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MATTHEW W. GALLAGHER & TIMOTHY A. BROWN

14. INTRODUCTION TO CONFIRMATORY 
FACTOR ANALYSIS AND STRUCTURAL 

EQUATION MODELING

Confirmatory factor analysis (CFA) is a powerful and flexible statistical technique 
that has become an increasingly popular tool in all areas of psychology including 
educational research. CFA focuses on modeling the relationship between manifest 
(i.e., observed) indicators and underlying latent variables (factors). CFA is a special 
case of structural equation modeling (SEM) in which relationships among latent 
variables are modeled as covariances/correlations rather than as structural relationships 
(i.e., regressions). CFA can also be distinguished from exploratory factor analysis 
(EFA) in that CFA requires researchers to explicitly specify all characteristics of the 
hypothesized measurement model (e.g., the number of factors, pattern of indicator-
factor relationships) to be examined whereas EFA is more data-driven. In this chapter 
we will provide a general introduction to how CFA and SEM can be used within 
educational research and other areas of psychology. We will begin with a nontechnical 
overview of the purpose of and methods underlying CFA and SEM before describing 
the various potential uses of CFA and SEM in educational research. We will then 
discuss the advantages of CFA and SEM over traditional methods of data analysis, 
provide an overview of the core steps in conducting CFA and SEM analyses, and 
discuss some practical issues in conducting these analyses such as software options. 
We then provide a brief summary of some of the more advanced methods in which 
CFA and SEM can be extended to conduct sophisticated analyses. We conclude with 
an illustrative series of example models in which the relationship between academic 
self-efficacy and academic performance is examined using CFA and SEM.

OVERVIEW AND GOALS OF CFA AND SEM

The goals of both CFA and SEM are to identify latent variables using a set of manifest 
indicators and to then evaluate hypotheses regarding the relationships among the 
latent variables. The conceptual background for conducting these analyses is the 
common factor model (Thurstone, 1947), which states that each manifest indicator 
is a linear function of one or more common factors and a unique factor. Factor 
analytic techniques therefore attempt to partition the variance of an indicator 
into (1) common variance, or the proportion of variance that is due to the latent 
variable, and (2) unique variance, which is a combination of random error variance 
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(e.g., measurement error) and reliable variance that is specific to a particular item. 
Both EFA and CFA and SEM attempt to reproduce the observed intercorrelations/
covariances between items with a more parsimonious set of latent variables. The 
primary difference, as mentioned above, is that CFA and SEM require researchers 
to explicitly specify every aspect of the models to be evaluated. CFA and SEM 
therefore require that researchers have a strong conceptual or empirical foundation 
to guide the specification and evaluation of models.

Common Uses of CFA and SEM

Some of the most common uses of CFA in educational and other areas of research 
include scale validation, construct validation, and evaluating measurement invariance. 
It is now considered standard practice to conduct a series of factor analyses when 
developing a new measure in psychological research. The standard progression is for 
researchers to begin by specifying an EFA model to evaluate an initial pool of items, 
and to then move to a CFA framework to provide a more rigorous evaluation of how a 
theoretical model represents the observed data. Through this process, researchers are 
able to determine the number of latent variables that best represents the constructs of 
interest and the pattern of relationships (i.e. factor loadings) between the observed 
items and latent variables. Thus, for instance, CFA can help researchers determine 
whether they should focus on the total score of a measure or subscales comprised of 
particular items from that scale. CFA also provides superior methods of evaluating 
other psychometric properties (e.g., reliability) of a scale than traditional methods 
such as Cronbach’s alpha. For these reasons, educational researchers are strongly 
encouraged to use CFA when developing and validating new scales.

Another common application of CFA is to evaluate whether the measurement 
properties of an assessment are invariant. This is often an important second step 
in scale development. Measurement invariance can be tested cross-sectionally 
between groups or longitudinally between assessments of the same individuals. The 
use of CFA to evaluate measurement invariance across groups is discussed in detail 
in Chapter XX; in brief, these methods allow researchers to evaluate whether the 
relationship between indicators and latent variables is consistent between groups. 
For example, researchers could use CFA to evaluate measurement invariance 
between sexes on a test of mathematical proficiency. This analysis could help 
researchers determine whether any observed differences between sexes represent 
true differences between males and females or merely indicate that the items on 
a particular assessment function differently between sexes. The evaluation of 
measurement invariance is also a very important but underappreciated issue in 
longitudinal research, as the demonstration of measurement invariance across 
assessments provides the foundation for researchers to conclude that change in a 
latent variable across time truly represents growth or decline rather than inconsistent 
measurement. For additional information about how to test measurement invariance, 
readers are encouraged to consult Brown (2006), and Cheung and Rensvold (2002).
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A third area in which CFA is commonly used is construct validation. CFA and SEM 
provide a useful framework for demonstrating both convergent and discriminant 
validity of theoretical constructs. Convergent validity is indicated by evidence that 
multiple indicators of theoretically linked constructs are strongly interrelated; for 
example, results on a series of tests that all purport to measure mathematical aptitude 
load on a single factor. Discriminant validity is indicated by evidence that indicators 
of theoretically distinct constructs do not correlate strongly with one another; for 
example, indicators of verbal and mathematical aspects of intelligence load on 
separate factors and correlate more so with indicators within the same domain of 
intelligence than with indicators within a different domain of intelligence. One of the 
most robust ways in which CFA can be used in construct validation is with the use 
of multitrait-multimethod techniques (Campbell & Fiske, 1959; Kenny & Kashy, 
1992), a powerful yet infrequently used technique in which several constructs are 
measured using multiple methods and then modeled such that common variance due 
to method effects is separated from common variance due to latent traits.

