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YO IN’NAMI AND RIE KOIZUMI 

2. STRUCTURAL EQUATION MODELING IN 
EDUCATIONAL RESEARCH: A PRIMER  

INTRODUCTION 

Structural equation modeling (SEM) is a collection of statistical methods for 
modeling the multivariate relationship between variables. It is also called 
covariance structure analysis or simultaneous equation modeling and is often 
considered an integration of regression and factor analysis. As SEM is a flexible 
and powerful technique for examining various hypothesized relationships, it has 
been used in numerous fields, including marketing (e.g., Jarvis, MacKenzie, & 
Podsakoff, 2003; Williams, Edwards, & Vandenberg, 2003), psychology (e.g., 
Cudeck & du Toit, 2009; Martens, 2005), and education (e.g., Kieffer, 2011; Teo 
& Khine, 2009; Wang & Holcombe, 2010). For example, educational research has 
benefited from the use of SEM to examine (a) the factor structure of the learner 
traits assessed by tests or questionnaires (e.g., Silverman, 2010; Schoonen et al., 
2003), (b) the equivalency of models across populations (e.g., Byrne, Baron, & 
Balev, 1998; In’nami & Koizumi, 2012; Shin, 2005), and (c) the effects of learner 
variables on proficiency or academic achievement at a single point in time (e.g., 
Ockey, 2011; Wang & Holcombe, 2010) or across time (e.g., Kieffer, 2011; Marsh 
& Yeung, 1998; Tong, Lara-Alecio, Irby, Mathes, & Kwok, 2008; Yeo, 
Fearrington, & Christ, 2011). This chapter provides the basics and the key concepts 
of SEM, with illustrative examples in educational research. We begin with the 
advantages of SEM, and follow this with a description of Bollen and Long’s 
(1993) five steps for SEM application. Then, we discuss some of the key issues 
with regard to SEM. This is followed by a demonstration of various SEM analyses 
and a description of software programs for conducting SEM. We conclude with a 
discussion on learning more about SEM. Readers who are unfamiliar with 
regression and factor analysis are referred to Cohen, Cohen, West, and Aiken 
(2003), Gorsuch (1983), and Tabachnick and Fidell (2007). SEM is an extension of 
these techniques, and having a solid understanding of them will aid comprehension 
of this chapter. 

ADVANTAGES OF SEM 

SEM is a complex, multivariate technique that is well suited for testing various 
hypothesized or proposed relationships between variables. Compared with a 
number of statistical methods used in educational research, SEM excels in four 
aspects (e.g., Bollen, 1989; Byrne, 2012b). First, SEM adopts a confirmatory, 
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hypothesis-testing approach to the data. This requires researchers to build a 
hypothesis based on previous studies. Although SEM can be used in a model-
exploring, data-driven manner, which could often be the case with regression or 
factor analysis, it is largely a confirmatory method. Second, SEM enables an 
explicit modeling of measurement error in order to obtain unbiased estimates of the 
relationships between variables. This allows researchers to remove the 
measurement error from the correlation/regression estimates. This is conceptually 
the same as correcting for measurement error (or correcting for attenuation), where 
measurement error is taken into account for two variables by dividing the 
correlation by the square root of the product of the reliability estimates of the two 
instruments (rxy /√[rxx × ryy]). Third, SEM can include both unobserved (i.e., latent) 
and observed variables. This is in contrast with regression analysis, which can only 
model observed variables, and with factor analysis, which can only model 
unobserved variables. Fourth, SEM enables the modeling of complex multivariate 
relations or indirect effects that are not easily implemented elsewhere. Complex 
multivariate relations include a model where relationships among only a certain set 
of variables can be estimated. For example, in a model with variables 1 to 10, it 
could be that only variables 1 and 2 can be modeled for correlation. Indirect effects 
refer to the situation in which one variable affects another through a mediating 
variable. 

FIVE STEPS IN AN SEM APPLICATION 

The SEM application comprises five steps (Bollen & Long, 1993), although they 
vary slightly from researcher to researcher. They are (a) model specification, (b) 
model identification, (c) parameter estimation, (d) model fit, and (e) model 
respecification. We discuss these steps in order to provide an outline of SEM 
analysis; further discussion on key issues will be included in the next section. 

