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INTRODUCTION

There is no question that mathematicians are going to be called on to teach
teachers. The tide is already turning in this direction. (Sultan & Artzt, 2005, p.
53)

As practitioners of the discipline, research mathematicians can bring valuable
mathematical knowledge, perspectives, and resources to the work of mathemat-
ics education. (Bass, 2005, p. 430)

The involvement of mathematicians in mathematics education is as old as mathe-
matics education itself. Very prominent mathematicians, such as Felix Klein and
Hans Freudenthal, are considered precursors or even founding fathers of mathe-
matics education as an academic field of study. Many well-known researchers in
mathematics education started their career as research mathematicians, like Alan
Schoenfeld and Günter Törner, to whom this volume is dedicated. Indeed, what
could be more natural than mathematicians being intensively involved in mathemat-
ics education? However, it seems that after mathematics education established itself
as a discipline, the role of mathematicians has been less prominent than expected.
Paradoxically, mathematicians are often critical of this new discipline.

In the last decade, and possibly as a positive reaction to the unfortunate effects
of what was called the “math wars,” many avenues for dialogue have been initiated
between research mathematicians and mathematics educators about the goals, con-
tent and pedagogy of the mathematics curriculum. However, the direct involvement
of mathematicians in the practice of mathematics education, in teacher education
for example, rarely receives careful scrutiny.

This chapter is an attempt to contribute to understanding the possible roles
that might be played by mathematicians in mathematics teacher education for el-
ementary school teachers. It describes and analyzes a professional development
program (PD). The program is run by mathematicians (a research mathematician
and graduate doctoral students from an internationally renowned Mathematics de-
partment) who teach in-service courses for elementary school teachers in Israel.
These mathematicians work as a group, coordinating their lesson plans and collec-
tively reflecting on them before and after implementation. The team works mostly
on the basis of their mathematical insights with occasional consultations with math-
ematics education experts. The overarching goal of the course is to deepen and
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broaden teachers’ understanding of central concepts in elementary mathematics.
This course is a unique experience in Israel on a number of counts:

− Usually, instructors in professional development courses for elementary
school mathematics teachers are experienced fellow teachers, or teacher lead-
ers appointed by the Ministry of Education, or curriculum developers and
occasionally mathematics educators.

− The knowledge and perspectives that the mathematician-instructors bring to
the course, their modest experience with elementary school teaching, and their
beliefs and attitudes regarding the nature of mathematics and its teaching are
not at all typical of elementary school PD.

− The content of this PD is also unusual. Elementary math content knowledge is
generally conceived as straightforward, in spite of research contradicting this
view, e.g. (Ma, 1999). A common first reaction may be: “what else is there to
learn about the four basic arithmetical operations?” PD for elementary school
teachers tends to focus on pedagogical content knowledge (PCK) – how best
to teach particular topics, how to address student errors and misconceptions,
etc. In contrast, this PD aims to focus on subject matter content knowledge, as
conceived by mathematicians who have little or no expertise in pedagogy.

− The instructors develop their own lesson plans. Many times they design their
own exercises and problems and refine them in collective team discussions,
in either face to face or virtual meetings. Also, after most of the lessons they
produce reflective reports, analyzing what worked and what did not work.

This chapter is based on data collected during several lessons in these courses,1

focusing on the mathematician-instructors – the professional knowledge they bring
to bear, their attitudes and beliefs, and how all these impinge on the way they
envision elementary mathematics, and how they influence their didactical choices
and their teaching decisions. We document the emergence of insights, both math-
ematical and pedagogical in nature, which developed either during the instructors’
preparation/reflection sessions or during interactions in class with the teacher-
participants. The teachers’ side of the story is no less interesting, and will be
reported elsewhere.

In our analyses, we target both theoretical and practical contributions. Theoreti-
cally, we discuss the blending and interaction between types of knowledge towards
a growing understanding of the construct of mathematical knowledge for teaching
(MKT), e.g. Ball et al (2008). Practically, the PD described here may serve as the
basis for future opportunities for mathematicians teaching elementary mathematics
teachers.

BACKGROUND

This chapter is based on observations collected from two academic years, 2010–
2011 and 2011–2012. The professional development course includes ten 3-hour
sessions. There are separate tracks for grades 1–2 and for grades 3–6.
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The first few sessions of 2010–2011 did not bode well. The mathematics
instructors intended to focus on deepening and broadening the teachers’ mathe-
matical knowledge. One of the questions they asked themselves was “what do we
know that the teachers do not?” Their answers to this question did not include
“how to teach elementary mathematics” – a topic they were careful to avoid. Some
instructors were very explicit about this point and stated openly to the participants:
“I know nothing about teaching elementary math, I can’t tell you how to teach it,
and I won’t.” Once it was clear that the mathematicians’ contribution would be in
the realm of mathematical content, their next question was “what could we possibly
contribute to the understanding of such apparently straightforward topics?” Their
assumption was that part of the intricacies of teaching elementary mathematics,
especially in the lower grades, lies in recognizing and addressing subtleties in
the subject matter and its conceptual underpinnings. This was at the core of the
expertise they brought to the course. Once they were explicit about it, the challenge
was to expose these subtleties to the teachers in the PD. One of the first approaches
the mathematicians adopted for selecting appropriate activities for the teachers was
estrangement – a technique designed to gain new insights on the familiar by reflect-
ing on the unfamiliar. Estrangement (dépaysement in French) is an anthropological
term which literally means going out of one’s country. It was used frequently by
the anthropologist Lévi-Strauss, as described, for example, by Hénaff (1998), and
has also been used in some studies of mathematics education (Barbin, 2011). Two
typical examples of this approach, implemented in the PD, consisted of working
on base-5 arithmetic in order to gain an appreciation of the structural subtleties
of base 10, and reviewing cardinality and counting through learning to compare
infinite sets. This approach – taking a step back to gain a broader perspective – may
be typical of the way mathematicians think and work. However, it was not a great
success with the teachers, who tended to judge such topics (base 5, infinite sets) as
irrelevant to their teaching, and thus not at all what they were hoping to gain from
the PD. They felt that what they most needed in order to improve their practice
was practical tools, for example, activities they could take to class, tips for teaching
particular topics, how to deal with student difficulties, etc. Grade 1-2 teachers, in
particular, did not feel a need to deepen their understanding of the subject matter,
which they considered quite straightforward. The teachers did not hesitate to voice
their dissatisfaction with the mathematicians’ approach, and the instructors felt they
needed to adapt their approach to meet the teachers’ expectations of relevance.

