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2. STRUCTURAL EQUATION MODELING IN
EDUCATIONAL RESEARCH: A PRIMER

INTRODUCTION

Structural equation modeling (SEM) is a collection of statistical methods for
modeling the multivariate relationship between variables. It is also called
covariance structure analysis or simultaneous equation modeling and is often
considered an integration of regression and factor analysis. As SEM is a flexible
and powerful technique for examining various hypothesized relationships, it has
been used in numerous fields, including marketing (e.g., Jarvis, MacKenzie, &
Podsakoff, 2003; Williams, Edwards, & Vandenberg, 2003), psychology (e.g.,
Cudeck & du Toit, 2009; Martens, 2005), and education (e.g., Kieffer, 2011; Teo
& Khine, 2009; Wang & Holcombe, 2010). For example, educational research has
benefited from the use of SEM to examine (a) the factor structure of the learner
traits assessed by tests or questionnaires (e.g., Silverman, 2010; Schoonen et al.,
2003), (b) the equivalency of models across populations (e.g., Byrne, Baron, &
Balev, 1998; In’nami & Koizumi, 2012; Shin, 2005), and (c) the effects of learner
variables on proficiency or academic achievement at a single point in time (e.g.,
Ockey, 2011; Wang & Holcombe, 2010) or across time (e.g., Kieffer, 2011; Marsh
& Yeung, 1998; Tong, Lara-Alecio, Irby, Mathes, & Kwok, 2008; Yeo,
Fearrington, & Christ, 2011). This chapter provides the basics and the key concepts
of SEM, with illustrative examples in educational research. We begin with the
advantages of SEM, and follow this with a description of Bollen and Long’s
(1993) five steps for SEM application. Then, we discuss some of the key issues
with regard to SEM. This is followed by a demonstration of various SEM analyses
and a description of software programs for conducting SEM. We conclude with a
discussion on learning more about SEM. Readers who are unfamiliar with
regression and factor analysis are referred to Cohen, Cohen, West, and Aiken
(2003), Gorsuch (1983), and Tabachnick and Fidell (2007). SEM is an extension of
these techniques, and having a solid understanding of them will aid comprehension
of this chapter.

ADVANTAGES OF SEM

SEM is a complex, multivariate technique that is well suited for testing various
hypothesized or proposed relationships between variables. Compared with a
number of statistical methods used in educational research, SEM excels in four
aspects (e.g., Bollen, 1989; Byrne, 2012b). First, SEM adopts a confirmatory,
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hypothesis-testing approach to the data. This requires researchers to build a
hypothesis based on previous studies. Although SEM can be used in a model-
exploring, data-driven manner, which could often be the case with regression or
factor analysis, it is largely a confirmatory method. Second, SEM enables an
explicit modeling of measurement error in order to obtain unbiased estimates of the
relationships between variables. This allows researchers to remove the
measurement error from the correlation/regression estimates. This is conceptually
the same as correcting for measurement error (or correcting for attenuation), where
measurement error is taken into account for two variables by dividing the
correlation by the square root of the product of the reliability estimates of the two
instruments (ryy AN [Fee 7y]). Third, SEM can include both unobserved (i.e., latent)
and observed variables. This is in contrast with regression analysis, which can only
model observed variables, and with factor analysis, which can only model
unobserved variables. Fourth, SEM enables the modeling of complex multivariate
relations or indirect effects that are not easily implemented elsewhere. Complex
multivariate relations include a model where relationships among only a certain set
of variables can be estimated. For example, in a model with variables 1 to 10, it
could be that only variables 1 and 2 can be modeled for correlation. Indirect effects
refer to the situation in which one variable affects another through a mediating
variable.

FIVE STEPS IN AN SEM APPLICATION

The SEM application comprises five steps (Bollen & Long, 1993), although they
vary slightly from researcher to researcher. They are (a) model specification, (b)
model identification, (c) parameter estimation, (d) model fit, and (e) model
respecification. We discuss these steps in order to provide an outline of SEM
analysis; further discussion on key issues will be included in the next section.

Model Specification

First, model specification is concerned with formulating a model based on a theory
and/or previous studies in the field. Relationships between variables — both latent
and observed — need to be made explicit, so that it becomes clear which variables
are related to each other, and whether they are independent or dependent variables.
Such relationships can often be conceptualized and communicated well through
diagrams.

For example, Figure 1 shows a hypothesized model of the relationship between
a learner’s self-assessment, teacher assessment, and academic achievement in a
second language. The figure was drawn using the SEM program Amos (Arbuckle,
1994-2012), and all the results reported in this chapter are analyzed using Amos,
unless otherwise stated. Although the data analyzed below are hypothetical, let us
suppose that the model was developed on the basis of previous studies. Rectangles
represent observed variables (e.g., item/test scores, responses to questionnaire
items), and ovals indicate unobserved variables. Unobserved variables are also
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called factors, latent variables, constructs, or traits. The terms factor and latent
variable are used when the focus is on the underlying mathematics (Royce, 1963),
while the terms construct and trait are used when the concept is of substantive
interest. Nevertheless, these four terms are often used interchangeably, and, as
such, are used synonymously throughout this chapter. Circles indicate
measurement errors or residuals. Measurement errors are hypothesized when a
latent variable affects observed variables, or one latent variable affects another
latent variable. Observed and latent variables that receive one-way arrows are
usually modeled with a measurement error. A one-headed arrow indicates a
hypothesized one-way direction, whereas a two-headed arrow indicates a
correlation between two variables. The variables that release one-way arrows are
independent variables (also called exogenous variables), and those that receive
arrows are dependent variables (also called endogenous variables). In Figure 1,
self-assessment is hypothesized to comprise three observed variables of
questionnaire items measuring self-assessment in English, mathematics, and
science. These observed variables are said to load on the latent variable of self-
assessment. Teacher assessment is measured in a similar manner using the three
questionnaire items, but this time presented to a teacher. The measurement of
academic achievement includes written assignments in English, mathematics, and
science. All observed variables are measured using a 9-point scale, and the data
were collected from 450 participants. The nine observed variables and one latent
variable contained measurement errors. Self-assessment and teacher assessment
were modeled to affect academic achievement, as indicated by a one-way arrow.
They were also modeled to be correlated with each other, as indicated by a two-
way arrow.