Model Specification 

First, model specification is concerned with formulating a model based on a theory 
and/or previous studies in the field. Relationships between variables – both latent 
and observed – need to be made explicit, so that it becomes clear which variables 
are related to each other, and whether they are independent or dependent variables. 
Such relationships can often be conceptualized and communicated well through 
diagrams. 
     For example, Figure 1 shows a hypothesized model of the relationship between 
a learner’s self-assessment, teacher assessment, and academic achievement in a 
second language. The figure was drawn using the SEM program Amos (Arbuckle, 
1994-2012), and all the results reported in this chapter are analyzed using Amos, 
unless otherwise stated. Although the data analyzed below are hypothetical, let us 
suppose that the model was developed on the basis of previous studies. Rectangles 
represent observed variables (e.g., item/test scores, responses to questionnaire 
items), and ovals indicate unobserved variables. Unobserved variables are also 
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called factors, latent variables, constructs, or traits. The terms factor and latent 
variable are used when the focus is on the underlying mathematics (Royce, 1963), 
while the terms construct and trait are used when the concept is of substantive 
interest. Nevertheless, these four terms are often used interchangeably, and, as 
such, are used synonymously throughout this chapter. Circles indicate 
measurement errors or residuals. Measurement errors are hypothesized when a 
latent variable affects observed variables, or one latent variable affects another 
latent variable. Observed and latent variables that receive one-way arrows are 
usually modeled with a measurement error. A one-headed arrow indicates a 
hypothesized one-way direction, whereas a two-headed arrow indicates a 
correlation between two variables. The variables that release one-way arrows are 
independent variables (also called exogenous variables), and those that receive 
arrows are dependent variables (also called endogenous variables). In Figure 1, 
self-assessment is hypothesized to comprise three observed variables of 
questionnaire items measuring self-assessment in English, mathematics, and 
science. These observed variables are said to load on the latent variable of self-
assessment. Teacher assessment is measured in a similar manner using the three 
questionnaire items, but this time presented to a teacher. The measurement of 
academic achievement includes written assignments in English, mathematics, and 
science. All observed variables are measured using a 9-point scale, and the data 
were collected from 450 participants. The nine observed variables and one latent 
variable contained measurement errors. Self-assessment and teacher assessment 
were modeled to affect academic achievement, as indicated by a one-way arrow. 
They were also modeled to be correlated with each other, as indicated by a two-
way arrow. 
     Additionally, SEM models often comprise two subsets of models: a 
measurement model and a structured model. A measurement model relates 
observed variables to latent variables, or, defined more broadly, it specifies how 
the theory in question is operationalized as latent variables along with observed 
variables. A structured model relates constructs to one another and represents the 
theory specifying how these constructs are related to one another. In Figure 1, the 
three latent factors – self-assessment, teacher assessment, and academic 
achievement – are measurement models; the hypothesized relationship between 
them is a structural model. In other words, structural models can be considered to 
comprise several measurement models. Since we can appropriately interpret 
relationships among latent variables only when each latent variable is well 
measured by observed variables, an examination of the model fit (see below for 
details) is often conducted on a measurement model before one constructs a 
structural model. 
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above), models can be identified. When df are negative, models cannot be 
identified, and are called unidentified. When df are zero, models can be identified 
but cannot be evaluated using fit indices (for fit indices, see below). 

Parameter Estimation 

Third, once the model has been identified, the next step is to estimate parameters in 
the model. The goal of parameter estimation is to estimate population parameters 
by minimizing the difference between the observed (sample) variance/covariance 
matrix and the model-implied (model-predicted) variance/covariance matrix. 
Several estimation methods are available, including maximum likelihood,  
robust maximum likelihood, generalized least squares, unweighted least squares, 
elliptical distribution theory, and asymptotically distribution-free methods. 
Although the choice of method depends on many factors, such as data normality, 
sample size, and the number of categories in an observed variable, the most  
widely used method is maximum likelihood. This is the default in many SEM 
programs because it is robust under a variety of conditions and is likely to produce 
parameter estimates that are unbiased, consistent, and efficient (e.g., Bollen, 1989). 
Maximum likelihood estimation is an iterative technique, which means  
that an initially posited value is subsequently updated through calculation. The 
iteration continues until the best values are attained. When this occurs, the model is 
said to have converged. For the current example in Figure 1, the data were 
analyzed using maximum likelihood. The subsequent section entitled Data 
Normality provides more discussion on some recommendations for choice of 
estimation method. 