This mismatch of expectations could be seen as a sure promise of failure, with
the subsequent feelings of frustration to be felt by instructors and teachers alike.
However, the story evolved in a different and rather fruitful path.

In the 2011–2012 PD the instructors attempted to address the teachers’ feedback
from the previous year, but they did not completely adopt the teachers’ views on
what would make the PD relevant. Their interpretation of the demand for relevance
was shaped by two factors: what they thought the teachers needed (better under-
standing of the content), and what they felt they could provide as mathematicians.
They eventually came up with a number of activities which blended subject mat-

181



J. COOPER AND A. ARCAVI

ter content knowledge (the mathematicians’ expectation) and pedagogical content
knowledge (the teachers’ expectation).

The instructors’ need to address the teachers’ discontent with their unfulfilled
expectations, coupled with the conviction that mathematical content should remain
at the core of the course, made them re-think their courses of action and figure
out how to address the former without renouncing the latter. We will analyze the
instructors’ moves to conciliate these seemingly opposing goals, and describe how
this shaped what is now considered a successful PD program not only by the
instructors and participants, but also by officials from the Ministry of Education.

We focus on how the mathematicians brought their mathematical knowledge
and their beliefs about mathematics to bear on various aspects of teaching, as
follows:

− Mathematical content

• Unpacking elementary topics into their components
• Unpacking tools for doing mathematics
• Preparing for how elementary topics will eventually interact with future

advanced topics on the horizon of the students’ knowledge

− Pedagogical issues

• Anticipating and addressing student difficulties, errors and misconceptions
• Designing activities for the PD, bearing in mind how these activities might

play out in the teachers’ classrooms

MATHEMATICAL CONTENT – UNPACKING ELEMENTARY TOPICS

I have observed, not only with other people but also with myself . . . that sources
of insight can be clogged by automatisms. One finally masters an activity so per-
fectly that the question of how and why is not asked any more, cannot be asked
any more, and is not even understood any more as a meaningful and relevant
question. (Freudenthal, 1983, p. 469)

This quote reflects one of the central challenges in teaching mathematics, especially
elementary mathematics, which includes “unpacking” the mathematical content –
reviewing what it is made up of and what it really involves for a learner, appreciat-
ing the conceptual nuances, and disentangling the multiplicity of seemingly similar
meanings for the same or connected concepts.

The following are examples of how the mathematicians unpacked some con-
cepts in elementary math, armed with their knowledge of advanced mathematics
and their experience practicing it. We show examples of two kinds of mathematical
unpacking, one referring to specific subject matter concepts (e.g. counting), and
another referring to the practices for doing mathematics (e.g. proofs and justifi-
cations, definitions). It may well be that mathematicians’ knowledge of advanced
mathematics is not strictly necessary for unpacking elementary concepts, nor is it
sufficient, but it does appear to be highly instrumental. In some cases, we see how
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the mathematicians’ knowledge not only pointed the way to unpacking concepts
but interestingly, it also yielded insightful pedagogical implications.

Unpacking counting and the concept of number

There are two different definitions of natural numbers – the set theoretic definition
(attributed to Frege and Russell) and the Peano axioms. One can clearly know,
operate flawlessly with, and teach natural numbers without being aware of either
of these definitions, but awareness of them proved to be productive in unpacking
the concepts of number and counting. The set theoretic definition has more affinity
with the act of counting objects in a set, whereas the Peano axioms, based on the
successor operator, tend to be aligned with the act of counting by saying the num-
bers out loud one after the other without a specific reference to objects and without
a specific goal of establishing the “cardinality of a given set” (“rote” counting).
These are two different aspects of counting that children need to learn. Awareness
of the two definitions, and of the equivalence between them, helped the mathemati-
cians see the differences and connections between these two aspects, and it also
contributed to their re-visiting of the basic operations of addition and subtraction
and their properties. Rote counting is related to Peano’s concept of successor (what
comes next), whereas counting elements of a set is closer to Frege and Russell’s
construction, where the number 3 is equated with the equivalence class of all sets
having 3 elements. Proving that Frege and Russell’s construction satisfies the Peano
axioms (something the mathematicians considered doing in the PD, but realized
would not be relevant for the teachers) helps illuminate the connection between the
two counting competencies. To begin with, the number 3 is an operator that acts
on objects – “3 flowers,” “3 birds,” etc. Children eventually need to abstract the
concept, and see the equivalence of all sets of a particular cardinality. This is very
similar to the equivalence inherent in the set theoretic definition of numbers. This
parallel between what the mathematicians need to prove and what the children need
to understand helped the mathematicians see what there is to learn in this seemingly
trivial topic, and the mathematical basis helped to make this explicit.

Comparing the cardinality of two sets (which set has more elements) can be
based on counting, but it is in fact possible to make such comparisons without
knowing how to count. It is possible to set up a 1-1 correspondence between the
elements of the two sets, and see which – if either – has elements left over. Math-
ematics students typically encounter this principle in an under-graduate course in
set theory, where 1-1 correspondences are used to compare infinite cardinalities. In
fact, the existence of such a correspondence is taken to be the definition of equal
cardinalities. Furthermore, 1-1 correspondence is a more fundamental concept than
counting, since counting the objects in a set relies on setting up a 1-1 correspon-
dence between the set’s objects and the first natural numbers (1, 2, 3, . . . ). Teachers
often overlook this comparison strategy, perhaps due to their preoccupation with
mastering the skill of counting, and may be completely unaware of the concept
of 1-1 correspondence and its role in counting objects. This is another example of
how their knowledge of advanced mathematics helped the mathematicians regain
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insight into the foundations of elementary mathematics. The question of how this
mathematical content can be presented to the teachers is a separate issue, which
will be addressed in the section on designing activities.

