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BARBARA JAWORSKI 

PREFACE 

This book presents unique insights into a significant area of French research 
relating the learning and teaching of mathematics in school classrooms and their 
development. Having previously had only glimpses of this work, I have found the 
book fascinating in its breadth of theory, its links between epistemological, didactic 
and cognitive perspectives and its comprehensive treatment of student learning of 
mathematics, classroom activity, the work of teachers and prospective teacher 
development. Taking theoretical perspectives as their starting points, the authors of 
this volume present a rich array of theoretically embedded studies of mathematics 
teaching and learning in school classrooms. 
 The book charts the use of a theoretical/methodological perspective called The 
Double Approach, a didactic and ergonomic approach for the analyses of teaching 
practices (Robert & Rogalski, 2002). This approach is concerned simultaneously 
with the design of teaching and with its practical, ergonomic (work-based) 
contribution to students’ learning of mathematics in classrooms. It seeks to address 
associated issues widely and in their full complexity recognising institutional 
dynamics and constraints, the impact of social and cultural perspectives and 
interweaving layers of activity. 
 The term “activity” is ubiquitous throughout, taking on two kinds of meaning, in 
one sense referring to the actions of students and teachers in the classroom and, in 
parallel, referring also to activity as in Activity Theory, a complex dynamic 
encompassing the wholeness of classroom learning and teaching; as Leont’ev has 
expressed it, “the non-additive, molar unit of life … a system with its own 
structure, its own internal transformations, and its own development” (Leont’ev, 
1979, p. 46). The two senses are deeply entwined in the ways activity is addressed. 
Thus, it is not surprising that one of the foundations of the Double Approach, its 
“organising framework” is the sociohistorical theory of Vygotsky, and followers 
such as Leont’ev. In Chapter 1, Janine Rogalski writes, “the object of study 
consists of the activity of an individual subject with individual motivations, within 
a specific situation. When the subject is a teacher, it is not the “properties” or 
“functioning” of the teacher’s position that is at issue. … Rather the issue involves 
questions of diversity among teachers, and the development and emergence of their 
individual professional competencies” (p. 3). The focus on the individual subject 
(“as a person-subject rather than as a didactic subject,” ibid.) is perhaps somewhat 
more surprising, especially since it leads the authors to consider a Piagetian 
approach of epistemological genetics alongside Vygotsky’s sociohistorical 
framework. The surprise is in the juxtapositioning of theories of Piaget and 
Vygotsky of which others scholars have been cautious, if not dismissive, due to the 
(supposed) incommensurability of these theoretical perspectives (see e.g., Lerman, 
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1996). More recently Lerman (2013) wrote “In general, drawing on more than one 
theoretical perspective needs some work in order to ensure that the perspectives are 
coherent together.” Regarding the complementarities of the two areas of theory, 
Rogalski writes: “In particular, the Piagetian theory looks “from the student’s side” 
at epistemological analyses of the mathematical objects in play, while the 
Vygotskian theory takes into account the didactic intervention of the teacher, 
mediating between knowledge and student in support of the students’ activity” (p. 
23). Just one of the exciting aspects of these authors’ use of the Double Approach 
is to see how this theoretical juxtapositioning leads to analyses of teacher and 
classroom activity which make sense for the researchers and those who learn from 
this research.  
 So, what exactly is meant by the Double Approach? Aline Robert and 
Christophe Hache (Chapter 2) weave the abstract theory (above) with theoretical 
frameworks relating to teaching and learning in classrooms and general 
methodologies that follow from these frameworks. They write, “… we seek to 
measure the gap between the activities of students applying their knowledge 
(during its acquisition) analyzed a priori, and the activities that may actually have 
taken place during a regular lesson” (p. 62). At a simple level, we see an analytic 
progression from epistemological analysis in a mathematical topic, through a 
didactic analysis relating to the design of teaching, into analyses of classroom 
activity and inter-relations between teachers and students with, last but not least, 
analyses of student activity and understanding. The progression is not linear (as my 
list might suggest); the research lens may focus in any of these areas, or zoom out 
to address complex inter-relationships between them. Thus the programme is 
ambitious. The reader is taken through subdivisions of “the world of the study:” we 
read of student activity, the transition from designed task to student activity with 
task, levels of conceptualization (related to Vergnaud’s, 1990, ‘conceptual fields’), 
the nature of concepts and students’ progression with concepts in terms of 
generalization and formalization, the knowledge of teachers and design of tasks, 
wider issues in terms of systemic demands or emotional, personal and social 
factors. For example, relationships between didacticians and teachers are 
addressed, ways in which teachers adopt or adapt didactic designs, the ‘work’ of 
the teacher in the classroom, teacher speech patterns and representations of 
mathematical concepts and their relationships to student activity. Consideration of 
the profession of teaching and roles in teachers’ work lead to questions of teaching 
development and the education of new teachers. 
 In presenting theory and methodology in these areas, the authors move to and 
fro between the cognitive and the sociocultural frames so the reader is faced with 
challenges in making sense of the complexities involved. Unsurprisingly, this 
ambitious enterprise raises many questions for the reader, not least as to how 
theoretical complexities are translated into practice in schools and classrooms, how 
teachers work with researchers (or independently with these perspectives), and  
how researchers address inter-relationships between observations of student 
conceptualisation, teachers’ didactic processing in design of activity and the wider 
frames of educational and sociocultural impact. For example, as the authors 
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acknowledge, “if it is difficult to analyse teaching in relation to learning, it is even 
more difficult to have legitimate evidence of it” (p. 58). 
 These questions are addressed variously in the (nine) chapters which follow in 
which we see the elements of the Double Approach in action with differing zooms 
of the research lens. Authors present a variety of methodological approaches with 
analyses of classroom settings, design of tasks, mathematical topics, teachers’ 
intentions, student responses, imposed constraints and the degree of ‘leeway’ 
experienced by the teachers. For example, in Chapter 3, Eric Roditi discusses the 
tasks offered by four teachers in similar sixth grade classes on the topic of 
multiplication of decimal numbers. We read of the nature and choice of tasks, their 
levels of cognitive demand and their relation to curriculum guidance on the topic, 
suggested class time, and expectations of professional practice discerned through 
classroom observations and interviews with teachers. A priori expectations of 
students’ activity according to designed tasks is compared with student outcomes 
in the tasks. Despite the commonalities of designed tasks in the four classrooms, 
research emphasised and categorized the variability of classroom activity 
depending on the ways in which individual teachers worked with students in their 
class.  
 The work of teachers and its relation with the realities of situation and context is 
central to methodologies employed. The relationship between teaching practices 
and student learning is a recurring theme. Julie Horoks writes in Chapter 6 (p. 135), 
“Naturally we are not questioning the teacher’s work, and we will consider the 
different components of his/her job to explain certain choices made for his/her 
class.” Horoks describes the use of classroom video recordings to reveal teachers’ 
use of tasks focusing on similar triangles and to relate students’ degrees of success 
with these tasks to the ways in which the tasks were used in the classroom. 
Monique Chappet-Paries, Aline Robert and Janine Rogalski, in Chapter 4, focus on 
classroom activity around the theorem of Pythagoras, analysing a teacher’s speech 
patterns to gain insight into invariants in the teacher’s practice and ways in which 
these invariants impact on students. The idea of a “teaching scenario” – a sequence 
of lessons and exercises around a mathematical topic such as decimal numbers, 
similar triangles or Pythagoras’ theorem (studied a priori) – is a common 
theoretical construct. For example, in Chapter 7, Aurélie Chesnais discusses the 
implementation of the same teaching scenario (about orthogonal symmetry) by two 
experienced teachers in order to study regularities and variability of practices 
between teachers, as well as the relationship between teaching practices and 
student learning. 
 The major theme of relations between a priori analyses of tasks, teachers’ 
implementation of tasks in the classroom and students’ take-up of tasks is 
considered in later chapters with an added dimension, that of the use of electronic 
resources. In Chapters 8 and 9 these are Electronic Exercise Bases, consisting of 
mathematics exercises within an environment, which includes different types of 
suggestions, aids, tools (graphs, calculators, etc.), lesson reminders, as well as 
explanations, answer analyses or complete solutions. The scenarios here are 
designed around the electronic environment and its use by students with a study of, 
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for example, how the designed situations influence the students’ activity. Research 
reveals that the expected activity is not always the activity developed by the 
students and emphasizes the difficulty for students to regulate their activity while 
interacting with the software without teacher intervention. As well, studies address 
the impact of the electronic resources on the day-to-day activities of teachers and 
on teachers’ evolving classroom practices. Chapter 10 compares activity in a 
dynamic geometry environment with that in a pencil and paper environment to 
analyze how the tasks designed for ICT environments differ (or not) from those of 
non ICT ones. Research explored the differences in classroom management, 
including ways in which the teacher assisted students, in order to understand their 
possible impact on students’ activities. 
 I have given these very brief sketches of the focus of various chapters to 
illustrate or exemplify the pervasive themes of the book in addressing classroom 
complexity and the deeply inter-related nature of teaching-learning activity. Each 
study presents different facets of design, implementation and impact of scenarios 
within the real constraints of classrooms and the personal and social influences 
which surround classroom interactions. In the final chapter, Maha Abboud-
Blanchard and Aline Robert reflect on the earlier chapters to distil elements of their 
findings which offer insights that are useful in considering the education of 
mathematics teachers, and of those who will train mathematics teachers. They ask 
the question, “who should be trained first – the teacher or the teacher’s trainer?” (p. 
235). This leads to their setting out a training programme for the trainers of 
mathematics teachers. They acknowledge that this is speculative and that 
associated research in yet to be undertaken. It nevertheless points to the ambitious 
scope of the book and the broad programme of research it charts. 
 Throughout this book the reader is made aware of many unanswered questions 
and challenged to consider associated theoretical and methodological issues. There 
is nevertheless an internal consistency and coherence to this work which revolves 
around the Double Approach. For English-speaking communities who have lacked 
opportunity to access the French literature the book opens up a wealth of new ways 
of thinking about and addressing unresolved issues in mathematics learning, 
teaching and teacher education. I recommend it wholeheartedly! 
 
References are included in the general bibliography of the book. 
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FABRICE VANDEBROUCK 

INTRODUCTION 

This book presents several works in the field of mathematics didactics revolving 
around secondary school and university teaching. The specificity of the research 
studies in question is that they attribute as much importance to the actors (students 
and teachers) as to the mathematics and the school situation. These studies fit well 
in the very general framework of Activity Theory. 
 The presented researches aspire to analyze what is at play in a mathematics 
classroom, by varying the school situations, the environments, the contents, the 
teachers and the classrooms. The main objective is to study, understand, and even 
interpret the links between the teaching of a given mathematical content and the 
corresponding student learning. We seek to highlight regularities and variations of 
these processes in order to better understand students’ acquisitions, and interpret 
the teachers’ practices. The work as a whole leads to inferences which can 
contribute to the professional development of teachers by widening the range of 
possible activities for each teacher.    
 The general framework of Activity Theory, with associated development theory, 
is described in chapter 1, and we directly clarify how this work fits in this 
framework. The analyses of students’ in-class activities, as they are organized by 
the teachers, provide us with data which allow us to tackle teachers’ practices and 
approach students’ learning: the general theory accounts for this focus and the 
corresponding reality splitting. Nevertheless, the way activities are assigned to 
mathematics and school situations is not very present in the framework of Activity 
and development theories. Therefore, the necessary theoretical and methodological 
complements are presented in chapter 2.  
 The main concern of this book is however not theoretical, even though its 
specificity borrows elements from Activity Theory and development theories 
which complement typically didactical tools. We seek to assign to the singular 
subjects (students and teachers) their place within the didactical relationship, even 
though the affective and social factors are not directly accounted for, despite their 
high importance. We develop the means to collect and analyze in a significant way, 
adapted to our project, data about teaching and learning allowing us to interpret the 
relationship between the two.  
 All the research studies of this book follow a common methodology presented in 
chapter 2, but involve, of course, indispensable adaptations which are introduced 
gradually. They pertain to the teaching of mathematics in middle school, high 
school, or the first two years of university. Some works are the fruit of individual 
research1 and handle a small number of cases in an exhaustive manner, often over 
quite short periods of time. Others works are clusters of research studies or the fruit 
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of collective research based on larger data and oriented more directly towards 
results which are relevant for the general research question of the book. In any 
event, there is always a limit to the hasty generalizations of results. Hence, there 
are neither definitive results nor (even less) prescriptions in our discourse.   
 In chapters 1 and 2, we present the theoretical frameworks and the tools used in 
the book, while stating the specificity of our research. Chapters 3 and 4 are 
concerned with the results about teachers’ practices in “ordinary” classrooms. They 
highlight the stability of teachers’ practices and also account for the diversity and 
variability between the teachers. Chapter 5 deals with teaching manuals and shows 
that exercises proposed in these manuals do not offer the teachers opportunities to 
diversify their student activities. Chapters 6 and 7 refer more directly to teachers’ 
practices in relation with students’ activities. Chapter 8 focuses on the activity of 
students in a specific teaching situation in a computerized environment. Chapters 9 
and 10 deal with teachers’ practices in computerized environments, in particular 
the comparison of teachers’ activities in different environments. Chapter 11 is a 
large scale study about teachers’ practices and the factors related to the regularity 
and variability of the practices. Last, chapter 12 comes as a synthesis of the book 
with an opening on professional development of teachers.  
 The different chapters can be read in a relatively independent way. In particular, 
it is not necessary to complete an exhaustive reading of chapters 1 and 2 in order to 
read the other chapters … and vice versa! 

NOTES 
1  All the researchers who contributed to this book, apart from Aurélie Chesnais, Eric Roditi and 

Janine Rogalski, are members of the Laboratoire de Didactique André Revuz (LDAR) at Paris 
Diderot University 
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JANINE ROGALSKI 

1. THEORY OF ACTIVITY AND DEVELOPMENTAL 
FRAMEWORKS FOR AN ANALYSIS OF TEACHERS’ 

PRACTICES AND STUDENTS’ LEARNING 

INTRODUCTION 

The goal of this chapter is to propose a theoretic framework to analyze the 
structured activities of teachers and their students, and to provide support for some 
inferences regarding teachers’ training in professional competencies1 and students’ 
acquisition of knowledge in specific disciplines. 
 The organizing framework is that of the theory of activity, which was 
established by Leontiev, enriched through a line of research originated by 
Vygotsky, and then exploited and developed within the field of ergonomic 
psychology (Leplat, 1997; Rogalski, 2004). Its fundamental components are: 
– the distinction between task and activity;  
– the double point of view, taking into account both the situation and the subject 

of the action; and  
– the system of double regulation of activity, in which determining factors, and 

the effects of the activity, influence situational components as well as the 
subject. This regulation is not only retroactive, but also proactive, as a goal-
oriented activity is affected when subjects adapts their actions in an attempt to 
produce the desired results. 

 Within this theoretic framework, the object of study consists of the activity of an 
individual subject, with individual motivations, within a specific situation. When 
the subject is a teacher, it is not the “properties” or “functioning” of the teacher’s 
position that is at issue here (as would be the case for a stricto senso didactic 
perspective, which we could define as the “science of didactic processes”). Rather, 
the issue involves questions of diversity among teachers, and the development and 
emergence of their individual professional competencies. Equally relevant are 
considerations of the student as a person-subject, rather than a didactic subject. All 
this leads us to consider the Piagetian approach of epistemological genetics, 
together with Vygotsky’s socio-historical framework, as they relate to individual 
development. 
 Taking into account the effects of the activity on the subject is an aspect of the 
developmental and constructivist dimension of the theory of activity (TA). Our 
focus is on the activity, on its determining factors and on its effects as they relate to 
teaching mathematics. We are particularly interested in the activity’s effects on a 
teacher’s development of professional competencies, and on a student’s 
mathematical conceptualization. Interpreting TA within the theoretical frameworks 
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of Piaget and Vygotsky enriches our approach, by defining the developmental 
dimension of the double regulation in terms of factors and effects, temporality, and 
the role of psychological tools (Vygotsky) and cognitive tools (Piaget). We include 
within the Vygotskian framework Bruner’s findings on mediation (Wood, Bruner, 
& Ross, 1976), which add to our understanding of the didactic intervention of a 
teacher in class. We conclude with a discussion of these theoretical frameworks in 
order to define the tools we will use in our analysis of teaching practices and 
student activities in mathematics. 

THE THEORY OF THE GOAL-ORIENTED ACTIVITY 

The theory of activity was developed by researchers who followed Vygotsky in 
studying the psychology of work (later called “ergonomic psychology”). The 
theory was then used in professional didactics, before being “articulated” with a 
didactical approach to mathematics teaching, in the so-called “double approach” 
(Robert & Rogalski, 2002, 2005; Robert, chapter 2). The theory involves goal-
oriented and motivated activities. By their actions, subjects aim to achieve task 
goals, and their actions are driven by motivations of the activity. 
 We will describe the following elements, all of which are essential to our 
objectives: the task-activity distinction, task structure, the various ways to analyze 
an activity, and the connection between the subject and the situation within the 
model of double regulation of activity. We will also indicate how this theoretical 
framework allows us to analyze the structure of teacher and student activities. 

Task and activity 

The task-activity distinction is central to the theory of activity. The activity relates 
to the subject,2 while the task relates to the objects of the action. The definition of a 
task, as proposed by Leontiev (1975, 1984) and developed by Leplat (Leplat and 
Hoc, 1983; Leplat, 1997) is the “goal to be attained under certain circumstances.” 
The activity is what a subject engages in during the completion of the task. This 
includes not only external actions, but also inferences, hypotheses, decisions, and 
actions the subject decide not to take. The activity also includes the subject’s time 
management and personal state – workload, fatigue, stress, enjoyment of work – as 
well as interactions with others within the work situation. We will first consider the 
task, and describe its essential characteristics. We will then examine the activity 
developed in response to the task.  

Structure of a task 

The task object is that which is to be transformed or studied. Tasks involving 
material objects were originally the most studied by ergonomic psychology. Tasks 
for which the “objects” include human individuals (service professions, therapeutic 
work, teaching) or for which the goal is to learn and acquire tools for thought 
(being a student) require a more complex analysis. For the teacher, the goal to be 
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attained is often described in procedural terms, with action verbs: “Teach the 
concept of length measurement to elementary school students,” “correct a math 
test,” “follow the curriculum.” Goals can also be stated with reference to the 
student-knowledge relationship: “Have the student acquire the concept of length 
and linear units,” “Have the student represent functions as mathematical objects 
and tools.” For the student, the task is defined by the teacher’s statement, and the 
requirements of mathematical work. 

Tasks and sub-tasks 
In a complex situation, the goal to attain consists of various sub-goals, whose 
achievement order is more or less constrained. For example, “introduce students to 
the concept of functions,” in ninth grade, involves making documentation choices, 
creating lesson plans that cover one or more class sessions, defining the student 
tasks, conducting the in-class activities, and finally evaluating students’ acquired 
knowledge. 

The structure of the task involves transitions between the intentions of the 
prescribed task and the actual task as implemented 
In a workplace (in the teacher’s case) or learning environment (in the student’s 
case), the subject responds to tasks assigned by a prescriber, with the framework 
for completion defined by the desired results and the permitted resources. This 
constitutes a prescribed task. But an activity is not a direct response to a prescribed 
task. The task is first redefined by the subject. To complete this task, the subject 
must form a representation of the task, allowing or forbidding possibilities (not 
always consciously), lifting or imposing restrictions, and using evaluation criteria 
that may differ from those of the prescription. This constitutes the effective task, to 
which the subject’s activity represents a response. Misunderstandings in teaching 
are an expression of differences between the task anticipated by the teacher, and 
the task responded to by the student. 
 The gap between prescribed and effective tasks is inherent to the existence of 
two viewpoints: That of the task prescriber, and that of the task completer. The task 
the subject completes can differ from the assigned task for various reasons: 
Because the subject lacks motivation to engage in the desired actions, because the 
subject lacks the necessary competencies, because the subject constructed an 
inappropriate representation of the task, or even because of a divergence between 
the intended and prescribed tasks. The effective task is revealed by the subject’s 
activity. 