Advantages of CFA and SEM

CFA and SEM have numerous advantages over traditional statistical techniques such 
as correlation and regression. One of the primary advantages of CFA and SEM is 
that they allow researchers to estimate the relationships between variables while 
accounting for measurement error. Traditional statistical techniques impose the 
generally unrealistic assumption that variables have been measured perfectly with no 
error. This assumption of error-free measurement is rarely appropriate in educational 
research or other areas of psychological research and results in parameter estimates 
that are biased to an unknown degree due to the failure to account for measurement 
error. By specifying latent variables that allow for the estimation of measurement 
error, researchers are able to obtain more accurate, reliable, and valid estimates of 
the relationships among latent constructs. This can also result in increased statistical 
power as the relationships between variables can be more precisely estimated after 
properly accounting for the role of measurement error. An important strength of 
CFA is the ability to model complex error structures among indicators to account 
for method effects (e.g., two self-report indicators of intelligence may correlate 
more strongly with one another than peer and teacher evaluations of intelligence 
would). Another important advantage of latent variable techniques such as CFA and 
SEM is that they permit the specification of complex longitudinal models that can 
help researchers to evaluate sophisticated theoretical models regarding change (e.g., 
latent growth curve models). A few of the more advanced methods are discussed 
later in this chapter. It is worth noting, however, that there are many circumstances 
in which CFA and SEM may not be the ideal method of data analysis. Most notably, 
if researchers are focusing on manifest variables that do not include measurement 
error (e.g., gender, grade point average), latent variable modeling techniques such as 
CFA and SEM may not be necessary.
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CORE STEPS IN CFA AND SEM ANALYSES

CFA and SEM are complex statistical techniques that are performed in an iterative 
process and that present researchers with a number of important decisions during 
the process. The steps identified subsequently will provide readers with a general 
outline of the most common steps that researchers will follow when conducting 
CFA and SEM analyses. The subsequent steps presume that a researcher has already 
collected an appropriate dataset and has screened the data for outliers, univariate 
normality, and multivariate normality (Kline, 2011).

Specify Theoretical Model

The first step in conducting CFA and SEM analyses is for the researcher to clearly 
specify the theoretical model they are interested in testing. As mentioned previously, 
CFA and SEM differ from more data-driven procedures such as EFA and it is 
therefore crucial that researchers have a very clear idea of the specific models they 
want to test in advance. It is often helpful to diagram the planned models using 
common SEM notation and symbols. A fully notated example for a two-factor, six 
indicator CFA model can be seen in Figure 1. When diagramming SEM models, 
circles are used to denote latent variables, squares or rectangles are used to denote 
manifest or observed variables, correlations (standardized solutions) or covariances 

Figure 1. Example two factor CFA measurement model with six manifest indicators. 
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(unstandardized solutions) are denoted using double headed arrows, and single 
headed arrows are used to denote direct effects such as factor loadings or effects of 
one latent variable on another. Other common notations in SEM include the use of 
lambda (λ) to denote factor loadings, psi (ψ) to denote variances and covariances/
correlations, and theta (θ) to indicate residuals and residual covariances.

Specify Measurement Model

After clearly specifying a theoretical model to be tested, researchers should next 
evaluate the measurement model for the latent variables of interest. The test of 
the measurement model should always be conducted prior to evaluating structural 
equation models. There are two important issues that researchers must consider when 
specifying the measurement model. The first issue is that researchers must ensure 
that CFA and SEM models are statistically identified. Adequate identification occurs 
when the number of parameters to be estimated in a model does not exceed the 
number of pieces of information in the variance-covariance input matrix. If a model 
is not adequately identified, then a solution cannot be solved as there are an infinite 
number of potential solutions. In CFA, the number of known pieces of information is 
determined by the size of the input variance/covariance matrix and can be calculated 
using the formula b = [p * (p + 1)]/2, where b is the number of elements in the input 
matrix and p is the number of variables included in the input matrix. For example, 
an input matrix of three variables would provide six pieces of information (three 
variances and three covariances) while an input matrix of two variables would 
only provide 3 pieces of information (two variances and 1 covariances). It is 
therefore only possible to freely estimate six parameters (i.e. three factor loadings 
and three residuals or two factor loadings, three residuals and the variance of the 
latent variable) in a model that uses an input matrix with three variables. When 
the number of freely estimated parameters equals the number of elements in the 
input matrix, then a model is just-identified and will fit the data perfectly. When the 
number of elements in the input matrix is greater than the number of freely estimated 
parameters, then a model is over-identified and the degrees of freedom (df) for the 
model can be determined by subtracting the number of freely estimated parameters 
from the number of known elements. When a model is overidentified, researchers 
are able to obtain goodness of fit statistics (discussed in more detail subsequently) 
that provide information about how well the specified CFA model reproduced the 
observed relationships in the sample data. It is also important to consider whether 
a model is locally identified in addition to being globally identified. Large models 
that include many variables will usually be over-identified but researchers should 
take care that each latent variable within a model is adequately identified. Situations 
in which the overall model is over-identified but certain components of the model 
are not locally identified are referred to as empirically under-identified solutions 
(e.g., selection of a marker variable that is unrelated to the other indicators that are 
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specified to load on the same factor; see next paragraph). In these cases, either the 
model cannot be estimated or the model will converge but contain out of bounds 
parameter estimates (i.e., negative residual variances).

The second important issue in specifying CFA measurement models is setting the 
scale of latent variables. Latent variables do not have an inherent metric so the scale 
of these variables must always be set using one of the three methods. The most widely 
used method is the marker variable method, which involves fixing the factor loading 
of one indicator for each latent variable to be 1.0. This method results in setting the 
scale of the latent variable to the metric of the marker variable. Another common 
method is to standardize the factor variance, which involves fixing the variance of 
the latent variable to 1.0. The fixed factor method results in a standardized solution 
for the factor loadings and residuals. A third, but less common, method for setting 
the scale of latent variables is the effects coding approach (Little, Slegers, & Card, 
2006). This method involves constraining the loadings of a latent variable to average 
1.0. This is done by freely estimating all but one of the factor loadings and then 
fixing the remaining factor loading to equal the number of indicators minus each 
of the freely estimated factor loadings. The advantage of the effects coding method 
is that the parameters in a model (i.e., variances, means) reflect the observed scale 
of the indicator variables. The disadvantage of the effects coding method is that it 
requires slightly more complicated syntax. Each method is valid and will produce 
identical results in terms of model fit.

Estimate and Evaluate Measurement Model

The next step is to estimate the model using one of the many software packages 
designed for latent variable analysis (discussed later). The estimation process in 
CFA and SEM involves a fitting function (most commonly maximum likelihood; 
ML) that iteratively produces parameter estimates in an attempt to minimize the 
differences between the model-implied variance-covariance matrix and the sample 
variance-covariance matrix. For a more thorough description of the procedures 
involved in ML estimation and the circumstances in which other estimation methods 
are preferred, the reader is referred to Brown (2006), and Eliason (1993).

