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FOREWORD

This is the age of “evidence” and all around are claims about the need for all to make
evidence based decisions. Evidence, however, is not neutral and critically depends
on appropriate interpretation and defensible actions in light of evidence. So often
evidence is called for, collected, and then analysed with little impact. At other times
we seem awash with data, soothed by advanced methods, and too easily impressed
with the details that are extracted. Thus there seems a tension between the desire
to make more meaning out of the aplenty data, and the need for interpretations that
have defence and consequences.

This book shows this tension — there are many sophisticated methods now
available but they require an advanced set of understandings to be able to interpret
meaning and can be technically complex. With more students being less prepared in
basic mathematics and statistics, taking courses in experimental design and survey
methods, often these methods appear out of reach. This is notwithstanding the major
advances in computer software. Not so long ago structural equation modelling
required a knowledge of Greek, matrix calculus, and basic computer logic; now many
programs require the facility to distinguish between boxes and circles, manipulate
arrows, and read pictures. This is not a plea that only those who did it “the hard way”
can appreciate the meaning of these methods —as many of these chapters in this book
show how these modern methods and computer programs can advance how users
think about their data and make more defensible interpretations.

The sheer number of methods outlined in the book shows the advances that have
been made, and too often we can forget that many of these can be traced to some
fundamental principles. The generalised regression model and the non linear factor
model are two such claims for ‘general models’ — for example many of the item
response family are variants of the non-linear factor models and understanding these
relations can show the limitations and advantages of various decisions the user has
to make when using these methods. For example, would a user be satisfied with a
model specifying a single factor with all items loading the same on this factor — as
this is what the Rasch item response model demands.

Each chapter shows some of these basic assumptions, how the methods relate to
other similar methods, but most important show how the methods can be interpreted.
That so many of the most commonly used methods are in one book is a major
asset. The methods range from measurement models (CTT, IRT), long developed
multivariate methods (regression, cluster analysis, MANOVA, factor analysis,
SEM), meta-analysis, as well as newer methods include agent-based modelling,
latent growth and mixture modelling.

There are many types of readers of this book, and an aim is to speak to them
all. There are ‘users’ who read educational literature that includes these methods
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FOREWORD

and they can dip into the book to find more background, best references, and more
perspective of the place and meaning of the method. There are ‘bridgers” who will go
beyond the users and will become more adept at using these methods and will want
more detail, see how the method relates to others, and want to know how to derive
more meaning and alternative perspectives on the use of the method. Then there are
“clones” that will use this book to drill down into more depth about the method,
use it to educate others about the method, and become more expert in their field.
There are also ‘lurkers”, those from various disciplines who have been told to use
a particular method and want a reference to know more, get an overall perspective,
and begin to see how the method is meant to work. There is an art of providing “just
enough” for all users, to entice them to want more, seek more, and learn more about
the many aspects of the methods that can be put into a short chapter.

One of my favourite books when I was a graduate student was Amick and
Walberg (1975). This book included many of the same methods in the current
Handbook. I referred to it often and it became the book most often ‘stolen’ by
colleagues and students. It became the ‘go to’ book, a first place to investigate the
meaning of methods and begin to understand ‘what to do next’. This Handbook will
similarly serve these purposes. The plea, however, is to go beyond the method, to
emphasise the implications and consequences. Of course, these latter depend on the
appropriateness of the choice of method, the correctness in making critical decisions
when using these methods, the defence in interpreting from these methods, and the
quality of the data. Happy using, bridging, cloning and lurking.

John A. Hattie
University of Melbourne

REFERENCE
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SECTION 1

MEASUREMENT THEORY



MARK WILSON & PERMAN GOCHYYEV

1. PSYCHOMETRICS

Psychometrics is the study of the measurement of educational and psychological
characteristics such as abilities, aptitudes, achievement, personality traits and
knowledge (Everitt, 2006). Psychometric methods address challenges and problems
arising in these measurements. Historically, psychometrics has been mostly associated
with intelligence testing and achievement testing. In recent times, much of the work in
psychometrics deals with the measurement of latent (or unobserved) traits and abilities.

In order to make our presentation both clear and accessible for those with
practical interests in applying psychometrics in educational settings, this chapter
is based on the Construct Modeling approach (Wilson, 2005): this is a “full-cycle
production” measurement framework consisting of four building blocks: the
construct map, the items design, the outcome space, and the measurement model.
The construct modelling approach provides an explicit guiding framework for the
researcher wishing to apply psychometric ideas in assessment. Activities that involve
constructing and using an instrument — from hypothesizing about the construct to be
measured to making interpretations and decisions — can be organised into these four
building blocks. The researcher will be called the measurer throughout the chapter:
this is the person designing and developing the measure.

For the most part, we will assume that the measurer already knows what s/he is
intending to measure (at least to a certain extent). Note that this is different from
the currently popular data mining approach (Nisbet, Elder, & Miner, 2009) where
the data is expected to generate the solutions. Thus, we expect that the steps to be
conducted by the measurer are confirmatory, rather being broadly exploratory. It will
be helpful to note that the philosophical position of the authors is that the practice
of psychometrics, and particularly the activity of constructing measures, is more
to be considered a practical and engineering activity rather than as a basic science.
Psychometricians construct measures (engineering), and build models to analyse
these measures (reverse-engineering). It might not be an accident that L. L. Thurstone,
a person considered to be one of the fathers of psychometrics, was a trained engineer.

MEASUREMENT

Measurement, in its broadest sense, is the process of assigning numbers to categories
of observations in such a way as to represent quantities of attributes (Nunnally, 1978).
Stevens (1946) noted that these numbers can be nominal, ordinal, interval, or ratio.
However, simply assigning numbers at these different levels does not guarantee that

T. Teo (Ed.), Handbook of Quantitative Methods for Educational Research, 3—30.
© 2013 Sense Publishers. All rights reserved.



M. WILSON & P. GOCHYYEV

the resulting measures are indeed at those corresponding levels (Michell, 1990).
Instead, the level needs to be established by testing whether the measurement model
is appropriate (van der Linden, 1992).

Corresponding to the type of measurement model that holds, measurement can be
Sfundamental, derived, or implicit (van der Linden, 1992). Fundamental measurement
requires that the measure has the following properties: it has an order relation, unit
arbitrariness, and additivity (see Campbell, 1928). Derived measurement assumes that
products of fundamental measurement are mathematically manipulated to produce a
new measure (such as when density is calculated as the ratio of mass to volume). In
contrast, in the implicit measurement situations in which our measurer is involved,
neither of these approaches are possible: Our measurer is interested in measuring a
hypothetical entity that is not directly observable, namely, the /atent variable. Now,
latent variables can only be measured indirectly via observable indicators — manifest
variables, generically called items. For example, in the context of educational testing,
if we wanted to measure the latent variable of a student’s knowledge of how to add
fractions, then we could consider, say, the proportion correct by each student of a
set of fractions addition problems as a manifest variable indicating the student’s
knowledge. But note that the, the student knowledge is measured relative to the
difficulty of the set of items. Such instances of implicit measurement can also be
found in the physical sciences, such as the measure of the sardness of an object.

To illustrate how different fundamental measurement is from implicit measurement
of a latent variable, consider the following example. If the weight of the Golden Gate
Bridge is 890,000 tons and the weight of the Bay Bridge is 1,000,000 tons, then
their combined weight is estimated as the sum of the two, 1,890,000 tons. However,
the estimated ability of the respondent A and respondent B working together on the
fractions test mentioned above would not be the sum of the performances of respondent
A and respondent B separately. Implicit measurement allows quantification of latent
variables provided variables are measured jointly (Luce & Tukey, 1964). For an
in-depth discussion, see Michell (1990) and van der Linden (1992).

THE CONSTRUCT

Planning and debating about the purpose(s) and intended use(s) of the measures
usually comes before the measurement development process itself. We will assume
that the measurer has an underlying latent phenomena of interest, which we will
call the construct (also called propensity, latent variable, person parameter, random
intercept, and often symbolized by 6).

It will be assumed in this section that there is a single and definite construct that is
being measured. In practice, a single test might be measuring multiple constructs. If
such is the case, we will (for the purposes of this chapter) assume that each of these
constructs is being considered separately. Constructs can be of various kinds: Abilities,
achievement levels, skills, cognitive processes, cognitive strategies, developmental
stages, motivations, attitudes, personality traits, emotional states, behavioural patterns
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and inclinations are some examples of constructs. What makes it possible and attractive
to measure the construct is the belief and understanding on the part of the measurer that
the amount or degree of the construct varies among people. The belief should be based
on a theory. Respondents to the test can be people, schools, organizations, or institutions.
In some cases, subjects can be animals or other biological systems or even complex
physical systems. Note that the measurer does not measure these respondents — the
measurer measures the construct these respondents are believed to have.

Depending on the substantive theory underlying the construct, and one’s
interpretational framework, a construct could be assumed to be dimension-like or
category-like. In this chapter, we will be assuming former, in which the variability
in the construct implies some type of continuity, as that is most common situation
in educational testing. Much of the following development (in fact virtually all of it
up to the part about the “measurement model”), can be readily applied to the latter
situation also—for more information on the category-like situation see Magidson &
Vermunt (2002). There are many situations where the construct is readily assumed
to be dimension-like: in an educational setting, we most often can see that there is a
span in ability and knowledge between two extremes; in attitude surveys, we can see
a span of agreement (or disagreement); in medicine, there are often different levels of
a health condition or of patient satisfaction, but also a span in between. Consider the
following example for better understanding of continuity: the variable “understanding
of logarithms™ can be present at many levels. In contrast, the variable “pregnancy” is
clearly a dichotomy — one cannot be slightly pregnant or almost pregnant. It is possible
that in some domains the construct, according to an underlying theory, has discrete
categories or a set of unordered categories. A respondent might be a member of the
one of the latent classes rather than at a point on a continuous scale. These classes can
be ordered or unordered. Various models in psychometrics such as latent class models
are designed to deal with constructs of that type (see Magidson & Vermunt, 2002).

The type of measurement presented in this chapter can be understood as the
process of locating a respondent’s location on the continuum of the latent variable.
As an example, imagine a situation where one wants to find out about a respondent’s
wealth but cannot ask directly about it. The measurer can only ask questions about
whether the respondent is able to buy a particular thing, such as “Are you able to buy
an average laptop?” Based on the obtained responses, the measurer tries to locate
the respondent on the wealth continuum, such as claiming that the respondent is
between “able to buy an average laptop” and “able to buy an average motorcycle.”

A SURVEY OF TYPES AND PURPOSES OF MEASUREMENT

From the broadest perspective, we can distinguish two types of measurement (De
Boeck & Wilson, 2006). The first type is the accurate measurement of the underlying
latent variable on which the respondents are arrayed. This implies the use of the test
at the level of individual respondents. Inferences regarding the individual, or perhaps
groups of individuals, are of primary interest. This approach is intuitively named as
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the measurement approach. Measurement with this purpose is also referred to as
the descriptive measurement. In contrast, another purpose of the measurement has
a different perspective. Rather than focusing on the individual, the main purpose is
to seek relationships of the observations (responses to the items) to other variables.
These variables can be characteristics of the respondents (gender, race, etc.), or
characteristics of the items (item format, item features, etc.). This approach is referred
to as the explanatory approach. Explanatory measurement can help in predicting
behaviour in the future and can also serve to support a theory or hypothesis. As an
example, a researcher might be interested in the effectiveness of the two different
teaching methods. Here, the interest is in the teaching method rather than in the
individual differences. A test can be designed and analysed to serve both purposes,
but serving both kinds of purpose can lead to inefficiencies and challenges.

Depending on the context, the purposes of the measurement might also differ.
One classification of measurement purposes in the educational context is into norm-
referenced and criterion-referenced interpretations. Norm-referenced interpretations
are relevant when the measurer wishes to locate a respondent’s position within a
well-defined group. In comparison, criterion-referenced interpretations are used
in identifying a degree of proficiency in a specified content domain. College
admission tests in United States (e.g., SAT, ACT) are examples of norm-referenced
interpretations, as their main purpose is to rank applicants for university entrance.
In contrast, criterion-referenced tests might be based on the topics in a lesson or
the curriculum, or in the state standards. Some tests are designed for both types
of interpretations—generally norm-referenced interpretations are always available,
whereas criterion-referenced interpretations require more effort. (See below for the
Construct Modeling approach to criterion-referenced measurement.)

Another perspective in looking at measurement purposes in an educational context
is summative versus formative uses of tests. When a test is used to look back over what
a student has learned, and summarise it, then that is a summative use. When a test is
used to decide what to do next, to advance the student within a lesson, or to remediate,
then that is a formative use (see Wiliam, 2011 for a broad summary of these).

From a very different perspective, the measurement, or more precisely the
measurement model, can be reflective versus formative'. In the reflective measurement
approach to modeling, which is the type of measurement model considered in this
chapter and the common assumption among a majority of psychometricians, the
belief is that the responses to the items are the indicators of the construct and the
construct (effectively) “causes” respondents to respond to the items in such way. In
contrast, in the formative measurement approach to model, which is more popular
in the fields of sociology and economics, the assumption is that it is the items that
influence the latent variable. For instance, returning to our example about the wealth
construct above: (a) from the reflective perspective we assume that the person’s
location on the wealth construct will cause respondents to answer questions such as
“are you able to buy an average laptop?”; but (b) from the formative perspective, the
assumption is that responses to these items will “cause” the wealth latent variable.
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(Note that we avoid using the word construct in the latter case, as it is discrepant to
our definition of the construct. The terms index is often used in the formative case.)

CONSTRUCT MODELING: THE FOUR BUILDING BLOCKS APPROACH

We now outline one particular approach to developing measures—Construct
Modeling. We do not claim that this is a universally optimal way to construct measures,
but we do see it as a way to illustrate some of the basic ideas of measurement. Note
that, although we present just a single cycle of development, one would usually iterate
through the cycle several times. The Construct Modelling approach is composed of
Four Building Blocks?: the Construct Map, the Items Design, the Outcome Space,
and the Measurement Model. Note that we will label the person being measured as
the “respondent” (i.e., the one who responds to the item).

The Construct Map

In order to help one think about a construct, we present the construct map (Wilson,
2005). Thinking in the “construct map” way prompts one to consider both sides of
the measurement situation: the respondent side and the item side. A construct map
is based on an ordering of both respondents and the items from a lower degree to a
higher degree. A generic example of the basic form of the construct map is shown in
Figure 1.° Respondents who possess a low degree of the construct (bottom left), and
the responses that indicate this amount of the construct (bottom right) are located at

Direction of increasing "X"

Respondents with high "X" Item response indicates highest level of "X"

Item response indicates higher level of "X"

Respondents with mid-range "X"

Item response indicates lower level of "X"

Respondents with low " X" Item response indicates lowest level of "X"

Figure 1. A generic construct map for the construct “X”.
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the bottom of the construct map. Similarly, respondents who possess a high degree
of the construct (top left), and the responses that indicate this amount of the construct
(top right) are located at the top of the construct map. In between these extremes are
located qualitatively different locations of the construct, representing successively
higher intensities of the construct.

Depending on the hypothesis and the setting being applied, construct maps can be
connected or nested within each other and interpreted as learning progressions. (See
Wilson, 2009 for illustrations of this.)

The construct map approach advances a coherent definition of the construct and a
working assumption that it monotonically spans the range from one extreme to another—
from low degree to high degree. There might be some complexities between the two
extremes. We are interested in locating the respondent on the construct map, the central
idea being that, between the two extremes, the respondent higher on the continuum
possesses more of that construct than the respondent lower on the continuum. Thus, a
respondent higher on the continuum has a better chance to be observed demonstrating
the higher levels of the responses. This is called the assumption of monotonicity.*

The idea of a construct map forces the measurer to take careful consideration
of the theory concerning the construct of interest. A clear definition of what is
being measured should be based on the body of literature related to the construct of
interest. The definition of the construct shouldn’t be too vague, such as, for instance
the definition of “intelligence” given by Galton (1883), as: “that faculty which the
genius has and the idiot has not.” It is best to support the hypothetical nature and
order of the locations in the construct map from a specific theory. The coherence of
the definition of the construct in the construct map requires that the hypothesized
locations be clearly distinguishable. Note that the existence of these locations does
not necessarily contradict the concept of an underlying continuum, as they can
readily represent distinct identifiable points along a continuous span.

The advantage of laying out the construct on the construct map is that it helps the
measurer make the construct explicit. Activities that are carried out in the construct
map phase can also be described as construct explication (Nunnally, 1978) — a term
used to describe the process of making an abstract concept explicit in terms of
observable variables.

Note that each respondent has only one location on the hypothesized unidimensional
(i.e., one-trait, single-factor) construct. Of course, the construct of interest might
be multi-dimensional and thus the respondent might have multiple locations in the
multidimensional space of several construct maps. As was noted earlier, for simplicity,
we are assuming one-dimensional construct, which is believed to be recognizably
distinct from other constructs. This is also called the assumption of unidimensionality.
Note that this assumption relates to the set of items. If the construct of interest is
multidimensional, such as “achievement in chemistry”, which can have multiple
dimensions (see, Claesgens, Scalise, Wilson & Stacy, 2009), each strand needs to be
considered separately in this framework to avoid ambiguity, although the measurement
models can be multidimensional (e.g., see Adams, Wilson, & Wang, 1997). For
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example, consider the following two variables: (a) the wealth of a person, and (b) the
cash readily available to a person. Although we would expect these two variables to be
highly correlated, nevertheless, each person would have two distinct locations.

A Concrete Example: Earth and the Solar System. This example is from a test
of science content, focusing in particular on earth science knowledge in the area
of “Earth and the Solar System” (ESS). The items in this test are distinctive, as
they are Ordered Multiple Choice (OMC) items, which attempt to make use of
the cognitive differences built into the options to make for more valid and reliable
measurement (Briggs, Alonzo, Schwab & Wilson, 2006). The standards and
benchmarks for “Earth in the Solar System” appear in Appendix A of the Briggs et
al article (2006). According to these standards and the underlying research literature,
by the 8" grade, students are expected to understand three different phenomena
within the ESS domain: (1) the day/night cycle, (2) the phases of the Moon, and
(3) the seasons—in terms of the motion of objects in the Solar System. A complete
scientific understanding of these three phenomena is the top location of our construct
map. See Figure 2 for the ESS construct map. In order to define the lower locations

Location Description
Student is able to put the motions of the Earth and Moon into a complete
description of motion in the Solar System which explains:

5 . the day/night cycle
gth grade . the phases of the Moon (including the illumination of the
Moon by the Sun)
. the seasons

Student is able to coordinate apparent and actual motion of objects in the
sky. Student knows that:

* the Earth is both orbiting the Sun and rotating on its axis

s the Earth orbits the Sun once per year

* the Earth rotates on its axis once per day, causing the day/night

4 cycle and the appearance that the Sun moves across the sky
5“‘ grade s the Moon orbits the Earth once every 28 days , producing the phases
of the Moon

COMMON ERROR: Seasons are caused by the changing distance between
the Earth and Sun.
COMMON ERROR: The phases of the Moon are caused by a shadow of the
planets, the Sun, or the Earth falling on the moon.
Student knows that:
* the Earth orbits the Sun
*  the Moon orbits the Earth
*  the Earth rotates on its axis
3 However, student has not put this knowledge together with an
understanding of apparent motion to form explanations and may not
recognize that the Earth is both rotating and orbiting simultaneously.
COMMON ERROR: It gets dark at night because the Earth goes around the
Sun once a day.
Student recognizes that;
* the Sun appears to move across the sky every day
* the observable shape of the Moon changes every 28 days
Student may believe that the Sun moves around the Earth.
COMMON ERROR: All motion in the sky is due to the Earth spinning on its

L axis.
COMMON ERROR: The Sun travels around the Earth.
COMMON ERROR: It gets dark at night because the Sun goes around th
Earth once a day.
COMMON ERROR: The Earth is the center of the universe.
Student does not recognize the systematic nature of the appearance of
objects in the sky. Students may not recognize that the Earth is spherica
COMMON ERROR: It gets dark at night because something (e.g.. clouds, the
1 atmosphere, “darkness”) covers the Sun.
COMMON ERROR: The phases of the Moon are caused by cloud vering
the Moon.
COMMON ERROR: The Sun goes below the Earth at night.
0 No evidence or off-track

Figure 2. Construct map for student understanding of earth in the solar system.
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of our construct map, the literature on student misconceptions with respect to ESS
was reviewed by Briggs and his colleagues. Documented explanations of student
misconceptions with respect to the day/night cycle, the phases of the Moon, and the
seasons are displayed in Appendix A of the Briggs et al article (2006).

The goal was to create a single continuum that could be used to describe typical
students’ understanding of three phenomena within the ESS domain. In contrast,
much of the existing literature documents students’ understandings about a particular
ESS phenomena without connecting each understanding to their understandings
about other related ESS phenomena. By examining student conceptions across the
three phenomena and building on the progressions described by Vosniadou & Brewer
(1994) and Baxter (1995), Briggs et al. initially established a general outline of the
construct map for student understanding of ESS. This general description helped
them impose at least a partial order on the variety of student ideas represented in
the literature. However, the locations were not fully defined until typical student
thinking at each location could be specified. This typical student understanding is
represented in the ESS construct map shown in Figure 2, (a) by general descriptions
of what the student understands, and (b) by limitations to that thinking in the form
of misconceptions, labeled as “common errors.” For example, common errors used
to define category 1 include explanations for day/night and the phases of the Moon
involving something covering the Sun or Moon, respectively.

In addition to defining student understanding at each location of the continuum,
the notion of common errors helps to clarify the difference between locations.
Misconceptions, represented as common errors at one location, are resolved at
the next higher location of the construct map. For example, students at location 3
think that it gets dark at night because the Earth goes around the Sun once a day—a
common error for location 3—while students at location 4 no longer believe that the
Earth orbits the Sun daily but rather understand that this occurs on an annual basis.

The top location on the ESS construct map represents the understanding expected
of 8" graders in national standards documents. Because students’ understanding of
ESS develops throughout their schooling, it was important that the same continuum
be used to describe the understandings of both 5% and 8% grade students. However,
the top location is not expected of 5% graders; equally, we do not expect many 8*
grade students to fall among the lowest locations on of the continuum.

The Items Design

Items are the basic building blocks of the test. Each item is a stimulus and each use
of it is an attempt to obtain an observation that usefully informs the construct. In
order to develop these items in an orderly way, there needs to exist a procedure of
designing these observations, which we call the items design. In a complementary
sense, the construct may not be clearly and comprehensively defined until a set of
items has been developed and tried out with respondents. Thus, the development of
items, besides its primary purpose to obtain a useful set of items, plays an important
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step in establishing that a variable is measureable, and that the ordered locations of
the construct map are discernible.

The primary purpose of the items is to prompt for responses from the respondents.
Items should be crafted with this in mind. Items with different purposes, such as the
ones that teach the content of the test, may be costly in terms of efficiency, but, of
course, may also play an important part in instruction. It is possible to see each item
as a mini-test, and we will see the usefulness of this type of thinking when talking
about the indicators of the instrument quality later in the chapter. Thus, a test can be
seen as a set of repeated measures, since more than one observation is made for the
respondent, or, put another way, a test can be considered an experiment with repeated
observations—this perspective places models commonly used in psychometrics in a
broader statistical framework see, for example, De Boeck & Wilson, 2004).

Item formats. Any systematic form of observation that attempts to reveal particular
characteristics of a respondent can be considered as an item. Information about the
construct can be revealed in many ways, in, say, a conversation, a directly asked
question, or from observing respondents, in both formal and informal settings. As
was mentioned above, at early stages, information revealed in any of these ways
can be used to clarify the ordered locations of the construct. The item format should
be appropriate to the nature of the construct. For instance, if one is interested
in respondent’s public speaking skills, the most appropriate format is direct
observation, where the respondent speaks in public, but this is just the start of a range
of authenticity which ranges all the way to self-report measures.

The open-ended item format is probably the most basic and the most “unrestrictive”
format. In this format the responses are not limited to predefined categories (e.g., True
or False), and there may be broad latitude in terms of modes of communication (e.g.,
written, figurative, or oral), and/or length. Open-ended items are the most common
type of format that are typically observed in informal and social settings, such as
within classrooms. However, due to their simplicity for evaluation, the most common
item format used in formal instruments is the fixed-response format. Commonly,
fixed-response format items will start out as in an open-ended item format—the
responses to these can be used to generate a list of the types of responses, and this
in turn can be used to design multiple alternatives. A fixed-response format is also
very common in attitude surveys, where respondents are asked to pick the amount of
intensity of the construct (i.e., Strongly Agree/Agree/etc.). This item format is also
referred to as the Likert-type response format (Likert, 1932).

The list of alternative ways to give respondents a chance to reveal their place
on the construct has expanded with the advances in technology and computerized
testing. New types of observations such as simulations, interactive web-pages, and
online collaborations require more complex performances from the respondent and
allow the delineation of new locations on constructs, and sometimes new constructs
altogether (Scalise & Wilson, 2011). The potential of these innovative item formats
is that they might be capable of tapping constructs that were “unreachable” before.
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Item development. The item development process requires a combination of art
and creativity on the part of the measurer. Recall that an item, regardless of the
format, should always aim’ at the construct. Ramsden, Masters, Stephanou, Walsh,
Martin, Laurillard & Marton (1993), writing about a test of achievement in high
school physics noted:

Educators are interested in how well students understand speed, distance and
time, not in what they know about runners or powerboats or people walking
along corridors. Paradoxically, however, there is no other way of describing
and testing understanding than through such specific examples.

Sometimes it may be sufficient to simply ask for a formal “piece of knowledge”—the
product of 2 and 3, or the freezing point of water in centigrade, etc.—but most often
we are interested in seeing how the respondent can use their knowledge and skills.

One important aspect is the planned difficulty of the test and its respective items.
One needs to consider the purpose of the instrument when selecting an appropriate
difficulty level for the items. Often, items are arranged from the easiest to the most
difficult one, so that respondents do not become frustrated and not get to relatively
easy items. In general, the measurer needs to develop items that aim at a// locations
of the construct. (This point will be elaborated on in the validity section below.)

Another important aspect is the “grainsize” of the items. Each item, in order to
provide a contribution in revealing the amount of the construct, should span at least
two locations of the construct. For example, a dichotomous item will aim at at or
above the location of the item and below the location of the item. A polytomous item
might aim at more than two locations. Note that Likert items, by their design will
generally aim at more than two locations.

One more important activity that needs to be occuring in this phase is “listening
to respondents” (AERA/APA/NCME, 1999). This activity is a very effective tool for
“tuning up” the items of the instrument. Listening can either be in the form of think
alouds or in the form of exit interviews (sometimes called “cognitive interviews”). In
think alouds, participants are prompted to say aloud what they are thinking as they are
working on the tasks. The measurer tries to take a note of everything the respondent
says without any filtering. Of course, this sort of self-report has strong limitations,
but at least it can indicate the sorts of issues that the respondent is working through.
In exit interviews, the measurer interviews the respondent after the test is over. There
should not be a long gap in time between the administration of the instrument and the
exit interview. Exit interviews can be conducted over the phone, in-person, or using
paper-and-pencil or a computerized survey. The findings from both think alouds and
exit interviews need to be well-documented. It is recommended that the sessions be
audio or video-taped, both in order to be able to return to the evidence later in the
process of instrument development and to document such valuable evidence. As we
will see later (in the Validity section), this evidence will prove to be an important one
for validating the test. Also, as is the case with all steps, it is very important that the
measurer stays neutral throughout the entire process.

12
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The ESS Example Continued. Returning to the ESS example, the OMC items were
written as a function of the underlying construct map, which is central to both the
design and interpretation of the OMC items. Item prompts were determined by both
the domain as defined in the construct map and canonical questions (i.e., those which
are cited in standards documents and commonly used in research and assessment
contexts). The ESS construct map focuses on students’ understanding of the motion
of objects in the Solar System and explanations for observable phenomena (e.g., the
day/night cycle, the phases of the Moon, and the seasons) in terms of this motion.
Therefore, the ESS OMC item prompts focused on students’ understanding of the
motion of objects in the Solar System and the associated observable phenomena.
Distractors were written to represent (a) different locations on the construct map,
based upon the description of both understandings and common errors expected of
a student at a given location and (b) student responses that were observed from an
open-ended version of the item. Each item response option is linked to a specific
location on the construct map, as shown in the example item in Figure 3. Thus,
instead of gathering information solely related to student understanding of the
specific context described in the question, OMC items allow us to link student
answers to the larger ESS domain represented in the construct map. Taken together,
a student’s responses to a set of OMC items permit an estimate of the student’s
location on the ESS construct, as well as providing diagnostic information about that
specific misconception.

The Outcome Space

As has been pointed out above, an instrument can be seen as an experiment used
to collect qualitative data. However, in the behavioural and social sciences, the
measuring is not finished when data are collected — much needs to happen after
the data are collected (van der Linden, 1992). The outcomes space is the building
block where the responses start to be transformed into measures. The main purpose
of the outcome space is to provide a standard procedure to categorize and order
observations in such a way that the observed categories are informative about the
locations on the construct.

The outcomes space as a term was first used and described by Marton (1981).
He used students’ responses to open-ended items to discover qualitatively different

Itis most likely colder at night because

A. the Earth is at the furthest point in its orbit L3
around the Sun.

B. the Sun has traveled to the other side of the L2
Earth,

C. the Sun is below the Earth and the Moon does L1
not emit as much heat as the Sun.

D. the place where it is night on Earth is rotated L.4
away from the Sun.

© WestEd, 2002

Figure 3. A sample OMC item based upon ESS construct map. (L indicates location
on construct map.)
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ways students responded to sets of tasks. Dahlgren (1984) described an outcome
space as a sort of analytic map:

It is an empirical concept which is not the product of logical or deductive
analysis, but instead results from intensive examination of empirical data.
Equally important, the outcome space is content-specific: the set of descriptive
categories arrived at has not been determined a priori, but depends on the
specific content of the [item]. (p. 26)

Within the Four Building Blocks framework, the term outcomes space has a
somewhat broader meaning. The outcome space is an ordered, finite, and exhaustive
set of well-defined, research-based, and context-specific categories (Wilson, 2005).
That the categories are a finite set means that the possibly infinite number of potential
responses needs to be categorized into a small (but not too small) set of categories.
That the categories are exhaustive means that the categories should be inclusive—
every possible response has a place (at least potentially) among the categories. That
the categories are ordered means that there exists an ordering of the categories that
is consistent with the ordered locations on the construct map—though the ordering
might only be partial. That the categories are well-defined means that the measurer
must have a way to consistently categorize the responses into the categories—this
might include having: (a) definitions of the construct locations; (b) background
materials explaining important concepts, etc., involved in the locations; (c) samples
of the items and responses for each locations; and (d) a training procedure for raters.
As was noted earlier, concerning the locations of the construct map, the categories
of the outcome space need to be research-based, that is, informed by appropriate
research and theory. That the categories are context-specific means that nature of the
construct need to be considered when developing the categories. For example, the
requirement that the alternatives to the correct prompt in multiple-choice items be
superficially reasonable is one such.

Scoring.  Scoring is the procedure of assigning numerical values to the ordered
locations of the outcome space. Scoring should be designed so that the categories
can be related back to the responses side of the construct map. The traditional
procedure for multiple-choice items is to score the correct response as unity and the
incorrect ones as zero. For OMC items, the ordered locations may be used as a basis
for scoring. For Likert-style response items, the lowest extreme (e.g., “Strongly
disagree”) is often scored as zero and each subsequent category as 1, 2, 3, etc.,
respectively.

Open-ended items require more effort for coding and scoring. The outcome
categories must be ordered into qualitatively distinct locations on the continuum,
with possibly several categories within each location. Coding open-ended items
can be expensive and time-consuming. With the developments of machine learning
techniques, it is becoming possible to use computers to categorize and score open-
ended items (Kakkonen, Myller, Sutinen, & Timonen, 2008).
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Missing responses should be handled appropriately in the scoring process. If the
measurer has a reasonable belief that the response is missing because the respondent
was not administered the item, coding it as “missing” is an appropriate choice. If the
measurer judges that the response was missing due to the high difficulty of the item
(such as when a respondent fails to respond to a string of hard items at the end of
the test), the missing response could be coded as zero. Although missing response
indicates no information about the respondent in relation to the item, investigating
potential reasons for missing responses might be a useful strategy to improve the
items.

The ESS Example Continued. 1Inthe ESS example, the outcome space is simply the
locations of the ESS Construct Map (see Figure 2). And the scoring guide for each
item is given simply by the mapping of each item distractor to its respective location
on the construct map, as exemplified for the item in Figure 3. This need not be the
case, items may be developed that have much more complex relationships with the
relevant construct map.

The Measurement Model

The measurement model phase of Construct Modeling closes the cycle, relating the
scored outcomes back to the construct map. The measurement model predicts the
probability of the response of a respondent to a particular item conditional on the
respondent’s location on the ability continuum and the item’s location on difficulty in
relation to the construct. The measurement model should help the measurer interpret
the distance between (a) a respondent and a response on the construct map; and
(b) different responses and different respondents on the construct map. The primary
function of the measurement model is to bridge from the scores produced by the
outcome space back to the construct map.

We will start by discussing two different approaches to the measurement model.
The first approach focuses on the scores, and its relation to the construct — namely, the
instrument-focused approach. The instrument-focused approach was the main driving
force of Classical Test Theory (CTT; Spearman, 1904). The fundamental relationship
in CTT is the relationship of the true score (T) with the observed score (X):

X=T+E, (1)

where E is the error, and where the true score is understood as the average score
the respondent would obtain over many hypothetical re-tests, assuming there are
no “carry-over” effects.® In contrast, the second measurement approach focuses on
each item and its relationship to the construct — thus, termed as the item-focused
approach. The most prominent example of the item-focussed approach is the work
of Guttman (1944, 1950), who based his scalogram approach on the idea that tests
could be developed for which respondents would invariably respond according
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to the (substantive) difficulty order of the items. This assumption of invariance
allows a very straightforward item-wise interpretation of the respondents’ scores.
Although this approach was an important advancement in the conceptualization of
psychometrics, the dependence of Guttman’s approach on the invariant ordering
has been found to be impracticable (Kofsky, 1996). The Construct Modelling
approach can be seen as a synthesis of the item-focused and instrument-focused
approaches.

There have been a numerous measurement models proposed within the last
several decades. We will focus on one such model, namely the Rasch model
(Rasch, 1960), due to (a) its interpretational simplicity and (b) its alignment with
the measurement framework presented in this chapter’. The construct modelling
approach is both philosophically and methodologically based on the work of Georg
Rasch, a Danish mathematician, who first emphasized the features of his epynomous
Rasch model. Parallel to this development by Rasch, similar approaches were also
being developed, generally under the label of Item Response Theory or Latent Trait
Theory (van der Linden & Hambleton, 1997; Chapter 3, this volume).

Generally, given the uncertainty inherent in sampling a respondent’s relationship
to a construct via items, it makes sense that one would prefer a measurement model
that aligns with a probabilistic formulation. A major step forward in psychometrics
occurred when the test items themselves were modelled individually using
probabilistic models as opposed to deterministic models. Where the deterministic
approach focuses on the responses itself, this probabilistic approach is focused on
the probability of the correct response (or endorsement). In the case of the Rasch
model, the probabilistic function is dependent on the item location and respondent
location. Depending on the context, item location can be, for instance, interpreted
as the difficulty of responding correctly or difficulty of endorsing a particular
statement. The respondent location is the point where the respondent is located on
the construct continuum: It can be interpreted as the respondent’s ability to answer
the item correctly or to endorse a particular statement. The distance between the
item location and the person location is the primary focus of the model and also the
feature that provides for ease of interpretation.

The Rasch model asserts that the probability of a particular response depends only
on the person location (f) and item location (J). Mathematically, this statement is
represented as

Probability(correct|d, d) = f(6 — ) 2)

The requirement for the person and item locations (person and item parameters)
is that both are unbounded (there can always be a higher respondent or more difficult
item), thus —oo < < oo, and —o0 < § < oo, but the probability is, of course, bounded
between 0 and 1. The two most common probabilistic models are based on the logistic
and cumulative normal functions—the Rasch model uses the logistic formulation.
With a multiplicative constant of 1.7, the two are very similar, particularly in the range

16



PSYCHOMETRICS

of =3 and 3 (Bradlow, Wainer, & Wang, 1999). Specifically, the logistic expression
for the probability of a correct response on an item (represented as: X = 1) is:

Probability(X = 1|0, 6) = exp(d — 0)/ D, 3)
and the probability of an incorrect response on an item (represented as: X = 0) is:
Probability(X = 0/6, 0) = 1/®, “4)
where @ is a normalizing constant, the sum of the numerators:
1 +exp(d - 9).

The item response function (IRF, sometimes called the item characteristic curve—
ICC) summarizes the mathematical expression of the model by illustrating the
relationship between the probability of the response to an item and the ability of the
respondent. (See Figure 4.)

In order to calculate the probability of an observed response vector over a set
of items, the probabilities for each item are multiplied together, relying on the
assumption of local independence. Items are locally independent of each other if,
once we know the respondent and item locations, there is no more information
needed to calculate their joint probability. This assumption can be violated when
several items have a relationship over and above what would be indicated by their
respective difficulties, and the respondents’ abilities. For example, if several items
relate to the same stimulus material, such as in a paragraph comprehension test, then
we would suspect that there might be such a relationship. In this case, understanding
or misunderstanding the paragraph can improve and/or worsen performance on all
items in the set, but not on other items in the test. Elaborations of basic models
that account for this type of dependence have been proposed (see Wilson & Adams,
1995, Bradlow, Wainer, & Wang, 1999, and Wang & Wilson, 2005).

Probability of
responding
correctly (or
endorsement)

0.5

-6 -4 -2 0 2 4 6

Latent variable

Figure 4. Item response function of the Rasch model (note, for this item, 6 = 0.0).
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In the Rasch model, the total score of the correct (endorsed) items is monotonically
(but not linearly) related to the estimated ability.® This property of the Rasch model
will be elaborated and its implications will be described below. One fundamental
property that is associated with the Rasch model is what is referred as the sufficient
statistic — the total number of correct responses by the respondent is said to be
sufficient for the person ability, which means that there is no more information
available in the data that can inform the estimation of the item difficulty beyond
the number correct. This concept also applies to the items — the total number of
respondents responding correctly to the item is a sufficient statistic for the item
difficulty. Most measurement models do not have this property.

One implication of this feature is that Rasch model is simple to interpret and
explain compared to more complicated models with more complex scoring and/
or parameterization. Models of the latter type might make it difficult to justify the
fairness of the test to the public, such as when a respondent with a higher total score
is estimated at lower location than the respondent with a lower total score.’

The second implication, stemming from the same argument, is that all items
provide the same amount of information (all items are assumed to be equally good
measures of the construct). Items differ only in difficulties. The higher the person
location relative to the item location, the more likely it is that the respondent will
answer correctly (endorse) the item. Thus, when this assumption is true, only two
parameters (person location and item location) are needed to model achievement on
the item.

A further manifestation of the uniqueness of the Rasch model is referred to as
specific objectivity (Rasch, 1960). This can be understood in the following way:
if the Rasch model holds true, then locations of two respondents on a test can be
compared with each other regardless of the difficulties of the items used to measure
them, and symmetrically, the locations of two items can be compared with each
other regardless of the locations of the respondents answering the items.

Choosing the measurement model. Of course, all models are less complex than
reality, and hence, all models are ultimately wrong—this applies to measurement
models as much as any others. Some models are more suitable than others, depending
on the hypothesized construct, one’s beliefs, the nature of the instrument, the sample
size, and the item type. Nevertheless, in the process of modelling, one must posit a
sensible starting-point for model-building.

Among many criteria in choosing the model, one principle that guides the choice
is the law of parsimony, also referred as Occam’s razor, as Occam put it:

It is vain to do with more what can be done with fewer'

Thus, among the models, generally the more parsimonious models (models
with fewer parameters and more degrees of freedom) will offer interpretational
advantages. For example, linear models are in most instances, easier to interpret than
non-linear ones. A more parsimonious model should be (and will be) a consequence
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of good design, and in this context, good design includes careful development and
selection of the items.

Models can be categorized according to various criteria. A model can be
deterministic vs. probabilistic, linear vs. nonlinear, static vs. dynamic, discrete vs.
continuous, to name several such categorizations. Some models can allow one to
incorporate subjective knowledge into the model (i.e., Bayesian models), although,
in truth, any assumption of the form of an equation is a subjective judgement. The
ideal measurement model should provide a best possible basis for interpretation from
the data — the central idea being to approximate (“fit”) the real-world situation, at the
same time having not so-many parameters as to complicate the interpretation of the
results. The evaluation of the model is based on checking whether the mathematical
model provides an accurate description of the observed data. For this the model “fit”
is an important test whether our measurement procedure was successful. (see De
Ayala, 2009 and Baker & Kim, 2004).

For the Rasch model to fit, the data should meet the relevant fit criteria. One
measure of the fit of the items in the Rasch model, known as the item and respondent
fit (or misfit) statistic, is obtained by comparing the observed patterns of responses
to the predicted patterns of responses (See, e.g., Embretson & Reise, 2000). This
type of diagnostic is an important validation step and check of the model fit. Items
that are different in their measurement quality from other items (those with different
slopes) need to be reconsidered and investigated. The measurer should filter out
items that do not fit with the model. The idea of filtering due to the model fit has
been a source of debates for many years. The approach described here might be
considered a strict standard, but this standard provides for relatively straightforward
interpretation via the Wright map (as described below).

The Wright Map. The Wright map provides a visual representation of the
relationship between the respondent ability and the item difficulty estimates by
placing them on the same logit' scale. This provides a comparison of respondents
and items that helps to visualize how appropriately the instrument measures across
the ability range. An example of a hypothetical Wright map for science literacy
(including the ESS items) is shown in Figure 5. The left side of the map shows
examinees and their locations on the construct: respondents estimated to have the
highest ability are represented at the top, and each “X” represents a particular number
of respondents (depending on the sample size). The items are represented on the
right side of the map and are distributed from the most difficult at the top to the least
difficult at the bottom. When the respondent and the item have the same logit (at the
same location), the respondent has approximately a 50% probability of answering
the item correctly (or endorsing the item). When the respondent is above the item,
the probability is higher, when the respondent is below, it is lower. In this way, it is
easy to see how specific items relate both to the scale itself and to the persons whose
abilities are measured on the scale. The placement of persons and items in this kind
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of direct linear relationship has been the genesis of an extensive methodology for
interpreting the measures (Masters, Adams & Wilson, 1990; Wilson, 2005; Wright,
1968; Wright, 1977).

For example, segments of the line representing the measurement scale can be
defined in terms of particular item content and particular person proficiencies. This
allows the measurer to make specific descriptions of the progress of students or
other test-takers whose ability estimates place them in a given segment. The set of
such segments, illustrated in Figure 5 using Roman numerals II, IV and V, can be
interpreted as qualitatively distinct regions that characterize the successive ordered
locations on the outcome variable. Defining the boundaries of these ‘criterion zones’
is often referred to as standard setting. Wright Maps have proven extremely valuable
in supporting and informing the decisions of content experts in the standard setting
process. See Draney & Wilson (2009) and Wilson & Draney (2002) for descriptions
of standard setting techniques and sessions conducted with Wright Maps in a broad
range of testing contexts.

logits  students Science Literacy Topic Areas

3
Content  Procedures Argumentation Locations

2 XX |
XXX | .
XXX | .
XX | |
XX | |
XK | A |
1 OO | v
XX | |
YOO | AN |
XXUKKHKKK | AA N -
XXX | N |
OO0 | v
0 XRNNKHHK | N NN -
XHXXKXX | T T |
XIXXHKX | T T |
HXHXNKAXKX | A |
JOOOO0MXXX | A |
XU | n
A XKKUKHOHK | |
RO | T |
XXHRX | T |
XXX | |
XXX | .
XXXX | .

2 XX |

XX |

3
Figure 5. A Wright map of the scientific literacy variable.
Comments. (a) Each ‘X’ represents 5 cases; (b) “T”, “N”, and “A” represent different

types of items; (¢) Roman numerals II, IV and V represent different locations of the
construct.
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VALIDITY AND RELIABILITY

The two most fundamental concepts in psychometrics are test reliability and test
validity. Statistical procedures exist to estimate the level of test reliability, and
reasonably simple and general procedures are available to increase it to desirable
levels. But statistical procedures alone are not sufficient to ensure an acceptable
level of validity. Regardless of their separate consideration in much of the literature,
the view of the authors is that two concepts are closely related.

Reliability

The reliability of a test is an index of how consistently a test measures whatever it
is supposed to measure (i.e., the construct). It is an integral part of the validity of
the test. If the instrument is sufficiently reliable, then the measurer can assume that
measurement errors (as defined via Equation 1) are sufficiently small to justify using
the observed score.

Thus, one can see that the closer the observed scores are to the true scores, the
higher the reliability will be. Specifically, the reliability coefficient is defined as the
ratio of the variance of these true scores to the variance of the observed scores. When
a respondent provides an answer to the item, there are influences on the response
other than the true amount of the construct, and hence, the estimated ability will
differ from the true ability due to those influences. There are many potential sources
for measurement error in addition to the respondents themselves, such as item
ordering, the test administration conditions and the environment, or raters, to name
just a few. Error is an unavoidable part of the measurement process that the measurer
always tries to reduce.

The reliability coefficients described below can be seen as summaries of
measurement error. The logic of most of these summary indices of measurement
error is based on the logic of CTT, but this logic can readily be re-expressed in the
Rasch approach. Note that the values calculated using them will be dependent on the
qualities of the sample of respondents, and on the nature and number of the items
used.

Internal consistency coefficients. Internal consistency coefficients inform about
the proportion of variability accounted for by the estimated “true ability” of the
respondent. This is equivalent to the KR-20 and KR-21 coefficients (Kuder &
Richardson, 1937) for dichotomous responses and the coefficient alpha (Cronbach,
1951; Guttman, 1944) for polytomous responses. By treating the subsets of items
as repeated measures (i.e., each item thought of as a mini-test), these indices apply
the idea of replication to the instrument that consists of multiple items. There are
no absolute standards for what is considered an adequate level of the reliability
coefficient: standards should be context-specific. Internal consistency coefficients
count variation due to the item sampling as error, but do not count day-to-day

21



M. WILSON & P. GOCHYYEV

variation as error (Shavelson, Webb & Rowley, 1989). The IRT equivalent of these
coefficients is called the separation reliability (Wright & Stone, 1979).

Test-retest reliability. Test-retest reliability is in some respects the complement
of the previous type of reliability in that it does count day-to-day variation in
performance as error (but not the variation due to the item sampling). The test-retest
index is simply the correlation between the two administrations. As the name of the
index implies, each respondent gives responses to the items twice, and the correlation
of the responses on the test and the retest is calculated. This type of index is more
appropriate when a relatively stable construct is of interest (in order to make sure
that no significant true change in the construct is influencing the responses in the re-
administration of the instrument). In addition, it is important that the respondents are
not simply remembering their previous responses when they take the test the second
time—the so-called “carry-over” effect (mentioned above). When calculating test-
retest reliability, the time between the two administrations should not be too long in
order to avoid true changes in the construct; and should not be too short in order to
avoid the carry-over effect.

Alternate-forms reliability.  Alternate-forms reliability counts both variation due
to the item sampling and day-to-day variation as error. In calculating this index,
two alternate but equivalent forms of the test are created and administered and the
correlation between the results is calculated. Similarly, a single test can be split
into two different but similar halves and the correlation of the scores on these two
halves can be computed—the resulting index is what is referred to as the split-halves
reliability. In this case, the effect of reducing the effective number of items needs to
be taken into account using the Spearman-Brown prophecy formula (Brown, 1910;
Spearman, 1910) Using this formula, the measurer can estimate the reliability of
the score that would be obtained by doubling the number of items, resulting in the
hypothetical reliability (see Wilson, 2005, pg. 149).

Inter-rater reliability. The concept of reliability also applies to raters. Raters and
judges themselves are sources of uncertainty. Even knowledgeable and experienced
raters rarely are in perfect agreement, within themselves and with one another. There
are four different types of errors due to raters: (a) severity or leniency, (b) halo effect,
(c) central tendency, and (d) restriction of range (For more information, see Saal,
Downey, & Lahey, 1980).

Generalizability Theory. The concept of reliability is central to a branch of
psychometrics called generalizability theory (Cronbach, Gleser, Nanda, &
Rajaratnam, 1972). Generalizability theory focuses on (a) the study of types
of variation that contribute to the measurement error and (b) how accurately the
observed scores allow us to generalize about the respondents’ behaviour in a defined
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universe of situations. “The question of reliability thus resolves into a question of
accuracy of generalization, or generalizability” (Cronbach et al., 1972, p.15). For an
introduction to generalizability theory see Shavelson, Webb & Rowley (1989).

Validity

A test is considered valid if it measures what it claims to be measuring. Test validity
can be better understood from the causal inference perspective: for the test to be a
perfectly valid, the degree of the construct (or presence or absence of it) should be
the only cause for the observed responses—but this we know to be unattainable.
This also implies that solely statistical procedures will hardly ensure validity —
correlations and other forms of statistical evidence will provide only a partial support
for test validity. Without a careful validation procedure, no amount of statistical
methodology can provide the jump from correlation to causation.

Validity of the instrument’s usage requires evidence as to whether the instrument
does indeed accomplish what it is supposed to accomplish. In general, a validity
argument in testing consists of not only providing evidence that the data support the
intended use and the inferences, but also showing that alternative explanations are
less warranted (Messick, 1989).

Many contemporary authors endorse the view that validity is based on a holistic
argument (e.g., the “Test Standards”—AERA/APA/NCME, 1999; Kane, 20006).
Nevertheless, evidence for validity can be of various strands (AERA/APA/NCME,
1999). These different strands of argument will be considered next.!?

Evidence based on the instrument content. Evidence of this kind is an attempt to
answer the question: What is the relationship between the content of the test and the
construct it is designed to measure? The measurer should study and confirm this
relationship using whatever evidence is available'. This is in fact what is happening
when one goes through the Four Building Blocks process described above. Going
beyond a mere definition of the construct, all the steps described in the four building
blocks can provide useful evidence: the development of the construct, the crafting
of the set of items, the coding and scoring of responses according to the outcome
space, and the technical calibration and representation of the construct through the
Wright map. Evidence based on instrument content is the central and first part of the
validity study — this evidence is a prerequisite for all the other strands of evidence
to be useful, in the sense that all the other forms of evidence are conceptually based
on this first strand.

Evidence based on the response processes. Asking respondents what they are
thinking about during and after the test administration provides validity evidence
based on the response processes involved in answering the items. Recall that
this information should also be used during the process of item development in
order to improve the items. As was mentioned above, the two major methods of
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investigations of response processes are think alouds and interviews. Reaction time
and eye movement studies have also been proposed as other methods to gather such
evidence (Ivie & Embretson, 2010; National Research Council, 2008). With the use
of computerized testing, recording the actions by the respondents such as movement
of the mouse cursor and log of used functions and symbols can also serve as useful
information for this strand of evidence (Cooke, 2006).

Evidence based on the internal structure. 1f the measurer follows the steps of
the four building blocks, a hypothesized internal structure of the construct will be
readily provided via the ordered locations. The agreement of the theoretical locations
on the construct map to the empirical findings in the Wright map provides direct
evidence of internal structure. The measurer needs to compare the hypothesized
order of the items from the construct map to the order observed from the Wright
maps: A Spearman rank-order correlation coefficient can be used to quantify this
agreement (see Wilson, 2005, p. 160). The higher the correlation, the better is the
match (note that there is no predetermined lowest acceptable value—this will need
to be a matter of judgement). Because this analysis occurs after the procedures of
the four building blocks has taken place, a negative finding implicates all four of the
steps: A low correlation implies that at least one of the four building blocks needs to
be re-examined.

