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FOREWORD

This is the age of “evidence” and all around are claims about the need for all to make 
evidence based decisions. Evidence, however, is not neutral and critically depends 
on appropriate interpretation and defensible actions in light of evidence. So often 
evidence is called for, collected, and then analysed with little impact. At other times 
we seem awash with data, soothed by advanced methods, and too easily impressed 
with the details that are extracted. Thus there seems a tension between the desire 
to make more meaning out of the aplenty data, and the need for interpretations that 
have defence and consequences. 

This book shows this tension – there are many sophisticated methods now 
available but they require an advanced set of understandings to be able to interpret 
meaning and can be technically complex. With more students being less prepared in 
basic mathematics and statistics, taking courses in experimental design and survey 
methods, often these methods appear out of reach. This is notwithstanding the major 
advances in computer software. Not so long ago structural equation modelling 
required a knowledge of Greek, matrix calculus, and basic computer logic; now many 
programs require the facility to distinguish between boxes and circles, manipulate 
arrows, and read pictures. This is not a plea that only those who did it “the hard way” 
can appreciate the meaning of these methods – as many of these chapters in this book 
show how these modern methods and computer programs can advance how users 
think about their data and make more defensible interpretations.

The sheer number of methods outlined in the book shows the advances that have 
been made, and too often we can forget that many of these can be traced to some 
fundamental principles. The generalised regression model and the non linear factor 
model are two such claims for ‘general models’ – for example many of the item 
response family are variants of the non-linear factor models and understanding these 
relations can show the limitations and advantages of various decisions the user has 
to make when using these methods. For example, would a user be satisfied with a 
model specifying a single factor with all items loading the same on this factor – as 
this is what the Rasch item response model demands. 

Each chapter shows some of these basic assumptions, how the methods relate to 
other similar methods, but most important show how the methods can be interpreted. 
That so many of the most commonly used methods are in one book is a major 
asset. The methods range from measurement models (CTT, IRT), long developed 
multivariate methods (regression, cluster analysis, MANOVA, factor analysis, 
SEM), meta-analysis, as well as newer methods include agent-based modelling, 
latent growth and mixture modelling.

There are many types of readers of this book, and an aim is to speak to them 
all. There are ‘users’ who read educational literature that includes these methods 
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and they can dip into the book to find more background, best references, and more 
perspective of the place and meaning of the method. There are ‘bridgers” who will go 
beyond the users and will become more adept at using these methods and will want 
more detail, see how the method relates to others, and want to know how to derive 
more meaning and alternative perspectives on the use of the method. Then there are 
“clones” that will use this book to drill down into more depth about the method, 
use it to educate others about the method, and become more expert in their field. 
There are also ‘lurkers”, those from various disciplines who have been told to use 
a particular method and want a reference to know more, get an overall perspective, 
and begin to see how the method is meant to work. There is an art of providing “just 
enough” for all users, to entice them to want more, seek more, and learn more about 
the many aspects of the methods that can be put into a short chapter. 

One of my favourite books when I was a graduate student was Amick and 
Walberg (1975). This book included many of the same methods in the current 
Handbook. I referred to it often and it became the book most often ‘stolen’ by 
colleagues and students. It became the ‘go to’ book, a first place to investigate the 
meaning of methods and begin to understand ‘what to do next’. This Handbook will 
similarly serve these purposes. The plea, however, is to go beyond the method, to 
emphasise the implications and consequences. Of course, these latter depend on the 
appropriateness of the choice of method, the correctness in making critical decisions 
when using these methods, the defence in interpreting from these methods, and the 
quality of the data. Happy using, bridging, cloning and lurking. 

John A. Hattie
University of Melbourne
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MARK WILSON & PERMAN GOCHYYEV

1. PSYCHOMETRICS

Psychometrics is the study of the measurement of educational and psychological 
characteristics such as abilities, aptitudes, achievement, personality traits and 
knowledge (Everitt, 2006). Psychometric methods address challenges and problems 
arising in these measurements. Historically, psychometrics has been mostly associated 
with intelligence testing and achievement testing. In recent times, much of the work in 
psychometrics deals with the measurement of latent (or unobserved) traits and abilities.

In order to make our presentation both clear and accessible for those with 
practical interests in applying psychometrics in educational settings, this chapter 
is based on the Construct Modeling approach (Wilson, 2005): this is a “full-cycle 
production” measurement framework consisting of four building blocks: the 
construct map, the items design, the outcome space, and the measurement model. 
The construct modelling approach provides an explicit guiding framework for the 
researcher wishing to apply psychometric ideas in assessment. Activities that involve 
constructing and using an instrument – from hypothesizing about the construct to be 
measured to making interpretations and decisions – can be organised into these four 
building blocks. The researcher will be called the measurer throughout the chapter: 
this is the person designing and developing the measure.

For the most part, we will assume that the measurer already knows what s/he is 
intending to measure (at least to a certain extent). Note that this is different from 
the currently popular data mining approach (Nisbet, Elder, & Miner, 2009) where 
the data is expected to generate the solutions. Thus, we expect that the steps to be 
conducted by the measurer are confirmatory, rather being broadly exploratory. It will 
be helpful to note that the philosophical position of the authors is that the practice 
of psychometrics, and particularly the activity of constructing measures, is more 
to be considered a practical and engineering activity rather than as a basic science. 
Psychometricians construct measures (engineering), and build models to analyse 
these measures (reverse-engineering). It might not be an accident that L. L. Thurstone, 
a person considered to be one of the fathers of psychometrics, was a trained engineer.

MEASUREMENT

Measurement, in its broadest sense, is the process of assigning numbers to categories 
of observations in such a way as to represent quantities of attributes (Nunnally, 1978). 
Stevens (1946) noted that these numbers can be nominal, ordinal, interval, or ratio. 
However, simply assigning numbers at these different levels does not guarantee that 
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the resulting measures are indeed at those corresponding levels (Michell, 1990). 
Instead, the level needs to be established by testing whether the measurement model 
is appropriate (van der Linden, 1992).

Corresponding to the type of measurement model that holds, measurement can be 
fundamental, derived, or implicit (van der Linden, 1992). Fundamental measurement 
requires that the measure has the following properties: it has an order relation, unit 
arbitrariness, and additivity (see Campbell, 1928). Derived measurement assumes that 
products of fundamental measurement are mathematically manipulated to produce a 
new measure (such as when density is calculated as the ratio of mass to volume). In 
contrast, in the implicit measurement situations in which our measurer is involved, 
neither of these approaches are possible: Our measurer is interested in measuring a 
hypothetical entity that is not directly observable, namely, the latent variable. Now, 
latent variables can only be measured indirectly via observable indicators – manifest 
variables, generically called items. For example, in the context of educational testing, 
if we wanted to measure the latent variable of a student’s knowledge of how to add 
fractions, then we could consider, say, the proportion correct by each student of a 
set of fractions addition problems as a manifest variable indicating the student’s 
knowledge. But note that the, the student knowledge is measured relative to the 
difficulty of the set of items. Such instances of implicit measurement can also be 
found in the physical sciences, such as the measure of the hardness of an object.

To illustrate how different fundamental measurement is from implicit measurement 
of a latent variable, consider the following example. If the weight of the Golden Gate 
Bridge is 890,000 tons and the weight of the Bay Bridge is 1,000,000 tons, then 
their combined weight is estimated as the sum of the two, 1,890,000 tons. However, 
the estimated ability of the respondent A and respondent B working together on the 
fractions test mentioned above would not be the sum of the performances of respondent 
A and respondent B separately. Implicit measurement allows quantification of latent 
variables provided variables are measured jointly (Luce & Tukey, 1964). For an 
in-depth discussion, see Michell (1990) and van der Linden (1992).

THE CONSTRUCT

Planning and debating about the purpose(s) and intended use(s) of the measures 
usually comes before the measurement development process itself. We will assume 
that the measurer has an underlying latent phenomena of interest, which we will 
call the construct (also called propensity, latent variable, person parameter, random 
intercept, and often symbolized by θ ).

It will be assumed in this section that there is a single and definite construct that is 
being measured. In practice, a single test might be measuring multiple constructs. If 
such is the case, we will (for the purposes of this chapter) assume that each of these 
constructs is being considered separately. Constructs can be of various kinds: Abilities, 
achievement levels, skills, cognitive processes, cognitive strategies, developmental 
stages, motivations, attitudes, personality traits, emotional states, behavioural patterns 



5

PSYCHOMETRICS

and inclinations are some examples of constructs. What makes it possible and attractive 
to measure the construct is the belief and understanding on the part of the measurer that 
the amount or degree of the construct varies among people. The belief should be based 
on a theory. Respondents to the test can be people, schools, organizations, or institutions. 
In some cases, subjects can be animals or other biological systems or even complex 
physical systems. Note that the measurer does not measure these respondents – the 
measurer measures the construct these respondents are believed to have.

Depending on the substantive theory underlying the construct, and one’s 
interpretational framework, a construct could be assumed to be dimension-like or 
category-like. In this chapter, we will be assuming former, in which the variability 
in the construct implies some type of continuity, as that is most common situation 
in educational testing. Much of the following development (in fact virtually all of it 
up to the part about the “measurement model”), can be readily applied to the latter 
situation also—for more information on the category-like situation see Magidson & 
Vermunt (2002). There are many situations where the construct is readily assumed 
to be dimension-like: in an educational setting, we most often can see that there is a 
span in ability and knowledge between two extremes; in attitude surveys, we can see 
a span of agreement (or disagreement); in medicine, there are often different levels of 
a health condition or of patient satisfaction, but also a span in between. Consider the 
following example for better understanding of continuity: the variable “understanding 
of logarithms” can be present at many levels. In contrast, the variable “pregnancy” is 
clearly a dichotomy – one cannot be slightly pregnant or almost pregnant. It is possible 
that in some domains the construct, according to an underlying theory, has discrete 
categories or a set of unordered categories. A respondent might be a member of the 
one of the latent classes rather than at a point on a continuous scale. These classes can 
be ordered or unordered. Various models in psychometrics such as latent class models 
are designed to deal with constructs of that type (see Magidson & Vermunt, 2002).

The type of measurement presented in this chapter can be understood as the 
process of locating a respondent’s location on the continuum of the latent variable. 
As an example, imagine a situation where one wants to find out about a respondent’s 
wealth but cannot ask directly about it. The measurer can only ask questions about 
whether the respondent is able to buy a particular thing, such as “Are you able to buy 
an average laptop?” Based on the obtained responses, the measurer tries to locate 
the respondent on the wealth continuum, such as claiming that the respondent is 
between “able to buy an average laptop” and “able to buy an average motorcycle.”

A SURVEY OF TYPES AND PURPOSES OF MEASUREMENT

From the broadest perspective, we can distinguish two types of measurement (De 
Boeck & Wilson, 2006). The first type is the accurate measurement of the underlying 
latent variable on which the respondents are arrayed. This implies the use of the test 
at the level of individual respondents. Inferences regarding the individual, or perhaps 
groups of individuals, are of primary interest. This approach is intuitively named as 
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the measurement approach. Measurement with this purpose is also referred to as 
the descriptive measurement. In contrast, another purpose of the measurement has 
a different perspective. Rather than focusing on the individual, the main purpose is 
to seek relationships of the observations (responses to the items) to other variables. 
These variables can be characteristics of the respondents (gender, race, etc.), or 
characteristics of the items (item format, item features, etc.). This approach is referred 
to as the explanatory approach. Explanatory measurement can help in predicting 
behaviour in the future and can also serve to support a theory or hypothesis. As an 
example, a researcher might be interested in the effectiveness of the two different 
teaching methods. Here, the interest is in the teaching method rather than in the 
individual differences. A test can be designed and analysed to serve both purposes, 
but serving both kinds of purpose can lead to inefficiencies and challenges.

Depending on the context, the purposes of the measurement might also differ. 
One classification of measurement purposes in the educational context is into norm-
referenced and criterion-referenced interpretations. Norm-referenced interpretations 
are relevant when the measurer wishes to locate a respondent’s position within a 
well-defined group. In comparison, criterion-referenced interpretations are used 
in identifying a degree of proficiency in a specified content domain. College 
admission tests in United States (e.g., SAT, ACT) are examples of norm-referenced 
interpretations, as their main purpose is to rank applicants for university entrance. 
In contrast, criterion-referenced tests might be based on the topics in a lesson or 
the curriculum, or in the state standards. Some tests are designed for both types 
of interpretations—generally norm-referenced interpretations are always available, 
whereas criterion-referenced interpretations require more effort. (See below for the 
Construct Modeling approach to criterion-referenced measurement.)

Another perspective in looking at measurement purposes in an educational context 
is summative versus formative uses of tests. When a test is used to look back over what 
a student has learned, and summarise it, then that is a summative use. When a test is 
used to decide what to do next, to advance the student within a lesson, or to remediate, 
then that is a formative use (see Wiliam, 2011 for a broad summary of these).

From a very different perspective, the measurement, or more precisely the 
measurement model, can be reflective versus formative1. In the reflective measurement 
approach to modeling, which is the type of measurement model considered in this 
chapter and the common assumption among a majority of psychometricians, the 
belief is that the responses to the items are the indicators of the construct and the 
construct (effectively) “causes” respondents to respond to the items in such way. In 
contrast, in the formative measurement approach to model, which is more popular 
in the fields of sociology and economics, the assumption is that it is the items that 
influence the latent variable. For instance, returning to our example about the wealth 
construct above: (a) from the reflective perspective we assume that the person’s 
location on the wealth construct will cause respondents to answer questions such as 
“are you able to buy an average laptop?”; but (b) from the formative perspective, the 
assumption is that responses to these items will “cause” the wealth latent variable. 
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(Note that we avoid using the word construct in the latter case, as it is discrepant to 
our definition of the construct. The terms index is often used in the formative case.)

CONSTRUCT MODELING: THE FOUR BUILDING BLOCKS APPROACH

We now outline one particular approach to developing measures—Construct 
Modeling. We do not claim that this is a universally optimal way to construct measures, 
but we do see it as a way to illustrate some of the basic ideas of measurement. Note 
that, although we present just a single cycle of development, one would usually iterate 
through the cycle several times. The Construct Modelling approach is composed of 
Four Building Blocks2: the Construct Map, the Items Design, the Outcome Space, 
and the Measurement Model. Note that we will label the person being measured as 
the “respondent” (i.e., the one who responds to the item).

The Construct Map

In order to help one think about a construct, we present the construct map (Wilson, 
2005). Thinking in the “construct map” way prompts one to consider both sides of 
the measurement situation: the respondent side and the item side. A construct map 
is based on an ordering of both respondents and the items from a lower degree to a 
higher degree. A generic example of the basic form of the construct map is shown in 
Figure 1.3 Respondents who possess a low degree of the construct (bottom left), and 
the responses that indicate this amount of the construct (bottom right) are located at 

Figure 1. A generic construct map for the construct “X”.
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the bottom of the construct map. Similarly, respondents who possess a high degree 
of the construct (top left), and the responses that indicate this amount of the construct 
(top right) are located at the top of the construct map. In between these extremes are 
located qualitatively different locations of the construct, representing successively 
higher intensities of the construct.

Depending on the hypothesis and the setting being applied, construct maps can be 
connected or nested within each other and interpreted as learning progressions. (See 
Wilson, 2009 for illustrations of this.)

The construct map approach advances a coherent definition of the construct and a 
working assumption that it monotonically spans the range from one extreme to another – 
from low degree to high degree. There might be some complexities between the two 
extremes. We are interested in locating the respondent on the construct map, the central 
idea being that, between the two extremes, the respondent higher on the continuum 
possesses more of that construct than the respondent lower on the continuum. Thus, a 
respondent higher on the continuum has a better chance to be observed demonstrating 
the higher levels of the responses. This is called the assumption of monotonicity.4

The idea of a construct map forces the measurer to take careful consideration 
of the theory concerning the construct of interest. A clear definition of what is 
being measured should be based on the body of literature related to the construct of 
interest. The definition of the construct shouldn’t be too vague, such as, for instance 
the definition of “intelligence” given by Galton (1883), as: “that faculty which the 
genius has and the idiot has not.” It is best to support the hypothetical nature and 
order of the locations in the construct map from a specific theory. The coherence of 
the definition of the construct in the construct map requires that the hypothesized 
locations be clearly distinguishable. Note that the existence of these locations does 
not necessarily contradict the concept of an underlying continuum, as they can 
readily represent distinct identifiable points along a continuous span.

The advantage of laying out the construct on the construct map is that it helps the 
measurer make the construct explicit. Activities that are carried out in the construct 
map phase can also be described as construct explication (Nunnally, 1978) – a term 
used to describe the process of making an abstract concept explicit in terms of 
observable variables.

Note that each respondent has only one location on the hypothesized unidimensional 
(i.e., one-trait, single-factor) construct. Of course, the construct of interest might 
be multi-dimensional and thus the respondent might have multiple locations in the 
multidimensional space of several construct maps. As was noted earlier, for simplicity, 
we are assuming one-dimensional construct, which is believed to be recognizably 
distinct from other constructs. This is also called the assumption of unidimensionality. 
Note that this assumption relates to the set of items. If the construct of interest is 
multidimensional, such as “achievement in chemistry”, which can have multiple 
dimensions (see, Claesgens, Scalise, Wilson & Stacy, 2009), each strand needs to be 
considered separately in this framework to avoid ambiguity, although the measurement 
models can be multidimensional (e.g., see Adams, Wilson, & Wang, 1997). For 
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example, consider the following two variables: (a) the wealth of a person, and (b) the 
cash readily available to a person. Although we would expect these two variables to be 
highly correlated, nevertheless, each person would have two distinct locations.

A Concrete Example: Earth and the Solar System. This example is from a test 
of science content, focusing in particular on earth science knowledge in the area 
of “Earth and the Solar System” (ESS). The items in this test are distinctive, as 
they are Ordered Multiple Choice (OMC) items, which attempt to make use of 
the cognitive differences built into the options to make for more valid and reliable 
measurement (Briggs, Alonzo, Schwab & Wilson, 2006). The standards and 
benchmarks for “Earth in the Solar System” appear in Appendix A of the Briggs et 
al article (2006). According to these standards and the underlying research literature, 
by the 8th grade, students are expected to understand three different phenomena 
within the ESS domain: (1) the day/night cycle, (2) the phases of the Moon, and 
(3) the seasons—in terms of the motion of objects in the Solar System. A complete 
scientific understanding of these three phenomena is the top location of our construct 
map. See Figure 2 for the ESS construct map. In order to define the lower locations 

Figure 2. Construct map for student understanding of earth in the solar system.
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of our construct map, the literature on student misconceptions with respect to ESS 
was reviewed by Briggs and his colleagues. Documented explanations of student 
misconceptions with respect to the day/night cycle, the phases of the Moon, and the 
seasons are displayed in Appendix A of the Briggs et al article (2006).

The goal was to create a single continuum that could be used to describe typical 
students’ understanding of three phenomena within the ESS domain. In contrast, 
much of the existing literature documents students’ understandings about a particular 
ESS phenomena without connecting each understanding to their understandings 
about other related ESS phenomena. By examining student conceptions across the 
three phenomena and building on the progressions described by Vosniadou & Brewer 
(1994) and Baxter (1995), Briggs et al. initially established a general outline of the 
construct map for student understanding of ESS. This general description helped 
them impose at least a partial order on the variety of student ideas represented in 
the literature. However, the locations were not fully defined until typical student 
thinking at each location could be specified. This typical student understanding is 
represented in the ESS construct map shown in Figure 2, (a) by general descriptions 
of what the student understands, and (b) by limitations to that thinking in the form 
of misconceptions, labeled as “common errors.” For example, common errors used 
to define category 1 include explanations for day/night and the phases of the Moon 
involving something covering the Sun or Moon, respectively.

In addition to defining student understanding at each location of the continuum, 
the notion of common errors helps to clarify the difference between locations. 
Misconceptions, represented as common errors at one location, are resolved at 
the next higher location of the construct map. For example, students at location 3 
think that it gets dark at night because the Earth goes around the Sun once a day—a 
common error for location 3—while students at location 4 no longer believe that the 
Earth orbits the Sun daily but rather understand that this occurs on an annual basis.

The top location on the ESS construct map represents the understanding expected 
of 8th graders in national standards documents. Because students’ understanding of 
ESS develops throughout their schooling, it was important that the same continuum 
be used to describe the understandings of both 5th and 8th grade students. However, 
the top location is not expected of 5th graders; equally, we do not expect many 8th 
grade students to fall among the lowest locations on of the continuum.

The Items Design

Items are the basic building blocks of the test. Each item is a stimulus and each use 
of it is an attempt to obtain an observation that usefully informs the construct. In 
order to develop these items in an orderly way, there needs to exist a procedure of 
designing these observations, which we call the items design. In a complementary 
sense, the construct may not be clearly and comprehensively defined until a set of 
items has been developed and tried out with respondents. Thus, the development of 
items, besides its primary purpose to obtain a useful set of items, plays an important 
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step in establishing that a variable is measureable, and that the ordered locations of 
the construct map are discernible.

The primary purpose of the items is to prompt for responses from the respondents. 
Items should be crafted with this in mind. Items with different purposes, such as the 
ones that teach the content of the test, may be costly in terms of efficiency, but, of 
course, may also play an important part in instruction. It is possible to see each item 
as a mini-test, and we will see the usefulness of this type of thinking when talking 
about the indicators of the instrument quality later in the chapter. Thus, a test can be 
seen as a set of repeated measures, since more than one observation is made for the 
respondent, or, put another way, a test can be considered an experiment with repeated 
observations—this perspective places models commonly used in psychometrics in a 
broader statistical framework see, for example, De Boeck & Wilson, 2004).

Item formats. Any systematic form of observation that attempts to reveal particular 
characteristics of a respondent can be considered as an item. Information about the 
construct can be revealed in many ways, in, say, a conversation, a directly asked 
question, or from observing respondents, in both formal and informal settings. As 
was mentioned above, at early stages, information revealed in any of these ways 
can be used to clarify the ordered locations of the construct. The item format should 
be appropriate to the nature of the construct. For instance, if one is interested 
in respondent’s public speaking skills, the most appropriate format is direct 
observation, where the respondent speaks in public, but this is just the start of a range 
of authenticity which ranges all the way to self-report measures.

The open-ended item format is probably the most basic and the most “unrestrictive” 
format. In this format the responses are not limited to predefined categories (e.g., True 
or False), and there may be broad latitude in terms of modes of communication (e.g., 
written, figurative, or oral), and/or length. Open-ended items are the most common 
type of format that are typically observed in informal and social settings, such as 
within classrooms. However, due to their simplicity for evaluation, the most common 
item format used in formal instruments is the fixed-response format. Commonly, 
fixed-response format items will start out as in an open-ended item format—the 
responses to these can be used to generate a list of the types of responses, and this 
in turn can be used to design multiple alternatives. A fixed-response format is also 
very common in attitude surveys, where respondents are asked to pick the amount of 
intensity of the construct (i.e., Strongly Agree/Agree/etc.). This item format is also 
referred to as the Likert-type response format (Likert, 1932).

The list of alternative ways to give respondents a chance to reveal their place 
on the construct has expanded with the advances in technology and computerized 
testing. New types of observations such as simulations, interactive web-pages, and 
online collaborations require more complex performances from the respondent and 
allow the delineation of new locations on constructs, and sometimes new constructs 
altogether (Scalise & Wilson, 2011). The potential of these innovative item formats 
is that they might be capable of tapping constructs that were “unreachable” before.
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Item development. The item development process requires a combination of art 
and creativity on the part of the measurer. Recall that an item, regardless of the 
format, should always aim5 at the construct. Ramsden, Masters, Stephanou, Walsh, 
Martin, Laurillard & Marton (1993), writing about a test of achievement in high 
school physics noted:

Educators are interested in how well students understand speed, distance and 
time, not in what they know about runners or powerboats or people walking 
along corridors. Paradoxically, however, there is no other way of describing 
and testing understanding than through such specific examples.

Sometimes it may be sufficient to simply ask for a formal “piece of knowledge”—the 
product of 2 and 3, or the freezing point of water in centigrade, etc.—but most often 
we are interested in seeing how the respondent can use their knowledge and skills.

One important aspect is the planned difficulty of the test and its respective items. 
One needs to consider the purpose of the instrument when selecting an appropriate 
difficulty level for the items. Often, items are arranged from the easiest to the most 
difficult one, so that respondents do not become frustrated and not get to relatively 
easy items. In general, the measurer needs to develop items that aim at all locations 
of the construct. (This point will be elaborated on in the validity section below.)

Another important aspect is the “grainsize” of the items. Each item, in order to 
provide a contribution in revealing the amount of the construct, should span at least 
two locations of the construct. For example, a dichotomous item will aim at at or 
above the location of the item and below the location of the item. A polytomous item 
might aim at more than two locations. Note that Likert items, by their design will 
generally aim at more than two locations.

One more important activity that needs to be occuring in this phase is “listening 
to respondents” (AERA/APA/NCME, 1999). This activity is a very effective tool for 
“tuning up” the items of the instrument. Listening can either be in the form of think 
alouds or in the form of exit interviews (sometimes called “cognitive interviews”). In 
think alouds, participants are prompted to say aloud what they are thinking as they are 
working on the tasks. The measurer tries to take a note of everything the respondent 
says without any filtering. Of course, this sort of self-report has strong limitations, 
but at least it can indicate the sorts of issues that the respondent is working through. 
In exit interviews, the measurer interviews the respondent after the test is over. There 
should not be a long gap in time between the administration of the instrument and the 
exit interview. Exit interviews can be conducted over the phone, in-person, or using 
paper-and-pencil or a computerized survey. The findings from both think alouds and 
exit interviews need to be well-documented. It is recommended that the sessions be 
audio or video-taped, both in order to be able to return to the evidence later in the 
process of instrument development and to document such valuable evidence. As we 
will see later (in the Validity section), this evidence will prove to be an important one 
for validating the test. Also, as is the case with all steps, it is very important that the 
measurer stays neutral throughout the entire process.
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The ESS Example Continued. Returning to the ESS example, the OMC items were 
written as a function of the underlying construct map, which is central to both the 
design and interpretation of the OMC items. Item prompts were determined by both 
the domain as defined in the construct map and canonical questions (i.e., those which 
are cited in standards documents and commonly used in research and assessment 
contexts). The ESS construct map focuses on students’ understanding of the motion 
of objects in the Solar System and explanations for observable phenomena (e.g., the 
day/night cycle, the phases of the Moon, and the seasons) in terms of this motion. 
Therefore, the ESS OMC item prompts focused on students’ understanding of the 
motion of objects in the Solar System and the associated observable phenomena. 
Distractors were written to represent (a) different locations on the construct map, 
based upon the description of both understandings and common errors expected of 
a student at a given location and (b) student responses that were observed from an 
open-ended version of the item. Each item response option is linked to a specific 
location on the construct map, as shown in the example item in Figure 3. Thus, 
instead of gathering information solely related to student understanding of the 
specific context described in the question, OMC items allow us to link student 
answers to the larger ESS domain represented in the construct map. Taken together, 
a student’s responses to a set of OMC items permit an estimate of the student’s 
location on the ESS construct, as well as providing diagnostic information about that 
specific misconception.

The Outcome Space

As has been pointed out above, an instrument can be seen as an experiment used 
to collect qualitative data. However, in the behavioural and social sciences, the 
measuring is not finished when data are collected – much needs to happen after 
the data are collected (van der Linden, 1992). The outcomes space is the building 
block where the responses start to be transformed into measures. The main purpose 
of the outcome space is to provide a standard procedure to categorize and order 
observations in such a way that the observed categories are informative about the 
locations on the construct.

The outcomes space as a term was first used and described by Marton (1981). 
He used students’ responses to open-ended items to discover qualitatively different 

Figure 3. A sample OMC item based upon ESS construct map. (L indicates location 
on construct map.)
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ways students responded to sets of tasks. Dahlgren (1984) described an outcome 
space as a sort of analytic map:

It is an empirical concept which is not the product of logical or deductive 
analysis, but instead results from intensive examination of empirical data. 
Equally important, the outcome space is content-specific: the set of descriptive 
categories arrived at has not been determined a priori, but depends on the 
specific content of the [item]. (p. 26)

Within the Four Building Blocks framework, the term outcomes space has a 
somewhat broader meaning. The outcome space is an ordered, finite, and exhaustive 
set of well-defined, research-based, and context-specific categories (Wilson, 2005). 
That the categories are a finite set means that the possibly infinite number of potential 
responses needs to be categorized into a small (but not too small) set of categories. 
That the categories are exhaustive means that the categories should be inclusive—
every possible response has a place (at least potentially) among the categories. That 
the categories are ordered means that there exists an ordering of the categories that 
is consistent with the ordered locations on the construct map—though the ordering 
might only be partial. That the categories are well-defined means that the measurer 
must have a way to consistently categorize the responses into the categories—this 
might include having: (a) definitions of the construct locations; (b) background 
materials explaining important concepts, etc., involved in the locations; (c) samples 
of the items and responses for each locations; and (d) a training procedure for raters. 
As was noted earlier, concerning the locations of the construct map, the categories 
of the outcome space need to be research-based, that is, informed by appropriate 
research and theory. That the categories are context-specific means that nature of the 
construct need to be considered when developing the categories. For example, the 
requirement that the alternatives to the correct prompt in multiple-choice items be 
superficially reasonable is one such.

Scoring. Scoring is the procedure of assigning numerical values to the ordered 
locations of the outcome space. Scoring should be designed so that the categories 
can be related back to the responses side of the construct map. The traditional 
procedure for multiple-choice items is to score the correct response as unity and the 
incorrect ones as zero. For OMC items, the ordered locations may be used as a basis 
for scoring. For Likert-style response items, the lowest extreme (e.g., “Strongly 
disagree”) is often scored as zero and each subsequent category as 1, 2, 3, etc., 
respectively.

Open-ended items require more effort for coding and scoring. The outcome 
categories must be ordered into qualitatively distinct locations on the continuum, 
with possibly several categories within each location. Coding open-ended items 
can be expensive and time-consuming. With the developments of machine learning 
techniques, it is becoming possible to use computers to categorize and score open-
ended items (Kakkonen, Myller, Sutinen, & Timonen, 2008).
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Missing responses should be handled appropriately in the scoring process. If the 
measurer has a reasonable belief that the response is missing because the respondent 
was not administered the item, coding it as “missing” is an appropriate choice. If the 
measurer judges that the response was missing due to the high difficulty of the item 
(such as when a respondent fails to respond to a string of hard items at the end of 
the test), the missing response could be coded as zero. Although missing response 
indicates no information about the respondent in relation to the item, investigating 
potential reasons for missing responses might be a useful strategy to improve the 
items.

The ESS Example Continued. In the ESS example, the outcome space is simply the 
locations of the ESS Construct Map (see Figure 2). And the scoring guide for each 
item is given simply by the mapping of each item distractor to its respective location 
on the construct map, as exemplified for the item in Figure 3. This need not be the 
case, items may be developed that have much more complex relationships with the 
relevant construct map.

The Measurement Model

The measurement model phase of Construct Modeling closes the cycle, relating the 
scored outcomes back to the construct map. The measurement model predicts the 
probability of the response of a respondent to a particular item conditional on the 
respondent’s location on the ability continuum and the item’s location on difficulty in 
relation to the construct. The measurement model should help the measurer interpret 
the distance between (a) a respondent and a response on the construct map; and 
(b) different responses and different respondents on the construct map. The primary 
function of the measurement model is to bridge from the scores produced by the 
outcome space back to the construct map.

We will start by discussing two different approaches to the measurement model. 
The first approach focuses on the scores, and its relation to the construct – namely, the 
instrument-focused approach. The instrument-focused approach was the main driving 
force of Classical Test Theory (CTT; Spearman, 1904). The fundamental relationship 
in CTT is the relationship of the true score (T) with the observed score (X):

 X = T + E, (1)

where E is the error, and where the true score is understood as the average score 
the respondent would obtain over many hypothetical re-tests, assuming there are 
no “carry-over” effects.6 In contrast, the second measurement approach focuses on 
each item and its relationship to the construct – thus, termed as the item-focused 
approach. The most prominent example of the item-focussed approach is the work 
of Guttman (1944, 1950), who based his scalogram approach on the idea that tests 
could be developed for which respondents would invariably respond according 
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to the (substantive) difficulty order of the items. This assumption of invariance 
allows a very straightforward item-wise interpretation of the respondents’ scores. 
Although this approach was an important advancement in the conceptualization of 
psychometrics, the dependence of Guttman’s approach on the invariant ordering 
has been found to be impracticable (Kofsky, 1996). The Construct Modelling 
approach can be seen as a synthesis of the item-focused and instrument-focused 
approaches.

There have been a numerous measurement models proposed within the last 
several decades. We will focus on one such model, namely the Rasch model 
(Rasch, 1960), due to (a) its interpretational simplicity and (b) its alignment with 
the measurement framework presented in this chapter7. The construct modelling 
approach is both philosophically and methodologically based on the work of Georg 
Rasch, a Danish mathematician, who first emphasized the features of his epynomous 
Rasch model. Parallel to this development by Rasch, similar approaches were also 
being developed, generally under the label of Item Response Theory or Latent Trait 
Theory (van der Linden & Hambleton, 1997; Chapter 3, this volume).

Generally, given the uncertainty inherent in sampling a respondent’s relationship 
to a construct via items, it makes sense that one would prefer a measurement model 
that aligns with a probabilistic formulation. A major step forward in psychometrics 
occurred when the test items themselves were modelled individually using 
probabilistic models as opposed to deterministic models. Where the deterministic 
approach focuses on the responses itself, this probabilistic approach is focused on 
the probability of the correct response (or endorsement). In the case of the Rasch 
model, the probabilistic function is dependent on the item location and respondent 
location. Depending on the context, item location can be, for instance, interpreted 
as the difficulty of responding correctly or difficulty of endorsing a particular 
statement. The respondent location is the point where the respondent is located on 
the construct continuum: It can be interpreted as the respondent’s ability to answer 
the item correctly or to endorse a particular statement. The distance between the 
item location and the person location is the primary focus of the model and also the 
feature that provides for ease of interpretation.

The Rasch model asserts that the probability of a particular response depends only 
on the person location (θ) and item location (δ). Mathematically, this statement is 
represented as

 Probability(correct|θ, δ) = f(θ – δ) (2)

The requirement for the person and item locations (person and item parameters) 
is that both are unbounded (there can always be a higher respondent or more difficult 
item), thus −∞ < θ < ∞, and −∞ < δ < ∞, but the probability is, of course, bounded 
between 0 and 1. The two most common probabilistic models are based on the logistic 
and cumulative normal functions—the Rasch model uses the logistic formulation. 
With a multiplicative constant of 1.7, the two are very similar, particularly in the range 
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of −3 and 3 (Bradlow, Wainer, & Wang, 1999). Specifically, the logistic expression 
for the probability of a correct response on an item (represented as: X = 1) is:

 Probability(X = 1|θ, δ) = exp(θ − δ)/Ф, (3) 

and the probability of an incorrect response on an item (represented as: X = 0) is:

 Probability(X = 0|θ, δ) = 1/Ф, (4) 

where Ф is a normalizing constant, the sum of the numerators:

1 + exp(θ − δ).

The item response function (IRF, sometimes called the item characteristic curve—
ICC) summarizes the mathematical expression of the model by illustrating the 
relationship between the probability of the response to an item and the ability of the 
respondent. (See Figure 4.)

In order to calculate the probability of an observed response vector over a set 
of items, the probabilities for each item are multiplied together, relying on the 
assumption of local independence. Items are locally independent of each other if, 
once we know the respondent and item locations, there is no more information 
needed to calculate their joint probability. This assumption can be violated when 
several items have a relationship over and above what would be indicated by their 
respective difficulties, and the respondents’ abilities. For example, if several items 
relate to the same stimulus material, such as in a paragraph comprehension test, then 
we would suspect that there might be such a relationship. In this case, understanding 
or misunderstanding the paragraph can improve and/or worsen performance on all 
items in the set, but not on other items in the test. Elaborations of basic models 
that account for this type of dependence have been proposed (see Wilson & Adams, 
1995, Bradlow, Wainer, & Wang, 1999, and Wang & Wilson, 2005).

Figure 4. Item response function of the Rasch model (note, for this item, δ = 0.0).
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In the Rasch model, the total score of the correct (endorsed) items is monotonically 
(but not linearly) related to the estimated ability.8 This property of the Rasch model 
will be elaborated and its implications will be described below. One fundamental 
property that is associated with the Rasch model is what is referred as the sufficient 
statistic – the total number of correct responses by the respondent is said to be 
sufficient for the person ability, which means that there is no more information 
available in the data that can inform the estimation of the item difficulty beyond 
the number correct. This concept also applies to the items – the total number of 
respondents responding correctly to the item is a sufficient statistic for the item 
difficulty. Most measurement models do not have this property.

One implication of this feature is that Rasch model is simple to interpret and 
explain compared to more complicated models with more complex scoring and/
or parameterization. Models of the latter type might make it difficult to justify the 
fairness of the test to the public, such as when a respondent with a higher total score 
is estimated at lower location than the respondent with a lower total score.9

The second implication, stemming from the same argument, is that all items 
provide the same amount of information (all items are assumed to be equally good 
measures of the construct). Items differ only in difficulties. The higher the person 
location relative to the item location, the more likely it is that the respondent will 
answer correctly (endorse) the item. Thus, when this assumption is true, only two 
parameters (person location and item location) are needed to model achievement on 
the item.

A further manifestation of the uniqueness of the Rasch model is referred to as 
specific objectivity (Rasch, 1960). This can be understood in the following way: 
if the Rasch model holds true, then locations of two respondents on a test can be 
compared with each other regardless of the difficulties of the items used to measure 
them, and symmetrically, the locations of two items can be compared with each 
other regardless of the locations of the respondents answering the items.

Choosing the measurement model. Of course, all models are less complex than 
reality, and hence, all models are ultimately wrong—this applies to measurement 
models as much as any others. Some models are more suitable than others, depending 
on the hypothesized construct, one’s beliefs, the nature of the instrument, the sample 
size, and the item type. Nevertheless, in the process of modelling, one must posit a 
sensible starting-point for model-building.

Among many criteria in choosing the model, one principle that guides the choice 
is the law of parsimony, also referred as Occam’s razor, as Occam put it:

It is vain to do with more what can be done with fewer10

Thus, among the models, generally the more parsimonious models (models 
with fewer parameters and more degrees of freedom) will offer interpretational 
advantages. For example, linear models are in most instances, easier to interpret than 
non-linear ones. A more parsimonious model should be (and will be) a consequence 
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of good design, and in this context, good design includes careful development and 
selection of the items.

Models can be categorized according to various criteria. A model can be 
deterministic vs. probabilistic, linear vs. nonlinear, static vs. dynamic, discrete vs. 
continuous, to name several such categorizations. Some models can allow one to 
incorporate subjective knowledge into the model (i.e., Bayesian models), although, 
in truth, any assumption of the form of an equation is a subjective judgement. The 
ideal measurement model should provide a best possible basis for interpretation from 
the data – the central idea being to approximate (“fit”) the real-world situation, at the 
same time having not so-many parameters as to complicate the interpretation of the 
results. The evaluation of the model is based on checking whether the mathematical 
model provides an accurate description of the observed data. For this the model “fit” 
is an important test whether our measurement procedure was successful. (see De 
Ayala, 2009 and Baker & Kim, 2004).

For the Rasch model to fit, the data should meet the relevant fit criteria. One 
measure of the fit of the items in the Rasch model, known as the item and respondent 
fit (or misfit) statistic, is obtained by comparing the observed patterns of responses 
to the predicted patterns of responses (See, e.g., Embretson & Reise, 2000). This 
type of diagnostic is an important validation step and check of the model fit. Items 
that are different in their measurement quality from other items (those with different 
slopes) need to be reconsidered and investigated. The measurer should filter out 
items that do not fit with the model. The idea of filtering due to the model fit has 
been a source of debates for many years. The approach described here might be 
considered a strict standard, but this standard provides for relatively straightforward 
interpretation via the Wright map (as described below).

The Wright Map. The Wright map provides a visual representation of the 
relationship between the respondent ability and the item difficulty estimates by 
placing them on the same logit11 scale. This provides a comparison of respondents 
and items that helps to visualize how appropriately the instrument measures across 
the ability range. An example of a hypothetical Wright map for science literacy 
(including the ESS items) is shown in Figure 5. The left side of the map shows 
examinees and their locations on the construct: respondents estimated to have the 
highest ability are represented at the top, and each “X” represents a particular number 
of respondents (depending on the sample size). The items are represented on the 
right side of the map and are distributed from the most difficult at the top to the least 
difficult at the bottom. When the respondent and the item have the same logit (at the 
same location), the respondent has approximately a 50% probability of answering 
the item correctly (or endorsing the item). When the respondent is above the item, 
the probability is higher, when the respondent is below, it is lower. In this way, it is 
easy to see how specific items relate both to the scale itself and to the persons whose 
abilities are measured on the scale. The placement of persons and items in this kind 
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of direct linear relationship has been the genesis of an extensive methodology for 
interpreting the measures (Masters, Adams & Wilson, 1990; Wilson, 2005; Wright, 
1968; Wright, 1977).

For example, segments of the line representing the measurement scale can be 
defined in terms of particular item content and particular person proficiencies. This 
allows the measurer to make specific descriptions of the progress of students or 
other test-takers whose ability estimates place them in a given segment. The set of 
such segments, illustrated in Figure 5 using Roman numerals II, IV and V, can be 
interpreted as qualitatively distinct regions that characterize the successive ordered 
locations on the outcome variable. Defining the boundaries of these ‘criterion zones’ 
is often referred to as standard setting. Wright Maps have proven extremely valuable 
in supporting and informing the decisions of content experts in the standard setting 
process. See Draney & Wilson (2009) and Wilson & Draney (2002) for descriptions 
of standard setting techniques and sessions conducted with Wright Maps in a broad 
range of testing contexts.

Figure 5. A Wright map of the scientific literacy variable.

Comments. (a) Each ‘X’ represents 5 cases; (b) “T”, “N”, and “A” represent different 
types of items; (c) Roman numerals II, IV and V represent different locations of the 
construct.
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VALIDITY AND RELIABILITY

The two most fundamental concepts in psychometrics are test reliability and test 
validity. Statistical procedures exist to estimate the level of test reliability, and 
reasonably simple and general procedures are available to increase it to desirable 
levels. But statistical procedures alone are not sufficient to ensure an acceptable 
level of validity. Regardless of their separate consideration in much of the literature, 
the view of the authors is that two concepts are closely related.

Reliability

The reliability of a test is an index of how consistently a test measures whatever it 
is supposed to measure (i.e., the construct). It is an integral part of the validity of 
the test. If the instrument is sufficiently reliable, then the measurer can assume that 
measurement errors (as defined via Equation 1) are sufficiently small to justify using 
the observed score.

Thus, one can see that the closer the observed scores are to the true scores, the 
higher the reliability will be. Specifically, the reliability coefficient is defined as the 
ratio of the variance of these true scores to the variance of the observed scores. When 
a respondent provides an answer to the item, there are influences on the response 
other than the true amount of the construct, and hence, the estimated ability will 
differ from the true ability due to those influences. There are many potential sources 
for measurement error in addition to the respondents themselves, such as item 
ordering, the test administration conditions and the environment, or raters, to name 
just a few. Error is an unavoidable part of the measurement process that the measurer 
always tries to reduce.

The reliability coefficients described below can be seen as summaries of 
measurement error. The logic of most of these summary indices of measurement 
error is based on the logic of CTT, but this logic can readily be re-expressed in the 
Rasch approach. Note that the values calculated using them will be dependent on the 
qualities of the sample of respondents, and on the nature and number of the items 
used.

Internal consistency coefficients. Internal consistency coefficients inform about 
the proportion of variability accounted for by the estimated “true ability” of the 
respondent. This is equivalent to the KR-20 and KR-21 coefficients (Kuder & 
Richardson, 1937) for dichotomous responses and the coefficient alpha (Cronbach, 
1951; Guttman, 1944) for polytomous responses. By treating the subsets of items 
as repeated measures (i.e., each item thought of as a mini-test), these indices apply 
the idea of replication to the instrument that consists of multiple items. There are 
no absolute standards for what is considered an adequate level of the reliability 
coefficient: standards should be context-specific. Internal consistency coefficients 
count variation due to the item sampling as error, but do not count day-to-day 
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variation as error (Shavelson, Webb & Rowley, 1989). The IRT equivalent of these 
coefficients is called the separation reliability (Wright & Stone, 1979).

Test-retest reliability. Test-retest reliability is in some respects the complement 
of the previous type of reliability in that it does count day-to-day variation in 
performance as error (but not the variation due to the item sampling). The test-retest 
index is simply the correlation between the two administrations. As the name of the 
index implies, each respondent gives responses to the items twice, and the correlation 
of the responses on the test and the retest is calculated. This type of index is more 
appropriate when a relatively stable construct is of interest (in order to make sure 
that no significant true change in the construct is influencing the responses in the re-
administration of the instrument). In addition, it is important that the respondents are 
not simply remembering their previous responses when they take the test the second 
time—the so-called “carry-over” effect (mentioned above). When calculating test-
retest reliability, the time between the two administrations should not be too long in 
order to avoid true changes in the construct; and should not be too short in order to 
avoid the carry-over effect.

Alternate-forms reliability. Alternate-forms reliability counts both variation due 
to the item sampling and day-to-day variation as error. In calculating this index, 
two alternate but equivalent forms of the test are created and administered and the 
correlation between the results is calculated. Similarly, a single test can be split 
into two different but similar halves and the correlation of the scores on these two 
halves can be computed—the resulting index is what is referred to as the split-halves 
reliability. In this case, the effect of reducing the effective number of items needs to 
be taken into account using the Spearman-Brown prophecy formula (Brown, 1910; 
Spearman, 1910) Using this formula, the measurer can estimate the reliability of 
the score that would be obtained by doubling the number of items, resulting in the 
hypothetical reliability (see Wilson, 2005, pg. 149).

Inter-rater reliability. The concept of reliability also applies to raters. Raters and 
judges themselves are sources of uncertainty. Even knowledgeable and experienced 
raters rarely are in perfect agreement, within themselves and with one another. There 
are four different types of errors due to raters: (a) severity or leniency, (b) halo effect, 
(c) central tendency, and (d) restriction of range (For more information, see Saal, 
Downey, & Lahey, 1980).

Generalizability Theory. The concept of reliability is central to a branch of 
psychometrics called generalizability theory (Cronbach, Gleser, Nanda, & 
Rajaratnam, 1972). Generalizability theory focuses on (a) the study of types 
of variation that contribute to the measurement error and (b) how accurately the 
observed scores allow us to generalize about the respondents’ behaviour in a defined 
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universe of situations. “The question of reliability thus resolves into a question of 
accuracy of generalization, or generalizability” (Cronbach et al., 1972, p.15). For an 
introduction to generalizability theory see Shavelson, Webb & Rowley (1989).

Validity

A test is considered valid if it measures what it claims to be measuring. Test validity 
can be better understood from the causal inference perspective: for the test to be a 
perfectly valid, the degree of the construct (or presence or absence of it) should be 
the only cause for the observed responses—but this we know to be unattainable. 
This also implies that solely statistical procedures will hardly ensure validity – 
correlations and other forms of statistical evidence will provide only a partial support 
for test validity. Without a careful validation procedure, no amount of statistical 
methodology can provide the jump from correlation to causation.

Validity of the instrument’s usage requires evidence as to whether the instrument 
does indeed accomplish what it is supposed to accomplish. In general, a validity 
argument in testing consists of not only providing evidence that the data support the 
intended use and the inferences, but also showing that alternative explanations are 
less warranted (Messick, 1989).

Many contemporary authors endorse the view that validity is based on a holistic 
argument (e.g., the “Test Standards”—AERA/APA/NCME, 1999; Kane, 2006). 
Nevertheless, evidence for validity can be of various strands (AERA/APA/NCME, 
1999). These different strands of argument will be considered next.12

Evidence based on the instrument content. Evidence of this kind is an attempt to 
answer the question: What is the relationship between the content of the test and the 
construct it is designed to measure? The measurer should study and confirm this 
relationship using whatever evidence is available13. This is in fact what is happening 
when one goes through the Four Building Blocks process described above. Going 
beyond a mere definition of the construct, all the steps described in the four building 
blocks can provide useful evidence: the development of the construct, the crafting 
of the set of items, the coding and scoring of responses according to the outcome 
space, and the technical calibration and representation of the construct through the 
Wright map. Evidence based on instrument content is the central and first part of the 
validity study – this evidence is a prerequisite for all the other strands of evidence 
to be useful, in the sense that all the other forms of evidence are conceptually based 
on this first strand.

Evidence based on the response processes. Asking respondents what they are 
thinking about during and after the test administration provides validity evidence 
based on the response processes involved in answering the items. Recall that 
this information should also be used during the process of item development in 
order to improve the items. As was mentioned above, the two major methods of 
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investigations of response processes are think alouds and interviews. Reaction time 
and eye movement studies have also been proposed as other methods to gather such 
evidence (Ivie & Embretson, 2010; National Research Council, 2008). With the use 
of computerized testing, recording the actions by the respondents such as movement 
of the mouse cursor and log of used functions and symbols can also serve as useful 
information for this strand of evidence (Cooke, 2006).

Evidence based on the internal structure. If the measurer follows the steps of 
the four building blocks, a hypothesized internal structure of the construct will be 
readily provided via the ordered locations. The agreement of the theoretical locations 
on the construct map to the empirical findings in the Wright map provides direct 
evidence of internal structure. The measurer needs to compare the hypothesized 
order of the items from the construct map to the order observed from the Wright 
maps: A Spearman rank-order correlation coefficient can be used to quantify this 
agreement (see Wilson, 2005, p. 160). The higher the correlation, the better is the 
match (note that there is no predetermined lowest acceptable value—this will need 
to be a matter of judgement). Because this analysis occurs after the procedures of 
the four building blocks has taken place, a negative finding implicates all four of the 
steps: A low correlation implies that at least one of the four building blocks needs to 
be re-examined.

One should also examine whether the item locations adequately “cover” the person 
locations in order to makes sure that respondents are being measured adequately 
throughout the whole continuum. For example, a small range of the difficulty of the 
items would look like “an attempt to find out the fastest runner in a distance of two 
meters”.

A similar question can be asked at the item level: the behaviour of the items need 
to be checked for consistency with the estimates from the test. Consistency here is 
indexed by checking that respondents in each higher response category tend to score 
higher on the test as a whole. This ensures that each item and the whole test are 
acting in concordance.14

Evidence Based on Relations to Other Variables

One type of external variable is the set of results of a second instrument designed 
to measure the same construct. A second type arises if there is established theory 
that implies some type of relationship of the construct of interest with the external 
variable (i.e., positive, negative, or null, as the theory suggests). Then the presence 
or the lack of that relationship with the external variable can be used as one of 
the pieces of evidence. Usually the correlation coefficient is adequate to index the 
strength of the relationship, but, where a non-linear relationship is suspected, one 
should always check using a scatterplot. Examples of external variables are scores 
on other tests, teachers’ or supervisors’ ratings, the results of surveys and interviews, 
product reviews, and self-reports.
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Just as we could apply the logic of the internal structure evidence down at the item 
level, the same applies to this strand of evidence. Here the evidence is referred to 
as differential item functioning (DIF). DIF occurs when, controlling for respondent 
overall ability, an item favours one group of respondents over another. Finding DIF 
implies that there is another latent variable (i.e., other than the construct) that is 
affecting the probability of responses by members of the different groups. Ideally, 
items should be functioning similarly across different subgroups. Respondents’ 
background variables such as gender or race should not influence the probability of 
responding in different categories. One way to investigate DIF is to calibrate the data 
separately for each subgroup and compare the item estimates for large differences 
(Wilson, 2005), but another approach directly estimates DIF parameters (Meulders 
& Xie, 2004). DIF is clearly a threat to the validity of the test in the sense of fairness. 
Longford, Holland, & Thayer (1993), and Paek (2002) have recommended practical 
values for the sizes of DIF effects that are large enough to be worthy of specific 
attention.

Evidence based on the consequences of using an instrument. Since the use of the 
instrument may have negative consequences, this type of evidence should have a 
significant influence on whether to use the instrument or not. If there is a negative 
consequence from using the instrument, alternative instruments should be used 
instead, or developed if none exists. If any alternative instrument will also have the 
negative consequence, then perhaps the issue lies with the construct itself. Note that 
this issue arises when the instrument is used according to the recommendations of 
the measurer. If the instrument is used in ways that go beyond the recommendations 
of the original measurer, then there is a requirement that the new usage be validated, 
just as was the original use. For instance, if the instrument was designed for the use 
for placement purposes only, using it for selection or diagnosis will be considered 
as a misuse of the test and should be avoided. The cautionary message by Messick 
(1994) below better reflects this point:

Validity, reliability, comparability, and fairness are not just measurement 
issues, but social values that have meaning and force outside of measurement 
wherever evaluative judgments and decisions are made (p. 2).

In thinking of test consequences, it is useful to think of the four-way classification 
of intended versus unintended use and positive versus negative consequences 
(Brennan, 2006). Intended use with positive consequence is seldom an issue and 
is considered as an ideal case. Similarly, for ethical and legal reasons, there are no 
questions on avoiding the intended use with negative consequences. The confusion 
is with unintended uses. Unintended use with a positive consequence is also a 
benefit. The major issue and confusion arises with unintended use with negative 
consequences. The measurer has a limited responsibility and a limited power in 
preventing this being the case once a test is broadly available. However, it is the 
measurer’s responsibility to document the intended uses of the test.
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CONCLUSION

Each use of an instrument is an experiment and hence requires a very careful design. 
There is no machinery or mass production for producing the instruments we need 
in education – each instrument and each construct requires a customized approach 
within a more general framework, such as that outlined above. The amount of effort 
you put in the design of the instrument will determine the quality of the outcomes 
and ease of the interpretation based on the outcome data.

In order to model real-life situations better, there have been many developments in 
psychometric theory that allow extensions and increased flexibility starting from the 
simple probability-based model we have used here. Models that allow the incorporation 
of item features (e.g. the linear logistic test model (Janssen, Schepers, & Peres, 2004)) 
and respondent characteristics (e.g. latent regression Rasch models (Adams Wilson 
& Wu, 1997)), and multidimensional Rasch models (Adams, Wilson & Wang, 1997) 
have been developed and used extensively. Recently there have been important 
developments introducing more general modelling frameworks and thus recognizing 
previously distinct models as special cases of the general model (e.g., De Boeck & 
Wilson, 2004; Skrondal & Rabe-Hesketh, 2004)). As a result, the range of tools that 
psychometricians can use is expanding. However, one should always bear in mind that 
no sophisticated statistical procedure will make up for weak design and/or poor items.

Psychometrics as a field, and particularly educational measurement, is growing 
and having an effect on every student’s journey through their education. However, 
as these developments proceed, we need principles that act as guarantors of social 
values (Mislevy, Wilson, Ercikan & Chudowsky, 2003). Researchers should not 
be concerned about valuing what can be measured, but rather stay focused on 
measuring what is valued (Banta, Lund, Black & Oblander, 1996). Measurement in 
the educational context should be aimed squarely at finding ways to help educators 
and educational researchers to attain their goals (Black & Wilson, 2011).

This chapter is not an attempt to cover completely the whole range of knowledge 
and practice in psychometrics – rather, it is intended to outline where one might begin.

NOTES

1 Note, do not confuse this use of “formative” with its use in the previous paragraph.
2 These four building blocks are a close match to the 3 vertices of the NRC’s Assessment Triangle 

(NRC, 2001)—the difference being that the last two building blocks correspond to the third vertex of 
the triangle.

3 Borrowed from Wilson (2005).
4 The fundamental assumption in most of the modern measurement models is monotonicity. As the 

ability of the person increases, the probability of answering correctly increases as well (unfolding IRT 
models being an exception—See Takane, (2007).

5 i.e., It should provide useful information about certain locations on the construct map.
6 The carry-over effect can be better understood with the brainwashing analogy. Assume that the 

respondent forgets his/her answers on the test items over repeated testings. Aggregating over the 
sufficiently large (perhaps infinite) number of hypothetical administrations gives the true location of 
the respondent (i.e., the True Score).
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 7 In the development below, we will assume that the items in question are dichotomous, but the 
arguments are readily generalized to polytomous items also.

 8 Recall that instrument-focused approach of CTT is also based on the number correct. There is an 
important sense in which the Rasch Model can be seen as continuation and completion of the CTT 
perspective (Holland & Hoskens, 2003).

 9 Note that while some see this property as the advantage of the Rasch model, this has also been a point 
of critique of the Rasch model. The critique lies in the fact that Rasch model ignores the possibility 
that there is information in the different respondent response patterns with the same total. In our view, 
the best resolution of the debate lies the view that the instrument is an experiment that needs to be 
carefully designed with carefully-crafted items. This point will be elaborated later in the chapter.

10 quote from Occam cited in , Thorburn, 1918.
11 The natural logarithm of the odds ratio.
12 Note that these strands should not be confused with categories from earlier editions of the “Test 

Standards,” such as construct validity, criterion validity, face validity , etc.
13 The simplest thing one can do is to examine the content of the items (this has been also intuitively 

referred to as the face validity), though this is far from sufficient.
14 This information will also usually be reflected in the item fit statistics used in the Rasch model. 

Another indicator is the point-biserial correlation—the correlation of the binary score with the total 
score, also called as the item-test or item-total correlation.
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ZE WANG & STEVEN J. OSTERLIND

2. CLASSICAL TEST THEORY

GENERAL DESCRIPTION

Classical test theory (CTT) is the foundational theory of measurement of mental 
abilities. At its core, CTT describes the relationship between observed composite 
scores on a test and a presumed but unobserved “true” score for an examinee. 
CTT is called “classical” because it is thought to be the first operational use of 
mathematics to characterize this relationship (cf. Gullicksen, 1950). Modern theories 
of measurement, such as IRT (item response theory), do not obviate CTT or even 
contradict it; rather, they extend it although there are important distinctions in both 
the underlying philosophies and in the statistics employed for implementation.

A primary feature of CTT is its adherence to learning theories that follow notions 
of classical and operant conditioning (e.g., behaviorism, social learning theory, 
motivation). CTT presumes extant a domain of content apart from any particular 
examinee, although – significantly – the domain is not reified; it remains an 
abstraction. This perspective places CTT outside cognitivist theories of learning 
(e.g., information processing, constructivism). Thus, for application of the theory, 
the domain is defined anew in each appraisal. For example, if “reading” is the 
domain for an appraisal, “reading” must be defined for that specific assessment. In 
another assessment “reading” will have a slightly different meaning. Hence, in CTT, 
no two independent tests are identical, although strictly parallel forms for a given 
assessment may be developed. Further, in CTT the domain (whether “reading” or 
other) with its theoretical parameters, can be accurately sampled by a test’s items 
or exercises. This means (to continue the reading example) that the main idea of a 
paragraph can be dependably deduced. The items on the test are stimuli designed to 
manifest observable behavior by the examinee: the response. The focus of CTT is to 
determine the degree to which the examinee has mastered the domain: the implied 
individual’s true score which is inferred through responses to the test’s stimuli.

Lord and Novick (1968), in their classic work Statistical Theories of Mental Test 
Scores, begin the explanation of CTT with definitions of a true score and an error 
score. They maintained that one must keep in mind what a true score represents and 
the basic assumptions about the relationships among the true score, the error score, 
and the observed score. In the CTT framework, an individual’s observed score on 
a test is considered to be a random variable with some unknown distribution. The 
individual’s true score is the expected value of this distribution, typically denoted as 
E (symbol for expectation; not to be confused with the error term described below) 
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in general statistical theory. The discrepancy between the individual’s observed 
score and true score is measurement error, which is also unobserved and stochastic. 
These features, then—true score, observed score, and error—compose CTT.

From these elements CTT builds two central definitions, including (1) the true 
score tgp of a person p on measurement g is the expected value of the observed score 
Xgp; and (2) the, error score Egp which is the difference between the two elements 
(i.e., observed score and the true score, Xgp − tgp). Under CTT, tgp is a constant yet 
unobserved value, and Xgp is a random variable that fluctuates over repeated sampling 
of measuring g. This fluctuation is reflected by a propensity distribution Fgp for that 
person p and measurement g. The expectation in definition (1) is with respect to that 
propensity distribution. From this stand point the mathematical model for CTT can 
be deduced, and consists of two equations:

 ( )gp gpE Xt =  (1)

 gp gp gpE X t= −  (2)

However, in most cases, researchers are interested in the traits of a population of 
people rather than in the trait of a fixed person p. Therefore, any person p from 
that population can be considered a random sample. The notation Xg presents a 
random variable defined over repeated sampling of persons in a population, which 
takes a specific value xg when a particular person is sampled. Similarly, Γg is a 
random variable over repeated sampling of persons in a population, which takes a 
specific value tg when a particular person is selected. Finally, Eg is random variable 
representing the error score. Under this construction, Lord and Novick (1968) had 
the theorem that Xg = Γg + Eg. Without loss of generality, the subscript g is omitted 
when only one measurement is considered. And, thus, is defined the familiar CTT 
equation,

 X E= Γ +  (3)

It is important to remember that in equation (3), all the three elements are random 
variables. In CTT they are called “random variables,” although in the more general 
probability theory they are classified as stochastic processes.

CTT as a theory requires very weak assumptions. These assumptions include: 
(a) the measurement is an interval scale (note: there are other types of scales such 
as classifications; those are not part of the CTT model although with some score 
transformation they can be incorporated in CTT); (b) the variance of observed 
scores 2

Xs  is finite; and (c) the repeated sampling of measurements is linearly, 
experimentally independent. Under those assumptions, the following properties 
have been derived (Lord & Novick, 1968):

1. The expected error score is zero;
2. The correlation between true and error scores is zero;
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3. The correlation between the error score on one measurement and the true score on 
another measurement is zero;

4. The correlation between errors on linearly experimentally independent 
measurements is zero;

5. The expected value of the observed score random variable over persons is equal 
to the expected value of the true score random variable over persons;

6. The variance of the error score random variable over persons is equal to the 
expected value, over persons, of the error variance within person (i.e., s2(Xgp));

7. Sampling over persons in the subpopulation of people with any fixed true score, 
the expected value of the error score random variable is zero;

8. The variance of observed scores is the sum of the variance of true scores and the 
variance of error scores; that is:

 2 2 2 .X Es s sΓ= +  (4)

It is important to note that the above properties are not additional assumptions of 
CTT; rather, they can be mathematically derived from the weak assumptions and 
easily met by most test data. Because of this, CTT is a test theory that provides, “a 
theoretical framework linking observable variables…to unobservable variables…a 
test theory cannot be shown to be useful or useless” (Hambleton & Jones, 1993).

From this discussion, it can be realized that with additional assumptions, CTT can 
be stated as a model eligible for testing against data. This empiricism is pronounced 
in modern test theory, especially in IRT where the model is tested against data in 
each new test application.

RELIABILITY

One of the most important features in CTT is reliability. The term is concerned with 
precision in measurement, and it is described as consistency of test scores over 
repeated measurements (Brennan, 2001). This definition has remained largely intact 
since the early days of modern measurement, although its emphasis has evolved to 
focus more on standard errors of measurement (cf. Brennan, 2001; Osterlind, 2010). 
Evolution of the term’s development can be traced in each subsequent edition of the 
Standards for Educational and Psychological Tests (cf. 1966, 1974, 1985, 1999).

The mathematics of reliability is quite straightforward. Working from the 
formulation of CTT as given in formula (3) above (cf., X = Γ + E), Γ and E are 
uncorrelated

 0ErΓ =  (5)

This leads directly to Lord and Novick’s final assumption, given above as the 
8th property in the list above and expressed in Equation (4): that is, variances are 
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additive: 2 2 2
X Es s sΓ= + . It follows that whenever an observed score is extant the 

variance of true scores and the variance of error scores is less than the variance of 
observed scores, or

2 2
Xs sΓ ≤    and  2 2

E Xs s≤ .

The ratio of these variances is expressed as:

 
2 2

2 2 2X
X E

s s
r

s s s
Γ Γ

Γ

= =
+

  (6)

This ratio quantifies the reliability of using observed scores to describe the traits of a 
population of individuals and rX is the reliability coefficient of the measurement. As 
such, it is foundational to CTT. It is also obvious from equation (6) that the reliability 
coefficient ranges from 0 to 1.

While this coefficient is easily derived, applying it to live data in a real-world testing 
scenario is challenging at best, due primarily to practical considerations. From the 
mathematical derivation we can see that reliability requires multiple measurements. 
Further, in theory the measurements are presumed to be independent—even, a very 
large number of them would be stochastic. Practically, this is difficult to achieve 
even when forms of a test are strictly parallel. Using a given form and splitting it into 
two halves does not obviate the problem. Another practical problem concerns the 
attributes themselves. Attributes for educational and psychological measurements 
are nearly always latent constructs or proficiencies. Here is where the problem 
arises: as humans such latencies are labile, or changing in unpredictable and uneven 
ways. At some level, this makes multiple measurements even more suspect.

These two practical difficulties are not easily overcome; nonetheless, recognizing 
these conditions, reliability can be determined to a sufficient degree that it is useful 
for our purposes. Due to these problems there is not a single, universally adopted 
expression for the reliability coefficient. Instead, the reliability coefficient has many 
expressions. Generally, they are of either about the internal consistency of a test or 
its temporal stability. Internal consistency seeks to examine the degree to which the 
individual elements of a test (i.e., items or exercises) are correlated. The Cronbach’s 
coefficient alpha (described more fully later on) is an example of gauging a tests’ 
internal consistency. Similarly, a coefficient that indicates a test’s temporal stability 
tries to find a similar correlational relationship between repeated measurements.

Although parallel forms are not necessary to describe relationships among 
quantities of interest under CTT, it is usually easier to describe those statistics with 
respect to parallel forms. Parallel forms are measures that have the same true score 
and identical propensity distribution, between the measures, for any person in the 
population. That is, for any given person p in the population, if forms f and g satisfy 
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that tfp = tgp, and Ffp = Fgp, we say forms f and g are parallel. The requirements of 
parallel forms can be reduced to tfp = tgp and s2(Efp) = s2(Egp) for any given person p, 
if Xfp and Xgp are linearly experimentally independent, that is, the expected value of 
Xfp does not depend on any given value of xgp, and that the expected value of Xgp does 
not depend on any given value of xfp.

When two test forms are parallel, the distribution of any of the three random 
variables, X, Γ, and E, and any derived relationships (e.g., correlations, covariances) 
involving those random variables are identical between the two forms. In other words, 
the two forms are exchangeable. It matters not which test form is administered. 
However, those random variables do not have to follow a particular distribution, 
such as a normal distribution.

Then, too, there can be types of parallelism. Non-parallel forms, depending 
on the degree to which they differ from parallelism, can be tau-equivalent forms, 
essentially tau-equivalent forms, congeneric forms, and multi-factor congeneric 
forms. Specifically, tau-equivalent forms relax the assumption of equal error variance 
but the assumption of equal true scores still holds; essentially tau-equivalent forms 
further relax the assumption of equal true scores by requiring only that the true 
scores for any given person between two forms differ by a constant which depends 
only on the forms but not the individual; congeneric forms allows a shortening 
or lengthening factor of the measurement scale from one form to the other after 
adjusting for the constant difference in true scores at the origin of one form; multi-
factor congeneric forms further breaks down the true score on either form into 
different components and allows each component to have a relationship similar to 
that exists between congeneric forms. For mathematical representations of those 
types of non-parallelism, see Feldt and Brennan (1989).

If X and X ′  are observed scores from two parallel forms for the same sample of 
people from the population, we have

 2
,XX X Xr r r′ Γ= =  (7)

where X and X ′ are test scores obtained from the two parallel forms.
That is, the reliability coefficient can be thought of as the correlation between two 

parallel forms, which is the square of the correlation between the observed scores 
and true scores.

Therefore, based on formula (7), if parallel forms are administered to the same 
sample, the reliability coefficient is the correlation coefficient squared. Sometimes, 
the same test form is administered twice assuming no learning has happened 
between the two administrations, the reliability coefficient is then based on the two 
administrations. This is the referred to as the test-retest reliability.

Often, a single test form is administered once and only one total test score is 
available for each individual. In this case, formula (6) has to be used. The challenge 
is that this formula provides the definition, not the calculation of reliability. Like the 
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true scores, the variance of true scores in the population is unknown and has to be 
estimated from the data. Ever since Spearman (1910) and Brown (1910), different 
coefficients have been proposed to estimate test reliability defined in formula (6). 
Those approaches are based on the thinking that each test score is a composite score 
that consists of multiple parts. Spearman-Brown’s split half coefficient is calculated 
under the assumption that the full test score is the sum of two part-test scores and 
that the two parts are parallel:

 1 2

1 2
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r
r

r
=

+
 (8)

where 
1 2X Xr  is the correlation between the two parts. If X1 and X2 are two parallel 

forms of the same test, the above equation also serves as a corrected estimation 
for the reliability coefficient of the test if the test length is doubled. For more 
information on the relationship between test length and test reliability, see Osterlind 
(2010, pp. 143–146).

As parallelism between the two parts is relaxed, other formulas can be used. The 
applications of those formulas with degrees of parallelism can be found in Feldt and 
Brennan (1989). Reuterberg and Gustafsson (1992) show how confirmatory factor 
analysis can be used to test the assumption of tau equivalence and essentially tau 
equivalence.

The most popular reliability coefficient remains Cronbach’s coefficient alpha 
(1951). This coefficient is a measure of internal consistency between multiple parts 
of a test and is based on the assumption that part scores (often, item scores) are 
essentially tau-equivalent (i.e., equal true score variance but error score variances 
can be different across parts). Under this assumption, coefficient alpha is:
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where n is the number of parts, 2
Xs  is the variance of observed scores of the full test, 

and 2

fXs  is the variance of observed scores for part f.
When the parts are not essentially tau equivalent, Cronbach’s alpha is the lower 

bound of the standard reliability coefficient. If the n parts are n items in a test that 
are scored dichotomously (0 or 1), Cronbach’s coefficient alpha reduces to KR-20 
(Kuder & Richardson, 1937):
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where ff  is the proportion of scores of 1 on item f.
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STANDARD ERROR OF MEASUREMENT

Another index is one closely related to reliability of a test: the standard error of 
measurement (SEM). The SEM summarizes within-person inconsistency in score-
scale units. It represents the standard deviation of a hypothetical set of repeated 
measurements on a single individual (i.e., the standard deviation of the distribution 
of random variable Egp in (2). In CTT models, it is usually assumed that the standard 
error of measurement is constant for all persons to facilitate further calculations. 
With this assumption,

 SEM (1 )E X Xs s r= = −  (11)

where rX is the reliability coefficient.
The choice of the reliability coefficient makes a difference in calculating the 

SEM, because different reliability coefficients capture different sources of errors. 
For example, a SEM based on a test-retest reliability reflects the inconsistency of test 
scores for an individual over time, while a SEM calculated on Cronbach’s coefficient 
alpha reflects the inconsistency of test scores for an individual over essentially tau-
equivalent test forms. Thus, when reporting or examining the SEM, one should be 
aware what source of error is reflected.

ESTIMATION OF TRUE SCORES UNDER CTT

One purpose of CTT is to make statistical inferences about people’s true scores so 
that individuals can be compared to each other, or to some predefined criteria. Under 
CTT, the true score of each person tp is fixed yet unknown. In statistics, we call such 
a quantity a parameter. A natural following question is: Can we find an estimate for 
that parameter? With only one test administration, the commonly used practice to 
estimate a person’s true score is to use the observed score xp. This is an unbiased 
estimate of tp which is defined as the expected value of the random variable Xp, as 
long as the weak assumptions of CTT hold. Sometimes, an additional distributional 
assumption is added to a CTT model to facilitate the construction of an interval 
estimation of an individual’s true score. A commonly used assumption is that 2

Es  is 
normally distributed. With this additional assumption, the interval estimation of tp is 

p Ex zs± , where z is the value from the standard normal distribution corresponding 
to the probability associated with the interval.

Another less commonly used construction of a point estimation and interval 
estimation of tp depends on an additional assumption that, with a random sample 
of multiple persons on whom test scores are observed, the random variables Γ and 
X follow a bivariate normal distribution. With this assumption, a point estimate of 
an individual’s true score is rX(xp − mX) + mX , where rX is the reliability coefficient, 
and mX is the population mean of observed scores , which can be replaced by the 
sample mean of X  in practice. The corresponding interval estimation for tp is 
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[ ( ) ]X p X X E Xx zr m m s r− + ± . It can be shown that this construction is consistent 
with confidence intervals of mean predictions in multiple linear regression.

VALIDITY

The idea that test scores are used to make inferences about people is directly related 
to another important concept in measurement, namely, validity. The past five decades 
has witnessed the evolution of the concept of validity in the measurement community, 
documented particularly in the five editions of the Standards for Educational and 
Psychological Testing published in 1954, 1966, 1974, 1985, and 1999, respectively 
(referred to as the Standards since different titles are used in those editions). In the 
first edition of the Standards (APA, 1954), validity is categorized into four types: 
content, predictive, concurrent, and construct. In the second edition of the Standards 
(AERA, APA, & NCME, 1966), validity is grouped into three aspects or concepts: 
content, criterion, and construct. In the third edition of the Standards (AERA, APA, 
& NCME, 1974), the three categories are called types of validity. In the fourth edition 
of the Standards (AERA, APA, & NCME, 1985), the three categories are called 
“types of evidence” and the central role of construct-related evidence is established. 
In the fifth edition of the Standards (AERA, APA, & NCME, 1999), the content/
criterion/construct trinitarian model of validity is replaced by a discussion of sources 
of validity evidence.

The description of sources of validity evidence in the Standards is consistent 
with and perhaps influenced by Messick’s treatment of validity as an integrated 
evaluative judgment. Messick (1989) wrote:

Validity is an integrated evaluative judgment of the degree to which empirical 
evidence and theoretical rationales support the adequacy and appropriateness 
of inferences and actions based on test scores or other modes of assessment… 
Broadly speaking, then, validity is an inductive summary of both the existing 
evidence for and the potential consequences of score interpretation and use. 
Hence, what is to be validated is not the test or observation device as such 
but the inferences derived from test scores or other indicators – inferences 
about score meaning or interpretation and about the implications for action that 
the interpretation entails… It is important to note that validity is a matter of 
degree, not all or none… Inevitably, then, validity is an evolving property and 
validation is a continuing process. (p. 13)

The process of collecting validity evidence – validation—can be carried out by 
examining the test content, its relationships with criteria, and the adequacy and 
appropriateness of inferences and actions based on test scores or other modes of 
assessment (Messick, 1989, p. 13). More recently, Kane (2006) considers validation 
as “the process of evaluating the plausibility of proposed interpretations and uses” 
and validity as “the extent to which the evidence supports or refutes the proposed 
interpretations and uses” (p. 17). Importantly, he divides the validation process 
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into a stage of interpretative argument and a stage of evaluation of the interpretive 
argument (i.e., validity argument). The interpretive argument serves as the theoretical 
framework for the proposed interpretations and uses of test results. The validity 
argument evaluates the coherence, plausibility, and assumptions of the interpretive 
argument. Kane’s (2006) treatment of validity incorporates the unitary notion of 
validity as an integrated judgment and also provides some guidance for validation 
studies. With this treatment, other previously used notions such as face validity, 
content validity and convergent validity can be incorporated into the two stages of 
validation.

Despite this evolution, the idea that construct-related evidence of validity has the 
central role with content- and criterion-related evidence playing a subordinate role is 
still prevalent in textbooks on measurement and psychological testing (e.g., McIntire 
& Miller, 2006; Raykov & Marcoulides, 2010). One reason may be due to the fact 
that it is easier to empirically collecting evidence that way.

CTT AND OTHER TECHNIQUES

Notably, CTT models have been related to other techniques as a special case and 
most such relationships are based on some mathematical and statistical equivalence. 
Before talking about those equivalences, it is important to point out that CTT is 
a measurement theory that bears both semantic and syntactic definitions. With a 
semantic definition, the more abstract constructs can be linked to observable 
behaviors. With a syntactic definition, those constructs and relationships between 
them can be stately more broadly. These two aspects together are made possible 
through “a particular, mathematically convenient and conceptually useful, definition 
of true score and on certain basic assumptions concerning the relationships among 
true and error scores” (Lord & Novick, 1968, p. 29).

CTT is also a theory of composite scores, with a focus on properties of intact 
tests. If multiple forms are available, observed scores obtained from those forms 
can be subject to a one-factor confirmatory factor analysis and the latent factor 
serve the role of true score in CTT. Parallel and non-parallel test forms correspond 
to constraints on parameters of factor analysis models. One the other hand, when 
only one test form is available, treating items (or test parts) on that test as multiple 
test forms, we can assess the applicability of different reliability coefficients. For 
example, Reuterberg and Gustafsson (1992) have shown that Cronbach’s coefficient 
alpha assumes an equal factor loading from the latent factor to item scores but 
does not assume equal residual variances. In this sense, CTT is a special case of 
confirmatory factor analysis. However, this type of testing through factor analysis 
is for assumptions that are later imposed to form different CTT models, not for 
the weak assumptions of CTT themselves. For example, in the case of Cronbach’s 
coefficient alpha, we can use factor analysis to test the applicability of this reliability 
coefficient for a particular test but it would be incorrect to claim that CTT does not 
apply if factor analysis results are not consistent with data.
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Unlike CTT, IRT is for item-based models. Because characteristics can be 
examined for various items separately under IRT, items are not bound with a 
particular test and they are not sample dependent. In contrast, item characteristics 
under CTT depend on the sample and items are compared against the composite 
scores on the tests. However, CTT statistics can be derived using IRT with very 
general assumptions (Holland & Hoskens, 2003).

There are still more perspectives on CTT. For instance, CTT can also be viewed 
as a special case of generalizability (G) theory, first introduced by Cronbach and 
colleagues in response to the limitations of CTT (L. J. Cronbach, Gleser, Nanda, & 
Rajaratnam, 1972; L. J. Cronbach, Rajaratnam, & Gleser, 1963; Gleser, Cronbach, 
& Rajaratnam, 1965; Rajaratnam, Cronbach, & Gleser, 1965). In CTT, the error 
term E represents undifferentiated random error and does not distinguish different 
sources of the error. In G theory, multiple sources of error can be investigated with 
one design. The universe score in G theory is analogous to the true score in CTT 
and is the score obtained if that individual has taken all possible items that tap the 
proficiency/ability that the test is trying to measure under all possible conditions. 
Of course, since an individual cannot take all the possible items, the universe score 
is unknown. However, if the items on a particular test form can be considered as 
a random sample of all possible items and different conditions such as raters can 
be considered as a random sample of all possible conditions, the error term can 
be decomposed to reflect multiple sources, together with a source of variability 
of true scores across different people. In CTT, the observed scores only have the 
variability of true scores due to different people and the variability of scores of an 
agglomeration of errors.

ITEM ANALYSIS

Although the focus of CTT is usually with the total test scores, analyzing items 
that consist of the test is useful during the earlier stages of test development (e.g., 
field testing) and can be informative when examining item and test shifting. The 
two most important statistics for any item within the CTT framework are (a) item 
difficulty and (b) item discrimination. For a dichotomous item scored as correct 
or incorrect, item difficulty (usually denoted as p) is the percentage of individuals 
in the sample who answered the items correctly (that is, item difficulty measures 
the “easiness” of an item in the sample). For a dichotomous item, the correlation 
between item and total test scores is the point-biserial correlation. A large correlation 
suggests larger difference in the total test scores between those who answered the 
item correctly and those who answered the item incorrectly. That is, the correlation 
between item and total test score is a measure of item discrimination. When multiple 
score points are possible for one item, item difficulty is the average score on that 
item expressed as a proportion of the total possible point; and item discrimination 
is the Pearson product moment correlation between item and total test scores. In 
reality, item discrimination is usually calculated as the correlation between the item 



41

CLASSICAL TEST THEORY

scores and total test scores excluding the item scores for the item being evaluated. 
This “corrected” item discrimination eliminates the dependence of total test scores 
on the item being evaluated.

From the above, it is obvious that both item difficulty and item discrimination 
under CTT is dependent upon the sample of individuals whose responses are used 
for those calculations. For example, the same item may have a large p values if 
data are from a higher-ability group of individuals, compared to a lower-ability 
one. Actually, this interdependency between item and sample is the most attacked 
weakness of CTT, especially when it is compared to IRT.

AN ILLUSTRATIVE STUDY

Obviously—and logically—examining test items and exercises after a test has been 
administered to a group of examinees is the most frequent application of CTT. 
Such item analysis has several purposes, including interpreting the results of an 
assessment, understanding functioning of an item wholly, exploring parts of the 
item (i.e., the stem, distractors), discovering its discriminating power, and much 
more. While many of the statistics used for the purposes can easily be calculated by 
hand, it is much more convenient to use a computer. And, of course, many computer 
programs, both home grown and commercial, are available to do this. We explain 
the output from one program, called MERMAC, to illustrate typical statistical 
and graphical CTT output for item analysis. Figure 1 illustrates the output for one 
multiple-choice item, in this case Question 44.

Note in Figure 1 that the item analysis is presented in two types: tabular and 
graphical. In the table (left side of the figure), the results are reported for each fifth 
of the population, divided on the basis of their total test score (the most able group 
is at the top 5th; the least able is the 1st group). Such fractile groupings are common 
in item analysis. In addition to showing item discrimination between five ability 
groups, they can also be used in reliability analyses. In the table, the raw number 
of examinees who endorsed a given response alternative is shown. This is useful 
because following down the ability groups (from the top 5th to the 1st) one observes 
that more of the less able examinees endorsed incorrect responses, showing greater 
discrimination for the item. Additionally, it is instructive for both interpretation 

Figure 1. Graphical item analysis output from the MERMAC program.
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of test results and for item improvement, to note which distractors were selected 
by what ability group. Below the table are two rows, labeled “DIFF” and “RPBI” 
meaning “difficulty” and “point bi-serial correlation.” The difficulty statistic is 
the percent of examinees who endorsed each response alternative (both correct 
and incorrect). For example, overall 71 percent of examinee responded correctly 
to this item. The point bi-serial correlation is a theoretical conception of treating 
dichotomous test items (typically multiple-choice) as a true dichotomy between 
correct and anything not correct: as 1, 0. A correlation coefficient is then calculated 
between this theoretical variable and the examinee’s total test score. This coefficient 
is interpreted as a measure of the item’s discriminating power. A positive value for 
the coefficient indicates good discrimination; hence, one looks for a positive RPBI 
value for the correct alternative and negative value for the distractors, the case with 
the example item in Figure 1.

The right side of the MERMAC output is a graphical representation of the table, 
showing an asterisk for each ability group. The horizontal axis is percent endorsing 
the correct response; hence it is a graph of the Difficulty row.

As an illustration, suppose the same test is administered to students taking the 
same statistics course in four semesters. This test consists of 32 items: 4 multiple-
choice items that clearly state there is only one answer, 7 multiple-choice items 
that ask students to choose as many (as few) correct answers, the other 21 items are 
constructed-response items where students are asked to conduct simple calculations 
or to explain and interpret results related to topics covered in the course. The 11 
multiple-choice items are worth 1 point each, with partial points possible for those 
with multiple answers. Of those constructed-response items, 9 are worth 1 point 
each, 6 worth 2 points each, 2 worth 3 points each, and 4 worth 4 points each. Partial 
credits are possible for all constructed-response items. The total possible score for 
this test is 54 and there are 54 students during the four semesters who took this test. 
The data for four students and each item are in Table 1. Assuming the 32 items are 
essentially tau equivalent, the Cronbach’s coefficient alpha calculated from formula 
(9) is .803. The corresponding SEM, calculated from formula (11), is 1.47. The 32 
items can also be split in half so that the number of items and the total possible scores 
are the same in the two split halves. The correlation between the two split parts is 
.739, which results in a split-half reliability coefficient of 0.850 using equation (8). 
The corresponding SEM, calculated from formula (11), is 1.12.

Item difficulties and corrected item discriminations are also in Table 1. There are 
several very easy items. In this example, everyone answered Item 10 correctly so 
this item does not have any discriminating power. Item 9 is a dichotomously scored 
item and 4 out of the 54 students answered this item incorrectly, which renders a 
discrimination coefficient rounded to zero. All but one answered Item 3 correctly 
and the resultant item difficulty is .99 and item discrimination is −.22. This is a very 
easy item. In fact, it is so easy that an incorrect response is more likely given by a 
person with a higher total test score than one with a lower total test score. This item 
should be deleted.
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From the above, it is evident that the approach to mental measurement offered 
by CTT is both powerful and useful. It represents an application of the theory of 
true score and it has several practical applications in real-world testing situations, 
including developing a test, reporting a score for an examinees, item analysis, and 
some understanding of error in the measurement. For these reasons CTT remains a 
most popular approach to measuring mental processes.
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3. ITEM RESPONSE THEORY

INTRODUCTION

The past few decades have witnessed an exponential growth of applications of Item 
Response Theory (IRT), also known as “latent trait theory” or “item characteristic 
curve theory,” in educational research and measurement. Simply speaking, IRT 
refers to a system that describes the relationship between an individual’s response to 
an item and the underlying trait being measured (Embretson & Reise, 2000). Such a 
relationship is typically summarized and assessed by a family of statistical models, 
namely, item response models.

The major tenet of IRT modeling is that a respondent’s recorded score on a test 
item is driven by certain unobservable, or latent, trait. In comparison to traditional 
test theory (i.e., classical test theory, or CTT), IRT has some unique properties and 
advantages for test construction, scoring, ability assessment, etc. Hambleton and 
Swaminathan (1985) summarized four main advantages of IRT models: (a) item 
parameter estimates do not depend on the particular group of examinees of the 
population for which the test is developed; (b) examinee trait assessment does not 
depend on the particular set of administered items sampled from a population pool of 
items; (c) statistical information is provided about the precision of the trait estimates; 
and (d) traditional reliability information is replaced by relevant statistics and its 
accompanying standard errors. The aforementioned features make IRT modeling 
more flexible and powerful, in contrast to CTT. For instance, when two examinees 
were administered with samples of items of differing difficulty, test scores based 
on traditional testing methods may fall short in providing information about the 
performance and ability of each examinee. Within the IRT framework, however, this 
task is easier, because estimates of examinee abilities are independent of sampled 
items from the same item population pool.

IRT has been applied to a wide spectrum of research settings, including, but not 
limited to, computer adaptive testing, test equating, identification of biased test 
items, and latent trait scoring. In the following sections, we will first introduce 
basic IRT terminologies and statistical models. We will then provide an illustrative 
example of applying IRT to a real data set. Finally, we discuss some research issues, 
and future directions for IRT modeling and application.
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DICHOTOMOUS ITEM RESPONSE MODELS

Assume that we are interested in assessing one’s mathematics ability. The ability 
or trait, as a construct, is latent and not observable. As such, it can only be inferred 
from one’s observable performance on certain measurement instruments, such as 
a mathematical test. Logically, the better one scores on the math test, the higher 
mathematical ability the respondent is judged to possess. The relationship between 
math ability and one’s math test score, thus, can be modeled to assess one’s latent 
trait, as well as the quality of measurement items.

Typically, item response modeling is based on three general assumptions: 
(a) the underlying trait is unidimensional (recently, however, more progress has 
been made about multi-dimensional IRT models, MIRT); (b) conditional on the 
respondent’s level of the latent trait being measured, responses to different items are 
independent of each other, which is referred to as conditional independence or local 
independence; and (c) responses to an item can be depicted as a mathematical item 
response function (Ayala, 2009).

Item Response Function (IRF)

IRF describes the relationship between an examinee’s underlying ability and the 
corresponding probability to endorse an item. The function can be succinctly 
presented as below (Yen & Fitzpatrick, 2006):

 ( ) ( |{ }, { })i i i i ip p X xq q d≡ =  (1)

In Equation 1, θ denotes the latent trait being measured, p denotes the probability for 
endorsing an item, Xi represents the score for item i, and δi represents the parameters 
of that particular item. The IRF function expresses the probability for one examinee 
to score xi on that item, given that examinee’s level on the latent trait and item 
parameters. Put differently, one’s response to an item is predicated on both person 
parameter (e.g., latent trait level) and item parameters (e.g., item difficulty). A 
graphical presentation of the IRF is usually called item response curve.

Another relevant graphical technique is called item characteristic curve (ICC) or 
item characteristic function, which plots the expected response score in relation to 
the trait being measured. For a binary item, the ICC can be expressed as (Hambleton 
& Swaminathan, 1985):

 -1( ) ( ) ( )ui ui
i i if P Qq q q≡  (2)

In Equation 2, P represents the probability to correctly answer the item, whereas 
Q = 1 – P. In addition, U represents the dichotomous responses where correct 
response coded as 1 and incorrect response coded as 0. In short, the ICC expresses 
the expected probability for an examinee to select response 1, for the given level of 
the examinee’s ability or trait.
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Response options, however, can be more than two, and can be of different 
relationships (e.g., ranking order). Further, the IRF does not follow a linear 
relationship; instead, IRF has two major forms. One is called normal ogive model, 
which is the integral of normal distributions. The other one is based on logistic 
regression function distribution for a dichotomous outcome, and this is the more 
widely used form. It should be noted that normal ogive models and logistic regression 
models are comparable in many respects, and they yield similar results with simple 
transformations (Hambleton, Swaminathan, & Rogers, 1991). In this chapter, we 
focus on logistic regression models for various item response functions. We begin 
with the basic one-parameter IRT model with dichotomous response options.

One-Parameter Logistic Model

The one-parameter logistic model (1PL), also known as Rasch model, involves only 
one item parameter for estimation. The following equation for 1PL, in addition to the 
item parameter, entails a person parameter θ which refers to the respondent’s ability 
or trait level to endorse the item. Again, the response option 1 means endorsing the 
item, or answering the item correctly, and response option 0 means not endorsing the 
item, or answering the item incorrectly.
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where, Xis is the response of person s to item i (response options 0 or 1),
 θs is the latent trait level of person s, and
 βi is difficulty level of item i.

In the model, p(Xis = 1|θs, βi) denotes the probability of one individual with trail level 
θs to endorse that item in the trait-consistent direction. The only parameter, item 
difficulty, represents the required trait level for an individual to have 50% chance to 
respond to an item correctly, i.e., in the expected direction. So, the higher the value 
of the parameter β, the more difficult the item is for examinees to endorse.

Figure 1 presents the item characteristic curves of three items with different 
difficulty levels (b = −2, 0, and 2, respectively). The β parameter for an item is the 
point on the trait axis where the probability of a correct response is 0.5. It should 
be noted that the underlying trait and the item difficulty are projected to the same 
coordinate, x axis. The basic assumption is that the higher the item difficulty value 
is, the higher ability level the item requires for endorsement. Therefore, along the 
trait continuum, from the left to the right, the ability level goes from lower to higher 
levels. The lower the β value, the more the item is located to the left end of the trait 
continuum. Therefore, a characteristic curve denoting difficulty value −2 is located 
to the left of the curve of difficulty of 0, which then is to the left of an item with 
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difficulty of 2. From another perspective, in the middle of the graph is a horizontal 
line which intersects with the three curves. The line represents p = .5 probability to 
endorse an item. In fact, when an examinee’s ability matches the item difficulty (i.e., 
θ = β), the probability of endorsing the item is 0.5. Also, at this point, the slope of the 
ICC (i.e., the first derivative of the function) reaches its maximum of 0.25 when 1PL 
is utilized for modeling the function (Hambleton & Swaminathan, 1985; Hambleton 
et al., 1991).

Two-Parameter (2PL) Logistic Model

In addition to item difficulty parameter, the 2PL model involves another item 
parameter α, known as item discrimination. The discrimination parameter is 
proportional to the ICC slope at the difficulty level b along the trait continuum 
(Hambleton et al., 1991). The larger the discrimination parameter, the more powerful 
the item is in separating lower-ability from higher-ability examinees. Theoretically, 
the discrimination parameter can range from negative infinity to positive infinity. A 
negative value of discrimination, however, is counterintuitive because it means the 
decrease of probability of endorsing an item with the increase of ability. In practice, 
item discrimination parameter α typically is within the range between 0 and 2 
(Hambleton et al.). Other researchers recommended that reasonably good values for 
item discrimination parameter range from .8 to 2.5 (e.g., Ayala, 2009). The equation 
representing 2PL model is as below:

Figure 1. ICCs for three items with different difficulty levels.
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where, Xis = response of person s to item i (with response options 0 or 1)
 θs = latent trait level for person s
 βi = difficulty level for item i
 αi = discrimination power for item i

Similar to the 1PL model, the 2PL involves both person parameter and item 
parameters, but with one more parameter α. Figure 2 presents the ICCs of three 
items of 2PL model. The three items possess the same item difficulty level (β = 0). 
Therefore, we can see that the three ICC cross at the point which corresponds 
to 0.5 endorsement probability. As explained earlier, at the probability 0.5, the 
item difficulty matches the measured ability perfectly. However, because of the 
different values of discrimination parameter (α = 0.5, 1.0, and 2.0, respectively), 
the three curves show different “steepness.” The steepest curve corresponds to the 
highest discrimination power (α = 2), whereas the most flat curve has the lowest 
discrimination power (α = .5).