If a model converges successfully (i.e., a solution is obtained through ML 
estimation), researchers can then evaluate how acceptable the model fit the data. 
There are three primary components of the results that researchers should focus on 
when evaluating model fit. The first is overall goodness of fit, which reflects the 
degree to which the estimates of the CFA model reproduce the relationships between 
variables in the observed sample. A variety of fit statistics have been developed 
and it is generally recommended that researchers report multiple fit indices as they 
provide a more conservative and comprehensive evaluation of model fit. The classic 
goodness of fit index is model chi-square (χ2). If the χ2 value of a model exceeds 
the critical value from the χ2 distribution (determined by the model’s degrees of 
freedom), then the null hypothesis of adequate model fit is rejected. Although 
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χ2 provides a very straightforward test of model fit, it has significant limitations 
including that it is overly sensitive to sample size and is therefore likely to reject 
very good models if the sample is large. For this reason, it is generally recommended 
that researchers report χ2, but focus more on other fit indices when evaluating model 
fit. The most widely accepted global fit indices are the root mean square error of 
approximation (RMSEA; Browne & Cudeck, 1992; Steiger & Lind, 1980), the 
comparative fit index (CFI; Bentler, 1990), the Tucker-Lewis index (TLI; Tucker & 
Lewis, 1973) which is sometimes also referred to as the non-normed fit index, and 
the standardized root mean square residual (SRMR; Bentler, 1995). For each of these 
fit statistics values generally range from 0 to 1. For the SRMR and RMSEA, values 
closer to 0 indicate better model fit, while values closer to 1 indicate better model 
fit for CFI and TLI. Recommendations vary in terms of what values of these fit 
statistics should be considered acceptable. Early guidelines for model fit suggested 
that CFI and TLI values greater than .9, and RMSEA values less than .1 should be 
considered acceptable (Bentler, 1990; MacCallum et al., 1996). More recently, the 
results of one of the most comprehensive simulation studies examining model fit 
(Hu & Bentler, 1999) suggested the following guidelines for considering a model 
to have good fit: (1) SRMR values close to or below .08, (2) RMSEA values close 
to or below .06, and (3) CFI and TLI values close to or above .95. It is important to 
recognize that these guidelines should used as general recommendations rather than 
rigid guidelines and that model fit should always be evaluated in terms of multiple 
fit indices rather than just a single fit statistic.

The second aspect of the results that researchers should examine when evaluating 
model fit is localized areas of poor fit. The global fit indices (e.g., RMSEA, CFI) 
provide a useful evaluation of the overall fit of a model but it is possible for a model 
to have good overall fit while poorly reproducing specific aspects of the model. The 
most common method for identifying localized misfit is by examining modification 
indices. Modification indices reflect the approximate change in the overall model 
χ2 if a fixed or constrained parameter were to be freely estimated. Modification 
indices can be conceptualized as a χ2 with 1 degree of freedom so modification 
indices of 3.84 or greater (i.e., the critical value of χ2 with 1 df, α = .05) suggest that 
the model fit could be significantly improved by freely estimating the parameter 
in question. Large modification indices may therefore provide researchers with 
information about how a particular model may be misspecified (e.g., the need for 
specifying a residual covariance between two indicators to account for a method 
artifact). However, it is important that researchers not make revisions to a model 
solely based on modification indices without a theoretical or empirical basis as this 
can lead to model overfitting and inappropriate capitalization on chance associations 
in the sample data (MacCallum, Roznowski, & Necowitz, 1992).

The third aspect of model evaluation is the interpretability, strength, and statistical 
significance of parameter estimates. It is important to confirm that model results do not 
contain any out of range values such as negative variances (often referred to as Heywood 
cases or offending estimates). This outcome can indicate significant problems in how 
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the model was specified or problems with the sample data. Nonsignificant parameter 
estimates may indicate unnecessary parameters or items that are poor indicators of a latent 
construct. It is also useful to examine the completely standardized parameter estimates at 
this stage as these can be interpreted as correlations in the case of associations between 
latent variables, standardized regression coefficients in the case of factor loadings, and 
the proportion of variance unexplained in indicators in the case of residual variances. 
For example, a correlation approaching 1.0 between two latent variables may indicate 
that the two constructs are not truly distinct and that it may be more appropriate and 
parsimonious to collapse the variables into a single latent construct.

Consider Model Revisions

After estimating the measurement model and evaluating goodness of fit, the next 
step for researchers is to decide whether any revisions to the model are warranted. 
As mentioned previously, potential model revisions can be indicated based on 
modification indices or evaluation of the significance and strength of the parameter 
estimates. Any revisions should be made in an iterative fashion as modification 
indices are not independent of one another and minor changes in how a model is 
specified can produce large changes in both model fit and the parameter estimates. 
Researchers should err on the side of not making post hoc model revisions unless there 
is a strong theoretical or empirical foundation so as not to artificially inflate model 
fit by incorporating revisions that merely reflect sample-specific characteristics.

Specify Structural Models (If Applicable)

After establishing a satisfactory measurement model using CFA, researchers can 
then begin to specify structural equation models. Structural models allow researchers 
to explicitly model hypothesized relationships beyond the basic associations that are 
specified in CFA measurement models (i.e., factor covariances). More specifically, 
it is at this point that researchers can test hypothesizes regarding the presence or 
absence of regression effects among the latent variables, test models that involve 
the estimation of indirect effects to evaluate mediation hypotheses, test models that 
involve the estimation of interaction effects to evaluate moderation hypotheses, and 
test models that involve the specification of complex patterns of longitudinal growth 
such as latent growth curve models (Preacher et al., 2008). These are just a few of the 
many types of structural equation models that can be specified and researchers need 
to take care to use models that are appropriate for testing their specific theoretical 
hypotheses and models.

Reporting Results

The final step in conducting CFA and SEM analyses is to report the analyses in 
a clear and understandable manner so that it is possible for others to understand 
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exactly how the models were specified and to replicate the models in independent 
samples (cf. McDonald & Ho, 2002). Given the complexity of many CFA and SEM 
models it is not always feasible to report every single parameter estimate from a 
model, but for transparency there are certain aspects of models that should always 
be presented. Researchers should clearly state how a model was specified, including 
information about the method of scale-setting used and justification of any post hoc 
model modifications. Multiple indices of model fit should be reported, preferably 
all five of the fit statistics described previously (i.e., χ2, RMSEA, SRMR, CFI, and 
TLI). Researchers should also report information regarding the specific parameters 
of interest in a model, in both unstandardized and standardized form. Presentation of 
model parameters can often be accomplished most easily by presenting the results in 
a figure. It is also preferable to include the descriptive statistics (means and standard 
deviations) and the correlation/covariance matrix used to estimate the models so that 
readers can see the input matrix that was used to estimate the model (e.g., for data 
re-analysis).