One should also examine whether the item locations adequately “cover” the person
locations in order to makes sure that respondents are being measured adequately
throughout the whole continuum. For example, a small range of the difficulty of the
items would look like “an attempt to find out the fastest runner in a distance of two
meters”.

A similar question can be asked at the item level: the behaviour of the items need
to be checked for consistency with the estimates from the test. Consistency here is
indexed by checking that respondents in each higher response category tend to score
higher on the test as a whole. This ensures that each item and the whole test are
acting in concordance.'*

Evidence Based on Relations to Other Variables

One type of external variable is the set of results of a second instrument designed
to measure the same construct. A second type arises if there is established theory
that implies some type of relationship of the construct of interest with the external
variable (i.e., positive, negative, or null, as the theory suggests). Then the presence
or the lack of that relationship with the external variable can be used as one of
the pieces of evidence. Usually the correlation coefficient is adequate to index the
strength of the relationship, but, where a non-linear relationship is suspected, one
should always check using a scatterplot. Examples of external variables are scores
on other tests, teachers’ or supervisors’ ratings, the results of surveys and interviews,
product reviews, and self-reports.
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Just as we could apply the logic of the internal structure evidence down at the item
level, the same applies to this strand of evidence. Here the evidence is referred to
as differential item functioning (DIF). DIF occurs when, controlling for respondent
overall ability, an item favours one group of respondents over another. Finding DIF
implies that there is another latent variable (i.e., other than the construct) that is
affecting the probability of responses by members of the different groups. Ideally,
items should be functioning similarly across different subgroups. Respondents’
background variables such as gender or race should not influence the probability of
responding in different categories. One way to investigate DIF is to calibrate the data
separately for each subgroup and compare the item estimates for large differences
(Wilson, 2005), but another approach directly estimates DIF parameters (Meulders
& Xie, 2004). DIF is clearly a threat to the validity of the test in the sense of fairness.
Longford, Holland, & Thayer (1993), and Paek (2002) have recommended practical
values for the sizes of DIF effects that are large enough to be worthy of specific
attention.

Evidence based on the consequences of using an instrument. Since the use of the
instrument may have negative consequences, this type of evidence should have a
significant influence on whether to use the instrument or not. If there is a negative
consequence from using the instrument, alternative instruments should be used
instead, or developed if none exists. If any alternative instrument will also have the
negative consequence, then perhaps the issue lies with the construct itself. Note that
this issue arises when the instrument is used according to the recommendations of
the measurer. If the instrument is used in ways that go beyond the recommendations
of the original measurer, then there is a requirement that the new usage be validated,
just as was the original use. For instance, if the instrument was designed for the use
for placement purposes only, using it for selection or diagnosis will be considered
as a misuse of the test and should be avoided. The cautionary message by Messick
(1994) below better reflects this point:

Validity, reliability, comparability, and fairness are not just measurement
issues, but social values that have meaning and force outside of measurement
wherever evaluative judgments and decisions are made (p. 2).

In thinking of test consequences, it is useful to think of the four-way classification
of intended versus unintended use and positive versus negative consequences
(Brennan, 2006). Intended use with positive consequence is seldom an issue and
is considered as an ideal case. Similarly, for ethical and legal reasons, there are no
questions on avoiding the intended use with negative consequences. The confusion
is with unintended uses. Unintended use with a positive consequence is also a
benefit. The major issue and confusion arises with unintended use with negative
consequences. The measurer has a limited responsibility and a limited power in
preventing this being the case once a test is broadly available. However, it is the
measurer’s responsibility to document the intended uses of the test.
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CONCLUSION

Each use of an instrument is an experiment and hence requires a very careful design.
There is no machinery or mass production for producing the instruments we need
in education — each instrument and each construct requires a customized approach
within a more general framework, such as that outlined above. The amount of effort
you put in the design of the instrument will determine the quality of the outcomes
and ease of the interpretation based on the outcome data.

In order to model real-life situations better, there have been many developments in
psychometric theory that allow extensions and increased flexibility starting from the
simple probability-based model we have used here. Models that allow the incorporation
of item features (e.g. the linear logistic test model (Janssen, Schepers, & Peres, 2004))
and respondent characteristics (e.g. latent regression Rasch models (Adams Wilson
& Wu, 1997)), and multidimensional Rasch models (Adams, Wilson & Wang, 1997)
have been developed and used extensively. Recently there have been important
developments introducing more general modelling frameworks and thus recognizing
previously distinct models as special cases of the general model (e.g., De Boeck &
Wilson, 2004; Skrondal & Rabe-Hesketh, 2004)). As a result, the range of tools that
psychometricians can use is expanding. However, one should always bear in mind that
no sophisticated statistical procedure will make up for weak design and/or poor items.

Psychometrics as a field, and particularly educational measurement, is growing
and having an effect on every student’s journey through their education. However,
as these developments proceed, we need principles that act as guarantors of social
values (Mislevy, Wilson, Ercikan & Chudowsky, 2003). Researchers should not
be concerned about valuing what can be measured, but rather stay focused on
measuring what is valued (Banta, Lund, Black & Oblander, 1996). Measurement in
the educational context should be aimed squarely at finding ways to help educators
and educational researchers to attain their goals (Black & Wilson, 2011).

This chapter is not an attempt to cover completely the whole range of knowledge
and practice in psychometrics — rather, it is intended to outline where one might begin.

NOTES

' Note, do not confuse this use of “formative” with its use in the previous paragraph.

2 These four building blocks are a close match to the 3 vertices of the NRC’s Assessment Triangle
(NRC, 2001)—the difference being that the last two building blocks correspond to the third vertex of
the triangle.

3 Borrowed from Wilson (2005).

4 The fundamental assumption in most of the modern measurement models is monotonicity. As the
ability of the person increases, the probability of answering correctly increases as well (unfolding IRT
models being an exception—See Takane, (2007).

> i.e., It should provide useful information about certain locations on the construct map.

®  The carry-over effect can be better understood with the brainwashing analogy. Assume that the
respondent forgets his/her answers on the test items over repeated testings. Aggregating over the
sufficiently large (perhaps infinite) number of hypothetical administrations gives the true location of
the respondent (i.e., the True Score).
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7 In the development below, we will assume that the items in question are dichotomous, but the
arguments are readily generalized to polytomous items also.

8 Recall that instrument-focused approach of CTT is also based on the number correct. There is an
important sense in which the Rasch Model can be seen as continuation and completion of the CTT
perspective (Holland & Hoskens, 2003).

? Note that while some see this property as the advantage of the Rasch model, this has also been a point
of critique of the Rasch model. The critique lies in the fact that Rasch model ignores the possibility
that there is information in the different respondent response patterns with the same total. In our view,
the best resolution of the debate lies the view that the instrument is an experiment that needs to be
carefully designed with carefully-crafted items. This point will be elaborated later in the chapter.

10" quote from Occam cited in , Thorburn, 1918.

" The natural logarithm of the odds ratio.

2 Note that these strands should not be confused with categories from earlier editions of the “Test
Standards,” such as construct validity, criterion validity, face validity , etc.

'3 The simplest thing one can do is to examine the content of the items (this has been also intuitively
referred to as the face validity), though this is far from sufficient.

' This information will also usually be reflected in the item fit statistics used in the Rasch model.
Another indicator is the point-biserial correlation—the correlation of the binary score with the total
score, also called as the item-test or item-total correlation.
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2. CLASSICAL TEST THEORY

GENERAL DESCRIPTION

Classical test theory (CTT) is the foundational theory of measurement of mental
abilities. At its core, CTT describes the relationship between observed composite
scores on a test and a presumed but unobserved “true” score for an examinee.
CTT is called “classical” because it is thought to be the first operational use of
mathematics to characterize this relationship (cf. Gullicksen, 1950). Modern theories
of measurement, such as IRT (item response theory), do not obviate CTT or even
contradict it; rather, they extend it although there are important distinctions in both
the underlying philosophies and in the statistics employed for implementation.

A primary feature of CTT is its adherence to learning theories that follow notions
of classical and operant conditioning (e.g., behaviorism, social learning theory,
motivation). CTT presumes extant a domain of content apart from any particular
examinee, although — significantly — the domain is not reified; it remains an
abstraction. This perspective places CTT outside cognitivist theories of learning
(e.g., information processing, constructivism). Thus, for application of the theory,
the domain is defined anew in each appraisal. For example, if “reading” is the
domain for an appraisal, “reading” must be defined for that specific assessment. In
another assessment “reading” will have a slightly different meaning. Hence, in CTT,
no two independent tests are identical, although strictly parallel forms for a given
assessment may be developed. Further, in CTT the domain (whether “reading” or
other) with its theoretical parameters, can be accurately sampled by a test’s items
or exercises. This means (to continue the reading example) that the main idea of a
paragraph can be dependably deduced. The items on the test are stimuli designed to
manifest observable behavior by the examinee: the response. The focus of CTT is to
determine the degree to which the examinee has mastered the domain: the implied
individual’s true score which is inferred through responses to the test’s stimuli.

Lord and Novick (1968), in their classic work Statistical Theories of Mental Test
Scores, begin the explanation of CTT with definitions of a true score and an error
score. They maintained that one must keep in mind what a true score represents and
the basic assumptions about the relationships among the true score, the error score,
and the observed score. In the CTT framework, an individual’s observed score on
a test is considered to be a random variable with some unknown distribution. The
individual’s true score is the expected value of this distribution, typically denoted as
E (symbol for expectation; not to be confused with the error term described below)

T. Teo (Ed.), Handbook of Quantitative Methods for Educational Research, 31—44.
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in general statistical theory. The discrepancy between the individual’s observed
score and true score is measurement error, which is also unobserved and stochastic.
These features, then—true score, observed score, and erro—compose CTT.

From these elements CTT builds two central definitions, including (1) the true
score T of a person p on measurement g is the expected value of the observed score
X,,; and (2) the, error score £ which is the difference between the two elements
(i.e., observed score and the true score, X, - Tg,,)- Under CTT, T, is a constant yet
unobserved value, and X is arandom variable that fluctuates over repeated sampling
of measuring g. This fluctuation is reflected by a propensity distribution F, for that
person p and measurement g. The expectation in definition (1) is with respect to that
propensity distribution. From this stand point the mathematical model for CTT can
be deduced, and consists of two equations:

Top :E(Xgp) )
Egp = Xgp Ty @)

However, in most cases, researchers are interested in the traits of a population of
people rather than in the trait of a fixed person p. Therefore, any person p from
that population can be considered a random sample. The notation X, presents a
random variable defined over repeated sampling of persons in a population, which
takes a specific value X, when a particular person is sampled. Similarly, I, is a
random variable over repeated sampling of persons in a population, which takes a
specific value T, when a particular person is selected. Finally, £ is random variable
representing the error score. Under this construction, Lord and Novick (1968) had
the theorem that X, =T +E,. Without loss of generality, the subscript g is omitted
when only one measurement is considered. And, thus, is defined the familiar CTT
equation,

X=T+E 3)

It is important to remember that in equation (3), all the three elements are random
variables. In CTT they are called “random variables,” although in the more general
probability theory they are classified as stochastic processes.

CTT as a theory requires very weak assumptions. These assumptions include:
(a) the measurement is an interval scale (note: there are other types of scales such
as classifications; those are not part of the CTT model although with some score
transformation they can be incorporated in CTT); (b) the variance of observed
scores g is finite; and (c) the repeated sampling of measurements is linearly,
experimentally independent. Under those assumptions, the following properties
have been derived (Lord & Novick, 1968):

1. The expected error score is zero;
2. The correlation between true and error scores is zero;
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3. The correlation between the error score on one measurement and the true score on
another measurement is zero;

4. The correlation between errors on linearly experimentally independent
measurements is zero;

5. The expected value of the observed score random variable over persons is equal
to the expected value of the true score random variable over persons;

6. The variance of the error score random variable over persons is equal to the
expected value, over persons, of the error variance within person (i.e., az(Xg p));

7. Sampling over persons in the subpopulation of people with any fixed true score,
the expected value of the error score random variable is zero;

8. The variance of observed scores is the sum of the variance of true scores and the
variance of error scores; that is:

2 2 2
Oy =0p+0,. (4)

It is important to note that the above properties are not additional assumptions of
CTT; rather, they can be mathematically derived from the weak assumptions and
easily met by most test data. Because of this, CTT is a test theory that provides, “a
theoretical framework linking observable variables...to unobservable variables...a
test theory cannot be shown to be useful or useless” (Hambleton & Jones, 1993).

From this discussion, it can be realized that with additional assumptions, CTT can
be stated as a model eligible for testing against data. This empiricism is pronounced
in modern test theory, especially in IRT where the model is tested against data in
each new test application.

RELIABILITY

One of the most important features in CTT is reliability. The term is concerned with
precision in measurement, and it is described as consistency of test scores over
repeated measurements (Brennan, 2001). This definition has remained largely intact
since the early days of modern measurement, although its emphasis has evolved to
focus more on standard errors of measurement (cf. Brennan, 2001; Osterlind, 2010).
Evolution of the term’s development can be traced in each subsequent edition of the
Standards for Educational and Psychological Tests (cf. 1966, 1974, 1985, 1999).

The mathematics of reliability is quite straightforward. Working from the
formulation of CTT as given in formula (3) above (cf., X=T +E), I' and E are
uncorrelated

Pre =0 ®)

This leads directly to Lord and Novick’s final assumption, given above as the
8™ property in the list above and expressed in Equation (4): that is, variances are
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additive: ¢} =a; +a; . It follows that whenever an observed score is extant the
variance of true scores and the variance of error scores is less than the variance of
observed scores, or

2 2
<
Or =0y and o, <oy

The ratio of these variances is expressed as:

o; o;
Pr=F = (6)

2 T 2 2
Ty [

This ratio quantifies the reliability of using observed scores to describe the traits of a
population of individuals and p, is the reliability coefficient of the measurement. As
such, it is foundational to CTT. It is also obvious from equation (6) that the reliability
coefficient ranges from 0 to 1.

While this coefficient is easily derived, applying itto live data in a real-world testing
scenario is challenging at best, due primarily to practical considerations. From the
mathematical derivation we can see that reliability requires multiple measurements.
Further, in theory the measurements are presumed to be independent—even, a very
large number of them would be stochastic. Practically, this is difficult to achieve
even when forms of a test are strictly parallel. Using a given form and splitting it into
two halves does not obviate the problem. Another practical problem concerns the
attributes themselves. Attributes for educational and psychological measurements
are nearly always latent constructs or proficiencies. Here is where the problem
arises: as humans such latencies are labile, or changing in unpredictable and uneven
ways. At some level, this makes multiple measurements even more suspect.

These two practical difficulties are not easily overcome; nonetheless, recognizing
these conditions, reliability can be determined to a sufficient degree that it is useful
for our purposes. Due to these problems there is not a single, universally adopted
expression for the reliability coefficient. Instead, the reliability coefficient has many
expressions. Generally, they are of either about the internal consistency of a test or
its temporal stability. Internal consistency seeks to examine the degree to which the
individual elements of a test (i.e., items or exercises) are correlated. The Cronbach’s
coefficient alpha (described more fully later on) is an example of gauging a tests’
internal consistency. Similarly, a coefficient that indicates a test’s temporal stability
tries to find a similar correlational relationship between repeated measurements.

Although parallel forms are not necessary to describe relationships among
quantities of interest under CTT, it is usually easier to describe those statistics with
respect to parallel forms. Parallel forms are measures that have the same true score
and identical propensity distribution, between the measures, for any person in the
population. That is, for any given person p in the population, if forms f'and g satisfy
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that 7, =7_, and F, =F,, we say forms f'and g are parallel. The requirements of
parallel forms can be reduced to 7, =7_ and 02(E )= 02(E ,) for any given person p,
if X, and X, are linearly experlmentally 1ndependent that is, the expected value of
X, does not depend on any given value of X, , and that the expected value of X, does
not depend on any given value of X,

When two test forms are parallel, the distribution of any of the three random
variables, X, I, and E, and any derived relationships (e.g., correlations, covariances)
involving those random variables are identical between the two forms. In other words,
the two forms are exchangeable. It matters not which test form is administered.
However, those random variables do not have to follow a particular distribution,
such as a normal distribution.

Then, too, there can be types of parallelism. Non-parallel forms, depending
on the degree to which they differ from parallelism, can be tau-equivalent forms,
essentially tau-equivalent forms, congeneric forms, and multi-factor congeneric
forms. Specifically, tau-equivalent forms relax the assumption of equal error variance
but the assumption of equal true scores still holds; essentially tau-equivalent forms
further relax the assumption of equal true scores by requiring only that the true
scores for any given person between two forms differ by a constant which depends
only on the forms but not the individual; congeneric forms allows a shortening
or lengthening factor of the measurement scale from one form to the other after
adjusting for the constant difference in true scores at the origin of one form; multi-
factor congeneric forms further breaks down the true score on either form into
different components and allows each component to have a relationship similar to
that exists between congeneric forms. For mathematical representations of those
types of non-parallelism, see Feldt and Brennan (1989).

If Xand X’ are observed scores from two parallel forms for the same sample of
people from the population, we have

Pxx» = Px = p)zz,r (7)

where X and X" are test scores obtained from the two parallel forms.

That is, the reliability coefficient can be thought of as the correlation between two
parallel forms, which is the square of the correlation between the observed scores
and true scores.

Therefore, based on formula (7), if parallel forms are administered to the same
sample, the reliability coefficient is the correlation coefficient squared. Sometimes,
the same test form is administered twice assuming no learning has happened
between the two administrations, the reliability coefficient is then based on the two
administrations. This is the referred to as the test-retest reliability.

Often, a single test form is administered once and only one total test score is
available for each individual. In this case, formula (6) has to be used. The challenge
is that this formula provides the definition, not the calculation of reliability. Like the
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true scores, the variance of true scores in the population is unknown and has to be
estimated from the data. Ever since Spearman (1910) and Brown (1910), different
coefficients have been proposed to estimate test reliability defined in formula (6).
Those approaches are based on the thinking that each test score is a composite score
that consists of multiple parts. Spearman-Brown’s split half coefficient is calculated
under the assumption that the full test score is the sum of two part-test scores and
that the two parts are parallel:

Py = (®)

where py . is the correlation between the two parts. If X| and X, are two parallel
forms of the same test, the above equation also serves as a corrected estimation
for the reliability coefficient of the test if the test length is doubled. For more
information on the relationship between test length and test reliability, see Osterlind
(2010, pp. 143-146).

As parallelism between the two parts is relaxed, other formulas can be used. The
applications of those formulas with degrees of parallelism can be found in Feldt and
Brennan (1989). Reuterberg and Gustafsson (1992) show how confirmatory factor
analysis can be used to test the assumption of tau equivalence and essentially tau
equivalence.

The most popular reliability coefficient remains Cronbach’s coefficient alpha
(1951). This coefficient is a measure of internal consistency between multiple parts
of a test and is based on the assumption that part scores (often, item scores) are
essentially tau-equivalent (i.e., equal true score variance but error score variances
can be different across parts). Under this assumption, coefficient alpha is:

apx=( . )["”’?"’“] ©)
n—1 oy

where 7 is the number of parts, af( is the variance of observed scores of the full test,
and af(/ is the variance of observed scores for part f.

When the parts are not essentially tau equivalent, Cronbach’s alpha is the lower
bound of the standard reliability coefficient. If the n parts are » items in a test that
are scored dichotomously (0 or 1), Cronbach’s coefficient alpha reduces to KR-20
(Kuder & Richardson, 1937):

20px:(n’11)[1_2¢f(1_¢f)) (10)

Ox

where @, is the proportion of scores of 1 on item f.
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STANDARD ERROR OF MEASUREMENT

Another index is one closely related to reliability of a test: the standard error of
measurement (SEM). The SEM summarizes within-person inconsistency in score-
scale units. It represents the standard deviation of a hypothetical set of repeated
measurements on a single individual (i.e., the standard deviation of the distribution
of random variable £_ in (2). In CTT models, it is usually assumed that the standard
error of measurement is constant for all persons to facilitate further calculations.
With this assumption,

SEM =0, =0, (1= py) (11)

where p, is the reliability coefficient.

The choice of the reliability coefficient makes a difference in calculating the
SEM, because different reliability coefficients capture different sources of errors.
For example, a SEM based on a test-retest reliability reflects the inconsistency of test
scores for an individual over time, while a SEM calculated on Cronbach’s coefficient
alpha reflects the inconsistency of test scores for an individual over essentially tau-
equivalent test forms. Thus, when reporting or examining the SEM, one should be
aware what source of error is reflected.

ESTIMATION OF TRUE SCORES UNDER CTT

One purpose of CTT is to make statistical inferences about people’s true scores so
that individuals can be compared to each other, or to some predefined criteria. Under
CTT, the true score of each person 7  is fixed yet unknown. In statistics, we call such
a quantity a parameter. A natural following question is: Can we find an estimate for
that parameter? With only one test administration, the commonly used practice to
estimate a person’s true score is to use the observed score x . This is an unbiased
estimate of 7 which is defined as the expected value of the random variable X , as
long as the weak assumptions of CTT hold. Sometimes, an additional distributional
assumption is added to a CTT model to facilitate the construction of an interval
estimation of an individual’s true score. A commonly used assumption is that o} is
normally distributed. With this additional assumption, the interval estimation of T, is
x, £z, , where z is the value from the standard normal distribution corresponding
to the probability associated with the interval.

Another less commonly used construction of a point estimation and interval
estimation of T, depends on an additional assumption that, with a random sample
of multiple persons on whom test scores are observed, the random variables I" and
X follow a bivariate normal distribution. With this assumption, a point estimate of
an individual’s true score is Pyx, = 1) + ey, where p is the reliability coefficient,
and u, is the population mean of observed scores , which can be replaced by the
sample mean of X in practice. The corresponding interval estimation for T, is
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[py(x, =)+ 1] £ z0,4/py - It can be shown that this construction is consistent
with confidence intervals of mean predictions in multiple linear regression.

VALIDITY

The idea that test scores are used to make inferences about people is directly related
to another important concept in measurement, namely, validity. The past five decades
has witnessed the evolution of the concept of validity in the measurement community,
documented particularly in the five editions of the Standards for Educational and
Psychological Testing published in 1954, 1966, 1974, 1985, and 1999, respectively
(referred to as the Standards since different titles are used in those editions). In the
first edition of the Standards (APA, 1954), validity is categorized into four types:
content, predictive, concurrent, and construct. In the second edition of the Standards
(AERA, APA, & NCME, 1966), validity is grouped into three aspects or concepts:
content, criterion, and construct. In the third edition of the Standards (AERA, APA,
& NCME, 1974), the three categories are called types of validity. In the fourth edition
of the Standards (AERA, APA, & NCME, 1985), the three categories are called
“types of evidence” and the central role of construct-related evidence is established.
In the fifth edition of the Standards (AERA, APA, & NCME, 1999), the content/
criterion/construct trinitarian model of validity is replaced by a discussion of sources
of validity evidence.

The description of sources of validity evidence in the Standards is consistent
with and perhaps influenced by Messick’s treatment of validity as an integrated
evaluative judgment. Messick (1989) wrote:

Validity is an integrated evaluative judgment of the degree to which empirical
evidence and theoretical rationales support the adequacy and appropriateness
of inferences and actions based on test scores or other modes of assessment. ..
Broadly speaking, then, validity is an inductive summary of both the existing
evidence for and the potential consequences of score interpretation and use.
Hence, what is to be validated is not the test or observation device as such
but the inferences derived from test scores or other indicators — inferences
about score meaning or interpretation and about the implications for action that
the interpretation entails... It is important to note that validity is a matter of
degree, not all or none... Inevitably, then, validity is an evolving property and
validation is a continuing process. (p. 13)

The process of collecting validity evidence — validation—can be carried out by
examining the test content, its relationships with criteria, and the adequacy and
appropriateness of inferences and actions based on test scores or other modes of
assessment (Messick, 1989, p. 13). More recently, Kane (2006) considers validation
as “the process of evaluating the plausibility of proposed interpretations and uses”
and validity as “the extent to which the evidence supports or refutes the proposed
interpretations and uses” (p. 17). Importantly, he divides the validation process
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into a stage of interpretative argument and a stage of evaluation of the interpretive
argument (i.e., validity argument). The interpretive argument serves as the theoretical
framework for the proposed interpretations and uses of test results. The validity
argument evaluates the coherence, plausibility, and assumptions of the interpretive
argument. Kane’s (2006) treatment of validity incorporates the unitary notion of
validity as an integrated judgment and also provides some guidance for validation
studies. With this treatment, other previously used notions such as face validity,
content validity and convergent validity can be incorporated into the two stages of
validation.

Despite this evolution, the idea that construct-related evidence of validity has the
central role with content- and criterion-related evidence playing a subordinate role is
still prevalent in textbooks on measurement and psychological testing (e.g., Mclntire
& Miller, 2006; Raykov & Marcoulides, 2010). One reason may be due to the fact
that it is easier to empirically collecting evidence that way.

CTT AND OTHER TECHNIQUES

Notably, CTT models have been related to other techniques as a special case and
most such relationships are based on some mathematical and statistical equivalence.
Before talking about those equivalences, it is important to point out that CTT is
a measurement theory that bears both semantic and syntactic definitions. With a
semantic definition, the more abstract constructs can be linked to observable
behaviors. With a syntactic definition, those constructs and relationships between
them can be stately more broadly. These two aspects together are made possible
through “a particular, mathematically convenient and conceptually useful, definition
of true score and on certain basic assumptions concerning the relationships among
true and error scores” (Lord & Novick, 1968, p. 29).

CTT is also a theory of composite scores, with a focus on properties of intact
tests. If multiple forms are available, observed scores obtained from those forms
can be subject to a one-factor confirmatory factor analysis and the latent factor
serve the role of true score in CTT. Parallel and non-parallel test forms correspond
to constraints on parameters of factor analysis models. One the other hand, when
only one test form is available, treating items (or test parts) on that test as multiple
test forms, we can assess the applicability of different reliability coefficients. For
example, Reuterberg and Gustafsson (1992) have shown that Cronbach’s coefficient
alpha assumes an equal factor loading from the latent factor to item scores but
does not assume equal residual variances. In this sense, CTT is a special case of
confirmatory factor analysis. However, this type of testing through factor analysis
is for assumptions that are later imposed to form different CTT models, not for
the weak assumptions of CTT themselves. For example, in the case of Cronbach’s
coefficient alpha, we can use factor analysis to test the applicability of this reliability
coefficient for a particular test but it would be incorrect to claim that CTT does not
apply if factor analysis results are not consistent with data.
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Unlike CTT, IRT is for item-based models. Because characteristics can be
examined for various items separately under IRT, items are not bound with a
particular test and they are not sample dependent. In contrast, item characteristics
under CTT depend on the sample and items are compared against the composite
scores on the tests. However, CTT statistics can be derived using IRT with very
general assumptions (Holland & Hoskens, 2003).

There are still more perspectives on CTT. For instance, CTT can also be viewed
as a special case of generalizability (G) theory, first introduced by Cronbach and
colleagues in response to the limitations of CTT (L. J. Cronbach, Gleser, Nanda, &
Rajaratnam, 1972; L. J. Cronbach, Rajaratnam, & Gleser, 1963; Gleser, Cronbach,
& Rajaratnam, 1965; Rajaratnam, Cronbach, & Gleser, 1965). In CTT, the error
term E represents undifferentiated random error and does not distinguish different
sources of the error. In G theory, multiple sources of error can be investigated with
one design. The universe score in G theory is analogous to the true score in CTT
and is the score obtained if that individual has taken all possible items that tap the
proficiency/ability that the test is trying to measure under all possible conditions.
Of course, since an individual cannot take all the possible items, the universe score
is unknown. However, if the items on a particular test form can be considered as
a random sample of all possible items and different conditions such as raters can
be considered as a random sample of all possible conditions, the error term can
be decomposed to reflect multiple sources, together with a source of variability
of true scores across different people. In CTT, the observed scores only have the
variability of true scores due to different people and the variability of scores of an
agglomeration of errors.

ITEM ANALYSIS

Although the focus of CTT is usually with the total test scores, analyzing items
that consist of the test is useful during the earlier stages of test development (e.g.,
field testing) and can be informative when examining item and test shifting. The
two most important statistics for any item within the CTT framework are (a) item
difficulty and (b) item discrimination. For a dichotomous item scored as correct
or incorrect, item difficulty (usually denoted as p) is the percentage of individuals
in the sample who answered the items correctly (that is, item difficulty measures
the “easiness” of an item in the sample). For a dichotomous item, the correlation
between item and total test scores is the point-biserial correlation. A large correlation
suggests larger difference in the total test scores between those who answered the
item correctly and those who answered the item incorrectly. That is, the correlation
between item and total test score is a measure of item discrimination. When multiple
score points are possible for one item, item difficulty is the average score on that
item expressed as a proportion of the total possible point; and item discrimination
is the Pearson product moment correlation between item and total test scores. In
reality, item discrimination is usually calculated as the correlation between the item
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scores and total test scores excluding the item scores for the item being evaluated.
This “corrected” item discrimination eliminates the dependence of total test scores
on the item being evaluated.

From the above, it is obvious that both item difficulty and item discrimination
under CTT is dependent upon the sample of individuals whose responses are used
for those calculations. For example, the same item may have a large p values if
data are from a higher-ability group of individuals, compared to a lower-ability
one. Actually, this interdependency between item and sample is the most attacked
weakness of CTT, especially when it is compared to IRT.

AN ILLUSTRATIVE STUDY

Obviously—and logically—examining test items and exercises after a test has been
administered to a group of examinees is the most frequent application of CTT.
Such item analysis has several purposes, including interpreting the results of an
assessment, understanding functioning of an item wholly, exploring parts of the
item (i.e., the stem, distractors), discovering its discriminating power, and much
more. While many of the statistics used for the purposes can easily be calculated by
hand, it is much more convenient to use a computer. And, of course, many computer
programs, both home grown and commercial, are available to do this. We explain
the output from one program, called MERMAC, to illustrate typical statistical
and graphical CTT output for item analysis. Figure 1 illustrates the output for one
multiple-choice item, in this case Question 44.

Note in Figure 1 that the item analysis is presented in two types: tabular and
graphical. In the table (left side of the figure), the results are reported for each fifth
of the population, divided on the basis of their total test score (the most able group
is at the top 5th; the least able is the 1st group). Such fractile groupings are common
in item analysis. In addition to showing item discrimination between five ability
groups, they can also be used in reliability analyses. In the table, the raw number
of examinees who endorsed a given response alternative is shown. This is useful
because following down the ability groups (from the top 5th to the 1st) one observes
that more of the less able examinees endorsed incorrect responses, showing greater
discrimination for the item. Additionally, it is instructive for both interpretation

Matrix of Responses by Fifths for Question 44
B Is Correct Response Percent of Correct Response by FiTths Tor Question 44

A (8) c D E OMIT
Sth 1 161 3 1 ] 0 Sth +
4th 24 145 9 1 0 0 4th +
3rd 30 i 16 = 0 0 ard +
2nd 44 106 18 5 0 0 2nd +
1st 37 B85 29 4 0 [ 1st +
+ + + + + + + +
DIFF 0.19  ( 0.71 ) 0.09 0.02 0.00 0.00 0 10 20 30 40 50 60 70 80 90 100
RPBI 0.24 (0.34) 0.19 0.06 0.00 0.00

Figure 1. Graphical item analysis output from the MERMAC program.
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of test results and for item improvement, to note which distractors were selected
by what ability group. Below the table are two rows, labeled “DIFF” and “RPBI”
meaning “difficulty” and “point bi-serial correlation.” The difficulty statistic is
the percent of examinees who endorsed each response alternative (both correct
and incorrect). For example, overall 71 percent of examinee responded correctly
to this item. The point bi-serial correlation is a theoretical conception of treating
dichotomous test items (typically multiple-choice) as a true dichotomy between
correct and anything not correct: as 1, 0. A correlation coefficient is then calculated
between this theoretical variable and the examinee’s total test score. This coefficient
is interpreted as a measure of the item’s discriminating power. A positive value for
the coefficient indicates good discrimination; hence, one looks for a positive RPBI
value for the correct alternative and negative value for the distractors, the case with
the example item in Figure 1.

The right side of the MERMAC output is a graphical representation of the table,
showing an asterisk for each ability group. The horizontal axis is percent endorsing
the correct response; hence it is a graph of the Difficulty row.

As an illustration, suppose the same test is administered to students taking the
same statistics course in four semesters. This test consists of 32 items: 4 multiple-
choice items that clearly state there is only one answer, 7 multiple-choice items
that ask students to choose as many (as few) correct answers, the other 21 items are
constructed-response items where students are asked to conduct simple calculations
or to explain and interpret results related to topics covered in the course. The 11
multiple-choice items are worth 1 point each, with partial points possible for those
with multiple answers. Of those constructed-response items, 9 are worth 1 point
each, 6 worth 2 points each, 2 worth 3 points each, and 4 worth 4 points each. Partial
credits are possible for all constructed-response items. The total possible score for
this test is 54 and there are 54 students during the four semesters who took this test.
The data for four students and each item are in Table 1. Assuming the 32 items are
essentially tau equivalent, the Cronbach’s coefficient alpha calculated from formula
(9) is .803. The corresponding SEM, calculated from formula (11), is 1.47. The 32
items can also be split in half so that the number of items and the total possible scores
are the same in the two split halves. The correlation between the two split parts is
.739, which results in a split-half reliability coefficient of 0.850 using equation (8).
The corresponding SEM, calculated from formula (11), is 1.12.

Item difficulties and corrected item discriminations are also in Table 1. There are
several very easy items. In this example, everyone answered Item 10 correctly so
this item does not have any discriminating power. Item 9 is a dichotomously scored
item and 4 out of the 54 students answered this item incorrectly, which renders a
discrimination coefficient rounded to zero. All but one answered Item 3 correctly
and the resultant item difficulty is .99 and item discrimination is —.22. This is a very
easy item. In fact, it is so easy that an incorrect response is more likely given by a
person with a higher total test score than one with a lower total test score. This item
should be deleted.
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Table 1. An example of item and test scores

Student 1112 13 14 15 16 17 I8 19 110 111 112 113 114 115 116 117 118 119
1 1 0 1 1 1 0 1 051 1 1 1 1 251 051 1 O
2 1 0 1 1 1 1 1 1 1 1 o 1 1 251 1 1 0 1
53 1 1 1 2 251 1 051 1 1 1 3 250 050 2 3
54 11 1 2 2 1 1 051 1 1 0 3 251 051 1 1
Difficulty 93 .89 .99 .79 .69 .78 94 91 93 1.00 .80 .93 .80 .67 .59 .66 .69 .45 .38

Discrimination .28 .29 -22 .54 .68 .48 .05 .15 .00 .00 .22 .26 .51 .58 .19 .12 .14 .30 .52

Student 120 121 122 123 124 125 126 127 128 129 130 31 I32 Total Splithalf-1 Splithalf-2
1 1 0 0 1 15051 1 1 1 O 1 2 27515 12.5

2 11 1 2 1 051 1 1 1 0 1 2531515 16.5

53 1 0 0 052 2 2 0 O 1 1 1 353 20 19

54 1 0 1 1 150 2 0 1 1 0 1 3 35 185 16.5
Difficulty 98 35 .57 .57 .61 .59 86 .61 .68 .69 .34 81 .74

Discrimination .26 .14 .12 .15 .46 .46 .56 .32 .22 .13 22 .14 46

From the above, it is evident that the approach to mental measurement offered
by CTT is both powerful and useful. It represents an application of the theory of
true score and it has several practical applications in real-world testing situations,
including developing a test, reporting a score for an examinees, item analysis, and
some understanding of error in the measurement. For these reasons CTT remains a
most popular approach to measuring mental processes.
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3. ITEM RESPONSE THEORY

INTRODUCTION

The past few decades have witnessed an exponential growth of applications of Item
Response Theory (IRT), also known as “latent trait theory” or “item characteristic
curve theory,” in educational research and measurement. Simply speaking, IRT
refers to a system that describes the relationship between an individual’s response to
an item and the underlying trait being measured (Embretson & Reise, 2000). Such a
relationship is typically summarized and assessed by a family of statistical models,
namely, item response models.

The major tenet of IRT modeling is that a respondent’s recorded score on a test
item is driven by certain unobservable, or latent, trait. In comparison to traditional
test theory (i.e., classical test theory, or CTT), IRT has some unique properties and
advantages for test construction, scoring, ability assessment, etc. Hambleton and
Swaminathan (1985) summarized four main advantages of IRT models: (a) item
parameter estimates do not depend on the particular group of examinees of the
population for which the test is developed; (b) examinee trait assessment does not
depend on the particular set of administered items sampled from a population pool of
items; (c) statistical information is provided about the precision of the trait estimates;
and (d) traditional reliability information is replaced by relevant statistics and its
accompanying standard errors. The aforementioned features make IRT modeling
more flexible and powerful, in contrast to CTT. For instance, when two examinees
were administered with samples of items of differing difficulty, test scores based
on traditional testing methods may fall short in providing information about the
performance and ability of each examinee. Within the IRT framework, however, this
task is easier, because estimates of examinee abilities are independent of sampled
items from the same item population pool.

IRT has been applied to a wide spectrum of research settings, including, but not
limited to, computer adaptive testing, test equating, identification of biased test
items, and latent trait scoring. In the following sections, we will first introduce
basic IRT terminologies and statistical models. We will then provide an illustrative
example of applying IRT to a real data set. Finally, we discuss some research issues,
and future directions for IRT modeling and application.

T. Teo (Ed.), Handbook of Quantitative Methods for Educational Research, 45—67.
© 2013 Sense Publishers. All rights reserved.



X.FAN & S. SUN

DICHOTOMOUS ITEM RESPONSE MODELS

Assume that we are interested in assessing one’s mathematics ability. The ability
or trait, as a construct, is latent and not observable. As such, it can only be inferred
from one’s observable performance on certain measurement instruments, such as
a mathematical test. Logically, the better one scores on the math test, the higher
mathematical ability the respondent is judged to possess. The relationship between
math ability and one’s math test score, thus, can be modeled to assess one’s latent
trait, as well as the quality of measurement items.

Typically, item response modeling is based on three general assumptions:
(a) the underlying trait is unidimensional (recently, however, more progress has
been made about multi-dimensional IRT models, MIRT); (b) conditional on the
respondent’s level of the latent trait being measured, responses to different items are
independent of each other, which is referred to as conditional independence or local
independence; and (c¢) responses to an item can be depicted as a mathematical item
response function (Ayala, 2009).

Item Response Function (IRF)

IRF describes the relationship between an examinee’s underlying ability and the
corresponding probability to endorse an item. The function can be succinctly
presented as below (Yen & Fitzpatrick, 2006):

pi(0)= p.(X; = x|{0}, {5,}) (1

In Equation 1, 8 denotes the latent trait being measured, p denotes the probability for
endorsing an item, X, represents the score for item 7, and J, represents the parameters
of that particular item. The IRF function expresses the probability for one examinee
to score x, on that item, given that examinee’s level on the latent trait and item
parameters. Put differently, one’s response to an item is predicated on both person
parameter (e.g., latent trait level) and item parameters (e.g., item difficulty). A
graphical presentation of the IRF is usually called item response curve.

Another relevant graphical technique is called item characteristic curve (/CC) or
item characteristic function, which plots the expected response score in relation to
the trait being measured. For a binary item, the /CC can be expressed as (Hambleton
& Swaminathan, 1985):

£0)=BO)"0,O)™ 2

In Equation 2, P represents the probability to correctly answer the item, whereas
O=1 — P. In addition, U represents the dichotomous responses where correct
response coded as 1 and incorrect response coded as 0. In short, the /CC expresses
the expected probability for an examinee to select response 1, for the given level of
the examinee’s ability or trait.
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Response options, however, can be more than two, and can be of different
relationships (e.g., ranking order). Further, the /RF does not follow a linear
relationship; instead, /RF has two major forms. One is called normal ogive model,
which is the integral of normal distributions. The other one is based on logistic
regression function distribution for a dichotomous outcome, and this is the more
widely used form. It should be noted that normal ogive models and logistic regression
models are comparable in many respects, and they yield similar results with simple
transformations (Hambleton, Swaminathan, & Rogers, 1991). In this chapter, we
focus on logistic regression models for various item response functions. We begin
with the basic one-parameter /R7 model with dichotomous response options.

One-Parameter Logistic Model

The one-parameter logistic model (1PL), also known as Rasch model, involves only
one item parameter for estimation. The following equation for 1PL, in addition to the
item parameter, entails a person parameter & which refers to the respondent’s ability
or trait level to endorse the item. Again, the response option 1 means endorsing the
item, or answering the item correctly, and response option 0 means not endorsing the
item, or answering the item incorrectly.

exp(ax B ﬁl)

X, =10.,p)= ’
p( is | N ﬁl) 1+exp(05_ﬁi) l

=1,2,--,n 3)

where, X, is the response of person s to item i (response options 0 or 1),
0 is the latent trait level of person s, and
B, is difficulty level of item i.

In the model, p(X = 1|6, B,) denotes the probability of one individual with trail level
0, to endorse that item in the trait-consistent direction. The only parameter, item
difficulty, represents the required trait level for an individual to have 50% chance to
respond to an item correctly, i.e., in the expected direction. So, the higher the value
of the parameter £, the more difficult the item is for examinees to endorse.

Figure 1 presents the item characteristic curves of three items with different
difficulty levels (b =-2, 0, and 2, respectively). The f parameter for an item is the
point on the trait axis where the probability of a correct response is 0.5. It should
be noted that the underlying trait and the item difficulty are projected to the same
coordinate, x axis. The basic assumption is that the higher the item difficulty value
is, the higher ability level the item requires for endorsement. Therefore, along the
trait continuum, from the left to the right, the ability level goes from lower to higher
levels. The lower the § value, the more the item is located to the left end of the trait
continuum. Therefore, a characteristic curve denoting difficulty value -2 is located
to the left of the curve of difficulty of 0, which then is to the left of an item with
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Figure 1. ICCs for three items with different difficulty levels.

difficulty of 2. From another perspective, in the middle of the graph is a horizontal
line which intersects with the three curves. The line represents p = .5 probability to
endorse an item. In fact, when an examinee’s ability matches the item difficulty (i.e.,
6 = p), the probability of endorsing the item is 0.5. Also, at this point, the slope of the
ICC (i.e., the first derivative of the function) reaches its maximum of 0.25 when 1PL
is utilized for modeling the function (Hambleton & Swaminathan, 1985; Hambleton
etal., 1991).

Two-Parameter (2PL) Logistic Model

In addition to item difficulty parameter, the 2PL model involves another item
parameter o, known as item discrimination. The discrimination parameter is
proportional to the /CC slope at the difficulty level b along the trait continuum
(Hambleton et al., 1991). The larger the discrimination parameter, the more powerful
the item is in separating lower-ability from higher-ability examinees. Theoretically,
the discrimination parameter can range from negative infinity to positive infinity. A
negative value of discrimination, however, is counterintuitive because it means the
decrease of probability of endorsing an item with the increase of ability. In practice,
item discrimination parameter o typically is within the range between 0 and 2
(Hambleton et al.). Other researchers recommended that reasonably good values for
item discrimination parameter range from .8 to 2.5 (e.g., Ayala, 2009). The equation
representing 2PL model is as below:
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Figure 2. ICCs for three items with different discrimination parameters.

p(st = 1|‘95,[>’,-,a[) = eXp[al.(Hs _ﬂi)]

_ Li=1,2, - n 4)
1+expla, (0, — )]

where, X, = response of person s to item 7 (with response options 0 or 1)
0= latent trait level for person s

B, = difficulty level for item i
a. = discrimination power for item i

Similar to the 1PL model, the 2PL involves both person parameter and item
parameters, but with one more parameter a. Figure 2 presents the /CCs of three
items of 2PL model. The three items possess the same item difficulty level (5 = 0).
Therefore, we can see that the three ICC cross at the point which corresponds
to 0.5 endorsement probability. As explained earlier, at the probability 0.5, the
item difficulty matches the measured ability perfectly. However, because of the
different values of discrimination parameter (o= 0.5, 1.0, and 2.0, respectively),
the three curves show different “steepness.” The steepest curve corresponds to the
highest discrimination power (o = 2), whereas the most flat curve has the lowest
discrimination power (o = .5).

Three-Parameter (3PL) Logistic Model

Compared with 1PL and 2PL IRT models, the 3PL model incorporates one more
item parameter ¢, which represents the guessing parameter or pseudo-chance-level
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parameter. This additional parameter represents the probability for a low-ability
examinee to answer the item correctly, but the correct response is not the result
of the examinee’s ability, but of some other random errors such as guessing. The
mathematical expression of the 3PL is presented below:

_ el B
p(Xis_1|057ﬂi’ai7c[)_ci+(l Ci)l+exp[a,.(03—[>’[)]’1_1’2’ > 1 Q)

where, X, = response of person s to item 7 (with response options 0 or 1)
0, = latent trait level for person s
B, = difficulty level for item i
a, = discrimination power for item i
¢, = random guessing factor for item i

Figure 3 presents three /CCs for three items, with the same item difficulty (5 = 0) and
item discrimination (o = 1), but with different guessing parameter values (¢ = 0.0,
0.1, and 0.2, respectively). On the graph, the guessing parameter value is reflected
by the asymptote on the left end of the trait continuum. As the graph shows, for low-
ability examinees, even with a trait value of —3, the persons have some probability
of endorsing the items, or answering the items correctly, depending on the guessing
parameter values.

0.9

3PLICC

< % - ——T OO T

-3 -2 -1 1 2 3

0,
trait

Figure 3. ICCs for three items with different guessing parameter values.
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Up to this time, we have focused on binary response items. In practice, however,
an item may involve three or more response options. For instance, an item with
Likert-scale response options could have five response categories ranging from 1
(strongly disagree) to 5 (strongly agree). As such, binary response models do not
apply, and polytomous response models should be utilized.

POLYTOMOUS ITEM RESPONSE MODELS

There are three major types of polytomous IRT models: graded response model,
partial credit model, and nominal response model. Because of space constraints, we
will discuss the graded response model with some details, but only provide brief
descriptions of other two models.

The Graded Response Model (GRM)

The GRM is an extension of the 2PL binary model. Assuming we have an item
with five response categories, we will have the following response dichotomies:
(a) category 1 vs. categories 2, 3, 4, and 5; (b) categories 1 and 2 vs. categories 3,
4, and 5; (c) categories 1, 2, and 3 vs. categories 4 and 5; and (d) categories 1, 2, 3,
and 4 vs. category 5. Suppose we attempt to measure students’ self-esteem with the
following exemplar item:

On the whole, I am satisfied with myself-

strongly disagree slightly disagree undecided moderately agree strongly agree
X 1 2 3 B 5
\ \ \ | l

Threshold j 1 2 3 4

Equation 6 below is the mathematical presentation of the GRM, where p, (0)
denotes the probability of endorsing each response option category x or higher as a
function of the latent trait 6, whereas p, (¢) denotes the probability of responding in
the first category. By the same token, p_(6) represents the probability of responding
in the second category, and so on.

expla, (0 )]
I+ expla, (0— )]
P, (0)=1.0-p.,(0)
Pn(0)= p,(0)=p5(0)
Ps(0) = piy(0) = p, ()
P(0)= p,(0)— p5(0)
pis(0) = pi5(0)-0

P;(@): =1,2,--,n j=1,2,--,n—1 (6)
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Category Response Curve (CRC). In the GRM, category response curves (CRC)
are used to describe the probability of endorsing a particular category option as a
function of the latent trait. In general, each CRC peaks in the middle of two adjacent
threshold parameters ﬁij, and the more peaked or narrow the CRC, the more item
discrimination power it has (Embretson & Reise, 2000). Figure 4 below is a graphical
presentation of CRC of a measurement item with seven graded response options:

Item characteristic curve: 1 graded response model

1.0

0.8 -

0.6 -

Probability

04

0.2 -

Ability

Figure 4. CRCs for an item with seven graded response options.

Partial Credit Model (PCM)

As an extension of the 1PL model, PCM is originally developed to score test items
which require multiple steps, and hence entailing assigning examinees partial credits
for their response. Consider a simple example. An examinee needs to solve a math
problem: (5*4) + 6 =? To reach the final solution, the examinee has to go through
a step-by-step process, where the first step requires multiplication and the second
step requires summation. That said, an examinee who only gets the first step right
will be awarded partial credit, whereas one who gets both steps right will receive
full credit. In PCM, all items are assumed to have the same slope or discrimination
power. The only parameter is termed step difficulty or transition location parameter,
often denoted as J. Compared to the GRM, the equation for the PCM is relatively
unwieldy and hence is not presented here. Interested readers can consult any book
discussing polytomous IRT models for more details.
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Nominal Response Model (NRM)

Nominal response models do not involve ordered response categories. Instead, all
response options are parallel to each other. Multiple-choice test is a case of applying
nominal models. The model models the probability for an examinee with certain
trait level to select a particular response category. Bock’s nominal response model
is presented below:

exp(aix 0 + c[x)

pix (6) = m
z exp(aixa + cix)

x=0

()

In Equation 7 above, i represents items, and x represents the response categories. By
adding identification constraints, the two parameters of the model can be estimated.
It should be pointed out, however, the graded response model discussed previously
can be considered as a special case of nominal response models, with all the response
categories being ordered.

SOME MAJOR CONSIDERATIONS IN IRT APPLICATIONS
Model Specification and Fit Assessment

If the earlier-introduced unidimensionality and local independence assumptions
are met, an inevitable question is how to select the best model among the wide
range of IRT models including 1 PL, 2 PL, 3 PL, and polytomous models. In other
words, with what procedure and against what criteria do we judge whether an IRT
model captures the sample data well? Consider a simple example: the actual data
follow an IRT model with varying slopes, but we fit a 1PL model which assumes
a uniform slope value (i.e., the same discrimination power) across items. Then,
it is reasonable to expect the 1PL model would fit poorly or biasedly because it
involves model misspecification. In practice, often, different items of a test are
represented by different IRT models. A pertaining case is when a test is comprised of
both dichotomous and polytomous response items. In such circumstances, model fit
assessment usually unfolds on an item-by-item basis (DeMars, 2010). Specifically,
researchers rely on various residual statistics by computing the difference between
observed and model-implied (expected) proportion-correct (or proportion endorsed)
on a particular item. Large residuals typically indicate poor item fit which may
result from a variety of reasons. For example, violation of unidimensionality, a non-
monotonous relationship between item response and the underlying trait, unspecified
item parameters are only a few possible cases in point (Embretson & Reise. 2000).
It is also possible to judge model fit at the test level. The typical approach is similar
to procedure of model evaluation in structural equation modeling. By comparing
two different models, often one nested within another, researchers can examine
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the likelihood ratio comparison indices (e.g., Chi-square) to determine whether
statistically significant differences exist between the complex model and the more
parsimonious one. Later, we will present an example applying this procedure to
compare 1PL and 2PL model fit with the same set of data.