Analysis of the activity 

In work or training situations, activity is oriented towards the completion of the 
task. Observable actions that permit an analysis are, first, operations on the objects 
of action, regardless of the aim of the research. This explains why the analysis of 
the activity relies on a preliminary analysis of the task, which can be understood as 
a psychological task analysis (Vicente, 1999) that relies on domain expertise. 
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However, the activity includes more than simply actions on “what to do,” and 
includes other personal factors. For example, a teacher can assign different sets of 
problems from one year to another, not only because of the effect on students, but 
also to maintain personal motivation and avoid repetition or fatigue. 
 The analysis of a student task requires a didactician’s mathematic expertise in 
order to identify what a student can do to effectively complete it. This is the aim of 
the a priori analysis presented in Chapter 2. The analysis of the teacher’s task is 
more delicate. It is a largely discretionary task for which there is no defined 
procedure to follow (Leplat, 1997, p. 21). How to identify a strategy that would 
lead to the desired goal remains an open question, as there is no commonly 
accepted definition of an “expert teacher.”3 For this analysis of teachers’ tasks and 
activities, we refer to a model of teaching as management of a dynamic human 
environment (Rogalski, 2003), in which the teacher mediates (Wood, Bruner, & 
Ross, 1976) between the student and the knowledge to be acquired (Robert & 
Rogalski, 2005), and in which language plays a central role (Pariès, Robert, & 
Rogalski, 2005). 

The subject and the situation 

The theory of activity depends on two other key concepts: The subject and the 
situation. We are interested in an individual subject, who has intentions and 
competencies (potential resources and personal constraints). Within this 
framework, subjects do not identify with their role, even though they may be 
constrained by legal and other responsibilities that act on the teacher. We can look 
both for commonalities between subjects and for specific aspects of their activities: 
What factors and organizational aspects do they share? What are the individual 
differences between them? 
 Whether students or teachers, subjects are not the sole masters of their goals or 
methods. They act within a work or training situation, which consists of a system 
of resources and constraints. Within this system, the teacher completes a set of 
tasks, which we can more globally consider to be a mission (the discretionary 
dimension of the task), tied to a prescriber (employer, supervisor) by a partially 
implicit contract. The teacher is acting within a context where students encounter 
multiple interventions (parents, teachers of other subjects, etc.) and within a 
process that continues during students’ entire schooling. The student’s situation is 
not limited to the tasks prescribed by the teacher under a didactic contract, but 
includes the social and familial environment. 
 We will now present the model of double regulation of activity, which can be 
related to issues of learning and development, as defined through the theories of 
Piaget and Vygotsky, and expanded by Vergnaud. Later on, we will defend the 
complementarity of Piaget and Vygotsky. 
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The model of double regulation of activity 

The concept of regulation reflects the fact that the activity modifies the state of the 
situation as much as the state of the actor. The situation is a determining factor of 
the activity, and is simultaneously itself modified by the activity. This modification 
primarily affects the object of the activity, but can also include modification of 
resources and constraints. Subjects, too, both determine the activity and are 
modified in turn by their own activity. The situation can affect their potential for 
knowledge and action (competencies), their physical state (tired, sleepy, etc.), or 
their emotional state (happy, bored, anxious, etc.). 
 Figure 1 presents a schematic diagram of how this system of double regulation 
relates to the system of situational and subject determinants. 

 

Figure 1. The double regulation includes a co-determination of the activity by  
situational and subject properties, as well as a double modification of the situation  

and the subject that is created by the results and effects produced (and by their  
agreement with expectations and acceptable outcomes). 

 This regulation can be considered in terms of short-term adjustments to action 
and “local” learning (such as learning how to find the inverse image of a function 
on a graph), or in terms of long-term development of a subject (understanding the 
concept of a function). The model of double regulation fits directly with the 
constructivist theories of Piaget and Vygotsky. It also sheds light on the issue of 
didactic intervention, by considering situational properties as potential producers of 
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learning and development. Before considering this further, we must first pause to 
define the specific activities of the teacher and student, respectively.  

A framework for defining student and teacher activities 

The student, whether as an individual, set of students, or class as a whole, is a 
central determining factor of the teacher’s activity. The choice of lesson plans 
(student task organization), and the unfolding of these plans in class, depends on 
prior knowledge of students, as well as on the possible actions the teacher believes 
to be possible in class. The teacher’s didactic interventions in class depend on 
students’ individual or collective activity. Completing a task produces a return 
effect on the teacher’s activity, with an eventual adjustment both of the proposed 
tasks and of the teacher’s own activity. Students’ behavior can also contribute to 
the effects on the teacher, inducing fatigue, enjoyment, etc. 
 The teacher determines the activity of the student through the assigned 
mathematical tasks. During the completion of a task, the teacher mediates between 
the students and the mathematical concept to be acquired. This mediation can 
consist of assistance in getting started, procedural or constructivist assistance in 
completing the task, evaluation of the final product, identification of the concept in 
play, etc. The teacher can also participate in the construction of a student’s 
reflexivity (for example, by demonstrating how to solve problems) and intervene in 
the constructivist dimension of the student’s activity. Chapter 2 will explore this 
question. 

COMPARISON OF THE THEORIES OF PIAGET AND  
VYGOTSKY ON DEVELOPMENT AND LEARNING  

Piaget and Vygotsky each elaborated theoretical frameworks for understanding 
children’s (and, more generally, humans’) developmental processes. We will first 
present each researcher’s scientific objectives, then the relevant elements of 
Piagetian constructivism, and finally Vygotsky’s theoretical contributions. Putting 
these two frameworks in perspective highlights their commonalities, which include 
factors of development, a long-term perspective, and the role of tools in 
development (called “cognitive tools” by Piaget and “psychological tools” by 
Vygotsky). 

Piaget’s and Vygotsky’s scientific objectives 

For Piaget, the crucial point, distinguishing Piaget from all others in the field and 
rendering him irreplaceable within the scientific panorama of the 20th century, is 
his objective of genetic epistemology. The central question of this is how humans 
acquire knowledge, and how they thereby progress from children to adults capable 
of contributing to the development of scientific knowledge. 
 Piaget’s aim is to “try to untangle the roots of the diverse varieties of 
knowledge, beginning with their most elementary forms and following their 
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development to subsequent levels, including scientific thought” (Piaget, 2005, p.6). 
He notes that development of knowledge during the evolution of a species could in 
theory be considered part of this objective, but he chooses to begin with the 
development of a human child. He insists on the fact that his work has “a 
psychological dimension, but as a by-product … the goal is essentially 
epistemological” (op. cit., p. 7). 
 Piaget’s viewpoint is therefore that of knowledge development for an 
epistemological subject, which is as much a theoretical construct as the didactic 
subject of mathematical didactics (when it defines teacher and student in terms of 
their role in the school system). A biologist by training, Piaget always insists on the 
biological roots of knowledge (Piaget, 1971, 2005, pp. 59-75). 
 Piaget’s interest in the evolution of the structures of knowledge leads him to 
neglect a certain number of topics. For example, the topic of the developmental 
factors of a child (considered as a psychological subject) will not be central to 
Piaget’s work. This is not because Piaget denies the effects of factors that are not 
internal to the “epistemological subject,” but because his objective is to understand 
the internal process of development. 
 Piagetian constructivism claims that knowledge of objects is constructed 
through actions on these objects, and Piaget’s goal is to demonstrate his approach’s 
validity on the set of large domains of knowledge. These actions are not limited to 
physical acts on material objects, as knowledge construction can also occur 
through mental operations. Observation, for example, is a valid action that affects a 
subject’s representations. 
 As for Vygotsky, his goal of theorization is clearly psychological, aiming to 
theorize the “higher functions” of thought. For him, the subject is a psychological 
subject, considered from the beginning to be in a social interaction with other 
subjects who have previously and personally developed “psychological tools” : this 
enables the development of knowledge.  Under this model, knowledge of the world 
is socially preexisting in children: Their cognitive activities exist within social 
interactions before they are internalized into a subjective plane. This is the central, 
and very strong, idea of socio-constructivism: The passage from the inter-
individual to intra-individual relies on the construction of psychological tools. 
 Vygotsky’s focus is therefore profoundly different from Piaget’s, with 
completely different objectives. Vygotsky’s subject is an individual and social 
subject, who will construct tools for thought within social interactions. Piaget’s 
subject is an epistemological subject, for whom the organization of knowledge 
(rather than mediation or tools) is the issue. 
 From this starting point, Vygotsky describes in a theoretical fashion the 
processes of learning and development, without dissociating the two. He will 
particularly differentiate, within a subject’s “learning-development,” the 
“everyday” concepts from the “scientific” concepts. Everyday concepts come from 
the everyday world, where social interactions do not have as a goal the production 
of an organized conceptual piece of knowledge in children. The acquisition of 
scientific concepts is accomplished through deliberate didactic interventions 
(Vygotsky, 1986, chap. 6). 
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Under Vygotsky’s theory, scientific concepts are taught in scholastic institutions, 
and develop differently from everyday concepts. This deeper theoretical 
understanding of the evolution of concepts is directly pertinent for all didactics of a 
knowledge domain. 
 We highlight these differences between Piaget’s and Vygotsky’s objectives and 
central objects as a preface to presenting evidence that their case is not one of two 
psychologists with conflicting viewpoints, but rather of each making his own 
specific scientific contribution. Each proposes an original perspective on 
knowledge construction, as defended by Shayer (2003), for example. We will 
therefore first go deeper into the framework of Piagetian constructivism, and then 
describe the theoretical contributions of Vygotskian conceptualism, which are 
crucial for didactics of science. 

Piagetian constructivism 

The dominant image of Piagetian constructivism is probably that of a construction 
of knowledge that is internal to the subject. From this, one could see Vygotskian 
socio-constructivism as in opposition, taking into account the social dimension that 
Piaget would supposedly discard. To show that this is simply a question of 
perspective, we can refer to Piaget himself: “The social group plays … from a 
cognitive point of view the same role that the ‘population’ plays from a genetic 
point of view. … In this sense the society is the supreme unit and the individual 
only achieves his intellectual constructions insofar as he is the seat of collective 
interactions for which the level [depends] on the society as a whole” (Piaget, 1992, 
p. 345). The necessity of the social aspect in cognitive development is here clearly 
affirmed. Piaget successfully integrates the existence of two shifts during 
development: One associated with the individual as epistemological subject, and 
the other purely social. But it is the process of organization of knowledge (its 
structure) that will be central in the research he conducts. This “internal 
mechanism” of development is conceived in terms of a double regulation, 
retroactive and proactive,4 for which Figure 2 presents a schematic diagram. 
 We can consider this double loop as a “zoomed-in” portion of the system of 
activity regulation (Figure 1). The object of the action is what is retained in the 
situation: The comparison between the intended state of this object and the 
observed effect releases an adjustment of the action. The feedback on the subject 
(which was not made explicit in Figure 1) will modify the action “upstream” 
through an adaptation of knowledge and schemes for action. Moreover, inasmuch 
as there is an intended or anticipated result, the action is also regulated proactively 
(“feedforward”). Piaget defines this mechanism in terms of a dialectic between 
assimilation of the new situation into the subject’s strategies and 
conceptualizations, and accommodation of these concepts and of their 
organization. (We can think of the passage from a one-dimensional treatment of 
objects to a bi-dimensional treatment, for which the model is the Cartesian 
product.) 
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Figure 2. Schematic diagram of action regulation. The regulation takes place within a short 
action-adjustment loop, dependent on the comparison of the produced effect to the objective 

of the action. The objective can be determined through a conscious goal or can be a 
byproduct of the subject getting the object in his field of attention. 

 The development of knowledge structures results, therefore, from a double 
process: a dis-equilibration when prior knowledge structures lead the subject to 
expect a result that is invalidated by the action, and a re-equilibration after the 
knowledge structures are modified (Piaget, 1985). Piaget does not say that the re-
equilibration is necessarily an improvement, which is to say it does not necessarily 
lead to a more efficient conceptualization (where “conceptualization” refers to the 
construction of concepts to understand and act on the world). He also describes the 
importance of reflective abstraction upon the subject’s activity itself, and not 
simply on its results. This concept of reflective abstraction was operationalized for 
mathematics teaching by Simon et al. (Simon, Tzur, Heinz, & Kinzel, 2004). 
 Within the framework of Piagetian genetic epistemology, the importance of 
considering knowledge content was reaffirmed by Greco (a collaborator of Piaget 
who should be rediscovered) and included by Vergnaud in his theory of conceptual 
fields (see below). This consideration also leads to an analysis of the double 
regulation as simultaneously a “functional” adjustment of representations of the 
situation and of the organization of actions, and a “structural” regulation that 
modifies the conceptual organization and the cognitive operations of the subject. 
The diagrams in Figures 1 and 2 do not yet differentiate the two types of 
regulation, or the timeframes in play. We will return to these topics later on. 
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Piagetian genetic epistemology: The role of knowledge content 

The Piagetian concept that has probably entered the most into psychology and 
science of education is that of the stages of development (sensorimotor, concrete 
operational, formal operational, and eventually intermediary stages as well). The 
other well-known concept is the idea of a “child logic,” that evolves toward a 
scientific logic that will permit coordinated logical operations and manipulation of 
abstract propositions, independent of their content. In fact, the initial work of 
genetic epistemology on space, numbers, speed, time, and physical concepts 
presents successive organizations of a child’s representations in each of these 
domains: these organizations run with a similar underlying structure. 
 Greco highlighted the role of content in a set of analyses brought together in a 
posthumous work (Greco, 1991). He provided evidence as to the importance of 
considering the object of the action, as well as the task. He recalls, “Within the 
genesis of elementary logical structures, Inhelder and Piaget … indicate steps or 
regular levels, but also [insist] on the fact that these steps are strongly 
differentiated by the nature of the material, the classifying task proposed to the 
child … etc.” (op. cit., p. 38). He underlines the necessity of “specifying the 
conditions of equilibration, notably as these conditions also highlight properties of 
objects and tasks” (p. 39), and insists on the role played by the object of action and 
knowledge within the regulation that is at the heart of the development process: 
“The adjustment of forms to content requires a revision that reveals properties the 
available forms do not allow us to cover…The worrying question of restoring the 
role of the object in development is an integral part of Piagetian constructivism” 
(op. cit., p. 55). 

The complementary contribution of Vergnaud’s conceptual fields 

As highlighted by Greco, the essential Piagetian concepts of dis-equilibration/re-
equilibration, the assimilation/accommodation dialectic, and the intervention of a 
complex regulation process are general concepts that should be made more specific 
according to the knowledge content. It was Vergnaud who enlarged the Piagetian 
framework in theorizing the concept of the conceptual field (Vergnaud, 1982, 
1990), by outlining situation classes, operational invariants, schemes for action, 
and representational systems, all relative to a knowledge domain. 
 The theory of conceptual fields “was initially elaborated in order to take into 
account the process of progressive conceptualization of additive structures, 
multiplicative structures, [and] the relationships between number and space, within 
algebra” (Vergnaud, 1990, p. 135). The theory articulates two epistemological 
approaches: That of mathematical didactics and that of developmental cognitive 
psychology. Broadly, from a didactic point of view, the concept of the conceptual 
field aims to provide a framework for analyzing the student-knowledge 
relationship within the didactic triangle of student, knowledge, and teacher. From 
the point of view of developmental psychology, the theorization in terms of 
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conceptual field permits a joint analysis of the effects of learned concepts and of 
development throughout a student’s mathematical education. 

The notion of conceptual field  
A typical example of conceptual field is that of additive structures within 
elementary calculus. Included with this field is a set of numerical concepts: 
numbers (natural numbers, initially “small” numbers), order relations (first 
between whole numbers, and then generalized to the number line), and addition 
and subtraction operations (including their properties, as well as their relationships 
with order relations and with classes of problems that use these operations for their 
solution). Trying to consider the concept of number “in itself,” isolated from other 
concepts that render it operational, is not only ineffective for understanding what 
students learn, but devoid of meaning for studying teaching processes aimed at 
numeric concepts. The concept of conceptual field is relevant to studying student 
learning at a wide variety of levels, from the “everyday” conceptualization of a 
young child (outside of a didactic project), to the conceptualization that is the goal 
of a scientific lesson or of a student specializing in mathematics.5 
 Thus, at an elementary level, the construction of a complete collection of unique 
colored shapes, given a set of shapes and an independent set of colors, brings into 
play a set of concepts related to the conceptual field of the Cartesian product 
(Rogalski, 1985). These concepts include those of identity and difference for 
ordered pairs, and eventually the cardinality of sets and the distributive law 
(ensuring that each form is associated with each color, or vice versa). We note that 
the concepts in question, while “everyday concepts,” are precursors of logico-
mathematical concepts. Another example of such everyday concepts is the “small” 
cardinals, which a small child is able to manipulate after mastering its precursor, 
“numerosity,” a quality perceived in object collections, not unique to humans but 
shared by a number of species. All these concepts will continue to develop and 
enter into the conceptual fields of additive then multiplicative structures. 
 In general, concepts can be considered as nodes of a network that contains all 
kinds of relations. A conceptual field corresponds to a part of this network that 
possesses characteristics relevant to a set of proposed situations. Thus, a number of 
concepts are contained within the conceptual field of numeric multiplicative 
structures, including the Cartesian product, product measure, linear transformations 
on R, multiplicative operations on various numeric sets (N, D, Q, R). Similarly, a 
single scientific concept can fall under several different conceptual fields. The 
concept of surface area, for example, is included in the conceptual fields of 
physical quantities, measure operations, sets of positive numbers, space and its 
models,  it belongs to the conceptuel field of additive structures (as a “simple” 
measure), and  of multiplicative structures (as a product of linear measures). 

Schemes in the theory of conceptual fields 
Vergnaud insists on the fact that, to take into account the adaptive function of 
knowledge, it is necessary to give a central place to the operational dimension of 
knowledge (“rational knowledge is operational or nothing,” op. cit., p. 136). The 
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concept of a “scheme” models this operational function. With Piaget, the scheme is 
defined as an invariant organization of action for a class of situations. 
 It should be stressed that it is not the action that is invariant, but a particular 
property of the action: its organization. The operational nature of the scheme 
reflects the possibility that the action may vary with the determinants of the 
subject’s situation. This is what enables new situations to be met with adaptation 
rather than simple repetition. In the Piagetian line of research, a number of 
processes have been proposed for the development of schemes: a double process of 
assimilation and accommodation (similar to the process in play in conceptual 
development), processes of generalization/specification, and processes of 
combining pre-existing schemes. 
 Within the domain of learning mathematics, Vergnaud described the evolution 
of a counting scheme during the numeric education of children and students. This 
scheme involves the temporal coordination of visual focus, pointing gestures, and 
recitation of the list of number names, and repetition of the last word-number (an 
ordinal) to give the cardinality of the set (“one, two, three … seven – SEVEN!”). 
The child will assimilate new counting situations into a scheme initially developed 
for very small collections. New situations will call for an accommodation in the 
initial scheme. For “big” collections, operations will be added to the scheme’s 
organization. These may include taking into account the spatial structure of the 
collection, using the theorem-in-action of adding the cardinals of disjoint subsets, 
or using an intermediate system (tally marks grouped in fives, used in manual vote 
counting systems, for example). The “technical” operations of addition will stem 
from this. 
 The analysis proposed in the theory of activity, together with “activity, action, 
operation” (Galperine, 1966; Haenen, 2000; Leontiev, 1984; Savoyant, 1979, 
2005) leads to a distinction of levels within schemes.6 
 The issue of schemes of action for the student is considered in studying the 
development of what we could call their dexterity in executing mathematical 
procedures, which falls outside the scope of this book. 