PRACTICAL ISSUES IN USING CFA AND SEM

Software

There are now numerous software packages that are capable of estimating CFA and 
SEM models. Some of the most widely used programs include Mplus (Muthén & 
Muthén, 2008–2012), LISREL (Jöreskog & Sörbom, 1996), AMOS (Arbuckle, 
2010), EQS (Bentler, 2006), CALIS (SAS Institute, 2005), Mx (Neale, Boker, 
Xie, & Maes, 2003), and multiple packages within the R statistical framework 
including SEM (Fox, 2006) and LAVAAN (Rosseel, 2011). All of these programs 
allow for the specification of CFA and SEM models either through the creation of 
syntax files or graphical interfaces. Each program is capable of estimating the most 
common CFA and SEM models but certain programs have unique characteristics 
or advantages. Mplus is in some ways the most flexible software program as it 
allows users to specify advanced models such as exploratory structural equation 
modeling (Asparaouhov & Muthén, 2009), multilevel structural equation modeling 
(Muthén & Asparouhov, 2008), and to use Bayesian estimation procedures that are 
not available or not easily specified in other programs. LISREL is a good program 
for didactic purposes as it allows researchers to specify models in terms of the 
matrices that comprise SEM models (e.g., lambda matrix for factor loadings). Mx 
has some advanced capabilities for estimating twin models and is the most common 
latent variable program in genetics research. All of the SEM packages within the R 
framework (e.g., LAVAAN) are open-source and free. AMOS and EQS both provide 
users with the option to specify models using a graphical interface. Although this 
capability may seem appealing, researchers should take caution as it is very easy to 
misspecify models when using graphical interfaces and ultimately, it is often easier 
to specify complex models using a syntax file.
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Sample Size Requirements

As with any other area of research, the issue of statistical power is an important 
one when conducting CFA and SEM. There are multiple methods of determining 
power in CFA and SEM. One approach is based on statistical power for evaluating 
a model using RMSEA (MacCallum et al., 1996; Preacher & Coffman, 2006). This 
method requires researchers to specify the degrees of freedom for a model, alpha 
(typically .05), desired power (typically .80), and null and alternative values for 
RMSEA, and provides the sample size necessary to achieve the desired level of 
power in terms of the RMSEA model evaluation. An alternative and more flexible 
method of estimating power for latent variable models is the Monte Carlo method. 
Monte Carlo simulation studies allow researchers to evaluate the bias in specific 
parameter estimates and to determine power for detecting significant parameters 
based on population parameter estimates and varying sample sizes specified by the 
researcher. For a more detailed overview of methods for calculating power in CFA 
and SEM models and the use of Monte Carlo methods, readers are referred to Brown 
(2006), and Muthén and Muthén (2002).

Handling Missing Data

A common issue that applied researchers face when conducting CFA, SEM or any 
other form of statistical analysis is determining the most appropriate method for 
handling missing data. It is rare that researchers will collect a dataset in which no data 
are missing, and there are many reasons that data may be missing. Current typologies 
of missing data distinguish between three forms of missing data. In some situations 
data can be considered to be missing completely at random (MCAR) if, for example, 
a particular questionnaire was accidentally omitted in assessment packets for a few 
individuals. Data can also be considered missing at random (MAR) if, for example, 
attrition in a longitudinal study of academic outcomes is related to other variables in the 
data set such as academic engagement or motivation. Finally, data can be missing not 
at random or nonignorable if the pattern of missingness is related to some unobserved 
variable(s). A more complete description of the nature and implications of these patterns 
of missingness can be found in Enders (2010), but for the purposes of this chapter we 
will focus on what researchers can do to manage MAR and MCAR situations.

Many of the traditional methods of handling missing data (e.g., pairwise or listwise 
deletion) are inappropriate, as it has been repeatedly demonstrated that these approaches 
result in reduced statistical power and often produce biased parameter estimates 
(Allison, 2003; Enders, 2010; Schafer & Graham, 2002). The two methods that are the 
most appropriate strategies for handling missing data are full information maximum 
likelihood (FIML) estimation (also commonly called direct maximum likelihood), and 
multiple imputation. Both approaches are appropriate when data can be considered 
to be MAR or MCAR. We will focus our discussion on the FIML approach as this 
approach is easily implemented in many latent variable modeling software packages 
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(e.g., Mplus, LISREL), and is generally regarded by methodologists as the most 
straightforward method of handling missing data (Allison, 2003). FIML methods use 
all of the available data to provide appropriate estimates of parameters and standard 
errors for a model while accounting for missing data. FIML is now the default estimator 
in Mplus and can be easily used in LISREL by including the MI keyword in the data 
line and indicating the missing data code in the dataset (e.g., MI = 9).

ADDITIONAL APPLICATIONS OF CFA AND SEM

Examining Mediation Using Structural Equation Modeling

Mediation can be defined as a process in which the effect of one variable (X) on 
another variable (Y) occurs through an intervening variable (M) (Baron & Kenny, 
1986; MacKinnon, 2008). Mediation is an increasingly popular focus of research 
in educational research. SEM provides a very useful framework for evaluating 
mediational hypotheses. The use of latent variables allows researchers to obtain 
more accurate estimates of the overall indirect effect as well as the constituent 
parts of the indirect effect (i.e., M on X, Y on M). SEM also allows researchers 
to simultaneously evaluate multiple mediators and to extend mediation models 
to a longitudinal framework to evaluate how mediational processes unfold over 
time. Furthermore, it is possible to directly obtain bias-corrected and accelerated 
bootstrapped confidence intervals of the indirect effect, the current best-practice 
recommend method (Preacher & Hayes, 2008; MacKinnon, 2008) within SEM 
software packages such as Mplus. An example of how mediation can be examined 
within an SEM framework is presented later in this chapter.