Three-Parameter (3PL) Logistic Model

Compared with 1PL and 2PL IRT models, the 3PL model incorporates one more 
item parameter c, which represents the guessing parameter or pseudo-chance-level 

Figure 2. ICCs for three items with different discrimination parameters.
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parameter. This additional parameter represents the probability for a low-ability 
examinee to answer the item correctly, but the correct response is not the result 
of the examinee’s ability, but of some other random errors such as guessing. The 
mathematical expression of the 3PL is presented below:
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where, Xis = response of person s to item i (with response options 0 or 1)
 θs = latent trait level for person s
 βi = difficulty level for item i
 αi = discrimination power for item i
 ci = random guessing factor for item i

Figure 3 presents three ICCs for three items, with the same item difficulty (β = 0) and 
item discrimination (α = 1), but with different guessing parameter values (c = 0.0, 
0.1, and 0.2, respectively). On the graph, the guessing parameter value is reflected 
by the asymptote on the left end of the trait continuum. As the graph shows, for low-
ability examinees, even with a trait value of −3, the persons have some probability 
of endorsing the items, or answering the items correctly, depending on the guessing 
parameter values.

Figure 3. ICCs for three items with different guessing parameter values.
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Up to this time, we have focused on binary response items. In practice, however, 
an item may involve three or more response options. For instance, an item with 
Likert-scale response options could have five response categories ranging from 1 
(strongly disagree) to 5 (strongly agree). As such, binary response models do not 
apply, and polytomous response models should be utilized.

POLYTOMOUS ITEM RESPONSE MODELS

There are three major types of polytomous IRT models: graded response model, 
partial credit model, and nominal response model. Because of space constraints, we 
will discuss the graded response model with some details, but only provide brief 
descriptions of other two models.

The Graded Response Model (GRM)

The GRM is an extension of the 2PL binary model. Assuming we have an item 
with five response categories, we will have the following response dichotomies: 
(a) category 1 vs. categories 2, 3, 4, and 5; (b) categories 1 and 2 vs. categories 3, 
4, and 5; (c) categories 1, 2, and 3 vs. categories 4 and 5; and (d) categories 1, 2, 3, 
and 4 vs. category 5. Suppose we attempt to measure students’ self-esteem with the 
following exemplar item:

On the whole, I am satisfied with myself.

Equation 6 below is the mathematical presentation of the GRM, where * ( )ixp q  
denotes the probability of endorsing each response option category x or higher as a 
function of the latent trait θ, whereas pi1(θ) denotes the probability of responding in 
the first category. By the same token, pi2(θ) represents the probability of responding 
in the second category, and so on.
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Category Response Curve (CRC). In the GRM, category response curves (CRC) 
are used to describe the probability of endorsing a particular category option as a 
function of the latent trait. In general, each CRC peaks in the middle of two adjacent 
threshold parameters βij, and the more peaked or narrow the CRC, the more item 
discrimination power it has (Embretson & Reise, 2000). Figure 4 below is a graphical 
presentation of CRC of a measurement item with seven graded response options:

Figure 4. CRCs for an item with seven graded response options.

0

0.2

0.4

0.6

0.8

1.0

-3 -2 -1 0 1 2 3

1

2

3

4

5

6

7

Ability

Pr
ob

ab
ili

ty

Item characteristic curve: 1 graded response model

Partial Credit Model (PCM)

As an extension of the 1PL model, PCM is originally developed to score test items 
which require multiple steps, and hence entailing assigning examinees partial credits 
for their response. Consider a simple example. An examinee needs to solve a math 
problem: (5*4) + 6 =? To reach the final solution, the examinee has to go through 
a step-by-step process, where the first step requires multiplication and the second 
step requires summation. That said, an examinee who only gets the first step right 
will be awarded partial credit, whereas one who gets both steps right will receive 
full credit. In PCM, all items are assumed to have the same slope or discrimination 
power. The only parameter is termed step difficulty or transition location parameter, 
often denoted as δ. Compared to the GRM, the equation for the PCM is relatively 
unwieldy and hence is not presented here. Interested readers can consult any book 
discussing polytomous IRT models for more details.
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Nominal Response Model (NRM)

Nominal response models do not involve ordered response categories. Instead, all 
response options are parallel to each other. Multiple-choice test is a case of applying 
nominal models. The model models the probability for an examinee with certain 
trait level to select a particular response category. Bock’s nominal response model 
is presented below:
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In Equation 7 above, i represents items, and x represents the response categories. By 
adding identification constraints, the two parameters of the model can be estimated. 
It should be pointed out, however, the graded response model discussed previously 
can be considered as a special case of nominal response models, with all the response 
categories being ordered.

SOME MAJOR CONSIDERATIONS IN IRT APPLICATIONS

Model Specification and Fit Assessment

If the earlier-introduced unidimensionality and local independence assumptions 
are met, an inevitable question is how to select the best model among the wide 
range of IRT models including 1 PL, 2 PL, 3 PL, and polytomous models. In other 
words, with what procedure and against what criteria do we judge whether an IRT 
model captures the sample data well? Consider a simple example: the actual data 
follow an IRT model with varying slopes, but we fit a 1PL model which assumes 
a uniform slope value (i.e., the same discrimination power) across items. Then, 
it is reasonable to expect the 1PL model would fit poorly or biasedly because it 
involves model misspecification. In practice, often, different items of a test are 
represented by different IRT models. A pertaining case is when a test is comprised of 
both dichotomous and polytomous response items. In such circumstances, model fit 
assessment usually unfolds on an item-by-item basis (DeMars, 2010). Specifically, 
researchers rely on various residual statistics by computing the difference between 
observed and model-implied (expected) proportion-correct (or proportion endorsed) 
on a particular item. Large residuals typically indicate poor item fit which may 
result from a variety of reasons. For example, violation of unidimensionality, a non-
monotonous relationship between item response and the underlying trait, unspecified 
item parameters are only a few possible cases in point (Embretson & Reise. 2000).

It is also possible to judge model fit at the test level. The typical approach is similar 
to procedure of model evaluation in structural equation modeling. By comparing 
two different models, often one nested within another, researchers can examine 
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the likelihood ratio comparison indices (e.g., Chi-square) to determine whether 
statistically significant differences exist between the complex model and the more 
parsimonious one. Later, we will present an example applying this procedure to 
compare 1PL and 2PL model fit with the same set of data.

Item and Test Information

With an instrument, each item contributes to our understanding of an examinee’s 
position on the ability continuum, and reduces our uncertainty about one’s ability 
location. Correspondingly, item information function, denoted as Ii(θ), serves as an 
index to evaluate the amount of information that one particular item contributes to 
ability assessment. Ii(θ) is related to the previously discussed item parameters. In 
general, item information is higher under the conditions: (a) when the difficulty 
value β is closer to the trait value θ, than when the two values are far different from 
each other; (b) when the discrimination value α is high; and (c) when the value of 
guessing parameter approaches zero.

For dichotomous item response models, Ii(θ) can be derived from the following:
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In the above, Pi(θ) denotes the conditional probability of endorsing a binary item, 
given the item response function, and Pi′(θ) refers to the first derivative of item 
response function, given the estimated trait level. Further mathematical reduction 
can lead us to a simplified form for item information function of 2PL models 
(Embretson & Reise, 2000; Hambleton et al., 1991):

 2( ) ( )(1 ( ))i i i iI a P Pq q q= −  (9)

Figure 5 presents the item information functions of three items under 2PL response 
model. The three items possess the same difficulty values but different discrimination 
parameter values (0.5, 1.0, and 2.0, respectively). Clearly, the item with the largest 
discrimination value demonstrates the highest information, whereas the less 
discriminative item shows less item information. Moreover, as mentioned earlier, an 
item would convey more information when item difficulty matches an examinees’ 
trait level. In the present example, when trait level is close to the difficulty value 
0, the item conveys more information in differentiating examinees’ ability levels. 
For examinees with trait levels far from θ = 0 (e.g., 1.5 < θ < 2), the items, even 
the one with the highest level of item information function, will provide much less 
information to help us in differentiating examinees with different ability levels.

An important property of item information curves is that they are additive. When 
item information from all the items on a test is added, it leads to the test information 
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curve. Figure 6 is the plot of test information function by combining the three items 
in Figure 5 above. This test information curve informs us that this test of three items 
would be most effective in differentiating examinees with trait level θ in the range of 
−1 to +1. For examinees with trait level θ below −1, or above +1, this test would not 
be effective in differentiating the examinees.

Item information in IRT modeling analysis plays a role similar to what reliability 
does in classical test theory. Each item response function can be transformed to 

Figure 5. Item information functions of three items.
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corresponding item information function, which provides insight about the 
precision of ability assessment along the trait range. As item information [Ii(θ)] of 
different items is additive, the resultant sum across all the items on a test is the 
test information [I(θ)], which reflects the information contribution of the whole 
instrument to ability assessment. In addition, the standard error of estimation, or 
standard error of measurement, which reflects the variance of latent trait estimation, 
is the reciprocal of test information, as shown in Equation 10. As such, the higher 
the test information, the smaller the standard error of estimation is, and the less error 
there is in ability assessment. 

 1ˆ( )
( )

SE
I

q
q

=  (10)

In Equation 10, I(θ) represents the test information, and ˆ( )SE q  represents the 
standard error of estimation of the whole test or instrument. In classical test theory, 
the standard error of measurement is constant for a designated test, regardless of 
examinee’s ability level. In IRT, however, the standard error varies with the trait 
level θ, and hence conveys more precise information with respect to a specified trait 
level θ. Also, because measurement error is mapped to the same metric as the latent 
trait, confidence intervals can be easily constructed.

ADVANCED TOPICS OF IRT

Multidimensional Model

As mentioned earlier, two important assumptions of IRT model estimation are 
local independence and unidimentionality of the underlying trait being measured. 
Nonetheless, the latter assumption does not always hold in practical settings. It is very 
likely that an examinee’s response to a test is driven by more than one latent trait. For 
instance, an examinee’s performance on a math test depends on his/her math ability. 
On the other hand, understanding the wording of the math problems is a prerequisite 
for tackling the question. Thus, the examinee’s response or final score could be a 
reflection of both math ability, and reading ability, although these two types of ability 
may play different roles in the hypothesized situation. As a result, IRT model based 
on unidimentionality assumption is not the most applicable in this or other similar 
situations. Further, if one arbitrarily ignores the situation of multidimensionality 
and continue to apply a model with unidimensionality constraints, calibrated scores 
could be misleading and difficult to interpret (Yen & Fitzpatrick, 2006).

Test Score Linking and Equating

When examinees take different tests measuring the same latent construct, are 
those examinees still comparable in terms of their test scores? The aforementioned 
question directly speaks to test score equating and scale linking. Simply speaking, 
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linking is the process of aligning different metrics so that parameter estimates 
from different samples or models can be compared. Equating refers to procedures 
of adjusting or converting, to a common metric, the scores of different examinees 
on different tests so as to better compare individuals (Ayala, 2009). Generally 
speaking, the goal of linking is to adjust item parameter estimates, whereas the goal 
of equating is to adjust person location estimates (Ayala, 2009). Equating test scores 
with IRT models usually entail four steps: (a) select the suitable equating design, 
(b) decide the appropriate item response model, (c) build a common metric for item 
or trait parameters, and (d) determine the scale for test score reporting (Hambleton 
& Swaminathan, 1985). Researchers who are more interested in test equating can 
consult the more comprehensive and detailed work by Kolen and Brennan (2010).

Differential Item Functioning (DIF)

DIF refers to such a situation where respondents from different groups (e.g., gender 
groups, cultural groups) have the same level of the measured ability (θ), but show 
different probability for endorsing an item. Alternatively stated, the item is said 
to be biased against a particular group of respondents as opposed to other groups. 
When DIF occurs, for the group that the test is biased against, the test scores fails 
to represent the true levels of examinees’ ability or trait that is being measured. A 
typical approach for detecting DIF is to compare item response functions. The logic 
is straightforward: an item with DIF will not show identical response function across 
different groups. Conversely, if an item does show identical response functions 
across groups, then no DIF exists (Hambleton et al., 1991).

ILLUSTRATIVE EXAMPLE FOR BASIC IRT MODELING ANALYSIS

Data Sample

The data used for this illustration came from the Texas Assessment of Academic 
Skills (TAAS) tests administered to 11th-grade students in the early 1990s (Fan, 
1998). The original dataset is very large, so we randomly selected 1000 observations 
for the current illustrative example. The test contained 48 reading items and 60 
math items. For illustrative purpose, we only selected 10 math items. All items 
are dichotomously coded, with 0 denoting incorrect answer and 1 denoting correct 
answer.

Assessment of Data Unidimensionality

As mentioned earlier, unidimensionality is an important assumption for most IRT 
models. Therefore, we conducted categorical factor analysis with the weighted least 
squares estimation in Mplus (Version 5.0). The overall χ2 test of one-factor model 
is not statistically significant (χ2

(35) = 47.574, p > .05). Other fit indices also showed 
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that the one-factor model fits the data well (CFI = .990; TLI = .987; RMSEA = .019; 
SRMR = .049). The “scree” plot of eigenvalues for the estimated polychoric 
correlation matrix was shown in Figure 7, which suggests that one-factor solution is 
viable for the data.

We also examined the two-factor solution, and the results indicated that this would 
be overfactoring the data (e.g., only one item loaded high on the second factor (see 
Cole et al., 2011). Factor loadings of both the one-factor solution and the two-factor 
solution were presented in Table 1. It should be noted, in the two-factor solution as 
shown in Table 1, Item 10’s loading on the second factor was beyond the value of 

Figure 7. Eigenvalue “scree” plot for the 10-item “mini-test”.
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Table 1. Factor loadings of one- and two-factor solutions

Items One Factor
Two Factors

Factor 1 Factor 2
 1 0.487 0.564 −0.070
 2 0.499 0.548 −0.037
 3 0.385 0.449 −0.061
 4 0.576 0.541 0.049
 5 0.687 0.574 0.116
 6 0.282 0.214 0.082
 7 0.507 0.540 −0.018
 8 0.570 0.487 0.094
 9 0.512 0.578 −0.051
10 0.782 0.001 1.681
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typical expectation, and it is very different from those of the rest of the items. Further 
inspection revealed a negative estimate of the residual variance for that item. Such a 
Haywood case further supports the one-factor solution.

IRT Analysis

A host of specialized software has been developed for IRT modeling analysis. Among 
them, BILOG-MG is designed mainly for binary item analysis. PARSCALE can 
perform analysis of both binary and polytomous items. Another popular software 
is MULTILOG, which can be used for implementing most IRT models, including 
rating scale, graded response, multiple choice, partial credit, etc. More recently, 
IRTPRO has come out (Cai, Thissen, & du Toit, 2011) to replace MULTILOG. The 
new software incorporates almost all the functions that MULTILOG can provide, 
and is more powerful and promising because it deals with both unidimensional and 
multidimensional IRT models. It should be pointed out that most IRT software is 
specialized, and hence has limited size of users. On the other hand, some general 
statistical software such as Mplus or SAS also offers some IRT modeling analysis. 
But, if a researcher is interested in more comprehensive IRT analysis, specialized 
software typically is the better option.

For the present analysis, we utilized the beta version of IRTPOR software (Cai, 
Thissen, & du Toit, 2011). Cronbach’s coefficient α for the “mini-test” of ten items 
is 0.63, with more detailed item statistics and other information in Table 2.

Table 2. Item statistics and related information of the “mini-test”

Item p-value (std.) Correcteda Item-Total r Item-Deletedb Coefficient α
 1 0.910 (0.286) 0.2435 0.6202

 2 0.857 (0.350) 0.2786 0.6131

 3 0.907 (0.291) 0.1881 0.6285

 4 0.799 (0.401) 0.3398 0.5997

 5 0.841 (0.366) 0.3671 0.5953

 6 0.782 (0.413) 0.159 0.6394

 7 0.632 (0.483) 0.3097 0.6077

 8 0.764 (0.425) 0.3312 0.6013

 9 0.618 (0.486) 0.326 0.6034

10 0.725 (0.447) 0.4621 0.5678
a  For calculation of these correlation coefficients, the “total” was obtained without the 

contribution of a particular item in question.
b  This is the coefficient a of the remaining nine items, without the contribution from a 

particular item in question.
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We first fitted a 2PL model to the data. Estimates of item difficulty parameter β 
and those of item discrimination parameter a were presented in Table 3.

By comparing Table 2 and 3, we can see that the two tables provided consistent 
information about item discrimination and difficulty (see also, Fan, 1998). In 
Table 2, the corrected item-total correlation represents item discrimination. Values in 
Table 2 showed that Item 10 has the highest discrimination power (.4621), whereas 
Item 6 possesses the lowest discrimination power (.1590). In Table 3, corresponding 
discrimination parameter values for Item 10 is 2.13, and for Item 6 is 0.53. For 
item difficulty, item p-value in Table 2 represents the percentage of endorsement for 
each item. Lower item p-value means smaller proportion of respondents endorsing 
an item, or answering an item correctly, and thus the more difficult the item is. For 
example, In Table 2, Item 1, with an endorsement percentage of .91, is the least 
difficult among the ten items, and while Item 9, with endorsement percentage of 
.618, is the most difficult on this “mini-test”. In Table 3, Column c represents item 
difficulty information. It is shown that Item 1 has the lowest difficulty value of 
−2.75 (reverse sign to the tabled value), and item 9 has the highest difficulty value 
of −0.58.

It should be noted that IRTPRO outputs two different forms of parameter estimates. 
Correspondingly, the response function also takes two forms (Equation 11; see 
IRTPTO user’s guide). The former function (first part of Equation 11) is called slope-
intercept model, where α is the slope or discrimination parameter and c is the intercept. 
In the latter equation (second part of Equation 12), β is the threshold parameter. 

 
1 1
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1 exp[ ( )] 1 exp[ ( )]i s i i s i

P i n
Ca q a q b

= = =
+ − + + − −

�  (11)

Table 3. 2PL model item parameter estimates [logit: aθ + c or a(θ − b)]

Item α (s.e.) c (s.e.) b (s.e.)

 1 1.09 (0.17) 2.75 (0.17) −2.53 (0.31)
 2 1.05 (0.15) 2.14 (0.13) −2.05 (0.23)
 3 0.80 (0.15) 2.53 (0.14) −3.14 (0.51)
 4 1.25 (0.15) 1.77 (0.12) −1.42 (0.13)
 5 1.75 (0.21) 2.47 (0.19) −1.41 (0.11)
 6 0.53 (0.11) 1.35 (0.08) −2.57 (0.48)
 7 0.96 (0.12) 0.65 (0.08) −0.68 (0.10)
 8 1.23 (0.14) 1.51 (0.11) −1.23 (0.11)
 9 0.98 (0.12) 0.58 (0.08) −0.59 (0.09)
10 2.13 (0.25) 1.66 (0.17) −0.78 (0.06)
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If we compare Equation 11 above with Equation 4 introduced earlier, simple 
algebraic re-arrangement leads to the following: 

 
exp[ ( )]1
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1 exp[ ( )] 1 exp[ ( )]

i s i

i s i i s i
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a q b

a q b a q b
−
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�  (12)

Attention should be paid to the positive sign before c, and negative sign before β. 
So, to interpret β and c comparably, we need to add a negative sign to the c values 
presented in Table 3.

Figure 8 provides the graphs of trace lines and item information curves for three 
selected items on this “mini-test”: Item 6, Item 7, and Item 10. The two “trace lines” 
(the two solid curve lines in each graph) represent the respective probabilities of 
endorsing one of the two response categories (0, 1) for a given ability level θ, which 
is represented by the x-axis of the graph. The item information curve is represented 
by the dashed line in each graph. As the graph indicates, each item provides the 
maximum amount of information around the point where the two trace lines for 

Figure 8. Trace lines and item information curves of three selected items.



62

X. FAN & S. SUN

the two response categories (1, 0) intersect with each other. In other words, an item 
provides most information about an examinee’s ability when an examinee’s θ level 
is at the point where exist approximately equal probabilities for the examinee to 
endorse either of the two categories.

Among the three selected items, Item 6 provides very little information along 
the continuum of latent trait θ, and the item information curve is both very low and 
essentially flat. This means that this item contributes very little to our knowledge 
about examinees’ ability or performance, as it does not differentiate between 
examinees with lower- vs. higher-ability for any level of θ. The main reason that Item 
6 provides very little item information at any ability level is that, Item 6 has very low 
discrimination value (Table 2: corrected item-total r = 0.1590; Table 3: a = 0.53). 
Consequently, this item is not useful in discriminating or separating examinees with 
lower vs. higher ability levels for any given θ level.

Item 7 and Item 10 have very different item information curves. Item 7 has 
somewhat symmetrical, but very low and flat item information curve, with the lowest 
and highest point of the curve being approximately 0.05 and 0.2, respectively. This 
means that, Item 7 is not really that informative in differentiating examinees’ ability 
levels, and it contributes little to our understanding about which examinee has higher 
trait level compared with other examinees. On the other hand, Item 10 also has 
somewhat symmetrical information curve, but its curve is very steep, with the lowest 
and highest point of the curve being 0.00 and 1.10, respectively. In addition, the steep 
curve peaks approximately at the point of θ = −0.75. All this informs us that, (a) this 
is a relatively informative item with respect to an examinee’s trait level; (b) this 
item is the most informative for examinees with trait level θ at approximately −0.75; 
(c) for examinees with trait level θ being considerably lower or higher than −0.75, 
this item will be much less informative. For example, this item would be almost 
useless in differentiating among examinees with trait level θ > 1. The difference 
between Items 7 and 10 as discussed above is reflected by their discrimination index 
information presented in Table 2 (corrected item-total correlations of .0.3097 vs. 
0.4621, respectively) and Table 3 (item discrimination parameter estimates of 0.96 
vs. 2.13, respectively). It is obvious item information function provides much richer 
information than item discrimination index alone.

The brief discussion above reveals one crucial difference between item 
discrimination information (e.g., corrected item-total correlation) in classical test 
theory and item discrimination and item information function in IRT. In classical 
test theory, we talk about item discrimination as if it were applicable for examinees 
at any trait (θ) level. In IRT, however, item information function is operationalized 
and quantified relative to a given trait level θ. Within this framework, it may not be 
an issue of whether or not an item is informative or useful in general, but whether 
an item is informative relative to certain θ level range. Because of this, an item 
may or may not be informative, depending on what trait level is being considered. 
This characteristic of item information naturally leads to the discussion about test 
information curve below.
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Figure 9 presents the test information curve of this 10-item test. As discussed 
above, test information curve has similar meaning as item information curve, but 
this is about the whole test. In this graph, there are two curve lines. One (solid curve 
line) is the test information curve line, and the other (dashed line) is the standard 
error line. The horizontal axis represents the continuum of the trait level (θ) being 
measured. The left vertical axis represents the amount of test information relative to 
the trait level θ. The right vertical axis represents the magnitude of standard error of 
estimation relative to the trait level θ. As defined in Equation 10, the standard error 
of information in IRT modeling is the inverse of the square root of test information.

Figure 9 shows that the test provides much more information for the trait level 
range of −2 < θ < 0. That is, in the lower ability range, this “mini-test” provides 
more information in differentiating examinees with different levels of the trait. In 
contrast, this “mini-test” provides relatively little information in the higher ability 
range (i.e., θ > 0). The reason for the low information for high-ability examinees 
is simple: the items on this “mini-test” were easy, as shown in Table 2. It should 
be noted that, unlike classical test theory in which standard error of measurement 
is a constant for all examinees with different levels of trait measured by a test, 
the magnitude of standard error of estimation in IRT framework has an inverse 
relationship with the test information. As a result, the magnitude of standard error of 

Figure 9. Test information curve (solid line) of the “mini-test”.
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estimation is not constant across the ability range; instead, the magnitude of standard 
error of estimation is related to the trait level θ. In Figure 9, the magnitude of 
standard error of estimation is considerably greater for the trait level range of θ > 1, 
and our measurement based on this “mini-test” is most precise around trait level of 
θ = −1 where test information curve peaks. So this “mini-test” provides much more 
measurement precision for examinees at or around the level of θ = −1.00. But for 
examinees with higher performance level, the scores of this “mini-test” are much 
more crude with considerably larger measurement error.

Test information curve provides extremely useful information for test improvement 
considerations. Whether or not the test information curve as shown above is good 
enough depends on the purpose of this “mini-test.” For example, if this “mini-test” 
is designed to separate students into two groups, one group with very low math 
performance such that they will need remedial courses before they can take regular 
math classes, and the other group who are ready to take regular math classes now. If 
the cut-off point separating these two groups is set at approximately θ = −1, then this 
test information curve is perfect for this intended purpose. Lack of test information 
above θ = 0 would not be our concern, as we are only interested in separating those 
at or around θ = −1, and we have no interest in differentiating those with math trait 
level above θ = 0.

On the other hand, if the purpose is to provide measurement to cover a broad 
range of trait level in math performance (e.g., −2 < θ < 2), the test information curve 
in Figure 9 would be considered deficient, primarily because it provides very little 
information about higher range of the trait level (e.g., θ > 0). To serve such a purpose, 
we will need a test information curve similar to Figure 10, which has relatively high 
level of test information over the range of −2 < θ < 2.

The fit indices showed that, in general, the 2PL model fits the data well 
(M2 = 53.83, df = 35, p = .02, RMSEA = .02). The log likelihood is 9256.19, but 
this information is only informative when this model is being compared to another 
nested model. Therefore, we proceeded to test a more constrained and nested 
1PL model. By constraining the item discrimination parameter to be equal across 

Figure 10. Hypothetical test information function for a test designed for a broad 
range of trait level.
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all items, the previous 2PL model is reduced to 1PL model. As shown in Table 4, 
the discrimination parameter for the ten items is the same (a = 1.12), and only 
the item difficulty parameter c varies across the items. Because this 1PL model is 
more constrained, we expect that the model would not fit the data as well as the 
2PL does. The fit indices do show a worse fit (M2 = 120.72, df = 44, p = .0001, 
RMSEA = .04). The corresponding log likelihood is 9325.75. The difference of log 
likelihood values of nested models approaches chi-square distribution, which would 
provide a statistical test for testing which model fits better. As such, the difference 
of log likelihood between 1PL and 2PL is 69.56 (9325.75 – 9256.19 = 69.56), with 
df difference (df∆) being 9 (i.e., 44 – 35 = 9). This test on the difference of log 
likelihood values of nested models is statistically highly significant. In other words, 
the difference of model fit between the two models is not trivial, and it is more than 
what we would expect from sampling error or sampling fluctuation. Based on this 
evidence, we would conclude that the 2 PL model is preferable to the 1PL model for 
this measurement data set.

RESEARCH ISSUES

Item response theory, as a measurement framework that is still developing, holds 
great promise for applications in educational measurement and research, as it offers 
many advantages over the framework of classical test theory. Here, we briefly 
discuss a few directions wherein IRT may have important research applications.

First, test construction and scale development is an area where IRT can have 
significant influence. In contrast to traditional methods, IRT can more readily 
identify biased test items, thus enhancing measurement validity for examinees 
from different populations. Measurement invariance is always an important issue 

Table 4. 1PL model item parameter estimates [logit: aθ + c, or a(θ − b)]

Item α (s.e.) c (s.e.) b (s.e.)

 1 1.12 (0.06) 2.78 (0.13) −2.48 (0.15)
 2 1.12 (0.06) 2.19 (0.11) −1.95 (0.12)
 3 1.12 (0.06) 2.74 (0.13) −2.44 (0.15)
 4 1.12 (0.06) 1.70 (0.09) −1.52 (0.10)
 5 1.12 (0.06) 2.04 (0.10) −1.82 (0.11)
 6 1.12 (0.06) 1.58 (0.09) −1.41 (0.10)
 7 1.12 (0.06) 0.68 (0.08) −0.61 (0.07)
 8 1.12 (0.06) 1.46 (0.10) −1.30 (0.09)
 9 1.12 (0.06) 0.61 (0.08) −0.54 (0.07)
10 1.12 (0.06) 1.21 (0.09) −1.08 (0.08)
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in cross-cultural and cross-group research. As mentioned before, identifying items 
biased against certain groups (e.g., an ethnic or marginalized group) can greatly 
improve the validity of measurement and assessment. Some scales may be unbiased 
in one cultural setting, but may turn out to be biased in another cultural setting. 
For example, a scale can be more readily endorsed by males than females in Asian 
culture, but not necessarily in the Western culture. To learn more about applying IRT 
to scale construction, interested readers may consult, for example, Wilson (2005).

Second, for assessment in the areas of personality, cognition, and attitudes, IRT 
applications may provide information not readily available before. For example, 
application of the mixed-measurement IRT model, incorporating both latent-trait 
and latent-class analysis, can help detect both qualitative and quantitative individual 
differences (Embretson & Reise, 2000). Recently, Huang and Mislevy (2010) 
integrated evidence-based design and polytomous Rasch model to assess students’ 
problem-solving ability. As the authors discussed, combining cognitive psychology, 
task design, and psychometric analysis will open new avenues for educational 
measurement. Moreover, in addition to providing the standard descriptive information 
about items, IRT also can be very useful for explanatory purposes. Interested readers 
are encouraged to read Boeck and Wilson (2004) for more information.

Third, Computerized Adaptive Testing (CAT) and item banking are another area 
to which IRT can contribute significantly. With the rapid diffusion of new computing 
technologies and psychometric modeling, CAT has clearly become a trend for the 
future. As compared to traditional paper-and-pencil tests, CAT possesses a number of 
advantages, such as practicality of automatically creating tests tailored to individual 
examinees, and the possibility of shortening the test length, not to mention the 
time and cost saving. For CAT applications, a viable item bank should consist of 
a sufficient number of items with good discrimination power and difficulty level 
across the latent trait range (Thissen & Wainer, 2001). IRT is fundamental for item 
selection, item bank construction, and for scoring examinees in any CAT applications.

Fourth, IRT is a promising technique for assessing reliability and validity. For 
example, IRT can help address the construct validity of cognitive and developmental 
assessment. Specifically, the technique helps assess dimensionality, decompose 
cognitive process, detect qualitative differences among respondents, and facilitate 
interpretation of measured ability (Embretson & Reise, 2000). In this regard, the 
classic work by Wainer and Braun (1988) devotes several chapters explicating the 
linkage between IRT and various aspects of measurement validity.

Fifth, many sustaining and challenging research topics are related to test equating 
and scale calibration. These topics include, but not limited to, scale drift, equating 
strains, scale shrinkage, as well as nonparametric IRT models (Kim, Harris, & Kolen, 
2010). Tackling some of these issues depends on advances of IRT, computational 
statistics, statistical theories, and other related methodology areas.

For future research, more work is needed in applying IRT in the context of 
multidimensional latent traits. Indeed, in recent years, there have been significant 
development and advancement of MIRT. Nonetheless, software application of MIRT 
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is still rare, and research applications of MIRT are still lacking. On a different note, 
bridging the gap between IRT and other latent variable modeling techniques is 
another fascinating area. Factor analysis, multilevel modeling, structural equation 
modeling and IRT have differences, but also share commonalities (Skrondal & 
Rabe-Hesketh, 2004). More research is warranted to link these techniques and apply 
them in broader research and application contexts. 
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4. MULTIPLE REGRESSION

Multiple regression is a commonly used analytic method in the behavioral, 
educational, and social sciences because it provides a way to model a quantitative 
outcome variable from regressor variables.1 Multiple regression is an especially 
important statistical model to understand because special cases and generalizations 
of multiple regression are many of the most commonly used models in empirical 
research. Correspondingly, multiple regression occupies a core position in the 
analytic architecture of behavioral, educational, and social science research.

In this chapter we (a) provide an overview of multiple regression, (b) emphasize 
the meaning and interpretation of the various regression model parameters, 
(c) discuss inference based on the regression model, and (d) briefly discuss selected 
important topics in an effort for readers to be in a better position to understand and 
use the multiple regression model. Throughout the chapter we use an illustrative 
data set to motivate and demonstrate an application of the multiple regression 
model. After a delineation of the model and presentation of the analytic details, 
we turn to a “big picture” perspective in the discussion section on what we see 
as the three primary purposes of multiple regression. In particular, we discuss the 
primary purposes of the multiple regression being (a) description, (b) prediction, 
and (c) explanation, which may not be mutually exclusive.2 Being able to effectively 
interpret, contribute to, critique, or use results of the research literature requires a 
fundamental understanding of multiple regression. We hope this chapter provides 
such a fundamental understanding of multiple regression.

ILLUSTRATIVE DATA

Throughout the chapter we will refer to a data set from Cassady and Holden (2012) 
consisting of 486 undergraduate students (304 females and 182 males) from a 
midsized Midwestern university. The sample was obtained from a psychology 
participant pool. The majority of the participants were majoring in teacher education. 
Two females did not report their age. The mean (standard deviation) of the age for 
the 302 females that reported their age was 20.7550 years (.2024) and for the 182 
males was 21.3352 years (.2276). The data consist of measures of college academic 
performance, study skills, test anxiety (emotional and cognitive), and feelings of 
tests as threats, among others.
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College academic performance is operationalized by current college grade point 
average (GPA). Study skills are operationalized by the Study Skills and Habits 
(SS&H) scale (Cassady, 2004), which measures typical patterns of study behaviors 
and abilities. Emotional Test Anxiety (ETA) is operationalized by the Sarason 
Bodily Symptoms scale (taken from the Reactions To Tests Scale from Sarason, 
1984), which measures physical responses to stress and is used as an indicator of 
the emotionality/affective component of test anxiety. Cognitive Test Anxiety (CTA) 
is operationalized by the CTA scale (Cassady & Johnson 2002), which measures 
distractibility, worry over tests, and self-deprecating ruminations during both test 
preparation and test performance. The feeling of tests as threats is operationalized 
by the Perceived Test Threat (PTT) scale (Cassady, 2004), which measures students’ 
perceptions of a specific upcoming test as threatening to their academic or personal 
status. In addition, other variables were measured (e.g., age, race, SAT math and 
verbal scores), but we do not discuss them here because they are not the focus of our 
discussion of the multiple regression model (see Cassady, 2001, for related details).

The descriptive statistics for the full sample, which contain missing data, are 
given in Table 1. Table 2 contains the descriptive statistics for the data after listwise 
deletion was performed. Listwise deletion is when all individuals are deleted from 
the analysis when those individuals have any missing data on the relevant variables.3 

After listwise deletion considering the five variables, the sample size was reduced to 
411. Table 3 shows the correlation matrix of the variables. In addition to the values 
of each of the correlations, the p value for the two-sided test of the null hypothesis 
is provided, along with an asterisk, which denotes statistical significance at the .05 
level, or two asterisks, which denotes statistical significant at the .01 level. 

In addition to the tabular summaries, Figure 1 is a scatterplot matrix, which 
shows a plot of the bivariate relationship between each pair of variables. Scatterplot 
matrices can be helpful to visually gauge the bivariate patterns in the data, such as 
the strength of linear and nonlinear relationships, and to check for possible outliers 
or miscoded data. Notice that the principal diagonal is blank because it represents 
the location where each variable would be plotted against itself. Also notice that 

Table 1. Descriptive statistics for the observed data

Descriptive Statistics
N Minimum Maximum Mean Standard Deviation

Current College GPA 466 1.80 4.00 3.1192 .48941
Study Skills and Habits 472 8 32 21.97 4.850
Emotional Test Anxiety 472 10 40 15.86 6.486
Cognitive Test Anxiety 458 17 68 35.11 10.828
Perceived Test Threat 464 27.00 81.00 48.6272 10.24374
Valid N (listwise) 411
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Table 2. Descriptive statistics after listwise deletion

Descriptive Statistics After Listwise Deletion
N Minimum Maximum Mean Standard Deviation

Current College GPA 411 1.80 4.00 3.1447 .48873
Study Skills and Habits 411 8.00 32.00 21.94 4.928
Emotional Test Anxiety 411 10.00 40.00 16.01 6.593
Cognitive Test Anxiety 411 17.00 68.00 35.04 10.853
Perceived Test Threat 411 27.00 81.00 48.5328 10.32122
Valid N (listwise) 411

Table 3. Correlation table with the two-tailed significance level (p-value) for the 
correlation coefficient

Correlations
Current 
College GPA

Study Skills 
and Habits

Emotional 
Test Anxiety

Cognitive 
Test Anxiety

Perceived 
Test Threat

Current 
College 
GPA

Pearson Correlation 1 .186** −.106* −.301** −.056
Sig. (2-tailed) .000 .031 .000 .256
N 411 411 411 411 411

Study 
Skills 
and 
Habits 

Pearson Correlation .186** 1 −.293** −.383** −.270**
Sig. (2-tailed) .000 .000 .000 .000
N 411 411 411 411 411

Emotional 
Test 
Anxiety

Pearson Correlation −.106* −.293** 1 .719** .329**

Sig. (2-tailed) .031 .000 .000 .000
N 411 411 411 411 411

Cognitive 
Test 
Anxiety

Pearson Correlation −.301** −.383** .719** 1 .469**

Sig. (2-tailed) .000 .000 .000 .000
N 411 411 411 411 411

Perceived 
Test 
Threat

Pearson Correlation −.056 −.270** .329** .469** 1

Sig. (2-tailed) .256 .000 .000 .000
N 411 411 411 411 411

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

the plots below and above the principal diagonal are redundant, as they are the 
transposition of one another. Now that a description of the data has been provided, 
we begin our discussion of multiple regression model.
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THE MULTIPLE REGRESSION MODEL

Multiple regression can be described as a general data analytic system due to its 
flexibility in handing different types of data and research questions (e.g., Cohen, 1968).

Multiple regression attempts to model the variation in an outcome variable as 
a linear function of a set of regressors. This process is accomplished through a 
linear equation that quantifies, via regression coefficients, the contribution of each 
regressor variable on the outcome variable.

The population multiple regression model linking the set of regressors to the 
outcome variable can be written as

 0 1 1 ,i i K Ki iY X Xb b b e= + + + +�  (1)

where Yi is the observed value of the outcome variable for the ith individual (i = 1, 
…, N), b0 is the population value of the intercept, bk is the population value of the 
regression coefficient for the kth regressor (k = 1, …, K), and ei is the population 
value of the error for the ith individual. The error is the part of an individual’s score 

Figure 1. Scatterplot matrix showing the bivariate relationship of each of the variables. 
Note that the principal diagonal is blank because that represents the location where each 

variable would be plotted against itself. The plots above the principal diagonal are the 
transposition of the corresponding plots below the principal diagonal.
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that cannot be accounted for by the particular regression model (i.e., the model 
with the K regressors). Notice that the multiple regression model is a linear model 
because Yi is a sum of an intercept, K coefficients multiplied by the corresponding 
variables, and an error term.4

Estimated Regression Model Based on Data

Although the population regression coefficients (i.e., the bk values) from Equation 1 
are of interest, they are generally unknowable. However, the regression coefficients 
can be estimated based on data. The sample analog to Equation 1 is

 0 1 1 ,i i K Ki iY b b X b X e= + + + +�  (2)

where b0 is the estimated intercept, bK is the estimated regression coefficient for 
the kth regressor, and ei is the error for the ith individual. The errors (i.e., the ei 
values) are the difference between the model-implied value5 of the outcome and 
the observed value of the outcome. The model-implied value, denoted ˆ

iY  for the ith 
individual, is obtained by using each individual’s set of regressors in the estimated 
regression equation:

 0 1 1
ˆ
i i K KiY b b X b X= + + +� . (3)

The value of ˆ
iY  obtained by this equation is the model-implied conditional mean of the 

outcome variable for the particular combination of the ith individual’s K regressors.
Using the illustrative data, we will model GPA (our outcome variable) as a 

linear function of SS&H, ETA, CTA, and PTT (our four regressors). The multiple 
regression equation that models GPA (i.e., the analog of Equation 3) for our example 
data is

 0 1 2 3 4
ˆGPA SS&H ETA CTA PTT .i i i i ib b b b b= + + + +  (4)

The realized values of the regression equation or, in other words, the model with the 
regression coefficients that have been estimated, is

 ˆGPA 3.135 .01 SS&H .017 ETA .022 CTA .006 PTT .i i i i i= + × + × − × + ×  (5)

We say more about this later, but we will note now that the intercept and the four 
regression coefficients are statistically significant. Three regressors have positive 
effects (SS&H, ETA, & PTT) and one regressor has a negative effect (namely, 
CTA). The regression coefficients should be used beyond simply saying there is 
a positive or a negative effect. The value of each regression coefficient conveys 
the expected change in GPA for a one-unit change in the corresponding regressor, 
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holding constant the other regressors. For example, the conditional mean of GPA 
is expected to increase by .01 for every unit increase of SS&H, holding everything 
else constant. The negative coefficient for CTA conveys that the conditional mean 
for GPA decreases .022 units for every unit increase of CTA. We will return to this 
regression model later.

In multiple regression, much concerns the errors. The error is formally defined as 
the difference between the observed value and the predicted value,

 ˆ ,i i ie Y Y= −  (6)

which is the difference between the observed value of the outcome variable and 
the model-implied value of the outcome variable. These errors are often termed 
residuals.

The way in which the regression coefficients are estimated in traditional multiple 
regression is with the least squares estimation procedure, which is why multiple 
regression is sometimes termed ordinary least squares regression or OLS regression. 
The least squares estimation method estimates coefficients such that the sum of the 
squared errors are minimized, that is,
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Thus, for a particular model, the estimated regression coefficients based on a particular 
set of data are those coefficients that minimize the sum of the squared errors, which is 
generally an advantageous method of estimation.5 The variance of the error (residuals) 
is termed the error (residual) variance. In the regression model of GPA, the variance 
of the residuals is .209 (SD of errors is .457). The standard deviation of the errors 
plays an important role in null hypothesis significance testing and confidence interval 
formation by way of the standard error of the estimated regression coefficients.

Although the estimated regression coefficients provide the best point estimates of 
their corresponding population values, those estimates are fallible, meaning in almost 
all cases the estimated regression coefficients differ from the population values they 
estimate. This same issue arises with essentially any estimate of a population quantity. 
Correspondingly, users must always be aware that estimates have sampling error. An 
implication of sampling error is that, hypothetically speaking, if the same regression 
model were fitted using a random sample of the same size from the same population, 
the estimates would change for each of the random samples. Now, such replication is 
not generally done, but if it were, then the variability of the estimates could be easily 
seen. The degree of variability of the estimates is quantified by the standard error of 
each of the regression coefficients. The standard error of the regression coefficients 
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plays a central role in hypothesis testing and confidence interval formation, which 
we discuss formally later.

INTERPRETATION OF THE ESTIMATED REGRESSION MODEL COEFFICIENTS

The Intercept

The estimated intercept (i.e., b0, which was 3.135 from our example data) is 
interpreted as the conditional mean of Y for a set of K regressors that are all zero. 
More formally, 1 0E[ ( 0)] ,KY | X X b= = =� where E[·] is the expectation of the 
expression in the brackets, with “|” representing a conditional statement. In other 
words, when all K regressors are zero, the best estimate for the outcome variable, or 
what would be predicted, is the intercept.

Depending on the particular situation, the intercept may or may not be a useful 
quantity from a practical perspective. In particular, it could be the case that (a) the 
set of K regressors can never all be zero, (b) there is no data consistent with the set of 
regressors all being zero, or (c) the intercept represents a value from an uninteresting 
research question. In such situations, the intercept is part of the model and serves as 
a scalar of the regression equation, but it may not, by itself, provide interpretational 
value of the phenomena under study. For example, from Table 2, the example data 
set does not have any regressors that have a value of zero (the minimum value 
for each regressor is above zero). Thus, in our model, the intercept represents a 
quantity that is outside the scope of our data. It is, however, our best estimate for an 
individual’s GPA that has scores of zero for SS&H, ETA, CTA, and PTT, yet such a 
combination of regressors is absent from our data. Thus, the intercept has little direct 
interpretational value in this situation, though it does serve as an important scalar 
(in the sense that the intercept adjusts the regression equation such that the model-
implied values reduce the squared error). So, in that sense, it is a necessary quantity 
yet it does not provide much interpretational value.

Although not necessary, it can be advantageous to rescale data so that the 
intercept has a more useful interpretation. For regressors that have a value added 
or subtracted (such as the mean), the value of the regression coefficients are left 
unchanged, only the intercept will change. One useful way to rescale regressors is to 
center each regressor. By centering, we mean that the data are put in deviation form. 
In other words, the mean of a regressor is subtracted from the individual values of 
the corresponding regressor. The deviations (i.e., the centered scores) are then used 
instead of the regressor itself in the regression model.

To illustrate centering on the example data, we return to the situation of modeling 
GPA from the four regressors, with the caveat that the four regressors have now been 
centered. Now, the model-implied regression equation is

 ˆGPA 3.145 .01 ss&h .017 eta .022 cta .006 ptt ,i i i i i= + × + × − × + ×  (8)
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where lowercase letters are used for the regressors to denote that the regressors have 
been centered (note that GPA was not centered). Now, with centered regressors, 
the intercept changes from 3.135 to 3.145. Although in this particular instance the 
intercept did not change by much, centering can have a much more dramatic effect 
on the value of the intercept. While the intercept is still interpreted as the conditional 
mean of the outcome variable when all of the regressors are 0, the interpretation now 
of a regressor being 0 is when that regressor is at its mean. Thus, for the mean on 
all four regressors (and thus ss&h, eta, cta, and ptt=0), the conditional mean of GPA 
(i.e., the model-implied value) is 3.145. What may not be obvious initially is that if 
the original regression equation (i.e., with the intercept of 3.135) had been used and 
the values of the regressors were their respective means, the conditional mean of 
GPA would also be 3.145:

    
3.135 .01 21.94 .017 15.86 .022 35.11 .006 48.63

,3.145

= + × + × − × +
=

×
 (9)

which is the same model-implied value of the intercept when the regressors were all 
centered. Thus, even though the intercept is different for the two models, the model-
implied values can be recovered (regardless of the type of linear transformation 
performed) for equivalent model and data specifications.

For another example of rescaling to facilitate the interpretation of the intercept, 
suppose grade-level (Grade) for high school students as well as Sex are used as 
regressor variables in a multiple regression model. For the Grade variable, it would 
be perfectly fine to use 9, 10, 11, and 12 to represent freshmen, sophomores, 
juniors, and seniors, respectively. For the Sex variable, 0 could be used to represent 
female and 1 male. In such a situation, the intercept would not have a meaningful 
interpretation beyond that of a necessary scaling parameter in the model, because 
while one variable (Sex) could be zero, the other variable (Grade) could not be 
zero for the data at hand. One could argue that a value of 0 for grade-level would 
represent kindergarten, but that is an extreme extrapolation and nonsensical in most 
situations. However, it would be perfectly fine to scale Grade so that 0, 1, 2, and 3 
represented freshmen, sophomore, junior, and senior, respectively. In such a case, 
the intercept would represent the model-implied (i.e., conditional mean) value for a 
female freshman (i.e., when all regressors are 0). Regardless of Grade being scaled 
as 9, 10, 11, and 12 or 0, 1, 2, and 3, the E[Y|(Sex, Grade)] would be the same for 
equivalent situations, as illustrated for the GPA example with and without centering. 
Thus, unlike the GPA example (in which rescaling was done by mean centering), here 
a different type of rescaling provided a more useful interpretation of the intercept 
(namely subtracting 9 from each regressor). Depending on the specific situation, if 
there is a desire to rescale regressors to make the intercept more interpretable, there 
will usually be multiple ways to proceed.

�GPAi
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Regression Coefficients

In some situations, holding constant other variables is built into the design of the 
study by randomly assigning participants to groups, as in traditional applications 
of analysis of variance. In such situations, by randomly assigning participants to 
groups, in the population at least, it is known that there are no spurious variables that 
may be responsible for any differences that exist between the groups, other than the 
treatment(s).6 However, when interest concerns the relationship between X1 and Y, if 
random assignment to the level of X1 was not done, any relation between X1 and Y may 
be due to a some other variable, say X2. However, by including both X1 and X2 in the 
multiple regression model, the effect of X1 on Y can be evaluated while statistically 
holding constant X2. This is an important aspect of the multiple regression model, as 
many times regressor variables are of interest but cannot be controlled by the researcher.

The interpretation of regression coefficients (i.e., the bk values) is that they 
quantify the expected change of Y for a one-unit increase in Xk while controlling 
for the other K − 1 regressors. Controlling in this context refers to a statistical 
control in which the effect of one regressor is evaluated holding constant all other 
regressors, not a direct manipulation, which would be a control built into the study 
itself. Correspondingly, the regression coefficient can be thought of as the unique 
contribution a regressor has on the outcome variable. In other words, regression 
coefficients quantify the unique linear effect that each regressor has on the outcome 
variable while controlling for the other K − 1 regressors in the model. In this respect, 
the regression coefficients are technically partial regression coefficients.

For the example data, recall that the estimated regression equation is

  3.135 .01 SS&H .017 ETA .022 CTA .006 PTTi i i i= + × + × − × + × .

(5, repeated)

The value of .01 for SS&H is the estimated impact on GPA of a one-unit increase in 
SS&H, controlling for (holding constant) ETA, CTA, and PTT. The idea of controlling 
(holding constant) other variables when interpreting a regression coefficient has a 
precise statistical meaning and is not intended to imply that the researcher has, or 
even could, manipulate (i.e., directly control) the level of a particular regressor of an 
individual (e.g., the level of emotional text anxiety).

Regression coefficients are scaled in terms of both the outcome variable as well 
as the particular regressor variable. Provided that the rescaling is in the form of a 
linear transformation, the value of regression coefficients can be easily converted 
from the original unit into the new units (e.g., standardized units). The regression 
coefficients are a type of effect size because they convey the magnitude of effect that 
each regressor has on the outcome variable while holding constant the remaining 
regressors.

�GPAi
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MODEL FIT STATISTICS

In assessing the overall fit of the model, the most common way is to consider the 
squared multiple correlation coefficient, denoted R2 for the sample value, which is 
often termed the coefficient of determination. The squared multiple correlation 
coefficient quantifies the proportion of the variance in the outcome variable that can 
be explained by the set of regressors. Said another way, the variance of the outcome 
variable can be partitioned into that which can be accounted for and that which cannot 
be accounted for by the particular model in a particular data set.

An estimate of the population squared multiple correlation coefficient is the ratio 
of the sum of squares due to the regression model to the total sum of squares as
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This ratio conveys the amount of the variance in Y that can be accounted for by the 
model to the overall amount of variance in Y. Thus, Equation 10 is a ratio of variances. 
As such, the proportion of the variance of Y (the denominator of Equation 10) that 
can be accounted for by the model (the numerator of Equation 10) is a useful way 
of quantifying a model’s effectiveness. A different way of conceptualizing R2 is that 
it represents the squared correlation between Y and the model-implied values of Y:

 2 2
ˆ .

YY
R r= ( )  (11)

Correspondingly, when 
ˆ 0,

YY
R r= =  it signifies a perfect lack of linear association 

between Y and Ŷ, whereas when ˆ 1
YY

R r= = , it signifies a perfect linear association 
between Y and Ŷ.

Although R2 is the correlation between Y and Ŷ  for the sample values, R2 as 
an estimator of the population squared multiple correlation coefficient is positively 
biased. A better estimate, namely one that is more unbiased, is the adjusted squared 
multiple correlation coefficient, which is given as

 2 2 1
1

1Adj

N
R R

N K

−
= − (1− )

− −
. (12)

This adjustment to the squared multiple correlation coefficient corrects for inflation 
due to sample size and number of predictors included in the model. In large samples 
with a moderate number of predictors, the adjusted and unadjusted squared multiple 
correlation coefficients will be very similar. However, in small samples or with large 
numbers of regressors, the adjusted squared multiple correlation coefficient can 
decrease substantially.
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For the example data, in which GPA is modeled with SS&H, ETA, CTA, and PTT, 
R2 = .133. Thus, for the particular data, 13.3% of the variance in GPA was accounted 
for by the four regressors. However, R2 = .133 is a positively biased estimate of the 
proportion of variance accounted for in the population. The adjusted value R2 is 

2 .125AdjR = . Thus, in the population, 12.5% of the variance being accounted for by 
the four regressors is a better estimate, in the sense that it is (nearly) unbiased.

INFERENCE IN REGRESSION

In general, data are collected to make inferences about what is true in a population. 
For example, in our data set, we are not literally interested in the 411 participants 
who took part in the study, but rather in how those 411 participants allow us to make 
inferences about their corresponding population. Hypothesis tests and confidence 
intervals are inferential procedures because they use sample data to draw conclusions 
(i.e., make inferences) about what is true in the population.

Inference for the Squared Multiple Correlation Coefficient

In order to evaluate if the model has accounted for more variance in the outcome 
variable than would be expected by chance alone, a null hypothesis significance 
test of the squared multiple correlation coefficient can be performed. The specific 
test is an F-test and it tests an omnibus (i.e., overarching) effect size that evaluates 
that all of the K regressors are 0 in the population. That is, the F-test tests the null 
hypothesis that 1 Kb b= = = 0,�  which is equivalent to the population squared 
multiple correlation coefficient is 0. The F-test is similar to the F-test in an analysis 
of variance because it evaluates the amount of variance accounted for by the 
regressors to the amount of unaccounted for variance. In fact, this test is a type of 
analysis of variance in that the ratio of variances is examined (namely the variance 
due to regression model is compared to the variance due to the error). The F-test for 
the overall model fit is given as
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with K and N − K − 1 degrees of freedom and MS denoting mean square. Under the 
multiple regression assumptions discussed, when this test is statistically significant 
(i.e., when the p-value is less than the Type I error rate, usually .05), the null hypothesis 
that the population squared multiple correlation coefficient is 0 is rejected.

For the example data, the value of the F-statistic is 15.633 with 4 and 406 degrees 
of freedom. The corresponding p-value is <.001. Thus, the null hypothesis can be 
rejected and the claim made that the model is able to account for more variance in 
the outcome variable than would be expected from chance alone. That is, the value 
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of the observed R2 of .133 would be exceedingly unlikely if the population squared 
multiple correlation coefficient were in fact 0.

Confidence intervals for the population squared multiple correlation coefficient 
are useful, but complicated to obtain. At present, there is no way to obtain these 
confidence intervals using SPSS point-and-click menu options. There is no closed 
form solution for such confidence intervals, but they can be obtained easily with the 
MBESS R package (Kelley & Lai, 2010) among other programs with specialized 
scripts (e.g., see Kelley, 2008; Algina & Olejnik, 2000; Mendoza & Stafford, 2001). 
In addition to the assumptions for inference previously discussed, forming confidence 
intervals for the population squared multiple correlation coefficient assumes 
multivariate normality, which is a much more stringent assumption than normality of 
errors. Multivariate normality implies that the K regressors and the outcome variable 
have a K + 1 dimensional multivariate normal distribution in the population.

For the example data, the 95% confidence interval for the population squared 
multiple correlation coefficient is [.07, .19]. Although the observed value of 
the squared multiple correlation coefficient is .133, the population value could 
conceivably be as low as .07 or as high as .19, with 95% confidence. This confidence 
interval assumes that the regressors are random, which is generally the case in 
application of the multiple regression model in empirical research, although other 
methods for fixed regressors also exist.7

Inference for the Intercept and Regression Coefficients

In order to evaluate the individual regressors uniquely contribute to the modeling 
of the outcome, a null hypothesis significance test of the regression coefficients 
can be performed. Under the multiple regression assumptions discussed, when the 
null hypothesis is true, a regression coefficient divided by its standard error follows 
a t-distribution with N − K − 1 degrees of freedom. Correspondingly, p-values can 
be determined to test the null hypothesis that the population value of the regression 
coefficient is some specified value, such as 0.

The t-test for testing the kth regression coefficient is
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where 
0k

b  is the specified null value for the kth population regression coefficient 
with N − K − 1 degrees of freedom. Most often, 

0k
b = 0, which then leads to the 

simpler and more common way of writing the t-test:
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In the example data, the regression coefficients, as previously noted, are .01, .017, 
−.022, and .006 for SS&H, ETA, CTA, and PTT, respectively, each with 406 degrees 
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of freedom. The standard errors for the regression coefficients are .005, .005, .003, 
and .002, respectively. In each case, interest concerns evaluating the regression 
coefficient against a population value of 0. This is the case because we are interested 
in detecting a linear relationship between each of the regressors and the outcome 
variable, while holding each of the other regressors constant. Thus, the t-statistics for 
the four regression coefficients are 2.00, 3.50, −6.70, and 2.34, respectively. Each of 
these t-statistics is statistically significant at the .05 level, with two-sided p-values of 
.046, .001, <.001, and .02, respectively.

In addition to the null hypotheses that each of the regression coefficients equals 
zero, which provides a directionality of the relationship, estimating the size of the 
contribution each regressor has on the outcome variable is important. That is, we 
seek to understand the degree to which each regressor has an impact on the outcome. 
Although the null hypothesis was rejected for each regression coefficient, confidence 
intervals are important in order to convey the uncertainty of the estimate with regards 
to the plausible values of the population parameter. Two-sided confidence intervals 
for regression coefficients are formally given by
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where (1 /2, 1)N Kt a− − −  is the critical value. Alternatively, the confidence interval limits 
can be written as

(1 /2, 1) ,
kk N K bb t sa− − −±  

which is simply the estimate plus or minus the margin of error (the margin of error is 
(1 /2, 1) kN K bt sa− − − ). This provides a less formal way of conveying the confidence interval 

limits.
For the example data, the confidence intervals for the population regression 

coefficients for SS&H, ETA, CTA, and PTT are [.0002, .020], [.008, .027], [−.028, 
−.015], and [.001, .011], respectively. Confidence intervals for the intercept and 
regression coefficients are available from SPSS via the “Statistics” option in the 
linear regression analysis.8

ASSUMPTIONS FOR INFERENCE IN MULTIPLE REGRESSION

The estimation methods discussed above, namely least squares estimation, do not, 
in and of themselves, depend on assumptions. However, like all other statistical 
procedures, inference in multiple regression is based on a set of assumptions about 
the population from which the sample was collected. By inference, we mean the 
null hypothesis significance tests and confidence intervals for the squared multiple 
correlation coefficient, the intercept, and the K regression coefficients.
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Inference for the regression coefficients depends on four assumptions  : (a) linearity, 
(b) normality of errors, (c) homoscedasticity, and (d) independence.

The linearity assumption is that each of the K regressors is linearly related to 
the outcome variable. The assumption of linearity between the outcome variable 
and the regressors is arguably the “most important mathematical assumption of the 
regression model” (Gelman & Hill, 2007, p. 46). If the linearity assumption does 
not hold, then using a linear model is necessarily a flawed way of modeling the 
relationship of the outcome with the regressors. Correspondingly, nonlinear models 
may be more appropriate when linearity does not hold. For example, a learning curve 
is typically sigmoidal (“S” shaped) in nature. A nonlinear regression model with a 
sigmoidal functional form (e.g., asymptotic regression, Gompertz, or logistic curves) 
may be more appropriate than a multiple regression model (e.g., Seber & Wild, 
1989). Alternatively, as previously noted (footnote 4), functions of the regressors 
can be used, rather than the values of the regressors themselves, as a way to satisfy 
the linear assumption of regression. However, in many situations, transformations 
are difficult to interpret and provide a poor substitute for an inherently nonlinear 
model.

The normality of errors assumption means that the distribution of the ei values 
follows a normal distribution. When inference concerns regression coefficients, 
this normality assumption is for the errors only, not the distribution of regressors. 
However, confidence intervals for the population squared multiple correlation 
coefficient, at least for the most common approach to confidence interval formation, 
requires multivariate normality among the regressor and outcome variables.

The homoscedasticity assumption is that the conditional variance of the outcome 
variable for any combination of the regressors is the same in the population. The 
reason that this assumption is necessary for inference in the case of least squares 
regression is because there is only a single error term that estimates the population 
error variance. If the population error variance depends on/changes with the particular 
set of regressors, then using only a single value to estimate the population error 
variance would be problematic. In our example data, the estimated error variance is 
.209. Thus, homoscedasticity implies that the variance of the errors, regardless of the 
combination of regressors, is .209.

The independence assumption is that the unit of analysis (i.e., whatever the i 
represents in the multiple regression equation, such as individuals, schools, or 
students) are all independent of one another. That is, the independence assumption 
stipulates that there is no correlation among any subset, or clustering, of the 
units of analysis. This is best handled with an appropriately designed study. For 
example, if schools are the unit of analysis, having multiple schools from the same 
school district/corporation (if there are multiple districts/corporations) would be 
problematic, as schools within the same district/corporation would tend to be more 
similar than schools from different districts/corporations due to the common effects 
of the district/corporation. When dependencies are built into the data by a common 
grouping/nesting structure, such as multiple students from the same class in which 
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multiple classes are included, other models, such as hierarchical linear models 
(HLM), may be more appropriate (See Osborne & Neupert, this volume).

Checking the Assumptions

The assumptions of linearity, normality of errors, and homoscedasticity are generally 
assessed by graphical means, but more formal assessments can also be made. In 
graphical assessment of the linearity assumption, scatterplot matrices (such as Figure 
1) can be useful in order to assess if the relationship among variables seems linear. 
Cohen et al. (2003, chapter 4) recommend scatterplots of the residuals from the 
regression model of interest plotted against each regressor variable and against the 
model-implied outcome values, along with lowess regression lines (e.g., at 0, −1, and 
1 standard deviation from the mean residual). Lowess regression, and thus a lowess 
regression line, is a nonparametric approach to obtaining a smooth regression line 
that does not presuppose that relationships between variables are linear. Thus, if the 
lowess regression line differs to a non-trivial degree from a horizontal line (recall it 
is the residuals that are being plotted, not the outcome values themselves), then there 
may be cause for concern that a linear model is not appropriate and adjustments to 

Figure 2. Scatterplot of standardized residuals plotted against the model-implied 
outcome values for the model in which GPA is modeled from study skills and habits, 

emotional test anxiety, cognitive test anxiety, and perceived test threat. 
Note that the three horizontal lines are at the mean (which is 0), 3 standard deviations above 

the mean, and 3 standard deviations below the mean for the standardized residual. The 
reason the horizontal lines are provided at 3 standard deviations above and below the mean 

is to help identify possible outliers.
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the model should be considered. Additionally, a scatterplot of standardized residuals 
plotted against the model-implied outcome values can be useful. Figure 2 provides 
such a plot (due to space limitations, we do not provide plots of the residuals against 
each regressor and the model-implied outcome values). In such plots, obvious 
patterns would be a concern because there may be important variables missing from 
the model (or homoscedasticity does not hold, which is an assumption we discuss 
in a moment).

The normality of errors assumption involves assessing the normality of a variable, 
residuals in our case, in the way one would typically evaluate normality. Regarding 
visual approaches, we recommend assessing normality with a normal Q-Q (quantile-
quantile) or P-P (percentile-percentile) plot, which is a plot of the expected cumulative 
quantiles/probabilities of the residuals given they are normally distributed against 
the observed cumulative quantiles/probabilities of the residuals. If the points do not 
differ in a non-trivial way from the equiangular line (i.e., the line of slope 1), then the 
assumption of normality of the residuals may be satisfied. Figure 3 provides a P-P 
plot of the residuals. Formal assessment with statistical tests or by testing the skew 
and kurtosis are also possible.

The homoscedasticity assumption implies that the variance of the errors is the 
same across all model-implied values and across all values of the regressor variables. 
From the same plots for assessing linearity discussed above (e.g., Figure 2), the 
residuals should not differ from a rectangular shape if, in fact, homoscedasticity 
holds. For example, if residuals were small for small values of X1 but began to spread 
as X1 increased, a violation of the homoscedasticity assumption may have occured. 

Figure 3. Normal probability-probability plot (P-P Plot) of the residuals for the model 
Residuals for the model in which GPA is modeled from study skills and habits, emotional test 

anxiety, cognitive test anxiety, and perceived test threat.
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More formal assessment with statistical tests for the homoscedasticity assumption 
also exist, but visual methods can be very enlightening.

The fourth assumption of independence has two conditions that need to be 
considered: nested data structures and autocorrelation. When the units are not a 
simple random sample from a population, but rather are collected based on clusters 
of individuals, the observations will not likely be independent. Generally, issues of 
nonindependent observations are best considered at the design stage of the research. 
As mentioned previously, if a clustering/nesting structure exists, more appropriate 
models such as HLM can be used. For example, if multiple classrooms with multiple 
students are included in a study, the students in the same classrooms will tend to be 
more similar than students from different classrooms. When such a nesting structure 
(students within classrooms) is part of the design, it should be explicitly dealt with as 
part of the model. Failure to consider such a nested data structure results in violations 
of the independent observation assumption, and the multiple regression model is not 
robust to violations.

In addition to nesting type structures, correlation among residuals is also a violation 
of the independence assumption. For example, if residuals for values of X1 that are 
close together are more similar than residuals for values of X1 that are farther apart, 
such a situation would illustrate serially correlated errors. For example, when X1 
represents time, time values close together will tend to have outcome variables that 
are more similar than if the time values were farther apart, which tends to produces 
adjacent errors that are more similar than if errors were random. Such a situation would 
then likely involve errors that have an autocorrelation. The Durbin-Watson statistic is 
a statistical procedure that measures the degree of correlation of residuals with the 
immediately preceding residuals (1st order autoregressive correlation). The Durbin 
Watson statistic ranges from 0–4, with values at 2 indicating perfect lack of first order 
autocorrelation. Values near 2 are thus not considered problematic, but as the values 
move close to 0 or 4, evidence of 1st order autocorrelation exists. In our example data, 
the Durbin-Watson statistic is 1.804. Estimated critical values for the Durbin-Watson 
statistic are discussed in more technical works on regression and time series.

In addition to the assumptions we have discussed, an issue of concern is the 
measurement of the regressors used in the regression model. In particular, it is ideal 
for the regressors to be measured without much error. Some sources state regressors 
being measured without error as an assumption of inference in multiple regression. 
We do not regard regressors being measured without error as an assumption per se, 
but results obtained using regressors measured with error may differ substantially 
from results obtained when regressors are measured without error. That is, there 
will be a bias in the estimated regression coefficients, standard errors, and model 
fit statistics (e.g., R2) when regressors are measured with error. Correspondingly, 
measurement error in the regressors is an important consideration. Of course, the 
less measurement error, the better the conclusions. When a nontrivial amount of 
error exists in the regressors, latent variable models (e.g., confirmatory factor and 
structural equation models) should be considered (e.g., Mulaik, 2009). Such models 
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require multiple measures of the same construct (e.g., well-being, motivation, 
conscientiousness) rather than a single measure as typically included in regression 
(e.g., either based on a single measure or a composite score of multiple measures).

EXAMPLE IN SPSS

To solidify the information just presented in the previous section on the results from 
the example data, we now show output from the SPSS linear regression procedure in 
Table 4. Table 4 consists of three types of output: (a) Model Summary, (b) ANOVA, 
and (c) Coefficients.

The linear regression procedure is available from the point-and-click SPSS 
interface via the Analyze menu on the toolbar. From the Analyze menu, the Regression 
menu is selected, and then the Linear procedure is selected. Within the Linear 
Regression procedure, the outcome variable of interest is selected as Dependent and 
the regressors of interest are selected as Independent(s). Additional information and 
output are available in the Statistics, Plots, Save, and Options menu buttons. Figures 
1–3 were created using the Plots options. We chose SPSS to illustrate the multiple 
regression model we have been discussing because it seems to be the most widely 
used software package in behavioral, educational, and social science research.

Table 4b. Analysis of variance source table testing the overall fit of the model to infer if the 
collection of regressors accounts for a statistically significant amount of variation in the 

dependent variable (college GPA)

ANOVAb

Model Sum of Squares df Mean Square F Sig.
1 Regression 13.070 4 3.267 15.633 .000a

Residual 84.860 406 .209
Total 97.929 410

a  Predictors: (Constant), Perceived Test Threat, Study Skills and Habits, Emotional Test 
Anxiety, Cognitive Test Anxiety

b Dependent Variable: Current College GPA

Table 4a. Summary of overall multiple regression model fit

Model Summaryb

Model R R Square Adjusted R Square Std. Error of the Estimate
1 .365a .133 .125 .45718
a  Predictors: (Constant), Perceived Test Threat, Study Skills and Habits, Emotional 

Test Anxiety, Cognitive Test Anxiety
b Dependent Variable: Current College GPA
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EXTENSIONS OF THE BASIC MULTIPLE REGRESSION MODEL

We have presented the basic multiple regression model. However, there are many 
extensions and special uses of the multiple regression model in applied research in 
the behavioral, educational, and social sciences that we would be remiss if we did 
not discuss. We discuss six important extensions and special uses of the multiple 
regression model in the subsections that follow. However, due to space limitations, 
we can only briefly discuss each of these six extensions and special uses. Thus, our 
treatment is necessarily limited and additional sources should be consulted before 
using the extensions and special uses of the multiple regression model.

Moderation Models

The basic multiple regression model as presented is additive because in that each 
of the regressors enters the model as a main effect only. This implies that the effect 
of a regressor on the outcome variable does not change at different levels of other 
regressors. When additivity does not hold, a moderation model may be appropriate. 
A moderation model is one in which there are one or more interaction terms in the 
regression model (in addition to the main effects). An interaction term is a regressor 
that is the product of two (or more) other regressors. Such a model allows not only 
for effects to be additive, but also to be multiplicative. The following equation shows 
a moderated multiple regression model for two regressors (i.e., a multiple regression 
model with an interaction):

 0 1 1 2 2 3 1 2
ˆ .i i i i iY b b X b X b X X= + + +  (17)

Table 4c. Estimated regression coefficients, tests of statistical significance, and confidence 
intervals for the fitted multiple regression model

Coefficientsa

Model

Unstandardized 
Coefficients

Standardized 
Coefficients

t Sig.

95.0% Confidence 
Interval for B

B
Std. 

Error Beta
Lower 
Bound

Upper 
Bound

1 (Constant) 3.135 .186 16.821 .000 2.768 3.501
Study Skills and Habits .010 .005  .101 2.002 .046 .000 .020
Emotional Test Anxiety .017 .005  .233 3.501 .001 .008 .027
Cognitive Test Anxiety −.022 .003 −.487 −6.702 .000 −.028 −.015
Perceived Test Threat .006 .002  .123 2.336 .020 .001 .011

a Dependent Variable: Current College GPA
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Moderators are important in many areas because they answer questions about how 
the level of one variable moderates the relationship between another regressor 
and the outcome of interest. Moderations are realized via interactions, which are 
multiplicative effects. This means that the model is more complex than additive 
terms, but that multiplicative terms are also necessary. Interactions in multiple 
regression have the same interpretation as in factorial ANOVAs. However, whereas 
factorial ANOVAs can only incorporate categorical independent variables, multiple 
regression may include interactions between categorical as well as continuous 
independent variables. Interactions between any number of independent variables 
can be incorporated into a model. However, the interpretation of interactions 
involving more than two regressors can be difficult.

Interpreting the results of a moderated regression model (i.e., a model with one 
or more interactions) is more involved than interpreting an additive model, such as 
those previously discussed. In particular, by the very definition of an interaction, 
the main effects can no longer be interpreted as having a constant effect on the 
outcome variable. Rather, the main effect of X1 (i.e., b1 in Equation 17) provides 
an unambiguous interpretation itself at only one value of X2, namely, when X2 is 0. 
When X2 is 0, the values of b2 and b3 are not a concern because they cancel from the 
equation; b1 is then the slope of the effect of X1 on Y. As explained in Cohen et al., “in 
general, in a regression equation containing an interaction, the first-order regression 
coefficient [i. e., the main effect] for each predictor involved in the interaction 
represents the regression of Y on that predictor, only at the value of zero on all other 
individual predictors with which the predictor interacts” (2003, p. 260).

There is increased complexity when interpreting a regression model that contains 
one or more interactions. In many situations, the interpretation of the regression model 
can be improved by using centered regressors. Centered regressors set the zero value 
of the regressors to their respective means. Thus, the main effect of X1 is interpreted 
at the mean of X2, which is the now zero due to centering. Additionally, because of 
the increased complexity in interpreting regression models with interactions, it can 
oftentimes be beneficial to plot the model-implied regression equations for selected 
combinations of regressors. In particular, the model-implied relationship between 
Y and X1 at the mean of X2, one standard deviation above the mean of X2, and one 
standard deviation below the mean of X2 can be plotted to visualize the effect of an 
interaction. (e.g., see Aiken & West, 1991, for details).

Mediation Models

Mediation models are important in the context of causal modeling because they 
attempt to disentangle the causal pathways of how one (or more) variables cause 
one (or more) other variables, which in turn cause one (or more) other variables. For 
example, it might be theorized that X1 causes Y, but it does so through X2. That is, X1 
causes X2 and then X2 causes Y. There may be what is termed “complete mediation,” 
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when the entire effect of X1 on Y is explained through X2, or what is termed “partial 
mediation,” when there is some effect of X1 on Y above that which goes through 
X2. The notions of complete (or full) mediation and partial mediation, although 
widely used, are qualitative descriptions of what is inherently a quantitative process. 
Preacher and Kelley (2011) review such issues and discuss various effect sizes in the 
context of mediation analysis.

A widely used framework for showing support for mediation uses regression 
and is known as the “causal steps approach,” which was popularized by Baron and 
Kenny (1986; see also Judd & Kenny, 1981). This framework can be interpreted 
as consisting of four conditions that must hold in order to support a mediation 
hypothesis. These four conditions are as follows:

The exogenous regressor (i.e., the independent variable) must be related to the 
outcome variable. This condition, in the population, requires *

1b in

 * * *
0 1 1i iY Xb b e= + +  (18)

to be nonzero.

The exogenous regressor must be related to the endogenous regressor (i.e., the 
mediating variable). This condition, in the population, requires **

1b  in

 ** ** **
2 0 1 1i i iX Xb b e= + +  (19)

to be nonzero. Note that we use asterisks to distinguish the parameter values from 
Equations 18 and 19 (above) from Equation 20 (below).

The endogenous regressor must be related to the outcome variable (i.e., the 
dependent variable) after controlling for the exogenous regressor. This condition, in 
the population, requires that b2 in the equation below to be nonzero

 0 1 1 2 2i i i iY X Xb b b e= + + + . (20)

When both the regressor and the mediating variable are used simultaneously to 
predict the outcome variable, the impact of the regressor is reduced. Conditions 
1–3 can be evaluated with correlation coefficients or regression analysis (we have 
presented them in the regression form), but Condition 4 can be evaluated with the 
use of regression analysis or a more general procedure, such as path analysis or 
structural equation modeling.

An alternative conceptualization of mediation is that the product of b1 and b2 from 
Equation 20 does not equal zero (i.e., mediation holds if b1 × b2 ≠ 0). The b1 and 
b2 regression coefficients are equivalent to the causal paths from the independent 
variable to the mediator to the dependent variable from a path analytic, or generalized 
via a structural equation model, framework. Thus, if mediation holds, the causal path 
must be non-zero (e.g., MacKinnon et al., 2002).

iY
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Implicit in the mediation framework is the passage of time. That is, if X1 causes 
X2, X1 must precede X2 in time. Similarly, if X2 causes Y, X2 must precede Y in time. 
Issues of simultaneous causality, while theoretically possible, may not be reasonable 
in many situations. Cole and Maxwell (2003) discuss mediation models in the 
context of longitudinal data (see also Gallob & Reichardt, 1985). We recommend 
interested readers consult MacKinnon (2008), who discusses mediation models and 
the underlying assumptions in detail.

Hierarchical Regression

Traditional applications of the multiple regression model examine the contributions 
of regressors simultaneously. In other words, all variables are considered at the same 
time. However, it can be advantageous to examine sets of regressors in a prespecified 
sequence or in a defined priority order. The order that the regressors enter the model 
should be theoretically driven. When regressors are added, the model is referred to 
as hierarchical regression.9 Hierarchical regression is a model comparison approach 
in which richer models (i.e., with more regressors) are compared to simpler models. 
Such comparison is used to infer if additional regressors account for a statistically 
significant amount of the variance of the outcome variable that was previously 
unexplained. In particular, the change in R2 from model 1 (a simpler model with 
q regressors) to model 2 (richer model with q + r regressors) is tested to infer if 
the model with q + r regressors has a larger population squared multiple correlation 
coefficient than the model with only q regressors. The number of “blocks” of 
variances that enter into a model depends on the number of regressors available. The 
way in which such models are tested is with the following F-statistic,
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− − − −1
 (21)

where the numerator and denominator degrees of freedom are r and N − q − r − 1, 
respectively.

In hierarchical regression models, there are often regressors that researchers 
would like to control for before assessing the effects of the regressors of primary 
importance. These regressors are used for controls (i.e., control variables) and are 
often not of theoretical importance, but rather are important to control for as they 
may explain a large portion of variance. A common approach to this situation is 
to include these variables in the first block of a hierarchical regression analysis. 
For example, a researcher may choose to include demographic characteristics (e.g., 
Sex, Age, SES) in block one of a sequential hierarchical model. The R2 for this 
model will provide the variance accounted for by the collection of demographic 
regressor variables. Then, as subsequent variables of theoretical interest or blocks of 
regressors are added to the model, the change in R2 will provide information on how 
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much variance the regressors account for–and this is key–above what the control 
variables accounted for.

Stepwise Regression

Stepwise regression is a procedure in which a variety of algorithms can be used to 
mechanically select which regressors (potentially many) should be included in a 
model based on statistical, not theoretical, criteria. Stepwise regression can proceed 
from forward selection (fewer to more regressors) or backwards selection (more to 
fewer regressors) methods. When there are more than a few available regressors, 
the number of models fitted by stepwise procedures can be large. A large number 
of fitted models can have false positives due to the sheer number of models fitted 
in order to arrive at a final model. That is, in the final model from the stepwise 
procedure, there will be a higher rate of false positives than in a prespecified model.

One way forward selection may begin is by entering the regressor into the 
regression model with the strongest correlation with the outcome variable. Then, 
the second variable is entered into the model that has the biggest impact on the 
model (e.g., highest change in R2), and so on. This process will continue until the 
addition of new regressors does not add enough to the variance accounted for (e.g., 
a statistically significant change) in the outcome variable.

In contrast to forward selection, backward selection may begin with all regressors 
included in the model. Then the regressor that has the least impact on the model 
(e.g., smallest change in R2) is removed, an so on. This process can continue until 
the removal of regressors impacts the variance accounted for (e.g., a statistically 
significant decrease) in the outcome variable.

Stepwise regression is completely mechanical/machine driven. Stepwise 
regression is thus a completely atheoretical way of modeling the relationship 
between an outcome variable and a set of regressors. When working from theory, 
stepwise regression is not recommended. If research is completely exploratory, 
stepwise regression may shed some light on regressor variables that may be effective 
at modeling the outcome variable. However, we generally recommend against 
stepwise regression because, in the vast majority of situations, there is some theory 
available to suggest what variables are, for example, best used as control variables 
versus those that are more theoretically interesting.

Categorical Regressors

Although the dependent variable for a multiple regression model needs to be 
continuous, or nearly so, the regressors can be continuous or categorical. However, 
categorical variables must be treated differently than continuous variables 
when entered into a regression model. In order to use a categorical regressor in 
a regression analysis, we generally recommend a process called dummy coding.10

Dummy coding represents the different levels of a categorical variable (group 
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membership) as 1 or 0, depending on whether or not the variable represents a 
particular group. This procedure codes the levels of a categorical variable with 
J levels into J − 1 dummy variables. One level, denoted the reference level, is 
represented by all of the other levels being 0. When a categorical variable only 
has two levels, only one dummy coded variable is necessary. For example, the 
Cassady data includes the participants’ sex, in which the variable Sex is 1 for male 
and 0 for female. Correspondingly, female is the reference group. The value of the 
regression coefficient, holding everything else constant, represents the difference in 
the conditional mean of the outcome variable for males.

When a categorical variable has more than two levels, multiple dummy variables 
can be used to include the categorical information into a regression analysis. For 
example, the self-identified race of the participants is included in the example data 
file. Initially, the variable Race was coded as a single variable in which 1 = Caucasian, 
2 = African-American, 3 = Asian, and 4 = Other. However, such a coding scheme 
would not be used in applications of multiple regression, as the numbers are not 
meaningful; they simply represent a category rather than any sort of continuum. 
However, the variables can easily be recoded into 3 dummy codes (recall J − 1 
dummy codes are needed, which is why, with four levels, only 3 dummy codes are 
necessary.). Any of the four levels of Race can be used as the reference category, 
but we use Caucasian as the reference category because it represents the majority 
in this sample. We form three dummy coded variables in which AA represents 
African-American, Asian represents Asian, and Other represents a self-identified 
other categorization. Thus, for a participant who has a 0 for each of the three race 
variables, that participant would be Caucasian.

When interpreting dummy variables, we can learn several different pieces of 
information. First, we can infer if the conditional mean for the outcome variable 
in the population differs, holding everything else in the model constant, for the 
particular group as compared to the reference group (in this case Caucasian). Such 
an inference is made by the p-value from the corresponding null significance test. 
If there are no other variables in the model, then the t-value obtained for the test of 
two-levels of the variable (i.e., in which only a single dummy variable is necessary) 
is exactly equal to that obtained in the context of a two independent groups t-test. 
Second, an estimate of the conditional mean difference, holding everything else 
in the model constant, is available by way of the regression coefficient. Third, the 
confidence interval for the population regression coefficient of the particular group 
provides the range of plausible parameter values. The wider this confidence interval, 
the more uncertainty there is of the population conditional mean difference on the 
outcome variable.

Cross-Validation

Often in studies that use multiple regression, especially when prediction is of 
interest, it is advantageous to provide evidence of the effectiveness of the obtained 
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multiple regression model estimates from one sample as they would apply to another. 
As mentioned previously, it is generally not possible to obtain the true population 
regression values. In an application of a multiple regression model, the estimated 
regression coefficients are idiosyncratic to the characteristics of the particular 
sample drawn from the population. Correspondingly, estimating how well those 
values would predict in a future sample can be very useful.

As discussed, R2 is the squared correlation between Y and Ŷ . Let Y* be the 
observed values of the outcome variable for a second sample and *Ŷ  be the model-
implied (i.e. predicted) values of the outcome variable from the second sample 
when the estimated regression coefficients from the first sample are applied to the 
regressors from the second sample. The squared correlation between Ŷ  and *Ŷ  can 
be calculated, denoted * *

2
ˆY Y

R . This value of * *

2
ˆY Y

R  will tend to be smaller than R2, and 
is often termed the shrunken R2. The difference between R2 and * *

2
ˆY Y

R  is known, 
therefore, as shrinkage. If the shrinkage is small, then evidence suggests that the 
first regression equation obtained in the first sample cross-validates well in future 
samples. However, if the shrinkage is large, then there is not strong evidence that the 
model obtained in the first sample will be good at predicting values of the outcome 
variable. Pedhazur recommends that when the shrinkage is small, the samples be 
combined and the regression coefficients estimated as a way to improve prediction in 
future samples (1997; see also Mosier, 1951). Darlington discusses several methods 
of estimating the shrunken R2 from single samples (1990).

SPECIAL CASES AND EXTENSIONS OF THE MULTIPLE REGRESSION MODEL

The multiple regression model is a special case of the general linear model. In its 
most general form, the general linear model allows multiple continuous outcome 
variables to be modeled from multiple regressor variables. These regressor variables 
might be grouping variables or continuous variables from either observational work 
or randomized experiments, and any combination thereof. Correspondingly, some 
general linear model special cases can be conceptualized as a multiple regression 
model (e.g., a correlation, single sample, paired sample, and independent-samples 
t-test or an analysis of (co)variance). The multiple regression model extends to 
other statistical models that have multiple regression as a special case (e.g., path 
analysis, confirmatory factor analysis, structural equation modeling, discriminant 
function analysis, canonical correlation, and multivariate analysis of (co)variance). 
The multiple regression model can also be extended to situations in which there are 
nesting structures, such as students nested within classrooms (with HLM/multilevel 
modeling).

In addition, generalizations of the general linear model to situations of categorical 
and limited outcome variables are termed generalized linear model. Generalized 
linear models use the exponential family of distributions (e.g., logistic, probit, tobit, 
Poisson) to link a function of a linear model to the outcome variable. For example, 
the proportion of 3rd grade students who pass a state-wide assessment within different 
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schools in the same district/corporation has a limited dependent variable that has a 
range of 0 to 1. A linear model may have model-implied values of the proportion 
of students passing outside the range of 0 to 1 that require homoscedasticity, which 
would not be reasonable in general. A generalized linear model with a logistic link 
function would provide a more appropriate way to model such data.

Connecting multiple regression models to other models can be done, yet we are 
restricted on space here. Our point in mentioning special cases and generalizations of 
the multiple regression model is to illustrate how multiple regression plays a core role 
in the analytic architecture in behavioral, educational, and social science research.

SUGGESTIONS FOR FURTHER READING

Multiple regression is often the focus of an entire graduate level course, and many 
book-length treatments range from very applied to very theoretical. Correspondingly, 
we are unable to cover the full scope of the multiple regression model and its various 
uses. However, we offer several suggestions for further reading on the richness of 
the multiple regression model. For a general introduction to multiple regression, we 
suggest Kahane (2008), which provides a nontechnical introduction that is useful 
for understanding the fundamentals of regression. For treatments appropriate for 
applied researchers and users of research, we recommend Cohen, Cohen, West, and 
Aiken (2002) and Pedhazur (1997). For a more advanced treatment of regression 
from a general linear model perspective, we suggest Rencher and Schaalje (2008).

In addition to sources that discuss the multiple regression model, sources that 
discuss the design aspects of a study that will use multiple regression are of great 
importance. When designing a study that will use multiple regression, among other 
things, sample size planning is important. Sample size planning can be done from 
(at least) two different perspectives: statistical power and accuracy in parameter 
estimation. Statistical power concerns correctly rejecting a false null hypothesis of 
interest (e.g., for the test of the squared multiple correlation coefficient or a specific 
regression coefficient). Accuracy in parameter estimation involves obtaining 
sufficiently narrow confidence intervals for population effect sizes of interest (e.g., 
squared multiple correlation coefficient or a specific regression coefficient). Cohen 
(1988) details sample size planning for statistical power and Kelley and Maxwell 
(2008) detail sample size planning for accuracy in parameter estimation, both of 
which are written in the multiple regression context. 

DISCUSSION

Having now discussed the regression model itself, showed examples of its use, 
and connected it with other models widely used in the behavioral, educational, 
and social sciences, we now take a big picture view of the purpose of the model. 
We regard multiple regression as having three primary purposes: (a) description, 
(b) prediction, or (b) explanation, which may not be mutually exclusive.11
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Although there may be a conceptual distinction between using multiple regression 
for description, prediction, or explanation, there are no differences in the multiple 
regression model itself. We briefly discuss these three potential uses of multiple 
regression to not only help clarify the generality of multiple regression, but also to 
shed light on its limitations.

Descriptive uses of multiple regression seek to identify ways in which a set of 
regressors can be used to model the outcome variable. Such a use of regression serves 
to identify regressors that have some correlation with the outcome after controlling 
for the other regressors in the model. No stringent philosophical underpinnings 
are necessary. Rather, the outcome is only a description of the relationship among 
variables. Using multiple regression for description fails to capitalize on the model 
for making predictions or explaining relationships, two purposes we discuss 
momentarily. Using multiple for regression for description can be considered less 
sophisticated than using it for prediction or explanation. The conclusions that can be 
legitimately drawn from such a use of regression as a descriptive method are rather 
weak, unless additional assumptions are made. Nevertheless, as a purely statistical 
tool, regression can be used to partition the variance in the outcome variable into that 
which can be modeled by each regressor and that which remains unexplained. The 
regression coefficients themselves identify the extent to which each regressor has a 
relation to the outcome variable when controlling for the other regressors.

Rather than saying “the extent to which each regressor has a relation to the 
outcome variable” as we just did when referring to descriptive uses of multiple 
regression, it is tempting to say that each regressor “predicts” or “impacts” or 
“influences” the outcome variable. However, those terms should be reserved for 
predictive or explanation purposes. That is, for descriptive regression, prediction 
does not take place. For example, the full data set may be used to estimate the 
regression coefficients and not used on a future sample for prediction. Alternatively, 
terms such as “impacts” or “influences” conjure more causal relationships, such as 
“changes in the kth regressor leads to a bk amount of change in Y. However, such 
casual-like statements are generally not warranted.

In the prediction context, a model is formed based on one set of data (training 
data) but used on data where the outcome variable is unknown. Regression as a 
predictive model provides an estimated value for outcome variables based on the 
regression coefficients obtained in the training data sample and the values of a set 
of predictor variables. For example, one could predict students’ first year of college 
GPA with various individual difference measures, performance in high school (e.g., 
high school GPA at the end of junior year), and measures of academic achievement 
(e.g., ACT or SAT scores) based on training data. Then, with the information 
obtained from the training data, the regression model could be applied to high school 
seniors to predict their college success, given the relevant regressors (i.e., those 
used in the model developed from the training data). The purpose of the multiple 
regression model in this case is not to say what causes college GPA, but rather to 
form a prediction equation that might be useful for predicting academic success as 
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operationalized by college GPA. Such prediction models can be important because 
they can help identify those high school students who will likely be successful in 
college. Of course, no prediction model is perfect. However, statistical prediction 
(e.g., by using multiple regression) has been shown again and again to outperform 
expert judgments (e.g., see Grove & Meehl, 1996).

Multiple regression, when used in the explanation context, is ultimately interested 
in identifying causal variables as well as estimating how much of an impact those 
variables have on the outcome variable, while holding constant the other regressors. 
In many cases, it is not possible to unambiguously show causality, but under the 
appropriate conditions, causal relationships can sometimes be discerned. The 
situations in which unambiguous causes can be identified require that a random 
sample of individuals from some population be randomly assigned different 
levels of the regressor variables of interest. In the vast majority of applications of 
multiple regression in education, levels of regressors are not randomly assigned 
but will differ across individuals. In such instances, there is necessarily a limitation 
of the multiple regression model to be used to infer causation. However, even 
for models without randomization to level of the regressors, such a model may 
shed light on causal relationships or causal pathways (e.g., via mediation models). 
Assuming the assumptions of the regression model hold, showing that a particular 
regressor accounts for some of the variance in the outcome variable (i.e., a non-
zero regression coefficient) in a nonrandomized situation (e.g., an observational 
study) is a necessary, but not a sufficient, condition for causal inference. In such 
cases, the effect of one regressor on the outcome variable, after including in the 
model the other regressors, could be a causal agent, but it may not be. Realizing 
the limitations of multiple regression in making causal inferences is important and 
has many real-world consequences.

Although understanding what variables are associated with the outcome variable 
of interest in the context of a set of regressors can be useful in its own right (e.g., for 
descriptive purposes), the lack of randomization of the levels of regressors does not 
denigrate the multiple regression model. Any suggestion that a regressor causes (or 
similarly impacts, influences, effects, acts upon, is an antecedent to, etc.) an outcome 
variable necessitates a discussion that is above and beyond the regression model 
itself.

Multiple regression is such a key model in the behavioral, educational, and 
social sciences that a single chapter cannot replace the need for more detailed study 
by those that the will use the model directly (e.g., primary researchers) or use it 
indirectly (e.g., policy makers). Being able to effectively interpret, contribute to, 
critique, or use the results of the research literature essentially requires a fundamental 
understanding of multiple regression. We hope this chapter has clearly articulated 
the multiple regression model for applied researchers and has provided a solid 
fundamental understanding. Additionally, we hope our chapter has been thought- 
provoking and that it instills confidence in the presentation and interpretation of 
results from the multiple regression model.
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NOTES

1 The outcome variable can be termed a “criterion” or “dependent variable”, whereas the regressor can 
be termed a “predictor”, “explanatory”, or “independent variable”. Without loss of generality, we use 
the terms outcome and regressor throughout the chapter. 

2 Many times multiple regression is said to have two distinct purposes: prediction and explanation 
(e.g., Pedhazur, 1973). However, we regard description as potentially distinct from prediction or 
explanation. 

3 Using listwise deletion for missing data in multiple regression is not necessarily optimal. Other 
methods are available, such as using maximum likelihood or multiple imputation, but they are 
beyond the scope of this chapter. In general, we would suggest not using listwise deletion in multiple 
regression, but do it here for simplicity. 

4 Although the model is linear in its parameters, that does not prevent arbitrary functions of the variables 
from being used, such as taking the logarithm of X2 or squaring X3. In fact, the population multiple 
regression model of Equation 1 can be written as Yi = b0 + b1 fh(X1i) + … + bK fH(XKi), where fh(  ) is 
some arbitrary function of the variable in parentheses (h = 1, …, H). In most applications of multiple 
regression no transformation is made, and thus the function would simply be the identity function (i.e., 
the variable itself is used). 

5 Recalling that Y is in fact a mean, namely a conditional mean, there is a direct parallel to the sum of 
squares in the context of the estimated variance. In particular, to minimize 2( )iX C−∑ , where C can 
be any constant real value, the mean of X is the minimizer. That is, 2( )iX X−∑  is the minimum value, 
which is the numerator of the variance. Thus, the regression least squares criterion of minimizing 

2ˆ( )iY Y−∑  is analogous to why the mean is often regarded as a superior measure of central tendency. 
It produces the most efficiency (i.e., least variance) compared to any other estimate of central tendency. 

6 Spurious variables are also known as “lurking”, “confounding” or, “third variables”.
7 After R is installed and then the MBESS package installed within R, the way in which a confidence 

interval for the population squared multiple correlation coefficient can be constructed is as follows:
 “require(MBESS)” (to load the package) followed by “ci.R2(R2 = .133, K = 4, N = 411, conf.level = .95)” (to 

implement the ci.R2() function with the appropriate values for the model of interest). See Kelley 
(2007a; 2007b) for more information on MBESS.

8 Only confidence intervals for the population unstandardized regression coefficients are available via 
the SPSS point-and-click interface. Confidence intervals for the population standardized regression 
coefficients, which is when regression is performed for standardized scores, can be obtained indirectly 
with the use of the noncentral t-distributions. See Kelley (2007b) for a discussion of such confidence 
intervals and information on how they can be implemented easily via the MBESS R package. 

9 Hierarchical regression should not be confused with the similar sounding hierarchical linear model, 
usually denoted HLM, as they are completely separate models. 