The importance of systems of representation 
Within the theory of conceptual fields, developing “a psychological and didactic 
approach to the formation of mathematical concepts leads to a consideration of a 
concept as a set of invariants that are available for use in an action. The pragmatic 
definition of a concept, therefore, includes the set of situations which constitutes 
the reference for the various properties of the concept, as well as the set of schemes 
applied by subjects in these situations. However, the operative action does not 
constitute the entire conceptualization of reality … the use of explicit signifiers is 
indispensible to the conceptualization” (op. cit. p. 145). Inhelder and Piaget’s 
declaration that “memory of a scheme is that scheme” brings us back to the issue of 
progression from schemes’ “concepts-in-action” and “theorems-in-action” to 
representable concepts, following a conscious realization. 
 For Vergnaud, representations are two-sided: The “signifier” corresponds to 
their external dimension, and the “signified” to their internal dimension. External 
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representations (signifiers) can take a variety of forms. Vergnaud, like Vygotsky, 
highlighted the central place of verbal  language (as opposed to non-verbal; can be 
oral or written). The treatment of symbolic representations can be an intrinsic part 
of the activity. This is a crucial point for analyzing the double teaching/learning 
process within secondary education, particularly where algebra is concerned. 
 
Collective history of mathematics, individual history of the student 
At the moment of teaching, a process of conceptualization has already taken place 
within “mathematical communities.” This process results in the production of 
“theoretical knowledge” that is at the heart of epistemological analysis in 
mathematical didactics. These historically constituted conceptual organizations of 
scientific knowledge serve as a reference to determining the relevant conceptual 
fields for analyzing and provoking students’ conceptualizations, issued from their 
activity in appropriate situations. 
 Students’ personal history and the familiar frameworks in which they act may 
introduce new elements in their activity, in addition to the conceptual structure of 
the situation. Vergnaud elaborated a typology of addition problems in which 
psychological and didactic relevance is denoted by important differences in student 
learning. His typology departs of the mathematical models that essentially limits 
variation to the numeric values and to the “technical” operations available for use 
in solving. 
 The “socio-constructivist” theoretical framework elaborated by Vygotsky 
enables taking this historical double determination into account, and outlines two 
concepts. The first concept is that of social mediation. This concept primarily 
intervenes through a direct intervention by an adult or a “more knowledgeable” 
into the activity of the student or child. This analysis was later developed by 
Bruner, with the goal of developing a theory of instruction (Bruner, 1996; Wood, 
Bruner, & Ross, 1976). The second concept is the “everyday concepts/scientific 
concepts” dynamic, where the latter are instruction objects, analyzable as 
“theoretical knowledge.” 
 This Vygotskian framework also allows for consideration of the “learning/ 
development” process as one point of view on the subject, and for expanding the 
issue of development (which psychology and Piaget himself, traditionally limited 
to childhood) to cover the entire lifespan of the subject. 
 After recalling, below, Vygotsky’s contributions, we will put into perspective 
the Piagetian and Vygotskian frameworks as compatible and complementary tools 
for analyzing teaching practices and student learning. 

Vygotsky’s views of didactic intervention and of development 

Vygotsky’s theory put social mediation, and the value of “psychological tools” in 
this mediation, at the heart of the development process. It thus offered a 
perspective that was complementary to Piaget’s for studying the teaching/ learning 
relationship within the development of the conceptual fields of a scientific domain 
such as mathematics. Vygotsky also contributed to the analysis of 
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conceptualization, showing how “everyday” concepts from the child’s normal life, 
and “scientific” concepts that were explicitly taught, developed within a “double 
germination” dialectic. 

Everyday concepts and scientific concepts 
Chapter 6 of Thought and Language (Vygotsky, 1986) explores the topic of two 
types of concepts: everyday concepts and scientific concepts. It also describes the 
relationships with the learning and development of a child. Vygotsky criticizes 
Piaget for only being interested in the development of spontaneous or everyday 
concepts, and for not examining the form scientific (“taught”) concepts took in a 
child or adolescent, and how they were integrated into development. 
 The distinction introduced here by Vygotsky contrasts the characteristics of 
concepts stemming from a child’s interactions with objects in the world without 
didactic intervention, with characteristics of scientific concepts originating from a 
prior collective production, which are also objects of instruction.  
 Two characteristics distinguish everyday and scientific concepts: Their 
organization (the “structural” dimension) and their relationships with objects (the 
“functional” dimension. Scientific concepts are strongly tied each other by mutual 
relationships, including abstraction (generalization) relations, while everyday 
concepts can be isolated. In the activity of a very young child, the concept of cat is 
not necessarily tied by an abstraction relation to the concept of feline or mammal. 
Nor must it be placed in comparison to, or contrast with, the concept of dog. The 
cat concept is functional, and operational, without any such relationships. By 
contrast, the concept of function in mathematics (numerical, one-variable) cannot 
exist without that of variables, while the operationalization of the concept of 
variables assumes that of numeric concepts. In addition, the concept of graph of a 
function (a one-dimensional subset of the plane) and its graphical (external) 
representation implies a number-space relation, with the concepts of number line, 
x-axis, y-axis, and coordinates. 
 Everyday concepts can exist “in action” without children being conscious of 
them or able to verbalize them, either because the process of consciously realizing 
the “concept-in-action” did not take place during the child’s development, or 
because the action does not call it to mind. By contrast, scientific concepts are 
explicit and exist through symbolic representations, such as language (the primary 
form of representation) and other symbolic mathematical systems. 
 Vygotsky presents the idea that an everyday concept is “glutted with empirical 
content.” This is a strength of everyday concepts from the point of view of 
significance, but it is also a weakness, as the content brings with it a mass of 
properties, which limit conceptual constructions at a higher abstract level. 
 By contrast, the strength of a scientific concept comes from its generality in 
terms of abstraction, and the generality of the domain in which it acts (its 
“decontextualization”). Its strength also comes from the fact that the concept is 
conscious and was constructed with “words to say it,” as well as from the 
coherence of the system of concepts to which it belongs. However, despite being 
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more general than everyday concepts, scientific concepts display much less 
empirical concept, which is their weakness, in terms of significance.7 

The dialectic of “double germination” of everyday concepts and scientific concepts 
The respective characteristics of everyday and scientific concepts can lead to 
considering them as two conceptual categories. The historical-developmental 
dimension of Vygotsky’s theoretical approach is in fact essential for progressing 
past this view, to seeing everyday and scientific concepts as developing interaction 
within a dialectic of “double germination.” 
 In one direction, the germination of scientific concepts passes from the “low” to 
the “high,” where the “high” is what is “general” and “decontextualized.” This 
passage follows interaction with objects from the world of action (as in Piagetian 
constructivism). In another direction, this germination passes from high to low, 
supported by symbolic representations (including appropriate language) proposed 
in the mediation. 
 Within this biological metaphor of germination, everyday concepts clear the 
way for the germination of scientific concepts by the meaning they provide. 
Scientific concepts, in turn, clear the way for the germination of everyday concepts 
through their organization and the mediations they propose, and “pull” the 
everyday concepts higher. 
 In terms of the child, an operational piece of knowledge is acquired when the 
two types of concepts meet and two processes are engaged. The first process is a 
reorganization of everyday concepts to better organize them into a system. The 
second process involves extracting the meaning of scientific concepts to make 
them concepts for action. This process of interaction assumes a property of the 
development dynamic: that the dynamic takes place within a proximal development 
zone.8 

The proximal development zone and the learning/development relationship 
The proximal development zone (PDZ) is situated between the current level of 
development, defined by what the child is capable of doing or solving 
autonomously, and what the child can do or solve with the help of others (adult, 
teacher, more knowledgeable peer). For conceptual learning to succeed, situations 
should raise this zone. If they are above the PDZ, assistance can at best produce an 
immediate imitation (or recitation; Vygotsky speaks of “verbal mechanics”), and 
do not contribute to development. If the situations fall below this zone, the child/ 
student only uses prior knowledge, and learns nothing. 
 The concept of PDZ is relevant for the initial development of a new 
conceptualization that is based on prior mathematical knowledge acquired by the 
student. By acting on the student in this zone, the teacher allows everyday 
concepts, or familiar mathematical concepts, to transform and integrate into a more 
detailed conceptual field. If the mediation is successful (assuming its goal is 
conceptualization and not the simple mastery of procedures), these concepts can go 
toward the mathematical concepts to which they are epistemologically tied. 
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 The Vygotskian concept of PDZ is not only a way to discuss 
development/learning relationships. It transforms the understanding of these 
relationships. Under the Vygotskian theory, scientific conceptualization does not 
await, rely on, or follow spontaneous conceptual development, but instead 
intervenes in this development, offering new mediations through new tools for 
thinking. As for the learning dynamic, it too depends on the possible meeting of 
taught concepts and meaning brought through everyday concepts (or familiar 
mathematical concepts), even if the latter are weaker in terms of their generality 
and organization. Vygotsky thus proposes a dialectic process of conceptualization 
at the heart of the development processes. 

Merging the Piagetian and Vygotskian frameworks 

We have described the respective approaches of Piaget and Vygotsky from an 
epistemological point of view, which has led us to consider them non-
contradictory. In addition, we have examined the parts of their respective 
theoretical frameworks concerning conceptual development, in terms of issues of 
mathematical didactics (and other didactics centered on conceptualization). These 
considerations lead us to highlight their commonalities, or complementarity, where 
Bruner “celebrated their differences,” arguing that “with one thinker emphasizing 
the role of inner autochthonous logical9 processes, and the other the shaping role of 
culture, inevitably led to sharp divergences in their approach of mental growth” 
(Bruner, 1996). Here we take the same path as other researchers, such as Cole and 
Wertsch, specialists in Vygotsky who proposed going beyond the apparent social/ 
individual incompatibility between the two (Cole & Wertsch, 2001). In fact, Piaget 
never denied the key role of the social dimension in child development, but simply 
did not include it in his theory. Looking at Vygotsky, his socio-constructivist 
theory is in no way incompatible with the concept of structuration of subject 
knowledge via the regulation processes of the Piagetian framework, even if he did 
not specifically consider these processes. The following discusses their 
commonalities in terms of factors of development, psychological or cognitive 
tools, and long-term development. 

Factors of development 
We highlighted above the fact that even if factors of development were not at the 
heart of Piaget’s genetic epistemology, he nevertheless did not reduce them to 
interaction with the objects of the action. He stressed three general factors: 
biological maturation, the role of exercise and experience gained in the action, and, 
finally, social interactions and transmissions (Piaget & Inhelder, 1971, p. 152 ff.). 
The social dimension of Piaget’s theory was studied more generally by DeVries 
(1997). As for Vygotsky, he made explicit the role of interaction with objects of 
the world of action within a child’s development. Vygotsky’s socio-constructivism 
is thus a materialist constructivism. 
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Psychological tools, cognitive tools 
One central element in Vygotsky’s theory is the role of tools in a child’s 
development. He focuses particularly on psychological tools, as these have already 
been constructed socially. A very specific place is given to language, a 
psychological tool par excellence. 
 Piaget largely used language (and graphical representations) as a way to access a 
child’s “spontaneous representations.” Even so, he did not question the role of 
language in development, but explicitly referenced the contributions of language to 
cognitive tools: “… language has already been elaborated socially and contains a 
notation for an entire system of cognitive instruments (relationships, 
classifications, etc.) for use in the service of thought. The individual learns this 
system and then proceeds to enrich it” (Piaget & Inhelder, 1971, p. 87). 

The long-term development of a subject 
The study conducted by Piaget and his collaborators regarding stages of cognitive 
development for the large categories of thought regularly stressed the long-term 
nature of this development. Within the numerical domain, Vergnaud showed that 
the conceptual field of additive structures develops precociously, with additive 
operations appearing at two years, while transpositions and comparisons10 were not 
mastered until the end of mandatory schooling. Data on learning spatial 
measurements, particularly volume, have shown the difficulty and length of the 
conceptualization process required to progress from a “one-dimensional” 
understanding of volume (a familiar concept at the end of elementary school) to the 
idea of a product measure (for which conceptualization is not achieved at the end 
of junior high school). 
 Vygotsky did not have the same insistence on the long-term view of cognitive 
development, but he did stress, in the chapter entitled “Everyday concepts, 
scientific concepts” (1986), that the construction of scientific concepts, like 
everyday concepts, only began after the child had assimilated for the first time a 
new meaning or term, bringing with it a scientific concept. 

Didactics and extending the timeframe of development 
The didactic interpretation of “the two constructivisms” has led us to extend the 
timeframe of development to “advanced math.” The concepts already available 
within a conceptual field are potential precursors of the concepts to be learned, and 
have a function analogous to that of everyday concepts in the Vygotskian 
framework. These precursor concepts have two possible and contradictory roles, 
that of a precursor and that of an obstacle. The productive role of precursors is, in 
particular, to give meaning to new concepts (Vygotsky spoke of the “force” of 
everyday concepts). Their reductive role is tied to properties of concepts that are no 
longer valid for the new concepts to be learned (following Bachelard, French 
didactics calls these “epistemological obstacles”). In Piaget’s theory, the duality of 
the productive/reductive roles can be interpreted in terms of the interplay between 
the processes of assimilation and accommodation. 
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 One important contribution of the Piagetian framework, for which we find no 
Vygotskian analogue, is the fact that knowledge develops through a “Münchhausen 
effect”: “One of the strength-ideas of Piagetian constructivism is that knowledge 
itself creates the conditions and tools of knowledge” (Greco, 1991, p. 52). There is, 
thus, a dynamic unique to knowledge beyond occasions of development provoked 
by didactic mediation.11 

The two constructivisms: complementary theoretical tools 
Each of the two main figures in constructivism recognized the strengths of the 
other. Vygotsky, discussing the shift toward scientific concepts of a certain number 
of notions of causality, remarked, “I have not looked closely at the state of children 
in terms of the logic they are capable of using; in this Piaget has shown 
overwhelming superiority” (Vygotsky, 1997). As for Piaget, he noted his 
agreement with Vygotsky’s approach to the analysis of everyday and scientific 
concepts. In addition, he stressed that “The individual only achieves intellectual 
constructions insofar as he is the seat of collective interactions, whose level 
[depends] on the society of his group” (Piaget, 1992, p. 345).  
 Finally, a more philosophical point of agreement between the Piagetian and 
Vygotskian frameworks was highlighted by Bruner (1996): “The unique mystery 
of mind is its privacy, its inherent subjectivity. Both Piaget and Vygotsky were 
very explicit on this point. See Piaget (1974, pp. 28 ff.); Bruner’s (1987) preface to 
Volume One of Vygotsky’s collected works.” This concordance on the subjectivity 
of thought reinforces the links between the two developmental frameworks and the 
theory of double regulation of the activity. The latter concentrates on subjects, 
authors of and actors in their own activity, whether they are students whose 
learning is the goal, or teachers who work toward student learning. 
 

 CONCLUSION: OUTLINING THE THEORY OF ACTIVITY  
AND THE TWO CONSTRUCTIVISMS 

We presented the theory of activity and the model of double regulation of the 
activity, which is used in ergonomic psychology but is extendable to any 
completed activity, including that of the student. One component of the double 
regulation model is the impact of the activity on subjects themselves, which 
represents the developmental dimension of this model. On the topic of knowledge, 
we then highlighted the commonalities and complementarity of the constructivist 
theories of Piaget (as extended by Vergnaud’s conceptual fields) and Vygotsky 
(with Bruner’s theory of scaffolding). 
 The connection between the theory of activity and the “two constructivisms” 
thus offers a theoretical tool for a double approach from the viewpoints of 
mathematical didactics and the activity of the subjects in question (teacher and 
students). In particular, the Piagetian theory looks “from the student’s side” at 
epistemological analyses of the mathematical objects in play, while the Vygotskian 
theory takes into account the didactic intervention of the teacher, mediating 
between knowledge and student in support of the student’s activity. 
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 The developmental dimension also calls into question the timeframe of the 
processes in play, particularly for students. Leplat already compared the theory of 
activity and Piagetian constructivism and highlighted the existence of a functional 
regulation as well as a structural regulation. The functional regulation leads to 
adjustment of the action (cf. Figure 2), within a process of micro-genesis, that can 
translate through procedural learning, with possible support from the teacher. This 
short-term regulation can also involve conceptual “primings” within the student’s 
PDZ, between the previously acquired concepts and new mathematical concepts. 
The structural regulation acts over the long-term, within a process of macro-
genesis, in which the conceptual structures and the student’s schemes of action are 
transformed within an assimilation/accommodation dialectic. 
 From a didactic perspective, we can take the relationship between these two 
timeframes into account by forming the hypothesis that after concepts are “primed” 
(whether through a fundamental situation, an appropriate problem, or even an 
explicit direction from the teacher), making these concepts functional is an 
essential contribution to the structure of the intended conceptual field12. The 
methodological importance comes partly from analyzing the mathematical tasks 
proposed by the teacher in light of the potential student activity during the 
completion of these tasks, and partly from analyzing the didactic interventions on 
the activity of students in class. Two delicate elements within analyses of 
teaching/learning situations are the role played by the autonomous activity of the 
student, and the importance of the teacher’s identification of the PDZ. 
 There are some very general avenues for research that rely on the theoretical 
tools presented here. There are still aspects to be clarified enabling the study of 
didactic interventions and student development at various levels of analysis: from 
the global level, consisting of relationships between the overall structures of 
teacher interventions and the mathematical knowledge acquired by students13, to 
the “micro” level of individual interactions during class, passing through the local 
level of a class period. 

NOTES 
1  By “competencies,” we refer to the sense as it is used in ergonomic psychology and professional 

didactics. This type of competency does not denote a set of tasks that can be completed successfully, 
but a set of potential resources for action of a subject. It is the same sense intended when referring to 
a student’s competency in mathematics. 

2  Note: This task-activity distinction differs from formulations encountered in various pedagogical 
texts. Within the theory of activity “The activities proposed to a student” would be expressed as 
“The tasks proposed ….” 

3  Berliner (2001) showed the complexity of the question of the characteristics and even definition of 
an “expert” teacher. A description of approaches that agrees with the one we propose here is 
presented by Perrenoud (2005), with regards to the question of knowledge mobilized in the analysis 
of teaching practices. 

4  This conception should be linked to its importance for cybernetic concepts, for which regulation is a 
central concept, from biology to automated systems. 

5  The entry point chosen for analysis here is that of concepts. This entry point is directly applicable 
for studying student learning in scientific disciplines (the conceptual fields are here defined with 
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reference to theoretical knowledge). A “dual” entry point by way of situations is used in professional 
didactics, with the notion of “conceptual structure of a situation,” describing diverse concepts, 
including pragmatic ones (Pastré, 1999; Vidal-Gomel & Rogalski, 2007). Brousseau’s concept of the 
fundamental situation could be seen as an expression of the epistemological link between concepts 
and situations. 

6  The analysis is complicated by the fact that these levels are relative. An action previously composed 
of multiple operations can become, during development, a “unitary” operation that is itself a 
component of a higher-level action. 