Examining Moderation Using Structural Equation Modeling

Moderation (i.e., interactions) is also an increasingly popular area of research 
within education and other social sciences domains. Moderation can be tested in 
SEM for both categorical and continuous moderators. Categorical moderators can 
be evaluated using multiple groups models in which the parameters of interest are 
specified for each category of the moderator, with differences in the relationships 
between the groups considered evidence of moderation that can be tested for statistical 
significance using equality constraints. There are also multiple methods for evaluating 
continuous moderators within SEM. Little, Bovaird, and Widaman (2006) describe 
an approach in which a latent interaction term is specified by orthogonalizing the 
respective indicators of the independent variable and the moderator. Example syntax 
for how this approach be applied can be found in Schoemann (2010).

Longitudinal Extensions of Structural Equation Modeling

One of the most useful ways in which CFA and SEM can be extended is to examine 
longitudinal data. There are many ways in these methods can be extended to 
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model complex patterns of change. Cross-lagged panel models allow researchers 
to evaluate how interindividual standing in latent constructs changes over time 
(Burkholder & Harlow, 2003). Latent growth curve models allow researchers to 
examine intraindividual trajectories of change and can be used to evaluate non-
linear and other complex patterns of change (Bollen & Curran, 2006; Preacher et al., 
2008). Latent difference score models are a third approach for modeling longitudinal 
change and allow researchers to examine intraindividual change in latent constructs 
between two assessments (McArdle, 2009). Each of these methods is well-suited 
to studying a variety of research topics and researchers interested in learning more 
about these topics are encouraged to consult Collins (2006), Selig and Preacher 
(2009), or Little, Bovaird, and Card (2007).

Multilevel Structural Equation Modeling

The final extension of CFA and SEM that we will mention is multilevel structural 
equation modeling (MSEM; Muthén & Asparouhov, 2008). MSEM is a relatively 
recent development and combines all of the advantages of hierarchical linear modeling 
(e.g., accounting for nested dependencies in data) and SEM (e.g., accounting for 
measurement error). MSEM is therefore an extremely robust statistical framework 
as it allows researchers to specify models that are not possible when using either 
hierarchical linear modeling or SEM. MSEM remains an infrequently used method 
given its complexity. However, descriptions of how these methods can be used in 
applied research are increasingly common (e.g., Preacher, Zyphur, & Zhang, 2010) 
and MSEM is likely to be a major area of growth in the next decade.

Illustrative Study

An example study will now be presented to demonstrate the sequence of steps that 
researchers will typically follow when conducting a study involving CFA and SEM. 
The data for these example models come from a study in which undergraduates 
completed a series of self-report questionnaires during their first semester of college 
to identify the psychological variables (e.g., self-efficacy, hope, engagement) that 
best predict academic performance during the first four years of college (Gallagher & 
Lopez, 2008). Participants were 229 students (129 males, 100 females) at a large 
Midwestern university who participated in exchange for psychology course credit. 
Prior to completing their first semester, participants completed the academic self-
efficacy scale (Chemers, Hu, & Garcia, 2001), identified their goal for their GPA 
after four years of college, and provided consent to have their academic performance 
(semester GPA) tracked by the investigators through the University Registrar’s office.

For illustration purposes, we will focus on just the relationships between academic 
self-efficacy, self-reported goals for GPA during the first semester of college, and 
cumulative GPA after four years of college. The descriptive statistics and correlation 
matrix used for these analyses are presented in Table 1. There were no missing data 
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for the self-efficacy variables but data were missing for one person’s GPA goals and 
82 people were missing data on four year college GPA. These missing data were 
considered MAR and were accommodated using FIML. A series of four models will 
be presented to demonstrate the common steps researchers may take when using 
CFA and SEM. The first model uses CFA to evaluate the measurement model of the 
academic self-efficacy scale. The second model is an extension of the one-factor 
measurement model to include a correlated residual between two items. The third 
model examines the effect of academic self-efficacy on cumulative college GPA 
using SEM. The fourth model tests a mediation model in which participants’ goals 
for GPA reported during their first semester of college partially mediates the effects 
of academic self-efficacy beliefs on cumulative GPA after four years of college. 
Mplus syntax for each of these examples will be presented, but each model could 
be conducted in the other latent variable software programs mentioned previously.

Evaluating the Measurement Model

The first step in evaluating the effects of academic self-efficacy on academic 
performance is to determine how well the latent construct of academic self-efficacy 
was measured. This can be accomplished using a basic one-factor CFA model. 
Annotated Mplus syntax and selected output from this model are presented in 
Table 2. As can be seen in Table 2, the syntax required for specifying a one-factor 

Table 1. Sample correlations, standard deviations (SD) and means (M) for self-efficacy (SE) 
items, college grade point average goal (GPAGOAL), and four year college grade point 

average (GPA)

SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 GPAGOAL GPA
SE1 1
SE2 .408 1
SE3 .365 .533 1
SE4 .256 .247 .363 1
SE5 .540 .432 .497 .325 1
SE6 .432 .422 .507 .374 .756 1
SE7 .246 .354 .441 .254 .476 .464 1
SE8 .385 .385 .375 .316 .576 .579 .421 1
GPAGOAL .032 .051 .110 .148 .234 .309 .122 .142 1
GPA .263 .166 .278 .203 .302 .371 .102 .215 .350 1

N 229 229 229 229 229 229 229 229 228 147
M 5.14 5.45 4.92 4.83 4.95 5.07 4.67 5.92 3.39 2.96
SD 1.50 1.39 1.39 1.60 1.14 1.29 1.31 1.15 .34 .49
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SYNTAX:
TITLE: Academic Self-Efficacy Confirmatory Factor Analysis
DATA: FILE IS acaselfeff.dat;
VARIABLE:

NAMES ARE id gpagoal gpa4year aselfe1-aselfe8; !Identify all 
variables in data set
USEVARIABLES ARE aselfe1-aselfe8; !Specify variables to be used in model
MISSING are all (-9); 

ANALYSIS:
TYPE IS GENERAL;
ESTIMATOR IS ML;

MODEL:
acaeffic by aselfe1-aselfe8; !Specify 8 items as indicators

!Mplus defaults to marker variable identification
OUTPUT: MODINDICES(4) STANDARDIZED; !Request completely 

standardized results and !modification indices
SELECTED OUTPUT:

TESTS OF MODEL FIT
Chi-Square Test of Model Fit

Value  58.290
Degrees of Freedom  20
P-Value  0.0000

CFI/TLI
CFI  0.944
TLI  0.921

RMSEA (Root Mean Square Error Of Approximation)
Estimate  0.091
90 Percent C.I.  0.065 0.119

SRMR (Standardized Root Mean Square Residual)
Value  0.044

MODEL RESULTS
          Two-Tailed
 Estimate S.E Est./S.E. P-Value
ACAEFFIC BY

ASELFE1 1.000 0.000 999.000 999.000
ASELFE2 0.901 0.130 6.946 0.000
ASELFE3 1.008 0.135 7.491 0.000
ASELFE4 0.804 0.142 5.643 0.000
ASELFE5 1.132 0.123 9.189 0.000

Table 2. Mplus syntax and selected output of confirmatory factor analysis of the 
academic self-efficacy scale
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ASELFE6 1.260 0.142 8.887 0.000
ASELFE7 0.864 0.125 6.934 0.000
ASELFE8 0.899 0.114 7.886 0.000

Intercepts
ASELFE1 5.140 0.099 51.838 0.000
ASELFE2 5.445 0.092 59.276 0.000
ASELFE3 4.921 0.091 53.814 0.000
ASELFE4 4.825 0.106 45.686 0.000
ASELFE5 4.948 0.075 65.923 0.000
ASELFE6 5.074 0.085 59.473 0.000
ASELFE7 4.672 0.087 54.013 0.000
ASELFE8 5.917 0.076 78.046 0.000

Variances
ACAEFFIC 0.745 0.165 4.518 0.000

COMPLETELY STANDARDIZED MODEL RESULTS
Two-Tailed

 Estimate S.E Est./S.E. P-Value
ACAEFFIC BY

ASELFE1 0.575 0.049 11.835 0.000
ASELFE2 0.559 0.050 11.146 0.000
ASELFE3 0.628 0.045 14.009 0.000
ASELFE4 0.434 0.058 7.511 0.000
ASELFE5 0.861 0.024 36.073 0.000
ASELFE6 0.842 0.025 33.350 0.000
ASELFE7 0.570 0.049 11.644 0.000
ASELFE8 0.677 0.040 16.787 0.000

Variances
ACAEFFIC 1.000 0.000 999.000 999.000

R-SQUARE

Observed Two-Tailed
Variable Estimate S.E. Est./S.E. P-Value
ASELFE1 0.331 0.056 5.917 0.000
ASELFE2 0.313 0.056 5.573 0.000
ASELFE3 0.395 0.056 7.005 0.000
ASELFE4 0.188 0.050 3.755 0.000
ASELFE5 0.741 0.041 18.037 0.000
ASELFE6 0.709 0.043 16.675 0.000
ASELFE7 0.325 0.056 5.822 0.000
ASELFE8 0.458 0.055 8.393 0.000
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MODEL MODIFICATION INDICES

Minimum M.I. value for printing the modification index 4.000

             M.I.  E.P.C. Std E.P.C.  StdYX E.P.C.

WITH Statements

ASELFE2 WITH ASELFE1 4.201 0.204 0.204 0.145
ASELFE3 WITH ASELFE2 21.306 0.409 0.409 0.330
ASELFE4 WITH ASELFE3 4.267 0.224 0.224 0.145
ASELFE5 WITH ASELFE1 4.856 0.140 0.140 0.197
ASELFE5 WITH ASELFE2 5.477 –0.138 –0.138 –0.207
ASELFE5 WITH ASELFE3 5.311 –0.132 –0.132 –0.213
ASELFE5 WITH ASELFE4 4.298 –0.146 –0.146 –0.176
ASELFE6 WITH ASELFE1 5.362 –0.169 –0.169 –0.197
ASELFE6 WITH ASELFE2 4.483 –0.144 –0.144 –0.179
ASELFE6 WITH ASELFE5 13.271 0.203 0.203 0.505
ASELFE7 WITH ASELFE3 4.567 0.177 0.177 0.153

CFA model in Mplus is straightforward. The first few lines of syntax involve 
providing a title for the analysis, identifying the location of the data file (for Mplus 
the data file can be either tab-delimited, comma-delimited, or a fixed width ASCII 
file), providing variable names for all variables included in the dataset, selecting the 
specific variables that are included in the model to be analyzed, and identifying what 
numeric value used to indicate missing data (blanks can also be used as a missing 
data code if the data are in a fixed width ASCII file). The syntax for specifying the 
one-factor CFA model requires only two lines in Mplus. The first line signifies that 
the latent construct of Academic Self-Efficacy is identified by the eight items of 
the academic self-efficacy scale (Chemers et al., 2001). For this model, the latent 
construct of academic self-efficacy is identified using the marker variable method. 
This method of model identification is the default method in Mplus and simply 
requires that the corresponding indicators for the latent variable are specified (e.g., 
acaeffic by aselfe1-aselfe8;); by default, Mplus uses the first indicator after the 
“by” keyword (aselfe1) as the marker variable by fixing its unstandardized factor 
loading to 1.0. The final line of syntax instructs Mplus to provide additional output 
in the form of modification indices that equal 4.0 or above, and the standardized/
completely standardized estimates.

Because the CFA model of the academic self-efficacy scale converged successfully 
with no error messages, the first step is to examine the model fit statistics. The χ2 test 
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of model fit indicated significant model misfit (p < .001). However, as previously 
mentioned, the χ2test is an overly conservative test and it is therefore more important 
to focus on the remaining model fit statistics. Although the SRMR is consistent with 
good model fit (.044), the CFI, TLI, and RMSEA indicate marginal fit (values of 
.944,.922, and .091, respectively). Taken together, these results suggest the specified 
model fit does not provide a good representation of the data, so the next step is 
to examine the modification indices to determine whether it may be possible to 
improve fit by respecifying the model. As noted earlier, this should only be done 
if substantively justified, as high modification indices do not necessarily indicate a 
relationship that is theoretically meaningful.

In the results presented in Table 2, the largest modification index is for the residual 
covariance between items 2 and 3 of the scale. The value for this modification index 
(21.31) is well above 3.84 and indicates there is a relationship between these two 
items that is not sufficiently accounted for by the latent variable of academic self-
efficacy. An examination of the content of these two items reveals that this may be 
explained by a method effect arising from similar wording. Given the common stem 
of these items, it was deemed appropriate to specify a residual covariance between 
these two items to account for the method effect.