Addition is defined differently in the two constructions of numbers. In the
set theoretic definition, addition is based on set unions – putting together two
collections of objects. In the Peano approach, addition is based on the repeated
application of the successor operator, namely starting from one number and
counting-on as many times as the second addend indicates. The mathematicians
found it is easier to prove the commutative principle in the set theoretic construction
of numbers than by relying on the successor. For them, this implied something
about how the property may be understood by children. Adding 11 to 2 (counting-
on 11 starting from 2) does not feel at all the same as adding 2 to 11 (counting-on
2 starting from 11). In fact, it is not at all obvious why the results should work
out to be the same! This corresponds to the difficulty in proving the commutative
principle based on Peano’s axioms. On the other hand, the union of two sets (one
having 2 objects, one having 11) is symmetrical. Thus, on the basis of the set
theoretic definition of numbers, the commutative principle is obvious and its proof
is straightforward. Through this connection between mathematicians’ definitions
and children’s models of addition, the mathematicians gained some pedagogical
insight: the commutative property is more obvious in some contexts than in others,
and should be introduced to children accordingly.

Unpacking the associative property of multiplication

The distinction between multiplication’s commutative property, a ×b = b×a, and
associative property, (a × b) × c = a × (b × c) may be confusing for students and
teachers alike. The confusion may be related to the following: the combination of
the two properties boils down to when you need to multiply a list of numbers, you
can do it in any sequence you like. So why separate this simple statement into two
distinct properties, if procedurally they seem indistinguishable? The answer is pro-
vided in university algebra – some mathematical domains (e.g. non-commutative
groups) have one property and not the other, so they must be considered as dis-
tinct. It is questionable whether this argument would convince a student, or even
a teacher. One of the instructors came up with a convincing argument without
resorting to advanced mathematics. The example he worked with was: There are
5 buses, 40 children on each bus, and each child has 2 parcels, how many parcels
are there in total? The teachers suggested a number of ways to calculate the result,
including: (5×40)×2 , 5×(40×2), and (5×2)×40. The last of these calculations
is the easiest, starting with the obvious (5 × 2). The instructor asked how we know
that all of the above yield the same answer. There was no consensus – both the
commutative and the associative properties were suggested. In fact, the third way
of calculating follows from the first or the second by applying both the commutative
and the associative properties, 5 × (40 × 2) = 5 × (2 × 40) = (5 × 2) × 40, but
the instructor did not take this formal route. Instead he returned to the problem
and its contextual meaning. What does 5 × 40 represent? The total number of
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children. What does 40 × 2 represent? The number of parcels per bus. Either of
these quantities may be the first calculation in our solution (an observation that
in fact demonstrates the associative property). But what does 5 × 2 represent? It
does not represent anything meaningful in the problem! So, we can explain the
commutative property (perhaps by means of the array model), and we can explain
the associative property (as demonstrated above), but the combination of the two –
multiply in any order you like – is a conclusion that does not follow naturally from
the meaning of problem. This helped illustrate to the teachers that there are indeed
two distinct properties, having distinct explanations.

Unpacking equality

In students’ early encounters with the equality symbol it is usually taken as a call
for action, for example, “7 × 2 =” is read as an invitation to carry out a calculation
(see, for example, Saenz-Ludlow & Walgamuth, 1998). Mathematicians are aware
of the sophisticated multiplicity of other meanings (e.g. Freudenthal, 1983), where
equality is first and foremost an equivalence relationship. This became salient in
the topic of division with remainder, where the equivalence breaks down. Adopting
the American notation, 7 : 2 = 3R1, but 3R1 is also the result of 10 : 3. May we
conclude that 7 : 2 = 10 : 3?! Conversely, 7 : 2 and 14 : 4 should be equal, but one
is 3R1 and the other is 3R2. The implication is that in this context, the equality may
only be read from left to right (implying a call for action), contrary to the most basic
requirements of equivalence. This clash was so critical for the mathematicians that
they actually engaged (themselves) in the task of inventing alternative notations to
circumvent the problem, for example, 7 : 2 = 3R(1 : 2), which reminds us that
the remainder (1) is a result of division by 2. Note how this notation may also be
seen as a step towards fraction notation, since after becoming knowledgeable with
fractions, we will eventually write 7 : 2 = 3 1

2 .

Unpacking the concept of average

The common definition of average (arithmetic mean) learned at school is usually
procedural – add all the numbers in a list, and divide by the number of numbers you
added. The instructors, who tended to take a more conceptual approach to know-
ing and learning of mathematics, aimed at unpacking the concept and unfolding
its multiple facets. For example, they decided to focus on alternative definitions
of the concept. One instructor suggested: given a list of numbers, the average is
the number such that when you add up all the (signed) differences from it, you
get 0. This can be considered a definition nearer the meaning of average than the
traditional definition, and in some cases it can be practical for finding the average,
or for checking if a given number is indeed the average. This alternate definition
mirrors a sequence that is typical of university mathematics – define a construct,
investigate it to find its properties, and then define a new construct based on one
of these properties. The new construct may be identical to the original one (if the
property is necessary and sufficient, as is the case with the alternate definition of
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average), or a generalization of the original one (if the property is necessary but not
sufficient).

Another alternative view of the average can specifically rely on a useful rep-
resentation: when two numbers are represented on the number line, their average
is represented by their midpoint. This fact is often overlooked, even when teach-
ing in Hebrew where there is a strong semantic connection between the words
for “average” and “middle” which share the same root (memutza and emtza,
respectively).