7  Within the work domain, professional didactics introduced the theoretical notion of “pragmatic 
concepts” as the organizers of the activity. Historically constructed by a professional community 
within and for a particular domain, these are neither “everyday” concepts nor “scientific” concepts 
(or techniques) under Vygotsky’s definition. Integrated within a conceptual structure of the work 
situation, these concepts relate to indicators (observables) and ways of acting (Vidal-Gomel & 
Rogalski, 2007). In teaching, an expression such as “the class has disengaged” refers to a pragmatic 
concept for which teachers use various indicators and have a multitude of possible interventions 
(changing tasks, intervening in students’ activities, etc.). 

8  A number of versions of this concept can be found in the literature: zone of near development, zone 
of proximal development, or even zone of potential development. I have chosen to use “proximal” to 
refer to this zone. 

9  Our focus, coming from didactics, is actually on the development of knowledge and particularly the 
process of conceptualization, rather than on general logical processes. 

10  Jean-François Richard (2004) showed that humanities students encountered serious problems in 
descriptive statistics related to issues of cumulative effects (requiring them to perform subtractions). 
My own experience has taught me that we find these types of problems in errors on credit and debit 
in accounting. 

11  It is the existence of the dynamic unique to knowledge that led us to consider the activity of the 
teacher as the management of a dynamic environment, which is the student/knowledge relationship 
(Rogalski, 2003). 

12  We can even make the hypothesis that making concepts functional can create meaning, under certain 
conditions on the density of work and the position of the student in relation to mathematics. 

13  The methodological problems of defining adequate global indicators, as much for student learning 
(beyond assessments of success at certain types of tasks) as for relevant properties of the teacher’s 
intervention, remain open. 

 

Janine Rogalski 
Laboratoire Didactique André Revuz 
University Diderot – Paris7 
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ALINE ROBERT AND CHRISTOPHE HACHE 

2. WHY AND HOW TO UNDERSTAND WHAT IS AT 
STAKE IN A MATHEMATICS CLASS 

OVERVIEW 

Chapter 1 proposed a unique general framework, organized around activities by 
actors. This framework specifically allows an analysis of student learning and 
teacher practices. The goal of this chapter is to describe, from a theoretical and 
methodological point of view, the use of this analysis process to examine the 
teaching of mathematics in school. All research presented here concerns the 
teaching of mathematics in middle school and high school (students age 11-18). 
 Our research has two goals. First, we aim to give researchers access to student 
learning for a given topic, in relation to the instruction they have received, within a 
specific school system, from a diagnostic viewpoint (analysis to understand what 
there is) or a prospective viewpoint (experiments to learn how to enrich the 
existing situation). Second, we aim in the long term to work on teacher education, 
particularly based on conclusions from previous analyses and on hypotheses 
allowed by the theoretical framework (see end of volume). 
 The goal of this chapter is therefore to describe the specific theoretical 
frameworks that we use and the general methodologies that follow from these 
frameworks. Later chapters will describe specific studies led under these 
frameworks and that use these methodologies. 
 We will first present the theoretical tools that we have adopted to help us 
understand the learning of a given topic through examination of the relationship 
between mathematical content and the teaching and learning of the topic. We will 
also look at evidence of regularity and variability among classes, teachers, and 
teaching practices. We will begin by examining how we aim to have access to 
student learning, and what kind of results we expect to see. 
 Our approach is, first, thoroughly didactic, in the sense that we develop all our 
analyses from the specific characteristics of the mathematical content to be taught. 
This preliminary analysis of content is connected to other in. Thus, we describe the 
mathematical content which keeping in mind what we will study, student learning. 
More precisely, in our theoretical framework, mathematical learning is associated 
with the concept of conceptualization (chapter 1). This leads us to connect the 
mathematical content studied to levels of conceptualization. These levels are 
defined from school curricula and from characteristics of the concepts involved in 
a set of tasks and in the corresponding knowledge whose use is intended (second 
paragraph of the first section of this chapter). This is where certain differences can 
arise between didacticians. For example, we ascribe significant importance, among 
other characteristics, to the variety of possible ways of making use of knowledge, 
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and we have given ourselves the means to identify this variety from problem 
statements. 
 Secondly, for any given topic, we organize our analyses through the study of 
students’ activities. Following the theory of activity, we postulate that student 
learning depends directly on student activities, even if these activities are partly 
inaccessible and differ from one student to another, and even though other 
elements can intervene in student learning (beginning of the first section of this 
chapter). 
 Studying student activities involves analyzing their work on assigned in-class 
tasks, together with anything added by the teacher during class time. We have 
conducted a priori analyses of tasks in terms of their potential for calling on 
mathematical knowledge (third part of the first section of this chapter). These 
analyses allow us to characterize how students must use their knowledge (based on 
our study of what takes place during class time). We complete our analysis by 
developing ways to analyze class periods and possible student activities, 
incorporating all elements added by the teacher during class that contribute to our 
model of possible student activities (second part of the second section of this 
chapter). 
 However, if these activities are well developed for the majority of the class, then 
we should also take into account, day by day, everything proposed to students on 
the topic to be studied. We call this sequence of lessons and exercises on a topic 
the scenario. 
 We seek to understand global scenarios for a given topic in terms of the 
intended student conceptualization. These scenarios can be understood as 
sequences of lessons and exercises associated with intended applications of the 
content knowledge. This provides an initial approach to understanding possible 
student activities and student learning. These global scenarios can be seen as 
planned “cognitive itineraries” (first part of the second section of this chapter). 
 All these analyses incorporate some general hypotheses about learning. These 
hypotheses arise from our adaptation of the combined theories of Piaget and 
Vygotsky for school mathematics learning, as initiated by Vergnaud (chapter 1). 
The analysis of proposed tasks involves elements that are assumed to have an 
influence on activities and therefore on learning. Thus, in terms of skill 
construction, the variety of what students must use in their work plays just as much 
of a role as the order in which students complete exercises, or the quantity of 
exercises completed. In other words, the possible ways to mobilize, combine, and 
recognize the knowledge to be used in exercises are the main factor in constructing 
student knowledge (along with processes of assimilation, accommodation, dis-
equilibration and re-equilibration). But this depends not only on proposed tasks and 
the actions they may provoke, but also on the way in which these tasks are worked 
on by students (particularly in class in terms of the nature and quality of individual 
and group investment), as well as on the mediations and assistance provided by the 
teachers. To analyze in-class events, we also use anything that can influence 
student activities in terms of teacher practices, whether related to the nature of the 
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organized work (autonomous, in groups) or to direct teacher interventions 
(assistance, identification of student work, use of this work, assessments, etc.). 
 Finally, for the last fifteen years, we have introduced the idea that teachers’ 
choices, in and out of the classroom, are not solely determined by factors related to 
student learning. They also depend on numerous external constraints, which can be 
institutional (tied to curricula and schedules) or social (tied to classes and 
establishments). They can also be tied to the personality, representations, 
knowledge, and experience of the teacher. To better understand teachers’ practices 
(which depend on student activities and on which student activities depend),1 we 
complete our analyses based on in-class events, taking into account factors tied to 
the teaching profession through a didactic and ergonomic double approach (third 
section of this chapter). We use the word “practices” to refer to all work done by a 
teacher. Although our analyses are based on in-class work and teachers’ activities 
in relation to intended student activities, we include in a teacher’s “practice” all 
work done by that teacher, whether before, during, or after class time. 
 It is clear that the choice of divisions and variables to analyze is delicate, as the 
variables in play can be both local and global (a concept or specific exercises, for 
example). Variables can also be defined in terms of other variables. For example, 
the way we choose to describe a concept depends on what we find useful in 
understanding scenarios and their potential for student learning. Descriptions of 
scenarios, conversely, depend on the specifics of the content involved. Our 
descriptions of mathematical content (in terms of variety of tasks, for example) 
should allow for understanding of the corresponding learning process. Finally, if 
students’ intended activities contribute to decoding teachers’ in-class activities, it is 
these in-class activities that in turn allow us to describe possible student activities. 
 The remaining questions focus on this division, which we will discuss further in 
the fourth section of this chapter. One open question we continue to work on, for 
example, is the determination of significant indicators in a teacher’s speech. How 
far should our analysis of the way a teacher addresses students go beyond 
examining the strict content of the message (which should also be investigated)? 
To what extent, and to what, are students sensitive: to repetitions, images, spoken 
and written information, questions, differences in presentations, etc.? 
 The results that these tools have allowed us to produce, as subsequent chapters 
will illustrate, come out of relatively recent research, in which researchers have 
adapted them to particular research areas by specifying, discussing, and enriching 
the methodology. 
 This work is equally applicable to the analysis of teachers’ manuals, which 
mainly relies on a priori analyses of tasks and scenarios. This analysis reveals the 
benefits and limits of the analysis of practices from which we can infer general 
important characteristics, as mush for students as for trainings: intrapersonal 
stability, inter-teacher commonalities, variability and changes, etc. A certain 
number of these studies examine the integration of technology into teaching, and 
propose new diagnostics of teacher and student difficulties in order to design 
suggestions for technology use or trainings. 
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 The reasoned descriptions we produce allow for deep understanding of what 
takes place in a mathematics class, over the short and medium term, in terms of 
consistency or diversity for a topic, for a single teacher or multiple teachers. 
Understanding student knowledge in the long term is difficult, as it is difficult to 
define and broad, and the variables contributing to this knowledge for each student 
are out of reach. Thus, even though some studies may relate the instruction given 
on a mathematical chapter, analyzed according to our criteria, to the resulting 
student work, they are identifying fairly local regularities that depend in part on the 
individuals involved, and do not claim to deduce from this prescriptive indications. 
We can say, by contrast, that our research can help to enrich teachers’ work, by 
revealing variables that contribute to their choices before and during class, and by 
giving them ways to discover the full range of what is possible. In addition, 
interpreting the identified inter-teacher commonalities and variances within the 
chosen theoretical framework contributes to reflection on teacher trainings 
(conclusion of this volume). 
 In the first section of this chapter we will focus on student activities (intended 
activities, possible activities, a minima or a maxima activities, etc.). We will 
present a general outline of our didactic approach, and describe our mathematical a 
priori analyses of class periods, which will allow us to better understand student 
activities. These analyses consist of global analyses of the form and type of 
mathematical content to be taught, and local a priori analyses of assigned tasks in 
terms of both the intended conceptualizations to be formed of the content and 
student learning. In the second section, we will describe the a posteriori analyses 
of class periods, both globally (the scenarios) and locally (analyses of in-class 
events). These analyses allow us to discover students’ activities by using teachers’ 
activities as an intermediary. In the third section, we will detail the analyses of the 
teaching practices of mathematics teachers, which form the heart of the studies in 
this volume. Finally, in the two final sections we will discuss the general elements 
of the methodology, and conclude by indicating methods for comparing different 
“paradigms” of didactic research. 

STUDENT ACTIVITIES AND A PRIORI ANALYSES OF CLASS PERIODS 

Student activities and the general plan for our analyses 

Student activities2 (as well as teacher activities) consist of their actions during the 
completion of a task. This task can be anything from an exercise to listening to a 
lesson. The activity takes place within a specific situation, such as in class or at 
home, and consists of external mathematical actions, which may be spoken, 
written, or performed, as well as internal actions such as hypotheses and decisions 
as to what to do. These last constitute the student’s “personal state.” Personal state 
activity is not directly observable but leaves observable traces. Activities are made 
up of everything students do, including listening, as well as everything surrounding 
the actions. This allows the development of knowledge from actions. Student 
activities also consist of what students say, think, do not do, do not say, etc. They 
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depend on a number of factors, including the teacher’s activity, which contributes 
to the desired transformations in terms of knowledge. For the teacher’s activity, we 
use lessons3 and assigned exercises as well as work conditions in class and aspects 
of the teacher’s speech. In Appendix 2 we present an overview of the dimensions 
we believe affect learning. However, there are other factors affecting learning that 
we do not directly consider, including emotions tied to school, socio-cultural 
factors that can act as a filter between the student and the school,4 and factors 
connected to other circumstances outside of school. These other factors (emotional, 
socio-cultural, tied to circumstances, etc.) are considered as variable parameter and 
are taken into account, but are not independently analyzed. 
 We also do not consider extreme cases of students who do not participate at all 
in the class activities, whether because they refuse or because they do not 
understand the transformation expected for knowledge activities. These last 
students act in ways that are too different from the ways intended. By contrast, 
some of the studies presented introduce the concepts of action logic (success logic) 
or learning logic, according to the possible ways to include students in their own 
learning. The double regulation system from chapter 1 is only used in certain 
studies, most notably those that explicitly concern individual subjects. 
 It must be emphasized that students in the same class will not develop the same 
activities or follow the same course along the same “cognitive itinerary” (see 
above). An individual’s activity also depends on the individual. Elements of 
differentiation may be introduced in the various studies presented. 
 As activities are, by definition, partly internal and inaccessible, depending on 
the case we will only study possible student activities. These activities are 
presumably close to students’ effective activities, but, in light of a priori analyses, 
we cannot be sure that all students will complete them. We can even, in some 
cases, be sure that this is not true. When necessary, we identify ways to better 
approximate students’ effective activities (based on computer logs, for example). 

From tasks to activities: Possible, a minima, and a maxima activities 
All teacher and student actions modify the possible activities, as predicted by the a 
priori analyses, and contribute to their reconstitution. Among the possible 
activities, we often distinguish a maxima and a minima activities. A maxima 
activities are the activities of students who begin working as soon as the teacher 
asks. They engage in the assigned task with some autonomy. They often have an 
idea on how to begin, and are able to overcome the desired adaptations. A minima 
activities are the activities of students who may be more distracted or slower. They 
wait until the last moment to begin, and until the teacher has given as many 
indications as possible. They work with less autonomy. Using a computer, we can 
more easily identify shifts from the predicted possible activities towards reduced 
and modified activities. 
 In each case, we try to identify the reductions, modifications, or enrichments of 
the activities with respect to the activities predicted by the a priori task analysis. 
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Differentiation among students 
By considering real students, even if we do not always examine individual 
students, we come quickly to questions of differentiation. Several aspects of this 
differentiation can be investigated. The heterogeneity of classes depends both on 
differences between students, and of the composition of the class. 
 Our tools allow us to look at the first aspect from the viewpoints of student 
results and of teachers’ reaction to these differences. This latter includes all the 
adjustments improvised by teachers, particularly while presenting the correct 
answer or providing constructive assistance (see further on), which can give us 
information regarding this differential consideration of students.  
 Students from the Zone of Educational Priority (ZEP)5 have overall 
representations and general conceptions of school when they enter class. They may 
be in an environment where school is an unknown or undervalued institution. 
Parents in the ZEP may be disappointed by school, and young people may expect 
little from it. Students may be confronted by new external demands that are 
apparently independent of scholastic acquisitions. This can have consequences on 
the way they see mathematics. Effectively, if their relationship to knowledge is 
always an “action” (perform calculations, solve exercises, work on assigned tasks; 
see Charlot, Bautier, & Rochex, 1992) this does not prepare them for the necessity 
of seeing concepts as mathematical objects.  
 In class, under various conditions, students begin working on tasks and 
developing activities. To have positive effects on the conduct of the class as well as 
student learning, these tasks must be calibrated precisely to be neither too simple 
nor too complex. Students must move beyond the initial oral solving phase to 
written work and then to finding links to the knowledge goal. There are many 
sources of active or passive resistance for students that can be difficult to 
overcome. 
 We also observe student micro-actions that are tied to classwork in terms of 
overall knowledge. Not taking off a coat may indicate that the student has not fully 
transitioned to class time. Other such micro-actions include not listening from the 
start, not paying attention (or only rarely), chatting with other students, doing 
nothing, etc. These micro-actions can also be a permanent obstacle to engaging in 
the mathematical activity of the class. In particular, a short attention span can 
prevent students from retaining class events, an act that requires making 
connections and waiting until something more general emerges. At the same time, 
these students may be very curious and lively at times, and want to talk frequently, 
answer quickly, and monopolize teachers’ attention. This type of attitude may be 
harmful in mathematics due to the cumulative nature of knowledge, and the aim of 
conceptualization. 

A schematic for the world of the classroom 
This system is a tentative method for illustrating the subdividing of the world of 
the study. It is very general and will be used in different ways in each study. 
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 Possible student activities are at the center of this schematic, between teaching 
practices (upper left) and learning (lower right). The arrows do not have a 
theoretical status, but indicate links that seem to us to be important in our 
subdivision. If a link is not explicitly taken into account in our research, we 
represent it with a white arrow. If a link is taken into account, or even drives our 
research, it is represented by a black arrow. The objects of our research are 
highlighted in light gray. We highlight in dark gray elements that are observed and 
analyzed. 
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 Our analyses are narrowly focused on mathematics in school situations, and 
attempt to take into account the relationships between the individuals involved. 
However, as shown in our schematic, we focus primarily on the “hands-on” teacher 
variables. These variables are weighted by factors beyond the classroom, which we 
do not have the means to completely account for. 
 As discussed above, our analysis of possible student activities aims primarily to 
estimate their learning. Our analysis of teacher practices aims to examine6 their 
effects on student activities. Although we do not directly consider external factors 
on students, we do include some external elements in our analysis of teachers. By 
taking into account important institutional, social, and personal factors that affect 
practices, we can better weight, understand, and interpret what takes place. 
 However, while we can partially reconstruct elements of representation or an 
overall path, some elements necessarily remain inaccessibly, particularly personal 
elements. Specifically, for teachers we favor elements of the analyzed situation, 
such as the mathematics class and the students. These elements, consciously or pre-
consciously, depend on actors.7 While some indicators, particularly in some speech 
analyses, reveal phenomena specific to individuals, they only reinforce other 
analyses regarding teachers’ choices. These choices primarily concern the 
mathematical content to be taught and class management. They may be a priori 
and/or partially improvised, but they are not unconscious. 

GLOBAL ANALYSES OF THE MATHEMATICS TAUGHT AND  
LEARNED IN A CLASSROOM: LEVELS OF CONCEPTUALIZATION,  

TYPES OF CONCEPTS, RELIEF MAP 

Overall, the way we choose to characterize the mathematical content to be taught 
should be able to serve as a reference to our analyses of teaching and learning. 
 We describe students’ “acquisitions” in our analyses in terms of level of 
conceptualization. Following, Vergnaud, we define acquisitions with reference to a 
set of tasks whose intended resolution requires the reorganization of new 
knowledge into previously learned concepts, as well as the availability8 of a certain 
number of aspects of the concept. These aspects include objects (definitions, 
theorems, properties) and tools (contextualized, within different frameworks and 
registers). The definitions of “tools,” “objects,” “frameworks,” and “registers,” 
which we adapt from those of Regina Douady, can be found in Appendix 1. We 
also include the definition of “viewpoint.” 
 This starting point leads us to define a level of mathematical conceptualization 
to be acquired from a given curriculum and for a given concept, domain, or 
mathematic chapter, and contributes to defining the goals of teaching and learning 
(first section below). However, in order to describe the learning scenarios, we need 
to add other elements to this initial description of mathematics to be taught. These 
elements affect the choice of the cognitive itinerary to propose to students, 
particularly tied to the relative proximity of the new concepts to previous concepts 
(second section). We conclude by introducing the idea of the relief map, connected 
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to all these aspects of concepts that we can take into account before describing a 
specific scenario (third section). 

Relationship with the didactic transposition 
We investigate the didactic transposition between theoretical knowledge and 
knowledge to be taught by giving ways to define what, in a given piece of 
knowledge, is prescribed to the study at a given moment. A historical or 
epistemological study is often necessary to understand what characterizes a 
concept, the reasons for its emergence at such a moment in history, what of it 
remains in a given curriculum, etc. However, as didacticians, we often use 
previously synthesized texts and secondary sources in our research, and do not 
attempt to advance epistemological research, for example, even if we re-open some 
questions (Dorier, 2000; Bridoux, 2011). 