10 Other coding schemes exist, such as effect coding and orthogonal coding. In effect coding, a “−1” 
is used to represent the reference category and a 1 or a 0 is used to represent the other category 
of interest. In orthogonal coding, coefficients are used that form a set of orthogonal comparisons. 
Orthogonal comparisons are such that each comparison provides independent information from other 
comparisons. 

11 Many times multiple regression is said to have (only) two distinct purposes: prediction and explanation 
(e.g., Pedhazur, 1973). However, we regard description as potentially distinct from prediction or 
explanation. 
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CHRISTINE DISTEFANO & DIANA MINDRILA

5. CLUSTER ANALYSIS

INTRODUCTION

Large multivariate datasets may provide a wealth of information, but often prove 
difficult to comprehend as a whole; therefore, methods to summarize and extract 
relevant information are essential. Such methods are the multivariate classification 
procedures, which use multiple variables to identify characteristics that groups of 
individuals have in common. By definition, classification refers to the process of 
dividing a large, heterogeneous group into smaller, homogeneous groups where 
members are similar to each other while different from cases in other groups 
(Gordon, 1981; Clogg, 1995; Heinen, 1993; Muthén & Muthén, 2000). The objective 
is to identify groups underlying a larger set of data, where the number of groups is 
unknown at the onset. Once created, groups can then be thought of as possessing like 
patterns of characteristics and cases within the same group may be treated similarly.

Procedures to identify clusters focus on creating smaller groups of cases using the 
responses to a set of variables. This scenario is conceptually similar to exploratory 
factor analysis methods, but differs as exploratory factor analysis aims to create 
smaller groups of variables using responses from a set of cases. Gordon (1981) 
describes two general reasons why classification may be useful:

Data simplification. Given that large quantities of data can hinder understanding, 
classification can be useful to detect important relationships and patterns within a 
larger set of data. If meaningful groups can be identified, groups can be named and 
properties of the group summarized to allow for more efficient organization and 
retrieval of information.

Prediction. If a larger set of data can be summarized and patterns within the data 
to be observed more clearly, it may be of interest to predict how these relationships 
develop. On a simple level, prediction could be used to predict properties not yet 
measured, such as inferring about the similarity of cases within a group on variables 
other than those used to identify the grouping structure. On a deeper level, prediction 
could be used to posit hypotheses that may account for the groups. Prediction could 
be conducted in a two step approach where first, an exploratory analysis is used to 
identify an initial classification system; second, hypotheses of antecedents which 
contribute to the group structure are tested on an independent sample drawn from 
the same population.
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Classification methods are well-known and well-used in the social sciences. For 
example, marketing researchers may group people by spending patterns and store 
preferences, researchers in education may group students based upon ability or 
interest in a subject area, anthropologists may group indigenous cultures based upon 
customs and rituals. Classification systems may be especially useful in educational 
research, where the goal is often to explain, and provide information that helps 
assist, intervene, instruct, etc. individuals with a variety of needs.

Much of the research conducted in the social sciences has utilized a variable-oriented 
approach to data analysis where the focus is on identification of relationships among 
variables (e.g., multiple regression or correlational procedures) or investigation of 
mean differences (e.g., ANOVA). This approach is useful for studying inter-individual 
differences but less so for understanding intra-individual dynamics (Bergman & 
Magnusson, 1997). In order to address this concern about the study of dynamics, 
relatively more attention has been devoted to the use of person-oriented analyses.

Bergman and Trost (2006) made the distinction between the theoretical and 
methodological aspects of person-oriented and variable-oriented approaches. In 
variable-oriented approaches, basic concepts are considered as variables, and the 
importance of these concepts is derived from their relationships with other variables, 
which are investigated using linear statistical models. In contrast, person-oriented 
theories consider all the variables simultaneously as interrelated components of an 
indivisible entity, and studies them “as an undivided whole”, by employing pattern-
oriented approaches (Bergman & Trost, 2006 pp. 604). Such approaches include 
cluster analytic techniques (Bergman & Magnusson, 1997), which focus upon 
classification of individuals in order to consider intra-individual variation.

DESCRIPTION AND PURPOSE OF THE METHOD

Cluster analysis refers to a family of procedures which group cases to uncover 
homogeneous groups underlying a data set (Anderberg, 1973; Aldenderfer & 
Blashfield, 1984; Blashfield & Aldenderfer, 1988; Everitt, 1993; Hartigan, 1975; 
Milligan & Cooper, 1987). The researcher has many choices to make when clustering. 
This discussion will provide an overview of selected procedures and considerations 
for educational researchers interested in using cluster analysis for classification.

Starting Cluster Analysis

Assumptions and variable considerations. Each case’s set of scores across of 
many variables is evaluated with a cluster analysis. The collection of scores creates a 
multivariate profile for each case, which is used in analyses to identify like cases. For 
example (note: this scale will be discussed later in the chapter), Figure 1 illustrates the 
profiles for two cases from across a set of 14 variables. Profiles can be plotted to provide 
information about the “height” (the magnitude of the scores on the variable’s scale) and 
the “shape” (the pattern of peaks and troughs for a case) across the set of variables.
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As with any statistical method, there are assumptions and considerations underlying 
cluster analysis. First, the choice of variables to include is of primary importance 
for cluster analysis. Because the multivariate profile is used to create the groups, the 
variables included in the cluster analysis should be the most relevant to the situation 
under study. The discussion of how many variables to include for each case is likely 
to be related to factors of the research situation, such as time, expense, and ease of 
collecting data information (Everitt, 1993). While researchers in the social sciences 
often err on the side of collecting more variables than fewer, it is important to note 
that the groups identified from a cluster analysis may differ markedly if different 
numbers of variables are included. Finally, both cases and variables selected for 
a cluster analysis are assumed to be independent and variables are assumed to be 
uncorrelated.

A second consideration is that variables used in cluster analyses are thought to be 
at the observed, rather than latent, level. Therefore, variables in cluster analysis may 
be considered as directly measured and do not necessarily refer to underlying latent 
variables. The data are also scale-dependent, meaning that variables with both large 
mean differences and/or standard deviations may suppress the influence of other 
variables (Everitt, 1993).

Figure 1. Sample profile of scores for two cases selected from the BASC TRS-C norm 
dataset.
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Another consideration is the metric level of the data. Typically, cluster analysis 
requires that data are on the same metric level. For cluster analysis, data may be of 
any scale type (e.g., nominal, ordinal, interval, or ratio); however, the metric level of 
the data will impact the choice of proximity measure (described in following section) 
used to describe relationships between the cases. If the variables have large standard 
deviations or are measured on different scales, the variables may be standardized to 
put all values on a common metric before clustering (Aldenderfer & Blashfield, 1984; 
Everitt, 1993; Milligan, 1996). Standardizing will remove the undue influence due 
to problems of metric or variability (Milligan, 1996); however, it may also have the 
disadvantage of masking differences on variables which best differentiate the groups 
(Duda & Hart, 1973; Everitt, 1993). Results concerning the need to standardize are 
conflicting. For example, Milligan (1980) found that standardization of variables 
produced only minor differences in cluster analysis results versus the use of non-
standardized data, while other researchers have found that standardization did 
impact results (e.g., Stoddard, 1979). The decision of whether or not to standardize 
variables should be made by considering the problem at hand, the metric level of the 
variables, and the amount of variability in the data. Overall, researchers should be 
aware that clustering results may differ if standardization is, or is not, carried out.

When data are measured on varying metric levels, there are other transformations 
that may be useful. For example, principal components factor analysis may be 
conducted first to reduce the variables into related components, which are then used 
as input for the cluster analysis (Aldenderfer & Blashfield, 1984). This procedure 
may be attractive if there is significant multicollinearity between variables, because 
components are clustered instead of scores from many single variables. However, 
principal components has been criticized because it may merge modes present in 
the data set, resulting in data that are normally distributed and may not reflect the 
original nature of the data (Aldenderfer & Blashfield, 1984).

Another problem encountered with cluster analysis is when it is of interest to 
group cases by variables of different type. (Everitt, 1993). While it may be of interest 
to include all variables together to create groups, using a mixed set of variables 
poses problems in cluster analysis. Researchers have offered suggestions, including 
categorizing all interval level data to ordinal or nominal level data before clustering 
(Everitt, 1993). An obvious disadvantage to this option is the loss of potentially 
important information in the transformation process. A second possibility would 
be to cluster cases separately, by type of variable, and to try to synthesize results 
across the different studies (Everitt, 1993). This, too, may not be optimal because 
information is lost when all profiles of scores are not considered together as one 
multivariate set.

Sample size requirements for cluster analysis have not been specifically stated. 
The number of cases needed will be related to the number of variables included, 
where more cases are needed as the number of variables used to create the groups 
increases. Cluster analysis is typically conducted with large samples (e.g., >200). 
However, a rule of thumb is to follow recommendations presented from multiple 
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regression or factor analysis and use a minimum of 10–15 cases per variable 
(e.g., Pedhauzer, 1997), with 200 cases as a minimum.

Finally, it is noted that cluster analysis as a methodology is not without criticism. 
A major criticism is that cluster analytic evaluation criteria are heuristic in nature 
and a researcher’s subjectivity may bias the choice of a solution (Aldenderfer & 
Blashfield, 1984). Additional criticisms include the lack of statistical indices to 
assist in the choice of a final solution, and the sensitivity of the clustering algorithm 
upon the results (Bergman & Magnusson, 1997, Steinley, 2003).

Proximity measures. After deciding on the variables to include, clustering requires 
an index to use to group cases. The proximity measure transforms the multivariate raw 
data, via a mathematical formula, into a matrix which is used to evaluate how alike 
cases are (Romesburg, 1984). There are two general types of proximity measures, 
similarity indices and dissimilarity indices, where elements in the data matrix vary 
based on direction of the relationship between the cases. For dissimilarity indices, 
smaller values indicate that two cases are more alike; for similarity indices, larger 
values indicate that two cases are more alike.

While variables for cluster analysis can be measured on any metric level, in social 
sciences, clustering often takes place with data that is at least ordinal in nature. 
Examples of data which may be of interest to educational researchers include 
grades, test scores, or standardized test scores. While proximity indices can be used 
with nominal or ordinal data, focus will be given to proximity measures used with 
interval data. Researchers interested in using nominal data have options to create a 
proximity matrix, such as the simple matching coefficient or Jaccard’s coefficient 
(c.f. Aldenderfer & Blashfield, 1984, pp. 28–29; Everitt, 1993, pp. 40–41), or with 
Sneath and Sokal’s method (c.f. Gordon, 1981, p. 24) when ordinal data used. For 
data that are on at least interval level of measurement, or even an ordinal level, but 
treated as continuous data1, correlation and distance measures may be used. These 
measures are the two types that commonly used with cluster analysis in the social 
sciences (Aldenderfer & Blashfield, 1984).

A popular similarity index metric used in cluster analysis is the correlation 
coefficient (Aldenderfer & Blashfield, 1984; Everitt, 1993). This value summarizes 
the amount of relationship between cases as:
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Where xij is the value of variable i for case j and jx  is the mean of all values of the 
variable for case j (Aldenderfer & Blashfield, 1984).

Correlations are not scale-dependent, and the values are bounded from −1 to +1, 
making interpretation relatively easy. While the correlation coefficient has some 
attractive qualities, this index is often criticized. It has been suggested that the 
correlation coefficient is a useful measure of similarity in those situations where 
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absolute “size” of the differences alone is seen as less important than the “shape” 
of the profile (Everitt, 1993). Thus, the correlation similarity index is sensitive to 
the shape of a profile (i.e., the pattern of dips and rises across the set of variables). 
For example, consider two cases where the profiles are of different magnitude (i.e., 
elevation) but of similar shape. These cases would have a high correlation value, 
meaning a high degree of similarity. Figure 1 shows two profiles of scores, where 
cases differ in elevation but are similar shape. Note that the collection of variable 
means for a set of variables used to define a cluster is called a centroid. Another 
criticism noted is that computing a correlation coefficient for use in clustering 
requires that the mean value must be obtained across different variables rather than 
across cases. Researchers have argued that this type of summarizing does not make 
statistical “sense” (Aldenderfer & Blashfield, 1984).

A second type of proximity measures, dissimilarity indices illustrate how different 
two cases are from each other across the set of variables. Two highly dissimilar 
cases would receive a higher value, or greater distance, between cases, while highly 
similar cases receive a low value, showing greater similarity (Everitt, 1993). Two 
cases with identical scores on all variables would receive a distance measure of 
zero, showing perfect agreement across the two profiles. While these measures have 
a minimum of zero, there is no upper bound, making distance scores themselves 
hard to interpret. Distance measures are also scale-dependent (Everitt, 1993) and 
sensitive to fluctuations in variability across variables used in the clustering.

A very popular distance measure used with cluster analysis is the Euclidean 
distance. From Aldenderfer and Blashfield (1984), the Euclidean distance between 
two cases, i and j, is described as:

 2

1

( ) ,
p

ij ik jk
k

d x x
=

= −∑  (2)

where dij is the distance between case i and case j, xik is the value of the kth variable 
for the ith case, xjk is the value of the kth variable for the jth case. For a multivariate 
profile, xik is represented as a vector, and differences between variables are summed 
over all variables used in the clustering procedure. When calculating a Euclidean 
distance, two case profiles, two group centroids, or an individual case profile and a 
group centroid can be used in the formula.

To eliminate the square root symbol, the Euclidean distance value is often squared, 
and the squared value (dij

2) is reported as the squared Euclidean distance.
A final important distance is the Mahalanobis D 2, which is defined as:

 1 ),ij i j i jd X X X X−= ( − ) ∑ ( −′  (3)

Where   Σ is the pooled within-groups variance-covariance matrix and Xi and Xj are 
vectors of the values for cases i and j. Unlike the Euclidean distance, this metric 
incorporates relationships among variables into the equation. When the relationship 
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between variables is zero, the Mahalanobis D2 is equivalent to the squared Euclidean 
distance. Given that the groups underlying a dataset are typically unknown at the 
start of a cluster analysis, the entire dataset would need to be used as the choice of 
Σ (Everitt, 1993).

Other measures of dissimilarity that can be used with continuous data are (a) 
the city block distance, (b) the Minkowski distance, (c), the Canberra distance, (d) 
the Pearson correlation, and (e) the angular separation (Everitt, Landau, Leese & 
Stahl, 2011). Although distance measures may have some advantages, they are often 
criticized because a computed index may be affected by the elevation or “height” 
of the profiles. In other words, while two cases have a similar shape across the set 
of variables, the level of the scores impacts the dissimilarity index (Aldenderfer & 
Blashfield, 1984). Considering the cases shown in Figure 1, these two cases may 
have a large correlation index, showing similarity, but the same two cases could 
have a large distance measure, showing dissimilarity. This discussion illustrates the 
importance of selecting a proximity index based on what considerations are most 
important for a researcher’s purpose for clustering. Also, with distance measures, 
cases with large standard deviations and size differences can overpower the effects 
of variables with smaller size differences or standard deviations. Finally, distance 
indices are affected by transformations of scale, such as standardizing variables. Even 
given these caveats, distance measures are among the most often used with cluster 
analysis.

Clustering Algorithms

There are many choices of clustering algorithms to join cases into groups or clusters. 
When choosing an algorithm to join cases, the method needs to be compatible with 
the purpose for clustering, the level of the variables, and the choice of similarity 
matrix. Also, each method represents a different perspective and could produce 
different results, even when applied to the same dataset.

At its most basic level, there are different families of procedures that cluster 
cases according to a general method. There are seven major families of clustering 
methods (cf. Aldenderfer & Blashfield, 1984, pp. 35–53); however, the three most 
popular families used in social sciences are discussed: hierarchical agglomerative 
methods, iterative partitioning methods, and factor analytic variants. Several 
different clustering techniques underlie each of these families of clustering methods. 
These selected options, and additional clustering algorithms (not discussed here) are 
readily available to researchers through software packages often used in educational 
research (e.g., SAS, R, SPSS, etc.).

Hierarchical algorithms. Hierarchical algorithms join cases into groups using 
a series of merger rules. These techniques can be subdivided into two types: (1) 
agglomerative techniques, which successively group single cases to arrive at 
one group of size N, and (2) divisive methods, which separate the N cases into 
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smaller subsets (Everitt, 1993). Divisive methods are far less popular in the social 
sciences than hierarchical techniques (Everitt, 1993). Therefore, focus will be on 
agglomerative methods; discussions of divisive methods may be found in clustering 
texts (cf. Everitt, 1993; Hartigan, 1975; Lorr, 1983).

Hierarchical agglomerative methods have been the most popular procedure 
of linking cases used with clustering (Aldenderfer & Blashfield, 1984). These 
methods examine the proximity matrix and sequentially join two cases (or cases to 
cluster) that are the most similar. After cases are joined, the similarity matrix is re-
examined to join the two cases/clusters with the next smallest distance to another 
case/cluster. A total of N − 1 steps are made through a dataset, grouping cases from 
singletons to one large set of N cases, where N is the number of cases in the dataset 
(Lorr, 1983).

Different ways to join the data underlie hierarchical agglomerative methods. The 
single linkage (or nearest neighbor) method joins like cases in terms of similarity 
index. Here, new cases are joined to groups on the basis of a high level of similarity 
to any member of the group. Therefore, only a “single link” is required between 
two cases to merge the group(s). A drawback to this linking process is that it may 
produce long “chains” of cases, where cases are linked one-by-one to create one 
large cluster.

The complete linkage (or furthest neighbor) method is the counterpart to the 
previous techniques, in that cases are considered to be included into an existing 
cluster must be within a specified level of similarity to all members of the group. 
This is a much more rigorous rule than imposed by the single linkage method. As a 
result, the complete linkage method tends to create smaller, tighter elliptical-shaped 
groups (Aldenderfer & Blashfield, 1984). As a middle ground, the average linkage 
method essentially computes an average of the similarity index for a case with all 
cases in an existing cluster and cases are joined to the group based on the average 
similarity with members. Other methods, (e.g., Mean vector [or centroid] clustering 
and median clustering) work similarly to group cases.

The most popular hierarchical agglomerative method used in the social sciences 
(Aldenderfer & Blashfield, 1984) is Ward’s method (Ward, 1963). This procedure 
creates groups which are highly homogeneous by optimizing the minimum variance, 
or error sum of squares (ESS), within clusters. The ESS formula, as stated in Everitt 
(1980) is:

 2
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where Xi is the case (or group) in question and X  is the cluster centroid. The n may 
refer to the total number of cases (at the start of the process) or the number of groups 
(as the clustering process proceeds). At the first step of the process, each case is its 
own cluster, and the ESS among groups is 0. Cases are joined into clusters which 
result the smallest increase of ESS, computed as a sum over all clusters. Although 
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Ward’s method is very popular, it is also sensitive to the elevation of the profiles and 
may group cases into different clusters based on elevation, even if the shapes of the 
profiles are similar.

While hierarchical agglomerative methods are useful, they do suffer from problems. 
One major problem is cases joined at an earlier step cannot be reassigned– even if 
the case has a closer association with a different group by the end of the assignment 
process. In other words, a poor start to the clustering process can not be overcome 
because only one pass to assign cases is made through the dataset. Second, hierarchical 
agglomerative methods do not have “stopping” rules which state the number of clusters 
underlying a dataset. The researcher can plot the union of cases through the clustering 
process by using a dendrogram (Everitt, 1993). Dendrograms visually represent 
the merging of cases at each step, from the lowest level (where all N cases are their 
own group) to the highest level (with all cases forming one large group of N cases). 
A researcher can examine the plot for suggestions of the number of clusters underlying 
the dataset by looking for the large divisions or “steps” in the graph.

For example, Figure 2 shows a dendrogram plot for a subset of 50 random cases 
from the example dataset (described later in this chapter). For the clustering, Ward’s 
method with squared Euclidean distances was used to group cases. At the bottom 
of the plot, each case is its own group, and similar cases are joined in a hierarchal 
manner. The plot shows that there may be four groups underlying the dataset. Three 
clusters have multiple cases and one cluster consists only of one case (case ID 
number 36). This case may be examined to determine if there were measurement/
scoring problems or to see if it is an outlier. If it is of interest to keep this case, it 
may be of interest to try differing number of cluster solutions (e.g., 3, 4, 5 clusters) 
to evaluate the placement of this case in different cluster solutions.

Figure 2. Dendrogram for a selection of 50 cases from the BASC TRS-C norm dataset.
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A third consideration is that groups created using hierarchical agglomerative 
methods are nested. This means the clusters do not overlap and each cluster can be 
subsumed as a member of a larger, more inclusive group at later steps in the process. 
Finally, hierarchical methods may not provide stable groupings. A researcher may 
obtain different results if a dataset is simply reordered, reshuffled, and re-clustered 
(Blashfield & Aldenderfer, 1988).

Iterative partitioning methods. Iterative partitioning methods are another choice 
of clustering algorithm. As with hierarchical methods, there are many procedures 
and choices underlying this family of methods. Approaches within this family use 
a similar set of general procedures, where clustering is conducted by completing a 
series of steps (Aldenderfer & Blashfield, 1984; Everitt, 1993):

1. At first, an initial cut or partition of the data set into k clusters is made, where k is 
specified by the researcher. The centroid, or the arithmetic mean values across 
the set of variables, is computed for each of the k clusters. If group information 
is unknown, the initial partition may be conducted arbitrarily. For example, one 
choice may be to allow the first k cases to serve as the cluster centroids for the 
k groups or randomly choosing k cases to serve as the initial group means.

2. Next, individual cases are assigned to the cluster that has the nearest centroid. 
This is typically conducted using distance measures (e.g., squared Euclidean) in 
the proximity matrix and assigning cases to the cluster with the smallest distance 
to a given centroid.

3. Once all cases in the dataset are assigned, the centroids of the k clusters are re-
computed. The dataset is re-examined to see if any cases have a smaller distance 
to the cluster centroid from the initial assignment to a different cluster centroid. 
Cases with smaller distances to different groups are re-assigned.

4. Steps 2 and 3 are repeated by making “passes” or iterations through the dataset 
until no cases change cluster assignment.

With iterative clustering procedures, the type of pass used to group the data refers 
to how cases are assigned after each iteration. There are two basic types of passes: 
k-means and hill climbing (Aldenderfer & Blashfield, 1984). Hill climbing passes 
assign cases to a cluster if the proposed assignment optimizes the value of a statistical 
criterion, which is concerned with cluster homogeneity. Alternatives for the criterion 
can be based on the within-group variation, W, the pooled within cluster covariance 
matrix or in combination with the between-group variation, B, the pooled between 
cluster covariance matrix (Everitt, 1993). Using these matrices, optimization criteria 
focus on minimizing trW, minimizing the determinant of W, and maximizing the 
trace of BW −1.

The k-means pass involves assigning cases to the cluster with the nearest 
centroid. There are many options to assign cases: the process may be combinatorial 
or noncombinatorial, inclusive or exclusive. Combinatorial methods allow for 
recalculation of a centroid after each membership change, while noncombinatorial 
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methods recalculate cluster centroids after the entire dataset has been classified. 
When computing centroid values, individual cases can be included in the calculations 
(inclusive) or a case in question may be removed from the centroid calculations 
(exclusive method).

While not explicitly stated, the k-means procedure tries to minimize the trace 
of the pooled within covariance matrix (trW) (Aldenderfer & Blashfield, 1984). 
This criterion is similar to Ward’s method, as minimizing the trace of the within 
group sum of squares matrix is equivalent to minimizing the sum of squared 
Euclidean distances between cases and the cluster centroid (Everitt, 1993); however, 
the hierarchal process is optimized within k-means to identify the “best” (global) 
solution underlying a dataset (Steinley, 2006).

While iterative partitioning methods do allow cases to switch clusters, these 
methods are not without problems. Iterative partitioning procedures are sensitive 
to the initial cut in the data and may not be able to fully overcome a poor initial 
partition (Steinley, 2003). As with hierarchal methods, k-means may produce a 
suboptimal solution if the initial cut is poor. This has been referred to as the problem 
of finding a local optimal solution, rather than a global solution for the entire dataset 
(Aldenderfer & Blashfield, 1984). To avoid the problem of a poor starting point, 
centroid values, or “seed” values may be used, where the input for the initial partition 
are k centroids based upon prior knowledge or previous analyses. Another strategy 
that has been recommended is to use the final solution from the Ward’s hierarchical 
agglomerative method as the starting point, or seed, for the iterative partitioning 
procedure (Huberty et al., 1997; Ward, 1963). By using the final Ward’s solution as 
the initial starting point for the k-means procedure, the researcher gains the benefits 
of both clustering algorithms. As with hierarchal methods, random shuffling of a 
dataset and re-clustering can help determine if identified clusters are stable entities.

As with other clustering methods, it is noted that a researcher may achieve different 
results if different choices are made and applied to the same iterative partitioning 
method. For example, results may differ if a k-means versus hill climbing procedures 
is used or different optimization criteria are considered, even with the same dataset 
(Aldenderfer & Blashfield, 1984; Everitt, 1993). Finally, the most well used method, 
minimization of tr(W), is scale dependent and may produce different solutions even 
if raw data and standardized data from the same dataset are clustered.

Factor analytic variants. Factor analytic approaches to clustering have been used 
in more in psychological research than in the other social sciences (Aldenderfer & 
Blashfield, 1984). These methods are often termed Q-analyses and focus on using 
factor analytic techniques (e.g., principal components) to reduce a correlation matrix 
of relationships between cases (i.e., rows). This method is similar to more traditional 
exploratory factor analysis, which examines the relationships between variables 
(i.e., columns) of a dataset.

While Q-analysis techniques have been used to group cases, distinctions have 
been identified between this procedure and other clustering methods (Lorr, 1983). 
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For example, factor analytic methods have been termed as dimensional approaches, 
which simplify a dataset by identifying a fewer extracted factors to explain the 
relationship between cases (Weiss, 1970 as cited in Lorr, 1983, p.123). Where 
hierarchical and iterative partitioning procedures aim to reduce a dataset into smaller, 
discrete groups, the groups obtained from these analyses may not be mutually 
exclusive (Lorr, 1983). Because factor analytic approaches to clustering cases are 
not as common as iterative partitioning or hierarchical clustering methods, but, may 
be used in social science research, these methods will be briefly discussed. More 
detail on factor analytic variants may be found in clustering texts (cf., Aldenderfer & 
Blashfield, 1984; Lorr, 1983).

Like traditional factor analysis scenarios, Q-analysis procedures typically use a 
similarity index to compare cases. While correlations are typically used to group 
similar profiles, it is known that this choice of proximity index does not consider the 
level of the profile(s). Alternatives to use of the correlation matrix in a Q-analysis 
include using covariances between variables or the sum of score cross-products. An 
advantage of using covariances as the index of similarity is that the variables remain 
in their original metrics – this may aid interpretation if variables possess similar 
amounts of variability. Similarly, using the sum of score cross-products uses raw 
scores; results from raw score cross products provide results that approximate results 
from using distance coefficients (Lorr, 1983).

Once a proximity matrix is constructed, the relationships between cases are 
factor analyzed using common methods, such as principal components or principal 
axis factoring. Lorr (1983) noted principal components method is the most popular 
procedure used to identify a smaller number of groups. However, when assigning 
groups to clusters, researchers will encounter similar problems as with traditional 
factor analysis —where criteria need to be used to classify cases to groups. A common 
procedure is to assign a case into a group is to use a cutoff value, such as a minimum 
correlation (e.g., value of at least .5) between the case and the extracted group (Lorr, 
1983). Also, to create mutually exclusive groups, cases should not “cross-load” with 
other groups above a maximum value (e.g. no higher than a .35 association with 
other groups). While guidelines are provided, these considerations are subjective 
and may vary among researchers; care is needed when choosing outcomes under 
Q-cluster analysis.

Finally, some considerations apply when conducting Q-analysis. For example, 
if variables are on different metrics interpretation problems may arise. In this 
situation it is recommended that the variables are centered and then standardized 
across the cases before calculating correlations or sums of raw cross-products (Lorr, 
1983). Second, because the cutoff values to assign cases to clusters are chosen by 
the researcher, the homogeneity of the clusters may be influenced by the cutoff 
value chosen. Lower cutoff points would allow for a greater number of cases to be 
classified into a group, but the resulting cluster would be relatively heterogeneous. 
Higher cutoff values for association would result in more homogeneous groups, but 
lower coverage of the dataset.
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In addition to the clustering algorithms described above, there are some clustering 
procedures that have unique features and cannot be assigned to any of the clustering 
families described in the literature. Such clustering techniques are: (a) methods based 
on density search and mode analysis; (b) methods that allow overlapping clusters; 
(c) methods that cluster data matrices instead of proximity matrices and, therefore, 
group both variables and individuals at the same time; (d) methods that constrain 
the clustering process by using, in part, external information to determine the cluster 
memberships; (e) fuzzy methods, where individuals have fractional memberships 
to several groups and a membership function indicates the strength of membership 
to each cluster; and (f) neural networks, where groups are identified by modeling 
pattern recognition algorithms employed by highly connected networks such as 
neurons in the human nervous system (Everitt et al., 2011, pp. 215–255).

Conducting Cluster Analysis

Determining a starting point for cluster analysis. Given that the goal of clustering 
is to determine the number of cases from an ungrouped set of data, a natural question 
when beginning the process is: “How many groups underlie the dataset?” Heuristic 
criteria may be used to suggest the optimal number of clusters. Three statistics, Cubic 
Clustering Criterion, Pseudo F, and Pseudo t-square, can be plotted by the number of 
possible clusters (maximum of N clusters) to judge the number of groups underlying 
a data set (Aldenderfer & Blashfield, 1984; Sarle, 1983). The plots are analogous to 
a scree plot in factor analysis. Here, graphs are examined to determine large changes 
in level of the plot, where the drop suggests the number of clusters underlying the 
dataset (Everitt, 1993). Additionally, with hierarchical methods, dendrogram plots 
can be examined to identify where “steps” or breaks in the graph are, denoting 
different groups. If factor analytic methods are used, scree plots can be used to 
determine the number of groups which may underlie the data. Using dendrogram 
or other plots are subjective methods to determine the number of clusters. As with 
exploratory factor analysis, when conducting cluster analysis, researchers should 
use the suggested number of clusters as a starting point and evaluate a range of 
cluster solutions above and below this point.

Nevertheless, the cluster analysis literature provides a variety of statistical tests, 
indices, and procedures that may be used to obtain additional information and help 
researchers identify the optimal number of clusters in a data set. Such criteria are: 
(a) the Calinski and Harabsz’s index (Calinski & Harabasz, 1974), (b) Hartigan’s rule 
(Hartigan, 1975), (c) the Krzanowski and Lai test (Krzanovski & Lai, 1985), (d) the 
silhouette statistic (Kaufman and Rousseeuw, 1990), (e) approximate Bayes factors 
(Kass & Raftery, 1995; Frayley & Raftery, 1998), (f) the gap statistic (Tibshirani, 
Walther, & Hastie, 2001), (g) nonparametric measures of distortion (Sugar & James, 
2003), (h) stability analysis (Steinley, 2008), or (i) bootstrapping (Fang & Wang, 
2012). Many of these techniques were developed to address specific problems and, 
therefore, do not have a general applicability. Furthermore, some of the methods 
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that have a wider applicability are computationally intensive or “require strong 
parametric assumptions” (Sugar & James, 2003, p. 750). Thus, such statistical tests 
are not widely used with cluster analysis.

Choosing a cluster solution. Once a researcher has obtained a solution, interpreting 
cluster analysis results involves two main components. First, the centroid information 
is evaluated for each cluster (Aldenderfer & Blashfield, 1984; Everitt, 1993). 
Through examining cluster centroids, one may determine if a cluster’s centroid 
values identify a subgroup of the population. Second, supporting information about 
each cluster’s demographic characteristics may be considered. Within educational 
research, demographic characteristics may include gender distributions, racial/
ethnic membership, family socioeconomic status, and cluster size relative to the 
total sample. A cluster is “named” by comparing the centroid information and 
demographic characteristics to existing theoretical perspectives and prior research. 
This information can be evaluated and compared for a range of solutions to determine 
which one fits the data best.

After the final cluster solution is agreed upon, additional investigations and use of 
the solution can be made. These may be internal validation and external validation 
procedures. Internal validation procedures center on using the same dataset. This 
may be conducted by shuffling the dataset and reclustering to see which cluster 
definitions are stable. Another method which is useful if the dataset is sufficiently 
large is to split the dataset into half samples. One half-sample may be used to build 
a classification rule using predictive discriminant analysis techniques, and applied 
to the second half sample (Huberty et al., 1997). This has the effect of treating the 
second sample as ungrouped cases, where the cases are assigned into the cluster with 
the closest association (Huberty, 1994). Concordance between the two classification 
methods may be assessed.

External classification procedures focus on using independent datasets. 
Validation of a cluster solution is paramount to illustrating that it is an optimal 
solution (Aldenderfer & Blashfield, 1984). Replication is an important criterion, 
not only to determine the appropriate number of clusters, but to ensure that the 
agreed upon solution holds the same meaning in independent samples from the same 
population (Aldenderfer & Blashfield, 1984). Validation procedures may also be 
conducted by determining if there are differences between groups (i.e., Analysis of 
Variance − ANOVA) on important variables which were not used to group cases into 
clusters.

ILLUSTRATIVE STUDY

As an example to illustrate different classification methods, the Behavior Assessment 
System for Children (BASC; Reynolds & Kamphaus, 1992) Teacher Rating Scales–
Child (TRS-C) norming dataset was utilized. The TRS-C includes 148 items that are 
rated by a child’s teacher. For each child, teachers rate the frequency of behaviors 
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exhibited during the last several months, using a four-point scale of “Never”, 
“Sometimes”, “Often” and “Almost Always.” This form is appropriate for children 
aged 6 to 11 years old.

Items on the TRS-C are organized into 14 subscales of behavior measure both 
adaptive and maladaptive behaviors. Teacher ratings for each subscale can be 
transformed to a T-score (mean of 50, standard deviation of 10), and, for each child, 
values across the set of 14 variables may be used to evaluate a child’s emotional and 
behavioral health in the school setting. Generally, higher scores represent greater 
levels of problematic behavior; however, for scales measuring adaptive skills 
(e.g., Study Skills), lower scores represent more maladaptive behaviors.

While the BASC TRS-C (1st edition) dataset was selected for a number of 
reasons, the primary reason for inclusion is that it represents a situation which is 
often encountered with classification: where it is of interest to create subgroups 
of cases from a large, ungrouped dataset. A realistic objective may be to create a 
classification system for describing child behavior in the school setting – including 
both good behavior and problematic behavior/emotional competency – as rated 
by teachers. Knowledge of subgroups of children who behave similarly to other 
children within the same group may be of interest for academic remediation, referral 
for counseling or special education, or differentiated instruction.

For the TRS-C norm sample, the average age was reported as 8½ years old and 
consisted of 598 (49%) female and 630 (51%) males. The sample of children was 
primarily Caucasian (n = 820, 67%), with 33% (n = 408) classified as minorities. 
Of the children included in the norm database, the majority had not been diagnosed 
with a behavioral or emotional disorder (n = 1131, 92%); however, 91 (7.5%) of the 
children had received one clinical diagnosis, and six children (0.5%) received two 
prior diagnoses.

To begin clustering, both CCC plots and dendrograms were run with SAS 
software (version 9.2). The plots suggested that 6–8 clusters were underlying 
the dataset; however, 4 through 9 cluster solutions were run and interpreted. 
For clustering, Ward’s method was used with the Squared Euclidean distance as 
the proximity measure. To evaluate the cluster solutions, group centroids for the 
solutions were examined and matched to theoretical knowledge of child behavior 
in school settings as well as prior research solutions. The size of the cluster relative 
to the total norm sample and the gender membership in the cluster was used to 
help identify characteristics of the groups. To validate the final solution, an ANOVA 
was run on the Behavioral Symptoms Index (BSI) which is a measure of a child’s 
overall level of risk. BSI values are measured on a T-score metric and are comprised 
from a collection of information on the TRS-C form. While it is recognized that the 
information is not truly unique and would not be an optimal choice of a variable for 
validation, it is used to illustrate how validation procedures may be conducted.

After evaluating and comparing multiple solutions, a seven cluster solution was 
interpreted. The seven groups uncovered by the Ward’s clustering procedure were 
named by examining the centroids across the set of 14 variables (listed in Table 1) 
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Table 1. BASC teacher rating scale–child norming data: mean t-scores by scale for the 
seven cluster solution under ward’s clustering algorithm

Ward’s Method Cl.1 Cl.2 Cl.3 Cl.4 Cl.5 Cl.6 Cl.7
N 463 160 277 89 38 25 176
Externalizing Problems
Aggression 44.15 51.04 45.71 67.33 68.95 44.52 57.76
Conduct Problems 45.39 48.13 47.16 67.22 71.00 52.76 54.50
Hyperactivity 43.68 49.80 47.67 66.51 68.34 47.56 59.31
Internalizing Problems
Anxiety 45.42 54.39 45.99 55.72 72.03 48.64 55.03
Depression 44.48 52.41 45.82 60.39 79.11 50.76 57.16
Somatization 46.10 54.96 46.89 49.26 64.00 46.08 58.23
Other Scales
Atypicality 45.14 48.95 47.71 64.79 81.79 55.36 54.19
Withdrawal 44.99 50.71 48.42 56.54 71.58 76.52 53.63
School Problems
Attention Problems 41.46 47.35 52.97 65.47 68.34 63.04 57.99
Learning Problems 42.52 47.49 52.99 64.76 66.13 63.80 56.85
Adaptive Skills
Adaptability 58.15 50.21 48.04 36.33 31.76 41.40 41.59
Leadership 57.73 52.78 42.17 40.11 40.58 33.16 45.57
Social Skills 57.52 52.16 43.02 39.57 42.21 33.32 45.30
Study Skills 58.79 53.73 43.55 36.75 38.61 34.44 42.69
Percentage of Total 
(Cluster Size)

38 13 23 7 3 2 14

Percentage
Male / Female

39/61 46/54 57/42 82/18 58/42 48/52 63/37

Cluster Name Well 
Adapted

Average Low 
Adaptive

DBP GP-S Acad. 
Prob.

Mildly 
Disrup.

Notes. Values that differ from the mean by one standard deviation or more (regardless 
of direction) are printed in boldface. Cl= Cluster, DBP = Disruptive Behavior Problems, 
GP-S = General Problems—Severe; Internal. Problems = Internalizing Problems, Acad. 
Prob. = Academic Problems. 

and matching the descriptions to prior research. The groups identified were named: 
(1) Well Adapted, (2) Average, (3) Low Adaptive, (4) Disruptive Behavior Problems, 
(5) General Problems—Severe, and (6) Mildly Disruptive and (7) School Aversion. 
Each cluster is briefly described to illustrate the naming process.
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The Well Adapted cluster (n = 417) was named because of its significant 
elevations on adaptive scales and absence of behavioral problems. There were more 
girls (60%) reported in this group than boys (39%). The second cluster was labeled 
Average. With 160 members, this cluster reported all 14 variables close to expected 
mean values of 50 and had slightly more girls in the cluster.

A third cluster of 277 members was identified as Low Adaptive Skills. This group 
looked similar to the Average cluster, with the exception of low scores on three 
of the four Adaptive Skills scales. This cluster had a higher percentage of boys as 
members.

A fourth cluster of 89 members was identified as Disruptive Behavior Problems. 
Significant adaptive behavior deficits and elevation on externalizing scales mark this 
cluster. As expected, males dominated this cluster (82%). The Disruptive Behavior 
Problems group accounted for seven percent of the total norm sample.

The Mildly Disruptive group had 176 members, was predominantly male (63%) 
and accounted for 14% of the norm sample. This cluster is differentiated from the 
Disruptive Behavior Problems cluster by comparatively mild elevations on the 
Aggression, Hyperactivity, and Adaptability scales.

The cluster General Problems – Severe is the most behaviorally impaired of all 
the cluster types. This small cluster (n = 38) is predominantly male (58%) and the 
group exhibited a diverse array of problems including psychotic thought processes 
(significant Atypicality scores) and impaired adaptive skills. Additionally, children 
in this cluster exhibited high levels of externalizing behaviors. General Problems–
Severe children comprised only a small percent (3%) of the norm sample.

A small cluster of children (n = 25) was found with scores within one half standard 
deviation of the mean on Internalizing Problems and Externalizing Problem scales. 
However, this scale had significantly high levels of School Problems scales, very 
low Adaptive Skills, and the highest Withdrawal T-scores across the set of clusters. 
The group was roughly equally split across genders. This group was named School 
Aversion because it shares similarities with the Academic Problems cluster identified 
in previous studies (e.g., Kamphaus et al., 1997), but the levels seen here are much 
more extreme.

An ANOVA was run to see if the groups illustrated mean differences on BSI. The 
ANOVA test reported significant mean differences across BSI values for the different 
clusters (F6,1221 = 815.47, p < .001). The lowest T-scores, illustrating lower ‘at-risk’ 
status were seen for students in the Well-Adaptive group; highest BSI values were 
reported for the General Problems—Severe students. Bonferroni post-hoc tests were 
conducted to determine which group scores were significantly different. With the 
exception of scores for students in the Average group and the Academic Problems 
group, there were significant differences among the BSI mean scores. From lowest 
T-score to highest, the groups were ordered as: Well-Adaptive (M = 42.6), Low 
Adaptive (M = 47.1), Average/Academic Problems (M = 50.1/51.9), Mildly Disruptive 
(M = 58.7), Disruptive Behavior Problems (M = 66.7), and General Problems –Severe 
(M = 78.8).
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SUMMARY AND CONCLUSIONS

Cluster analysis has a long history in the social sciences. The goal of this chapter was 
to introduce cluster analysis as a classification procedure. Additionally, the example 
was presented to illustrate how different choices in the classification process can 
produce different results. While limited procedures were presented, the figures 
and tables provide information and may be used as a resource for interpretation of 
various classification techniques.

One recognized limitation of the current chapter is that the viability of cluster 
solution in the presence of missing data was not discussed. This was omitted to 
concentrate on an introduction of the procedures and assumptions underlying cluster 
analysis. However, it is recognized that missing data is often encountered, especially 
in a field such as the educational research which often uses self-report or test data in 
investigations. Briefly, there are many ways that missing data may be handled, some 
of which vary depending on the type of missing data, and some of which vary based 
upon the classification procedure in use. While these issues are very involved and 
complex, it is beyond the scope of the chapter to discuss different types of missing 
data (e.g., missing at random, missing completely at random, and missing not at 
random). Readers are referred to texts on missing data, such as Little and Ruben 
(2002) or Enders (2010), for more detailed information about various types of and 
treatments for missing data.

If cluster analysis is of interest and the percent of missing data is not too high, 
data could be imputed or the dataset reduced through listwise deletion methods (or 
pairwise deletion in the case of factor analytic variants of cluster analysis). Again, 
these methods to treat missing data come with known caveats (e.g., Enders, 2009), 
and if too much data are lost through listwise deletion, the accuracy of the groups is 
questionable. Further, if too much data is imputed for the variables without taking 
into consideration characteristics of the case (e.g., mean imputation), the variability 
within the dataset will be reduced. If possible, it is recommended to impute mean 
scores using information from an individual’s pattern of scores (e.g., mean imputation 
for an individual on a missing item based on other items within the same subscale). 
On a whole, cases with a lot of missing data may be investigated to see if there is 
enough information to include these cases in the cluster analysis. Researchers may 
want to create an arbitrary cut-off value (e.g., 25% missing data) and include cases 
with less missing data and exclude those cases with missing data above the cut-off 
value. Other, more sophisticated methods of treating missing data in cluster analysis 
include estimating a missing data point using regression procedures (Gordon, 1981).

We also note that there are many possible numbers of combinations of cluster 
applications which may be used. Hopefully the presentation of the algorithms and 
proximity values along with the example can give researchers an idea of the magnitude 
of choices available when conducting cluster analysis. Researchers are encouraged to 
apply more than one technique when conducting classification work (e.g., two different 
clustering algorithms) to determine which groups consistently re-emerge. Further, 
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while validation procedures were briefly discussed, the importance of validation in the 
context of clustering cannot be stated loudly enough. Validation is crucial to ensure 
that the groups identified are not artifacts of just one sample of data.

CONCLUSION

In summary, cluster analysis can be valuable tools in the exploration of large sets 
of multivariate data. By organizing data into subgroups, these smaller groups 
can help researchers identify patterns present in the data and uncover the unique 
characteristics of the group structures. Application of cluster analysis in practice 
requires care because, as shown in the chapter, there are many areas where choices 
need to be made, and criteria to evaluate which are subjective and open to different 
interpretations by different researchers. As Everitt, Landau, Leese and Stahl (2011, 
p. 287) state “Simply applying a particular method of cluster analysis to a dataset 
and accepting the solution at face value is in general not adequate.” As classification 
methods rearrange the “facts” of a dataset for pattern recognition and group 
identification, validation work is crucial to conduct before trusting that a solution 
represents an underlying taxonomy. Careful analysis and execution of the all the 
decisions underlying classification will help the methodology fulfill its potential as 
an efficient and useful tool for applied researchers.

NOTE

1 In the social sciences, data that are ordinal are often treated as interval level data. A common example 
is data from self-report questionnaires where data arise from the use of a Likert scale.
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6. MULTIVARIATE ANALYSIS OF VARIANCE

With Discriminant Function Analysis Follow-up

INTRODUCTION TO MANOVA

Multivariate analysis of variance (MANOVA) allows an examination of potential 
mean differences between groups of one or more categorical independent variables 
(IVs), extending analysis of variance (ANOVA) to include several continuous 
dependent variables (DVs) (e.g., Grimm & Yarnold, 1995; Harlow, 2005; Maxwell & 
Delaney, 2004; Tabachnick & Fidell, 2013). As with ANOVA, MANOVA is a useful 
procedure whenever there are limited resources or when it is important to identify 
which groups may need specific treatments, interventions, or note. MANOVA can 
illuminate whether and how groups differ, and on which DVs.

In ANOVA a researcher can posit one or more categorical IVs, each with two or 
more groups, and one continuous DV. With MANOVA, the same structure of IVs 
can be considered except that two or more DVs are analysed. Hence, MANOVA 
allows for a much more realistic appraisal of group differences than does ANOVA. 
MANOVA can also be extended to incorporate one or more covariates, becoming 
a multivariate analysis of covariance (MANCOVA) that allows for one or more 
categorical grouping variables, one or more continuous covariates, and two or more 
continuous dependent variables. As will be seen later, MANOVA is closely related 
to the multivariate procedure of discriminant function analysis (DFA), which is 
mathematically equivalent but switches the roles of the independent and dependent 
variables. That is, DFA allows two or more continuous IVs and a categorical 
DV. Thus, in MANOVA researchers start with a focus on the categorical groups 
and ask how the means of several DVs differ. In contrast, with DFA researchers 
start with several (usually) continuous IVs and ask how these variables can help 
discriminate between the categorical groups of the DV. To preview analyses for an 
example later in the chapter, DFA is sometimes used as a follow-up procedure to a 
significant MANOVA, in order to investigate which of the continuous variables is 
differentiating among the groups. In what follows, we describe the basic purposes 
for MANOVA, along with the main equations needed, and how to assess the overall 
analysis with significance tests, effect sizes, confidence intervals, and a follow-up 
DFA. An example further illuminates the use of MANOVA and DFA.
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Description and Purpose of MANOVA

Several main purposes for which MANOVA is used are briefly described below.

MANOVA for an experimental design. The best use of MANOVA is when an 
IV is experimentally manipulated, and participants are randomly selected from a 
relevant population and then randomly assigned to groups. In this case, the goal 
is to assess whether the manipulated IV brought about or caused significant group 
differences between groups on a set of meaningful DVs. For example, a researcher 
could randomly assign students to an innovative phoneme training reading group 
or a standard educational reading group. At the end of the study, the researcher 
could examine the mean scores on reading comprehension, reading interest, and 
vocabulary between the two groups. A MANOVA would reveal whether there 
were any significant differences between the groups on a linear combination of the 
three DVs. Follow-up analyses (e.g., a set of ANOVAs, or a single DFA) could be 
conducted to determine which of the DVs were most clearly showing differences 
across reading groups. Differences could be attributed to the phoneme training if 
scores from that group were significantly higher.

MANOVA for a repeated measures design. MANOVA can be used to assess 
whether there are mean differences across time on a set of DVs. In this case, the IV 
is time and the groups are the various time points in which the data are collected on 
the set of DVs. For example, the reading researcher in the previous study may want 
to assess mean scores on reading comprehension, reading interest, and vocabulary 
across three time points (e.g., pre-test at the beginning of the school year, post-test 
at the end of the first semester, and follow-up at the end of the school year). In 
this example, time is the IV with levels representing the three separate time points, 
and the set of DVs is measured “k” (i.e., the number of levels or groups in the IV) 
times. This is also called a within-groups design as the analysis is assessed within a 
same group of participants, across time. It could also be referred to as a dependent 
MANOVA since the scores at each time point are dependent on the previous time 
point with the same (within-group) sample providing repeated measures across time. 
Regardless of how this design is named, a researcher could assess whether there 
were significant differences across time. If the phoneme training were successful, 
there should be significant differences between the pre- and post-test administered 
at the beginning and end of the first semester, respectively. If changes were long-
term, there would be significant differences between the post-test and follow-up 
scores; and even possibly between the pre-test and follow-up scores collected at the 
beginning and end of the academic school year, respectively.

MANOVA for a non-experimental design. Although it is not ideal, MANOVA can 
be used to assess differences between two or more intact groups, on two or more 
DVs. For example, a reading researcher could examine whether there are differences 
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between two classrooms, one of which used phoneme training and the other that 
used standard reading training, on a set of DVs (i.e., reading comprehension, 
reading interest, and vocabulary). However, even if significant differences were 
found between the two classrooms, it would be impossible to attribute causality to 
the type of training, especially since the IV was not manipulated and participants 
were not randomly assigned to classrooms. In this design, it would be very difficult 
to control for all possible confounds that could be explaining differences in the 
DVs. For instance, classrooms may have differed as to initial reading level, basic 
intelligence, socioeconomic status, and amount of reading in the home, to name 
a few. If a researcher was fairly sure that this set of four potentially confounding 
variables were the most important considerations outside of the type of training in 
comparing across classrooms, these variables could be assessed as covariates with 
a MANCOVA. This would provide some degree of control and probably elevate the 
study to a quasi-experimental design, although results would still not be as definitive 
as in an experimental design with random assignment to groups. Nonetheless, this 
form of non- or quasi-experimental MANOVA is sometimes used, with results then 
interpreted more descriptively than inferentially.

The Main Equations for MANOVA

The main equation to describe the nature of a DV score, Y, for MANOVA is:

 Yi = μyi + τ + E (1)

where Yi is a continuous DV, μyi is the grand mean of the ith DV, τ is the treatment 
effect or group mean, and E is error.

For MANOVA, another equation is needed to reflect that linear combinations of 
the continuous DVs are being formed before examining group differences. Thus,

 Vi = b1Y1 + b2Y2 + ... + bpYp (2)

where Vi is the ith linear combination, bi is the ith unstandardized weight, and Yi is 
the ith DV.

When there are more than two groups in a MANOVA more than one linear 
combination can be formed. The number is determined by:

  # of Vi’s = minimum (p, k − 1), (3)

where p is the number of continuous variables, and k is the number of groups or 
levels of the IV. When there are only two groups, only one linear combination can be 
formed (i.e., k – 1 = 2 − 1 = 1) no matter how many dependent variables are included 
in a design. This will be the case in the example later in the chapter.

In MANOVA, even though there may be one or more linear combinations, 
each with a specific set of weights (i.e., the “b” values in equation 2), the weights 
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and linear combination(s) are not a point of focus until conducting DFA, which is 
discussed later in the context of an example. To preview, the linear combinations 
in equation 2 are called discriminant functions in DFA, and for that analysis the 
weights are of prime importance. For now, know that in MANOVA, the focus is 
on modelling mean differences in the DVs, across the groups of the IV. Similar 
to what occurs in ANOVA, a ratio of between-group variance over within-group 
variance is formed in MANOVA, except that now the ratio involves variance-
covariance matrices. The between-group variance-covariance matrix could be 
labelled B, although to distinguish it from the unstandardized b weights in the linear 
combination, this matrix is often labelled as H for the “Hypothesis” matrix. The 
within-group variance-covariance matrix is often labelled as E to represent error 
variance (Harris, 2001). Whereas in ANOVA there is just a single dependent variable 
in which to delineate between- and within-group variance, in MANOVA we need to 
focus on “p” sets of variances, one for each DV, as well as p(p − 1)/2 covariances 
among the p DVs. We store the between-group variances and covariances in the H 
matrix and the pooled within-group variances and covariances in the E matrix.

Thus, in MANOVA, another equation of interest is the ratio of the between-groups 
variance-covariance matrix over the error variance-covariance matrix:

 H / E = E−1 H (4)

Those familiar with matrix operations will realize that E−1 refers to the inverse of the 
divisor matrix, E, which is multiplied by the dividend matrix, H. Subsequently, it will 
become apparent that one of the challenges in conducting a MANOVA is considering 
different ways of summarizing this ratio of matrices with a single number that can 
be assessed for significance with an F-test. With ANOVA, where there is only one 
DV, there is just a single number to indicate the ratio of between- over within-group 
variances. In MANOVA, however, this ratio involves two matrices, which after 
multiplying the inverse of the E matrix by the H matrix still results in a matrix, 
and not a single number such as an F in ANOVA. Drawing on matrix operations 
and features, several methods are suggested shortly to summarize a matrix (e.g., E−1 
H) with a single number. One method involves finding a determinant, which is a 
generalized variance of a matrix that can summarize how different the information is 
in a matrix. If all of the variables are essentially the same, the determinant will be very 
small, indicating that there is very little variation to assess within the matrix. Thus, it 
is important to choose dependent variables that are at least somewhat different, and 
IV groups that are fairly different from each other in order to provide a reasonable 
size determinant. Another matrix method for summarizing a matrix is a trace that 
represents the sum of the diagonal elements in a matrix. For the E−1 H matrix 
mentioned earlier, the sum of the diagonals will refers to the sum of variances for this 
product matrix. Still another way to summarize a matrix is to calculate eigenvalues, 
which are the variances of the linear combinations of a matrix. Referring back to 
equation 3, there will be as many eigenvalues as there are linear combinations in 
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MANOVA (or DFA). To review, there will only be one linear combination of the 
continuous variables, and thus, one eigenvalue when there are just two groups for 
the categorical IV in MANOVA (or the categorical DV in DFA). For those interested 
in more information about matrices, see a 96-page book by Namboodiri (1984); 
Chapter 6 in Harlow (2005); or Appendix A in Tabachnick & Fidell (2013).

For now, it important to realize that there are various ways to summarize the 
matrix formed by the ratio of between- over within-matrices in equation 4 for 
MANOVA. Just as with ANOVA, it is important to focus on this ratio of the variance 
between means over the variance within scores in MANOVA. If this ratio is large, 
the null hypothesis of no significant differences between means can be rejected. 
Let’s see more about how this is done by considering various ways of specifically 
summarizing between- and within-group information in MANOVA.

Overall Assessment for MANOVA

Just as with ANOVA, MANOVA results should be interpreted first at a macro or 
omnibus level. At this level, the first focus is on determining whether there is a 
significant macro-level group-difference. In addition, MANOVA is concerned 
with an overall shared variance effect size, as well as with which DVs are showing 
significant differences across groups, both of which are presented shortly.

Several macro-assessment summary indices have been offered to summarize the 
matrix results for MANOVA, borrowing on the matrix summary values suggested 
earlier. Wilks’ (1932) Lambda, which uses determinants to summarize the variance 
in the ratio of matrices formed in MANOVA, is probably the most widely used 
macro-assessment summary index. Wilks found it difficult to calculate the between-
groups matrix, specifically, due to computational limitations at that time. Instead, he 
suggested that the determinant of the within-groups variance-covariance matrix over 
the determinant of the total (i.e., within plus between) variance-covariance matrix 
indicates how much of the variation and covariation between the grouping variable(s) 
and the continuous variables was unexplained. Thus, one minus Wilks’ Lambda is 
a measure of the shared or explained variance between grouping and continuous 
variables. Two other macro-assessment summary indices incorporate the trace of 
a variance-covariance matrix to summarize group difference matrices. Hotelling’s 
trace is simply the sum of the diagonal elements of the matrix formed from the 
ratio of the between-groups variance-covariance matrix over the within-groups 
variance-covariance matrix. Pillai’s trace is the sum of the diagonal elements of the 
between-groups variance-covariance matrix over the total (i.e., between plus within) 
variance-covariance matrix. A fourth macro-assessment summary is Roy’s Greatest 
Characteristic Root (GCR: Harris, 2001). The GCR is actually the largest eigenvalue 
from the between over within variance-covariance matrix, providing a single number 
that gives the variance of the largest linear combination from this matrix.

Below, we delineate further how to assess the initial MANOVA macro-level 
information, focusing on suggested criteria (e.g., determinant, trace, or eigenvalue) 
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for summarizing the ratio of some form of the between-groups matrix (i.e., H) over 
within-groups matrix (i.e., E), along with a significance test.

A Significance Test. Each of the four main macro summary indices just briefly 
introduced has an associated F-test for assessing whether group differences are 
significantly different from chance in MANOVA.

For Wilks’ Lambda, showing the amount of variance in the linear combination 
of DVs that is not explained by the IVs, low values (closer to zero than 1) are 
best. However, the associated F-statistic should be large and significant in order to 
conclude that there are significant differences between at least two groups on the 
linear combination of DVs. Wilks’ Lambda can be calculated as the determinant of 
the E matrix, divided by the determinant of the sum of the H and E matrices:

 Λ = | E | / | H + E | (5)

where | | stands for the determinant of the matrix inside the parallel lines (See a 
matrix algebra book or computer program to find the determinant of a matrix).

The second macro summary index, the Hotelling-Lawley trace, is formed by 
summing the diagonal elements in the E−1 H matrix as given below.

 Hotelling-Lawley trace = tr [E−1 H]  (6)

The Hotelling-Lawley trace can also be calculated as the sum of eigenvalues of the 
E−1 H matrix. The reason these are equivalent is because the sum of the eigenvalues 
of a matrix is equal to the sum of the diagonal values of the original matrix. For 
both methods, which summarize the essence of the variance of the E−1 H matrix, an 
associated F-test indicates whether there is a significant difference between means 
on the linear combination(s); and thus large F-values are preferred.

Pillai’s trace, the third macro summary index, is the sum of the diagonal values of 
the matrix product of H times the inverse of E + H matrices, as given below.

 Pillai’s trace = tr [(H + E) −1 H] (7)

Similar to the Hotelling-Lawley trace, Pillai’s trace can also be formed from the 
sum of the eigenvalues of the [(H + E)−1 H] matrix. As with the other indices, the 
associated F-test for Pillai’s trace should be large and significant to indicate that 
there are significant differences on the means for the linear combination(s). An 
advantage of Pillai’s trace is that it is the most robust of the four summary indices 
when there are less than ideal conditions, such as when there is unequal sample size 
across groups or heterogeneity of variances. In an example presented later, Pillai’s 
trace will be preferred due to unequal sizes in the IV groups, and an indication of 
significant heterogeneity for variance-covariance matrices. Another benefit of 
Pillai’s trace is that it can be interpreted as the proportion of variance in the linear 
combination of DVs that is explained by the IV(s). Thus, it is intuitively meaningful.
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The fourth macro summary index, Roy’s largest root or the greatest characteristic 
root (GCR), is a single value simply represented as given below.

 GCR = the largest eigenvalue of E−1 H (8)

As with the other indices, a large and significant F-test is preferred for the GCR, 
again indicating that there are significant differences across groups on the means 
of the linear combination(s). Aside from recommendations to use GCR by Harris 
(2001), the GCR is not used as often as other indices, particularly Wilks’ lambda and 
Pillai’s trace, the former used most often, probably due to being introduced before 
the others, and the latter due to its robustness with non-standard conditions.

Effect Size. A common multivariate effect size for MANOVA is Eta-squared:

 (η2) = (1 − Λ), (9)

where η2 represents the proportion of variance in the best linear combination(s) of 
DVs that is explained by the grouping IVs, and Λ represents Wilks’ Lambda (see 
equation 5). Eta-squared (i.e., η2) can be interpreted with multivariate guidelines for 
shared variance effect sizes (e.g., Cohen, 1992). Thus, a small multivariate shared 
variance effect size would be equal to about .02, a medium effect size would equal .13 
or better, and a large effect size would be greater than or equal to about .26 or more.

If the macro-level F-test is significant in MANOVA and there is a reasonable 
effect size, there are one or two more layers to interpret. Just as with ANOVA, this 
could involve micro-level significance tests of specific group differences if there are 
more than two IV groups, and effect sizes for group means. But first, it is important 
to conduct a “mid-level” evaluation of the dependent variables.

Follow-up Analyses after a Significant MANOVA

After finding a significant macro-level F-test in MANOVA and summary criteria 
(e.g., Wilks’ lambda, Pillai’s trace, etc.), it is important to assess which DVs are 
significantly showing mean differences. Follow-up analyses can take one of several 
forms, described below.

Separate ANOVAs for each DV. Probably the most common follow-up to a 
significant MANOVA is to conduct a separate ANOVA for each DV. Researchers 
would hope to find a significant F-test for each DV, indicating that these variables 
each show significant differences across two or more groups. Although ANOVAs 
are widely conducted after finding significant MANOVA results, a drawback is 
that separate ANOVAs do not take into account whether the DVs are related in any 
way. That is, analysing the DVs separately could mislead researchers into thinking 
there is a large cumulative effect across the DVs and groups, which is most likely 
not an accurate picture if DVs are related. Thus, it may be preferable to consider 
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other follow-up procedures that recognize any overlap among the DVs. A set of 
ANCOVAs, one for each DV, or a single DFA, offer alternative follow-up options.

Separate Analyses of covariance (ANCOVA)s for each DV. ANCOVA is just like 
ANOVA, except that it allows for the inclusion of one or more continuous covariates. 
With ANCOVA, mean differences across groups on an outcome variable are assessed 
after partialling out the relationship between covariates and the DV. This allows 
for a more fine-tuned assessment of group differences. Thus, a better follow-up 
than ANOVA is to conduct a separate ANCOVA for each dependent variable, using 
the remaining dependent variables as covariates in each analysis. This has been 
suggested by Bock (1966; Bock & Haggard, 1968) and is considered a step-down 
procedure. If these analyses revealed significant F-tests, it would suggest that there 
were significant group differences on a dependent variable after partialling out any 
overlapping variance among the remaining continuous dependent variables used in 
the MANOVA. Thus, group differences would be revealed for the unique portion of 
each dependent variable that is distinct from any relationship with other dependent 
variables. This provides a rigorous assessment of group differences although it is 
not often seen in the literature, possibly due to unfamiliarity with this option, and 
the difficulty in finding significant differences with ANCOVA on such small, unique 
portions of the dependent variables.

Discriminant function analysis follow-up. Another possible follow-up procedure 
after a significant macro-level F-test with MANOVA, is to conduct a single DFA with 
the same variables that were used in the MANOVA except that the roles (independent 
or dependent) are reversed. Thus, a DFA would use each of the continuous (dependent) 
variables from a MANOVA as the continuous independent variables. The categorical 
(independent) grouping variable from MANOVA would now become the categorical 
dependent variable in DFA. The goal would be to assess how each of the continuous 
variables discriminated among the groups of the DFA outcome variable. The 
standardized weights or the structure coefficients would be the focus in DFA, such 
that continuous variables with large standardized weights or structure coefficients 
would also be the variables that have notable group differences on the categorical 
variable. In this way, we could assess which of the continuous variables are showing 
the clearest differences across groups without having to conduct separate (ANOVA 
or ANCOVA) analyses for each dependent variable. Thus, the overall error rate is 
most likely smaller with a single DFA follow-up than with p follow-up ANOVAs 
or ANCOVAs, especially if the error rate was not adjusted (as with a Bonferroni 
approach). Moreover, the multivariate nature of DFA would take into account any 
relationship among the continuous variables, providing a more precise depiction of 
group differences than is portrayed when conducting a set of individual ANOVAs that 
do not correct for shared variance between the set of variables.

Follow-up planned comparisons. When there is a significant effect of a DV and 
there are more than two groups in the IV(s), it is advisable to assess which pair(s) of 
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groups showed significant differences on a DV. Tukey (1953) Honestly Significant 
Difference (HSD) tests between pairs of means would provide some protection for 
overall Type I error (i.e., rejecting Ho when it is true), particularly if there were 
several groups and a large number of paired comparisons were conducted. Another 
alternative, a Bonferroni approach, could be adopted whereby the total alpha is split 
among the number of pair-wise group tests (e.g., 4 tests could each use an alpha 
of .0125 to maintain an overall .05 alpha). Still another possibility is to increase 
statistical power and reduce the probability of a Type II error (i.e., retaining Ho when 
it is false) by using an alpha level of .05 for all comparisons. Researchers need to 
decide for themselves which error is more important to protect, Type I or Type II, 
when assessing between group differences.

Follow-up effect sizes. If ANOVAs or ANCOVAs are conducted for each DV, 
following a significant MANOVA, an η2 or omega-squared (i.e., ω2) univariate 
effect size could be calculated for each DV to assess how much variance was shared 
between that specific continuous variable and the grouping variable(s). Computer 
packages sometimes refer to η2 values as R2, which is the same value. Cohen’s (1992) 
guidelines for univariate effects would apply for any of these: .01 for a small effect, 
.06 for a medium effect, and about .13 or more for a large effect. For MANOVA, 
Cohen’s d can also provide a micro-level effect size for the difference between a pair 
of means (e.g., Cohen, 1988, 1992), just as with ANOVA. This is easily calculated 
by a difference between means in the numerator and a pooled or average standard 
deviation in the denominator. By Cohen’s guidelines, a standardized d or difference 
of .20 is a small effect, a d of .50 is a medium effect, and .80 or more represents a 
large effect.

Additionally, just as with univariate ANOVAs, group means on DVs can be 
graphed after a significant MANOVA; alternatively, boxplots can be provided that 
pictorially display what is called the “five-number summary” (i.e., maximum, 75th 
percentile or 3rd quartile, the median called the 50th percentile or Q2, the 25th 
percentile called Q1, and the minimum). Most computer programs easily allow for 
these. As boxplots convey a clear visual depiction of a set of specific indices for 
each dependent variable, across groups, these are presented later in the MANOVA 
example introduced below.

AN ILLUSTRATIVE STUDY WITH MANOVA

An example is provided to illustrate how to conduct a MANOVA and follow-up 
DFA, along with supplemental analyses. The example draws on data collected 
from 265 faculty at a New England university to assess work environment (Silver, 
Prochaska, Mederer, Harlow, & Sherman, 2007), with a National Science Foundation 
institutional transformation grant (No. 0245039: PI: Barbara Silver; CO-PIs: Lisa 
Harlow, Helen Mederer, Joan Peckham, and Karen Wishner) to enhance careers of 
all faculty, particularly women in the sciences.
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For the analyses presented, the independent grouping variable is gender, which 
is somewhat evenly split (i.e., 55% men and 45% women). Three continuous and 
reliable variables (with coefficient alpha internal consistency reliability given in 
parentheses for each) – Career Influence (coefficient alpha = .83), Work Respect 
(coefficient alpha = .90), and Work Climate (coefficient alpha = .93) – allow 
examination of a three-tier conceptual structure of individual, interactional, and 
institutional variables, respectively (Risman, 2004). These three variables, all 
averaged composite scores on a 1 to 5 Likert scale, serve as DVs in the MANOVA 
example, and conversely as IVs in the follow-up DFA.

In addition, scatterplots, and separate boxplots are presented for each of these 
three variables, across the two gender groups, in order to further explore relationships 
and reveal group differences for these three variables. Moreover, computer set-up 
for three packages – SPSS, SAS, and R – is presented to provide researchers with 
several options for conducting MANOVA and related analyses.

Preliminary Analyses before Conducting MANOVA

Before conducting a MANOVA, it is important to assess basic descriptive statistics 
(e.g., mean, standard deviation, five-number summary, skewness, kurtosis, 
correlations), as well as scatter plots in order to evaluate assumptions of normality, 
homoscedasticity, and linearity, and any possible collinearity (i.e., high correlation 
or redundancy) among variables. Table 1 shows descriptive statistics on the three 
continuous variables, Career Influence, Work Respect, and Work Climate.

Table 1. Descriptive statistics on three continuous variables

Statistic Career Influence Work Respect Work Climate
N Valid

Missing
265 265 265
0 0 0

Mean 2.599 3.873 3.814
Standard Deviation .702 .836 .881
Skewness −.085 −.698 −.754
Std. Error of Skewness .150 .150 .150
Kurtosis −.267 −.161 .220

Std. Error of Kurtosis .298 .298 .298
Minimum 1.000 1.270 1.000
Percentiles 25 = Q1 2.162 3.333 3.292

50 = Q2 2.556 4.037 3.944
75 = Q3 3.056 4.540 4.486

Maximum 4.050 5.000 5.000
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Means are higher than the mid-point (i.e., 3) of the 5-point scales for Work Respect 
and Work Climate, indicating relatively high overall scores for these two variables. 
The mean for Career Influence (i.e., 2.599) is lower; suggesting that appraisal of 
one’s individual influence was somewhat less than the interactional, as well as the 
institutional appraisal of Work Respect and Work Climate, respectively. Standard 
deviations were similar, and much smaller than the respective means, suggesting fairly 
consistent scores within this sample, for each of these variables. Skewness and kurtosis, 
which should be around zero in normally distributed data, indicate that the normality 
assumption appears reasonable for these data. In the bottom portion of Table 1 are five-
number summaries for the three variables. Notice that the lower 50% of the scores (i.e., 
from the minimum to the median or 50th percentile) cover a broader range of scores 
(i.e., 1.27 to 4. 037; and 1.0 to 3.944) than the top range of scores for Work Respect 
and Work Climate, respectively. This pattern suggests somewhat uneven distributions 
for these variables. Five-number summaries are depicted in boxplots, later, for men 
and women, separately, to illuminate potential group differences on these variables.

Figures 1 to 3 show scatterplots for the three variables. These allow further 
examination of how well assumptions are met. When data meet assumptions of 
normality, linearity and homoscedasticity, scatterplots should reveal a fairly even 
elliptical pattern of points. When data are nonnormal, the pattern of points may be 
bunched up in one end or the other indicating some evidence for skewness or kurtosis. 
If data are not completely linear, the pattern shows some curve indicating that after 
a certain point, the relationship between a pair of variables changes from linear to 
non-linear, thereby reducing the linear correlation. Similarly, if the pattern showed 
a wider range of points at either end of the scatterplot, heteroscedasticity would be 
present, indicating that individuals who have low scores on one variable may tend to 

Figure 1. Scatterplot of career influence and work respect.
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have a wide range of scores on the other variable. None of these patterns would be 
optimal as MANOVA, similar to many statistical methods, is more accurate when 
the data follow a normal, linear and homoscedastic pattern. Examining Figure 1, the 
scatterplot appears to follow rather closely the preferred elliptical pattern, with no 
obvious deviations from normality, linearity or homoscedasticity for the relationship 
between Career Influence and Work Respect.

Figures 2 and 3 scatterplots for Work Climate, with Work Respect and Career 
Influence, respectively, are reasonable but do not seem to follow an elliptical pattern 

Figure 2. Scatterplot of work climate and work respect.

Figure 3. Scatterplot of work climate and career influence.
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quite as clearly. Points are more densely located near the upper right-hand corner of 
both figures, with some possible evidence of outliers in the bottom left, and possibly 
the upper left corners of both figures. It is noteworthy that both figures 2 and 3 
involve the variable,Work Climate, which may have scores that are not as consistent 
as for the other two variables. This speculation is later confirmed when examining 
boxplots for men and women, separately, for the three variables; as well as statistical 
tests of homoscedasticiy. As can be seen shortly, there are a few outliers for Work 
Climate, among the men, yielding some heterscedasticity. When conducting the 
MANOVA and DFA, it would probably be advisable to examine Pillai’s trace, 
instead of Wilks’ lambda, for these data as Pillai’s trace is more robust to assumption 
violations than the other methods. Pillai’s trace would also be preferred due to the 
slightly unequal Gender groups for this example.

Correlations among the four variables are also examined to assess any possible 
collinearity among the variables. Table 2 shows that none of the variables are correlated 
extremely highly (i.e., greater than .90, or even .70). Thus, there is no concern that 
collinearity is present for these variables.

Overall Results for MANOVA

A MANOVA was conducted to examine whether there were significant differences 
between Gender groups on a linear combination of the three-tier set of variables: 
Career Influence, Work Respect, and Work Climate. Analysis set-up for SPSS, SAS, 
and R are provided in the Appendix for the major analyses. As part of a MANOVA 
or DFA, researchers can request Box’s test of equality of covariance matrices. If the 
data were to meet the assumption of homoscedasticity, this test result would be non-
significant, indicating that there was no indication of significant heteroscedasticity. 
Unfortunately, however, the F-test in this case was significant [F(6, 419736.37) = 2.61, 
p = .016], suggesting some degree of violation of this assumption. This is further 
confirmed with results from Levene’s test of equality of error variances showing 
significant results for Work Respect [F(1, 255) = 8.147, p = .005], and Work Climate 
[F(1, 255) = 6.396, p = .012], indicating some heterogeneity for these two variables. 
Based on findings from these two sets of tests, as well as those from the scatterplots 
shown earlier, Pillai’s trace will be evaluated for the F-test for the overall MANOVA 
as it is more robust to violations.

Table 2. Correlation among the four variables

Gender (1 = f, 2 = m) Career Influence Work Respect Work Climate
Gender 1.000 .206 .234 .163
Career Influence .206 1.000 .546 .460
Work Respect .234 .546 1.000 .668
Work Climate .163 .460 .668 1.000
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Pillai’s trace was .063 (so that η2 = .063), with F(3, 252) = 5.71, p = .001 for the 
MANOVA analysis on these data. This finding indicates that the means of the linear 
combination of the three continuous variables are significantly different across 
Gender groups (with scores for men being somewhat higher). Using Steiger and 
Fouladi’s (2009) R2 program (freely available on the web), confidence intervals for a 
shared variance effect can be calculated. Results revealed a 95% confidence interval 
of [.012, .123], indicating a small-to-medium, and significant, shared variance effect 
between Gender and the set of three continuous DVs.

As part of the MANOVA output, most computer programs provide follow-up 
ANOVAs, one for each DV. Although our focus is largely on a follow-up DFA, it is 
worthwhile to briefly examine ANOVA results for these data (see Table 3).

Notice that there are relatively small and significant group difference effects for 
each of the three dependent variables, with Work Respect having the largest effect.

Further analysis, with DFA, will reveal whether this pattern of results is verified.

Follow-up Results with DFA

Macro-level SAS and R results for DFA are virtually identical to those for MANOVA, 
with F(3, 253) = 5.71, Pillai’s trace = η2 = .063, p = .0009. SPSS gives a chi-
square test with comparable results: χ2 (3) = 16.05, (1-Wilks’ Lambda) = η2 = .063, 
p = .001. The structure coefficients, which are within-group correlations between the 
standardized discriminant function (a form of equation 2) and the three continuous 
variables, reveal values of .807, .927, and .637 for Career Influence, Work Respect 
and Work Climate, respectively. These results parallel those from conducting 
individual ANOVAs, with Work Respect showing the largest, and Work Climate 
showing the smallest effect with Gender. Thus, it is to be expected that there are 
somewhat larger group differences for Work Respect, followed by those for Career 

Table 3. Tests of ANOVA for each of the three dependent variables

Source
Dependent 
Variable Type III SS df

Mean 
Square F Sig. R2

95% CI
For R2

Corrected Influence 5.305 1 5.305 11.251 0.001 .042 [.007, .102]
Model Respect 9.899 1 9.899 14.819 <.001 .055 [.013, .120]

Climate 5.417 1 5.417 6.995 0.009 .027 [.002, .079]
Error Influence 120.241 255 .472

Respect 170.335 255 .668
Climate 197.490 255 .774

Corrected Influence 125.546 256
Total Respect 180.234 256

Climate 202.908 256
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Influence, and lastly those for Work Climate having the smallest difference between 
Gender groups. DFA provides additional information from MANOVA, showing that 
the discriminant function formed from these three continuous variables was able to 
correctly classify participants into their respective Gender groups 59.5% of the time, 
which is greater than the 50% chance level. Next, let’s examine boxplots to further 
investigate Gender group differences on the three continuous variables (i.e., Career 
Influence, Work Respect & Work Climate).

Boxplots as Further Follow-up to MANOVA

Boxplots were constructed to visually depict the five-number summary by Gender, 
plus any outliers for the three continuous variables (i.e., Career Influence, Work 
Respect, Work Climate; depicted in dark to light gray, respectively in Figure 4).

The upper and lower most points are the maximum and minimum estimated scores, 
with Work Climate showing several outliers below the minimum of most scores for 
the men. The boxes delineate the 75th, 50th and 25th percentiles, respectively, with 
slightly more distinct differences between Gender groups for Work Respect than 
for the other variables. Notice that the scores are more spread out for the women, 
particularly for Work Climate and Work Respect; with scores for Career Influence 
also showing some spread for both men and women. For all three variables, men 
faculty scored somewhat higher than the women faculty.

Figure 4. Boxplots for three variables, by gender.
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SUMMARY

In conclusion, MANOVA and a follow-up DFA were described, and then applied to 
a relevant example to investigate group differences on a set of relevant variables. 
Whenever possible, significance tests, effect sizes, confidence intervals and figures 
were presented to provide a fuller picture of the findings. Results revealed small- 
to medium-size significant group-difference effects, with slightly higher means for 
men compared to the women faculty on a set of work environment variables. Other 
analyses, including descriptive statistics, correlations, scatterplots, boxplots, and 
ANOVAs helped to convey the nature of the data and group differences. The reader 
should recognize that analyses were conducted on data from intact groups, and thus 
cannot warrant the causal conclusions allowed for an experimental design in which 
participants are randomly assigned to treatment and control groups. Still, the example 
presented here provides a useful illustration of how to examine group differences on 
a set of relevant dependent variables, with interpretation based more descriptively, 
than inferentially. It should also be noted that although group differences were 
significant overall, and for each dependent variable, none of the effects were very 
large. This is actually good news, suggesting that gender differences are not very 
consequential in this sample of faculty, regarding individual career influence, an 
interactional sense of work respect, and an institutional evaluation of work climate. 
It would be useful to verify results on larger and more diverse, independent samples. 
The Appendix briefly describes syntax that can be used to conduct MANOVA, DFA, 
and related analyses; using SPSS, SAS, and R computer packages.
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APPENDIX

Syntax for SPSS, SAS and R for Conducting

Descriptive Statistics, Correlations, Scatterplots, Boxplots, 
MANOVA, and DFA

For the following computer set-ups, the variable names are abbreviated as follows: 
Influenc = Career Influence, Respect = Work Respect, Climate = Work Climate, 
and sex1f2m = Gender (where 1 = female and 2 = male). Note also that although 
there were 265 participants in the sample, analyses that included the variable Gender 
(i.e., sex1f2m) only had 257 participants as gender was not given for 8 individuals. 
The data set used in analyses was labelled: Adv04.sav in SPSS, Adv04 in SAS, and 
Adv04dat in R. It should also be noted that different statistical analysis programs 
may produce slightly different solutions due to program-oriented differences in 
calculation procedures and rounding (e.g., values may differ at the 2nd or 3rd decimal). 
The output provided by the syntax below should yield similar inferences regardless 
of the software used, despite minor differences in reported values. Readers may also 
need to check with Google for more up-to-date syntax.
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SPSS Syntax

GET FILE=’C:\Users\User\Desktop\Adv04.sav’.
DATASET NAME DataSet1 WINDOW=FRONT.

FREQUENCIES VARIABLES=Influenc Respect Climate
/FORMAT=NOTABLE
/NTILES=4
/STATISTICS=STDDEV MINIMUM MAXIMUM MEAN SKEWNESS SESKEW 
KURTOSIS SEKURT
/ORDER=ANALYSIS.

CORRELATIONS
/VARIABLES=sex1f2m Influenc Respect Climate
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

GRAPH /SCATTERPLOT(BIVAR)=Influenc WITH Respect.
GRAPH /SCATTERPLOT(BIVAR)=Influenc WITH Climate.
GRAPH /SCATTERPLOT(BIVAR)=Respect WITH Climate.

EXAMINE VARIABLES=Influenc Respect Climate BY sex1f2m
/COMPARE VARIABLE
/PLOT=BOXPLOT
/NOTOTAL
/MISSING=LISTWISE.

GLM Influenc Respect Climate BY sex1f2m
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/EMMEANS=TABLES(sex1f2m)
/PRINT=ETASQ HOMOGENEITY
/CRITERIA=ALPHA(.05)
/DESIGN= sex1f2m.

DISCRIMINANT
/GROUPS=sex1f2m(1 2)
/VARIABLES=Influenc Respect Climate
/ANALYSIS ALL
/PRIORS EQUAL
/STATISTICS=MEAN STDDEV UNIVF BOXM CORR TABLE
/CLASSIFY=NONMISSING POOLED.
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SAS Syntax

DATA Adv04; INFILE ‘SASUSER.Adv04’; /*Gets datafile Adv04 in Sasuser */

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MIN Q1 Median Q3 
MAX; VAR Influenc Respect Climate; RUN;

PROC CORR; VAR Sex1f2m Influenc Respect Climate; RUN;

PROC GPLOT; PLOT Influenc*Respect; /* This runs a scatterplot */
PLOT Influenc*Climate; PLOT Respect*Climate; RUN;

PROC Sort; By sex1f2m; /* Sort data by gender before conducting boxplot */

PROC Boxplot data = SASUSER.Adv04b; /* This runs a boxplot */
Plot (Influenc Respect Climate) * sex1f2m / BOXSTYLE=SCHEMATIC; RUN;

PROC GLM; /* This runs MANOVA: IV after class and DVs after Model */
CLASS sex1f2m; MODEL Influenc Respect Climate= sex1f2m;
LSMEANS sex1f2m /PDIFF CL; MANOVA H = _ALL_/SHORT; RUN;

PROC DISCRIM LIST CANONICAL MANOVA POOL=TEST WCOV;
CLASS sex1f2m; VAR Influenc Respect Climate; RUN;

R Syntax

Note that the MASS package in R (used for the DFA analysis) does not produce tests 
of significance for DFA. Because DFA is mathematically identical to MANOVA, 
the omnibus fit statistics for DFA must be obtained from the MANOVA procedures. 
It is also worth mentioning that R has multiple methods for producing similar 
results, often depending on which package is used (e.g., psych vs. psychometric for 
descriptive statistics).

# Load the following packages: car, psych, MASS
library(car)
library(psych)
library(MASS)
library(candisc)
# Read in the data and select variables from the larger data set
adv04dat = read.table(“c:/Data/adv04na.txt”, sep=”,”, header=TRUE)
myvars = c(“sex1f2m”, “Influenc”, “Respect”, “Climate”)
work=adv04dat[myvars]
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# Designate sex1f2m as a categorical variable called “gender”
work$gender=factor(work$sex1f2m, levels = c(1,2), labels = c(“Female”, “Male”))
attach(work)

# Produce descriptive statistics
describe(work)

# Produce correlation matrix
corr.test(work[1:4], use=”pairwise.complete.obs”)

# Produce a scatterplot matrix for the independent variables
scatterplotMatrix(~Influenc+Respect+Climate, diagonal=”histogram”, 
data=work)

# Produce boxplots for the data
par(mfrow=c(2,2))
boxplot(Influenc~sex1f2m, main=”Boxplot of Influence by Gender”, 
xlab=”Gender”, col=”aquamarine”)
boxplot(Respect~sex1f2m, main=”Boxplot of Respect by Gender”, xlab=”Gender”, 
col=”lightgreen”)
boxplot(Climate~sex1f2m, main=”Boxplot of Climate by Gender”, xlab=”Gender”, 
col=”khaki “)

# MANOVA for 3 dependent variables and 1 independent variable
Y = cbind(work$Influenc, work$Respect, work$Climate)
faculty.mod = lm(Y~gender, data=work)
faculty.can1 = candisc(faculty.mod, term=”gender”, type=”III”)
Anova(faculty.mod, test=”Wilks”, type=”III”)
Anova(faculty.mod, test=”Pillai”, type=”III”)
Anova(faculty.mod, test=”Hotelling-Lawley”, type=”III”)
Anova(faculty.mod, test=”Roy”, type=”III”)
summary(faculty.can1, means = FALSE, coef=”structure”)

# Follow-up ANOVAs with R^2 reported
mydata.aov = Anova(aov(Influenc~gender), type=”III”); mydata.aov
r <- summary.lm(aov(Influenc~gender)); r$”r.squared”
mydata.aov = Anova(aov(Respect~gender), type=”III”); mydata.aov
r <- summary.lm(aov(Respect~gender)); r$”r.squared”
mydata.aov = Anova(aov(Climate~gender), type=”III”); mydata.aov
r <- summary.lm(aov(Climate~gender)); r$”r.squared”

# Follow-up Discriminant Function Analysis (Requires the MASS package)
work.2 = na.omit(work)
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dfa = lda(gender ~ Influenc + Respect + Climate, data=work); dfa
dfa = lda(gender ~ Influenc + Climate + Respect, data=work.2, CV=TRUE)

# Assess the predictive accuracy of the DFA
pred = table(work.2$gender, dfa$class)
diag(prop.table(pred, 1))
sum(diag(prop.table(pred)))
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7. LOGISTIC REGRESSION

INTRODUCTION TO THE METHOD

Logistic regression (LR) is a statistical procedure used to investigate research 
questions that focus on the prediction of a discrete, categorical outcome variable 
from one or more explanatory variables. LR was developed within the field of 
epidemiology to examine the association between risk factors and dichotomous and 
continuous outcomes (Kleinbaum, Kupper, & Morgenstern, 1982; Tripepi, Jager, 
Stel, Dekker, Zoccali, 2011). Subsequently, the model has received extensive use 
across disciplines. In the medical domain, for example, LR has been used to identify 
predictors of Alzheimer’s disease. In business settings, it has been employed to 
determine the most important factors (e.g., ease of use) for internet banking usage 
(Hassanuddin, Abdullah, Mansor, & Hassan, 2012). In education research, the method 
has been used to investigate predictors of college student persistence in engineering 
(French, Immekus, & Oakes, 2004). The purposes of this chapter are to describe the 
LR model in the context of education research and provide a real data illustration of 
its use to obtain results with theoretical and practical implications. The information is 
presented to promote the technical and practical understanding of the method.

LR is distinguishable from multiple linear regression analysis due to the fact 
that the (a) dependent variable is categorical in nature (e.g., group membership), 
not continuous, and (b) the model assumes a nonlinear relationship between the 
outcome and explanatory variables. Within educational research, examples of 
discrete outcome variables include: presence or absence of a learning disability, 
exceeding or not exceeding minimum proficiency requirements on an end-of-grade 
English Language Arts test, or being accepted or not to an institution of higher 
education. Whereas the outcome variable in a LR analysis can be either dichotomous 
(e.g., pass/fail) or ordinal (e.g., Far Below Basic, Basic, Proficient), for didactic 
purposes, this chapter focuses exclusively on instances in which the dependent, or 
outcome variable is binary or dichotomous.

The application of LR in educational research can be exemplified by the following 
research questions:

1. What student and institutional factors can be used by colleges and universities to 
determine the likelihood of a student earning a college degree?

2. To what extent are different academic counselling strategies effective for 
promoting at-risk students’ attainment of a high school diploma?
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3. What factors are associated with exceeding minimum state requirements on an 
end-of-grade test among English Language Learners?

Research utilizing LR focuses on the prediction of a dichotomous dependent variable 
based on a set of independent variables. Potential outcomes could include: earning 
a college degree (0 = no degree, 1 = degree), attainment of a high school diploma 
(0 = no diploma, 1 = diploma), or exceeding minimum state requirements on an end-
of-grade test (0 = did not exceed requirement, 1 = exceeded requirement). Within 
the LR model, predictor variables can be continuous, dichotomous, categorical, or 
a combination (Hosmer & Lemeshow, 1989, 2000; Tabachnick & Fidell, 2007). 
Consequently, LR results yield empirical evidence that can have relevant and 
substantive implications to research, practice, and policy.  

The LR procedure seeks to gather empirical evidence on the predictive nature 
of a set of explanatory variables to account for the variance of an outcome variable 
much like multiple linear regression (MLR) and discriminant analysis (DA; Cizek 
& Fitzgerald, 1999; Davis & Offord, 1997). However, LR differs from these two 
procedures in important ways. Specifically, compared to MLR, (a) the independent 
variables specified in LR can be dichotomous, categorical, and/or continuous, (b) 
the relationship between the explanatory variables and the outcome is nonlinear, 
and (c) parameter estimation is based on maximum likelihood (ML) procedures, 
not ordinary least squares (OLS). Furthermore, applying MLR to predict a binary 
outcome also violates basic MLR model assumptions.

LR and DA can both be used to predict a categorical outcome and have been 
compared in terms of classification accuracy (Cleary & Angel, 1984; Fan & Wang, 
1999). Comparatively, Cleary and Angel (1984) noted that “discriminant analysis 
yields results quite similar to logistic regression except when the probability of the 
event being predicted is near zero or one” (p. 341). In terms of explanatory predictors, 
DA is restricted to the use of continuous variables that are multivariate normal 
(Tabachnick & Fidell, 2007). Also, like MLR, OLS is used for parameter estimation 
which can result in biased estimates when the data do not meet model assumptions 
(e.g., multivariate normality). Fan and Wang (1999) compared the performances of 
LR and DA for two-group classification and, in general, found that the methods 
performed similarly across simulated conditions (i.e., unequal proportions, unequal 
group covariances, and sample size). Regardless of the approach to data analysis, 
researchers should understand the characteristics of the data at hand to guide the 
selection of an appropriate statistical analysis to address their research question(s). 
That said, LR has been recognized as an alternative to DA (Fan & Wang, 1999; 
Tabachnick & Fidell, 2007).

The aim of LR, as in many statistical models, is to identify a set of theoretically 
and empirically relevant explanatory variables that can be used to develop a 
parsimonious model to predict a dichotomous outcome. The effectiveness of LR 
results to address a given research question depends on many important substantive 
factors (e.g., group proportions, variables in the model, sample) and methodological 
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issue (e.g., variable selection, assumptions) that should be considered throughout data 
analysis. To encourage the application of LR, the chapter begins with an overview 
of the LR model, corresponding model assumptions, and interpreting model data fit 
and parameter estimates. This is followed by an illustrative study based on real data. 
The chapter concludes with a discussion of research issues and areas for research 
within LR.

The Logistic Regression Model

LR represents a model-based approach to predict an individual’s or intervention 
group’s (e.g., after-school program participation) standing on a binary outcome, 
such as: exceeded minimum passing score, did not exceed minimum passing score. 
In this case, the outcome variable Y can be assigned a value of 0 if the individual or 
group did not exceed minimum passing score, whereas a value of 1 would indicate 
otherwise (i.e., exceeded minimum passing score). In this instance, the quantitative 
values of 0 and 1 serve as dummy coded variables to represent the qualitative outcome 
variable of interest in the analysis. In this case, the outcome variable was whether or 
not students exceeded the minimum passing score. The outcome variable can be on 
a nominal (e.g., likelihood to participate in an after-school program vs. non-program 
participation) or ordinal (e.g., mathematics knowledge based on exceeding passing 
score [pass] vs. not exceeding score [fail]) level of measurement. Therefore, the 
specific intent of the analysis is to accurately classify individuals on the outcome of 
interest within the research question.

The classification of individuals on the outcome variable is addressed by 
determining the probability of the outcome occurring for each individual and 
group conditional on their standing across model predictors. Mathematically, this 
is represented by the following equation characterizing the nonlinear relationship 
between the outcome and explanatory variables:

 ( 1)  .
1

u

u

e
P Y

e
= =

+
 (1)

The left-hand side of the equation, P(Y = 1), indicates that the outcome Y is 
operationalized in terms of the probability (P) of its occurrence (value equals 1.00). 
Because the likelihood of the event occurring is expressed as a probability, its value 
will range between 0 and 1.00. Therefore, to predict the probability of the occurrence 
of an outcome, LR uses ML for parameter estimation that maximizes the function 
that relates the observed responses on the independent variables to the predicted 
probabilities likelihood estimation. The use of ML leads to more accurate conclusions 
when a nonlinear relationship exists between the binary outcome and explanatory 
variables compared to OLS regression (Lottes, Adler, & DeMaris, 1996). The use of 
OLS under these conditions is inappropriate because the assumptions of the linear 
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model are not met. Specifically, the use of OLS in the prediction of probabilities is 
problematic because the values are not constrained to the range of zero and one. The 
right-hand side of the equation expresses this probability in terms of taking the base 
e of the natural logarithm u, which includes the linear set of explanatory variables. 
(Notably, e is approximately equal to 2.718.) Let’s explore this in the context of an 
applied example.

In the model, u is defined as:

 
0 1 1 2 2 ,k ku X X Xb b b b= + + + +�  (2)

where u is the predicted outcome, b0 is the intercept, and b1, b2, ... bk are slope 
parameters indicating the linear relationship between the outcome and explanatory 
variables. This linear regression equation shows the direct correspondence of LR 
to MLR. This also includes the use of hierarchical or stepwise (e.g., backward, 
forward) selection procedures to identify statistically significant predictor variables. 
The endorsement of the hierarchical model building approach is offered as best 
practice as models are built up or trimmed down based on theory in comparison to 
statistical results (Thompson, 1995).

Notably, this linear equation creates the logit, u, or log odds of the event occurring, 
expressed as:

 0 1 1 2 2

ˆ
.