The theoretical background that the mathematicians brought to this topic had
many implications. It provided the flexibility to invent and justify ad hoc calculation
strategies: for example, to find the average of 81, 87, 88, and 89 one can find the
average of 1, 7, 8, 9, then add 80 to the result. It also contributed to their awareness
of likely pitfalls. One example was the question raised by an instructor of whether
in order to find the average of many numbers it is acceptable to partition them, find
the average of each part, and calculate the average of the averages. Will it work?
Always? Sometimes? How does this connect to the topic of weighted averages? In
this case, unpacking the concept resulted in the identification of the teachers’ frag-
mented knowledge of it. Based on a single instance where the average of averages
gave the correct result, some of the teachers conjectured that this would always
work. Inspired by the fact that this procedure does sometimes give the correct re-
sult, the mathematicians proceeded to further unpack the concept, to clarify under
exactly what conditions this strategy yields the correct result. When partitioning
the list of numbers that need to be averaged, one needs to give each partition
its relative weight. Weighted averages is a topic all mathematicians are familiar
with: for example, in the context of basic probability, where the expectation of a
random variable is the average of all possible values weighted by their probability.
The concept of average exemplifies the extent to which some topics of elementary
school curriculum are just the tip of a very rich set of connected concepts. The
mathematicians’ ability to unpack that richness contributed to the identification and
analysis of potential knowledge flaws and the understanding of what this concept
entails, including the ideas presented above for promoting computational fluency
and flexibility.

MATHEMATICAL CONTENT – UNPACKING TOOLS FOR DOING MATHEMATICS

. . . what people do is a function of their resources (their knowledge, in the
context of available material and other resources), goals (the conscious or un-
conscious aims they are trying to achieve), and orientations (their beliefs, values,
biases, dispositions, etc.) (Schoenfeld, 2010, p. xiv)

Schoenfeld’s theory of goal-oriented decision making is primarily concerned with
in-the-moment teaching decisions, but can also be related to a much broader scope
and applied to our analysis of the PD instructors’ teaching decisions. So far we
have described and analyzed examples of how the mathematicians’ knowledge
contributed to the unpacking of elementary mathematical content, and consequently
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to supporting some of their instructional decisions. However, meta-mathematical
issues and mathematical practices, such as mathematical conventions, definitions,
proofs, justifications, and explanations were just as important a teaching goal as
the content. In this, the mathematicians were guided by their orientations, includ-
ing their beliefs about the nature of mathematics and its established practices. In
this section we describe how these meta-mathematical topics and mathematical
practices were unpacked, and how such unpacking shaped decisions and actions.

Number naming conventions

What, if anything, is wrong with the number “thirty eleven?” Is it a correct result
for the problem 27+14? The teachers tended to see this as an unfinished procedure:
the tens were added (30), and so were the ones (11), but regrouping of the 11 ones
was neglected. The mathematicians’ focus was different. They did not automati-
cally assume that numbers must have unique names. Indeed, in some contexts one
thousand nine-hundred eighty four may legitimately be named in English nineteen
hundred eighty four. Non-unique names are not an intrinsic problem, as long as you
feel comfortable with equivalence classes. The question of uniqueness led the math-
ematicians to a search for alternative naming conventions in a variety of languages.
Consider, for example, the Welsh word for 78, which translates to – two nines and
three twenties – or the Alamblak word for 87 – twenty two-and-two, and five, and
two. These are indeed unusual naming conventions, but is there anything wrong
with them? Do they have any advantages over our naming convention? The mathe-
matical point is that, given the intrinsic arbitrariness of naming, we should not ask
ourselves if a naming convention is correct, but rather how practical and how un-
ambiguous it may be. The criteria for practicality that the mathematicians focused
on were mathematical in nature – does the convention give each number a unique
name, how well does the naming convention support estimation (one-hundred less
two may give a better sense of the order of magnitude than ninety-eight), does
the convention support simple lexicographical comparison (all numbers that begin
“seventy. . . ” are greater than all numbers that begin “sixty. . . ”), and perhaps most
importantly: how well is the naming convention aligned with the standard place
value notation. This last point has cognitive and didactic implications as well – a
naming system aligned with the place value notation may be easier to master, and
may even support conceptual understanding of place value principles. Browning
and Beauford (2011) found this to be the case with the Chinese naming convention.

Unpacking proof

The concept of mathematical proof is not at all trivial (see, for example, Lakatos,
1976). Nonetheless, mathematicians’ ideas about what constitutes a mathematical
proof are bound to feed into their unpacking of elementary mathematics. We will
show some examples of such unpacking of proof, referring also to definition, which
seems to be strongly linked to proof. For example, the way we show that a number
is even depends on the way we define evenness in the first place. We note that in
this context we clump together the concepts of proof, justification, and explanation.
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There are many distinctions one can make between these concepts (e.g. Levenson
& Barkai, 2011), but we are more interested in what they have in common.

Areas and perimeters of rectangles are topics in the elementary math curricu-
lum. One issue is the relationships between these two concepts. Children should
learn that in some conditions area grows with the perimeter, but not in all cases.
Given a rectangle, it is generally possible to find one with greater perimeter and
smaller area, or with smaller perimeter and greater area. Of all rectangles having
a given perimeter, the square has the greatest area. This is a weak version of the
well know isoperimetric inequality and it can easily be proven using the algebraic
equivalence: (x − a)(x + a) = x2 − a2 ≤ x2, where 4x is the perimeter and x the
side of the square, but this is not feasible using elementary school techniques. The
mathematicians’ commitment to proving mathematical claims (and not just stating
them) was the motivation to search for a convincing geometric proof/justification
of this claim, accessible by means of elementary school math. On the basis of some
examples, they showed that whenever we extend one side (p) of the rectangle by
1 unit, and shorten the other side (q) by 1 unit, we add a narrow rectangle which
increases the area by (q − 1), and remove a narrow rectangle which decreases the
area by p. As long as p is not shorter than q , the net result is a decrease in the
total area. The teachers felt this proof was something they could take to their own
classrooms. It also served to show why the square has the greatest area, and that the
area decreases the more “squished” the rectangle is. In searching for a proof, and
in coming up with this one, the mathematicians acted in a manner consistent with
these beliefs:

− There should be no magic in mathematics. Every fact should have a proof.
− The proof must be comprehensible, based on what is already known.
− The proof should say something about why the statement is true.