Level of conceptualization 
For us, a level of conceptualization is a fairly large and coherent domain of 
mathematical work that is at least partly taught (or to be taught). It consists of: 
– Fundamental axioms, either specific to the domain or borrowed from other 

mathematical fields. These may remain implicit at certain levels. 
– A corpus of definitions (objects), theorems, and propositions. We call this 

corpus the level’s “arsenal.” 
– Reasoning methods, steps, and a specific degree of rigor. 
– A set of problems that can be resolved within this level. 
Within a given level of conceptualization, work may take place in several different 
frameworks or registers. For example, the geometrical frameworks of points, 
vectors, numbers, analysis, or figures can all coexist, as can the different registers 
of Cartesian, polar or barycentric coordinates, various vector notations, complex 
numbers written in algebraic, trigonometric, or geometric forms, etc. The systems 
of representations (most notably registers) presented in chapter 1 are again in play 
here, with the ability to choose such a system and to pass from one to another as an 
important issue.  
 The coherence of a level of conceptualization refers to the possibility of 
establishing a domain’s arsenal using only the fundamental axioms and initial 
definitions. In other words, the domain’s theorems can be proved internally, using 
the domain’s tools. This also applies to the field of problems attempted once the 
arsenal has been acquired. This should not be taken to mean that this should be 
done with students, nor that there are not other, external, methods to achieve the 
same results. 

An example 
Two levels of conceptualization underlie the geometry taught from middle school 
to the first years of university mathematics: “Euclidean geometry” (taught 
primarily in middle school), and affine and affine-Euclidean geometry (taught in 
the first years of university mathematics and in preparation for the teaching 
examination, and introduced surreptitiously in high school).9 
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 In “Euclidean geometry,” the fundamentals, the work following these 
fundamentals, and the methods of reasoning all come from Euclid. However, real 
numbers and area formulas are also included. 
 We note that these levels do not overlap, even if the body of problems that they 
can be used to solve may be partially shared. A certain amount of additional 
generality is acquired in “affine and affine-Euclidean geometry.” In addition, there 
is no strict chronology of these levels in school, with occasional borrowings from a 
level of conceptualization that has not yet been presented (particularly analytic 
geometry beginning in middle school, juxtaposed with “Euclidean geometry”). 
 The Erlangen program provides another level of conceptualization in geometry 
that we will not discuss here. The axiomatic geometry developed by Hilbert seems 
to us to be another candidate for our categorization, and thus a fourth example of a 
level of conceptualization). We will not describe these two levels of 
conceptualization, as instructional content is not organized on those bases. 
 Levels of conceptualization are not simply extensions of one another.10 A 
different level of conceptualization is another way of organizing knowledge. 
Depending on the case, it may represent a generalization (from affine and affine-
Euclidean geometry to the Erlangen program, for example), or a different focus on 
the fundamental axioms (from “Euclidean geometry” to Hilbert geometry), or a 
change of fundamental axioms (from “Euclidean geometry” to affine and affine-
Euclidean geometry). 

Relationships with conceptual fields 
Vergnaud’s (1990) conceptual fields are defined in terms of students mathematical 
learning. It is up to the author, as noted in chapter 1, to provide a framework that 
“allows for the understanding of the connections and breaks in learning in children 
and adolescents.” The levels of conceptualization that we introduce are much more 
modest. They are only tied to mathematical knowledge, as developed throughout 
history and presented in school curricula. 
 The common use of the word “conceptualization,” however, indicates a shared 
preoccupation with mathematical learning. In our case, these levels organize the 
mathematical knowledge to be transmitted and contribute to characterizing the 
expected work at each level, in relation to the variables associated with learning. 
The theory of conceptual fields enables the conception of a cognitive organization 
that students should attain for a given conceptual field and an appreciation of the 
corresponding itinerary. 

Types of concepts 
The goal, in this analysis of concepts to be taught, is to understand the relationship 
between new concepts and concepts students have worked with previously. In 
particular, we will attempt to deduce the characteristics displayed (and clearly 
taken into account in school curricula) of reasonable methods of introducing these 
concepts. One concept may have several introductions, particularly according to 
the progression previously adopted by the teacher. 
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 We have identified three general types of concepts: Extensions of old concepts 
(with or without “crashes”), RAP concepts (responses to a problem), and FUG 
concepts (formalizing, unifying, and generalizing). We will discuss their respective 
introductions later on. 
 In a mathematics curriculum, “new” can include new concepts (trigonometry in 
8th grade, for example) but also new frameworks (the graphical or algebraic 
frameworks in middle school), new objects (scalar product, introduced in 11th 
grade), or new theorems and properties (Thales’ intercept theorem or the 
Pythagorean theorem in middle school). We focus on three characteristics that 
distinguish new concepts (or objects, or frameworks, etc.) from old concepts, and 
that lead to specific student work. We also analyze the function that these new 
concepts fulfill in the mathematical landscape where they are introduced. We 
define these concepts through the combination of multiple such characteristics. Our 
hypothesis is that each type of concept presented can be introduced in a specific 
and adapted way. 
 The generalizing characteristic appears when the new concept is broader than 
the one students currently have available. The new concept extends the old one, 
including it to various degrees. It may extend the domain of application, or 
introduce generality where there was specificity. For example, the scalar product in 
space generalizes the planar scalar product. Functions can also have this 
characteristic at the beginning of high school, as students progress from specific, 
affine functions, defined by their algebraic expression, to general functions, 
defined as a series of calculations that may not be explicit. 
 The formalizing characteristic is found in the introduction of a new formalism. 
This new formalism may be more or less “invasive,” and is occasionally used in a 
limited fashion before its official introduction. New vocabulary (formulations) and 
symbols may occur in the formalism. For example, the formalism of the framework 
of elementary algebra is new, particularly due to the appearance of x. However, it 
also contains previously acquired symbols such as =, +, etc. and written numbers. 
These symbols are not always used in the same way in algebra and in elementary 
arithmetic. The equality sign, for example, represents in algebra not only a result 
but also equivalence. This is a “crash.” As another example, integrals may be 
introduced to formalize the calculation of the area under a curve. (Integrals also 
have a unifying characteristic, even if it is not always displayed.) 
 We highlight, however, that some concepts may have multiple coexisting 
formalizations, which may or may not fall under different frameworks. This can be 
seen occasionally when the same name is given to objects. The relationships 
between these formalisms are not always explicit. The organization of knowledge 
and their representations may be hidden. Authors such as Duval (1995, 1996) have 
done substantial work on the non-congruent correspondences between different 
registers (writings). He suggests the effectiveness of explaining this aspect of the 
formalism, assumed to be non-transparent for students. 
 Examples: 
– Cosine (trigonometry in right triangles, scalar product, function); 
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– π (formula for the area of a circle, formula for the perimeter of a circle, complex 
exponential); 

– exponents (arithmetic, with base e); 
– linear functions in the plane in the geometric sense (vectors) 
– Various theorems 
There are also concepts that, even if they are sometimes used implicitly, are not yet 
formalized or formalizable at a school level (Robert & Pouyanne, 2004). Arsac 
(1998) gives the striking example of the distinctions between what we have the 
right to read and say on a geometric figure (tied to concepts of convexity that are 
implicit in middle school), what we have the right to read without even saying (tied 
to concepts of area), and what must be said. Chevallard’s proto-mathematical and 
para-mathematical concepts are of the same kind. 
 The unifying characteristic indicates that the new concept regroups, brings 
together, or replaces several elements that were previously treated separately. This 
unification is often accompanied by a simplification, but potentially also by a loss 
of clarity relative to the elements that were replaced. Algebraic expressions, for 
example, when introduced in the new framework of elementary algebra, have a 
unifying characteristic. The symbol x can equally designate a variable (when 
statements have an implicit “for any x), an unknown (when statements are only true 
for certain values of x), a parameter, a generalized number that may be an integer, 
decimal, fraction, etc. Functions also have this unifying characteristic. A function 
cannot be reduced to its algebraic formula or to its graphical representation, and 
point, global, and local examinations are necessary to characterize it. 
 The vector spaces introduced at the beginning of college allow polynomial, 
series, or vector spaces to be treated in the same way. 
 We characterize an initial type of concept: some concepts (objects, theorems, 
etc.) are extensions of older concepts. This may be because they have a 
generalizing characteristic, or because they are expressed with a formalism that 
extends a previous formalism. There are “crash-less” extensions, for which old and 
new work is congruent, and “crashing” extensions, which involve a change in the 
type of work. Multiplication of decimals, for example, is an extension of integer 
multiplication. There are no crashes in meaning between the two types of 
multiplication, but there is a difference in the solving algorithm. The scalar product 
in space is a crash-less extension of the planar scalar product. 
 A second type of concept corresponds to concepts that are viewed more as 
objects, and that are introduced to answer a problem. The problem may be 
formulated in terms that are accessible to students, and students may be able to 
begin a solution to it. These types of concepts have two characteristics, which may 
be generalizing and unifying or unifying and formalizing (for example). The 
Pythagorean theorem may be introduced as the solution to the problem of finding a 
general relationship between the lengths of the sides of a right triangle. This 
theorem unifies various specific situations for which students know how to perform 
the calculations. This is a concept of the type we call RAP (Response to A 
Problem). Another example of this type is the integral, when seen as the area under 
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a curve (Robert & Rogalski, 2004). The barycenter may also be introduced as an 
RAP. 
 Finally, some concepts will have all three characteristics at once. We call these 
the “FUG” concepts. FUG concepts allow additional generality while unifying 
different pre-existing objects using a new formalism. This new formalism often 
offers simplifications. Two examples have been developed: series convergence and 
vector spaces (Dorier, 1997; Robert, 1998). 

Relief map – Student difficulties and naturalization of knowledge by teachers 
The “relief map” of one or more concepts to be taught is attached to the set of 
elements that allow us to define what is useful for the researcher (and teacher 
educator) to know for analyzing teaching. The map is attached to one or more 
curricula, and includes the mathematical characterization of these concepts. This 
leads to defining the intended level of conceptualization at a given moment during 
instruction, as well as the type of concept. The tool and object are specified, along 
with their integration in previous curricula and in the assumed prior knowledge of 
students. Other elements involving students, beyond the conceptual structure of the 
situation, are also defined as cognitive subjects (chapter 1). 
 We note here the list of previously reported student difficulties, if possible. For 
example, from numerous didactic studies in elementary algebra, we can introduce 
the idea that it is necessary to work specifically on the gap between arithmetic and 
algebra. The difficulties associated with this gap, such as with the new status of the 
equals sign or the stress on numerical proofs, are often underestimated (Grugeon, 
1997). 
 All this allows us to specify the meaning that concepts can take at a given 
moment of schooling, as well as their place in the landscape of student knowledge. 
In addition to accessing the distance between new and old, it allows us to identify 
potential pressure points for teaching and foreseeable obstacles. It also facilitates 
our understanding of proposed activities covering the concepts, of the design of 
introductions to the mathematic chapters involved, and of the subsequent 
mathematical work to organize for students, as well as comments to develop and 
traps that may arise. 
 Finally, in terms of practice analysis, this facilitates the necessary research in the 
naturalization of teacher knowledge. The term “naturalized” knowledge refers to 
knowledge that has become transparent for professionals, but not for students. This 
knowledge may involve choices of frameworks or changes of viewpoint, for 
example. Identifying this knowledge contributes to a better appreciation of student 
progressions (cf. examples in elementary algebra by Lenfant, 2002). The passage 
from a given right triangle to the use of the equivalent property that two straight 
lines are perpendicular or that a certain angle is a right angle is an example of a 
viewpoint change with information loss. The given information is not only 
translated into other words within the same framework (change of viewpoint), but 
also we are no longer considering the triangle as a whole. We retain only the two 
sides forming the right angle or the angle that they form (placing us in a geometry 
with explicit measure). 
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 Using a global view of the relief map on a studied concept facilitates the focus 
on key elements that may intervene in teaching or learning. 
 To go further in the analysis of taught mathematics and attempts to give a useful 
relief map to teaching, it is possible to introduce levels of conceptualization that 
cover all of formal schooling (Dorier, 1997; Robert, 1998). The concept of 
conceptual field (Vergnaud, 1990) is another way to access this attempt that is 
perhaps more adapted to the first degree. Very generally, it is useful to analyze 
networks of concepts that are studied together (Robert, 1992). The analyses 
developed by Chevallard (1992), more systematic than those indicated here, allow 
a very complete approach to taught mathematics, from the starting point of didactic 
transposition and decision theory. 

A PRIORI LOCAL ANALYSES OF MATHEMATICAL TASKS 

A mathematical task is, here, very generally, attached to a given statement 
proposed to students. It is characterized by the use of old and new knowledge to 
solve it. The various ways of using the knowledge are determined according to 
course content (theorems, definitions, properties, examples, solved exercises, etc.). 
What interests us here is the way (or ways) in which students can use their 
knowledge in the exercise. This allows us to predict possible students activities for 
a given problem statement, particularly in class. 
 These analyses are called a priori as they may be based only on the problem 
statement, without examining cases where the problem was solved by one or more 
students or by a class accompanied by a teacher. 
 The a priori analysis of a task leads to asking, for a curriculum, what the role is 
of exercises in in-class work, and what the use is that students will make of their 
old and new knowledge in working on the problem. This analysis, then, does not 
refer directly to the potential learning benefits of an exercise. We are only trying to 
find what activities students will be able to take part in for this exercise, with their 
supposed knowledge (curricula, previous lesson content, etc.). But even if they do 
not explicitly appear in analyses, the choices made for describing these activities 
are certainly not independent of hypotheses concerning learning. 
 For example, we determine whether or not the knowledge to be used is indicated 
in the problem statement, and if so, whether this indication is direct or implicit (an 
implicit indication may be given by the placement of the problem in the lesson 
progression)11. If the knowledge to be used is not indicated, it may be assumed to 
be readily available for students. This indicates the necessity of a specific and 
fundamental activity for students to allow them to access this knowledge or think 
of using it (two activities that are difficult to dissociate). We hypothesize that this 
activity may contribute to constructing the desired availability. 
 We first distinguish simple and isolated tasks (SIT), or immediate applications 
of a piece of knowledge without adaptation or combination. A single piece of 
knowledge is used, potentially with simple replacement of general inputs by the 
given information in the context of the exercise. 
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Different levels of knowledge use 
When tasks are simple and isolated (SIT), we speak of student work at the 
technical level. When tasks12 require adaptations of knowledge that are at least 
partly indicated, we speak of the level of knowledge application that can be 
mobilized. Students’ work is not effectively analogous, depending on whether they 
must look for the knowledge to use (questions of why or what), or apply and adapt 
the indicated knowledge (questions of how). If it is up to the student to recognize 
the knowledge to use, we speak of the available level of knowledge application. 
 Rising to a certain level of knowledge application for a given task requires that 
the student’s work on the task involve the knowledge at this level. Either this is 
possible for this student, and the knowledge is perhaps reinforced, or it is not 
initially possible, and working on the problem will perhaps contribute to 
transforming the student’s knowledge until it is possible. 

Knowledge adaptations 
For other tasks (else than SIT), we determine, for each relevant piece of 
knowledge, the adaptations that students must do, in relation to the required 
recognitions, initiatives, additions, and combinations (Robert, 1998; Robert & 
Rogalski, 2002). This allows us to characterize individual problems, each of which 
may involve multiple tasks. These analyses clearly depend on the given level of 
schooling or the given class. We also keep track of the set of proposed tasks and 
their repetitions. 
 Recall the importance, accepted for mathematical learning, of the variety of 
contexts encountered, and of their interactions, particularly changes of frameworks, 
registers, viewpoints, and combinations of old and new. 
 We have developed a list of seven adaptations. We completed this list by 
considering activities students may have to perform using raw pieces of 
knowledge, and distinguishing among them recognition of properties or procedures 
or procedure application, or what is an introduction of intermediaries or steps, 
which seems to us to be another very important mathematical activity. We also 
distinguish combinations, links, or changes among elements such as frameworks, 
and work further on different types of intellectual activities that are specific to 
mathematics. 
 These adaptations (identified with a code of type Ai) may occur simultaneously. 
Each has a fairly large (and again, relative) spectrum: 
– A1. Partial recognitions of ways of applying concepts, theorems, methods, 

formulas, or other types of knowledge. For geometry, this typically consists of 
recognizing configurations, using Thales’ intercept theorem, etc. … This can 
range from recognizing variables and notations to recognizing formulas, 
conditions of applying formulas, etc. 

– A2. Introduction of notations, points, or expressions as intermediaries. In 
geometry, this typically consists of introducing a parallel line, or naming a point 
to use Thales’ intercept theorem.13 

– A3. Combinations of several frameworks or concepts, point of view changes, 
framework or register changes, connections, or interpretations, etc. In geometry, 



ALINE ROBERT AND CHRISTOPHE HACHE 

38 

this typically consists of using algebraic calculations for obtaining the result (for 
example, solving x2 = 1 within a geometry problem). Problems that involve 
graphical/algebraic aspects of functions automatically contain this adaptation. 

– A4. The introduction of steps, or the organization of calculations or reasoning 
processes. This can range from the repeated use of the same theorem to 
reasoning reductio ad absurdum using this theorem. In geometry, this typically 
consists of using Thales’ theorem and its converse four times, non-
independently. The steps can be classical, somewhat forced (in examining a 
function), or to be determined. 

– A5. Use of previous questions in solving a problem. 
– A6. Using choices, which may or may not be forced (only one will lead to the 

correct answer). 
– A7. Lack of new knowledge. 
 
Let us examine the following exercise, as an example of a problem given at the end 
of middle school: “Show that the product of two numbers, each of which can be 
written as the sum of two squares, can be written in the same way.” 
 An initial activity will be to understand and formalize the given sentence. What 
is “a number that can be written as the sum of two squares”? How should “can be 
written in the same way” be interpreted? We can note that the question is open. 
One step is imposed on students: to know how to form a conjecture on the result to 
be demonstrated. This may induce numerical experiments, but we can suppose that 
they will not change the search for a proof. An “elementary” response is: “If m, n, 
p, and q are integers, we can write: 

 (n² + m²)(p² +q²) = n²p² + m²q² + 2npmq + n²q² + m²p² – 2nqmp 
 = (np +mq)² + (nq + mp)² 

And thanks to the stability of integers under addition and multiplication, we can 
conclude the desired result.” 
 In addition to elementary algebraic manipulations, it is necessary to introduce an 
intermediary: the algebraic expression 2npmq that we add and then subtract. The 
useful identities are, in this method, knowledge items that must be adapted. 
 Another possible response uses complex numbers. This represents a change of 
framework, as the problem statement was arithmetical. Under this method, each 
sum of squares is identified as the square of the absolute value of a well-chosen 
complex number (the intermediary). We thus write n² + m² = |m +in|², and then 
apply the rule that |z|²|z'|² = |zz'|² (rule adaptation) and invoke the stability of 
integers under addition and multiplication. 
 In 12th grade, when students have learned complex numbers, there can therefore 
be a strategy choice for students. 
 
In the case of computer-based lessons, new tasks appear in addition to the 
associated new activities. In all cases, task analysis should take into account the 
software environment, which can simplify or complicate the proposed tasks and 
modify the possible student activities. To a lesser extent, the analysis of textbook 
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tasks can also take into account the environment. In that case, it consists of external 
indications such as titles or images that may or may not help the student’s activity. 
 We note that there are other task analyses that less directly involve the specific 
knowledge to apply for a given exercise, but instead refer exclusively to the nature 
of the expected work: conjecture, search for a proof, applying a procedure, etc. 
(Stein, 1996). 
 Analyses in terms of competencies focus on the broad types of intellectual 
activities, defined independently of content (looking for information, beginning on 
a process, communicating, etc.). These do not refer directly to the knowledge 
involved, introducing a fundamental difference between competencies and 
knowledge. However, a competency allows for the possibility of solving tasks that 
are not simple, that are varied, and that are not “ready-made.” This includes real-
life issues, and supports the possibility of diverse available knowledge adaptations, 
which allows for the use of the previous analyses. 
 Other approaches will be presented in the last section (particularly a decision 
theory analysis). 