Additionally, SEM models often comprise two subsets of models: a
measurement model and a structured model. A measurement model relates
observed variables to latent variables, or, defined more broadly, it specifies how
the theory in question is operationalized as latent variables along with observed
variables. A structured model relates constructs to one another and represents the
theory specifying how these constructs are related to one another. In Figure 1, the
three latent factors — self-assessment, teacher assessment, and academic
achievement — are measurement models; the hypothesized relationship between
them is a structural model. In other words, structural models can be considered to
comprise several measurement models. Since we can appropriately interpret
relationships among latent variables only when each latent variable is well
measured by observed variables, an examination of the model fit (see below for
details) is often conducted on a measurement model before one constructs a
structural model.
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Figure 1. Example SEM model diagram.

Model Identification

The second step in an SEM application, namely model identification, is concerned
with whether one can derive a unique value for each parameter (in the model)
whose value is unknown (e.g., factor loadings, factor correlations, measurement
errors) using the variance/covariance matrix (or the correlation matrix and standard
deviations) of the measured variables that are known. Models are not identified
when there are more parameters than can be estimated from the information
available in the variance/covariance matrix. Models that are complex, even if
theoretically sound, are likely to have identification problems, particularly when
there are a large number of parameters to be estimated relative to the number of
variances and covariances in the matrix. Two important principles are applicable to
the identification of SEM models. First, latent variables must be assigned a scale
(metric) because they are unobserved and do not have predetermined scales. This
can be achieved by fixing either a factor variance, or one of the factor loadings, to
be a specific value, usually 1. Second, the number of data points in the
variance/covariance matrix — known information — must be at least equal to the
number of parameters to be estimated in the model (i.e., free parameters) —
unknown information. For example, for the academic achievement model, there are
21 estimated parameters: 8 factor loadings, 10 measurement error variances, |
covariance, and 2 factor variances. Three of the factor loadings are each fixed to be
1 and do not have to be estimated. The number of data points is p(p + 1)/2, where p
refers to the number of observed variables. For the academic achievement factor in
Figure 1, there are nine observed variables, and therefore 9(9 + 1)/2 = 45 data
points. This is larger than the number of parameters to be estimated in the model,
which is 21. Thus, this model is identifiable. The degrees of freedom (df) are the
difference between the number of data points and the number of parameters to be
estimated. In the current example, the df are 24. When df are positive (one or
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above), models can be identified. When df are negative, models cannot be
identified, and are called unidentified. When df are zero, models can be identified
but cannot be evaluated using fit indices (for fit indices, see below).

Parameter Estimation

Third, once the model has been identified, the next step is to estimate parameters in
the model. The goal of parameter estimation is to estimate population parameters
by minimizing the difference between the observed (sample) variance/covariance
matrix and the model-implied (model-predicted) variance/covariance matrix.
Several estimation methods are available, including maximum likelihood,
robust maximum likelihood, generalized least squares, unweighted least squares,
elliptical distribution theory, and asymptotically distribution-free methods.
Although the choice of method depends on many factors, such as data normality,
sample size, and the number of categories in an observed variable, the most
widely used method is maximum likelihood. This is the default in many SEM
programs because it is robust under a variety of conditions and is likely to produce
parameter estimates that are unbiased, consistent, and efficient (e.g., Bollen, 1989).
Maximum likelihood estimation is an iterative technique, which means
that an initially posited value is subsequently updated through calculation. The
iteration continues until the best values are attained. When this occurs, the model is
said to have converged. For the current example in Figure 1, the data were
analyzed using maximum likelihood. The subsequent section entitled Data
Normality provides more discussion on some recommendations for choice of
estimation method.

Model Fit

Fourth, when parameters in a model are estimated, the degree to which the model
fits the data must be examined. As noted in the preceding paragraph, the primary
goal of SEM analysis is to estimate population parameters by minimizing the
difference between the observed and the model-implied variance/covariance
matrices. The smaller the difference is, the better the model. This is evaluated
using various types of fit indices. A statistically nonsignificant chi-square (y°)
value is used to indicate a good fit. Statistical nonsignificance is desirable because
it indicates that the difference between the observed and the model-implied
variance/covariance matrices is statistically nonsignificant, which implies that the
two matrices cannot be said to be statistically different. Stated otherwise, a
nonsignificant difference suggests that the proposed model cannot be rejected and
can be considered correct. Note that this logic is opposite to testing statistical
significance for analysis of variance, for example, where statistical significance is
usually favorable.

Nevertheless, chi-square tests are limited in that, with large samples, they are
likely to detect practically meaningless, trivial differences as statistically
significant (e.g., Kline, 2011; Ullman, 2007). In order to overcome this

27



IN’NAMI AND KOIZUMI

problem, many other fit indices have been created, and researchers seldom depend
entirely on chi-square tests to determine whether to accept or reject the
model. Fit indices are divided into four types based on Byrne (2006) and Kline
(2011), although this classification varies slightly between researchers. First,
incremental or comparative fit indices compare the improvement of the
model to the null model. The null model assumes no covariances among the
observed variables. Fit indices in this category include the comparative fit index
(CFI), the normal fit index (NFI), and the Tucker-Lewis index (TLI), also known
as the non-normed fit index (NNFI). Second, unlike incremental fit indices,
absolute fit indices evaluate the fit of the proposed model without comparing it
against the null model. Instead, they evaluate model fit by calculating the
proportion of variance explained by the model in the sample variance/covariance
matrix. Absolute fit indices include the goodness-of-fit index (GFI) and the
adjusted GFI (AGFI). Third, residual fit indices concern the average difference
between the observed and the model-implied variance/covariance matrices.
Examples are the standardized root mean square residual (SRMR) and the root
mean square error of approximation (RMSEA). Fourth, predictive fit indices
examine the likelihood of the model to fit in similarly sized samples from the same
population. Examples include the Akaike information criterion (AIC), the
consistent Akaike information criterion (CAIC), and the expected cross-validation
index (ECVI).