A common enrichment activity is the famous problem of adding all integers from
1 to 100. Solving this problem by pairing numbers with equal sums (1 + 100 ,
2 + 99 , 3 + 98 . . . ) is often attributed to the young Gauss. This process yields a
general answer, n(a1+an)

2 , but there is a snag – the pairing process assumes an even
number of addends. It is possible to patch up the proof for the odd case, but this
is inelegant. One of the instructors presented a version of this problem in the PD.
The task was well known to the teachers – finding the total number of Hanukkah
candles required for the eight-night celebration (2 on the first night, 3 on the second,
. . . 9 on the eighth). This particular problem has an even number of addends, so
the pairing solution works, but the instructor was aware of the incompleteness
of the argument for the general case, and felt that a more general argument was
called for, even though the teachers felt no need to generalize the problem. This
commitment yielded an elegant proof inspired by a non-mathematical aspect of
the problem story: there is an alternative Hanukkah tradition where the number of
candles decreases, namely 9 on the first night, 8 on the second, and all the way
down to 2 on the last. The proof was based on the following observation: If you
light candles according to both traditions, you will light 11 candles on every night,
for a total of 88 candles, 44 according to each tradition. This version of the proof
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works equally well for an even or an odd number of addends. Introducing this proof
was consistent with the belief that:

− Claims and proofs should be as general as possible.

Unpacking definition

Even in elementary mathematics, many terms need to be defined accurately. Choos-
ing a definition, or perhaps more than one definition, has pedagogical implications.
What constitutes a definition in elementary mathematics? Should it specify what
constitutes a non-example as well as what constitutes an example? Should it be
parsimonious, or should it be redundant, namely rich in superfluous details? In what
ways does it support us when we attempt to prove (or explain) that some object
does or does not satisfy the definition? Should we have a multitude of definitions?
If so, they should be equivalent, but how do we know they really are? What are
the advantages and disadvantages of particular choices of definitions? These are
some of the questions that the mathematician considered when choosing, offering,
using or creating definitions. We will show several instances of the mathematicians
grappling with these questions.

In a previous section we described how the concept of average was unpacked,
aided by the instructors’ knowledge of mathematics. We mentioned that the usual
working definition for average was operational – add all the numbers and divide
by the number of numbers you added. The instructors felt that this definition was
deficient – it lacked a good feel for what the average really is. One instructor
decided to provide a second definition: the number such that when you add up
all the (signed) differences from it, you get 0. This definition draws attention to the
fact that average is “between” the numbers – if some are greater than the average
(positive differences), then for the sum of differences to be 0, others must be smaller
than the average (negative differences). The instructor did not prove the equivalence
of these definitions – this would have been difficult without algebra – but did show
that in examples where the average had been calculated, it had this property. This
approach to mathematical definitions is consistent with the beliefs:

− Definitions should say something meaningful about the concept being defined.
− Multiple definitions for a concept are desirable.
− It may be difficult to rigorously prove the equivalence of definitions, but

this issue should not be ignored. Some motivation or justification should be
provided.

There are many different ways one may define an even number, some based on
the properties of numbers (e.g. divisible by 2 without remainder, multiple of 2),
some based on properties of sets (e.g. a set has an even number of elements if its
elements can be arranged in pairs). Clearly, the working definition that we have in
mind will influence the way in which we prove (or explain) why a number is or is
not even. One of the instructors designed the following activity in order to support
the making of explicit connections between definitions and proofs by the teachers.
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Students were asked if the number of legs in the classroom is even. Five an-
swers follow. Which answers are correct? How would you respond to each of
the students’ answers? In your opinion, is there a best answer? Which? What
is the implicit definition for even behind each answer? Which definition would
you choose to use in your classroom? The five responses were: 1) Yes, because
the number of legs is twice the number of people. 2) Yes, because each person
adds 2 legs to the total, so when we add them all up we get 2 + 2 + · · ·. 3) Yes,
because there is an even number of people in the classroom. 4) Yes, because we
can divide the legs into two groups – left legs and right legs. 5) Yes, because we
can divide the legs into two groups – boys’ legs and girls’ legs.

In this activity we see how the desirability of multiple definitions and a (non-
rigorous) focus on their equivalence were implemented in the task design. More-
over, we see how the design of the task reflects a shift in the underlying reasons
for such desirability, from mathematical (or meta-mathematical) to pedagogical.
Namely, an integral part of mathematical activity is to produce alternative defin-
itions and check for and prove equivalence. This reason may not apply to one’s
teaching needs, yet knowing and inspecting alternative definitions may still be
central for teaching practices (i.e. how to address students’ productions).

In including options with flawed arguments (3 and 5 above), this task also pro-
vides an opportunity to address the meta-mathematical topic of logical reasoning,
and is consistent with the belief that:

− Conclusions should follow logically from definitions.

MATHEMATICAL CONTENT – PREPARING FOR TOPICS ON THE HORIZON

The teachers participating in the PD tended to have specialized knowledge, based
on their experience of teaching no more than one or two different grade levels. In
an expectations questionnaire administered at the beginning of the course, teachers
showed little interest in topics “on the horizon,” namely topics that their students
will learn in later grades, which they themselves do not teach. Moreover, they
tended not to recognize which of the topics they teach will be crucial foundations
for more advanced knowledge. The mathematicians built on their background in
order to make explicit connections between current and future topics, and included
recommendations on how to teach some elementary topics in a way that will
support more advanced topics later on. This is consistent with what Ball (1993)
describes as “mathematical horizon” for teaching.

Equations

In the section on unpacking the concept of equality we saw how the instructors’
awareness of equality “on the horizon” – as it is used in middle-school algebra –
guided their approach to it in the context of elementary school arithmetic.
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Subtraction

There are many situations that can serve as the basis for understanding the operation
of subtraction – removal of objects from a set, comparison of the cardinality of
two sets, distance on the number line, and more. It was not always clear to the
teachers why they need more than one. The mathematicians brought an important
consideration to this question – some situations extend to fractions or to negative
numbers better than others, for example, distance on the number line can be very
instrumental for understanding why 4−(−2) is the same as 4+2. Similar considera-
tions apply to different approaches to multiplication, where the area model provides
meaning and visual support when the factors are fractions. These considerations are
not purely mathematical; they lie at the confluence of mathematics and didactics.
Nonetheless, they seemed to be quite foreign to the teachers, especially for those
who teach one or two grades, and for whom just one view of these topics seems to
suffice for their work.