A POSTERIORI LESSON ANALYSIS 

Global analyses of scenarios presented to students 

For a given instance of instruction, the “scenario” refers to the intended ordered set 
of exercises and lessons for a mathematic chapter or concept14. It includes 
evaluations and homework, with rough predictions of management (length, 
division of work). A scenario is understood both in terms of its “internal” qualities, 
on which depend the set of activities that we can predict through a priori analyses, 
and in terms of the actual events it permits, beyond its own content. 
 We study the overall scenario, first under the predicted method of introduction, 
relative to the specifics of the concept (particularly its similarity to previous 
concepts). This is the first introduction of the meaning of the concept. We then 
examine the scenario’s lesson/exercise dynamic and the corresponding dynamics, 
which can exist between meaning and techniques (cf. what Douady in particular 
calls familiarization or reinvestment). Finally, the quantity and the nature of the 
proposed tasks are associated with the evaluation of the adaptation work proposed 
to students. These elements (various dynamics presented, adaptations under student 
initiative, etc.) are also elements that allow us to think that the implementation of a 
scenario would allow a larger availability of the concept, and a certain 
(re)organization of knowledge. 
 This does not completely prejudge what may happen in class. It is the analyses 
of class events that can provide information of this point. We call a scenario 
“robust” if it can play out in multiple ways in class without modifying the main 
element, student activities. 
 Scenario analyses allow, among other things, shedding light on the double role 
of the teacher’s work: 
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– Design scenarios that aim at constructing meaning out of what is taught and the 
necessary technical acquisitions; and 

– Organizing classroom events to allow convergence between what was 
envisioned and what takes place in reality. 

 We will now discuss the two dimensions mentioned above: the introduction of 
concepts, and the contextualization/de-contextualization dynamic. 

On concept introduction 
The problem is made difficult by the diversity of concepts introduced to students in 
curricula. In our eyes, the introductions depend on the concepts in play. From this, 
for us, one important variable involves the identification of the desired concepts 
(detailed in the previous section of this chapter) and its appropriateness for the 
proposed introduction. 
 The question of concept introduction seems to us to be addressable thanks to our 
classification of types of concepts. 
 A concept deemed an extension may be, for example, introduced through a 
problem, constructed with the “old” knowledge. The problem will be accessible, 
since the new concept is an extension, but the solving of the problem will require 
the new concept. 
 The problems arising from work on the tool/object dialectic also seem to us to 
correspond to extension-type concepts, particularly if the extension is without a 
crash (see above). These problems allow us to broaden the meaning of the new 
concept and the associated technique, provoking for students an initial use, as an 
implicit tool, of what is intended. If there is a crash, we can still introduce the new 
concept in the same way, but the crash can lead to an error. It is the quality of the 
problem, particularly in terms of the predicted internal methods of control (if 
possible) that will allow the obstacle to be surmounted. 
 The concepts that may correspond to a mathematician’s responses to a problem 
(RAP) may be introduced by giving students a problem that they can appropriate 
and understand, but not solve. In our classification of adaptations under student 
control, this corresponds to adaptation A7 (see below). It is the teacher that will 
introduce the new concept, particularly the new object with, if necessary, its 
formalism. While working, students can partially test out to what the new concept 
brings a response. We understand that these introductions are more relevant to the 
meaning of concepts than to new techniques (particularly if there is a new 
formalism as well). 
 For FUG concepts, we hypothesize that there is no problem adapted to introduce 
them with meaning. The introduction that we can suggest is very partial. It is 
possible that the optimal strategy is to present part of the knowledge first (or very 
quickly), and then give students a problem to give it meaning (Dorier et al., 1998, 
on linear algebra; Robert, 2011, on series convergence). Unless the nature of the 
tool can emerge from what students already know, without them noticing that they 
are missing something, this process consists of leading students to work with these 
concepts. We may ask whether the introduction of “informational jumps” 
(Brousseau, 1998) does not have something to do with this type of factor. Students 
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must be “forced” to use the elements introduced in the course, even if they are not 
familiar and do not initially seem efficient to students. In the case of informational 
jumps, there is the idea of a “forced” efficiency. For us, there is even a contract 
effect. 

The contextualization/de-contextualization dynamics and the variety of proposed 
adaptations 
Students’ activities prepare them, to a certain extent, for the intended 
conceptualization. Inspired by theories of learning and research results in 
mathematical didactics, we have identified dimensions that may influence the 
quality of activities proposed to students, in relation to this intended 
conceptualization, and therefore the intended availability of concepts, tools, and 
objects. What we call the “meaning” of concepts corresponds to this characteristic 
of acquisitions. Adding meaning translates (and is translated by) the possibility of 
applying the concept wisely, in various contexts. In light of our hypotheses, is 
implies (and is implied by) student work that puts into play, in a dialectic manner, 
the tool and object characteristics of the concept, tied to the exercises and lessons, 
and the organization of new concepts in the entire knowledge set, tied to the variety 
of the proposed tasks. Ideally, this consists of introducing new knowledge within a 
certain continuity as much as possible. Knowledge should be introduced alongside 
old information, within a context that allows a particular tool-type use, relative to 
the intended level of conceptualization. This assures (in part) the possibility of the 
beginning of an autonomous construction. This implementation also assures the 
possibility of moving past this, thanks to a teacher that presents decontextualized 
object characteristics, which may be re-contextualized in other ways due to the 
introduced generality. We see clearly the importance of choices of tasks and 
lessons (knowledge presentation). 
 An initial issue thus relates to the way in which knowledge is introduced, in 
relation to the exercises. The order of what is applied during the exercises and what 
is presented in the lesson allows us to understand the connection between what is 
worked on in context and what is presented out of context. 
 The tasks proposed to students introduce them to diverse aspects of the concept, 
and diverse ways to work on it (adaptations). It is in studying the desired 
implementations of knowledge, and the relative variety of the adaptions, in relation 
to the specifics of the concept, that we can understand the span of the intended 
knowledge and the foreseeable reorganization of the new into the old. 
 We should note that each concept requires a specific analysis. An example of 
discussion on the scenario is given for instruction of orthogonal symmetry in sixth 
grade (chapter 7). 
 It should also be said that it is the in-class activities that lead to all these tasks. 
Their analysis is indispensible for understanding what is in play. These analyses 
are prefaced by specific a priori analyses of tasks, and analyses of in-class events 
that are discussed in the following section. 
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Local a posteriori analyses: in-class events 

A number of factors influence students’ in-class activities and, as a result, the 
knowledge created. These factors contribute to encouraging the transformation of 
presented information into individual understanding through the intermediary of 
student activity. There is, however, no general law that connects teaching and 
learning. We can only note common elements, which depend strongly on work 
conditions, classes, and the types of knowledge in play. For example, an action, 
even if repeated, does not necessarily generate a construction of knowledge. There 
must be a transformation of this action into an activity. 
 Be that as it may, it is the analyses of the relationships between the expected 
tasks and the events organized by a teacher during a class period that allows the 
researcher to understand what are the possible student activities. It consists of 
giving ways of answering the following question: to what extent have students 
performed the activity that was expected from the a priori task analysis? What was 
the nature of their activity? Recall that in general, we cannot claim to be able to 
access the effective activities of each student. We can only access their possible 
activities. However, these local analyses remain partial and should be connected to 
the set of what is proposed to students. 
 A number of examined elements contribute to the development of the answer to 
our question. First, the form and nature of the work are recomposed and divided 
into episodes (see below). These elements clarify student activity, and lead to 
inferring its potential non-didactic characteristics, the possible role of inter-student 
interactions, the importance of the activity during the class period, etc. One 
important source of observable elements is tied to factors added by the teacher, 
whether in soliciting student responses, responding to students, or developing a 
didactic project. 
 In any event, it is the supplementary analyses that allow us to recompose all the 
information and suggest a reading of possible student activities in a given class 
period. 
 The didactic contract,15 along with the habits, customs, and memory of the class, 
also plays a role in learning. Students may, for example, engage in a task because 
they have understood that it is expected of them by the teacher, and not for 
mathematical reasons. What do they learn from this? We also take into account this 
type of overall interrogation. 
 We indicate below several dimensions that may guide our analyses. 

Nature and format of student work, including autonomous work, group work, 
written work, oral work, etc.  
In our analyses of class periods, we note, in addition to the duration of student 
work on the tasks proposed to them,16 the format (as a class, in small groups, etc.) 
and the nature of the in-class work (re-copying, reading, calculation, investigation, 
written or oral, graded or not, etc.). 
 This allows us to bring to light, at least in part, the autonomy given to students 
(including not doing what the teacher expected), the role of exchanges between 
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students, and the possibility or necessity for students to take initiative, whether tied 
to the intended adaptations or to others. This should naturally be completed by the 
manner in which this work is “recuperated” by the teacher and related to the 
supposed state of student knowledge.17 To the extent that we hypothesize, 
following Piaget and Brousseau, the importance (and, indeed, necessity) of 
individual moments of knowledge construction, we understand the value of 
occasions where one or more students confront a problem autonomously. We 
therefore identify occasions where students are left to work on their own, either in 
the long term (a non-didactic phase) or not. During these phases, the teacher has no 
influence whatsoever on students, neither by assistance nor by direct or indirect 
indications. The nature of students’ mathematical activity then depends on the 
object of the work, in relation to their knowledge: preliminary investigation 
following the introduction of a concept, or solving an exercise in a given 
mathematic chapter, or during a problem that cuts across several domains, etc. 
There are many parameters to include in analyses during the reconstruction of 
possible student activities. 
 From this point of view, class periods involving computers interest us 
particularly to the extent that autonomous student activities is generally more 
present a priori (see also chapter 8). 
 To the extent that we hypothesize that student exchanges, during interactions 
between students,18 represent socio-cognitive conflicts, and that teacher 
interactions influence student activities, we aim to take this into account. This is 
particularly true in analyses of the existence and nature of the exchanges (predicted 
or not by the organization of the work provoked by the teacher), as well as 
analyses, during group phases, of the verbalizations (formulations, formalizations) 
requested from students. We will return to this below. 
 Studies in education sciences, particularly in the framework of socially 
underprivileged students (Bautier, 2006) has long insisted on the importance and 
specifics of students’ written work (in all disciplines). Written work is an occasion 
of distancing oneself from action. We hypothesize that this is something that must 
be addressed in knowledge constructions. In mathematics, in particular, this written 
work is both a method of representation and an instance of work in formalization 
or symbolization. There can even be some unexpected creativity in mathematical 
production based on symbolic writing (drawing a figure or writing a formula on 
paper can put students on the path to a proof or interesting calculation that was not 
anticipated). 
 In class, the use of written work is fairly variable, as is its relationship with oral 
work. Very different forms of written work exist (provisional or draft work, for 
example). We can hypothesize that the effects of this work are not the same for 
different students. This dimension is still under construction in our research. 
 The teacher’s written work (particularly at the board) is another object of study. 
We have previously shown the regularity of forms used by each teacher (Robert & 
Vandebrouck, 2003). One important question involves the role given by teachers to 
their own written work. Is it a simple translation of what they said aloud? Are there 
transformations between written and oral work? Are they indicated or implicit? 
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Does the writing on the board or on handouts serve as a model for students’ written 
work? There are many such questions, whose answers can bring light to the 
corresponding student activities, and particularly what is left under their control 
(which can be a source of potential misunderstanding for students who do not 
decode it). 
 In the case of computer-based classes, this written work, and particularly its 
articulation with the machine work, becomes a very important variable for student 
activities (see chapter 8). 

Teacher interventions 
Multiple aspects of teacher intervention were analyzed, always in terms of their 
supposed influence on student activities. Some relate to the format of interactions 
with students, and others concern the content of the interventions (assistance, 
assessment, reminders, explanations, corrections and evaluations, presentation of 
knowledge, mathematical content, etc.). In the background, we find the attention 
given to the identification that the teacher makes of students’ visible work, and to 
the possibility of profiting from it, by calibrating interventions to knowledge that is 
assumed to be “close” to students’ level. Everything that contributes to this 
identification, such as questions, answers, or throwing the initiative back to 
students, may also be an object of study. Aspects of interactions with students have 
long been studied by numerous authors,19 without considering the content in play 
(Postic, 1989). 
 One important variable that can affect the importance of interventions relates to 
the student knowledge to which these interventions relate, and more precisely to 
their degree of proximity to students’ previously acquired knowledge.20 

Focus on assistance 
We define the nature of teacher assistance, identifying the moment when the 
assistance what given, the nature of this assistance, and the format. We present two 
types of assistance according to whether they modify the activities predicted a 
priori, or whether they add something to students’ actions. 
 The first type, said to have a “procedural function,” involve the assigned tasks 
themselves by strictly modifying activities relative to those predicted from the a 
priori analysis of the problem statement. They correspond to indications given by 
the teacher before or during student work, and include open-ended questions such 
as “What theorem can you use?” They may lead to subdividing the task into 
explicitly mentioned subtasks, or to having students choose a contextualized 
method. This changes the necessary adaptations, and can orient the activity toward 
more immediate processes.21 
 The other type, whose function we call “constructive,” add something between 
the specific student activity and the desired knowledge construction that can form 
as a result. This may be through a simple summary of what was done, even in an 
immediate application (for a simple isolated task), or by reminders, partial 
generalizations, assessments, etc. All kinds of interventions lead students to gain 
perspective on what they have done, to find a slightly more general method, to 
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discuss results, etc. This assistance can present a small de-contextualization of 
what students have done, by presenting the corresponding generic case, for 
example. It can also indicate how to do this type of task, or explain certain choices. 
 For a given student, procedural assistance can immediately become 
constructive, if the student extracts a generalization. For a different student, 
constructive assistance can remain procedural. If the value of the generality is not 
understood, the student will forget it once the exercise is over and never use it 
again. 
 Recall that adopting the framework of the theory of activity leads is to 
hypothesize that there is another “internal” transformation of the subject. In solving 
a problem, the student must live between the solving and the knowledge that will 
be potentially constructed through this process. This constitutes a 
depersonalization, a generalization, and finally a de-contextualization and/or an 
organization. Constructive assistance participates at least at the beginning of this 
process. 
 This process is often unsuccessful, especially for students with the most 
difficulties in the subject. It is one of the most fundamental issues for teachers in 
Zones of Educational Priority. We think it can also be assisted by developing the 
knowledge as a group, before assessments. This can lead students to make a place 
for this knowledge before they have it (Butlen & Pezard, 2003). This is another 
form of intervention to facilitate the previous process. 
 We note also that the way in which teachers consider individual students in 
group interactions to further their goals for the class is also a factor in the potential 
influence of assistance. Will the teacher look for information to regulate the 
interventions, particularly during the presentation of the correct answer? Will the 
teacher rely on the strongest students? What assessment will the teacher make of 
the class from individual assessments? 

Focus on the quality of the speech (linguistic functions and linguistic markers) 
Some finer characteristics of speech contribute to modeling student activities, 
particularly during their work on complex tasks (chapter 4). These finer 
characteristics include the nature of linguistic functions engaged during 
interactions, the regular use of certain linguistic markers at certain specific 
moments, and other characteristics tied to indicators that are yet to be determined. 
Through this type of speech analysis, we can better understand the way to 
accompany and influence student work. Whether this reinforces teachers’ other 
choices, or compensates for them, is an open question. 
 In some research, supplementary indicators are used to analyze practices. These 
indicators relate to teachers’ automatic actions, such as simple routine professional 
gestures (including oral gestures). This analysis leads to defining the speech 
presented to students more precisely, at finer levels, including aspects of which 
teachers are not aware. 
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A focus on correction phases and lessons (phases of knowledge presentation) 
Phases during which the teacher makes use of student work represent an important 
variable in student activities, related to the synthesis of their actions. 
 We differentiate several types of correction phases (oral, written, continuous, at 
the end of an exercise, by the teacher, by students, etc.). This type of reflection 
may be compared with reflections on the role of errors in learning. 
 Hidden behind some errors are false or incomplete representations that may 
remain in place for students if nothing specific is said on the subject, or if nothing 
is asked of them during the correction phase to bring them to light. The 
presentation of the model solution can leave then in silence, unnoticed by the 
professor or by students. 
 In addition, multiple elements may come into play during the correction phase. 
These include the specific solution to the questions, but also what “worked” in the 
exercise (de-contextualization of the method), how to write it up, etc.22 In 
particular, when the solution to each exercise is presented as students complete it, 
more general aspects of the exercise may escape students unless their attention is 
brought to it, overall, at a given moment. 
 In a way, the correction phase can be a fruitful time for the student’s action. It 
can contribute to the transformation of the student’s action into internalized 
knowledge. One way this can occur is if the student has succeeded at the assigned 
task and the teacher’s confirmation and summary has allowed the student to retain 
some aspects. Another is if the student did not succeed, but the teacher has 
responded to the student’s attempts and helped complete them, allowing the 
student to progress. We do not see all correction phases as equivalent. They should 
both add generality and be close to students’ processes. The teacher should remain, 
if possible, in students’ proximal development zone (PDZ). 
 Studies on knowledge presentation phases (lessons, institutionalization when 
this follows certain situational formats) are few. 
 However, there are several variables noted, and some overall dynamics that 
have already been mentioned: the order in which the different phases take place, 
relationships between contextualization and de-contextualization, or even the 
format of the course (lecture-based, interactive, dialogue-based). The nature of 
students’ activity during the phases of the course is clearly an important variable 
(even if it is difficult to analyze when their only observable action is listening). 
 We also examine the nature of the comments on the mathematics (or “meta” 
comments). We determine whether these types of comments, which refer not to 
strictly mathematical knowledge but to a larger reflection on this knowledge, or to 
a reasoned presentation of possible methods, exist. These comments may also 
consist of an explicit external structuring of the lesson and particularly the proofs 
(argumentations), or recounting the emergence of knowledge in relation to the 
problems that have appeared, for example in the case of FUG concepts for which 
no introductory problem is proposed (Dorier, 2000). Meta comments may also 
include a presentation of subsequent occasions to use the concept. 
 Some studies have attempted to classify methodological comments by their 
distance from the intended content. This classification distinguishes general 
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comments on work, such as methods that are independent of the specific problem 
where they are being used, from methods specifically adapted to the problem 
(Robert & Tenaud, 1988). 
 A few other studies have focused on teachers’ examples, metaphors, or 
formulation progressions. These studies have examined natural language and 
symbolic vocabularies (cf. semiotic studies), as well as differences between spoken 
and written communication. Finally, class handouts and documents remain 
unstudied. 

Work outside of class 
Work outside of class probably becomes more important as students progress 
through school. There have so far been few studies examining out-of-class work, 
although much ink has been spilled on the topic (concerning “coursework 
inflation,” for example). It seems coherent with our theoretical framework to 
assume that homework is not independent of classwork, and may even depend on it 
(Félix, 2004; Rayou et al., 2010). We do not directly include it in out analyses 
except when it leaves traces in the classroom: Exercises given to students to 
complete at home that are then corrected in class, etc. 

Open questions 
As we noted above, there are still some open questions in this field. These include 
the long-term influence and, more generally, the “size” of the topic. 
 Some studies take into account this important dimension. They may compare, 
for example, the set of activities on a mathematic chapter to students’ abilities at 
the end of instruction. This requires adapting the methodology to handle a 
considerable quantity of data (chapters 6 and 7). 