Item and Test Information

With an instrument, each item contributes to our understanding of an examinee’s
position on the ability continuum, and reduces our uncertainty about one’s ability
location. Correspondingly, item information function, denoted as 1(0), serves as an
index to evaluate the amount of information that one particular item contributes to
ability assessment. /(0) is related to the previously discussed item parameters. In
general, item information is higher under the conditions: (a) when the difficulty
value f is closer to the trait value 6, than when the two values are far different from
each other; (b) when the discrimination value « is high; and (c) when the value of
guessing parameter approaches zero.
For dichotomous item response models, /(0) can be derived from the following:

PP LU

=i 8
PO-P0) )

In the above, P () denotes the conditional probability of endorsing a binary item,
given the item response function, and P/(6) refers to the first derivative of item
response function, given the estimated trait level. Further mathematical reduction
can lead us to a simplified form for item information function of 2PL models
(Embretson & Reise, 2000; Hambleton et al., 1991):

1,(0) = a’R(0)(1-F(0)) ©)

Figure 5 presents the item information functions of three items under 2PL response
model. The three items possess the same difficulty values but different discrimination
parameter values (0.5, 1.0, and 2.0, respectively). Clearly, the item with the largest
discrimination value demonstrates the highest information, whereas the less
discriminative item shows less item information. Moreover, as mentioned earlier, an
item would convey more information when item difficulty matches an examinees’
trait level. In the present example, when trait level is close to the difficulty value
0, the item conveys more information in differentiating examinees’ ability levels.
For examinees with trait levels far from =0 (e.g., 1.5 < <?2), the items, even
the one with the highest level of item information function, will provide much less
information to help us in differentiating examinees with different ability levels.

An important property of item information curves is that they are additive. When
item information from all the items on a test is added, it leads to the test information
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Figure 5. Item information functions of three items.
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Figure 6. Test information function of a three-item test.

curve. Figure 6 is the plot of test information function by combining the three items
in Figure 5 above. This test information curve informs us that this test of three items
would be most effective in differentiating examinees with trait level 4 in the range of
—1 to +1. For examinees with trait level 8 below —1, or above +1, this test would not
be effective in differentiating the examinees.

Item information in IRT modeling analysis plays a role similar to what reliability
does in classical test theory. Each item response function can be transformed to
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corresponding item information function, which provides insight about the
precision of ability assessment along the trait range. As item information [/(6)] of
different items is additive, the resultant sum across all the items on a test is the
test information [/(#)], which reflects the information contribution of the whole
instrument to ability assessment. In addition, the standard error of estimation, or
standard error of measurement, which reflects the variance of latent trait estimation,
is the reciprocal of test information, as shown in Equation 10. As such, the higher
the test information, the smaller the standard error of estimation is, and the less error
there is in ability assessment.

A 1
SE(0) = — 10

(0) NG (10)
In Equation 10, /(6) represents the test information, and SE(é) represents the
standard error of estimation of the whole test or instrument. In classical test theory,
the standard error of measurement is constant for a designated test, regardless of
examinee’s ability level. In /IRT, however, the standard error varies with the trait
level 4, and hence conveys more precise information with respect to a specified trait
level 6. Also, because measurement error is mapped to the same metric as the latent
trait, confidence intervals can be easily constructed.

ADVANCED TOPICS OF IRT
Multidimensional Model

As mentioned earlier, two important assumptions of IRT model estimation are
local independence and unidimentionality of the underlying trait being measured.
Nonetheless, the latter assumption does not always hold in practical settings. It is very
likely that an examinee’s response to a test is driven by more than one latent trait. For
instance, an examinee’s performance on a math test depends on his/her math ability.
On the other hand, understanding the wording of the math problems is a prerequisite
for tackling the question. Thus, the examinee’s response or final score could be a
reflection of both math ability, and reading ability, although these two types of ability
may play different roles in the hypothesized situation. As a result, IRT model based
on unidimentionality assumption is not the most applicable in this or other similar
situations. Further, if one arbitrarily ignores the situation of multidimensionality
and continue to apply a model with unidimensionality constraints, calibrated scores
could be misleading and difficult to interpret (Yen & Fitzpatrick, 2006).

Test Score Linking and Equating

When examinees take different tests measuring the same latent construct, are
those examinees still comparable in terms of their test scores? The aforementioned
question directly speaks to test score equating and scale linking. Simply speaking,
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linking is the process of aligning different metrics so that parameter estimates
from different samples or models can be compared. Equating refers to procedures
of adjusting or converting, to a common metric, the scores of different examinees
on different tests so as to better compare individuals (Ayala, 2009). Generally
speaking, the goal of linking is to adjust item parameter estimates, whereas the goal
of equating is to adjust person location estimates (Ayala, 2009). Equating test scores
with IRT models usually entail four steps: (a) select the suitable equating design,
(b) decide the appropriate item response model, (c¢) build a common metric for item
or trait parameters, and (d) determine the scale for test score reporting (Hambleton
& Swaminathan, 1985). Researchers who are more interested in test equating can
consult the more comprehensive and detailed work by Kolen and Brennan (2010).

Differential Item Functioning (DIF)

DIF refers to such a situation where respondents from different groups (e.g., gender
groups, cultural groups) have the same level of the measured ability (#), but show
different probability for endorsing an item. Alternatively stated, the item is said
to be biased against a particular group of respondents as opposed to other groups.
When DIF occurs, for the group that the test is biased against, the test scores fails
to represent the true levels of examinees’ ability or trait that is being measured. A
typical approach for detecting DIF is to compare item response functions. The logic
is straightforward: an item with D/F will not show identical response function across
different groups. Conversely, if an item does show identical response functions
across groups, then no DIF exists (Hambleton et al., 1991).

ILLUSTRATIVE EXAMPLE FOR BASIC /RT MODELING ANALY SIS
Data Sample

The data used for this illustration came from the Texas Assessment of Academic
Skills (TAAS) tests administered to 11"-grade students in the early 1990s (Fan,
1998). The original dataset is very large, so we randomly selected 1000 observations
for the current illustrative example. The test contained 48 reading items and 60
math items. For illustrative purpose, we only selected 10 math items. All items
are dichotomously coded, with 0 denoting incorrect answer and 1 denoting correct
answer.

Assessment of Data Unidimensionality

As mentioned earlier, unidimensionality is an important assumption for most /RT
models. Therefore, we conducted categorical factor analysis with the weighted least
squares estimation in Mplus (Version 5.0). The overall y* test of one-factor model
is not statistically significant (X2(35) =47.574, p > .05). Other fit indices also showed
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that the one-factor model fits the data well (CFI = .990; TLI = .987; RMSEA = .019;
SRMR =.049). The “scree” plot of eigenvalues for the estimated polychoric
correlation matrix was shown in Figure 7, which suggests that one-factor solution is
viable for the data.

We also examined the two-factor solution, and the results indicated that this would
be overfactoring the data (e.g., only one item loaded high on the second factor (see
Cole et al., 2011). Factor loadings of both the one-factor solution and the two-factor
solution were presented in Table 1. It should be noted, in the two-factor solution as
shown in Table 1, Item 10’s loading on the second factor was beyond the value of

Figure 7. Eigenvalue “scree” plot for the 10-item “mini-test”.

Table 1. Factor loadings of one- and two-factor solutions

Two Factors

Items One Factor Factor 1 Factor 2
1 0.487 0.564 —-0.070
2 0.499 0.548 —-0.037
3 0.385 0.449 —-0.061
4 0.576 0.541 0.049
5 0.687 0.574 0.116
6 0.282 0214 0.082
7 0.507 0.540 —-0.018
8 0.570 0.487 0.094
9 0.512 0.578 —-0.051

10 0.782 0.001 1.681
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typical expectation, and it is very different from those of the rest of the items. Further
inspection revealed a negative estimate of the residual variance for that item. Such a
Haywood case further supports the one-factor solution.

IRT Analysis

Ahost of specialized software has been developed for /R7 modeling analysis. Among
them, BILOG-MG is designed mainly for binary item analysis. PARSCALE can
perform analysis of both binary and polytomous items. Another popular software
is MULTILOG, which can be used for implementing most IRT models, including
rating scale, graded response, multiple choice, partial credit, etc. More recently,
IRTPRO has come out (Cai, Thissen, & du Toit, 2011) to replace MULTILOG. The
new software incorporates almost all the functions that MULTILOG can provide,
and is more powerful and promising because it deals with both unidimensional and
multidimensional /RT models. It should be pointed out that most IRT software is
specialized, and hence has limited size of users. On the other hand, some general
statistical software such as Mplus or SAS also offers some IRT modeling analysis.
But, if a researcher is interested in more comprehensive IRT analysis, specialized
software typically is the better option.

For the present analysis, we utilized the beta version of IRTPOR software (Cai,
Thissen, & du Toit, 2011). Cronbach’s coefficient o for the “mini-test” of ten items
is 0.63, with more detailed item statistics and other information in Table 2.

Table 2. Item statistics and related information of the “mini-test”

Item p-value (std.) Corrected Item-Total v Jtem-Deleted’ Coefficient o.
1 0.910 (0.286) 0.2435 0.6202
2 0.857 (0.350) 0.2786 0.6131
3 0.907 (0.291) 0.1881 0.6285
4 0.799 (0.401) 0.3398 0.5997
5 0.841 (0.366) 0.3671 0.5953
6 0.782 (0.413) 0.159 0.6394
7 0.632(0.483) 0.3097 0.6077
8 0.764 (0.425) 0.3312 0.6013
9 0.618 (0.486) 0.326 0.6034

10 0.725 (0.447) 0.4621 0.5678

2 For calculation of these correlation coefficients, the “total” was obtained without the
contribution of a particular item in question.

b This is the coefficient a of the remaining nine items, without the contribution from a
particular item in question.
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We first fitted a 2PL model to the data. Estimates of item difficulty parameter
and those of item discrimination parameter a were presented in Table 3.

By comparing Table 2 and 3, we can see that the two tables provided consistent
information about item discrimination and difficulty (see also, Fan, 1998). In
Table 2, the corrected item-total correlation represents item discrimination. Values in
Table 2 showed that Item 10 has the highest discrimination power (.4621), whereas
Item 6 possesses the lowest discrimination power (.1590). In Table 3, corresponding
discrimination parameter values for Item 10 is 2.13, and for Item 6 is 0.53. For
item difficulty, item p-value in Table 2 represents the percentage of endorsement for
each item. Lower item p-value means smaller proportion of respondents endorsing
an item, or answering an item correctly, and thus the more difficult the item is. For
example, In Table 2, Item 1, with an endorsement percentage of .91, is the least
difficult among the ten items, and while Item 9, with endorsement percentage of
.618, is the most difficult on this “mini-test”. In Table 3, Column c¢ represents item
difficulty information. It is shown that Item 1 has the lowest difficulty value of
—2.75 (reverse sign to the tabled value), and item 9 has the highest difficulty value
of —0.58.

It should be noted that IRTPRO outputs two different forms of parameter estimates.
Correspondingly, the response function also takes two forms (Equation 11; see
IRTPTO user’s guide). The former function (first part of Equation 11) is called slope-
intercept model, where a is the slope or discrimination parameter and c is the intercept.
In the latter equation (second part of Equation 12), f is the threshold parameter.

1 1
P: = | —
1+expl— (a0, +C)]  1+expl-a,0.-B)

1,2, -on  (11)

Table 3. 2PL model item parameter estimates [logit: ad + c or a(0 —b)]

Item o (s.e.) c(s.e) b (s.e.)
1 1.09 (0.17) 2.75(0.17) —2.53(0.31)
2 1.05 (0.15) 2.14 (0.13) —2.05(0.23)
3 0.80 (0.15) 2.53(0.14) -3.14(0.51)
4 1.25(0.15) 1.77 (0.12) —1.42 (0.13)
5 1.75(0.21) 2.47(0.19) —1.41(0.11)
6 0.53(0.11) 1.35(0.08) —2.57(0.48)
7 0.96 (0.12) 0.65 (0.08) —0.68 (0.10)
8 1.23(0.14) 1.51 (0.11) -1.23 (0.11)
9 0.98 (0.12) 0.58 (0.08) —-0.59 (0.09)

10 2.13 (0.25) 1.66 (0.17) —0.78 (0.06)
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If we compare Equation 11 above with Equation 4 introduced earlier, simple
algebraic re-arrangement leads to the following:

P 1 _ expla, (0. — )]
1+ exp[—a[ (Ov - ﬁ,)] 1+ exp[—a[ (Os - ﬁ,)]

i=1,2, n (12)

Attention should be paid to the positive sign before ¢, and negative sign before /.
So, to interpret S and ¢ comparably, we need to add a negative sign to the ¢ values
presented in Table 3.

Figure 8 provides the graphs of trace lines and item information curves for three
selected items on this “mini-test”: Item 6, Item 7, and Item 10. The two “trace lines”
(the two solid curve lines in each graph) represent the respective probabilities of
endorsing one of the two response categories (0, 1) for a given ability level §, which
is represented by the x-axis of the graph. The item information curve is represented
by the dashed line in each graph. As the graph indicates, each item provides the
maximum amount of information around the point where the two trace lines for
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Figure 8. Trace lines and item information curves of three selected items.
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the two response categories (1, 0) intersect with each other. In other words, an item
provides most information about an examinee’s ability when an examinee’s 6 level
is at the point where exist approximately equal probabilities for the examinee to
endorse either of the two categories.

Among the three selected items, Item 6 provides very little information along
the continuum of latent trait , and the item information curve is both very low and
essentially flat. This means that this item contributes very little to our knowledge
about examinees’ ability or performance, as it does not differentiate between
examinees with lower- vs. higher-ability for any level of 6. The main reason that Item
6 provides very little item information at any ability level is that, [tem 6 has very low
discrimination value (Table 2: corrected item-total » = 0.1590; Table 3: a = 0.53).
Consequently, this item is not useful in discriminating or separating examinees with
lower vs. higher ability levels for any given 6 level.

Item 7 and Item 10 have very different item information curves. Item 7 has
somewhat symmetrical, but very low and flat item information curve, with the lowest
and highest point of the curve being approximately 0.05 and 0.2, respectively. This
means that, [tem 7 is not really that informative in differentiating examinees’ ability
levels, and it contributes little to our understanding about which examinee has higher
trait level compared with other examinees. On the other hand, Item 10 also has
somewhat symmetrical information curve, but its curve is very steep, with the lowest
and highest point of the curve being 0.00 and 1.10, respectively. In addition, the steep
curve peaks approximately at the point of & = —0.75. All this informs us that, (a) this
is a relatively informative item with respect to an examinee’s trait level; (b) this
item is the most informative for examinees with trait level  at approximately —0.75;
(c) for examinees with trait level 6 being considerably lower or higher than —0.75,
this item will be much less informative. For example, this item would be almost
useless in differentiating among examinees with trait level > 1. The difference
between Items 7 and 10 as discussed above is reflected by their discrimination index
information presented in Table 2 (corrected item-total correlations of .0.3097 vs.
0.4621, respectively) and Table 3 (item discrimination parameter estimates of 0.96
vs. 2.13, respectively). It is obvious item information function provides much richer
information than item discrimination index alone.

The brief discussion above reveals one crucial difference between item
discrimination information (e.g., corrected item-total correlation) in classical test
theory and item discrimination and item information function in IRT. In classical
test theory, we talk about item discrimination as if it were applicable for examinees
at any trait (6) level. In IRT, however, item information function is operationalized
and quantified relative to a given trait level 6. Within this framework, it may not be
an issue of whether or not an item is informative or useful in general, but whether
an item is informative relative to certain # level range. Because of this, an item
may or may not be informative, depending on what trait level is being considered.
This characteristic of item information naturally leads to the discussion about test
information curve below.
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Figure 9 presents the test information curve of this 10-item test. As discussed
above, test information curve has similar meaning as item information curve, but
this is about the whole test. In this graph, there are two curve lines. One (solid curve
line) is the test information curve line, and the other (dashed line) is the standard
error line. The horizontal axis represents the continuum of the trait level (¢) being
measured. The left vertical axis represents the amount of test information relative to
the trait level 6. The right vertical axis represents the magnitude of standard error of
estimation relative to the trait level 8. As defined in Equation 10, the standard error
of information in IRT modeling is the inverse of the square root of test information.

Figure 9 shows that the test provides much more information for the trait level
range of —2 << 0. That is, in the lower ability range, this “mini-test” provides
more information in differentiating examinees with different levels of the trait. In
contrast, this “mini-test” provides relatively little information in the higher ability
range (i.e., #>0). The reason for the low information for high-ability examinees
is simple: the items on this “mini-test” were easy, as shown in Table 2. It should
be noted that, unlike classical test theory in which standard error of measurement
is a constant for all examinees with different levels of trait measured by a test,
the magnitude of standard error of estimation in IRT framework has an inverse
relationship with the test information. As a result, the magnitude of standard error of

Group 1, total information curve
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Figure 9. Test information curve (solid line) of the “mini-test”.
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Figure 10. Hypothetical test information function for a test designed for a broad
range of trait level.

estimation is not constant across the ability range; instead, the magnitude of standard
error of estimation is related to the trait level 6. In Figure 9, the magnitude of
standard error of estimation is considerably greater for the trait level range of 6> 1,
and our measurement based on this “mini-test” is most precise around trait level of

= —1 where test information curve peaks. So this “mini-test” provides much more
measurement precision for examinees at or around the level of §=-1.00. But for
examinees with higher performance level, the scores of this “mini-test” are much
more crude with considerably larger measurement error.

Test information curve provides extremely useful information for test improvement
considerations. Whether or not the test information curve as shown above is good
enough depends on the purpose of this “mini-test.” For example, if this “mini-test”
is designed to separate students into two groups, one group with very low math
performance such that they will need remedial courses before they can take regular
math classes, and the other group who are ready to take regular math classes now. If
the cut-off point separating these two groups is set at approximately & = —1, then this
test information curve is perfect for this intended purpose. Lack of test information
above 6 = 0 would not be our concern, as we are only interested in separating those
at or around # = —1, and we have no interest in differentiating those with math trait
level above 6 = 0.

On the other hand, if the purpose is to provide measurement to cover a broad
range of trait level in math performance (e.g., =2 < 8 < 2), the test information curve
in Figure 9 would be considered deficient, primarily because it provides very little
information about higher range of the trait level (e.g., 8 > 0). To serve such a purpose,
we will need a test information curve similar to Figure 10, which has relatively high
level of test information over the range of —2 <4 < 2.

The fit indices showed that, in general, the 2PL model fits the data well
(M,=53.83, df=35, p=.02, RMSEA = .02). The log likelihood is 9256.19, but
this information is only informative when this model is being compared to another
nested model. Therefore, we proceeded to test a more constrained and nested
IPL model. By constraining the item discrimination parameter to be equal across
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Table 4. 1PL model item parameter estimates [logit: ad + ¢, or a(0 — b)]

Item o (s.e.) c(s.e.) b (s.e.)
1 1.12 (0.06) 2.78 (0.13) —2.48 (0.15)
2 1.12 (0.06) 2.19 (0.11) —-1.95(0.12)
3 1.12 (0.06) 2.74 (0.13) —2.44(0.15)
4 1.12 (0.06) 1.70 (0.09) —-1.52(0.10)
5 1.12 (0.06) 2.04 (0.10) —1.82 (0.11)
6 1.12 (0.06) 1.58 (0.09) —1.41(0.10)
7 1.12 (0.06) 0.68 (0.08) —0.61 (0.07)
8 1.12 (0.06) 1.46 (0.10) —1.30 (0.09)
9 1.12 (0.06) 0.61 (0.08) —0.54 (0.07)

10 1.12 (0.06) 1.21 (0.09) —1.08 (0.08)

all items, the previous 2PL model is reduced to 1PL model. As shown in Table 4,
the discrimination parameter for the ten items is the same (¢ = 1.12), and only
the item difficulty parameter ¢ varies across the items. Because this 1PL model is
more constrained, we expect that the model would not fit the data as well as the
2PL does. The fit indices do show a worse fit (M, =120.72, df= 44, p=.0001,
RMSEA = .04). The corresponding log likelihood is 9325.75. The difference of log
likelihood values of nested models approaches chi-square distribution, which would
provide a statistical test for testing which model fits better. As such, the difference
of log likelihood between 1PL and 2PL is 69.56 (9325.75 — 9256.19 = 69.56), with
df difference (df,) being 9 (i.e., 44 — 35=09). This test on the difference of log
likelihood values of nested models is statistically highly significant. In other words,
the difference of model fit between the two models is not trivial, and it is more than
what we would expect from sampling error or sampling fluctuation. Based on this
evidence, we would conclude that the 2 PL model is preferable to the 1PL model for
this measurement data set.

RESEARCH ISSUES

Item response theory, as a measurement framework that is still developing, holds
great promise for applications in educational measurement and research, as it offers
many advantages over the framework of classical test theory. Here, we briefly
discuss a few directions wherein IRT may have important research applications.
First, test construction and scale development is an area where IRT can have
significant influence. In contrast to traditional methods, IRT can more readily
identify biased test items, thus enhancing measurement validity for examinees
from different populations. Measurement invariance is always an important issue
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in cross-cultural and cross-group research. As mentioned before, identifying items
biased against certain groups (e.g., an ethnic or marginalized group) can greatly
improve the validity of measurement and assessment. Some scales may be unbiased
in one cultural setting, but may turn out to be biased in another cultural setting.
For example, a scale can be more readily endorsed by males than females in Asian
culture, but not necessarily in the Western culture. To learn more about applying IRT
to scale construction, interested readers may consult, for example, Wilson (2005).

Second, for assessment in the areas of personality, cognition, and attitudes, IRT
applications may provide information not readily available before. For example,
application of the mixed-measurement IRT model, incorporating both latent-trait
and latent-class analysis, can help detect both qualitative and quantitative individual
differences (Embretson & Reise, 2000). Recently, Huang and Mislevy (2010)
integrated evidence-based design and polytomous Rasch model to assess students’
problem-solving ability. As the authors discussed, combining cognitive psychology,
task design, and psychometric analysis will open new avenues for educational
measurement. Moreover, in addition to providing the standard descriptive information
about items, IRT also can be very useful for explanatory purposes. Interested readers
are encouraged to read Boeck and Wilson (2004) for more information.

Third, Computerized Adaptive Testing (CAT) and item banking are another area
to which IRT can contribute significantly. With the rapid diffusion of new computing
technologies and psychometric modeling, CAT has clearly become a trend for the
future. As compared to traditional paper-and-pencil tests, CAT possesses a number of
advantages, such as practicality of automatically creating tests tailored to individual
examinees, and the possibility of shortening the test length, not to mention the
time and cost saving. For CAT applications, a viable item bank should consist of
a sufficient number of items with good discrimination power and difficulty level
across the latent trait range (Thissen & Wainer, 2001). IRT is fundamental for item
selection, item bank construction, and for scoring examinees in any CAT applications.

Fourth, IRT is a promising technique for assessing reliability and validity. For
example, IRT can help address the construct validity of cognitive and developmental
assessment. Specifically, the technique helps assess dimensionality, decompose
cognitive process, detect qualitative differences among respondents, and facilitate
interpretation of measured ability (Embretson & Reise, 2000). In this regard, the
classic work by Wainer and Braun (1988) devotes several chapters explicating the
linkage between IRT and various aspects of measurement validity.

Fifth, many sustaining and challenging research topics are related to test equating
and scale calibration. These topics include, but not limited to, scale drift, equating
strains, scale shrinkage, as well as nonparametric IRT models (Kim, Harris, & Kolen,
2010). Tackling some of these issues depends on advances of IRT, computational
statistics, statistical theories, and other related methodology areas.

For future research, more work is needed in applying IRT in the context of
multidimensional latent traits. Indeed, in recent years, there have been significant
development and advancement of MIRT. Nonetheless, software application of MIRT
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is still rare, and research applications of MIRT are still lacking. On a different note,
bridging the gap between IRT and other latent variable modeling techniques is
another fascinating area. Factor analysis, multilevel modeling, structural equation
modeling and IRT have differences, but also share commonalities (Skrondal &
Rabe-Hesketh, 2004). More research is warranted to link these techniques and apply
them in broader research and application contexts.
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4. MULTIPLE REGRESSION

Multiple regression is a commonly used analytic method in the behavioral,
educational, and social sciences because it provides a way to model a quantitative
outcome variable from regressor variables.! Multiple regression is an especially
important statistical model to understand because special cases and generalizations
of multiple regression are many of the most commonly used models in empirical
research. Correspondingly, multiple regression occupies a core position in the
analytic architecture of behavioral, educational, and social science research.

In this chapter we (a) provide an overview of multiple regression, (b) emphasize
the meaning and interpretation of the various regression model parameters,
(c) discuss inference based on the regression model, and (d) briefly discuss selected
important topics in an effort for readers to be in a better position to understand and
use the multiple regression model. Throughout the chapter we use an illustrative
data set to motivate and demonstrate an application of the multiple regression
model. After a delineation of the model and presentation of the analytic details,
we turn to a “big picture” perspective in the discussion section on what we see
as the three primary purposes of multiple regression. In particular, we discuss the
primary purposes of the multiple regression being (a) description, (b) prediction,
and (c) explanation, which may not be mutually exclusive.? Being able to effectively
interpret, contribute to, critique, or use results of the research literature requires a
fundamental understanding of multiple regression. We hope this chapter provides
such a fundamental understanding of multiple regression.

ILLUSTRATIVE DATA

Throughout the chapter we will refer to a data set from Cassady and Holden (2012)
consisting of 486 undergraduate students (304 females and 182 males) from a
midsized Midwestern university. The sample was obtained from a psychology
participant pool. The majority of the participants were majoring in teacher education.
Two females did not report their age. The mean (standard deviation) of the age for
the 302 females that reported their age was 20.7550 years (.2024) and for the 182
males was 21.3352 years (.2276). The data consist of measures of college academic
performance, study skills, test anxiety (emotional and cognitive), and feelings of
tests as threats, among others.

T. Teo (Ed.), Handbook of Quantitative Methods for Educational Research, 71-101.
© 2013 Sense Publishers. All rights reserved.
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College academic performance is operationalized by current college grade point
average (GPA). Study skills are operationalized by the Study Skills and Habits
(SS&H) scale (Cassady, 2004), which measures typical patterns of study behaviors
and abilities. Emotional Test Anxiety (ETA) is operationalized by the Sarason
Bodily Symptoms scale (taken from the Reactions To Tests Scale from Sarason,
1984), which measures physical responses to stress and is used as an indicator of
the emotionality/affective component of test anxiety. Cognitive Test Anxiety (CTA)
is operationalized by the CTA scale (Cassady & Johnson 2002), which measures
distractibility, worry over tests, and self-deprecating ruminations during both test
preparation and test performance. The feeling of tests as threats is operationalized
by the Perceived Test Threat (PTT) scale (Cassady, 2004), which measures students’
perceptions of a specific upcoming test as threatening to their academic or personal
status. In addition, other variables were measured (e.g., age, race, SAT math and
verbal scores), but we do not discuss them here because they are not the focus of our
discussion of the multiple regression model (see Cassady, 2001, for related details).

The descriptive statistics for the full sample, which contain missing data, are
given in Table 1. Table 2 contains the descriptive statistics for the data after listwise
deletion was performed. Listwise deletion is when all individuals are deleted from
the analysis when those individuals have any missing data on the relevant variables.?
After listwise deletion considering the five variables, the sample size was reduced to
411. Table 3 shows the correlation matrix of the variables. In addition to the values
of each of the correlations, the p value for the two-sided test of the null hypothesis
is provided, along with an asterisk, which denotes statistical significance at the .05
level, or two asterisks, which denotes statistical significant at the .01 level.

In addition to the tabular summaries, Figure 1 is a scatterplot matrix, which
shows a plot of the bivariate relationship between each pair of variables. Scatterplot
matrices can be helpful to visually gauge the bivariate patterns in the data, such as
the strength of linear and nonlinear relationships, and to check for possible outliers
or miscoded data. Notice that the principal diagonal is blank because it represents
the location where each variable would be plotted against itself. Also notice that

Table 1. Descriptive statistics for the observed data

Descriptive Statistics

N Minimum Maximum — Mean  Standard Deviation

Current College GPA 466 1.80 4.00 3.1192 48941
Study Skills and Habits 472 8 32 21.97 4.850
Emotional Test Anxiety 472 10 40 15.86 6.486
Cognitive Test Anxiety 458 17 68 35.11 10.828
Perceived Test Threat 464 27.00 81.00 48.6272 10.24374
Valid N (listwise) 411
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Table 2. Descriptive statistics after listwise deletion

Descriptive Statistics After Listwise Deletion

N Minimum Maximum — Mean  Standard Deviation

Current College GPA 411 1.80 4.00 3.1447 48873
Study Skills and Habits 411 8.00 32.00 21.94 4.928
Emotional Test Anxiety 411 10.00 40.00 16.01 6.593
Cognitive Test Anxiety 411 17.00 68.00 35.04 10.853
Perceived Test Threat 411 27.00 81.00 48.5328 10.32122
Valid N (listwise) 411

Table 3. Correlation table with the two-tailed significance level (p-value) for the
correlation coefficient

Correlations
Current Study Skills Emotional — Cognitive  Perceived
College GPA and Habits Test Anxiety Test Anxiety Test Threat
Current  Pearson Correlation 1 186%* —.106%* —301%* —-.056
College gjo (2-tailed) .000 031 .000 256
GPA N 411 411 411 411 411
Study Pearson Correlation .186** 1 —.203%* —383%*%  —270%*
Skills  gjo (2-tailed) .000 .000 .000 .000
iziits 411 411 411 411 411
Emotional Pearson Correlation —.106%* —.293%%* 1 JT19%* .320%*
Test  sig. (2-tailed) 031 .000 .000 .000
Anxiety 411 411 411 411 411
Cognitive Pearson Correlation — —301%** —.383%* T19%* 1 469%*
TeSt. Sig. (2-tailed) .000 .000 .000 .000
Anxiety 411 411 411 411 411
Perceived Pearson Correlation —.056 —270%* 329%* 469%* 1
Test  gig. (2-tailed) 256 .000 .000 .000
Threat 411 411 411 411 411

** Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).

the plots below and above the principal diagonal are redundant, as they are the
transposition of one another. Now that a description of the data has been provided,
we begin our discussion of multiple regression model.
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Figure 1. Scatterplot matrix showing the bivariate relationship of each of the variables.
Note that the principal diagonal is blank because that represents the location where each
variable would be plotted against itself. The plots above the principal diagonal are the
transposition of the corresponding plots below the principal diagonal.

THE MULTIPLE REGRESSION MODEL

Multiple regression can be described as a general data analytic system due to its
flexibility in handing different types of data and research questions (e.g., Cohen, 1968).

Multiple regression attempts to model the variation in an outcome variable as
a linear function of a set of regressors. This process is accomplished through a
linear equation that quantifies, via regression coefficients, the contribution of each
regressor variable on the outcome variable.

The population multiple regression model linking the set of regressors to the
outcome variable can be written as

Yi:ﬁo"'ﬁlei""""'/’)KXKi"'gw (1)

where Y, is the observed value of the outcome variable for the ith individual (i = 1,
..., N), B, is the population value of the intercept, f3, is the population value of the
regression coefficient for the Ath regressor (k=1, ..., K), and ¢, is the population
value of the error for the ith individual. The error is the part of an individual’s score
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that cannot be accounted for by the particular regression model (i.e., the model
with the K regressors). Notice that the multiple regression model is a linear model
because Y, is a sum of an intercept, K coefficients multiplied by the corresponding
variables, and an error term.*

Estimated Regression Model Based on Data

Although the population regression coefficients (i.e., the §, values) from Equation 1
are of interest, they are generally unknowable. However, the regression coefficients
can be estimated based on data. The sample analog to Equation 1 is

X:b0+b1X1i+"'+bKXKi+eia 2

where b is the estimated intercept, b, is the estimated regression coefficient for
the kth regressor, and e, is the error for the ith individual. The errors (i.e., the e,
values) are the difference between the model-implied value® of the outcome and
the observed value of the outcome. The model-implied value, denoted Y, for the ith
individual, is obtained by using each individual’s set of regressors in the estimated
regression equation:

¥ =By +bX, 4t b X (3)

The value of }}, obtained by this equation is the model-implied conditional mean of the
outcome variable for the particular combination of the ith individual’s K regressors.

Using the illustrative data, we will model GPA (our outcome variable) as a
linear function of SS&H, ETA, CTA, and PTT (our four regressors). The multiple
regression equation that models GPA (i.e., the analog of Equation 3) for our example
data is

GPA, = b, + b,SS&H, + b,ETA, +b,CTA, +b,PTT,. (4)

The realized values of the regression equation or, in other words, the model with the
regression coefficients that have been estimated, is

Gf’Ai =3.135+.01xSS&H, +.017xXETA, —.022x CTA, +.006 xPTT,.  (5)

We say more about this later, but we will note now that the intercept and the four
regression coefficients are statistically significant. Three regressors have positive
effects (SS&H, ETA, & PTT) and one regressor has a negative effect (namely,
CTA). The regression coefficients should be used beyond simply saying there is
a positive or a negative effect. The value of each regression coefficient conveys
the expected change in GPA for a one-unit change in the corresponding regressor,
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holding constant the other regressors. For example, the conditional mean of GPA
is expected to increase by .01 for every unit increase of SS&H, holding everything
else constant. The negative coefficient for CTA conveys that the conditional mean
for GPA decreases .022 units for every unit increase of CTA. We will return to this
regression model later.

In multiple regression, much concerns the errors. The error is formally defined as
the difference between the observed value and the predicted value,

=Y -1, (6)
which is the difference between the observed value of the outcome variable and
the model-implied value of the outcome variable. These errors are often termed
residuals.

The way in which the regression coefficients are estimated in traditional multiple
regression is with the least squares estimation procedure, which is why multiple
regression is sometimes termed ordinary least squares regression or OLS regression.
The least squares estimation method estimates coefficients such that the sum of the
squared errors are minimized, that is,

min(ief)= min(i()’i —ﬁ)zj

i=1

:min(Z(Y[_[bO+b1X1[+'”+bKXKi])2)' (7)

i=1

Thus, for a particular model, the estimated regression coefficients based on a particular
set of data are those coefficients that minimize the sum of the squared errors, which is
generally an advantageous method of estimation.’ The variance of the error (residuals)
is termed the error (residual) variance. In the regression model of GPA, the variance
of the residuals is .209 (SD of errors is .457). The standard deviation of the errors
plays an important role in null hypothesis significance testing and confidence interval
formation by way of the standard error of the estimated regression coefficients.
Although the estimated regression coefficients provide the best point estimates of
their corresponding population values, those estimates are fallible, meaning in almost
all cases the estimated regression coefficients differ from the population values they
estimate. This same issue arises with essentially any estimate of a population quantity.
Correspondingly, users must always be aware that estimates have sampling error. An
implication of sampling error is that, hypothetically speaking, if the same regression
model were fitted using a random sample of the same size from the same population,
the estimates would change for each of the random samples. Now, such replication is
not generally done, but if it were, then the variability of the estimates could be easily
seen. The degree of variability of the estimates is quantified by the standard error of
each of the regression coefficients. The standard error of the regression coefficients
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plays a central role in hypothesis testing and confidence interval formation, which
we discuss formally later.

INTERPRETATION OF THE ESTIMATED REGRESSION MODEL COEFFICIENTS
The Intercept

The estimated intercept (i.e., b, which was 3.135 from our example data) is
interpreted as the conditional mean of Y for a set of K regressors that are all zero.
More formally, E[Y| (X, =X =0)]=b,, where E[] is the expectation of the
expression in the brackets, with “|” representing a conditional statement. In other
words, when all K regressors are zero, the best estimate for the outcome variable, or
what would be predicted, is the intercept.

Depending on the particular situation, the intercept may or may not be a useful
quantity from a practical perspective. In particular, it could be the case that (a) the
set of K regressors can never all be zero, (b) there is no data consistent with the set of
regressors all being zero, or (¢) the intercept represents a value from an uninteresting
research question. In such situations, the intercept is part of the model and serves as
a scalar of the regression equation, but it may not, by itself, provide interpretational
value of the phenomena under study. For example, from Table 2, the example data
set does not have any regressors that have a value of zero (the minimum value
for each regressor is above zero). Thus, in our model, the intercept represents a
quantity that is outside the scope of our data. It is, however, our best estimate for an
individual’s GPA that has scores of zero for SS&H, ETA, CTA, and PTT, yet such a
combination of regressors is absent from our data. Thus, the intercept has little direct
interpretational value in this situation, though it does serve as an important scalar
(in the sense that the intercept adjusts the regression equation such that the model-
implied values reduce the squared error). So, in that sense, it is a necessary quantity
yet it does not provide much interpretational value.

Although not necessary, it can be advantageous to rescale data so that the
intercept has a more useful interpretation. For regressors that have a value added
or subtracted (such as the mean), the value of the regression coefficients are left
unchanged, only the intercept will change. One useful way to rescale regressors is to
center each regressor. By centering, we mean that the data are put in deviation form.
In other words, the mean of a regressor is subtracted from the individual values of
the corresponding regressor. The deviations (i.e., the centered scores) are then used
instead of the regressor itself in the regression model.

To illustrate centering on the example data, we return to the situation of modeling
GPA from the four regressors, with the caveat that the four regressors have now been
centered. Now, the model-implied regression equation is

GPA, =3.145+.01xss&h, +.017 xeta, —.022 X cta, +.006 X ptt,, (8)
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where lowercase letters are used for the regressors to denote that the regressors have
been centered (note that GPA was not centered). Now, with centered regressors,
the intercept changes from 3.135 to 3.145. Although in this particular instance the
intercept did not change by much, centering can have a much more dramatic effect
on the value of the intercept. While the intercept is still interpreted as the conditional
mean of the outcome variable when all of the regressors are 0, the interpretation now
of a regressor being 0 is when that regressor is at its mean. Thus, for the mean on
all four regressors (and thus ss&h, eta, cta, and ptt=0), the conditional mean of GPA
(i.e., the model-implied value) is 3.145. What may not be obvious initially is that if
the original regression equation (i.e., with the intercept of 3.135) had been used and
the values of the regressors were their respective means, the conditional mean of
GPA would also be 3.145:

GPA, =3.135+.01x21.94+.017x15.86—.022 X 35.11+.006 x 48.63
=3.145, ©)

which is the same model-implied value of the intercept when the regressors were all
centered. Thus, even though the intercept is different for the two models, the model-
implied values can be recovered (regardless of the type of linear transformation
performed) for equivalent model and data specifications.

For another example of rescaling to facilitate the interpretation of the intercept,
suppose grade-level (Grade) for high school students as well as Sex are used as
regressor variables in a multiple regression model. For the Grade variable, it would
be perfectly fine to use 9, 10, 11, and 12 to represent freshmen, sophomores,
juniors, and seniors, respectively. For the Sex variable, 0 could be used to represent
female and 1 male. In such a situation, the intercept would not have a meaningful
interpretation beyond that of a necessary scaling parameter in the model, because
while one variable (Sex) could be zero, the other variable (Grade) could not be
zero for the data at hand. One could argue that a value of 0 for grade-level would
represent kindergarten, but that is an extreme extrapolation and nonsensical in most
situations. However, it would be perfectly fine to scale Grade so that 0, 1, 2, and 3
represented freshmen, sophomore, junior, and senior, respectively. In such a case,
the intercept would represent the model-implied (i.e., conditional mean) value for a
female freshman (i.e., when all regressors are 0). Regardless of Grade being scaled
as 9, 10, 11, and 12 or 0, 1, 2, and 3, the E[Y]|(Sex, Grade)] would be the same for
equivalent situations, as illustrated for the GPA example with and without centering.
Thus, unlike the GPA example (in which rescaling was done by mean centering), here
a different type of rescaling provided a more useful interpretation of the intercept
(namely subtracting 9 from each regressor). Depending on the specific situation, if
there is a desire to rescale regressors to make the intercept more interpretable, there
will usually be multiple ways to proceed.
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Regression Coefficients

In some situations, holding constant other variables is built into the design of the
study by randomly assigning participants to groups, as in traditional applications
of analysis of variance. In such situations, by randomly assigning participants to
groups, in the population at least, it is known that there are no spurious variables that
may be responsible for any differences that exist between the groups, other than the
treatment(s).” However, when interest concerns the relationship between X, and Y, if
random assignment to the level of X, was not done, any relation between X, and ¥ may
be due to a some other variable, say X,. However, by including both X, and X in the
multiple regression model, the effect of X, on Y can be evaluated while statistically
holding constant X,. This is an important aspect of the multiple regression model, as
many times regressor variables are of interest but cannot be controlled by the researcher.

The interpretation of regression coefficients (i.e., the b, values) is that they
quantify the expected change of Y for a one-unit increase in X while controlling
for the other K — 1 regressors. Controlling in this context refers to a statistical
control in which the effect of one regressor is evaluated holding constant all other
regressors, not a direct manipulation, which would be a control built into the study
itself. Correspondingly, the regression coefficient can be thought of as the unique
contribution a regressor has on the outcome variable. In other words, regression
coefficients quantify the unique linear effect that each regressor has on the outcome
variable while controlling for the other K — 1 regressors in the model. In this respect,
the regression coefficients are technically partial regression coefficients.

For the example data, recall that the estimated regression equation is

GPA=3.135+.01 x SS&H, +.017x ETA, —.022x CTA, +.006x PTT,.
(5, repeated)

The value of .01 for SS&H is the estimated impact on GPA of a one-unit increase in
SS&H, controlling for (holding constant) ETA, CTA, and PTT. The idea of controlling
(holding constant) other variables when interpreting a regression coefficient has a
precise statistical meaning and is not intended to imply that the researcher has, or
even could, manipulate (i.e., directly control) the level of a particular regressor of an
individual (e.g., the level of emotional text anxiety).

Regression coefficients are scaled in terms of both the outcome variable as well
as the particular regressor variable. Provided that the rescaling is in the form of a
linear transformation, the value of regression coefficients can be easily converted
from the original unit into the new units (e.g., standardized units). The regression
coefficients are a type of effect size because they convey the magnitude of effect that
each regressor has on the outcome variable while holding constant the remaining
regressors.
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MODEL FIT STATISTICS

In assessing the overall fit of the model, the most common way is to consider the
squared multiple correlation coefficient, denoted R?> for the sample value, which is
often termed the coefficient of determination. The squared multiple correlation
coefficient quantifies the proportion of the variance in the outcome variable that can
be explained by the set of regressors. Said another way, the variance of the outcome
variable can be partitioned into that which can be accounted for and that which cannot
be accounted for by the particular model in a particular data set.

An estimate of the population squared multiple correlation coefficient is the ratio
of the sum of squares due to the regression model to the total sum of squares as

N

SS 2( '

Rz _ Regression =

e h
=~

)2

= (10)

SSTotal Z( _ _)7)2
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This ratio conveys the amount of the variance in Y that can be accounted for by the
model to the overall amount of variance in Y. Thus, Equation 10 is a ratio of variances.
As such, the proportion of the variance of Y (the denominator of Equation 10) that
can be accounted for by the model (the numerator of Equation 10) is a useful way
of quantifying a model’s effectiveness. A different way of conceptualizing R? is that
it represents the squared correlation between Y and the model-implied values of Y:

R =(r,)". (11

Correspondingly, when R = 7, =0, it signifies a perfect lack of linear association
between Yand Y, whereas when R =r,; =1, it signifies a perfect linear association
between Yand Y.

Although R? is the correlation between Y and ¥ for the sample values, R? as
an estimator of the population squared multiple correlation coefficient is positively
biased. A better estimate, namely one that is more unbiased, is the adjusted squared
multiple correlation coefficient, which is given as

N -1

R’ _—
N-K-1

Gy =1-(1-R) (12)
This adjustment to the squared multiple correlation coefficient corrects for inflation
due to sample size and number of predictors included in the model. In large samples
with a moderate number of predictors, the adjusted and unadjusted squared multiple
correlation coefficients will be very similar. However, in small samples or with large
numbers of regressors, the adjusted squared multiple correlation coefficient can

decrease substantially.
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For the example data, in which GPA is modeled with SS&H, ETA, CTA, and PTT,
R*=.133. Thus, for the particular data, 13.3% of the variance in GPA was accounted
for by the four regressors. However, R? = .133 is a positively biased estimate of the
proportion of variance accounted for in the population. The adjusted value R? is
Rjd/. =.125. Thus, in the population, 12.5% of the variance being accounted for by
the four regressors is a better estimate, in the sense that it is (nearly) unbiased.

INFERENCE IN REGRESSION

In general, data are collected to make inferences about what is true in a population.
For example, in our data set, we are not literally interested in the 411 participants
who took part in the study, but rather in how those 411 participants allow us to make
inferences about their corresponding population. Hypothesis tests and confidence
intervals are inferential procedures because they use sample data to draw conclusions
(i.e., make inferences) about what is true in the population.

Inference for the Squared Multiple Correlation Coefficient

In order to evaluate if the model has accounted for more variance in the outcome
variable than would be expected by chance alone, a null hypothesis significance
test of the squared multiple correlation coefficient can be performed. The specific
test is an F-test and it tests an omnibus (i.e., overarching) effect size that evaluates
that all of the K regressors are 0 in the population. That is, the F-test tests the null
hypothesis that f =---= f, =0, which is equivalent to the population squared
multiple correlation coefficient is 0. The F-test is similar to the F-test in an analysis
of variance because it evaluates the amount of variance accounted for by the
regressors to the amount of unaccounted for variance. In fact, this test is a type of
analysis of variance in that the ratio of variances is examined (namely the variance
due to regression model is compared to the variance due to the error). The F-test for
the overall model fit is given as

MSRegressi:m _ RZ/K
MSResidual (1 - Rz)/(N -K- 1) ’

F= (13)

with K and N — K — 1 degrees of freedom and MS denoting mean square. Under the
multiple regression assumptions discussed, when this test is statistically significant
(i.e., when the p-value is less than the Type I error rate, usually .05), the null hypothesis
that the population squared multiple correlation coefficient is 0 is rejected.

For the example data, the value of the F-statistic is 15.633 with 4 and 406 degrees
of freedom. The corresponding p-value is <.001. Thus, the null hypothesis can be
rejected and the claim made that the model is able to account for more variance in
the outcome variable than would be expected from chance alone. That is, the value
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of the observed R? of .133 would be exceedingly unlikely if the population squared
multiple correlation coefficient were in fact 0.

Confidence intervals for the population squared multiple correlation coefficient
are useful, but complicated to obtain. At present, there is no way to obtain these
confidence intervals using SPSS point-and-click menu options. There is no closed
form solution for such confidence intervals, but they can be obtained easily with the
MBESS R package (Kelley & Lai, 2010) among other programs with specialized
scripts (e.g., see Kelley, 2008; Algina & Olejnik, 2000; Mendoza & Stafford, 2001).
In addition to the assumptions for inference previously discussed, forming confidence
intervals for the population squared multiple correlation coefficient assumes
multivariate normality, which is a much more stringent assumption than normality of
errors. Multivariate normality implies that the K regressors and the outcome variable
have a K + 1 dimensional multivariate normal distribution in the population.

For the example data, the 95% confidence interval for the population squared
multiple correlation coefficient is [.07, .19]. Although the observed value of
the squared multiple correlation coefficient is .133, the population value could
conceivably be as low as .07 or as high as .19, with 95% confidence. This confidence
interval assumes that the regressors are random, which is generally the case in
application of the multiple regression model in empirical research, although other
methods for fixed regressors also exist.’

Inference for the Intercept and Regression Coefficients

In order to evaluate the individual regressors uniquely contribute to the modeling
of the outcome, a null hypothesis significance test of the regression coefficients
can be performed. Under the multiple regression assumptions discussed, when the
null hypothesis is true, a regression coefficient divided by its standard error follows
a t-distribution with N — K — 1 degrees of freedom. Correspondingly, p-values can
be determined to test the null hypothesis that the population value of the regression
coefficient is some specified value, such as 0.
The t-test for testing the kth regression coefficient is

b —
f= "—ﬁ"ﬂ’ (14)

Sp,
where f3, is the specified null value for the kzh population regression coefficient
with N— K —1 degrees of freedom. Most often, f, =0, which then leads to the

simpler and more common way of writing the ¢-test:

(15)

In the example data, the regression coefficients, as previously noted, are .01, .017,
—.022, and .006 for SS&H, ETA, CTA, and PTT, respectively, each with 406 degrees
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of freedom. The standard errors for the regression coefficients are .005, .005, .003,
and .002, respectively. In each case, interest concerns evaluating the regression
coefficient against a population value of 0. This is the case because we are interested
in detecting a linear relationship between each of the regressors and the outcome
variable, while holding each of the other regressors constant. Thus, the -statistics for
the four regression coefficients are 2.00, 3.50, —6.70, and 2.34, respectively. Each of
these 7-statistics is statistically significant at the .05 level, with two-sided p-values of
.046, .001, <.001, and .02, respectively.

In addition to the null hypotheses that each of the regression coefficients equals
zero, which provides a directionality of the relationship, estimating the size of the
contribution each regressor has on the outcome variable is important. That is, we
seek to understand the degree to which each regressor has an impact on the outcome.
Although the null hypothesis was rejected for each regression coefficient, confidence
intervals are important in order to convey the uncertainty of the estimate with regards
to the plausible values of the population parameter. Two-sided confidence intervals
for regression coefficients are formally given by

probability[b, —t_,, v xSy, < P Sb+1, s, 1=1-a, (16)

1-a/2,N-K~1)

where t(lia J2.N-K-1)
can be written as

is the critical value. Alternatively, the confidence interval limits

b £ Lacaian-k-1)Sn, s

which is simply the estimate plus or minus the margin of error (the margin of error is
Li—ai2,v-k-1)Sy,)- This provides a less formal way of conveying the confidence interval
limits.

For the example data, the confidence intervals for the population regression
coefficients for SS&H, ETA, CTA, and PTT are [.0002, .020], [.008, .027], [-.028,
—.015], and [.001, .011], respectively. Confidence intervals for the intercept and
regression coefficients are available from SPSS via the “Statistics” option in the
linear regression analysis.®

ASSUMPTIONS FOR INFERENCE IN MULTIPLE REGRESSION

The estimation methods discussed above, namely least squares estimation, do not,
in and of themselves, depend on assumptions. However, like all other statistical
procedures, inference in multiple regression is based on a set of assumptions about
the population from which the sample was collected. By inference, we mean the
null hypothesis significance tests and confidence intervals for the squared multiple
correlation coefficient, the intercept, and the K regression coefficients.

&3



KKELLEY & J. H. BOLIN

Inference for the regression coefficients depends on four assumptions: (a) linearity,
(b) normality of errors, (c) homoscedasticity, and (d) independence.

The linearity assumption is that each of the K regressors is linearly related to
the outcome variable. The assumption of linearity between the outcome variable
and the regressors is arguably the “most important mathematical assumption of the
regression model” (Gelman & Hill, 2007, p. 46). If the linearity assumption does
not hold, then using a linear model is necessarily a flawed way of modeling the
relationship of the outcome with the regressors. Correspondingly, nonlinear models
may be more appropriate when linearity does not hold. For example, a learning curve
is typically sigmoidal (“S” shaped) in nature. A nonlinear regression model with a
sigmoidal functional form (e.g., asymptotic regression, Gompertz, or logistic curves)
may be more appropriate than a multiple regression model (e.g., Seber & Wild,
1989). Alternatively, as previously noted (footnote 4), functions of the regressors
can be used, rather than the values of the regressors themselves, as a way to satisfy
the linear assumption of regression. However, in many situations, transformations
are difficult to interpret and provide a poor substitute for an inherently nonlinear
model.

The normality of errors assumption means that the distribution of the e, values
follows a normal distribution. When inference concerns regression coefficients,
this normality assumption is for the errors only, not the distribution of regressors.
However, confidence intervals for the population squared multiple correlation
coefficient, at least for the most common approach to confidence interval formation,
requires multivariate normality among the regressor and outcome variables.

The homoscedasticity assumption is that the conditional variance of the outcome
variable for any combination of the regressors is the same in the population. The
reason that this assumption is necessary for inference in the case of least squares
regression is because there is only a single error term that estimates the population
error variance. Ifthe population error variance depends on/changes with the particular
set of regressors, then using only a single value to estimate the population error
variance would be problematic. In our example data, the estimated error variance is
.209. Thus, homoscedasticity implies that the variance of the errors, regardless of the
combination of regressors, is .209.