PEDAGOGICAL ISSUES – DIFFICULTIES, ERRORS AND MISCONCEPTIONS

Anticipating and recognizing student errors and misconceptions is at the heart
of teachers’ expertise. Hill et al. (2008) have developed test items regarding this
aspect of teaching expertise, and have shown that skilled teachers outperform
research mathematicians in anticipating and identifying student difficulties. Our
mathematician-instructors were no exception – they were not very knowledgeable
on these matters either. One instructor stated that a certain type of problem must be
considered difficult, since it appears so rarely in textbooks, implicitly admitting
that he is not an expert on what is difficult for students. Often the instructors
would appeal to the teachers for their pedagogical insight – “Is this difficult for
your students? Is it something they can do?” The teachers welcomed this kind of
question, and were glad to be able to bring their expertise to bear.

In spite of their lack of expertise, the mathematicians coped with the issue
of student difficulties on the basis of their own proficiency, supplying a comple-
mentary perspective to that of the teachers. In this section we illustrate how the
mathematicians’ knowledge served as a springboard for their understanding of and
their suggestions for coping with common student errors and misconceptions.

Counting errors

As described above, counting was unpacked into rote counting, 1-1 correspondence
with the natural numbers, and invariance under permutations of the set elements.
Omitting any of these ingredients may lead to error. For example, skipping elements
in counting amounts to a correspondence not defined on the whole set of elements.
A correspondence not well defined is a way to describe and explain rote counting
not synchronized with the ticking off of the elements. A correspondence that is not
1-1 may result in counting an object twice, or in skipping others. Not accepting
invariance under permutations may cause children to repeat their counting in a
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different sequence, not quite expecting the same result. It was their understanding
of the mathematics that helped the mathematicians anticipate these potential errors
and difficulties.

Problems with unknowns and the equality symbol

As mentioned above, the equality symbol is often seen by children as a call for
action – “Solve!” Realizing this, and realizing that problems with an unknown
(3+? = 5) require a different interpretation of the symbol – as equivalence – one of
the instructors suggested that the unknown be covered by a curtain (3 + = 5).
He actually cut one out from a curtain catalog and stuck it on the whiteboard.
Placing the curtain over the unknown implied that someone had solved the problem
in the past (in-line with the “call for action”), and now we are detectives trying
to recreate what the problem must have been in the first place. The instructor’s
suggestion may be seen as a bridge between equality as a call for action and as
an equivalence relationship. The inspiration for the idea came from a pedagogical
“trick” the instructor had been shown by a teacher in a different context.2 This ex-
ample shows how the instructor appropriated a design idea underlying a didactical
tool developed to attain an educational goal (weaning students from the need to
count from 1) in order to enrich a narrow interpretation of the equality sign. In this
case, the task and the didactical tool were firmly based on a worthwhile mathemat-
ical idea, and the mathematician-instructor was not only capable of making that
idea explicit, but he also appropriated the design principles and applied them to
the design of an artifact, illustrating a new idea. The issue of designing activities is
discussed further below.

Misconceptions in vertical subtraction

In one activity, based on Ernest (2011), in the spirit of Brown and Burton (1978),
the teachers attempted to uncover and explain student errors in vertical subtraction,
and to predict how these students would solve some new problems. The instructors
stressed the following: What is the conceptual misconception behind the proce-
dural error, what in the student’s previous learning might be responsible for this
misconception, how would you help this student master the procedure, can you
suggest a correct procedure based on this student’s erroneous one? We see in these
questions a blend of mathematical and didactical points of view.

PEDAGOGICAL ISSUES – DESIGNING ACTIVITIES

What makes a “good” problem for elementary mathematics PD? In previous years,
the main criticism of the PD was that not all activities3 were relevant for the teach-
ers. For teachers, relevance meant having a direct impact on what they bring to
and do in classrooms. The teachers made it very clear from the start that what
would serve them best would be “prêt-à-porter” problems, namely those that they
could “use in our classrooms tomorrow morning,” as is. The instructors generally
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accepted the premise that they should provide some activities that the teachers could
use in their own classrooms, but also remained faithful to their goal of teaching
mathematics. One of the ways these two distinct goals were conciliated was by
capitalizing on the teachers’ engagement with problems they found interesting and
“relevant,” and using them as springboards to discuss the underlying mathematics.
Some of the resulting problems used in the course were very productive in this
respect – they were rich enough to provide a context for both views of relevance:
on the one hand, deepening the teachers’ understanding but on the other hand,
appropriate for the teachers to use (possibly with some modifications) in their
classrooms. One of the instructors went to great lengths to make sure his activities
would reach the teachers’ classrooms. One of the homework assignments consisted
of choosing an activity from the PD, adapting it for classroom use, implementing it
in one of their lessons, and reporting on it in a future PD session. The adaptations
the teachers made enabled us to infer some of their beliefs about mathematics and
teaching. Discussing this in the PD provided the instructor with opportunities to
bring to bear mathematical and meta-mathematical issues such as: elegant solu-
tions, alternative explanations (provided either by teachers or their students), math
is not only about solving exercises, etc. The tasks described above (evenness of
the number of legs in the classroom, alternative naming conventions for numbers),
played out as productive activities in the PD. The following are some additional
examples.

Place the digits

In this activity, teachers needed to use 3 given digits (1, 4, 9) to construct a multi-
plication problem with the greatest possible result. Many of the teachers resorted to
trial and error, but this turned out to be a good context for re-visiting the associative
and distributive properties – why is 4×90 the same as 40×9 (associative property),
and why is 9 × 41 greater than 4 × 91 (distributive property). The 4-digit version
of this problem presented further opportunities to deepen the math in the context of
problems which can be brought as is to the classroom.

The Gelosia method for multiplication

Many of the instructors presented a procedure for multi-digit multiplication which
was unfamiliar to the teachers. The procedure dates from the 15th century and is
illustrated by the example given in Figure 1 (934 × 314 = 293276) taken from the
Treviso Arithmetic (1478), as it appears in (Smith, 1958, pp. 114–117).