Model Fit 

Fourth, when parameters in a model are estimated, the degree to which the model 
fits the data must be examined. As noted in the preceding paragraph, the primary 
goal of SEM analysis is to estimate population parameters by minimizing the 
difference between the observed and the model-implied variance/covariance 
matrices. The smaller the difference is, the better the model. This is evaluated 
using various types of fit indices. A statistically nonsignificant chi-square (χ2) 
value is used to indicate a good fit. Statistical nonsignificance is desirable because 
it indicates that the difference between the observed and the model-implied 
variance/covariance matrices is statistically nonsignificant, which implies that the 
two matrices cannot be said to be statistically different. Stated otherwise, a 
nonsignificant difference suggests that the proposed model cannot be rejected and 
can be considered correct. Note that this logic is opposite to testing statistical 
significance for analysis of variance, for example, where statistical significance is 
usually favorable. 
     Nevertheless, chi-square tests are limited in that, with large samples, they are 
likely to detect practically meaningless, trivial differences as statistically 
significant (e.g., Kline, 2011; Ullman, 2007). In order to overcome this  
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problem, many other fit indices have been created, and researchers seldom depend 
entirely on chi-square tests to determine whether to accept or reject the  
model. Fit indices are divided into four types based on Byrne (2006) and Kline 
(2011), although this classification varies slightly between researchers. First, 
incremental or comparative fit indices compare the improvement of the  
model to the null model. The null model assumes no covariances among the 
observed variables. Fit indices in this category include the comparative fit index 
(CFI), the normal fit index (NFI), and the Tucker-Lewis index (TLI), also known 
as the non-normed fit index (NNFI). Second, unlike incremental fit indices, 
absolute fit indices evaluate the fit of the proposed model without comparing it 
against the null model. Instead, they evaluate model fit by calculating the 
proportion of variance explained by the model in the sample variance/covariance 
matrix. Absolute fit indices include the goodness-of-fit index (GFI) and the 
adjusted GFI (AGFI). Third, residual fit indices concern the average difference 
between the observed and the model-implied variance/covariance matrices. 
Examples are the standardized root mean square residual (SRMR) and the root 
mean square error of approximation (RMSEA). Fourth, predictive fit indices 
examine the likelihood of the model to fit in similarly sized samples from the same 
population. Examples include the Akaike information criterion (AIC), the 
consistent Akaike information criterion (CAIC), and the expected cross-validation 
index (ECVI). 
     The question of which fit indices should be reported has been discussed 
extensively in SEM literature. We recommend Kline (2011, pp. 209-210)  
and studies such as Hu and Bentler (1998, 1999) and Bandalos and Finney (2010), 
as they all summarize the literature remarkably well and clearly present  
how to evaluate model fit. Kline recommends reporting (a) the chi-square statistic 
with its degrees of freedom and p value, (b) the matrix of correlation residuals,  
and (c) approximate fit indices (i.e., RMSEA, GFI, CFI) with the p value  
for the close-fit hypothesis for RMSEA. The close-fit hypothesis for RMSEA tests 
the hypothesis that the obtained RMSEA value is equal to or less than .05.  
This hypothesis is similar to the use of the chi-square statistic as an indicator  
of model fit and failure to reject it is favorable and supports the proposed  
model. Additionally, Hu and Bentler (1998, 1999), Bandalos and Finney (2010), 
and numerous others recommend reporting SRMR, since it shows the average 
difference between the observed and the model-implied variance/covariance 
matrices. There are at least three reasons for this. First, this average difference  
is easy to understand by readers who are familiar with correlations but less  
familiar with fit indices. Hu and Bentler (1995) emphasize this, stating that the 
minimum difference between the observed and the model-implied variance/ 
covariance matrices clearly signals that the proposed model accounts for the 
variances/covariances very well. Second, a reason for valuing the SRMR  
that is probably more fundamental is that it is a precise representation of  
the objective of SEM, which is to reproduce, as closely as possible, the model-
implied variance/covariance matrix using the observed variance/covariance 
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matrix. Third, calculation of the SRMR does not require chi-squares. Since chi-
squares are dependent on sample size, this indicates that the SRMR, which  
is not based on chi-squares, is not affected by sample size. This is in contrast with 
other fit indices (e.g., CFI, GFI, RMSEA), which use chi-squares as part of the 
calculation. For the assessment and academic achievement data, the chi-square  
is 323.957 with 24 degrees of freedom at the probability level of .464 (p > .05). 
The matrix of correlation residuals is presented in Table 1. If the model is  
correct, the differences between sample covariances and implied covariances 
should be small. Specifically, Kline argues that differences exceeding |0.10| 
indicate that the model fails to explain the correlation between variables.  
However, no such cases are found in the current data. Each residual correlation  
can be divided by its standard error, as presented in Table 2. This is the same  
as a statistical significance test for each correlation. The well-fitting model  
should have values of less than |2|. All cases are statistically nonsignificant. The 
RMSEA, GFI, and CFI are 0.000 (90% confidence interval: 0.000, 0.038), .989, 
and 1.000, respectively. The p value for the close-fit hypothesis for RMSEA is 
.995, and the close-fit hypothesis is not rejected. The SRMR is .025. Taken 
together, it may be reasonable to state that the proposed model of the relationship 
between self-assessment, teacher assessment, and academic achievement is 
supported. 
 The estimated model is presented in Figure 2. The parameter estimates 
presented here are all standardized as this facilitates the interpretation of 
parameters. Unstandardized parameter estimates also appear in an SEM output and 
these should be reported as in Table 3 because they are used to judge statistical 
significance of parameters along with standard errors. Factor loadings from the 
factors to the observed variables are high overall (β = .505 to .815), thereby 
suggesting that the three measurement models of self-assessment, teacher 
assessment, and academic achievement were each measured well in the current 
data. A squared factor loading shows the proportion of variance in the observed 
variable that is explained by the factor. For example, the squared factor loading of 
English for self-assessment indicates that self-assessment explains 53% of the 
variance in English for self-assessment (.731 × .731). The remaining 47% of the 
variance is explained by the measurement error (.682 × .682). In other words, the 
variance in the observed variable is explained by the underlying factor and the 
measurement error. Finally, the paths from the self-assessment and teacher 
assessment factors to the academic achievement factor indicate that they 
moderately affect academic achievement (β = .454 and .358). The correlation 
between self-assessment and teacher assessment is rather small (–.101), thereby 
indicating almost no relationship between them. 
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SOME KEY ISSUES 

Thus far, we have discussed an SEM analysis with minimal details. In practice, 
there are several other issues that must be considered in order to use SEM 
appropriately. We will discuss these issues surrounding data screening, model fit 
indices, and sample size because of their prevalence in SEM. 

Data Screening 

Before being put to appropriate use, SEM must undergo data screening. Such 
preliminary analysis may initially seem tedious; however, if it is done properly, it 
often saves time and leads to a more precise understanding of the results. Data 
screening is often discussed in terms of linearity, data normality, outliers, and 
missing data. Researchers examine these issues in slightly different ways. Readers 
are referred to Byrne (2006, 2010), Kline (2011), and Tabachnick and Fidell 
(2007) for further details. 
 