ANALYSES OF THE PRACTICES OF MATHEMATICS TEACHERS (THE 
DIDACTIC/ERGONOMIC DOUBLE APPROACH)  

This section is developed a bit more than the others, to the extent that it 
corresponds to more recent research and to an enlargement of previous 
frameworks. We will present a brief history of the theoretical evolutions before 
describing the current method of analyzing teacher practices. 
 We begin by noting that the word “practices” is used to refer to everything that 
informs us of teachers’ thoughts, which may include speech or actions. The 
viewpoint is long-term, and includes periods before, during, or after class. The 
term “activities” is reserved for specific moments within these practices, and refers 
to specific situations in a teacher’s work: in-class activities, preparation or test-
writing activities, cooperative activities, etc. The word “work” is reserved for the 
subset of practices within a mathematics class and in preparation for this class that 
constitute the heart of our analyses. 
 This distinction is important to the extent that we believe that it is necessary to 
introduce concepts specific to the study of teachers’ practices and activities. For 
example, in some studies, we examine teachers’ activities within a specific 
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situation of integrating technology in their classrooms, and adopt an approach that 
is directly inspired by professional didactics. In these studies, the dialectic between 
“productive activity” and “constructive activity” is introduced to specify that the 
teachers act on and transform the situation (contributing to students’ activities) but 
also that teachers transform themselves through a long-term development process. 

A brief history: What role to give to teachers in our analyses? 

Many of the researchers contributing to this project work in teacher education (in 
Ecoles Normales,23 and then in Instituts Universitaires de Formation de Maîtres24 
since 1991). Whether in initial training or continuing education, the difficulty of 
diffusing research in mathematical didactics is constant. Why is it so difficult? A 
scientific explanation of this phenomenon seems necessary. 
 Additionally, like many didacticians in recent years, our research in the links 
between teaching and learning has led us to focus on effective activities in class, 
such as student activities provoked by the teacher’s speech. 

Initial attempts 
Some studies on mathematics teachers were conducted in the 1990s. Starting from 
the observation that teachers had difficulty listening to didacticians and adopting 
didactic inventions, we initially wondered if this might not be due to differences 
between teachers and didacticians in representations of mathematics, of 
mathematics teaching, and of mathematics learning. It was quickly shown that this 
explanation was not sufficient to explain the observed differences (Marilier, 1994), 
and was even less useful for acting. In the first place, the expressed representations 
to which we had access did not sufficiently translate or explain effective practices. 
Secondly, teachers’ difficulties in “borrowing didactic elements” and the gap 
between the possible and the (prescribed) didactic could not be ascribed solely to 
people, but also had to be related to something else, particularly what we will 
introduce later as the “profession.” 
 In order to explore teaching practices, we focused on in-class speech, both in 
terms of the mathematical content of the tasks assigned to students, as well as 
additional content added by the teacher. 
For several years, studies have shown that there is inter-individual variability in in-
class speech, in meta commentary (Chiocca, 1995; Josse & Robert, 1993) and 
contextualization of the same problem. Methodologies were borrowed directly 
form mathematical didactics. In addition to analyzing tasks given to students in 
terms of the specific intended content, researchers also analyzed speech through a 
general categorization that distinguished structure, argumentation, non-
mathematical accompaniment, etc. Only students were taken into account, and 
content aimed at them was the only yardstick used by the analyses. 
 The last study of this type was Hache’s 1999 dissertation, which succeeded in 
regrouping certain variables tied to speech, management, and content, identifying 
several “universes” unique to each professor from a number of possible types. Each 
universe was characterized by a certain combination of the nature of the proposed 
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tasks and the corresponding management (characterized by the nature of the 
elements relative to the teacher’s speech). A single teacher never took from more 
than 3 or 4 universes. 
 At this stage, there were still large questions remaining beyond the observation 
of this diversity. These concerned not only the effects of this diversity on learning, 
but also on the interpretation of this variability, and the consequences we can 
identify for teacher education. Why do teachers, whether beginning or experienced, 
use such or such methods to lead a class? What variation exists for a single 
teacher? Between teachers? At the same time, some studies on teacher education 
(Masselot, 2000; Vergnes, 2001) have pinpointed beginning teachers’ difficulties 
in borrowing elements from didactics for their practices. It may be tempting to say 
that we will give students a “good” problem, a problem that will prepare them for 
constructing the meaning of a concept, but there may nevertheless be obstacles. 
Instruction may consist only of introductions to concepts. All concepts may not be 
equally suited to this type of approach. There may be time constraints that affect 
the possibility of letting students work autonomously. All students may not be 
equal, including in how prepared they are for autonomous work. Beyond the 
introduction, the technique must also be practiced. Finally, teachers may succeed in 
reaching a certain number of students through techniques that may be very 
different from ours. How does this happen? And how can teachers more quickly 
adopt effective practices? 
 There was both an issue of practice comprehension (and reflection on training) 
and a need to go beyond the results obtained on individual variability to identify 
commonalities and find elements that could be modified (and how to do so), 
without losing sight of student learning. 

Enlarging the research scope 
The research discussed above led us to analyze teacher practices in terms of student 
learning, taking into account that these practices consisted of the exercise of the 
same profession of “teaching.” 
 We thus broadened our research in two ways. First, we abandoned the exclusive 
link between in-class practices and intended learning to enter the universe of the 
profession. We chose the following option: To analyze and interpret practices (and 
to perhaps train them), we could not ignore the fact that these practices, while 
having student learning as a goal, concerned the sole exercise of the teaching 
profession, which could not fail to induce specific choices. This represents a 
significant change of viewpoint for the researcher. The second enlargement was the 
idea of borrowing from the theory of activity, ergonomic psychology, and 
professional didactics. This work is far from being finished. 
 We note that the beginning of this work was facilitated by the fact that we were 
already using elements of the theory of activity in our didactic approach to learning 
mathematics (inspired by work by Piaget, Vygotsky, and above all Vergnaud). 
 Together with J. Rogalski, we designed a theoretical procedure called the 
“double approach”25 to study mathematics teachers’ practices. The name “double 
approach” emphasizes the fact that we combine didactic analyses of students’ 
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mathematical activities with ergonomic analyses inspired by the analysis of the 
exercise of a profession. The didactic analyses drive part of the analyses of 
teachers’ actions, and the ergonomic analyses complete them. Additionally, some 
of us have added elements directly inspired by systems of development of work 
activities. 
 From the didactic point of view, the analyses begin with the choice of global 
and local tasks to give to students. The a priori analyses of tasks thus serves to 
decode teachers’ in-class activities, incorporating the proximity of the predicted 
tasks and student activities, taking into account the resulting unfolding of activities. 
From the ergonomic point of view, we consider the activity of the teacher as a 
subject, and not as an element of the knowledge-student-teacher didactic triangle. 
The choices for the class and in the class, relative to the diverse constraints tied to 
the institution and individuality thus come into play. From this perspective, we 
acknowledge that the activity within a particular class depends on the necessities of 
the profession within a didactic institution. The choices should not be completely 
random, and studying them from the point of view of the profession allows us to 
better understand the reasons behind them. 

The didactic/ergonomic double approach to the analysis of mathematics teachers’ 
practices 

To analyze practices, and specifically teachers’ work for the class and in class, we 
propose here to take into account both goals (such as student learning, but also 
student investment)26 and the non-ignorable, non-temporary constraints that are 
imposed by the profession of mathematics teacher. These constraints decline as we 
take into account external factors (institutional, social, and personal) as well as 
different scales of work. 
 We develop the double approach by acknowledging the complexity and 
coherence of practices (De Montmollin, 1984). This framework is represented by 
multicomponent analyses and levels of organization that are recomposed, keeping 
in mind that is it these re-compositions that reveal what we seek. These qualitative 
analyses, based on in-class observations and completed through documents 
collected outside of class, aim to help us understand the student activities organized 
by the teacher. They also aim to identify what in a practice is fixed, variable 
(presenting alternatives), temporary, essential, shared, individual, or able to be 
enriched. 

A starting point: Analyses in a mathematics class 
We analyze the practices of a given teacher based on the teacher’s classes and 
organized activities. Our observed variables are student activities as organized by 
the teacher, interpreted in terms of the teacher’s various choices. This interpretation 
is deepened through various out-of-class studies that relate to the analyzed class 
periods and allow us to complete our analyses of the observed variables.  
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 From one class period, analyzed in relation to possible student activities, we 
identify the first two components of observed practices, which we call the 
cognitive and mediatory components. 
 The cognitive component corresponds to a teacher’s choices regarding content 
and tasks, including their organization, their quantity, their order, their inclusion 
within a curriculum beyond the class period, and plans for managing the class 
period. It can be deduced based on the cognitive itinerary chosen by the teacher for 
a few class periods. It also allows us to predict, for other class periods, these types 
of choices. 
 Choices corresponding to class events, and to the effective implementation in 
class of the chosen cognitive itinerary, make up the mediatory component. These 
choices may include improvisations, speech, student investment and participation, 
instructions, assistance to students in completing the tasks, identification of their 
work and the work of the teacher, validations, explanations of knowledge, etc. It 
also includes paths developed for different students. 
 These components, inferred based on one or more class periods, are then 
reincorporated into intervention logic, which goes beyond a single class period, 
allowing some long-term integration, particularly in terms of tying student 
activities and learning. This logic also affects the personal choices of teachers, 
which may be otherwise examined (see below). 
 Our work on the stability of experienced teachers’ practices legitimizes,27 to a 
certain extent, this extrapolation (see chapter 4). 

The profession: Integration of professional factors that impact practices 
To better define the “profession,” three supplementary components of practices 
were introduced: The personal component, the institutional component, and the 
social component. They represent taking into account data that are not directly 
observable in class, but that must be considered for understanding certain choices. 
They correspond to professional factors. 
 First, a personal component allows us to give appropriate weight to what we see 
in class and to integrate it within the long term. The teacher can, actually, make 
choices, including those tied to the long term. As, in general, we only observe 
excerpts from a practice over a school year, we can only have an idea of these 
choices if we ask the teacher, and even this approach is insufficient. This 
component serves also to translate teachers’ representations, which are tied to their 
knowledge and experience, as well as the risks they take in the exercise of their 
profession, and the safety they need. A profession is exercised over the long term, 
and we cannot consent to efforts that are too great for too long. We access these 
elements in general through interviews, which are best completed by watching 
videos of the teacher in the teacher’s presence (see an example in chapter 4). There 
are clearly aspects in this personal component that are even more specific, tied to a 
teacher’s psyche, which we do not explicitly take into account, although we 
recognize their importance. We remain in the rational, working with elements that 
are consciously accessible, which legitimizes some simplifications. 
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 Teachers do not choose the transfers that may emanate from their persons. They 
do not choose the composition of their classes, or the circumstances. They do not 
choose their automated actions in advance. They do consciously choose, however, 
the particular content that they will present and the way they will organize and 
present it. The conscious rationality attached to these choices leads us to favor the 
corresponding analyses to the extent that we are keeping in mind teacher education, 
and a rational form of teacher education. This recalls the choice of the possible 
student activities as an intermediary to access learning. 
 But to exercise a profession is also to respect a certain number of constraints 
that may prove to be more or less contradictory with what we would have wished 
to do on our own. From our point of view, a teacher is not free. We have defined 
the institutional component by the nature of the mathematics to be taught, the 
curricula, the schedules, resources such as manuals, the administration, inspections, 
etc. 
 We add a social component that corresponds to the fact that the teacher is not 
alone in a classroom. Students affect what happens in the classroom as a group and 
as members of social groups. The teacher is also not alone in the institution, but is 
subject to pressure, expectations (from colleagues, parents, etc.) and occasionally 
constraints, which must not be overlooked in our interpretations of in-class event. 
For an extreme case that we have already encountered, consider the young teacher 
who is strongly discouraged from having students work in small groups because it 
“makes too much noise,” despite the teacher’s strong interest in doing so. 
 This, then, is our first method of analyzing practices within the double approach 
framework. This division into components, which are deeply intertwined within the 
complex system representing practices, and the reasoned re-compositions that it 
allows has enabled us to advance in our research, particularly in finding action 
logic, commonalities, and variability. In particular, a teacher’s choices of 
mathematical content are directly implied by the very nature of the mathematics in 
play, as well as by imperatives of class management, by considerations tied to 
curricula, to the long term, and to the teacher’s own representations and 
knowledge. 

Levels of organization in teachers’ work 
We have identified a second type of practice analysis, still within the perspective of 
the double approach. This second type of analysis is more suited for examining 
variability and individual changes in work.28 
 One aspect of the complexity of teachers’ work lies in the connections between 
different distinct phases of this work. Preparation, for example, is partly 
independent of the rest of the work, but partly influenced by the anticipation of 
what will happen in class. It is less constrained, particularly in terms of times, than 
is the unfolding of these plans in class or improvisation, which are regulated by the 
passage of time. Keeping the class on track does not completely ensure the goal of 
student success, even if the two are linked. Nor does student success ensure 
learning, even if they too are linked. Finally, it is not possible to exhaustively 
describe what teachers must do at each step of their work.29 It is similarly 
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impossible to completely evaluate teachers’ work, as learning is difficult to 
measure in the medium term,30 and difficult to directly connect to teaching, as we 
have already mentioned. 
 The three levels of organization used for this component of the analysis consider 
the different scales connected to the timeframe and texture of the activities to be 
analyzed.31 They are directly tied to the subjects. These levels (or practice 
organizers) are: 
– A micro level, which consists of studying actions that are automatic. This 

includes non-prepared speech, basic gestures, etc. (Butlen, 2007). We have also 
examined the method of writing on the board, which is, in part, completely 
automatic. Other research has analyzed shifts. We note that within these 
analyses, we may potentially have access to phenomena that manifest without 
teachers’ knowledge and that may remain unconscious. The teacher may 
become aware of these phenomena but still have difficulty acting on them. 

– A local level, concerning the daily class. This level contains preparations, class 
events and teacher’s improvisations, and it is the level of all teacher adaptations. 

– A macro level, for projects and preparations,32 based on individual knowledge, 
representations, and experiences. 

Some examples of practice analyses 

An initial type of results involves the confirmation of the individual coherence 
(Vandebrouck, 2002) of practices (De Montmollin, 1984) and the fact that they 
become stable over time. The mediatory component, examined to a certain level of 
detail,33 is the most stable (see chapter 4). Other work on teachers’ use of the board 
confirmed the consistency of each teacher’s choices, and the coherence with the 
chosen method of classroom management (Robert & Vandebrouck, 2003). 
 Another type of results helps explain the consistency of the intervention of 
institutional constraints in practices (close institutional components), given the 
diversity within the other components (see chapters 3, 6 and 7). 
 As we will not return to this topic in subsequent chapters, we will summarize 
here some previous results concerning practices of experienced teachers that we 
found to be common in 9th and 10th grades, as well as results from beginning 
teachers that demonstrate the use of levels of organization. 

Examples of consistency in 9th and 10th grade class periods devoted to exercises 
We will only give a summary of the results of these studies34 (Robert, 2005a, 
2005b). 
 Teachers favor in-class work that exclusively focuses on the new mathematical 
concepts being taught. This type of work does not involve much exploration of the 
field of problems solvable with the associated tools. Effectively, the necessity of 
progressing through the topic leads teacher to propose tasks that are relatively close 
to the lesson, that require standard applications of the concept, which must have 
been already seen. This leads again to favoring “decontextualized” meanings 
versus “contextualized” meanings. At the same time, there is little explicit 
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maintenance of prior knowledge. There are rarely occasions of reorganization 
between old and new concepts. Furthermore, students are only rarely and briefly 
confronted with uncertainty on what they should do, which leads to minimizing 
student questioning of what should be used and autonomous linking of concepts. 
 This takes place through organized in-class events and by teacher interventions 
before and during student activities. We identify an unequivocal orientation of 
students’ activities toward the desired new knowledge. This orientation is 
particularly enabled by a precise and rapid (indeed, immediate) consideration of 
these activities, with constant guidance and little time for autonomous work that is 
not on the final calculations. These calculations are completely outlined for the 
students, and form the major part of students’ in-class work. 
 The resulting activities thus relate to tasks that, if not originally simple isolated 
tasks, become isolated. These tasks relate to the relevant chapter, without many 
adaptations of the concepts to be used. There is rarely need for structuring 
knowledge as an action for students, as the teachers handle this themselves. In 
these conditions, there is also no need for delegating control to students. 
 We identify therefore a certain sequencing of student activities on a concept in 
relatively independent moments. Students apply the tools, one after another, 
independently. They only need the (stacked up) tool concepts corresponding to the 
lesson and inspired by the teacher’s subdivision of activities. The development of 
the dynamic between lessons and exercises can be limited on scope. It is thus the 
organization of student knowledge that will be one of the first victims of this time 
constraint. 
 The constraints shared by teachers of the same grade in similar establishments 
(schedule restrictions, curricula, effect of instructors and inspectors, substantial 
heterogeneity, class composition, etc.) act as if to lead to shared practices, in terms 
of the mediatory and cognitive components, even if there is leeway accorded to 
teachers that is not applied in the same way. 
 We cannot be sure that students’ knowledge will be partitioned,35 as students 
can learn things that are not explicitly taught to them (and that are therefore 
intended for them, more or less implicitly). But we can still ask if the common 
complaint of observers of the lack of “certainties” among students may come from 
this type of classwork. This is reinforced by a common complaint from students: 
“Just when we start to understand we switch chapters.” One question emerges: Are 
there alternatives to this type of choice? 

Examples of analyses of practices of beginning teachers 
The study of transitory practices of beginning teachers can also illustrate this type 
of practice analysis. Beginning teachers (cf. Robert, Roditi, & Grugeon, 2007) 
(called PLC2 in France) develop practices that evolve during their first year. We 
call these practices “transitory,” as they are not yet stable. They are usually 
complex, however, and we assume that their coherence is developing, due to their 
previous experiences and knowledge. 
 These beginning teachers are led to adopt a new position, that incorporates their 
personal component and that is tied to the exercise of a new profession, in an actual 
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establishment. This leads them to become aware of constraints and leeway of their 
new profession: “Not everything is possible, either for everyone or for each 
person.” 
 Every day, in beginning teachers’ classes, we see evidence of difficulties in 
recognition of students and time management (the mediatory component). It is 
possible that the mathematical project of the class period may be central to the 
detriment of students, or that consideration of students may be focused on to the 
detriment of the mathematical project. It is as if some beginning teachers are 
obsessed with the reactions of the class and the concern that all students follow 
along, while others forget that it is to their students that they are teaching 
mathematics, and even display ignorance of mathematics for students. 
 At the level of the cognitive component, the project developed by beginning 
teachers is often fairly local. It covers a maximum of several class periods, and 
does not always fit into a coherent whole for the year, particularly in terms of the 
mathematical plan (Margolinas & Riviere, 2005; Bloch, 2005). 
 Other complementary elements were proposed in a study by Bloch (2005), who 
suggested that the beginning teachers did not only lack the means to organize their 
lesson content, particularly introductions, but also had specific difficulties 
regarding students’ mathematical work that could take many forms. It is, 
paradoxically, a lack of awareness of the necessity of having transitory 
constructions serve as intermediaries for students, and sometimes even a lack of 
awareness of the necessity of the construction of meaning. Bloch (2005) uses this 
to support the idea (previously used by Lenfant, 2002, in algebra) that certain 
beginning teachers have so internalized some mathematical concepts that they no 
longer see the difficulties. They are not aware of the fact that giving a rule, even 
with commentary, is not sufficient for all students to learn it. They may also expect 
formal proofs too quickly while students can proceed though more pragmatic 
processes. Finally, Bloch (ibid) proposes giving these teachers ways to “have 
students really do mathematics,” particularly by identifying the concepts in play, 
elaborating situations in which the topic will arise, and learning to handle them. 
We will return to this. 
 Finally, these unstable practices of beginning teachers lack sufficient operational 
mental images to enable nuance and adapted improvisations. Beginning teachers 
have incomplete or skewed images (Chesné, 2006). Even if their images are not 
what we call “deformed,” they may lake depth or a hierarchy in a desire to “do 
well” by following their training. They may temporarily erase, as much as possible, 
the personal component and spontaneous reactions (Chesné, 2006). These teachers 
thus do not involve themselves completely as such, with consequences on students 
who do not have a truly engaged teacher in front of their class. Other teachers may 
have “caricature deformations” which overly focus on the individual relationship 
with students or their activity, which may be more or less mathematical. Others 
overstress following the mathematical project they have decided to adopt, the 
presentation of knowledge and the course of exercises. 
 We hypothesize that, unable to rely on automated processes, routines, or overall 
depth concerning either mathematics or students prevents these beginning teachers 
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from leaving the local level, which then becomes all there is. With a lack of 
connections to the micro and global levels, there is an overload on the local level. 
 The case of newly certified teachers, particularly those in their first positions in 
the Zone of Educational Priority, has led to recent studies (Coulange, 2006) that 
show the diversity of the potential effects of teacher training on those trained, 
relative to their personal component, their first position, and the details of their 
training. One question arises: Are there pre-existing factors that could lead a 
sizeable number of beginning teachers adopting certain practices over others? We 
will return to this in chapter 12. 