In this method there are 9 partial products, each one the result of multiply-
ing two 1-digit numbers. This eliminates the need for most of the carrying in the
standard procedure. Furthermore, the partial products do not need to be staggered;
the correct place value is achieved by adding partial products along the diagonal
lines. As mathematicians, the instructors were intrigued by the mathematics behind
the procedure, and thus decided on its appropriateness for the PD, as it provides
opportunities for deepening the understanding of multiplication and place value.
Moreover, they felt that the activity was within the range of what the teachers
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Figure 1. First printed example of the Gelosia multiplication.

could take to their own classrooms. The instructors were somewhat disappointed
to learn that most teachers perceived the activity quite differently. Instead of using
it as an enrichment activity to deepen their students’ conceptual understanding,
most teachers saw it as a potential remedial tool – an alternative procedure they
could offer to students who had not mastered the standard procedure. As such,
they did not dedicate much effort to the question of how and why the procedure
works. We are not sure why so many teachers chose not to use this activity for
enrichment. Perhaps they felt they had more pressing topics to teach. Or perhaps
they were more impressed by the procedural aspects of the method (a reliable and
easy-to-remember way to multiply) than the conceptual issues it raises. This may
mirror differences between the mathematicians’ and the teachers’ attitudes towards
mathematics in general. In spite of the instructors’ disappointment, we consider
this a productive activity. The teachers were highly engaged, deepened their under-
standing – which should eventually have beneficial effects on their teaching, and
were willing to bring the alternative method to their classrooms – though with a
different purpose in mind than that of the instructors.

Focusing on one-to-one correspondence

In the section on unpacking mathematical content we described how the mathe-
maticians came to focus on the concept of 1-1 correspondence as foundational,
even more basic than counting. Their insight was based on infinite sets, where
1-1 correspondence is the only way to compare cardinalities. How can this topic
be introduced to the teachers in a way that is meaningful for them? One of the
mathematicians with some programming capabilities found a creative approach.
He asked himself what is special about infinite sets. In this context, the main point
is that they cannot be counted. Thus, what he needed was a finite set that cannot
be counted. He prepared a game applet in which blue and red balls move around
the screen in random motion. The goal is to determine whether there are more red
or blue balls. Counting is not a feasible strategy due to the balls’ motion, but the
applet does allow the player to pair up a blue and a red ball, at which point they
are both removed from the screen. Players proceed to pair up balls until they are
all exhausted, or until balls of only one color remain. In this game players make
implicit use of the principle of 1-1 correspondence in order to solve a comparison
problem without counting. The designing of this game is an example of how the
mathematicians used their advanced knowledge of mathematics to uncover some
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of the less obvious foundations of elementary mathematics, and yet found ways to
share their insights with the teachers, in a context that is relevant, playful, and is
grounded in the most elementary mathematics.

DISCUSSION

This PD seemed doomed from the start. The teachers enrolled hoping to enrich their
practice with new tools of the trade – activities for their classrooms and teaching
tips-and-tricks. The mathematician-instructors had something else in mind – using
their mathematical knowledge to deepen the teachers’ mathematical understanding.
Yet in spite of the chasm between these expectations, the PD was considered a
success by all involved. The teachers’ feedback indicated their satisfaction, the
instructors felt they were teaching effectively and indicated that the teachers par-
ticipated actively, and the ministry representatives – who occasionally sat in on
sessions – were pleased with what they saw and heard. Furthermore, some of the
teachers are utilizing their newfound knowledge. One teacher testified that her prin-
cipal recently sat in on her math class. When he asked her what she was teaching,
her proud reply was “what I learned in the PD last week.” We now take a step back
and try to explain what worked and why.

The concept of unpacking – unpacked

We have shown numerous examples of the mathematicians unpacking mathemati-
cal content. We will now attempt to unpack the concept of unpacking – reveal its
elements and describe its mechanisms.

Two-way didactic transposition
Chevallard (1985) coined the term didactic transposition to describe the change
that mathematics content must undergo from a body of knowledge used (“savoir
savant”) to a body of knowledge taught at school (“savoir enseigné”). Borrowing
and extending this idea, we may say that the mathematicians applied a reverse-
transposition: they took elementary concepts and lifted them up to the context of
university mathematics. In other words, they transposed knowledge taught at school
to knowledge of the professional mathematician. In this context, they employed the
full power of their mathematics to deeply re-inspect the topics. Then they trans-
posed them back to the domain of school mathematics. The first transposition may
be seen as an embedding4 of elementary math in the more sophisticated univer-
sity math. The second transposition may be thought of as a homomorphism from
university mathematics to school mathematics, aiming to maintain the structure
of the discipline while scaling it down to something more palatable for students
and teachers. Paraphrasing the courtroom oath, this second transposition was com-
mitted to nothing but the truth, but could generally not be fully faithful to the
whole mathematical truth. This process of double transposition helped highlight
rich mathematical connections between the elementary concepts, as was demon-
strated in some of the examples above. What happens to mathematical concepts
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which undergo didactic transposition? Trivially, proofs in advanced mathematics
tend to suggest how ideas may be explained in elementary math. Less trivially,
mathematical connections between concepts tend to be mirrored in cognitive con-
nections made by teachers and students. This was seen, for example, in the various
definitions of natural numbers, mirrored in the skills of rote counting and cardinal-
ity counting, or in the way details of a mathematical proof may suggest possible
student errors or misconceptions. This mirroring provided surprisingly productive
insights into cognitive processes and student difficulties. For example, unpacking
evenness and the meta-mathematical goal of teaching alternative definitions of this
concept (and the equivalences thereof) gave birth to the activity where teachers
evaluated students’ correct and incorrect explanations of why the number of legs in
the classroom is even.