The question of which fit indices should be reported has been discussed
extensively in SEM literature. We recommend Kline (2011, pp. 209-210)
and studies such as Hu and Bentler (1998, 1999) and Bandalos and Finney (2010),
as they all summarize the literature remarkably well and clearly present
how to evaluate model fit. Kline recommends reporting (a) the chi-square statistic
with its degrees of freedom and p value, (b) the matrix of correlation residuals,
and (c) approximate fit indices (i.e., RMSEA, GFI, CFI) with the p value
for the close-fit hypothesis for RMSEA. The close-fit hypothesis for RMSEA tests
the hypothesis that the obtained RMSEA value is equal to or less than .05.
This hypothesis is similar to the use of the chi-square statistic as an indicator
of model fit and failure to reject it is favorable and supports the proposed
model. Additionally, Hu and Bentler (1998, 1999), Bandalos and Finney (2010),
and numerous others recommend reporting SRMR, since it shows the average
difference between the observed and the model-implied variance/covariance
matrices. There are at least three reasons for this. First, this average difference
is easy to understand by readers who are familiar with correlations but less
familiar with fit indices. Hu and Bentler (1995) emphasize this, stating that the
minimum difference between the observed and the model-implied variance/
covariance matrices clearly signals that the proposed model accounts for the
variances/covariances very well. Second, a reason for valuing the SRMR
that is probably more fundamental is that it is a precise representation of
the objective of SEM, which is to reproduce, as closely as possible, the model-
implied variance/covariance matrix using the observed variance/covariance
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matrix. Third, calculation of the SRMR does not require chi-squares. Since chi-
squares are dependent on sample size, this indicates that the SRMR, which
is not based on chi-squares, is not affected by sample size. This is in contrast with
other fit indices (e.g., CFI, GFI, RMSEA), which use chi-squares as part of the
calculation. For the assessment and academic achievement data, the chi-square
is 323.957 with 24 degrees of freedom at the probability level of .464 (p > .05).
The matrix of correlation residuals is presented in Table 1. If the model is
correct, the differences between sample covariances and implied covariances
should be small. Specifically, Kline argues that differences exceeding [0.10|
indicate that the model fails to explain the correlation between variables.
However, no such cases are found in the current data. Each residual correlation
can be divided by its standard error, as presented in Table 2. This is the same
as a statistical significance test for each correlation. The well-fitting model
should have values of less than |2|. All cases are statistically nonsignificant. The
RMSEA, GFI, and CFT are 0.000 (90% confidence interval: 0.000, 0.038), .989,
and 1.000, respectively. The p value for the close-fit hypothesis for RMSEA is
995, and the close-fit hypothesis is not rejected. The SRMR is .025. Taken
together, it may be reasonable to state that the proposed model of the relationship
between self-assessment, teacher assessment, and academic achievement is
supported.

The estimated model is presented in Figure 2. The parameter estimates
presented here are all standardized as this facilitates the interpretation of
parameters. Unstandardized parameter estimates also appear in an SEM output and
these should be reported as in Table 3 because they are used to judge statistical
significance of parameters along with standard errors. Factor loadings from the
factors to the observed variables are high overall (B = .505 to .815), thereby
suggesting that the three measurement models of self-assessment, teacher
assessment, and academic achievement were each measured well in the current
data. A squared factor loading shows the proportion of variance in the observed
variable that is explained by the factor. For example, the squared factor loading of
English for self-assessment indicates that self-assessment explains 53% of the
variance in English for self-assessment (.731 x .731). The remaining 47% of the
variance is explained by the measurement error (.682 x .682). In other words, the
variance in the observed variable is explained by the underlying factor and the
measurement error. Finally, the paths from the self-assessment and teacher
assessment factors to the academic achievement factor indicate that they
moderately affect academic achievement (B = .454 and .358). The correlation
between self-assessment and teacher assessment is rather small (—101), thereby
indicating almost no relationship between them.
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Figure 2. Example of an SEM model with standardized estimates
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Model Respecification

Fifth, model re-specification is concerned with improving the model-data fit, for
example, by deleting statistically nonsignificant paths or adding paths to the model.
Any decision must be theoretically defensible and should not be statistically
driven. The results are no longer confirmatory and should be viewed as
explanatory. For the assessment and academic achievement data, we could, for
example, delete the correlation between self-assessment and teacher assessment as
it is very small in size (» = —101) and statistically nonsignificant. This could be
done only if it were supported by previous studies. Since this is not the case, no
change is made in the model.

Table 3. Unstandardized and standardized estimates

Parameter B Standard error B
Self-assessment —> English 1.000* - 731
Mathematics 910%* .073 815
Science .703%* .060 .646
Teacher assessment —> English 1.000? - 712
Mathematics 736* .086 716
Science .528%* .066 505
Academic achievement —  English 1.000" - 784
Mathematics 483%* .060 532
Science .534%* .065 .560
Self-assessment —> Academic achievement .498* .072 454
Teacher assessment —> Academic achievement .380* .073 358
Self-assessment <—> Teacher assessment -0.092 .058 -.101

Note. “Fixed to 1.000 for scale identification. *p < .05. B refers to unstandardized
estimates. [ refers to standardized estimates.
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SOME KEY ISSUES

Thus far, we have discussed an SEM analysis with minimal details. In practice,
there are several other issues that must be considered in order to use SEM
appropriately. We will discuss these issues surrounding data screening, model fit
indices, and sample size because of their prevalence in SEM.

Data Screening

Before being put to appropriate use, SEM must undergo data screening. Such
preliminary analysis may initially seem tedious; however, if it is done properly, it
often saves time and leads to a more precise understanding of the results. Data
screening is often discussed in terms of linearity, data normality, outliers, and
missing data. Researchers examine these issues in slightly different ways. Readers
are referred to Byrne (2006, 2010), Kline (2011), and Tabachnick and Fidell
(2007) for further details.

