what they think about the knowledge laying before them, might be a successful 
teaching approach just because it can build on the calibration capabilities which 
became evident in this study. Furthermore they could be asked about their ideas with 
regard to the nature of the knowledge which they have got to acquire next. While 
our findings with regard to the relationship between such beliefs and calibration were 
mixed, they nevertheless allow for the conclusion that thinking about the forthcoming 
learning tasks involves some epistemological belief aspects. Again such relationships 
could be made more aware by explicit discussing denotative as well as connotative 
aspects of students’ ideas about the knowledge they have to acquire next. We have 
shown that even such general associations about the variability of knowledge as they 
were measured here (with the CAEB) are related to the choice of study strategies. 
Therefore it should be feasible to use these associations as a topic of instructional 
discussions. 

NOTES

1 Two versions of this introduction were administered, but because this experimental treatment elicited 
no significant effects, we ignored this factor subsequently. More specifically, we matched two groups 
of participants with regard to their prior biology knowledge and their epistemological beliefs based on 
the results obtained in the first online session. One matched sub-sample read a neutral version of the 
introduction and the other sub-sample an epistemological version that was enriched with comments 
about epistemological issues and which was intended to elicit more sophisticated beliefs. As a 
treatment check the CAEB was re-administered after this epistemological sensitization. However, we 
found no significant differences in epistemological beliefs after this treatment. Therefore, we ignored 
this attempted experimental manipulation in all subsequent analyses.
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