ˆ
u

logit( )  ln
1 u k ku X X Xb b b b⎛ ⎞≡ = + + +…+⎜ ⎟⎝ ⎠−

 (3)

As indicated in Equation (3), u is the natural log (loge) of the probability of being 
assigned to the group with a value equal to one divided by the probability of being 
in the group equal to zero (Tabachnick & Fidell, 2007). This value is also referred to 
as the logit, and provides a continuous indicator of the linear association between the 
outcome and explanatory predictors. Its values can range from −∞ to ∞, depending on 
the measure of X (Hosmer & Lemeshow, 2000). As such, no matter how it is expressed, 
the probability, the odds ratio, or the log odds ratio, the same information is obtained.

An example is used to situate the discussion on the use of LR in applied educational 
research. Specifically, one of the research questions investigated by French, 
Immekus, and Oakes (2005) was the extent to which the following explanatory 
variables predicted persistence in one’s major across two cohorts (Cohort 1, Cohort 
2) of undergraduate engineering students following eight and six semesters in the 
program: gender (males = 0, female = 1); high school rank; SAT Mathematics and 
Verbal scores; cumulative grade point average (CGPA); motivation; and, institutional 
integration; and, participation in a freshman orientation course (no = 0, yes = 1)

Hierarchical LR (HLR) was used to examine the extent to which variable clusters 
added to the explained variance in persistence in one’s major. HLR is the preferred 
modelling approach when the research question seeks to address the extent to 
which a group of variables contribute to the explained variance of the outcome after 
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accounting for the variance attributed to covariates (e.g., student demographics, prior 
achievement). Study variables were added into the model in the following order: 
Background variables (i.e., gender; high school rank; SAT Mathematics [SATMath]; 
SAT Verbal [SATVerbal]; CGPA), motivation and institutional integration, and 
participation in freshman orientation course. Ordering of the variables was based on 
occurrence in time and practical reasons (e.g., covariates). Specification of variables 
in theoretically derived “blocks” assists with controlling Type I error rates (Cohen & 
Cohen, 1983). Within the study, Cohort 1 data was used to identify significant model 
predictors to obtained parameters to cross-validate results using Cohort 2 data. We 
use these results to walk the reader through the basics of the model.

Logistic Regression Model Assumptions

The goal of LR is to correctly classify individuals on the outcome variables based 
on one or more explanatory variables. As with most statistical procedures, there 
are several assumptions associated with the use of LR in educational research. 
Tabachnick and Fidell (2007) identify several important factors (e.g., linearity in 
logit) to consider in the application of LR. Consideration of such assumptions is 
critical to effectively use the model to address one’s research question to obtain 
results that can be used for meaningful decision-making (e.g., program planning/
evaluation).

To begin, the LR model is used to predict an individual or groups’ categorical 
membership on the outcome variable, and thus the primary model assumption is 
that the independent variables occurred before the outcome. That is, data collected 
on the explanatory variables was completed before data were gathered on the 
outcome variable Y. Or, more simply, the independent variables represent attributes 
of the individual or group (e.g., gender, prior academic achievement) that would be 
hypothesized to impact one’s categorical membership on the outcome (e.g., obtain 
high school degree). Among the sample of undergraduate engineering students, 
information on their demographics, noncognitive beliefs (e.g., motivation), and 
participation in a freshman orientation course was obtained prior to their decision to 
persistent within their major.

Tabachnick and Fidell (2007) identify several technical assumptions of the 
LR model. As indicated in Equation (2), it is assumed that that there is a linear 
relationship between the continuous explanatory and outcome variables, while no 
assumption is made on nature of the relationship (linear) among the explanatory 
variables. To contrast with DA, LR does not assume that the predictor variables 
follow a multivariate normal distribution with equal covariance matrix across 
the dependent variable at all levels. In contrast, LR assumes that the binominal 
distribution describes the distribution of errors that is equal to the difference in the 
observed and predicted responses on the dependent variable. Second, like MLR, 
the predictor variables should not be strongly correlated. Correlation coefficients 
can be used to examine the direction and strength among continuous variables, 
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whereas multiway frequency tables can be used to examine relationships among 
categorical variables. Third, there should an adequate number of observations across 
combinations of discrete variables, and group membership on the outcome variable 
should not be perfect based on discrete explanatory variables. The latter could occur 
in the example above if all students who participated in the freshman orientation 
course persisted in their engineering major, whereas all of those who did not enroll 
in the orientation course matriculated to non-engineering majors.

There are other notable assumptions that researchers should be aware. Specifically, 
the joint expected cell frequencies for all pairs of variables exceed a value of one, 
whereas no more than 20% of the variable pairs contain less than five (Tabachnick & 
Fidell, 2007). The consequence of limited frequencies across joint pairs of cells 
between discrete variables is reduced statistical power. Thus, statistical power is 
increased with larger sample sizes. Each individual’s group membership on the 
binary outcome is independent from one another is a key assumption. This results 
in the assumption of independent errors, or that discrepancy in students’ actual and 
predicted persistence in an engineering major does not depend on the outcomes of 
other students in which data has been collected. Lastly, initial data screening should 
be conducted to identify potential outliers that may influence results. Observations 
that fall outside of range of typical values can be identified through inspection of 
the descriptive statistics of the variables included in the model or residuals between 
the observed and predicted values of Y. This follows the typical data screening 
procedures for many statistical methods.

Collectively, these considerations address the primary assumptions of the LR 
model. The extent to which one’s obtained data meets model assumptions is based 
on careful inspection of results based on initial data screening to obtain descriptive 
statistics (e.g., frequency distributions), as well as results based on the analysis of 
the data. There are many useful resources that can be used to assist with decisions 
regarding the extent to which model assumptions have been met (e.g., Hosmer & 
Lemeshow, 1989, 2000; Manard, 1995; Tabachnick & Fidell, 2007).

Interpreting Logistic Regression Model Data Fit and Parameter Estimates

The use of LR in educational research requires consideration of the assessment of 
model-data fit and interpretation of model parameters. The fit of a specified LR 
model is evaluated in terms of the log-likelihood statistic. Parameter coefficients 
(β ) are estimated using ML to determine the value that “most likely” produces the 
observed outcome (e.g., group membership). These values must be interpreted and 
used accurately to avoid erroneous conclusions based on the data. 

The log-likelihood statistic provides a measure of model-data fit by adding the 
probabilities of the observed and predicted of each individual included in the analysis. 
The statistic is estimated iteratively based on the parameters included in the model 
until a convergence criterion has been obtained (e.g., <.0001). Therefore, the number 
of log-likelihood values reported in the output of an analysis will equal the number 
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of model parameters. Multiplying the log-likelihood statistic by −2 provides a basis 
to compare two competing LR models that differ by the number of model predictors. 
This is referred to as the likelihood ratio chi-square difference statistic 2( )Differencex , 
which is distributed as chi-square with degrees of freedom (df  ) equal to difference in 
the number of parameters between the compared models (dfdifference).

The comparison of two competing LR models is advantageous in educational 
research to identify a parsimonious set of explanatory variables that most accurately 
predict group membership on the outcome. This requires the estimation of two 
models: constrained and free. The constrained model represents a restricted LR model 
that includes a limited set of predictors (e.g., constant-only model, one predictor 
variable). The free model is one in which additional parameters (or predictors) have 
been included in the model, such as the addition of a covariate in the model (e.g., 
prior academic achievement).

The chi-square difference value is estimated by:

 2 2 ( 2 )Difference Constrained FreeX log likelihood log likelihood= − − − − −  (4)

Based on the dfDifference, the statistical significance of can be determined by comparing 
it to the critical values of the chi-square distribution associated with a pre-determined 
level of significance (e.g., p > .05) for hypothesis testing. Within the context of 
comparing competing LR models using the likelihood ratio chi-square difference 
test 2( )Differencex , the null hypothesis is that the two models do not differ statistically in 
predicting group membership on the outcome variable. That is, the constrained model 

2( )Constrainedx  with a reduced number of explanatory variables is equally effective for 
predicting one’s standing on the outcome as a model that includes one or more predictors. 
This is concluded if the probability value associated with exceeds the significance level 
(e.g., p > .05). Contrary, the alternative hypothesis is that the models differ statistically 
and the additional model parameters included in the free model 2( )Freex  improve the 
predictive utility of the model above and beyond the constrained model. One would 
accept the alternative hypothesis is the probability value corresponding to the statistic 
is less than the determined significance level (e.g., p < .05).

The log-likelihood and the likelihood ratio chi-square difference statistics were 
used to evaluate the model data fit of competing models for predicting undergraduate 
students’ retention in an engineering major. Before presenting results, it should be 
noted that multiple imputation (Enders, 2010) was used to estimate five scores 
for the missing Cohort 1 and 2 data. See information below on the importance of 
appropriately handling missing data. This resulted in five independent regression 
analyses on each data set and averaging parameter estimates. 

For the model predicting engineering students’ retention in their major, the first 
model included the Block 1 predictors of academic achievement and gender, which was 
statistically reliable, X 2(5) = 96.31, p < 0.05. The second model included the Block 2 
variables of motivation and integration which resulted in a statistically significant model 
across the imputed data sets, 2 (7) 103.73 105.79, 0.05.RangeX ps= − <  The third step in 
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the hierarchical LR model included the Block 3 variable of orientation course participation, 
which was statistically significant, 2 104.54 106.18(8 , 0) .05.RangeX ps= − <

Based on the model-data fit of each of the hierarchical regression analysis models, 
chi-square difference tests were used to empirically test whether the inclusion 
of the Block 2 and 3 variables resulted in a reliable improvement in prediction 
accuracy. The difference between models 1 and 2 was statistically significant at 
the .05 level, 2 (2) 8.80, 0.05.DifferenceX p= <  This provides empirical evidence to 
support the rejection of the null hypothesis that students’ levels of motivation and 
integration are collectively significant predictors of persistence in an engineering 
major. Subsequently, there was no statistical improvement with the addition 
of the final model with the Block 3 predictor of freshman orientation course, 

2 (1) 0.74, 0.05.DifferenceX p= >  Therefore, the null hypothesis that after accounting for 
student background variables (achievement, gender) and noncognitive self-beliefs 
(e.g., motivation), participation in a freshman orientation course did not contribute 
to predicting whether a student would persist in an engineering major.

Inspection of the statistical significance of model parameters provides a basis to 
determine the association between explanatory and outcome variables. As indicated, 
ML is used for model parameter estimation. Model parameters provide a basis to 
determine the (a) individual influence of explanatory variables on the outcome, 
and (b) probability of an individual being classified on the outcome variable 
(e.g., persisting in engineering major).

The relationship of each explanatory variable to the outcome variable is determined 
by its corresponding beta coefficient (β). The coefficient is interpreted as the log odds 
of the outcome occurring based on a one-unit change in the explanatory variable. 
More technically, “the slope coefficient represents the change in the logit for a change 
of one unit in the independent variable x” (Hosmer & Lemeshow, 1989, p. 39). 
Importantly, the curvilinear relationship of the predictors and outcome variables results 
in different likelihood of an individual being categorized on the outcome variable 
based on standing on the predictor variables. In the provided example, the significant 
(unstandardized) model predictors (p < .05, with coefficients), were: CGPA (β = .788); 
SATMath (β = .005); HS Rank (β = .017); and, motivation (β = .447). Non-significant 
parameters were: SATVerbal (β = −.001); Gender (β = −.138); Integration (β = .187) 
and, Orientation Class (β = .146). In consideration of the impact of CGPA on students’ 
persistence in an engineering major, one would conclude that a one-unit increase in 
CGPA is associated with a .79 change in the log odds of persisting in an engineering 
major. Positive parameter coefficients are associated with a positive change in the log 
odds of persisting, whereas a negative coefficient would suggest a decrease in the log 
odds of persistence with a higher value on the predictor variable (e.g., CGPA).

The statistical significance of parameter coefficients is estimated using the Wald 
statistic (Hosmer & Lemeshow, 2000). The statistic is estimated as:
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j

j
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where, β is the estimated parameter coefficient and ( )SE b  is the parameter’s 
standard error. Based on a two-tailed p-value, the statistic is used to identify 
significant predictor variables.

Whereas parameter coefficients are reported by the log odds, it is more common 
to use the odds ratio to communicate the association between the explanatory and 
outcome variables. The odds ratio is estimated by taking the exponential of the log odds 
estimate, Exp(b). The odds ratio is interpreted as the odds of the outcome occurring 
based on the unit change in the predictor variable. The odds ratio is centered around 
1.00, which indicates that there is no association or odds of the outcome occurring 
(e.g., persisting in an engineering major) based on changes in the explanatory variable. 
Thus, odds ratios greater than 1.00 indicate the odds of the outcome’s occurrence 
given on a one-unit change in the predictor variable, whereas a value less than 1.00 
being indicative of the decreased chance of the outcome occurring.

The odds ratio of the significant model predictors of persistence in an engineering 
major can be readily estimated. For instance, the odds ratio of persisting in an 
engineering major, based on a one-unit increase in one’s CGPA is 2.19 (median value 
based on imputation). This indicates that undergraduate students are 2.19 times more 
likely to persist within an engineering major based on a one-unit increase in their 
cumulative GPA. Although SATMath was a significant model predictor, the odds ratio 
was 1.00, indicating no increase in the odds of persisting in one’s engineering major 
with a one-point scale score increase. A similar finding was reported for HS Rank. 
However, a one-unit increase in motivation was associated with being 1.52 times 
more likely to persist in one’s engineering major.

Another utility of LR model parameters is estimating each individual’s predicted 
probability of group membership. This is conducted using Equation 1 by inserting 
estimated model parameters and the individual’s scores. The equation for a 
hypothetical student with a set of predictor scores would be:
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The predicted probability is .98, indicating that an undergraduate student with this 
particular set of predictor values has an extremely high (almost 1.00) probability 
of persisting in an engineering major. Contrary, a student with the following set of 
scores would be identified as having a .91 probability of persisting in an engineering 
major: CGPA = 2.75; SATVerbal = 550; SATMath = 600; HS Rank = .85; Gender = 0; 
Motivation = 3; Integration = 2.67; and, Orientation = 0.

An important aspect of predicted probabilities is that they can be compared to 
a classification criterion (probability .50 or greater) to classify individuals on the 
dependent variable. That is, an individual with a predicted probability that exceeds 
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a designated criterion is assigned to the outcome with value of 1.00 (e.g., pass), 
otherwise to the group equal to 0.0 (e.g., failed). The predicted and observed 
classifications can be used to estimate a host of descriptive statistics pertaining to 
classification accuracy (e.g., false negative, sensitivity). Based on the hierarchical 
LR model used to predict persistence in an engineering major, the classification rate 
of Cohort 1 was 65%, with a 64% cross-classification rate for Cohort 2.

Preliminary Considerations

LR is a model-based approach to determining the extent to which a set of explanatory 
variables predict membership dichotomous outcome variable. As such, the aim is 
to specify a parsimonious model that yields results relevant to guide subsequent 
decision-making endeavors (e.g., research, policy). This and other factors support 
the need to conduct preliminary data screening procedures prior to testing LR 
models, and assess indicators of model-data fit (e.g., Pearson residuals).

Data screening routinely begins with using descriptive statistics to understand 
the characteristics of the data at hand. In general, this entails inspecting the features 
of the variables that will be included in the LR model. Depending on the level of 
measurement of the variables, frequency distributions (e.g., histograms) can be 
examined for distributional characteristics (e.g., skewness, kurtosis), extreme 
cases, and potential data entry errors. Measures of central tendency (e.g., mean) 
and variability (e.g., standard deviation) can be used to summative information on 
the continuous variables. It is surprising of the amount of information that can be 
obtained about the data at hand based on the thoughtful inspection of the descriptive 
statistics of variables.

Sample size is a concern for statistical modeling in general. Parameter estimates 
in logistic regression are general more stable with larger samples. Long (1997) has 
recommended samples greater than 100 to accurately conduct significance tests 
for the coefficients. That said, some research areas employing LR for a specific 
purpose have provide guidelines about sample sizes required for adequate power 
given the outcome. Simulation research on the use of LR to detect differential item 
functioning, for example, has suggested the need for approximately 250 persons 
per group to have adequate statistical power (e.g., French & Maller, 2007). It may 
be wise to conduct a power analysis to be certain you have adequate power and be 
familiar with the standards for sample size for power in your relative field. Power 
analysis can be conducted in SAS or via a freeware program (G*Power) available 
for free (http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3). In our 
illustrative example we have over 400 participants with only 6 predictors so we can 
have some confidence in the parameter estimates.

There are many diagnostic statistics available to evaluate the fit of a LR model.
Largely, these measures of model-data fit are based on the difference between the 
observed and predicted values. Two indices used to identify individual observations 
not accounted for by the model include the Pearson residuals and deviance residuals. 

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3
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The Pearson residuals are estimated for each individual and used to calculate the 
Pearson chi-square statistic (sum of squares of Pearson residuals). The Pearson 
chi-square statistics is distributed as a chi-square distribution, based on df equal 
to J – (p + 1), where J = number of unique values of the independent variables x 
(Hosmer & Lemeshow, 1989). A statistically significant Pearson chi-square statistics 
indicates an observation that is not well accounted for by the model. The deviance 
residual is another index that can be used to identify unique observations not 
explained by the model. Like Pearson residuals, deviance residuals are calculated 
for each individual, and summed to yield a summary statistic, distributed chi-square.

The Hosmer-Lemeshow goodness-of-fit- statistic (Hosmer & Lemshow, 1989, 
2000) is another statistic that can be used to evaluate model-data fit. The statistic is 
based on the grouping of individuals in a contingency table based on their predicted 
probabilities. Each row corresponds to one of the binary outcomes (e.g., fail = 0, 
pass = 1), whereas columns represent the predicted probabilities of group member. 
Two grouping strategies have been proposed. The first approach is grouping 
individuals according to their predicted probabilities by percentiles. This results 
in 10 groups that are ranked by the classification of individuals by their predicted 
probabilities. The second approach classifies individuals based on cut points along 
the probability scale. Thus, dividing the probability continuum by .20 to establish 
groups would result in five groupings, with group one comprised of all individuals 
with predicted probabilities below .20 and the highest group being those with values 
above .80. A Pearson chi-square statistic is then used to estimate the statistical 
difference between the observed and expected cell counts. Hosmer and Lemeshow 
(1989) discuss the ways in which the statistics function under varying conditions.

Other diagnostic statistics can be used to examine the impact of observations on 
model parameter estimates and the general LR model. For instance, the ˆ

jBΔ  statistic 
can be used to inspect the standardized discrepancy between model parameter 
estimates, ˆ ,jB  based on the inclusive and exclusive of a particular observation. 
Values can be used to identify observation(s) suspected of influencing the resultant 
ML estimate. The impact of observations on the overall fit of a specified model can 
be inspected using the ˆ

jDΔ  statistic. The value reports the difference in the Pearson 
chi-square statistic based on models with and without the observation included in 
the analysis. Despite the availability of diagnostic statistics to evaluate LR models, 
these statistics should be used with caution. Specifically, Hosmer and Lemeshow 
(1989, 2000) report that the evaluation of model-data fit is largely subjective. That 
is, interpretation of these values is commonly done using plots with the statistics 
reported on the y-axis and predicted probabilities on the x-axis (see Hosmer & 
Lemeshow, 1989, 2000). These steps of basic data screening and assumption 
checking in LR that have been just described do parallel what the reader has likely 
experienced in standard regression models. We do not spend time reviewing these 
in the example due to this reason. Instead we focus on understanding the model and 
output for interpretation. See Lomax and Hahs-Vaughn (2012) for a clear example 
of LR model assumption and diagnostic checking.
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AN ILLUSTRATIVE STUDY

For illustrative purposes we will use an example drawn from the student achievement 
literature. We provide the example in SAS 9.2 but the same analysis could be 
conducted in many statistical software programs including SPSS, R, and Stata. 
Explanations are provided for the SAS code and the shorter data set below can be 
used to replicate analysis even though results will differ due to the smaller dataset . 
The reader is encouraged to create the SAS code and attempt to replicate the results 
presented in this chapter to increase proficiency in software use and understanding 
of the method. We provide the first 15 cases in the dataset here to allow the reader to 
work replicate the analysis even though the estimates will not be exact.

Data

The data used for the illustrative example are drawn from grade 6 students attending 
a middle school in the western part of the United States. The outcome, or dependent, 
variable of interest is the end-of-grade performance on a state achievement test for 
English Language Arts. This outcome variable was coded for each student as being 
“Proficient” (coded as 1) or being “Not Proficient” (coded as 0). The independent, or 
predictor, variables included: three interim English Language Arts test scores from 
assessments that are administered periodically throughout the school year (e.g., fall, 
winter, and spring); sex (female = 0, male = 1); socio-economic status measured by 
free or reduced lunch status of the student (SES, 0 = No, 1 = Yes); and, fluency in the 
English language (LngPrt, coded 1–4 for the 4 classification levels). The levels of 
LngPrt included: 1 = English Language Learner, 2 = English Language, 3 = Initially 

Table 1. Descriptive statistics for the 6th grade achievement data

Variable Name Percentage
Proficient 50.53(Yes) 49.47(No)
Free/reduced lunch(SES) 17.80(Yes) 82.80(No)
Sex 49.47(Male) 50.53(Female)
LngPrtb 15.03%(ELL) 66.13(EO) 5.86(I-FEP) 12.79(R-IEP)

M SD Minimum Maximum
End of Course Exama 347.25 47.20 224 485
Interim Assess 1 (18 items) 10.57 3.35 1 18
Interim Assess 2 (25 items) 15.71 4.25 2 25
Interim Assess 3 (20 items) 11.80 3.68 2 19
a  This variable was transformed into the Proficient variable based on the state cutscore for 

proficiency.
b  ELL = English Language Learner, EO = English Language, I-FEP = Initially Fluent 

English Proficient, R-FEP = Reclassified Fluent English Proficient



157

LOGISTIC REGRESSION

Fluent English Proficient, 4 = Reclassified Fluent English Proficient. Table 1 contains 
descriptive information for each of these variables. Table 2 contains 15 rows of data 
on these variables reflecting 15 students in the dataset.

Dealing with Missing data

At the onset of data analysis, attention should be paid to the assumptions as 
mentioned in the previous section. However, attention to robustly handling missing 
data is given here as it is a topic that is often overlooked. Standard statistical analyses 
are designed for data sets with all variables having no missing values. However, in 
practice it is common to have missing values regardless of the effort that was placed 
on data collection processes and accuracy. For example, participants completing 
a survey on parenting practices may inadvertently skip questions by not noticing 
questions printed on the back side of a page or choose not to respond to certain 
sensitive questions. The common and easy solution to this problem is to ignore 
the missing data by simply removing the complete case or row which contains any 
missing variable (i.e., listwise deletion). This practice, complete case analysis, is the 
default for many statistical software programs (e.g., SAS). However, such missing 
data techniques rely on critical assumptions (e.g., data missing completely at random 

Table 2. Sample data on 15 students on variables analysed

Student Proficienta SESa Sexb Language Proficiencyc Interim 1 Interim 2 Interim 3
 1 0 1 0 1 8 14 14
 2 0 1 1 1 5 10 4
 3 1 1 0 4 5 11 10
 4 0 1 0 1 10 13 11
 5 0 0 0 2 6 11 8
 6 0 1 1 1 9 12 16
 7 1 0 0 2 12 18 12
 8 0 1 0 1 5 8 2
 9 1 0 1 2 6 15 10
10 1 0 0 2 8 16 16
11 1 0 0 4 8 16 14
12 1 0 1 2 14 14 16
13 1 0 0 2 12 16 12
14 1 0 1 2 13 20 16
15 1 0 1 2 11 10 11
a  0 = No, 1 = Yes; b1 = Male, 0 = Female; c1 = English Language Learner, 2 = English 

Language, 3 = Initially Fluent English Proficient, 4 = Reclassified Fluent English Proficient
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(MCAR). Violation of these assumptions can invalidate the results of corresponding 
analysis (Allison, 2001).

In educational research, a review of published articles in major journals (e.g., Child 
Development, Educational and Psychology Measurement) that indicated having 
missing data, only 2.6% employed maximum likelihood (ML) or multiple imputation 
(MI) procedures (Peugh & Enders, 2004), which are considered state-of-the-art 
methods. There are many excellent sources for reviews of missing data (e.g., Enders, 
2010; Graham, Cumsille, & Elek-Fisk, 2003; Little & Rubin, 2002; Rubin 1987; 
Schafer & Graham, 2002). The point made here is that older methods (e.g., mean 
replacement, regression imputation) do not function well especially when compared 
to new procedures (e.g., MI and ML). For instance, mean imputation retains means, 
but distorts marginal distributions and measures of covariation (Little & Rubin, 2002; 
Schafer & Graham, 2002).

The trend of older method use is changing as the general acceptance of newer 
missing data methods are being widely accepted (Graham, Taylor, Olchowski, & 
Cumsille, 2006). Specifically, ML and MI techniques have grown in popularity 
due to (a) support demonstrating the production of accurate and efficient parameter 
estimates under various assumptions (e.g., MAR, MCAR; Allison, 2003; Schafer & 
Graham, 2002) and (b) having worked their way into many software programs. We 
encourage the reader to view the sources in the suggested readings and carefully 
consider the missing data in your dataset as well as the options that are available 
when the software package used for analysis. It may be the case that additional 
programs or add-ons to programs will be needed to implement imputation.

Cross-validation

The idea with predictive models is to develop a model in a sample that can be used 
to predict the outcome at a later point in time with a new sample without having to 
rebuild the model that has been established. For instance, if we construct a model 
that predicts proficiency levels of students with desired accuracy (e.g., accurate 
classification rates), then one should be able to use those regression weights in a 
new independent and representative sample and obtain similar results. This answers 
the question of real interest: “How well does the model work in the population or on 
other samples from this population?” (Cohen & Cohen, 1983). This gathers evidence 
that the model is generalizable. Thus, in this example we construct a model on a 
random sample of half of the data. Then, we use the final model parameter estimates 
from that model to conduct the LR analysis with the second half of the sample 
to provide classification results based on obtained model parameter estimates to 
evaluate generalizability of the model.

Running the LR analysis in SAS

The below SAS code is example of code for running a hierarchal logistic regression 
where the first block of variables included in the model are sex, SES, and language 
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proficiency. This allows for an evaluation of background variables that may be 
important in predicting the outcome that would not allow for the building of an 
accurate model. The second logistic statement adds the interim assessment variables 
to the background variables to estimate and evaluate the complete model.

Data achieve;
Infile ‘c:\pathtodatafile\achievement.dat’;
Input ID 1–4 proficient 5 SES 6 Sex 7 LngPrt 8 @ 9 (Interim1–3) (2.);

 proc logistic data= achieve descending;
model Proficient = sex SES LngPrt / ctable pprob=.50 lackfit risklimits rsq;
run;

 proc logistic data= achieve descending;
model Proficient = sex SES LngPrt Interim1 Interim2 Interim3 / ctable pprob=.50 
lackfit risklimits rsq;

run;

Formally, the full model being estimated is:

 0 1 2 3

4 5 5

  (Proficient 1)  

1 2 3

predicted logit Sex SES LngPrt

interim interim interim

b b b b
b b b

= = + + +
+ + +

 (7)

The SAS code in the box is easy to follow with this model presented with a few short 
definitions of terms. The data statement establishes a temporary work file in SAS 
that is called achieve. It could be called anything (e.g., a1, LR). The infile and input 
statement tells SAS where to find the data file and what the variable names are and 
what column to find those variables in the data file. If the reader is unfamiliar with 
SAS, the help files can assist in establishing this or see a many SAS sources readily 
available on line or in print (e.g., Allison, 1999). The Proc LOGISTIC statement 
indicates to SAS to run a logistic regression analysis. The descending option tells 
SAS to predict the log odds of being proficient (1). If this option is not used SAS will 
predict the log odds of being not proficient (0) as 0 comes before 1. If your data are 
based on complex survey data, the Proc Survey Logistic statement can be invoked.

The SAS statement also request information on the (a) classification table 
(CTABLE) for probabilities at 0.50; (b) Hosmer and Lemeshow Goodness-of-Fit test 
(LACKFIT); (c) odds ratio for each variable in the equation with the 95% confidence 
limits (RISKLIMITS); and, (d) the value of r-squared (RSQ). We note there is little 
agreement on which measure of association to use. We report Nagelkerke R2 which 
SAS labels Max-rescaled R2. See Menard (2000) for a complete discussion of LR 
coefficients of determination. Due to a lack of clarity of the measure, the value can 
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be supplementary to other, more useful indices (e.g., overall evaluation of the model, 
tests of regression coefficients, and the goodness-of-fit test statistic).

Reporting the Results

In the first step (Step 1), a test of the model with the student background 
characteristics as predictors against a constant-only model was statistically reliable, 
X 2 (3, N = 480) = 66.47, p > .05, R2 = 17.2%. At Step 2, the model with the three 
interim assessments included was statistically reliable, X 2 (6, N = 480) = 287.69, 
p < .05, R2 = 60.1%. Beyond examination of each step, interest was on evaluating 
if the addition of variables improved the prediction or classification of proficiency 
status (0 = did not meet minimal standards, 1 = exceeded minimum standards). The 
statistical difference between Steps 1 and 2 was significant, 2

differenceX  (3) = 221.22, 
p < .05. This indicates a reliable improvement with the addition of the interim 
assessment variables. All variables were significant predictors with the exception 
of sex, as seen in Table 3. Prediction using these variables resulted in a correct 
classification rate of 82%.

We also evaluated the Hosmer and Lemeshow Goodness-of-Fit test to help assess 
overall model fit. Recall, we do not want this test to be significant. We want to not 
reject the null hypothesis that these data fit the model. This is, in fact, what we 
observed, X 2 (8, N = 480) = 5.99, p > .05. The parameter estimates from the model 
with the significant variables from sample 1 were used to predict proficiency for 
Sample 2 (n = 458) and correct classification was examined for cross-validation 
purposes. Comparisons of predicted proficiency and observed proficiency for Sample 
2 resulted in a correct classification rate of 81%. Classification rates of incorrect and 
correct decisions appear in Tables 4 and 5 for Sample 1 and 2, respectively.

Table 3. Summary of regression analysis for variables predicting proficiency 
for sample 1 (N = 480)

Measures
95% Confidence Interval

B SE B Odds Ratio1 Lower Upper
1. Sex −0.077 0.258 0.926 0.588 1.536

2. SES −0.745* 0.363 0.474 0.233 0.968

3. LngPrt 0.332* 0.166 1.394 1.006 1.931
4. Interim 1 0.113* 0.048 1.120 1.018 1.232
5. Interim 2 0.276* 0.046 1.139 1.204 1.446
6. Interim 3 0.298* 0.051 1.348 1.220 1.490
1the odds ratio is the increase in the odds of the occurrence of an event with a one unit 
change in the independent variable.
*p < .05
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To aid understanding of the model, we build the probability of being proficient 
for student 1 in Table 2. Note the intercept for the model was −9.676. The equation 
would be:

 

u
ln  9.9676  ( .077)(0)  ( 0.745)(1) (.113)(8)

1 u

(.276)(14) (.298)(14)

ˆ

ˆ
⎛ ⎞ = − + − + − +⎜ ⎟⎝ ⎠−

+ +  (8)

Therefore, taking the absolute value of this log odds, the odds of student 1 in Table 2 
being proficient is:

Odds(of being proficient) = exp (1.14) = 0.319.

And the probability of being proficient is, P (proficient) = 0.319 / 1 + 0.319 = 0.24. 
This low probability coincides with the observation that this student was actually 
labelled as not being proficient. We can also look at the odds ratios in Table 3 to 
understand how each variable influences the probability of being proficient. For 
example, it is clear that the odds of being classified as proficient increase by over 1 
for every point a student gains on any of the interim assessments. Additionally, as 
SES is less than 1, it indicates that students receiving free and reduced lunch (e.g., 
lower SES compared to their counterparts) reduces the odds of being classified as 
proficient or at least having a score above the proficiency level.

Table 4. Classification table results for predicting student proficiency 
for sample 1 ( N = 480)

Proficient 
Result of Initial Model

Positive Negative
Proficient 45% 10%
Not Proficient 37% 8%

Table 5. Classification table results for predicting student proficiency 
for sample 2 for cross-validation (N = 458)

Proficient
Result of Cross-Validation of Model

Positive Negative
Proficient 38% 10%
Not Proficient 43% 9%



162

B. F. FRENCH, J. C. IMMEKUS & H.-J. YEN

The results from this illustrative study demonstrate that LR can be useful in 
educational research. The simple model we constructed here reveals that accounting 
for interim progress, language proficiency, and poverty do aid to predicting a student’s 
probability of meeting a state standard in terms of being classified as proficient on 
this particular skill. The proposed model demonstrated fair accuracy with a correct 
classification rate of 82% which was validated using a cross-validation step in the 
analysis. Of course, as with any statistical modelling procedure, the model is only as 
good, both practically and theoretically, as are the variables employed to construct 
the model.

Final model evaluation depends on more that the statistical criteria that that have 
been mentioned and discussed to this point. The strength, credibility, and usability 
of the model depend on the theory and research questions that drove the model 
construction. In reporting the results and discussing the model, the researcher has 
the task of making explicit how the results address the proposed research question(s) 
situated in within a clear theoretical framework. Discussing results should include 
not only how the model adds to the area of focus understanding of the variables 
under investigation but also out of the limitations of the modelling strategy given the 
data (e.g., sample, design) at hand. Such information will allow for the reader and 
consumer of the work to evaluate the results with a critical eye with such information.

RESEARCH ISSUES/CONCLUSIONS

Logistic regression has received growing acceptance in many areas, especially 
in social sciences research (Hosmer & Lemeshow, 2000) and higher education, 
specifically. Since the 1990s, the application of LR has appeared in many higher 
education articles as well as a popular method in conference presentations at such 
venues as the American Educational Researcher Association conference (Peng, So, 
Frances, & St. John, 2002). A cursory search of popular databases (i.e., PsyInfo) 
using the term “logistic regression” resulted in 3,416 hits on written material before 
2002 and 18,677 within the last 10 years. Clearly, from this one database search 
there has been an increase in the use and discussion of LR in the social sciences. 
This is most likely due to that fact that, as an alternative to linear regression models, 
logistic regression provides flexibility in examining relationships of a categorical 
outcome variable and combination of continuous or categorical predictors. In 
fact, many educational datasets can make use of logistic regression to investigate 
categorical outcome measures (i.e., pass/fail course, retention, diagnostic accuracy) 
in educational research.

In spite of the popularity of logistic regression, various problems associated 
with the application and interpretations have been identified (Peng et al., 2002). 
These concerns include sample size, transformation of the scale, label of dependent 
variable and reference category, diagnostic analysis, and underreported statistical 
software, parameters of estimates, and justification of model selections. These 
problems affect accuracy and implication of logistic regression model across studies 
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(Peng et al., 2002). These technically challenging areas will continue to receive 
attention from a methodological angle to bring clarity or at least provide guidance to 
practitioners applying the method to explore various research questions. Moreover, 
as new uses of LR arise (e.g., multilevel analysis, person-fit LR models), the demand 
for methodological evaluation will wax to ensure proper statistical modeling.

The current article provides guideline and fundamental principles of how LR 
should be applied to promote learning about this method. However, in recent years, 
there is an increasing number of applied and methodological studies discussing the 
extension of the LR model to multilevel because individuals are indeed nested in 
and influenced by the context (i.e., culture, geography, school type). This type of 
sampling structure is common in educational literature as well as other areas such 
as organizational research or medical research. In general, the resulting data have 
a hierarchical structure; making inferences at the individual (e.g., student) level 
problematic or inaccurate when the structure is ignored. Essentially, bias in the 
standard errors is introduced and results in underestimating the standard error of 
the regression coefficient. This can lead to inaccurate statistically significant results 
(i.e., inflate Type I error). As a result, multilevel modelling takes the hierarchical 
structure of the data (e.g., students nested within schools) into account to accurately 
estimate the standard error by partitioning variance into individual level (Level 1) 
and contextual or cluster level (Level 2).

Examples of such multilevel work have included building multilevel logistic 
regression models to account for context in how items function across groups in 
the area of measurement invariance (e.g., French & Finch, 2010; Swanson, et al., 
2002). Multilevel regression models are being used to develop explanatory person-
fit analysis models in the realm of person response function (PRF) models where 
the probability of a correct response to an item is model as a function of the item 
locations (e.g., Conijin, Emons, van Assen, & Sijtsma, 2011). In addition, multilevel 
logistic regression models have been used to investigate neighborhood effects (high 
or low education levels) on individuals’ visits to physicians and their chances of 
being hospitalized for ischemic heart disease (Larsen & Merlo, 2005). Thus, it is 
expected that in the years to come there will be more useful extensions of LR with 
educational related data to increase the accuracy of modeling the complexities of the 
world in which we live, work, play, and learn. The extensions of LR to multilevel 
data to address various outcomes from medical visits to item functioning reflect both 
the applied and methodological trends that will continue over the next decade. We 
look forward to seeing the new applications as well as model extensions with LR.
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W. HOLMES FINCH

8. EXPLORATORY FACTOR ANALYSIS

Exploratory factor analysis (EFA) is a very popular statistical tool that is used 
throughout the social sciences. It has proven useful for assessing theories of 
learning, cognition, and personality (Aluja, García, & García, 2004), for exploring 
scale validity (Manos, Rachel C.; Kanter, Jonathan W.; Luo, Wen;), and for reducing 
the dimensionality in a set of variables so that they can be used more easily in 
further statistical analyses (Mashal & Kasirer, 2012). EFA expresses the relationship 
between variables that can be directly measured, or observed, and those that cannot, 
typically referred to as latent variables. The model parameter estimation is based 
upon the covariance matrix among a set of the observed variables. This relative 
simplicity in the basic design of the method makes it very flexible and adaptable 
to a large number of research problems. In the following pages, we will explore 
the basic EFA model and examine how it can be applied in practice. We will put 
special focus on the various alternatives for conducting factor analysis, discussing 
the relative merits of the more common approaches. Finally, we will provide an 
extended example regarding the conduct of EFA and interpretation of results from 
an analysis.

Prior to discussing the intricacies of EFA, it is important to say a few words about 
how it fits in the broader latent model framework. Factor analysis in general is typically 
divided into two different but complementary analyses: EFA and confirmatory factor 
analysis (CFA). From a mathematical perspective these two models are very closely 
linked, however they have very different purposes in application. Perhaps the most 
distinctive difference between the two is the degree to which the underlying factor 
model is constrained. In EFA very few constraints are placed on the structure of the 
model in terms of the number of latent variables or how the observed indicators 
relate to their latent counterparts. In contrast, researchers using CFA constrain the 
model to take a very specific form, indicating precisely with which latent variables 
each of the observed indicators is associated, and how many such indicators exits. 
This statistical distinction manifests itself in practice through the different manner in 
which each method is typically used. EFA is most often employed in scenarios where 
a researcher does not have fully developed and well grounded hypotheses regarding 
the latent structure underlying a set of variables, or where those hypotheses have not 
been thoroughly examined with empirical research (Brown, 2006). CFA is typically 
used to explicitly test and compare theories about such latent structure by altering 
of the constraints described above. Thus, while the basic model may be the same for 
these two approaches to factor analysis, the actual analyses are conducted in a very 
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different manner. The focus of this chapter is on EFA, and so no further discussion of 
CFA is presented. However, researchers should always keep the distinction between 
the two approaches to factor analysis in mind as they consider which would be most 
appropriate for their specific research problem.

Exploratory Factor Analysis Model

As discussed briefly above, factor analysis expresses the relationship between a 
set of observed, or directly measured, variables, and a set of unobserved, or latent 
variables. Typically, the latent variables are those of greatest interest to the researcher, 
as they might represent the true construct of interest. For example, a researcher 
might be particularly interested in assessing the latent structure underlying a set of 
items intended to measure reasons why college undergraduates consume alcohol. 
The researcher might have some idea based on substantive theory regarding the 
number and nature of these latent variables. However, this theory might be relatively 
untested with empirical evidence. In order to gain insights into the nature of the 
underlying construct(s) EFA can be employed. The basic model takes the form: 

 x = LF + u  (1) 

In this matrix representation of the model, x is simply a vector of observed variables, 
L is a matrix of factor pattern coefficients (often referred to as factor loadings), F is 
a vector of common factors and u is a vector of unique variables. In the context of 
our example, x represents responses to the individual items asking students why they 
drink, F is the set of latent variables that underlie these item responses. These might 
be thought of as the real reasons that students consume alcohol, which cannot be 
directly measured. The L, or factor loadings values, express the relationship between 
each of the observed and latent variables, while the unique variables, u, represent all 
influences on the observed variables other than the factors themselves. Often, these 
values are referred to as uniquenesses or error terms, and indeed they are similar in 
spirit to the error terms in standard linear models such as regression.

The primary objective in factor analysis is to identify the smallest number of 
factors that provides adequate explanation of the covariance matrix of the set of 
observed variables (Thompson, 2004). We will discuss how one might define 
adequate explanation forthwith. First, however, it is worth briefly describing the 
underlying mechanics of how the factor model described above is optimized for a 
specific research scenario. The model presented in (1) can be linked directly to the 
covariance matrix (S) among the observed indicator variables using the following 

 S LFL= + Ψ  (2)

The factor loading matrix, L is as defined previously. The factor covariance matrix, 
F, contains the factor variances and covariances, or relationships among the factors 
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themselves. The term Ψ is a diagonal matrix containing the unique variances. This 
equation expresses the relationship between the factor loadings and the observed 
correlation matrix. In practice, the goal of EFA is to define each of these values in 
such a way that the predicted correlation matrix, Σ̂,  is as similar as possible to the 
observed correlation matrix, S, among the observed variables. Often, statisticians 
discuss these covariance matrices in their standardized forms, the predicted and 
observed correlation matrices, R̂  and R, respectively.

Factor Extraction

The process of obtaining initial estimates of EFA model parameters, including the 
factor loadings, is known as factor extraction. As discussed previously, the primary 
goal of factor extraction is to identify factor loadings that can reproduce as closely as 
possible the observed correlation matrix, while maintaining the smallest number of 
factors possible. If the only goal were to accurately reproduce this matrix, we would 
simply assign each observed variable to its own factor, thus replicating the observed 
data (and the observed correlation matrix) exactly. However, when the additional 
goal of reducing the size of the data set from the total number of observed variables 
to a smaller number of factors, this approach would not be helpful. Therefore, there 
is created friction between the goal of accurately reproducing R while keeping the 
factor model as simple as possible.

There are a number of methods available for extracting the initial set of factor 
loadings. These various approaches differ in terms of how they express the 
optimizing function; i.e. the comparison between R and R̂.  However, despite 
the fairly large number of approaches for extraction, only a few are actually used 
routinely in practice. Only these methods will be described here, though it is useful 
for the researcher to be aware of the availability of a broader range of extraction 
techniques.

One of the most common such factor extraction approaches is principal 
components analysis (PCA). PCA differs from the other extraction methods in 
that it is designed to extract total variance from the correlation matrix, rather 
than only shared variance, which is the case for the other extraction approaches. 
In technical terms, the diagonal of R contains 1’s in the case of PCA, while 
the off diagonal elements are the correlations among the observed variables. 
Thus, when the parameters in (1) are estimated in PCA, it is with the goal of 
accurately reproducing the total variance of each variable (represented by the 
diagonal 1 elements) as well as correlations among the observed variables. The 
latent variables in this model are referred to as components, rather than factors, 
and likewise the loadings in PCA are referred to as component rather than factor 
loadings. One interesting point to note is that when researchers use PCA with 
a set of scale items and thereby set the diagonal of R to 1, they make a tacit 
assumption that the items are perfectly reliable (consistent) measures of the latent 
trait (Thompson, 2004).
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An alternative approach to initial factor extraction involves the replacement of 
the 1’s in the diagonal of R with an estimate of shared variance only, typically the 
squared multiple correlation (SMC) for the variable. The SMC values, which are 
estimated by regressing each observed variable onto all of the others, represent 
only the variation that is shared among the observed variables, as opposed to 
the total variation used in PCA. Thus, when the factor model parameters are 
estimated, it is with the goal of most closely approximating the variability 
that is shared among the observed variables and ignoring that which is unique 
to each one alone. Perhaps the most popular of this type of extraction method 
is principal axis factoring (PAF). A third popular approach for estimating 
factor model parameters is maximum likelihood estimation (MLE). MLE is an 
extraction method based in the larger statistics literature, where this approach 
to parameter estimation is quite popular and widely used in many contexts. For 
factor analysis, the goal is to find estimates of the factor loadings that maximize 
the probability of obtaining the observed data. This approach to extraction is 
the only one that requires an assumption of multivariate normality of the data 
(Lawley & Maxwell, 1963). The fourth method of extraction that we will 
mention here, alpha factoring, was designed specifically for use in the social 
sciences, in particular with psychological and educational measures (Kaiser & 
Caffrey, 1965). Alpha factoring has as its goal the maximization of Cronbach’s 
alpha (a very common measure of scale reliability) within each of the retained 
factors. Therefore, the goal of this extraction approach is the creation of factors 
that correspond to maximally reliable subscales on a psychological assessment. 
While there are a number of other extraction methods, including image factoring, 
unweighted least squares, and weighted least squares, those highlighted here 
are the most commonly used and generally considered preferred in many social 
science applications (Tabachnick & Fidell, 2007).

Factor Rotation

In the second step of EFA, the initial factor loadings described above are transformed, 
or rotated, in order to make them more meaningful in terms of (ideally) clearly 
associating an indicator variable with a single factor with what is typically referred 
to as simple structure (Sass & Schmitt, 2010). Rotation does not impact the overall 
fit of the factor model to a set of data, but it does change the values of the loadings, 
and thus the interpretation of the nature of the factors. The notion of simple structure 
has been discussed repeatedly over the years by researchers, and while there is a 
general sense as to its meaning, there is not agreement regarding exact details. From 
a relatively nontechnical perspective, simple structure refers to the case where each 
observed variable is clearly associated with only one of the latent variables, and 
perfect simple structure means that each observed variable is associated with only 
one factor; i.e. all other factor loadings are 0. From a more technical perspective, 
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Thurstone (1947) first described simple structure as occurring when each row 
(corresponding to an individual observed variable) in the factor loading matrix has 
at least one zero. He also included 4 other rules that were initially intended to yield 
the over determination and stability of the factor loading matrix, but which were 
subsequently used by others to define methods of rotation (Browne, 2001). Jennrich 
(2007) defined perfect simple structure as occurring when each indicator has only 
one nonzero factor loading and compared it to Thurstone simple structure in which 
there are a “fair number of zeros” in the factor loading matrix, but not as many 
as in perfect simple structure. Conversely, Browne (2001) defined the complexity 
of a factor pattern as the number of nonzero elements in the rows of the loading 
matrix. In short, a more complex solution is one in which the observed variables 
have multiple nonzero factor loadings. Although the results from different rotations 
cannot be considered good or bad, or better or worse, the goal of rotations in EFA is 
to obtain the most interpretable solution possible for a set of data, so that a relatively 
better solution is one that is more theoretically sound (Asparouhov & Muthén, 
2009). With this goal in mind, a researcher will want to settle on a factor solution 
that is most in line with existing theory and/or which can be most readily explained 
given literature in the field under investigation. In short, we want the solution to 
“make sense”.

Factor rotations can be broadly classified into two types: (1) Orthogonal, in 
which the factors are constrained to be uncorrelated and (2) Oblique, in which 
this constraint is relaxed and factors are allowed to correlate. Within each of 
these classes, there are a number of methodological options available, each of 
which differs in terms of the criterion used to minimize factor complexity and 
approximate some form of simple structure (Jennrich, 2007). Browne (2001) 
provides an excellent review of a number of rotational strategies, and the reader 
interested in the more technical details is encouraged to refer to this manuscript. 
He concluded that when the factor pattern conformed to what is termed above 
as pure simple structure most methods produce acceptable solutions. However, 
when there was greater complexity in the factor pattern, the rotational methods 
did not perform equally well, and indeed in some cases the great majority of them 
produced unacceptable results. For this reason, Browne argued for the need of 
educated human judgment in the selection of the best factor rotation solution. 
In a similar regard, Yates (1987) found that some rotations are designed to find 
perfect (or nearly) simple structure solution in all cases, even when this may not 
be appropriate for the data at hand. Based on their findings, Browne and Yates 
encouraged researchers to use their subject area knowledge when deciding on the 
optimal solution for a factor analysis. While the statistical tools described here 
can prove useful for this work, they cannot replace expert judgment in terms of 
deciding on the most appropriate factor model.

There are a number of rotations available to the applied researcher in commonly 
used software packages such as SPSS, SAS, R, and MPlus. Some of the most 
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common of these rotations fall under the Crawford-Ferguson family of rotations 
(Browne, 2001), all of which are based on the following equation:

 2 2 2 2

1 1 1 1 1 1
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where
m = the number of factors
 p = the number of observed indicator variables
 lij = unrotated factor loading linking variable i with factor j

The various members of the Crawford-Ferguson family differ from one another in 
the value of k. As Sass and Schmitt (2010) note, larger values of k place greater 
emphasis on factor (column) complexity while smaller values place greater 
emphasis on variable (row) complexity. Popular members of the Crawford-Ferguson 
family include Direct QUARTIMIN (k = 0), EQUAMAX (k = m/2p), PARSIMAX 
(k = (m − 1)/(p + m − 2)), VARIMAX (k = 1/p), and the Factor Parsimony 
(FACPARSIM) (k = 1).

In addition to the Crawford-Ferguson family, there exist a number of other 
rotations, including orthogonal QUARTIMAX, which has the rotational criterion 
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and PROMAX. The PROMAX rotation, which is particularly popular in practice, 
is a two-stage procedure that begins with a VARIMAX rotation. In the second step, 
the VARIMAX rotated factor loadings are themselves rotated through application of 
the target matrix

 1
1 v v vT B−= (Λ Λ ) Λ′ ′  (6)

where
vΛ  = Varimax rotated loding matrix

B = Matrix containing elements 
1b

ij

ij

l
l

+

 

b = Power to which the loading is raised (4 is the default in most software)
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This target matrix is then rescaled to T based on the square root of the diagonals 
of 1

1 1( )T T −′  and the Promax rotated loading matrix is defined as 

 P vTΛ = Λ  (7)

The interested reader can find more technical descriptions of these rotational methods 
in the literature (Browne, 2001; Asparouhov & Muthen, 2009; Mulaik, 2010; Sass 
& Schmitt, 2010).

One issue of some import when differentiating orthogonal and oblique rotations 
is the difference between Pattern and Structure matrices. In the case of oblique 
rotations, the Pattern matrix refers to the set of factor loadings that reflects the 
unique relationship between individual observed and latent variables, excluding 
any contribution from the other factors in the model. The structure matrix includes 
loadings that reflect the total relationship between the observed and latent variables, 
including that which is shared across factors. In general practice, researchers often 
use the Pattern matrix values because they do reflect the unique relationship and are 
thus perhaps more informative regarding the unique factor structure (Tabachnick & 
Fidell, 2007). Because orthogonal rotations by definition set the correlations among 
factors to 0, the Pattern and Structure matrices are identical.

In practice, VARIMAX and PROMAX are probably the two most widely 
used methods of factor rotation, as revealed by a search of the Psycinfo database 
in February, 2012. This popularity is not due to any inherent advantages in these 
approaches, as statistical research has identified other approaches that would be 
more optimal in some circumstances (Finch, in press). However, these methods 
are widely available in software, have been shown to be reasonably effective in 
statistical simulation studies, and are generally well understood in terms of their 
performance under a variety of conditions. This does not mean, however, that they 
should be the sole tools in the factor analysts rotational arsenal. Indeed, many 
authors (e.g., Asparouhov & Muthen, 2009) argue that because the goal of factor 
rotation is to produce meaningful and interpretable results, it is recommended that 
multiple approaches be used and the results compared with one another, particularly 
in terms of their theoretical soundness. At the very least, we would recommend that 
the researcher consider both an orthogonal and an oblique rotation, examining the 
factor correlations estimated in the latter. If these correlations are nontrivial, then 
the final rotational strategy should be oblique, so that the loadings incorporate the 
correlations among the factors.

Communalities

One measure of the overall quality of a factor solution is the individual communality 
value for each of the observed variables. Conceptually, communalities can be 
interpreted as the proportion of variation in the observed variables that is accounted 
for by the set of factors. They typically range between 0 and 1, though in certain 
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(problematic) circumstances this will not be the case. A relatively large communality 
for an individual variable suggests that most of its variability can be accounted for 
by the latent variables. For orthogonal rotations, the communality is simply the sum 
of the squared factor loadings. Thus, if a three factor solution is settled upon and 
the loadings for variable 1 are 0.123, 0.114, and 0.542, the communality would be 
0.1232 + 0.1142 + 0.5422, or 0.322. We would conclude that together the three factors 
accounted for approximately 32% of the variation in this variable. It is important to 
note that a large communality does not necessarily indicate that the factor solution is 
interpretable or matches with theory. Indeed, for the previous example, the loadings 
0.417, 0.019, and 0.384 would yield an identical communality to that calculated 
previously. Yet, this second solution would not be particularly useful given that the 
variable loads equally on factors 1 and 3. Therefore, although communalities are 
certainly useful tools for understanding the quality of a factor solution, by themselves 
they do not reveal very much about the interpretability of the solution.

Determining the Number of Factors

As with factor extraction and rotation, there are a number of statistical approaches 
for identifying the optimal number of factors. It should be stated up front that the 
optimal solution is the one that best matches with theory and can be defended to 
experts in the field, regardless of what the statistical indicators would suggest. Having 
said that, there are statistical tools available that can assist the researcher in, at the 
very least, narrowing down the likely number of factors that need to be considered. 
Most of these approaches are descriptive in nature, although some inferential tests 
are available. We will begin with the more descriptive and generally somewhat older 
methods for determining the number of factors, and then turn our attention to more 
sophisticated and newer techniques.

Perhaps one of the earliest approaches for determining the likely number of factors 
was described by Guttman (1954), and is commonly referred to as the eigenvalue 
greater than 1 rule. This rule is quite simple to apply in that a factor is deemed to 
be important, or worthy of retaining if the eigenvalue associated with it is greater 
than 1. The logic underlying this technique is equally straightforward. If we assume 
that each observed variable is standardized to the normal distribution with a mean 
of 0 and variance of 1, then for a factor to be meaningful it should account for more 
variation in the data than does a single observed variable. While this rule is simple 
and remains in common use, it is not without problems, chief of which is that it has 
a tendency to overestimate the number of factors underlying a set of data (Patil, 
McPherson, & Friesner, 2010). Nonetheless, it is one of the default methods used by 
many software programs for identifying the number of factors.

Another approach for determining the number of factors based on the eigenvalues 
is the Scree plot. Scree is rubble at the base of a cliff, giving this plot its name. It was 
introduced by Cattell (1966), and plots the eigenvalues on the Y axis, with the factors 
on the X axis. The researcher using this plot looks for the point at which the plot 
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bends, or flattens out. Figure 1 contains an example of a Scree plot. It would appear 
that the line bends, or flattens out at 3 factors, thus we might retain 2. It is important 
to note that the interpretation of the Scree plot is subjective, so that researchers 
may not always agree on the optimal number of factors to retain when using it. 
Prior research on the effectiveness of this method has found that much as with the 
eigenvalue greater than 1 rule, the Scree plot tends to encourage the retention of too 
many factors (Patil, McPherson, & Friesner, 2010).

In addition to examining the eigenvalues themselves, researchers often will also 
consider the proportion of variation in the observed data that is accounted for by 
a particular factor solution. The total variance contained in the data is equal to the 
sum of the eigenvalues. Therefore, the proportion of variability accounted for by an 
individual factor is simply the ratio of its eigenvalue to the sum of the eigenvalues 
(which will be equal to the number of observed variables). While there are no rules 
regarding what constitutes an acceptable proportion of observed indicator variance 
accounted for by the latent variables, clearly more is better, while maintaining a goal 
of factor parsimony.

As discussed above, mathematically speaking the goal of factor analysis is to 
reproduce as closely as possible the correlation matrix among the observed variables, 
R, with the smallest number of latent variables. This predicted correlation matrix ˆ,R  
can then be compared with the actual matrix in order to determine how well the 
factor solution worked. This is typically done by calculating residual correlation 
values (the difference between the observed and predicted correlations) for each pair 
of observed variables. If a given factor solution is working well, we would expect 
the residual correlation values to be fairly small; i.e. the factor model has done an 
accurate job of reproducing the correlations. A common rule of thumb (Thompson, 

Figure 1. Example scree plot.
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2004) is that the absolute value of the residual correlations should not be greater than 
0.05. This cut-off is completely arbitrary, and a researcher may elect to use another, 
such as 0.10. While the residual correlation matrix is a reasonably useful tool for 
ascertaining the optimal number of factors, it can be very cumbersome to use when 
there are many observed variables. Some software packages, such as SPSS, provide 
the user with the number and proportion of residual correlations that are greater than 
0.05, eliminating the need for the tedious job of counting them individually.

In addition to these purely descriptive assessments of a factor solution, there 
exist some inferential tools. For example, parallel analysis (PA; Horn, 1965) has 
proven to be an increasingly popular and reasonably dependable hypothesis testing 
method for determining the number of factors. The PA methodology is drawn from 
the literature on permutation tests in the field of statistics. Specifically, the goal 
of this technique is to create a distribution of data that corresponds to what would 
be expected were there no latent variables present in the data; i.e. if the observed 
variables were uncorrelated with one another. This is done by generating random 
data that retains the same sample size, means and variances as the observed data, but 
being random, has correlation coefficients among the observed variables centered 
on 0. When such a random dataset is created, factor analysis is then conducted and 
the resulting eigenvalues are retained. In order to create a sampling distribution of 
these eigenvalues, this random data generation and factor analysis is replicated a 
large number of times (e.g. 1000). Once the distribution of egenvalues from random 
data are created, the actual eigenvalues obtained by running factor analysis with 
the observed data are then compared to the sampling distributions from the random 
data. The random data distributions are essentially those for the case when the null 
hypothesis of no factor structure is true, so that the comparison of the observed 
eigenvalues to these random distributions provides a hypothesis test for the null 
hypothesis of no factor structure. Therefore, if we set a = 0.05, we can conclude that 
an observed eigenvalue is significant when it is larger than the 95th percentile of the 
random data distribution. This method will be used in the example below, providing 
the reader with an example of its use in practice.

Another alternative approach for assessing factor solutions is Velicer’s minimum 
average partial (MAP) approach (Velicer, 1976). This method involves first estimating 
multiple factor solutions (i.e. different numbers of factors). For each such factor 
solution, the correlations among the observed variables are estimated, partialing 
out the factors. For example, initially one factor is retained, and the correlations 
among all of the observed variables are calculated after removing the effect of this 
factor. Subsequently, 2 factors, 3 factors, and so on are fit to the data, and for each 
of these models the partial correlations are calculated. These partial correlations 
are then squared and averaged in order to obtain an average partial correlation for 
each model. The optimal factor solution is the one corresponding to the minimum 
average partial correlation. The logic underlying MAP is fairly straight forward. 
A good factor solution is one that accounts for most of the correlation among a set of 
observed variables. Therefore, when the factor(s) are partialed out of the correlation 
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matrix, very little relationship is left among the variables; i.e. the partial correlations 
will be very small. By this logic, the solution with the minimum average squared 
partial correlation is the one that optimally accounts for the relationships among the 
observed variables.

Example

We will now consider an extended example involving the conduct of factor analysis 
from the initial extraction through the determination of the number of factors. For 
this example, we will examine the responses to a 12 item questionnaire designed to 
elicit information from college students regarding their reasons for drinking alcohol. 
The Items appear below in Table 1, and are all answered on a 7 point likert scale 
where a 1 indicates this is nothing like the respondent and 7 indicates this is exactly 
like the respondent. The researcher believes that the items measure 3 distinct latent 
constructs: drinking as a social activity, drinking as a way to cope with stress, and 
drinking as an enhancement to other activities. Data were collected on a total of 500 
undergraduate students at a large university (52% female). The goal of this EFA is 
to determine the extent to which the underlying theory of the scale matches with the 
observed data collected from the college students. In other words, do the items group 
together into the three coherent factors envisioned by the researcher?

The researcher first conducts an EFA with 3 factors (matching the theory) using 
MLE extraction and PROMAX rotation. The latter choice is made in order to obtain 
a correlation matrix for the factors, which in turn will inform the final decision 
regarding the type of rotation to use (orthogonal or oblique). This correlation matrix 
appears in Table 2.

Table 1. Drinking scale items

Item 1: Because you like the feeling
Item 2: Because it’s exciting
Item 3: Because it give you a pleasant feeling
Item 4: Because it’s fun
Item 5: It helps me enjoy a party
Item 6: To be sociable
Item 7: It makes social gatherings more fun
Item 8: To celebrate special occasions
Item 9: To forget worries
Item 10: It helps when I feel depressed
Item 11: Helps cheer me up
Item 12: Improves a bad mood
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All of the factor pairs exhibit a non-zero correlation, and factors 1 and 3 are highly 
correlated with one another, with r = 0.633. This result would suggest that an oblique 
rotation is likely more appropriate than orthogonal.

After determining the general rotational approach, we will next want to consider 
the appropriate number of factors to retain. As described above, this is not an issue 
with a simple answer. There are a number of statistical tools at our disposal to help 
in this regard, but they may provide somewhat different answers to the question of 
the optimal number of factors to be retained. Of course, the final determination as to 
factor retention is the conceptual quality of the factors themselves. First, however, 
we can examine some of the statistical indicators. Table 3 contains the eigenvalue for 
each factor, along with the proportion of variance accounted for by each individually, 
as well as by the set cumulatively.

An examination of the results reveals that the eigenvalue greater than 1 rule would 
yield a three factor solution. The first three factors explain approximately 58% of the 
total variation in item responses, with the first factor explaining a full third of the 
variance by itself. After three factors, the change in additional variance explained 
for each additional factor is always less than 1%, indicating that these factors do not 
provide markedly greater explanation of the observed data individually. The scree 

Table 2. Interfactor correlation matrix

Factor 1 2 3
Dimension 1.000 .266 .633

.266 1.000 .363

.633 .363 1.000

Table 3. Eigenvalues and percent of variance accounted for by each factor

Factor Eigenvalue Percent Cumulative percent
 1 3.876 32.297 32.297
 2 1.906 15.880 48.178
 3 1.150 9.587 57.765
 4 .837 6.975 64.740
 5 .722 6.013 70.753
 6 .669 5.576 76.328
 7 .576 4.802 81.131
 8 .557 4.643 85.774
 9 .487 4.061 89.834
10 .471 3.923 93.758
11 .426 3.552 97.309
12 .323 2.691 100.000
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plot (Figure 2), which provides a graphical display of the eigenvalues by factor 
number suggests that perhaps three or four factors would be appropriate, given that 
the line begins to flatten out for eigenvalues between those numbers of factors.

In addition to these approaches for determining the number of factors, which are 
each based on the eigenvalues in some fashion, other approaches may also be used 
for this purpose, including MAP, PA, and the chi-square goodness of fit test from 
MLE extraction. The MAP results for the drinking data appear below in Table 4. 

Figure 2. Scree plot for drinking scale items.

Table 4. MAP results for the drinking scale data

Factor MAP value
 0.000000 0.083579
 1.000000 0.033096
 2.000000 0.026197
 3.000000 0.034009
 4.000000 0.053208
 5.000000 0.077821
 6.000000 0.108430
 7.000000 0.159454
 8.000000 0.224068
 9.000000 0.312326
10.000000 0.504657
11.000000 1.000000



180

W. H. FINCH

These results show that the lowest average squared correlation value was associated 
with the two factor solution. Thus, based on MAP we would conclude that there are 
2 factors present in the data.

Another method for ascertaining the number of factors is PA. In this case, we 
will ask for 1000 permutations of the original datasets, and set the level of a at 0.05 
(using the 95th percentile). Results of PA appearing in Table 5 below, suggest the 
presence of 3 factors. We conclude this based upon the fact that the eigenvalues from 
the actual data are larger than the 95th percentile values for the first three factors, 
but not the fourth.

Finally, because we used the MLE method of factor extraction, a chi-square 
goodness of fit test was also a part of the final results. This statistic tests the null 
hypothesis that the factor solution fits the data. More specifically, it tests the 
hypothesis that the reproduced correlation matrix (based upon the factor solution) is 
equivalent to the observed correlation matrix. It is important to note that in order to 
use MLE extraction, we must assume that the observed data follow the multivariate 
normal distribution (Brown, 2006). We can assess this assumption using Mardia’s test 
for multivariate normality (Mardia, 1970). In this example, MLE extraction yielded 
p-values of 0.00004, 0.0102, and 0.482 two, three, and four factors, respectively. 
Thus, based on this test, we would conclude that four factors is the optimal solution.

In considering how to proceed next, we can examine the results of the various 
analyses just discussed in order to narrow down the range of options for which we 
should obtain factor loadings matrices. It would appear that the least number of 
factors that might be present in the data would be two (MAP), while the largest 
reasonable number would be 4 (chi-square goodness of fit test). For this reason, 

Table 5. Eigenvalues for raw data and parallel analysis distribution

Factor Raw Data Means 95th Percentile
 1 3.272626 0.288555 0.357124
 2 1.234191 0.217483 0.267662
 3 0.431697 0.162343 0.205637
 4 0.110090 0.114928 0.153813
 5 −0.014979 0.071712 0.107747

 6 −0.034157 0.031778 0.063371

 7 −0.073058 −0.005970 0.022749

 8 −0.111261 −0.043912 −0.015727
 9 −0.137628 −0.081220 −0.053983
10 −0.139254 −0.119163 −0.090826
11 −0.200550 −0.160150 −0.129607
12 −0.229260 −0.208650 0.172491
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we will examine factor loading values for each of these three solutions. As noted 
previously, given that there appear to be nontrivial correlations among the factors, 
we will rely on PROMAX rotation, and will use MLE extraction. Pattern matrix 
values for the two, three, and four factor solutions appear in Table 6.

When interpreting the factor loadings in order to identify the optimal solution, 
it is important to remember the expected number of factors based on theory, which 
in this case is three. Furthermore, the items are ordered so that items 1 through 4 
are theoretically associated with a common factor, items 5 through 8 are associated 
with a separate factor, and finally items 9 through 12 are associated with a third 
factor. In examining the two factor results, it appears that the 4 items theoretically 
associated with a common latent construct do in fact group together, while the 
other 8 items are grouped together in a single factor. Based on theory, it appears 
that factor 1 corresponds to the Enhancement construct, while factor 2 appears to 
conflate the Coping and Social constructs. With respect to the three factor solution, 
we can see that items 1 through 3 load together on factor 3, while items 5 through 8 
load together on factor 1 and items 9 through 12 load on factor 2. Item 4 (drinking 
because it’s fun) is cross-loaded with factors 1 and 3, and thus cannot be said to be 
associated clearly with either one. Considering these results in conjunction with the 
underlying theory, it would appear that factor 1 corresponds to Social reasons for 
drinking, factor 2 corresponds to Coping reasons for drinking and factor 3 (minus 
item 4) corresponds to Enhancement. We might consider whether the cross-loading 

Table 6. Pattern matrices for PROMAX rotation of two, three, and four factor solutions 
for the drinking scale data

Item
Two Factors Three Factors Four Factors
F1 F2 F1 F2 F3 F1 F2 F3 F4

 1 0.35 0.13 −0.11 0.01 0.63 −0.13 0.65 −0.06 0.08

 2 0.40 0.08 0.01 −0.02 0.54 0.00 0.55 −0.07 0.05

 3 0.39 0.08 0.02 −0.01 0.51 0.06 0.47 0.14 −0.16
 4 0.81 0.06 0.48 −0.00 0.48 0.50 0.45 0.00 0.01

 5 0.64 −0.07 0.63 −0.03 0.01 0.62 0.02 −0.08 0.05

 6 0.72 0.01 0.72 0.05 0.01 0.74 −0.01 0.07 −0.02
 7 0.69 −0.07 0.69 −0.02 0.01 0.71 −0.02 0.05 −0.09
 8 0.71 −0.06 0.83 0.02 −0.14 0.81 −0.12 −0.07 0.08

 9 0.04 0.57 0.04 0.58 −0.02 −0.02 0.05 0.13 0.54

10 0.08 0.54 0.12 0.58 −0.07 0.05 −0.02 0.04 0.67

11 −0.05 0.72 −0.17 0.69 0.13 −0.13 0.10 0.68 0.06

12 0.01 0.66 0.03 0.69 −0.06 −0.12 −0.12 0.69 0.06
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of item 4 makes sense from a theoretical perspective. Finally, an examination of the 
four factor solution reveals that factor 1 corresponds to the Social construct along 
with the cross-loaded item 4 and factor 2 corresponds to the Enhancement construct, 
again considering the cross-loaded item. Factors 3 and 4 appear to be associated with 
the Coping construct, which has been split between items 9 (Forget worries) and 10 
(Helps when depressed) on factor 3 and items 11 (Cheer me up) and 12 (Improves 
bad mood) on factor 4. Again, we must consider how this factor solution matches 
with the theory underlying the scale.

Following is a brief summary of the analyses described above. In order to decide 
on the final factor solution, we must consider all of the evidence described above. 
As mentioned previously, in the final analysis the optimal solution is the one that is 
theoretically most viable. Based upon the various statistical indices, it would appear 
that a solution between 2 and 4 factors would be most appropriate. For this reason, we 
used MLE extraction with PROMAX rotation and produced factor pattern matrices 
for 2, 3, and 4 factors. An examination of these results would appear to suggest that 
the 3 factor solution corresponds most closely to the theoretically derived constructs 
of Enhancement, Social, and Coping reasons for drinking. It is important, however, 
to note two caveats regarding such interpretation. First of all, item 4 (drinking 
because it’s fun) cross-loads with two factors, which does not match the theory 
underlying the scale. Therefore, further examination of this item is warranted in 
order to determine why it might be cross-loading. Secondly, interpretation of the 
factor loading matrices is inherently subjective. For this reason, the researcher must 
be careful both in deciding on a final solution and on the weight which they place it. 
In short, while the factor solution might seem very reasonable to the researcher, it 
is always provisional in EFA, and must be further investigated using other samples 
from the population and confirmatory factor analysis (Brown, 2006).

Factor Scores

One possibly useful artifact of EFA is the possibility of calculating factor scores, 
which represent the level of the latent variable(s) for individuals in the sample. 
These scores are somewhat controversial within the statistics community, and are 
not universally well regarded (see Grice, 2001 and DiStefano, Zhu, & Mindrila, 
2009, for excellent discussion of these issues). They are used in practice not 
infrequently, however, so that the knowledgeable researcher should have a general 
idea of how they are calculated and what they represent. There are multiple ways 
in which factor scores can be estimated once a factor solution has been decided 
upon. By far the most popular approach to estimating these scores is known as 
the regression method. This technique involves first standardizing the observed 
variables to the Normal (0,1) distribution; i.e. making them z scores. The factor 
scores can then be calculated as

 F = ZR−1l (6)
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where F is the vector of factor scores for the sample, Z is the set of standardized 
observed variable values, R is the observed variable correlation matrix, and l is the 
matrix of factor loadings. These factor scores are on the standard normal distribution 
with a mean of 0.

Researchers can then make use of these factor scores in subsequent analyses, such 
as regression or analysis of variance. However, as noted previously such practice is 
not without some problems and is not always recommended. Among the issues that 
must be considered when using such scores is the fact that the scores were obtained 
using a single factor extraction technique. Given that no one extraction method 
can be identified as optimal, and that the solutions might vary depending upon 
the extraction method used, the resultant factor scores cannot be viewed as the 
absolute best representation of the underlying construct for an individual or for a 
sample. In short, these values are provisional and must be interpreted as such. This 
indeterminacy of solutions means that another researcher using the same sample 
but a different method of extraction could obtain different factor scores, and thus 
a different result for the subsequent analyses. Neither of these outcomes could be 
viewed as more appropriate than the other, leading to possible confusion in terms 
of any substantive findings. A second concern with respect to the use of factor 
scores obtained using EFA is whether the factor solutions are equivalent across 
subgroups of individuals within the samples. Finch and French (2012) found that 
when factor invariance does not hold (factor loading values differ across groups), 
the resultant factor scores will not be accurate for all members of the sample, 
leading to incorrect results for subsequent analyses such as analysis of variance. 
With these caveats in mind, researchers should consider carefully whether derived 
factor scores are appropriate for their research scenario. If they find multiple 
extraction and rotation strategies result in very similar solutions, and they see no 
evidence of factor noninvariance for major groups in the data, then factor scores 
may be appropriate. However, if these conditions do not hold, they should consider 
refraining from the use of factor scores, given the potential problems that may 
arise.

Summary of EFA

EFA has proven to be a useful tool for researchers in a wide variety of disciplines. It 
has been used to advance theoretical understanding of the latent processes underlying 
observed behaviors, as well as to provide validity evidence for psychological and 
educational measures. In addition, a closely allied procedure, PCA, is often employed 
to reduce the dimensionality within a set of data and thereby make subsequent 
analyses more tractable. Given its potential for providing useful information in such 
a broad array of areas, and its ubiquity in the social sciences, it is important for 
researchers to have a good understanding regarding its strengths and limitations, and 
a sense for how it can best be used. It is hoped that this chapter has provided some 
measure of understanding to the reader.
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In reality, EFA can be seen as a series of allied statistical procedures rather 
than as a single analysis. Each one of these procedures requires the data analyst 
to make decisions regarding the best course of action for their particular research 
problem. Quite often it is not obvious which approach is best, necessitating the use 
of several and subsequent comparison of the results. The first stage of analysis is 
the initial extraction of factors. As described above, there are a number of potential 
approaches that can be used at this step. Perhaps the most important decision at 
this stage involves the selection of PCA or one of the other extraction techniques. 
As noted, PCA focuses on extracting total variance in the observed variables while 
EFA extracts only shared variance. While results of the two approaches obtained for 
a set of variables may not differ dramatically in some cases, they are conceptually 
very different and thus are most appropriate in specific situations. One guideline for 
deciding on which approach to use is whether the goal of the study is understanding 
what common latent variables might underlie a set of observed data, or simply 
reducing the number of variables, perhaps for use in future analyses. In the first case, 
an EFA approach to extraction (e.g. PAF, MLE) would be optimal, whereas in the 
latter the researcher may elect to use PCA. Within the EFA methods of extraction, it 
is more difficult to provide an absolute recommendation for practice, although trying 
multiple approaches and comparing the results would be a reasonable strategy.

Once the initial factor solution is obtained, the researcher must then decide upon 
the type of rotation that is most appropriate. Given that rotation is designed solely 
to make the factor loadings conform more closely to simple structure and thus more 
interpretable, multiple strategies may be employed and the one providing the most 
theoretically reasonable answer retained. Of course, the first major decision in this 
regard is whether to use an orthogonal or oblique rotation. In general practice, 
I would recommend using an oblique approach first in order to obtain the factor 
correlation matrix. If the factors appear to be correlated with one another, then the 
Pattern matrix values can be used to determine how the variables grouped together 
into factors. On the other hand, if the interfactor correlations are negligible, the 
researcher could simply rerun the analysis using an orthogonal rotation and then 
refer to the factor loading matrix. It should be noted that some research has shown 
that quite often in practice the selection of rotation method will not drastically alter 
the substantive results of the study; i.e. which observed variables load on which 
factors (Finch, in press; Finch, 2006).

Typically, a researcher will investigate multiple factor solutions before deciding 
on the optimal one. This decision should be based first and foremost on the theory 
underlying the study itself. The best solution in some sense is the one that is most 
defendable based upon what is known about the area of research. Thus, a key to 
determining the number of factors (as well as the extraction/rotation strategy to use) 
can be found in the factor loading table. In conjunction with these loadings, there 
are a number of other statistical tools available to help identify the optimal factor 
solution. Several of the most popular of these were described previously. A key issue 
to keep in mind when using these is that no one of them can be seen as universally 
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optimal. Rather, the researcher should make use of many, if not most of them, in 
order to develop some consensus regarding the likely best number of factors. The 
extent to which these agree with one another, and with the substantive judgments 
made based on the factor loadings matrix, will dictate the level of confidence with 
which the researcher can draw conclusions regarding the latent variable structure.

EFA is somewhat unusual among statistical procedures in that frequently there 
is not a single, optimal solution that all data analysts can agree upon. When one 
uses multiple regression and the assumptions underlying the procedure are met, all 
can agree that the resulting slope and intercept estimates are, statistically speaking 
at least, optimal. Such is not the case with EFA. Two equally knowledgeable and 
technically savvy researchers can take the same set of data and come up with two 
very different final answers to the question of how many latent variables there are 
for a set of observed variables. Most importantly, there will not be a statistical way 
in which one can be proven “better” than the other. The primary point of comparison 
will be on the theoretical soundness of their conclusions, with the statistical tools 
for identifying the optimal number of factors playing a secondary role. Quite often 
this lack of finality in the results makes researchers who are used to more definite 
statistical answers somewhat uncomfortable. However, this degree of relativity 
in EFA solutions also allows the content area expert the opportunity to evaluate 
theories in a much more open environment. Indeed, some very interesting work at 
the intersection of EFA and theory generation has been done recently, showing great 
promise for this use of the technique (Haig, 2005). It is hoped that this chapter will 
help the applied researcher needing to use EFA with some confidence in the basic 
steps of the methodology and the issues to consider.
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JASON W. OSBORNE & SHEVAUN D. NEUPERT

9. A BRIEF INTRODUCTION TO HIERARCHICAL 
LINEAR MODELING

INTRODUCTION

Hierarchical linear modeling (HLM; also referred to as multilevel modeling or MLM) 
is becoming more common throughout all areas of the social sciences because of its 
flexibility and unique advantages not present in more traditional techniques (Osborne, 
2000). Our goal in this chapter is to briefly introduce the reader to the important 
concepts related to HLM, particularly the advantages of HLM over more traditional 
techniques like regression on aggregated or disaggregated data, repeated measures 
ANOVA, etc. We will also give some examples of how it can be used in educational 
research and the broader field of social science, and will give the reader an example 
of a simple, but powerful type of analysis: growth curve analysis. Further, we will 
demonstrate the same example within two popular software packages for performing 
HLM: HLM (SSI; http://www.ssicentral.com/hlm/) and SAS (www.sas.com).

One of the reasons HLM is becoming so common within social sciences research 
is the thorny problem of hierarchical or nested data structures, and the fact that most 
researchers do not appropriately deal with this issue unless they are using HLM.

WHAT IS A HIERARCHICAL DATA STRUCTURE?

People (and most living creatures, for that matter) tend to exist within organizational 
structures, such as families, schools, business organizations, churches, towns, states, 
and countries. In education, students exist within a hierarchical social structure that 
can include family, peer group, classroom, grade level, school, school district, state, 
and country. Workers exist within production or skill units, businesses, and sectors 
of the economy, as well as geographic regions. Health care workers and patients 
exist within households and families, medical practices and facilities (a doctor’s 
practice, or hospital, e.g.), counties, states, and countries. Many other communities 
exhibit hierarchical data structures as well.

Raudenbush and Bryk (2002) also discuss two other types of data hierarchies that 
are less obvious but equally important and well-served by HLM: repeated-measures 
data and meta-analytic data. In this case, we can think of repeated measures as data 
that are nested or clustered within individuals, and meta-analytic data similarly 
involves clusters of data or subjects nested within studies.

http://www.ssicentral.com/hlm/
http://www.sas.com
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Once one begins looking for hierarchies in data, it becomes obvious that data 
repeatedly gathered on an individual are hierarchical, as all the observations are 
nested within individuals. While there are ways of adequately dealing with nested 
and partially nested data in ANOVA paradigms that have existed for decades, they 
are often not easily or effectively used. Further, the assumptions relating to them 
are challenging, whereas procedures relating to hierarchical modeling require fewer 
assumptions that are easily met.

WHY IS A HIERARCHICAL OR NESTED DATA AN ISSUE?

Hierarchical, or nested, data present several problems for analysis. First, people or 
creatures that exist within hierarchies tend to be more similar to each other than 
people randomly sampled from the entire population. For example, students in a 
particular third-grade classroom are more similar to each other than to students 
randomly sampled from the school district as a whole, or from the national 
population of third-graders. This is because in many countries, students are not 
randomly assigned to classrooms from the population, but rather are assigned to 
schools based on geographic factors or other characteristics (e.g., aptitude). When 
assigned based on geography, students within a particular classroom tend to come 
from a community or community segment that is more homogeneous in terms of 
morals and values, family background, socio-economic status, race or ethnicity, 
religion, and even educational preparation than a similar-sized sample randomly 
sampled from the entire population as a whole. When assigned based on similarity 
in other characteristics, students are obviously more homogenous than a random 
sample of the entire population. Further, regardless of similarity or dissimilarity of 
background, students within a particular classroom share the experience of being in 
the same environment—the same teacher, physical environment, curriculum, and 
similar experiences, which may increase homogeneity over time.

The Problem of Independence of Observations

This discussion could be applied to any level of nesting, such as the family, the school 
district, county, state, or even country. Based on this discussion, we can assert that 
individuals who are drawn from a group, such as a classroom, school, business, 
town or city, or health care unit, will be more homogeneous than if individuals were 
randomly sampled from a larger population. This is often referred to as a design effect.

Because these individuals tend to share certain characteristics (environmental, 
background, experiential, demographic, or otherwise), observations based on 
these individuals are not fully independent, yet most statistical techniques require 
independence of observations as a primary assumption for the analysis. Because this 
assumption is violated in the presence of hierarchical or nested data, ordinary least 
squares regression (and ANOVA, and most other parametric statistical procedures) 
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produces standard errors that are too small (unless these so-called design effects are 
incorporated into the analysis). In turn, this leads to an inappropriately increased 
probability of rejection of a null hypothesis than if: (a) an appropriate statistical 
analysis was performed, or (b) the data included truly independent observations.

The Problem of How to Deal with Cross-Level Data

It is often the case in educational research that a researcher is interested in 
understanding how environmental variables (e.g., teaching style, teacher behaviors, 
class size, class composition, district policies or funding, or even state or national 
variables, etc.) affect individual outcomes (e.g., achievement, attitudes, retention, 
etc.). But given that outcomes are gathered at the individual level, and other variables 
at classroom, school, district, state, or nation level, the question arises as to what the 
unit of analysis should be, and how to deal with the cross-level nature of the data.

One strategy (called dis-aggregation) would be to assign classroom or teacher 
(or other group-level) characteristics to all students (i.e., to bring the higher-level 
variables down to the student level). The problem with this approach, is all students 
within a particular classroom assume identical scores on a variable, clearly violating 
assumptions of independence of observation.

Another way to deal with this issue (called aggregation) would be to aggregate 
up to the level of the classroom, school, district, etc. Thus, we could talk about the 
effect of teacher or classroom characteristics on average classroom achievement. 
However, there are several issues with this approach, including: (a) that much (up to 
80–90%) of the individual variability on the outcome variable is lost, which can lead 
to dramatic under- or over-estimation of observed relationships between variables 
(Raudenbush & Bryk, 2002), and (b) the outcome variable changes significantly 
and substantively from individual achievement to average classroom achievement.

Neither of these strategies constitute a best practice, although they have been 
commonly found in educational research. Neither of these strategies allow the 
researcher to ask truly important questions—such as what is the effect of a 
particular teacher variable on student learning? A third approach, that of HLM, 
becomes necessary in this age of educational accountability and more sophisticated 
hypotheses.

HOW DO HIERARCHICAL MODELS WORK? A BRIEF PRIMER

The goal of this paper is to introduce the concept of hierarchical modeling, and 
explicate the need for the procedure. It cannot fully communicate the nuances 
and procedures needed to actually perform a hierarchical analysis. The reader is 
encouraged to refer to Raudenbush and Bryk (2002) and the other suggested readings 
for a full explanation of the conceptual and methodological details of hierarchical 
linear modeling.
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The basic concept behind hierarchical linear modeling is similar to that of OLS 
regression. On the base level (usually the individual level, or the level where 
repeated measures are taken within a particular individual, referred to here as level 1, 
the lowest level of your data), the analysis is similar to that of OLS regression: an 
outcome variable is predicted as a function of a linear combination of one or more 
level 1 variables, plus an intercept, as so:

Yij= β0j + β1jX1 +…+ βkjXk + rij

where β0j represents the intercept of group j, β1j represents the slope of variable X1 of 
group j, and rij represents the residual for individual i within group j. On subsequent 
levels, the level 1 slope(s) and intercept become dependent variables being predicted 
from level 2 variables:

β0j = γ00 + γ01 W1 + … + γ0kWk + u0j

β1j = γ10 + γ11 W1 + … + γ1kWk + u1j

and so forth, where γ00 and γ10 are intercepts, and γ01 and γ11 represent slopes predicting 
β0j and β1j respectively from variable W1. Through this process, we accurately model 
the effects of level 1 variables on the outcome, and the effects of level 2 variables on 
the outcome. In addition, as we are predicting slopes as well as intercepts (means), 
we can model cross-level interactions, whereby we can attempt to understand what 
explains differences in the relationship between level 1 variables and the outcome. 
Those of you more mathematically inclined will also note that several different error 
terms (i.e., r and u terms) are computed in this process, rather than just a simple 
residual present in OLS regression.

The advantages of HLM over aggregation and disaggregation have been explored 
in many places, including Osborne (2000; 2008). In brief, failing to appropriately 
model multilevel data can lead to under-estimation of standard errors, substantial 
mis-estimation of effects and variance accounted for, and errors of inference.

ADVANCED TOPICS IN HLM

As many authors have discovered in the years since HLM became available, there are 
many applications for these analyses. Generalizations to 3- and 4- level models are 
available, as are logistic regression analogues (e.g., HLM with binary or polytomous 
outcomes), applications for meta-analysis, powerful advantages for longitudinal 
analysis (as compared to other methods such as repeated measures ANOVA), and 
many of the fun aspects of OLS regression (such as modeling curvilinear effects) is 
possible in HLM as well.

There is little downside to HLM, aside from the learning curve. If one were to use 
HLM on data where no nesting, dependence, or other issues were present, one would 
get virtually identical results to OLS regression from statistical software packages 
such as SPSS or SAS or R.
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The rest of this chapter is devoted to two simple examples that represent common 
questions within educational (and many areas of social science) research: (a) how 
do individual- and school-level variables affect student achievement, and (b) can 
we understand growth or change in an individual as a function of individual or 
environmental traits?

MODELING VARIABLES AT DIFFERENT LEVELS

Our first example is an application of HLM to use variables from different levels. In 
this case, we have two variables at the student level (family socio-economic status 
and student locus of control) and two school-level variables (percent of students 
who meet a particular definition of economic need in the USA (receiving free lunch 
in school) and percentage of students who belong to disadvantaged racial minority 
groups) predicting student achievement test scores.

AN EMPIRICAL COMPARISON OF THE THREE APPROACHES 
TO ANALYZING HIERARCHICAL DATA

In this section we illustrate the outcomes achieved by each of the three possible 
analytic strategies for dealing with hierarchical data:

• disaggregation (bringing school level data down to the individual level),
• aggregation (bringing individual level data in summarized fashion up to the 

school level), and
• hierarchical linear modeling (appropriately modeling variables at the level they 

were gathered).

Data for this example were drawn from the National Education Longitudinal Survey 
of 1988 (http://nces.ed.gov/surveys/nels88/), a nationally- representative sample 
of approximately 28,000 eighth graders in the United States. The analysis we 
performed predicted composite achievement test scores (math, reading combined) 
from student socioeconomic status (family SES), student locus of control (LOCUS), 
the percent of students in the school who are members of racial or ethnic minority 
groups (%MINORITY), and the percent of students in a school who receive free 
lunch (%LUNCH, an indicator of school poverty). We expect SES and LOCUS to 
be positively related to achievement, and %MINORITY and %LUNCH are expected 
to be negatively related to achievement. In these analyses, 995 of a possible 1004 
schools had sufficient data to be included.

Disaggregated analysis. In order to perform the disaggregated analysis, the 
level 2 values were assigned to all individual students within a particular school. 
A standard multiple regression was performed via SPSS entering all predictor 
variables simultaneously. The resulting model was significant, with R = .56, 
R2 = .32, F (4,22899) = 2648.54, p < .0001. The individual regression weights and 
significance tests are presented in Table 1.

http://nces.ed.gov/surveys/nels88/
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All four variables were significant predictors of student achievement. As expected, 
SES and LOCUS were positively related to achievement, while %MINORITY and 
%LUNCH were negatively related.

Aggregated Analysis

In order to perform the aggregated analysis, all level 1 variables (achievement, 
LOCUS, SES) were aggregated up to the school level (level 2) using school-based 
means. A standard multiple regression was performed via SPSS entering all predictor 
variables simultaneously. The resulting model was significant, with R = .87, 
R2 = .75, F (4,999) = 746.41, p < .0001. Again as expected, both average SES and 
average LOCUS were positively related to achievement, and %MINORITY was 
negatively related. In this analysis, %LUNCH was not a significant predictor of 
average achievement.

HLM Analysis

Finally, a hierarchical linear analysis was performed via HLM, in which the respective 
level 1 and level 2 variables were modeled appropriately. Note also that all level 1 
predictors were centered at the group mean, and all level 2 predictors were centered 
at the grand mean. The resulting model demonstrated goodness of fit (Chi-square 
for change in model fit = 4231.39, 5 df, p < .0001). As seen in Table 1, this analysis 
reveals expected relationships— positive relationships between achievement and the 
level 1 predictors (SES and LOCUS), and strong negative relationships between 
achievement and the level 2 predictors (%MINORITY and %LUNCH). Further, the 
analysis revealed significant interactions between SES and both level 2 predictors, 
indicating that the slope for SES gets weaker as %LUNCH and as %MINORITY 

Table 1. Comparison of three analytic strategies

Variable
Disaggregated Aggregated Hierarchical

B SE t B SE t B SE t
SES 4.97a .08 62.11*** 7.28 b .26 27.91*** 4.07 c .10 41.29***
LOCUS 2.96 a .08 37.71*** 4.97 b .49 10.22*** 2.82 a .08 35.74***
%MINORITY −0.45 a

.03 −15.53*** −0.40 a
.06 −8.76*** −0.59 b

.07 −8.73***
%LUNCH −0.43 a

.03 −13.50*** 0.03 b .05 0.59 −1.32 c
.07 −19.17***

Note: B refers to an unstandardized regression coefficient, and is used for the HLM analysis 
to represent the unstandardized regression coefficients produced therein, even though these 
are commonly labeled as betas and gammas. SE refers to standard error. Bs with different 
subscripts were found to be significantly different from other Bs within the row at p < .05. 
*** p < .0001.
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increases. Also, there was an interaction between LOCUS and %MINORITY, 
indicating that as %MINORITY increases, the slope for LOCUS weakens. There is 
no clearly equivalent analogue to R and R2 available in HLM.

COMPARISON OF THE THREE ANALYTIC STRATEGIES AND CONCLUSIONS

We assume that the third analysis represents the best estimate of what the “true” 
relationships are between the predictors and the outcome. Unstandardized regression 
coefficients (b in OLS, β and γ in HLM) were compared statistically via procedures 
outlined in Cohen and Cohen (1983).

Neither of the first two analyses appropriately modeled the relationships of 
the variables. The disaggregated analysis significantly overestimated the effect of 
SES, and significantly and substantially underestimated the effects of the level 2 
effects. The standard errors in this analysis are generally lower than they should 
be, particularly for the level 2 variables (a common issue when assumptions of 
independence are violated).

The second analysis overestimated the multiple correlation by more than 100%, 
overestimated the regression slope for SES by 79% and for LOCUS by 76%, and 
underestimated the slopes for %MINORITY by 32% and for %LUNCH by 98%.

These analyses reveal the need for multilevel analysis of multilevel data. Neither 
OLS analysis accurately modeled the true relationships between the outcome and 
the predictors. Additionally, HLM analyses provide other benefits, such as easy 
modeling of cross-level interactions, which allows for more interesting questions 
to be asked of the data. For example, in this final analysis we could examine how 
family and school poverty interact, something not possible unless the multilevel data 
are modeled correctly.

MODELING LONGITUDINAL CHANGE OVER TIME

Our example attempts to explain changes in individual mood (or affect) over time 
as a function of individual traits such as neuroticism. Neuroticism, and the constant 
elevated levels of negative affect that accompany the trait over years or decades, 
can lead to a negative emotion “hair trigger” (Kendler, Thornton, & Gardner, 2001; 
Wilson, Bienas, Mendes de Leon, Evans, & Bennett, 2003). This process suggests that 
with the passage of time, people high in neuroticism may become more susceptible 
to elevated negative affect. Because neuroticism is associated with more variability 
in behavior and experience (Eid & Diener, 1999; Eysenck & Eysenck, 1985; 
Moskowitz & Zuroff, 2004; Neupert, Mroczek, & Spiro, 2008), we use the current 
example to examine whether individual differences in neuroticism are associated 
with differential trajectories of negative affect over time. Before we get into the 
example, however, we should stop and discuss the challenges of working with 
longitudinal data. First, it is often the case that longitudinal studies have difficulty 
measuring all individuals at exactly the same time, or within identical time intervals, 
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yet that is an assumption of RMANOVA. Next, assumptions of RMANOVA are 
rarely met in practice, potentially seriously compromising the validity of the results. 
Finally, missing data can severely cripple a RMANOVA analysis, and missing 
data are rarely handled appropriately (for more on missing data, see (Osborne, 
2012, Chapter 6). However, HLM has none of these drawbacks. So long as any 
individual has one or more data points, they can be included in a repeated measures 
HLM analysis. Furthermore, unequal time intervals between measurements can 
be explicitly modeled to remove as much potential for error variance as possible. 
Growth curves are easily modeled as in OLS regression (i.e., using quadratic and 
cubic terms to model curvilinearity), and the estimation procedures in HLM tend 
to produce smaller standard errors, all of which make HLM a best practice for 
longitudinal data analysis.