Linearity. SEM models are estimated by examining the relationship — usually a
linear one — among measured variables that are represented in the
variance/covariance matrix (or the correlation matrix and standard deviations).
Such a linear relationship between variables is called linearity: One variable
increase/decreases in proportion to a change in another variable. Figure 3A shows
an example of this relationship. As with regression and factor analysis, excessive
linearity is problematic. This can be examined through inspection of scatterplots or
correlation matrices. For example, high correlations among variables (e.g., +/—.90;
Tabachnick & Fidell, 2007) — also called multicollinearity — are troublesome.
Table 4 shows that the correlations between the observed variables range from
—103 to .601. They are not high enough to cause a problem. Statistical tests for
multicollinearity are also available, which include squared multiple correlations,
tolerance, and the variance inflation factor. These tests are also used in statistical
analysis in general and are not limited to SEM. High linearity can be adjusted for
by deleting or aggregating redundant variables.

Nonlinear relationships can also be examined in quadratic or cubic models. A
quadratic relationship is one in which one variable affects another up to some
point, after which the effect levels off or decreases. Figure 3B shows a data
distribution that looks like an inverse U-shape, where as one variable increases (1,
2,3,4,5, 6,7, 8) the other increases and then decreases (2, 3, 4, 5,4, 3,2, 1). A
cubic relationship is similar to a quadratic relationship—one variable affects
another up to some point, the effect levels off or decreases beyond that point, but
this time comes back to influence once again after a certain point. Figure 3C shows
a cubic relationship. Quadratic and cubic relationships are also called curvilinear
relationships. Figure 3D shows an interactive relationship, in which scores in one
group increase while those in the other group decrease. It is possible that a
moderator variable is at play. It should be noted that there are a variety of
nonlinear relationships in addition to those presented in Figures 3B, 3C, and 3D
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(e.g., U-shaped relationship for a quadratic one). As a standard SEM assumes
linear relations, modeling a nonlinear effect requires advanced techniques (see

Kline, 2005, 2011; Marsh, Wen, Nagengast, & Hau, 2012).

A B C D

Figure 3. Linear, quadratic, cubic, and interactive relationships

Data normality. Data normality is divided into univariate normality and
multivariate normality. Univariate normality refers to the situation in which one
variable is normally distributed. Multivariate normality refers to the situation in
which, in addition to the normality of each variable, each variable is also normally
distributed for each other variable (Tabachnick & Fidell, 2007). Numerous SEM
application studies use the maximum likelihood estimation method. This method
assumes multivariate normal distribution of the data for the dependent (i.e.,
endogenous) variable. Although maximum likelihood methods are robust against
non-normality, it is still important to assess whether the data satisfy the assumption
of normality. Since multivariate normality is related to univariate normality, both
types of normality need to be examined.

Univariate normality can be examined by inspecting absolute skewness and
kurtosis values or the statistical significance of those values. First, with regard to
the inspection of skewness and kurtosis, data normality is ensured when both
values are zero. Unfortunately, there are no clear-cut guidelines on the degree of
non-normality. Kline (2011) reviewed relevant studies (e.g., Curran, West, &
Finch, 1996) and suggested viewing skewness and kurtosis exceeding 3 and 20
respectively as extremely non-normal. Note that this is a rule-of-thumb and is not
an agreed-upon definition. For example, Curran et al. (1996) consider a skewness
of 2 and a kurtosis of 7 as moderately non-normal, and a skewness of 3 and a
kurtosis of 21 as severely non-normal. Chou and Bentler (1995) and Muthén and
Kaplan (1985) argue that skewness and kurtosis values approaching 2 and 7,
respectively, indicate problems. Table 4 shows that skewness and kurtosis values
for all the observed variables are well below these cut-offs and are in fact very near
to zero, thereby indicating that the data are univariately normal.
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Second, the statistical significance of skewness and kurtosis also serves as an
indicator of data normality. In particular, the critical ratio or z value is computed
by dividing either skewness or kurtosis by its standard error. Data normality is
ensured when the absolute value is within +/— 2.58 (p < .01) or 3.29 (p < .001).
However, as emphasized by Kline (2011) and Tabachnick and Fidell (2007), the
standard errors of skewness and kurtosis shrink in large sample sizes, which can
produce statistically significant skewness and kurtosis values even when the data
distribution appears normal. Thus, with large samples, making substantive
decisions on the basis of the visual inspection of the data — for example, using
histograms or box plots — is preferred. However, it is difficult to define what is
meant by a large sample. For example, Byrne (2006, 2010) only uses absolute
skewness and kurtosis values for her dataset with a sample size of 372. Ullman
(2007) uses both absolute values and statistical significance of skewness and
kurtosis for her two datasets with sample sizes 175 and 459. In actuality, it appears
that researchers are more likely to use estimation methods that are robust against
non-normality, such as Satorra-Bentler correction or weighted least square
parameter estimate methods. In any case, Table 4 shows that z values for skewness
and kurtosis are all within +/-2.58 (p <.01) or 3.29 (p <.001), thereby suggesting
data normality.

Additionally, multivariate normality can be measured using Mardia’s
coefficient of multivariate kurtosis. The statistical significance of Mardia’s
coefficient is examined using a z value, but this time using the z values of 5 or 6,
not +/-2.58 (p < .01) or 3.29 (p < .001), since Bentler (2005) argues that
multivariate non-normality would not affect the model in practice unless its values
were 5, 6, or above. Univariate normality can be estimated using general-purpose
software programs (e.g., SAS or SPSS) or SEM programs, whereas multivariate
normality can only be estimated using SEM programs (for SEM programs, see the
Software section). Mardia’s coefficient for the current data is —.157 with a z value
of —.119. This indicates the multivariate normality of the data.

As seen above, numerous issues surrounding the treatment of non-normal data
complicate decision making during data analysis. We reviewed previous studies
and found Finney and DiStefano (2006) the most accessible, synthetic, and up to
date. They summarize relevant studies and recommend that, for continuous data, if
the variables are approximately normally distributed, the maximum likelihood
estimation is recommended; if the variables are moderately non-normal (skewness
< 2 and kurtosis < 7) the maximum likelihood estimation or Satorra-Bentler
correction method are recommended; if the variables are severely non-normal
(skewness > 2 and kurtosis > 7), the Satorra-Bentler correction or bootstrapping
methods is recommended. For categorical data, regardless of the number of
categories, they recommend using weighted least square parameter estimates
(WLSMYV), available in the SEM program Mplus. If Mplus is not available, they
recommend that if the variables are approximately normally distributed, the
maximum likelihood estimation should be used for scales with five or more
categories and the Satorra-Bentler correction method for scales with four or more
categories. This also applies to moderately non-normal data (skewness < 2 and
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kurtosis < 7). If the variables are severely non-normal (skewness > 2 and kurtosis >
7), the Satorra-Bentler correction method is recommended.