The independence assumption is that the unit of analysis (i.e., whatever the i
represents in the multiple regression equation, such as individuals, schools, or
students) are all independent of one another. That is, the independence assumption
stipulates that there is no correlation among any subset, or clustering, of the
units of analysis. This is best handled with an appropriately designed study. For
example, if schools are the unit of analysis, having multiple schools from the same
school district/corporation (if there are multiple districts/corporations) would be
problematic, as schools within the same district/corporation would tend to be more
similar than schools from different districts/corporations due to the common effects
of the district/corporation. When dependencies are built into the data by a common
grouping/nesting structure, such as multiple students from the same class in which
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multiple classes are included, other models, such as hierarchical linear models
(HLM), may be more appropriate (See Osborne & Neupert, this volume).

Checking the Assumptions

The assumptions of linearity, normality of errors, and homoscedasticity are generally
assessed by graphical means, but more formal assessments can also be made. In
graphical assessment of the linearity assumption, scatterplot matrices (such as Figure
1) can be useful in order to assess if the relationship among variables seems linear.
Cohen et al. (2003, chapter 4) recommend scatterplots of the residuals from the
regression model of interest plotted against each regressor variable and against the
model-implied outcome values, along with lowess regression lines (e.g., at 0,—1, and
1 standard deviation from the mean residual). Lowess regression, and thus a lowess
regression line, is a nonparametric approach to obtaining a smooth regression line
that does not presuppose that relationships between variables are linear. Thus, if the
lowess regression line differs to a non-trivial degree from a horizontal line (recall it
is the residuals that are being plotted, not the outcome values themselves), then there
may be cause for concern that a linear model is not appropriate and adjustments to
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Figure 2. Scatterplot of standardized residuals plotted against the model-implied
outcome values for the model in which GPA is modeled from study skills and habits,
emotional test anxiety, cognitive test anxiety, and perceived test threat.

Note that the three horizontal lines are at the mean (which is 0), 3 standard deviations above
the mean, and 3 standard deviations below the mean for the standardized residual. The
reason the horizontal lines are provided at 3 standard deviations above and below the mean
is to help identify possible outliers.
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the model should be considered. Additionally, a scatterplot of standardized residuals
plotted against the model-implied outcome values can be useful. Figure 2 provides
such a plot (due to space limitations, we do not provide plots of the residuals against
each regressor and the model-implied outcome values). In such plots, obvious
patterns would be a concern because there may be important variables missing from
the model (or homoscedasticity does not hold, which is an assumption we discuss
in a moment).

The normality of errors assumption involves assessing the normality of a variable,
residuals in our case, in the way one would typically evaluate normality. Regarding
visual approaches, we recommend assessing normality with a normal Q-Q (quantile-
quantile) or P-P (percentile-percentile) plot, which is a plot of the expected cumulative
quantiles/probabilities of the residuals given they are normally distributed against
the observed cumulative quantiles/probabilities of the residuals. If the points do not
differ in a non-trivial way from the equiangular line (i.e., the line of slope 1), then the
assumption of normality of the residuals may be satisfied. Figure 3 provides a P-P
plot of the residuals. Formal assessment with statistical tests or by testing the skew
and kurtosis are also possible.

The homoscedasticity assumption implies that the variance of the errors is the
same across all model-implied values and across all values of the regressor variables.
From the same plots for assessing linearity discussed above (e.g., Figure 2), the
residuals should not differ from a rectangular shape if, in fact, homoscedasticity
holds. For example, if residuals were small for small values of X but began to spread
as X, increased, a violation of the homoscedasticity assumption may have occured.

Normal P-P Plot of Standardized Residuals

Expected Cumulative Probability

0.0 f T T T T T
0.0 0.2 0.4 0.6 08 1.0

Observed Cumulative Probability

Figure 3. Normal probability-probability plot (P-P Plot) of the residuals for the model
Residuals for the model in which GPA is modeled from study skills and habits, emotional test
anxiety, cognitive test anxiety, and perceived test threat.
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More formal assessment with statistical tests for the homoscedasticity assumption
also exist, but visual methods can be very enlightening.

The fourth assumption of independence has two conditions that need to be
considered: nested data structures and autocorrelation. When the units are not a
simple random sample from a population, but rather are collected based on clusters
of individuals, the observations will not likely be independent. Generally, issues of
nonindependent observations are best considered at the design stage of the research.
As mentioned previously, if a clustering/nesting structure exists, more appropriate
models such as HLM can be used. For example, if multiple classrooms with multiple
students are included in a study, the students in the same classrooms will tend to be
more similar than students from different classrooms. When such a nesting structure
(students within classrooms) is part of the design, it should be explicitly dealt with as
part of the model. Failure to consider such a nested data structure results in violations
of the independent observation assumption, and the multiple regression model is not
robust to violations.

In addition to nesting type structures, correlation among residuals is also a violation
of the independence assumption. For example, if residuals for values of X, that are
close together are more similar than residuals for values of X, that are farther apart,
such a situation would illustrate serially correlated errors. For example, when X
represents time, time values close together will tend to have outcome variables that
are more similar than if the time values were farther apart, which tends to produces
adjacent errors that are more similar than if errors were random. Such a situation would
then likely involve errors that have an autocorrelation. The Durbin-Watson statistic is
a statistical procedure that measures the degree of correlation of residuals with the
immediately preceding residuals (1st order autoregressive correlation). The Durbin
Watson statistic ranges from 0—4, with values at 2 indicating perfect lack of first order
autocorrelation. Values near 2 are thus not considered problematic, but as the values
move close to 0 or 4, evidence of 1st order autocorrelation exists. In our example data,
the Durbin-Watson statistic is 1.804. Estimated critical values for the Durbin-Watson
statistic are discussed in more technical works on regression and time series.

In addition to the assumptions we have discussed, an issue of concern is the
measurement of the regressors used in the regression model. In particular, it is ideal
for the regressors to be measured without much error. Some sources state regressors
being measured without error as an assumption of inference in multiple regression.
We do not regard regressors being measured without error as an assumption per se,
but results obtained using regressors measured with error may differ substantially
from results obtained when regressors are measured without error. That is, there
will be a bias in the estimated regression coefficients, standard errors, and model
fit statistics (e.g., R*) when regressors are measured with error. Correspondingly,
measurement error in the regressors is an important consideration. Of course, the
less measurement error, the better the conclusions. When a nontrivial amount of
error exists in the regressors, latent variable models (e.g., confirmatory factor and
structural equation models) should be considered (e.g., Mulaik, 2009). Such models
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require multiple measures of the same construct (e.g., well-being, motivation,
conscientiousness) rather than a single measure as typically included in regression
(e.g., either based on a single measure or a composite score of multiple measures).

EXAMPLE IN SPSS

To solidify the information just presented in the previous section on the results from
the example data, we now show output from the SPSS linear regression procedure in
Table 4. Table 4 consists of three types of output: (a) Model Summary, (b) ANOVA,
and (c) Coefficients.

The linear regression procedure is available from the point-and-click SPSS
interface via the Analyze menu on the toolbar. From the Analyze menu, the Regression
menu is selected, and then the Linear procedure is selected. Within the Linear
Regression procedure, the outcome variable of interest is selected as Dependent and
the regressors of interest are selected as /ndependent(s). Additional information and
output are available in the Statistics, Plots, Save, and Options menu buttons. Figures
1-3 were created using the Plots options. We chose SPSS to illustrate the multiple
regression model we have been discussing because it seems to be the most widely
used software package in behavioral, educational, and social science research.

Table 4a. Summary of overall multiple regression model fit

Model Summary®
Model R R Square Adjusted R Square  Std. Error of the Estimate
1 3652 133 125 45718

* Predictors: (Constant), Perceived Test Threat, Study Skills and Habits, Emotional
Test Anxiety, Cognitive Test Anxiety
® Dependent Variable: Current College GPA

Table 4b. Analysis of variance source table testing the overall fit of the model to infer if the
collection of regressors accounts for a statistically significant amount of variation in the
dependent variable (college GPA)

ANOVA?
Model  Sum of Squares df Mean Square F Sig.
1 Regression 13.070 4 3.267 15.633 .000*
Residual 84.860 406 209
Total 97.929 410

* Predictors: (Constant), Perceived Test Threat, Study Skills and Habits, Emotional Test
Anxiety, Cognitive Test Anxiety
® Dependent Variable: Current College GPA

88



MULTIPLE REGRESSION

Table 4c. Estimated regression coefficients, tests of statistical significance, and confidence
intervals for the fitted multiple regression model

Coefficients”
Unstandardized Standardized 95.0% Confidence
Coefficients Coefficients Interval for B

Std. Lower  Upper
Model B Error Beta t Sig.  Bound  Bound
1 (Constant) 3.135  .186 16.821 .000 2.768  3.501
Study Skills and Habits ~ .010  .005 101 2.002 .046  .000 .020
Emotional Test Anxiety .017  .005 233 3.501 .001  .008 .027
Cognitive Test Anxiety —.022 .003 —.487 -6.702 .000 -.028 -.015
Perceived Test Threat .006  .002 123 2.336 .020  .001 011

* Dependent Variable: Current College GPA

EXTENSIONS OF THE BASIC MULTIPLE REGRESSION MODEL

We have presented the basic multiple regression model. However, there are many
extensions and special uses of the multiple regression model in applied research in
the behavioral, educational, and social sciences that we would be remiss if we did
not discuss. We discuss six important extensions and special uses of the multiple
regression model in the subsections that follow. However, due to space limitations,
we can only briefly discuss each of these six extensions and special uses. Thus, our
treatment is necessarily limited and additional sources should be consulted before
using the extensions and special uses of the multiple regression model.

Moderation Models

The basic multiple regression model as presented is additive because in that each
of the regressors enters the model as a main effect only. This implies that the effect
of a regressor on the outcome variable does not change at different levels of other
regressors. When additivity does not hold, a moderation model may be appropriate.
A moderation model is one in which there are one or more interaction terms in the
regression model (in addition to the main effects). An interaction term is a regressor
that is the product of two (or more) other regressors. Such a model allows not only
for effects to be additive, but also to be multiplicative. The following equation shows
a moderated multiple regression model for two regressors (i.e., a multiple regression
model with an interaction):

ﬁ =by +b X, +b, X, +b, X, X, 7)
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Moderators are important in many areas because they answer questions about how
the level of one variable moderates the relationship between another regressor
and the outcome of interest. Moderations are realized via interactions, which are
multiplicative effects. This means that the model is more complex than additive
terms, but that multiplicative terms are also necessary. Interactions in multiple
regression have the same interpretation as in factorial ANOVAs. However, whereas
factorial ANOVAs can only incorporate categorical independent variables, multiple
regression may include interactions between categorical as well as continuous
independent variables. Interactions between any number of independent variables
can be incorporated into a model. However, the interpretation of interactions
involving more than two regressors can be difficult.

Interpreting the results of a moderated regression model (i.e., a model with one
or more interactions) is more involved than interpreting an additive model, such as
those previously discussed. In particular, by the very definition of an interaction,
the main effects can no longer be interpreted as having a constant effect on the
outcome variable. Rather, the main effect of X, (i.e., b, in Equation 17) provides
an unambiguous interpretation itself at only one value of X, namely, when X is 0.
When X, is 0, the values of b, and b, are not a concern because they cancel from the
equation; b, is then the slope of the effect of X, on Y. As explained in Cohen et al., “in
general, in a regression equation containing an interaction, the first-order regression
coefficient [i. e., the main effect] for each predictor involved in the interaction
represents the regression of Y on that predictor, only at the value of zero on all other
individual predictors with which the predictor interacts” (2003, p. 260).

There is increased complexity when interpreting a regression model that contains
one or more interactions. In many situations, the interpretation of the regression model
can be improved by using centered regressors. Centered regressors set the zero value
of the regressors to their respective means. Thus, the main effect of X is interpreted
at the mean of X, which is the now zero due to centering. Additionally, because of
the increased complexity in interpreting regression models with interactions, it can
oftentimes be beneficial to plot the model-implied regression equations for selected
combinations of regressors. In particular, the model-implied relationship between
Y and X| at the mean of X, one standard deviation above the mean of X, and one
standard deviation below the mean of X, can be plotted to visualize the effect of an
interaction. (e.g., see Aiken & West, 1991, for details).

Mediation Models

Mediation models are important in the context of causal modeling because they
attempt to disentangle the causal pathways of how one (or more) variables cause
one (or more) other variables, which in turn cause one (or more) other variables. For
example, it might be theorized that X, causes Y, but it does so through X,. That is, X
causes X, and then X causes Y. There may be what is termed “complete mediation,”
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when the entire effect of X, on Y is explained through X, or what is termed “partial
mediation,” when there is some effect of X| on Y above that which goes through
X,. The notions of complete (or full) mediation and partial mediation, although
widely used, are qualitative descriptions of what is inherently a quantitative process.
Preacher and Kelley (2011) review such issues and discuss various effect sizes in the
context of mediation analysis.

A widely used framework for showing support for mediation uses regression
and is known as the “causal steps approach,” which was popularized by Baron and
Kenny (1986; see also Judd & Kenny, 1981). This framework can be interpreted
as consisting of four conditions that must hold in order to support a mediation
hypothesis. These four conditions are as follows:

The exogenous regressor (i.e., the independent variable) must be related to the
outcome variable. This condition, in the population, requires /3| in

Kzﬁ;+ﬁ1*X1i+8: (18)
to be nonzero.

The exogenous regressor must be related to the endogenous regressor (i.e., the
mediating variable). This condition, in the population, requires S in

XZiZﬁ(:*J'_ﬁl**XliJrgi** (19)

to be nonzero. Note that we use asterisks to distinguish the parameter values from
Equations 18 and 19 (above) from Equation 20 (below).

The endogenous regressor must be related to the outcome variable (i.e., the
dependent variable) after controlling for the exogenous regressor. This condition, in
the population, requires that £, in the equation below to be nonzero

Y = ﬂo + ﬂlei + :BZX2:' +é,. (20)

When both the regressor and the mediating variable are used simultaneously to
predict the outcome variable, the impact of the regressor is reduced. Conditions
1-3 can be evaluated with correlation coefficients or regression analysis (we have
presented them in the regression form), but Condition 4 can be evaluated with the
use of regression analysis or a more general procedure, such as path analysis or
structural equation modeling.

An alternative conceptualization of mediation is that the product of §, and 3, from
Equation 20 does not equal zero (i.e., mediation holds if 5, x 8, # 0). The 8, and
3, regression coefficients are equivalent to the causal paths from the independent
variable to the mediator to the dependent variable from a path analytic, or generalized
via a structural equation model, framework. Thus, if mediation holds, the causal path
must be non-zero (e.g., MacKinnon et al., 2002).
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Implicit in the mediation framework is the passage of time. That is, if X| causes
X,, X, must precede X, in time. Similarly, if X, causes Y, X, must precede Y in time.
Issues of simultaneous causality, while theoretically possible, may not be reasonable
in many situations. Cole and Maxwell (2003) discuss mediation models in the
context of longitudinal data (see also Gallob & Reichardt, 1985). We recommend
interested readers consult MacKinnon (2008), who discusses mediation models and
the underlying assumptions in detail.

Hierarchical Regression

Traditional applications of the multiple regression model examine the contributions
of regressors simultaneously. In other words, all variables are considered at the same
time. However, it can be advantageous to examine sets of regressors in a prespecified
sequence or in a defined priority order. The order that the regressors enter the model
should be theoretically driven. When regressors are added, the model is referred to
as hierarchical regression.’ Hierarchical regression is a model comparison approach
in which richer models (i.e., with more regressors) are compared to simpler models.
Such comparison is used to infer if additional regressors account for a statistically
significant amount of the variance of the outcome variable that was previously
unexplained. In particular, the change in R*> from model 1 (a simpler model with
q regressors) to model 2 (richer model with ¢ + r regressors) is tested to infer if
the model with ¢ + r regressors has a larger population squared multiple correlation
coefficient than the model with only ¢ regressors. The number of “blocks” of
variances that enter into a model depends on the number of regressors available. The
way in which such models are tested is with the following F-statistic,

(R, —R)/r

q+r

F= - ,
(—-R2)/(N—gq—r-1)

1)

where the numerator and denominator degrees of freedom are » and N—¢g —r—1,
respectively.

In hierarchical regression models, there are often regressors that researchers
would like to control for before assessing the effects of the regressors of primary
importance. These regressors are used for controls (i.e., control variables) and are
often not of theoretical importance, but rather are important to control for as they
may explain a large portion of variance. A common approach to this situation is
to include these variables in the first block of a hierarchical regression analysis.
For example, a researcher may choose to include demographic characteristics (e.g.,
Sex, Age, SES) in block one of a sequential hierarchical model. The R’ for this
model will provide the variance accounted for by the collection of demographic
regressor variables. Then, as subsequent variables of theoretical interest or blocks of
regressors are added to the model, the change in R* will provide information on how
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much variance the regressors account for—and this is key—above what the control
variables accounted for.

Stepwise Regression

Stepwise regression is a procedure in which a variety of algorithms can be used to
mechanically select which regressors (potentially many) should be included in a
model based on statistical, not theoretical, criteria. Stepwise regression can proceed
from forward selection (fewer to more regressors) or backwards selection (more to
fewer regressors) methods. When there are more than a few available regressors,
the number of models fitted by stepwise procedures can be large. A large number
of fitted models can have false positives due to the sheer number of models fitted
in order to arrive at a final model. That is, in the final model from the stepwise
procedure, there will be a higher rate of false positives than in a prespecified model.

One way forward selection may begin is by entering the regressor into the
regression model with the strongest correlation with the outcome variable. Then,
the second variable is entered into the model that has the biggest impact on the
model (e.g., highest change in R*), and so on. This process will continue until the
addition of new regressors does not add enough to the variance accounted for (e.g.,
a statistically significant change) in the outcome variable.

In contrast to forward selection, backward selection may begin with all regressors
included in the model. Then the regressor that has the least impact on the model
(e.g., smallest change in R?) is removed, an so on. This process can continue until
the removal of regressors impacts the variance accounted for (e.g., a statistically
significant decrease) in the outcome variable.

Stepwise regression is completely mechanical/machine driven. Stepwise
regression is thus a completely atheoretical way of modeling the relationship
between an outcome variable and a set of regressors. When working from theory,
stepwise regression is not recommended. If research is completely exploratory,
stepwise regression may shed some light on regressor variables that may be effective
at modeling the outcome variable. However, we generally recommend against
stepwise regression because, in the vast majority of situations, there is some theory
available to suggest what variables are, for example, best used as control variables
versus those that are more theoretically interesting.

Categorical Regressors

Although the dependent variable for a multiple regression model needs to be
continuous, or nearly so, the regressors can be continuous or categorical. However,
categorical variables must be treated differently than continuous variables
when entered into a regression model. In order to use a categorical regressor in
a regression analysis, we generally recommend a process called dummy coding."
Dummy coding represents the different levels of a categorical variable (group
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membership) as 1 or 0, depending on whether or not the variable represents a
particular group. This procedure codes the levels of a categorical variable with
J levels into J— 1 dummy variables. One level, denoted the reference level, is
represented by all of the other levels being 0. When a categorical variable only
has two levels, only one dummy coded variable is necessary. For example, the
Cassady data includes the participants’ sex, in which the variable Sex is 1 for male
and 0 for female. Correspondingly, female is the reference group. The value of the
regression coefficient, holding everything else constant, represents the difference in
the conditional mean of the outcome variable for males.

When a categorical variable has more than two levels, multiple dummy variables
can be used to include the categorical information into a regression analysis. For
example, the self-identified race of the participants is included in the example data
file. Initially, the variable Race was coded as a single variable in which 1 = Caucasian,
2 = African-American, 3 = Asian, and 4 = Other. However, such a coding scheme
would not be used in applications of multiple regression, as the numbers are not
meaningful; they simply represent a category rather than any sort of continuum.
However, the variables can easily be recoded into 3 dummy codes (recall J— 1
dummy codes are needed, which is why, with four levels, only 3 dummy codes are
necessary.). Any of the four levels of Race can be used as the reference category,
but we use Caucasian as the reference category because it represents the majority
in this sample. We form three dummy coded variables in which AA represents
African-American, Asian represents Asian, and Other represents a self-identified
other categorization. Thus, for a participant who has a 0 for each of the three race
variables, that participant would be Caucasian.

When interpreting dummy variables, we can learn several different pieces of
information. First, we can infer if the conditional mean for the outcome variable
in the population differs, holding everything else in the model constant, for the
particular group as compared to the reference group (in this case Caucasian). Such
an inference is made by the p-value from the corresponding null significance test.
If there are no other variables in the model, then the z-value obtained for the test of
two-levels of the variable (i.e., in which only a single dummy variable is necessary)
is exactly equal to that obtained in the context of a two independent groups #-test.
Second, an estimate of the conditional mean difference, holding everything else
in the model constant, is available by way of the regression coefficient. Third, the
confidence interval for the population regression coefficient of the particular group
provides the range of plausible parameter values. The wider this confidence interval,
the more uncertainty there is of the population conditional mean difference on the
outcome variable.

Cross-Validation

Often in studies that use multiple regression, especially when prediction is of
interest, it is advantageous to provide evidence of the effectiveness of the obtained
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multiple regression model estimates from one sample as they would apply to another.
As mentioned previously, it is generally not possible to obtain the true population
regression values. In an application of a multiple regression model, the estimated
regression coefficients are idiosyncratic to the characteristics of the particular
sample drawn from the population. Correspondingly, estimating how well those
values would predict in a future sample can be very useful.

As discussed, R? is the squared correlation between Y and Y. Let Y be the
observed values of the outcome variable for a second sample and Y" be the model-
implied (i.e. predicted) values of the outcome variable from the second sample
when the estimated regression coefficients from the first sample are applied to the
regressors from the second sample. The squared correlation between Y and Y* can
be calculated, denoted R;*?" This value of Rjky-* will tend to be smaller than R?, and
is often termed the shrunken R?. The difference between R?> and Rity.* is known,
therefore, as shrinkage. If the shrinkage is small, then evidence suggests that the
first regression equation obtained in the first sample cross-validates well in future
samples. However, if the shrinkage is large, then there is not strong evidence that the
model obtained in the first sample will be good at predicting values of the outcome
variable. Pedhazur recommends that when the shrinkage is small, the samples be
combined and the regression coefficients estimated as a way to improve prediction in
future samples (1997; see also Mosier, 1951). Darlington discusses several methods
of estimating the shrunken R? from single samples (1990).

SPECIAL CASES AND EXTENSIONS OF THE MULTIPLE REGRESSION MODEL

The multiple regression model is a special case of the general linear model. In its
most general form, the general linear model allows multiple continuous outcome
variables to be modeled from multiple regressor variables. These regressor variables
might be grouping variables or continuous variables from either observational work
or randomized experiments, and any combination thereof. Correspondingly, some
general linear model special cases can be conceptualized as a multiple regression
model (e.g., a correlation, single sample, paired sample, and independent-samples
t-test or an analysis of (co)variance). The multiple regression model extends to
other statistical models that have multiple regression as a special case (e.g., path
analysis, confirmatory factor analysis, structural equation modeling, discriminant
function analysis, canonical correlation, and multivariate analysis of (co)variance).
The multiple regression model can also be extended to situations in which there are
nesting structures, such as students nested within classrooms (with HLM/multilevel
modeling).

In addition, generalizations of the general linear model to situations of categorical
and limited outcome variables are termed generalized linear model. Generalized
linear models use the exponential family of distributions (e.g., logistic, probit, tobit,
Poisson) to link a function of a linear model to the outcome variable. For example,
the proportion of 3* grade students who pass a state-wide assessment within different
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schools in the same district/corporation has a limited dependent variable that has a
range of 0 to 1. A linear model may have model-implied values of the proportion
of students passing outside the range of 0 to 1 that require homoscedasticity, which
would not be reasonable in general. A generalized linear model with a logistic link
function would provide a more appropriate way to model such data.

Connecting multiple regression models to other models can be done, yet we are
restricted on space here. Our point in mentioning special cases and generalizations of
the multiple regression model is to illustrate how multiple regression plays a core role
in the analytic architecture in behavioral, educational, and social science research.

SUGGESTIONS FOR FURTHER READING

Multiple regression is often the focus of an entire graduate level course, and many
book-length treatments range from very applied to very theoretical. Correspondingly,
we are unable to cover the full scope of the multiple regression model and its various
uses. However, we offer several suggestions for further reading on the richness of
the multiple regression model. For a general introduction to multiple regression, we
suggest Kahane (2008), which provides a nontechnical introduction that is useful
for understanding the fundamentals of regression. For treatments appropriate for
applied researchers and users of research, we recommend Cohen, Cohen, West, and
Aiken (2002) and Pedhazur (1997). For a more advanced treatment of regression
from a general linear model perspective, we suggest Rencher and Schaalje (2008).

In addition to sources that discuss the multiple regression model, sources that
discuss the design aspects of a study that will use multiple regression are of great
importance. When designing a study that will use multiple regression, among other
things, sample size planning is important. Sample size planning can be done from
(at least) two different perspectives: statistical power and accuracy in parameter
estimation. Statistical power concerns correctly rejecting a false null hypothesis of
interest (e.g., for the test of the squared multiple correlation coefficient or a specific
regression coefficient). Accuracy in parameter estimation involves obtaining
sufficiently narrow confidence intervals for population effect sizes of interest (e.g.,
squared multiple correlation coefficient or a specific regression coefficient). Cohen
(1988) details sample size planning for statistical power and Kelley and Maxwell
(2008) detail sample size planning for accuracy in parameter estimation, both of
which are written in the multiple regression context.

DISCUSSION

Having now discussed the regression model itself, showed examples of its use,
and connected it with other models widely used in the behavioral, educational,
and social sciences, we now take a big picture view of the purpose of the model.
We regard multiple regression as having three primary purposes: (a) description,
(b) prediction, or (b) explanation, which may not be mutually exclusive."
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Although there may be a conceptual distinction between using multiple regression
for description, prediction, or explanation, there are no differences in the multiple
regression model itself. We briefly discuss these three potential uses of multiple
regression to not only help clarify the generality of multiple regression, but also to
shed light on its limitations.

Descriptive uses of multiple regression seek to identify ways in which a set of
regressors can be used to model the outcome variable. Such a use of regression serves
to identify regressors that have some correlation with the outcome after controlling
for the other regressors in the model. No stringent philosophical underpinnings
are necessary. Rather, the outcome is only a description of the relationship among
variables. Using multiple regression for description fails to capitalize on the model
for making predictions or explaining relationships, two purposes we discuss
momentarily. Using multiple for regression for description can be considered less
sophisticated than using it for prediction or explanation. The conclusions that can be
legitimately drawn from such a use of regression as a descriptive method are rather
weak, unless additional assumptions are made. Nevertheless, as a purely statistical
tool, regression can be used to partition the variance in the outcome variable into that
which can be modeled by each regressor and that which remains unexplained. The
regression coefficients themselves identify the extent to which each regressor has a
relation to the outcome variable when controlling for the other regressors.

Rather than saying “the extent to which each regressor has a relation to the
outcome variable” as we just did when referring to descriptive uses of multiple
regression, it is tempting to say that each regressor “predicts” or “impacts” or
“influences” the outcome variable. However, those terms should be reserved for
predictive or explanation purposes. That is, for descriptive regression, prediction
does not take place. For example, the full data set may be used to estimate the
regression coefficients and not used on a future sample for prediction. Alternatively,
terms such as “impacts” or “influences” conjure more causal relationships, such as
“changes in the kth regressor leads to a b, amount of change in Y. However, such
casual-like statements are generally not warranted.

In the prediction context, a model is formed based on one set of data (training
data) but used on data where the outcome variable is unknown. Regression as a
predictive model provides an estimated value for outcome variables based on the
regression coefficients obtained in the training data sample and the values of a set
of predictor variables. For example, one could predict students’ first year of college
GPA with various individual difference measures, performance in high school (e.g.,
high school GPA at the end of junior year), and measures of academic achievement
(e.g., ACT or SAT scores) based on training data. Then, with the information
obtained from the training data, the regression model could be applied to high school
seniors to predict their college success, given the relevant regressors (i.e., those
used in the model developed from the training data). The purpose of the multiple
regression model in this case is not to say what causes college GPA, but rather to
form a prediction equation that might be useful for predicting academic success as
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operationalized by college GPA. Such prediction models can be important because
they can help identify those high school students who will likely be successful in
college. Of course, no prediction model is perfect. However, statistical prediction
(e.g., by using multiple regression) has been shown again and again to outperform
expert judgments (e.g., see Grove & Meehl, 1996).

Multiple regression, when used in the explanation context, is ultimately interested
in identifying causal variables as well as estimating how much of an impact those
variables have on the outcome variable, while holding constant the other regressors.
In many cases, it is not possible to unambiguously show causality, but under the
appropriate conditions, causal relationships can sometimes be discerned. The
situations in which unambiguous causes can be identified require that a random
sample of individuals from some population be randomly assigned different
levels of the regressor variables of interest. In the vast majority of applications of
multiple regression in education, levels of regressors are not randomly assigned
but will differ across individuals. In such instances, there is necessarily a limitation
of the multiple regression model to be used to infer causation. However, even
for models without randomization to level of the regressors, such a model may
shed light on causal relationships or causal pathways (e.g., via mediation models).
Assuming the assumptions of the regression model hold, showing that a particular
regressor accounts for some of the variance in the outcome variable (i.e., a non-
zero regression coefficient) in a nonrandomized situation (e.g., an observational
study) is a necessary, but not a sufficient, condition for causal inference. In such
cases, the effect of one regressor on the outcome variable, after including in the
model the other regressors, could be a causal agent, but it may not be. Realizing
the limitations of multiple regression in making causal inferences is important and
has many real-world consequences.

Although understanding what variables are associated with the outcome variable
of interest in the context of a set of regressors can be useful in its own right (e.g., for
descriptive purposes), the lack of randomization of the levels of regressors does not
denigrate the multiple regression model. Any suggestion that a regressor causes (or
similarly impacts, influences, effects, acts upon, is an antecedent to, etc.) an outcome
variable necessitates a discussion that is above and beyond the regression model
itself.

Multiple regression is such a key model in the behavioral, educational, and
social sciences that a single chapter cannot replace the need for more detailed study
by those that the will use the model directly (e.g., primary researchers) or use it
indirectly (e.g., policy makers). Being able to effectively interpret, contribute to,
critique, or use the results of the research literature essentially requires a fundamental
understanding of multiple regression. We hope this chapter has clearly articulated
the multiple regression model for applied researchers and has provided a solid
fundamental understanding. Additionally, we hope our chapter has been thought-
provoking and that it instills confidence in the presentation and interpretation of
results from the multiple regression model.
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NOTES

The outcome variable can be termed a “criterion” or “dependent variable”, whereas the regressor can
be termed a “predictor”, “explanatory”, or “independent variable”. Without loss of generality, we use
the terms outcome and regressor throughout the chapter.

Many times multiple regression is said to have two distinct purposes: prediction and explanation
(e.g., Pedhazur, 1973). However, we regard description as potentially distinct from prediction or
explanation.

Using listwise deletion for missing data in multiple regression is not necessarily optimal. Other
methods are available, such as using maximum likelihood or multiple imputation, but they are
beyond the scope of this chapter. In general, we would suggest not using listwise deletion in multiple
regression, but do it here for simplicity.

Although the model is linear in its parameters, that does not prevent arbitrary functions of the variables
from being used, such as taking the logarithm of X, or squaring X. In fact, the population multiple
regression model of Equation 1 can be written as Y = f + B, /(X)) + -+ + B f,(X,.), where f,( ) is
some arbitrary function of the variable in parentheses (4 = 1, ---, H). In most applications of multiple
regression no transformation is made, and thus the function would simply be the identity function (i.e.,
the variable itself is used).

Recalling that Y is in fact a mean, namely a conditional mean, there is a direct parallel to the sum of

squares in the context of the estimated variance. In particular, to minimize Y (X, — C)Z, where C can

be any constant real value, the mean of X is the minimizer. That is, Y. (X; — X)” is the minimum value,
which is the numerator of the variance. Thus, the regression least squares criterion of minimizing

S -Y) s analogous to why the mean is often regarded as a superior measure of central tendency.
It produces the most efficiency (i.e., least variance) compared to any other estimate of central tendency.
Spurious variables are also known as “lurking”, “confounding” or, “third variables”.

After R is installed and then the MBESS package installed within R, the way in which a confidence
interval for the population squared multiple correlation coefficient can be constructed is as follows:

“require(MBESS)” (to load the package) followed by “ci.R2(R2 =.133. K=4. N =411, conflevel =.95)” (to
implement the ci.R2( function with the appropriate values for the model of interest). See Kelley

(2007a; 2007b) for more information on MBESS.

Only confidence intervals for the population unstandardized regression coefficients are available via
the SPSS point-and-click interface. Confidence intervals for the population standardized regression
coefficients, which is when regression is performed for standardized scores, can be obtained indirectly
with the use of the noncentral #-distributions. See Kelley (2007b) for a discussion of such confidence
intervals and information on how they can be implemented easily via the MBESS R package.
Hierarchical regression should not be confused with the similar sounding hierarchical linear model,
usually denoted HLM, as they are completely separate models.

Other coding schemes exist, such as effect coding and orthogonal coding. In effect coding, a “—1”
is used to represent the reference category and a 1 or a 0 is used to represent the other category
of interest. In orthogonal coding, coefficients are used that form a set of orthogonal comparisons.
Orthogonal comparisons are such that each comparison provides independent information from other
comparisons.

Many times multiple regression is said to have (only) two distinct purposes: prediction and explanation

(e.g., Pedhazur, 1973). However, we regard description as potentially distinct from prediction or
explanation.
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5. CLUSTER ANALYSIS

INTRODUCTION

Large multivariate datasets may provide a wealth of information, but often prove
difficult to comprehend as a whole; therefore, methods to summarize and extract
relevant information are essential. Such methods are the multivariate classification
procedures, which use multiple variables to identify characteristics that groups of
individuals have in common. By definition, classification refers to the process of
dividing a large, heterogeneous group into smaller, homogeneous groups where
members are similar to each other while different from cases in other groups
(Gordon, 1981; Clogg, 1995; Heinen, 1993; Muthén & Muthén, 2000). The objective
is to identify groups underlying a larger set of data, where the number of groups is
unknown at the onset. Once created, groups can then be thought of as possessing like
patterns of characteristics and cases within the same group may be treated similarly.

Procedures to identify clusters focus on creating smaller groups of cases using the
responses to a set of variables. This scenario is conceptually similar to exploratory
factor analysis methods, but differs as exploratory factor analysis aims to create
smaller groups of variables using responses from a set of cases. Gordon (1981)
describes two general reasons why classification may be useful:

Data simplification. Given that large quantities of data can hinder understanding,
classification can be useful to detect important relationships and patterns within a
larger set of data. If meaningful groups can be identified, groups can be named and
properties of the group summarized to allow for more efficient organization and
retrieval of information.

Prediction. 1f a larger set of data can be summarized and patterns within the data
to be observed more clearly, it may be of interest to predict how these relationships
develop. On a simple level, prediction could be used to predict properties not yet
measured, such as inferring about the similarity of cases within a group on variables
other than those used to identify the grouping structure. On a deeper level, prediction
could be used to posit hypotheses that may account for the groups. Prediction could
be conducted in a two step approach where first, an exploratory analysis is used to
identify an initial classification system; second, hypotheses of antecedents which
contribute to the group structure are tested on an independent sample drawn from
the same population.

T. Teo (Ed.), Handbook of Quantitative Methods for Educational Research, 103—122.
© 2013 Sense Publishers. All rights reserved.
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Classification methods are well-known and well-used in the social sciences. For
example, marketing researchers may group people by spending patterns and store
preferences, researchers in education may group students based upon ability or
interest in a subject area, anthropologists may group indigenous cultures based upon
customs and rituals. Classification systems may be especially useful in educational
research, where the goal is often to explain, and provide information that helps
assist, intervene, instruct, etc. individuals with a variety of needs.

Much of theresearch conducted in the social sciences has utilized a variable-oriented
approach to data analysis where the focus is on identification of relationships among
variables (e.g., multiple regression or correlational procedures) or investigation of
mean differences (e.g., ANOVA). This approach is useful for studying inter-individual
differences but less so for understanding intra-individual dynamics (Bergman &
Magnusson, 1997). In order to address this concern about the study of dynamics,
relatively more attention has been devoted to the use of person-oriented analyses.

Bergman and Trost (2006) made the distinction between the theoretical and
methodological aspects of person-oriented and variable-oriented approaches. In
variable-oriented approaches, basic concepts are considered as variables, and the
importance of these concepts is derived from their relationships with other variables,
which are investigated using linear statistical models. In contrast, person-oriented
theories consider all the variables simultaneously as interrelated components of an
indivisible entity, and studies them “as an undivided whole”, by employing pattern-
oriented approaches (Bergman & Trost, 2006 pp. 604). Such approaches include
cluster analytic techniques (Bergman & Magnusson, 1997), which focus upon
classification of individuals in order to consider intra-individual variation.

DESCRIPTION AND PURPOSE OF THE METHOD

Cluster analysis refers to a family of procedures which group cases to uncover
homogeneous groups underlying a data set (Anderberg, 1973; Aldenderfer &
Blashfield, 1984; Blashfield & Aldenderfer, 1988; Everitt, 1993; Hartigan, 1975;
Milligan & Cooper, 1987). The researcher has many choices to make when clustering.
This discussion will provide an overview of selected procedures and considerations
for educational researchers interested in using cluster analysis for classification.

Starting Cluster Analysis

Assumptions and variable considerations. Each case’s set of scores across of
many variables is evaluated with a cluster analysis. The collection of scores creates a
multivariate profile for each case, which is used in analyses to identify like cases. For
example (note: this scale will be discussed later in the chapter), Figure 1 illustrates the
profiles for two cases from across a set of 14 variables. Profiles can be plotted to provide
information about the “height” (the magnitude of the scores on the variable’s scale) and
the “shape” (the pattern of peaks and troughs for a case) across the set of variables.
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Figure 1. Sample profile of scores for two cases selected from the BASC TRS-C norm
dataset.

As with any statistical method, there are assumptions and considerations underlying
cluster analysis. First, the choice of variables to include is of primary importance
for cluster analysis. Because the multivariate profile is used to create the groups, the
variables included in the cluster analysis should be the most relevant to the situation
under study. The discussion of how many variables to include for each case is likely
to be related to factors of the research situation, such as time, expense, and ease of
collecting data information (Everitt, 1993). While researchers in the social sciences
often err on the side of collecting more variables than fewer, it is important to note
that the groups identified from a cluster analysis may differ markedly if different
numbers of variables are included. Finally, both cases and variables selected for
a cluster analysis are assumed to be independent and variables are assumed to be
uncorrelated.

A second consideration is that variables used in cluster analyses are thought to be
at the observed, rather than latent, level. Therefore, variables in cluster analysis may
be considered as directly measured and do not necessarily refer to underlying latent
variables. The data are also scale-dependent, meaning that variables with both large
mean differences and/or standard deviations may suppress the influence of other
variables (Everitt, 1993).
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Another consideration is the metric level of the data. Typically, cluster analysis
requires that data are on the same metric level. For cluster analysis, data may be of
any scale type (e.g., nominal, ordinal, interval, or ratio); however, the metric level of
the data will impact the choice of proximity measure (described in following section)
used to describe relationships between the cases. If the variables have large standard
deviations or are measured on different scales, the variables may be standardized to
put all values on a common metric before clustering (Aldenderfer & Blashfield, 1984;
Everitt, 1993; Milligan, 1996). Standardizing will remove the undue influence due
to problems of metric or variability (Milligan, 1996); however, it may also have the
disadvantage of masking differences on variables which best differentiate the groups
(Duda & Hart, 1973; Everitt, 1993). Results concerning the need to standardize are
conflicting. For example, Milligan (1980) found that standardization of variables
produced only minor differences in cluster analysis results versus the use of non-
standardized data, while other researchers have found that standardization did
impact results (e.g., Stoddard, 1979). The decision of whether or not to standardize
variables should be made by considering the problem at hand, the metric level of the
variables, and the amount of variability in the data. Overall, researchers should be
aware that clustering results may differ if standardization is, or is not, carried out.

When data are measured on varying metric levels, there are other transformations
that may be useful. For example, principal components factor analysis may be
conducted first to reduce the variables into related components, which are then used
as input for the cluster analysis (Aldenderfer & Blashfield, 1984). This procedure
may be attractive if there is significant multicollinearity between variables, because
components are clustered instead of scores from many single variables. However,
principal components has been criticized because it may merge modes present in
the data set, resulting in data that are normally distributed and may not reflect the
original nature of the data (Aldenderfer & Blashfield, 1984).

Another problem encountered with cluster analysis is when it is of interest to
group cases by variables of different type. (Everitt, 1993). While it may be of interest
to include all variables together to create groups, using a mixed set of variables
poses problems in cluster analysis. Researchers have offered suggestions, including
categorizing all interval level data to ordinal or nominal level data before clustering
(Everitt, 1993). An obvious disadvantage to this option is the loss of potentially
important information in the transformation process. A second possibility would
be to cluster cases separately, by type of variable, and to try to synthesize results
across the different studies (Everitt, 1993). This, too, may not be optimal because
information is lost when all profiles of scores are not considered together as one
multivariate set.

Sample size requirements for cluster analysis have not been specifically stated.
The number of cases needed will be related to the number of variables included,
where more cases are needed as the number of variables used to create the groups
increases. Cluster analysis is typically conducted with large samples (e.g., >200).
However, a rule of thumb is to follow recommendations presented from multiple
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regression or factor analysis and use a minimum of 10-15 cases per variable
(e.g., Pedhauzer, 1997), with 200 cases as a minimum.

Finally, it is noted that cluster analysis as a methodology is not without criticism.
A major criticism is that cluster analytic evaluation criteria are heuristic in nature
and a researcher’s subjectivity may bias the choice of a solution (Aldenderfer &
Blashfield, 1984). Additional criticisms include the lack of statistical indices to
assist in the choice of a final solution, and the sensitivity of the clustering algorithm
upon the results (Bergman & Magnusson, 1997, Steinley, 2003).

Proximity measures. After deciding on the variables to include, clustering requires
an index to use to group cases. The proximity measure transforms the multivariate raw
data, via a mathematical formula, into a matrix which is used to evaluate how alike
cases are (Romesburg, 1984). There are two general types of proximity measures,
similarity indices and dissimilarity indices, where elements in the data matrix vary
based on direction of the relationship between the cases. For dissimilarity indices,
smaller values indicate that two cases are more alike; for similarity indices, larger
values indicate that two cases are more alike.

While variables for cluster analysis can be measured on any metric level, in social
sciences, clustering often takes place with data that is at least ordinal in nature.
Examples of data which may be of interest to educational researchers include
grades, test scores, or standardized test scores. While proximity indices can be used
with nominal or ordinal data, focus will be given to proximity measures used with
interval data. Researchers interested in using nominal data have options to create a
proximity matrix, such as the simple matching coefficient or Jaccard’s coefficient
(c.f. Aldenderfer & Blashfield, 1984, pp. 28-29; Everitt, 1993, pp. 40—41), or with
Sneath and Sokal’s method (c.f. Gordon, 1981, p. 24) when ordinal data used. For
data that are on at least interval level of measurement, or even an ordinal level, but
treated as continuous data', correlation and distance measures may be used. These
measures are the two types that commonly used with cluster analysis in the social
sciences (Aldenderfer & Blashfield, 1984).

A popular similarity index metric used in cluster analysis is the correlation
coefficient (Aldenderfer & Blashfield, 1984; Everitt, 1993). This value summarizes
the amount of relationship between cases as:

= 2 (= x))( — %) ’ O

20 =) (=5, )

Where x_ is the value of variable i for case j and x; is the mean of all values of the
variable for case j (Aldenderfer & Blashfield, 1984).

Correlations are not scale-dependent, and the values are bounded from —1 to +1,
making interpretation relatively easy. While the correlation coefficient has some
attractive qualities, this index is often criticized. It has been suggested that the
correlation coefficient is a useful measure of similarity in those situations where
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absolute “size” of the differences alone is seen as less important than the “shape”
of the profile (Everitt, 1993). Thus, the correlation similarity index is sensitive to
the shape of a profile (i.e., the pattern of dips and rises across the set of variables).
For example, consider two cases where the profiles are of different magnitude (i.e.,
elevation) but of similar shape. These cases would have a high correlation value,
meaning a high degree of similarity. Figure 1 shows two profiles of scores, where
cases differ in elevation but are similar shape. Note that the collection of variable
means for a set of variables used to define a cluster is called a centroid. Another
criticism noted is that computing a correlation coefficient for use in clustering
requires that the mean value must be obtained across different variables rather than
across cases. Researchers have argued that this type of summarizing does not make
statistical “sense” (Aldenderfer & Blashfield, 1984).

A second type of proximity measures, dissimilarity indices illustrate how different
two cases are from each other across the set of variables. Two highly dissimilar
cases would receive a higher value, or greater distance, between cases, while highly
similar cases receive a low value, showing greater similarity (Everitt, 1993). Two
cases with identical scores on all variables would receive a distance measure of
zero, showing perfect agreement across the two profiles. While these measures have
a minimum of zero, there is no upper bound, making distance scores themselves
hard to interpret. Distance measures are also scale-dependent (Everitt, 1993) and
sensitive to fluctuations in variability across variables used in the clustering.

A very popular distance measure used with cluster analysis is the Euclidean
distance. From Aldenderfer and Blashfield (1984), the Euclidean distance between
two cases, i and j, is described as:

d[j ZQ,Z(X[/{ _x/k)27 (2)

where di. is the distance between case i and case j, X, is the value of the £” variable
for the i case, Xy is the value of the k" variable for the j” case. For a multivariate
profile, x, is represented as a vector, and differences between variables are summed
over all variables used in the clustering procedure. When calculating a Euclidean
distance, two case profiles, two group centroids, or an individual case profile and a
group centroid can be used in the formula.

To eliminate the square root symbol, the Euclidean distance value is often squared,
and the squared value (d;.) is reported as the squared Euclidean distance.

A final important distance is the Mahalanobis D2, which is defined as:

_ rN -1
d,=(X, - X)X, - X)), 3)
Where X is the pooled within-groups variance-covariance matrix and X, and X, are
vectors of the values for cases i and j. Unlike the Euclidean distance, this metric

incorporates relationships among variables into the equation. When the relationship
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between variables is zero, the Mahalanobis D? is equivalent to the squared Euclidean
distance. Given that the groups underlying a dataset are typically unknown at the
start of a cluster analysis, the entire dataset would need to be used as the choice of
¥ (Everitt, 1993).

Other measures of dissimilarity that can be used with continuous data are (a)
the city block distance, (b) the Minkowski distance, (c), the Canberra distance, (d)
the Pearson correlation, and (e) the angular separation (Everitt, Landau, Leese &
Stahl, 2011). Although distance measures may have some advantages, they are often
criticized because a computed index may be affected by the elevation or “height”
of the profiles. In other words, while two cases have a similar shape across the set
of variables, the level of the scores impacts the dissimilarity index (Aldenderfer &
Blashfield, 1984). Considering the cases shown in Figure 1, these two cases may
have a large correlation index, showing similarity, but the same two cases could
have a large distance measure, showing dissimilarity. This discussion illustrates the
importance of selecting a proximity index based on what considerations are most
important for a researcher’s purpose for clustering. Also, with distance measures,
cases with large standard deviations and size differences can overpower the effects
of variables with smaller size differences or standard deviations. Finally, distance
indices are affected by transformations of scale, such as standardizing variables. Even
given these caveats, distance measures are among the most often used with cluster
analysis.

Clustering Algorithms

There are many choices of clustering algorithms to join cases into groups or clusters.
When choosing an algorithm to join cases, the method needs to be compatible with
the purpose for clustering, the level of the variables, and the choice of similarity
matrix. Also, each method represents a different perspective and could produce
different results, even when applied to the same dataset.

At its most basic level, there are different families of procedures that cluster
cases according to a general method. There are seven major families of clustering
methods (cf. Aldenderfer & Blashfield, 1984, pp. 35-53); however, the three most
popular families used in social sciences are discussed: hierarchical agglomerative
methods, iterative partitioning methods, and factor analytic variants. Several
different clustering techniques underlie each of these families of clustering methods.
These selected options, and additional clustering algorithms (not discussed here) are
readily available to researchers through software packages often used in educational
research (e.g., SAS, R, SPSS, etc.).

Hierarchical algorithms. Hierarchical algorithms join cases into groups using
a series of merger rules. These techniques can be subdivided into two types: (1)
agglomerative techniques, which successively group single cases to arrive at
one group of size N, and (2) divisive methods, which separate the N cases into

109



C. DISTEFANO & D. MINDRILA

smaller subsets (Everitt, 1993). Divisive methods are far less popular in the social
sciences than hierarchical techniques (Everitt, 1993). Therefore, focus will be on
agglomerative methods; discussions of divisive methods may be found in clustering
texts (cf. Everitt, 1993; Hartigan, 1975; Lorr, 1983).

Hierarchical agglomerative methods have been the most popular procedure
of linking cases used with clustering (Aldenderfer & Blashfield, 1984). These
methods examine the proximity matrix and sequentially join two cases (or cases to
cluster) that are the most similar. After cases are joined, the similarity matrix is re-
examined to join the two cases/clusters with the next smallest distance to another
case/cluster. A total of N — 1 steps are made through a dataset, grouping cases from
singletons to one large set of NV cases, where N is the number of cases in the dataset
(Lorr, 1983).

Different ways to join the data underlie hierarchical agglomerative methods. The
single linkage (or nearest neighbor) method joins like cases in terms of similarity
index. Here, new cases are joined to groups on the basis of a high level of similarity
to any member of the group. Therefore, only a “single link” is required between
two cases to merge the group(s). A drawback to this linking process is that it may
produce long “chains” of cases, where cases are linked one-by-one to create one
large cluster.

The complete linkage (or furthest neighbor) method is the counterpart to the
previous techniques, in that cases are considered to be included into an existing
cluster must be within a specified level of similarity to all members of the group.
This is a much more rigorous rule than imposed by the single linkage method. As a
result, the complete linkage method tends to create smaller, tighter elliptical-shaped
groups (Aldenderfer & Blashfield, 1984). As a middle ground, the average linkage
method essentially computes an average of the similarity index for a case with all
cases in an existing cluster and cases are joined to the group based on the average
similarity with members. Other methods, (e.g., Mean vector [or centroid] clustering
and median clustering) work similarly to group cases.

The most popular hierarchical agglomerative method used in the social sciences
(Aldenderfer & Blashfield, 1984) is Ward’s method (Ward, 1963). This procedure
creates groups which are highly homogeneous by optimizing the minimum variance,
or error sum of squares (ESS), within clusters. The ESS formula, as stated in Everitt
(1980) is:

ESS = i(X,. -X), 4)

i=1

where X is the case (or group) in question and X is the cluster centroid. The n may
refer to the total number of cases (at the start of the process) or the number of groups
(as the clustering process proceeds). At the first step of the process, each case is its
own cluster, and the ESS among groups is 0. Cases are joined into clusters which
result the smallest increase of ESS, computed as a sum over all clusters. Although

110



CLUSTER ANALYSIS

Ward’s method is very popular, it is also sensitive to the elevation of the profiles and
may group cases into different clusters based on elevation, even if the shapes of the
profiles are similar.