Setting
The setting appears to be crucial as the environment needed for the unpacking to
occur. The unpacking was highly situated. It took place in the context of a specific
PD program in which the teachers’ backgrounds and expectations were a deter-
minant and constraining factor. Left to their own devices, the mathematicians may
have remained much closer to university math, in which case their unpacking of the
elementary math topics would have looked quite different. Consideration of the PD
teachers’ needs and explicit expectations provided a sense for the type and extent
of the didactic transposition. Furthermore, the mathematicians appeared to be able
and willing to learn from the teachers (e.g. the case of appropriating pedagogical
insight in the context of problems with unknowns).

Knowledge and beliefs
The examples showed how knowledge of university mathematics was instrumental
in unpacking elementary mathematics. Of similar importance was how the mathe-
maticians brought their beliefs and their mathematical points of view to the task of
unpacking. Their commitments to some underlying fundamental principles, even
when not always articulated, were fundamental to the unpacking. In the following
we list some of these principles quoting from Wu (2011), a mathematician involved
in pre-college math education:

1. Every concept is precisely defined, and definitions furnish the basis for logical
deductions.

2. Mathematical statements are precise. At any moment, it is clear what is known
and what is not known.

3. Every assertion can be backed by logical reasoning.
4. Mathematics is coherent; it is a tapestry in which all the concepts and skills

are logically interwoven to form a single piece.
5. Mathematics is goal-oriented, and every concept or skill in the standard

curriculum is there for a purpose.
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What made the program a success – Bridging the cultural gap

We believe that, in essence, this is a story of bridging a cultural gap. The gap is
multi-dimensional. There is a knowledge gap, a gap between attitudes towards
mathematics and its learning and teaching, and more practically, there is a gap
between expectations regarding the PD. The PD was successful due to the various
ways in which this gap was bridged.

Activities
We have seen how instrumental a “good” problem can be. Some of the most suc-
cessful activities occurred around problems that the teachers could use in their
classrooms, and at the same time provided a springboard for discussing non-trivial
mathematics in the PD. Such activities, in supporting both the teachers’ and the
mathematicians’ perspectives on mathematics, served as a bridge between their
expectations. This was the case even when the mathematicians and the teachers did
not ultimately agree on the role of the activity. For example, the Gelosia Method
was perceived by the teachers primarily as an alternate procedure for multi-digit
multiplication, suitable for their struggling students, whereas the instructors’ main
intention was to use it as a context for deepening the understanding of multiplica-
tion and place value, both in the PD and ultimately in the teachers’ classrooms.
Although the instructors were disappointed by the ways in which the teachers
perceived the goal of this activity, they nonetheless provided what they aimed to
provide – meaningful mathematics in the PD – and teachers received what they
hoped to receive – a usable activity for their classroom.

Roles
Many activities evolved in such a way that the teachers provided valuable pedagog-
ical input, and the mathematicians provided mathematical critique within a context
of mutual interest, for example, evaluating web-based educational video clips. The
teachers provided didactic criticism (e.g. use of the board, student participation)
while the mathematicians provided mathematical criticism (e.g. accurate use of
language and symbols, validity of logical arguments).

Mutual appropriation
The data indicate that the teachers may have started to appropriate (in the sense
of Moschkovich, 2004) some of the mathematicians’ attitudes towards and beliefs
about mathematics, but as we said, this will be discussed elsewhere. Less trivial is
the fact that the mathematicians appropriated some of the teachers’ attitudes toward
mathematics teaching and learning. This was evident in the blend of mathematical
and didactical points of view expressed in many of the activities they designed.
And finally, there is some evidence indicating that the mathematicians appropriated
more of the teachers’ culture than one might have expected. The instructors were
often annoyed by the teachers’ repeated demand for activities they could “use in
class tomorrow morning.” As the PD progressed, and the activities came to be
designed around classroom problems, it was not uncommon to see emails from
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the instructors along the lines: “I’m stuck! Does anyone have a good problem I can
use in the PD tomorrow?”

CONCLUSION

The literature distinguishes between two main types of content knowledge for
teaching – subject matter content knowledge (SMCK) and pedagogical content
knowledge (PCK). The initial chasm between the PD instructors and the teachers
may be characterized in terms of this distinction. Roughly speaking, the instructors
intended to build the PD around SMCK, whereas the teachers were expecting a
program that would contribute to their PCK. This distinction between types of
knowledge is also the key to understanding what ultimately made the PD a success.
Many of the episodes we have described took place at the intersection of these types
of knowledge. We have seen how a university conception of SMCK may serve
as a strong springboard for developing PCK, both in the PD sessions and in the
mathematicians’ preparation, and conversely, the teachers’ existing PCK was used
as a springboard for conducting mathematical discussions and developing mathe-
matical insights. These rich interconnections and mutual exchange of mathematics
and mathematical pedagogy were at the core of this unique PD and they are worth
exploring further. We feel that in exploring these interactions, attention should
be given to the mathematicians’ special SMCK, as influenced by their university
conception of elementary mathematics. The mathematicians’ knowledge of math-
ematics helped them unpack many elementary concepts – both mathematical and
meta-mathematical – exposing their nuances and revealing what they involve for
learners. Furthermore, their mathematical practices and beliefs about mathematics
guided them in conveying meta-mathematical messages in the activities that they
designed and conducted.

Finally, it is commonly agreed that research mathematicians can and should
be involved in the education of elementary school mathematics teachers, but there
have not been many models to learn from. Here we have given an account of a
productive involvement, and have highlighted some ways in which the mathemati-
cians’ contribution was special. The interactions were considered productive by
both communities, by a number of different standards. Both the teachers and the
mathematicians learned some mathematics and some didactics from their encoun-
ters, and both parties felt that the teachers ended up better equipped to do their
job.

NOTES

1 Most of the lessons are being recorded by the first author of this chapter and are undergoing a first
round of analysis. The data are particuraly rich because both the instructors and the in-service teachers
who participate in the course are candid and outspoken about their feelings and evaluations.

2 A game designed to encourage “counting-on” – finding 3 + 2 by counting “3 . . . 4, 5,” and not “1,
2, 3, . . . , 4, 5,” by allowing students to see only one of the addends at a time.
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3 We use the term activity for a segment of a PD session, typically a problem posed by the instructor,
solutions suggested by the teachers, and discussions that followed.

4 Injective structure-preserving mapping.
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