Outliers. An outlier is an extremely large or small value of one variable (a
univariate outlier) or a combination of such values of two or more variables (a
multivariate outlier). Univariate outliers can be detected by drawing a histogram or
inspecting the z values of variables using, for example, the SPSS EXPLORE or
DESCRIPTIVES functions. Multivariate outliers can be detected using the
Mabhalanobis distance (i.e., Mahalanobis d-squared) statistic. It shows how one
observation in the data is distantly located from the others. It is distributed as a chi-
square statistic with degrees of freedom equal to the number of observed variables.
Observations are arranged according to the size of the statistics, and those
exceeding the critical value of the chi-square given degrees of freedom (e.g., p <
.001) can be judged as outliers. For the current data, the histograms appear normal.
There are five responses out of 4050 (450 x 9 items) exceeding the z value 3.29 (p
<.001). As this is just 0.001% of the total responses, it is considered negligible.
With regard to multivariate outliers, the critical value of chi-square for 24 degrees
of freedom is 51.179. The most deviated case was participant 4, whose responses
produced a Mahalanobis distance of 27.192—still below 51.179. Taken together, it
is reasonable to say that the current dataset does not include univariate or
multivariate outliers.

Missing data. The ideal situation is to be able to analyze a complete dataset that
contains all examinees’ responses to all items. In reality, this rarely occurs and one
often has to analyze a dataset with missing values. Therefore, how to treat missing
data is a widely discussed issue in the application of statistics, including SEM.
Missing data treatment is classified into three types: (a) the deletion of those data,
(b) the estimation of those data, and (c) the use of parameter estimation methods
that take missingness into consideration. Deletion of missing data is a traditional
approach, and includes listwise deletion (elimination of all cases with missing
values from subsequent analysis) or pairwise deletion (removal of paired cases in
which at least one case has a missing value). Although both methods are easy to
implement, they may result in substantial loss of data observations. More
importantly, Muthén, Kaplan, and Hollis (1987) argue that the two methods work
only when data are missing completely at random, a case that is often violated in
practice. Thus, both listwise and pairwise deletion methods may bias results if data
missingness is not randomly distributed through the data (Tabachnick & Fidell,
2007).

A preferred approach is to estimate and impute missing data. Methods abound,
such as mean substitution, regression, and expectation maximization methods;
however, according to Tabachnick and Fidell (2007), the most recommended
method is multiple imputation (Rubin, 1987). It replaces missing values with
plausible values that take into account random variation.

Another way to address missing data is to use parameter estimation methods
that take missingness into consideration. This is implemented in (full information)
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maximum likelihood estimation, which uses all available data regardless of
completeness (e.g., Enders, 2001). Both expectation maximization and maximum
likelihood estimation methods are available in SEM programs. As the current data
do not include missing responses, it is not necessary to eliminate, estimate, or
impute such responses.

Model Fit Indices

Although no agreed-upon guidelines exist regarding which fit indices should be
reported, some recommendations can be found in the literature. In an often-cited
article, Hu and Bentler (1998, 1999) recommend reporting (a) the SRMR, and (b)
the CFI, TLI, RMSEA, or other indices (e.g., Gamma Hat, Incremental Fit Index
[TFI], McDonald’s Centrality Index [MCI], Relative Noncentrality Index [RNI]).
Similarly, Kashy, Donnellan, Ackerman, and Russell (2009) recommend reporting
the CFI or TLI along with the chi-square and RMSEA. Bandalos and Finney
(2010) recommend the chi-square, CFI, TLI, RMSEA, and SRMR, whereas
Mueller and Hancock (2010) recommend RMSEA and its confidence interval, the
SRMR, and at least one of CFI, NFI, and TLI. Widaman (2010) encourages
reporting the chi-square, CFI, TLI, and RMSEA. For testing measurement
invariance across groups (e.g., whether the factor loadings are the same across
groups), Cheung and Rensvold (2002) recommend reporting the CFI, Gamma Hat,
and McDonald’s Noncentrality Index and interpreting a reduction in each index as
evidence of measurement invariance. Summarizing studies that provide guidelines
for reporting fit indices, In'nami and Koizumi (2011) report that the indices
recommended most often are the chi-square (with degrees of freedom and p
values), CFI, TLI, RMSEA (and its confidence interval), and the SRMR.

Sample Size

One rule-of-thumb is that a sample size below 100, between 100 and 200, and over
200 is often considered small, medium, and large, respectively (Kline, 2005).
Similarly, Ding, Velicer, and Harlow (1995) argue that the minimum sample size
adequate for analysis is generally 100 to 150 participants. Another approach is to
consider model complexity in terms of the ratio of the sample size to the number of
free parameters to be estimated in a model. A minimum sample size is at least 10
times the number of free model parameters (Raykov & Marcoulides, 2006). For
example, a model with 30 free parameters would require at least 300 observations
(30 x 10). Nevertheless, as the authors of the aforementioned articles emphasize,
these are only rough guidelines. This is particularly because the requisite sample
size depends on numerous factors, including the number and patterns of missing
data, strength of the relationships among the indicators, types of indicators (e.g.,
categorical or continuous), estimation methods (e.g., [robust] maximum likelihood,
robust weighted least squares), and reliability of the indicators. Complex issues
surrounding sample size determination seem to hamper creating definitive rules —
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or even rules of thumb — concerning necessary sample size (e.g., Mundfrom, Shaw,
& Ke, 2005).

Instead of elaborating on general guidelines for sample size, more empirically
grounded, individual-model-focused approaches to determining sample size in
relation to parameter precision and power have been proposed. These approaches
include Satorra and Saris (1985), MacCallum, Browne, and Sugawara (1996), and
Muthén and Muthén (2002). The methods of both Satorra and Saris (1985) and
MacCallum et al. (1996) estimate sample size in terms of the precision and power
of an entire model using the chi-square statistic and RMSEA, respectively. In
contrast, Muthén and Muthén (2002) evaluate sample size in terms of the precision
and power of individual parameters in a model, while allowing the modeling of
various conditions that researchers frequently encounter in their research, such as
non-normality or type of indicator. Such modeling flexibility is certainly useful for
estimating sample size, given that sample size and many variables affect each other
in intricate ways.