Linearity.  SEM models are estimated by examining the relationship – usually a 
linear one – among measured variables that are represented in the 
variance/covariance matrix (or the correlation matrix and standard deviations). 
Such a linear relationship between variables is called linearity: One variable 
increase/decreases in proportion to a change in another variable. Figure 3A shows 
an example of this relationship. As with regression and factor analysis, excessive 
linearity is problematic. This can be examined through inspection of scatterplots or 
correlation matrices. For example, high correlations among variables (e.g., +/–.90; 
Tabachnick & Fidell, 2007) – also called multicollinearity – are troublesome. 
Table 4 shows that the correlations between the observed variables range from  
–.103 to .601. They are not high enough to cause a problem. Statistical tests for 
multicollinearity are also available, which include squared multiple correlations, 
tolerance, and the variance inflation factor. These tests are also used in statistical 
analysis in general and are not limited to SEM. High linearity can be adjusted for 
by deleting or aggregating redundant variables. 
 Nonlinear relationships can also be examined in quadratic or cubic models. A 
quadratic relationship is one in which one variable affects another up to some 
point, after which the effect levels off or decreases. Figure 3B shows a data 
distribution that looks like an inverse U-shape, where as one variable increases (1, 
2, 3, 4, 5, 6, 7, 8) the other increases and then decreases (2, 3, 4, 5, 4, 3, 2, 1). A 
cubic relationship is similar to a quadratic relationship—one variable affects 
another up to some point, the effect levels off or decreases beyond that point, but 
this time comes back to influence once again after a certain point. Figure 3C shows 
a cubic relationship. Quadratic and cubic relationships are also called curvilinear 
relationships. Figure 3D shows an interactive relationship, in which scores in one 
group increase while those in the other group decrease. It is possible that a 
moderator variable is at play. It should be noted that there are a variety of 
nonlinear relationships in addition to those presented in Figures 3B, 3C, and 3D 
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(e.g., U-shaped relationship for a quadratic one). As a standard SEM assumes 
linear relations, modeling a nonlinear effect requires advanced techniques (see 
Kline, 2005, 2011; Marsh, Wen, Nagengast, & Hau, 2012). 

 
A   B      C   D 

 

 

 

 

  

 

 

 

 
Figure 3. Linear, quadratic, cubic, and interactive relationships 

 Data normality. Data normality is divided into univariate normality and 
multivariate normality. Univariate normality refers to the situation in which one 
variable is normally distributed. Multivariate normality refers to the situation in 
which, in addition to the normality of each variable, each variable is also normally 
distributed for each other variable (Tabachnick & Fidell, 2007). Numerous SEM 
application studies use the maximum likelihood estimation method. This method 
assumes multivariate normal distribution of the data for the dependent (i.e., 
endogenous) variable. Although maximum likelihood methods are robust against 
non-normality, it is still important to assess whether the data satisfy the assumption 
of normality. Since multivariate normality is related to univariate normality, both 
types of normality need to be examined. 
     Univariate normality can be examined by inspecting absolute skewness and 
kurtosis values or the statistical significance of those values. First, with regard to 
the inspection of skewness and kurtosis, data normality is ensured when both 
values are zero. Unfortunately, there are no clear-cut guidelines on the degree of 
non-normality. Kline (2011) reviewed relevant studies (e.g., Curran, West, & 
Finch, 1996) and suggested viewing skewness and kurtosis exceeding 3 and 20 
respectively as extremely non-normal. Note that this is a rule-of-thumb and is not 
an agreed-upon definition. For example, Curran et al. (1996) consider a skewness 
of 2 and a kurtosis of 7 as moderately non-normal, and a skewness of 3 and a 
kurtosis of 21 as severely non-normal. Chou and Bentler (1995) and Muthén and 
Kaplan (1985) argue that skewness and kurtosis values approaching 2 and 7, 
respectively, indicate problems. Table 4 shows that skewness and kurtosis values 
for all the observed variables are well below these cut-offs and are in fact very near 
to zero, thereby indicating that the data are univariately normal. 
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     Second, the statistical significance of skewness and kurtosis also serves as an 
indicator of data normality. In particular, the critical ratio or z value is computed 
by dividing either skewness or kurtosis by its standard error. Data normality is 
ensured when the absolute value is within +/– 2.58 (p < .01) or 3.29 (p < .001). 
However, as emphasized by Kline (2011) and Tabachnick and Fidell (2007), the 
standard errors of skewness and kurtosis shrink in large sample sizes, which can 
produce statistically significant skewness and kurtosis values even when the data 
distribution appears normal. Thus, with large samples, making substantive 
decisions on the basis of the visual inspection of the data – for example, using 
histograms or box plots – is preferred. However, it is difficult to define what is 
meant by a large sample. For example, Byrne (2006, 2010) only uses absolute 
skewness and kurtosis values for her dataset with a sample size of 372. Ullman 
(2007) uses both absolute values and statistical significance of skewness and 
kurtosis for her two datasets with sample sizes 175 and 459. In actuality, it appears 
that researchers are more likely to use estimation methods that are robust against 
non-normality, such as Satorra-Bentler correction or weighted least square 
parameter estimate methods. In any case, Table 4 shows that z values for skewness 
and kurtosis are all within +/–2.58 (p < .01) or 3.29 (p < .001), thereby suggesting 
data normality. 
     Additionally, multivariate normality can be measured using Mardia’s 
coefficient of multivariate kurtosis. The statistical significance of Mardia’s 
coefficient is examined using a z value, but this time using the z values of 5 or 6, 
not +/–2.58 (p < .01) or 3.29 (p < .001), since Bentler (2005) argues that 
multivariate non-normality would not affect the model in practice unless its values 
were 5, 6, or above. Univariate normality can be estimated using general-purpose 
software programs (e.g., SAS or SPSS) or SEM programs, whereas multivariate 
normality can only be estimated using SEM programs (for SEM programs, see the 
Software section). Mardia’s coefficient for the current data is –.157 with a z value 
of –.119. This indicates the multivariate normality of the data.  
     As seen above, numerous issues surrounding the treatment of non-normal data 
complicate decision making during data analysis. We reviewed previous studies 
and found Finney and DiStefano (2006) the most accessible, synthetic, and up to 
date. They summarize relevant studies and recommend that, for continuous data, if 
the variables are approximately normally distributed, the maximum likelihood 
estimation is recommended; if the variables are moderately non-normal (skewness 
< 2 and kurtosis < 7) the maximum likelihood estimation or Satorra-Bentler 
correction method are recommended; if the variables are severely non-normal 
(skewness > 2 and kurtosis > 7), the Satorra-Bentler correction or bootstrapping 
methods is recommended. For categorical data, regardless of the number of 
categories, they recommend using weighted least square parameter estimates 
(WLSMV), available in the SEM program Mplus. If Mplus is not available, they 
recommend that if the variables are approximately normally distributed, the 
maximum likelihood estimation should be used for scales with five or more 
categories and the Satorra-Bentler correction method for scales with four or more 
categories. This also applies to moderately non-normal data (skewness < 2 and 
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kurtosis < 7). If the variables are severely non-normal (skewness > 2 and kurtosis > 
7), the Satorra-Bentler correction method is recommended. 
 