Data for the example are from the National Study of Daily Experiences (NSDE) 
and are publicly available (www.icpsr.umich.edu). Respondents were 1031 adults 
(562 women, 469 men), all of whom had previously participated in the Midlife in the 
United States Survey MIDUS), a nationally representative telephone-mail survey 
of 3032 people, aged 25–74 years, carried out in 1995–1996 under the auspices of 
the MacArthur Foundation Research Network on Successful Midlife Development 
(for descriptions of the MIDUS project, see Brim, Ryff, & Kessler, 2004; Keyes 
& Ryff, 1998; Lachman & Weaver, 1998; Mroczek & Kolarz, 1998). Respondents 
in the NSDE were randomly selected from the MIDUS sample and received $20 
for their participation in the project. Over eight consecutive evenings, respondents 
completed short telephone interviews about their daily experiences. Data collection 
was planned to span an entire year (March 1996 to March 1997), so 40 separate 
“flights” of interviews with each flight representing the eight-day sequence of 
interviews from approximately 38 respondents were used. The initiation of flights 
was staggered across the day of the week to control for the possible confounding 
between day of the study and day of week. Of the 1242 MIDUS respondents we 
attempted to contact, 1031 agreed to participate, yielding a response rate of 83%. 
Respondents completed an average of 7 of the 8 interviews resulting in a total of 
7229 daily interviews.

The equations below were used to examine change in negative mood over time 
as a function of individual differences in neuroticism. In this example, individual 
variability is represented by a two-level hierarchical model where level 1 reflects the 
daily diary information nested within the person-level information at level 2.

 Level 1: MOODti = β0ti + β1ti(DAY) + rti (1)

 Level 2: β0i = γ00 + γ01(NEUROT) + u0i  (2)

 β1i = γ10 + γ11(NEUROT) + u1i (3)

http://www.icpsr.umich.edu
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Following the guidelines by Raudenbush and Bryk (2002), the lettered subscripts 
in the equations depict the nesting structure. Days/timepoints are represented by 
t (level 1) and individuals are represented by i (level 2).

In Equation 1, the intercept (β0ti) is defined as the expected level of negative mood 
for person i on the first day of the study (i.e., DAY = 0) because the variable was 
uncentered. Although it would have been possible to person-mean or grand-mean 
center DAY, we chose to leave this variable uncentered so that the interpretation of 
the intercept would be associated with a particular timepoint (i.e., first day of the 
study). The change slope, β1ti, is the expected change in negative mood associated 
with time. The error term (rti) represents a unique effect associated with person 
i (i.e., individual fluctuation around their own mean). The level 1 intercept and slope 
become the outcome variables in the level 2 equations. Equation 2 includes a main 
effect of neuroticism and therefore tests to see if neuroticism is related to the average 
level of psychological distress (γ01). The intercept (γ00) represents the average level 
of negative mood for someone with average neuroticism scores because neuroticism 
was centered at the grand mean (CNEUORT [centered neuroticism] = 0). We chose 
to grand-mean center neuroticism to maintain an interpretable value of the intercept 
and to reduce nonessential multicollinearity for the cross-level interaction. Equation 
3 provides the estimate (γ10) representing change for the sample: the average 
relationship between day and negative mood. A cross-level interaction is represented 
by γ11 and tests whether there were neuroticism differences (Level 2) in change in 
negative mood over time (Level 1 relationship). Interindividual fluctuations from 
the average level and slope are represented by u0i and u1i, respectively.

We chose to present this example using SAS PROC MIXED (1997) because many 
people like the ability to reduce, manage, and analyze in a single software package. 
Detailed descriptions of the commands are described elsewhere (e.g., Neupert, in 
press; Singer, 1998), so we focus on the main components here. Figure 1 represents the 
commands that were used to test Equations 1–3. DAY (Level 1), CNEUROT (Level 
2 grand-mean centered neuroticism), and DAY*CNEUROT (cross-level interaction) 
are included as predictors in the MODEL statement. The /SUBJECT = command 
specifies the nesting structure and alerts SAS that DAY is a level 1 variable and 
CNEUROT is a level 2 variable. The MODEL statement provides γ01 (CNEUROT) 

Figure 1. SAS commands.

proc mixed data=merged noclprint covtest;
title ‘neuroticism differences in change of daily negative affect over time’;
class caseid;
model mood= day cneurot day*cneurot
/solution ddfm=bw;
random intercept day /subject=caseid type = un;
run;
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from Equation 2 as well as the default γ00 (intercept) from Equation 2. Estimates 
from Equation 3 are γ10 (DAY) and γ11 (DAY*CNEUROT). Adding a variable name 
to the RANDOM statement allows the slope between the specified variable and the 
dependent variable to vary across level 2 units. Therefore, only level 1 variables 
can be added to the RANDOM statement. In this example, DAY was added to the 
RANDOM statement to allow the change in negative mood over time to vary across 
people. Note that this corresponds to u1i in Equation 3. If DAY was not added to the 
RANDOM statement, the change (β1) slope would be constrained to be equal across 
all level 2 units (people). An option has been added that specifies the structure of the 
variance-covariance matrix for the intercepts and slopes.

Figure 2 displays the SAS output for the fixed and random effects. The four rows 
for Covariance Parameter Estimates correspond to the four random effects. The first 
row (UN 1,1) corresponds to τ00, reflecting the remaining level 2 variance in the level 
of MOOD after accounting for CNEUROT. The second row (UN 2,1) corresponds 
to τ10, reflecting the covariance between the intercept and slope. The third row (UN 
2,2) corresponds to τ11, reflecting the variance around the slope between DAY and 
MOOD. The fourth row (Residual) corresponds to σ2 and reflects the remaining level 
1 variance in MOOD after accounting for DAY. Note that all four of the random 
effects are significant. This indicates that there is still significant variance left to 
explain at level 1 (σ2) and level 2 (τ00) and it also shows that there is a significant 
relationship between the intercept of MOOD and the relationship between DAY and 
MOOD (significant covariance: τ10). Lastly, the significant τ11 indicates that there is 
variance across people in the relationship between DAY and MOOD; that is, not all 
people change the same way with respect to their mood.

The Solution for Fixed Effects provides the output for the four gamma coefficients 
(represented in Equations 2 and 3). The Intercept corresponds to γ00 and indicates that 

Figure 2. SAS output for random effects (covariance parameter estimates) and fixed 
effects (solution for fixed effects).

Standard     Z
Cov Parm   Subject   Estimate    Error     Value        Pr Z

UN(1,1)    CASEID    12.8791    0.7394     17.42      <.0001
UN(2,1)    CASEID    -1.1138    0.09028   -12.34      <.0001
UN(2,2)    CASEID     0.1539    0.01 345    11.44      <.0001
Residual              5.0161    0.09936    50.49      <.0001

Solution for Fixed Effects

Standard
Effect       Estimate       Error     DF   t Value    Pr > |t|

Intercept     2.7587        0.1265    1017    21.81      <.0001
DAY          -0.2153        0.01695   6133   -12.70      <.0001
cneurot       2.2995        0.1903    1017    12.09      <.0001
DAY*cneurot  -0.1393        0.02551   6133    -5.46      <.0 001
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the average level of negative mood on the first day of the study for someone with 
average neuroticism was 2.76. The next row corresponds to γ10 and indicates that there 
is a significant and negative relationship between day and mood. For each additional 
day that someone stays in the study, their negative mood decreases by 0.2153 units. 
Notice that the number of degrees of freedom for this relationship is 6133, reflecting 
the fact that DAY is a level 1 variable and is based on the number of days rather than 
the number of people in the sample (i.e., df for the Intercept and CNEUROT effects 
are based on the number of people). The third row corresponds to γ01 and indicates 
that there are significant neuroticism differences in the level of negative mood. Not 
surprisingly, people with higher levels of neuroticism report more negative mood 
compared to people with lower levels of neuroticism. The final row represents γ11 and 
indicates that changes in negative mood over time depend on individual differences 
in neuroticism. Decomposing this interaction reveals that people high in neuroticism 
(Mean + 1SD) decreased their negative mood at a faster rate compared to people 
low in neuroticism (Mean − 1SD). Given the large individual differences in negative 
mood as a function of neuroticism, this pattern may reflect a kind of floor effect for 
those with low neuroticism who started at lower levels of distress.

CONCLUSION

In this chapter we highlighted important concepts related to HLM, particularly the 
advantages of HLM over more traditional techniques like regression on aggregated 
or disaggregated data, repeated measures ANOVA, etc. We demonstrated how it can 
be used in educational research and the broader field of social science, and provided 
an example of a growth curve analysis. HLM is widely regarded as a best practice and 
readers are strongly urged to consider using it because it addresses interesting questions.
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10. LONGITUDINAL DATA ANALYSIS

INTRODUCTION TO LONGITUDINAL DATA ANALYSIS

Longitudinal data analysis is a very broad, general term for the analysis of data 
that are collected on the same units across time. Longitudinal data are sometimes 
referred to as repeated measures data or panel data (Hsiao, 2003; Frees, 2004). 
A variety of statistical models exist for analyzing longitudinal data. These models 
include autoregressive or Markov chain models, latent transition models, individual 
growth curve models, and growth mixture models, just to name a few. To determine 
the correct model for the analysis of longitudinal data, first the researcher must 
have a substantive theory about whether and how the data should change over time 
and what the relationships are among the observations across time. For example, 
imagine that a researcher collects mood data on adults every day for three months. 
These data are longitudinal. Although the researcher would expect to see day to day 
changes in mood, he or she would probably not expect to see any “growth” in mood 
across time. Is mood on any given time predicted by a person’s overall mean mood 
and some amount of random daily fluctuation or error? Is today’s mood related to 
yesterday’s mood? Is the relationship between mood on day one and mood on day 3 
completely mediated by mood on day 2? If so, then the analysis of such data requires 
a model that allows for a correlation between adjacent time points, but does not 
require a model that allows for growth over time. One model common longitudinal 
model that allow for correlations across time are called autoregressive models or 
Markov chain models, and are quite common in the structural equation modeling 
literature (Bast & Reitsma 1997; Curran 2000; Kenny & Campbell 1989; Marsh 
1993). In autoregressive models, “a variable is expressed as an additive function 
of its immediately preceding value plus a random disturbance” (Bollen & Curran, 
2006, p. 208). For more information about models of this type, the interested reader 
should consult (Bollen & Curran, 2004).

It is impossible to do justice to all potential longitudinal models within one chapter. 
Thus, in this chapter, we will focus on one specific type of longitudinal model 
that has become quite popular in the research literature over the past decade: the 
individual growth model. We will present this model within a multilevel framework. 
Our choice to focus on individual growth models stems from their popularity and 
their applicability to a large range of research questions and problems that involve 
the estimation of systematic growth or decline over time. We choose the multilevel 



200

D. B. MCCOACH ET AL. 

framework, given that multilevel growth models seamlessly handle unbalanced data. 
Data are balanced if all units are measured on the same data collection schedule 
(i.e., at the same time points). Data are considered unbalanced if data are collected 
on different schedules or at different time points (Skrondal & Rabe-Hesketh, 2008). 
In our experience, multilevel growth models accommodate a wide range of data 
structures and handle a wide range of data analytic problems. Further, the framework 
can be easily modified to include other types of models (e.g. random intercept 
models or growth models with more complex error covariance structures), adding 
to the flexibility of the approach. However, we caution the reader not to treat the 
hammer that we present in this chapter as the only tool to deal with longitudinal data.

Introduction to Models of Individual Growth within a Multilevel Framework

Anytime we ask questions about growth or decline in some area, we are implicitly 
asking questions that involve the measurement of systematic change over time. 
Such questions might include: How do students’ reading skills develop between 
kindergarten and fifth grade? Is this growth steady or does the rate of growth change 
over time? What is the shape of this growth trajectory? Do different people tend to 
change in the same way over time? Or is there a great deal of variability between 
people in terms of their rate of change over time? Finally, we often want to understand 
what factors help to predict the rate at which change occurs, or which variables allow 
us to understand inter-individual differences in the rate of change. In this chapter, we 
briefly introduce readers to the estimation of individual growth curve models using 
multilevel modeling. Fuller and more technical treatments of this topic appear in 
Raudenbush and Bryk (2002), Singer and Willet (2003).

Why Do We Need Growth Curve Modeling?

Before we embark on our journey into individual growth curve modeling, it is 
important to understand the inadequacies inherent in using two wave studies to 
measure change. The simplest type of change is a difference score, which attempts 
to model the difference between post-test and pre-test achievement as a function of 
the presence of a treatment or some other educational variable. Although simple to 
calculate, there are inherent difficulties in using difference scores to examine student 
growth (Cronbach & Furby, 1970).

First, measurement error in pre-test or post-test scores reduces the precision of the 
estimate of the treatment effect (Rogosa, Brandt, & Zimowski, 1982; Raudenbush, 
2001). When measurement error is intertwined with the pre-test or post-test scores (or 
both), then “true” change and measurement error become confounded, thus the observed 
change between two scores may either overestimate or underestimate the degree of 
“true” change. For example, a student’s pre-test score could be too high and their post-
test score could be too low because of measurement error, leading to an erroneous 
conclusion that the treatment had little or no effect when, in reality, measurement error 
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is masking the true effect. Multiple data points are needed to extricate the confounded 
nature of the measurement error and true change (Singer & Willett, 2003). In addition, 
with only two time points, all change must be linear (and perfectly so). Thus, there is 
no way to examine the shape of the change trajectory across time.

Rogosa et al. (1982) recommend that “when used wisely, multiwave data will 
yield far better determinations of individual change than two wave data” (p. 745). 
The conceptualization of growth as how individuals change across time and interest 
in modeling the variables that predict change between as well as change within 
people allows for a much fuller picture of change; however, such models require the 
use of longitudinal data (Singer & Willett, 2003). Therefore, analyses of growth or 
change require data collected across at least three time points.

Multivariate Repeated Measures

Another common way to examine change is to use multivariate repeated measures 
(MRM) designs, of which the most common analysis is repeated measures analysis 
of variance (RANOVA). Although MRM allow for several waves of data collection, 
there are several restrictions that traditional MRM place on the measurement 
of change. One problematic restriction of MRM is the requirement of a fixed 
time-series design. The distance between time points must be consistent across 
all persons, and the data collection must occur at the same time for all persons 
(Raudenbush & Bryk, 2002). If any student is missing data at any time point during 
the data collection schedule, that student is typically deleted from the analyses and 
all information provided by that student is lost (Raudenbush & Bryk, 2002). This 
has two adverse consequences. First, it decreases statistical power and lowers the 
precision of the estimates of growth. Second, it introduces a selection bias issue 
into the data analysis. Therefore, by eliminating these people from the analysis, we 
are likely to introduce bias into our estimates of growth. Luckily, using multilevel 
growth models, researchers can retain units even when observations from some time 
points are missing, and they can fit growth models to time unstructured data.

What Do We Need to Measure Change Using Multilevel Growth Models?

To study change, we need data collected from the same units across multiple time 
points. As alluded to earlier, using growth modeling techniques also requires 
collecting at least three waves of data. However, growth curve models with only 
three time points only allow for the estimation of linear growth trajectories. The 
estimation of curvilinear growth trajectories (as shown in Figure 1) requires data 
collected across 4 or more time points. With larger numbers of time points, it is 
possible to fit increasingly complex growth functions, which can be very informative 
if we want to understand how units change over time. When designing longitudinal 
studies, it is important to consider both the number and the spacing of data collection 
points to accurately capture change across time. When data points are too infrequent, 
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or when there are too few data points, it may not be possible to accurately model the 
functional form of the change.

In addition to collecting data on the same units over at least three waves, growth 
curve modeling requires two more conditions. First, there must be an accurate 
measure of time. If scores are collected across three time points, we need to know 
how much time elapsed between time point one and time point two and how much 
time elapsed between time point two and time point three. Conceptually, time 
represents the x-axis in a growth curve model (see Figure 1), and the score on the 
outcome variable is plotted on the y-axis. We need to know the distance between 
testing occasions so that we can plot the dependent variable or the “y” score, on the 
correct location of the x-axis to correctly model the functional form of the growth. 
Several measures of time are equally reasonable, e.g., a person’s age in months at 
each measurement occasion or the amount of time (weeks/months/years) that has 
elapsed between measurement occasions (McCoach et al., 2012).

The second requirement is that the assessment score must be psychometrically 
sound (e.g., scores are valid and reliable) and must be comparable over time 
(Singer & Willett, 2003). The measurement scale must also remain consistent across 
administrations so that a unit that has not changed across time would receive the 
same score at each measurement occasion. This requirement is met when either the 
same assessment is used at multiple time points or when the assessments have had 
their scores placed onto the same metric through a process called vertical scaling 
(Singer & Willett, 2003).

If assessments have had their scores placed on the same scale so that we can 
directly compare scores over time, they are said to be vertically scaled. Because 
vertically scaled assessments yield comparable scores, they are useful for modeling 
growth across time for constructs such as achievement that cannot be measured 
using the same assessment across multiple time points. Think of the vertical 
scaling procedure as placing the results of multiple years of data on the same equal 
interval “ruler” so that growth may be measured in the same metric. Height in 
inches yields an equivalent metric across time; a height of 5 feet references the 
same amount of height regardless of who is measured or the age at which they are 
measured. In the absence of vertical scaling, the difference between the two scores 
does not measure growth in any meaningful way because the two scores are on 
two different, unlinked scales. For example, if a teacher gives a 25 word spelling 
test every week, and the words on the spelling test differ from week to week, there 
is no way to determine the amount of growth that a student has made in spelling 
throughout the year by plotting the spelling test scores across time. Because many 
academic tests are scaled within specific content area but are not designed to place 
scores along the same metric across time points, comparing students’ scores across 
time cannot provide information on student growth. In addition to having a scale 
that provides a common metric across time, the validity of the assessment must 
remain consistent across multiple administrations of the assessment (Singer & 
Willett, 2003).
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HLM Models

HLM individual growth models allow for the measurement time points to vary across 
units and have the ability to capture the nested nature of the data. For example, in 
educational contexts, observations across time are nested within students and those 
students are nested within schools (Kline, 2005; Raudenbush & Bryk. 2002). In HLM 
growth models, both individual and group trajectories are estimated (Raudenbush & 
Bryk, 2002). The primary advantage to using HLM to model individual growth is 
that HLM allows for a great degree of flexibility in the structure of time. Therefore, 
every person within a dataset can have their own unique data collection schedule 
(Stoel & Garre, 2011). When the length of time between data collection points varies 
from person to person, we refer to the data as “time unstructured.” Conventional 
multilevel models handle time unstructured data seamlessly because time is 
represented as an explicit independent variable within the dataset.

The Basic Two-Level HLM Model for Linear Growth

In an HLM individual growth model, level 1 describes an individual (or unit)’s 
growth trajectory across time. A simple two-level linear growth model is illustrated 
below.

Level 1:

 0 1  ( )ti i i ti tiy time ep p= + +  (1)

Level 2:

0 00 01 0   ( )i i igender rp b b= + +  
1 10 11 1(  )i i igender rp b b= + +  

The observations across time are nested within persons. The level-1 equation models 
individual trajectories or within individual variability across time. The dependent 
variable (yti) is the score for individual i at time t. We predict that yti, person i’s score 
at time t is a function of three things: 1) the intercept, p01, pti, (which is the predicted 
value of yit when time = 0); 2) the product of a constant rate of change and time, 
p11(timeti), and 3) individual error, eti. In a simple linear model, the time slope, p11, 
represents the linear rate of change over time. Notice that both the slope and the 
intercept contain a subscript i. This means that a separate slope and intercept are 
estimated for each person in the sample. The deviation of an individual from his/her 
predicted trajectory (eti) can be thought of as the measurement error associated with 
that individual’s estimate at that time point. The pooled amount of error variability 
within individuals’ trajectories is estimated by the variance of eti[var(eti) = s2] 
(Bryk & Raudenbush, 1988; Raudenbush & Bryk, 2002).
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The level-2 equation models the average growth trajectories across students and 
deviations from those averages. The second level of the multilevel model specifies 
that the randomly varying intercept (p0i) for each individual (i) is predicted by an 
overall intercept (b00), the effects of level-2 variables on the intercept, and r0i, the 
level-2 residuals represent the difference between the model implied intercept and 
the individual i’s observed intercept. Likewise, the randomly varying linear growth 
slope (p0i) for each individual (i) is predicted by an overall intercept (b10), the effects 
of level-2 variables on the linear growth slope, and r0i, the level-2 residual, which 
represents the difference between person i’s model predicted linear growth slope and 
his or her actual growth slope.

The level-2 model allows for person-specific variables to explain variation in 
individuals’ growth trajectories. In other words, individual growth patterns can 
be explained by person level predictors such as gender, socio-economic status, 
treatment group, etc. Ideally, person-level covariates should help to explain some of 
the inter-individual variability in terms of where people start (the intercept) or how 
fast they grow (the slope).

In our current example, gender is coded as male = 0, female = 1. Time is coded 0, 
1, and 2. Therefore, the intercept, (p0i) represents the predicted initial status of person 
i. Thus, if the student is female, the intercept (p0i) is predicted from the expected value 
of male students on the initial measure (b00) and the expected differential between 
males and females in initial scores (b0i). The difference between the model predicted 
intercept, based on the level 2 model, and the person’s actual intercept is captured in 
the random effect, r0i. Likewise, the linear growth parameter (p0i) is predicted from the 
mean growth of all male students (bi0) and the expected differential in growth between 
males and females (b1i ). The difference between the model predicted slope, based on 
the level 2 model, and the person’s actual slope is captured in the random effect, r0i. 
The amount of between person variability in the intercept after accounting for gender 
is estimated by the variance of u0i [var(u0i) = t00], and the amount of between person 
variability in the time slope after accounting for gender is estimated by the variance 
of u0i [var(u1i) = t11] (Bryk & Raudenbush, 1988; Raudenbush & Bryk, 2002).

The linear growth model is the simplest model. However, this model can be 
extended through the incorporation of time varying covariates, piecewise regression 
terms, or polynomial terms to model non-linearity that occurs in the growth trajectory. 
We briefly consider the use of time varying covariates and piecewise regression 
models. Then we provide a more detailed description of polynomial (quadratic) 
growth models and provide an example of a quadratic model of growth.

Time-Varying Covariates

Time-varying covariates are variables whose values can change over time and 
that can enhance the model’s capacity to appropriately capture observed patterns 
of individual change. Adding a time varying covariate (TVC) to equation 1, and 
removing gender as a level-2 predictor, results in the following model:
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By estimating a randomly varying slope for the TVC (indicated by inclusion of its 
associated random effect, r2i), the relationship between the time varying covariate 
and the dependent variable varies across people. In other words, for some people 
the effect of the time varying covariate on the dependent variable could be quite 
strong and positive, whereas for others it could be weak, or even negative. Although 
the value of the time-varying covariate changes across time within people, the 
parameter value estimating the effect of the time-varying covariate on the dependent 
variable is assumed to be constant across time. In other words, the effect of the 
time varying covariate is constant across time within person, but varies across 
people. For example, in a study of students’ reading growth over time, the number 
of minutes that a student spends engaged in independent reading per week could 
be an important time-varying covariate. At every assessment point, the researcher 
measures both the dependent variable (reading comprehension), and the independent 
variable (the number of minutes of independent reading per week). Although the 
number of minutes of independent reading that a student engages in per week can 
change at each data collection point, the estimated relationship between independent 
reading and reading comprehension remains constant across time for each person.

There are ways to ease this assumption that the relationship between the time 
varying covariate and the response variable is constant across time within persons. 
For example, one can build an interaction term between time and the time-varying 
covariate by creating a variable that equals the product of the two variables (Singer & 
Willett, 2003). Adding the interaction term to the model results in the following 
equation:
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The parameter estimate for the interaction term, b30, helps to capture the differential 
effect of the time varying covariate across time. If the time varying covariate 
is a continuous variable, it should be centered to aid in the interpretation of the 
parameter estimates. In our example above, if the researcher centers the number of 
minutes a student reads per week at the grand mean for all occasions and persons in 
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the sample, then b00 is the overall estimated initial reading score for students who 
read an average number of minutes per week. b10 represents the expected change 
in reading scores over time for students reading an average number of minutes per 
week; and b20 represents the effect of an additional minute of reading per week on 
reading comprehension when time is equal to 0 (i.e., at initial status or baseline). 
b30 captures the differential in the effect of the time varying covariate across time. 
For example, assume that the growth model yields positive values for b10 and b20, 
the estimates for the linear growth slope and for the effect of time spent reading 
per week, respectively. In that case, a negative value for b30 would indicate that 
the effect of the time varying covariate (minutes read per week) weakens (gets 
progressively less positive) across time. If, on the other hand, the parameter estimate 
for b30 is positive, this would indicate that the effect of the time varying covariate 
on the dependent variable strengthens (get more positive) over time. Allowing the 
interaction term to vary across people by adding the random effect term r3i implies 
that the interaction effect, or the change in the effect of the time varying covariate, 
varies across people. While the introduction of an (randomly varying) interaction 
between time and a time-varying covariate provides great flexibility in modeling 
growth, it does increase the number of estimated parameters in the model. For 
example, the variance/covariance matrix for the random effects now would require 
ten unique elements, rather than six (as estimating r3i adds a variance and three 
covariances to the model).

Incorporating time-varying covariates can be a very effective strategy for modeling 
non-linearity and/or discontinuities in growth trajectories (McCoach & Kaniskan, 
2010). Time-varying covariates may be continuous, as in the example above, or 
categorical. Correct and creative coding of time-varying variables can help to more 
adequately capture the nature of change in the phenomenon of interest, and thus 
more accurately reflect the process of change, as well as correlates of that change.

Piecewise Growth Models

Often, growth trajectories may not be modeled well by a single linear slope or rate 
of change, even after adjusting for time-varying covariates. There may be scenarios 
in which a growth pattern might be more aptly represented by dividing the trajectory 
into growth segments corresponding to fundamentally different patterns of change 
(Collins, 2006). For example, imagine that a reading researcher collects achievement 
data on elementary students across an entire calendar year, amassing six data points 
from the beginning of September through the end of August (start of the next 
academic year). In this case, the time points between September and June capture 
the span of time for the change in achievement across the school year, whereas the 
period between June and the end of August captures the span of time for the change 
in reading scores during the summer (non-instructional) months. The achievement 
slope is likely to be substantially steeper and constant during instructional months 
and flatter (or perhaps even negative) during the summer, when students receive 
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no academic instruction; a single linear growth parameter would not represent the 
data well in this situation. Piecewise linear growth models “break up the growth 
trajectories into separate linear components” (Raudenbush & Bryk, p. 178), and 
can be particularly valuable when comparison of growth rates between the separate 
components are of interest, or to investigate differences in substantive predictors of 
growth between the components. Note that a sufficient number of time-points are 
required to enable modeling of a separate slope for each component.

Piecewise regression techniques conveniently allow for changes in a linear 
growth slope across time. To achieve these representations, we include multiple time 
variables into the model to capture the multiple linear growth slopes. If we expect 
one rate of growth for time points 1–4, and another rate of growth for time points 
4–6, we would introduce two time variables. The second time variable always clocks 
the passage of time, starting at the point at which the discontinuity or change in 
slope is expected. Following our above example, our two-piece linear growth model 
would then be expressed as follows:
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There are two different ways to code the first piece of the piecewise model, and they 
will result in different interpretations for the piecewise parameters. The first option 
is to use the same linear time variable that we introduced earlier, which is centered 
at the initial time point and continues to clock the passage of time for the duration of 
the study. This coding system is demonstrated in Table 1. Using this coding scheme, 
b10 is the parameter estimate for first time variable (time_piece1) and captures the 
baseline growth rate; b20 is the parameter estimate for the second time variable and 
captures the deflection from that baseline growth rate.

Piecewise coding scheme for capturing growth rate and a deflection from baseline 
growth

Table 1. Coding for baseline and deflected growth pieces

WAVE Time_piece1 Time_piece2
1 0 0
2 1 0
3 2 0
4 3 0
5 4 1
6 5 2
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The second option creates two separate growth slopes, one that captures the 
growth rate during the first piece of the piecewise model and one that captures the 
growth rate during the second piece of the model. To model the piecewise growth 
as two different growth slopes, we need to create two time variables, each of which 
clocks the passage of time during only one segment or piece of the piecewise model. 
In other words, we “stop” the first time variable (time_piece1) and “start” the second 
time variable (time_piece2) simultaneously, as is demonstrated starting in wave 4 of 
Table 2. Under this coding scheme, b10, the parameter estimate for first time variable 
(time_piece1), captures linear growth rate for the first time period (from waves 1–4); 
and b20, the parameter estimate for the second time variable (time_piece2), captures 
the linear growth rate for the second time period (waves 4–6). Note that although the 
coding for time_piece2 is identical across the two coding schemes, it is actually 
the parameter estimate for b20 (the slope for time_piece2) that changes meaning 
across the two different coding schemes. Also, notice that the coding schemes in 
Tables 1 and 2 are linearly dependent. Therefore, these two models are statistically 
equivalent. Further, one can compute the deflection parameter (b20) under coding 
option 1 directly from the results of coding option 2. To do this, simply subtract b20 
from b10 found from the coding scheme used in Table 2. Similarly, one can compute 
the second linear growth slope from the coding scheme used in Table 2 by summing 
b20 and b10 from the coding scheme used in Table 1.

Multiple changes in linear growth rates can be captured through piecewise models 
as well. For example, imagine that reading growth is measured in the fall and spring 
across four school years. Thus, we have 8 data collection points. Theoretically, 
we might expect reading scores to increase during the school year and remain flat 
(or even decrease) over the summer. Therefore, one might want to fit two growth 
trajectories: one for school year growth and another for summer growth. To model 
these multiple trajectories, we can create two time variables: one that clocks the 
passage of time from the beginning of the study that occurs during the school year 
(time_piece1), and another that clocks the passage of time during the summer (time_
piece2). If we could assume that school year growth remained constant within child 
across the multiple years of the study and summer growth also remained constant 
within child across the study, we could capture the zig-zag pattern of growth across 

Table 2. Piecewise coding scheme for capturing two separate growth rates

WAVE Time_piece1 Time_piece2
1 0 0
2 1 0
3 2 0
4 3 0
5 3 1
6 3 2
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the multiple years of the study with only two different slope parameters: b10, which 
would capture the school year slope, and b20 which would capture the summer slope. 
The coding for this piecewise model is demonstrated in Table 3.

In summary, creative use of piecewise regression models can capture a variety of 
patterns of non-linear change as well as discontinuities in growth.

Quadratic Growth Models

For a quadratic growth, the model at level-1 takes the form

 2
0 1 2( ) ( )ti i i ti i ti tiy time L time L ep p p= + − + − +  (5)

It is important to note that in most cases, a specific time centering constant, L, for 
the level-1 predictors should be introduced. Raudenbush and Bryk (2002) note that 
the choice of the centering constant influences the interpretation of the first order 
coefficient, p1i. If, for example, time is centered on the first time point, then p1i is 
defined as the “instantaneous rate of growth at the initial time point.” The authors 
note, however, that centering at the midpoint instead of the first time point has two 
distinct advantages in quadratic models. The first is that the p1i parameter is then 
understood as the “average rate of growth.” The second advantage is that centering 
on the midpoint minimizes the correlation between the instantaneous velocity and 
acceleration parameters, which then has the “effects of stabilizing the estimation 
procedure” (Raudenbush and Bryk, 2002, p. 182). The choice of centering also 
affects the interpretation of the intercept, p0i, which represents the predicted value 
of the individual i at time L. Nevertheless, the choice of a centering constant for all 
longitudinal models, even those with higher order terms, should consider the research 
design, data analysis goals, and the interpretability of the results. In contrast to the first 
order coefficient, the p2i does not depend on the choice of centering. The quadratic 

Table 3. Piecewise coding scheme for capturing 
multiple changes in two separate growth rates

WAVE Time piece 1 Time piece 2
1 0 0
2 1 0
3 1 1
4 2 1
5 2 2
6 3 2
7 3 3
8 4 3
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coefficient, p2i, provides a “curvature” or “acceleration/deceleration” parameter for 
each person for the entire growth trajectory (Raudenbush and Bryk, 2002).

EXAMPLE: THE EFFECTS OF SCHOOL DEMOGRAPHICS 
ON SCHOOL  ACHIEVEMENT IN SCIENCE

We illustrate the use of a growth model with data on school achievement in 5th grade 
science over a four year time span. In the study, annual school-level scale scores on the 
science section of the Connecticut Mastery Test (CMT) were collected for each of the 
578 elementary and middle schools that participated in assessment between 2008 and 
2011. It is important to note that the units in this example are schools, not students. We 
expected that the percentage of special education students, the percentage of English 
language learners in the school, and the percentage of students receiving free and/
or reduced lunch in a given school would affect a school’s achievement score on a 
state science test in the 5th grade. We were less clear about how those variables might 
influence the school’s growth on the science achievement test over the four years of the 
study. For all the schools in the study, science achievement (yti) was measured over four 
consecutive time points representing scores for spring 2008, 2009, 2010, and 2011.

A Random-Coefficient Regression Model

Most of the schools in the study displayed a monotonically increasing trend 
suggesting that science scores are improving over time. A close visual inspection of 
a sample of four individual school science achievement curves displayed in Figure 1, 
however, suggests that the data are not best represented by the typical “straight” or 
linear path. In fact, the growth patterns for the sample schools appear to follow a 
higher order polynomial (quadratic) growth trajectory. 

The graphical picture also suggests that scores plateau to a single vertex, 
which eliminates the possibility that the polynomial has a degree higher than two. 
Familiarity with polynomial functions, suggests that, for at least the given trend, the 

Figure 1. Science achievement for selected schools (2008 to 2011).
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data are best described as quadratic function, such as the type depicted in Figure 
2. In a given dataset, we can estimate one fewer random effect than we have time 
points. This implies that we must have at least two more time points than the order of 
the polynomial for model specification.  Therefore, if we have collected data across 
4 time points, we can estimate three random effects. Thus, if we wish to estimate 
random effects for each of the growth parameters at level 1 (i.e., a randomly varying 
intercept and a randomly varying slope for each of the growth parameters), then we 
can fit a linear model with three time points, a quadratic (second order polynomial) 
model with four time points, a cubic (third order polynomial) with five time points, 
etc.  Also of note, it still possible to even fit a simple linear model.

In the context of the present research example, a quadratic (or second order 
polynomial) function contains three pieces of information. The first is a constant that 
represents average school science achievement at time L, the second is a coefficient 
for the instantaneous rate of change at time L (the centering point), and the third is a 
coefficient for the acceleration term. In this model, the instantaneous rate of change 
can be positive (indicating an upward trend in school mean science achievement 
when time = L) or negative (indicating a downward trend in school mean science 
achievement when time = L). Another implication is that the instantaneous rate of 
change itself is changing. Thus, the quadratic parameter, p2i, describes the change 
in the rate of change. Along a quadratic trajectory, growth can be accelerating 
(indicating increasing rates of change) or decelerating (indicating decreasing rates of 
change). Data that demonstrate a full parabolic trajectory can have both “growth and 
decline” as well as “acceleration and deceleration” over different intervals of time.

Oftentimes, however, only fragments of the parabola are represented by the data. 
Under these conditions, there can be many combinations of “growth and decline” and 
“acceleration and deceleration” In Figure 3, we illustrate four parabolic fragments, 
each of which is defined by a positive or negative p1i, and a positive or negative p2i, In 
the top left corner, the parabolic fragment with a positive p1i and a negative p2i depicts 
a curve that begins as a positive growth trajectory; however, the rate of increase is 
decelerating across time. In the top right corner, the parabolic fragment with a positive 

Figure 2. Plots of quadratic functions.
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p1i and a positive p2i depicts a curve that shows positive and accelerating growth across 
time. In the bottom left hand corner, the parabolic fragment with a negative p1i and a 
negative p2i illustrates negative growth (or decline) that becomes increasingly rapid 
over time. In the bottom right hand corner, the parabolic fragment with a negative 
p1i and a positive p2i depicts negative growth (or decline) that decelerates over time. 
Based on the plots of 5th grade school science achievement, scores increase, but the 
rate of increase decelerates across time. Thus, the curve we should anticipate most 
closely resembles the curve depicted in the top left corner of Figure 3.

Prior to running any statistical models, we recommend visually inspecting both 
individual growth trajectories and a plot of the change in the means on the outcome 
variable across time. No modeling technique, no matter how novel or sophisticated, 
can substitute for a solid understanding of the data. Our data appears to be best 
modeled by the quadratic function in the top left panel of Figure 3. Between the first 
(time = 0) and most recently scored administrations of the assessment (time = 3) 
the average school scores appear to grow, but their rates of change appear to slow 
as time passes.1 Under this model specification, p0i represents the school’s science 
achievement in 2008, while p1i is the instantaneous initial growth rate in 2008. The 
curvature parameter, p2i, represents the curvature parameter or the acceleration of 
5th grade school science achievement. The time variable was centered on the first 
administration of the science assessment.2

Figure 3. Growth and curvature combinations for quadratic function fragments.
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If the a priori assumption is that the quadratic model is likely the best fitting 
model, then it is sensible to begin with an unconditional level-1 model with an 
intercept, first-order, and quadratic parameters. In hypothesizing a quadratic fit to 
the data, it is then necessary to test the statistical significance of this specification. 
If the quadratic term is not statistically significant and the quadratic model does 
not provide statistically significantly better fit than the linear model (using the chi-
square difference test), then the quadratic term is probably not necessary, and the 
data can likely be fit with a simpler (i.e., linear) model.

The results of the unconditional model indicate a function with an intercept 
of 246.09, an instantaneous growth slope of 4.85 points per year and a curvature 
parameter of -.86, which indicates that the slope is becoming more negative across 
time.

 2246.09 4.85 0.86tiy t t= + −  (6)

These results suggest that, on average, schools begin with a science scale score of 
246.09 out of a possible 400 points on the science achievement test. The model 
also indicates that school scores are improving (rather than declining) since the 
instantaneous growth rate in 2008 (represented by the b10 parameter) was estimated 
to be approximately 4.85 points per year. In addition, it appears that the growth of 
science in schools is, as predicted, is slowing down.

For linear and quadratic growth models, it is possible to determine whether the 
outcome measure is increasing or decreasing by using the first derivative test of the 
function.3

Table 4. Quadratic model of growth in science achievement (unconditional model)

Fixed Effect Coefficient (SE) t Ratio p-Value

School mean achievement (p0)

Intercept (b00) 246.09 (1.07) 229.66 < 0.001

School mean growth rate (p1)

Intercept (b10) 4.85 (0.49) 9.79 < 0.001

School mean acceleration rate (p2)

Intercept (b20) −0.86 (0.16) −5.46 < 0.001

Estimation Method: Restricted Maximum Likelihood
Random Effect Variance Component x2(df ) p-Value
Variance in intercept (r0) 609.79 8346.87 (540) < 0.001

Variance in linear slope (r1) 25.84 681.48 (540) < 0.001

Variance in accel. slope (r2) 2.49 675.91 (540) < 0.001

Variance within (s2) 43.28
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 2  246.09 4.85 0.86tiscore y t t= = + −   (7)

   4.85 1.72
dy

rateof change t
dt

= = −

Once the level-1 model is specified, the first derivative is calculated, and the values 
over the interval of interested are substituted into the function. If the values are 
positive, the function is increasing; if the values of the function are negative, the 
function is decreasing. Table 5 uses the first derivative test to evaluate 4 possible 
quadratic functions. Table 6 provides the first derivative test for our school science 
achievement data.

The overall results of the first derivative test for our level-1 function are found 
in the first row of Table 5 and Table 6. The results indicate that the science scores 
have been increasing over time since the assessment was first introduced although 
the growth rate has been steadily declining. By time point 3, it appears that science 
growth has completely leveled out, and may even be declining slightly.

Table 5. First derivative test to determine increasing or decreasing growth of 
hypothetical models

Parameter 
Coefficient 
Description yti Interval*

tiy′  Conclusion
Pos. Inst. Growth (p1t) 
Neg. Curvature (p2t)

2246.09 4.85 0.86t t+ −  
[0, 3] 4.85 − 1.72t Increasing between year 

1 and just before year 3; 
decreasing at year 3 

Neg. Inst. Growth (p1t) 
Neg. Curvature (p2t )

2246.09 4.85 0.86t t− −  
[0, 3] −4.85 − 1.72t Decreasing from year 1 

through year 3

Pos. Inst. Growth (p1t) 
Pos. Curvature (p2t)

2246.09 4.85 0.86t t+ +  
[0, 3] 4.85 + 1.72t Increasing from year 1 

through year 3

Neg. Inst. Growth (p1t) 
Pos. Curvature (p2t)

2246.09 4.85 0.86t t− +  
[0, 3] −4.85 + 1.72t Decreasing between year 1

and just before year 3; 
increasing after year 3

* Note: Since time is centered on first administration of the science test in 2008, the measurement 
occasions 2008, 2009, 2010, and 2011 now correspond to times 0, 1, 2, and 3.

Table 6. First derivative test results for the school science achievement

Time Point  Rate of Change Calculation  Rate of Change Interpretation

0 4.85 − 1.72(0) = 4.85 Growth

1 4.85 − 1.72(1) = 3.13 Growth

2 4.85 − 1.72(2) = 1.41 Growth

3  4.85 − 1.72(3) = −0.31  Decline
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Unlike linear growth models which have only one constant growth or decline 
parameter, quadratic functions have a non-zero acceleration coefficient. This implies 
that the growth or decline can be accelerating or decelerating. To determine whether 
a function is accelerating or decelerating, the second derivative test is used in a 
manner similar to the first derivative.
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 (8)

After calculating the second derivative of the level-1 model, the values from the 
time interval of interest are substituted into the second derivative. Positive values 
indicate locations along the time interval where the function is accelerating while 
negative values indicate ranges where the function is decelerating. In our example, 
the result of the second derivative is −1.72. It is a constant and indicates that the rate 
of change is steadily declining. In quadratic functions, the acceleration (or change 
in the rate of change) is always constant, making the calculation relatively trivial in 
this example. However, for higher order polynomial models, such as cubic models, 
the acceleration rate is itself variable, and the value of the second derivative should 
be evaluated at each time point in a manner consistent with the first derivative test.

The results for our function are found in the first row of Table 7. The model 
suggests that the rate of change is becoming more negative, thus, growth in school 
science achievement is slowing down.

Once the unconditional model is estimated, it is then appropriate to fit the 
level-1 model to the data using any additional time varying covariates. One of 
the interesting features of the data was access to variables that had the potential 
to be treated as either time-varying or time-invariant covariates. In this study, 
some variables were measured at every time point, and thus, could conceivably be 

Table 7. Second derivative test determine accelerating or decelerating 
growth model (concavity)

Parameter Coefficient 
Description yti Interval

tiy′′  Conclusion 

Neg. Curvature (p2t) 2246.09 4.85 0.86t t± −  
[0, 3] −1.72 Instantaneous growth 

(slope) is decreasing 
(concave down)

Pos. Curvature (p2t) 2246.09 4.85 0.86t t± +  
[0, 3] 1.72 Instantaneous growth 

(slope) is increasing 
(concave up)
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treated as either time-varying covariates or time-invariant group-level variables. 
Researchers in similar research designs often assume that because data are collected 
at every time point they should be treated as time varying. If, however, there is not 
sufficient variability in the data across time within unit, then treating the variable 
as time varying may not be advantageous. For example, demographic data such 
as socioeconomic status (SES) often appears in growth models and fits this very 
situation. In these types of variables, although it is possible to measure school 
characteristics over time, there may not be enough within cluster variance in the 
variable to justify its treatment as time-varying covariate. The most sensible approach 
to determining whether to treat a variable time-varying covariate or group-level 
variable is to calculate the intraclass correlation coefficient (ICC) for each variable 
in question. The ICC is known as the “cluster effect” and it measures the proportion 
of variance in the outcome that is “between groups” (i.e., the level-2 units). To use 
the ICC to determine whether variables should be treated as time-varying covariates, 
first set each variable of interest as the outcome and obtain parameter estimates 
for the within-group variability (s2) and the between-group variability (p00). With 
these parameter estimates, it is possible to calculate the ICC, which is given by the 
formula

 00
2

00( )

t
r

t s
=

+  (9)

and is therefore best described as the between-group variance divided by the total 
variance. ICC values close to 1 indicate very little within-cluster variability across 
time. ICC values near zero indicate large within-cluster variability across time.

In the school science achievement study, many of the demographic variables used 
have the potential to function as either time-variant or time-invariant. As a result, 
ICCs were calculated for all the variables considered in the model.

In our experience, variables with ICCs of 0.85 and above reflect a low degree of 
within cluster variance and are best treated as time-invariant group-level variables.

The high ICCs for the percentage of English language learners (ELL) and the 
percentage of free and/or reduced lunch students (LUNCH) in Table 8 suggest that 
virtually all the variance in these variables occurs between schools rather than within 
schools. As a result, these two variables do not display enough variability within 

Table 8. ICCs for science achievement demographic variables

Variable t00 s2 ICC

ELL 70.25 11.59 0.86

LUNCH 1100.2 43.88 0.96

SPED 8.93 20.26 0.31
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schools to be treated as time-varying covariates at level-1. In response to these 
results, the average percentages for these three variables were calculated over the 
four years of testing and used at level-2 (in this case, school) to best understand the 
growth in scores over time. In contrast, the percentage of special education students 
taking the science achievement test (SPED) had an ICC of 0.31, which is fairly low. 
Thus, we treated the percentage of special education students in the grade as a time-
varying covariate.

Once the appropriate predictor variables are chosen for the level-1 model, it is 
critical to define their “location” to correctly interpret the intercept, instantaneous 
growth rate, and curvature of the model. Raudenbush and Bryk (2002) identify 
four possible locations for the predictor variables: the natural metric, grand mean 
centering, group mean centering, and “specialized” locations. In the natural metric 
centering approach, the zero is defined as the absence of any of the predictor 
variable. This is theoretically plausible since the demographic variables are 
“percentages” of student population characteristics. For example, in our model, 
it is possible to have zero percentages of special education students. However, we 
chose the second approach, grand mean centering for the purpose of this study. 
Grand mean centering is the standard choice of location in the classical analysis 
of covariance model. It allows the intercept to be interpreted as the expected 
value for a school that is at the mean on the variable that has been grand mean 
centered. In our example, because we grand mean centered the free lunch and 
ELL variables, we can think of the intercept as the expected science score for 
an “average” school in our sample, or more specifically, as the expected school 
science score for a school that has an average percentage of free lunch and ELL 
students (for our sample). The third strategy, group mean centering, allows for 
the centering of level-1 predictor variables around the mean of their level-2 unit, 
which is school is the present study. While there are countless “specialized” 
centering strategies for multilevel models, in the growth modeling framework the 
most common centering approaches will likely be ones that define the metric such 
that the intercept corresponds to an outcome at a specific time point.4 For our 
study, the level-1 SPED predictor variable was grand mean centered, our level-2 
variables (percentage of free lunch students and percentage of ELL students) were 
grand mean centered, and we added one time varying covariate, the percentage of 
special education students in the fifth grade.

The results indicate that percentage of special education students (the only time-
varying covariate in the study) is statistically significant. The SPED predictor variable 
has the effect of reducing the school science score by 0.37 points for each percentage 
point increase in the number of special education students taking the test. Recall 
that the relationship between this time-varying covariate and school achievement is 
consistent across time. In addition, given that we are already estimating 3 random 
effects for a model with 4 time points, we are unable to estimate a random effect for 
this variable. Thus, the effect of the special education variable on school science 
achievement is assumed to be constant across schools as well.
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An Intercepts- and Slopes-as-Outcomes Model of the Effects of the Percentages of 
English Language Learners and Students Receiving Free and/or Reduced Lunch

With an appropriately identified level-1 model, it then possible to test the full 
hypotheses of the school science achievement study. We hypothesized that the 
percentages of English language learners (ELL) and free and/or reduced lunch 
recipients (LUNCH) would affect the initial status, the instantaneous growth rate, 
and the curvature of school science achievement. We also hypothesized that schools 
would vary in terms of their initial achievement as well as the shape and trajectory 
of their growth; therefore, we estimated random effects for each of those growth 
parameter components. In the final trimmed model reported in Table 10, we did not 
include any parameters that were not statistically significant in the full model.

The results in Table 10 suggest that the initial school mean achievement in 
science depended jointly on the percentage of English language learners and free 
and/or reduced lunch recipients taking the science test in the school. Each percent 
increase in English language learners taking the test lowered the school’s science 
achievement by 0.28 points, after controlling for the percentage of students 
receiving free and/or reduced lunch. In addition, each percent increase in test-takers 
that participated in the free and/or reduced lunch program resulted in initial mean 
science scores that were approximately 0.68 points lower, after controlling for 
the percentage of English language learners taking the test. In contrast, only the 
percentage of free and/or reduced lunch students taking the test had a statistically 

Table 9. Level-1 quadratic growth model for science achievement

Fixed Effect Coefficient (SE) t Ratio p-Value

School mean achievement (p0)

Intercept (b00) 245.96 (1.06) 232.44 <0.001

School mean growth rate (p1)

Intercept (b10) 5.01 (0.48) 10.34 <0.001

School mean acceleration rate (p2) 

Intercept (b20) −0.89 (0.15) −5.78 <0.001

SPED slope (p3) 

Intercept (b30) −0.37 (0.05) −8.41 <0.001

Estimation Method: Restricted Maximum Likelihood
Random Effect Variance Component x2(df) p-Value
Variance in intercept (r0) 597.46 8661.15 (540) <0.001
Variance in linear slope (r1) 26.09 689.04 (540) <0.001
Variance in accel. slope (r2) 2.43 680.39 (540) <0.001

Variance within (s2) 40.85   
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significant effect on p1t a school’s initial instantaneous growth rate in science. School 
science test scores increased 0.02 points more slowly for each percentage increase 
in the number of free and/or reduced lunch recipients taking the test. However, the 
same demographic variables that contributed to modeling the initial status and initial 
instantaneous growth rate did not make a statistically significant contribution to 
modeling the acceleration/curvature parameter. Table 11 provides predicted values 
for schools with three different demographic compositions. Whereas all three types 
of schools do increase across the 4 time points, the high special education/high ELL/
high free lunch school’s predicted initial scores are substantially below those of the 
average and low special education/ ELL/ free lunch schools. Further, whereas, the 
average schools are expected to gain about 7 points between 2008 and 2011 and the 
low special education/ ELL/ free lunch schools are expected to gain about 9 points 
during that time period, the high special education/ ELL/ free lunch schools are 
expected to gain less than 3 points. Therefore, the high special education/ ELL/ free 
lunch schools, who start out with the lowest science scores, also make the slowest 
growth, and their growth levels off the most quickly, which is a disturbing finding, 
given the original performance gap.

Table 10. Full quadratic growth model for science achievement

Fixed Effect Coefficient (SE) t Ratio p−Value

School mean achievement (p0)

Intercept (b00) 245.94 (0.49) 498.74 <0.001

ELL (b01) −0.28 (0.06) −4.49 <0.001

LUNCH (b02) −0.62 (0.02) −35.74 <0.001

School mean growth rate (p1)

Intercept (b10) 4.96 (0.49) 10.25 <0.001

LUNCH (b11) −0.02 (0.01) −3.59 0.001

School mean acceleration rate (p2)

Intercept (b20) −0.87 (0.15) −5.62 <0.001

SPED slope (p3)

Intercept (b30) −0.37 (0.04) −9.68 <0.001

Estimation Method: Restricted Maximum Likelihood
Random Effect Variance Component x2(df) p-Value
Variance in intercept (v0) 96.71 1832.55 (538) <0.001
Variance in linear slope (v1) 27.07 693.86 (539) <0.001

Variance in acceleration (v2) 2.49 681.92 (540) <0.001

Variance within (s2) 40.76   
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Although the quadratic model provided an appropriate fit of the data, it makes 
theoretical sense to compare this model to a simpler linear model for the sake of 
parsimony. As mentioned earlier, if the fit of the simpler model is not statistically 
significantly worse than the fit of the more complicated one, then the simpler model 
should be preferred.

Generally, when the number of clusters is small, the parameter estimates should 
be computed using restricted maximum likelihood estimation (REML). REML 
estimates of variance-covariance components adjust for the uncertainty about fixed 
effects (Raudenbush & Bryk, 2002). However, when using chi-square difference 
tests to compare models that differ in terms of their fixed effects, it is necessary 
to use deviances that were computed under full maximum likelihood (McCoach & 
Black, 2008). The full linear model is identical to the quadratic model in terms of 

Table 11. Predicted values for schools of three hypothetical demographic variable groups

School Characteristics t0 t1 t2 t3 

High Special Education (%)
High English Language Learner (%) 222.72 223.51 225.19 225.12
High Free/Reduced Lunch (%)

Average Special Education (%)
Average English Language Learner (%) 245.94 250.03 252.38 252.99
Average Free/Reduced Lunch (%)

Low Special Education (%)
Low English Language Learner (%) 271.8 276.56 279.58 280.86
Low Free/Reduced Lunch (%)

The “high” and “low” categories are defined as values that are 1 standard deviation above 
and below the mean for each independent variable.

Figure 4. Predicted values for schools of three hypothetical demographic variable groups.
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the demographic variables used to predict the intercept and growth rate. The only 
difference is the deletion of the acceleration/deceleration fixed and random effects 
in the model. Therefore, we can use deviances computed under REML to compare 
the fit of the two models.

Model selection should be guided by theory and informed by data. Adding 
parameters is likely to improve fit and cannot lead to worse model fit (Forester, 
2000). The critical issue is whether the improvement in the fit of the model justifies 
the inclusion of additional parameters. Thus, the principle of parsimony is paramount 
(Burnham & Anderson, 2004). Additionally, using data to compare several plausible 
competing hypotheses often provides more useful information than comparing a 
given model to an often implausible null hypothesis (Burnham & Anderson, 2004).

When we judge the fit of a quadratic versus a linear model we are comparing 
nested models. If two models are nested, the deviance statistics of two models can 

Table 12. Full linear growth model for science achievement

Fixed Effect Coefficient (SE) t Ratio p-Value

School mean achievement (p0)

Intercept (b00) 246.76 (0.48) 519.01 <0.001

ELL (b02) −0.28 (0.06) −4.58 <0.001

LUNCH (b03) −0.62 (0.02) −35.99 <0.001

School mean growth rate (p1)

Intercept (b10) 2.35 (0.16) 14.60 <0.001

LUNCH (b11) −0.02 (0.01) −3.46   0.001

SPED slope (p2)

Intercept (b20) −0.37 (0.04) −8.77 <0.001

Estimation Method: Restricted Maximum Likelihood
Random Effect Variance Component x2(dt) p-Value

Variance in intercept (r0) 92.27 1436.31 (536) <0.001

Variance in linear slope (r1) 4.32 729.26 (537) <0.001

Variance in SPED slope (r2) 0.13 596.19 (538)   0.041

Variance within (sig sq) 44.68   

Table 13. Statistics for covariance components models

Model Number of Parameters Deviance
1. Level-2 Linear Growth 10 15850.99
2. Level-2 Quadratic Growth 14 15807.99
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be compared directly. The deviance of the simpler model (D1) minus the deviance of 
the more complex model (D2) provides the change in deviance 1 2( D ).D DΔ − −  The 
simpler model always will have at least as high a deviance as the more complex model, 
and generally the deviance of the more complex model will be lower than that of the 
simpler model. In evaluating model fit using the chi-square difference test, the more 
parsimonious model is preferred, as long as it does not result in significantly worse fit. 
Therefore, when the change in deviance (ΔD) exceeds the critical value of chi-square 
with (p1 − p2) degrees of freedom, we favor the more complex model. However, if 
the more complex model does not result in a statistically significant reduction in the 
deviance statistic, we favor the parsimonious model (McCoach & Black, 2008).

For comparisons of models that differ in their fixed effects, it is necessary to 
use full information maximum likelihood (FIML) to estimate the deviances of the 
models. The model comparison between the level-2 linear and level-2 quadratic 
models, shown in Table 14, suggests that the more complicated quadratic model is, 
in fact, the more appropriate model for the data.

A visual inspection of the plot of the average of the actual school science 
achievement scores compared the score estimates provided by the linear and 
quadratic models confirms the conclusion that the growth is best modeled by the 
addition of a second degree polynomial. In fact, our quadratic predictions are almost 
identical to the scores from the raw data. It is always a good idea to compare the 
model implied level-1 growth trajectory to the actual data: a well specified growth 
model should be able to recover the original shape of the data fairly accurately.

Table 14. Model comparisons of science achievement growth models

Model Comparison Δx2 df p-Value
Level-2 Quadratic vs. Level-2 Linear 42.85 4 < 0.001

Figure 5. Predicted linear and quadratic science achievement scores compared to actual 
science scores.
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DISCUSSION

This longitudinal modeling of school-level science achievement is one approach 
to the study of school effectiveness. For this simple example, we focused on three 
key demographic variables that the literature has identified as related to school 
achievement. We employed a quadratic growth model to gain insights into how 
school science achievement changes over time.

The addition of a curvature parameter to the linear growth function improved 
the model of the school science achievement data. Although school science means 
were increasing, the instantaneous rate of that increase was slowing down. This 
result is consistent with our instinct regarding school level improvement on large 
scale assessments. Since the first time point coincides with the first year the science 
assessment was administered, we can see that improvement is steepest in the 
beginning, as schools become more comfortable with the new test. However, the 
rate of growth slows across the 2008–2011 period.

Another implication of the model is that the percentage of free lunch students 
has an influence not only on mean school achievement, but also the instantaneous 
growth rate. Each percentage increase in the number of students receiving free and/
or reduced lunch reduces the instantaneous growth rate by two hundredths of a point 
each year. This effect might seem trivial, but this means that schools where 85% of 
the students receive free or reduced price lunch are expected to grow 1.5 points more 
slowly per year than schools where 10% of the students receive free or reduced price 
lunch. Thus, over the time period in question, the gap between those two types of 
schools would widen by 4.5 points. Overall, we were able to conclude that school 
science achievement improved in the three years following the first administration 
of the science assessment, but the improvement levels off or slows down across 
time.

Growth modeling has the potential to provide insights that go beyond static 
measures of achievement differences. Educational policymakers will always 
be interested in the status of school achievement, but these concerns are being 
augmented by questions about growth and decline. The consequence of these 
concerns is that “effectiveness” is better understood as dynamic rather than static 
school characteristic. As a result, multilevel modeling of repeated measures of school 
achievement data can serve as one straightforward technique for understanding 
school dynamics and change over time.

GROWTH MODELS: ISSUES AND PITFALLS

Using individual growth models with real data presents a variety of issues and 
challenges. We address several key concerns: measurement of the dependent 
variable, regression to the mean, measurement error, floor or ceiling effects, the 
scale of the dependent variable, non-normal or non-interval level data, and changes 
in the distribution across time.
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Measurement of the Dependent Variable

Growth models with continuous variables require an assumption that the dependent 
variable is normally distributed at each time point. However, when using the same 
measure across time, the distribution of the dependent variable could change. For 
example, scores on an assessment could be positively skewed at time point 1, 
normally distributed at time point 2, and negatively skewed at time point 3. Imagine 
giving the same assessment to students across three time points. Perhaps on the 
first testing occasion, the test is difficult for the most of the students, resulting in a 
positively skewed distribution. On the second testing occasion, students are fairly 
normally distributed. By the third testing occasion, many students have made so 
much growth that the assessment is now fairly easy for them, resulting in a negatively 
skewed distribution. Situations such as this are not uncommon, resulting in changes 
in the shape of the distribution of the dependent variable across time.

In this situation, transforming the dependent variable across all of the time 
points is problematic, as the transformation would alleviate the problem at one 
time point but exacerbate the problem at another time point. However, applying 
different transformations across the different time points is also not possible, as 
that creates different scales across time. Some have suggested standardizing the 
dependent variable at each time point to normalize the distribution and to try to 
ensure equitability of the variable across time. This is a poor idea. The fact that 
standardized scores have a mean of 0 and a standard deviation of 1 (and thus a 
variance of 1) leads to two important outcomes. First, because the mean across time 
points is standardized to be 0, growth models using standardized scores are not 
capturing growth per se, instead, they capture change in relative status. Second and 
more importantly, standardizing scores at each time point constrains the variance 
of the measure to be equal across time, which is often an unrealistic assumption. 
Educational and psychological research has consistently shown that the variance 
in achievement, skills, or ability generally increases across time (Bast & Reitsma, 
1998; Gagné, 2005; Kenny, 1974). “Such standardization constitutes a completely 
artificial and unrealistic restructuring of interindividual heterogeneity in growth” 
(Willett, 1989) and constraining scores in this way is likely to produce distorted 
results (Thorndike, 1966; Willett, 1989). Thus Willett (1989) recommends against 
the standardization of the dependent variable when conducting analyses of change.

Measurement Challenges

There are several measurement issues that should be considered before embarking 
on growth analyses. These challenges relate to the ability to adequately capture 
growth using any measure. The reliability of scores used as dependent variables in 
growth analysis is of particular concern. Regression to the mean, or the tendency for 
those with extreme initial scores to score closer to the average score on subsequent 
assessments, can bias growth measures, overestimating the growth of low achieving 
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students and underestimating the growth of high achieving students. Measurement 
error, or the degree of imprecision in test scores, is also of concern (McCoach, 
Rambo, & Welsh, 2012).

Regression to the Mean

Regression to the mean is an important, but commonly misunderstood statistical 
phenomenon. When using an independent variable (such as a test score at Year 1) 
to predict scores on a dependent variable (such as a test score at Year 2), errors in 
prediction will occur whenever the correlation between the two variables is less 
perfect (+1.0 or −1.0) (Campbell & Kenny, 1999). These errors in prediction will 
make it appear that people with initially extreme scores have scores closer to the 
mean on the posttest. Therefore, the scores of high achieving individuals will grow 
at a smaller rate than low or average achieving individuals. People who score very 
low at the initial time point are more likely to demonstrate steeper growth rates than 
average or high achieving individuals (McCoach et al., 2012).

Measurement Error

The measurement of psycho-educational constructs is fraught with error. For 
example, educators use scores on achievement tests to infer a person’s level of 
content mastery in a domain. However, a person’s score on the test is not a perfect 
measure of his or her achievement level. There are a variety of factors that could 
cause the test score to be either an over or an underestimation of the person’s actual 
achievement level. The content sampling of items on the test, the format of the items, 
the testing conditions, and many other factors can cause the observed test score to 
deviate from the underlying trait value. All of these factors are subsumed under the 
general term measurement error. Reliability is a related concept in that it describes 
the consistency of scores across time, test forms, or internally within the test itself. 
Measurement error and reliability are inversely related: the greater the measurement 
error, the lower the reliability of the scores. The goal, of course, is to minimize 
the degree of measurement error in scores; however, it is impossible to completely 
eliminate (McCoach et al., 2012).

Both unconditional and conditional errors of measurement influence the reliability 
with which we can estimate the scores of high ability students. Conditional errors of 
measurement are errors that depend on the location of a score on the scale (Lohman 
& Korb, 2006), whereas unconditional errors of measurement are evenly distributed 
across the entire range of scores. The reliability coefficient or the traditional standard 
error of measurement both assumes errors of measurement to be constant across 
the score distribution. However, in general, the amount of error in test scores is 
not uniform across the distribution of scores (Lohman & Korb, 2006). Instead, it is 
U-shaped: the error is lowest for people in the middle of the score distribution and 
highest for the people at the extremes of the score distribution (McCoach et al., 2012).
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Floor or Ceiling Effects

A somewhat related issue is that of ceiling effects. A test may not contain questions 
to assess or distinguish among the lowest or highest scoring individuals. When an 
individual hits the ceiling of an assessment, there is no way to assess how much more 
the person knows and can do. Conversely, the floor does not accurately capture a 
person’s true level of functioning. If a person’s performance is far above or below the 
range of the assessment for one or more of the testing occasions, we cannot accurately 
estimate growth across time. Obviously, if the floor of a test is too high or the ceiling 
of a test is too low, then there is no way to accurately measure the achievement 
or the growth of the individuals whose performance falls outside the range of the 
assessment. If people outgrow the test, or if it is too difficult at the outset, estimates 
of growth may be greatly distorted. Therefore, when designing longitudinal studies, it 
is extremely important to consider the range of the assessment and whether the range 
of the assessment will be able to capture the full range of abilities of a diverse set of 
people across all of the time periods included in the study (McCoach et al., 2012).

Attrition and Missing Data

Individual growth modeling can easily handle missing observations at level-1, 
assuming “that the probability of missingness is unrelated to unobserved concurrent 
outcomes (conditional on all observed outcomes)” (Singer & Willett, 2003, p. 159). 
When level-1 data are missing completely at random or missing at random, 
individual growth modeling should still produce valid results (Singer & Willett, 
2003). However, when attrition is systematic and is related to scores on the outcome 
variable of interest (after controlling for the independent variables in the model), the 
estimates of the growth parameters are likely biased, leading to invalid inferences 
about the phenomenon of interest. Thus it is very important to examine the nature 
of the missingness within the sample prior to conducting growth analyses. The 
interested reader should consult Enders (2010) for an excellent introduction to the 
issue of missing data.

RECOMMENDATIONS

When a researcher is interested in capturing growth or change over time, it is best 
to collect three of more data points. The more complex the shape of the growth 
trajectory is expected to be, the greater the number of time points required to estimate 
the model. In addition, the reliability of the growth slope is dependent not only on the 
reliability of the outcome measure, but also on the number of observations. Increasing 
the number of observations collected increases the reliability of the growth slope. Of 
course, there are diminishing returns to increasing the number of observations. The 
timing and spacing of the measurements is also important. For an excellent treatment 
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of these issues, see Raudenbush and Xiao-Feng (2001). Researchers should consider 
the expected shape of the trajectory and their goals for conducting the analysis 
during the design phase when they decide how frequently and how many times they 
plan to measure participants on the outcome measure of interest. Further, it is critical 
to visually inspect the shape of the individual growth trajectories prior to conducting 
any statistical analyses to understand and correctly model the functional form of the 
data. No statistical analysis can supplant the wealth of information that is provided 
by the visual examination of individual growth trajectories.

Measurement issues are especially salient when analyzing change. The reliability 
of a measure of change is bounded by the reliability of the initial measure. Therefore, 
to accurately capture the nature of change, it is important to use measures that exhibit 
strong psychometric qualities. One possible solution to this issue is to use multiple 
indicators of the construct of interest and to impose a measurement model onto the 
analysis of change. This is easily accomplished in the SEM framework. While it is 
possible to build crude measurement models in an HLM framework under certain 
limiting assumptions, the SEM framework lends itself more naturally to the modeling 
of latent variables. For details on using SEM models to estimate growth models, see 
(Ferrer-Caja & McArdle, 2003; McArdle, 2001; McArdle, 2006). Further, to increase 
the reliability of growth slopes, increase the number of data collection points.

We hope that this introduction to growth modeling within the multilevel 
framework provides useful advice for researchers who are interested in analyzing 
change or growth. We end where we started, by reminding the reader once again that 
the most important ingredient necessary to build a successful longitudinal model is 
a substantive theory about the nature of the change in the variable of interest over 
time. When conducting longitudinal models, no complex statistical models can ever 
substitute for a combination of substantive theory, knowledge of the data, and good 
old fashioned common sense.

NOTES

1 The centering parameter, L, was set at 2008, because this represents the first year the science 
achievement portion of the CMT was administered to 5th graders in the state.

2 The choice of choice of a centering constant L of 2008 placed the interpretation of the intercept as the 
average school science achievement at the first administration of the test. This makes substantive sense 
since the study is most interested in the initial achievement of schools as well as their growth rates. It 
should also be noted that a midpoint centering of 2.5 years is unhelpful from both a substantive and 
interpretive standpoint largely because it represents a test administration time point that does not exist. 
The assessment is given yearly in the spring making interpolation of data points extremely problematic.

3 Since the function we chose to model the data is monotonic it is also differentiable. The derivative of a 

polynomial can be calculated by applying the Power Rule: 1,  0.n nd
x nx n

dx
−= ≠

4 The centering of level-2 variables is not as critical as the choices of centering for level-1 predictors. As 
a result, Raudenbush and Bryk (2002) suggest that it is “often convenient” to center all of the level-2 
predictors on their corresponding grand means.
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SPYROS KONSTANTOPOULOS

11. META-ANALYSIS

INTRODUCTION

The objective of scientific investigations is to gain knowledge and understanding 
about phenomena through careful and systematic observations and analyses. 
Arguably, scientific research has an inherent cumulative nature since dependable 
information of prior scientific inquiries guides future studies as well as facilitates 
knowledge building. Scientific investigations seek to describe and explain phenomena 
that relate to a wide range of individuals and settings. Indeed, knowledge building is 
especially valuable when it can be generalized or transferred to different population 
groups and settings. However, it is rare that a comprehensive and generalizable body 
of knowledge will result from one single study (see Cook et al., 1992). By and large, 
a single effort of data collection will describe a restricted population of individuals 
in a specific geographic area. Thus, acquiring research evidence produced from 
multiple studies is essential to draw more general conclusions.

The last 50 years the overwhelming growth of scientific endeavors has led 
to an abundance of research studies. In particular, the last three decades a large 
body of quantitatively oriented empirical studies that focus on specific topics of 
research (e.g., teacher effectiveness) and discuss similar associations of interest 
has been produced. The amount of research related to various topics of scientific 
interest poses the question of how to group, organize, and summarize findings in 
order to identify and utilize what is known as well as guide research on promising 
areas (Garvey & Griffith, 1971). Hence, the development of systematic methods 
for organizing information across related research studies that focus on specific 
topics to produce generalizable knowledge has become particularly important. This 
need for accumulating research evidence in a specific research area has led to the 
development of systematic methods for synthesizing research quantitatively the last 
30 years (Cooper, Hedges, & Valentine, 2009). The main purpose of integrating 
empirical evidence is to make generalizations about a specific topic of interest.

There are multiple ways of summarizing results from a sample of related studies 
that discuss similar relationships of interest (e.g., teacher characteristics and student 
achievement). For example, narrative reviews of related literature have been common 
practice for a long time. In such review studies, expert reviewers in a specific field 
summarize findings from a sample of studies that they have selected. Another 
example, which has gained ample attention the last 20 years, is systematic reviews 
or research syntheses (see Cooper et al., 2009). In research syntheses there are clear 
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sets of rules about searching for related studies, selecting the final sample of studies, 
extracting quantitative information from each study, and analyzing the quantitative 
indexes to produce summary statistics (Borenstein, Hedges, Higgins, Rothstein, 
2009). One would argue that the mechanisms involved in research synthesis reviews 
are more transparent than those involved in narrative reviews mainly because the 
criteria and processes that are followed in the review is specified very clearly in 
research synthesis (Borenstein et al., 2009).

Currently, the use of research syntheses that include statistical methods to 
summarize results from various empirical studies that test the same hypothesis is 
widespread in education, psychology, medicine, and the social science and health 
science research in general. A crucial part of research synthesis is the statistical 
analysis involved in combining quantitative information among related studies. 
Although a few quantitative methods have been described for accumulating research 
evidence, meta-analysis (e.g., Borenstein et al., 2009; Glass, 1976; Hedges & Olkin, 
1985; Lipsey & Wilson, 2001) is widely considered to be the most popular and the 
most appropriate. The term meta-analysis of primary research evidence was first 
introduced by Glass (1976), who defined it as the “analysis of analyses” (p. 3).

Meta-analysis refers to the statistical methods that are used to combine quantitative 
evidence from different primary research studies that test comparable hypotheses for 
the purposes of summarizing evidence and drawing general conclusions (Cooper 
et al., 2009). In meta-analysis first the results of individual studies are described 
via numerical indexes, also called effect size estimates (e.g., correlation coefficient, 
standardized mean difference, odds ratio). Second, these numerical estimates are 
combined across studies to obtain summary statistics such as a weighted mean (e.g., 
a standardized mean difference or an association). The importance of each study 
estimate is demonstrated via a weight that is used in the computation of the summary 
statistics across the studies in the sample. That is, essentially, meta-analysis is a 
statistical procedure that uses study specific weights to compute an average estimate 
in a sample of studies. Once the weighted average estimate and its standard error 
have been computed, a formal test can be used (e.g., a z test) to determine the 
statistical significance of the mean.

The present chapter focuses on the meta-analysis part of research synthesis. The 
structure of the chapter is as follows. First, we define research synthesis and we 
delineate its advantages. Second, we discuss the types of effect sizes used in research 
synthesis. Third, we present fixed and random effects models in meta-analysis. 
Univariate meta-analysis is assumed, that is, only one effect size per study. Finally, 
we show how fixed and random effects models can be applied to real data. The 
examples we discuss are from educational research.

RESEARCH SYNTHESIS AND ITS ADVANTAGES

Research synthesis refers to very clearly defined steps or activities that are followed 
in the process of combining quantitative evidence from a sample of related studies. 
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The ultimate objective is to make a general statement about relationships or effects 
in a research area of interest. Now, meta-analysis is the part of research synthesis 
that is related to the statistical methods used to combine quantitative study specific 
indexes (Hedges & Olkin, 1985). That is, meta-analysis is the statistically related 
component of research synthesis. Of course, research synthesis involves other 
important components that are non-statistical. For example, first a topic should be 
identified and primary or secondary research questions need to be formulated. For 
example, what is the association between class size and achievement? Then, a careful 
and exhaustive literature search needs to be conducted. This step typically involves 
electronic searches of large databases such as ERIC, of the internet (e.g., google 
scholar), relevant journals and books, as well as investigating citations that appear in 
retrieved studies and contacting researchers who are experts in the specific area, etc. 
This step also involves identifying specific criteria for including or excluding studies 
(e.g., year of study, type of design, age of individuals, etc). The third component 
involves indentifying information from each study that can be used to construct 
quantitative indexes (e.g., a standardized mean difference) as well as study specific 
characteristics (e.g., year of publication, type of research design used, type of 
setting, geographic location, etc). The last component refers to the interpretation of 
the results produced from the meta-analysis step. This is an important step because 
it produces general statements about an effect or a relationship of interest. Excellent 
sources of the non-statistical aspects of research synthesis are available in Cooper 
(1989), Cooper et al. (2009), and Lipsey and Wilson (2001).

An important advantage of research synthesis is that it produces robust results and 
knowledge that can be generalizable across different samples and settings (Cooper 
et al., 2009). This constitutes a unique aspect of research synthesis that is crucial 
for the external validation of the estimates (see Shadish, Cook, & Campbell, 2002). 
Generally, the estimates that are produced from research syntheses have higher 
external validity than estimates reported in single studies. As a result, one can make 
more valid inferences about associations or effects of interest. That is, the summary 
statistics that are generated by meta-analyses can verify or refute theories, identify 
promising areas of research, advance substantive theory, and guide future research. In 
addition, the results of research synthesis can inform policy (Borenstein et al., 2009). 
For example, the results of a research synthesis can attest that a school intervention 
improves student achievement, or that treatments or drugs improve human health, 
etc. From a statistical point of view, the tests used in meta-analysis have higher 
statistical power than those from individual studies, which increases the probability 
of detecting the associations or effects of interest (Cohn & Becker, 2003).

EFFECT SIZES

Effect sizes are quantitative indicators that summarize the results of a study. Effect 
sizes reflect the magnitude of an association between variables of interest or of a 
treatment effect in each study. There are different types of effect sizes, and the effect 
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size used in a research synthesis should be chosen carefully to represent the results 
of each study in a way that is easily interpretable and is comparable across studies. 
The objective is to use effect sizes to put results of all studies “on a common scale” 
so that they can be readily interpreted, compared, and combined. It is important to 
distinguish the effect size estimate reported in a study from the effect size parameter 
(i.e., the true effect size) in that study. The effect size estimate will likely vary 
somewhat from sample to sample whereas the effect size parameter is fixed. An 
effect size estimate obtained from the study with a very large (essentially infinite) 
sample should be very close to the effect size parameter.

The type of effect size that will be used depends on the designs of the studies, 
the way in which the outcome is measured, and the statistical analysis used in each 
study. Typically, the effect size indexes used in the social sciences fall into one of 
three categories: the standardized mean difference, the correlation coefficient, and 
the odds ratio.

THE STANDARDIZED MEAN DIFFERENCE

In many studies in education the dependent variable is student achievement and 
the independent variable is a school related intervention. When the outcome is on 
a continuous scale and the main independent variable is dichotomous a natural 
effect size is the standardized mean difference. The standardized mean difference is 
computed by first subtracting the mean outcome in the control group from the mean 
outcome in the treatment group. Then in order to standardize this mean difference 
we divide the difference by the within group standard deviation (or pooled standard 
deviation). Namely, the standardized mean difference is
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where μC is the population mean in the treatment group, μC is the population 
mean outcome in the control group, and σ is the population within-group standard 
deviation of the outcome. This effect size is expressed in standard deviation units. 
The variance of the standardized mean difference is
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This variance can always be computed so long as the sample sizes of the two 
groups within a study are known. Because the standardized mean difference is 
approximately normally distributed, the square root of the variance can be used 
to compute confidence intervals for the true effect size or effect size parameter δ. 
Specifically, a 95% confidence interval for the effect size is given by

 1.96 1.96 .d dd v d vd− ≤ ≤ +  (5)

THE CORRELATION COEFFICIENT

In studies where we are interested in examining the relation between two continuous 
variables (e.g., motivation and achievement), the correlation coefficient is a natural 
measure of effect size. In order to conduct analyses, first, the correlation coefficient 
r is transformed into a Fisher z-transform
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The corresponding correlation parameter is ρ and the population parameter that 
corresponds to the estimate z is ς, the z-transform of ρ. The variance of the z-transform 
is now stabilized and is only a function of the sample size n of the study
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As in the case of the standardized mean difference, the z-transform is approximately 
normally distributed, and the square root of the variance can be used to compute 
confidence intervals for the effect size parameter ς. Specifically, a 95% confidence 
interval for the effect size is given by

 1.96 1.96 .z zz v z vV− ≤ ≤ +  (8)

Once the average z transform or the upper and lower bounds are computed the 
z-transforms can be inverted back to correlations using the formula

 2 2( 1)/( 1).z zr e e= − +  (9)
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THE LOG ODDS RATIO

In some studies the dependent variable is dichotomous (e.g., going to college or 
not) and we are interested in examining the effects of an intervention that is also 
dichotomous (e.g., school intervention Vs no intervention). In such cases a natural 
effect size is the log odds ratio (OR). The log odds ratio is just the natural log of the 
ratio of the odds of a particular outcome in the treatment group to the odds of that 
particular outcome in the control group (e.g., odds or attending college). That is, the 
log odds ratio is defined as
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where pT and pC are the proportions in the treatment and control groups respectively 
that have the target outcome. The corresponding odds ratio parameter is
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where pT and pC are the population proportions in the treatment and control groups, 
respectively that have the target outcome.

The large sample variance of the log odds ratio is

 log( )
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1 1 1 1
,ORv
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= + + +  (12)

where n indicates the counts and i, j indicate the row and column in the 2 × 2 table. As 
in the case of the standardized mean difference, the log odds ratio is approximately 
normally distributed, and the square root of the variance can be used to compute 
confidence intervals for the effect size parameter w. Specifically, a 95% confidence 
interval for the effect size is given by

 log( ) log( )log( ) 1.96 log( ) 1.96 .OR OROR v OR vw− ≤ ≤ +  (13)

There are several other indexes in the odds ratio family, including the risk ratio 
(the ratio of proportion having the target outcome in the treatment group to that 
in the control group or pT / pC) and the risk difference (the difference between the 
proportion having a particular one of the two outcomes in the treatment group and 
that in the control group or pT − pC). For a discussion of effect size measures in 
studies with dichotomous outcomes, including the odds ratio family of effect sizes, 
see Fleiss (1994).
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FIXED EFFECTS MODELS

Statistical inference involves making projections from samples to populations. 
In meta-analysis there are two kinds of models that have been used to facilitate 
inferences from samples to populations: the fixed and the random effects models 
(Cooper et al., 2009). When the inference pertains only to the particular sample 
of studies used in a research synthesis (or other sets of identical studies) then the 
fixed effects model seems appropriate (Hedges, 2009). The underlying assumption 
in this meta-analytic model is that the effect size parameter is unknown, but fixed at 
a certain value. That is, the collection of the specific studies in the sample at hand 
has a common true effect size (Borenstein et al., 2009). Another way of thinking 
about fixed effects models in meta-analysis is via the homogeneity of effect sizes. 
For example, when a treatment yields comparable effects across primary studies, 
it is reasonable to combine the effect size estimates of all the studies in the sample 
and summarize the treatment effect by a single common estimate. The fixed effects 
models assume that the between study heterogeneity of the effects is zero.

In the simplest case, the fixed effects model involves the computation of one 
average effect size. Specifically, the meta-analyst combines the effect size estimates 
across all studies in the sample using weights to compute an overall weighted 
average. Now, let θi be the unobserved effect size parameter in the ith study, let Ti be 
the corresponding observed effect size estimate from the ith study, and let vi be its 
variance. The data from a set of k studies are the effect size estimates T1, …, Tk and 
their corresponding variances v1, …, vk.

The effect size estimate Ti is modeled as the effect size parameter plus a sampling 
error εi. That is

Ti = θi + εi,  εi ∼N(0, vi).

The parameter θ is the mean effect size parameter for all studies and has the 
interpretation that θ is the mean of the distribution from which the study-specific 
effect size parameters (θ1, θ2, ..., θk) were sampled. This is not conceptually the same 
as the mean of θ1, θ2, ..., θk, the effect size parameters of the k studies that were 
observed. The effect size parameters are in turn determined by a mean effect size 
β0, that is

θi = β0,

which indicates that the θi’s are fixed and thus in a single equation the effect size 
estimate

 Ti = β0 + εi. (14)

Note that in meta-analysis, the variances (i.e., the vi’s) vary from study to study. 
That is, each study has a different sampling error variance. In meta-analysis these 
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variances are known and are a function of the sample size of the study. The amount 
of sampling uncertainty is not identical in every study, and thus, the precision of the 
estimates varies from study to study. If an average effect size is to be computed across 
studies, it seems reasonable to utilize a weighting scheme and assign more weight to 
estimates with more precision (i.e., smaller variance) than those with less precision.

The weighted least squares (and maximum likelihood) estimate of the overall 
effect, β0 under the model is 
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where wi =1/vi. This estimator corresponds to a weighted mean of the Ti’s and gives 
more weight to the studies whose estimates have smaller variances. This weighted 
average can be computed using a weighted regression model that includes only the 
constant term.

The variance v• of the estimate 
0b̂  is simply the reciprocal of the sum of the 

weights across studies,
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and the standard error SE(
0b̂ ) of 

0b̂  is just the square root of v•. Under this model 
0b̂  is normally distributed, and a 100(1 − a) percent confidence interval for the 

parameter β0 is given by
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where tα is the 100α percent point of the t-distribution with (k − 1) degrees of 
freedom. Alternatively, a two-sided test of the hypothesis that β0 = 0 at significance 
level α uses the test statistic Z = 0

ˆ / vb •  and rejects if |Z| exceeds tα/2.

RANDOM EFFECTS MODELS

When the statistical inference pertains to generalizations beyond the observed 
sample of studies used in a research synthesis, then the random effects model seems 
appropriate (Hedges, 2009). In this case the specific samples of studies may not be 
the main interest since it is simply a sample of studies drawn from a population. Thus, 
different sets of studies drawn from the population may differ in characteristics and 
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effect size parameters. In this model the effect size parameters are treated as if they 
were a random sample from a population of effect size parameters (DerSimonian & 
Laird, 1986; Hedges, 1983; Raudenbush & Bryk, 2002). Another way of thinking 
about random effects models is via the heterogeneity of effect sizes. For example, it 
is possible that the study specific effects might be inconsistent. That is, the size of 
the treatment effect may vary considerably across studies. In these cases, the meta-
analytic methods need to take into account this variability in the effects. As a result, 
meta-analytic models become more complicated since they must be designed to take 
into account two sources of variation. The first source of variation of study estimates 
is the sampling error. Even under the assumption that there is a common effect size 
parameter fixed at a specific value, the effect size estimates will vary from study to 
study due to sampling error, which is the within study variability. The second source 
of variation in study estimates arises when the effect size parameter is itself random 
and has its own distribution (i.e., it varies across sets of studies). This component of 
variation of the effect size parameters across studies represents the inconsistency or 
heterogeneity in effects across studies (see Raudenbush & Bryk, 2002).

When the effect size parameter is a random effect, the applicable meta-analytic 
model is called a random effects model, because it captures random variation among 
studies (or between-study variation) (see Schmidt and Hunter, 1977; Hedges, 1983; 
DerSimonian and Laird, 1986). This model introduces heterogeneity among the 
effect size parameters that is captured by the between-study variance (Hedges & 
Vevea, 1998). However, the between-study variance has to be non-negligible or 
statistically significant in order for a random effects model to be appropriate. The 
random effects model can be thought of as a generalization of the fixed effects 
model that incorporates random variation across studies. In other words, the fixed 
effects model is a special case of the random effects model where the between-study 
variance is zero.

The simplest random effects model involves the estimation of an average effect 
size across studies. Again, the analyst combines the effect size estimates across all 
studies in the sample to compute a weighted average. However, in this case a natural 
way to describe the data is via a two-level model with one model for the data at the 
study level and another model for the between-study variation. The within-study 
level is as defined for the fixed effects models earlier. In the between-study level, the 
effect size parameters are modeled around a mean effect size β0 plus a study-specific 
random effect ηi. That is

θi = β0 + ηi,  ηi ~ N(0, τ2).

The above equation suggests that θi is random and has distribution with a specific 
variance τ2. Now, the ηi represent differences between the effect size parameters from 
study to study. The variance parameter τ2, often called the between-study variance 
component, describes the amount of variation across studies in the random effects 
(the ηi’s), and therefore the effect size parameters (the θi’s).
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The two-level model described above can be written as a one-level model as 
follows

 Ti = β0 + ηi + εi = β0 + ξi , (18)

where ξi is a composite error defined by ξi = ηi + εi. Writing this as a one-level 
model, we see that each effect size is an estimate of the population parameter β0 
with a variance that depends on both vi and τ2. Hence, it is necessary to distinguish 
between the variance of Ti assuming a fixed θi and the variance of Ti incorporating 
the variance of the θi as well. Since the sampling error εi and the random effect ηi are 
assumed to be independent and the variance of ηi is 2t̂ , it follows that the variance of 
Ti is the sum of the two variances, vi* = vi + 2t̂ .

The least squares (and maximum likelihood) estimate of the mean a0 under the 
model is 
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where wi* = 1/(vi + 2t̂ ) = 1/vi* and 2t̂  is the between-study variance component 
estimate. This estimator corresponds to a weighted mean of the Ti, giving more 
weight to studies with estimates that have smaller variances.

The sampling variance v•* of weighted average *
0b̂  is simply the reciprocal of the 

sum of the weights,
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and the standard error SE *
0

ˆ( )b  of *
0b̂  is just the square root of v•*. Under this model *

0b̂  
is normally distributed so a 100(1 − α) percent confidence interval for β0 is given by

 * * * *
0 /2 0 0 /2

ˆ ˆ ,á át v t vb b b• •− ≤ ≤ +  (21)

where tα is the 100α percent point of the t-distribution with (k − 1) degrees of 
freedom. Similarly, a two-sided test of the hypothesis that β0 = 0 at significance level 
α uses the test statistic * *

0
ˆ /z vb •=  and rejects if |Z| exceeds tα/2.

Estimation of the Between-Study Variance τ2 

The estimation of τ2 can be accomplished without making assumptions about the 
distribution of the random effects or under various assumptions about the distribution 
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of the random effects using other methods such as maximum likelihood estimation. 
Maximum likelihood estimation is more efficient if the distributional assumptions 
about the study-specific random effects are correct, but these assumptions are often 
difficult to justify theoretically and difficult to verify empirically. Thus distribution 
free estimates of the between-studies variance component are often preferred.

A simple, distribution free estimate of τ2 is given by
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Where a is given by
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wi = 1/v and Q is defined as
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where 
0b̂  is the estimate of β0 that would be obtained from equation (15) under the 

hypothesis that τ2 = 0. The statistic Q has the chi-squared distribution with (k – 1) 
degrees of freedom if τ2 = 0. Therefore, a test of the null hypothesis that τ2 = 0 at 
significance level α rejects the hypothesis if Q is greater than the 100(1 – α) critical 
value of the chi-square distribution with (k – 1) degrees of freedom. Estimates of τ2 
are set to 0 when Q − (k − 1) yields a negative value, since τ2, by definition, cannot 
be negative.

EXAMPLE

To illustrate the usefulness of fixed and random effects models let’s consider an 
example about modified school calendars. The data include studies on schools 
that modified their calendars without extending the length of the school year 
(see Cooper, Valentine, Charlton, & Melson, 2003). All studies assessed students 
from grade one through grade nine and reported achievement differences between 
students attending year round calendar schools and traditional calendar schools. 
The achievement differences were expressed in standard deviation units (i.e., 
standardized mean differences) to ensure all estimates were on the same scale. Our 
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data included information on mathematics achievement. The sample of studies used 
here is somewhat different than that used in the Cooper et al. study, but it suffices for 
the purposes of the example. Overall, 46 studies were included in the sample. The 
data are reported in Table 1. The studies were retrieved from databases including 
ERIC, PsychINFO, and Dissertation Abstracts.

RESULTS

All standardized mean differences or effect sizes in the data do not reflect 
adjustments for covariates, and thus, they are unadjusted differences between year 
round calendar and traditional calendar schools. Data from 46 studies were included 
in the computations. The effect size estimates ranged from −1.19 to 1.12 with a 
mean of −0.0368 and a standard deviation of 0.4288. Negative effect sizes indicate 
that students attending traditional (nine-month) calendar schools outperformed their 
counterparts in year-round calendar schools. In contrast, positive effect sizes point to 
higher student achievement in year-round calendar schools compared to traditional 
calendar schools.

First, let’s consider the fixed effects model. We computed the fixed effects 
weighted average using SAS proc reg (see Appendix). Essentially, this is a weighted 
least squares model. One can also use SAS proc means to compute the weighted 
mean. The weighted average effect size using the data in Table 1 is −0.0282 and the 
standard error of the estimate is 0.0096. The standard error of the weighted average 
is computed as the ratio of the standard error (0.0300) of the estimate produced by 
proc reg (where only the constant is included in the equation) to the square root 
of the mean square error in the ANOVA table (3.1128). In this case, the square root of 
the mean square error in the ANOVA table is the same as the standard deviation 
of the weighted average estimate obtained from in proc means. The z test in this case 
is significant at the 0.05 level indicating that overall mathematics achievement was 
significantly higher in traditional calendar schools than year-round calendar schools. 
The 95% CI (−0.0476, −0.0088) does not include zero as expected.

Now let’s consider a random effects model. One can use SAS proc mixed to 
conduct the meta-analysis (see Appendix). SAS proc mixed uses maximum 
likelihood estimation to compute the estimates (Littell et al., 1996; Singer, 2008). 
Conceptually the random effects model is a two-level model, where the first 
level involves a within-study model and the second level a between-study model 
(Konstantopoulos, 2011). The estimate of the between-study variance is 0.1327 and 
it is significant at the 0.05 level, indicating systematic differences in effect sizes 
across studies. To indicate the magnitude of the variance estimate notice that the 
between-study variance is nearly five times larger than the average of the 46 effect 
size variances. The overall weighted average estimate across studies is −0.0103 and 
its standard error is 0.0576. The weighted average in this case is nearly one-half 
as large as that in the fixed effects model, whilst the standard error of the random 
effects mean estimate is more than three times larger than the standard error of the 
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mean estimate in the fixed effects model. One would expect a larger standard error of 
the mean estimate in the random effects model whenever the between-study variance 
is considerable. In addition, because the weights used in the computation of the 
mean estimate incorporate the between-study variance one would expect that the 
mean estimates in the fixed and the random effects models would differ. The z test 
used indicated that the overall effect was not different from zero (i.e., non-significant 
effect). The 95% CI (−0.126, 0.106) includes zero as expected.

CONCLUSION

This chapter described research synthesis and meta-analysis and discussed fixed 
effects and random effects models used in meta-analysis. To demonstrate the 
applicability of the models we used data from studies that compared mathematics 
achievement between schools that followed a traditional calendar and schools that 
modified their calendar (year-round schools).

The weighted averages both in fixed and random effects models were negative 
and in the fixed effects case the estimate was significantly different than zero. This 
indicates that the traditional calendar schools performed higher than the year-round 
calendar schools in mathematics. The fixed effects estimate was twice as large as 
that produced from the random effects analysis. In contrast, but as expected, the 
standard error of the random effects model mean estimate was a few times larger 
than that of the fixed effects mean estimate. This is expected whenever the between-
study variance is nontrivial. In addition, because the weights used in the random 
effects analysis are different than those in the fixed effects analysis the overall 
average estimates are also different in the two models. Again, the difference in 
the mean estimates will be more pronounced when the between-study variance is 
substantial.

In sum, analysts use research synthesis to combine evidence across studies and 
make generalizable statements. The statistical analysis part of the research synthesis, 
known as meta-analysis, is essential in this process. Analysts can use fixed or random 
effects models to analyze the data. Their decision depends on the inferences they 
want to make as well as on the consistency of the effects in the sample of studies.