In order to evaluate sample size, Muthén and Muthén (2002) use four criteria.
First, parameter bias and standard error bias should not exceed [10%| for any
parameter in the model. Second, the standard error bias for the parameter for which
power is of particular interest should not exceed |5%|. Third, 95% coverage — the
proportion of replications for which the 95% confidence interval covers the
population parameter value — should fall between 0.91 and 0.98. One minus the
coverage value equals the alpha level of 0.05. Coverage values should be close to
the correct value of 0.95. Finally, power is evaluated in terms of whether it exceeds
0.80 — a commonly accepted value for sufficient power.

An analysis of the sample size of the current data based on Muthén and Muthén
(2002) is presented in Table 5. Columns 2 and 3 show population and sample
parameters. Population parameters are unstandardized parameters in Table 3. They
are viewed as correct, true parameters from which numerous samples (replications)
are generated in each run, and results over the replications are summarized. For
example, using these values, the parameter bias for self-assessment measured by
mathematics is calculated in the following manner: [0.9130 — 0.910}/]0.910| =
0.00330, or in other words, 0.330%. This is far below the criterion of 10%, thereby
suggesting a good estimation of the parameter. The result is presented in
Column 4. Column 5 shows the standard deviation of the parameters across
replications. Column 6 shows the average of the standard errors across
replications. The standard error bias for self-assessment measured by mathematics
is [0.0743 — 0.0754//]0.0754| = 0.01459, or in other words, 1.459%. This is again
far below the criterion of 10%, thereby suggesting a good estimation of the
parameter. The result is presented in Column 7. In particular, we are interested in
the effect of self-assessment and teacher assessment on academic achievement.
The standard error biases for these parameters of interest are 0.413% and 0.545%,
respectively. Neither exceeds 5%, thereby suggesting a good estimation of the
parameter. Column 8 provides the mean square error of parameter estimates, which
equals the variance of the estimates across replications plus the squared bias
(Muthén & Muthén, 2007). Column 9 shows coverage, or the proportion of
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replications where the 95% confidence interval covers the true parameter value.
The value of 0.947 for self-assessment measured by mathematics is very close to
0.95, thereby suggesting a good estimation of the parameter. The last column
shows the percentage of replications for which the parameter is significantly
different from zero (i.e., the power estimate of a parameter). Column 10 shows that
the power for self-assessment measured by mathematics is 1.000, which exceeds
0.80 and suggests sufficient power for the parameter. Together, these results
provide good evidence for parameter precision and power for self-assessment
measured by mathematics and suggest that the sample size for self-assessment
measured by mathematics is sufficient. The same process is repeated for the
remaining parameters. It should be noted that the power for the correlation between
self-assessment and teacher assessment is low (0.339; see the last row). This
suggests that the current sample size of 450 is not enough to distinguish the
correlation from zero. Thus, although the sample size for the current model is
adequate overall, the underpowered correlation indicates that caution should be
exercised when interpreting it. The Appendix shows the Mplus syntax used for the
current analysis.

Table 5. Mplus output for the Monte Carlo analysis to determine the precision
and power of parameters

Populat Sample Pmbi::xeter SDof Smnda.rfx_! Sland‘;rd NMean 958
tion L] 170f 0! error bias uare % .
parmeter p:f_a:;it:és mg‘;ﬂ sample eﬁm’ of coverage Power
S paramy pammeters parameters
Self-assessment by
English 1 1 0 0 0 0 1 0
Mathematics 0.910 0.9130 0.330 0.0754 0.0743 1.459 0.0057 0.947 1.000
Science 0.703 0.7024 0.085 0.0613 0.0609 0.653 0.0038 0.950 1.000
Teacher assessment by
English 1 1 0 0 0 0 0 1 0
Science 0.736 0.7451 1.236 0.0890 0.0876 1.573 0.0079 0951 1.000
Mathematics 0.528 0.5318 0.720 0.0662 0.0666 0.604 0.0044 0953 1.000
Academic achievement by
English 1 1 0 0 0 0 0 1 0
Mathematics 0.483 0.4811 0.393 0.0613 0.0604 1.468 0.0038 0945 1.000
Science 0.534 0.5310 0.562 0.0658 0.065 1216 0.0043 0.947 1.000
Academic
achievement
Self- 0.498 0.5025 0.904 0.0726 0.0723 0413 0.0053 0.949 1.000
Assessment
Teacher 0.380 0.3810 0.263 0.0734 0.0730 0.545 0.0054 0.945 1.000
assessment -
Self-assessment Wit
Teacher =0.092 -0.0894 2.826 0.0586 0.0578 1.365 0.0034 0951 0339
assessment

Note. The column labels were slightly changed from original Mplus outputs to enhance
clarity. Self-assessment by English refers to a path from the self-assessment factor to the
English variable. Self-assessment with Teacher assessment refers to the correlation
between these two factors.

40



SEM IN EDUCATIONAL RESEARCH: A PRIMER

VARIOUS SEM ANALYSES

Various types of models can be analyzed within the SEM framework. In addition
to the models presented in Figures 1 and 2, we describe models often used in
educational studies: confirmatory factor analysis, multiple-group analysis, and
latent growth modeling. First, confirmatory factor analysis is used to examine
whether the factor structure of a set of observed variables is consistent with
previous theory or empirical findings (e.g., Brown, 2006). The researcher
constructs a model using knowledge of the theory and/or empirical research,
postulates the relationship pattern, and tests the hypothesis statistically. This
reinforces the importance of theory in the process of model building. The models
of self-assessment, teacher assessment, and academic achievement in Figures 1 and
2 represent different measurement models and must be verified through
confirmatory factor analysis in terms of whether each of the three constructs are
well represented by the three measurements of English, mathematics, and science.
Unfortunately, each measurement model has only three observed variables, and
this results in zero degrees of freedom (6 parameters to estimate — two factor
loadings, three measurement errors, and one factor variance — and 3(3 + 1)/2 =6
data points). The measurement models cannot be evaluated in the current model
specification (see model identification in the Five Steps in an SEM Application
above).