Outliers. An outlier is an extremely large or small value of one variable (a 
univariate outlier) or a combination of such values of two or more variables (a 
multivariate outlier). Univariate outliers can be detected by drawing a histogram or 
inspecting the z values of variables using, for example, the SPSS EXPLORE or 
DESCRIPTIVES functions. Multivariate outliers can be detected using the 
Mahalanobis distance (i.e., Mahalanobis d-squared) statistic. It shows how one 
observation in the data is distantly located from the others. It is distributed as a chi-
square statistic with degrees of freedom equal to the number of observed variables. 
Observations are arranged according to the size of the statistics, and those 
exceeding the critical value of the chi-square given degrees of freedom (e.g., p < 
.001) can be judged as outliers. For the current data, the histograms appear normal. 
There are five responses out of 4050 (450 × 9 items) exceeding the z value 3.29 (p 
< .001). As this is just 0.001% of the total responses, it is considered negligible. 
With regard to multivariate outliers, the critical value of chi-square for 24 degrees 
of freedom is 51.179. The most deviated case was participant 4, whose responses 
produced a Mahalanobis distance of 27.192—still below 51.179. Taken together, it 
is reasonable to say that the current dataset does not include univariate or 
multivariate outliers. 
 
Missing data.  The ideal situation is to be able to analyze a complete dataset that 
contains all examinees’ responses to all items. In reality, this rarely occurs and one 
often has to analyze a dataset with missing values. Therefore, how to treat missing 
data is a widely discussed issue in the application of statistics, including SEM. 
Missing data treatment is classified into three types: (a) the deletion of those data, 
(b) the estimation of those data, and (c) the use of parameter estimation methods 
that take missingness into consideration. Deletion of missing data is a traditional 
approach, and includes listwise deletion (elimination of all cases with missing 
values from subsequent analysis) or pairwise deletion (removal of paired cases in 
which at least one case has a missing value). Although both methods are easy to 
implement, they may result in substantial loss of data observations. More 
importantly, Muthén, Kaplan, and Hollis (1987) argue that the two methods work 
only when data are missing completely at random, a case that is often violated in 
practice. Thus, both listwise and pairwise deletion methods may bias results if data 
missingness is not randomly distributed through the data (Tabachnick & Fidell, 
2007). 
     A preferred approach is to estimate and impute missing data. Methods abound, 
such as mean substitution, regression, and expectation maximization methods; 
however, according to Tabachnick and Fidell (2007), the most recommended 
method is multiple imputation (Rubin, 1987). It replaces missing values with 
plausible values that take into account random variation.  
 Another way to address missing data is to use parameter estimation methods 
that take missingness into consideration. This is implemented in (full information) 
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maximum likelihood estimation, which uses all available data regardless of 
completeness (e.g., Enders, 2001). Both expectation maximization and maximum 
likelihood estimation methods are available in SEM programs. As the current data 
do not include missing responses, it is not necessary to eliminate, estimate, or 
impute such responses. 

Model Fit Indices 

Although no agreed-upon guidelines exist regarding which fit indices should be 
reported, some recommendations can be found in the literature. In an often-cited 
article, Hu and Bentler (1998, 1999) recommend reporting (a) the SRMR, and (b) 
the CFI, TLI, RMSEA, or other indices (e.g., Gamma Hat, Incremental Fit Index 
[IFI], McDonald’s Centrality Index [MCI], Relative Noncentrality Index [RNI]). 
Similarly, Kashy, Donnellan, Ackerman, and Russell (2009) recommend reporting 
the CFI or TLI along with the chi-square and RMSEA. Bandalos and Finney 
(2010) recommend the chi-square, CFI, TLI, RMSEA, and SRMR, whereas 
Mueller and Hancock (2010) recommend RMSEA and its confidence interval, the 
SRMR, and at least one of CFI, NFI, and TLI. Widaman (2010) encourages 
reporting the chi-square, CFI, TLI, and RMSEA. For testing measurement 
invariance across groups (e.g., whether the factor loadings are the same across 
groups), Cheung and Rensvold (2002) recommend reporting the CFI, Gamma Hat, 
and McDonald’s Noncentrality Index and interpreting a reduction in each index as 
evidence of measurement invariance. Summarizing studies that provide guidelines 
for reporting fit indices, In’nami and Koizumi (2011) report that the indices 
recommended most often are the chi-square (with degrees of freedom and p 
values), CFI, TLI, RMSEA (and its confidence interval), and the SRMR. 