APPENDIX

Fixed effects model: Using proc reg in SAS

proc reg data=temp;
 model effectsize = / ;
 weight wt;

where wt = 1/variance. The standard error of the estimate needs to be devided by the 
square root of the Mean Square Error.
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Random effects model: Two-level unconditional meta-analysis using proc mixed in 
SAS
proc mixed data=temp covtest;
 class studyid;
 model effectsize = / solution notest ;
 random int / sub = studyid;
 repeated / group = studyid;
 parms (0.1)
(0.145) (0.120) (0.148) (0.138) (0.023) (0.043) (0.012)
(0.016) (0.016) (0.019) (0.020) (0.015) (0.015) (0.017)
(0.017) (0.019) (0.007) (0.005) (0.004) (0.020) (0.018)
(0.019) (0.023) (0.020) (0.022) (0.006) (0.007) (0.007)
(0.007) (0.007) (0.015) (0.012) (0.009) (0.001) (0.001)
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.030)
(0.034) (0.031) (0.030) (0.033)
/ eqcons=2 to 47;
run;
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Table 1. Effect sizes for school calendar studies: mathematics

Study Effect Size Variance

 1 −0.330 0.145
 2 −0.410 0.120
 3 −0.560 0.148
 4 −1.190 0.138
 5 0.470 0.023
 6 0.310 0.043
 7 0.220 0.012
 8 0.080 0.016
 9 −0.260 0.016
10 0.460 0.019
11 −0.630 0.020
12 −0.050 0.015
13 0.110 0.015
14 0.000 0.017
15 0.050 0.017
16 0.081 0.019
17 0.324 0.007
18 0.251 0.005
19 −0.063 0.004
20 0.000 0.020
21 0.190 0.018
22 −0.280 0.019
23 −0.610 0.023
24 −0.150 0.020
25 −0.620 0.022
26 0.130 0.006
27 0.000 0.007
28 −0.030 0.007

(Continued )
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Table 1. Effect sizes for school calendar studies: mathematics - Continued 

Study Effect Size Variance
29 −0.100 0.007
30 0.110 0.007
31 0.230 0.015
32 1.120 0.012
33 0.690 0.009
34 −0.130 0.001
35 −0.090 0.001
36 0.002 0.001
37 0.040 0.001
38 −0.030 0.001
39 −0.050 0.001
40 −0.070 0.001
41 −0.190 0.001
42 −0.320 0.030
43 1.030 0.034
44 −0.520 0.031
45 0.020 0.030
46 −0.930 0.033
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MAURICIO SALGADO & NIGEL GILBERT

12. AGENT BASED MODELLING

INTRODUCTION

In this chapter, we describe the main characteristics of agent-based modelling. 
Agent-based modelling is a computational method that enables researchers to create, 
analyse, and experiment with models composed of autonomous and heterogeneous 
agents that interact within an environment, in order to identify the mechanisms 
that bring about some macroscopic phenomenon of interest. Here, we explain what 
agent-based modelling is all about, addressing some theoretical issues and defining 
the main elements of an agent-based model. We also discuss the relation between this 
method and the quest for causal explanations in the social sciences and the important 
issue about the identification of social mechanisms. Then, we suggest a standardized 
process consisting of a sequence of steps to develop agent-based models for social 
science research. Finally, we present a useful example of an agent-based model 
that tackles an important phenomenon in educational research: differential school 
effectiveness.

WHAT IS AGENT-BASED MODELLING?

Theoretical Background

Over the past forty years, a new kind of research method has increasingly been used 
in the social sciences: that of the agent-based modelling (from here on ABM). ABM is 
an outstanding modelling technique to build explanations of social processes, based 
on ideas about the emergence of complex behaviour from simple activities (Axelrod, 
1997; Epstein & Axtell, 1995; Gilbert & Troitzsch, 2005). With this technique we 
can study properties of emergent orders that arise from local interactions among a 
multitude of independent components. And we can understand the ways in which 
such emergent orders can influence or constrain the individual actions of those 
components. This process is known as ‘self-organisation’ and is characterised by the 
concepts of ‘bottom-up’ and ‘downward causation’.

There is an increasing interest in ABM as a modelling approach in the social 
sciences, since it enables researchers to build computational models where 
individual entities and their cognition and interactions are directly represented. 
In comparison to alternative modelling techniques, such as variable-based 
approaches using structural equations (or statistical modelling) or system-based 
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approaches using differential equations (or mathematical modelling), ABM allows 
modellers to simulate the emergence of macroscopic regularities over time, such 
as ants colonies, flock of birds, norms of cooperation, traffic jams, or languages, 
from interactions of autonomous and heterogeneous agents (Gilbert, 2007). The 
emergent properties of an agent-based model are then the result of ‘bottom-up’ 
processes, the outcome of agent interactions, rather than ‘top-down’ direction. In 
fact, the absence of any form of top-down control is the hallmark of ABM, since 
the cognitive processes, behaviours, and interactions at the agent-level bring about 
the observed regularities in the system- or macro-level. For this reason, ABM is 
most appropriate for studying processes that lack central coordination, including 
the emergence of macroscopic patterns that, once established, impose order from 
the top down.

Agent-based models involve two main components. Firstly, these models entail 
the definition of a population of agents. Secondly, they involve the definition of some 
relevant environment. In the following, we discuss the core concepts of ‘agents’ and 
their ‘environment’ in more detail.

The Agents

The agents are the computational representation of some specific social actors –
individual people or animals, organisations such as firms or bodies such nation-
states – capable of interacting, that is, they can pass informational messages to 
each other and act on the basis of what they learn from these messages. Thus, each 
agent in the model is an autonomous entity. The artificial population can include 
heterogeneous agents, which is useful when the researcher wants to build a model 
of a certain phenomenon with different agents’ capabilities, roles, perspectives or 
stocks of knowledge. In ABM, agents are conventionally described as having four 
important characteristics (Abdou, Hamill, & Gilbert, 2012):

• Perception: Agents can perceive their environment, including other agents in 
their vicinity.

• Performance: They have a set of behaviours that they are capable of performing 
such as moving, communicating with other agents, and interacting with the 
environment.

• Memory: Agents have a memory in which they record their previous states and 
actions.

• Policy: They have a set of rules, heuristics or strategies that determine, given their 
present situation and their history, what they should do next.

Agents with these features can be implemented in many different ways. Different 
architectures (i.e. designs) have merits depending on the purpose of the simulation. 
Nevertheless, every agent design has to include mechanisms for receiving input from 
the environment, for storing a history of previous inputs and actions, for devising 
what to do next, for carrying out actions and for distributing outputs.
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The Environment

ABM also involves the definition of some relevant environment. The environment 
is the virtual world in which the agents act. It may be an entirely neutral medium 
with little or no effect on the agents, as in some agent-based models based on game 
theory, where the environment has no meaning. In other models, the environment 
may be as carefully designed as the agents themselves, as in some ecological or 
anthropological agent-based models where the environment represents complex 
geographical space that affects the agents’ behaviour.

ABM and Complexity Theory

Finally, it can be said that the interest in ABM reflects a growing attention in 
complex adaptive systems by social scientists, that is to say, the possibility that 
human societies may be described as highly complex, path-dependent, non-linear, 
and self-organising systems (Castellani & Hafferty, 2009; Macy & Willer, 2002; 
Miller & Page, 2007). Complexity theory and the accompanying trappings of 
complex systems provide the theoretical basis for agent-based models. Thus, for 
instance, a complex system is a set of entities connected to each other and the external 
environment in a way that gives it an overall identity and behaviour. An agent-based 
model in its most basic form represents a system of such discrete entities (Manson, 
Sun, & Bonsal, 2012). For this reason, while modellers are usually interested in 
addressing specific theoretical questions and working in particular substantive areas, 
they almost invariably draw on complexity concepts when using an agent-based 
approach. The emphasis on processes and on the relations between entities that bring 
about macroscopic regularities, both of which can be examined by ABM, accounts 
for the developing link between complexity theory and ABM research.

MECHANISMS, EXPLANATIONS AND ABM

One of the main objectives of ABM is to test, by experimental means, the hypothesised 
mechanisms that bring about the macroscopic phenomenon the researcher is interested 
in explaining. Following the definition provided by Hedström (2005), a mechanism 
describes a constellation of entities (i.e., agents) and activities (i.e., actions) that 
are organised such that they regularly bring about a particular type of outcome. 
Therefore, social researchers explain an observed macroscopic phenomenon by 
referring to the mechanisms by which the phenomenon is regularly brought about.

In ABM these mechanisms are translated as the model microspecifications, that is 
to say, the set of behavioural and simple rules that specify how the agents behave and 
react to their local environment (which includes, of course, other agents). Once the 
population of agents and the environment are defined, the researcher can implement 
the microspecifications and run the computer simulation in order to evaluate whether 
these rules bring about or ‘generate’ the macro phenomenon of interest, over the 
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simulated time. The motto of ABM is then: ‘if you did not grow it, you did not 
explain it’. Equation (1) represents the same motto in the notation of first order logic:

 ( )( )x Gx Ex∀ ¬ ⊃ ¬  (1)

Note that, in this perspective, there is a sharp distinction between generative 
explanations from the mere description or mere discovery of regularities. Clearly, 
it is not sufficient to identify, for instance, the statistical association between two or 
more variables. In ABM, what defines an explanation is the explicit representation, 
in a computer code, of the underlying generative mechanism, which is a deeper 
reconstruction of the social regularity. As Hedströn and Swedberg (1996, p. 287) 
claimed, “[t]he search for generative mechanisms […] helps us distinguish between 
genuine causality and coincidental association, and it increases the understanding of 
why we observe what we observe.” Therefore, understanding is obtained or enhanced 
by making explicit the underlying generative mechanisms that link one state or event 
to another – and in the social sciences, individual actions constitute this link.

Agent-based models can be used to perform highly abstract thought experiments 
that explore plausible mechanisms that may underlie observed patterns. That 
is precisely one of the promises of ABM: given the limitations of experimental 
methods and the complexity of social phenomena, agent-based models are important 
for this kind of endeavour (Hedström & Ylikoski, 2010). ABM allows systematic 
exploration of consequences of modelling assumptions and make it possible to 
model much more complex phenomena than was possible earlier.

DEVELOPING AGENT-BASED MODELS IN SOCIAL SCIENCE RESEARCH

Research in ABM has developed a more or less standardized research process, 
consisting of a sequence of steps. In practice, several of these steps occur in parallel 
and the whole process is often performed iteratively as ideas are refined and 
developed. Figure 1 shows the main steps that researchers should follow in order to 
build an agent-based model. The sequence begins with the social theory and finishes 
with ‘the target’ or the social process the researcher is interested in modelling. 

Figure 1. Main steps and stages to build an agent-based model.
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Between these two points, a series of steps must be achieved in order to develop a 
sound agent-based model. In order to simplify the presentation, we have identified 
three major stages: 1) Specification and formalisation; 2) Modelling, verification 
and experimentation; and 3) Calibration and validation. The first stage involves 
translating the theoretical hypothesis that explains the social process of interest, 
usually expressed in natural languages, into formal languages, using logics or 
mathematics. The second stage includes the modelling itself, in which the researcher 
builds and verifies the model by experimental means. The third step includes the 
calibration of the model with empirical data and the consequent validation of it using 
appropriate statistical tests. In the following subsections we describe these major 
stages in detail.

Specification and Formalisation

It is essential to define precisely the research question (or questions) that the model 
is going to address at an early stage. The typical research questions that researchers 
try to answer when using ABM are those that explain how regularities observed at 
the societal or macro level can emerge from the interactions of agents at the micro 
level. According to Epstein (1999, 2007)features distinguishing the approach 
from both ldquoinductiverdquo and ldquodeductiverdquo science are given. Then, 
the following specific contributions to social science are discussed: The agent-
based computational model is a new tool for empirical research. It offers a natural 
environment for the study of connectionist phenomena in social science. Agent-based 
modeling provides a powerful way to address certain enduring – and especially 
interdisciplinary – questions. It allows one to subject certain core theories – such as 
neoclassical microeconomics – to important types of stress (e.g., the effect of evolving 
preferences, researchers using ABM try to solve the following question: ‘How could 
the decentralised local interactions of heterogeneous agents generate or bring about 
the given macro phenomenon?’ This is the typical research question that modellers 
working with ABM aim to answer for any macro-property they want to explain.

To define precisely the research question, it is also needed that the model is 
embedded in existing social theories. Reviewing existing theories relating to the 
model’s research question is important to identify the causal mechanisms that are 
likely to be significant in the model. Thus, it is important to choose the theory that 
provides the most plausible and empirically testable causal mechanism. In this sense, 
one important feature of ABM is that it does not impose any a priori constraints 
on the mechanisms assumed to be operating. ABM is not based on any specific 
theory of action or interaction (Hedström & Ylikoski, 2010). It is a methodology 
for deriving the social outcomes that groups of interacting actors are likely to bring 
about, whatever the action logics or interaction structures may be.

Evidently, a model is always a simplification of the ‘real world’. In fact, this is the 
reason why scientists build models: they want to reduce the complexity of the world 
and isolate the main elements that bring about the phenomenon to be explained. For 



252

M. SALGADO & N. GILBERT

this reason, researchers using ABM aim to specify the causal mechanisms underlying 
some phenomenon. According to Miller and Page (2007), to specify a theory is to 
reduce the world to a fundamental set of elements (equivalence classes) and laws 
(transition functions), and on this basis to better understand and possibly predict key 
aspects of the world. As we discussed before, in ABM researchers have to specify 
the agents that are to be involved in the model and the environment in which they 
will act. For each type of agent in the model, the attributes and behavioural rules 
need to be specified – that is, the set of simple rules that specify how the agents 
behave and react to their local environment. An attribute is a characteristic or feature 
of the agent, and it is either something that helps to distinguish the agent from others 
in the model and does not change, or something that changes as the simulation runs.

Once the appropriate theory – the one that provides plausible causal explanations 
about the target social process – has been identified and the behavioural rules have 
been specified, the researcher is equipped with theoretical hypothesis to be tested, 
in this case, in silico, that is, using computers as laboratories to run experiments. 
In the social sciences, hypotheses are expressed usually in textual form; in natural 
languages. However, natural languages are usually ambiguous and concepts are not 
always rigorously defined. For this reason, when we have a theory of how individuals 
behave in the situation we are analysing, it is useful to express it in the form of a 
procedure or formal or artificial language, using logics or mathematics. An advantage 
of using logic is that it gives conditions – these results hold when and if the following 
are true. Thus, researchers can use conditional rules such as ‘If C1, C2, and C3, then 
EP’, where C represents some condition and EP is the emergent or macro property 
they want to explain. This kind of formalisation facilitates the ultimate aim in ABM: 
to formalise theoretical hypothesis in the form of a computer program.

As Gilbert and Troitzsch (2005, p. 5) argue, “[t]he process of formalization, which 
involves being precise about what the theory means and making sure that it is complete 
and coherent, is a very valuable discipline in its own right”. In this respect, ABM has 
a similar role in the social sciences to that of mathematics in the physical sciences.

Modelling, Verification and Experimentation

Once the theory has been specified and formalised into logics or mathematics, 
modellers can translate this formalisation into computer programs. Thus, the 
formal model can be programmed and run on the computer, and the behaviour of 
the simulation can be observed and tested. To build a model is similar to design 
an experiment. Thus, given the macroscopic explanandum – a regularity to be 
explained – the canonical agent-based experiment is as follows (Epstein, 1999, 
2007)features distinguishing the approach from both ldquoinductiverdquo and 
ldquodeductiverdquo science are given. Then, the following specific contributions 
to social science are discussed: The agent-based computational model is a new tool 
for empirical research. It offers a natural environment for the study of connectionist 
phenomena in social science. Agent-based modeling provides a powerful way to 
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address certain enduring - and especially interdisciplinary - questions. It allows one 
to subject certain core theories - such as neoclassical microeconomics - to important 
types of stress (e.g., the effect of evolving preferences: ‘situate an initial population 
of autonomous heterogeneous agents in a relevant environment; allow them to 
interact according to local rules, and thereby generate – or grow – the macroscopic 
regularity from the bottom up’. The ultimate aim of researchers using ABM is to 
establish an account of the configuration’s attainment by a decentralised system 
made of heterogeneous and autonomous agents.

However, when writing computer programs, especially complicated ones, it is 
very common to make errors. The process of checking that a program does what 
it was planned to do is known as verification. In the case of agent-based models, 
the difficulties of verification are compounded by the fact that many simulations 
include random number generators, which means that every run is different and 
that it is only the distribution of results which can be anticipated by the theory. It is 
therefore essential to ‘debug’ the simulation carefully, preferably using a set of test 
cases, perhaps of extreme situations where the outcomes are easily predictable and 
run multiple experiments in order to explore and measure the parameter space – the 
set of values of parameters encountered in a particular model.

When the agent-based model can generate the type of outcome to be explained, 
then the researcher has provided a computational demonstration that a given 
microspecification (or mechanism) is in fact sufficient to generate the macrostructure 
of interest. This demonstration, called generative sufficiency (Epstein, 1999)features 
distinguishing the approach from both ldquoinductiverdquo and ldquodeductiverdquo 
science are given. Then, the following specific contributions to social science 
are discussed: The agent-based computational model is a new tool for empirical 
research. It offers a natural environment for the study of connectionist phenomena 
in social science. Agent-based modeling provides a powerful way to address certain 
enduring - and especially interdisciplinary - questions. It allows one to subject certain 
core theories - such as neoclassical microeconomics - to important types of stress (e.g., 
the effect of evolving preferences, provides a candidate mechanism-based explanation 
of the macro-phenomenon. The agent-based modeller can then use relevant data and 
statistics to estimate the generative sufficiency of a given microspecification by 
testing the agreement between ‘real-world’ and the generated macrostructures in the 
computer simulation (we will discuss more about this in the following subsection). 
On the other hand, when the agent-based model cannot generate the outcome to be 
explained, the microspecification is not a candidate explanation of the phenomenon 
and the researcher has demonstrated the hypothesised mechanism to be false.

Calibration and Validation

Once researchers have specified some a substantively plausible agent-based model, 
and this model generates the emergent macro pattern of interest, they can use 
empirical data to estimate the size of various unknown parameters of this model and 
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the agreement between the predicted and the real data. This is reached by calibrating 
and validating the model.

While verification concerns whether the program is working as the researcher 
expects (as discussed in the previous subsection), validation concerns whether the 
simulation is a good model of the real system, the ‘target’. A model that can be relied 
on to reflect the behaviour of the target is ‘valid’. A common way of validating 
a model is to compare the output of the simulation with real data collected about 
the target. However, there are several caveats which must be borne in mind when 
making this comparison. For example, exact correspondence between the real 
and simulated data should not be expected. So, the researcher has to decide what 
difference between the two kinds of data is acceptable for the model to be considered 
valid. This is usually done using some statistical analysis to test the significance 
of the difference. While goodness-of-fit can always be improved by adding more 
explanatory factors, there is a trade-off between goodness-of-fit and simplicity. Too 
much fine-tuning can result in reduction of explanatory power because the model 
becomes difficult to interpret. At the extreme, if a model becomes as complicated as 
the real world, it will be just as difficult to interpret and offer no explanatory power. 
There is, therefore, a paradox here to which there is no obvious solution. Despite its 
apparently scientific nature, modelling is a matter of judgement.

Finally, it is important to distinguish the different ways in which an agent-based 
model can be validated and calibrated. According to Bianchi, Cirillo, Gallegati, & 
Vagliasindi, (2007), there are three ways of validating an agent-based model, namely:

• Descriptive output validation, or matching computationally generated output 
against already available data. This kind of validation procedure is probably the 
most intuitive one and it represents a fundamental step towards a good model’s 
calibration;

• Predictive output validation, or matching computationally generated data against 
yet-to-be-acquired system data. Obviously, the main problem concerning with 
this procedure is essentially due to the delay between the simulation results and 
the final comparison with actual data;

• Input validation, or ensuring that the fundamental structural, behavioural and 
institutional initial conditions incorporated in the model reproduce the main 
aspects of the actual system.

Since the empirical validation of ABM is still a brand new topic, at the moment there 
are only a limited number of contributions in the literature dealing with it (see for 
instance, Axtell, Axelrod, Epstein, & Cohen, 1996; Bianchi et al., 2007; Fagiolo, 
Moneta, & Windrum, 2007; Kleindorfer, O’Neill, & Ganeshan, 1998).

Softwares and Modelling Environments

Once the agent-based model has been formalised, an important decision is whether 
to write a special computer program (using a programming language such as Java, 
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C++, C#, or Visual Basic) or use one of the packages or toolkits that have been 
specially created to help in the development of simulations. It is almost always easier 
to use a package than to start afresh writing one’s own program. This is because 
many of the issues that take time when writing a program have already been dealt 
with in developing the package. For example, writing code to show plots and charts 
from scratch is a skilled and very time-consuming task, but most packages provide 
some kind of graphics facility for the display of output variables. At least some of the 
bugs in the code of packages will have been found by the developer or subsequent 
users (although you should never assume that all bugs have been eliminated). The 
disadvantage of packages is that they are, inevitably, limited in what they can offer. 
It is difficult to find one that is easy to debug, has a good graphics library, can be 
compiled efficiently and is portable across different computers.

There is a choice of several packages for ABM, most of them are available free of 
charge and they are well suited for social scientists. Table 1 provides a comparison 
between four popular modelling environments on a number of criteria. The choice of 
the implementation tool depends on several factors, especially one’s own expertise 

Table 1. A comparison of Swarm, RePast, Mason and NetLogo

Swarm RePast Mason NetLogo
Licence* GPL GPL GPL Free, but not open source
Documentation Patchy Limited Improving, 

but limited
Good

User Base Diminishing Large Increasing Large

Modelling Language(s) Objective-C, 
Java

Java, 
Python

Java NetLogo

Speed of Execution Moderate Fast Fastest Moderate
Support for graphical user 
interface development

Limited Good Good Very easy to create using 
‘point and click’

Built-in ability to create 
movies and animations

No Yes Yes Yes

Support for systematic 
experimentation

Some Yes Yes Yes

Easy of learning and 
programming

Poor Moderate Moderate Good

Easy of Installation Poor Moderate Moderate Good
Link to geographical 
information system

No Yes Yes Yes

Source: Gilbert (2007)
*GPL General Public Licence, http://www.gnu.org/copyleft/gpl.html

http://www.gnu.org/copyleft/gpl.html
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in programming and the complexity and the scale of the model. NetLogo is the 
quickest to learn and the easiest to use, but may not be the most suitable for large and 
complex models. Mason is faster than RePast, but has a significantly smaller user 
base, meaning that there is less of a community that can provide advice and support.

NetLogo (Wilensky, 2011) is currently the best of the agent-based simulation 
environments for beginners and even for many serious scientific models. NetLogo 
is a distant descendant of the Logo programming language that was created in the 
1960s as a tool for schoolchildren. It still retains some aspects of its heritage; for 
example, there are ‘turtles’ and they move around on ‘patches’. Its programming 
language uses a very simple syntax that is supposed to resemble English, and 
provides a simplified programming language and graphical interface that lets users 
build, observe and use agent-based models without needing to learn the complex 
details of a standard programming language. Just as importantly, it has a growing 
user community and the NetLogo team at Northwestern University provides a 
complete, useful and professional set of documentation and tutorial materials.

AN EXAMPLE: AGENT-BASED MODEL OF DIFFERENTIAL 
SCHOOL EFFECTIVENES

In this section we explain a simple agent-based model that addresses the educational 
phenomenon known as ‘differential school effectiveness’, that is to say, we present 
a model that aim to explain why some schools differ significantly in terms of 
their effectiveness for particular pupil groups (Coleman, 1966; Nuttall, Goldstein, 
Prosser, & Rasbash, 1989; Sammons, Nuttall, & Cuttance, 1993). This model is 
based on some theories about social behaviours and interactions in the classroom 
among pupils and teachers. Since the primary goal of this chapter is to explain ABM, 
we are not interested in precisely identifying the underlying process that causally 
explains differences in school effectiveness. Hence, the mechanism we implement 
as the model microspecification must be understood as a candidate mechanism-
based explanation, a provisional hypothesis that, although sufficient to generate the 
observed differences, is subject to further empirical falsification.

The agent-based model we present in this Chapter was calibrated using a well-
known dataset, the London Educational Authority’s Junior Project (Nuttall et al., 
1989). This was a longitudinal study of around 2000 children. For this chapter, we 
used a subsample of this data, for pupils’ mathematics progress over 3 years from 
entry to junior school to the end of the third year in junior school. The subsample 
consists of 887 pupils from 48 schools, with five relevant variables, namely:

• School ID, an identification number assigned to each school, from 1 to 48,
• Occupational Class, a variable representing father’s occupation, where ‘Non 

Manual Occupation’ = 1 and ‘Other Occupation’ = 0,
• Gender, a variable representing pupils’ gender, where ‘Boy’ = 1 and ‘Girl’ = 0, and
• Math 3 and Math 5, pupils’ scores in maths tests in year 3 and in year 5 respectively, 

with a range from 0 to 40.



257

AGENT BASED MODELLING

In the following sections we explaining the theoretical framework, from which 
we define the causal mechanisms that (likely) bring about differences in school 
performance. Then, we describe de model and their main components and dynamics. 
Finally, we present some simulation results.

A Mechanism-Based Explanation of Differential School Effectiveness

Although the literature in differential school effectiveness does not provide any 
canonical mechanism to explain the observed differences, a starting point is to 
recognise the importance of the social ties in which a pupil is embedded and its effect 
on her or his educational attainment. It can be assumed that the school structures the 
opportunities for closer friendship ties, which in turn affect peer outcomes. Since it 
has been demonstrated that pupils’ characteristics within the classroom (such as socio-
economic status and educational achievement) have an impact on the achievement of 
their peers (Beckerman & Good, 1981; Hanushek, Kain, Markman, & Rivkin, 2003), 
it is likely that the pupils’ friendship networks are playing an important role as a 
mediating factor. Individuals’ actions are often influenced by the people they interact 
with and, especially, by the actions of significant others, such as friends (Bearman, 
Moody, & Stovel, 2004; Kandel, 1978). There is no reason to rule out, a priori, 
the hypothesis that a similar mechanism might produce a peer effect in educational 
achievement (Jæger, 2007).

There is a growing interest in the literature in using network topologies and 
friendship ties instead of school-grade cohorts as the relevant peer group (e.g., 
Calvó-Armengol, Patacchini, & Zenou, 2009; Weinberg, 2007). Halliday and Kwak 
(2012) recently estimated peer effects using a mix of empirical data on friendship ties 
and school-grade cohorts. Their results suggest that the behaviour observed at the 
school-grade level is essentially a reduced-form approximation of a two-step process 
in which students first sort themselves into peer groups and then behave in a way that 
determines educational achievement. Although the exact sorting mechanism is not 
addressed in their research, it can be assumed that pupils choose their friends by a 
combination of contextual opportunities, geographical proximity (within the school 
or classroom) and homophily (McPherson, Smith-Lovin, & Cook, 2001), that is, 
the tendency of students to group themselves with other similar to them in gender, 
occupational class and educational performance.

Ever since the observational study carried out by Rist (2000) in the 1970s, 
educational researchers have been aware of the impact student-teacher relationships 
have on pupils’ learning. Schools where teachers have higher expectations regarding 
the future of their students perform better than others where teachers have lower 
expectations (de Vos, 1995). These expectations, identified as ‘teacher expectations 
bias’ or ‘false-positive teacher expectations’ (Jussim & Harber, 2005), determine 
which pupils are defined as ‘fast learners’ and which ones as ‘slow learners’. In 
this way, teachers’ behaviour contributes to a ‘self-fulfilling prophecy’ (Merton, 
1968), that is, pupils who are considered ‘slow learners’ in advance receive less 
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attention and educational feedback, and consequently, they perform worse compared 
to pupils who are considered ‘fast learners’. Empirical research has corroborated this 
teacher expectation bias effect (de Boer, Bosker, & van der Werf, 2010; Rosenthal & 
Jacobson, 1968). Although the evidence is still inconclusive, particularly about the 
real magnitude of this effect and whether it accumulates or dissipates over time, it 
seems that powerful self-fulfilling prophecies do occur in the classroom, and they 
may selectively be directed towards students from stigmatised social groups and 
low-achieving students.

The proposed ABM presented here takes into account the two mechanisms 
described above as the model microspecification. That is, the model assumes that 
a combination of friendship dynamics based on homophily and self-fulfilling 
prophecy based on teacher expectations bias can produce differential achievement 
among students and schools. This explanatory mechanism can be established 
as follows. Firstly, there is a peer effect among pupils, which is brought about 
by the pupils’ tendency to sort themselves in groups with similar others. This 
lateral group formation mechanism affects their individual learning and progress, 
producing groupings of pupils with different academic performances. Secondly, 
the differences among groups determine the way in which teachers interact with 
their pupils, since groups of high-performance pupils capture more attention and 
receive more feedback from teachers compared to groups of low-performance 
pupils. This vertical behavioural mechanism also affects the pupils’ academic 
performance.

Model Description

The mechanisms described in the previous Subsection were implemented in an agent-
based model. In order to build this model, we refined Wilensky’s model (1997) to 
replicate the group formation mechanism. Students form groups with others similar 
to them following group formation rules present at the school level. For simplicity, 
we assume that these rules are stable and similar for all the individuals within the 
school (Akerlof & Kranton, 2002). We are not interested in giving an account of 
the emergence of these rules; we take for granted they exist. We also assume for 
simplicity that teachers always discriminate between ‘slow learner’ and ‘fast learner’ 
groups, and give the corresponding feedback to the students in those groups. The 
agent-based model was build in NetLogo (Wilensky, 2011), and the statistical 
analysis was performed in the statistical software R (2011).

The ABM was designed following two basic assumptions. The first concerns the 
way in which pupils’ group themselves. To simulate how students sort themselves 
into peer groups, an initial number of spots where students can ‘hang out’ is defined. 
Every school has three tolerance criteria that are adopted by the students to decide 
whether to stay in a specific group or to move to another one. Taking into account the 
available data, we defined three tolerance levels: 1) Educational tolerance, which 
reflects the students’ tolerance of accepting others with different attainments in Math 
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3; 2) Gender tolerance, which indicates the students’ tolerance for people of the 
opposite sex; and 3) Occupational class tolerance, the pupils’ tolerance for peers 
of a different occupational class. Each pupil is endowed with these three tolerance 
levels, which are identical for all the pupils within a school, but differ between 
schools. Tolerance levels range between 0% and 100%.

Pupils who belong to the same spot establish a group. If they are in a group that 
has, for example, a higher percentage of people of the opposite sex than the school’s 
tolerance, then they are considered ‘uncomfortable’, and they leave that group for 
the next spot. Movement continues until everyone at the school is ‘comfortable’ with 
their group. This may result in some spots becoming empty.

Figure 2 shows an example of the result of this process: the student network at 
the end of a simulation for school 32. Male and female pupils are coloured dark grey 
and light grey respectively; round and square shaped nodes represent low and high 
occupational class respectively; and the numbers indicate their previous attainment 
in Math 3. In this scenario, education, gender and class tolerances are 0.9, 0.3 and 
0.9 respectively. There are 39 students in school 32 and these sort themselves into 
13 groups of ‘friends’.

The second assumption concerns the way in which pupils’ learning of one specific 
subject evolves over time. It seems reasonable to assume that this learning can be 
modelled as a logarithmic function of the educational feedback received on the 
subject. Thus, there is an initial period of rapid increase, followed by a period where 
the growth in learning slows (evidence supporting this pattern of learning may be 
found in Baloff, 1971).

Figure 2. Simulated students social network in school # 32. Boys and girls are coloured 
dark grey and light grey respectively; round and square shaped nodes represent low 

and high occupational class respectively; and the numbers show the students’ previous 
attainment in math 3.
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In order to model pupils’ learning in maths from year 3 to year 5, we define 
a student learning curve. Firstly, we assume that learning maths is a continuous 
process in which the student receives feedback on the subject from the teacher. This 
learning process starts at the first maths lesson, lesson 0, and finishes when the 
knowledge of maths is measured in year 5 (or Math 5). Because we do not have 
any measure of the educational feedback involved in this process, we arbitrarily 
define 1,000 as the amount of feedback that the entire learning process involves. 
Figure 3 shows this learning curve. Students’ marks are assumed to be a function 
of the amount of teachers’ feedback that they have received. We also assume that 
when the test Math 3 is applied, students have learned half of the topics they were 
supposed to learn. Further, since both Math 3 and Math 5 range between 0 and 40, 
we transform Math 3 by dividing it by 2.

Secondly, we assume that the feedback that students receive from their teachers 
depends on the sorting process that pupils perform within their schools. That is, 
in this simulation teachers’ feedback is a function of the pupils’ group average 
achievement. Teachers use this average group achievement as a signal about the 
future performance of all the pupils in the group. Teachers then adjust the amount of 
effort they invest in educational feedback accordingly.

Let gk be a group in school j, sik is a student in the group k and Math3k the average 
of Math 3 marks of group gk. The amount of feedback that the students of group k 
receive is:

 
1
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Figure 3. Simulated pupils’ learning curve, which relates the teacher’s feedback the 
students receive and the mark or score they obtain in their tests.
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where ϑ in the exponent allows us to fit a logarithmic function that maps ‘Teacher 
Feedback’ into ‘Mark’ (see Figure 3). Since we want to fit a logarithmic function, 
we define ϑ ≈ 5.790593; for we know that log(1,000ϑ) ≈ 40 which is the scale of the 
test scores. Then, the simulated student’s score simMath5ik is shown in Equation (3), 
where tik = tk + tmath3,ik and tmath3,ik is the amount of feedback the pupils of group k have 
had when their attainment is measured as Math 3.

 5 log( )ik iksimMath tJ=  (3)

Agent-Based Model Calibration

The ABM was initialised with the pupils’ performance in Math 3 and the parameter 
space given by the three tolerance levels was explored. The objective was to find 
a set of tolerance levels for each school that minimises the differences between 
the data and the simulation results. Let dj be such a difference for school j. Then, 
Equation (4) expresses this difference
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where Math5i and simMath5i are the score in Math 5 of student i obtained from 
the data we described above and from the simulations, respectively. In the example 
shown in Figure 2, d32 = 2.231, which means that the simulated score in Math 5 
differs, on average, from the data by ±2.231 units. In order to explore the parameter 
space of the model, we ran 126,720 simulations. This represents all the possible 
combinations of the three tolerance levels (varying among 0.3, 0.5, 0.7 and 0.9) and 
the number of spots (varying among 15, 20 and 25) across the 22 schools. In order 
to have more robust results, we ran each setting 30 times and then took the average 
of dj over all 22 schools as the aggregate outcome.

Model Results

Table 2 shows the results for the parameter setting that minimises dj. We present the 
average distance (in the same units as the data) between the predicted scores and 
the real scores in Math 5 for the simulation (‘ABM (dj)’). The table also shows the 
number of groups (‘Final Groups’) in which all the pupils were happy with their 
group membership, given the values in the ‘Tolerance Levels’ for education, gender 
and occupational class (the last three columns of Table 2). Recall that these three last 
variables were set as simulation parameters, and the specific values presented in the 
table correspond to those combinations at the school level that minimise the distance 
between the simulated and the data scores in Math 5.

Comparing the averages between the predicted and the observed scores, we see 
that the predictions errors of the ABM are not high; in fact, the distance averaged 
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over all schools equals 3.04 on a scale of 40 points. Thus, the ABM, despite its 
simplicity, offers a reasonable fit to the data.

The simulation results suggest a high educational tolerance, since most of the 
values equal 90% (except from school 30, in which the tolerance level equals 70%). 
On the other hand, the tolerance levels of occupational class and gender vary across 
the schools. Therefore, the group formation mechanism in our simulation seems to 
be ruled by the variables occupational class and gender, while previous attainment 
in maths does not discriminate much between groups.

The hypothesised mechanism that bring about the differences in school 
effectiveness seems to be justified. The simulation results indicate that the mechanism 

Table 2. Calibration results. Comparison between the predicted pupils’ scores by the 
agent-based model and the observed scores. Results are presented by schools

School Id
Number 
of pupils ABM (dj )

Final 
groups

Tolerance Levels
Education Gender Occupational Class

 1 25 3.36 13 90% 50% 30%
 4 24 3.12 12 90% 90% 50%
 5 25 2.26 12 90% 70% 90%
 8 26 2.82 12 90% 70% 30%
 9 21 2.91 12 90% 70% 30%
11 22 3.10 12 90% 30% 70%
12 19 3.55 12 90% 50% 30%
20 28 2.62 12 90% 30% 70%
22 18 3.63 10 90% 30% 70%
23 21 3.19 12 90% 90% 50%
25 20 3.50 11 90% 30% 50%
26 19 2.79 12 90% 70% 50%
29 20 3.36 12 90% 70% 30%
30 35 2.56 14 70% 90% 70%
31 22 3.60 12 90% 70% 50%
32 39 2.71 15 90% 30% 90%
33 25 3.04 12 90% 30% 90%
35 27 2.44 13 90% 70% 30%
41 38 3.25 16 90% 30% 70%
45 30 2.62 12 90% 30% 70%
46 62 2.96 15 90% 90% 70%
47 22 3.61 12 90% 50% 90%
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of group formation helps to minimise the distance between the predicted and the real 
scores, allowing a better fit with the data. For instance, when we compare the number 
of groups with the number of pupils, we can see that in general we have fewer groups 
than students in each school (for a graphical example, see Figure 2). If the numbers 
of groups made no difference in the simulation, then the number of groups and the 
number of pupils would tend to be similar (at least in those schools with 25 or fewer 
pupils, which is the maximum number of groups the ABM calibration allowed). This 
is clearly not the case. Thus, the sorting mechanism that has been implemented in 
this simulation and the groups reflecting that mechanism seem to be important in 
explaining the differences in effectiveness among schools.

CONCLUSIONS

In this chapter, we have explained the main concepts of ABM and the relation 
between this relatively new research method and scientific explanations in the 
social sciences. We have discussed the process of designing and building an agent-
based model and we have recommended a set of standard steps to be used when 
building agent-based models for social science research. The first, and the most 
important, step in the modelling process is to identify the purpose of the model and 
the question(s) to be addressed. The importance of using existing theories to justify 
a model’s assumptions and to validate its results has also been stressed. To explain 
these concepts, we have exemplified describing an agent-based model that addresses 
differential school effectiveness.

RECOMMENDED READINGS

There is an increasing introductory and more advanced literature on ABM, some 
of it well suited for social scientists. For those interested in going into this research 
method in greater depth, we recommend the following readings:

Epstein, J. M. (2007). Generative social science: Studies in agent-based computational modeling. New 
Jersey: Princeton University Press.

Gilbert, N. (2007). Agent-based models. California: Sage Publications Ltd.
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University Press.
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13. MEDIATION, MODERATION & INTERACTION

Definitions, Discrimination & (Some) Means of Testing

INTRODUCTION

In 1986 Baron and Kenny set out to clarify the terms “Mediation” and “Moderation” 
as used in the social sciences (with the origins of each described by Roe, 2012). 
Twenty six years later, the seminal paper that this collaboration resulted in (Baron 
& Kenny, 1986) has been cited over 35,000 times (35,672 via Google Scholar as 
of 09/01/2013). However, despite this extensive record of citation, uncertainty 
continues to surround the use of these terms in social science research and they have 
received relatively little attention in specifically educational research (cf. Kraemer, 
Stice, Kazdin, Offord, & Kupfer, 2001). Partly in response to this uncertainty, and 
partly in response to advances made in the application of more complex statistical 
analyses in educational research (e.g. Creemers, Kyriakides, & Sammons, 2010; 
Goldstein, 2003; Luyten & Sammons, 2012; Tatsuoka, 1973), this chapter is made-
up of four sections which together provide the quantitative educational researcher 
with an up to date understanding of these terms as well as examples of their current 
implementation to test theoretical models and address notions of causality. These 
four sections are titled:

1. Unambiguous Definitions
2. Discriminating Mediation, Moderation, and Interaction
3. Some means of testing Mediation and Moderation
4. Testing Moderation: An example through three equivalent statistical
5. analyses

Together, the first two sections of this chapter present simple, clear definitions 
that distinguish “Mediation”, “Moderation”, and “Interaction” both from each 
other as well as from a number of other commonly-used terms. Section 3 then 
presents a number of statistical methods by which these terms can be statistically 
operationalised. This third section pays particular attention to Moderation as the 
statistical methods associated with it (in comparison to Mediation) are particularly 
varied and numerous. The final section of this paper (Section 4) then builds upon 
the focus on Moderation within Section 3 by presenting an example Moderation 
from educational research conducted within the early years (for children under age 
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5 years) which is then statistically operationalised and tested by three equivalent 
parallel analyses.

UNAMBIGUOUS DEFINITIONS

Mediation

This is a trivariate one-tailed hypothesis concerning mechanisms of effect. A pre-
established causal relationship between two variables is theorised to exist due to an 
intermediate third variable (see Figure 1). While the additional (third) variable that is 
hypothesised to have this effect is known as a “mediator” it is also sometimes referred 
to as an “intermediate variable” (Kraemer et al., 2001), or “explanatory link” (Rose, 
Holmbeck, Coakley, & Franks, 2004). Further, mediators have “mediating effects” 
which are otherwise labelled “indirect effects”, “surrogate effects”, “intermediate 
effects” and/or “intervening effects” (MacKinnon, Lockwood, Hoffman, West, & 
Sheets, 2002; Wu & Zumbo, 2007).

Moderation

This is also a trivariate one-tailed hypothesis – but one that is quite different 
from mediation and with a completely separate historical origin (Roe, 2012). 
Hypotheses of moderation ask, “Under what conditions/for whom/when is a 
pre-established causal relationship observable?” (cf. mechanisms in mediation). 
The presence of a third “moderator” variable is also termed an “effect-modifier” 
(Hinshaw, 2002) and/or a “causal interaction effect” (Wu & Zumbo, 2007). 

Figure 1. Graphical illustration of the hypotheses of mediation and moderation.
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This last alternative name is also important as it evidences the close association 
(and therefore also sometimes confusion) between the terms “Moderation” and 
“Statistical Interaction” (an explanation for the alternative name of “casual 
interaction effect” is given in Section 3). The origins of this association go back to 
the first reported use of “Moderation” – commonly cited as Saunders (1955) – in 
which this term was adopted as a synonym for what quantitative researchers now 
refer to as a “(Statistical) Interaction Effect” (again, see Section 3). This change in 
meaning over the past 58 years and the close relationship that today’s definition of 
“Moderation” has to “(Statistical) Interaction” (see below) is just one reason why 
confusion continues with the use of these terms.

(Statistical) Interaction

This is a two-tailed hypothesis implying that two or more concepts, “work together” 
or, “have a combined effect” in eliciting a third (for example in: Kraemer et al., 
2001; Talamini et al., 2002) which should in no way be mistakenly confused with 
the concept of behavioural or psychological or gene-environment interactions 
(e.g. Rutter & Silberg, 2002). One of the common points of difficulty (explored 
further in Section 3) is that Moderation is a hypothesis that is often answered by the 
specification of a ‘Statistical Interaction’ which is then, in-turn, commonly tested 
with statistical artefacts known as “Statistical Interaction Effects/Terms”.

DISCRIMINATING MEDIATION, MODERATION, AND INTERACTION

Mediation ≠ Moderation

Although Mediation and Moderation are distinct trivariate research hypotheses, 
confusion continues not only over their distinction, but also over which is the more 
appropriate for any given research project as well as how these hypotheses can be 
combined. The first of these difficulties (distinguishing Mediation and Moderation) 
continues partly due to the simple similarity of the two words, partly due to their 
changing definitions over time, and partly due to the similar purposes for which 
both are used in research. Considering this third point in more detail: Mediation and 
Moderation are both, “theories for refining and understanding a causal relationship” 
(Wu & Zumbo, 2007) and both are unidirectional (i.e. “A and B affect C” rather than 
“there is an association between A, B, and C”) trivariate hypotheses. The problems 
that arise over the application of these distinct hypotheses is also evident in the 
continuing confusion concerning the term “Indirect Effect” which although having 
a specific meaning encompassing Mediation (see Preacher & Hayes, 2004) also 
has an additional and more intuitive meaning: “any and all effects other than those 
direct”. This additional understanding of the term “Indirect effect” has led to its 
use in reference to Statistical Interaction and thereby also Moderation. The paper 
by Goodnight, Bates, Staples, Petit, and Dodge (2007) provides an example of this 
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more intuitive usage of the term, although for clarity we recommend such usage 
should be avoided,

…However, in addition to direct main-effects-type links between temperament 
and behavior problems, there are also more indirect, interaction-effect-type 
links involving temperament...

With this background of confusion over the meaning and usage, the terms 
“Mediation” and “Moderation” have continued to be discussed long after the paper 
of Baron and Kenny (1986). Table 1 provides an overview of a selection of five 
journal articles in different fields since the turn of the millennium that have all aimed 
to provide clarifying guidelines. The problems researchers continue to encounter 
with these terms is evidenced in the inconsistent guidelines across these papers. 

Table 1. A selection of past guidelines (since 2000) for distinguishing 
mediation from moderation

Authors:

(Kraemer, et al., 2001) (Hinshaw, 2002) (Nicholson, Hursey, 
& Nash, 2005)

(Essex, et al., 2006) Wu & Zumbo 
(2007)

Journal:

American Journal 
of Psychiatry

Development and 
Psychopathology

Headache Archives of 
General Psychiatry

Social Indicators 
Research

Mediation:

That being mediated has temporal precedence

Mediator and that mediated are correlated

Either co-domination of 
mediated and mediator 
(partial) OR

Either co-domination 
of mediated and 
mediator (partial) OR

Answers, “how” 
and “why”

Mediator dominates 
that mediated (total)

Mediator dominates 
that mediated (total)

Mediator is 
a state

Mediator is 
observed or 
manipulated

Moderation:

Moderator has temporal precedence

Moderator and that moderated are uncorrelated

Co-domination 
of moderated and 
moderator

Answers, “for 
whom” and 
“when”

Moderator is a 
trait

Moderator is 
observed
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A casual examination of Table 1 also reveals that none of the articles originate from 
the field of Educational Research and, to the best of our knowledge prior to this 
chapter; Educational Researchers have never had tailor-made guidance written for 
them on the issues that surround Mediation and Moderation.

Of the guidelines distinguishing Mediation from Moderation that are presented in 
Table 1, only two are consistent across all the articles:

1. The varying importance of temporal precedence (e.g. Cole & Maxwell, 2003)
2. The varying importance of which measures should/should not be significantly 

correlated with one another.

The first of these is particularly paramount given that both Mediation and Moderation 
are viewed as causal unidirectional hypotheses of effect. As a result, they require 
appropriate quantitative data to be tested: that which is appropriate for testing any 
unidirectional hypotheses. This is a condition of gathered quantitative data that is 
most commonly resolved by collecting data with a temporal element (i.e. data that 
is longitudinal in the case of correlational/survey research or repeated-measures 
in the case of experimental designs). Having data with the correct clear temporal 
precedence (establishing ‘causal priority’; Preacher & Hayes, 2004) is perhaps 
the most important precondition that researchers can and should establish for both 
Mediation and Moderation.

Real-world ambiguities. Unfortunately, even when educational researchers 
hold clear unambiguous definitions of Mediation and Moderation there still 
remain real-world occasions in which the appropriateness of one over the other 
is ambiguous. Within developmental science (a catch-all label that includes much 
quantitative educational research), this can often be attributed to the time-frame 
under consideration. For example, it is often possible for the same set of measures 
to be related first as a mechanism (mediation) but then later as a conditional effect 
(moderation). The paper by Masten (2007) provides an example of this. The 
relationship between background adversity, an individual’s stress-regulators, and 
their subsequent stress-response begins with stress regulators being shaped by 
adversity as they develop. However, once stress-regulators are developed, their 
relationship with adversity changes: stress-regulators are now deemed to operate 
by altering the stress-response to adversity. Thus in the first period, a mechanism 
(mediation) is at work while in the second, a conditional effect (moderation) comes 
into evidence (see Figure 2).

Another common difficulty that researchers can face when determining whether it 
is more appropriate to specify a hypothesis of Mediation or Moderation is that these 
hypotheses can also be combined. Again Masten (2001) provides an example - this 
time of, “...a risk-activated moderator analogous to an automobile airbag or 
immune system response”. Figure 3 illustrates this effect with generalised labels. For 
the educational researcher in particular, this is also an excellent description of the 
ideal functioning of social interventions such as Head Start in the USA (see Currie 
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and Thomas, 1995) and Sure Start in the UK (see Glass, 1999). At the same time, 
although this example has obvious application in the real-world it also contravenes 
the only two consistent guidelines about when to hypothesise Moderation that are 
shown in Table 1.

The “risk-activated moderator” of Masten (2001; Figure 3) is just one example 
of how Mediation and Moderation may be integrated as hypotheses. Two more 

Figure 2. The plausibly of mediation and moderation as appropriate hypotheses varying 
by the time-frame under investigation (adapted from masten, 2007).

Figure 3. An example moderation that contravenes common guidelines but which has 
real-world application (adapted from the “risk-activated moderator” of Masten, 2001).
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examples of these hypotheses in combination are “Moderated-mediation” 
and “Mediated-moderation” (see Figure 4). Both hypotheses concern causal 
relationships hypothesised between at least four measures [W, X, Y, Z] and both 
postulate conditional (moderated) mechanisms of effect (mediation) whereby X 
affects Y. Further in-depth description and discussion of these combinations of 
Mediation and Moderation can be found in Muller, Judd, and Yzerbyt (2005), Wu 
and Zumbo (2007), Preacher, Rucker, and Hayes (2007), and Edwards and Lambert 
(2007). These papers also outline the various approaches for the statistical testing of 
these hypotheses.

Moderation ≠ (Statistical) Interaction

Just as hypotheses of Moderation are often confused with Mediation so too is 
Moderation often confused (or viewed as synonymous with) Statistical Interaction. 
This is a problem that is at-least partly due to the overlap between the two concepts, 
one where Moderation can be viewed as a more restricted version of Statistical 
Interaction as evidenced by the alternative name for Moderation given by Wu and 
Zumbo (2007): “Causal Interaction”. The relationship between the concepts of 
Statistical Interaction and Moderation can be understood as the difference between 
a two-tailed hypothesis and a more restrictive one-tailed hypothesis. Thus, although 
the statistical methods that are used to test hypotheses of (Statistical) Interaction 
can also be applied to hypotheses of Moderation, to conclude Moderation from 

Figure 4. An illustration of the hypotheses of mediated-moderation and moderated-
mediation (adapted from Wu & Zumbo, 2007).
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these methods necessitates relying heavily upon pre-existing knowledge, be this 
from past research findings, broader substantive theories, or from other top-down 
sources of knowledge (e.g. Nicholson, Hursey, & Nash, 2005). When there is a 
lack of sufficient pre-existing knowledge to justify putting forward a hypothesis of 
(one-tailed) Moderation at the beginning of a research project, subsequent evidence 
of a (two-tailed) Statistical Interaction should not over-interpreted as inferring 
Moderation (as in Rutter & Silberg, 2002; Kraemer et al., 2001) . For example, 
finding evidence that educational outcomes are significantly related to the interaction 
of parental background and various educational factors that a child experiences (thus: 
attainment=background + ed.factor + background x ed.factor) should not be over-
interpreted to conclude that education can alter the effects of parental background 
unless there is additional top-down information to warrant this (e.g. Burchinal, 
Peisner-Feinberg, Bryant, & Clifford, 2000; Hall, et al., 2009; NICHD, 2000).

(Statistical) Interaction ≠ Statistical Interaction Terms

While Statistical Interaction is a two-tailed hypothesis that two or more concepts 
“work together”/“have a combined effect” upon a third, Statistical Interaction Terms 
are two-tailed statistical artefacts (defined as the product of two variables) and are 
often specified to test these hypotheses − commonly within regression- (of bivariate 
form: Y = b0 + b1X + b2Z + B3X.Z + e) and ANOVA-based statistical analyses.

The relationship between Moderation, Statistical Interaction, and Statistical 
Interaction Terms takes the following form: Moderation is a more restricted one-
tailed alternative to the two-tailed hypotheses of Statistical Interaction although 
both are often tested through the specification of Statistical Interaction Terms.

SOME MEANS OF TESTING MEDIATION AND MODERATION 
(THEORY IN PRACTICE)

Mediation

Although MacKinnon and colleagues (2002) discuss fourteen statistical methods to 
test hypotheses of Mediation, here we note only the four main methods and direct 
readers to Hayes (2009) for a fuller while also contemporary discussion of Mediation 
as well as the methods that are available for its testing.

1. The ‘Causal Steps Approach’ of Baron and Kenny (1986). This is a technique 
that has been strongly criticized as having the least statistical power to accurately 
detect Mediation Effects (Fritz & MacKinnon, 2007; Hayes, 2009)

2. The Sobel Test (Sobel, 1982) is a more formal test of mediation compared to 
the Causal Steps Approach. Multiple regression analyses are conducted and the 
results of each are combined (see Preacher & Hayes, 2004). Various macros and 
online calculators are available for this additional step (for example from: http://
www.danielsoper.com)

http://www.danielsoper.com
http://www.danielsoper.com
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3. Bootstrapping. One of the problems with the Sobel Test is that it assumes 
normality in the distribution of variables which limits its appropriate application. 
One alternative that does not make this assumption is to conduct statistical 
boostrapping to estimate Mediation Effects. Not only is this non-parametric 
technique applicable with non-normally distributed variables, it is also retains its 
reliability with lower sample sizes compared to the Sobel Test (for more detail see 
Preacher & Hayes, 2004).

4. Statistical Path Analysis (often within “Structural Equation Modelling”, SEM) 
commonly incorporates the above Bootstrapping approach within a broader 
statistical modelling framework that Reynolds and Ou (2003) note as an especially 
suitable technique for, “theory driven tests of hypotheses of causal mediation” 
(p.451, Reynolds & Ou, 2003). A good overview is provided by Tatsuoka (1973) 
who documents both the historical origins of path analysis and provides an 
account of its initial take-up by educational researchers.

Moderation

Compared to the methods available for testing a hypothesis of Mediation, the 
options available to researchers interested in Moderation are both more numerous 
and more complex (with this at least partly attributable to the changing definition of 
Moderation over time and partly due to its conceptual relationship with Statistical 
Interaction). Back in 1986 Baron and Kenny discussed the statistical methods 
suitable for testing hypotheses of moderation (statistical interaction terms within 
either regressions or ANOVAs) and presented detailed guidelines for deciding the 
appropriateness of one over the other. For this, Baron and Kenny emphasised that 
the suitability of a method depended upon the level of measurement by which each 
of the three concepts featured in the Moderation were measured, be this continuous 
or categorical. Fifteen years later however and Kraemer and colleagues (2001) noted 
a “struggle” existed between two statistical approaches used for testing hypotheses 
of moderation: 1) Sub-group comparisons (that commonly dichotomise continuous 
moderator variables), 2) Statistical Interaction Terms. For the educational researcher 
in particular however, there is at least one additional statistical technique not covered 
by either Baron and Kenny (1986) or Kraemer and colleagues (2001) and which also 
directly tests hypotheses of Moderation, has nothing to do with Statistical Interaction 
Terms (in ANOVAs or regressions), and for which quantitative educational data is 
frequently suitable: Random Slope Effects. These are typically examined in multilevel 
models that explore the hierarchical structure of nested data in social or educational 
contexts where students are clustered in classes, themselves clustered in schools, 
in turn clustered in neighborhoods etc (see Goldstein, 2003; Luyten & Sammons, 
2010). Here examples of hypotheses that may be tested include that the shape of 
relationships between prior attainment and later attainment (the slope) may differ 
between higher level units (for example classes or schools) and also for different 
groups of students within different schools (for example by SES or gender).
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An in-depth discussion of the three methods (sub-group comparisons, statistical 
interaction terms, random slope effects) that are particularly suitable for educational 
researchers interested in testing hypotheses of moderation follows below. First 
however, it is worth mentioning that these options may be grouped in two different 
ways: 1) Explicit versus Implicit Tests, and 2) Variable-based versus Personbased. 
The Explicit/Implicit distinction refers to whether a technique is, or by contrast is 
not, a literal and direct test of the trivariable causal hypothesis of Moderation that is 
illustrated in Figure 1 (random slope effects) or whether a conclusion of Moderation 
is instead only inferred from a Statistical Interaction (sub-group comparisons, 
statistical interaction terms). The Variable/Person-based distinction refers to whether 
a method emphasises a pattern of statistical relationship between variables (as in 
random slope effects, statistical interaction terms) or statistical differences between 
units of analysis (commonly people; as in sub-group comparisons).

1. Sub-group comparisons (indirect person-based test of moderation). Here, 
evidence of moderation is obtained by establishing that a bivariate relationship is 
significantly different between two or more groupings of the unit of analysis (be 
these people, schools etc). If the moderator variable was originally measured with 
a continuous variable, then an intermediate, though strongly criticised (Frazier, 
Barron, & Tix, 2004; MacCallum, Zhang, Preacher, & Rucker, 2002; McClelland 
& Judd, 1993), step is necessary: sub-group creation through dichotomisation/
categorisation.

2. Statistical Interaction Terms (indirect variable-based test of moderation). This 
is a multi-stage procedure that only actually tests the existence of a combined 
working-together of two or more variables as they jointly impact another. It is 
then up to the researcher to interpret whether this also constitutes evidence of 
moderation (see Wu and Zumbo, 2007). As an act of inductive reasoning, this 
additional step should be informed by broader conceptual understanding such as 
the findings from previous research. This means of testing.

3. explains the alternative name for Moderation as a, “Causal Interaction Effect”: 
A non-causal bi-directional relationship is established (the Interaction Effect) 
before post-hoc reasoning is undertaken to establish a causal relationship from 
this. The procedure for testing a Statistical Interaction Term in an OLS regression 
is as follows:
a. Mean-centre your predictor [X] and moderator [Z] variables.
b. Construct a new ‘interaction’ variable of the form: predictor x moderator [XZ]
c.  Use this variable as a predictor of your outcome [Y] along with the original 

variables [X, Z] in a regression equation of the form: Y = X + Z + XZ [+e]
d.  Interpret only the unstandardised regression co-efficient from the [XZ] 

statistical interaction term.
e. Plot any significant Statistical Interaction Term to aide interpretation.

4. Random Slope Effects (direct variable-based test of moderation). Unlike Sub-
group Comparisons and the use of Statistical Interaction Terms, Random Slope 



277

MEDIATION, MODERATION & INTERACTION

Effects test a hypothesis of Moderation directly, not via the intermediate step of 
first establishing a Statistical Interaction. Random Slope Effects refer to when a 
statistical regression relationship (the Slope, [s]) between two variables [X, Y] 
is allowed to vary as a function of a third [Z]. Unfortunately, this most direct 
means of testing a hypothesis of Moderation is also the most restricted in terms of 
the requirements it imposes on quantitative data. Random Slope Effects require 
clustered or nested data (as noted above) and therefore multilevel (hierarchical 
linear) statistical modelling techniques. On top of this, for a Random Slope 
Effect to test a hypothesis of Moderation a very specific set of relationships must 
to be specified between variables: The Moderating variable [Z] must be at the 
between level (level 2) while the Moderated relationship [Y on X] must be at 
the within level (level 1). Fortunately, the requirement for nested quantitative 
data is one that educational research frequently meets due to the nested nature of 
educational systems (e.g. children within classes within schools within districts/
neighbourhoods).

TESTING MODERATION: AN EXAMPLE THROUGH 
THREE EQUIVALENT STATISTICAL ANALYSES

The final section of this paper presents a worked example of some of the main issues 
so far discussed. An educational research question is expressed as a hypothesis of 
Moderation and this is then tested with the three statistical approaches discussed 
above in Section 3: A Sub-group Comparison, specification and testing of a Statistical 
Interaction Term, and the testing of a Random Slope Effect.

Theoretical Background

A mother’s age at the birth of her child is known to significantly impact this child’s 
cognitive development: Children of younger mothers are likely to demonstrate 
poorer cognitive development (Borkowski, et al., 1992; Fergusson & Lynskey, 
1993). However, higher ‘quality’ (Currie, 2001) preschool has been found to partial 
‘protect’ (Rose, et al., 2004) children from such adverse outcomes (Burchinal, 
Peisner-Feinberg, Bryant, & Clifford, 2000; Hall, et al., 2009; NICHD, 2000). This 
set of relationships can be expressed as a hypothesis of Moderation: Attendance at a 
preschool of higher quality may moderate the relationship between a mother’s age 
(at child-birth) and her child’s subsequent cognitive development.

Method

To test the hypothesis of Moderation suggested above, a secondary analysis of the 
Effective Preschool, Primary, and Secondary Education (EPPSE; Sylva, Melhuish, 
Sammons, Siraj-Blatchford, & Taggart, 2010, 2012) dataset was undertaken. 
Adopting a longitudinal research design, EPPSE was the first large scale British 
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research project to examine the quality and effectiveness of various programmes of 
pre-, primary, and secondary schools as predictors of the development and educational 
attainment of over 3,000 British children from 3 years of age to adulthood.

Participants. 2857 participating families with children in attendance at n=141 
preschools (for at least 10 weeks already) were recruited when these children were 
of mean age 36 months. This recruitment of families from preschools ensured that 
a sufficient level of nesting of data was achieved (families within preschools) such 
that preschool effects on child outcomes could be reliably estimated (e.g. Goldstein, 
1987, 2003).

Measures. For this example, the outcome measure [Y] was each child’s General 
Cognitive Ability (GCA) as measured by the British Ability Scales (Elliot, NFER-
NELSON, Smith, & McCulloch, 1996) and as assessed at mean child age 58 months 
(n=2574; mean=96.73; Standard Deviation, SD=14.51). The predictors of GCA at 
mean child age 58 months were:

• GCA at 36 months (n = 2764; mean = 91.36; SD = 13.90)
• Mother-age at child-birth [X] assessed at parental interview at enrolment 

(n = 2779) with a six category ordinal scale (1 = 16–20, 2 = 21–25, 3 = 26–35, 
4 = 36–45, 5 = 46–55, 6 = 56–65) that is here treated as continuous for solely 
pedagogical purposes (thus: mean = 3.16; SD = 0.66)

• The hypothesised moderator [Z]: The overall ‘quality’ of the preschool that each 
child attended as measured by the Early Childhood Environmental Rating Scale 
(ECERS-R; Harms, Clifford, & Cryer, 1998; preschool n = 141; child n = 2857; 
child mean = 4.47; SD = 1.00)

With reference to the guidelines of Table 1, it should be noted that the hypothesised 
moderator, preschool quality, was uncorrelated with the variable whose effect 
quality was hypothesised to moderate (mother’s age). For more details on these 
measurements see Sylva and colleagues (2010).

Analytic techniques. Each of the three statistical techniques for testing a hypothesis 
of Moderation that were discussed in Section 3 (Sub-group Comparisons, Statistical 
Interaction Terms, Random Slope Effects) were conducted within the statistical 
framework of Multilevel Structural Equation Modelling (SEM) using Version 6 of 
the Mplus Software (Muthén & Muthén, 2010). Version 6 of the Mplus Software 
estimated missing data using maximum likelihood procedures as an integral part of 
all three analyses (Muthén & Muthén, ibid). As the following results serve only as 
an example of the methods discussed above, we do not report the results in full as we 
would in a purely substantive piece of work as a detailed substantive interpretation is 
not the aim (full results are of course available from the authors).
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Results

Sub-group Comparisons. Comparisons between sub-groups based on the quality of 
preschools were made possible through the specification of a “multi-level mixture 
model”. Given that preschool quality was originally measured on a continuous 
scale, the specification of sub-groups necessitated an initial step of dichotomisation. 
A mean ± 1 standard deviation dichotomisation strategy was used to form two groups 
of n = 623 and n = 461 children who had attended n = 55 ‘low’ and ‘high’ quality 
preschools respectively (the remaining and excluded n = 1773 children attended 
n = 86 preschools where quality was within the mean ± 1SD range). The following 
effects of mother-age on GCA at 58 months were found:
• In the ‘Low’ preschool quality group: Older mothers had children who 

demonstrated significantly higher GCA (standardised regression coefficient, 
β = 0.10, p = 0.001)

• In the ‘High’ preschool quality group: There was no significant relationship 
between mother age and child GCA ( β = −0.01, p = 0.85)

• Further, the relationship between mother age and child GCA was significantly 
higher in the ‘Low’ quality preschool group than it was in the ‘High’ quality group 
(β = 0.10 vs. β = −0.01; t1080 = 2.66, p < 0.01)

In conclusion, a differential impact of mother’s age upon GCA at 58 months was 
found in low versus high quality preschools. For children attending ‘high’ quality 
preschools, the children of younger mothers had (on average) indistinguishable 
levels of GCA compared to children of older mothers: This was not so for children 
attending ‘low’ quality preschools.

MPLUS SUBGROUP COMPARISON (VIA DICHOTOMISATION) SYNTAX:
MISSING ARE ALL (-999999);
idvariable = childid;
CLUSTER = centreid;
WITHIN = bgcam q53am;
CENTERING = GRANDMEAN (bgcam, q53am);
CLASSES = group (2);
KNOWNCLASS = group (group1=0 group1=1);
DEFINE:
IF (ecers_r LE 3.4690) THEN group1=0;
IF (ecers_r GE 5.4691) THEN group1=1;
ANALYSIS:
TYPE = MIXTURE TWOLEVEL;
ALGORITHM = INTEGRATION;
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Statistical interactionterms. A “multi-level path model” was specified in which the 
Statistical Interaction Term introduced in Section 3 (Y = X + Z + XZ) was specified 
at the preschool (between) level. The following effects of mother-age on GCA at 58 
months were found (bearing in mind that standardised results were unavailable for 
this model):

• There was a positive and statistically significant effect of mother-age on GCA at 
58 months (unstandardised regression coefficient, b = 4.92, p < 0.001)

• There was also a positive effect of preschool quality on GCA at 58 months 
although this did not quite reach the 95% confidence level (b = 1.780, p = 0.064)

• There was also a statistically significant negative effect from the Statistical 
Interaction Term mother-age x preschool quality (b = −0.685, p = 0.020)

In conclusion: mother’s age had a decreasing effect on children’s GCA at 58 months 
as the preschools that these children attended increased in quality. The children 
of younger mothers had (on average) lower GCA at 58 months but this was less 
apparent when these children had attended higher quality preschools. In other words, 
this analysis and its results lead to the same substantive conclusion as that returned 
from the Sub-group Comparisons.

MODEL:
%WITHIN%
%OVERALL%
rgcam on bgcam;
rgcam on q53am;
%group#1%
rgcam on bgcam;
rgcam on q53am;
%group#2%
rgcam on bgcam;
rgcam on q53am;

MPLUS INTERACTION TERM SYNTAX:

MISSING ARE ALL (-999999);

idvariable = childid;
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Random Slope Effects. Once again, a “multilevel path model” was specified, but 
this time also featuring “random effects”. In this analysis only one random effect was 
estimated: the statistical regression slope (s) between mother’s age and child GCA 
at 58 months was allowed to vary between children and this variation was specified 
to depend upon the quality of the preschools that children attended. As with the 
estimation of the Statistical Interaction Term, the specification of a Random Slope 
Effect meant standardised results were again unavailable. The following effects of 
mother-age on GCA at 58 months were found:

• There was a positive and statistically significant effect of mother-age on GCA at 
58 months (unstandardised regression coefficient, b = 4.54, p = 0.001)

• There was no effect of preschool quality on GCA at 58 months (b = −0.44, 
p = 0.208)

• The significant relationship between mother-age on child GCA at 58 months was 
significantly diminished by increasing preschool quality (b = −0.63, p = 0.031)

In conclusion, mother’s age had a smaller effect on child GCA at 58 months when 
these children were in attendance at higher quality preschools. Once again, this 
conclusion is essentially the same as that drawn from the Sub-group Comparisons 
and the specification/testing of the Statistical Interaction Term discussed above.

CLUSTER = centreid;

BETWEEN = ecers_r;

WITHIN = q53am bgcam qualage;

CENTERING = GRANDMEAN (bgcam, q53am, qualage);

DEFINE: qualage = ecers_r*q53am;

ANALYSIS:

TYPE = RANDOM TWOLEVEL;

ALGORITHM = INTEGRATION;

MODEL:

%WITHIN%

rgcam on bgcam q53am qualage;

%BETWEEN%

rgcam on ecers_r;
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Discussion

Although all three methods led to the same substantive conclusion, the robustness of 
the relationship between this conclusion and the various statistical results/evidence 
varied. For example, the use of Sub-group Comparisons meant that no estimation 
was possible of any direct effect from preschool quality on child GCA at 58 months. 
Furthermore, although the specification of a Statistical Interaction Terms did include 
this estimate, the operationalisation of the hypothesised moderation was weaker 
than with the Sub-group Comparisons. This was because the specification of the 
Statistical Interaction Term was equivalent to using a two-tailed statistical technique 
to test a one-tailed hypothesis. It was only through the use of a Random Slope 
Effect that an appropriate one-tailed statistical test was carried out for a one-tailed 
hypothesis while the conducted analysis also fully estimated the effect of preschool 
quality upon child GCA at 58 months (leaving aside the potential problems that 
come through dichotomising moderators as here in the Sub-group Comparisons). 
The three worked examples show that it is important for educational researchers to 

MPLUS RANDOM SLOPES SYNTAX:

MISSING ARE ALL (-999999);

idvariable = childid;

CLUSTER = centreid;

BETWEEN = ecers_r;

WITHIN = q53am bgcam;

CENTERING = GRANDMEAN (bgcam, q53am);

ANALYSIS:

TYPE = RANDOM TWOLEVEL;

ALGORITHM = INTEGRATION;

MODEL:

%WITHIN%

rgcam on bgcam;

s | rgcam on q53am;

%BETWEEN%

s on ecers_r;

rgcam on ecers_r;
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specify their causal hypotheses carefully and to be aware that the robustness of the 
results and the conclusions drawn may be affected by their conceptualisation and 
choice of statistical methodology. It is helpful to consider whether hypotheses can 
be tested in more than one way and to establish if the conclusions remain broadly 
similar across different approaches used.

CONCLUSIONS

This chapter sought to provide a critical up-to-date review of the terms Mediation, 
Moderation, and Interaction as they are being commonly defined, discriminated, 
used, and tested as of 2013 and to consider some of their implications for quantitative 
educational research. That said, with a greater consideration on the historical origins 
of these terms as well as ‘real-life’ difficulties and ambiguities, we have also tried to 
equip educational researchers with the working knowledge to use these ideas with 
greater precision and clarity in their own research and to raise awareness of the broader 
substantive and methodological literatures which often vary in their chosen terminology.

From our review of both historic and current guidelines and practice, a number 
of recommendations emerge. First, it is essential that educational researchers have 
sufficient evidence to put forward and clearly distinguish one-tailed hypotheses such 
as Mediation and Moderation. Second, educational researchers must then gather 
(or have access to) data that is suitable to address these hypotheses with particular 
emphasis on the correct causal ordering of measures. Whether the quantitative 
research is correlational/survey or experimental in nature, for a one-tailed hypothesis 
to be adequately tested, there must be clear evidence of the appropriate temporal 
precedence between measures (as there was in the example provided in Section 
4 above). Third, with the increasing availability, uptake, and sophistication of 
statistical software packages, it is our recommendation that quantitative researchers 
seriously consider the merits of Structural Equation Modelling (SEM) programmes 
such as EQS, LISREL, AMOS, and MPLUS. Not only have many of the historic 
statistical methods for testing Mediation, Moderation, and Statistical Interaction 
been incorporated into these packages, but they also facilitate the testing of these 
hypotheses when they are chained-together (e.g. multiple mediations as “indirect 
effects”) and combined (e.g. mediated-moderation) in ways that allow the researcher 
to address and model interesting and complex topics in educational contexts.

Finally and with the aims of this chapter aside, the critical reader might ask 
themselves, “given the difficulties with these terms, are they really worth all the 
trouble?” and this is an understandable question. Perhaps unsurprisingly, it is 
our opinion that the greater adoption and use of all of these terms by educational 
researchers is of direct benefit to the substantive knowledge of the field. In particular, 
the hypotheses of Mediation and Moderation are tools that give the educational 
researcher the ability to specify increasingly complex and yet still testable research 
hypotheses and enable them to explore causality in more plausible ways in complex 
and messy educational and social research contexts. Thus, Mediation and Moderation 
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are tools that may empower the researcher to specify and test a greater number 
of clear hypotheses and, done with awareness and defensibly (if not the largely 
unobtainable “correctly”), this fosters the development of pyramid(s) of knowledge 
that can help to advance the knowledge base and possibilities of studying important 
educational research questions.
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14. INTRODUCTION TO CONFIRMATORY 
FACTOR ANALYSIS AND STRUCTURAL 

EQUATION MODELING

Confirmatory factor analysis (CFA) is a powerful and flexible statistical technique 
that has become an increasingly popular tool in all areas of psychology including 
educational research. CFA focuses on modeling the relationship between manifest 
(i.e., observed) indicators and underlying latent variables (factors). CFA is a special 
case of structural equation modeling (SEM) in which relationships among latent 
variables are modeled as covariances/correlations rather than as structural relationships 
(i.e., regressions). CFA can also be distinguished from exploratory factor analysis 
(EFA) in that CFA requires researchers to explicitly specify all characteristics of the 
hypothesized measurement model (e.g., the number of factors, pattern of indicator-
factor relationships) to be examined whereas EFA is more data-driven. In this chapter 
we will provide a general introduction to how CFA and SEM can be used within 
educational research and other areas of psychology. We will begin with a nontechnical 
overview of the purpose of and methods underlying CFA and SEM before describing 
the various potential uses of CFA and SEM in educational research. We will then 
discuss the advantages of CFA and SEM over traditional methods of data analysis, 
provide an overview of the core steps in conducting CFA and SEM analyses, and 
discuss some practical issues in conducting these analyses such as software options. 
We then provide a brief summary of some of the more advanced methods in which 
CFA and SEM can be extended to conduct sophisticated analyses. We conclude with 
an illustrative series of example models in which the relationship between academic 
self-efficacy and academic performance is examined using CFA and SEM.

OVERVIEW AND GOALS OF CFA AND SEM

The goals of both CFA and SEM are to identify latent variables using a set of manifest 
indicators and to then evaluate hypotheses regarding the relationships among the 
latent variables. The conceptual background for conducting these analyses is the 
common factor model (Thurstone, 1947), which states that each manifest indicator 
is a linear function of one or more common factors and a unique factor. Factor 
analytic techniques therefore attempt to partition the variance of an indicator 
into (1) common variance, or the proportion of variance that is due to the latent 
variable, and (2) unique variance, which is a combination of random error variance 
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(e.g., measurement error) and reliable variance that is specific to a particular item. 
Both EFA and CFA and SEM attempt to reproduce the observed intercorrelations/
covariances between items with a more parsimonious set of latent variables. The 
primary difference, as mentioned above, is that CFA and SEM require researchers 
to explicitly specify every aspect of the models to be evaluated. CFA and SEM 
therefore require that researchers have a strong conceptual or empirical foundation 
to guide the specification and evaluation of models.

Common Uses of CFA and SEM

Some of the most common uses of CFA in educational and other areas of research 
include scale validation, construct validation, and evaluating measurement invariance. 
It is now considered standard practice to conduct a series of factor analyses when 
developing a new measure in psychological research. The standard progression is for 
researchers to begin by specifying an EFA model to evaluate an initial pool of items, 
and to then move to a CFA framework to provide a more rigorous evaluation of how a 
theoretical model represents the observed data. Through this process, researchers are 
able to determine the number of latent variables that best represents the constructs of 
interest and the pattern of relationships (i.e. factor loadings) between the observed 
items and latent variables. Thus, for instance, CFA can help researchers determine 
whether they should focus on the total score of a measure or subscales comprised of 
particular items from that scale. CFA also provides superior methods of evaluating 
other psychometric properties (e.g., reliability) of a scale than traditional methods 
such as Cronbach’s alpha. For these reasons, educational researchers are strongly 
encouraged to use CFA when developing and validating new scales.

Another common application of CFA is to evaluate whether the measurement 
properties of an assessment are invariant. This is often an important second step 
in scale development. Measurement invariance can be tested cross-sectionally 
between groups or longitudinally between assessments of the same individuals. The 
use of CFA to evaluate measurement invariance across groups is discussed in detail 
in Chapter XX; in brief, these methods allow researchers to evaluate whether the 
relationship between indicators and latent variables is consistent between groups. 
For example, researchers could use CFA to evaluate measurement invariance 
between sexes on a test of mathematical proficiency. This analysis could help 
researchers determine whether any observed differences between sexes represent 
true differences between males and females or merely indicate that the items on 
a particular assessment function differently between sexes. The evaluation of 
measurement invariance is also a very important but underappreciated issue in 
longitudinal research, as the demonstration of measurement invariance across 
assessments provides the foundation for researchers to conclude that change in a 
latent variable across time truly represents growth or decline rather than inconsistent 
measurement. For additional information about how to test measurement invariance, 
readers are encouraged to consult Brown (2006), and Cheung and Rensvold (2002).
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A third area in which CFA is commonly used is construct validation. CFA and SEM 
provide a useful framework for demonstrating both convergent and discriminant 
validity of theoretical constructs. Convergent validity is indicated by evidence that 
multiple indicators of theoretically linked constructs are strongly interrelated; for 
example, results on a series of tests that all purport to measure mathematical aptitude 
load on a single factor. Discriminant validity is indicated by evidence that indicators 
of theoretically distinct constructs do not correlate strongly with one another; for 
example, indicators of verbal and mathematical aspects of intelligence load on 
separate factors and correlate more so with indicators within the same domain of 
intelligence than with indicators within a different domain of intelligence. One of the 
most robust ways in which CFA can be used in construct validation is with the use 
of multitrait-multimethod techniques (Campbell & Fiske, 1959; Kenny & Kashy, 
1992), a powerful yet infrequently used technique in which several constructs are 
measured using multiple methods and then modeled such that common variance due 
to method effects is separated from common variance due to latent traits.

Advantages of CFA and SEM

CFA and SEM have numerous advantages over traditional statistical techniques such 
as correlation and regression. One of the primary advantages of CFA and SEM is 
that they allow researchers to estimate the relationships between variables while 
accounting for measurement error. Traditional statistical techniques impose the 
generally unrealistic assumption that variables have been measured perfectly with no 
error. This assumption of error-free measurement is rarely appropriate in educational 
research or other areas of psychological research and results in parameter estimates 
that are biased to an unknown degree due to the failure to account for measurement 
error. By specifying latent variables that allow for the estimation of measurement 
error, researchers are able to obtain more accurate, reliable, and valid estimates of 
the relationships among latent constructs. This can also result in increased statistical 
power as the relationships between variables can be more precisely estimated after 
properly accounting for the role of measurement error. An important strength of 
CFA is the ability to model complex error structures among indicators to account 
for method effects (e.g., two self-report indicators of intelligence may correlate 
more strongly with one another than peer and teacher evaluations of intelligence 
would). Another important advantage of latent variable techniques such as CFA and 
SEM is that they permit the specification of complex longitudinal models that can 
help researchers to evaluate sophisticated theoretical models regarding change (e.g., 
latent growth curve models). A few of the more advanced methods are discussed 
later in this chapter. It is worth noting, however, that there are many circumstances 
in which CFA and SEM may not be the ideal method of data analysis. Most notably, 
if researchers are focusing on manifest variables that do not include measurement 
error (e.g., gender, grade point average), latent variable modeling techniques such as 
CFA and SEM may not be necessary.
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CORE STEPS IN CFA AND SEM ANALYSES

CFA and SEM are complex statistical techniques that are performed in an iterative 
process and that present researchers with a number of important decisions during 
the process. The steps identified subsequently will provide readers with a general 
outline of the most common steps that researchers will follow when conducting 
CFA and SEM analyses. The subsequent steps presume that a researcher has already 
collected an appropriate dataset and has screened the data for outliers, univariate 
normality, and multivariate normality (Kline, 2011).

Specify Theoretical Model

The first step in conducting CFA and SEM analyses is for the researcher to clearly 
specify the theoretical model they are interested in testing. As mentioned previously, 
CFA and SEM differ from more data-driven procedures such as EFA and it is 
therefore crucial that researchers have a very clear idea of the specific models they 
want to test in advance. It is often helpful to diagram the planned models using 
common SEM notation and symbols. A fully notated example for a two-factor, six 
indicator CFA model can be seen in Figure 1. When diagramming SEM models, 
circles are used to denote latent variables, squares or rectangles are used to denote 
manifest or observed variables, correlations (standardized solutions) or covariances 

Figure 1. Example two factor CFA measurement model with six manifest indicators. 
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(unstandardized solutions) are denoted using double headed arrows, and single 
headed arrows are used to denote direct effects such as factor loadings or effects of 
one latent variable on another. Other common notations in SEM include the use of 
lambda (λ) to denote factor loadings, psi (ψ) to denote variances and covariances/
correlations, and theta (θ) to indicate residuals and residual covariances.

Specify Measurement Model

After clearly specifying a theoretical model to be tested, researchers should next 
evaluate the measurement model for the latent variables of interest. The test of 
the measurement model should always be conducted prior to evaluating structural 
equation models. There are two important issues that researchers must consider when 
specifying the measurement model. The first issue is that researchers must ensure 
that CFA and SEM models are statistically identified. Adequate identification occurs 
when the number of parameters to be estimated in a model does not exceed the 
number of pieces of information in the variance-covariance input matrix. If a model 
is not adequately identified, then a solution cannot be solved as there are an infinite 
number of potential solutions. In CFA, the number of known pieces of information is 
determined by the size of the input variance/covariance matrix and can be calculated 
using the formula b = [p * (p + 1)]/2, where b is the number of elements in the input 
matrix and p is the number of variables included in the input matrix. For example, 
an input matrix of three variables would provide six pieces of information (three 
variances and three covariances) while an input matrix of two variables would 
only provide 3 pieces of information (two variances and 1 covariances). It is 
therefore only possible to freely estimate six parameters (i.e. three factor loadings 
and three residuals or two factor loadings, three residuals and the variance of the 
latent variable) in a model that uses an input matrix with three variables. When 
the number of freely estimated parameters equals the number of elements in the 
input matrix, then a model is just-identified and will fit the data perfectly. When the 
number of elements in the input matrix is greater than the number of freely estimated 
parameters, then a model is over-identified and the degrees of freedom (df) for the 
model can be determined by subtracting the number of freely estimated parameters 
from the number of known elements. When a model is overidentified, researchers 
are able to obtain goodness of fit statistics (discussed in more detail subsequently) 
that provide information about how well the specified CFA model reproduced the 
observed relationships in the sample data. It is also important to consider whether 
a model is locally identified in addition to being globally identified. Large models 
that include many variables will usually be over-identified but researchers should 
take care that each latent variable within a model is adequately identified. Situations 
in which the overall model is over-identified but certain components of the model 
are not locally identified are referred to as empirically under-identified solutions 
(e.g., selection of a marker variable that is unrelated to the other indicators that are 
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specified to load on the same factor; see next paragraph). In these cases, either the 
model cannot be estimated or the model will converge but contain out of bounds 
parameter estimates (i.e., negative residual variances).

The second important issue in specifying CFA measurement models is setting the 
scale of latent variables. Latent variables do not have an inherent metric so the scale 
of these variables must always be set using one of the three methods. The most widely 
used method is the marker variable method, which involves fixing the factor loading 
of one indicator for each latent variable to be 1.0. This method results in setting the 
scale of the latent variable to the metric of the marker variable. Another common 
method is to standardize the factor variance, which involves fixing the variance of 
the latent variable to 1.0. The fixed factor method results in a standardized solution 
for the factor loadings and residuals. A third, but less common, method for setting 
the scale of latent variables is the effects coding approach (Little, Slegers, & Card, 
2006). This method involves constraining the loadings of a latent variable to average 
1.0. This is done by freely estimating all but one of the factor loadings and then 
fixing the remaining factor loading to equal the number of indicators minus each 
of the freely estimated factor loadings. The advantage of the effects coding method 
is that the parameters in a model (i.e., variances, means) reflect the observed scale 
of the indicator variables. The disadvantage of the effects coding method is that it 
requires slightly more complicated syntax. Each method is valid and will produce 
identical results in terms of model fit.

Estimate and Evaluate Measurement Model

The next step is to estimate the model using one of the many software packages 
designed for latent variable analysis (discussed later). The estimation process in 
CFA and SEM involves a fitting function (most commonly maximum likelihood; 
ML) that iteratively produces parameter estimates in an attempt to minimize the 
differences between the model-implied variance-covariance matrix and the sample 
variance-covariance matrix. For a more thorough description of the procedures 
involved in ML estimation and the circumstances in which other estimation methods 
are preferred, the reader is referred to Brown (2006), and Eliason (1993).

If a model converges successfully (i.e., a solution is obtained through ML 
estimation), researchers can then evaluate how acceptable the model fit the data. 
There are three primary components of the results that researchers should focus on 
when evaluating model fit. The first is overall goodness of fit, which reflects the 
degree to which the estimates of the CFA model reproduce the relationships between 
variables in the observed sample. A variety of fit statistics have been developed 
and it is generally recommended that researchers report multiple fit indices as they 
provide a more conservative and comprehensive evaluation of model fit. The classic 
goodness of fit index is model chi-square (χ2). If the χ2 value of a model exceeds 
the critical value from the χ2 distribution (determined by the model’s degrees of 
freedom), then the null hypothesis of adequate model fit is rejected. Although 
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χ2 provides a very straightforward test of model fit, it has significant limitations 
including that it is overly sensitive to sample size and is therefore likely to reject 
very good models if the sample is large. For this reason, it is generally recommended 
that researchers report χ2, but focus more on other fit indices when evaluating model 
fit. The most widely accepted global fit indices are the root mean square error of 
approximation (RMSEA; Browne & Cudeck, 1992; Steiger & Lind, 1980), the 
comparative fit index (CFI; Bentler, 1990), the Tucker-Lewis index (TLI; Tucker & 
Lewis, 1973) which is sometimes also referred to as the non-normed fit index, and 
the standardized root mean square residual (SRMR; Bentler, 1995). For each of these 
fit statistics values generally range from 0 to 1. For the SRMR and RMSEA, values 
closer to 0 indicate better model fit, while values closer to 1 indicate better model 
fit for CFI and TLI. Recommendations vary in terms of what values of these fit 
statistics should be considered acceptable. Early guidelines for model fit suggested 
that CFI and TLI values greater than .9, and RMSEA values less than .1 should be 
considered acceptable (Bentler, 1990; MacCallum et al., 1996). More recently, the 
results of one of the most comprehensive simulation studies examining model fit 
(Hu & Bentler, 1999) suggested the following guidelines for considering a model 
to have good fit: (1) SRMR values close to or below .08, (2) RMSEA values close 
to or below .06, and (3) CFI and TLI values close to or above .95. It is important to 
recognize that these guidelines should used as general recommendations rather than 
rigid guidelines and that model fit should always be evaluated in terms of multiple 
fit indices rather than just a single fit statistic.

The second aspect of the results that researchers should examine when evaluating 
model fit is localized areas of poor fit. The global fit indices (e.g., RMSEA, CFI) 
provide a useful evaluation of the overall fit of a model but it is possible for a model 
to have good overall fit while poorly reproducing specific aspects of the model. The 
most common method for identifying localized misfit is by examining modification 
indices. Modification indices reflect the approximate change in the overall model 
χ2 if a fixed or constrained parameter were to be freely estimated. Modification 
indices can be conceptualized as a χ2 with 1 degree of freedom so modification 
indices of 3.84 or greater (i.e., the critical value of χ2 with 1 df, α = .05) suggest that 
the model fit could be significantly improved by freely estimating the parameter 
in question. Large modification indices may therefore provide researchers with 
information about how a particular model may be misspecified (e.g., the need for 
specifying a residual covariance between two indicators to account for a method 
artifact). However, it is important that researchers not make revisions to a model 
solely based on modification indices without a theoretical or empirical basis as this 
can lead to model overfitting and inappropriate capitalization on chance associations 
in the sample data (MacCallum, Roznowski, & Necowitz, 1992).

The third aspect of model evaluation is the interpretability, strength, and statistical 
significance of parameter estimates. It is important to confirm that model results do not 
contain any out of range values such as negative variances (often referred to as Heywood 
cases or offending estimates). This outcome can indicate significant problems in how 
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the model was specified or problems with the sample data. Nonsignificant parameter 
estimates may indicate unnecessary parameters or items that are poor indicators of a latent 
construct. It is also useful to examine the completely standardized parameter estimates at 
this stage as these can be interpreted as correlations in the case of associations between 
latent variables, standardized regression coefficients in the case of factor loadings, and 
the proportion of variance unexplained in indicators in the case of residual variances. 
For example, a correlation approaching 1.0 between two latent variables may indicate 
that the two constructs are not truly distinct and that it may be more appropriate and 
parsimonious to collapse the variables into a single latent construct.

Consider Model Revisions

After estimating the measurement model and evaluating goodness of fit, the next 
step for researchers is to decide whether any revisions to the model are warranted. 
As mentioned previously, potential model revisions can be indicated based on 
modification indices or evaluation of the significance and strength of the parameter 
estimates. Any revisions should be made in an iterative fashion as modification 
indices are not independent of one another and minor changes in how a model is 
specified can produce large changes in both model fit and the parameter estimates. 
Researchers should err on the side of not making post hoc model revisions unless there 
is a strong theoretical or empirical foundation so as not to artificially inflate model 
fit by incorporating revisions that merely reflect sample-specific characteristics.

Specify Structural Models (If Applicable)

After establishing a satisfactory measurement model using CFA, researchers can 
then begin to specify structural equation models. Structural models allow researchers 
to explicitly model hypothesized relationships beyond the basic associations that are 
specified in CFA measurement models (i.e., factor covariances). More specifically, 
it is at this point that researchers can test hypothesizes regarding the presence or 
absence of regression effects among the latent variables, test models that involve 
the estimation of indirect effects to evaluate mediation hypotheses, test models that 
involve the estimation of interaction effects to evaluate moderation hypotheses, and 
test models that involve the specification of complex patterns of longitudinal growth 
such as latent growth curve models (Preacher et al., 2008). These are just a few of the 
many types of structural equation models that can be specified and researchers need 
to take care to use models that are appropriate for testing their specific theoretical 
hypotheses and models.

Reporting Results

The final step in conducting CFA and SEM analyses is to report the analyses in 
a clear and understandable manner so that it is possible for others to understand 
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exactly how the models were specified and to replicate the models in independent 
samples (cf. McDonald & Ho, 2002). Given the complexity of many CFA and SEM 
models it is not always feasible to report every single parameter estimate from a 
model, but for transparency there are certain aspects of models that should always 
be presented. Researchers should clearly state how a model was specified, including 
information about the method of scale-setting used and justification of any post hoc 
model modifications. Multiple indices of model fit should be reported, preferably 
all five of the fit statistics described previously (i.e., χ2, RMSEA, SRMR, CFI, and 
TLI). Researchers should also report information regarding the specific parameters 
of interest in a model, in both unstandardized and standardized form. Presentation of 
model parameters can often be accomplished most easily by presenting the results in 
a figure. It is also preferable to include the descriptive statistics (means and standard 
deviations) and the correlation/covariance matrix used to estimate the models so that 
readers can see the input matrix that was used to estimate the model (e.g., for data 
re-analysis).

PRACTICAL ISSUES IN USING CFA AND SEM

Software

There are now numerous software packages that are capable of estimating CFA and 
SEM models. Some of the most widely used programs include Mplus (Muthén & 
Muthén, 2008–2012), LISREL (Jöreskog & Sörbom, 1996), AMOS (Arbuckle, 
2010), EQS (Bentler, 2006), CALIS (SAS Institute, 2005), Mx (Neale, Boker, 
Xie, & Maes, 2003), and multiple packages within the R statistical framework 
including SEM (Fox, 2006) and LAVAAN (Rosseel, 2011). All of these programs 
allow for the specification of CFA and SEM models either through the creation of 
syntax files or graphical interfaces. Each program is capable of estimating the most 
common CFA and SEM models but certain programs have unique characteristics 
or advantages. Mplus is in some ways the most flexible software program as it 
allows users to specify advanced models such as exploratory structural equation 
modeling (Asparaouhov & Muthén, 2009), multilevel structural equation modeling 
(Muthén & Asparouhov, 2008), and to use Bayesian estimation procedures that are 
not available or not easily specified in other programs. LISREL is a good program 
for didactic purposes as it allows researchers to specify models in terms of the 
matrices that comprise SEM models (e.g., lambda matrix for factor loadings). Mx 
has some advanced capabilities for estimating twin models and is the most common 
latent variable program in genetics research. All of the SEM packages within the R 
framework (e.g., LAVAAN) are open-source and free. AMOS and EQS both provide 
users with the option to specify models using a graphical interface. Although this 
capability may seem appealing, researchers should take caution as it is very easy to 
misspecify models when using graphical interfaces and ultimately, it is often easier 
to specify complex models using a syntax file.
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Sample Size Requirements

As with any other area of research, the issue of statistical power is an important 
one when conducting CFA and SEM. There are multiple methods of determining 
power in CFA and SEM. One approach is based on statistical power for evaluating 
a model using RMSEA (MacCallum et al., 1996; Preacher & Coffman, 2006). This 
method requires researchers to specify the degrees of freedom for a model, alpha 
(typically .05), desired power (typically .80), and null and alternative values for 
RMSEA, and provides the sample size necessary to achieve the desired level of 
power in terms of the RMSEA model evaluation. An alternative and more flexible 
method of estimating power for latent variable models is the Monte Carlo method. 
Monte Carlo simulation studies allow researchers to evaluate the bias in specific 
parameter estimates and to determine power for detecting significant parameters 
based on population parameter estimates and varying sample sizes specified by the 
researcher. For a more detailed overview of methods for calculating power in CFA 
and SEM models and the use of Monte Carlo methods, readers are referred to Brown 
(2006), and Muthén and Muthén (2002).