Various models can be analyzed using confirmatory factor analysis. For
example, the often-cited study Holzinger and Swineford (1939) administered a
battery of tests to measure seventh- and eighth-grade students in two Chicago
schools. The tests were designed to measure mental ability, hypothesized to
comprise spatial, verbal, speed, memory, and mathematics abilities. Although
Holzinger and Swineford (1939) did not use SEM, the model closest to the one
they hypothesized is shown in Figure 4A, and competing models that we
postulated are shown in Figures 4B, 5A, and 5B. Figure 4A shows that mental
ability comprises a general ability and five sub-abilities. Figure 4B is similar to
Figure 4A but assumes a hierarchical relationship between a general ability and
sub-abilities. Figure 5A assumes only a single general ability. Figure 5B
hypothesizes no general ability and instead assumes correlated sub-abilities. A
series of models can be tested on a single dataset using SEM by comparing model
fit indices or using a chi-square difference test (see, for example, Brown, 2006;
Shin, 2005).

Second, multiple-group or multiple-sample analysis aims to fit a model to two
or more sets of data simultaneously. It allows us to test whether and to what extent
measurement instruments (tests and questionnaires) function equally across groups,
or, put another way, whether and to what extent the factor structure of a
measurement instrument or theoretical construct of interest holds true across
groups (e.g., Bollen, 1989). Multiple-group analysis involves testing across the
samples whether factor loadings, measurement error variances, factor variances,
and factor covariances are the same. Equivalence across groups suggests the cross-
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Figure 4. Confirmatory factor analysis of a model of mental ability: Bi-factor model (left)
and higher-order model (right). The spatial test battery comprises (1) visual perception, (2)
cubes, (3) paper form board, and (4) flags. The verbal test battery comprises (5) general
information, (6) paragraph comprehension, (7) sentence completion, (8) word
classification, and (9) word meaning. The speed test battery comprises (10) addition, (11)
coding, (12) counting groups of dots, and (13) straight and curved capitals. The memory
test battery comprises (14) word recognition, (15) number recognition, (16) figure
recognition, (17) object-number, (18) number-figure, and (19) figure-word. The math test
battery comprises (20) deduction, (21) numerical puzzles, (22) problem reasoning, (23)
series completion, and (24) Woody-AcCall Mixed Fundamentals.
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Figure 5. Confirmatory factor analysis of a model of mental ability: Single-factor model
(left) and correlated-factor model (right)
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validation or generalizability of findings. It is possible that factor loadings are
similar in size across groups, while factor covariances are different. For example,
Holzinger and Swineford’s (1939) data include seventh- and eighth-grade students
of both genders from two different schools. It would be of interest to examine
whether the bi-factor model of mental ability in Figure 4A is stable across
grades, gender, and/or schools. For examples of applications of multiple-group
analysis, see Byrne, Baron and Balev (1998), In’'nami and Koizumi (2012), and
Shin (2005).

Third, latent growth modeling is useful for evaluating longitudinal changes in
aspects of individuals over time. It provides a great deal of information, including
change at the individual and the group levels, pattern of change (e.g., linear,
quadratic), and variables related to change, such as age, gender, motivation, and
socioeconomic status (i.e., income, education, and occupation). For example, Tong
et al. (2008) hypothesized that second language oral proficiency develops linearly
when measured by vocabulary and listening tests at three time points over two
years. Their model is presented in Figure 6A. Initial status, also called intercept,

A B
Gender Income eﬁﬁgg{ﬂn

'ocabulary §
Listening

Initial
status

Listening

Reading Reading Reading
(Time 1) (Time 2) (Time 3)

Figure 6. Latent growth model of oral proficiency (left) and of reading proficiency with
external variables (right)

indicates the level of proficiency at the beginning of the study. Growth rate, also
called slope, indicates the speed at which change is observed at each measurement
point. The loadings for the initial status factor are all fixed to be 1, whereas those
for the growth rate are fixed to be 0, 1, and 2 to model a linear growth rate. Note
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that all factor loadings are fixed, unlike confirmatory factor analysis and multiple-
group analysis.

More complex models can also be analyzed using latent growth modeling. Yeo,
Fearrington, and Christ (2011) investigated how demographic variables — gender,
income, and special education status — affect reading growth at school. Their
model, shown in Figure 6B, differs primarily from the model in Figure 6A in two
ways. First, the loadings for the growth rate factor are fixed to be 0, 5, and 9 —
three time points of data collection (August = 0, January = 5, and May = 9) —
because we assume that the authors were interested in nine-month growth and
rescaled the slope factor loadings accordingly. It should be noted that growth rate
factors, whether fixed to be 1, 2, and 3, or 0, 5, and 9, do not change the data-
model fit (e.g., Hancock & Lawrence, 2006). Second, the three demographic
variables are incorporated into the model as predictors of initial status and growth
rate. The results indicate the relative impact of the external variables on the initial
level of reading proficiency and on the growth rate of reading proficiency over
nine months. For further examples of latent growth modeling, see Kieffer (2011)
and Marsh and Yeung (1998).