Sample Size 

One rule-of-thumb is that a sample size below 100, between 100 and 200, and over 
200 is often considered small, medium, and large, respectively (Kline, 2005). 
Similarly, Ding, Velicer, and Harlow (1995) argue that the minimum sample size 
adequate for analysis is generally 100 to 150 participants. Another approach is to 
consider model complexity in terms of the ratio of the sample size to the number of 
free parameters to be estimated in a model. A minimum sample size is at least 10 
times the number of free model parameters (Raykov & Marcoulides, 2006). For 
example, a model with 30 free parameters would require at least 300 observations 
(30 × 10). Nevertheless, as the authors of the aforementioned articles emphasize, 
these are only rough guidelines. This is particularly because the requisite sample 
size depends on numerous factors, including the number and patterns of missing 
data, strength of the relationships among the indicators, types of indicators (e.g., 
categorical or continuous), estimation methods (e.g., [robust] maximum likelihood, 
robust weighted least squares), and reliability of the indicators. Complex issues 
surrounding sample size determination seem to hamper creating definitive rules – 
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or even rules of thumb – concerning necessary sample size (e.g., Mundfrom, Shaw, 
& Ke, 2005). 
 Instead of elaborating on general guidelines for sample size, more empirically 
grounded, individual-model-focused approaches to determining sample size in 
relation to parameter precision and power have been proposed. These approaches 
include Satorra and Saris (1985), MacCallum, Browne, and Sugawara (1996), and 
Muthén and Muthén (2002). The methods of both Satorra and Saris (1985) and 
MacCallum et al. (1996) estimate sample size in terms of the precision and power 
of an entire model using the chi-square statistic and RMSEA, respectively. In 
contrast, Muthén and Muthén (2002) evaluate sample size in terms of the precision 
and power of individual parameters in a model, while allowing the modeling of 
various conditions that researchers frequently encounter in their research, such as 
non-normality or type of indicator. Such modeling flexibility is certainly useful for 
estimating sample size, given that sample size and many variables affect each other 
in intricate ways. 
     In order to evaluate sample size, Muthén and Muthén (2002) use four criteria. 
First, parameter bias and standard error bias should not exceed |10%| for any 
parameter in the model. Second, the standard error bias for the parameter for which 
power is of particular interest should not exceed |5%|. Third, 95% coverage – the 
proportion of replications for which the 95% confidence interval covers the 
population parameter value – should fall between 0.91 and 0.98. One minus the 
coverage value equals the alpha level of 0.05. Coverage values should be close to 
the correct value of 0.95. Finally, power is evaluated in terms of whether it exceeds 
0.80 – a commonly accepted value for sufficient power. 
     An analysis of the sample size of the current data based on Muthén and Muthén 
(2002) is presented in Table 5. Columns 2 and 3 show population and sample 
parameters. Population parameters are unstandardized parameters in Table 3. They 
are viewed as correct, true parameters from which numerous samples (replications) 
are generated in each run, and results over the replications are summarized. For 
example, using these values, the parameter bias for self-assessment measured by 
mathematics is calculated in the following manner: |0.9130 – 0.910|/|0.910| = 
0.00330, or in other words, 0.330%. This is far below the criterion of 10%, thereby 
suggesting a good estimation of the parameter. The result is presented in  
Column 4. Column 5 shows the standard deviation of the parameters across 
replications. Column 6 shows the average of the standard errors across  
replications. The standard error bias for self-assessment measured by mathematics 
is |0.0743 – 0.0754|/|0.0754| = 0.01459, or in other words, 1.459%. This is again 
far below the criterion of 10%, thereby suggesting a good estimation of the 
parameter. The result is presented in Column 7. In particular, we are interested in 
the effect of self-assessment and teacher assessment on academic achievement. 
The standard error biases for these parameters of interest are 0.413% and 0.545%, 
respectively. Neither exceeds 5%, thereby suggesting a good estimation of the 
parameter. Column 8 provides the mean square error of parameter estimates, which 
equals the variance of the estimates across replications plus the squared bias 
(Muthén & Muthén, 2007). Column 9 shows coverage, or the proportion of 
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VARIOUS SEM ANALYSES 