While hierarchical agglomerative methods are useful, they do suffer from problems.
One major problem is cases joined at an earlier step cannot be reassigned— even if
the case has a closer association with a different group by the end of the assignment
process. In other words, a poor start to the clustering process can not be overcome
because only one pass to assign cases is made through the dataset. Second, hierarchical
agglomerative methods do not have “stopping” rules which state the number of clusters
underlying a dataset. The researcher can plot the union of cases through the clustering
process by using a dendrogram (Everitt, 1993). Dendrograms visually represent
the merging of cases at each step, from the lowest level (where all N cases are their
own group) to the highest level (with all cases forming one large group of N cases).
A researcher can examine the plot for suggestions of the number of clusters underlying
the dataset by looking for the large divisions or “steps” in the graph.

For example, Figure 2 shows a dendrogram plot for a subset of 50 random cases
from the example dataset (described later in this chapter). For the clustering, Ward’s
method with squared Euclidean distances was used to group cases. At the bottom
of the plot, each case is its own group, and similar cases are joined in a hierarchal
manner. The plot shows that there may be four groups underlying the dataset. Three
clusters have multiple cases and one cluster consists only of one case (case ID
number 36). This case may be examined to determine if there were measurement/
scoring problems or to see if it is an outlier. If it is of interest to keep this case, it
may be of interest to try differing number of cluster solutions (e.g., 3, 4, 5 clusters)
to evaluate the placement of this case in different cluster solutions.

Dendrogram
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60
L
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Figure 2. Dendrogram for a selection of 50 cases from the BASC TRS-C norm dataset.
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A third consideration is that groups created using hierarchical agglomerative
methods are nested. This means the clusters do not overlap and each cluster can be
subsumed as a member of a larger, more inclusive group at later steps in the process.
Finally, hierarchical methods may not provide stable groupings. A researcher may
obtain different results if a dataset is simply reordered, reshuffled, and re-clustered
(Blashfield & Aldenderfer, 1988).

Iterative partitioning methods. Iterative partitioning methods are another choice
of clustering algorithm. As with hierarchical methods, there are many procedures
and choices underlying this family of methods. Approaches within this family use
a similar set of general procedures, where clustering is conducted by completing a
series of steps (Aldenderfer & Blashfield, 1984; Everitt, 1993):

1. At first, an initial cut or partition of the data set into & clusters is made, where k is
specified by the researcher. The centroid, or the arithmetic mean values across
the set of variables, is computed for each of the £ clusters. If group information
is unknown, the initial partition may be conducted arbitrarily. For example, one
choice may be to allow the first £ cases to serve as the cluster centroids for the
k groups or randomly choosing k cases to serve as the initial group means.

2. Next, individual cases are assigned to the cluster that has the nearest centroid.
This is typically conducted using distance measures (e.g., squared Euclidean) in
the proximity matrix and assigning cases to the cluster with the smallest distance
to a given centroid.

3. Once all cases in the dataset are assigned, the centroids of the & clusters are re-
computed. The dataset is re-examined to see if any cases have a smaller distance
to the cluster centroid from the initial assignment to a different cluster centroid.
Cases with smaller distances to different groups are re-assigned.

4. Steps 2 and 3 are repeated by making “passes” or iterations through the dataset
until no cases change cluster assignment.

With iterative clustering procedures, the type of pass used to group the data refers
to how cases are assigned after each iteration. There are two basic types of passes:
k-means and hill climbing (Aldenderfer & Blashfield, 1984). Hill climbing passes
assign cases to a cluster if the proposed assignment optimizes the value of a statistical
criterion, which is concerned with cluster homogeneity. Alternatives for the criterion
can be based on the within-group variation, W, the pooled within cluster covariance
matrix or in combination with the between-group variation, B, the pooled between
cluster covariance matrix (Everitt, 1993). Using these matrices, optimization criteria
focus on minimizing trW, minimizing the determinant of W, and maximizing the
trace of BW .

The k-means pass involves assigning cases to the cluster with the nearest
centroid. There are many options to assign cases: the process may be combinatorial
or noncombinatorial, inclusive or exclusive. Combinatorial methods allow for
recalculation of a centroid after each membership change, while noncombinatorial

112



CLUSTER ANALYSIS

methods recalculate cluster centroids after the entire dataset has been classified.
When computing centroid values, individual cases can be included in the calculations
(inclusive) or a case in question may be removed from the centroid calculations
(exclusive method).

While not explicitly stated, the k-means procedure tries to minimize the trace
of the pooled within covariance matrix (trW) (Aldenderfer & Blashfield, 1984).
This criterion is similar to Ward’s method, as minimizing the trace of the within
group sum of squares matrix is equivalent to minimizing the sum of squared
Euclidean distances between cases and the cluster centroid (Everitt, 1993); however,
the hierarchal process is optimized within k-means to identify the “best” (global)
solution underlying a dataset (Steinley, 2000).

While iterative partitioning methods do allow cases to switch clusters, these
methods are not without problems. Iterative partitioning procedures are sensitive
to the initial cut in the data and may not be able to fully overcome a poor initial
partition (Steinley, 2003). As with hierarchal methods, k-means may produce a
suboptimal solution if the initial cut is poor. This has been referred to as the problem
of finding a local optimal solution, rather than a global solution for the entire dataset
(Aldenderfer & Blashfield, 1984). To avoid the problem of a poor starting point,
centroid values, or “seed” values may be used, where the input for the initial partition
are k centroids based upon prior knowledge or previous analyses. Another strategy
that has been recommended is to use the final solution from the Ward’s hierarchical
agglomerative method as the starting point, or seed, for the iterative partitioning
procedure (Huberty et al., 1997; Ward, 1963). By using the final Ward’s solution as
the initial starting point for the k-means procedure, the researcher gains the benefits
of both clustering algorithms. As with hierarchal methods, random shuffling of a
dataset and re-clustering can help determine if identified clusters are stable entities.

Aswith other clustering methods, it is noted that a researcher may achieve different
results if different choices are made and applied to the same iterative partitioning
method. For example, results may differ if a k-means versus hill climbing procedures
is used or different optimization criteria are considered, even with the same dataset
(Aldenderfer & Blashfield, 1984; Everitt, 1993). Finally, the most well used method,
minimization of tr(W), is scale dependent and may produce different solutions even
if raw data and standardized data from the same dataset are clustered.

Factor analytic variants. Factor analytic approaches to clustering have been used
in more in psychological research than in the other social sciences (Aldenderfer &
Blashfield, 1984). These methods are often termed Q-analyses and focus on using
factor analytic techniques (e.g., principal components) to reduce a correlation matrix
of relationships between cases (i.e., rows). This method is similar to more traditional
exploratory factor analysis, which examines the relationships between variables
(i.e., columns) of a dataset.

While Q-analysis techniques have been used to group cases, distinctions have
been identified between this procedure and other clustering methods (Lorr, 1983).
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For example, factor analytic methods have been termed as dimensional approaches,
which simplify a dataset by identifying a fewer extracted factors to explain the
relationship between cases (Weiss, 1970 as cited in Lorr, 1983, p.123). Where
hierarchical and iterative partitioning procedures aim to reduce a dataset into smaller,
discrete groups, the groups obtained from these analyses may not be mutually
exclusive (Lorr, 1983). Because factor analytic approaches to clustering cases are
not as common as iterative partitioning or hierarchical clustering methods, but, may
be used in social science research, these methods will be briefly discussed. More
detail on factor analytic variants may be found in clustering texts (cf., Aldenderfer &
Blashfield, 1984; Lorr, 1983).

Like traditional factor analysis scenarios, Q-analysis procedures typically use a
similarity index to compare cases. While correlations are typically used to group
similar profiles, it is known that this choice of proximity index does not consider the
level of the profile(s). Alternatives to use of the correlation matrix in a Q-analysis
include using covariances between variables or the sum of score cross-products. An
advantage of using covariances as the index of similarity is that the variables remain
in their original metrics — this may aid interpretation if variables possess similar
amounts of variability. Similarly, using the sum of score cross-products uses raw
scores; results from raw score cross products provide results that approximate results
from using distance coefficients (Lorr, 1983).

Once a proximity matrix is constructed, the relationships between cases are
factor analyzed using common methods, such as principal components or principal
axis factoring. Lorr (1983) noted principal components method is the most popular
procedure used to identify a smaller number of groups. However, when assigning
groups to clusters, researchers will encounter similar problems as with traditional
factor analysis —where criteria need to be used to classify cases to groups. A common
procedure is to assign a case into a group is to use a cutoff value, such as a minimum
correlation (e.g., value of at least .5) between the case and the extracted group (Lorr,
1983). Also, to create mutually exclusive groups, cases should not “cross-load” with
other groups above a maximum value (e.g. no higher than a .35 association with
other groups). While guidelines are provided, these considerations are subjective
and may vary among researchers; care is needed when choosing outcomes under
Q-cluster analysis.

Finally, some considerations apply when conducting Q-analysis. For example,
if variables are on different metrics interpretation problems may arise. In this
situation it is recommended that the variables are centered and then standardized
across the cases before calculating correlations or sums of raw cross-products (Lorr,
1983). Second, because the cutoff values to assign cases to clusters are chosen by
the researcher, the homogeneity of the clusters may be influenced by the cutoff
value chosen. Lower cutoff points would allow for a greater number of cases to be
classified into a group, but the resulting cluster would be relatively heterogeneous.
Higher cutoff values for association would result in more homogeneous groups, but
lower coverage of the dataset.
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In addition to the clustering algorithms described above, there are some clustering
procedures that have unique features and cannot be assigned to any of the clustering
families described in the literature. Such clustering techniques are: (a) methods based
on density search and mode analysis; (b) methods that allow overlapping clusters;
(c) methods that cluster data matrices instead of proximity matrices and, therefore,
group both variables and individuals at the same time; (d) methods that constrain
the clustering process by using, in part, external information to determine the cluster
memberships; (e) fuzzy methods, where individuals have fractional memberships
to several groups and a membership function indicates the strength of membership
to each cluster; and (f) neural networks, where groups are identified by modeling
pattern recognition algorithms employed by highly connected networks such as
neurons in the human nervous system (Everitt et al., 2011, pp. 215-255).

Conducting Cluster Analysis

Determining a starting point for cluster analysis. Given that the goal of clustering
is to determine the number of cases from an ungrouped set of data, a natural question
when beginning the process is: “How many groups underlie the dataset?”” Heuristic
criteria may be used to suggest the optimal number of clusters. Three statistics, Cubic
Clustering Criterion, Pseudo F, and Pseudo t-square, can be plotted by the number of
possible clusters (maximum of N clusters) to judge the number of groups underlying
a data set (Aldenderfer & Blashfield, 1984; Sarle, 1983). The plots are analogous to
a scree plot in factor analysis. Here, graphs are examined to determine large changes
in level of the plot, where the drop suggests the number of clusters underlying the
dataset (Everitt, 1993). Additionally, with hierarchical methods, dendrogram plots
can be examined to identify where “steps” or breaks in the graph are, denoting
different groups. If factor analytic methods are used, scree plots can be used to
determine the number of groups which may underlie the data. Using dendrogram
or other plots are subjective methods to determine the number of clusters. As with
exploratory factor analysis, when conducting cluster analysis, researchers should
use the suggested number of clusters as a starting point and evaluate a range of
cluster solutions above and below this point.

Nevertheless, the cluster analysis literature provides a variety of statistical tests,
indices, and procedures that may be used to obtain additional information and help
researchers identify the optimal number of clusters in a data set. Such criteria are:
(a) the Calinski and Harabsz’s index (Calinski & Harabasz, 1974), (b) Hartigan’s rule
(Hartigan, 1975), (c) the Krzanowski and Lai test (Krzanovski & Lai, 1985), (d) the
silhouette statistic (Kaufman and Rousseeuw, 1990), (e) approximate Bayes factors
(Kass & Raftery, 1995; Frayley & Raftery, 1998), (f) the gap statistic (Tibshirani,
Walther, & Hastie, 2001), (g) nonparametric measures of distortion (Sugar & James,
2003), (h) stability analysis (Steinley, 2008), or (i) bootstrapping (Fang & Wang,
2012). Many of these techniques were developed to address specific problems and,
therefore, do not have a general applicability. Furthermore, some of the methods
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that have a wider applicability are computationally intensive or “require strong
parametric assumptions” (Sugar & James, 2003, p. 750). Thus, such statistical tests
are not widely used with cluster analysis.

Choosing a cluster solution.  Once a researcher has obtained a solution, interpreting
cluster analysis results involves two main components. First, the centroid information
is evaluated for each cluster (Aldenderfer & Blashfield, 1984; Everitt, 1993).
Through examining cluster centroids, one may determine if a cluster’s centroid
values identify a subgroup of the population. Second, supporting information about
each cluster’s demographic characteristics may be considered. Within educational
research, demographic characteristics may include gender distributions, racial/
ethnic membership, family socioeconomic status, and cluster size relative to the
total sample. A cluster is “named” by comparing the centroid information and
demographic characteristics to existing theoretical perspectives and prior research.
This information can be evaluated and compared for a range of solutions to determine
which one fits the data best.

After the final cluster solution is agreed upon, additional investigations and use of
the solution can be made. These may be internal validation and external validation
procedures. Internal validation procedures center on using the same dataset. This
may be conducted by shuffling the dataset and reclustering to see which cluster
definitions are stable. Another method which is useful if the dataset is sufficiently
large is to split the dataset into half samples. One half-sample may be used to build
a classification rule using predictive discriminant analysis techniques, and applied
to the second half sample (Huberty et al., 1997). This has the effect of treating the
second sample as ungrouped cases, where the cases are assigned into the cluster with
the closest association (Huberty, 1994). Concordance between the two classification
methods may be assessed.

External classification procedures focus on using independent datasets.
Validation of a cluster solution is paramount to illustrating that it is an optimal
solution (Aldenderfer & Blashfield, 1984). Replication is an important criterion,
not only to determine the appropriate number of clusters, but to ensure that the
agreed upon solution holds the same meaning in independent samples from the same
population (Aldenderfer & Blashfield, 1984). Validation procedures may also be
conducted by determining if there are differences between groups (i.e., Analysis of
Variance — ANOVA) on important variables which were not used to group cases into
clusters.

ILLUSTRATIVE STUDY

As an example to illustrate different classification methods, the Behavior Assessment
System for Children (BASC; Reynolds & Kamphaus, 1992) Teacher Rating Scales—
Child (TRS-C) norming dataset was utilized. The TRS-C includes 148 items that are
rated by a child’s teacher. For each child, teachers rate the frequency of behaviors
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exhibited during the last several months, using a four-point scale of “Never”,
“Sometimes”, “Often” and “Almost Always.” This form is appropriate for children
aged 6 to 11 years old.

Items on the TRS-C are organized into 14 subscales of behavior measure both
adaptive and maladaptive behaviors. Teacher ratings for each subscale can be
transformed to a T-score (mean of 50, standard deviation of 10), and, for each child,
values across the set of 14 variables may be used to evaluate a child’s emotional and
behavioral health in the school setting. Generally, higher scores represent greater
levels of problematic behavior; however, for scales measuring adaptive skills
(e.g., Study Skills), lower scores represent more maladaptive behaviors.

While the BASC TRS-C (Ist edition) dataset was selected for a number of
reasons, the primary reason for inclusion is that it represents a situation which is
often encountered with classification: where it is of interest to create subgroups
of cases from a large, ungrouped dataset. A realistic objective may be to create a
classification system for describing child behavior in the school setting — including
both good behavior and problematic behavior/emotional competency — as rated
by teachers. Knowledge of subgroups of children who behave similarly to other
children within the same group may be of interest for academic remediation, referral
for counseling or special education, or differentiated instruction.

For the TRS-C norm sample, the average age was reported as 8" years old and
consisted of 598 (49%) female and 630 (51%) males. The sample of children was
primarily Caucasian (n = 820, 67%), with 33% (n=408) classified as minorities.
Of the children included in the norm database, the majority had not been diagnosed
with a behavioral or emotional disorder (n = 1131, 92%); however, 91 (7.5%) of the
children had received one clinical diagnosis, and six children (0.5%) received two
prior diagnoses.

To begin clustering, both CCC plots and dendrograms were run with SAS
software (version 9.2). The plots suggested that 6—8 clusters were underlying
the dataset; however, 4 through 9 cluster solutions were run and interpreted.
For clustering, Ward’s method was used with the Squared Euclidean distance as
the proximity measure. To evaluate the cluster solutions, group centroids for the
solutions were examined and matched to theoretical knowledge of child behavior
in school settings as well as prior research solutions. The size of the cluster relative
to the total norm sample and the gender membership in the cluster was used to
help identify characteristics of the groups. To validate the final solution, an ANOVA
was run on the Behavioral Symptoms Index (BSI) which is a measure of a child’s
overall level of risk. BSI values are measured on a T-score metric and are comprised
from a collection of information on the TRS-C form. While it is recognized that the
information is not truly unique and would not be an optimal choice of a variable for
validation, it is used to illustrate how validation procedures may be conducted.

After evaluating and comparing multiple solutions, a seven cluster solution was
interpreted. The seven groups uncovered by the Ward’s clustering procedure were
named by examining the centroids across the set of 14 variables (listed in Table 1)
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Table 1. BASC teacher rating scale—child norming data: mean t-scores by scale for the
seven cluster solution under ward s clustering algorithm

Ward’s Method ClL1 Cl.2 CL3 Cl4 CL5 CL6 CL7

N 463 160 277 89 38 25 176

Externalizing Problems

Aggression 4415  51.04 4571 67.33  68.95 4452  57.76
Conduct Problems 4539  48.13 47.16 67.22 71.00 5276  54.50
Hyperactivity 43.68 4980  47.67 66.51 68.34 4756 5931
Internalizing Problems

Anxiety 4542 5439 4599 55.72  72.03 48.64 55.03
Depression 4448  52.41 45.82 60.39  79.11 50.76  57.16
Somatization 46.10 5496  46.89 4926 64.00 46.08 5823
Other Scales

Atypicality 45.14 4895 47.71 64.79  81.79 5536 54.19
Withdrawal 4499  50.71 48.42 56.54 71.58 7652  53.63

School Problems
Attention Problems 41.46  47.35 52.97 65.47 6834 63.04 57.99
Learning Problems 4252 4749 52.99 64.76  66.13 63.80 56.85
Adaptive Skills

Adaptability 58.15  50.21 48.04  36.33 3176 4140 41.59

Leadership 57.73 5278 4217 4011 4058  33.16 45.57

Social Skills 57.52  52.16  43.02 39,57 4221 3332 4530

Study Skills 58.79 5373 4355 3675  38.61 3444  42.69

Percentage of Total 38 13 23 7 3 2 14

(Cluster Size)

Percentage 39/61  46/54  57/42  82/18  58/42  48/52  63/37

Male / Female

Cluster Name Well Average Low DBP GP-S Acad.  Mildly
Adapted Adaptive Prob. Disrup.

Notes. Values that differ from the mean by one standard deviation or more (regardless
of direction) are printed in boldface. Cl= Cluster, DBP = Disruptive Behavior Problems,
GP-S = General Problems—Severe; Internal. Problems = Internalizing Problems, Acad.
Prob. = Academic Problems.

and matching the descriptions to prior research. The groups identified were named:
(1) Well Adapted, (2) Average, (3) Low Adaptive, (4) Disruptive Behavior Problems,
(5) General Problems—Severe, and (6) Mildly Disruptive and (7) School Aversion.
Each cluster is briefly described to illustrate the naming process.
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The Well Adapted cluster (n=417) was named because of its significant
elevations on adaptive scales and absence of behavioral problems. There were more
girls (60%) reported in this group than boys (39%). The second cluster was labeled
Average. With 160 members, this cluster reported all 14 variables close to expected
mean values of 50 and had slightly more girls in the cluster.

A third cluster of 277 members was identified as Low Adaptive Skills. This group
looked similar to the Average cluster, with the exception of low scores on three
of the four Adaptive Skills scales. This cluster had a higher percentage of boys as
members.

A fourth cluster of 89 members was identified as Disruptive Behavior Problems.
Significant adaptive behavior deficits and elevation on externalizing scales mark this
cluster. As expected, males dominated this cluster (82%). The Disruptive Behavior
Problems group accounted for seven percent of the total norm sample.

The Mildly Disruptive group had 176 members, was predominantly male (63%)
and accounted for 14% of the norm sample. This cluster is differentiated from the
Disruptive Behavior Problems cluster by comparatively mild elevations on the
Aggression, Hyperactivity, and Adaptability scales.

The cluster General Problems — Severe is the most behaviorally impaired of all
the cluster types. This small cluster (n = 38) is predominantly male (58%) and the
group exhibited a diverse array of problems including psychotic thought processes
(significant Atypicality scores) and impaired adaptive skills. Additionally, children
in this cluster exhibited high levels of externalizing behaviors. General Problems—
Severe children comprised only a small percent (3%) of the norm sample.

A small cluster of children (z =25) was found with scores within one half standard
deviation of the mean on Internalizing Problems and Externalizing Problem scales.
However, this scale had significantly high levels of School Problems scales, very
low Adaptive Skills, and the highest Withdrawal T-scores across the set of clusters.
The group was roughly equally split across genders. This group was named School
Aversion because it shares similarities with the Academic Problems cluster identified
in previous studies (e.g., Kamphaus et al., 1997), but the levels seen here are much
more extreme.

An ANOVA was run to see if the groups illustrated mean differences on BSI. The
ANOVA test reported significant mean differences across BSI values for the different
clusters (F ,, =815.47, p <.001). The lowest T-scores, illustrating lower ‘at-risk’
status were seen for students in the Well-Adaptive group; highest BSI values were
reported for the General Problems—Severe students. Bonferroni post-hoc tests were
conducted to determine which group scores were significantly different. With the
exception of scores for students in the Average group and the Academic Problems
group, there were significant differences among the BSI mean scores. From lowest
T-score to highest, the groups were ordered as: Well-Adaptive (M = 42.6), Low
Adaptive (M = 47.1), Average/Academic Problems (M = 50.1/51.9), Mildly Disruptive
(M =58.7), Disruptive Behavior Problems (M = 66.7), and General Problems —Severe
(M=18.8).
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SUMMARY AND CONCLUSIONS

Cluster analysis has a long history in the social sciences. The goal of this chapter was
to introduce cluster analysis as a classification procedure. Additionally, the example
was presented to illustrate how different choices in the classification process can
produce different results. While limited procedures were presented, the figures
and tables provide information and may be used as a resource for interpretation of
various classification techniques.

One recognized limitation of the current chapter is that the viability of cluster
solution in the presence of missing data was not discussed. This was omitted to
concentrate on an introduction of the procedures and assumptions underlying cluster
analysis. However, it is recognized that missing data is often encountered, especially
in a field such as the educational research which often uses self-report or test data in
investigations. Briefly, there are many ways that missing data may be handled, some
of which vary depending on the type of missing data, and some of which vary based
upon the classification procedure in use. While these issues are very involved and
complex, it is beyond the scope of the chapter to discuss different types of missing
data (e.g., missing at random, missing completely at random, and missing not at
random). Readers are referred to texts on missing data, such as Little and Ruben
(2002) or Enders (2010), for more detailed information about various types of and
treatments for missing data.

If cluster analysis is of interest and the percent of missing data is not too high,
data could be imputed or the dataset reduced through listwise deletion methods (or
pairwise deletion in the case of factor analytic variants of cluster analysis). Again,
these methods to treat missing data come with known caveats (e.g., Enders, 2009),
and if too much data are lost through listwise deletion, the accuracy of the groups is
questionable. Further, if too much data is imputed for the variables without taking
into consideration characteristics of the case (e.g., mean imputation), the variability
within the dataset will be reduced. If possible, it is recommended to impute mean
scores using information from an individual’s pattern of scores (e.g., mean imputation
for an individual on a missing item based on other items within the same subscale).
On a whole, cases with a lot of missing data may be investigated to see if there is
enough information to include these cases in the cluster analysis. Researchers may
want to create an arbitrary cut-off value (e.g., 25% missing data) and include cases
with less missing data and exclude those cases with missing data above the cut-off
value. Other, more sophisticated methods of treating missing data in cluster analysis
include estimating a missing data point using regression procedures (Gordon, 1981).

We also note that there are many possible numbers of combinations of cluster
applications which may be used. Hopefully the presentation of the algorithms and
proximity values along with the example can give researchers an idea of the magnitude
of choices available when conducting cluster analysis. Researchers are encouraged to
apply more than one technique when conducting classification work (e.g., two different
clustering algorithms) to determine which groups consistently re-emerge. Further,
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while validation procedures were briefly discussed, the importance of validation in the
context of clustering cannot be stated loudly enough. Validation is crucial to ensure
that the groups identified are not artifacts of just one sample of data.

CONCLUSION

In summary, cluster analysis can be valuable tools in the exploration of large sets
of multivariate data. By organizing data into subgroups, these smaller groups
can help researchers identify patterns present in the data and uncover the unique
characteristics of the group structures. Application of cluster analysis in practice
requires care because, as shown in the chapter, there are many areas where choices
need to be made, and criteria to evaluate which are subjective and open to different
interpretations by different researchers. As Everitt, Landau, Leese and Stahl (2011,
p. 287) state “Simply applying a particular method of cluster analysis to a dataset
and accepting the solution at face value is in general not adequate.” As classification
methods rearrange the “facts” of a dataset for pattern recognition and group
identification, validation work is crucial to conduct before trusting that a solution
represents an underlying taxonomy. Careful analysis and execution of the all the
decisions underlying classification will help the methodology fulfill its potential as
an efficient and useful tool for applied researchers.

NOTE

' In the social sciences, data that are ordinal are often treated as interval level data. A common example

is data from self-report questionnaires where data arise from the use of a Likert scale.
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6. MULTIVARIATE ANALYSIS OF VARIANCE

With Discriminant Function Analysis Follow-up

INTRODUCTION TO MANOVA

Multivariate analysis of variance (MANOVA) allows an examination of potential
mean differences between groups of one or more categorical independent variables
(IVs), extending analysis of variance (ANOVA) to include several continuous
dependent variables (DVs) (e.g., Grimm & Yarnold, 1995; Harlow, 2005; Maxwell &
Delaney, 2004; Tabachnick & Fidell, 2013). As with ANOVA, MANOVA is a useful
procedure whenever there are limited resources or when it is important to identify
which groups may need specific treatments, interventions, or note. MANOVA can
illuminate whether and how groups differ, and on which DVs.

In ANOVA a researcher can posit one or more categorical IVs, each with two or
more groups, and one continuous DV. With MANOVA, the same structure of IVs
can be considered except that two or more DVs are analysed. Hence, MANOVA
allows for a much more realistic appraisal of group differences than does ANOVA.
MANOVA can also be extended to incorporate one or more covariates, becoming
a multivariate analysis of covariance (MANCOVA) that allows for one or more
categorical grouping variables, one or more continuous covariates, and two or more
continuous dependent variables. As will be seen later, MANOVA is closely related
to the multivariate procedure of discriminant function analysis (DFA), which is
mathematically equivalent but switches the roles of the independent and dependent
variables. That is, DFA allows two or more continuous /Vs and a categorical
DV. Thus, in MANOVA researchers start with a focus on the categorical groups
and ask how the means of several DVs differ. In contrast, with DFA researchers
start with several (usually) continuous IVs and ask how these variables can help
discriminate between the categorical groups of the DV. To preview analyses for an
example later in the chapter, DFA is sometimes used as a follow-up procedure to a
significant MANOVA, in order to investigate which of the continuous variables is
differentiating among the groups. In what follows, we describe the basic purposes
for MANOVA, along with the main equations needed, and how to assess the overall
analysis with significance tests, effect sizes, confidence intervals, and a follow-up
DFA. An example further illuminates the use of MANOVA and DFA.

T. Teo (Ed.), Handbook of Quantitative Methods for Educational Research, 123—143.
© 2013 Sense Publishers. All rights reserved.
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Description and Purpose of MANOVA

Several main purposes for which MANOVA is used are briefly described below.

MANOVA for an experimental design. The best use of MANOVA is when an
IV is experimentally manipulated, and participants are randomly selected from a
relevant population and then randomly assigned to groups. In this case, the goal
is to assess whether the manipulated IV brought about or caused significant group
differences between groups on a set of meaningful DVs. For example, a researcher
could randomly assign students to an innovative phoneme training reading group
or a standard educational reading group. At the end of the study, the researcher
could examine the mean scores on reading comprehension, reading interest, and
vocabulary between the two groups. A MANOVA would reveal whether there
were any significant differences between the groups on a linear combination of the
three DVs. Follow-up analyses (e.g., a set of ANOVAs, or a single DFA) could be
conducted to determine which of the DVs were most clearly showing differences
across reading groups. Differences could be attributed to the phoneme training if
scores from that group were significantly higher.

MANOVA for a repeated measures design. MANOVA can be used to assess
whether there are mean differences across time on a set of DVs. In this case, the IV
is time and the groups are the various time points in which the data are collected on
the set of DVs. For example, the reading researcher in the previous study may want
to assess mean scores on reading comprehension, reading interest, and vocabulary
across three time points (e.g., pre-test at the beginning of the school year, post-test
at the end of the first semester, and follow-up at the end of the school year). In
this example, time is the IV with levels representing the three separate time points,
and the set of DVs is measured “k” (i.e., the number of levels or groups in the IV)
times. This is also called a within-groups design as the analysis is assessed within a
same group of participants, across time. It could also be referred to as a dependent
MANOVA since the scores at each time point are dependent on the previous time
point with the same (within-group) sample providing repeated measures across time.
Regardless of how this design is named, a researcher could assess whether there
were significant differences across time. If the phoneme training were successful,
there should be significant differences between the pre- and post-test administered
at the beginning and end of the first semester, respectively. If changes were long-
term, there would be significant differences between the post-test and follow-up
scores; and even possibly between the pre-test and follow-up scores collected at the
beginning and end of the academic school year, respectively.

MANOVA for a non-experimental design. ~ Although it is not ideal, MANOVA can
be used to assess differences between two or more intact groups, on two or more
DVs. For example, a reading researcher could examine whether there are differences
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between two classrooms, one of which used phoneme training and the other that
used standard reading training, on a set of DVs (i.e., reading comprehension,
reading interest, and vocabulary). However, even if significant differences were
found between the two classrooms, it would be impossible to attribute causality to
the type of training, especially since the IV was not manipulated and participants
were not randomly assigned to classrooms. In this design, it would be very difficult
to control for all possible confounds that could be explaining differences in the
DVs. For instance, classrooms may have differed as to initial reading level, basic
intelligence, socioeconomic status, and amount of reading in the home, to name
a few. If a researcher was fairly sure that this set of four potentially confounding
variables were the most important considerations outside of the type of training in
comparing across classrooms, these variables could be assessed as covariates with
a MANCOVA. This would provide some degree of control and probably elevate the
study to a quasi-experimental design, although results would still not be as definitive
as in an experimental design with random assignment to groups. Nonetheless, this
form of non- or quasi-experimental MANOVA is sometimes used, with results then
interpreted more descriptively than inferentially.

The Main Equations for MANOVA

The main equation to describe the nature of a DV score, Y, for MANOVA is:
Y=u,+t+E (1)

where Y, is a continuous DV, u ; is the grand mean of the ith DV, 7 is the treatment
effect or group mean, and E is error.

For MANOVA, another equation is needed to reflect that linear combinations of
the continuous DVs are being formed before examining group differences. Thus,

V=bY, +bY,+ . +bY 2)

where ¥ is the ith linear combination, b, is the ith unstandardized weight, and Y’ is
the i” DV.

When there are more than two groups in a MANOVA more than one linear
combination can be formed. The number is determined by:

#of V’s = minimum (p, k- 1), 3)

where p is the number of continuous variables, and £ is the number of groups or
levels of the IV. When there are only two groups, only one linear combination can be
formed (i.e., k— 1 =2 — 1 = 1) no matter how many dependent variables are included
in a design. This will be the case in the example later in the chapter.

In MANOVA, even though there may be one or more linear combinations,
each with a specific set of weights (i.e., the “b” values in equation 2), the weights
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and linear combination(s) are not a point of focus until conducting DFA, which is
discussed later in the context of an example. To preview, the linear combinations
in equation 2 are called discriminant functions in DFA, and for that analysis the
weights are of prime importance. For now, know that in MANOVA, the focus is
on modelling mean differences in the DVs, across the groups of the IV. Similar
to what occurs in ANOVA, a ratio of between-group variance over within-group
variance is formed in MANOVA, except that now the ratio involves variance-
covariance matrices. The between-group variance-covariance matrix could be
labelled B, although to distinguish it from the unstandardized b weights in the linear
combination, this matrix is often labelled as H for the “Hypothesis” matrix. The
within-group variance-covariance matrix is often labelled as E to represent error
variance (Harris, 2001). Whereas in ANOVA there is just a single dependent variable
in which to delineate between- and within-group variance, in MANOVA we need to
focus on “p” sets of variances, one for each DV, as well as p(p — 1)/2 covariances
among the p DVs. We store the between-group variances and covariances in the H
matrix and the pooled within-group variances and covariances in the E matrix.
Thus, in MANOVA, another equation of interest is the ratio of the between-groups
variance-covariance matrix over the error variance-covariance matrix:

H/E=E'H “4)

Those familiar with matrix operations will realize that E-' refers to the inverse of the
divisor matrix, E, which is multiplied by the dividend matrix, H. Subsequently, it will
become apparent that one of the challenges in conducting a MANOVA is considering
different ways of summarizing this ratio of matrices with a single number that can
be assessed for significance with an F-test. With ANOVA, where there is only one
DV, there is just a single number to indicate the ratio of between- over within-group
variances. In MANOVA, however, this ratio involves two matrices, which after
multiplying the inverse of the E matrix by the H matrix still results in a matrix,
and not a single number such as an ' in ANOVA. Drawing on matrix operations
and features, several methods are suggested shortly to summarize a matrix (e.g., E™
H) with a single number. One method involves finding a determinant, which is a
generalized variance of a matrix that can summarize how different the information is
in a matrix. If all of the variables are essentially the same, the determinant will be very
small, indicating that there is very little variation to assess within the matrix. Thus, it
is important to choose dependent variables that are at least somewhat different, and
IV groups that are fairly different from each other in order to provide a reasonable
size determinant. Another matrix method for summarizing a matrix is a trace that
represents the sum of the diagonal elements in a matrix. For the E' H matrix
mentioned earlier, the sum of the diagonals will refers to the sum of variances for this
product matrix. Still another way to summarize a matrix is to calculate eigenvalues,
which are the variances of the linear combinations of a matrix. Referring back to
equation 3, there will be as many eigenvalues as there are linear combinations in
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MANOVA (or DFA). To review, there will only be one linear combination of the
continuous variables, and thus, one eigenvalue when there are just two groups for
the categorical IV in MANOVA (or the categorical DV in DFA). For those interested
in more information about matrices, see a 96-page book by Namboodiri (1984);
Chapter 6 in Harlow (2005); or Appendix A in Tabachnick & Fidell (2013).

For now, it important to realize that there are various ways to summarize the
matrix formed by the ratio of between- over within-matrices in equation 4 for
MANOVA. Just as with ANOVA, it is important to focus on this ratio of the variance
between means over the variance within scores in MANOVA. If this ratio is large,
the null hypothesis of no significant differences between means can be rejected.
Let’s see more about how this is done by considering various ways of specifically
summarizing between- and within-group information in MANOVA.

Overall Assessment for MANOVA

Just as with ANOVA, MANOVA results should be interpreted first at a macro or
omnibus level. At this level, the first focus is on determining whether there is a
significant macro-level group-difference. In addition, MANOVA is concerned
with an overall shared variance effect size, as well as with which DVs are showing
significant differences across groups, both of which are presented shortly.

Several macro-assessment summary indices have been offered to summarize the
matrix results for MANOVA, borrowing on the matrix summary values suggested
earlier. Wilks’ (1932) Lambda, which uses determinants to summarize the variance
in the ratio of matrices formed in MANOVA, is probably the most widely used
macro-assessment summary index. Wilks found it difficult to calculate the between-
groups matrix, specifically, due to computational limitations at that time. Instead, he
suggested that the determinant of the within-groups variance-covariance matrix over
the determinant of the total (i.e., within plus between) variance-covariance matrix
indicates how much of the variation and covariation between the grouping variable(s)
and the continuous variables was unexplained. Thus, one minus Wilks’ Lambda is
a measure of the shared or explained variance between grouping and continuous
variables. Two other macro-assessment summary indices incorporate the trace of
a variance-covariance matrix to summarize group difference matrices. Hotelling’s
trace is simply the sum of the diagonal elements of the matrix formed from the
ratio of the between-groups variance-covariance matrix over the within-groups
variance-covariance matrix. Pillai’s trace is the sum of the diagonal elements of the
between-groups variance-covariance matrix over the total (i.e., between plus within)
variance-covariance matrix. A fourth macro-assessment summary is Roy’s Greatest
Characteristic Root (GCR: Harris, 2001). The GCR is actually the largest eigenvalue
from the between over within variance-covariance matrix, providing a single number
that gives the variance of the largest linear combination from this matrix.

Below, we delineate further how to assess the initial MANOVA macro-level
information, focusing on suggested criteria (e.g., determinant, trace, or eigenvalue)
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for summarizing the ratio of some form of the between-groups matrix (i.e., H) over
within-groups matrix (i.e., E), along with a significance test.

A Significance Test. Each of the four main macro summary indices just briefly
introduced has an associated F-test for assessing whether group differences are
significantly different from chance in MANOVA.

For Wilks’ Lambda, showing the amount of variance in the linear combination
of DVs that is not explained by the IVs, low values (closer to zero than 1) are
best. However, the associated F-statistic should be large and significant in order to
conclude that there are significant differences between at least two groups on the
linear combination of DVs. Wilks’ Lambda can be calculated as the determinant of
the E matrix, divided by the determinant of the sum of the H and E matrices:

A=|E|/|H+E| (5)

where | | stands for the determinant of the matrix inside the parallel lines (See a
matrix algebra book or computer program to find the determinant of a matrix).

The second macro summary index, the Hotelling-Lawley trace, is formed by
summing the diagonal elements in the E~' H matrix as given below.

Hotelling-Lawley trace =t [E™' H| (6)

The Hotelling-Lawley trace can also be calculated as the sum of eigenvalues of the
E' H matrix. The reason these are equivalent is because the sum of the eigenvalues
of a matrix is equal to the sum of the diagonal values of the original matrix. For
both methods, which summarize the essence of the variance of the E-' H matrix, an
associated F-test indicates whether there is a significant difference between means
on the linear combination(s); and thus large F-values are preferred.

Pillai’s trace, the third macro summary index, is the sum of the diagonal values of
the matrix product of H times the inverse of E + H matrices, as given below.

Pillai’s trace =t [((H + E) ' H]| (7)

Similar to the Hotelling-Lawley trace, Pillai’s trace can also be formed from the
sum of the eigenvalues of the [(H + E)™' H| matrix. As with the other indices, the
associated F-test for Pillai’s trace should be large and significant to indicate that
there are significant differences on the means for the linear combination(s). An
advantage of Pillai’s trace is that it is the most robust of the four summary indices
when there are less than ideal conditions, such as when there is unequal sample size
across groups or heterogeneity of variances. In an example presented later, Pillai’s
trace will be preferred due to unequal sizes in the IV groups, and an indication of
significant heterogeneity for variance-covariance matrices. Another benefit of
Pillai’s trace is that it can be interpreted as the proportion of variance in the linear
combination of DVs that is explained by the IV(s). Thus, it is intuitively meaningful.

128



MULTIVARIATE ANALYSIS OF VARIANCE

The fourth macro summary index, Roy s largest root or the greatest characteristic
root (GCR), is a single value simply represented as given below.

GCR = the largest eigenvalue of E™* H ®)

As with the other indices, a large and significant F-test is preferred for the GCR,
again indicating that there are significant differences across groups on the means
of the linear combination(s). Aside from recommendations to use GCR by Harris
(2001), the GCR is not used as often as other indices, particularly Wilks’ lambda and
Pillai’s trace, the former used most often, probably due to being introduced before
the others, and the latter due to its robustness with non-standard conditions.

Effect Size. A common multivariate effect size for MANOVA is Eta-squared:

() =(1-A), )

where 7 represents the proportion of variance in the best linear combination(s) of
DVs that is explained by the grouping IVs, and A represents Wilks’ Lambda (see
equation 5). Eta-squared (i.e., #?) can be interpreted with multivariate guidelines for
shared variance effect sizes (e.g., Cohen, 1992). Thus, a small multivariate shared
variance effect size would be equal to about .02, a medium effect size would equal .13
or better, and a large effect size would be greater than or equal to about .26 or more.

If the macro-level F-test is significant in MANOVA and there is a reasonable
effect size, there are one or two more layers to interpret. Just as with ANOVA, this
could involve micro-level significance tests of specific group differences if there are
more than two IV groups, and effect sizes for group means. But first, it is important
to conduct a “mid-level” evaluation of the dependent variables.

Follow-up Analyses after a Significant MANOVA

After finding a significant macro-level F-test in MANOVA and summary criteria
(e.g., Wilks’ lambda, Pillai’s trace, etc.), it is important to assess which DVs are
significantly showing mean differences. Follow-up analyses can take one of several
forms, described below.

Separate ANOVAs for each DV. Probably the most common follow-up to a
significant MANOVA is to conduct a separate ANOVA for each DV. Researchers
would hope to find a significant F-test for each DV, indicating that these variables
each show significant differences across two or more groups. Although ANOVAs
are widely conducted after finding significant MANOVA results, a drawback is
that separate ANOVASs do not take into account whether the DVs are related in any
way. That is, analysing the DVs separately could mislead researchers into thinking
there is a large cumulative effect across the DVs and groups, which is most likely
not an accurate picture if DVs are related. Thus, it may be preferable to consider
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other follow-up procedures that recognize any overlap among the DVs. A set of
ANCOVAs, one for each DV, or a single DFA, offer alternative follow-up options.

Separate Analyses of covariance (ANCOVA)s for each DV.  ANCOVA is just like
ANOVA, except that it allows for the inclusion of one or more continuous covariates.
With ANCOVA, mean differences across groups on an outcome variable are assessed
after partialling out the relationship between covariates and the DV. This allows
for a more fine-tuned assessment of group differences. Thus, a better follow-up
than ANOVA is to conduct a separate ANCOVA for each dependent variable, using
the remaining dependent variables as covariates in each analysis. This has been
suggested by Bock (1966; Bock & Haggard, 1968) and is considered a step-down
procedure. If these analyses revealed significant F-tests, it would suggest that there
were significant group differences on a dependent variable after partialling out any
overlapping variance among the remaining continuous dependent variables used in
the MANOVA. Thus, group differences would be revealed for the unique portion of
each dependent variable that is distinct from any relationship with other dependent
variables. This provides a rigorous assessment of group differences although it is
not often seen in the literature, possibly due to unfamiliarity with this option, and
the difficulty in finding significant differences with ANCOVA on such small, unique
portions of the dependent variables.

Discriminant function analysis follow-up. Another possible follow-up procedure
after a significant macro-level F-test with MANOVA, is to conduct a single DFA with
the same variables that were used in the MANOVA except that the roles (independent
or dependent) are reversed. Thus, a DFA would use each of the continuous (dependent)
variables from a MANOVA as the continuous independent variables. The categorical
(independent) grouping variable from MANOVA would now become the categorical
dependent variable in DFA. The goal would be to assess how each of the continuous
variables discriminated among the groups of the DFA outcome variable. The
standardized weights or the structure coefficients would be the focus in DFA, such
that continuous variables with large standardized weights or structure coefficients
would also be the variables that have notable group differences on the categorical
variable. In this way, we could assess which of the continuous variables are showing
the clearest differences across groups without having to conduct separate (ANOVA
or ANCOVA) analyses for each dependent variable. Thus, the overall error rate is
most likely smaller with a single DFA follow-up than with p follow-up ANOVAs
or ANCOVAs, especially if the error rate was not adjusted (as with a Bonferroni
approach). Moreover, the multivariate nature of DFA would take into account any
relationship among the continuous variables, providing a more precise depiction of
group differences than is portrayed when conducting a set of individual ANOVAs that
do not correct for shared variance between the set of variables.

Follow-up planned comparisons. When there is a significant effect of a DV and
there are more than two groups in the IV(s), it is advisable to assess which pair(s) of
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groups showed significant differences on a DV. Tukey (1953) Honestly Significant
Difference (HSD) tests between pairs of means would provide some protection for
overall Type I error (i.e., rejecting Ho when it is true), particularly if there were
several groups and a large number of paired comparisons were conducted. Another
alternative, a Bonferroni approach, could be adopted whereby the total alpha is split
among the number of pair-wise group tests (e.g., 4 tests could each use an alpha
of .0125 to maintain an overall .05 alpha). Still another possibility is to increase
statistical power and reduce the probability of a Type II error (i.e., retaining Ho when
it is false) by using an alpha level of .05 for all comparisons. Researchers need to
decide for themselves which error is more important to protect, Type I or Type 1,
when assessing between group differences.

Follow-up effect sizes. 1f ANOVAs or ANCOVAs are conducted for each DV,
following a significant MANOVA, an #? or omega-squared (i.e., w?) univariate
effect size could be calculated for each DV to assess how much variance was shared
between that specific continuous variable and the grouping variable(s). Computer
packages sometimes refer to 7? values as R%, which is the same value. Cohen’s (1992)
guidelines for univariate effects would apply for any of these: .01 for a small effect,
.06 for a medium effect, and about .13 or more for a large effect. For MANOVA,
Cohen’s d can also provide a micro-level effect size for the difference between a pair
of means (e.g., Cohen, 1988, 1992), just as with ANOVA. This is easily calculated
by a difference between means in the numerator and a pooled or average standard
deviation in the denominator. By Cohen’s guidelines, a standardized d or difference
of .20 is a small effect, a d of .50 is a medium effect, and .80 or more represents a
large effect.

Additionally, just as with univariate ANOVAs, group means on DVs can be
graphed after a significant MANOVA; alternatively, boxplots can be provided that
pictorially display what is called the “five-number summary” (i.e., maximum, 75th
percentile or 3rd quartile, the median called the 50th percentile or Q2, the 25th
percentile called Q1, and the minimum). Most computer programs easily allow for
these. As boxplots convey a clear visual depiction of a set of specific indices for
each dependent variable, across groups, these are presented later in the MANOVA
example introduced below.

AN ILLUSTRATIVE STUDY WITH MANOVA

An example is provided to illustrate how to conduct a MANOVA and follow-up
DFA, along with supplemental analyses. The example draws on data collected
from 265 faculty at a New England university to assess work environment (Silver,
Prochaska, Mederer, Harlow, & Sherman, 2007), with a National Science Foundation
institutional transformation grant (No. 0245039: PI: Barbara Silver; CO-PIs: Lisa
Harlow, Helen Mederer, Joan Peckham, and Karen Wishner) to enhance careers of
all faculty, particularly women in the sciences.
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For the analyses presented, the independent grouping variable is gender, which
is somewhat evenly split (i.e., 55% men and 45% women). Three continuous and
reliable variables (with coefficient alpha internal consistency reliability given in
parentheses for each) — Career Influence (coefficient alpha = .83), Work Respect
(coefficient alpha=.90), and Work Climate (coefficient alpha=.93) — allow
examination of a three-tier conceptual structure of individual, interactional, and
institutional variables, respectively (Risman, 2004). These three variables, all
averaged composite scores on a 1 to 5 Likert scale, serve as DVs in the MANOVA
example, and conversely as [Vs in the follow-up DFA.

In addition, scatterplots, and separate boxplots are presented for each of these
three variables, across the two gender groups, in order to further explore relationships
and reveal group differences for these three variables. Moreover, computer set-up
for three packages — SPSS, SAS, and R — is presented to provide researchers with
several options for conducting MANOVA and related analyses.

Preliminary Analyses before Conducting MANOVA

Before conducting a MANOVA, it is important to assess basic descriptive statistics
(e.g., mean, standard deviation, five-number summary, skewness, kurtosis,
correlations), as well as scatter plots in order to evaluate assumptions of normality,
homoscedasticity, and linearity, and any possible collinearity (i.e., high correlation
or redundancy) among variables. Table 1 shows descriptive statistics on the three
continuous variables, Career Influence, Work Respect, and Work Climate.

Table 1. Descriptive statistics on three continuous variables

Statistic Career Influence ~ Work Respect  Work Climate
N Valid 265 265 265
Missing 0 0 0
Mean 2.599 3.873 3.814
Standard Deviation 702 .836 .881
Skewness —.085 —.698 =754
Std. Error of Skewness 150 150 150
Kurtosis —-.267 —-.161 220
Std. Error of Kurtosis 298 298 298
Minimum 1.000 1.270 1.000
Percentiles 25=0Q1 2.162 3.333 3.292
50=Q2 2.556 4.037 3.944
75=Q3 3.056 4.540 4.486
Maximum 4.050 5.000 5.000
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Means are higher than the mid-point (i.e., 3) of the 5-point scales for Work Respect
and Work Climate, indicating relatively high overall scores for these two variables.
The mean for Career Influence (i.e., 2.599) is lower; suggesting that appraisal of
one’s individual influence was somewhat less than the interactional, as well as the
institutional appraisal of Work Respect and Work Climate, respectively. Standard
deviations were similar, and much smaller than the respective means, suggesting fairly
consistent scores within this sample, for each of these variables. Skewness and kurtosis,
which should be around zero in normally distributed data, indicate that the normality
assumption appears reasonable for these data. In the bottom portion of Table 1 are five-
number summaries for the three variables. Notice that the lower 50% of the scores (i.e.,
from the minimum to the median or 50" percentile) cover a broader range of scores
(i.e., 1.27 to 4. 037; and 1.0 to 3.944) than the top range of scores for Work Respect
and Work Climate, respectively. This pattern suggests somewhat uneven distributions
for these variables. Five-number summaries are depicted in boxplots, later, for men
and women, separately, to illuminate potential group differences on these variables.

Figures 1 to 3 show scatterplots for the three variables. These allow further
examination of how well assumptions are met. When data meet assumptions of
normality, linearity and homoscedasticity, scatterplots should reveal a fairly even
elliptical pattern of points. When data are nonnormal, the pattern of points may be
bunched up in one end or the other indicating some evidence for skewness or kurtosis.
If data are not completely linear, the pattern shows some curve indicating that after
a certain point, the relationship between a pair of variables changes from linear to
non-linear, thereby reducing the linear correlation. Similarly, if the pattern showed
a wider range of points at either end of the scatterplot, heteroscedasticity would be
present, indicating that individuals who have low scores on one variable may tend to
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Figure 1. Scatterplot of career influence and work respect.
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have a wide range of scores on the other variable. None of these patterns would be
optimal as MANOVA, similar to many statistical methods, is more accurate when
the data follow a normal, linear and homoscedastic pattern. Examining Figure 1, the
scatterplot appears to follow rather closely the preferred elliptical pattern, with no
obvious deviations from normality, linearity or homoscedasticity for the relationship
between Career Influence and Work Respect.

Figures 2 and 3 scatterplots for Work Climate, with Work Respect and Career
Influence, respectively, are reasonable but do not seem to follow an elliptical pattern
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quite as clearly. Points are more densely located near the upper right-hand corner of
both figures, with some possible evidence of outliers in the bottom left, and possibly
the upper left corners of both figures. It is noteworthy that both figures 2 and 3
involve the variable,Work Climate, which may have scores that are not as consistent
as for the other two variables. This speculation is later confirmed when examining
boxplots for men and women, separately, for the three variables; as well as statistical
tests of homoscedasticiy. As can be seen shortly, there are a few outliers for Work
Climate, among the men, yielding some heterscedasticity. When conducting the
MANOVA and DFA, it would probably be advisable to examine Pillai’s trace,
instead of Wilks’ lambda, for these data as Pillai’s trace is more robust to assumption
violations than the other methods. Pillai’s trace would also be preferred due to the
slightly unequal Gender groups for this example.