Revising the Measurement Model

The syntax and selected output from a second measurement model of the academic 
self-efficacy scale in which a residual covariance between items two and three is 
specified is presented in Table 3. As seen in Table 3, including the residual covariance 
requires an additional line of syntax (aselfe2 with aselfe3;). An examination of the 
model fit for this second model reveals that the inclusion of the residual covariance 
between the two items significantly improved model fit. The CFI and TLI values are 
both above .95, SRMR is below .08, and RMSEA equals .06. Together, these model 
fit statistics indicate good model fit for the one-factor measurement model of the 
academic self-efficacy scale that includes the residual covariance between items two 
and three. Inspection of modification indices indicates there are no remaining salient 
focal areas of ill fit.

An examination of the completely standardized factor loadings in this revised 
measurement model indicates that all eight of the items of the academic self-
efficacy scale have moderate to large factor loadings (range = .43 to .87). The 
square of these loadings represents the proportion of the variance in the indicators 
explained by the latent constructs. Thus, the magnitude of these loadings indicates 
that a moderate proportion of the variance in the indicators could be explained 
by the latent variable of academic self-efficacy. It appears that the eight items 
are all adequate indicators of academic  self-efficacy. Furthermore, an examination 
of the residual covariance parameter estimate indicates that this relationship was 
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SYNTAX:
TITLE: Academic Self-Efficacy Confirmatory Factor Analysis with Residual 

Covariance
DATA: acaselfeff.dat;
VARIABLE:

NAMES ARE id gpagoal gpa4year aselfe1-aselfe8;
USEVARIABLES ARE aselfe1-aselfe8;
MISSING are all (-9);

ANALYSIS: ESTIMATOR IS ML;
MODEL:

acaeffic by aselfe1-aselfe8;
aselfe2 with aselfe3; ! specify residual covariance

OUTPUT: STANDARDIZED;

SELECTED OUTPUT:
TESTS OF MODEL FIT
Chi-Square Test of Model Fit

Value  36.638
Degrees of Freedom  19
P-Value  0.0088

CFI/TLI
CFI  0.974
TLI  0.962

RMSEA (Root Mean Square Error Of Approximation)
Estimate  0.064
90 Percent C.I.  0.031 0.094

SRMR (Standardized Root Mean Square Residual)
Value  0.036

MODEL RESULTS
 Two-Tailed
 Estimate S.E Est./S.E. P-Value

ACAEFFIC BY
ASELFE1 1.000 0.000 999.000 999.000
ASELFE2 0.857 0.129 6.644 0.000
ASELFE3 0.973 0.134 7.256 0.000
ASELFE4 0.799 0.144 5.566 0.000
ASELFE5 1.153 0.126 9.179 0.000
ASELFE6 1.278 0.145 8.835 0.000
ASELFE7 0.861 0.126 6.852 0.000
ASELFE8 0.906 0.116 7.838 0.000

Table 3. Mplus syntax and selected output of confirmatory factor analysis of the 
academic self-efficacy scale with residual covariance specified between items 2 and 3
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statistically significant. All subsequent models therefore include the residual 
covariance between items two and three.

Extending to Structural Equation Modeling with an Outcome

After establishing an appropriate measurement model, the next step would be to 
begin examining the relationship between academic self-efficacy and GPA. In this 
situation, cumulative GPA is a manifest variable outcome and we therefore do not 
include an intermediate model in which the measurement model for the outcome is 
also evaluated. The syntax and selected output from the structural equation model in 
which we examine the effect of academic self-efficacy on cumulative college GPA 
four years later is presented in Table 4. As seen in Table 4, the only modifications 
to the syntax required to specify this model is to add the GPA variable to the 
usevariables list and to add an additional line of syntax (gpa4year on acaeffic;). The 
inclusion of GPA as an outcome and the specification of the effect of academic self-
efficacy on GPA did not worsen fit: as with the previous model, CFI and TLI values 
are both above .95, SRMR is below .08, and RMSEA equals .06. The results of this 
model indicate that academic self-efficacy is a significant predictor of cumulative 
college GPA four years later. The unstandardized effect was B = .239, SE = .055, 
p < .001. The completely standardized effect was β = .415 and academic self-
efficacy predicted 17.2% of the variance in cumulative college GPA. The completely 
standardized results of this model are presented in Figure 2. These results support 

ASELFE2 WITH
ASELFE3 0.413 0.098 4.222 0.000

COMPLETELY STANDARDIZED MODEL RESULTS
 Two-Tailed
 Estimate S.E Est./S.E. P-Value

ACAEFFIC BY
ASELFE1 0.572 0.049 11.683 0.000
ASELFE2 0.529 0.052 10.140 0.000
ASELFE3 0.603 0.047 12.942 0.000
ASELFE4 0.429 0.058 7.377 0.000
ASELFE5 0.870 0.023 37.511 0.000
ASELFE6 0.849 0.025 34.235 0.000
ASELFE7 0.564 0.049 11.422 0.000
ASELFE8 0.677 0.040 16.778 0.000

ASELFE2 WITH
ASELFE3 0.317 0.063 5.059 0.000
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SYNTAX:
TITLE: Academic Self-Efficacy SEM with 4year GPA as outcome
DATA: FILE IS acaselfeff.dat;
VARIABLE:

NAMES ARE id gpagoal gpa4year aselfe1-aselfe8;
USEVARIABLES ARE gpa4year aselfe1-aselfe8;
MISSING are all (-9);

ANALYSIS: ESTIMATOR IS ML;
MODEL:

acaeffic by aselfe1-aselfe8;
aselfe2 with aselfe3;
gpa4year on acaeffic; !Estimate effect of Academic Self-Efficacy on GPA

OUTPUT: STANDARDIZED;

SELECTED OUTPUT:
TESTS OF MODEL FIT
Chi-Square Test of Model Fit

Value  44.345
Degrees of Freedom  26
P-Value  0.0139

CFI/TLI
CFI  0.974
TLI  0.964

RMSEA (Root Mean Square Error Of Approximation)
Estimate  0.056
90 Percent C.I.  0.025 0.083