Various types of models can be analyzed within the SEM framework. In addition 
to the models presented in Figures 1 and 2, we describe models often used in 
educational studies: confirmatory factor analysis, multiple-group analysis, and 
latent growth modeling. First, confirmatory factor analysis is used to examine 
whether the factor structure of a set of observed variables is consistent with 
previous theory or empirical findings (e.g., Brown, 2006). The researcher 
constructs a model using knowledge of the theory and/or empirical research, 
postulates the relationship pattern, and tests the hypothesis statistically. This 
reinforces the importance of theory in the process of model building. The models 
of self-assessment, teacher assessment, and academic achievement in Figures 1 and 
2 represent different measurement models and must be verified through 
confirmatory factor analysis in terms of whether each of the three constructs are 
well represented by the three measurements of English, mathematics, and science.    
Unfortunately, each measurement model has only three observed variables, and 
this results in zero degrees of freedom (6 parameters to estimate – two factor 
loadings, three measurement errors, and one factor variance – and 3(3 + 1)/2 = 6 
data points). The measurement models cannot be evaluated in the current model 
specification (see model identification in the Five Steps in an SEM Application 
above). 
     Various models can be analyzed using confirmatory factor analysis. For 
example, the often-cited study Holzinger and Swineford (1939) administered a 
battery of tests to measure seventh- and eighth-grade students in two Chicago 
schools. The tests were designed to measure mental ability, hypothesized to 
comprise spatial, verbal, speed, memory, and mathematics abilities. Although 
Holzinger and Swineford (1939) did not use SEM, the model closest to the one 
they hypothesized is shown in Figure 4A, and competing models that we 
postulated are shown in Figures 4B, 5A, and 5B. Figure 4A shows that mental 
ability comprises a general ability and five sub-abilities. Figure 4B is similar to 
Figure 4A but assumes a hierarchical relationship between a general ability and 
sub-abilities. Figure 5A assumes only a single general ability. Figure 5B 
hypothesizes no general ability and instead assumes correlated sub-abilities. A 
series of models can be tested on a single dataset using SEM by comparing model 
fit indices or using a chi-square difference test (see, for example, Brown, 2006; 
Shin, 2005). 
 Second, multiple-group or multiple-sample analysis aims to fit a model to two 
or more sets of data simultaneously. It allows us to test whether and to what extent 
measurement instruments (tests and questionnaires) function equally across groups, 
or, put another way, whether and to what extent the factor structure of a 
measurement instrument or theoretical construct of interest holds true across 
groups (e.g., Bollen, 1989). Multiple-group analysis involves testing across the 
samples whether factor loadings, measurement error variances, factor variances, 
and factor covariances are the same. Equivalence across groups suggests the cross- 
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that all factor loadings are fixed, unlike confirmatory factor analysis and multiple-
group analysis.  
 More complex models can also be analyzed using latent growth modeling. Yeo, 
Fearrington, and Christ (2011) investigated how demographic variables – gender, 
income, and special education status – affect reading growth at school. Their 
model, shown in Figure 6B, differs primarily from the model in Figure 6A in two 
ways. First, the loadings for the growth rate factor are fixed to be 0, 5, and 9 – 
three time points of data collection (August = 0, January = 5, and May = 9) – 
because we assume that the authors were interested in nine-month growth and 
rescaled the slope factor loadings accordingly. It should be noted that growth rate 
factors, whether fixed to be 1, 2, and 3, or 0, 5, and 9, do not change the data-
model fit (e.g., Hancock & Lawrence, 2006). Second, the three demographic 
variables are incorporated into the model as predictors of initial status and growth 
rate. The results indicate the relative impact of the external variables on the initial 
level of reading proficiency and on the growth rate of reading proficiency over 
nine months. For further examples of latent growth modeling, see Kieffer (2011) 
and Marsh and Yeung (1998). 

SOFTWARE 

Since Byrne (2012a) provides a detailed, comparative review of SEM software, we 
will present only a brief treatment of SEM software programs (also see Narayanan, 
2012). There are several major commercial programs for performing SEM, 
including Amos (Analysis of Moment Structures; Arbuckle, 1994-2012), CALIS 
(SAS Institute, 1990-2012), EQS (Equations; Bentler, 1994-2011), LISREL 
(Linear Structural Relationships; Jöreskog & Sörbom, 1974-2012), and Mplus 
(Muthén & Muthén, 1998-2012). Free programs are also available, including Mx 
(Neale, Boker, Xie, & Maes, 2003) and three R-language packages: the OpenMx 
package (Boker, Neale, Maes, Wilde, Spiegel, Brick, et al., 2007-2012), the “sem” 
package (Fox, Nie, Byrnes, Culbertson, Friendly, Kramer, & Monette, 2012), and 
the “lavaan” package (Rosseel, 2012). The choice of software depends on the 
purpose of the SEM analysis and the proficiency of the user’s computing skills. 
Byrne (2012a) indicates three aspects related to deciding on the best software: (a) 
familiarity with SEM concepts and application, (b) the types of SEM model to be 
tested, and (c) preference concerning manual or graphic interface. She argues that 
beginners may find Amos or EQS the easiest to use, and that more advanced 
learners may prefer to use EQS, LISREL, or Mplus. Unlike Amos, EQS, and 
LISREL, Mplus requires command-based inputs, and learners who are used to 
graphic interfaces may need some time to become comfortable with the program. 
In order to familiarize themselves with software, novice learners are referred to 
Byrne (1998, 2006, 2010, 2012b), whereas advanced learners wishing to use R-
based packages are referred to Fox, Byrnes, Boker, and Neale (2012). 
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SOME DIRECTIONS FOR LEARNING MORE ABOUT SEM 