Correlations among the four variables are also examined to assess any possible
collinearity among the variables. Table 2 shows that none of the variables are correlated
extremely highly (i.e., greater than .90, or even .70). Thus, there is no concern that
collinearity is present for these variables.

Overall Results for MANOVA

A MANOVA was conducted to examine whether there were significant differences
between Gender groups on a linear combination of the three-tier set of variables:
Career Influence, Work Respect, and Work Climate. Analysis set-up for SPSS, SAS,
and R are provided in the Appendix for the major analyses. As part of a MANOVA
or DFA, researchers can request Box’s test of equality of covariance matrices. If the
data were to meet the assumption of homoscedasticity, this test result would be non-
significant, indicating that there was no indication of significant heteroscedasticity.
Unfortunately, however, the F-testin this case was significant [F(6,419736.37) = 2.61,
p =.016], suggesting some degree of violation of this assumption. This is further
confirmed with results from Levene’s test of equality of error variances showing
significant results for Work Respect [F(1, 255) = 8.147, p = .005], and Work Climate
[F(1,255)=6.396, p = .012], indicating some heterogeneity for these two variables.
Based on findings from these two sets of tests, as well as those from the scatterplots
shown earlier, Pillai’s trace will be evaluated for the F-test for the overall MANOVA
as it is more robust to violations.

Table 2. Correlation among the four variables

Gender (1 =f, 2 =m) Career Influence Work Respect Work Climate

Gender 1.000 206 234 163
Career Influence 206 1.000 .546 460
Work Respect 234 .546 1.000 .668
Work Climate 163 460 .668 1.000
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Pillai’s trace was .063 (so that > =.063), with F(3, 252) =5.71, p = .001 for the
MANOVA analysis on these data. This finding indicates that the means of the linear
combination of the three continuous variables are significantly different across
Gender groups (with scores for men being somewhat higher). Using Steiger and
Fouladi’s (2009) R* program (freely available on the web), confidence intervals for a
shared variance effect can be calculated. Results revealed a 95% confidence interval
of [.012, .123], indicating a small-to-medium, and significant, shared variance effect
between Gender and the set of three continuous DVs.

As part of the MANOVA output, most computer programs provide follow-up
ANOVAs, one for each DV. Although our focus is largely on a follow-up DFA, it is
worthwhile to briefly examine ANOVA results for these data (see Table 3).

Notice that there are relatively small and significant group difference effects for
each of the three dependent variables, with Work Respect having the largest effect.

Further analysis, with DFA, will reveal whether this pattern of results is verified.

Follow-up Results with DFA

Macro-level SAS and R results for DFA are virtually identical to those for MANOVA,
with F(3, 253)=5.71, Pillai’s trace =n*=.063, p=.0009. SPSS gives a chi-
square test with comparable results: y* (3) = 16.05, (1-Wilks’ Lambda) = 7> = .063,
p =.001. The structure coefficients, which are within-group correlations between the
standardized discriminant function (a form of equation 2) and the three continuous
variables, reveal values of .807, .927, and .637 for Career Influence, Work Respect
and Work Climate, respectively. These results parallel those from conducting
individual ANOVAs, with Work Respect showing the largest, and Work Climate
showing the smallest effect with Gender. Thus, it is to be expected that there are
somewhat larger group differences for Work Respect, followed by those for Career

Table 3. Tests of ANOVA for each of the three dependent variables

Dependent Mean 95% CI
Source Variable DpellI SS df  Square F Sig. R> ForR’
Corrected  Influence 5.305 1 5305 11.251 0.001 .042 [.007,.102]
Model Respect 9.899 1 9.899 14.819 <.001 .055 [.013,.120]

Climate 5.417 1 5417  6.995 0.009 .027 [.002,.079]
Error Influence 120.241 255 472

Respect 170.335 255 .668

Climate 197.490 255 174
Corrected Influence 125.546 256
Total Respect 180.234 256

Climate 202.908 256
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Influence, and lastly those for Work Climate having the smallest difference between
Gender groups. DFA provides additional information from MANOVA, showing that
the discriminant function formed from these three continuous variables was able to
correctly classify participants into their respective Gender groups 59.5% of the time,
which is greater than the 50% chance level. Next, let’s examine boxplots to further
investigate Gender group differences on the three continuous variables (i.e., Career
Influence, Work Respect & Work Climate).

Boxplots as Further Follow-up to MANOVA

Boxplots were constructed to visually depict the five-number summary by Gender,
plus any outliers for the three continuous variables (i.e., Career Influence, Work
Respect, Work Climate; depicted in dark to light gray, respectively in Figure 4).

The upper and lower most points are the maximum and minimum estimated scores,
with Work Climate showing several outliers below the minimum of most scores for
the men. The boxes delineate the 75th, 50th and 25th percentiles, respectively, with
slightly more distinct differences between Gender groups for Work Respect than
for the other variables. Notice that the scores are more spread out for the women,
particularly for Work Climate and Work Respect; with scores for Career Influence
also showing some spread for both men and women. For all three variables, men
faculty scored somewhat higher than the women faculty.
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Figure 4. Boxplots for three variables, by gender.
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SUMMARY

In conclusion, MANOVA and a follow-up DFA were described, and then applied to
a relevant example to investigate group differences on a set of relevant variables.
Whenever possible, significance tests, effect sizes, confidence intervals and figures
were presented to provide a fuller picture of the findings. Results revealed small-
to medium-size significant group-difference effects, with slightly higher means for
men compared to the women faculty on a set of work environment variables. Other
analyses, including descriptive statistics, correlations, scatterplots, boxplots, and
ANOVAs helped to convey the nature of the data and group differences. The reader
should recognize that analyses were conducted on data from intact groups, and thus
cannot warrant the causal conclusions allowed for an experimental design in which
participants are randomly assigned to treatment and control groups. Still, the example
presented here provides a useful illustration of how to examine group differences on
a set of relevant dependent variables, with interpretation based more descriptively,
than inferentially. It should also be noted that although group differences were
significant overall, and for each dependent variable, none of the effects were very
large. This is actually good news, suggesting that gender differences are not very
consequential in this sample of faculty, regarding individual career influence, an
interactional sense of work respect, and an institutional evaluation of work climate.
It would be useful to verify results on larger and more diverse, independent samples.
The Appendix briefly describes syntax that can be used to conduct MANOVA, DFA,
and related analyses; using SPSS, SAS, and R computer packages.
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APPENDIX
Syntax for SPSS, SAS and R for Conducting

Descriptive Statistics, Correlations, Scatterplots, Boxplots,
MANOVA, and DFA

For the following computer set-ups, the variable names are abbreviated as follows:
Influenc = Career Influence, Respect =Work Respect, Climate = Work Climate,
and sex1f2m = Gender (where 1 = female and 2 = male). Note also that although
there were 265 participants in the sample, analyses that included the variable Gender
(i.e., sex1f2m) only had 257 participants as gender was not given for 8 individuals.
The data set used in analyses was labelled: Adv04.sav in SPSS, Adv04 in SAS, and
Adv04dat in R. It should also be noted that different statistical analysis programs
may produce slightly different solutions due to program-oriented differences in
calculation procedures and rounding (e.g., values may differ at the 2™ or 3 decimal).
The output provided by the syntax below should yield similar inferences regardless
of the software used, despite minor differences in reported values. Readers may also
need to check with Google for more up-to-date syntax.
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SPSS Syntax

GET FILE="C:\Users\User\Desktop\Adv04.sav’.
DATASET NAME DataSet] WINDOW=FRONT.

FREQUENCIES VARIABLES=Influenc Respect Climate
/FORMAT=NOTABLE

/NTILES=4

/STATISTICS=STDDEV MINIMUM MAXIMUM MEAN SKEWNESS SESKEW
KURTOSIS SEKURT

/ORDER=ANALYSIS.

CORRELATIONS

/VARIABLES=sex1f2m Influenc Respect Climate
/PRINT=TWOTAIL NOSIG
/MISSING=PAIRWISE.

GRAPH /SCATTERPLOT(BIVAR)=Influenc WITH Respect.
GRAPH /SCATTERPLOT(BIVAR)=Influenc WITH Climate.
GRAPH /SCATTERPLOT(BIVAR)=Respect WITH Climate.

EXAMINE VARIABLES=Influenc Respect Climate BY sex1{2m
/COMPARE VARIABLE

/PLOT=BOXPLOT

/NOTOTAL

/MISSING=LISTWISE.

GLM Influenc Respect Climate BY sex1f2m
/METHOD=SSTYPE(3)
/INTERCEPT=INCLUDE
/EMMEANS=TABLES(sex1{2m)
/PRINT=ETASQ HOMOGENEITY
/CRITERIA=ALPHA(.05)

/DESIGN= sex1f2m.

DISCRIMINANT

/GROUPS=sex12m(1 2)

/VARIABLES=Influenc Respect Climate

/ANALYSIS ALL

/PRIORS EQUAL

/STATISTICS=MEAN STDDEV UNIVF BOXM CORR TABLE
/CLASSIFY=NONMISSING POOLED.
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SAS Syntax
DATA Adv04; INFILE ‘SASUSER.Adv04’; /*Gets datafile Adv04 in Sasuser */

PROC MEANS N MEAN STD SKEWNESS KURTOSIS MIN Q1 Median Q3
MAX; VAR Influenc Respect Climate; RUN;

PROC CORR; VAR Sex1f2m Influenc Respect Climate; RUN;

PROC GPLOT; PLOT Influenc*Respect; /* This runs a scatterplot */
PLOT Influenc*Climate; PLOT Respect*Climate; RUN;

PROC Sort; By sex1f2m; /* Sort data by gender before conducting boxplot */

PROC Boxplot data = SASUSER.Adv04b; /* This runs a boxplot */
Plot (Influenc Respect Climate) * sex1f2m / BOXSTYLE=SCHEMATIC; RUN;

PROC GLM; /* This runs MANOVA: IV after class and DVs after Model */
CLASS sex1f2m; MODEL Influenc Respect Climate= sex1{2m;
LSMEANS sex1f2m /PDIFF CL; MANOVA H=_ALL /SHORT; RUN;

PROC DISCRIM LIST CANONICAL MANOVA POOL=TEST WCOV,
CLASS sex1f2m; VAR Influenc Respect Climate; RUN;

R Syntax

Note that the MASS package in R (used for the DFA analysis) does not produce tests
of significance for DFA. Because DFA is mathematically identical to MANOVA,
the omnibus fit statistics for DFA must be obtained from the MANOVA procedures.
It is also worth mentioning that R has multiple methods for producing similar
results, often depending on which package is used (e.g., psych vs. psychometric for
descriptive statistics).

# Load the following packages: car, psych, MASS

library(car)

library(psych)

library(MASS)

library(candisc)

# Read in the data and select variables from the larger data set
adv04dat = read.table(“c:/Data/adv04na.txt”, sep=",", header=TRUE)
myvars = c(“sex12m”, “Influenc”, “Respect”, “Climate”)
work=adv04dat[myvars]
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# Designate sex1f2m as a categorical variable called “gender”
work$gender=factor(work$sex1f2m, levels = ¢(1,2), labels = c(“Female”, “Male”))
attach(work)

# Produce descriptive statistics
describe(work)

# Produce correlation matrix
corr.test(work[ 1:4], use="pairwise.complete.obs”)

# Produce a scatterplot matrix for the independent variables
scatterplotMatrix(~Influenc+Respect+Climate, diagonal="histogram”,
data=work)

# Produce boxplots for the data

par(mfrow=c(2,2))

boxplot(Influenc~sex1f2m, main="Boxplot of Influence by Gender”,
xlab="Gender”, col="aquamarine”)

boxplot(Respect~sex1f2m, main="Boxplot of Respect by Gender”, xlab="Gender”,
col="lightgreen”)

boxplot(Climate~sex1f2m, main="Boxplot of Climate by Gender”, xlab="Gender”,
col="khaki )

# MANOVA for 3 dependent variables and | independent variable
Y = cbind(work$Influenc, work$Respect, work$Climate)
faculty.mod = Im(Y~gender, data=work)

faculty.canl = candisc(faculty.mod, term="gender”, type="111")
Anova(faculty.mod, test="Wilks”, type="III"")
Anova(faculty.mod, test="Pillai”, type="111")
Anova(faculty.mod, test="Hotelling-Lawley”, type="1II"")
Anova(faculty.mod, test="Roy”, type="111"")
summary(faculty.canl, means = FALSE, coef="structure”)

# Follow-up ANOVAs with R*2 reported

mydata.aov = Anova(aov(Influenc~gender), type="III""); mydata.aov
r <- summary.Im(aov(Influenc~gender)); r$’r.squared”

mydata.aov = Anova(aov(Respect~gender), type="I11""); mydata.aov
r <- summary.Im(aov(Respect~gender)); r$”r.squared”

mydata.aov = Anova(aov(Climate~gender), type="II1""); mydata.aov
r <- summary.Im(aov(Climate~gender)); r$”r.squared”

# Follow-up Discriminant Function Analysis (Requires the MASS package)
work.2 = na.omit(work)
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dfa = 1da(gender ~ Influenc + Respect + Climate, data=work); dfa
dfa = 1da(gender ~ Influenc + Climate + Respect, data=work.2, CV=TRUE)

# Assess the predictive accuracy of the DFA
pred = table(work.2$gender, dfa$class)
diag(prop.table(pred, 1))
sum(diag(prop.table(pred)))
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7. LOGISTIC REGRESSION

INTRODUCTION TO THE METHOD

Logistic regression (LR) is a statistical procedure used to investigate research
questions that focus on the prediction of a discrete, categorical outcome variable
from one or more explanatory variables. LR was developed within the field of
epidemiology to examine the association between risk factors and dichotomous and
continuous outcomes (Kleinbaum, Kupper, & Morgenstern, 1982; Tripepi, Jager,
Stel, Dekker, Zoccali, 2011). Subsequently, the model has received extensive use
across disciplines. In the medical domain, for example, LR has been used to identify
predictors of Alzheimer’s disease. In business settings, it has been employed to
determine the most important factors (e.g., ease of use) for internet banking usage
(Hassanuddin, Abdullah, Mansor, & Hassan, 2012). In education research, the method
has been used to investigate predictors of college student persistence in engineering
(French, Immekus, & Oakes, 2004). The purposes of this chapter are to describe the
LR model in the context of education research and provide a real data illustration of
its use to obtain results with theoretical and practical implications. The information is
presented to promote the technical and practical understanding of the method.

LR is distinguishable from multiple linear regression analysis due to the fact
that the (a) dependent variable is categorical in nature (e.g., group membership),
not continuous, and (b) the model assumes a nonlinear relationship between the
outcome and explanatory variables. Within educational research, examples of
discrete outcome variables include: presence or absence of a learning disability,
exceeding or not exceeding minimum proficiency requirements on an end-of-grade
English Language Arts test, or being accepted or not to an institution of higher
education. Whereas the outcome variable in a LR analysis can be either dichotomous
(e.g., pass/fail) or ordinal (e.g., Far Below Basic, Basic, Proficient), for didactic
purposes, this chapter focuses exclusively on instances in which the dependent, or
outcome variable is binary or dichotomous.

The application of LR in educational research can be exemplified by the following
research questions:

1. What student and institutional factors can be used by colleges and universities to
determine the likelihood of a student earning a college degree?

2. To what extent are different academic counselling strategies effective for
promoting at-risk students’ attainment of a high school diploma?

T. Teo (Ed.), Handbook of Quantitative Methods for Educational Research, 145—165.
© 2013 Sense Publishers. All rights reserved.
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3. What factors are associated with exceeding minimum state requirements on an
end-of-grade test among English Language Learners?

Research utilizing LR focuses on the prediction of a dichotomous dependent variable
based on a set of independent variables. Potential outcomes could include: earning
a college degree (0 =no degree, 1 = degree), attainment of a high school diploma
(0 =no diploma, 1 = diploma), or exceeding minimum state requirements on an end-
of-grade test (0 = did not exceed requirement, 1 = exceeded requirement). Within
the LR model, predictor variables can be continuous, dichotomous, categorical, or
a combination (Hosmer & Lemeshow, 1989, 2000; Tabachnick & Fidell, 2007).
Consequently, LR results yield empirical evidence that can have relevant and
substantive implications to research, practice, and policy.

The LR procedure seeks to gather empirical evidence on the predictive nature
of a set of explanatory variables to account for the variance of an outcome variable
much like multiple linear regression (MLR) and discriminant analysis (DA; Cizek
& Fitzgerald, 1999; Davis & Offord, 1997). However, LR differs from these two
procedures in important ways. Specifically, compared to MLR, (a) the independent
variables specified in LR can be dichotomous, categorical, and/or continuous, (b)
the relationship between the explanatory variables and the outcome is nonlinear,
and (c) parameter estimation is based on maximum likelihood (ML) procedures,
not ordinary least squares (OLS). Furthermore, applying MLR to predict a binary
outcome also violates basic MLR model assumptions.

LR and DA can both be used to predict a categorical outcome and have been
compared in terms of classification accuracy (Cleary & Angel, 1984; Fan & Wang,
1999). Comparatively, Cleary and Angel (1984) noted that “discriminant analysis
yields results quite similar to logistic regression except when the probability of the
event being predicted is near zero or one” (p. 341). In terms of explanatory predictors,
DA is restricted to the use of continuous variables that are multivariate normal
(Tabachnick & Fidell, 2007). Also, like MLR, OLS is used for parameter estimation
which can result in biased estimates when the data do not meet model assumptions
(e.g., multivariate normality). Fan and Wang (1999) compared the performances of
LR and DA for two-group classification and, in general, found that the methods
performed similarly across simulated conditions (i.e., unequal proportions, unequal
group covariances, and sample size). Regardless of the approach to data analysis,
researchers should understand the characteristics of the data at hand to guide the
selection of an appropriate statistical analysis to address their research question(s).
That said, LR has been recognized as an alternative to DA (Fan & Wang, 1999;
Tabachnick & Fidell, 2007).

The aim of LR, as in many statistical models, is to identify a set of theoretically
and empirically relevant explanatory variables that can be used to develop a
parsimonious model to predict a dichotomous outcome. The effectiveness of LR
results to address a given research question depends on many important substantive
factors (e.g., group proportions, variables in the model, sample) and methodological
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issue (e.g., variable selection, assumptions) that should be considered throughout data
analysis. To encourage the application of LR, the chapter begins with an overview
of the LR model, corresponding model assumptions, and interpreting model data fit
and parameter estimates. This is followed by an illustrative study based on real data.
The chapter concludes with a discussion of research issues and areas for research
within LR.

The Logistic Regression Model

LR represents a model-based approach to predict an individual’s or intervention
group’s (e.g., after-school program participation) standing on a binary outcome,
such as: exceeded minimum passing score, did not exceed minimum passing score.
In this case, the outcome variable Y can be assigned a value of 0 if the individual or
group did not exceed minimum passing score, whereas a value of 1 would indicate
otherwise (i.e., exceeded minimum passing score). In this instance, the quantitative
values of 0 and 1 serve as dummy coded variables to represent the qualitative outcome
variable of interest in the analysis. In this case, the outcome variable was whether or
not students exceeded the minimum passing score. The outcome variable can be on
anominal (e.g., likelihood to participate in an after-school program vs. non-program
participation) or ordinal (e.g., mathematics knowledge based on exceeding passing
score [pass] vs. not exceeding score [fail]) level of measurement. Therefore, the
specific intent of the analysis is to accurately classify individuals on the outcome of
interest within the research question.

The classification of individuals on the outcome variable is addressed by
determining the probability of the outcome occurring for each individual and
group conditional on their standing across model predictors. Mathematically, this
is represented by the following equation characterizing the nonlinear relationship
between the outcome and explanatory variables:

u

e
l+e"’

PY=1)= (1)

The left-hand side of the equation, P(Y=1), indicates that the outcome Y is
operationalized in terms of the probability (P) of its occurrence (value equals 1.00).
Because the likelihood of the event occurring is expressed as a probability, its value
will range between 0 and 1.00. Therefore, to predict the probability of the occurrence
of an outcome, LR uses ML for parameter estimation that maximizes the function
that relates the observed responses on the independent variables to the predicted
probabilities likelihood estimation. The use of ML leads to more accurate conclusions
when a nonlinear relationship exists between the binary outcome and explanatory
variables compared to OLS regression (Lottes, Adler, & DeMaris, 1996). The use of
OLS under these conditions is inappropriate because the assumptions of the linear
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model are not met. Specifically, the use of OLS in the prediction of probabilities is
problematic because the values are not constrained to the range of zero and one. The
right-hand side of the equation expresses this probability in terms of taking the base
e of the natural logarithm u, which includes the linear set of explanatory variables.
(Notably, e is approximately equal to 2.718.) Let’s explore this in the context of an
applied example.

In the model, u is defined as:

u=p+ X + X, ++ X, 2

where u is the predicted outcome, f is the intercept, and 8, f8,, ... f5, are slope
parameters indicating the linear relationship between the outcome and explanatory
variables. This linear regression equation shows the direct correspondence of LR
to MLR. This also includes the use of hierarchical or stepwise (e.g., backward,
forward) selection procedures to identify statistically significant predictor variables.
The endorsement of the hierarchical model building approach is offered as best
practice as models are built up or trimmed down based on theory in comparison to
statistical results (Thompson, 1995).

Notably, this linear equation creates the logit, u, or log odds of the event occurring,
expressed as:

A

logit(u) = ln( 4 —
I-u

):ﬂ0+ﬁ1Xl+ﬁ2X2+...+ﬁka. 3)

As indicated in Equation (3), u is the natural log (log) of the probability of being
assigned to the group with a value equal to one divided by the probability of being
in the group equal to zero (Tabachnick & Fidell, 2007). This value is also referred to
as the logit, and provides a continuous indicator of the linear association between the
outcome and explanatory predictors. Its values can range from —o to oo, depending on
the measure of X (Hosmer & Lemeshow, 2000). As such, no matter how it is expressed,
the probability, the odds ratio, or the log odds ratio, the same information is obtained.
An example is used to situate the discussion on the use of LR in applied educational
research. Specifically, one of the research questions investigated by French,
Immekus, and Oakes (2005) was the extent to which the following explanatory
variables predicted persistence in one’s major across two cohorts (Cohort 1, Cohort
2) of undergraduate engineering students following eight and six semesters in the
program: gender (males = 0, female = 1); high school rank; SAT Mathematics and
Verbal scores; cumulative grade point average (CGPA); motivation; and, institutional
integration; and, participation in a freshman orientation course (no =0, yes = 1)
Hierarchical LR (HLR) was used to examine the extent to which variable clusters
added to the explained variance in persistence in one’s major. HLR is the preferred
modelling approach when the research question seeks to address the extent to
which a group of variables contribute to the explained variance of the outcome after
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accounting for the variance attributed to covariates (e.g., student demographics, prior
achievement). Study variables were added into the model in the following order:
Background variables (i.e., gender; high school rank; SAT Mathematics [SAT,, 1
SAT Verbal [SAT, 1, CGPA), motivation and institutional integration, and
participation in freshman orientation course. Ordering of the variables was based on
occurrence in time and practical reasons (e.g., covariates). Specification of variables
in theoretically derived “blocks™ assists with controlling Type I error rates (Cohen &
Cohen, 1983). Within the study, Cohort 1 data was used to identify significant model
predictors to obtained parameters to cross-validate results using Cohort 2 data. We
use these results to walk the reader through the basics of the model.

Logistic Regression Model Assumptions

The goal of LR is to correctly classify individuals on the outcome variables based
on one or more explanatory variables. As with most statistical procedures, there
are several assumptions associated with the use of LR in educational research.
Tabachnick and Fidell (2007) identify several important factors (e.g., linearity in
logit) to consider in the application of LR. Consideration of such assumptions is
critical to effectively use the model to address one’s research question to obtain
results that can be used for meaningful decision-making (e.g., program planning/
evaluation).

To begin, the LR model is used to predict an individual or groups’ categorical
membership on the outcome variable, and thus the primary model assumption is
that the independent variables occurred before the outcome. That is, data collected
on the explanatory variables was completed before data were gathered on the
outcome variable Y. Or, more simply, the independent variables represent attributes
of the individual or group (e.g., gender, prior academic achievement) that would be
hypothesized to impact one’s categorical membership on the outcome (e.g., obtain
high school degree). Among the sample of undergraduate engineering students,
information on their demographics, noncognitive beliefs (e.g., motivation), and
participation in a freshman orientation course was obtained prior to their decision to
persistent within their major.

Tabachnick and Fidell (2007) identify several technical assumptions of the
LR model. As indicated in Equation (2), it is assumed that that there is a linear
relationship between the continuous explanatory and outcome variables, while no
assumption is made on nature of the relationship (linear) among the explanatory
variables. To contrast with DA, LR does not assume that the predictor variables
follow a multivariate normal distribution with equal covariance matrix across
the dependent variable at all levels. In contrast, LR assumes that the binominal
distribution describes the distribution of errors that is equal to the difference in the
observed and predicted responses on the dependent variable. Second, like MLR,
the predictor variables should not be strongly correlated. Correlation coefficients
can be used to examine the direction and strength among continuous variables,
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whereas multiway frequency tables can be used to examine relationships among
categorical variables. Third, there should an adequate number of observations across
combinations of discrete variables, and group membership on the outcome variable
should not be perfect based on discrete explanatory variables. The latter could occur
in the example above if all students who participated in the freshman orientation
course persisted in their engineering major, whereas all of those who did not enroll
in the orientation course matriculated to non-engineering majors.

There are other notable assumptions that researchers should be aware. Specifically,
the joint expected cell frequencies for all pairs of variables exceed a value of one,
whereas no more than 20% of the variable pairs contain less than five (Tabachnick &
Fidell, 2007). The consequence of limited frequencies across joint pairs of cells
between discrete variables is reduced statistical power. Thus, statistical power is
increased with larger sample sizes. Each individual’s group membership on the
binary outcome is independent from one another is a key assumption. This results
in the assumption of independent errors, or that discrepancy in students’ actual and
predicted persistence in an engineering major does not depend on the outcomes of
other students in which data has been collected. Lastly, initial data screening should
be conducted to identify potential outliers that may influence results. Observations
that fall outside of range of typical values can be identified through inspection of
the descriptive statistics of the variables included in the model or residuals between
the observed and predicted values of Y. This follows the typical data screening
procedures for many statistical methods.

Collectively, these considerations address the primary assumptions of the LR
model. The extent to which one’s obtained data meets model assumptions is based
on careful inspection of results based on initial data screening to obtain descriptive
statistics (e.g., frequency distributions), as well as results based on the analysis of
the data. There are many useful resources that can be used to assist with decisions
regarding the extent to which model assumptions have been met (e.g., Hosmer &
Lemeshow, 1989, 2000; Manard, 1995; Tabachnick & Fidell, 2007).

Interpreting Logistic Regression Model Data Fit and Parameter Estimates

The use of LR in educational research requires consideration of the assessment of
model-data fit and interpretation of model parameters. The fit of a specified LR
model is evaluated in terms of the log-likelihood statistic. Parameter coefficients
(B) are estimated using ML to determine the value that “most likely” produces the
observed outcome (e.g., group membership). These values must be interpreted and
used accurately to avoid erroneous conclusions based on the data.

The log-likelihood statistic provides a measure of model-data fit by adding the
probabilities of the observed and predicted of each individual included in the analysis.
The statistic is estimated iteratively based on the parameters included in the model
until a convergence criterion has been obtained (e.g., <.0001). Therefore, the number
of log-likelihood values reported in the output of an analysis will equal the number

150



LOGISTIC REGRESSION

of model parameters. Multiplying the log-likelihood statistic by —2 provides a basis
to compare two competing LR models that differ by the number of model predictors.
This is referred to as the likelihood ratio chi-square difference statistic (xf,iffm,we),
which is distributed as chi-square with degrees of freedom (df) equal to difference in
the number of parameters between the compared models (dfdé. Jerence)”

The comparison of two competing LR models is advantageous in educational
research to identify a parsimonious set of explanatory variables that most accurately
predict group membership on the outcome. This requires the estimation of two
models: constrained and free. The constrained model represents a restricted LR model
that includes a limited set of predictors (e.g., constant-only model, one predictor
variable). The free model is one in which additional parameters (or predictors) have
been included in the model, such as the addition of a covariate in the model (e.g.,
prior academic achievement).

The chi-square difference value is estimated by:

X f,!.,,.m,e = —2log —likelihood .,,,.....c —(—2log —likelihood,,,,) 4)

Based on the deWerWe, the statistical significance of can be determined by comparing
it to the critical values of the chi-square distribution associated with a pre-determined
level of significance (e.g., p>.05) for hypothesis testing. Within the context of
comparing competing LR models using the likelihood ratio chi-square difference
test (Xp,,ence) » the null hypothesis is that the two models do not differ statistically in
predicting group membership on the outcome variable. That is, the constrained model
(X7 ynraines) With @ reduced number of explanatory variables is equally effective for
predicting one’s standing on the outcome as a model that includes one or more predictors.
This is concluded if the probability value associated with exceeds the significance level
(e.g., p > .05). Contrary, the alternative hypothesis is that the models differ statistically
and the additional model parameters included in the free model (x7,, ) improve the
predictive utility of the model above and beyond the constrained model. One would
accept the alternative hypothesis is the probability value corresponding to the statistic
is less than the determined significance level (e.g., p <.05).

The log-likelihood and the likelihood ratio chi-square difference statistics were
used to evaluate the model data fit of competing models for predicting undergraduate
students’ retention in an engineering major. Before presenting results, it should be
noted that multiple imputation (Enders, 2010) was used to estimate five scores
for the missing Cohort 1 and 2 data. See information below on the importance of
appropriately handling missing data. This resulted in five independent regression
analyses on each data set and averaging parameter estimates.

For the model predicting engineering students’ retention in their major, the first
model included the Block 1 predictors of academic achievement and gender, which was
statistically reliable, X*(5) = 96.31, p < 0.05. The second model included the Block 2
variables of motivation and integration which resulted in a statistically significant model
across the imputed data sets, X ; (7)=103.73-105.79, ps < 0.05. The third step in

Range
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thehierarchical LR modelincludedtheBlock3 variableoforientationcourseparticipation,
which was statistically significant, X ZRW‘, (8)=104.54-106.18, ps < 0.05.

Based on the model-data fit of each of the hierarchical regression analysis models,
chi-square difference tests were used to empirically test whether the inclusion
of the Block 2 and 3 variables resulted in a reliable improvement in prediction
accuracy. The difference between models 1 and 2 was statistically significant at
the .05 level, X 2D,.f/.£,mm,£,(2) =8.80,p < 0.05. This provides empirical evidence to
support the rejection of the null hypothesis that students’ levels of motivation and
integration are collectively significant predictors of persistence in an engineering
major. Subsequently, there was no statistical improvement with the addition
of the final model with the Block 3 predictor of freshman orientation course,
X f)l.”mm, (1)=10.74, p > 0.05. Therefore, the null hypothesis that after accounting for
student background variables (achievement, gender) and noncognitive self-beliefs
(e.g., motivation), participation in a freshman orientation course did not contribute
to predicting whether a student would persist in an engineering major.

Inspection of the statistical significance of model parameters provides a basis to
determine the association between explanatory and outcome variables. As indicated,
ML is used for model parameter estimation. Model parameters provide a basis to
determine the (a) individual influence of explanatory variables on the outcome,
and (b) probability of an individual being classified on the outcome variable
(e.g., persisting in engineering major).

The relationship of each explanatory variable to the outcome variable is determined
by its corresponding beta coefficient (). The coefficient is interpreted as the log odds
of the outcome occurring based on a one-unit change in the explanatory variable.
More technically, “the slope coefficient represents the change in the logit for a change
of one unit in the independent variable x” (Hosmer & Lemeshow, 1989, p. 39).
Importantly, the curvilinear relationship of the predictors and outcome variables results
in different likelihood of an individual being categorized on the outcome variable
based on standing on the predictor variables. In the provided example, the significant
(unstandardized) model predictors (p < .05, with coefficients), were: CGPA (S = .788);
SAT,, ,, (8=.005); HS Rank (f = .017); and, motivation (= .447). Non-significant
parameters were: SAT, , ~(8=-.001); Gender (f=-.138); Integration (8 =.187)
and, Orientation Class (f = .146). In consideration of the impact of CGPA on students’
persistence in an engineering major, one would conclude that a one-unit increase in
CGPA is associated with a .79 change in the log odds of persisting in an engineering
major. Positive parameter coefficients are associated with a positive change in the log
odds of persisting, whereas a negative coefficient would suggest a decrease in the log
odds of persistence with a higher value on the predictor variable (e.g., CGPA).

The statistical significance of parameter coefficients is estimated using the Wald
statistic (Hosmer & Lemeshow, 2000). The statistic is estimated as:

B
Wald =—— (%)
SE(B))
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where, £ is the estimated parameter coefficient and SE(f) is the parameter’s
standard error. Based on a two-tailed p-value, the statistic is used to identify
significant predictor variables.

Whereas parameter coefficients are reported by the log odds, it is more common
to use the odds ratio to communicate the association between the explanatory and
outcome variables. The odds ratio is estimated by taking the exponential of the log odds
estimate, Exp(f). The odds ratio is interpreted as the odds of the outcome occurring
based on the unit change in the predictor variable. The odds ratio is centered around
1.00, which indicates that there is no association or odds of the outcome occurring
(e.g., persisting in an engineering major) based on changes in the explanatory variable.
Thus, odds ratios greater than 1.00 indicate the odds of the outcome’s occurrence
given on a one-unit change in the predictor variable, whereas a value less than 1.00
being indicative of the decreased chance of the outcome occurring.

The odds ratio of the significant model predictors of persistence in an engineering
major can be readily estimated. For instance, the odds ratio of persisting in an
engineering major, based on a one-unit increase in one’s CGPA is 2.19 (median value
based on imputation). This indicates that undergraduate students are 2.19 times more
likely to persist within an engineering major based on a one-unit increase in their
cumulative GPA. Although SAT, = was a significant model predictor, the odds ratio
was 1.00, indicating no increase in the odds of persisting in one’s engineering major
with a one-point scale score increase. A similar finding was reported for HS Rank.
However, a one-unit increase in motivation was associated with being 1.52 times
more likely to persist in one’s engineering major.

Another utility of LR model parameters is estimating each individual’s predicted
probability of group membership. This is conducted using Equation 1 by inserting
estimated model parameters and the individual’s scores. The equation for a
hypothetical student with a set of predictor scores would be:

o 09+ (T8)345+(~001)600+(003)675+(017) 91+(~ 138)0+(447)4.25+(187)3.80+(146)0

1+ @09+ (788)3.45+(~001)600+(005)675+(017).91+(~ 138)0+(447)4 25+(187)3.80+(.146)0
P =D = (©)
e
14 %0

The predicted probability is .98, indicating that an undergraduate student with this
particular set of predictor values has an extremely high (almost 1.00) probability
of persisting in an engineering major. Contrary, a student with the following set of
scores would be identified as having a .91 probability of persisting in an engineering
major: CGPA=2.75; SAT =550; SAT, . =600; HS Rank =.85; Gender = 0;
Motivation = 3; Integration = 2.67; and, Orientation = 0.

An important aspect of predicted probabilities is that they can be compared to
a classification criterion (probability .50 or greater) to classify individuals on the
dependent variable. That is, an individual with a predicted probability that exceeds
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a designated criterion is assigned to the outcome with value of 1.00 (e.g., pass),
otherwise to the group equal to 0.0 (e.g., failed). The predicted and observed
classifications can be used to estimate a host of descriptive statistics pertaining to
classification accuracy (e.g., false negative, sensitivity). Based on the hierarchical
LR model used to predict persistence in an engineering major, the classification rate
of Cohort 1 was 65%, with a 64% cross-classification rate for Cohort 2.

Preliminary Considerations

LR is a model-based approach to determining the extent to which a set of explanatory
variables predict membership dichotomous outcome variable. As such, the aim is
to specify a parsimonious model that yields results relevant to guide subsequent
decision-making endeavors (e.g., research, policy). This and other factors support
the need to conduct preliminary data screening procedures prior to testing LR
models, and assess indicators of model-data fit (e.g., Pearson residuals).

Data screening routinely begins with using descriptive statistics to understand
the characteristics of the data at hand. In general, this entails inspecting the features
of the variables that will be included in the LR model. Depending on the level of
measurement of the variables, frequency distributions (e.g., histograms) can be
examined for distributional characteristics (e.g., skewness, kurtosis), extreme
cases, and potential data entry errors. Measures of central tendency (e.g., mean)
and variability (e.g., standard deviation) can be used to summative information on
the continuous variables. It is surprising of the amount of information that can be
obtained about the data at hand based on the thoughtful inspection of the descriptive
statistics of variables.

Sample size is a concern for statistical modeling in general. Parameter estimates
in logistic regression are general more stable with larger samples. Long (1997) has
recommended samples greater than 100 to accurately conduct significance tests
for the coefficients. That said, some research areas employing LR for a specific
purpose have provide guidelines about sample sizes required for adequate power
given the outcome. Simulation research on the use of LR to detect differential item
functioning, for example, has suggested the need for approximately 250 persons
per group to have adequate statistical power (e.g., French & Maller, 2007). It may
be wise to conduct a power analysis to be certain you have adequate power and be
familiar with the standards for sample size for power in your relative field. Power
analysis can be conducted in SAS or via a freeware program (G*Power) available
for free (http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3). In our
illustrative example we have over 400 participants with only 6 predictors so we can
have some confidence in the parameter estimates.

There are many diagnostic statistics available to evaluate the fit of a LR model.
Largely, these measures of model-data fit are based on the difference between the
observed and predicted values. Two indices used to identify individual observations
not accounted for by the model include the Pearson residuals and deviance residuals.
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The Pearson residuals are estimated for each individual and used to calculate the
Pearson chi-square statistic (sum of squares of Pearson residuals). The Pearson
chi-square statistics is distributed as a chi-square distribution, based on df equal
to J — (p + 1), where J = number of unique values of the independent variables x
(Hosmer & Lemeshow, 1989). A statistically significant Pearson chi-square statistics
indicates an observation that is not well accounted for by the model. The deviance
residual is another index that can be used to identify unique observations not
explained by the model. Like Pearson residuals, deviance residuals are calculated
for each individual, and summed to yield a summary statistic, distributed chi-square.

The Hosmer-Lemeshow goodness-of-fit- statistic (Hosmer & Lemshow, 1989,
2000) is another statistic that can be used to evaluate model-data fit. The statistic is
based on the grouping of individuals in a contingency table based on their predicted
probabilities. Each row corresponds to one of the binary outcomes (e.g., fail =0,
pass = 1), whereas columns represent the predicted probabilities of group member.
Two grouping strategies have been proposed. The first approach is grouping
individuals according to their predicted probabilities by percentiles. This results
in 10 groups that are ranked by the classification of individuals by their predicted
probabilities. The second approach classifies individuals based on cut points along
the probability scale. Thus, dividing the probability continuum by .20 to establish
groups would result in five groupings, with group one comprised of all individuals
with predicted probabilities below .20 and the highest group being those with values
above .80. A Pearson chi-square statistic is then used to estimate the statistical
difference between the observed and expected cell counts. Hosmer and Lemeshow
(1989) discuss the ways in which the statistics function under varying conditions.

Other diagnostic statistics can be used to examine the impact of observations on
model parameter estimates and the general LR model. For instance, the Al}j statistic
can be used to inspect the standardized discrepancy between model parameter
estimates, Z§/., based on the inclusive and exclusive of a particular observation.
Values can be used to identify observation(s) suspected of influencing the resultant
ML estimate. The impact of observations on the overall fit of a specified model can
be inspected using the A D statistic. The value reports the difference in the Pearson
chi-square statistic based on models with and without the observation included in
the analysis. Despite the availability of diagnostic statistics to evaluate LR models,
these statistics should be used with caution. Specifically, Hosmer and Lemeshow
(1989, 2000) report that the evaluation of model-data fit is largely subjective. That
is, interpretation of these values is commonly done using plots with the statistics
reported on the y-axis and predicted probabilities on the x-axis (see Hosmer &
Lemeshow, 1989, 2000). These steps of basic data screening and assumption
checking in LR that have been just described do parallel what the reader has likely
experienced in standard regression models. We do not spend time reviewing these
in the example due to this reason. Instead we focus on understanding the model and
output for interpretation. See Lomax and Hahs-Vaughn (2012) for a clear example
of LR model assumption and diagnostic checking.
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AN ILLUSTRATIVE STUDY

For illustrative purposes we will use an example drawn from the student achievement
literature. We provide the example in SAS 9.2 but the same analysis could be
conducted in many statistical software programs including SPSS, R, and Stata.
Explanations are provided for the SAS code and the shorter data set below can be
used to replicate analysis even though results will differ due to the smaller dataset .
The reader is encouraged to create the SAS code and attempt to replicate the results
presented in this chapter to increase proficiency in software use and understanding
of the method. We provide the first 15 cases in the dataset here to allow the reader to
work replicate the analysis even though the estimates will not be exact.

Data

The data used for the illustrative example are drawn from grade 6 students attending
a middle school in the western part of the United States. The outcome, or dependent,
variable of interest is the end-of-grade performance on a state achievement test for
English Language Arts. This outcome variable was coded for each student as being
“Proficient” (coded as 1) or being “Not Proficient” (coded as 0). The independent, or
predictor, variables included: three interim English Language Arts test scores from
assessments that are administered periodically throughout the school year (e.g., fall,
winter, and spring); sex (female = 0, male = 1); socio-economic status measured by
free or reduced lunch status of the student (SES, 0 = No, 1 = Yes); and, fluency in the
English language (LngPrt, coded 1-4 for the 4 classification levels). The levels of
LngPrt included: 1 = English Language Learner, 2 = English Language, 3 = Initially

Table 1. Descriptive statistics for the 6" grade achievement data

Variable Name Percentage

Proficient 50.53(Yes) 49.47(No)

Free/reduced lunch(SES) 17.80(Yes) 82.80(No)

Sex 49.47(Male)  50.53(Female)

LngPr® 15.03%(ELL) 66.13(EO) 5.86(I-FEP) 12.79(R-IEP)
M SD Minimum Maximum

End of Course Exam® 347.25 47.20 224 485

Interim Assess 1 (18 items) 10.57 3.35 1 18

Interim Assess 2 (25 items) 15.71 4.25 2 25

Interim Assess 3 (20 items) 11.80 3.68 2 19

* This variable was transformed into the Proficient variable based on the state cutscore for
proficiency.

® ELL = English Language Learner, EO = English Language, [-FEP = Initially Fluent
English Proficient, R-FEP = Reclassified Fluent English Proficient
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Fluent English Proficient, 4 = Reclassified Fluent English Proficient. Table 1 contains
descriptive information for each of these variables. Table 2 contains 15 rows of data
on these variables reflecting 15 students in the dataset.

Dealing with Missing data

At the onset of data analysis, attention should be paid to the assumptions as
mentioned in the previous section. However, attention to robustly handling missing
data is given here as it is a topic that is often overlooked. Standard statistical analyses
are designed for data sets with all variables having no missing values. However, in
practice it is common to have missing values regardless of the effort that was placed
on data collection processes and accuracy. For example, participants completing
a survey on parenting practices may inadvertently skip questions by not noticing
questions printed on the back side of a page or choose not to respond to certain
sensitive questions. The common and easy solution to this problem is to ignore
the missing data by simply removing the complete case or row which contains any
missing variable (i.e., listwise deletion). This practice, complete case analysis, is the
default for many statistical software programs (e.g., SAS). However, such missing
data techniques rely on critical assumptions (e.g., data missing completely at random

Table 2. Sample data on 15 students on variables analysed

Student  Proficient* SES* Sex® Language Proficiency® Interim 1 Interim 2 Interim 3

1 0 1 0 1 8 14 14
2 0 1 1 1 5 10 4
3 1 1 0 4 5 11 10
4 0 1 0 1 10 13 11
5 0 0 0 2 11 8
6 0 1 1 1 12 16
7 1 0 0 2 12 18 12
8 0 1 0 1 8 2
9 1 0 1 2 15 10
10 1 0 0 2 16 16
11 1 0 0 4 16 14
12 1 0 1 2 14 14 16
13 1 0 0 2 12 16 12
14 1 0 1 2 13 20 16
15 1 0 1 2 11 10 11

20 =No, 1 =Yes; °1 = Male, 0 = Female; °1 = English Language Learner, 2 = English
Language, 3 = Initially Fluent English Proficient, 4 = Reclassified Fluent English Proficient
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(MCAR). Violation of these assumptions can invalidate the results of corresponding
analysis (Allison, 2001).

In educational research, a review of published articles in major journals (e.g., Child
Development, Educational and Psychology Measurement) that indicated having
missing data, only 2.6% employed maximum likelihood (ML) or multiple imputation
(MI) procedures (Peugh & Enders, 2004), which are considered state-of-the-art
methods. There are many excellent sources for reviews of missing data (e.g., Enders,
2010; Graham, Cumsille, & Elek-Fisk, 2003; Little & Rubin, 2002; Rubin 1987,
Schafer & Graham, 2002). The point made here is that older methods (e.g., mean
replacement, regression imputation) do not function well especially when compared
to new procedures (e.g., MI and ML). For instance, mean imputation retains means,
but distorts marginal distributions and measures of covariation (Little & Rubin, 2002;
Schafer & Graham, 2002).

The trend of older method use is changing as the general acceptance of newer
missing data methods are being widely accepted (Graham, Taylor, Olchowski, &
Cumsille, 2006). Specifically, ML and MI techniques have grown in popularity
due to (a) support demonstrating the production of accurate and efficient parameter
estimates under various assumptions (e.g., MAR, MCAR; Allison, 2003; Schafer &
Graham, 2002) and (b) having worked their way into many software programs. We
encourage the reader to view the sources in the suggested readings and carefully
consider the missing data in your dataset as well as the options that are available
when the software package used for analysis. It may be the case that additional
programs or add-ons to programs will be needed to implement imputation.

Cross-validation

The idea with predictive models is to develop a model in a sample that can be used
to predict the outcome at a later point in time with a new sample without having to
rebuild the model that has been established. For instance, if we construct a model
that predicts proficiency levels of students with desired accuracy (e.g., accurate
classification rates), then one should be able to use those regression weights in a
new independent and representative sample and obtain similar results. This answers
the question of real interest: “How well does the model work in the population or on
other samples from this population?”’ (Cohen & Cohen, 1983). This gathers evidence
that the model is generalizable. Thus, in this example we construct a model on a
random sample of half of the data. Then, we use the final model parameter estimates
from that model to conduct the LR analysis with the second half of the sample
to provide classification results based on obtained model parameter estimates to
evaluate generalizability of the model.

Running the LR analysis in SAS

The below SAS code is example of code for running a hierarchal logistic regression
where the first block of variables included in the model are sex, SES, and language
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proficiency. This allows for an evaluation of background variables that may be
important in predicting the outcome that would not allow for the building of an
accurate model. The second logistic statement adds the interim assessment variables
to the background variables to estimate and evaluate the complete model.

Data achieve;
Infile ‘c:\pathtodatafile\achievement.dat’;
Input ID 1-4 proficient 5 SES 6 Sex 7 LngPrt 8 @ 9 (Interim1-3) (2.);

proc logistic data= achieve descending;
model Proficient = sex SES LngPrt / ctable pprob=.50 lackfit risklimits rsq;
run;

proc logistic data= achieve descending;
model Proficient = sex SES LngPrt Interim1 Interim2 Interim3 / ctable pprob=.50
lackfit risklimits rsq;

run;

Formally, the full model being estimated is:

predicted logit (Proficient = 1) = f + ,Sex + ,SES + f,LngPrt
+ B,interiml + fiinterim2 + fiinterim3

(7
The SAS code in the box is easy to follow with this model presented with a few short
definitions of terms. The data statement establishes a temporary work file in SAS
that is called achieve. It could be called anything (e.g., al, LR). The infile and input
statement tells SAS where to find the data file and what the variable names are and
what column to find those variables in the data file. If the reader is unfamiliar with
SAS, the help files can assist in establishing this or see a many SAS sources readily
available on line or in print (e.g., Allison, 1999). The Proc LOGISTIC statement
indicates to SAS to run a logistic regression analysis. The descending option tells
SAS to predict the log odds of being proficient (1). If this option is not used SAS will
predict the log odds of being not proficient (0) as 0 comes before 1. If your data are
based on complex survey data, the Proc Survey Logistic statement can be invoked.
The SAS statement also request information on the (a) classification table
(CTABLE) for probabilities at 0.50; (b) Hosmer and Lemeshow Goodness-of-Fit test
(LACKFIT); (c) odds ratio for each variable in the equation with the 95% confidence
limits (RISKLIMITS); and, (d) the value of r-squared (RSQ). We note there is little
agreement on which measure of association to use. We report Nagelkerke R? which
SAS labels Max-rescaled R%. See Menard (2000) for a complete discussion of LR
coefficients of determination. Due to a lack of clarity of the measure, the value can
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be supplementary to other, more useful indices (e.g., overall evaluation of the model,
tests of regression coefficients, and the goodness-of-fit test statistic).

Reporting the Results

In the first step (Step 1), a test of the model with the student background
characteristics as predictors against a constant-only model was statistically reliable,
X% (3, N=480)=66.47, p> .05, R*=17.2%. At Step 2, the model with the three
interim assessments included was statistically reliable, X? (6, N =480) = 287.69,
p <.05, R?=60.1%. Beyond examination of each step, interest was on evaluating
if the addition of variables improved the prediction or classification of proficiency
status (0 = did not meet minimal standards, 1 = exceeded minimum standards). The
statistical difference between Steps 1 and 2 was significant, X ;.ﬂe,_em,e (3)=221.22,
p <.05. This indicates a reliable improvement with the addition of the interim
assessment variables. All variables were significant predictors with the exception
of sex, as seen in Table 3. Prediction using these variables resulted in a correct
classification rate of 82%.

We also evaluated the Hosmer and Lemeshow Goodness-of-Fit test to help assess
overall model fit. Recall, we do not want this test to be significant. We want to not
reject the null hypothesis that these data fit the model. This is, in fact, what we
observed, X? (8, N=480)=5.99, p > .05. The parameter estimates from the model
with the significant variables from sample 1 were used to predict proficiency for
Sample 2 (n=458) and correct classification was examined for cross-validation
purposes. Comparisons of predicted proficiency and observed proficiency for Sample
2 resulted in a correct classification rate of 81%. Classification rates of incorrect and
correct decisions appear in Tables 4 and 5 for Sample 1 and 2, respectively.

Table 3. Summary of regression analysis for variables predicting proficiency
for sample 1 (N = 480)

95% Confidence Interval

Measures B SE B Odds Ratio' Lower Upper
1. Sex -0.077 0.258 0.926 0.588 1.536
2. SES —0.745% 0.363 0.474 0.233 0.968
3. LngPrt 0.332%* 0.166 1.394 1.006 1.931
4. Interim 1 0.113* 0.048 1.120 1.018 1.232
5. Interim 2 0.276%* 0.046 1.139 1.204 1.446
6. Interim 3 0.298* 0.051 1.348 1.220 1.490

'the odds ratio is the increase in the odds of the occurrence of an event with a one unit
change in the independent variable.
*p <.05
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Table 4. Classification table results for predicting student proficiency
for sample 1 (N = 480)

Result of Initial Model
Proficient Positive Negative
Proficient 45% 10%
Not Proficient 37% 8%

Table 5. Classification table results for predicting student proficiency
for sample 2 for cross-validation (N = 458)

Result of Cross-Validation of Model

Proficient Positive Negative
Proficient 38% 10%
Not Proficient 43% 9%

To aid understanding of the model, we build the probability of being proficient
for student 1 in Table 2. Note the intercept for the model was —9.676. The equation
would be:

A

In (1 a ): —9.9676+ (=.077)(0) + (=0.745)(1) + (.113)(8)

+(.276)(14) + (.298)(14) (8)

Therefore, taking the absolute value of this log odds, the odds of student 1 in Table 2
being proficient is:

Odds(of being proficient) = exp (1.14) = 0.319.