Handling Missing Data

A common issue that applied researchers face when conducting CFA, SEM or any 
other form of statistical analysis is determining the most appropriate method for 
handling missing data. It is rare that researchers will collect a dataset in which no data 
are missing, and there are many reasons that data may be missing. Current typologies 
of missing data distinguish between three forms of missing data. In some situations 
data can be considered to be missing completely at random (MCAR) if, for example, 
a particular questionnaire was accidentally omitted in assessment packets for a few 
individuals. Data can also be considered missing at random (MAR) if, for example, 
attrition in a longitudinal study of academic outcomes is related to other variables in the 
data set such as academic engagement or motivation. Finally, data can be missing not 
at random or nonignorable if the pattern of missingness is related to some unobserved 
variable(s). A more complete description of the nature and implications of these patterns 
of missingness can be found in Enders (2010), but for the purposes of this chapter we 
will focus on what researchers can do to manage MAR and MCAR situations.

Many of the traditional methods of handling missing data (e.g., pairwise or listwise 
deletion) are inappropriate, as it has been repeatedly demonstrated that these approaches 
result in reduced statistical power and often produce biased parameter estimates 
(Allison, 2003; Enders, 2010; Schafer & Graham, 2002). The two methods that are the 
most appropriate strategies for handling missing data are full information maximum 
likelihood (FIML) estimation (also commonly called direct maximum likelihood), and 
multiple imputation. Both approaches are appropriate when data can be considered 
to be MAR or MCAR. We will focus our discussion on the FIML approach as this 
approach is easily implemented in many latent variable modeling software packages 
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(e.g., Mplus, LISREL), and is generally regarded by methodologists as the most 
straightforward method of handling missing data (Allison, 2003). FIML methods use 
all of the available data to provide appropriate estimates of parameters and standard 
errors for a model while accounting for missing data. FIML is now the default estimator 
in Mplus and can be easily used in LISREL by including the MI keyword in the data 
line and indicating the missing data code in the dataset (e.g., MI = 9).

ADDITIONAL APPLICATIONS OF CFA AND SEM

Examining Mediation Using Structural Equation Modeling

Mediation can be defined as a process in which the effect of one variable (X) on 
another variable (Y) occurs through an intervening variable (M) (Baron & Kenny, 
1986; MacKinnon, 2008). Mediation is an increasingly popular focus of research 
in educational research. SEM provides a very useful framework for evaluating 
mediational hypotheses. The use of latent variables allows researchers to obtain 
more accurate estimates of the overall indirect effect as well as the constituent 
parts of the indirect effect (i.e., M on X, Y on M). SEM also allows researchers 
to simultaneously evaluate multiple mediators and to extend mediation models 
to a longitudinal framework to evaluate how mediational processes unfold over 
time. Furthermore, it is possible to directly obtain bias-corrected and accelerated 
bootstrapped confidence intervals of the indirect effect, the current best-practice 
recommend method (Preacher & Hayes, 2008; MacKinnon, 2008) within SEM 
software packages such as Mplus. An example of how mediation can be examined 
within an SEM framework is presented later in this chapter.

Examining Moderation Using Structural Equation Modeling

Moderation (i.e., interactions) is also an increasingly popular area of research 
within education and other social sciences domains. Moderation can be tested in 
SEM for both categorical and continuous moderators. Categorical moderators can 
be evaluated using multiple groups models in which the parameters of interest are 
specified for each category of the moderator, with differences in the relationships 
between the groups considered evidence of moderation that can be tested for statistical 
significance using equality constraints. There are also multiple methods for evaluating 
continuous moderators within SEM. Little, Bovaird, and Widaman (2006) describe 
an approach in which a latent interaction term is specified by orthogonalizing the 
respective indicators of the independent variable and the moderator. Example syntax 
for how this approach be applied can be found in Schoemann (2010).

Longitudinal Extensions of Structural Equation Modeling

One of the most useful ways in which CFA and SEM can be extended is to examine 
longitudinal data. There are many ways in these methods can be extended to 
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model complex patterns of change. Cross-lagged panel models allow researchers 
to evaluate how interindividual standing in latent constructs changes over time 
(Burkholder & Harlow, 2003). Latent growth curve models allow researchers to 
examine intraindividual trajectories of change and can be used to evaluate non-
linear and other complex patterns of change (Bollen & Curran, 2006; Preacher et al., 
2008). Latent difference score models are a third approach for modeling longitudinal 
change and allow researchers to examine intraindividual change in latent constructs 
between two assessments (McArdle, 2009). Each of these methods is well-suited 
to studying a variety of research topics and researchers interested in learning more 
about these topics are encouraged to consult Collins (2006), Selig and Preacher 
(2009), or Little, Bovaird, and Card (2007).

Multilevel Structural Equation Modeling

The final extension of CFA and SEM that we will mention is multilevel structural 
equation modeling (MSEM; Muthén & Asparouhov, 2008). MSEM is a relatively 
recent development and combines all of the advantages of hierarchical linear modeling 
(e.g., accounting for nested dependencies in data) and SEM (e.g., accounting for 
measurement error). MSEM is therefore an extremely robust statistical framework 
as it allows researchers to specify models that are not possible when using either 
hierarchical linear modeling or SEM. MSEM remains an infrequently used method 
given its complexity. However, descriptions of how these methods can be used in 
applied research are increasingly common (e.g., Preacher, Zyphur, & Zhang, 2010) 
and MSEM is likely to be a major area of growth in the next decade.

Illustrative Study

An example study will now be presented to demonstrate the sequence of steps that 
researchers will typically follow when conducting a study involving CFA and SEM. 
The data for these example models come from a study in which undergraduates 
completed a series of self-report questionnaires during their first semester of college 
to identify the psychological variables (e.g., self-efficacy, hope, engagement) that 
best predict academic performance during the first four years of college (Gallagher & 
Lopez, 2008). Participants were 229 students (129 males, 100 females) at a large 
Midwestern university who participated in exchange for psychology course credit. 
Prior to completing their first semester, participants completed the academic self-
efficacy scale (Chemers, Hu, & Garcia, 2001), identified their goal for their GPA 
after four years of college, and provided consent to have their academic performance 
(semester GPA) tracked by the investigators through the University Registrar’s office.

For illustration purposes, we will focus on just the relationships between academic 
self-efficacy, self-reported goals for GPA during the first semester of college, and 
cumulative GPA after four years of college. The descriptive statistics and correlation 
matrix used for these analyses are presented in Table 1. There were no missing data 
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for the self-efficacy variables but data were missing for one person’s GPA goals and 
82 people were missing data on four year college GPA. These missing data were 
considered MAR and were accommodated using FIML. A series of four models will 
be presented to demonstrate the common steps researchers may take when using 
CFA and SEM. The first model uses CFA to evaluate the measurement model of the 
academic self-efficacy scale. The second model is an extension of the one-factor 
measurement model to include a correlated residual between two items. The third 
model examines the effect of academic self-efficacy on cumulative college GPA 
using SEM. The fourth model tests a mediation model in which participants’ goals 
for GPA reported during their first semester of college partially mediates the effects 
of academic self-efficacy beliefs on cumulative GPA after four years of college. 
Mplus syntax for each of these examples will be presented, but each model could 
be conducted in the other latent variable software programs mentioned previously.

Evaluating the Measurement Model

The first step in evaluating the effects of academic self-efficacy on academic 
performance is to determine how well the latent construct of academic self-efficacy 
was measured. This can be accomplished using a basic one-factor CFA model. 
Annotated Mplus syntax and selected output from this model are presented in 
Table 2. As can be seen in Table 2, the syntax required for specifying a one-factor 

Table 1. Sample correlations, standard deviations (SD) and means (M) for self-efficacy (SE) 
items, college grade point average goal (GPAGOAL), and four year college grade point 

average (GPA)

SE1 SE2 SE3 SE4 SE5 SE6 SE7 SE8 GPAGOAL GPA
SE1 1
SE2 .408 1
SE3 .365 .533 1
SE4 .256 .247 .363 1
SE5 .540 .432 .497 .325 1
SE6 .432 .422 .507 .374 .756 1
SE7 .246 .354 .441 .254 .476 .464 1
SE8 .385 .385 .375 .316 .576 .579 .421 1
GPAGOAL .032 .051 .110 .148 .234 .309 .122 .142 1
GPA .263 .166 .278 .203 .302 .371 .102 .215 .350 1

N 229 229 229 229 229 229 229 229 228 147
M 5.14 5.45 4.92 4.83 4.95 5.07 4.67 5.92 3.39 2.96
SD 1.50 1.39 1.39 1.60 1.14 1.29 1.31 1.15 .34 .49
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SYNTAX:
TITLE: Academic Self-Efficacy Confirmatory Factor Analysis
DATA: FILE IS acaselfeff.dat;
VARIABLE:

NAMES ARE id gpagoal gpa4year aselfe1-aselfe8; !Identify all 
variables in data set
USEVARIABLES ARE aselfe1-aselfe8; !Specify variables to be used in model
MISSING are all (-9); 

ANALYSIS:
TYPE IS GENERAL;
ESTIMATOR IS ML;

MODEL:
acaeffic by aselfe1-aselfe8; !Specify 8 items as indicators

!Mplus defaults to marker variable identification
OUTPUT: MODINDICES(4) STANDARDIZED; !Request completely 

standardized results and !modification indices
SELECTED OUTPUT:

TESTS OF MODEL FIT
Chi-Square Test of Model Fit

Value  58.290
Degrees of Freedom  20
P-Value  0.0000

CFI/TLI
CFI  0.944
TLI  0.921

RMSEA (Root Mean Square Error Of Approximation)
Estimate  0.091
90 Percent C.I.  0.065 0.119

SRMR (Standardized Root Mean Square Residual)
Value  0.044

MODEL RESULTS
          Two-Tailed
 Estimate S.E Est./S.E. P-Value
ACAEFFIC BY

ASELFE1 1.000 0.000 999.000 999.000
ASELFE2 0.901 0.130 6.946 0.000
ASELFE3 1.008 0.135 7.491 0.000
ASELFE4 0.804 0.142 5.643 0.000
ASELFE5 1.132 0.123 9.189 0.000

Table 2. Mplus syntax and selected output of confirmatory factor analysis of the 
academic self-efficacy scale
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ASELFE6 1.260 0.142 8.887 0.000
ASELFE7 0.864 0.125 6.934 0.000
ASELFE8 0.899 0.114 7.886 0.000

Intercepts
ASELFE1 5.140 0.099 51.838 0.000
ASELFE2 5.445 0.092 59.276 0.000
ASELFE3 4.921 0.091 53.814 0.000
ASELFE4 4.825 0.106 45.686 0.000
ASELFE5 4.948 0.075 65.923 0.000
ASELFE6 5.074 0.085 59.473 0.000
ASELFE7 4.672 0.087 54.013 0.000
ASELFE8 5.917 0.076 78.046 0.000

Variances
ACAEFFIC 0.745 0.165 4.518 0.000

COMPLETELY STANDARDIZED MODEL RESULTS
Two-Tailed

 Estimate S.E Est./S.E. P-Value
ACAEFFIC BY

ASELFE1 0.575 0.049 11.835 0.000
ASELFE2 0.559 0.050 11.146 0.000
ASELFE3 0.628 0.045 14.009 0.000
ASELFE4 0.434 0.058 7.511 0.000
ASELFE5 0.861 0.024 36.073 0.000
ASELFE6 0.842 0.025 33.350 0.000
ASELFE7 0.570 0.049 11.644 0.000
ASELFE8 0.677 0.040 16.787 0.000

Variances
ACAEFFIC 1.000 0.000 999.000 999.000

R-SQUARE

Observed Two-Tailed
Variable Estimate S.E. Est./S.E. P-Value
ASELFE1 0.331 0.056 5.917 0.000
ASELFE2 0.313 0.056 5.573 0.000
ASELFE3 0.395 0.056 7.005 0.000
ASELFE4 0.188 0.050 3.755 0.000
ASELFE5 0.741 0.041 18.037 0.000
ASELFE6 0.709 0.043 16.675 0.000
ASELFE7 0.325 0.056 5.822 0.000
ASELFE8 0.458 0.055 8.393 0.000
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MODEL MODIFICATION INDICES

Minimum M.I. value for printing the modification index 4.000

             M.I.  E.P.C. Std E.P.C.  StdYX E.P.C.

WITH Statements

ASELFE2 WITH ASELFE1 4.201 0.204 0.204 0.145
ASELFE3 WITH ASELFE2 21.306 0.409 0.409 0.330
ASELFE4 WITH ASELFE3 4.267 0.224 0.224 0.145
ASELFE5 WITH ASELFE1 4.856 0.140 0.140 0.197
ASELFE5 WITH ASELFE2 5.477 –0.138 –0.138 –0.207
ASELFE5 WITH ASELFE3 5.311 –0.132 –0.132 –0.213
ASELFE5 WITH ASELFE4 4.298 –0.146 –0.146 –0.176
ASELFE6 WITH ASELFE1 5.362 –0.169 –0.169 –0.197
ASELFE6 WITH ASELFE2 4.483 –0.144 –0.144 –0.179
ASELFE6 WITH ASELFE5 13.271 0.203 0.203 0.505
ASELFE7 WITH ASELFE3 4.567 0.177 0.177 0.153

CFA model in Mplus is straightforward. The first few lines of syntax involve 
providing a title for the analysis, identifying the location of the data file (for Mplus 
the data file can be either tab-delimited, comma-delimited, or a fixed width ASCII 
file), providing variable names for all variables included in the dataset, selecting the 
specific variables that are included in the model to be analyzed, and identifying what 
numeric value used to indicate missing data (blanks can also be used as a missing 
data code if the data are in a fixed width ASCII file). The syntax for specifying the 
one-factor CFA model requires only two lines in Mplus. The first line signifies that 
the latent construct of Academic Self-Efficacy is identified by the eight items of 
the academic self-efficacy scale (Chemers et al., 2001). For this model, the latent 
construct of academic self-efficacy is identified using the marker variable method. 
This method of model identification is the default method in Mplus and simply 
requires that the corresponding indicators for the latent variable are specified (e.g., 
acaeffic by aselfe1-aselfe8;); by default, Mplus uses the first indicator after the 
“by” keyword (aselfe1) as the marker variable by fixing its unstandardized factor 
loading to 1.0. The final line of syntax instructs Mplus to provide additional output 
in the form of modification indices that equal 4.0 or above, and the standardized/
completely standardized estimates.

Because the CFA model of the academic self-efficacy scale converged successfully 
with no error messages, the first step is to examine the model fit statistics. The χ2 test 
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of model fit indicated significant model misfit (p < .001). However, as previously 
mentioned, the χ2test is an overly conservative test and it is therefore more important 
to focus on the remaining model fit statistics. Although the SRMR is consistent with 
good model fit (.044), the CFI, TLI, and RMSEA indicate marginal fit (values of 
.944,.922, and .091, respectively). Taken together, these results suggest the specified 
model fit does not provide a good representation of the data, so the next step is 
to examine the modification indices to determine whether it may be possible to 
improve fit by respecifying the model. As noted earlier, this should only be done 
if substantively justified, as high modification indices do not necessarily indicate a 
relationship that is theoretically meaningful.

In the results presented in Table 2, the largest modification index is for the residual 
covariance between items 2 and 3 of the scale. The value for this modification index 
(21.31) is well above 3.84 and indicates there is a relationship between these two 
items that is not sufficiently accounted for by the latent variable of academic self-
efficacy. An examination of the content of these two items reveals that this may be 
explained by a method effect arising from similar wording. Given the common stem 
of these items, it was deemed appropriate to specify a residual covariance between 
these two items to account for the method effect.

Revising the Measurement Model

The syntax and selected output from a second measurement model of the academic 
self-efficacy scale in which a residual covariance between items two and three is 
specified is presented in Table 3. As seen in Table 3, including the residual covariance 
requires an additional line of syntax (aselfe2 with aselfe3;). An examination of the 
model fit for this second model reveals that the inclusion of the residual covariance 
between the two items significantly improved model fit. The CFI and TLI values are 
both above .95, SRMR is below .08, and RMSEA equals .06. Together, these model 
fit statistics indicate good model fit for the one-factor measurement model of the 
academic self-efficacy scale that includes the residual covariance between items two 
and three. Inspection of modification indices indicates there are no remaining salient 
focal areas of ill fit.

An examination of the completely standardized factor loadings in this revised 
measurement model indicates that all eight of the items of the academic self-
efficacy scale have moderate to large factor loadings (range = .43 to .87). The 
square of these loadings represents the proportion of the variance in the indicators 
explained by the latent constructs. Thus, the magnitude of these loadings indicates 
that a moderate proportion of the variance in the indicators could be explained 
by the latent variable of academic self-efficacy. It appears that the eight items 
are all adequate indicators of academic  self-efficacy. Furthermore, an examination 
of the residual covariance parameter estimate indicates that this relationship was 
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SYNTAX:
TITLE: Academic Self-Efficacy Confirmatory Factor Analysis with Residual 

Covariance
DATA: acaselfeff.dat;
VARIABLE:

NAMES ARE id gpagoal gpa4year aselfe1-aselfe8;
USEVARIABLES ARE aselfe1-aselfe8;
MISSING are all (-9);

ANALYSIS: ESTIMATOR IS ML;
MODEL:

acaeffic by aselfe1-aselfe8;
aselfe2 with aselfe3; ! specify residual covariance

OUTPUT: STANDARDIZED;

SELECTED OUTPUT:
TESTS OF MODEL FIT
Chi-Square Test of Model Fit

Value  36.638
Degrees of Freedom  19
P-Value  0.0088

CFI/TLI
CFI  0.974
TLI  0.962

RMSEA (Root Mean Square Error Of Approximation)
Estimate  0.064
90 Percent C.I.  0.031 0.094

SRMR (Standardized Root Mean Square Residual)
Value  0.036

MODEL RESULTS
 Two-Tailed
 Estimate S.E Est./S.E. P-Value

ACAEFFIC BY
ASELFE1 1.000 0.000 999.000 999.000
ASELFE2 0.857 0.129 6.644 0.000
ASELFE3 0.973 0.134 7.256 0.000
ASELFE4 0.799 0.144 5.566 0.000
ASELFE5 1.153 0.126 9.179 0.000
ASELFE6 1.278 0.145 8.835 0.000
ASELFE7 0.861 0.126 6.852 0.000
ASELFE8 0.906 0.116 7.838 0.000

Table 3. Mplus syntax and selected output of confirmatory factor analysis of the 
academic self-efficacy scale with residual covariance specified between items 2 and 3
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statistically significant. All subsequent models therefore include the residual 
covariance between items two and three.

Extending to Structural Equation Modeling with an Outcome

After establishing an appropriate measurement model, the next step would be to 
begin examining the relationship between academic self-efficacy and GPA. In this 
situation, cumulative GPA is a manifest variable outcome and we therefore do not 
include an intermediate model in which the measurement model for the outcome is 
also evaluated. The syntax and selected output from the structural equation model in 
which we examine the effect of academic self-efficacy on cumulative college GPA 
four years later is presented in Table 4. As seen in Table 4, the only modifications 
to the syntax required to specify this model is to add the GPA variable to the 
usevariables list and to add an additional line of syntax (gpa4year on acaeffic;). The 
inclusion of GPA as an outcome and the specification of the effect of academic self-
efficacy on GPA did not worsen fit: as with the previous model, CFI and TLI values 
are both above .95, SRMR is below .08, and RMSEA equals .06. The results of this 
model indicate that academic self-efficacy is a significant predictor of cumulative 
college GPA four years later. The unstandardized effect was B = .239, SE = .055, 
p < .001. The completely standardized effect was β = .415 and academic self-
efficacy predicted 17.2% of the variance in cumulative college GPA. The completely 
standardized results of this model are presented in Figure 2. These results support 

ASELFE2 WITH
ASELFE3 0.413 0.098 4.222 0.000

COMPLETELY STANDARDIZED MODEL RESULTS
 Two-Tailed
 Estimate S.E Est./S.E. P-Value

ACAEFFIC BY
ASELFE1 0.572 0.049 11.683 0.000
ASELFE2 0.529 0.052 10.140 0.000
ASELFE3 0.603 0.047 12.942 0.000
ASELFE4 0.429 0.058 7.377 0.000
ASELFE5 0.870 0.023 37.511 0.000
ASELFE6 0.849 0.025 34.235 0.000
ASELFE7 0.564 0.049 11.422 0.000
ASELFE8 0.677 0.040 16.778 0.000

ASELFE2 WITH
ASELFE3 0.317 0.063 5.059 0.000
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SYNTAX:
TITLE: Academic Self-Efficacy SEM with 4year GPA as outcome
DATA: FILE IS acaselfeff.dat;
VARIABLE:

NAMES ARE id gpagoal gpa4year aselfe1-aselfe8;
USEVARIABLES ARE gpa4year aselfe1-aselfe8;
MISSING are all (-9);

ANALYSIS: ESTIMATOR IS ML;
MODEL:

acaeffic by aselfe1-aselfe8;
aselfe2 with aselfe3;
gpa4year on acaeffic; !Estimate effect of Academic Self-Efficacy on GPA

OUTPUT: STANDARDIZED;

SELECTED OUTPUT:
TESTS OF MODEL FIT
Chi-Square Test of Model Fit

Value  44.345
Degrees of Freedom  26
P-Value  0.0139

CFI/TLI
CFI  0.974
TLI  0.964

RMSEA (Root Mean Square Error Of Approximation)
Estimate  0.056
90 Percent C.I.  0.025 0.083

SRMR (Standardized Root Mean Square Residual)
Value  0.039

UNSTANDARDIZED MODEL RESULTS
 Two-Tailed
 Estimate S.E Est./S.E. P-Value

GPA4YEAR ON
ACAEFFIC 0.239 0.055 4.327 0.000

COMPLETELY STANDARDIZED MODEL RESULTS
 Two-Tailed
 Estimate S.E Est./S.E. P-Value

GPA4YEAR ON
ACAEFFIC 0.415 0.078 5.337 0.000

Table 4. Mplus syntax and selected output of structural equation model examining the 
effect of academic self-efficacy scale on four-year college grade point average
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R-SQUARE
Observed  Two-Tailed
Variable Estimate S.E. Est./S.E. P-Value
GPA4YEAR 0.172 0.065 2.669 0.008

Figure 2. Example figure for presenting SEM results. Results correspond to the 
completely standardized results in Table 4.

the hypothesis that academic self-efficacy is a predictor of academic outcomes and 
provides the basis for examining potential mechanisms of the effects of academic 
self-efficacy on cumulative GPA.
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SYNTAX:
TITLE: Mediation Model: Aca Self-Efficacy  GPA Goal  4yearGPA
DATA: FILE IS acaselfeff.dat;
VARIABLE:
 NAMES ARE id gpagoal gpa4year aselfe1-aselfe8;
 USEVARIABLES ARE gpagoal gpa4year aselfe1-aselfe8;
 MISSING are all (-9);
ANALYSIS: ESTIMATOR IS ML;
MODEL:
 acaeffic by aselfe1-aselfe8;
 gpa4year on acaeffic;
 gpa4year on gpagoal;
 gpagoal on acaeffic;
 aselfe2 with aselfe3;
Model Indirect:  !specify estimation of indirect effect
 gpa4year ind gpagoal acaeffic;
OUTPUT: CINTERVAL STANDARDIZED;

SELECTED OUTPUT:
TESTS OF MODEL FIT
Chi-Square Test of Model Fit
 Value  58.633
 Degrees of Freedom  33
 P-Value  0.0039
CFI/TLI
 CFI  0.965
 TLI  0.952

Table 5. Mplus syntax and selected output of structural equation model examining the 
indirect effect of academic self-efficacy on four-year college grade point average via gpa 

goals in 1st semester

Evaluating a Mediation Model

The final example model is a mediation model in which we examine whether the 
effects of academic self-efficacy on cumulative college GPA four years later are 
partially mediated by the GPA goals students set during their first semester of 
college. The syntax and selected output from the SEM in which we examine the 
indirect effect of academic self-efficacy on cumulative college GPA four years later 
via GPA goals are presented in Table 5. As seen in Table 5, the specification of this 
mediation model requires just a few minor additions to the syntax of the previous 
SEM model. The usevariables line is modified to include the additional variable of 
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RMSEA (Root Mean Square Error Of Approximation)
 Estimate  0.058
 90 Percent C.I.  0.033 0.082
SRMR (Standardized Root Mean Square Residual)
 Value  0.043
UNSTANDARDIZED MODEL RESULTS
 Two-Tailed 
 Estimate S.E. Est./S.E. P-Value
GPA4YEAR ON ACAEFFIC 0.172 0.043 3.996 0.000
GPAGOAL ON ACAEFFIC 0.097 0.024 3.995 0.000
GPA4YEAR ON GPAGOAL 0.413 0.115 3.595 0.000
COMPLETELY STANDARDIZED MODEL RESULTS
 Two-Tailed 
 Estimate S.E. Est./S.E. P-Value
GPA4YEAR ON ACAEFFIC 0.345 0.079 4.349 0.000
GPAGOAL ON ACAEFFIC 0.284 0.067 4.232 0.000
GPA4YEAR ON GPAGOAL 0.282 0.075 3.759 0.000
R-SQUARE

Observed  Two-Tailed
Variable Estimate S.E. Est./S.E. P-Value
GPAGOAL 0.081 0.038 2.116 0.034
GPA4YEAR 0.254 0.068 3.737 0.000

TOTAL, TOTAL INDIRECT, SPECIFIC INDIRECT, AND DIRECT EFFECTS
 Two-Tailed 
 Estimate S.E. Est./S.E. P-Value

GPA4YEAR GPAGOAL 0.040 0.015 2.723 0.006
ACAEFFIC

CONFIDENCE INTERVALS OF INDIRECT EFFECTS
 Lower Lower Estimate Upper Upper.
  .5% 2.5%  2.5% 5%

GPA4YEAR GPAGOAL 0.002 0.011  0.040 0.069 0.078
ACAEFFIC

GPA goals, the effect of academic self-efficacy on GPA goals is specified (gpagoal 
on acaeffic;), the effect of GPA goals on cumulative GPA is specified (gpa4year 
on gpagoal;), the estimation of the indirect effect is requested by including “Model 
Indirect: gpa4year ind gpagoal acaeffic;”, and CINTERVAL is added to the output 
line so that confidence intervals of the indirect effect can be evaluated to determine 
whether there is evidence of mediation. The model fit for this mediation model was 
good: CFI and TLI values are above .95, SRMR is below .08, and RMSEA equals 
.06. The results indicated that there was a significant indirect effect of academic self-
efficacy on cumulative college GPA four years later via GPA goals. The estimate of the 
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indirect effect was significant (B = .040, SE = .015, p < .01) and the 95% confidence 
interval of the indirect effect (.011 : .069) did not include 0. A path diagram with the 
completely standardized results of this mediation model can be seen in Figure 3. 
These results suggest that the academic self-efficacy beliefs may promote superior 
academic performance in college by causing students to set higher GPA goals for 
themselves. The theoretical implications of these results are not important for the 
purposes of this chapter, but the models described here and presented in Tables 2–5 
provide an introduction to how CFA and SEM can be used in educational research.

SUMMARY

CFA and SEM are powerful statistical tools that have become increasingly popular 
in education research. The topics discussed within this chapter are just some of the 
many ways that these techniques can be used to evaluate measurement models and 
test complex theoretical models. The growth of these techniques has coincided with 
the development of more user-friendly statistical software for conducting these 
analyses and an increasing amount of publications providing didactic information 
about how these techniques can be applied to various research topics. Below we 
provide a few recommendations for resources that educational researchers may find 
helpful for additional information about how to apply these techniques in their own 
research programs.

Figure 3. Example figure for presenting SEM mediation model results. results correspond 
to the completely standardized results in Table 5.
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15. TESTING MEASUREMENT 
AND STRUCTURAL INVARIANCE

Implications for Practice

BACKGROUND ON INVARIANCE TESTING

Measurement validation in the behavioral sciences is generally carried out in a 
psychometric modeling framework that assumes unobservable traits/constructs 
(i.e., latent factors) created from the observed variables (often items measuring that 
construct) are the variables of interest. Unfortunately, many researchers compare 
these constructs across populations/groups (e.g., males & females) assuming that 
they have the same psychometric properties and association between unobserved and 
observed across groups of interest. In other words, researchers will often make the 
premature and untested assumption that the theoretical constructs they are interested 
in are invariant (or equivalent) from one group to another. When researchers assume a 
measure is invariant, they are failing to investigate whether the construct has factorial 
invariance (Byrne, Shavelson, & Muthén, 1989; Millsap, 1998). In particular, they 
fail to test whether the latent factor scores were generated in a similar fashion across 
groups, thus producing the same metric (unstandardized factor loadings) and scalar 
(intercept or threshold) parameters. 

With the advent of computers and accessible latent modeling software, invariance 
testing within multi-group confirmatory factor analysis (MCFA) and multi-group 
structural equation modeling (MSEM) literature has increased considerably over the 
past 20 years (Meade, Johnson, & Braddy, 2008; Vandenberg & Lance, 2000). This 
has enabled researchers to more easily explore whether latent factors, along with 
the relationship between latent factors, are invariant across populations. Despite 
methodological guidelines, statistical procedures, and widely available software, 
researchers continue to struggle with the numerous decisions that need to be made 
when testing for invariance. As delineated below, several authors have assessed the 
utility and applicability of invariance procedures to provide guidelines including: 
1) setting the measurement scale, 2) evaluating model fit and statistical power, 
and 3) estimating the appropriate model depending on the data characteristics. The 
present chapter aims to provide an up-to-date review of important considerations 
when conducting MCFA and MSEM analyses; especially as they relate to assessing 
whether or not the latent factors (i.e., metric and scalar parameters), latent factor mean 
scores, and structural coefficients are equal across populations. A demonstration 
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will also be carry-out to illustrate how different statistical models can affect the 
estimation of parameters within invariance testing.

REVIEW OF TERMINOLOGY

One of the primary difficulties in conducting invariance analyses is deciphering 
the statistical jargon, especially because researchers sometimes use these terms 
differently. Although seemingly simple, the word “invariance” or the idea that 
something is “invariant” across groups is often a source of confusion. Invariance 
essentially implies that the parameters tested (whether it is factor loadings, means, 
structural coefficients, etc.) are equal across groups of interest. Therefore, when 
structural coefficients are invariant (or equal) it suggests that the same association 
between latent factors exists across groups (e.g., subjects in the treatment and control 
group). Invariance can also be conceptualized in the framework of moderation 
analysis, because if structural coefficients differ across groups (i.e., not invariant), 
group membership is thought to moderate this relationship. A source of confusion 
may arise from the fact that variability (the opposite of invariance) is what many 
researchers seek when comparing group means. However, in the context of MCFA, 
it is generally invariance of parameters across groups that researchers seek to meet 
the statistical assumptions of the test. This is similar to the homogeneity of variance 
test, where researchers want the variances to be equal across groups and the means 
to be different. 

A critical point to remember is that invariance analyses compare the 
unstandardized coefficients, which are not frequently reported by researchers. 
For this reason, researchers and readers need to be aware that large standardized 
coefficient differences across groups are not always indicative of non-invariance, 
as the unstandardized coefficients are influenced by the observed variable and 
latent factor variances. Using more traditional statistical analyses as an example, 
a statistically significant difference between two bivariate correlations (e.g., the 
correlation between X and Y for males and females) may draw a different conclusion 
when comparing two unstandardized slopes across these groups using the same data. 
For this reason, it is critical that researchers and readers understand exactly what 
statistics (standardized vs. unstandardized) are being compared.

There exists several common invariance classification terms, with the first related 
to the measurement model. The term measurement invariance is frequently used when 
the configural invariance, weak factorial or metric invariance, and strong factorial 
or scalar invariance models are all deemed invariant. Configural invariance exists 
when the same model is estimated for each group simultaneously with the estimated 
parameters free to vary across groups (i.e., not constrained to be equal). In other words, 
the same model is estimated, but the parameter estimates are allowed to differ across 
groups. This model is important to establish a baseline for which more restrictive 
models can be compared, as all subsequent models are tested with increasingly more 
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restrictions. Metric invariance tests whether the unstandardized factor loadings are 
equal across groups, meaning that the association between observed (often items) 
and unobserved (latent factors) is relatively equal across groups. 

Following tests of metric invariance, scalar invariance evaluates whether the 
observed variables metric (either intercepts or thresholds) are relatively equal across 
groups. Intercepts are examined when the researcher assumes the observed variables 
are continuous, whereas models assuming ordered categorical observed variables 
estimate the thresholds. Intercept invariance tests if the observed variable means are 
proportionally equal across groups, whereas threshold invariance tests whether the 
thresholds (or distribution cut points) are equal across the groups. Stated differently, 
threshold invariance occurs when the cut points on the unobserved normal distribution 
are equal across groups for each observed variable. It is worth mentioning that 
when researchers test for threshold invariance they assume the underlying observed 
variable’s distribution is normal and has a continuous scale. For analysis purposes, 
it is also important to ensure that the number of observations per cell is sufficiently 
large to estimate the thresholds adequately. If not, researchers might need to recode 
their data to obtained adequate representation. Finally, invariance analyses require 
the same number of thresholds per observed variable across the groups. Therefore, if 
item 1 has response data in five categories for Group 1, then Group 2 must also have 
responses in all five categories. If not, the data will need to be recoded to create the 
same number of categories across the groups being compared.

After metric and scalar invariance has been obtained, researchers may test for 
strict factorial invariance, which tests whether the observed variable’s residuals 
(a.k.a., uniquenesses or scale factors) are equal across the groups. These tests are 
possible when using a maximum likelihood estimator or weighted least squares mean 
and variance (WLSMV) estimator using the theta estimation method. However, 
WLSMV using the delta estimation method (Mplus default) fixes these scale factors 
at one for both groups and, therefore, does not allow for such analyses. In any case, 
many researchers argue that these comparisons are of less interest (Bentler, 2005; 
Widaman & Reise, 1997) and may not even be worth testing (Selig, Card, & Little, 
2008). Researchers should also be aware of the abundance of comparisons that could 
be made within the measurement model (see Marsh et al., 2009; Vandenberg & 
Lance, 2000); however, we only provide the two most commonly evaluated aspects 
of the measurement model. 

Although metric and scalar invariance (defined hereafter as only measure 
invariance) are required for valid latent factor mean score comparisons, they are 
also required to test for equality of covariance between latent factors and structural 
invariance. Past literature defines structural invariance in numerous ways. For 
clarity purposes, and to mirror the terminology used with single-group analyses, 
we use the following definitions. Covariance invariance analyses test whether the 
unstandardized relationship between latent factors is equal across groups, whereas 
structural invariance analyses test whether the unstandardized relationship between 
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latent variables (either correlational or predictive) is equal across groups. Thus, 
covariance invariance analyses are often tested within the confirmatory factor 
analysis (CFA) framework, whereas structural invariance analyses focus on the 
“causal relationships” within the structural equation modeling (SEM) framework. 
These analyses are critical when researchers seek to test whether relationships 
between latent factors, both predictive and non-predictive, are moderated by group 
membership within a theoretical model. 

To provide a larger context, measurement invariance is also required when 
researchers desire to compare observed mean scores [e.g., general linear models 
(GLM)] or associations between observed variables [e.g., ordinary least squares 
(OLS) correlation and regression analyses] across groups. One shortcoming of 
these analytic approaches (e.g., GLM or OLS) is that they assume the variables are 
observed (i.e., measured without error), which automatically implies these variables 
are invariant. Unfortunately, simply assuming measurement invariance can result 
in inaccurate conclusions when this assumption is violated (Hancock, Lawrence, & 
Nevitt, 2000; McDonald, Seifert, Lorenzet, Givens, & Jaccard, 2002). 

Comparing Latent Factor Means and Structural Coefficients

Although there has been an increase in studies comparing latent factor mean scores 
within a MCFA framework over the last decade (Millsap & Meredith, 2007), MSEM 
studies remain scarce. Testing measurement and structural invariance is essential 
because they (a) estimate and adjust for measurement error within each factor, (b) 
assess factorial validity, and (c) test whether the measurement and structural models 
are invariant across groups. Overall, this approach has the benefit of testing an 
assortment of statistical assumptions and research questions within a single modeling 
framework. Research (Hancock et al., 2000; McDonald et al., 2002) indicates that 
the statistical conclusions drawn from mean comparisons may differ, or be invalid, 
depending on the type of analysis conducted (e.g., GLM vs. MCFA) and whether 
measurement invariance is achieved. Thus, invariance testing is essential for making 
valid inferences across populations (see Meredith, 1993; Vandenberg & Lance, 
2000).

While a number of methodological studies demonstrate the importance of having 
measurement invariance prior to testing the equality of latent factor means, the 
literature base is less abundant for MSEM studies. While researchers frequently test 
for covariance invariance, they rarely test for structural invariance. This is somewhat 
concerning because while the interfactor covariance might be invariant, the 
predictive relationship between variables might not be invariant after adjusting for 
other variables in the model. Thus, researchers should also test the invariance of the 
structural coefficients in cross-validation studies, to ensure that their theoretical (i.e., 
structural or path) model generalizes across either independent samples or different 
groups. Similar to mean comparisons, it is important to remember that measurement 
invariance is a prerequisite to testing structural coefficients across groups. 
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Potential Causes of Measurement Non-invariance

When a factor model varies across groups (whether due to bias or non-invariant), 
the metric (factor loadings) and/or scalar (intercepts or thresholds) parameters make 
differential contributions to the means, which prevents valid mean comparisons or 
relationship differences between groups (Meredith, 1993). Factor loadings can be 
thought of as the unstandardized weights resulting from regressing the observed 
variable on the latent factor, thus it represents the strength of the relationship 
between the factor and the observed variable. Metric non-variance results from 
observed variables making unequal slope contributions to the latent factor across 
groups. In other words, the slopes in the equation used to compute the factor scores differ 
across groups. This can result from a number of sources. The first is the conceptual 
interpretation (perhaps for cultural reasons) of the construct differing across groups; 
the second is the meaning of items changes when the scales are translated across 
languages and/or cultures; and third the response scale range or meaning differs 
across groups (Chen, 2008). 

Intercept invariance tests whether or not the observed variable has the same 
intercept or origin across groups. Therefore, if a factor is invariant subjects with the 
same latent factor score should have similar responses on average for an observed 
variable. Note that when testing for intercept invariance, researchers assume that 
the observed variables (e.g., items) are continuous. Again, threshold invariance is 
similar to intercept invariance, except the observed variables are treated as ordered 
categorical variables (Millsap & Yun-Tein, 2004). Thresholds are the cutoff points 
on the unobserved normal distribution where, on average, respondents vary between 
two different response options. Thresholds divide the distribution into the number 
of categories minus one, thus a 5-point response scale contains four thresholds. 
Threshold invariance holds if the distribution cut points (i.e., cut-offs between 
response option categories) on the observed variable distributions are equal across 
groups. In general, metric non-invariance can result from (a) social desirability or 
social norm perceptions, (b) particular groups displaying a propensity to respond 
more strongly to an observed variable despite having the same latent factor mean, 
and/or (c) certain groups having different reference points when making statements 
about themselves (Chen, 2008). 

Because numerous factors can contribute to factorial invariance, observed variable 
content should be inspected carefully when a measure is suspected to be non-invariant. 
These differences must be distinctive to a particular item or set of items, because 
when all items are equally influenced (e.g., biased) by the aforementioned factors, 
measurement invariance would likely hold, even though biases are still likely.

Historically, testing for measurement invariance has been encouraged as a 
prerequisite to compare latent factor means or structural coefficients (Millsap & 
Meredith, 2007). From a measurement perspective, the usefulness of invariance 
testing far exceeds simply allowing for valid comparisons across groups. Invariance 
analyses are extremely beneficial to understand when and how groups differ at the 
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observed variable level. Consequently, these analyses are useful to purify tests of 
measurement error and bias, while facilitating the understanding of observed variable 
group disparities. Along with examining factor loading magnitudes, measurement 
invariance should play an important role in measurement development. For example, 
an observed variable with a smaller factor loading is arguably better than an observed 
variable that functions differently (i.e., non-invariant) across groups. Therefore, 
researchers need to create and select scales that not only have a strong factor 
structure, but are also invariant across variables of interest. 

CONSIDERATIONS WHEN TESTING INVARIANCE

To supplement the increase in MCFA and MSEM use, considerable empirical 
research has been conducted. These developments have focused on three major 
issues: (a) setting the common factor scale, (b) assessing model fit of invariant 
models, (c) determining the appropriate estimator and invariance approach, and (d) 
considerations for non-invariant measures. Each of these issues will be discussed 
below.

Setting the Factor Scale

When conducting an MCFA or MSEM model, researchers must choose how to 
identify the model or set the factor scale equal across groups for model standardization 
or identification reasons (see Cheung & Rensvold, 1999, 2000). For identifying the 
model and setting the scale, there are three main methods available: the reference-
group method, the marker-variable method, and the effects-coding method (Little, 
Slegers, & Card, 2006). The reference-group method fixes the latent factor means 
(often fixed at zero) and latent factor variances (often fixed at one) across the groups. 
This approach is useful in that it allows for invariance testing on every observed 
variable’s metric and scalar parameter. The limitation of this approach is it assumes 
homogeneity of latent factor variances, which may not be met. The marker-variable 
method is similar to the analysis of variance dummy-coding model and involves 
fixing one intercept of each latent factor to zero and its unstandardized factor loading 
to one. Thus, the variances of all latent factors are estimated with scales equivalent 
to the chosen marker variable. The limitation with this approach is it assumes that 
observed variable is invariant across the groups, but, again, this may be a false 
assumption. The effects-coding method constrains a set of unstandardized factor 
loadings and intercepts to sum to 0.0 and 1.0, respectively. This method estimates 
the latent factor means and variance based on the observed variables and weighted 
based on how well each observed variable represents the latent factor. 

Although each identification method has its strengths and weakness, any of the 
three methods are appropriate when the statistical assumptions are met. Moreover, 
each procedure provides model fit, tests for various multiple group invariance 
analyses, yields comparable estimates of latent effect sizes, and permits the 



321

TESTING MEASUREMENT AND STRUCTURAL INVARIANCE

computation of differences in latent factor means. The marker-variable method 
is more commonly employed to identify the model (Vandenberg & Lance, 2000), 
which may explain why it is the default in most SEM software packages. Regardless, 
this decision should not be made without considerable attention and analysis as to 
whether the appropriate assumptions are viable.

Empirical research using the marker-variable method suggests that reference 
indicators should not be selected arbitrarily, as a non-invariant indicator can 
influence the invariance conclusions (Cheung & Rensvold, 1999; French & Finch, 
2008; Millsap, 2001; Steiger, 2002). Specifically, if the assumption of factor loading 
invariance is not met, invariance conclusions for other loadings may be incorrect 
resulting in biased parameter estimates and model fit statistics. This creates a 
paradoxical situation because the “most invariant unstandardized factor loading” 
cannot be determined without specifying the model, but model specification requires 
an invariant unstandardized referent factor loading (French & Finch, 2008). To 
circumvent this dilemma, Cheung and Rensvold (1999, 2001) developed a search 
procedure called the factor-ratio test, which French and Finch (2008) found to 
perform fairly well. The main shortcoming of this procedure is that its very time 
consuming to perform all the individual invariance tests. Recently, Cheung and Lau 
(in press) demonstrated a bias-corrected bootstrap procedure that simplified the 
search for a reference invariant observed variable to a single model using the factor-
ratio test. An alternative procedure to identify the “most invariant” item is to set 
the latent factor variances equal across groups and then identify the “most invariant” 
observed variable based on the smallest change in chi-square or the modification indices. 
However, this procedure assumes homogeneity of latent factor variances, which may 
not be a valid assumption and may lead to the incorrect reference observed variable. 
Reiterating, constraining different observed variables, or the latent factor variances, 
can lead to contrasting invariance conclusions, thus the selection of this indicator 
should be scientific.

Assessing Model Fit

Sample and configural invariance model. Generally, the first step in invariance 
testing is to confirm factorial validity by testing the model fit separately for each 
group, while also evaluating the model parameters (e.g., size of the standardized 
factor loadings). After individual group model fit is obtained, a test of configural 
invariance is conducted to obtain a baseline model that can be compared to more 
restrictive invariance models. As with any model, an assortment of model fit 
statistics should be evaluated that consider the various model components (model 
complexity, sample size, etc.) that may influence the results. When using maximum 
likelihood (ML) estimation, the configural invariance model fit is equal to the sum 
of the c2 statistics for the individual group analyses. Likewise, the sum of the df 
for the individual group analyses should equal the df of the configural invariance 
model. These sums are useful to compute as they can helpensure the configural 
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model was properly specified. It is important to note that for WLSMV or robust 
ML estimation only the df is summative and the c2 is not summative. Regardless, 
researchers should carefully evaluate the all model statistics to ensure their models 
are correctly specified. In summary, the configural invariance model tests the extent 
to which the underlying structure fits the data with no between group constraints; 
thus, prior to determining whether parameter estimates are equal across groups, the 
configural invariance model must fit reasonably well. 

To evaluate model fit, the individual groups and configural invariance model often 
consider the c2 statistic, Comparative Fit Index (CFI), Tucker-Lewis index (TLI), 
Root Mean Square Error Approximation (RMSEA), and Standardized Root Mean 
Square Residual (SRMR) with ML or robust ML (MLR) estimation. WLSMV uses 
the sample model fit statistics, but replaces the SRMR with the Weighted Root Mean 
Square Residual (WRMR). The c2 statistic is valuable because it allows researchers 
to make a statistical inference related to model fit in the population, while being 
the only true test statistic of model fit. However, researchers need to be aware that 
the c2 is often overly sensitive to model rejection with large sample sizes and/or 
complex models (Saris, Satorra, & van der Veld, 2009). Due to this limitation, it is 
common to place less emphasis on the c2. That being said, it is still important that 
researchers evaluate models with a significant c2 to ensure that their models are not 
severely misspecified (Barrett, 2007; McDonald & Marsh, 1990; McIntosh, 2007; 
Saris et al., 2009).

Approximate fit indices (AFI), such as the CFI, TLI, RMSEA, & SRMR/WRMR, 
are appealing because they adjust for sample size and model complexity, but are 
limited because it is difficult to establish guidelines as to what constitutes “good 
model fit.” These guidelines are also very subjective and have been shown to 
perform poorly and/or vary across different models (Hu & Bentler, 1999; Marsh, 
Hau, & Wen, 2004). In any case, researchers commonly use criteria by Hu and 
Bentler (1999) to deem a model as having a good fit: CFI and TLI > 0.95, RMSEA 
< 0.06, and SRMR < .08. 

Invariance models. The difficulties in evaluating fit for invariance models are 
well-known (see Chen, Sousa, & West, 2005). While the Δc2 allows a statistical 
comparison between nested models, this test statistic presents the same concerns 
(i.e., sensitivity to sample size and model complexity) as the c2 statistic (Chen, 2007; 
Marsh & Hocevar, 1985). However based on personal experience and research (Sass, 
Schmitt, & Marsh, in press), this test statistic often works well to detect evidence 
of non-invariance, which can later be evaluated for practical significance (i.e., the 
amount of differences in estimated parameters across groups and whether inferences 
related to latent factor mean scores and structural coefficients are influenced). 

One important distinction between ML, MLR, and WLSMV estimation methods 
is that the traditional Δχ2 (e.g., measurement invariance model χ2 minus configural 
invariance model χ2) cannot be employed for nested models with WLSMV and 
MLR. Instead, researchers need to employ the DIFFTEST procedure in Mplus for 
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WLSMV and the Satorra-Bentler scaled difference test for MLR (Satorra & Bentler, 
2001). The difference testing procedure using the MLR χ2 can be computed using the 
output results from Mplus (see Brown, 2006, pp. 379–387; Mplus web site for more 
details); although, the strictly positive Satorra-Bentler Δχ2 should be used when the 
values are negative (see Satorra & Bentler, 2010). As this tends to be an area of 
confusion, it is worth mentioning that the Δχ2 between two nested models will not 
equal the traditional Δc2 when using MLR and WLSMV estimation.

To supplement the Δc2, the change in approximate fit indices (ΔAFI, i.e., ΔCFI, 
ΔTLI, ΔRMSEA, ΔSRMR, & ΔWRMR) are commonly considered when doing 
invariance testing. To date, several studies (Chen, 2007; Cheung & Rensvold, 2002; 
Meade, Johnson, & Braddy, 2008; Sass et al., in press) have been conducted to 
evaluate appropriate ΔAFI guidelines. Although provided in more detail within each 
article, the following cutoff criteria were proposed by Chen (2007): reject ΔCFI < 
-0.01, ΔRMSEA > 0.01, and ΔSRMR > 0.015. Meade et al.’s (2008) cutoff criteria 
were similar to Chen’s (2007), but had the following differences: reject ΔCFI < 
-0.002 and ΔRMSEA > 0.007. The ΔTLI and ΔWRMR standards have not been 
established to date; however, Marsh et al. (2010) argued that a ΔTLI closer to zero 
may be more appropriate. Our simulation study (Sass et al., in press) using ordered 
categorical data suggested that the ΔWRMR should not be used due to its sensitivity 
to sample size and model complexity. In fact, all the ΔAFI with WLSMV should 
be used with extreme caution, as the WLSMV estimator does not allow for a direct 
comparison between models (Sass et al., in press). 

Given the limitations of the c2 (or Δc2) and approximate fit indices, researchers 
often need to make a subjective decision associated with what constitutes “good 
model fit.” As a result, researchers must provide an impartial and evidence based 
assessment of whether invariance exists. Although there is no universal approach for 
evaluating model fit in invariance testing, the approach taken here was to consider 
the: (a) statistical significance of the Δc2, (b) change in approximate fit statistics, and 
(c) magnitude of difference between the parameter estimates.

Steps for Testing Measurement Invariance

Although there are numerous types of invariance models that can be discussed (Chen 
et al., 2005; Cheung & Rensvold, 2000; Marsh, 1985; Vandenberg & Lance, 2000), 
we only consider the steps for testing parameters (i.e., metrics & scalars) required 
to be invariant for valid mean and correlation/regression comparisons. Many 
methodologists and applied researchers employ the following set of steps for testing 
invariance: individual group models, CI model, metric invariance model, and scalar 
invariance model. Muthén and Muthén (1998–2010, pp. 433–435) have argued for 
testing the factor loadings and intercepts (or thresholds) in tandem given that they 
both influence the item characteristic curve (ICC) simultaneously. Furthermore, 
any indication of non-invariance, whether they are caused by the factor loadings 
or intercepts (or thresholds), is concerning for item quality and the source of this 
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non-invariance can be detected with follow-up analyses. For these reasons, we tend 
to constrain the metric and scalar parameters to be invariant in tandem when testing 
for invariance. 

A counterargument to testing factor loadings and intercepts simultaneously is 
that factor loadings and intercepts (or thresholds) influence different facets of the 
ICC. For this reason, researchers may elect to test them sequentially (factor loading 
before the intercepts/thresholds) or follow one of the many other procedures (e.g., 
see Marsh et al., 2009; Vandenberg & Lance, 2000). Regardless, researchers have 
the option of testing an array of other equality constraints (e.g., residual variances, 
interfactor covariance, etc.) that may prove fruitful in understanding measurement 
or structural differences across groups. The most common approach is the forward 
approach (sequentially adding more model constraints), whereas the backward 
approach (sequentially removing model constraints) appears less common 
(Dimitrov, 2010).

Considerations for Non-invariant Measures

Researchers who test for measurement invariance are frequently presented with the 
arduous task of deciding how to utilize non-invariant measures. After a measure 
is defined as non-invariant from a statistical (Δχ2) and/or practical (ΔCFI, ΔTLI, 
ΔRMSEA, & ΔSRMR) perspective, there are several options for treating these 
measures. These options include 1) deleting the non-invariant observed variables 
and only use invariant observed variables for statistical analyses, 2) applying 
a partial measurement invariance model, 3) using all the observed variables and 
assume any differences are small and do not influence the results, 4) interpreting 
the scores independently and preclude group comparisons, and/or 4) avoid using the 
scale (Cheung & Rensvold, 1999; Millsap & Kwok, 2004).

For practical applications, the first three options seem most appropriate for many 
circumstances. Option 1 works well with longer measures when the removal of 
observed variables (or items) does not adversely affect the measure’s psychometric 
properties and the researcher does not desire to compare scores to the normative 
sample. Caution should be employed with this approach for widely used measures, 
as the results might not generalize and previous psychometric conclusions might be 
altered. Option 2, the partial measurement invariance model (only invariant metric 
and scalar parameters are equal across groups, with non-invariant parameters free to 
vary across groups) (see Byrne, Shavelson, & Muthén, 1989; Millsap & Kwok, 2004 
for more details), only constrains invariant items to be equal across groups, while 
relaxing the constraints for non-invariant items. This approach is problematic because 
when certain items are non-invariant factor scores are not perfectly comparable. 
However, if the number of non-invariant items is small compared to total number 
of items, or the overall amounts of non-invariance is small, the latent factor means 
used for group comparisons should not be drastically impacted. Option 3 may also 
be feasible for longer measures when the degree of non-invariance is minimal 
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and the majority of observed variables are invariant. Regardless of the approach, 
researchers should use caution when interpreting the findings with non-invariant 
observed variables. Researchers are also encouraged to compare the results under 
different assumptions or options to assess the impact of non-invariant variables. 
For example, the researcher could consider comparing the latent factor means for 
the measurement invariance and partial measurement invariance models to uncover 
whether it significantly influences practical or statistical significance.

ILLUSTRATION

This illustration demonstrates the five most fundamental and commonly investigated 
research questions by applied researchers, while also providing some direction and 
recommendations when conducting invariance analyses. Stated more generally, 
the research questions are as follows: 1) does the collection of measures/scales of 
interest in the SEM possess factorial validity and measurement invariance across 
groups of interest (in our case, teacher education level); 2) do the latent factor mean 
scores differ across these groups; 3) does the structural model fit the data; and 4) are 
the structural coefficients equal across these groups?

As demonstrated below, these questions allow for a relatively thorough 
understanding of one’s measurement and structural model. This includes common 
statistical analyses conducted within the SEM literature (i.e., tests of whether the 
measurement and structural model fit the data with large and statistically significant 
model parameters) and whether these model parameters are equal (i.e., possess 
a similar measurement and structural model) across groups. As demonstrated 
elsewhere (Byrne, 2012), numerous other model restrictions can be tested to explore 
other interesting and important research questions; however, these analyses were not 
demonstrated here because we wanted to provide a more focused approach of what 
we consider the central aspects of invariance testing. 

Description of Sample and Instruments

For this illustration, data were collected from 617 certified teachers working in three 
public school districts in the southwestern U.S. Most teachers were females (78.0%), 
employed by a suburban (61.3%) or urban (30.3%) school districts, White (57.5%) or 
Hispanic (36.4%) descent, and earned either Bachelors (61.4%) or Masters (38.4%) 
degrees. Teachers (n = 9) who earned their doctorate were not included in these 
analyses. Teachers’ age ranged from 22 to 78 (M = 41.64, SD = 10.78) and taught at 
the following grade levels: elementary (43.3%), middle (35.7%), and high (21.1%) 
school. Years of teaching experience ranged from one to 44 years (M = 13.14, SD = 
13.14) and most teachers (86.5%) indicating having classroom management training 
and/or instruction during the past five years. 

Martin, Sass, and Schmitt (2012) provide more details on the research design, 
data collection, measures selected, and justification for the model tested here (note, 
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that only five of the eight variables were used for presentation purposes). Although 
Martin et al. (2012) supply additional information associated with the measures used 
in the model, a brief description of each scale employed is provided. 

Taken from the Behavior and Instructional Management Scale (BIMS, Martin 
& Sass, 2010), the six item Instructional Management (IM) scale uses a 6-point 
response scale from “strongly agree” to “strongly disagree” and measures “teachers’ 
instructional aims and methodologies, and includes aspects of monitoring seatwork, 
structuring daily routines, and the use of lecture and student practice.” The internal 
consistency reliability coefficient was 0.78. It should be noted that due to sparse cell 
counts with responses of 5 and 6, these data were recoded to 4. Justification for this 
is provided below.

From the Teacher Stressor Scale (TSS, Hui & Chan, 1996), the 9-item Student 
Behavior Stressors (SBS) scale that measures teachers’ perceived student-related 
concerns (i.e., lack of student motivation, working with students of mixed ability) 
was used. Using a 5-point response scale from 1 (no stress) to 5 (extreme stress), the 
internal consistency reliability was 0.92. 

The Maslach Burnout Inventory – Educator Survey (MBI-ES; Maslach et al., 1996) 
provided measures of Emotional Exhaustion (EE) and Personal Accomplishment 
(PA). Using a response scale from 0 (never) to 6 (every day), Emotional Exhaustion 
and Personal Accomplishment assess teachers level of stress related to teaching and 
their ability to have a positive impact on their students, respectively. The internal 
consistency reliability coefficients were 0.92 and 0.79 for the Emotional Exhaustion 
and Personal Accomplishment scale, respectively. 

The Job Satisfaction (McLaney & Hurrell, 1988) measure evaluated teachers 
overall level of job satisfaction and whether they would prefer a different job or 
recommend their job to others. Using a 6-point response scale from 1 (strongly 
disagree) to 6 (strongly agree), this four item measure had an internal consistency 
reliability coefficient of 0.84.

STATISTICAL ANALYSES

Below we outline several statistical considerations when conducting invariance 
analyses, along with useful research questions that researchers might be interested 
in exploring. While several statistical models could be used for invariance testing 
(see the special issue in the Journal of Psychoeducational Assessment, 2011, vol. 9), 
this illustration focused on invariance testing within a CFA framework using MLR 
and WLSMV estimation.

Model Estimation and Identification

It is known among experienced data analysts that the model estimator can significantly 
alter the research findings, not to mention the interpretation of the results. For 
this reason, data were analyzed using MLR and WLSMV estimation methods to 
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illustrate how the interpretation differs and perhaps conclusions. Although ML is 
perhaps the most popular estimation method, MLR and WLSMV are preferable in 
this case given that the data are slightly skewed (Lubke & Muthén, 2004; Yuan & 
Bentler, 2000). It is also worth noting that simulation research comparing ML and 
MLR within a measurement invariance framework have shown these estimators tend 
to produce similar change in approximate fit indices (Sass et al., in press). 

For illustration purposes, statistical analyses were conducted within Mplus 6.11 
(Muthén & Muthén, 1998–2012) using default estimation procedures for each model 
estimator. Therefore, data were treated as continuous (i.e., a covariance matrix 
was analyzed) for MLR estimators and categorical (i.e., a polychoric correlation 
matrix was analyzed with variances on the diagonals) for WLSMV using delta 
parameterization. The small percent of missing data (0.03%) was also treated 
using the default procedures within Mplus, which is a full-information maximum 
likelihood method for MLR and a pair-wise procedure for WLSMV (see Asparouhov 
& Muthén 2010). 

When testing invariance with the WLSMV estimator, the number of thresholds 
(or response scale) per item must be equal across comparison groups. Thus, 
researchers should consider recoding their data into fewer categories if: 1) the 
number of observations per cell is too small and might results in poor parameter 
estimation or 2) the data do not cover the range of response options equally across 
groups (e.g., group 1 has data for 5 response options, whereas group 2 only has 
data for 4 response options). Due to sparse cell counts in categories 5 and 6 on the 
Instructional Management subscale for the current data, these items were recoded to 
a 4-point rather than 6-point response scale. The same recoded dataset was used for 
both estimators. 

When conducting invariance tests, the scale must be set for each factor across 
groups for model identification purposes (Cheung & Rensvold, 1999, 2000; Little, 
Slegers, & Card, 2006). In the present study, we tested the homogeneity of variance 
assumption across education levels using the mean scale. Our analyses revealed no 
statistically, or practically, significant difference between group variances after a 
Bonferroni adjustment for Type I error. The largest difference in variances between 
the bachelors (BA) and Masters (MA) degree groups was on the Job Satisfaction 
scale, F (1,613) = 4.167, p = .042, with the difference in variances being rather small 
(SDBA = 1.22 vs. SDMA = 1.13) from a practical perspective. For this reason, the 
present study fixed all the factor variances at one to identify the model, thus allowing 
for a test of invariance for each observed variable. Note, the mean scale variances 
(e.g., 1.22 & 1.13) were not fixed at one, but instead the latent factor variances. 

Overall Model Fit Criteria 

Determining whether the overall and subgroup (e.g., BA & MA) models fit the data 
is the first step in invariance testing. It is an essential step because a misspecified 
initial model may have a substantial impact on subsequent tests of invariance and 
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final model fit. A misspecified model would make it very difficult, if not impossible, 
for a researcher to justify theoretically or statistically that it is appropriate to test for 
invariance because the model is incorrect. For this study, we evaluated the model fit 
for overall, BA, and MA sample using the following fit statistics: χ2, CFI, TLI, and 
RMSEA. Hu and Bentler (1999) tentatively indicated that CFI and TLI statistics 
greater than 0.90 as an adequate fit, with values greater than 0.95 as a good fit. 
RMSEA values less than 0.08 and 0.06 were tentatively defined as mediocre and 
good, respectively. 

Invariance Model Fit Criteria

The complications associated with assessing the change in model fit from a less 
restrictive (e.g., configural invariance model) to a more restrictive model (e.g., 
measurement invariance model) in a multi-group analysis possess the same concerns 
as with single-group analyses (Saris, Satorra, & van der Veld, 2009). For this study, 
we interpreted the change in model fit from both a statistical (Δχ2) and practical/
approximate (ΔCFI, ΔRMSEA, & ΔSRMR) perspective. When using the Δχ2 with 
WLSMV, the DIFFTEST procedure within Mplus must be used to obtain valid test 
statistics, whereas the Satorra-Bentler scaled χ2 difference test for MLR procedure 
should be used when employing MLR (Satorra & Bentler, 2001, 2010). Again, only 
ML estimation allows for a direct comparison in χ2 statistics, thus one cannot sum or 
subtract the χ2 with MLR and WLSMV.

When considering the practical/approximate perspective in determining model 
fit, several considerations should be taken depending on the model estimator. 
With MLR, researchers can use the criteria established by past research with ML 
(e.g., Chen, 2007) to evaluate the change in practical/approximate model fit (Sass 
et al., in press). Of course, these criteria should not replace sound judgment. For this 
study, we used the follows criteria to evaluation a satisfactory change in practical/
approximate model fit statistics: ∆CFI/∆TLI < 0.01 and ∆RMSEA < 0.015 for tests 
of factor loading invariance and ∆CFI/∆TLI < 0.01 and ∆RMSEA < 0.015 for tests 
of intercept invariance. 

The WLSMV estimator adjustment does not allow for a direct comparison 
between models and, therefore, the ΔCFI, ΔTLI, and ΔRMSEA can be very biased 
for misspecified model (Sass et al., in press). For this reason, the change in practical/
approximate model fit statistics should be interpreted cautiously and greater 
emphasis should be placed on the Δχ2 under these circumstances. 

Research Questions 

The analyses conducted below provide an illustration of five research questions that 
many social science researchers would find useful to understand: 1) factorial validity, 
2) measurement invariance, 3) equality of means, 4) quality of the SEM model with 
the full sample, and 5) equality of structural relationships between groups. While 
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comparing means is extremely prevalent within research, fewer studies test whether 
the relationships between variables are equal across groups, and even fewer studies 
ensuring these comparisons (i.e., mean or relationship differences between groups) 
are valid by first testing for measurement invariance. These important questions 
are not limited to any specific social science discipline, as all studies using latent 
variables should first test whether construct or factor scores are measuring the same 
thing across comparison groups of interest. For this study, we present the following 
five research questions for illustration purposes and test whether the results differ 
based on the estimator selected.

Research question 1. To answer the first research question, a five-factor CFA 
model was estimated using the entire sample of teachers (i.e., both Bachelors 
and Master’s degree teachers). These model results provide the first indication of 
factorial validity (i.e., the factor structure matchers the proposed theoretical model) 
and whether the overall CFA model fits the data well. The next models test the same 
CFA model, but for each group separately. Without good fitting initial models that 
accurately represent the factor structure, all subsequent analyses would likely be 
biased and provide incorrect results. For this illustration, model modifications were 
made to improve the overall CFA model fit, and, if needed, prior to proceeding 
to SEM. Although there are some concerns with this approach (see Asparouhov & 
Muthén, 2009; Browne, 2001; MacCallum, Roznowski, & Necowitz, 1992), it is 
generally acceptable if the number of changes is small and the modifications can 
be theoretically justified. After obtaining a good fitting CFA model for the entire 
sample and the bachelors and masters samples, the configural invariance model is 
evaluated to provide the baseline model by which the other invariance models are 
compared. Collectively, these analyses provide tests of factorial validity prior to 
testing the invariance models and test the following research questions: Does the full 
teacher sample, Bachelor’s degree teacher sample, Master’s degree teacher sample, 
and configural invariance model possess a good model fit with large standardized 
factor loadings?

Research question 2 Assuming acceptable factorial validity can be obtained, the 
next step is testing the measurement invariance (metric and scalar invariance in tandem) 
of the factor model. Again, many researchers test for metric (unstandardized factor 
loadings) and scalar (thresholds or intercepts) invariance sequentially (unstandardized 
factor loadings followed by either threshold or intercept invariance); however, 
this illustration elected to test the omnibus effect (i.e., both metric and scalar in 
tandem) and only test for partial measurement invariance if the change in model fit 
was statistically and practically significant. Although item residual (or uniqueness) 
invariance could also be assessed when using MLR estimation, the scaled latent 
factors are fixed at one for WLSMV using delta parameterization across the groups. 
Due to the contrasting approaches, these analyses were not conducted within the 
current illustration. However, Byrne (2012) provided the Mplus code for these 



330

D. A. SASS & T. A. SCHMITT

analyses for interested researchers. Regardless of whether or not the residuals are 
tested, obtaining evidence of measurement invariance is critical to compare other 
statistics (means, correlations, etc.) across variables of interest. In the case of this 
study, we tested the following research question: Are the metric (i.e., unstandardized 
factor loadings) and scalar (intercept and threshold) parameters invariant across 
teachers with a bachelors and masters degrees.

Research question 3. The next invariance research question focuses on the 
invariance (or equality) of means across groups. When testing the equality of latent 
factor mean scores with a structural modeling framework, researchers can either 1) 
constrain both latent factor means to zero and assess the Δχ2 (this is analogous to 
an overall F-test) or 2) constrain one group’s means to zero and estimate the other 
groups. The latter approach, which we used here, compares the groups on each latent 
factor using a t-statistic and is analogous to dummy coding. If the measurement model 
is non-invariant, we recommend conducting these analyses using the measurement 
invariance and partial measurement invariance models to identify the degree to which 
the results change. Regardless, this study will test the following research question: Is 
there a significant difference in latent factor means between teachers with bachelors 
and masters degrees on the five latent factors tested in Figure 1? Another way of 
stating this research question is as follows: Are the five latent factor means invariant 
across teachers with bachelors and masters degrees?

Research question 4. Assuming that the CFA model fits the data well using the 
entire sample, the next step is testing whether the structural model fits the data for 
the entire sample. To assess the SEM model, it is useful to compare the CFA and 
SEM model fit statistics to determine the degree of model misfit that resulted from 
estimating this more constrained model. Similar to the CFA using the entire sample, 
it may be useful to test whether the entire sample fits the data well before testing 
the model using the subsamples. It is worth noting that researchers could elect to 
test research question 5 first; however, we find it useful to diagnosis any potential 
concerns associated with the structural model before testing for structural invariance. 
Essentially, research question 4 answers the following questions: Does the proposed 
theoretical model adequately fit the data and are the structural coefficients large and 
statistically significant?

Research question 5. Once the measurement model is tested for invariance and the 
structural model fits the data for the entire sample, the next model tested estimates 
a non-invariant structural model with measurement invariance (or partial measurement 
invariance if needed). For this model, the structural coefficients are not constrained 
to be equal across the groups, whereas the metric and scalar parameters are set as 
invariant across groups. This model provides a baseline model when comparing the 
structural invariance. Assuming this baseline model fits the data well, researchers 
can constrain all the structural parameters to be equal (or invariant) across the 
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groups to assess change in model fit. If the Δχ2 is non-significant researchers can 
conclude the structural coefficients are equal (i.e., invariant or not moderated) across 
groups. When the Δχ2 is statistically significant, researchers can use theory and the 
modification indices to identify those structural coefficients that differ across groups. 
Regardless, the research question tested here is as follows: Is the structural model 
invariant across groups?

DATA EXAMPLE RESULTS

The steps and logic behind measurement invariance testing with MLR (or ML) 
estimation is nearly identical to that of WLSMV. However, a few important 
differences are worth reiterating. First, MLR assumes continuous observed variables. 
Therefore, intercept (rather than thresholds with WLSMV) equality is tested, along 
with unstandardized factor loading equality. In this case, the Δdf is equal to two 
times the number of observed variables (one Δdf for both the intercept and factor 
loading) that were constrained to be invariant. The Δdf differs considerably from 
WLSMV, which in addition to the one Δdf for each unstandardized factor loadings 
it also has to c-1 Δdf (c is the number of categories for that observed variable). For 
example, if an item has a 5 point scale the change in df will be five (one Δdf for 
the factor loading and four Δdf for the thresholds). A second important difference 
is the assumptions made about the data and how these models are estimated (for 
more details see Rhemtulla, Brosseau-Liard & Savalei, 2010). For this reason, 
researchers need to carefully consider what assumptions are being made about the 
data and which model is most appropriate. Third, MLR requires researchers to use 
either the robust Δχ2 (Satorra & Bentler, 2001) or the strictly positive robust Δχ2 
(Satorra & Bentler, 2010), whereas WLSMV requires the use of the DIFFTEST 
within Mplus. 

WLSMV Estimation

To provide a forecast of the individual model results, we first estimated the CFA 
and SEM model for the full sample (n = 617) with WLSMV to examine whether 
the model fits the data well and possesses statistically and practically significant 
parameter estimates (e.g., factor loading, structural coefficients). Results indicated 
that both models fit the data well (see Table 1), while also displaying large significant 
standardized factor loadings (all larger than .50) and structural coefficients (all larger 
than |.35|). However, the Δχ2 using the DIFFTEST procedure suggests that the SEM 
model fits significantly worse than the CFA model (i.e., Δχ2 (5) = 78.54, p <. 0001) 
even though the ΔCFI, ΔTLI, and ΔRMSEA is relatively small. Thus, it is possible 
that a partial mediation model would provide a better representation of the data than 
a full mediation model for certain paths in the model. To improve understanding of 
this model, researchers should test the direct and indirect effects and evaluate the 
modification indices. While outside the scope of this illustration, the modification 
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indices suggest that the path between personal accomplishment and emotional 
exhaustion should be estimated.

After testing the full sample for CFA and SEM, we then tested these models for 
teachers with BA (n = 379) and MA (n = 238) degrees separately and found that both 
models fit the data with relatively small differences in model fit between the groups. 
Therefore, it was statistically appropriate to estimate the CI model. To ensure the 
correct CI model was estimated, researchers may use these two helpful hints. First, 
the sum of the df for each sample (see BACFA & MACFA) should equal the CICFA model 
(see Table 1), thus the total degrees-of-freedom in our study is 1034 (i.e., 517+517 = 
1034). Second, the df should align the unstandardized and thresholds (we do this in 
EXCEL) to be certain that the correct parameters are free to vary across the groups. 
This step is critical as it is very easy to accidentally constrain these parameters to 
be equal across groups in Mplus and other software packages. Unlike ML and MLR 
estimation, the WLSMV χ2 statistics for each subsample does not sum to the CI 
model.

Using the approximate model fit statistics from the CICFA model (see Table 1), these 
results suggest it is appropriate to constrain the unstandardized factor loadings and 
thresholds to be equal across the two groups. Results from this analysis (see MICFA 
in Table 1) indicated that the invariance measurement model did not fit significantly 
worse than the configural invariance model based on the Δχ2 (p = 0.120). While the 
ΔAFIs present some concern, as the change in ΔAFIs were often greater than 0.01, it 
is critical to remember that the ΔAFIs is often inappropriate for model comparisons 
using WLSMV. Based on this information, greater focus should be placed on the 
Δχ2, which again suggests the measurement model is invariant across groups. 
From a practical perspective, researchers can also compare the factor loadings and 
thresholds (see Table 2) to identify whether any of the parameter estimates differ 
noticeably from each other. While other measurement components could certainly be 
tested (see Marsh et al., 2009; Vandenberg & Lance, 2000), again this study focused 
solely on those parameters (i.e., unstandardized factor loadings and thresholds) that 
are required to be equal across groups to ensure the latent factor scores are created 
using the same metric and scalar weights. In summary, the current overall model, 
along with the change in model fit statistics, suggests the measurement invariance 
model fits the data well, which implies it is statistically appropriate to compare latent 
factor mean scores. The final steps are to test for equality of covariance matrices and 
structural coefficients across groups.

Starting with the equality of covariance matrices (given that the variances are fixed 
at one, this is equivalent to testing the equality of correlations between latent factors), 
the results in Table 1 indicate that the CovINCFA model does not fit significantly 
worse than the MICFA model based on the Δχ2 statistic (p = 0.832). Again the ΔAFIs 
was positive, indicating that the more restrictive model (CovINCFA) fit significantly 
better than the less restrictive model (MICFA). Based on statistical theory this is not 
possible, as a more restrictive model can never fit better than a less restrictive model. 
Thus, researchers need to remember to calculate the p-value from the Δχ2 to ensure 
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Table 2. WLSMV estimates of the unstandardized factor loadings (UFL) and thresholds 
for teachers with BA and MA degrees

Item

UFL Thresholds

BA MA BA MA

IM2 0.71 0.73 (−0.93, 0.43, 1.37) (−0.74, 0.34, 1.27)

IM3 0.60 0.63 (−0.23, 1.02, 1.82) (−0.18, 0.99, 1.72)

IM5 0.59 0.72 (−1.05, −0.02, 0.81) (−0.90, 0.03, 0.90)

IM6 0.59 0.64 (−1.27, −0.17, 0.74) (−1.03, 0.07, 0.86)

IM9 0.63 0.71 (−0.28, 1.03, 2.03) (−0.24, 1.10, 2.24)

IM12 0.81 0.86 (−0.57, 0.74, 1.72) (−0.35, 0.70, 1.68)

SB1 0.80 0.81 (−1.89, −1.02, −0.60, −0.10, 0.27, 1.17) (−2.13, −0.93, −0.52, −0.15, 0.30, 1.13)

SB2 0.79 0.77 (−1.78, −1.12, −0.76, −0.34, 0.07, 0.98) (−1.78, −1.01, −0.61, −0.26, 0.07, 0.94)

SB3 0.80 0.76 (−1.25, −0.53, −0.27, 0.13, 0.46, 1.26) (−1.19, −0.45, −0.02, 0.27,  0.48, 1.23)

SB4 0.75 0.77 (0.05, 0.71, 0.95, 1.27, 1.75, 2.21) (−0.25, 0.48, 0.76, 1.23, 1.57, 2.03)

SB5 0.88 0.87 (−0.90, −0.14, 0.15, 0.48, 0.81, 1.39) (−0.85, −0.09, 0.17, 0.54, 0.80, 1.30)

SB6 0.84 0.81 (−1.06, −0.42, −0.04, 0.30, 0.68, 1.39) (−1.10, −0.42, −0.12, 0.34, 0.66, 1.37)

SB7 0.78 0.87 (−1.13, −0.52, −0.26, 0.12, 0.42, 1.03) (−1.20, −0.60, −0.35, 0.13, 0.42, 1.03)

SB8 0.96 0.94 (0.12, 0.83, 1.15, 1.57, 1.98) (0.06, 0.74, 1.00, 1.35, 1.78)

SB9 0.94 0.95 (−0.10, 0.50, 0.74, 1.13, 1.45, 1.89) (−0.30, 0.45, 0.67, 0.99, 1.20, 1.95)

EE1 0.87 0.87 (−0.98, −0.04, 0.65, 1.29) (−0.93, −0.11, 0.71, 1.30)

EE2 0.90 0.88 (−1.39, −0.44, 0.29, 0.96) (−1.43, −0.37, 0.32, 1.04)

EE3 0.84 0.88 (−0.91, 0.07, 0.69, 1.39) (−0.94, 0.11, 0.89, 1.46)

EE4 0.68 0.72 (−0.87, −0.08, 0.58, 1.18) (−0.90, −0.12, 0.52, 1.27)

EE5 0.86 0.88 (−1.31, −0.31, 0.34, 1.04) (−1.34, −0.42, 0.37, 1.04)

EE6 0.86 0.84 (−1.10, −0.09, 0.49, 1.19) (−0.97, −0.29, 0.56, 1.34)

EE7 0.74 0.77 (−0.92, 0.11, 0.90, 1.64) (−0.89, 0.14, 0.79, 1.56)

EE8 0.72 0.76 (−1.21, −0.22, 0.25, 0.93) (−1.27, −0.26, 0.26, 0.87)

EE9 0.85 0.84 (−1.23, −0.26, 0.20, 0.94) (−1.27, −0.32, 0.25, 0.92)

PA2 0.55 0.57 (−1.98, −1.64, −1.44, −1.00, −0.65, 0.18) (−2.03, −1.72, −1.43, −0.99, −0.65, 0.12)

that the difference is statistically significant. In any case, these results indicate that 
the relationship between latent factors does not differ across groups, which suggests 
that it is unlikely that the unstandardized structural coefficients will also differ 
across groups. In fact, this inference was confirmed when comparing an SEM model 
with MI (SEM with SI) to an SEM model with structural invariance (SEM with MI 
and SI), as the Δχ2 was not statistically significant (p = 0.566). Structural invariance 
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Item

UFL Thresholds

BA MA BA MA

PA3 0.75 0.73 (−1.98, −1.69, −1.33, −0.98, −0.66, 0.08) (−2.03, −1.82, −1.64, −1.16, −0.81, −0.12)

PA5 0.76 0.84 (−2.22, −2.08, −1.82, −1.22, −0.82, 0.08) (−2.39, −2.13, −1.73, −1.33, −0.85, 0.05)

PA6 0.60 0.80 (−1.85, −1.67, −1.37, −0.86, −0.45, 0.62) (−2.24, −1.78, −1.50, −1.12, −0.56, 0.48)

PA7 0.87 0.81 (−2.55, −1.93, −1.64, −1.05, −0.74, 0.21) (−2.39, −1.96, −1.78, −1.32, −0.89, 0.11)

PA8 0.45 0.59 (−2.30, −1.64, −1.26, −0.84, −0.44, 0.48) (−2.03, −1.72, −1.43, −0.89, −0.57, 0.34)

JS1 0.80 0.68 (−1.59, −1.06, −0.41, −0.10, 0.51) (−1.56, −1.03, −0.43, −0.20, 0.59)

JS2 0.89 0.93 (−2.03, −1.59, −1.41, −0.67, 0.24) (−2.12, −1.64, −1.38, −0.73, 0.41)

JS3 0.88 0.86 (−1.46, −1.05, −0.64, −0.13, 0.64) (−1.60, −1.25, −0.92, −0.08, 0.75)

JS4 0.79 0.72 (−1.46, −0.81, −0.20, 0.04, 0.66) (−1.35, −0.83, −0.07, 0.30, 0.91)

Note. Instructional management (IM), Student behavior stressors (SB), Emotional exhaustion (EE), 
Personal accomplishment (PA), and Job Satisfaction (JS)

implies that the predictive relationships between latent variables are not moderated 
by teacher education level.

MLR Estimation 

The initial test of the CFA model using the full sample revealed that the model 
fit the data relatively poorly, χ2 (584) = 2431.92, p < .0001, CFI = 0.825, TLI = 
0.812, RMSEA = 0.068. For this reason, the modification indices were evaluated 
to identify the cause of misfit. These results suggested that the following residual 
covariance matrices needed to be estimated to improve the model fit: SB8 with 
SB9, SB1 with SB3, EE1 with EE2, and EE4 with EE8. While these changes could 
be justified theoretically and statistically, this discussion was omitted to conserve 
space. Instead, interested readers should read the work of Barry and Finney (2009) 
and Byrne (2012) who discusses how data are collected and the shape of the 
observed variables influence the residual covariances. The model fit significantly 
improved, Δχ2 (4) = 341.82, p < .0001, ΔCFI = 0.090, ΔTLI = 0.098, ΔRMSEA = 
-0.024, after estimating these residual variances; however, the model fit for the 
entire sample [see CFA (n = 617) in Table 2] still suggested some degree of misfit. 
Despite this, further modifications were not made given that theΔχ2 and ΔAFI 
did not considerably change with additional modifications. Similar to WLSMV 
estimation, the Δχ2 was statistically significant when comparing the CFA and SEM 
model (see Table 1), which again implies that an alternative model may be more 
appropriate. To be consistent with theory, these changes were not made to the 
model. 
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With an adequate fitting CFA and SEM model, subsample CFA analyses were 
conducted using the teachers with BA and MA degrees. Analyses revealed that 
teachers with a BA degree (see BACFA in Table 1) fit the data better than the model 
using MA teachers (MACFA in Table 1). It is worth noting that the modification 
indices did not suggest a single large source of model misfit, thus considerable 
model changes would be required to improve the model fit. Despite having some 
concern that subsample models do not adequately fit the data, the CICFA model 
was estimated and displayed a marginally acceptable model fit. However, when 
compared to the MICFA model, the model fit did not significantly change based on 
the Δχ2 and ΔAFIs. Comparable to the WLSMV results, these analyses imply that 
the measurement model (i.e., unstandardized and intercepts) was invariant across 
groups. The unstandardized factor loadings and intercepts (see Table 3) also provide 
evidence that these parameters are similar across the groups. Tests of residual 

Table 3. MLR estimates of the unstandardized factor loadings (UFL) and intercepts for 
teachers with BA and MA degrees

UFL Intercepts UFL Intercepts
Item BA MA BA MA Item BA MA BA MA

IM2 0.54 0.65 2.24 2.24 EE3 1.57 1.69 6.08 6.12
IM3 0.37 0.45 1.78 1.78 EE4 0.77 0.84 5.58 5.78
IM5 0.62 0.69 2.57 2.49 EE5 1.68 1.72 5.96 6.11
IM6 0.52 0.58 2.69 2.52 EE6 1.61 1.58 5.62 5.76
IM9 0.38 0.40 1.78 1.74 EE7 1.48 1.49 2.70 2.70
IM12 0.61 0.70 1.98 1.92 EE8 0.64 0.74 3.14 3.09
SB1 0.81 0.78 4.60 4.58 EE9 1.27 1.35 2.62 2.55
SB2 0.87 0.85 4.87 4.78 PA2 0.65 0.66 2.73 2.77
SB3 0.79 0.70 4.08 3.88 PA3 0.99 0.82 3.04 3.09
SB4 0.89 0.89 2.06 2.32 PA5 0.75 0.90 2.83 2.82
SB5 1.07 1.03 3.43 3.37 PA6 0.73 0.94 2.51 2.53
SB6 1.03 0.94 3.76 3.79 PA7 0.97 0.87 3.06 3.09
SB7 0.82 0.98 4.12 4.20 PA8 0.57 0.69 3.10 3.10
SB8 0.96 1.02 1.86 1.99 JS1 1.11 1.05 4.30 4.31
SB9 0.94 0.98 2.31 2.50 JS2 0.92 0.91 5.00 4.95
EE1 1.33 1.36 5.86 5.90 JS3 1.25 1.07 4.34 4.41
EE2 1.34 1.40 5.89 6.11 JS4 1.19 1.03 4.04 3.79
Note. Instructional management (IM), Student behavior stressors (SB), Emotional 
exhaustion (EE), Personal accomplishment (PA), and Job Satisfaction (JS)
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variance invariance indicated that the residual variances were also invariant across 
groups, Δχ2 (4) = 1.842, p = 0.7648. However, the residuals were not constrained to 
be equal in Table 1 in an effort to align the models more closely with those resulting 
from the WLSMV analyses. 

Shifting focus to the covariance and structural coefficients, both these models 
appeared invariant across groups based on the Δχ2 and ΔAFIs (see Table 1, CovINCFA 
and SEM with MI and SI). Collectively, these results provide a useful demonstration 
of how the overall model fit can vary considerably based on the model estimator, 
whereas the overall conclusions related to measurement and structural invariance are 
generally unaltered. Similar to WLSMV results, analyses suggest the relationships 
(both correlation and predictive) did not differ across the groups.

Latent Factor Mean Score Comparison

As indicated above, the latent factor mean scores cannot be justifiably compared 
if the latent factors are not invariant across comparison groups. Fortunately, both 
WLSMV and MLR provided statistical evidence of MI. For both model estimation 
methods, the latent factor means in the BA teachers group was fixed at zero, while 
the MA teachers mean scores were estimated (for more detail on this procedure 
see Byrne, 2012, pp. 248–254). Results revealed nearly identical conclusions across 
model estimators (see Table 4), in that teachers with BA and MA degrees did not 
differ across any of the five latent factors. In fact, the Cohen’s d [computed using 

Table 4. Latent factor mean difference results between teachers with BA and MS degree 
using WLSMV and MLR estimation

IM SB EE PA JS
WLSMV

MDiff −0.11 0.00 0.03 0.16 −0.03
t-statistic −1.15 0.00 0.29 1.63 −0.38
p-value 0.25 1.00 0.77 0.10 0.71
Cohen’s d −0.09 0.00 0.02 0.13 −0.03

MLR
MDiff −0.10 0.01 0.00 0.16 −0.03
t-statistic −1.08 0.12 −0.02 1.67 −0.36
p-value 0.28 0.90 0.99 0.10 0.72
Cohen’s d −0.09 0.01 0.00 0.13 −0.03

Note. Instructional management (IM), Student behavior stressors (SB), Emotional 
exhaustion (EE), Personal accomplishment (PA), and Job Satisfaction (JS).
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the equation d = 2(t)/√df] indicated small effect sizes based on his (Cohen, 1988) 
tentative effect size standards: small d ≈ 0.20; medium d ≈ 0.50, and large d ≈ 0.80.

A Closer Look at Covariance and Structural Model Results

While Tables 2 and 3 provide the descriptive statistics for the metric and scalar 
parameter estimates (numbers taken from the CI model), Table 5 provides the 
covariance matrices for both samples across the two estimators (numbers taken 
from the MI model). Figure 1 displays the structural coefficients across these 
two teacher groups using both estimators (numbers taken from the SEM with MI 
model). For sake of clarity, the covariance results here were obtained from the 
MICFA model, as these model parameters were not constrained to be equal across 
the groups. Recall, the CovMICFA would have equal covariance matrices across 
groups. The numbers in Figure 1 came from the SEM with MI model, as the same 
structural model coefficients would be extracted from the SEM with MI and SI 
model.

Starting with the covariance invariance (i.e., equal covariance matrices across 
the groups) results (see Table 5), analyses provided evidence of equal covariance 
matrices across the two teacher groups based on the change in model fit statistics. In 

Table 5. Provides the covariance matrix for the five latent factors for teachers with BA and 
MA degrees using WLSMV and MLR estimation

1 2 3 4 5
WLSMV

1. Job Satisfaction 1.00 −0.31 −0.48 −0.72 0.48

2. Instructional management −0.38 1.00 0.35 0.23 −0.60
3. Student behavior stressors −0.51 0.33 1.00 0.60 −0.38
4. Emotional exhaustion −0.69 0.22 0.58 1.00 −0.36
5. Personal accomplishment 0.54 −0.47 −0.40 −0.37 1.00

MLR
1. Job Satisfaction 1.00 −0.28 −0.51 −0.76 0.42

2. Instructional management −0.38 1.00 0.34 0.22 −0.47
3. Student behavior stressors −0.52 0.34 1.00 0.62 −0.41
4. Emotional exhaustion −0.69 0.22 0.62 1.00 −0.35
5. Personal accomplishment 0.53 −0.47 −0.41 −0.35 1.00

Note. The lower left matrix represents the inter-factor covariance coefficients for teachers 
with BA degrees, whereas the upper right matrix provides the covariance coefficients for 
teachers with MA degrees.



339

TESTING MEASUREMENT AND STRUCTURAL INVARIANCE

fact, the Δχ2 was statistically non-significant when using both MLR and WLSMV 
estimation methods, thus implying that the relationship between variables does 
not change based on group membership. The largest difference emerged between 
Instructional management and Personal accomplishment (difference of 0.13) 
with WLSMV; however, these differences are often difficult to interpret given 
that the covariance depends on the variance of the both latent factors. In the case 
of this study, the factor variances are fixed at one and, therefore, this variation 
can be interpreted as the difference in correlation coefficients. Turning our 
attention next to MLR estimation, the largest change (difference of 0.11) was the 
association between Job satisfaction and Personal accomplishment, which again 
provides evidence of a rather small difference in the covariance matrix. It is worth 
recognizing that these differences would be more difficult to interpret had an 
unstandardized factor loading been fixed at one across the groups rather than the 
variances. 

Figure 1 provides the unstandardized structural coefficients, which were tested 
for structural invariance. It is important to recognize that only unstandardized 
coefficients are tested for equality, thus it can be more difficult to assess whether a 
difference is large (differences are scale dependent). The results in Figure 1 suggest 

Figure 1. Provides the estimated unstandardized structural coefficients using WLSMV 
and MLR estimation with BA and MA teachers. The numbers above the line represent the 
bachelors and masters degree teachers using WLSMV, respectively, whereas the numbers 

below the line represent the bachelors and masters degree teachers using MLR, respectively.
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Figure 2. Provides the estimated standardized structural coefficients and R2 statistics 
using WLSMV and MLR estimation with bachelors and masters degree teachers. The 

numbers above the line represent the bachelors and masters degree teachers using WLSMV, 
respectively, whereas the numbers below the line represent the bachelors and masters degree 

teachers using MLR, respectively.
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few differences between the BA and MA teacher samples, whether we compare the 
WLSMV or MLR estimation results. The largest difference emerged for β4,1, but 
again the Δχ2 provided no evidence that any of these structural coefficients differed 
across groups. While the unstandardized coefficients are tested for invariance (or 
equality of coefficients across groups), the standardized coefficients are often easier 
to interpret. 

Although they were not statistically tested for differences, the standardized 
coefficients (see Figure 2) and R2 statistics are provided here for comparison 
purposes across the groups. As seen here, the structural coefficients and R2 statistics 
are similar across BA and MA teachers when compared within the same estimator. 
Similar to the unstandardized results, the largest difference was on β4,1, with the 
prediction for MA teachers being smaller than BA teachers. Interestingly, larger 
differences did materialize based on the estimator selected. In most cases (the 
exception being β3,2 and β4,3), the structural coefficients were slightly larger when 
using WLSMV estimation compared to MLR. The largest differences was for γ2,1 and 
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γ1,1, which also produced a larger R2 for the student behavior stressors and personal 
accomplishment latent factors when using WLSMV. This simple demonstration 
suggests that WLSMV provided a better overall fit and generated larger predictions 
of the latent factors. 

Research Question Summary

Turning our attention back to the initial research questions, the following conclusions 
were reached. Evidence of factorial validity (research question 1) was only obtained 
when using WLSMV given that the model fit the data well, the standardized factor 
loadings were all sufficiently large, and the interfactor correlations did not display 
any discriminate validity concerns. However, there was less confirmation when 
using MLR, as the model fit was less than desired and there were several correlated 
residual variances. Regardless of the estimator, there was evidence of measurement 
invariance (research question 2), equality of latent factor means (research question 
3), and an invariant structural model (research question 5) across teacher education 
groups. While the overall SEM provided an adequate model fit with large structural 
coefficients and large R2 statistics (research question 4), concern did arise given that 
the SEM model fit significantly worse than the CFA model. Therefore, researchers 
might consider revising the model slightly to provide greater support for research 
question 4.

DISCUSSION

The difficulty with conducting invariance tests results from the immense number of 
decisions placed upon the researcher. Foremost, researchers must select the “best” 
type of model to estimate (e.g., factor analysis vs. item response theory), the most 
appropriate estimation method (e.g., a least squared, maximum likelihood, Bayesian 
estimation just to name a few), what assumptions should be made about the data 
(i.e., treating the observed variables as ordered categorical or continuous), what 
invariance models to evaluate (measurement invariance, covariance invariance, 
residual invariance, structural invariance, etc.), how to set the latent factor scale, 
and what constitutes an “invariant model,” just to name a few. Researchers also 
need to ensure models are nested to correctly estimate the Δχ2 and ΔAFI, while also 
being aware that direct comparisons of the Δχ2 (e.g., WLSMV uses the DIFFTEST 
procedure in Mplus and MLR using the Satorra-Bentler scaled difference test) or 

ΔAFI (e.g., results may not be accurate with WLSMV) may be inappropriate. As 
shown here, ensuring the Δdf matches the number of parameters to be fixed (or set 
as invariant) across the groups and comparing the modeling parameters between 
different models tested (e.g., CI to MI) helps the researcher understand how each 
model was estimated and any differences one might expect. While documentation 



342

D. A. SASS & T. A. SCHMITT

(e.g., Byrne, 2012) is available to help researchers analyze data, they must be 
cognizant of those factors that influence the results and the assumptions made about 
the data.

In the current illustration, the results were fairly similar across estimation 
methods. However, researchers cannot simply assume the estimator is irrelevant, 
as conclusions can vary based on the model estimator (see Sass, 2011). In fact, this 
study indicated that the CFA and SEM models did not fit the data that well using 
MLR and the structural coefficients were often smaller for MLR than WLSMV. 
In closing, we hope this material helps researchers appreciate the benefits and 
interesting research questions that can be evaluated with invariance testing, while at 
the same time understanding the complications and limitations with these statistical 
procedures.
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16. MIXTURE MODELS IN EDUCATION

Mixture models are a special type of quantitative model in which latent variables 
can be used to represent mixtures of subpopulations or classes where population 
membership is not known but inferred from the data. Mixture modeling is used to 
assign individuals to the most likely latent class and to obtain parameter estimates 
of a proposed model for the classes identified. Another use of mixture modeling 
is to represent latent change or growth trajectory classes comprised of individuals 
with similar trajectories. Applications of such combined models extend our ability to 
examine a variety of complex relationships in educational research. In this chapter, 
we provide an illustration of mixture modeling using longitudinal data from high 
school students to describe a model of academic achievement level and growth in 
mathematics.