Since SEM is a versatile technique, a single book chapter would not be able to 
cover a wide range of analyses that can be modeled using SEM. In order to deepen 
learning regarding SEM, we recommend reading through Byrne (1998, 2006, 
2010, 2012b) for LISREL, EQS, Amos, and Mplus, trying to analyze the 
accompanying datasets, and ensuring that one can replicate findings. Based on our 
own experience with Byrne (2010) for Amos, and Byrne (2006) for EQS datasets, 
as well as on discussion with skilled SEM users, we believe that this is probably 
the best approach to familiarize oneself with SEM and apply the techniques to 
one’s own data. 
     For providing answers to questions that may arise with regard to particular 
issues related to SEM, the following recent references may be useful: Bandalos and 
Finney (2010), Brown (2006), Cudeck and du Toit (2009), Hancock and Mueller 
(2006), Hoyle (2012), Kaplan (2009), Kline (2011), Lomax (2010), Mueller and 
Hancock (2008, 2010), Mulaik (2009), Raykov and Marcoulides (2006), 
Schumacker and Lomax (2010), Teo and Khine (2009), and Ullman (2007). For 
more on how researchers should report SEM results, see Boomsma, Hoyle, and 
Panter (2012); Gefen, Rigdon, and Straub (2011); Jackson, Gillaspy Jr., and Purc-
Stephenson (2009); Kahn (2006); Kashy, Donnellan, Ackerman, and Russell 
(2009); Martens (2005); McDonald and Ho (2002); Schreiber, Nora, Stage, 
Barlow, and King (2006); and Worthington and Whittaker (2006). Reporting a 
correlation matrix with means and standard deviations is strongly recommended as 
this allows one to replicate a model, although replication of non-normal and/or 
missing data requires raw data (for example, see In’nami & Koizumi, 2010). Of 
particular interest is the journal Structural Equation Modeling: An 
Interdisciplinary Journal published by Taylor & Francis, which is aimed at those 
interested in theoretical and innovative applied aspects of SEM. Although 
comprising highly technical articles, it also includes the Teacher’s Corner, which 
features instructional modules on certain aspects of SEM, and book and software 
reviews providing objective evaluation of current texts and products in the field. 
     For questions pertaining to particular features of SEM programs, user guides are 
probably the best resource. In particular, we find the EQS user guide (Bentler & 
Wu, 2005) and manual (Bentler, 2005) outstanding, as they describe underlying 
statistical theory in a readable manner as well as stepwise guidance on how to use 
the program. A close look at manuals and user guides may provide answers to most 
questions. LISREL and Mplus users should take full advantage of technical 
appendices, notes, example datasets, and commands, which are all available online 
free of charge (Mplus, 2012; Scientific Software International, 2012). The Mplus 
website also provides recorded seminars and workshops on SEM and a schedule 
listing of upcoming courses. 
     For problems not addressed by the abovementioned resources, we suggest 
consulting the Structural Equation Modeling Discussion Network (SEMNET). It 
was founded in February 1993 (Rigdon, 1998) and archives messages by month. 
Because of the large number of archived messages collected over the past two 
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decades (thanks to the mushrooming popularity of SEM across many disciplines), 
SEMNET is a treasure trove of questions and answers on virtually every aspect of 
SEM. Questions should only be posted if answers to them cannot be found in the 
archive. As with any other academic online discussion forum, contributors to 
SEMNET take questions seriously and spend precious time responding to them. 
We recommend that anyone wishing to receive a good reply should mention that 
answers were not found in the archive and articulate problems in enough detail for 
others to respond. Posting a command/script/syntax file is a good idea. 
     SEM is constantly evolving and expanding. The development and application of 
new techniques are causing numerous academic disciplines to move increasingly 
toward a better understanding of various issues that require tools that are more 
precise. SEM analysis offers powerful options for analyzing data from educational 
settings, and techniques discussed in this chapter will enable educational 
researchers to be in a better position to address a wide range of research questions. 
By employing SEM analysis appropriately, we will be able to contribute much in 
years to come. 

APPENDIX 

Mplus Input for the Monte Carlo Analysis for Determining the Precision and Power of 
Parameters 
TITLE:             THREE-FACTOR, NORMAL DATA, NO MISSING 
MONTECARLO: 
                   NAMES ARE X1-X9; 
                   NOBSERVATIONS = 450; ! SAMPLE SIZE OF INTEREST 
                   NREPS = 10000; 
                   SEED = 53567; 
MODEL POPULATION: 
                   f1 BY X1@1 X2*.91 X3*.70; 
                   f2 BY X4@1 X5*.74 X6*.53; 
                   f3 BY X7@1 X8*.48 X9*.53; 
                   X1*.77; X2*.37; X3*.61; X4*.91; X5*.48; X6*.76; X7*.66; X8*.63; 
                   X9*.66; 
                   f1*.88; f2*.94; f3*.74; 
                   f3 ON f1*.50; f3 ON f2*.38; 
                   f1 WITH f2*-.09; 
MODEL: 
                   f1 BY X1@1 X2*.91 X3*.70; 
                   f2 BY X4@1 X5*.74 X6*.53; 
                   f3 BY X7@1 X8*.48 X9*.53; 
                   X1*.77; X2*.37; X3*.61; X4*.91; X5*.48; X6*.76; X7*.66; X8*.63; 
                   X9*.66; 
                   f1*.88; f2*.94; f3*.74; 
                   f3 ON f1*.50; f3 ON f2*.38; 
                   f1 WITH f2*-.09; 
ANALYSIS:        ESTIMATOR = ML; 
OUTPUT:          TECH9; 
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