And the probability of being proficient is, P (proficient) =0.319 /1 + 0.319 = 0.24.
This low probability coincides with the observation that this student was actually
labelled as not being proficient. We can also look at the odds ratios in Table 3 to
understand how each variable influences the probability of being proficient. For
example, it is clear that the odds of being classified as proficient increase by over 1
for every point a student gains on any of the interim assessments. Additionally, as
SES is less than 1, it indicates that students receiving free and reduced lunch (e.g.,
lower SES compared to their counterparts) reduces the odds of being classified as
proficient or at least having a score above the proficiency level.
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The results from this illustrative study demonstrate that LR can be useful in
educational research. The simple model we constructed here reveals that accounting
for interim progress, language proficiency, and poverty do aid to predicting a student’s
probability of meeting a state standard in terms of being classified as proficient on
this particular skill. The proposed model demonstrated fair accuracy with a correct
classification rate of 82% which was validated using a cross-validation step in the
analysis. Of course, as with any statistical modelling procedure, the model is only as
good, both practically and theoretically, as are the variables employed to construct
the model.

Final model evaluation depends on more that the statistical criteria that that have
been mentioned and discussed to this point. The strength, credibility, and usability
of the model depend on the theory and research questions that drove the model
construction. In reporting the results and discussing the model, the researcher has
the task of making explicit how the results address the proposed research question(s)
situated in within a clear theoretical framework. Discussing results should include
not only how the model adds to the area of focus understanding of the variables
under investigation but also out of the limitations of the modelling strategy given the
data (e.g., sample, design) at hand. Such information will allow for the reader and
consumer of the work to evaluate the results with a critical eye with such information.

RESEARCH ISSUES/CONCLUSIONS

Logistic regression has received growing acceptance in many areas, especially
in social sciences research (Hosmer & Lemeshow, 2000) and higher education,
specifically. Since the 1990s, the application of LR has appeared in many higher
education articles as well as a popular method in conference presentations at such
venues as the American Educational Researcher Association conference (Peng, So,
Frances, & St. John, 2002). A cursory search of popular databases (i.e., Psylnfo)
using the term “logistic regression” resulted in 3,416 hits on written material before
2002 and 18,677 within the last 10 years. Clearly, from this one database search
there has been an increase in the use and discussion of LR in the social sciences.
This is most likely due to that fact that, as an alternative to linear regression models,
logistic regression provides flexibility in examining relationships of a categorical
outcome variable and combination of continuous or categorical predictors. In
fact, many educational datasets can make use of logistic regression to investigate
categorical outcome measures (i.e., pass/fail course, retention, diagnostic accuracy)
in educational research.

In spite of the popularity of logistic regression, various problems associated
with the application and interpretations have been identified (Peng et al., 2002).
These concerns include sample size, transformation of the scale, label of dependent
variable and reference category, diagnostic analysis, and underreported statistical
software, parameters of estimates, and justification of model selections. These
problems affect accuracy and implication of logistic regression model across studies
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(Peng et al., 2002). These technically challenging areas will continue to receive
attention from a methodological angle to bring clarity or at least provide guidance to
practitioners applying the method to explore various research questions. Moreover,
as new uses of LR arise (e.g., multilevel analysis, person-fit LR models), the demand
for methodological evaluation will wax to ensure proper statistical modeling.

The current article provides guideline and fundamental principles of how LR
should be applied to promote learning about this method. However, in recent years,
there is an increasing number of applied and methodological studies discussing the
extension of the LR model to multilevel because individuals are indeed nested in
and influenced by the context (i.e., culture, geography, school type). This type of
sampling structure is common in educational literature as well as other areas such
as organizational research or medical research. In general, the resulting data have
a hierarchical structure; making inferences at the individual (e.g., student) level
problematic or inaccurate when the structure is ignored. Essentially, bias in the
standard errors is introduced and results in underestimating the standard error of
the regression coefficient. This can lead to inaccurate statistically significant results
(i.e., inflate Type I error). As a result, multilevel modelling takes the hierarchical
structure of the data (e.g., students nested within schools) into account to accurately
estimate the standard error by partitioning variance into individual level (Level 1)
and contextual or cluster level (Level 2).

Examples of such multilevel work have included building multilevel logistic
regression models to account for context in how items function across groups in
the area of measurement invariance (e.g., French & Finch, 2010; Swanson, et al.,
2002). Multilevel regression models are being used to develop explanatory person-
fit analysis models in the realm of person response function (PRF) models where
the probability of a correct response to an item is model as a function of the item
locations (e.g., Conijin, Emons, van Assen, & Sijtsma, 2011). In addition, multilevel
logistic regression models have been used to investigate neighborhood effects (high
or low education levels) on individuals’ visits to physicians and their chances of
being hospitalized for ischemic heart disease (Larsen & Merlo, 2005). Thus, it is
expected that in the years to come there will be more useful extensions of LR with
educational related data to increase the accuracy of modeling the complexities of the
world in which we live, work, play, and learn. The extensions of LR to multilevel
data to address various outcomes from medical visits to item functioning reflect both
the applied and methodological trends that will continue over the next decade. We
look forward to seeing the new applications as well as model extensions with LR.
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8. EXPLORATORY FACTOR ANALYSIS

Exploratory factor analysis (EFA) is a very popular statistical tool that is used
throughout the social sciences. It has proven useful for assessing theories of
learning, cognition, and personality (Aluja, Garcia, & Garcia, 2004), for exploring
scale validity (Manos, Rachel C.; Kanter, Jonathan W.; Luo, Wen;), and for reducing
the dimensionality in a set of variables so that they can be used more easily in
further statistical analyses (Mashal & Kasirer, 2012). EFA expresses the relationship
between variables that can be directly measured, or observed, and those that cannot,
typically referred to as latent variables. The model parameter estimation is based
upon the covariance matrix among a set of the observed variables. This relative
simplicity in the basic design of the method makes it very flexible and adaptable
to a large number of research problems. In the following pages, we will explore
the basic EFA model and examine how it can be applied in practice. We will put
special focus on the various alternatives for conducting factor analysis, discussing
the relative merits of the more common approaches. Finally, we will provide an
extended example regarding the conduct of EFA and interpretation of results from
an analysis.

Prior to discussing the intricacies of EFA, it is important to say a few words about
how it fits in the broader latent model framework. Factor analysis in general is typically
divided into two different but complementary analyses: EFA and confirmatory factor
analysis (CFA). From a mathematical perspective these two models are very closely
linked, however they have very different purposes in application. Perhaps the most
distinctive difference between the two is the degree to which the underlying factor
model is constrained. In EFA very few constraints are placed on the structure of the
model in terms of the number of latent variables or how the observed indicators
relate to their latent counterparts. In contrast, researchers using CFA constrain the
model to take a very specific form, indicating precisely with which latent variables
each of the observed indicators is associated, and how many such indicators exits.
This statistical distinction manifests itself in practice through the different manner in
which each method is typically used. EFA is most often employed in scenarios where
a researcher does not have fully developed and well grounded hypotheses regarding
the latent structure underlying a set of variables, or where those hypotheses have not
been thoroughly examined with empirical research (Brown, 2006). CFA is typically
used to explicitly test and compare theories about such latent structure by altering
of the constraints described above. Thus, while the basic model may be the same for
these two approaches to factor analysis, the actual analyses are conducted in a very
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different manner. The focus of this chapter is on EFA, and so no further discussion of
CFA is presented. However, researchers should always keep the distinction between
the two approaches to factor analysis in mind as they consider which would be most
appropriate for their specific research problem.

Exploratory Factor Analysis Model

As discussed briefly above, factor analysis expresses the relationship between a
set of observed, or directly measured, variables, and a set of unobserved, or latent
variables. Typically, the latent variables are those of greatest interest to the researcher,
as they might represent the true construct of interest. For example, a researcher
might be particularly interested in assessing the latent structure underlying a set of
items intended to measure reasons why college undergraduates consume alcohol.
The researcher might have some idea based on substantive theory regarding the
number and nature of these latent variables. However, this theory might be relatively
untested with empirical evidence. In order to gain insights into the nature of the
underlying construct(s) EFA can be employed. The basic model takes the form:

x=LF+u (1)

In this matrix representation of the model, x is simply a vector of observed variables,
L is a matrix of factor pattern coefficients (often referred to as factor loadings), F'is
a vector of common factors and u is a vector of unique variables. In the context of
our example, x represents responses to the individual items asking students why they
drink, F is the set of latent variables that underlie these item responses. These might
be thought of as the real reasons that students consume alcohol, which cannot be
directly measured. The L, or factor loadings values, express the relationship between
each of the observed and latent variables, while the unique variables, u, represent all
influences on the observed variables other than the factors themselves. Often, these
values are referred to as uniquenesses or error terms, and indeed they are similar in
spirit to the error terms in standard linear models such as regression.

The primary objective in factor analysis is to identify the smallest number of
factors that provides adequate explanation of the covariance matrix of the set of
observed variables (Thompson, 2004). We will discuss how one might define
adequate explanation forthwith. First, however, it is worth briefly describing the
underlying mechanics of how the factor model described above is optimized for a
specific research scenario. The model presented in (1) can be linked directly to the
covariance matrix (S) among the observed indicator variables using the following

S=LFL+V¥ )

The factor loading matrix, L is as defined previously. The factor covariance matrix,
F, contains the factor variances and covariances, or relationships among the factors
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themselves. The term ¥ is a diagonal matrix containing the unique variances. This
equation expresses the relationship between the factor loadings and the observed
correlation matrix. In practice, the goal of EFA is to define each of these values in
such a way that the predicted correlation matrix, %, is as similar as possible to the
observed correlation matrix, S, among the observed variables. Often, statisticians
discuss these covariance matrices in their standardized forms, the predicted and
observed correlation matrices, R and R, respectively.

Factor Extraction

The process of obtaining initial estimates of EFA model parameters, including the
factor loadings, is known as factor extraction. As discussed previously, the primary
goal of factor extraction is to identify factor loadings that can reproduce as closely as
possible the observed correlation matrix, while maintaining the smallest number of
factors possible. If the only goal were to accurately reproduce this matrix, we would
simply assign each observed variable to its own factor, thus replicating the observed
data (and the observed correlation matrix) exactly. However, when the additional
goal of reducing the size of the data set from the total number of observed variables
to a smaller number of factors, this approach would not be helpful. Therefore, there
is created friction between the goal of accurately reproducing R while keeping the
factor model as simple as possible.

There are a number of methods available for extracting the initial set of factor
loadings. These various approaches differ in terms of how they express the
optimizing function; i.e. the comparison between R and R. However, despite
the fairly large number of approaches for extraction, only a few are actually used
routinely in practice. Only these methods will be described here, though it is useful
for the researcher to be aware of the availability of a broader range of extraction
techniques.

One of the most common such factor extraction approaches is principal
components analysis (PCA). PCA differs from the other extraction methods in
that it is designed to extract total variance from the correlation matrix, rather
than only shared variance, which is the case for the other extraction approaches.
In technical terms, the diagonal of R contains 1’s in the case of PCA, while
the off diagonal elements are the correlations among the observed variables.
Thus, when the parameters in (1) are estimated in PCA, it is with the goal of
accurately reproducing the total variance of each variable (represented by the
diagonal 1 elements) as well as correlations among the observed variables. The
latent variables in this model are referred to as components, rather than factors,
and likewise the loadings in PCA are referred to as component rather than factor
loadings. One interesting point to note is that when researchers use PCA with
a set of scale items and thereby set the diagonal of R to 1, they make a tacit
assumption that the items are perfectly reliable (consistent) measures of the latent
trait (Thompson, 2004).
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An alternative approach to initial factor extraction involves the replacement of
the 1’s in the diagonal of R with an estimate of shared variance only, typically the
squared multiple correlation (SMC) for the variable. The SMC values, which are
estimated by regressing each observed variable onto all of the others, represent
only the variation that is shared among the observed variables, as opposed to
the total variation used in PCA. Thus, when the factor model parameters are
estimated, it is with the goal of most closely approximating the variability
that is shared among the observed variables and ignoring that which is unique
to each one alone. Perhaps the most popular of this type of extraction method
is principal axis factoring (PAF). A third popular approach for estimating
factor model parameters is maximum likelihood estimation (MLE). MLE is an
extraction method based in the larger statistics literature, where this approach
to parameter estimation is quite popular and widely used in many contexts. For
factor analysis, the goal is to find estimates of the factor loadings that maximize
the probability of obtaining the observed data. This approach to extraction is
the only one that requires an assumption of multivariate normality of the data
(Lawley & Maxwell, 1963). The fourth method of extraction that we will
mention here, alpha factoring, was designed specifically for use in the social
sciences, in particular with psychological and educational measures (Kaiser &
Caffrey, 1965). Alpha factoring has as its goal the maximization of Cronbach’s
alpha (a very common measure of scale reliability) within each of the retained
factors. Therefore, the goal of this extraction approach is the creation of factors
that correspond to maximally reliable subscales on a psychological assessment.
While there are a number of other extraction methods, including image factoring,
unweighted least squares, and weighted least squares, those highlighted here
are the most commonly used and generally considered preferred in many social
science applications (Tabachnick & Fidell, 2007).

Factor Rotation

In the second step of EFA, the initial factor loadings described above are transformed,
or rotated, in order to make them more meaningful in terms of (ideally) clearly
associating an indicator variable with a single factor with what is typically referred
to as simple structure (Sass & Schmitt, 2010). Rotation does not impact the overall
fit of the factor model to a set of data, but it does change the values of the loadings,
and thus the interpretation of the nature of the factors. The notion of simple structure
has been discussed repeatedly over the years by researchers, and while there is a
general sense as to its meaning, there is not agreement regarding exact details. From
a relatively nontechnical perspective, simple structure refers to the case where each
observed variable is clearly associated with only one of the latent variables, and
perfect simple structure means that each observed variable is associated with only
one factor; i.e. all other factor loadings are 0. From a more technical perspective,
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Thurstone (1947) first described simple structure as occurring when each row
(corresponding to an individual observed variable) in the factor loading matrix has
at least one zero. He also included 4 other rules that were initially intended to yield
the over determination and stability of the factor loading matrix, but which were
subsequently used by others to define methods of rotation (Browne, 2001). Jennrich
(2007) defined perfect simple structure as occurring when each indicator has only
one nonzero factor loading and compared it to Thurstone simple structure in which
there are a “fair number of zeros” in the factor loading matrix, but not as many
as in perfect simple structure. Conversely, Browne (2001) defined the complexity
of a factor pattern as the number of nonzero elements in the rows of the loading
matrix. In short, a more complex solution is one in which the observed variables
have multiple nonzero factor loadings. Although the results from different rotations
cannot be considered good or bad, or better or worse, the goal of rotations in EFA is
to obtain the most interpretable solution possible for a set of data, so that a relatively
better solution is one that is more theoretically sound (Asparouhov & Muthén,
2009). With this goal in mind, a researcher will want to settle on a factor solution
that is most in line with existing theory and/or which can be most readily explained
given literature in the field under investigation. In short, we want the solution to
“make sense”.

Factor rotations can be broadly classified into two types: (1) Orthogonal, in
which the factors are constrained to be uncorrelated and (2) Oblique, in which
this constraint is relaxed and factors are allowed to correlate. Within each of
these classes, there are a number of methodological options available, each of
which differs in terms of the criterion used to minimize factor complexity and
approximate some form of simple structure (Jennrich, 2007). Browne (2001)
provides an excellent review of a number of rotational strategies, and the reader
interested in the more technical details is encouraged to refer to this manuscript.
He concluded that when the factor pattern conformed to what is termed above
as pure simple structure most methods produce acceptable solutions. However,
when there was greater complexity in the factor pattern, the rotational methods
did not perform equally well, and indeed in some cases the great majority of them
produced unacceptable results. For this reason, Browne argued for the need of
educated human judgment in the selection of the best factor rotation solution.
In a similar regard, Yates (1987) found that some rotations are designed to find
perfect (or nearly) simple structure solution in all cases, even when this may not
be appropriate for the data at hand. Based on their findings, Browne and Yates
encouraged researchers to use their subject area knowledge when deciding on the
optimal solution for a factor analysis. While the statistical tools described here
can prove useful for this work, they cannot replace expert judgment in terms of
deciding on the most appropriate factor model.

There are a number of rotations available to the applied researcher in commonly
used software packages such as SPSS, SAS, R, and MPlus. Some of the most
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common of these rotations fall under the Crawford-Ferguson family of rotations
(Browne, 2001), all of which are based on the following equation:

SN =(1-k)

)4 m. P
i=1
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Jj=

where

m = the number of factors

p = the number of observed indicator variables

lij= unrotated factor loading linking variable i with factor j

The various members of the Crawford-Ferguson family differ from one another in
the value of k. As Sass and Schmitt (2010) note, larger values of k place greater
emphasis on factor (column) complexity while smaller values place greater
emphasis on variable (row) complexity. Popular members of the Crawford-Ferguson
family include Direct QUARTIMIN (£ = 0), EQUAMAX (k = m/2p), PARSIMAX
k= m - D/p + m — 2)), VARIMAX (k = 1/p), and the Factor Parsimony
(FACPARSIM) (k = 1).

In addition to the Crawford-Ferguson family, there exist a number of other
rotations, including orthogonal QUARTIMAX, which has the rotational criterion

m

FN)= —%ZZ z, 4

i=1 j=I

GEOMIN with the rotational criterion

f(A) = i[ﬁ(xg + 8)}," . (5)

and PROMAX. The PROMAX rotation, which is particularly popular in practice,
is a two-stage procedure that begins with a VARIMAX rotation. In the second step,
the VARIMAX rotated factor loadings are themselves rotated through application of
the target matrix

T,=(AA)ALB (©6)

where

A, = Varimax rotated loding matrix
b+l

B = Matrix containing elements I
i
b = Power to which the loading is raised (4 is the default in most software)
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This target matrix is then rescaled to 7 based on the square root of the diagonals

of (T'T;)" and the Promax rotated loading matrix is defined as

A, =AT (7)
The interested reader can find more technical descriptions of these rotational methods
in the literature (Browne, 2001; Asparouhov & Muthen, 2009; Mulaik, 2010; Sass
& Schmitt, 2010).

One issue of some import when differentiating orthogonal and oblique rotations
is the difference between Pattern and Structure matrices. In the case of oblique
rotations, the Pattern matrix refers to the set of factor loadings that reflects the
unique relationship between individual observed and latent variables, excluding
any contribution from the other factors in the model. The structure matrix includes
loadings that reflect the total relationship between the observed and latent variables,
including that which is shared across factors. In general practice, researchers often
use the Pattern matrix values because they do reflect the unique relationship and are
thus perhaps more informative regarding the unique factor structure (Tabachnick &
Fidell, 2007). Because orthogonal rotations by definition set the correlations among
factors to 0, the Pattern and Structure matrices are identical.

In practice, VARIMAX and PROMAX are probably the two most widely
used methods of factor rotation, as revealed by a search of the Psycinfo database
in February, 2012. This popularity is not due to any inherent advantages in these
approaches, as statistical research has identified other approaches that would be
more optimal in some circumstances (Finch, in press). However, these methods
are widely available in software, have been shown to be reasonably effective in
statistical simulation studies, and are generally well understood in terms of their
performance under a variety of conditions. This does not mean, however, that they
should be the sole tools in the factor analysts rotational arsenal. Indeed, many
authors (e.g., Asparouhov & Muthen, 2009) argue that because the goal of factor
rotation is to produce meaningful and interpretable results, it is recommended that
multiple approaches be used and the results compared with one another, particularly
in terms of their theoretical soundness. At the very least, we would recommend that
the researcher consider both an orthogonal and an oblique rotation, examining the
factor correlations estimated in the latter. If these correlations are nontrivial, then
the final rotational strategy should be oblique, so that the loadings incorporate the
correlations among the factors.

Communalities

One measure of the overall quality of a factor solution is the individual communality
value for each of the observed variables. Conceptually, communalities can be
interpreted as the proportion of variation in the observed variables that is accounted
for by the set of factors. They typically range between 0 and 1, though in certain
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(problematic) circumstances this will not be the case. A relatively large communality
for an individual variable suggests that most of its variability can be accounted for
by the latent variables. For orthogonal rotations, the communality is simply the sum
of the squared factor loadings. Thus, if a three factor solution is settled upon and
the loadings for variable 1 are 0.123, 0.114, and 0.542, the communality would be
0.1232+0.1142+ 0.5422, or 0.322. We would conclude that together the three factors
accounted for approximately 32% of the variation in this variable. It is important to
note that a large communality does not necessarily indicate that the factor solution is
interpretable or matches with theory. Indeed, for the previous example, the loadings
0.417, 0.019, and 0.384 would yield an identical communality to that calculated
previously. Yet, this second solution would not be particularly useful given that the
variable loads equally on factors 1 and 3. Therefore, although communalities are
certainly useful tools for understanding the quality of a factor solution, by themselves
they do not reveal very much about the interpretability of the solution.

Determining the Number of Factors

As with factor extraction and rotation, there are a number of statistical approaches
for identifying the optimal number of factors. It should be stated up front that the
optimal solution is the one that best matches with theory and can be defended to
experts in the field, regardless of what the statistical indicators would suggest. Having
said that, there are statistical tools available that can assist the researcher in, at the
very least, narrowing down the likely number of factors that need to be considered.
Most of these approaches are descriptive in nature, although some inferential tests
are available. We will begin with the more descriptive and generally somewhat older
methods for determining the number of factors, and then turn our attention to more
sophisticated and newer techniques.

Perhaps one of the earliest approaches for determining the likely number of factors
was described by Guttman (1954), and is commonly referred to as the eigenvalue
greater than 1 rule. This rule is quite simple to apply in that a factor is deemed to
be important, or worthy of retaining if the eigenvalue associated with it is greater
than 1. The logic underlying this technique is equally straightforward. If we assume
that each observed variable is standardized to the normal distribution with a mean
of 0 and variance of 1, then for a factor to be meaningful it should account for more
variation in the data than does a single observed variable. While this rule is simple
and remains in common use, it is not without problems, chief of which is that it has
a tendency to overestimate the number of factors underlying a set of data (Patil,
McPherson, & Friesner, 2010). Nonetheless, it is one of the default methods used by
many software programs for identifying the number of factors.

Another approach for determining the number of factors based on the eigenvalues
is the Scree plot. Scree is rubble at the base of a cliff, giving this plot its name. It was
introduced by Cattell (1966), and plots the eigenvalues on the Y axis, with the factors
on the X axis. The researcher using this plot looks for the point at which the plot
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Figure 1. Example scree plot.

bends, or flattens out. Figure 1 contains an example of a Scree plot. It would appear
that the line bends, or flattens out at 3 factors, thus we might retain 2. It is important
to note that the interpretation of the Scree plot is subjective, so that researchers
may not always agree on the optimal number of factors to retain when using it.
Prior research on the effectiveness of this method has found that much as with the
eigenvalue greater than 1 rule, the Scree plot tends to encourage the retention of too
many factors (Patil, McPherson, & Friesner, 2010).

In addition to examining the eigenvalues themselves, researchers often will also
consider the proportion of variation in the observed data that is accounted for by
a particular factor solution. The total variance contained in the data is equal to the
sum of the eigenvalues. Therefore, the proportion of variability accounted for by an
individual factor is simply the ratio of its eigenvalue to the sum of the eigenvalues
(which will be equal to the number of observed variables). While there are no rules
regarding what constitutes an acceptable proportion of observed indicator variance
accounted for by the latent variables, clearly more is better, while maintaining a goal
of factor parsimony.

As discussed above, mathematically speaking the goal of factor analysis is to
reproduce as closely as possible the correlation matrix among the observed variables,
R, with the smallest number of latent variables. This predicted correlation matrix 1%,
can then be compared with the actual matrix in order to determine how well the
factor solution worked. This is typically done by calculating residual correlation
values (the difference between the observed and predicted correlations) for each pair
of observed variables. If a given factor solution is working well, we would expect
the residual correlation values to be fairly small; i.e. the factor model has done an
accurate job of reproducing the correlations. A common rule of thumb (Thompson,
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2004) is that the absolute value of the residual correlations should not be greater than
0.05. This cut-off is completely arbitrary, and a researcher may elect to use another,
such as 0.10. While the residual correlation matrix is a reasonably useful tool for
ascertaining the optimal number of factors, it can be very cumbersome to use when
there are many observed variables. Some software packages, such as SPSS, provide
the user with the number and proportion of residual correlations that are greater than
0.05, eliminating the need for the tedious job of counting them individually.

In addition to these purely descriptive assessments of a factor solution, there
exist some inferential tools. For example, parallel analysis (PA; Horn, 1965) has
proven to be an increasingly popular and reasonably dependable hypothesis testing
method for determining the number of factors. The PA methodology is drawn from
the literature on permutation tests in the field of statistics. Specifically, the goal
of this technique is to create a distribution of data that corresponds to what would
be expected were there no latent variables present in the data; i.e. if the observed
variables were uncorrelated with one another. This is done by generating random
data that retains the same sample size, means and variances as the observed data, but
being random, has correlation coefficients among the observed variables centered
on 0. When such a random dataset is created, factor analysis is then conducted and
the resulting eigenvalues are retained. In order to create a sampling distribution of
these eigenvalues, this random data generation and factor analysis is replicated a
large number of times (e.g. 1000). Once the distribution of egenvalues from random
data are created, the actual eigenvalues obtained by running factor analysis with
the observed data are then compared to the sampling distributions from the random
data. The random data distributions are essentially those for the case when the null
hypothesis of no factor structure is true, so that the comparison of the observed
eigenvalues to these random distributions provides a hypothesis test for the null
hypothesis of no factor structure. Therefore, if we set @ = 0.05, we can conclude that
an observed eigenvalue is significant when it is larger than the 95th percentile of the
random data distribution. This method will be used in the example below, providing
the reader with an example of its use in practice.

Another alternative approach for assessing factor solutions is Velicer’s minimum
average partial (MAP) approach (Velicer, 1976). This method involves first estimating
multiple factor solutions (i.e. different numbers of factors). For each such factor
solution, the correlations among the observed variables are estimated, partialing
out the factors. For example, initially one factor is retained, and the correlations
among all of the observed variables are calculated after removing the effect of this
factor. Subsequently, 2 factors, 3 factors, and so on are fit to the data, and for each
of these models the partial correlations are calculated. These partial correlations
are then squared and averaged in order to obtain an average partial correlation for
each model. The optimal factor solution is the one corresponding to the minimum
average partial correlation. The logic underlying MAP is fairly straight forward.
A good factor solution is one that accounts for most of the correlation among a set of
observed variables. Therefore, when the factor(s) are partialed out of the correlation
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matrix, very little relationship is left among the variables; i.e. the partial correlations
will be very small. By this logic, the solution with the minimum average squared
partial correlation is the one that optimally accounts for the relationships among the
observed variables.

Example

We will now consider an extended example involving the conduct of factor analysis
from the initial extraction through the determination of the number of factors. For
this example, we will examine the responses to a 12 item questionnaire designed to
elicit information from college students regarding their reasons for drinking alcohol.
The Items appear below in Table 1, and are all answered on a 7 point likert scale
where a 1 indicates this is nothing like the respondent and 7 indicates this is exactly
like the respondent. The researcher believes that the items measure 3 distinct latent
constructs: drinking as a social activity, drinking as a way to cope with stress, and
drinking as an enhancement to other activities. Data were collected on a total of 500
undergraduate students at a large university (52% female). The goal of this EFA is
to determine the extent to which the underlying theory of the scale matches with the
observed data collected from the college students. In other words, do the items group
together into the three coherent factors envisioned by the researcher?

The researcher first conducts an EFA with 3 factors (matching the theory) using
MLE extraction and PROMAX rotation. The latter choice is made in order to obtain
a correlation matrix for the factors, which in turn will inform the final decision
regarding the type of rotation to use (orthogonal or oblique). This correlation matrix
appears in Table 2.

Table 1. Drinking scale items

Item 1: Because you like the feeling

Item 2: Because it’s exciting

Item 3: Because it give you a pleasant feeling
Item 4: Because it’s fun

Item 5: It helps me enjoy a party

Item 6: To be sociable

Item 7: It makes social gatherings more fun
Item 8: To celebrate special occasions

Item 9: To forget worries

Item 10: It helps when I feel depressed
Item 11: Helps cheer me up

Item 12: Improves a bad mood
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Table 2. Interfactor correlation matrix

Factor 1 2 3
Dimension 1.000 .266 .633
266 1.000 363

.633 363 1.000

Table 3. Eigenvalues and percent of variance accounted for by each factor

Factor Eigenvalue Percent Cumulative percent
1 3.876 32.297 32.297
2 1.906 15.880 48.178
3 1.150 9.587 57.765
4 .837 6.975 64.740
5 722 6.013 70.753
6 .669 5.576 76.328
7 576 4.802 81.131
8 557 4.643 85.774
9 487 4.061 89.834

10 471 3.923 93.758

11 426 3.552 97.309

12 323 2.691 100.000

All of the factor pairs exhibit a non-zero correlation, and factors 1 and 3 are highly
correlated with one another, with » = 0.633. This result would suggest that an oblique
rotation is likely more appropriate than orthogonal.

After determining the general rotational approach, we will next want to consider
the appropriate number of factors to retain. As described above, this is not an issue
with a simple answer. There are a number of statistical tools at our disposal to help
in this regard, but they may provide somewhat different answers to the question of
the optimal number of factors to be retained. Of course, the final determination as to
factor retention is the conceptual quality of the factors themselves. First, however,
we can examine some of the statistical indicators. Table 3 contains the eigenvalue for
each factor, along with the proportion of variance accounted for by each individually,
as well as by the set cumulatively.

An examination of the results reveals that the eigenvalue greater than 1 rule would
yield a three factor solution. The first three factors explain approximately 58% of the
total variation in item responses, with the first factor explaining a full third of the
variance by itself. After three factors, the change in additional variance explained
for each additional factor is always less than 1%, indicating that these factors do not
provide markedly greater explanation of the observed data individually. The scree
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Table 4. MAP results for the drinking scale data

Factor MAP value
0.000000 0.083579
1.000000 0.033096
2.000000 0.026197
3.000000 0.034009
4.000000 0.053208
5.000000 0.077821
6.000000 0.108430
7.000000 0.159454
8.000000 0.224068
9.000000 0.312326

10.000000 0.504657

11.000000 1.000000

Scree Plot

4

Eigenvalue
o

Factor Number

Figure 2. Scree plot for drinking scale items.

plot (Figure 2), which provides a graphical display of the eigenvalues by factor
number suggests that perhaps three or four factors would be appropriate, given that
the line begins to flatten out for eigenvalues between those numbers of factors.

In addition to these approaches for determining the number of factors, which are
each based on the eigenvalues in some fashion, other approaches may also be used
for this purpose, including MAP, PA, and the chi-square goodness of fit test from
MLE extraction. The MAP results for the drinking data appear below in Table 4.
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These results show that the lowest average squared correlation value was associated
with the two factor solution. Thus, based on MAP we would conclude that there are
2 factors present in the data.

Another method for ascertaining the number of factors is PA. In this case, we
will ask for 1000 permutations of the original datasets, and set the level of a at 0.05
(using the 95th percentile). Results of PA appearing in Table 5 below, suggest the
presence of 3 factors. We conclude this based upon the fact that the eigenvalues from
the actual data are larger than the 95th percentile values for the first three factors,
but not the fourth.

Finally, because we used the MLE method of factor extraction, a chi-square
goodness of fit test was also a part of the final results. This statistic tests the null
hypothesis that the factor solution fits the data. More specifically, it tests the
hypothesis that the reproduced correlation matrix (based upon the factor solution) is
equivalent to the observed correlation matrix. It is important to note that in order to
use MLE extraction, we must assume that the observed data follow the multivariate
normal distribution (Brown, 2006). We can assess this assumption using Mardia’s test
for multivariate normality (Mardia, 1970). In this example, MLE extraction yielded
p-values of 0.00004, 0.0102, and 0.482 two, three, and four factors, respectively.
Thus, based on this test, we would conclude that four factors is the optimal solution.

In considering how to proceed next, we can examine the results of the various
analyses just discussed in order to narrow down the range of options for which we
should obtain factor loadings matrices. It would appear that the least number of
factors that might be present in the data would be two (MAP), while the largest
reasonable number would be 4 (chi-square goodness of fit test). For this reason,

Table 5. Eigenvalues for raw data and parallel analysis distribution

Factor Raw Data Means 95th Percentile
1 3.272626 0.288555 0.357124
2 1.234191 0.217483 0.267662
3 0.431697 0.162343 0.205637
4 0.110090 0.114928 0.153813
5 —-0.014979 0.071712 0.107747
6 —0.034157 0.031778 0.063371
7 —-0.073058 —-0.005970 0.022749
8 —0.111261 —0.043912 —-0.015727
9 —-0.137628 —-0.081220 —0.053983

10 —-0.139254 —-0.119163 —-0.090826

11 —0.200550 —-0.160150 —-0.129607

12 —-0.229260 —-0.208650 0.172491
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we will examine factor loading values for each of these three solutions. As noted
previously, given that there appear to be nontrivial correlations among the factors,
we will rely on PROMAX rotation, and will use MLE extraction. Pattern matrix
values for the two, three, and four factor solutions appear in Table 6.

When interpreting the factor loadings in order to identify the optimal solution,
it is important to remember the expected number of factors based on theory, which
in this case is three. Furthermore, the items are ordered so that items 1 through 4
are theoretically associated with a common factor, items 5 through 8 are associated
with a separate factor, and finally items 9 through 12 are associated with a third
factor. In examining the two factor results, it appears that the 4 items theoretically
associated with a common latent construct do in fact group together, while the
other 8§ items are grouped together in a single factor. Based on theory, it appears
that factor 1 corresponds to the Enhancement construct, while factor 2 appears to
conflate the Coping and Social constructs. With respect to the three factor solution,
we can see that items 1 through 3 load together on factor 3, while items 5 through 8
load together on factor 1 and items 9 through 12 load on factor 2. Item 4 (drinking
because it’s fun) is cross-loaded with factors 1 and 3, and thus cannot be said to be
associated clearly with either one. Considering these results in conjunction with the
underlying theory, it would appear that factor 1 corresponds to Social reasons for
drinking, factor 2 corresponds to Coping reasons for drinking and factor 3 (minus
item 4) corresponds to Enhancement. We might consider whether the cross-loading

Table 6. Pattern matrices for PROMAX rotation of two, three, and four factor solutions
for the drinking scale data

Two Factors Three Factors Four Factors

Item Fl F2 F1 F2 F3 Fl F2 F3 F4
1 0.35 0.13  -0.11 0.01 0.63 -0.13 0.65 —0.06 0.08
2 0.40 0.08 0.01  -0.02 0.54 0.00 0.55 -0.07 0.05
3 0.39 0.08 0.02  -0.01 0.51 0.06 0.47 0.14 -0.16
4 0.81 0.06 048 -0.00 0.48 0.50 0.45 0.00 0.01
5 0.64 -0.07 0.63  —-0.03 0.01 0.62 0.02  -0.08 0.05
6 0.72 0.01 0.72 0.05 0.01 0.74  -0.01 0.07  -0.02
7 0.69 -0.07 0.69 -0.02 0.01 0.71  —0.02 0.05  -0.09
8 0.71  -0.06 0.83 0.02 -0.14 081 -0.12 -0.07 0.08
9 0.04 0.57 0.04 058 -0.02 -0.02 0.05 0.13 0.54

10 0.08 0.54 0.12 0.58 -0.07 0.05 -0.02 0.04 0.67

11 —0.05 0.72 -0.17 0.69 013 -0.13 0.10 0.68 0.06
0.01 0.66 0.03 0.69 -0.06 -0.12 -0.12 0.69 0.06

—
\S)
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of item 4 makes sense from a theoretical perspective. Finally, an examination of the
four factor solution reveals that factor 1 corresponds to the Social construct along
with the cross-loaded item 4 and factor 2 corresponds to the Enhancement construct,
again considering the cross-loaded item. Factors 3 and 4 appear to be associated with
the Coping construct, which has been split between items 9 (Forget worries) and 10
(Helps when depressed) on factor 3 and items 11 (Cheer me up) and 12 (Improves
bad mood) on factor 4. Again, we must consider how this factor solution matches
with the theory underlying the scale.

Following is a brief summary of the analyses described above. In order to decide
on the final factor solution, we must consider all of the evidence described above.
As mentioned previously, in the final analysis the optimal solution is the one that is
theoretically most viable. Based upon the various statistical indices, it would appear
that a solution between 2 and 4 factors would be most appropriate. For this reason, we
used MLE extraction with PROMAX rotation and produced factor pattern matrices
for 2, 3, and 4 factors. An examination of these results would appear to suggest that
the 3 factor solution corresponds most closely to the theoretically derived constructs
of Enhancement, Social, and Coping reasons for drinking. It is important, however,
to note two caveats regarding such interpretation. First of all, item 4 (drinking
because it’s fun) cross-loads with two factors, which does not match the theory
underlying the scale. Therefore, further examination of this item is warranted in
order to determine why it might be cross-loading. Secondly, interpretation of the
factor loading matrices is inherently subjective. For this reason, the researcher must
be careful both in deciding on a final solution and on the weight which they place it.
In short, while the factor solution might seem very reasonable to the researcher, it
is always provisional in EFA, and must be further investigated using other samples
from the population and confirmatory factor analysis (Brown, 2006).

Factor Scores

One possibly useful artifact of EFA is the possibility of calculating factor scores,
which represent the level of the latent variable(s) for individuals in the sample.
These scores are somewhat controversial within the statistics community, and are
not universally well regarded (see Grice, 2001 and DiStefano, Zhu, & Mindrila,
2009, for excellent discussion of these issues). They are used in practice not
infrequently, however, so that the knowledgeable researcher should have a general
idea of how they are calculated and what they represent. There are multiple ways
in which factor scores can be estimated once a factor solution has been decided
upon. By far the most popular approach to estimating these scores is known as
the regression method. This technique involves first standardizing the observed
variables to the Normal (0,1) distribution; i.e. making them z scores. The factor
scores can then be calculated as

F=ZR"l (6)
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where F' is the vector of factor scores for the sample, Z is the set of standardized
observed variable values, R is the observed variable correlation matrix, and / is the
matrix of factor loadings. These factor scores are on the standard normal distribution
with a mean of 0.

Researchers can then make use of these factor scores in subsequent analyses, such
as regression or analysis of variance. However, as noted previously such practice is
not without some problems and is not always recommended. Among the issues that
must be considered when using such scores is the fact that the scores were obtained
using a single factor extraction technique. Given that no one extraction method
can be identified as optimal, and that the solutions might vary depending upon
the extraction method used, the resultant factor scores cannot be viewed as the
absolute best representation of the underlying construct for an individual or for a
sample. In short, these values are provisional and must be interpreted as such. This
indeterminacy of solutions means that another researcher using the same sample
but a different method of extraction could obtain different factor scores, and thus
a different result for the subsequent analyses. Neither of these outcomes could be
viewed as more appropriate than the other, leading to possible confusion in terms
of any substantive findings. A second concern with respect to the use of factor
scores obtained using EFA is whether the factor solutions are equivalent across
subgroups of individuals within the samples. Finch and French (2012) found that
when factor invariance does not hold (factor loading values differ across groups),
the resultant factor scores will not be accurate for all members of the sample,
leading to incorrect results for subsequent analyses such as analysis of variance.
With these caveats in mind, researchers should consider carefully whether derived
factor scores are appropriate for their research scenario. If they find multiple
extraction and rotation strategies result in very similar solutions, and they see no
evidence of factor noninvariance for major groups in the data, then factor scores
may be appropriate. However, if these conditions do not hold, they should consider
refraining from the use of factor scores, given the potential problems that may
arise.

Summary of EFA

EFA has proven to be a useful tool for researchers in a wide variety of disciplines. It
has been used to advance theoretical understanding of the latent processes underlying
observed behaviors, as well as to provide validity evidence for psychological and
educational measures. In addition, a closely allied procedure, PCA, is often employed
to reduce the dimensionality within a set of data and thereby make subsequent
analyses more tractable. Given its potential for providing useful information in such
a broad array of areas, and its ubiquity in the social sciences, it is important for
researchers to have a good understanding regarding its strengths and limitations, and
a sense for how it can best be used. It is hoped that this chapter has provided some
measure of understanding to the reader.
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In reality, EFA can be seen as a series of allied statistical procedures rather
than as a single analysis. Each one of these procedures requires the data analyst
to make decisions regarding the best course of action for their particular research
problem. Quite often it is not obvious which approach is best, necessitating the use
of several and subsequent comparison of the results. The first stage of analysis is
the initial extraction of factors. As described above, there are a number of potential
approaches that can be used at this step. Perhaps the most important decision at
this stage involves the selection of PCA or one of the other extraction techniques.
As noted, PCA focuses on extracting total variance in the observed variables while
EFA extracts only shared variance. While results of the two approaches obtained for
a set of variables may not differ dramatically in some cases, they are conceptually
very different and thus are most appropriate in specific situations. One guideline for
deciding on which approach to use is whether the goal of the study is understanding
what common latent variables might underlie a set of observed data, or simply
reducing the number of variables, perhaps for use in future analyses. In the first case,
an EFA approach to extraction (e.g. PAF, MLE) would be optimal, whereas in the
latter the researcher may elect to use PCA. Within the EFA methods of extraction, it
is more difficult to provide an absolute recommendation for practice, although trying
multiple approaches and comparing the results would be a reasonable strategy.

Once the initial factor solution is obtained, the researcher must then decide upon
the type of rotation that is most appropriate. Given that rotation is designed solely
to make the factor loadings conform more closely to simple structure and thus more
interpretable, multiple strategies may be employed and the one providing the most
theoretically reasonable answer retained. Of course, the first major decision in this
regard is whether to use an orthogonal or oblique rotation. In general practice,
I would recommend using an oblique approach first in order to obtain the factor
correlation matrix. If the factors appear to be correlated with one another, then the
Pattern matrix values can be used to determine how the variables grouped together
into factors. On the other hand, if the interfactor correlations are negligible, the
researcher could simply rerun the analysis using an orthogonal rotation and then
refer to the factor loading matrix. It should be noted that some research has shown
that quite often in practice the selection of rotation method will not drastically alter
the substantive results of the study; i.e. which observed variables load on which
factors (Finch, in press; Finch, 2006).

Typically, a researcher will investigate multiple factor solutions before deciding
on the optimal one. This decision should be based first and foremost on the theory
underlying the study itself. The best solution in some sense is the one that is most
defendable based upon what is known about the area of research. Thus, a key to
determining the number of factors (as well as the extraction/rotation strategy to use)
can be found in the factor loading table. In conjunction with these loadings, there
are a number of other statistical tools available to help identify the optimal factor
solution. Several of the most popular of these were described previously. A key issue
to keep in mind when using these is that no one of them can be seen as universally
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optimal. Rather, the researcher should make use of many, if not most of them, in
order to develop some consensus regarding the likely best number of factors. The
extent to which these agree with one another, and with the substantive judgments
made based on the factor loadings matrix, will dictate the level of confidence with
which the researcher can draw conclusions regarding the latent variable structure.

EFA is somewhat unusual among statistical procedures in that frequently there
is not a single, optimal solution that all data analysts can agree upon. When one
uses multiple regression and the assumptions underlying the procedure are met, all
can agree that the resulting slope and intercept estimates are, statistically speaking
at least, optimal. Such is not the case with EFA. Two equally knowledgeable and
technically savvy researchers can take the same set of data and come up with two
very different final answers to the question of how many latent variables there are
for a set of observed variables. Most importantly, there will not be a statistical way
in which one can be proven “better” than the other. The primary point of comparison
will be on the theoretical soundness of their conclusions, with the statistical tools
for identifying the optimal number of factors playing a secondary role. Quite often
this lack of finality in the results makes researchers who are used to more definite
statistical answers somewhat uncomfortable. However, this degree of relativity
in EFA solutions also allows the content area expert the opportunity to evaluate
theories in a much more open environment. Indeed, some very interesting work at
the intersection of EFA and theory generation has been done recently, showing great
promise for this use of the technique (Haig, 2005). It is hoped that this chapter will
help the applied researcher needing to use EFA with some confidence in the basic
steps of the methodology and the issues to consider.
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9. A BRIEF INTRODUCTION TO HIERARCHICAL
LINEAR MODELING

INTRODUCTION

Hierarchical linear modeling (HLM; also referred to as multilevel modeling or MLM)
is becoming more common throughout all areas of the social sciences because of its
flexibility and unique advantages not present in more traditional techniques (Osborne,
2000). Our goal in this chapter is to briefly introduce the reader to the important
concepts related to HLM, particularly the advantages of HLM over more traditional
techniques like regression on aggregated or disaggregated data, repeated measures
ANOVA, etc. We will also give some examples of how it can be used in educational
research and the broader field of social science, and will give the reader an example
of a simple, but powerful type of analysis: growth curve analysis. Further, we will
demonstrate the same example within two popular software packages for performing
HLM: HLM (SSI; http://www.ssicentral.com/hlm/) and SAS (www.sas.com).

One of the reasons HLM is becoming so common within social sciences research
is the thorny problem of hierarchical or nested data structures, and the fact that most
researchers do not appropriately deal with this issue unless they are using HLM.

WHAT IS A HIERARCHICAL DATA STRUCTURE?

People (and most living creatures, for that matter) tend to exist within organizational
structures, such as families, schools, business organizations, churches, towns, states,
and countries. In education, students exist within a hierarchical social structure that
can include family, peer group, classroom, grade level, school, school district, state,
and country. Workers exist within production or skill units, businesses, and sectors
of the economy, as well as geographic regions. Health care workers and patients
exist within households and families, medical practices and facilities (a doctor’s
practice, or hospital, e.g.), counties, states, and countries. Many other communities
exhibit hierarchical data structures as well.

Raudenbush and Bryk (2002) also discuss two other types of data hierarchies that
are less obvious but equally important and well-served by HLM: repeated-measures
data and meta-analytic data. In this case, we can think of repeated measures as data
that are nested or clustered within individuals, and meta-analytic data similarly
involves clusters of data or subjects nested within studies.

T. Teo (Ed.), Handbook of Quantitative Methods for Educational Research, 187—198.
© 2013 Sense Publishers. All rights reserved.
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Once one begins looking for hierarchies in data, it becomes obvious that data
repeatedly gathered on an individual are hierarchical, as all the observations are
nested within individuals. While there are ways of adequately dealing with nested
and partially nested data in ANOVA paradigms that have existed for decades, they
are often not easily or effectively used. Further, the assumptions relating to them
are challenging, whereas procedures relating to hierarchical modeling require fewer
assumptions that are easily met.

WHY IS A HIERARCHICAL OR NESTED DATA AN ISSUE?

Hierarchical, or nested, data present several problems for analysis. First, people or
creatures that exist within hierarchies tend to be more similar to each other than
people randomly sampled from the entire population. For example, students in a
particular third-grade classroom are more similar to each other than to students
randomly sampled from the school district as a whole, or from the national
population of third-graders. This is because in many countries, students are not
randomly assigned to classrooms from the population, but rather are assigned to
schools based on geographic factors or other characteristics (e.g., aptitude). When
assigned based on geography, students within a particular classroom tend to come
from a community or community segment that is more homogeneous in terms of
morals and values, family background, socio-economic status, race or ethnicity,
religion, and even educational preparation than a similar-sized sample randomly
sampled from the entire population as a whole. When assigned based on similarity
in other characteristics, students are obviously more homogenous than a random
sample of the entire population. Further, regardless of similarity or dissimilarity of
background, students within a particular classroom share the experience of being in
the same environment—the same teacher, physical environment, curriculum, and
similar experiences, which may increase homogeneity over time.

The Problem of Independence of Observations

This discussion could be applied to any level of nesting, such as the family, the school
district, county, state, or even country. Based on this discussion, we can assert that
individuals who are drawn from a group, such as a classroom, school, business,
town or city, or health care unit, will be more homogeneous than if individuals were
randomly sampled from a larger population. This is often referred to as a design effect.

Because these individuals tend to share certain characteristics (environmental,
background, experiential, demographic, or otherwise), observations based on
these individuals are not fully independent, yet most statistical techniques require
independence of observations as a primary assumption for the analysis. Because this
assumption is violated in the presence of hierarchical or nested data, ordinary least
squares regression (and ANOVA, and most other parametric statistical procedures)
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produces standard errors that are too small (unless these so-called design effects are
incorporated into the analysis). In turn, this leads to an inappropriately increased
probability of rejection of a null hypothesis than if: (a) an appropriate statistical
analysis was performed, or (b) the data included truly independent observations.

The Problem of How to Deal with Cross-Level Data

It is often the case in educational research that a researcher is interested in
understanding how environmental variables (e.g., teaching style, teacher behaviors,
class size, class composition, district policies or funding, or even state or national
variables, etc.) affect individual outcomes (e.g., achievement, attitudes, retention,
etc.). But given that outcomes are gathered at the individual level, and other variables
at classroom, school, district, state, or nation level, the question arises as to what the
unit of analysis should be, and how to deal with the cross-level nature of the data.

One strategy (called dis-aggregation) would be to assign classroom or teacher
(or other group-level) characteristics to all students (i.e., to bring the higher-level
variables down to the student level). The problem with this approach, is all students
within a particular classroom assume identical scores on a variable, clearly violating
assumptions of independence of observation.

Another way to deal with this issue (called aggregation) would be to aggregate
up to the level of the classroom, school, district, etc. Thus, we could talk about the
effect of teacher or classroom characteristics on average classroom achievement.
However, there are several issues with this approach, including: (a) that much (up to
80-90%) of the individual variability on the outcome variable is lost, which can lead
to dramatic under- or over-estimation of observed relationships between variables
(Raudenbush & Bryk, 2002), and (b) the outcome variable changes significantly
and substantively from individual achievement to average classroom achievement.

Neither of these strategies constitute a best practice, although they have been
commonly found in educational research. Neither of these strategies allow the
researcher to ask truly important questions—such as what is the effect of a
particular teacher variable on student learning? A third approach, that of HLM,
becomes necessary in this age of educational accountability and more sophisticated
hypotheses.

HOW DO HIERARCHICAL MODELS WORK? A BRIEF PRIMER

The goal of this paper is to introduce the concept of hierarchical modeling, and
explicate the need for the procedure. It cannot fully communicate the nuances
and procedures needed to actually perform a hierarchical analysis. The reader is
encouraged to refer to Raudenbush and Bryk (2002) and the other suggested readings
for a full explanation of the conceptual and methodological details of hierarchical
linear modeling.
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The basic concept behind hierarchical linear modeling is similar to that of OLS
regression. On the base level (usually the individual level, or the level where
repeated measures are taken within a particular individual, referred to here as level 1,
the lowest level of your data), the analysis is similar to that of OLS regression: an
outcome variable is predicted as a function of a linear combination of one or more
level 1 variables, plus an intercept, as so:

Y=bytBX B X Ty

where 'Bo,- represents the intercept of group j, ﬁ]j represents the slope of variable X, of
group j, and r,represents the residual for individual 7 within group j. On subsequent
levels, the level 1 slope(s) and intercept become dependent variables being predicted
from level 2 variables:

ﬂo,': Yoo T Vo1 W1 Tt yOka + u,
ﬂlj:y10+y11 W1 T +y1ka+ u,

and so forth, where y, and y,  are intercepts, and y, and y,, represent slopes predicting
B,; and B, respectively from variable I¥,. Through this process, we accurately model
the effects of level 1 variables on the outcome, and the effects of level 2 variables on
the outcome. In addition, as we are predicting slopes as well as intercepts (means),
we can model cross-level interactions, whereby we can attempt to understand what
explains differences in the relationship between level 1 variables and the outcome.
Those of you more mathematically inclined will also note that several different error
terms (i.e., 7 and u terms) are computed in this process, rather than just a simple
residual present in OLS regression.