INTRODUCTION

Latent variable mixture modeling is a data analysis technique which assumes that 
the observations in a given cross-sectional or longitudinal dataset are sampled 
from a heterogeneous population containing a mixture of unobserved or latent 
subpopulations, each having its own unique response variable distribution. The past 
few decades have witnessed a tremendous growth in the accumulation of cross-
sectional and longitudinal data sources within the behavioral, educational, and social 
sciences. Accompanying this buildup of data are the occasional inconsistencies in 
the results obtained from analyses that incorrectly assume population homogeneity 
rather than heterogeneity that may be present. As a consequence, much interest has 
emerged in the use of various types of latent mixture modeling approaches that can 
tackle cross-sectional, longitudinal, and even multilevel data situations. In general, 
mixture modeling can be used to analyze various subpopulations of observations 
(e.g., individuals, schools, etc.) where the population membership is not known 
ahead of time but, rather, must be inferred from the data. In this type of formulation, 
the subpopulations are referred to as latent classes, which can be readily defined 
through categorical latent variables.

Recent advances in computer software (e.g., Lanza, Collins, Lemmon, & Shafer, 
2007; Lanza, Dziak, Huang, Xu, & Collins, 2011; Muthén & Muthén, 1998–2012) 
have not only made the use of mixture modeling and its various extensions quite 
straightforward, but have also increased their use by applied researchers across 
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many disciplines. Extensions of latent mixture modeling include such models as 
latent transition analysis (Collins & Lanza, 2010; Marcoulides, Gottfried, Gottfried, 
& Oliver, 2010), associative latent transition analysis (Bray, Lanza, & Collins, 
2010), and growth mixture modeling (Muthén & Shedden, 1999), to name just a 
few. All of the previously-mentioned models share the characteristic that population 
heterogeneity is accounted for by a latent grouping variable, but that each individual’s 
(or other unit of analysis) group membership cannot be known with any degree of 
certainty; rather, the probability of group membership must be inferred from the data 
(Muthén & Muthén, 1998–2012).

In this chapter, we first develop a framework for the consideration of various 
types of mixture models which introduces ways that latent variables can be used 
to identify subsets of individuals or groups that are similar. We then provide a 
couple of extended examples utilizing latent variable mixture modeling with set-
ups, output, and interpretation. The first is a simple latent class analysis (identifying 
subpopulations with individuals who are similar) which uses cross-sectional data, 
and the second is a growth mixture model which investigates latent classes of 
individuals with similar growth trajectories. There can be no doubt that mixture 
modeling techniques open up many new types of modeling capabilities, which are 
often generically referred to as mixture or latent class modeling. We hope these 
pragmatic examples taken from the field of education will help illustrate some of the 
varied uses of this type of modeling.

The chapter is organized in three sections as follows. In the first section, we 
provide an overview of mixture modeling in general including a taxonomy that 
identifies various types of cross-sectional and longitudinal mixture models. In the 
second section, we introduce model assumptions and estimation methods related 
to conducting a latent class or mixture analysis of a simple growth model. For 
purposes of illustration, we next develop a simplified confirmatory factor analysis 
measurement model, where we identify subsets of individuals who are in similar 
latent classes. In the last section, we combine latent mixture modeling with latent 
growth modeling to illustrate how we might identify mixtures (or latent classes) 
of individuals based on their continuous latent curve trajectories. Throughout the 
chapter we use a notational system generally considered to be consistent with the 
so-called multilevel framework, although this choice is somewhat arbitrary.

A FRAMEWORK FOR DEFINING MIXTURE MODELS

A commonly accepted taxonomy of different mixture models is provided in Table 1 
(see also Muthén, 2002). As we suggest in this taxonomy, there are several common 
ways to differentiate existing mixture models. It is important to note that since this is 
an emerging general modeling framework, new models fitting into this framework 
are being developed constantly. First, we observe that mixture models involve 
combinations of continuous and categorical latent and observed outcome variables. 
Second, mixture modeling can be applied to both cross-sectional and longitudinal 
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data. Third, the taxonomy suggests that some types of mixture modeling support 
examining variation among individuals within each identified latent class (e.g., 
mixture factor analysis, growth mixture modeling), while others treat possible within-
class variation as fixed (e.g., latent class analysis, latent transition analysis). Fourth, 
mixture modeling can be combined with other commonly-used modeling techniques 
including factor models, structural equation models, multiple group models, growth 
models, and multilevel models. Readers should keep in mind that the common thread 
running through the latent class modeling techniques summarized in Table 1 is that 
the underlying classes explain variability in the observed dependent variables (y) 
and that the overall approach provides a means of classifying individuals according 
to their latent class membership.

The general latent variable mixture modeling framework has two basic parts 
(Muthén & Muthén, 1998–2012). First is the so-called measurement part, which 
corresponds to the relationship between the set of observed dependent variables and 
one or more categorical latent variables, commonly labeled simply as (c). Second 
is the structural set of relationships between the latent variables, the relationships 
between the observed variables, and the relationships between the latent categorical 
(c) variables and observed covariates (x). Although the general mixture model can be 
extended to include continuous latent variables used to classify individuals, in this 
chapter we will focus only on analyses involving categorical latent variables (for 
additional details, see Muthén, 2002).

Types of Mixture Models

In the next section, we briefly describe several different type of possible mixture models 
included in the taxonomy provided in Table 1. We also provide some illustrations 
concerning how they may be used to study various educational phenomena.

Table 1. Taxonomy of models with latent classes

Model Name Variable Type
Cross-sectional/
Longitudinal

Within-Class 
Variation

Latent Class Analysis (LCA) Categorical Cross-sectional No
Latent Profile Analysis (LPA) Continuous Cross-sectional No
Latent Transition Analysis (LTA) Categorical Longitudinal No
Mixture Factor Analysis Categorical 

Continuous
Cross-sectional Yes

Mixture Structural Equation 
Modeling

Categorical
Continuous

Cross-sectional Yes

Growth Mixture Modeling 
(GMM)

Categorical
Continuous

Longitudinal Yes
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Latent Class Analysis (LCA)

Latent class analysis at its most basic level operates much in the same way as any 
structural equation model (e.g., a confirmatory factor analysis model) whereby a 
latent variable is measured via a number of manifest or indicator variables. Often 
times, it is assumed that the manifest variables correspond to the distributional 
characteristics of a single sample or that group membership can be readily defined 
based on an observable variable. An example is where the sample consists of explicitly 
identifiable or defined groups such as male and female or experimental and control 
groups. In many cases, however, group membership may not be known beforehand. 
For the situation in which the variables that determine group heterogeneity are 
not known and group membership has to be inferred from the data, the groups are 
commonly called latent classes (i.e., membership is not observable but latent – for 
further details see Lubke & Muthén, 2005). As previously indicated, studies which 
involve analyses of potentially heterogeneous groups are also sometimes generically 
referred to in the literature as mixture models or simply mixture analyses (Muthén, 
2002).

The latent class analysis consists of cross-sectional data with multiple items 
measuring a construct which is represented as a latent class variable (Muthén, 
2001). The goal is to identify items that indicate the classes well, estimate the 
class probabilities, identify covariates that explain class membership, and classify 
individuals properly within each latent class. As a simple example of a latent class 
or mixture analysis, consider Figure 1, which represents the data distribution for 
a single continuous outcome variable x. The figure suggests that the data actually 
consist of different groups of individuals but that the group membership is not 
directly observed. In fact, the observed distribution of x corresponds to those of 
the two latent classes c = 1 and c = 2, each with different means (μ1 and μ2). The 
figure implies that the two distributions are not directly observed (the dotted lines); 
rather, it is only the mixture of the two distributions that is observed (the solid line). 
As such, a latent class or mixture analysis can be used to determine the presence 
and nature of the mixture and its associated parameter estimates. Assessment of the 
latent classes or mixture distribution can subsequently be judged by comparison to 
the homogeneous distribution via a measure of data-to-model fit (Muthén, 2002).

Figure 1. Distribution of a continuous outcome variable X with two mixtures.
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In order to conduct a mixture analysis of the above illustrated data, an explicit 
model that divides the sample into various mutually exclusive latent classes must 
be posited (for in depth technical details on conducting latent class analyses, see 
Muthén & Muthén, 1998–2012). The basic assumption of such a latent class model 
that explains the relationships between the observed variables measured is that the 
population from which the sample was taken consists of k latent classes of unknown 
size (postulated to be mutually exclusive and collectively exhaustive). For example, 
a proposed CFA model for k = 1,…, K latent classes can be specified as

 ,ik k k ik iky v h e= + Λ +  (1)

where for any class k, an individual’s responses yik is a vector of observed scores, νk is 
a mean vector, Λk is a matrix of factor loadings, ηk is a vector of factor scores, and εik 
is a vector of residual errors. In the above figure, the number of latent classes would 
essentially be equal to two. In our first example analysis provided in a later section, 
we will illustrate how one would specifically arrive at such a conclusion about the 
number of latent classes present in the data distribution.

LATENT PROFILE ANALYSIS

Latent profile analysis is similar in many ways to latent class analysis. The primary 
difference is that latent profile analysis assumes there are two or more continuous 
dependent variables which are indicators of the latent variable (c), whereas the 
analysis is referred to as latent class analysis when the outcomes are categorical (as 
we noted in Table 1). The continuous indicators might be considerably correlated 
(such as mathematics and reading scores), but the assumption is that the relationship 
is due to the mixing of several classes of individuals, each having unrelated outcomes 
(Muthén, 2001). Latent class and profile analysis have features similar to factor 
analysis, in that it is assumed the underlying latent variable (c) is responsible for 
the association observed between the observed outcomes. As we noted in Table 1, 
in latent class or profile analysis, the model for each class can be tested to see if it is 
the same or not across classes. For latent profile analysis, the mean for each outcome 
variable may be expected to change across classes. For latent class analysis with 
a dichotomous outcome, the probability of each outcome variable changes across 
classes (Muthén, 2001).

Mixture Factor Analysis

Readers will see that the more simplified latent class or latent profile analysis 
can also be extended to situations where there are several underlying factors that 
comprise a measurement (or factor) model. Factor analysis is an approach for 
describing associations among observed indicators in terms of a smaller number 
of latent continuous factors. The observed indicators may be continuous, ordinal, 
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or dichotomous. The general factor analytic approach can be extended to consider 
situations where individuals are clustered in groups (such as students within 
classrooms or schools). Using a mixture model, we could also consider situations 
where individuals are members of subpopulations (or latent classes) which differ 
in the parameters of the individual factor model. More specifically, we propose a 
set of subpopulations (or latent classes) which differ in the parameter values of the 
measurement model defined for individuals. In this situation, the mixture factor 
model is something like a multiple-group factor analysis, where individuals belong 
to latent classes differing with respect to the measurement model. An example might 
be a clustering of individuals who perform similarly on a mathematics achievement 
factor and a reading achievement factor where the grouping is unknown, rather than 
a situation where one might examine a possible different achievement factor model 
for males and females (i.e., where the two gender subpopulations are known ahead 
of time).

Similarly, if we had individual students nested within schools, using a mixture 
model we could investigate situations where the level-2 units (schools) might belong 
to a smaller set of latent classes which differ in systematic ways. For example, 
there might be classes of schools with high, average, and low student achievement 
in mathematics and reading. With this information, educators could then target 
particular schools for particular types of interventions to improve their achievement 
results.

Mixture SEM

Measurement models that define the relationships between observed indicators and 
underlying factors can be extended to include proposed predictive relationships 
between the underlying factors. This second type of model is sometimes referred 
to in the structural equation modeling (SEM) literature as the structural model. 
This more complex type of model facilitates the investigation of situations where 
the primary focus of model testing is on one or more structural parameters (e.g., 
slopes) in the model that might differ across classes. An example might be where 
an underlying factor defining student motivation has a different impact on a latent 
achievement factor across different latent classes of individuals.

AN EXAMPLE LATENT CLASS ANALYSIS

We next illustrate a simple latent class analysis. Consider a simple confirmatory 
factor analysis model based on four observed variables with one proposed common 
factor measuring academic intrinsic motivation of 111 high-school students at age 
17 participating in the Fullerton Longitudinal Study (for details on the complete 
longitudinal study, see Marcoulides et al., 2007). To evaluate model fit, the Bayesian 
Information Criterion (BIC) index (Schwartz, 1978) is generally used because it 
provides an ideal way to examine the relative fit of any proposed latent class model 
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against the model for just one class (i.e., the case for which the considered sample is 
homogeneous with respect to the model considered). The BIC values for the various 
alternative or competing models are compared, and the model with the smaller value 
is considered the preferred model. Although some researchers also suggest the use 
of the likelihood ratio goodness-of-fit test to evaluate model fit, recent research has 
suggested that such an approach only works well in cases where there are not large 
numbers of sparse cells (Nylund, Asparouhov, Muthén & Muthén, 2007).

Mplus Model Statements

Latent class analysis is similar to factor analysis, but in contrast to factor analysis, 
provides a classification of individuals. Below we provide illustrative Mplus (Muthén 
& Muthén, 1998–2012) statements for latent class analysis of a model based on four 
observed variables with one proposed common factor measuring academic intrinsic 
motivation. It is important to note that to simplify matters, many of the default 
options are invoked. We also note that such a latent class analysis that involves 
continuous latent class indicators is also commonly referred to as a latent profile 
analysis. The CLASSES statement is used to specify the number of latent classes 
in the model and is the one option that must be manipulated by the user, each time 
specifying a different number of selected classes.

TITLE:   Illustrative Example of a LCA;
DATA:    FILE IS filename.dat;
VARIABLE:   NAMES ARE y1-y4;
      CLASSES = c(3);
ANALYSIS: TYPE = MIXTURE;
OUTPUT:  TECH1 TECH8;

RESULTS

The following illustrative results were obtained when fitting the proposed CFA 
model to data using the above Mplus (Muthén & Muthén, 1998–2012) statements. 
To ensure that the examined model converged on global, rather than local solutions, 
random start values were used (see Muthén & Muthén, 1998–2012). A user can 
also elect to provide their own start values and iterations by declaring the STARTS 
and STITERATIONS options of the ANALYSIS command in the command file 
above (e.g., specifying STARTS=0, the random starts are turned off; specifying 
STITERATIONS=50, requests that fifty iterations be performed). At present, there is 
no certain automated way of determining the number of latent classes that may exist 
in the considered data set. Similar to exploratory factor analysis, a series of models 
are sometimes fit using sequentially different specified numbers of latent classes 
(e.g., 1, 2, 3, etc.). Model fitting criteria (i.e., BIC) can then be used to determine the 
appropriate number of classes to retain based upon good fit values (Muthén, 2002).
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In this example, BIC values were examined for one-, two-, three, and four-
class models and indicated that fitting a three-class model consistently results in the 
best BIC fit values. The proposed three class measurement model fit criterion was 
BIC = 3378.049, compared to model fit criteria of BIC = 3382.303, BIC = 3428.176, 
and BIC = 3437.049 for the one-, two-, and four-class models, respectively. Posterior 
probabilities for each individual can also be used to determine how well the categories 
define groups of individuals. Similar to classification in discriminant analysis or 
logistic regression, high diagonal and low off-diagonal values are indicators of good 
classification.

Table 2 displays information related to the quality of the classification using 
average posterior probabilities for the three-class model considered. The fit of the 
model to the data suggests that three latent classes seem to classify individuals 
into exclusive categories optimally based on the CFA model proposed. If desired, 
membership in these latent classes could be further investigated according to various 
individual characteristics (e.g., gender, academic background) or perhaps other 
latent variables.

AN ILLUSTRATION OF GROWTH MIXTURE MODELING (GMM)

In this section, we provide an introduction to growth mixture modeling (GMM). Central 
amongst mixture modeling methods have been models for the study of developmental 
change over time. One such set of models that can be used to study developmental 
change over time is growth mixture modeling, which is referred to interchangeably in 
the literature as latent change analysis, latent curve modeling, or just growth modeling 
analysis (see Bollen & Curran, 2006; Raykov & Marcoulides, 2006). In simple terms, a 
GMM analysis model enables a researcher to study the rate at which the developmental 
process under study is changing over time. Because in some cases the shape of the 
developmental process may be linear, whereas in others it might even be nonlinear 
(e.g., quadratic, cubic, etc.), specific hypotheses regarding the actual shape of the 
development can even be tested. Most commonly considered growth models usually 
assume that all individuals in a given sample come from a single population with one 
mean growth (change) pattern, and the variability around that mean growth is captured 
by the variance of the growth factors. In essence, these models use continuous latent 
variables to describe random effects (i.e., the intercept and slope, level and shape, or 
simply initial status and growth). The continuous latent variables describe unobserved 
heterogeneity in individual differences in change over time.

Table 2. Average posterior probabilities from the 3-class model

Class 1 2 3
1 .925 .023 .052
2 .048 .952 .000
3 .053 .000 .947
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GMM represents an extension of the traditional growth model that permits the 
consideration of latent classes with differing developmental trajectories. GMM 
thereby permits more than one mean growth rate pattern, often assuming unique mean 
growth patterns for each apparently existing unobserved subpopulation. In GMM, 
heterogeneity in subpopulation outcome levels and developmental trajectories over 
time are captured by both continuous and categorical latent variables. The classes 
of a categorical latent variable can be proposed to represent latent trajectories which 
cluster individuals into sets of exclusive categories. Consequently, each latent class 
considered may have a different random effect growth model (Muthén, 2001). The 
random intercept and slopes are continuous latent variables, while the trajectory 
classes are considered to be categorical latent variables.

In the case of a LGMM, the classes of a categorical latent variable (c) represent 
latent trajectory classes which classify individuals into sets of exclusive categories 
(Clogg, 1995). The multiple indicators of the latent classes correspond to the 
repeated measures obtained over time and within-class variation is permitted for 
the latent trajectory classes (Muthén & Muthén, 1998–2012). This variation is 
also represented by random effects that influence the outcomes at all time points. 
For example, a variety of possible covariates can be added to the model, both to 
describe the formation of the latent classes and how they may be differentially 
measured by the repeated measures. The prediction of latent class membership is 
determined by the multinomial logistic regression of c on x.

For example, we may observe that four latent classes of developmental trajectories 
define students’ growth in reading over four years, each having a different initial 
level of reading attainment and change trajectory over time. One set of trajectories 
might initially begin relatively high and descend in a linear fashion over successive 
measurements. Another might start below the first set but remain relatively flat 
over successive intervals. A third may start lower than the others, but ascend in 
a linear manner over time successive measurement intervals. Finally, a fourth 
might start similar to the second set, but ascend over the first two measurements 
and then slow as it rises over the final two time intervals. Additionally, covariates 
can be incorporated into the model (e.g., student gender, socioeconomic status, and 
mobility) both to describe the formation of the latent classes and to determine how 
they may be differentially measured by the repeated measures.

Figure 2 provides an example of a LGMM. As the figure suggests, covariates (e.g., 
SES) can be used to explain membership in the classes. Regression slopes between 
the covariates and outcome (math) can also be defined to vary across categories 
of c. The prediction of class membership is based on the logistic regression of c 
on x. The influence of x can vary across the latent classes and, in the multilevel 
case, the regression of c on x can vary across organizations. Including covariates can 
improve classification of individuals into latent classes. Thresholds (τ), similar to 
intercepts, are considered measurement parameters and can vary across the groups 
comprising latent categories (similar to nonequivalence across groups in a multiple 
group analysis).
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Specifying the Model

A growth mixture model can also be thought of as having two basic parts. The first 
part of the model is the general growth model for continuous and normally distributed 
y variables. This part is based on the analysis of the data based on a growth modeling 
approach. Two commonly used strategies to specify such a model are the Level and 
Shape approach and the Intercept and Slope approach (see Raykov & Marcoulides, 
2006, for further discussion of basic approaches to latent growth modeling). These 
strategies are based on two specific kinds of parameterizations of the latent variables, 
the so-called Level-and-Shape (LS) model and the Intercept-and-Slope (IS) model.

The LS model was first described by McArdle (1988) and is considered to have a 
number of advantages over the currently popular IS model (Raykov & Marcoulides, 
2006). A fundamental assumption of the IS model is that the change trajectory being 
studied occurs in a specific fashion and is either a linear, quadratic, cubic, or some 
higher order. Unfortunately, the actual change process may be quite difficult to 
model precisely utilizing any specific trajectory. For this reason, the less restrictive 
(in terms of the change trajectory) LS model is often preferable because it would 
generally be expected to fit the data better. Of course, the IS model can be obtained 
as a special case of the LS model when the coding of time is simply fixed according 
to the time of the repeated measurements utilized.

Different approaches to the coding of time can be utilized within the LS and the IS 
modeling strategy. In the IS model, the component of time is coded in increments of 
years (after placing the origin of time at the first age – which entails coding the first 

Figure 2. Adding a categorical latent variable and demographic predictors.
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age as 0). For example, a coding scheme for 3 consecutive assessment occasions that 
assumes the trajectory is constant over time (i.e., the slope is linear) would result in 
the following factor loading matrix for all individuals:

 
1 0

1 1

1 2

⎡ ⎤
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥⎣ ⎦

  (2)

Fixing the loadings of each assessment occasion on the first factor (F1 = the Intercept 
factor) to a value of 1 ensures that it is interpreted as an initial true status (i.e., 
as a baseline point of the underlying developmental process under investigation). 
Specifying the change trajectory in increments of years on the second factor (F2 = the 
Slope factor) also ensures that the correlation between the Intercept and Slope factors 
reflects the relationship between the initial point and the slope of the proposed linear 
trajectory. In cases where a quadratic trajectory is assumed, the following factor 
loading matrix would be used and includes an additional factor (a quadratic factor) 
with squared loadings of the second factor (the linear factor):

 
1 0 0

1 1 1

1 2 4

⎡ ⎤
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥⎣ ⎦

   (3)

For any assumed higher-order polynomial trajectories, appropriately patterned factor 
loading matrices would be needed.

In the LS modeling strategy the loadings on the first factor (F1 = called the Level 
factor) are also set to a value of 1, but the component of time is coded by fixing the 
loadings on the second factor (F2 = called the Shape factor) as follows (i.e., where * 
corresponds to a freely estimated loading):

 
1 0

1 *

1 1

⎡ ⎤
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥⎣ ⎦

  (4)

Fixing the loading of the first and last assessment occasion on the second factor to a 
value of 0 and 1, respectively, ensures that this factor is interpreted as a change factor 
(regardless of the trajectory encountered - linear, quadratic, cubic, etc.). Freeing 
the loadings of the remaining assessment occasions on the same factor captures 
the change that occurs between the first and each of these later measurement 
occasions. In other words, specifying the change trajectory in this manner ensures 
that the freed loadings reflect the cumulative proportion of total change between 
two time points relative to the total change occurring from the first to the last time 
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point (regardless of the trajectory shape), and the correlation between the Level 
and Shape factors simply reflects their degree of overlap (Raykov & Marcoulides, 
2006). In contrast to the IS model (Equation 2), this particular manner of specifying 
Level and Shape tends to focus on the change as a whole (i.e., over the length of 
the longitudinal process measured), as opposed to the incremental changes from 
one interval to the next or the possible acceleration or deceleration of the change 
process (e.g., as might be captured with a quadratic change). As an alternative to 
the loadings used in Equation 4, we could also specify non-linear trajectories by 
freeing the last repeated measurements and fixing the first to a linear growth rate 
(e.g., 0, 1, *).

In this case, for ease of demonstration we will adopt the more restricted Intercept 
and Slope strategy, where we specify that the growth follows a common polynomial 
(i.e., in the case of three repeated measures, this would be linear or quadratic). The 
time points at which the repeated y items are measured (e.g., with three time points it 
would be y1, y2, and y3,) can be captured by fixed factor loadings and zero y intercepts. 
In other words, we define the first measurement as an initial status growth factor 
(η0), setting the first time score measurement at 0. Subsequently, and assuming linear 
growth, we can define the second time score as 1 and with equidistant observations, 
this continues as xt = 0, 1, 2,…, T − 1. The residuals are normally distributed and 
uncorrelated with other variables, have means of zero, and a covariance matrix, 
which can be designated as Θ with different variances. Although some off-diagonal 
elements can be freed to represent covariances between residuals over time, it is 
usually assumed that there is no covariance structure between the residuals of the 
longitudinally observed variables. Of course, other types of growth trajectories (e.g., 
quadratic, nonlinear) can also be proposed and tested.

In our example, assume that a series of 3 repeated ordered waves of measurements 
on student math achievement is represented as Yit (where the index i corresponds 
to each observed individual in the study and t corresponds to the time-ordered 
measurements). The following equation can be used to describe an individual’s 
development over the repeated measurements (also sometimes called a level-1 or 
within-person model):

 it yi yi t itY a b l e= + +  (5)

where αyi is the initial status measured at time 1 (i.e., the intercept or level) of an 
individual’s change trajectory, βyi is the slope or the shape (the change in Yi between 
the consecutive measurements) of the change trajectory, λt corresponds to the 
measured time points, and εit to the model residual for each individual. Because αyi 
and βyi are random variables, these model parameters can be represented by a group 
mean intercept (μαy) and mean slope (μβy) plus the component of individual intercept 
variation (ζαyi) and slope variation (ζβyi), as indicated by the following so-called 
level-2 or between-person model equations for which, as with the above mentioned 
parameters, sample based estimates are generally obtained:



359

MIXTURE MODELS IN EDUCATION

 yi y yia aa m V= +  (6)

 yi y yib bb m V= +  (7)

A usual assumption is that there is no covariance structure between the residuals 
of the longitudinally observed variables, implying that the covariance matrix is 
diagonal. Such a model is called an unconditional model, an example of which is 
depicted in Figure 3.

Specifying the Latent Classes

As we noted, the second part is the specification of the latent classes as well as any 
covariates that might define the latent classes, as well as the intercept and slope 
factors. The basic latent curve model can be extended to the K latent trajectory 
classes of the categorical latent variable. This essentially represents the second part 
of the latent mixture model. In other words, the second part of the growth mixture 
model (i.e., the latent class part) describes individuals with similar development 
over time (i.e., similar growth or change trajectories) and relates these latent classes 
to covariates xi (Muthén & Muthén, 1998–2012). Of interest are the class-varying 
means for the K − 1 classes. The growth factor means will likely change over the 
latent classes, which can result in different trajectory shapes (Muthén, 2002, 2007).

The latent growth mixture model can therefore be considered to be a combination 
of a continuous latent growth variable for math (represented as ηi, which consists 
of an intercept and slope factor) and a categorical latent variable (c) with K classes,  
Ci = (c1, c2, … ck)׳ where xi = 1 if individual i belongs to class k and 0 otherwise. For 
a linear growth model, the measurement model can be written as

 yit = η0i + η1iakt + εit, (8)

where yit (i = 1, 2, ..., n; t = 1, 2, ..., T ) are outcomes influenced by the latent intercept 
and slope factors (η0i and η1i , respectively). As in traditional latent curve models, the 

Figure 3. Example of a latent curve model assuming linear growth.
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time scores of a are contained in a factor loading matrix specified as the Λk matrix. 
The residuals (εit) are contained in a covariance matrix Θk of order T × T and may 
vary across the latent trajectory classes (Muthén, 2002).

The intercept and slope means can then be related to one or more covariates 
through the following equations:

 00 0 0 ,
ii k k ixgh Vm ′= + +  (9)

 11 1 1 ,
ii k k ixgh Vm ′= + +  (10)

where the μ mean parameters vary across the K classes,γ are the structural parameters 
relating covariates to the intercept and slope coefficients such that the influence of 
x can vary across latent classes, and ς0i and ς1i are vectors of residuals assumed to 
be normally distributed, uncorrelated with other variables, and with mean of zero.

Let us consider the proposed growth mixture model graphically summarized 
in Figure 2. In this model, it is proposed that the three background variables of 
socioeconomic status (SES), grade point average (GPA), and mobility (i.e., whether 
the student changed schools) will affect students’ initial status (i = Intercept) and 
growth rate (s = Slope) in math. In this case, the growth is assumed to be linear (coded 
0, 1, 2), whereupon an Intercept-and-Slope (IS) model was utilized. The model also 
specifies a covariance between the initial status and slope factors. Because c is a 
categorical latent variable, the arrows from c to the latent growth factors indicate 
the intercepts of the regressions of the growth factors on the covariates vary across 
the classes of c. This corresponds to the regressions of the i and s factors on a set of 
dummy variables representing the categories of c (Muthén & Muthén, 1998–2012). 
In the Mplus model specification, the intercepts of the factors are not held equal 
across classes by default; however, the variances and covariances of the factors are 
held equal across classes as the default. Further, arrows from student SES, GPA, 
and mobility to c represent the multinomial logistic regressions of c on the set of 
background covariates (x).

As we have suggested, the latent growth mixture model provides considerable 
flexibility for defining across-class parameter differences. Each of the intercept, 
slope, and factor loading parameters can be either considered as fixed or randomly 
varying across classes (Asparouhov & Muthén, 2007). For example, the different 
shapes of the latent trajectory classes can be characterized by class-varying intercept 
parameters, holding Λk invariant across latent classes. Some classes may require 
class-specific variances in Θk and Ψk (Muthén, 2002). Moreover, different classes 
may have different relations to the covariate, corresponding to class-varying γk 
coefficients (Muthén, 2002).

For purposes of illustration, we will use the default model specifications by defining 
the factor loadings and factor variances and covariances to be the same across the 
latent classes. In the Mplus program, this can be done by using the %OVERALL% 
statement without specifying differences for particular classes, as specified in 



361

MIXTURE MODELS IN EDUCATION

Appendix B. We could, however, subsequently relax particular restrictions of 
theoretical interest (e.g., factor variances and covariances, factor loadings) across 
classes. For interested readers, more technical descriptions and extensions of basic 
growth mixture models (e.g., with categorical repeated measures) can be found in 
Muthén (2002), Duncan et al. (2006), and the appendices of the Mplus User’s Guide 
(Muthén & Muthén, 1998–2012).

Mplus Model Statements

The Mplus modeling statements for the proposed model presented in Figure 2 are 
provided in the command file provided below. In mixture modeling in Mplus, start 
values can be used to facilitate model estimation. For example, initially several 
random sets may be selected (i.e., 10 is the default). Optimization is carried out for 
10 iterations for each of the 10 sets of starting values. The ending values of this initial 
stage of estimation are used as starting values in the final optimization stage. There 
is considerable flexibility in providing more thorough investigation (e.g., varying 
the random starts, the number of iterations used, number of optimizations carried 
out, and estimation algorithms). In mixture modeling, however, some starting values 
can generate a likelihood function with several local maxima, which suggest the 
importance of exploring a given model with different optimizations that are carried 
out with various sets of starting values (Muthén, 2002).

TITLE:  Growth mixture model;
DATA:  FILE IS filename.dat;
 
VARIABLE: Names are schcode ses gpa math1 math2 math3 moved lowses
  acadsch;
Usevariables math1 math2 math3 gpa ses moved;
 CLASSES = c(4);

ANALYSIS: TYPE = MIXTURE;
Estimator is MLR;
starts = 100 4;
stiterations = 20;

Model:
%Overall%
i s |math1@0 math2@1 math3@2;
i on gpa ses moved;
s on gpa ses moved;
c#1 on gpa ses moved;
math1@0;
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Plot: TYPE IS PLOT3;
SERIES IS math1-math3(*);

OUTPUT: SAMPSTAT STANDARDIZED TECH11 TECH14;

RESULTS

In this example, we examine a single-level growth mixture model for math 
achievement of students (N = 6,623) using three within-school covariates. The data 
are from a study of students’ math achievement during high school. Students were 
observed on three occasions (with math achievement score means of 46.94, 51.64, 
and 55.76, respectively) with mean grade point average (GPA) = 0.06 (standardized) 
and SES = –0.07 (standardized), and observed mobility percentages indicating 78% 
remained in the same school while 22% changed schools after year 1.

To handle the presence of missing data, we used full information maximum 
likelihood (FIML) parameter estimation (Arbuckle, 1996). To evaluate model 
fit, we use the overall chi-square goodness-of-fit test, the comparative fit index 
(CFI), Akaike’s information criterion (AIC), and the root mean square error of 
approximation (RMSEA) along with its associated confidence intervals. We note 
that because the χ2 measure is well known to be sensitive to sample size issues, 
a tendency exists to reject models that are even only marginally inconsistent 
with the data; therefore, much more emphasis is generally placed on the other fit 
criteria.

A number of alternative preliminary models with different numbers of latent 
classes (using the strategies suggested in the latent class analysis section) were 
investigated using the BIC index before settling on four classes (e.g., for 3 classes, 
BIC = 126,134.04; for 4 classes, BIC = 125,657.85). Final classification of 
individuals in the identified four classes was 10.4% in class 1, 5.8% in class 2, 
65.5% in class 3, and 18.3% in class 4 (with respective correctly-classified average 
posterior probabilities of 0.90, 0.87, 0.95, and 0.84). Just as one can use the BIC 
index , we note in passing that another way a researcher can examine whether she 
or he has a plausible number of classes is using the so-called Vuong-Lo-Mendell-
Rubin test (requested with TECH11 in the Mplus program) and the bootstrapped 
parametric likelihood ratio test (requested with TECH 14). These tests compare in 
terms of a statistical significance p-value the model with K classes (i.e., in this case 
4) to a model with (K – 1) classes (i.e., 3 classes). A low p value provides evidence 
that the model with K – 1 class is rejected in favor of the K class model. In this 
example, the Vuong-Lo-Mendell-Rubin test for the four-class model has a p-value 
of .00001. Similarly, the bootstrapped parametric likelihood ratio test has a p value 
of 0.00001. All three tests suggest that four classes fit better than three classes.

The model estimates are summarized in Table 3. First, the results suggest that 
students with higher GPAs and higher SES have significantly higher initial status 
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than their peers with lower GPAs and SES, and students with higher GPAs (γ = 0.832, 
p < .05) and SES (γ = 0.960, p < .05) make significantly greater growth over time than 
their peers with lower GPAs and lower SES. Student mobility (labeled as MOVED 
in Table 3) is not significantly related to initial math achievement; however, there 
is evidence that students who move make lower growth per year than students who 
stay in the same school (γ = −0.208, p < .05). The results indicate that the means for 
the latent classes range from a low of 32.642 (Class 2) to a high of 57.835 (Class 1). 

Table 3. Latent growth mixture model selected results
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Growth means also vary considerably across the four latent classes (from a low of 
about 2.2 in Class 1 to a high of about 7.1 in the reference group (Class 2).

Second, regarding explaining class membership (referred to as C#1 in Table 3), 
the log odds for GPA is 0.790 (p > .05), the log odds for SES is 0.567 (p > .05), 
and the log odds for moved is 0.014 (p > .10). With respect to the reference group 
(i.e., Class 2, or the class with the lowest initial status and ending status), the results 
imply that students with higher GPAs and higher family SES are more likely to be 
members of other latent classes. Therefore, whether or not a student moved does not 
appear to affect class membership. The estimated means for each of the four latent 
classes over the three measurement occasions are plotted in Figure 4.

EXTENSIONS OF LGMM

The previous model provides a preliminary indication of different classes of latent 
growth trajectories. Such a model can also be extended to examine potential 
hierarchical or multilevel data structures present in the data. In such a case, the 
multilevel specification would use measurement models within and between groups 
to define the latent growth factors and within- and between-groups structural models 
to relate covariates at each level to the growth factors. In a multilevel mixture 
model, intercepts (and slopes) can be allowed to vary across both latent classes 
and schools. We could easily extend the previous single-level model to a multilevel 
model that included the possible effects of a school-level model. Using this school-
level component, we could then examine the possible effects of organizational-

Figure 4. Estimated latent class means and growth trajectories for LGMM.
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level variables on the level of outcomes and growth rates. For example, we might 
examine the relationship between two school-level variables—the SES context 
of the school and the quality of the school’s curricular program on both the latent 
classes of schools with similar growth trajectories, as well as on the average level of 
school initial outcomes and their growth rates. The multilevel level mixture model, 
therefore, allows us to examine student membership in the latent trajectory classes 
within schools. Moreover, the latent trajectories classes themselves can be proposed 
to have a between-schools component as well as a within-schools component.

We note in passing that it is often more difficult to fit a multilevel mixture model 
to the data than a single-level model. The multilevel case can require some changes 
in the numerical integration process used to estimate the model (see the Mplus 
User’s Guide for further discussion of these options). We believe it is important for 
readers to keep in mind that the choices made in estimating multilevel models with 
categorical outcomes (e.g., method of integration, choice of the number of random 
starts) can have a considerable effect on the final estimates and the time it takes to 
generate a solution. Models can be estimated preliminarily without using random 
starts, but they may not produce optimal solutions. The time it takes to estimate such 
models can vary considerably depending on the specification of the random start 
values, which was necessary to avoid local maxima in generating initial estimates. 
Hence, it is probably best at present to consider such multilevel results as preliminary.

CONCLUDING REMARKS

Models with categorical observed and latent variables greatly expand the range of 
developmental processes that can be examined in the behavioral, educational, and 
social sciences. Moreover, there exist a wide variety of new types of mixture models 
that can be considered and conducted within the SEM framework. Models such as 
latent growth mixture models, multilevel growth mixture models, latent transition 
analysis models, Markov chain models, and latent variable hybrid models are but 
a few of these that can be considered. As evidenced in the few example models 
introduced and illustrated in this chapter, these new types of models expand the 
ways in which we can think about how individuals’ shared environments affect their 
individual outcomes (Asparouhov & Muthén, 2007).

It should be evident that the plethora of examples involving latent growth mixture 
models can vary considerably in their complexity and demands on identification 
and estimation time. For example, we have found that examining multilevel growth 
mixture models can often be more difficult to fit than simpler models. There are 
various options that can be considered when fitting such complex models (e.g., 
making changes in numerical integration process used to estimate the model, 
changing the number of random starts, changing the number of latent classes defined, 
considering whether there should be one overall model defining the latent classes 
or unique Level and Shape models for each latent class). All of these possibilities 
can affect whether a particular model converges or not and, ultimately, whether it 
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provides a satisfactory test of a proposed theoretical model. At the extreme, these 
possibilities can also lead to evidence of spurious classes. Nevertheless, despite 
the challenges, these kinds of models most certainly offer exciting possibilities for 
applied researchers to conduct studies that address questions related to particularly 
demanding substantive theories.
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BARBARA M. BYRNE

17. SELECTING SEM COMPUTER PROGRAMS

Considerations and Comparisons

The rate at which structural equation modeling (SEM) has grown over the past 30 
years or so has been truly quite remarkable! At least one interesting offshoot of this 
escalation, however, has been the somewhat parallel growth of computer software 
capable of handling the statistical rigors demanded by the SEM methodology. In 
combination, each component of this synergetic pair serves to energize the other 
in advancing the practice of SEM methodology. More specifically, as substantive 
researchers increasingly seek more comprehensive answers to an ever-widening 
array of research questions and SEM applications, statistical researchers are 
challenged to further advance the capabilities of SEM methodology, which in turn, 
necessitates further development of existing SEM software programs.

Since development of the first SEM program in 1974 (LISREL), the ensuing years 
have witnessed a steady increase in the development and revision of alternative SEM 
computer software such that there are now several programs from which to choose; 
these include: AMOS (Analysis of Moment Structures; Arbuckle, 2009), CALIS 
(Covariance Analysis of Linear Structural Equations; SAS), EQS (Equations; Bentler, 
2005), LISREL (Linear Structural Relationships; Jöreskog & Sörbom, 2004), Mplus 
(Muthén & Muthén, 2007–2010), Mx (Matrix; Neale, 2002), RAMONA (Reticular 
Action Model or Near Approximation; Systat Software Inc., 2002), and SEPATH 
(Structural Equation Modeling and Path Analysis; StatSoft Inc., 2003). Although 
these software programs share many of the same core analytic features, they are 
also necessarily unique in a variety of ways. Given that a review of each is clearly 
beyond the scope of the current chapter, the present content focuses on only the four 
programs considered to be the most widely used as this edited volume goes to press. 
Listed alphabetically, these programs include AMOS, EQS, LISREL, and Mplus.

Using these four programs as a backdrop to the topic of SEM application in 
general, and as a reference point for comparison across the varying software 
approaches to diverse SEM applications in particular, the intent of this chapter is to 
provide readers with an overview of important factors to consider in their selection 
of a SEM computer program. More specifically, the purposes of this chapter are 
fivefold: (a) to suggest factors one may wish to consider in assessing the extent to 
which a particular SEM program is most appropriate to one’s own professional and 
personal needs, (b) to describe the major features of the AMOS, EQS, LISREL, 
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and Mplus software packages, (c) to outline the manner by which each of these 
programs addresses two critically important issues in SEM application – analysis of 
data that are non-normally distributed, and analysis of data that are of a categorical 
nature (nominal, dichotomous, ordinal), (d) to highlight perceived strengths and 
weaknesses of each program, and (e) to illustrate and compare an example SEM 
application that addresses the issues of both categorical and non-normal data based 
on the EQS (Version 6.2) and Mplus (Version 6.1) programs.

The material in this chapter is presented in five sections. I begin in Section 1, 
by discussing what I consider to be essential aspects of SEM software in creating 
the best match between a program and the reader’s own particular needs. Section 
2 presents a general description of each program within the context of its most 
recent version (as this volume goes to press), followed by notation of its particularly 
distinctive elements and features. In Section 3, I describe the approach taken by each 
of the programs in addressing the issues of non-normal and categorical data. Section 
4 reviews what I perceive to be the strengths and possible weaknesses of each 
program. Finally, in Section 5, I present an illustrative comparison of the EQS and 
Mplus programs with respect to components of the input file and selected analytic 
results in the output file.

MATCHING SEM PROGRAMS TO PROFESSIONAL AND PERSONAL NEEDS

Although the development of all SEM programs is rooted in the statistical and 
theoretical rudiments of this methodology, they can and do vary widely in their 
particular approach to diverse practical applications and their related analytic 
procedures. Furthermore, SEM programs differ in their capabilities for analyzing 
certain SEM models. Given these aberrations, it is important that program selection 
be tailored to one’s own professional and personal needs. Accordingly, I believe that 
program selection should be guided by the consideration of at least three factors: (a) 
how knowledgeable the user is with the basic concepts and applications of SEM, 
(b) the types of models he or she is likely to be testing, and (c) whether the user 
prefers to work within a graphical versus a textual framework with respect to model 
specification.

Hopefully, by the time that you have worked your way through the various 
program descriptors in this chapter, you will have a fairly good idea which of the 
four programs might be most suitable to your needs. Based on my own knowledge 
of, and familiarity with each of the AMOS, EQS, LISREL, and Mplus programs, I 
offer the following recommendations. For readers who may be fairly new to SEM, 
I believe you will likely find the EQS program the most informative and easiest 
with which to work. My rationale in making this endorsement stems from its 
interactive facility, which makes this program the most user-friendly of the four 
programs reviewed here. Although the EQS program also has excellent graphical 
facility, some researchers may prefer to work through all applications entirely from 
a graphical, rather than from a textual perspective. If this aspect of a program is 
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important to you, then I would suggest that the AMOS program would likely serve 
your needs best as it provides users with a comprehensive toolbox of icons for which 
all analytic actions are linked. On the other hand, readers who are familiar with the 
use and application of SEM and/or are interested in and need to work with more 
advanced models may prefer to work with the EQS, LISREL, or Mplus programs. In 
general, however, many researchers and practitioners will likely work with at least 
two or a combination of SEM programs thereby capitalizing on the unique aspects 
and strengths of each. For a comprehensive, yet non-mathematical introduction to 
basic SEM concepts and applications within the framework of the specific program 
notation of AMOS, EQS, LISREL, or Mplus, readers are referred to Byrne (2010, 
2006, 1998, 2011), respectively. In addition to introducing readers to the essential 
elements of SEM, each of these books literally “walks” readers through many 
different single- and multiple-group applications by detailing aspects of both the 
input and output files, in addition to their related graphical model representations.

PROGRAM DESCRIPTIONS AND UNIQUE CHARACTERISTICS

I now present a general description of the AMOS, EQS, LISREL, and Mplus 
programs based on their current version (as this volume goes to press). In addition, I 
note particular features considered to be unique to each.

AMOS (Version 18.0)

Most people tend to equate AMOS with a truly graphical approach to SEM modeling. 
Indeed, this perception seemingly remains as strong today as it was 25 years or so ago 
and likely derives from the ease, speed, and wide array of modeling tools with which 
the program enables the building and testing of models. Thus, it is not surprising 
that by and large, the majority of users base their analyses on the AMOS Graphics 
interface. In this regard, AMOS provides users with all the tools they will ever need 
in creating and working with SEM path diagrams. Each tool is represented by an icon 
(or button) and performs one particular function; there are 42 from which to choose. 
Whereas some icons represent drawing functions, others represent specific aspects 
of the modeling process itself. A few examples of the latter are as follows: Data 
icon (selects and reads data files), Calculate Estimates icon (calculates default and/
or requested estimates), Analysis Properties icon (allows for additional calculations 
such as, for example, modification indices, squared multiple correlations), Multiple 
Groups icon (enables analyses of multiple groups), and Bayesian icon (enables 
particular analyses based on Bayesian statistics). Immediately upon opening the 
program, this toolbox of icons appears to the left of a blank workspace. For a step by 
step guide to using these icons in building and testing a wide variety of SEM models, 
readers are referred to Byrne (2010).

Despite the popularity of its Graphics module, AMOS does provide for an 
alternative approach to SEM modeling that operates within a programming interface 
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complete with a built-in editor. As such, the user specifies a model via equation-
like statements. Initially, this programming mode was termed AMOS Basic. (For a 
review of model input files based on AMOS Basic, see Byrne, 2001.) However, with 
the introduction of Version 6.0 in 2005, AMOS Basic was subsequently replaced 
by the VB.net (Visual Basic) and C# languages. Nonetheless, given apparent user 
preference for the AMOS Graphics facility over the equations format, no example 
files based on VB.net or C# are included in the second edition of Byrne (2010).

Regardless of which approach to structuring model input is preferred, all options 
related to the analyses are available from drop-down menus, and all parameters can 
be presented in text format. In addition, AMOS Graphics allows for the estimates 
to be displayed graphically in a path diagram. Thus, the choice between these two 
AMOS approaches to building and testing SEM models ultimately boils down to 
one’s comfort level in working within a graphical versus a mathematically-oriented 
framework.

In contrast to the other three programs considered here, AMOS does not accept 
data in ASCII (.dat) format; rather, only data formats that include: Microsoft Excel 
(.xls), SPSS (.sav), and text delimited files (.txt) are supported. Estimation methods 
include: ULS, GLS, ML, ADF1, and scale-free least squares (SLS). In addition to 
providing for the testing of CFA, full SEM path, structured means, multiple-group, 
and latent growth curve models, AMOS can now (as of Version 16) facilitate the 
analysis of mixture models. A second recent addition to the AMOS program is the 
capability to handle categorical data. Of import, however, is that analyses based on 
categorical data in general, and analysis of mixture models in particular, are enabled 
only through use of the AMOS Bayesian statistics facility. (For a step-by-step 
illustration of the Bayesian approach to analyses based on categorical data, readers 
are referred to Byrne, 2010.)

Perhaps one of the most unique features of the AMOS program is its Specification 
Search facility. Although the AMOS Graphics interface is most typically used in the 
analysis of hypothesized SEM models, the program has extensive capabilities for 
the conduct of exploratory analyses enabled via the Specification Search function. 
In using this facility, the researcher allocates certain paths in the model diagram 
to be optional. The program then fits the model to the data using every possible 
subset of paths and the models are subsequently sorted according to their fit to the 
data based on particular fit statistics. An important caveat concerning this feature, 
however, is that the final best-fitting model must be substantiated by theory and 
other empirical research. A second feature of AMOS that may be considered unique 
lies with its broad array of bootstrapping capabilities in that it is able to: (a) generate 
bootstrapped standard errors and confidence intervals for all parameter and effect 
estimates, as well as for sample means, variances, covariances, and correlations, (b) 
implement percentile intervals and bias-corrected percentile estimates (Stine, 1989), 
and (c) perform the bootstrap approach to model testing proposed by Bollen and 
Stine’s (1992). Two final unique aspects of the AMOS program are: (a) its Bayesian 
approach to the analysis of categorical data, and (b) its specification and testing of 
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multiple-group models, which can be accomplished by means of either a graphical 
approach or an icon-generated approach.

Contact information: SPSS an IBM Company
(General): http://www.SPSS.com
(Technical Support): http://support.spss.com

EQS (Version 6.2)

To the best of my knowledge, EQS is the only SEM program capable of performing 
comprehensive data management tasks, pre-analytic data screening, and exploratory 
non-SEM analyses, over and above its full range of SEM modeling capabilities thereby 
bypassing the need of other statistical packages for these purposes. Given that EQS is 
a Windows-based program, all procedures are selected from drop-down menus with 
subsequent operations being completed interactively. A few of the many management 
tasks include conditional case selection, variable labeling and transformation, group 
formation, data merging, and coding of missing data. Examples of data screening 
capabilities include graphical presentations in the form of either charts or plots 
such as histograms, pie charts, scatterplots, boxplots, and error bar plots, with color 
coding preferences being available for each. Finally, exploratory analyses available 
to users are: descriptive statistics (this information is also provided in all SEM output 
files), frequencies, t-tests, analysis of variance (ANOVA), cross-tabulations, factor 
analyses, correlations, non-parametric tests, multiple regression (standard, stepwise, 
and hierarchical), and intraclass correlations. One additional set of exploratory 
analyses pertinent to the detection of missing data are worthy of separate mention. In 
this instance, the user is provided with options related to: (a) display of missing data 
(e.g., exclusion of cases having a specified percentage of missing data), (b) search 
for evidence of missing values and if detected, a thorough diagnosis and reporting of 
these findings, and (c) imputation of missing values based on means, group means, 
regression or unstructured expectation maximization (EM).

In the EQS program, the specification of all models is based on the Bentler-
Weeks (1980) representation system. As such, all variables in a model, regardless 
of whether measured (i.e. observed) or unmeasured (i.e., latent), can be categorized 
as either dependent or independent variables. Any variable having a single-headed 
arrow pointing towards it represents a dependent variable; if no arrow is present, 
it represents an independent variable. This simple representation system therefore 
makes it very easy to conceptualize and specify any SEM model. Likewise, the EQS 
notation is equally straightforward. All measured variables are designated as V’s and 
constitute the actual data of a study. All other (unmeasured) variables are hypothetical 
and represent the structural network of the phenomenon under investigation. There 
are three such variables: (a) the latent construct, regarded generally as a factor 
in EQS and designated as F, (b) a residual (i.e., error term) associated with any 
measured variable, designated as E, and (c) a residual associated with the prediction 
of each factor, designated as D (disturbance term).

http://www.SPSS.com
http://support.spss.com
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Model specification in EQS can be conducted in one of three ways – manually, 
interactively, and graphically. Based on the manual approach, users write out the 
model specifications consistent with its hypothesized parameterization, thereby 
creating the model input file. Despite the simplicity and straightforwardness of 
this approach, it is nonetheless the most time-consuming. Nonetheless, the manual 
approach can be invaluable in helping users make the link between a schematic 
portrayal of the model under study and the equivalent equation statements 
expressed in EQS language. The interactive approach to EQS model specification is 
implemented through use of a feature labeled “Build_EQS”. This method presents 
the user with a series of dialog boxes, each of which relates to a particular section 
of the input file. Completion of each dialog box results in a line by line automatic 
building of the input file. Finally, the EQS graphical approach to model specification 
is enabled through of the “Diagrammer” facility. For a comprehensive review of the 
EQS notation and input file, together with a step by step walk-through in building 
an EQS file based on each of the three approaches noted above, readers are referred 
to Byrne (2006).

EQS can read raw ASCII (.dat), covariance matrix, and SPSS (.sav) data, albeit 
all imported data are automatically converted to EQS format (.ess). Although 
some might initially perceive this transition as a possible hindrance, nothing 
could be further from reality. Indeed, this transition to an EQS system file is more 
appropriately regarded as an advantage in that all information related to the data file 
(e.g., labels, scaling, sample size) is retained by the program in this .ess file, thereby 
facilitating any subsequent structuring of files and/or graphical displays. Estimation 
methods include: ULS, GLS, ML, robust ML including residual-based chi-square 
and F tests, and asymptotic distribution-free (ADF) including corrected ADF tests; 
as well as their counterparts for correlation structure models.2 Finally, EQS tests 
a full range of SEM models for both continuous and categorical data that include 
latent regression, CFA, full SEM path, structured means, multiple-group, latent 
growth curve and multilevel models with the latter capable of being based on three 
different analytic estimation approaches: (a) ML, (b) Muthén’s (1994) approximate 
estimator (MUML), and hierarchical linear-like modeling (HLM). In addition, EQS 
provides for the conduct of easy-to-use bootstrapping procedures and simulation 
analyses with summaries.

At least two aspects of EQS are very unique among its competitors. First, its 
multifaceted data management facility as described earlier is an unparalleled 
program bonus that is worth its weight in gold. Second, its very efficient and easy-
to-use graphical interface enables users to effortlessly transfer any model schema 
into Word for ease of publication purposes.

Contact information: Multivariate Software Inc.
(General): http://www.mvsoft.com
(Technical Support): support@mvsoft.com

http://www.mvsoft.com
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LISREL (Version 8.8)

LISREL is packaged as a suite of programs that includes its initial companion 
program, PRELIS 2, with both programs being compatible with Windows 7. The 
LISREL program is structured around what was commonly referred to in the 70’s and 
early 80’s as the “LISREL” model and serves as the workhorse for all SEM analyses.

PRELIS (Jöreskog & Sörbom, 1996) was designed specifically to serve as a 
preprocessor for LISREL and hence the acronym PRElis. Nonetheless, because it 
can be used effectively to manipulate and save data files, as well as to provide an 
initial descriptive overview of data, it can also function as a stand-alone program. 
In addition to providing descriptive statistics and graphical displays of the data, 
PRELIS can prepare the correct matrix to be read by LISREL when the data: (a) 
are continuous, ordinal, censored, or any combination thereof, (b) are severely non-
normally distributed, and/or (c) have missing values. In addition, PRELIS can be 
used for a variety of data management functions such as recoding and transformation 
of variables, case selection, computation of new variables, and creation and merger 
of raw data files. Finally, PRELIS can be used to generate bootstrapped samples and 
estimates, as well as to conduct simulation studies with variables specified to have 
particular distributional characteristics.

Model specification in LISREL can take one of three distinctive forms, each of 
which is conducted interactively. First, and most complex, is via the original LISREL 
commands, the syntax of which requires an understanding of matrix algebra in 
general, and matrices pertinent to specification of CFA and full SEM path analytic 
models in particular. In LISREL, these matrices are denoted by upper case Greek 
letters while their elements, which represent the model parameters, are denoted by 
lower-case Greek letters. Unlike earlier versions of LISREL, however, the Windows 
interface enables an interactive approach whereby the user is prompted for model 
and data information; once this information is entered, the related command syntax is 
completed automatically. The second and less complex form of model specification 
is through use of SIMPLIS, a command language introduced in the initial version 
of LISREL 8 (Jöreskog & Sörbom, 1993a). This approach requires only that the 
user name the observed and latent (if any) variables, together with the estimated 
regression paths. Indeed, Jöreskog & Sörbom (1993b, p. i), in their introduction 
of this new command language stated “It is not necessary to be familiar with the 
LISREL model or any of its submodels. No Greek or matrix notations are required”. 
The third and most intuitive approach to model specification in LISREL is via the 
graphical interface. In this instance, the user simply constructs the path diagram on 
the screen and then identifies the regression paths to be estimated.

Of the three approaches to model specification, it would appear (at least from a 
review of reported SEM analyses), that the SIMPLIS command language is the most 
popular; use of the original LISREL command language seems limited to researchers 
familiar with its earlier versions and/or having a strong statistical background.
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Only raw data in ASCII (.dat) format can be read directly by LISREL. Other 
data forms such as SPSS (.sav) and Excel (.xls) must first be imported to PRELIS 
whereupon the file is then converted to covariance matrix format. Estimation 
methods include: unweighted least squares (ULS), generalized least squares (GLS), 
maximum likelihood (ML), robust ML, weighted least squares (WLS), and diagonally 
weighted least squares (DWLS). Finally, LISREL enables tests applicable to a broad 
range of SEM models that include CFA, full SEM path, structured means, multiple-
group, multilevel, latent growth curve, and mixture models.

In my view, two features in particular distinguish LISREL from the other three 
programs reviewed in this chapter: (a) its continued use of the original LISREL 
command language, and (b) its companion preprocessor program, PRELIS. With 
respect to the original LISREL matrix-linked syntax, I consider this feature to be a 
highly constructive in the sense that it compels users to think through their model 
specification within the framework of its related parameter matrices. As such, this 
approach can be extremely instructive in assisting those new to SEM to develop a solid 
understanding of the SEM methodology. With respect to my second point, I consider 
the need for a separate preprocessor program to be somewhat limiting when compared, 
for example, with the EQS program, which is capable of performing these same tasks, 
in addition to many more, without the need of an additionally supporting program.

Contact information: Scientific Software International
(General): http://www.ssicentral.com/lisrel
(Technical Support): lisrel@ssicentral.com

Mplus (Version 6.12)

Mplus provides for the specification and testing of many different models based on 
a wide choice of estimators and algorithms for analyses of data that are continuous, 
ordered categorical (ordinal), unordered categorical (nominal), censored, and binary 
and any combination thereof. The program is divided into a basic program and three 
optional add-on modules. The basic unit, (Mplus Base), provides for the estimation 
of regression, CFA, EFA, SEM, and latent growth models, as well as discrete- and 
continuous –time survival models. Module 1 and Module 2 support the estimation of 
a wide variety of mixture and multilevel models, respectively. Module 3 contains all 
features of the first two Modules and, in addition, enables the estimation of several 
advanced models that combine the features of both. Consistent with the other three 
programs, Mplus is Windows-based with drop-down menus allowing for the full 
range of usual editing procedures, as well as for model execution. In addition, Mplus 
provides for specification of graphical displays of observed data and analysis results 
based on a post-processing graphics model. Unlike the other three programs, as this 
volume goes to press, Mplus does not have a graphical interface and works solely 
within the framework of a programming interface. As a result, the building of its 
input files is always equation-based.

http://www.ssicentral.com/lisrel
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Model specification in Mplus is relatively straightforward and entails a maximum 
of 10 command statements. As might be expected, however, each of these commands 
provides for several options that can further refine model specification and desired 
outcome information. Given that, typically, only a small subset of these 10 commands 
and their options is needed, even specification of very complex models requires only 
minimal input. This minimization of input structure has been made possible largely 
as a consequence of numerous programmed defaults chosen on the basis of models 
that are the most commonly tested in practice.

To assist with the building of input files, Mplus provides for the optional use 
of its Language Generator, an interactive facility that leads users through a series 
of screens that prompt for information pertinent to their data and analyses. One 
limitation of this feature, however, is that its functioning terminates at the point where 
details related to the model under test must be specified. As such, this information 
must be added manually to the input file. Additionally, commands related to the 
transformations of variables (DEFINE), post analysis graphical displays (PLOT), 
simulation analyses (MONTECARLO) and any features added to the program 
following Version 2.0 must be manually inserted. New users of Mplus, in particular, 
will find this language generating resource to be extremely helpful as not only does 
it reduce the time involved in structuring the file, but it also ensures the correct 
formulation of commands and their options. (For a step-by-step illustration of the 
Mplus Language Generator as applied to the model, see Byrne, 2011.)

Mplus reads data in ASCII (.dat) format only. Thus, if the data to be analyzed are 
saved in another format (e.g., SPSS .sav), conversion to ASCII format is essential. 
Furthermore, any variable labels appearing on the first line of the data file must be 
deleted. Although estimation methods in the main include: ULS, GLS, WLS, and 
ML, robust and other variants related to the ML estimator (MLM, MLMV, MLR,), 
and weight variants related to both the ULS (ULSMV) and WLS (WLSM, WLSMV) 
estimators provide for a wide variety from which to choose. However, selection of 
the most appropriate estimator is further conditioned by both the type of model under 
test and the type of outcome variables being analyzed (i.e., all continuous, at least one 
binary or ordered categorical variable, at least one censored, unordered categorical, 
or count variable). Furthermore, certain conditions (missing data) can apply.

Models capable of being tested in Mplus are many and can be classified according 
to whether they include continuous latent variables (e.g., CFA, full SEM, and latent 
growth models), categorical latent variables (e.g., path analysis mixture, loglinear, 
and multiple-group models), or a combination of both (e.g., factor mixture, SEM 
mixture, and latent growth mixture models). In addition, Mplus provides for two 
approaches to the analysis of complex survey data. Whereas the first approach takes 
into account stratification, non-independence of observations resulting from cluster 
sampling, and/or unequal probability of selection, the second approach (commonly 
known as multilevel modeling) allows for the modeling of non-independence of 
observations (due to clustering) at each level of the data. Beyond these modeling 
capabilities, Mplus has wide-ranging Monte Carlo simulation capabilities for both 
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data generation and data analysis, and in addition, allows for standard, as well as the 
Bollen-Stine (1992) residual bootstrapping facilities.

I consider the unique features of the Mplus program to be twofold. The first of 
these relates to its capability to analyze a wide array of specified models based on a 
variety of data scaling formats. A second very unique feature of the Mplus program 
is its exceptionally comprehensive and informative website, which is updated on a 
regular basis. In addition to an extensive source of material pertinent to the program 
itself, users can seek out and access papers on particular topics, review a backlog 
of questions and answers on specific analytic issues, and find details related to 
upcoming training courses.

Contact information: Muthén and Muthén
(General): http://www.statmodel.com
(Technical Support): support@statmodel.com

ANALYSIS OF NON-NORMAL AND CATEGORICAL DATA: 
COMPARATIVE APPROACHES

Two areas of concern in SEM are (a) analyses of data that are non-normally 
distributed, and (b) analyses of data that are either nominally or ordinally-scaled. 
Although not all SEM programs are capable of addressing these issues, the four 
considered in this chapter are, albeit they differ in their individual approaches to 
both. We now review these differences.

Analysis of Non-normal Data

By default, all SEM programs are based on maximum likelihood (ML) estimation. 
However, a critically important assumption in these analyses is that the data have a 
multivariate normal distribution in the population. Violation of this assumption can 
seriously invalidate statistical hypothesis-testing with the result that the normal theory 
test statistic (χ2) may not reflect an adequate evaluation of the model under study, thereby 
leading to results that may be seriously misleading (Hu, Bentler, & Kano, 1992).

AMOS (Version 18.0)

One approach to working with data that are non-normally distributed is use of 
asymptotic (large sample) distribution-free (ADF) estimators for which normality 
assumptions are not required. The early work of Browne (1984) was instrumental in 
the development of this methodology. One approach to the analysis of non-normal 
data in AMOS is based on this ADF estimator which can be selected from the 
Estimation tab of the Analysis Properties icon or drop-down View menu of AMOS 
Graphics. However, one major limitation associated with this approach in addressing 
non-normality has been its excessively demanding sample-size requirement. It is 

http://www.statmodel.com
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now well known that unless sample sizes are extremely large (1000 to 5,000 cases; 
West, Finch, & Curran, 1995), the ADF estimator performs very poorly and can 
yield severely distorted estimated values and standard errors (Curran, West, & 
Finch, 1996; Hu et al., 1992; West et al., 1995). More recently, statistical research 
has suggested that, at the very least, sample sizes should be greater than 10 times 
the number of estimated parameters, otherwise the results from the ADF method 
generally cannot be trusted (Raykov & Marcoulides, 2000).

A second viable approach to analyses of non-normal data is based on a procedure 
known as “the bootstrap” (Efron. 1979; West et al., 1995; Yung & Bentler, 1996; 
Zhu, 1997). This approach is the one most commonly taken by AMOS users in 
addressing the issue of non-normality. The bootstrapping technique enables the 
researcher to compare the extent to which the ML estimates deviate across the total 
number bootstrapped samples. (For an example application of this bootstrapping 
approach, see Byrne, 2010.)

EQS (Version 6.2)

Although other estimation methods have been developed for use when the normality 
assumption does not hold (e.g., ADF; elliptical; heterogeneous kurtotic), Chou, 
Bentler, and Satorra (1991), and Hu et al. (1992) have argued that it may be 
more appropriate to correct the test statistic, rather than use a different method of 
estimation. Satorra and Bentler (1988) developed such a statistic that incorporates 
a scaling correction for the χ2 statistic when distributional assumptions are violated; 
its computation takes into account the model, the estimation method, and the sample 
kurtosis values. The resulting Satorra-Bentler (corrected) chi-square value (S-Bχ2) 
and standard errors are said to be “robust,” meaning that their computed values 
are valid, despite violation of the normality assumption underlying the estimation 
method. The S-Bχ2 has been shown to be the most reliable test statistic for evaluating 
mean and covariance structure models under various distributions and sample sizes 
(Hu et al., 1992; Curran et al., 1996). In addition, EQS computes robust versions of 
the CFI, RMSEA, and the 90% C.I. for the latter.

In addition to its usual application with continuous data, the S-Bχ2 can be used 
with non-normal categorical data. Although it basically treats the ordered data as 
if they were continuous, DiStefano (2002) has reported this scaled approach to be 
beneficial in yielding standard errors that are more precise than ML estimates for 
non-normally distributed data having as few as three ordered categories.

In SEM, data are often incomplete, as well as non-normally distributed. When this 
condition holds, correction based on the S-Bχ2 is not appropriate. Rather, analyses 
should be based on the Yuan-Bentler (2000) scaled statistic (Y-Bχ2) which corrects 
both the test statistics and standard errors when the input file specifies the use of 
robust statistics and indicates the presence of missing data.

In addition to these scaled statistics, EQS has three distribution-free statistics 
based on the distribution of residuals; robust versions of these test statistics are 



378

B. M. BYRNE

automatically computed when this option is specified. The first of these, the residual-
based statistic, is of a type developed by Browne (1984). As noted earlier, however, 
use of this statistic is curtailed by the fact that its interpretation is meaningful only 
when sample size is very large. In contrast, the Yuan-Bentler residual-based statistic 
(Yuan & Bentler, 1998) represents an extension of Browne’s (1984) residual-based 
test such that it can be used with smaller samples. Of particular note, however, is 
that in addition to performing better in small samples than the original residual-
based statistic, it does so without any loss of its large-sample properties (Bentler, 
2005). Finally, the Yuan-Bentler residual-based F-statistic (Yuan & Bentler, 1998), 
designed to take sample size into account more adequately, represents a more 
extensive modification of Browne’s (1984) statistic and is considered by Bentler 
(2005) to be the best available residual-based test at this time.

LISREL (Version 8.8)

This ADF approach noted earlier is the one embraced by the LISREL program in 
dealing with this non-normality issue. Implementation of this strategy, however, 
involves a two-step process. Step 1 involves use of the PRELIS companion package 
in recasting the data into asymptotic matrix form, whereas Step 2 focuses on analysis 
of this restructured matrix based on use of LISREL with weighted least squares 
(WLS) estimation. However, given the restrictions of sample size noted earlier, this 
option is typically of little use to most practical researchers.

Mplus (Version 6.12)

As with the EQS program, treatment of non-normal data in Mplus is addressed 
via estimators that can yield corrected test statistics and standard errors. However, 
these robust estimators vary according to measurement scale of the data as well as 
to whether the data are complete or incomplete. For data with outcome variables 
that are continuous, non-normally distributed, and complete, the MLM estimator is 
most appropriately used; it provides for correction to the estimates, standard errors 
and a mean-adjusted chi-square statistic that is reportedly equivalent to the S-Bχ2 
statistic (Muthén & Muthén, 2007–2010). Likewise, the MLMV estimator, although 
computationally more intensive than MLM, is similarly robust albeit that the chi-
square statistic is both mean and variance-adjusted. In the event that continuous 
data are both non-normal and incomplete, it is most appropriate to base analyses on 
the MLR estimator. Muthén and Muthén (2007–2010) posit that the MLR estimator 
yields a corrected chi-square statistic that is asymptotically equivalent to the Y-B χ2.

When data are both categorical and non-normally distributed, Mplus provides for 
the use of two robust weighted least squares (WLS) estimators. Although both the 
WLSM and WLSMV estimators use a diagonal weight matrix with standard errors 
that use a full weight matrix, the chi-square test statistic for the WLSM estimator is 
mean-adjusted whereas this statistic is mean- and variance-adjusted for the WLSMV 
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estimator. Importantly, these estimators are not appropriate for use with data that are 
incomplete and involve censored, unordered, or count dependent variables.

Analysis of Categorical Data

In conducting SEM with categorical data, analyses must be based on the correct 
correlation matrix. Where the correlated variables are both of an ordinal scale, 
the resulting matrix will comprise polychoric correlations; where one variable is 
of an ordinal scale, while the other is of a continuous scale, the resulting matrix 
will comprise polyserial correlations. If two variables are dichotomous, this special 
case of a polychoric correlation is called a tetrachoric correlation. If a polyserial 
correlation involves a dichotomous, rather than a more general ordinal variable, the 
polyserial correlation is also called a biserial correlation.

AMOS (Version 18.0)

The methodological approach to analysis of categorical variables in AMOS differs 
substantially from that of the other above-noted programs. In lieu of ML or ADF 
estimation, AMOS analyses are based on Bayesian estimation. As with other analyses 
based on AMOS Graphics, all analyses are initiated either through selection of the 
appropriate icon from the toolbox, or from the appropriate pull-down menu.

Because Bayesian analyses require the estimation of all observed variable means 
and intercepts, the first step in the process is to request this information via the Analysis 
Properties dialog box. Once you have the appropriately specified model (i.e., the means 
and intercepts are specified as freely estimated), you are ready to move on to Step 2, 
which invokes the Bayesian analyses. To activate these analyses, again you either click 
on the Bayesian icon in the toolbox, or pull down the Analyze menu and select Bayesian 
Estimation. Once you do this, you will be presented with the Bayesian SEM window 
where you will note a column of numbers in which the latter are constantly changing. 
The reason for these ongoing number changes is because as soon as you request Bayesian 
estimation, the program immediately initiates the steady drawing of random samples 
based on the joint Posterior distribution. This random sampling process is accomplished 
in AMOS via an algorithm termed the Markov Chain Monte Carlo (MCMC) algorithm. 
The basic idea underlying this ever-changing number process is to identify, as closely 
as possible, the true value of each parameter in the model. This process will continue 
until you halt the process by clicking on the Pause button. For a thoroughly detailed 
walk-through of an illustrated application based on this AMOS Bayesian approach to 
the analysis of categorical data, readers are referred to Byrne (2010).

EQS (Version 6.2)

Until recently (see Mplus text that follows below), two primary approaches to the 
analysis of categorical data (Jöreskog 1990, 1994; Muthén 1984) have dominated the 
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estimation of polychoric and polyserial correlations, followed by a type of asymptotic 
distribution-free (ADF) methodology for the structured model. Unfortunately, the 
positive aspects of these categorical variable methodologies have been offset by the 
ultra-restrictive assumptions noted above and which, for most practical researchers, 
are both impractical and difficult to meet. In light of these limitations, Bentler 
(2005) has argued that it may make more sense to correct the test statistic using 
a mode of estimation that works well with not-too-large samples. The use of an 
improved estimator of polychoric and polyserial correlations (Lee, Poon, & Bentler, 
1995), together with “robust” methodologies, distinguishes the EQS approach to the 
analysis of categorical data from that of other SEM programs.

Consistent with the traditions of Muthén (1984), Jöreskog (1994), and Lee, 
Poon, & Bentler (1990, 1992), EQS follows a 3-step sequential approach to 
estimation. Univariate statistics such as thresholds are estimated first, followed by 
estimation of bivariate statistics such as correlations; estimation of the SEM model is 
completed using a method like ML, followed by “robust” computations based on an 
appropriate weight matrix. (For technical details related to this three-stage approach, 
readers are referred to Bentler, 2005, and to the original articles.) It is important to 
note that, although the correlation estimates and weight matrices in EQS are similar 
to those of Muthén (1984) and Jöreskog (1994), they are not identical.

From the perspective of sample size, at least, the EQS approach to analysis of 
categorical data is more practical than the one based on full estimation. Whereas 
sample size requirements for both the Muthén (1984) and Jöreskog (1994) 
methodological strategies have been reported as substantial (see e.g., Dolan, 1994; 
Lee, Poon, & Bentler, 1995), those associated with the ML ROBUST approach 
in EQS are much less so. Indeed, Bentler (2005) contends that the ROBUST 
methodology allows for the attainment of correct statistics, which are quite stable 
even in relatively small samples. Although the ML estimator is not asymptotically 
optimal when used with categorical variables, the inefficiency is small, and certainly 
offset by improved performance in smaller samples. The Satorra-Bentler scaled χ2 
and ROBUST standard errors provide trustworthy statistics.

LISREL (Version 8.8)

As with the analysis of non-normal data, those involving categorical outcomes are 
locked into a two-step process. Here again, the PRELIS program is used to generate the 
correct correlation matrix for the SEM analyses to be based on LISREL. Accordingly, 
a polychoric correlation matrix is computed for the analysis of ordinal variables, and a 
tetrachoric correlation matrix for dichotomous variables. Estimation is typically based 
on the WLS estimator, which as noted earlier, demands exceptionally large sample 
sizes. Indeed, in a study of this estimator with small and moderate sample sizes, Muthén 
and Kaplan (1992) found an oversensitivity of the χ2 statistics, as well as increased 
negative bias of the standard errors with increased model complexity. These findings 
have led Flora and Curran (2004) to conclude that WLS is not a good estimator of 
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categorical data. Alternatively, analyses can be conducted using the DWLS estimator, 
which represents a mathematically simpler version of the WLS estimator that Kline 
(2011) suggests may be better when the sample size is somewhat moderate.

Mplus (Version 6.12)

Despite attempts to resolve difficulties associated with SEM analyses of categorical 
data over the past few years, there appear to be only three primary estimators: 
unweighted least squares (ULS), WLS, and diagonally weighted least squares 
(DWLS) (Byrne, 2011). Corrections to the estimated means and/or means and 
variances based on only ULS and DWLS estimation yield their related robust 
versions as follows: ULSMV (correction to means and variances of ULS estimates, 
WLSM (correction to means of DWLS estimates, and WLSMV (correction to 
means and variances of DWLS estimates. Of these, Brown (2006) contends that the 
WLSMV estimator performs best in the CFA modeling of categorical data. Mplus 
currently offers 7 estimators (see Muthén & Muthén, 2007–2010) for use with data 
comprising at least one binary or ordered categorical indicator variable.

Of particular note with the Mplus program is its use of the WLSMV estimator, 
which is default for the analyses of categorical data based on CFA and SEM 
analyses. Developed by Muthén, du Toit, and Spisic (1997), it was based on earlier 
robustness research reported by Satorra and Bentler (1986, 1988, 1990) and intended 
for use with small and moderate sample sizes (at least in comparison with those 
needed for use with the WLS estimator). The parameter estimates derive from use 
of a diagonal weight matrix (W) and robust standard errors and mean- and variance-
adjusted χ2 statistic (Brown, 2006). Thus, the robust goodness-of-fit test of model fit 
can be considered analogous to the Satorra-Bentler scaled χ2 statistic. Subsequent 
simulation research related to the WLSMV estimator has shown it to yield accurate 
test statistics, parameter estimates, and standard errors under both normal and non-
normal latent response distributions across sample sizes ranging from 100 to 1,000, 
as well as across four different CFA models (1-factor with 5 and 10 indicators; 
2-factor with 5 and 10 indicators; see Flora & Curran, 2004). As this edited volume 
goes to press, the WLSMV estimator is available only in Mplus.

PROGRAM STRENGTHS AND WEAKNESSES

It is important that I preface this section by noting that the program strengths and 
weaknesses cited here are solely my own perceptions based on my extensive use of 
each within the frameworks of teaching, research, and publication.

AMOS (Version 18.0)

Although AMOS distinguishes itself from the other three programs considered here 
with respect to its Specification Search function, this capability may generally not 
be perceived as a particular strength of the program. In my view, AMOS’ primary 
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forte unquestionably lies with the Graphics interface in terms of its model building, 
model specification, and model execution capabilities. In addition, however, the 
ease with which one can access and use an extensive selection of bootstrapping 
capabilities has long been popular with researchers who may or may not have a solid 
understanding of SEM methodology.

In my view, one of the most notable weaknesses of the AMOS program has been 
its lack of a viable and efficient technical support facility. Given its recent change 
of ownership, it remains to be seen whether such customer service takes a turn for 
the better. A second weakness that I personally, find to be very frustrating is the 
program’s inability to directly address the issue of non-normality by simply using 
the appropriate robust estimator. Finally, a third weakness, which, admittedly, may 
not be perceived by others as a strength rather than a weakness, is the need to use a 
Bayesian approach in testing models based on data that are of a categorical nature.

EQS (Version 6.2)

Particular strengths of the EQS program are numerous, albeit restriction of space 
allows for only a succinct summary here. First, the ease with which a user can build an 
input file, manage and explore data, and graphically construct models of publication-
acceptable quality is incomparable among its program contemporaries. Second, the 
large number of different statistical methods available in the analysis of diverse types 
of non-normal data is again unrivalled. Third, EQS provides for a wide and varied 
range of graphical and analytic procedures in the detection, diagnosis, and estimation 
of missing data. Fourth, EQS has established statistical methods for testing samples 
that may be of less than optimal size. Fifth, unlike other SEM programs in calculating 
only an alpha coefficient of reliability, EQS, in addition, reports maximal, model-
based, and greatest lower-bound reliability coefficients. Finally, the EQS support 
facility is efficient and operates within a very fast turnaround time frame.

Although not a particularly major issue, one possible limitation of the EQS 
program at the present time is the unavailability of online access to both the manual 
and the User’s Guide. However, this issue is expected to be resolved once Version 7 
becomes available in 2014.

LISREL (Version 8.8)

In my view, one of the major strengths of the LISREL program is that, despite the 
availability of the more user-friendly SIMPLIS version, it has continued to maintain 
its original LISREL matrix-linked syntax. As noted earlier, I consider this aspect of 
the program to be extremely constructive as it compels users to think through their 
model specification within the framework of its related parameter matrices. As such, 
this approach is extremely helpful in assisting those new to SEM to develop a solid 
understanding of the SEM methodology. On the other hand, a major weakness of the 
LISREL program is its need for a separate preprocessor program in order to be able 
to address issues such as non-normality and use of categorical data.
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Mplus (Version 6.12)

Although Mplus has many superior model-specific capabilities, limitations of 
space permit only reflections of the program in general. In my view, the most 
outstanding aspect of Mplus is its capacity to estimate an absolutely phenomenal 
number of different models based on an equally expansive variety of data types. 
In this regard, it is unquestionably in a class all its own. Of course, a second 
outstanding strength of Mplus is its longstanding capabilities in dealing with 
categorical data. Finally, although not specific to the program itself, the Mplus 
website serves as an exceptionally rich and invaluable source of information in the 
form of articles, training materials, group discussions, and program updates, all of 
which bear on various aspects of both SEM and particular program applications. 
This resource, together with regular email notifications and almost instantaneous 
technical support assistance, in my view, is certainly one of its most valuable 
assets.

Perceived limitations of the Mplus program, I believe, can be linked to the user’s 
degree of knowledge of, and experience with the application of SEM methodological 
procedures. In particular, the extensive number of programmed defaults in the 
program can be very confusing and somewhat daunting for someone new to both 
the concepts and application of SEM. A second perceived limitation of the program 
could be its lack of a graphical interface as the user is left to his/her own devices in 
producing related schema related to models under study.

COMPARATIVE APPICATION OVERVIEW OF EQS AND MPLUS

The intent of this section is to give readers some essence of how programs can 
differ in terms of (a) specification of the model as documented in the input file, 
and (b) the reporting of selected results in the output file. Given the popularity and 
efficiency of both the EQS and Mplus programs, together with the soundness of 
their theoretical and methodological underpinnings, I consider their comparison to 
be most appropriate. Although necessarily limited by chapter space restrictions, this 
brief overview provides at least a quick glimpse into the extent to which the two 
programs are similar, as well as dissimilar. Readers interested in more extensive 
program details related to this application are referred to Byrne (2006) and Byrne 
(2011), with respect to EQS and Mplus, respectively.

The illustrative example presented here examines a first-order CFA model designed 
to test factorial validity of the Maslach Burnout Inventory (MBI; Maslach & Jackson, 
1986) for use with teachers. The application is taken from a study by Byrne (1994) 
the primary purpose of which was to test for both the validity and invariance of this 
measuring instrument across calibration and validation samples and, subsequently, 
across gender. The example here is limited only to tests for its validity across male 
elementary teachers. A schematic portrayal of this model within the framework of 
both EQS and Mplus is presented in Figure 1.
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Of the two graphical representations shown in Figure 1, it is evident that the EQS 
Diagrammer-produced model is much more explicit in the identification of parameters 
than is the case for the same model as typically presented for Mplus analyses. Although 
the model shown here is exactly specified for each program, the EQS-labeled one 
visually informs the reader that the first factor loading of each congeneric set of 
indicator variables (i.e., MBI items) is constrained to a value of 1.00 for purposes of 
statistical identification, with asterisks indicating that the remaining loadings are freely 
estimated, along with the factor covariances and error variances (termed residuals in 
Mplus). Although no asterisks are automatically produced for the factor variances, they 
too are freely estimated.3 Specifically demarcated only in the EQS figure, the regression 
path leading from each observed variable to its related error term is automatically 
fixed to 1.00 in all SEM programs as only the error variance is of interest. Finally, 
EQS automatically assigns a V-label to all observed variables, as well as a number in 
accordance with their data entry placement. Analogously, error variances are assigned 
an E-label that is numerically consistent with its related observed variable.

Figure 1. Hypothesized factorial structure of the Maslach Burnout Inventory within the 
frameworks of the EQS (Bentler, 2005) and mplus (Muthén & Muthén, 2007–2010) programs.
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EQS

/TITLE
CFA of MBI for Male Elementary Tchrs (Calbrn Grp) "MBIELM11"
Initial Model
/SPECIFICATIONS
DATA='c:\eqs62\files\books\runs\elemm1.ess';
VARIABLES=22; CASES=372;
METHOD=ML,ROBUST; ANALYSIS=COVARIANCE; 
MATRIX=RAW;/LABELS
V1=ITEM 1; V2=ITEM 2; V3=ITEM 3; V4=ITEM 4; V5=ITEM 5;
V6=ITEM 6; V7=ITEM 7; V8=ITEM 8; V9=ITEM 9; V10=ITEM 10;
V11=ITEM 11; V12=ITEM 12; V13=ITEM 13; V14=ITEM 14; V15=ITEM 15;
V16=ITEM 16; V17=ITEM 17; V18=ITEM 18; V19=ITEM 19; V20=ITEM 20;
V21=ITEM 21; V22=ITEM 22;
F1=EE; F2=DP; F3=PA;
/EQUATIONS
V1 = 1F1 + E1;
V2 = *F1 + E2;
V3 = *F1 + E3;
V6 = *F1 + E6;
V8 = *F1 + E8;
V13 = *F1 + E13;
V14 = *F1 + E14;
V16 = *F1 + E16;
V20 = *F1 + E20;
V5 = 1F2 + E5;
V10 = *F2 + E10;
V11 = *F2 + E11;
V15 = *F2 + E15;
V22 = *F2 + E22;

Table 1. Input files for hypothesized CFA model

Let’s turn now to Table 1 in which the combined input files for EQS and Mplus 
are presented. A review of these files again reveals a substantial difference between 
the two programs in terms of information specified, with the EQS program denoting 
considerably more detail. The primary factor contributing to this difference lies with 
the numerous defaults implemented by Mplus. For example, whereas specification 
of the model in EQS requires three paragraphs of input, each of which describes the 
pattern of factor loadings (EQUATIONS), the variances (factors and errors), and 
covariances (factors), respectively, Mplus needs to know only the variables to be 
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V4 = 1F3 + E4;
V7 = *F3 + E7;
V9 = *F3 + E9;
V12 = *F3 + E12;
V17 = *F3 + E17;
V18 = *F3 + E18;
V19 = *F3 + E19;
V21 = *F3 + E21;
/VARIANCES
F1 to F3 = *;
E1 to E22 = *;
/COVARIANCES
F1 to F3 = *;
/PRINT
FIT=ALL;
/LMTEST
SET=PEE,GVF;
/END

MPLUS

TITLE: CFA of MBI for Male Elementary Tchrs (Calibrn Group)
Initial Model - MLM Estimation

DATA:
FILE IS "C:\Mplus\Files\elemm1.dat";
FORMAT IS 22F1.0;

VARIABLE:
NAMES ARE ITEM1 - ITEM22;
USEVARIABLES ARE ITEM1 - ITEM22;

ANALYSIS:
ESTIMATOR = MLM;

MODEL:
F1 by ITEM1 - ITEM3 ITEM6 ITEM8 ITEM13 ITEM14 ITEM16 ITEM20;
F2 by ITEM5 ITEM10 ITEM11 ITEM15 ITEM22;
F3 by ITEM4 ITEM7 ITEM9 ITEM12 ITEM17 - ITEM19 ITEM21;

OUTPUT: SAMPSTAT MODINDICES;

Table 1. Input files for hypothesized CFA model (continued)
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used in the analysis (USE VARIABLES ARE) and the variables loading on each 
factor as defined with a BY statement.

A second important distinction between the two programs in terms of model 
specification is the requirement that analyses take into account the non-normality of the 
data. Given that pre-analysis of the data for the current application revealed evidence 
of substantially high multivariate kurtosis, it was essential that this non-normality 
be taken into account. In EQS, this issue is addressed under the SPECIFICATION 
command by adding the term “ROBUST” to the METHOD=ML statement, with a 
comma separating the two terms. Accordingly, this expanded method command will 
yield the corrected S-Bχ2 statistic and standard errors as noted earlier in this chapter. 
The parallel directive in Mplus is found under the ANALYSIS command with the 
specification of MLM estimation. Accordingly, the resulting corrected χ2 statistic 
represents the equivalent S-B χ2 value and relatedly corrected standard errors.

A final key component of both input files is notation related to possible model 
misspecification. Whereas EQS takes a multivariate approach to the detection of 
misspecified parameters through use of the Lagrange Multiplier Test (LMTest), 
Mplus takes a univariate approach based on the Modification Index (MI; Sörbom, 
1989). The EQS input file paragraph labeled LMTest addresses this issue, though it 
limits the search to possible cross-loadings (GVF) and error covariances (PEE). The 
Mplus input file requests computation of modification indices (MODINDICES) in 
the OUTPUT command; in the present case, sample statistics (SAMPSTAT) are also 
requested; this latter information is automatically included in the EQS output.

Table 2 presents model goodness-of-fit statistics as reported in the EQS and Mplus 
output files. As you will readily note, the information reported in terms of both estimated 
values and model fit criteria, varies minimally, albeit there are several different optional 
goodness-of-fit statistics reported across the two programs. Worthy of particular note 
is that the EQS fit statistics reported here represent the complete list when FIT=ALL is 
specified in the PRINT paragraph of the input file (see Table 1); in the absence of this 
command results include only a few key fit statistics. A second difference of note is 
the resulting output when the researcher has specified robust estimation. In EQS, this 
command results in two sets of fit statistics being reported: (a) those based on the ML 
estimator, and (b) those based on the robust ML estimator; only the robust goodness-
of-fit statistics are included in Table 2. In contrast, Mplus reports only the robust 
statistics requested. For readers who may be unfamiliar with both the EQS and Mplus 
programs, I assure you that, although the numbers are not exactly the same (likely due 
to computational rounding errors), the information conveyed is definitely consistent in 
revealing exceptionally poor model fit to the sample data. Finally, although the caveat 
concerning calculation of chi-square difference values noted in the Mplus output 
applies to both programs, this admonition is cited only in Mplus. To assist you in your 
comparison of the two sets of results, I have assigned matching parenthesized numerals 
to each of the three key model fit statistics typically reported in the SEM literature.4

For a final comparison of EQS and Mplus, we turn to Table 3 where results for 
tests of possible model misspecification are reported. Given the extremely poor fit 
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EQS

GOODNESS OF FIT SUMMARY FOR METHOD = ROBUST

ROBUST INDEPENDENCE MODEL CHI-SQUARE = 2919.314 ON 231 
DEGREES OF FREEDOM

INDEPENDENCE AIC = 2457.314 INDEPENDENCE CAIC = 1321.050
MODEL AIC = 157.275 MODEL CAIC = -856.018

(1)  SATORRA-BENTLER SCALED CHI-SQUARE = 569.2745 ON 206 
DEGREES OF FREEDOM
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.00000

MEAN- AND VARIANCE-ADJUSTED CHI-SQUARE = 196.316 ON 71 D.F.
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.00000

RESIDUAL-BASED TEST STATISTIC = 913.978
PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.00000

YUAN-BENTLER RESIDUAL-BASED TEST STATISTIC = 263.380

PROBABILITY VALUE FOR THE CHI-SQUARE STATISTIC IS 0.00424

YUAN-BENTLER RESIDUAL-BASED F-STATISTIC = 1.985
DEGREES OF FREEDOM = 206, 166
PROBABILITY VALUE FOR THE F-STATISTIC IS 0.00000

FIT INDICES

BENTLER-BONETT NORMED FIT INDEX = 0.805
BENTLER-BONETT NON-NORMED FIT INDEX = 0.848

-----------
(2) COMPARATIVE FIT INDEX (CFI) = 0.865

BOLLEN'S (IFI) FIT INDEX = 0.866
MCDONALD'S (MFI) FIT INDEX = 0.614
(3) ROOT MEAN-SQUARE ERROR OF APPROXIMATION (RMSEA) = 
0.069
90% CONFIDENCE INTERVAL OF RMSEA ( 0.062, 0.076)

MPLUS
TESTS OF MODEL FIT

Chi-Square Test of Model Fit

(1) Value 588.869*

Table 2. Output files: goodness-of-fit statistics for hypothesized model (model 1)
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Degrees of Freedom 206
P-Value 0.0000
Scaling Correction Factor 1.181
for MLM

* The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV 
cannot be used for chi-square difference tests. MLM, MLR and WLSM 
chi-square difference testing is described in the Mplus Technical Appendices at 
www.statmodel.com.
See chi-square difference testing in the index of the Mplus User's Guide.

Chi-Square Test of Model Fit for the Baseline Model

Value 2922.960
Degrees of Freedom 231
P-Value 0.0000

CFI/TLI

(2) CFI 0.858
TLI 0.841

Loglikelihood

H0 Value -12811.043
H1 Value -12463.184

Information Criteria

Number of Free Parameters 69
Akaike (AIC) 25760.087
Bayesian (BIC) 26030.490
Sample-Size Adjusted BIC 25811.575
(n* = (n + 2) / 24)
RMSEA (Root Mean Square Error Of Approximation)

(3) Estimate 0.071

SRMR (Standardized Root Mean Square Residual)

Value 0.070

WRMR (Weighted Root Mean Square Residual)

Value 1.730

Table 2. Output files: goodness-of-fit statistics for hypothesized model (model 1) 
(continued)

http://www.statmodel.com
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of this model to the data, we can expect to see several large modification indices that 
can lead to its improvement. Although results for a greater number of parameters are 
reported in the EQS output, only the first 10 are shown here; in Mplus, by default, 
no MI values <10.00 are reported.5

In EQS, one looks for the point at which there is a substantial drop in the Univariate 
Chi Square Increment values. However, along with this observation, one also must be 
able to argue for incorporation of these additional parameters into the model on the 
basis of substantive meaningfulness. In the present case, the first four highlighted values 
shown in Table 3 have been found consistently in other research, to be the parameters 
contributing most to model misspecification. They represent three error covariances 
(E16,E6; E2,E1; E11,E10) and the cross-loading of item 12 on Factor 1 (V12,F1).

In Mplus, the program separates the BY from the WITH statements, with the 
former representing factor loadings and the latter representing error covariances. 
As we see here, the four largest values replicate the results of the EQS program. 
Thus, both programs suggest that if the error variances between Items 16 and 6, 
Items 2 and 1, and Items 11 and 10 were allowed to covary, and Item 12 allowed 
to cross-load onto F1 (see in Table 1 its hypothesized loading onto Factor 2) the 
cumulative drop in the chi square value would be approximately 249.137 (see the 
fourth chi-square value at Step 4 of the EQS output). In the Mplus output, these 
chi-square drop-values are presented separately for each MI; in total, they represent 
a cumulative value of approximately 214.425. Following the incorporation of these 
new parameters to the model based on both their substantive meaningfulness and 
previous empirical replication, the final model fit in EQS yielded a corrected CFI 
value of 0.937, and in Mplus, of 0.934.

NOTES

1 Brown (2006) notes that the ADF estimator in AMOS is actually the WLS estimator.
2 Termed arbitrary generalized least squares (AGLS) in EQS (Brown, 2006).
3 In Mplus, the first factor loading in each congeneric set is automatically fixed to 1.00 by default. 

Likewise, the factor variances and covariances pertinent to independent factors in a model such as the 
CFA model discussed here are estimated by default. Importantly, however, all defaults in Mplus can 
be overridden. These same defaults hold for EQS when the model is specified graphically, rather than 
interactively and manually.

4 Although the 90% Confidence Interval for the RMSEA value should also be reported, this information 
is not reported in the Mplus output and therefore is included in the matching parenthesized values 
here.

5 Although it may appear that EQS considers substantially more parameters to be misspecified than 
Mplus, this is not so. Rather, this discrepancy derives from the Mplus default in reporting no MI 
values less than 10.00 (see Table 3). Alternatively, EQS input could likewise be tailored to limit 
potentially misspecified parameters to those having values equal to or greater than 10.00.
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