SOFTWARE

Since Byrne (2012a) provides a detailed, comparative review of SEM software, we
will present only a brief treatment of SEM software programs (also see Narayanan,
2012). There are several major commercial programs for performing SEM,
including Amos (Analysis of Moment Structures; Arbuckle, 1994-2012), CALIS
(SAS Institute, 1990-2012), EQS (Equations; Bentler, 1994-2011), LISREL
(Linear Structural Relationships; Joreskog & Sorbom, 1974-2012), and Mplus
(Muthén & Muthén, 1998-2012). Free programs are also available, including Mx
(Neale, Boker, Xie, & Maes, 2003) and three R-language packages: the OpenMx
package (Boker, Neale, Maes, Wilde, Spiegel, Brick, et al., 2007-2012), the “sem”
package (Fox, Nie, Byrnes, Culbertson, Friendly, Kramer, & Monette, 2012), and
the “lavaan” package (Rosseel, 2012). The choice of software depends on the
purpose of the SEM analysis and the proficiency of the user’s computing skills.
Byrne (2012a) indicates three aspects related to deciding on the best software: (a)
familiarity with SEM concepts and application, (b) the types of SEM model to be
tested, and (c) preference concerning manual or graphic interface. She argues that
beginners may find Amos or EQS the easiest to use, and that more advanced
learners may prefer to use EQS, LISREL, or Mplus. Unlike Amos, EQS, and
LISREL, Mplus requires command-based inputs, and learners who are used to
graphic interfaces may need some time to become comfortable with the program.
In order to familiarize themselves with software, novice learners are referred to
Byrne (1998, 2006, 2010, 2012b), whereas advanced learners wishing to use R-
based packages are referred to Fox, Byrnes, Boker, and Neale (2012).
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SOME DIRECTIONS FOR LEARNING MORE ABOUT SEM

Since SEM is a versatile technique, a single book chapter would not be able to
cover a wide range of analyses that can be modeled using SEM. In order to deepen
learning regarding SEM, we recommend reading through Byrne (1998, 2006,
2010, 2012b) for LISREL, EQS, Amos, and Mplus, trying to analyze the
accompanying datasets, and ensuring that one can replicate findings. Based on our
own experience with Byrne (2010) for Amos, and Byrne (2006) for EQS datasets,
as well as on discussion with skilled SEM users, we believe that this is probably
the best approach to familiarize oneself with SEM and apply the techniques to
one’s own data.

For providing answers to questions that may arise with regard to particular
issues related to SEM, the following recent references may be useful: Bandalos and
Finney (2010), Brown (2006), Cudeck and du Toit (2009), Hancock and Mueller
(2006), Hoyle (2012), Kaplan (2009), Kline (2011), Lomax (2010), Mueller and
Hancock (2008, 2010), Mulaik (2009), Raykov and Marcoulides (20006),
Schumacker and Lomax (2010), Teo and Khine (2009), and Ullman (2007). For
more on how researchers should report SEM results, see Boomsma, Hoyle, and
Panter (2012); Gefen, Rigdon, and Straub (2011); Jackson, Gillaspy Jr., and Purc-
Stephenson (2009); Kahn (2006); Kashy, Donnellan, Ackerman, and Russell
(2009); Martens (2005); McDonald and Ho (2002); Schreiber, Nora, Stage,
Barlow, and King (2006); and Worthington and Whittaker (2006). Reporting a
correlation matrix with means and standard deviations is strongly recommended as
this allows one to replicate a model, although replication of non-normal and/or
missing data requires raw data (for example, see In’'nami & Koizumi, 2010). Of
particular interest is the journal Structural Equation Modeling: An
Interdisciplinary Journal published by Taylor & Francis, which is aimed at those
interested in theoretical and innovative applied aspects of SEM. Although
comprising highly technical articles, it also includes the Teacher’s Corner, which
features instructional modules on certain aspects of SEM, and book and software
reviews providing objective evaluation of current texts and products in the field.

For questions pertaining to particular features of SEM programs, user guides are
probably the best resource. In particular, we find the EQS user guide (Bentler &
Wu, 2005) and manual (Bentler, 2005) outstanding, as they describe underlying
statistical theory in a readable manner as well as stepwise guidance on how to use
the program. A close look at manuals and user guides may provide answers to most
questions. LISREL and Mplus users should take full advantage of technical
appendices, notes, example datasets, and commands, which are all available online
free of charge (Mplus, 2012; Scientific Software International, 2012). The Mplus
website also provides recorded seminars and workshops on SEM and a schedule
listing of upcoming courses.

For problems not addressed by the abovementioned resources, we suggest
consulting the Structural Equation Modeling Discussion Network (SEMNET). It
was founded in February 1993 (Rigdon, 1998) and archives messages by month.
Because of the large number of archived messages collected over the past two
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decades (thanks to the mushrooming popularity of SEM across many disciplines),
SEMNET is a treasure trove of questions and answers on virtually every aspect of
SEM. Questions should only be posted if answers to them cannot be found in the
archive. As with any other academic online discussion forum, contributors to
SEMNET take questions seriously and spend precious time responding to them.
We recommend that anyone wishing to receive a good reply should mention that
answers were not found in the archive and articulate problems in enough detail for
others to respond. Posting a command/script/syntax file is a good idea.

SEM is constantly evolving and expanding. The development and application of
new techniques are causing numerous academic disciplines to move increasingly
toward a better understanding of various issues that require tools that are more
precise. SEM analysis offers powerful options for analyzing data from educational
settings, and techniques discussed in this chapter will enable educational
researchers to be in a better position to address a wide range of research questions.
By employing SEM analysis appropriately, we will be able to contribute much in
years to come.

APPENDIX

Mplus Input for the Monte Carlo Analysis for Determining the Precision and Power of
Parameters
TITLE: THREE-FACTOR, NORMAL DATA, NO MISSING
MONTECARLO:
NAMES ARE X1-X9;
NOBSERVATIONS =450; ! SAMPLE SIZE OF INTEREST
NREPS = 10000;
SEED = 53567;
MODEL POPULATION:
fl BY X1@1 X2*.91 X3*.70;
2 BY X4@1 X5*.74 X6*.53;
f3 BY X7@1 X8%*.48 X9*.53;
X1#*.77; X2*.37; X3*.61; X4*.91; X5*.48; X6*.76; X7*.66; X8*.63;
X9*.66;
f1*.88; 2*.94; £3*.74;
f3 ON f1*.50; f3 ON f2*.38;
f1 WITH 2*-.09;
MODEL:
fl BY X1@1 X2*.91 X3*.70;
2 BY X4@1 X5*.74 X6*.53;
f3 BY X7@1 X8*.48 X9*.53;
X1*.77; X2*.37; X3*.61; X4*.91; X5*.48; X6*.76; X7*.66; X8*.63;
X9*.66;
f1*.88; £2*.94; £3*.74;
f3 ON f1*.50; f3 ON f2*.38;
f1 WITH £2%*-.09;
ANALYSIS: ESTIMATOR = ML;
OUTPUT: TECHO9;
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