The advantages of HLM over aggregation and disaggregation have been explored
in many places, including Osborne (2000; 2008). In brief, failing to appropriately
model multilevel data can lead to under-estimation of standard errors, substantial
mis-estimation of effects and variance accounted for, and errors of inference.

ADVANCED TOPICS IN HLM

As many authors have discovered in the years since HLM became available, there are
many applications for these analyses. Generalizations to 3- and 4- level models are
available, as are logistic regression analogues (e.g., HLM with binary or polytomous
outcomes), applications for meta-analysis, powerful advantages for longitudinal
analysis (as compared to other methods such as repeated measures ANOVA), and
many of the fun aspects of OLS regression (such as modeling curvilinear effects) is
possible in HLM as well.

There is little downside to HLM, aside from the learning curve. If one were to use
HLM on data where no nesting, dependence, or other issues were present, one would
get virtually identical results to OLS regression from statistical software packages
such as SPSS or SAS or R.
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The rest of this chapter is devoted to two simple examples that represent common
questions within educational (and many areas of social science) research: (a) how
do individual- and school-level variables affect student achievement, and (b) can
we understand growth or change in an individual as a function of individual or
environmental traits?

MODELING VARIABLES AT DIFFERENT LEVELS

Our first example is an application of HLM to use variables from different levels. In
this case, we have two variables at the student level (family socio-economic status
and student locus of control) and two school-level variables (percent of students
who meet a particular definition of economic need in the USA (receiving free lunch
in school) and percentage of students who belong to disadvantaged racial minority
groups) predicting student achievement test scores.

AN EMPIRICAL COMPARISON OF THE THREE APPROACHES
TO ANALYZING HIERARCHICAL DATA

In this section we illustrate the outcomes achieved by each of the three possible
analytic strategies for dealing with hierarchical data:

» disaggregation (bringing school level data down to the individual level),

e aggregation (bringing individual level data in summarized fashion up to the
school level), and

* hierarchical linear modeling (appropriately modeling variables at the level they
were gathered).

Data for this example were drawn from the National Education Longitudinal Survey
of 1988 (http://nces.ed.gov/surveys/nels88/), a nationally- representative sample
of approximately 28,000 eighth graders in the United States. The analysis we
performed predicted composite achievement test scores (math, reading combined)
from student socioeconomic status (family SES), student locus of control (LOCUYS),
the percent of students in the school who are members of racial or ethnic minority
groups (%MINORITY), and the percent of students in a school who receive free
lunch (%LUNCH, an indicator of school poverty). We expect SES and LOCUS to
be positively related to achievement, and %MINORITY and %LUNCH are expected
to be negatively related to achievement. In these analyses, 995 of a possible 1004
schools had sufficient data to be included.

Disaggregated analysis. In order to perform the disaggregated analysis, the
level 2 values were assigned to all individual students within a particular school.
A standard multiple regression was performed via SPSS entering all predictor
variables simultaneously. The resulting model was significant, with R =.56,
R*= 32, F (4,22899) = 2648.54, p < .0001. The individual regression weights and
significance tests are presented in Table 1.
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Table 1. Comparison of three analytic strategies

Disaggregated Aggregated Hierarchical
Variable B SE t B SE t B SE t
SES 4.97 .08  62.11%** 728 26 27.91*%** 407 .10 41.209%**
LOCUS 296, .08  37.71%*F* 497 49 1022%** 282 .08 35.74%%*
%MINORITY -0.45 .03 —15.53*** —0.40_ .06 —8.76*** —0.59 .07 —8.73%**
%LUNCH -043 .03 -13.50*** 0.03, .05 0.59 —-1.32, .07 —19.17%**

Note: B refers to an unstandardized regression coefficient, and is used for the HLM analysis
to represent the unstandardized regression coefficients produced therein, even though these
are commonly labeled as betas and gammas. SE refers to standard error. Bs with different
subscripts were found to be significantly different from other Bs within the row at p < .05.
*EEp <.0001.

All four variables were significant predictors of student achievement. As expected,
SES and LOCUS were positively related to achievement, while %MINORITY and
%LUNCH were negatively related.

Aggregated Analysis

In order to perform the aggregated analysis, all level 1 variables (achievement,
LOCUS, SES) were aggregated up to the school level (level 2) using school-based
means. A standard multiple regression was performed via SPSS entering all predictor
variables simultaneously. The resulting model was significant, with R = .87,
R*=.75, F (4,999) =746.41, p <.0001. Again as expected, both average SES and
average LOCUS were positively related to achievement, and %MINORITY was
negatively related. In this analysis, %LUNCH was not a significant predictor of
average achievement.

HLM Analysis

Finally, a hierarchical linear analysis was performed via HLM, in which the respective
level 1 and level 2 variables were modeled appropriately. Note also that all level 1
predictors were centered at the group mean, and all level 2 predictors were centered
at the grand mean. The resulting model demonstrated goodness of fit (Chi-square
for change in model fit = 4231.39, 5 df, p <.0001). As seen in Table 1, this analysis
reveals expected relationships— positive relationships between achievement and the
level 1 predictors (SES and LOCUS), and strong negative relationships between
achievement and the level 2 predictors (Y%MINORITY and %LUNCH). Further, the
analysis revealed significant interactions between SES and both level 2 predictors,
indicating that the slope for SES gets weaker as %LUNCH and as %MINORITY
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increases. Also, there was an interaction between LOCUS and %MINORITY,
indicating that as %MINORITY increases, the slope for LOCUS weakens. There is
no clearly equivalent analogue to R and R? available in HLM.

COMPARISON OF THE THREE ANALYTIC STRATEGIES AND CONCLUSIONS

We assume that the third analysis represents the best estimate of what the “true”
relationships are between the predictors and the outcome. Unstandardized regression
coefficients (b in OLS, f and y in HLM) were compared statistically via procedures
outlined in Cohen and Cohen (1983).

Neither of the first two analyses appropriately modeled the relationships of
the variables. The disaggregated analysis significantly overestimated the effect of
SES, and significantly and substantially underestimated the effects of the level 2
effects. The standard errors in this analysis are generally lower than they should
be, particularly for the level 2 variables (a common issue when assumptions of
independence are violated).

The second analysis overestimated the multiple correlation by more than 100%,
overestimated the regression slope for SES by 79% and for LOCUS by 76%, and
underestimated the slopes for %sMINORITY by 32% and for %LUNCH by 98%.

These analyses reveal the need for multilevel analysis of multilevel data. Neither
OLS analysis accurately modeled the true relationships between the outcome and
the predictors. Additionally, HLM analyses provide other benefits, such as easy
modeling of cross-level interactions, which allows for more interesting questions
to be asked of the data. For example, in this final analysis we could examine how
family and school poverty interact, something not possible unless the multilevel data
are modeled correctly.

MODELING LONGITUDINAL CHANGE OVER TIME

Our example attempts to explain changes in individual mood (or affect) over time
as a function of individual traits such as neuroticism. Neuroticism, and the constant
elevated levels of negative affect that accompany the trait over years or decades,
can lead to a negative emotion “hair trigger” (Kendler, Thornton, & Gardner, 2001;
Wilson, Bienas, Mendes de Leon, Evans, & Bennett, 2003). This process suggests that
with the passage of time, people high in neuroticism may become more susceptible
to elevated negative affect. Because neuroticism is associated with more variability
in behavior and experience (Eid & Diener, 1999; Eysenck & Eysenck, 1985;
Moskowitz & Zuroff, 2004; Neupert, Mroczek, & Spiro, 2008), we use the current
example to examine whether individual differences in neuroticism are associated
with differential trajectories of negative affect over time. Before we get into the
example, however, we should stop and discuss the challenges of working with
longitudinal data. First, it is often the case that longitudinal studies have difficulty
measuring all individuals at exactly the same time, or within identical time intervals,
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yet that is an assumption of RMANOVA. Next, assumptions of RMANOVA are
rarely met in practice, potentially seriously compromising the validity of the results.
Finally, missing data can severely cripple a RMANOVA analysis, and missing
data are rarely handled appropriately (for more on missing data, see (Osborne,
2012, Chapter 6). However, HLM has none of these drawbacks. So long as any
individual has one or more data points, they can be included in a repeated measures
HLM analysis. Furthermore, unequal time intervals between measurements can
be explicitly modeled to remove as much potential for error variance as possible.
Growth curves are easily modeled as in OLS regression (i.e., using quadratic and
cubic terms to model curvilinearity), and the estimation procedures in HLM tend
to produce smaller standard errors, all of which make HLM a best practice for
longitudinal data analysis.

Data for the example are from the National Study of Daily Experiences (NSDE)
and are publicly available (www.icpsr.umich.edu). Respondents were 1031 adults
(562 women, 469 men), all of whom had previously participated in the Midlife in the
United States Survey MIDUS), a nationally representative telephone-mail survey
of 3032 people, aged 25-74 years, carried out in 1995-1996 under the auspices of
the MacArthur Foundation Research Network on Successful Midlife Development
(for descriptions of the MIDUS project, see Brim, Ryff, & Kessler, 2004; Keyes
& Ryft, 1998; Lachman & Weaver, 1998; Mroczek & Kolarz, 1998). Respondents
in the NSDE were randomly selected from the MIDUS sample and received $20
for their participation in the project. Over eight consecutive evenings, respondents
completed short telephone interviews about their daily experiences. Data collection
was planned to span an entire year (March 1996 to March 1997), so 40 separate
“flights” of interviews with each flight representing the eight-day sequence of
interviews from approximately 38 respondents were used. The initiation of flights
was staggered across the day of the week to control for the possible confounding
between day of the study and day of week. Of the 1242 MIDUS respondents we
attempted to contact, 1031 agreed to participate, yielding a response rate of 83%.
Respondents completed an average of 7 of the 8 interviews resulting in a total of
7229 daily interviews.

The equations below were used to examine change in negative mood over time
as a function of individual differences in neuroticism. In this example, individual
variability is represented by a two-level hierarchical model where level 1 reflects the
daily diary information nested within the person-level information at level 2.

Level 1: MOOD,, =g, + B, (DAY) +r, (D
Level 2: B, =v,, + v,(NEUROT) + u, 2)
B,=7,+71,,(NEUROT) +u,, 3)
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Following the guidelines by Raudenbush and Bryk (2002), the lettered subscripts
in the equations depict the nesting structure. Days/timepoints are represented by
t (level 1) and individuals are represented by i (level 2).

In Equation 1, the intercept (f,,) is defined as the expected level of negative mood
for person i on the first day of the study (i.e., DAY = 0) because the variable was
uncentered. Although it would have been possible to person-mean or grand-mean
center DAY, we chose to leave this variable uncentered so that the interpretation of
the intercept would be associated with a particular timepoint (i.e., first day of the
study). The change slope, f, , is the expected change in negative mood associated
with time. The error term (r,) represents a unique effect associated with person
i (i.e., individual fluctuation around their own mean). The level 1 intercept and slope
become the outcome variables in the level 2 equations. Equation 2 includes a main
effect of neuroticism and therefore tests to see if neuroticism is related to the average
level of psychological distress (y,,). The intercept (y,,) represents the average level
of negative mood for someone with average neuroticism scores because neuroticism
was centered at the grand mean (CNEUORT [centered neuroticism] = 0). We chose
to grand-mean center neuroticism to maintain an interpretable value of the intercept
and to reduce nonessential multicollinearity for the cross-level interaction. Equation
3 provides the estimate (y,,) representing change for the sample: the average
relationship between day and negative mood. A cross-level interaction is represented
by y,, and tests whether there were neuroticism differences (Level 2) in change in
negative mood over time (Level 1 relationship). Interindividual fluctuations from
the average level and slope are represented by u, and u, respectively.

We chose to present this example using SAS PROC MIXED (1997) because many
people like the ability to reduce, manage, and analyze in a single software package.
Detailed descriptions of the commands are described elsewhere (e.g., Neupert, in
press; Singer, 1998), so we focus on the main components here. Figure 1 represents the
commands that were used to test Equations 1-3. DAY (Level 1), CNEUROT (Level
2 grand-mean centered neuroticism), and DAY*CNEUROT (cross-level interaction)
are included as predictors in the MODEL statement. The /SUBJECT = command
specifies the nesting structure and alerts SAS that DAY is a level | variable and
CNEUROT is a level 2 variable. The MODEL statement provides y,, (CNEUROT)

proc mixed data=merged noclprint covtest;

title ‘neuroticism differences in change of daily negative affect over time’;
class caseid;

model mood= day cneurot day*cneurot

/solution ddfm=bw;

random intercept day /subject=caseid type = un;

run;

Figure 1. SAS commands.
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Standard Z
Cov Parm Subject Estimate Error Value Pr Z
UN(1,1) CASEID 12.8791 0.7394 17.42 <.0001
UN(2,1) CASEID -1.1138 0.09028 -12.34 <.0001
UN(2,2) CASEID 0.1539 0.01345 11.44 <.0001
Residual 5.0161 0.09936 50.49 <.0001
Solution for Fixed Effects
Standard
Effect Estimate Error DF t Value Pr > |t]
Intercept 2.7587 0.1265 1017 21.81 <.0001
DAY -0.2153 0.01695 6133 -12.70 <.0001
cneurot 2.2995 0.1903 1017 12.09 <.0001
DAY*cneurot -0.1393 0.02551 6133 -5.46 <.0001

Figure 2. SAS output for random effects (covariance parameter estimates) and fixed

effects (solution for fixed effects).

from Equation 2 as well as the default y, (intercept) from Equation 2. Estimates
from Equation 3 are y, , (DAY) and y,, (DAY*CNEUROT). Adding a variable name
to the RANDOM statement allows the slope between the specified variable and the
dependent variable to vary across level 2 units. Therefore, only level 1 variables
can be added to the RANDOM statement. In this example, DAY was added to the
RANDOM statement to allow the change in negative mood over time to vary across
people. Note that this corresponds to u,, in Equation 3. If DAY was not added to the
RANDOM statement, the change (5,) slope would be constrained to be equal across
all level 2 units (people). An option has been added that specifies the structure of the
variance-covariance matrix for the intercepts and slopes.

Figure 2 displays the SAS output for the fixed and random effects. The four rows
for Covariance Parameter Estimates correspond to the four random effects. The first
row (UN 1,1) corresponds to z,,, reflecting the remaining level 2 variance in the level
of MOOD after accounting for CNEUROT. The second row (UN 2,1) corresponds
to 7, reflecting the covariance between the intercept and slope. The third row (UN
2,2) corresponds to 7, reflecting the variance around the slope between DAY and
MOOD. The fourth row (Residual) corresponds to ¢ and reflects the remaining level
1 variance in MOOD after accounting for DAY. Note that all four of the random
effects are significant. This indicates that there is still significant variance left to
explain at level 1 (¢°) and level 2 (z,) and it also shows that there is a significant
relationship between the intercept of MOOD and the relationship between DAY and
MOOD (significant covariance: 7,,). Lastly, the significant z , indicates that there is
variance across people in the relationship between DAY and MOOD,; that is, not all
people change the same way with respect to their mood.

The Solution for Fixed Effects provides the output for the four gamma coefficients
(represented in Equations 2 and 3). The Intercept corresponds to y,, and indicates that
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the average level of negative mood on the first day of the study for someone with
average neuroticism was 2.76. The next row corresponds to y, and indicates that there
is a significant and negative relationship between day and mood. For each additional
day that someone stays in the study, their negative mood decreases by 0.2153 units.
Notice that the number of degrees of freedom for this relationship is 6133, reflecting
the fact that DAY is a level 1 variable and is based on the number of days rather than
the number of people in the sample (i.e., df for the Intercept and CNEUROT effects
are based on the number of people). The third row corresponds to y,, and indicates
that there are significant neuroticism differences in the level of negative mood. Not
surprisingly, people with higher levels of neuroticism report more negative mood
compared to people with lower levels of neuroticism. The final row represents y  and
indicates that changes in negative mood over time depend on individual differences
in neuroticism. Decomposing this interaction reveals that people high in neuroticism
(Mean + 1SD) decreased their negative mood at a faster rate compared to people
low in neuroticism (Mean — 1SD). Given the large individual differences in negative
mood as a function of neuroticism, this pattern may reflect a kind of floor effect for
those with low neuroticism who started at lower levels of distress.

CONCLUSION

In this chapter we highlighted important concepts related to HLM, particularly the
advantages of HLM over more traditional techniques like regression on aggregated
or disaggregated data, repeated measures ANOVA, etc. We demonstrated how it can
be used in educational research and the broader field of social science, and provided
an example of a growth curve analysis. HLM is widely regarded as a best practice and
readers are strongly urged to consider using it because it addresses interesting questions.

REFERENCES

Brim, O. G., Ryft, C. D., & Kessler, R. C. (2004). How healthy are we? A national study of well-being at
midlife. Chicago: University of Chicago Press.

Eid, M., & Diener, E. (1999). Intraindividual variability in affect: Reliability, validity, and personality
correlates. Journal of Personality and Social Psychology, 76, 662-676.

Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences: A natural science
approach. New York: Plenum.

Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2001). Genetic risk, number of previous depressive
episodes, and stressful life events in predicting onset of major depression. American Journal of
Psychiatry, 158, 582-586.

Keyes, C. L. M., & Ryff, C. D. (1998). Generativity in adult lives: Social structural contours and
quality of life consequences. In D. P. McAdams, & E. de St. Aubin (Eds.), Generativity and adult
development: How and why we care for the next generation (pp. 227-263). Washington, DC:
American Psychological Association.

Lachman, M. E., & Weaver, S. L. (1998). Sociodemographic variations in the sense of control by domain:
Findings from the MacArthur studies on midlife. Psychology and Aging, 13, 553-562.

Moskowitz, D. S., & Zuroft, D. C. (2004). Flux, pulse, and spin: Dynamic additions to the personality
lexicon. Journal of Personality and Social Psychology, 86, 880-893.

197



J. W. OSBORNE & S. D. NEUPERT

Mroczek, D. K., & Kolarz, C. M. (1998). The effect of age on positive and negative affect: A developmental
perspective on happiness. Journal of Personality and Social Psychology, 75, 1333-1349.

Neupert, S. D. (in press). Emotional reactivity to daily stressors using a random coefficients model with
SAS PROC MIXED: A Repeated Measures Analysis. In G. D. Garson (Ed.), Hierarchical linear
modeling handbook. Thousand Oaks, CA: Sage.

Neupert, S. D., Mroczek, D. K., & Spiro, A. I1I. (2008). Neuroticism moderates the daily relation between
stressors and memory failures. Psychology and Aging, 23, 287-296.

Osborne, J. W. (2000). Advantages of hierarchical linear modeling. Practical Assessment, Research &
Evaluation, 7(1).

Osborne, J. W. (2008). Best practices in quantitative methods. Thousand Oaks, CA: Sage Publishing.

Osborne, J. W. (2012). Best practices in data cleaning. Thousand Oaks, CA: Sage.

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis
methods. (Vol. 1). thousand oaks, CA: Sage Publications.

SAS Institute (1997). SAS/STAT software: Changes and enhancements through Release 6.12. Cary, NC:
SAS Institute.

Singer, J. D. (1998). Using SAS Proc Mixed to fit multilevel models, hierarchical models, and individual
growth models. Journal of Educational and Behavioral Statistics, 24, 323-355.

Wilson, R. S., Bienas, J. L., Mendes de Leon, C. F., Evans, D. A., & Bennett, D. A. (2003). Negative affect
and mortality in older persons. American Journal of Epidemiology, 158, 827-835.

198



D. BETSY MCCOACH, JOHN P. MADURA, KAREN E. RAMBO-
HERNANDEZ, ANN A. O°’CONNELL & MEGAN E. WELSH

10. LONGITUDINAL DATA ANALYSIS

INTRODUCTION TO LONGITUDINAL DATA ANALYSIS

Longitudinal data analysis is a very broad, general term for the analysis of data
that are collected on the same units across time. Longitudinal data are sometimes
referred to as repeated measures data or panel data (Hsiao, 2003; Frees, 2004).
A variety of statistical models exist for analyzing longitudinal data. These models
include autoregressive or Markov chain models, latent transition models, individual
growth curve models, and growth mixture models, just to name a few. To determine
the correct model for the analysis of longitudinal data, first the researcher must
have a substantive theory about whether and how the data should change over time
and what the relationships are among the observations across time. For example,
imagine that a researcher collects mood data on adults every day for three months.
These data are longitudinal. Although the researcher would expect to see day to day
changes in mood, he or she would probably not expect to see any “growth” in mood
across time. Is mood on any given time predicted by a person’s overall mean mood
and some amount of random daily fluctuation or error? Is today’s mood related to
yesterday’s mood? Is the relationship between mood on day one and mood on day 3
completely mediated by mood on day 2? If so, then the analysis of such data requires
a model that allows for a correlation between adjacent time points, but does not
require a model that allows for growth over time. One model common longitudinal
model that allow for correlations across time are called autoregressive models or
Markov chain models, and are quite common in the structural equation modeling
literature (Bast & Reitsma 1997; Curran 2000; Kenny & Campbell 1989; Marsh
1993). In autoregressive models, “a variable is expressed as an additive function
of its immediately preceding value plus a random disturbance” (Bollen & Curran,
2006, p. 208). For more information about models of this type, the interested reader
should consult (Bollen & Curran, 2004).

It is impossible to do justice to all potential longitudinal models within one chapter.
Thus, in this chapter, we will focus on one specific type of longitudinal model
that has become quite popular in the research literature over the past decade: the
individual growth model. We will present this model within a multilevel framework.
Our choice to focus on individual growth models stems from their popularity and
their applicability to a large range of research questions and problems that involve
the estimation of systematic growth or decline over time. We choose the multilevel

T. Teo (Ed.), Handbook of Quantitative Methods for Educational Research, 199-230.
© 2013 Sense Publishers. All rights reserved.



D. B. MCCOACH ET AL.

framework, given that multilevel growth models seamlessly handle unbalanced data.
Data are balanced if all units are measured on the same data collection schedule
(i.e., at the same time points). Data are considered unbalanced if data are collected
on different schedules or at different time points (Skrondal & Rabe-Hesketh, 2008).
In our experience, multilevel growth models accommodate a wide range of data
structures and handle a wide range of data analytic problems. Further, the framework
can be easily modified to include other types of models (e.g. random intercept
models or growth models with more complex error covariance structures), adding
to the flexibility of the approach. However, we caution the reader not to treat the
hammer that we present in this chapter as the only tool to deal with longitudinal data.

Introduction to Models of Individual Growth within a Multilevel Framework

Anytime we ask questions about growth or decline in some area, we are implicitly
asking questions that involve the measurement of systematic change over time.
Such questions might include: How do students’ reading skills develop between
kindergarten and fifth grade? Is this growth steady or does the rate of growth change
over time? What is the shape of this growth trajectory? Do different people tend to
change in the same way over time? Or is there a great deal of variability between
people in terms of their rate of change over time? Finally, we often want to understand
what factors help to predict the rate at which change occurs, or which variables allow
us to understand inter-individual differences in the rate of change. In this chapter, we
briefly introduce readers to the estimation of individual growth curve models using
multilevel modeling. Fuller and more technical treatments of this topic appear in
Raudenbush and Bryk (2002), Singer and Willet (2003).

Why Do We Need Growth Curve Modeling?

Before we embark on our journey into individual growth curve modeling, it is
important to understand the inadequacies inherent in using two wave studies to
measure change. The simplest type of change is a difference score, which attempts
to model the difference between post-test and pre-test achievement as a function of
the presence of a treatment or some other educational variable. Although simple to
calculate, there are inherent difficulties in using difference scores to examine student
growth (Cronbach & Furby, 1970).

First, measurement error in pre-test or post-test scores reduces the precision of the
estimate of the treatment effect (Rogosa, Brandt, & Zimowski, 1982; Raudenbush,
2001). When measurement error is intertwined with the pre-test or post-test scores (or
both), then “true” change and measurement error become confounded, thus the observed
change between two scores may either overestimate or underestimate the degree of
“true” change. For example, a student’s pre-test score could be too high and their post-
test score could be too low because of measurement error, leading to an erroneous
conclusion that the treatment had little or no effect when, in reality, measurement error
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is masking the true effect. Multiple data points are needed to extricate the confounded
nature of the measurement error and true change (Singer & Willett, 2003). In addition,
with only two time points, all change must be linear (and perfectly so). Thus, there is
no way to examine the shape of the change trajectory across time.

Rogosa et al. (1982) recommend that “when used wisely, multiwave data will
yield far better determinations of individual change than two wave data” (p. 745).
The conceptualization of growth as how individuals change across time and interest
in modeling the variables that predict change between as well as change within
people allows for a much fuller picture of change; however, such models require the
use of longitudinal data (Singer & Willett, 2003). Therefore, analyses of growth or
change require data collected across at least three time points.

Multivariate Repeated Measures

Another common way to examine change is to use multivariate repeated measures
(MRM) designs, of which the most common analysis is repeated measures analysis
of variance (RANOVA). Although MRM allow for several waves of data collection,
there are several restrictions that traditional MRM place on the measurement
of change. One problematic restriction of MRM is the requirement of a fixed
time-series design. The distance between time points must be consistent across
all persons, and the data collection must occur at the same time for all persons
(Raudenbush & Bryk, 2002). If any student is missing data at any time point during
the data collection schedule, that student is typically deleted from the analyses and
all information provided by that student is lost (Raudenbush & Bryk, 2002). This
has two adverse consequences. First, it decreases statistical power and lowers the
precision of the estimates of growth. Second, it introduces a selection bias issue
into the data analysis. Therefore, by eliminating these people from the analysis, we
are likely to introduce bias into our estimates of growth. Luckily, using multilevel
growth models, researchers can retain units even when observations from some time
points are missing, and they can fit growth models to time unstructured data.

What Do We Need to Measure Change Using Multilevel Growth Models?

To study change, we need data collected from the same units across multiple time
points. As alluded to earlier, using growth modeling techniques also requires
collecting at least three waves of data. However, growth curve models with only
three time points only allow for the estimation of linear growth trajectories. The
estimation of curvilinear growth trajectories (as shown in Figure 1) requires data
collected across 4 or more time points. With larger numbers of time points, it is
possible to fit increasingly complex growth functions, which can be very informative
if we want to understand how units change over time. When designing longitudinal
studies, it is important to consider both the number and the spacing of data collection
points to accurately capture change across time. When data points are too infrequent,
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or when there are too few data points, it may not be possible to accurately model the
functional form of the change.

In addition to collecting data on the same units over at least three waves, growth
curve modeling requires two more conditions. First, there must be an accurate
measure of time. If scores are collected across three time points, we need to know
how much time elapsed between time point one and time point two and how much
time elapsed between time point two and time point three. Conceptually, time
represents the x-axis in a growth curve model (see Figure 1), and the score on the
outcome variable is plotted on the y-axis. We need to know the distance between
testing occasions so that we can plot the dependent variable or the “y” score, on the
correct location of the x-axis to correctly model the functional form of the growth.
Several measures of time are equally reasonable, e.g., a person’s age in months at
each measurement occasion or the amount of time (weeks/months/years) that has
elapsed between measurement occasions (McCoach et al., 2012).

The second requirement is that the assessment score must be psychometrically
sound (e.g., scores are valid and reliable) and must be comparable over time
(Singer & Willett, 2003). The measurement scale must also remain consistent across
administrations so that a unit that has not changed across time would receive the
same score at each measurement occasion. This requirement is met when either the
same assessment is used at multiple time points or when the assessments have had
their scores placed onto the same metric through a process called vertical scaling
(Singer & Willett, 2003).

If assessments have had their scores placed on the same scale so that we can
directly compare scores over time, they are said to be vertically scaled. Because
vertically scaled assessments yield comparable scores, they are useful for modeling
growth across time for constructs such as achievement that cannot be measured
using the same assessment across multiple time points. Think of the vertical
scaling procedure as placing the results of multiple years of data on the same equal
interval “ruler” so that growth may be measured in the same metric. Height in
inches yields an equivalent metric across time; a height of 5 feet references the
same amount of height regardless of who is measured or the age at which they are
measured. In the absence of vertical scaling, the difference between the two scores
does not measure growth in any meaningful way because the two scores are on
two different, unlinked scales. For example, if a teacher gives a 25 word spelling
test every week, and the words on the spelling test differ from week to week, there
is no way to determine the amount of growth that a student has made in spelling
throughout the year by plotting the spelling test scores across time. Because many
academic tests are scaled within specific content area but are not designed to place
scores along the same metric across time points, comparing students’ scores across
time cannot provide information on student growth. In addition to having a scale
that provides a common metric across time, the validity of the assessment must
remain consistent across multiple administrations of the assessment (Singer &
Willett, 2003).
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HLM Models

HLM individual growth models allow for the measurement time points to vary across
units and have the ability to capture the nested nature of the data. For example, in
educational contexts, observations across time are nested within students and those
students are nested within schools (Kline, 2005; Raudenbush & Bryk. 2002). In HLM
growth models, both individual and group trajectories are estimated (Raudenbush &
Bryk, 2002). The primary advantage to using HLM to model individual growth is
that HLM allows for a great degree of flexibility in the structure of time. Therefore,
every person within a dataset can have their own unique data collection schedule
(Stoel & Garre, 2011). When the length of time between data collection points varies
from person to person, we refer to the data as “time unstructured.” Conventional
multilevel models handle time unstructured data seamlessly because time is
represented as an explicit independent variable within the dataset.

The Basic Two-Level HLM Model for Linear Growth

In an HLM individual growth model, level 1 describes an individual (or unit)’s
growth trajectory across time. A simple two-level linear growth model is illustrated
below.

Level 1:

Vi =1y, 1, (time,) +e, (1)
Level 2:

o = Poo + Poy(gender;) + 1,

Ty :ﬁlo + ﬂu(ge”deri)"'ru

The observations across time are nested within persons. The level-1 equation models
individual trajectories or within individual variability across time. The dependent
variable (y,) is the score for individual i at time . We predict that y , person i’s score
at time ¢ is a function of three things: 1) the intercept, 7, 7, (which is the predicted
value of y, when time = 0); 2) the product of a constant rate of change and time,
,(time ), and 3) individual error, e, . In a simple linear model, the time slope, 7,,,
represents the linear rate of change over time. Notice that both the slope and the
intercept contain a subscript i. This means that a separate slope and intercept are
estimated for each person in the sample. The deviation of an individual from his/her
predicted trajectory (e,) can be thought of as the measurement error associated with
that individual’s estimate at that time point. The pooled amount of error variability
within individuals® trajectories is estimated by the variance of e [var(e,) = ¢°]
(Bryk & Raudenbush, 1988; Raudenbush & Bryk, 2002).
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The level-2 equation models the average growth trajectories across students and
deviations from those averages. The second level of the multilevel model specifies
that the randomly varying intercept () for each individual (i) is predicted by an
overall intercept (f,), the effects of level-2 variables on the intercept, and 7, the
level-2 residuals represent the difference between the model implied intercept and
the individual i’s observed intercept. Likewise, the randomly varying linear growth
slope () for each individual (i) is predicted by an overall intercept (f,), the effects
of level-2 variables on the linear growth slope, and 7, the level-2 residual, which
represents the difference between person i’s model predicted linear growth slope and
his or her actual growth slope.

The level-2 model allows for person-specific variables to explain variation in
individuals’ growth trajectories. In other words, individual growth patterns can
be explained by person level predictors such as gender, socio-economic status,
treatment group, etc. Ideally, person-level covariates should help to explain some of
the inter-individual variability in terms of where people start (the intercept) or how
fast they grow (the slope).

In our current example, gender is coded as male = 0, female = 1. Time is coded 0,
1, and 2. Therefore, the intercept, (7,,) represents the predicted initial status of person
i. Thus, if the student is female, the intercept () is predicted from the expected value
of male students on the initial measure (f3,)) and the expected differential between
males and females in initial scores (f3). The difference between the model predicted
intercept, based on the level 2 model, and the person’s actual intercept is captured in
the random effect, r . Likewise, the linear growth parameter (7)) is predicted from the
mean growth of all male students (f,)) and the expected differential in growth between
males and females (f,). The difference between the model predicted slope, based on
the level 2 model, and the person’s actual slope is captured in the random effect, r,..
The amount of between person variability in the intercept after accounting for gender
is estimated by the variance of u,[var(u,) = 7, ],and the amount of between person
variability in the time slope after accounting for gender is estimated by the variance
of u,[var(u,) = 7] (Bryk & Raudenbush, 1988; Raudenbush & Bryk, 2002).

The linear growth model is the simplest model. However, this model can be
extended through the incorporation of time varying covariates, piecewise regression
terms, or polynomial terms to model non-linearity that occurs in the growth trajectory.
We briefly consider the use of time varying covariates and piecewise regression
models. Then we provide a more detailed description of polynomial (quadratic)
growth models and provide an example of a quadratic model of growth.

Time-Varying Covariates

Time-varying covariates are variables whose values can change over time and
that can enhance the model’s capacity to appropriately capture observed patterns
of individual change. Adding a time varying covariate (TVC) to equation 1, and
removing gender as a level-2 predictor, results in the following model:
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Y, =ny, +m,(time),, + 7, (TVC), +e,

t

o = Poo i

3 (2)
T, = ot
T = ﬁzo +,

By estimating a randomly varying slope for the TVC (indicated by inclusion of its
associated random effect, ), the relationship between the time varying covariate
and the dependent variable varies across people. In other words, for some people
the effect of the time varying covariate on the dependent variable could be quite
strong and positive, whereas for others it could be weak, or even negative. Although
the value of the time-varying covariate changes across time within people, the
parameter value estimating the effect of the time-varying covariate on the dependent
variable is assumed to be constant across time. In other words, the effect of the
time varying covariate is constant across time within person, but varies across
people. For example, in a study of students’ reading growth over time, the number
of minutes that a student spends engaged in independent reading per week could
be an important time-varying covariate. At every assessment point, the researcher
measures both the dependent variable (reading comprehension), and the independent
variable (the number of minutes of independent reading per week). Although the
number of minutes of independent reading that a student engages in per week can
change at each data collection point, the estimated relationship between independent
reading and reading comprehension remains constant across time for each person.

There are ways to ease this assumption that the relationship between the time
varying covariate and the response variable is constant across time within persons.
For example, one can build an interaction term between time and the time-varying
covariate by creating a variable that equals the product of the two variables (Singer &
Willett, 2003). Adding the interaction term to the model results in the following
equation:

Y, =n, +mn,(time), +n,,(TVC), +n,,(time*TVC), +e,

T = Boo iy
T, = Pt (3)
Ty, = Pty
Ty = Py trs,

The parameter estimate for the interaction term, /3, , helps to capture the differential
effect of the time varying covariate across time. If the time varying covariate
is a continuous variable, it should be centered to aid in the interpretation of the
parameter estimates. In our example above, if the researcher centers the number of

minutes a student reads per week at the grand mean for all occasions and persons in
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the sample, then f3; is the overall estimated initial reading score for students who
read an average number of minutes per week. 3, represents the expected change
in reading scores over time for students reading an average number of minutes per
week; and 3, represents the effect of an additional minute of reading per week on
reading comprehension when time is equal to O (i.e., at initial status or baseline).
B, captures the differential in the effect of the time varying covariate across time.
For example, assume that the growth model yields positive values for 8, and f,,
the estimates for the linear growth slope and for the effect of time spent reading
per week, respectively. In that case, a negative value for f, would indicate that
the effect of the time varying covariate (minutes read per week) weakens (gets
progressively less positive) across time. If, on the other hand, the parameter estimate
for 8, is positive, this would indicate that the effect of the time varying covariate
on the dependent variable strengthens (get more positive) over time. Allowing the
interaction term to vary across people by adding the random effect term r,, implies
that the interaction effect, or the change in the effect of the time varying covariate,
varies across people. While the introduction of an (randomly varying) interaction
between time and a time-varying covariate provides great flexibility in modeling
growth, it does increase the number of estimated parameters in the model. For
example, the variance/covariance matrix for the random effects now would require
ten unique elements, rather than six (as estimating r,; adds a variance and three
covariances to the model).

Incorporating time-varying covariates can be a very effective strategy for modeling
non-linearity and/or discontinuities in growth trajectories (McCoach & Kaniskan,
2010). Time-varying covariates may be continuous, as in the example above, or
categorical. Correct and creative coding of time-varying variables can help to more
adequately capture the nature of change in the phenomenon of interest, and thus
more accurately reflect the process of change, as well as correlates of that change.

Piecewise Growth Models

Often, growth trajectories may not be modeled well by a single linear slope or rate
of change, even after adjusting for time-varying covariates. There may be scenarios
in which a growth pattern might be more aptly represented by dividing the trajectory
into growth segments corresponding to fundamentally different patterns of change
(Collins, 2006). For example, imagine that a reading researcher collects achievement
data on elementary students across an entire calendar year, amassing six data points
from the beginning of September through the end of August (start of the next
academic year). In this case, the time points between September and June capture
the span of time for the change in achievement across the school year, whereas the
period between June and the end of August captures the span of time for the change
in reading scores during the summer (non-instructional) months. The achievement
slope is likely to be substantially steeper and constant during instructional months
and flatter (or perhaps even negative) during the summer, when students receive
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no academic instruction; a single linear growth parameter would not represent the
data well in this situation. Piecewise linear growth models “break up the growth
trajectories into separate linear components” (Raudenbush & Bryk, p. 178), and
can be particularly valuable when comparison of growth rates between the separate
components are of interest, or to investigate differences in substantive predictors of
growth between the components. Note that a sufficient number of time-points are
required to enable modeling of a separate slope for each component.

Piecewise regression techniques conveniently allow for changes in a linear
growth slope across time. To achieve these representations, we include multiple time
variables into the model to capture the multiple linear growth slopes. If we expect
one rate of growth for time points 1-4, and another rate of growth for time points
4-6, we would introduce two time variables. The second time variable always clocks
the passage of time, starting at the point at which the discontinuity or change in
slope is expected. Following our above example, our two-piece linear growth model
would then be expressed as follows:

v, =7, +m, (time_ piecel,)+m, (time _ piece2,)+e,

T = ﬁoo +75; 4)
Ty = ﬂlo +7
Ty = P + 1

There are two different ways to code the first piece of the piecewise model, and they
will result in different interpretations for the piecewise parameters. The first option
is to use the same linear time variable that we introduced earlier, which is centered
at the initial time point and continues to clock the passage of time for the duration of
the study. This coding system is demonstrated in Table 1. Using this coding scheme,
f,, is the parameter estimate for first time variable (time_piecel) and captures the
baseline growth rate; 8, is the parameter estimate for the second time variable and
captures the deflection from that baseline growth rate.

Piecewise coding scheme for capturing growth rate and a deflection from baseline
growth

Table 1. Coding for baseline and deflected growth pieces

WAVE Time_piecel Time_piece2
1 0 0
2 1 0
3 2 0
4 3 0
5 4 1
6 5 2
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The second option creates two separate growth slopes, one that captures the
growth rate during the first piece of the piecewise model and one that captures the
growth rate during the second piece of the model. To model the piecewise growth
as two different growth slopes, we need to create two time variables, each of which
clocks the passage of time during only one segment or piece of the piecewise model.
In other words, we “stop” the first time variable (time piecel) and “start” the second
time variable (time piece2) simultaneously, as is demonstrated starting in wave 4 of
Table 2. Under this coding scheme, 3, , the parameter estimate for first time variable
(time_piecel), captures linear growth rate for the first time period (from waves 1-4);
and f3,, the parameter estimate for the second time variable (time_piece2), captures
the linear growth rate for the second time period (waves 4—6). Note that although the
coding for time piece2 is identical across the two coding schemes, it is actually
the parameter estimate for 8, (the slope for time_piece2) that changes meaning
across the two different coding schemes. Also, notice that the coding schemes in
Tables 1 and 2 are linearly dependent. Therefore, these two models are statistically
equivalent. Further, one can compute the deflection parameter (f8,)) under coding
option 1 directly from the results of coding option 2. To do this, simply subtract 8,
from g, found from the coding scheme used in Table 2. Similarly, one can compute
the second linear growth slope from the coding scheme used in Table 2 by summing
B,, and f8, | from the coding scheme used in Table 1.

Multiple changes in linear growth rates can be captured through piecewise models
as well. For example, imagine that reading growth is measured in the fall and spring
across four school years. Thus, we have 8 data collection points. Theoretically,
we might expect reading scores to increase during the school year and remain flat
(or even decrease) over the summer. Therefore, one might want to fit two growth
trajectories: one for school year growth and another for summer growth. To model
these multiple trajectories, we can create two time variables: one that clocks the
passage of time from the beginning of the study that occurs during the school year
(time_piecel), and another that clocks the passage of time during the summer (time
piece2). If we could assume that school year growth remained constant within child
across the multiple years of the study and summer growth also remained constant
within child across the study, we could capture the zig-zag pattern of growth across

Table 2. Piecewise coding scheme for capturing two separate growth rates

WAVE Time_piecel Time_piece2
1 0 0
2 1 0
3 2 0
4 3 0
5 3 1
6 3 2
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the multiple years of the study with only two different slope parameters: f3,, which
would capture the school year slope, and 8, which would capture the summer slope.
The coding for this piecewise model is demonstrated in Table 3.

In summary, creative use of piecewise regression models can capture a variety of

patterns of non-linear change as well as discontinuities in growth.

Quadratic Growth Models

For a quadratic growth, the model at level-1 takes the form
Vi =Ty + 1, (Zimeti —L)+ 7y (timefi - L)z +e, ®)

It is important to note that in most cases, a specific time centering constant, L, for
the level-1 predictors should be introduced. Raudenbush and Bryk (2002) note that
the choice of the centering constant influences the interpretation of the first order
coefficient, 7. If, for example, time is centered on the first time point, then 7, is
defined as the “instantaneous rate of growth at the initial time point.” The authors
note, however, that centering at the midpoint instead of the first time point has two
distinct advantages in quadratic models. The first is that the 7, parameter is then
understood as the “average rate of growth.” The second advantage is that centering
on the midpoint minimizes the correlation between the instantaneous velocity and
acceleration parameters, which then has the “effects of stabilizing the estimation
procedure” (Raudenbush and Bryk, 2002, p. 182). The choice of centering also
affects the interpretation of the intercept, 7, which represents the predicted value
of the individual 7 at time L. Nevertheless, the choice of a centering constant for all
longitudinal models, even those with higher order terms, should consider the research
design, data analysis goals, and the interpretability of the results. In contrast to the first
order coefficient, the 7,. does not depend on the choice of centering. The quadratic

Table 3. Piecewise coding scheme for capturing
multiple changes in two separate growth rates

WAVE Time piece 1 Time piece 2
1 0 0
2 1 0
3 1 1
4 2 1
5 2 2
6 3 2
7 3 3
8 4 3
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coefficient, 7,, provides a “curvature” or “acceleration/deceleration” parameter for
each person for the entire growth trajectory (Raudenbush and Bryk, 2002).

EXAMPLE: THE EFFECTS OF SCHOOL DEMOGRAPHICS
ON SCHOOL ACHIEVEMENT IN SCIENCE

We illustrate the use of a growth model with data on school achievement in 5th grade
science over a four year time span. In the study, annual school-level scale scores on the
science section of the Connecticut Mastery Test (CMT) were collected for each of the
578 elementary and middle schools that participated in assessment between 2008 and
2011. It is important to note that the units in this example are schools, not students. We
expected that the percentage of special education students, the percentage of English
language learners in the school, and the percentage of students receiving free and/
or reduced lunch in a given school would affect a school’s achievement score on a
state science test in the 5th grade. We were less clear about how those variables might
influence the school’s growth on the science achievement test over the four years of the
study. For all the schools in the study, science achievement (y,) was measured over four
consecutive time points representing scores for spring 2008, 2009, 2010, and 2011.

A Random-Coefficient Regression Model

Most of the schools in the study displayed a monotonically increasing trend
suggesting that science scores are improving over time. A close visual inspection of
a sample of four individual school science achievement curves displayed in Figure 1,
however, suggests that the data are not best represented by the typical “straight” or
linear path. In fact, the growth patterns for the sample schools appear to follow a
higher order polynomial (quadratic) growth trajectory.

The graphical picture also suggests that scores plateau to a single vertex,
which eliminates the possibility that the polynomial has a degree higher than two.
Familiarity with polynomial functions, suggests that, for at least the given trend, the
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Figure 1. Science achievement for selected schools (2008 to 2011).
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data are best described as quadratic function, such as the type depicted in Figure
2. In a given dataset, we can estimate one fewer random effect than we have time
points. This implies that we must have at least two more time points than the order of
the polynomial for model specification. Therefore, if we have collected data across
4 time points, we can estimate three random effects. Thus, if we wish to estimate
random effects for each of the growth parameters at level 1 (i.e., a randomly varying
intercept and a randomly varying slope for each of the growth parameters), then we
can fit a linear model with three time points, a quadratic (second order polynomial)
model with four time points, a cubic (third order polynomial) with five time points,
etc. Also of note, it still possible to even fit a simple linear model.

In the context of the present research example, a quadratic (or second order
polynomial) function contains three pieces of information. The first is a constant that
represents average school science achievement at time L, the second is a coefficient
for the instantaneous rate of change at time L (the centering point), and the third is a
coefficient for the acceleration term. In this model, the instantaneous rate of change
can be positive (indicating an upward trend in school mean science achievement
when time = L) or negative (indicating a downward trend in school mean science
achievement when time = L). Another implication is that the instantaneous rate of
change itself is changing. Thus, the quadratic parameter, 7,, describes the change
in the rate of change. Along a quadratic trajectory, growth can be accelerating
(indicating increasing rates of change) or decelerating (indicating decreasing rates of
change). Data that demonstrate a full parabolic trajectory can have both “growth and
decline” as well as “acceleration and deceleration” over different intervals of time.

Oftentimes, however, only fragments of the parabola are represented by the data.
Under these conditions, there can be many combinations of “growth and decline” and
“acceleration and deceleration” In Figure 3, we illustrate four parabolic fragments,
each of which is defined by a positive or negative 7, , and a positive or negative x,, In
the top left corner, the parabolic fragment with a positive 7, and a negative 7, depicts
a curve that begins as a positive growth trajectory; however, the rate of increase is
decelerating across time. In the top right corner, the parabolic fragment with a positive
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Figure 2. Plots of quadratic functions.
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Figure 3. Growth and curvature combinations for quadratic function fragments.

7, ,and a positive 7, depicts a curve that shows positive and accelerating growth across
time. In the bottom left hand corner, the parabolic fragment with a negative 7, and a
negative 7, illustrates negative growth (or decline) that becomes increasingly rapid
over time. In the bottom right hand corner, the parabolic fragment with a negative
7, and a positive 7, depicts negative growth (or decline) that decelerates over time.
Based on the plots of 5th grade school science achievement, scores increase, but the
rate of increase decelerates across time. Thus, the curve we should anticipate most
closely resembles the curve depicted in the top left corner of Figure 3.

Prior to running any statistical models, we recommend visually inspecting both
individual growth trajectories and a plot of the change in the means on the outcome
variable across time. No modeling technique, no matter how novel or sophisticated,
can substitute for a solid understanding of the data. Our data appears to be best
modeled by the quadratic function in the top left panel of Figure 3. Between the first
(time = 0) and most recently scored administrations of the assessment (time = 3)
the average school scores appear to grow, but their rates of change appear to slow
as time passes.! Under this model specification, 7, represents the school’s science
achievement in 2008, while 7, is the instantaneous initial growth rate in 2008. The
curvature parameter, 7, represents the curvature parameter or the acceleration of
Sth grade school science achievement. The time variable was centered on the first
administration of the science assessment.’

212



LONGITUDINAL DATA ANALYSIS

Table 4. Quadratic model of growth in science achievement (unconditional model)

Fixed Effect Coefficient (SE) t Ratio p-Value
School mean achievement (7))

Intercept (f,,) 246.09 (1.07) 229.66 <0.001
School mean growth rate (r,)

Intercept (f,,) 4.85 (0.49) 9.79 <0.001
School mean acceleration rate (7,)

Intercept (f,,) —0.86 (0.16) —5.46 <0.001
Estimation Method: Restricted Maximum Likelihood

Random Effect Variance Component X’(df) p-Value
Variance in intercept (r,) 609.79 8346.87 (540) <0.001
Variance in linear slope (r,) 25.84 681.48 (540) <0.001
Variance in accel. slope () 2.49 675.91 (540) <0.001
Variance within (6?) 43.28

If the a priori assumption is that the quadratic model is likely the best fitting
model, then it is sensible to begin with an unconditional level-1 model with an
intercept, first-order, and quadratic parameters. In hypothesizing a quadratic fit to
the data, it is then necessary to test the statistical significance of this specification.
If the quadratic term is not statistically significant and the quadratic model does
not provide statistically significantly better fit than the linear model (using the chi-
square difference test), then the quadratic term is probably not necessary, and the
data can likely be fit with a simpler (i.e., linear) model.

The results of the unconditional model indicate a function with an intercept
of 246.09, an instantaneous growth slope of 4.85 points per year and a curvature
parameter of -.86, which indicates that the slope is becoming more negative across
time.

y, = 246.09+4.85¢ —0.86¢’ (6)

These results suggest that, on average, schools begin with a science scale score of
246.09 out of a possible 400 points on the science achievement test. The model
also indicates that school scores are improving (rather than declining) since the
instantaneous growth rate in 2008 (represented by the f3, parameter) was estimated
to be approximately 4.85 points per year. In addition, it appears that the growth of
science in schools is, as predicted, is slowing down.

For linear and quadratic growth models, it is possible to determine whether the
outcome measure is increasing or decreasing by using the first derivative test of the
function.?
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score = y, = 246.09+ 4.85¢t —0.86¢ (7)
d
rateof change= 71‘/ =4.85-1.72¢

Once the level-1 model is specified, the first derivative is calculated, and the values
over the interval of interested are substituted into the function. If the values are
positive, the function is increasing; if the values of the function are negative, the
function is decreasing. Table 5 uses the first derivative test to evaluate 4 possible
quadratic functions. Table 6 provides the first derivative test for our school science
achievement data.

The overall results of the first derivative test for our level-1 function are found
in the first row of Table 5 and Table 6. The results indicate that the science scores
have been increasing over time since the assessment was first introduced although
the growth rate has been steadily declining. By time point 3, it appears that science
growth has completely leveled out, and may even be declining slightly.

Table 5. First derivative test to determine increasing or decreasing growth of

hypothetical models
Parameter
Coefficient
Description Y, Interval* y! Conclusion

Pos. Inst. Growth (7,) 546 09 1 4.85/ — 0 861 [0, 3] 4.85—1.72t Increasing between year
Neg. Curvature (r,)) ’ ’ ’ 1 and just before year 3;
decreasing at year 3

Neg. Inst. Growth (7,) 546 09— 4.85; — 0 862 [0, 3] —4.85 - 1.72¢ Decreasing from year 1
Neg. Curvature (7,,) ' ’ ' through year 3

Pos. Inst. Growth (7,) 