SRMR (Standardized Root Mean Square Residual)
Value  0.039

UNSTANDARDIZED MODEL RESULTS
 Two-Tailed
 Estimate S.E Est./S.E. P-Value

GPA4YEAR ON
ACAEFFIC 0.239 0.055 4.327 0.000

COMPLETELY STANDARDIZED MODEL RESULTS
 Two-Tailed
 Estimate S.E Est./S.E. P-Value

GPA4YEAR ON
ACAEFFIC 0.415 0.078 5.337 0.000

Table 4. Mplus syntax and selected output of structural equation model examining the 
effect of academic self-efficacy scale on four-year college grade point average
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R-SQUARE
Observed  Two-Tailed
Variable Estimate S.E. Est./S.E. P-Value
GPA4YEAR 0.172 0.065 2.669 0.008

Figure 2. Example figure for presenting SEM results. Results correspond to the 
completely standardized results in Table 4.

the hypothesis that academic self-efficacy is a predictor of academic outcomes and 
provides the basis for examining potential mechanisms of the effects of academic 
self-efficacy on cumulative GPA.
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SYNTAX:
TITLE: Mediation Model: Aca Self-Efficacy  GPA Goal  4yearGPA
DATA: FILE IS acaselfeff.dat;
VARIABLE:
 NAMES ARE id gpagoal gpa4year aselfe1-aselfe8;
 USEVARIABLES ARE gpagoal gpa4year aselfe1-aselfe8;
 MISSING are all (-9);
ANALYSIS: ESTIMATOR IS ML;
MODEL:
 acaeffic by aselfe1-aselfe8;
 gpa4year on acaeffic;
 gpa4year on gpagoal;
 gpagoal on acaeffic;
 aselfe2 with aselfe3;
Model Indirect:  !specify estimation of indirect effect
 gpa4year ind gpagoal acaeffic;
OUTPUT: CINTERVAL STANDARDIZED;

SELECTED OUTPUT:
TESTS OF MODEL FIT
Chi-Square Test of Model Fit
 Value  58.633
 Degrees of Freedom  33
 P-Value  0.0039
CFI/TLI
 CFI  0.965
 TLI  0.952

Table 5. Mplus syntax and selected output of structural equation model examining the 
indirect effect of academic self-efficacy on four-year college grade point average via gpa 

goals in 1st semester

Evaluating a Mediation Model

The final example model is a mediation model in which we examine whether the 
effects of academic self-efficacy on cumulative college GPA four years later are 
partially mediated by the GPA goals students set during their first semester of 
college. The syntax and selected output from the SEM in which we examine the 
indirect effect of academic self-efficacy on cumulative college GPA four years later 
via GPA goals are presented in Table 5. As seen in Table 5, the specification of this 
mediation model requires just a few minor additions to the syntax of the previous 
SEM model. The usevariables line is modified to include the additional variable of 
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RMSEA (Root Mean Square Error Of Approximation)
 Estimate  0.058
 90 Percent C.I.  0.033 0.082
SRMR (Standardized Root Mean Square Residual)
 Value  0.043
UNSTANDARDIZED MODEL RESULTS
 Two-Tailed 
 Estimate S.E. Est./S.E. P-Value
GPA4YEAR ON ACAEFFIC 0.172 0.043 3.996 0.000
GPAGOAL ON ACAEFFIC 0.097 0.024 3.995 0.000
GPA4YEAR ON GPAGOAL 0.413 0.115 3.595 0.000
COMPLETELY STANDARDIZED MODEL RESULTS
 Two-Tailed 
 Estimate S.E. Est./S.E. P-Value
GPA4YEAR ON ACAEFFIC 0.345 0.079 4.349 0.000
GPAGOAL ON ACAEFFIC 0.284 0.067 4.232 0.000
GPA4YEAR ON GPAGOAL 0.282 0.075 3.759 0.000
R-SQUARE

Observed  Two-Tailed
Variable Estimate S.E. Est./S.E. P-Value
GPAGOAL 0.081 0.038 2.116 0.034
GPA4YEAR 0.254 0.068 3.737 0.000

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
 Two-Tailed 
 Estimate S.E. Est./S.E. P-Value

GPA4YEAR GPAGOAL 0.040 0.015 2.723 0.006
ACAEFFIC

CONFIDENCE INTERVALS OF INDIRECT EFFECTS
 Lower Lower Estimate Upper Upper.
  .5% 2.5%  2.5% 5%

GPA4YEAR GPAGOAL 0.002 0.011  0.040 0.069 0.078
ACAEFFIC

GPA goals, the effect of academic self-efficacy on GPA goals is specified (gpagoal 
on acaeffic;), the effect of GPA goals on cumulative GPA is specified (gpa4year 
on gpagoal;), the estimation of the indirect effect is requested by including “Model 
Indirect: gpa4year ind gpagoal acaeffic;”, and CINTERVAL is added to the output 
line so that confidence intervals of the indirect effect can be evaluated to determine 
whether there is evidence of mediation. The model fit for this mediation model was 
good: CFI and TLI values are above .95, SRMR is below .08, and RMSEA equals 
.06. The results indicated that there was a significant indirect effect of academic self-
efficacy on cumulative college GPA four years later via GPA goals. The estimate of the 
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indirect effect was significant (B = .040, SE = .015, p < .01) and the 95% confidence 
interval of the indirect effect (.011 : .069) did not include 0. A path diagram with the 
completely standardized results of this mediation model can be seen in Figure 3. 
These results suggest that the academic self-efficacy beliefs may promote superior 
academic performance in college by causing students to set higher GPA goals for 
themselves. The theoretical implications of these results are not important for the 
purposes of this chapter, but the models described here and presented in Tables 2–5 
provide an introduction to how CFA and SEM can be used in educational research.

SUMMARY

CFA and SEM are powerful statistical tools that have become increasingly popular 
in education research. The topics discussed within this chapter are just some of the 
many ways that these techniques can be used to evaluate measurement models and 
test complex theoretical models. The growth of these techniques has coincided with 
the development of more user-friendly statistical software for conducting these 
analyses and an increasing amount of publications providing didactic information 
about how these techniques can be applied to various research topics. Below we 
provide a few recommendations for resources that educational researchers may find 
helpful for additional information about how to apply these techniques in their own 
research programs.

Figure 3. Example figure for presenting SEM mediation model results. results correspond 
to the completely standardized results in Table 5.
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