RETURN TO STUDENT ACTIVITIES – A METHODOLOGICAL  
POINT OF VIEW – SOME QUESTIONS 

Even if each study chooses elements of this general methodology to adapt, the 
work to be conducted in order to study the teaching of a given mathematical topic 
can be divided into six “acts,” which include better understanding learning and 
teaching practices, and describing alternate strategies to try. These acts are clearly 
non-independent, but may be completed in various orders. 

Act 1: Determining the relief map corresponding to the concept 

This phase of research leads to examining epistemological or historical studies, as 
well as didactic studies. The goal is to define the mathematical details of the 
concept, to characterize its role in the curriculum (and its potential evolution), and 
to synthesize students’ identified difficulties. This can be enriched by analyses of 
manuals or other resources. 

Act 2: The studied or intended teaching scenario 

It is clearly the reference to the relief map that allows us to appreciate the intended 
introduction as much as the dynamics between the lesson and the exercises and/or 
the richness of tasks. This is a difficult task, as it often relies on many inputs. 
Comparing different scenarios may help. 

Act 3: A priori analysis of specific tasks, from problem statements presented to 
students 

Chapter 5 on the analysis of manuals illustrates in detail an example of these 
analyses. 

Act 4: Analyses of in-class events, based on observations or on video or audio 
recordings 

Analyzed class periods are often filmed and then transcribed. The camera is placed 
at the back of the room, centered on the board, with the teacher as the principal 
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actor. The students are rarely seen and cannot be heard well, but the teacher often 
repeats their statements. 
 To complete the corresponding types of analyses, we have established a rubric 
for studying classroom events (described in detail later on). One of the variables is 
the level of detail of these analyses. Depending on whether we examine speech 
phrase by phrase or more finely, the information we collect is different. For 
example, to understand the dynamics of interaction phases, it may be interesting to 
examine language markers (see following chapters). 
 We compare a priori  analyses of problem statements, the work conditions in 
the classroom, and all verbal exchanges to reconstitute students’ activities. We go 
into more or less detail depending on the specific research question. 
 We first take into account the established chronology. Beginning with the a 
priori analysis of the problem statement, we list student tasks and their length as 
they are encountered throughout the lesson, with reference to the a priori listing. 
 We thus note the task format (individual, collective, etc.), the output of the task 
(simple research, written work, group written work, etc.) and the types of tasks 
(researching, writing or speaking, listening, composing, recopying, etc.). Task 
types and task formats determine the nature of the work, independently of the work 
content. In particular, moments of silence by the teacher are taken into account as 
indications of an attempt to delegate the task to students. In this way, students may, 
to a certain extent, research, discuss, write, listen, recopy, get help, get corrected, 
or even be encouraged, on a single task. The nature of their work (for example, 
investigating as a group, writing out a response individually) gives weight to and 
indeed modifies the application of the knowledge induced by the tasks. 
 We then compare the tasks and subtasks worked on by students and the 
teacher’s contributions: questions, rephrasings or answers, help or explanations, 
identifying and applying student work, presenting knowledge, generalizations… 
silences. Particular attention is paid to teacher assistance. Recall that procedural 
assistance can reduce the task to be accomplished, but can also allow students to 
apply themselves to work. Constructive assistance can allow students to construct 
new knowledge based on their own work. This corresponds to use by the teacher of 
what we model under the generic term “PDZ.” From the students’ point of view, 
procedural assistance may already be constructive, and constructive assistance may 
remain procedural (cf. connection to knowledge of students in a ZEP). Generally, 
all commentary added by the teacher, whether on the mathematics in play or on 
student work, is an important element of our analyses of in-class events (cf. meta). 
They can reveal what improvisations, choices, and thresholds the teacher selects, 
relative to what was expected. This in turn can reveal both possible student 
activities and teachers’ logic. In terms of the phases of knowledge presentation (or 
“lessons”), analysis is a little more difficult, especially if students are silent. 
Moreover, it is imperative to be aware both of what precedes the lesson, and what 
immediately follows it. The lesson is often illustrated by simple examples or 
immediate applications, to establish the potential real or artificial link from 
activities before the class period to the class period. 
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 We replace the analysis of tasks by the analysis of units, which may be present 
or implicit in the lesson. Possible units include definitions, theorems, properties, 
propositions, demonstrations, examples, commentary, illustrations, diagrams or 
drawings, and applications. 
 We then investigate these units in the same way as before. We examine 
particularly their existence, the length of time spent on these knowledge 
presentation phases, the order and placement of the presented content, and the 
manner in which the different comments are introduced, as well as the moment 
they take place. This shows us the potential way the professor introduces the object 
and tool aspects of a single concept (the corresponding theorems or methods). 
 We seek, if possible, the apparent role of improvisation and conversational 
exchanges during these phases, as well as students’ apparent activities. Writing on 
the board, and differences between what is written and what is said, may also be 
analyzed (depending on the study). Similarly, the degree of mathematical 
formalization may or may not be analyzed. 
 It is interesting to analyze how the teacher asks students to use the lesson (and to 
work on it), and to note the quality of the references the teacher makes to the 
lesson. It is as if for some teachers the lesson serves both as a reminder for the 
class and as a catalog of knowledge to use. 
It may be interesting to compare teaching manuals with teachers’ lessons, as well 
as the use that is recommended for students. 

Act 5: Reconstitution of students’ activities, links to learning, initial questions 

The preceding analyses allow us to reconstitute the traces of possible permitted or 
encouraged student activities. Possible activities are those that we can estimate 
were done, at least in part, by many students during class time. Often, we are 
otherwise led to distinguish a maxima activities and a minima activities. By 
contrast, since students work autonomously on a computer, accessing their 
activities is less problematic (even if in actuality no one can access the effective 
activities themselves). We thus speak of the observed activity (even if only the 
actions were observed) and we have developed several methodological ways of 
accessing these activities (by direct observation or thanks to trace files; see  
chapter 8). 
 That is to say, if it is difficult to analyze teaching in relation to learning, it is 
even more difficult to have legitimate evidence of it. We are well aware that a 
blank sheet is not always synonymous with a lack of learning, that an apparently 
trivial variation of a problem statement can affect student performance, and that 
there may be a large gap between what a student writes and what the student has 
understood and retained, or is in the process of learning. Tests, for example, 
provide very limited evidence of learning, polluted by social and affective factors, 
and tied to the teaching contract and to the necessity of having a certain level of 
success in a class. 
 Our analyses thus do not permit us to do other than pull out relatively 
contextualized relationships between problem statements and in-class events on 
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one side, and student success on tests on the other. We will, however, have to 
content ourselves with this in certain studies (see chapters 6 and 7). 
 Note that, more generally, our theoretical framework does not allow us to form 
precise hypotheses concerning these teaching/learning relationships. It is perhaps 
on the edges, with students having difficulties, for example, that the compensations 
that may influence some students are no longer effective, or that there may be some 
threshold effects. For example, researchers (Castela, 1995, 2000) have shown that 
some students can construct knowledge without their having been explicitly taught. 
Are there sources of differentiation here? Are they individual or social? 
 At most we can give several hypotheses (see Appendix 2) on extreme cases, 
inferred from the general theories that we use for inspiration. First, a completely 
lecture-based lesson has a strong chance of preventing many students from 
constructing knowledge, due to insufficient student activities. A lesson with no 
period of knowledge exposition may also prevent students from learning, due to a 
lack of occasions for transforming activities into knowledge. Similar problems may 
be found in a lesson that contains only simple and isolated tasks, due to a lack of 
non-immediate activities. 

Act 6: the logic of teachers’ actions and analyses of their practices 

This last act consists of reconstituting and recomposing, for a single teacher and 
then potentially several, the components that we have distinguished, keeping track 
of the organization into levels. 
 The action logic combines the cognitive and mediatory components, to better 
identify what can lift the constraints we take into account. 
 Using multiple analyses of a single teacher or of several teachers, we look for 
common factors in overall content choice. For beginning teachers, for example, the 
extra burden of the local level has led to calling on levels of organization to 
interpret the records. Determining professional groups (such as gender) leads to 
working both on components and on the levels of organization. 
 Diversity between practices is often expressed through logic of action (on the 
local choices of tasks and class progressions). 
 These are, for now, inferences based on initial results that lead us to suggest 
variabilities (what can shift, and at what cost). 
 A number of chapters of this book illustrate this last act. 

Conclusion: Further questions — toward the long term? 

We indicated above the open questions concerning appropriate indicators for 
studying the speech of teachers in class. These indicators can be more or less finely 
grained and can consist of linguistic markers or the format of exchanges. But these 
analyses of in-class events, based on analyses of tasks (exercises, lessons), remain 
essentially local. They cannot completely reveal events over the long term, 
although learning itself takes place over the long term. There is also no “rung” to 
better appreciate student activities and teacher motivations. 



ALINE ROBERT AND CHRISTOPHE HACHE 

60 

 Teachers often do not say or do all that they intended. This feeds a double 
discussion of the necessity of their choices and omissions, and of the alternatives. 
The elements analyzed during several lessons leads to larger questions concerning 
other potential exercises, the lessons, the curriculum, the class, the specific teacher, 
the establishment, etc. Focusing on these questions allows us to go back up to the 
global level. 
 The study of lesson plans can certainly reveal part of the mathematics 
commonly used by students, in terms of dynamics within the project, between the 
lesson and the exercises, and between the meaning and the technique. They are 
revealed through the order in which the different parts are presented, the expected 
lengths of the different phases, and the quantity and variety of the tasks. But the 
difference between what is predicted and what actually happens, as highlighted by 
this chapter, is too great for this to be sufficient. 
 When possible, examining student work for a given chapter can certainly allow 
us to compare in-class events with evidence of learning. However, this is very 
time-consuming, as all events must be examined relative to the test. Some studies 
have begun to devote such resources, although they are limited in scope or in the 
number of parameters. 
 We retain, from this theory of learning and practices, the intermediaries chosen 
to have access to it, with the importance of coupled links (statement and in-class 
events) as precious indicators of factors that can vary in student and teacher 
activities. These activities can be understood through a priori analyses of expected 
applications of knowledge from a problem statement, compared to the applications 
provoked or allowed during the class. These latter applications are approximated 
by the work that the teacher puts into place for students. These analyses of possible 
activities are sometimes completed by studies of observed effective activities. 
More general studies of the mathematical concept in play, from the scenario in 
which the classes take place, and from the institutional, social, and (for the teacher) 
personal context, reveal recompositions respecting the complexity in play. 

POSITION RELATIVE TO OTHER STUDIES 

Our investigation relates to the effective class and individual subjects. We indicate 
in this section, in a necessarily schematic and summary way, several general 
characteristics of this theory relative to other foreign or French didactic theories. 
Note that it is impossible in a few pages to be either exhaustive or complete, and 
that we have selected several examples for clarifying our proposals. 
 We will see a large initial difference concerning whether to adopt a “stricto 
senso didactic” point of view, where subjects play a generic (or indeed epistemic) 
role, and are therefore all considered equivalent. This is not our viewpoint. 

Concerning students and student learning 

A certain amount of anglophone research is directly inspired by the theory of 
activity for analyzing class periods (Christiansen & Walther, 1986; Hiebert & 
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Wearne, 1997; Stein, Grover, & Henningsen, 1996; and others). We also find that 
for them, the task is the starting point for the activity, and remains external to the 
student, while the activity is what the student actually does, and what influences 
learning. They give particular importance to in-class events for analyzing student 
activities, and are not content to study the tasks students are proposed. However, 
the methodologies used are different from ours, and the activity is analyzed more 
in terms of overall applications of mathematical steps than applications of precise 
skills such as conjecturing on an open-ended task, calculating, or reasoning on the 
nature of a problem, internal or external to the mathematics. Here is a list of four 
such types of tasks given by Sullivan, Clarke, Clarke, and O’Shea (2010). 
– Type 1. Involves a model, example, or explanation that elaborates or exemplifies 

the mathematics. 
– Type 2. Situates mathematics within a contextualized practical problem to 

engage the students, but the motive is explicitly mathematics. 
– Type 3. Involves open-ended tasks that allow students to investigate specific 

mathematical content. 
– Type 4. Involves interdisciplinary investigations in which it is possible to assess. 
Great importance is given to open tasks and to associated investigatory steps. This 
corresponds notably to research developed in relation to the NTCM (see below). 
However, characteristics tied to affective or psychological dimensions are often 
introduced, which partially direct the analysis of tasks and activities differently 
from our analyses led by knowledge stricto senso. Some examples are “attention” 
(Mason, 2003) or “challenge” (Jaworski, 1994). 
 We return briefly to francophone research. In the Theory of Didactic36 
Situations (TSD), when in-class events are analyzed, references and the 
comparison in the light of which we report observations are the model of 
mathematical learning defined from fundamental situations and the environment. 
Fundamental situations, at the heart of the theory, model a didactic procedure that 
in some sense forces students to use the mathematics to be acquired. The 
corresponding problems are developed from the deep meaning of concepts, 
identified from the question: What are the concepts for? Students have no other 
option but to use them, on the condition that they play the proposed game. 
Moreover, it is within the problem that they find the elements that allow them to 
determine if their work is correct. They do not need to wait for the teacher’s input 
(see the “puzzle” example). 
 From the perspective of in-class events, Brousseau (1998) particularly 
highlighted the interest of the sequence of phases of action, formulation, and 
validation. He introduced the concept of the didactic contract that represents the 
potentially implicit expectations of the teacher towards the students and vice versa. 
We can thus gauge a priori the different situations (including ordinary situations) 
proposed to students that use the tools initially conceived for describing “ideal” 
didactic situations. The a posteriori analyses allow us to compare the gaps between 
what actually happens in class and the a priori analyses. This involves verifying if 
the tools the students must use to solve the problem are available to them and are 
well within the environment. If the situation is predicted to be a-didactic, in order 
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to introduce a concept from a “good” problem, for example, we verify a priori that 
there is no need for the teacher, that the intended knowledge is necessarily and 
uniquely at work, and that the situation is within students’ reach. We verify a 
posterori that the actual lesson respected the expectations. Based on the 
characteristics of the in-class events and the predicted tasks, the analyses explicitly 
confirm or reject the gaps between what took place and what could have been 
predicted based on the model of learning within the TSD. We can invoke the point 
of view of a certain possible theory of learning for analyzed situations: that 
analyses carry inferences on learning through the intermediary of the model 
(Brousseau, 1997, 1998). 
 For our part, we seek to measure the gap between the activities of students 
applying their knowledge (during its acquisition) analyzed a priori, and the 
activities that may actually have taken place during a regular lesson. 
 First, the description of these activities is made in reference to large dimensions 
that do not correspond to a constructed theoretical model, but only to large 
categories of variables influencing learning and depending on teachers. We should  
note at this point the importance of the chronology and the corresponding details of 
the assistance provided by the teacher in our analyses. The chronology and fine-
grained analyses of speech seem to us to be often absent from analyses of the 
environment, where the situation is analyzed as a whole from the start. 
 Second, we can work equally well with short sequences as with longer ones. 
This is indispensable at certain moments during the research. In effect, our basic 
unit (the problem statement/in-class event couple) is smaller than the “situation” in 
the TSD sense that it replaces. We can however note that it is “of the same order” 
in a certain sense, as it combines content and management. But the concepts of 
tasks and activities do not explicitly appear in TSD. They are replaced by situations 
proposed to students divided into possibly a-didactic phases, referring to students’ 
single mathematical work within each phase. The dynamic of reference situations 
refers uniquely to the application of the expected mathematics, made indispensable 
by the proposed problem and which is with internal methods of control for 
students. The individual variabilities therefore have no place. 
 Finally, we give the same importance in our approach to the introductions of 
concepts as to the rest of the instruction of a concept. We do not find a focus on 
fundamental situations or the tool/object dialectic. We also do not find the implicit 
increase of the introduction of concepts for the construction of knowledge by 
students. 
 The anthropological theory of didactics (TAD37) is another different theory. It 
pertains to the didactic of elements inspired by an anthropological vision of man in 
the world. From mathematical decision theory, we obtain systematic and systemic 
ways to establish an exhaustive definition of an institution’s mathematical 
provisions in terms of one or more concepts: curriculum, manuals, or even more or 
less complicated mathematics. The “provisions” are everything available to 
students and teachers in terms of types of tasks, (legitimate) justifications, theories, 
etc., without taking into account conditions of instruction unrelated to the 
mathematics. In particular, it is not the problem statements of the exercises that are 
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analyzed, but the types of tasks that they illustrate and that are extracted from 
them, independent of the specific activity that the students have to do on the task in 
question, which we have not given ourselves the means to determine. This leads to 
identifying types of elementary tasks as kinds of units that can appear in exercises, 
manuals, or lessons, and that serve to distinguish the instruction from the content, 
understood in terms of gaps or evolution. Each type of task is associated with one 
solving method or technique and to various justification possibilities (which may or 
may not be present within the analyzed elements). The whole, which can range 
from one concept to several mathematic chapters, and which can cover one or more 
curricula, is organized relative to the elements of the corresponding mathematical 
theories and the evidence of the transposition of this knowledge into teaching 
content. It is thus not in this sense that the word “task” is used in the presented 
work (Chevallard, 1992). 

Concerning teaching practices 

Many anglophone studies involve teacher beliefs, but do not introduce the 
occupational dimension. For example, the model developed by Schoenfeld (1998) 
characterizes decisions and actions as a function of one’s knowledge, goals, and 
beliefs. These factors are clearly marked by the content that is considered. This 
model is used to characterize a moment within the teaching activity, included 
within the level of student interaction and aiming to also predict the behavior of a 
teacher whose factors have been previously determined, which underlies the 
existence of certain invariances. In addition, a certain number of studies now 
examine collective systems that involve communities of practice that serve more to 
study potential evolutions in these practices than to analyze them in relation to 
student learning (Wenger, 1998). 
 In France, in research inspired by TSD, Margolinas (1995) and others presented 
an analysis of teacher knowledge and its role in class, organized in levels 
structuring the environment. For Margolinas, working (for a teacher) is “putting in 
play” knowledge of different levels of mathematics and student. Studying the work 
consists of examining this knowledge and its interactions between these levels and 
then imagining ways to have this knowledge acquired. 
 Much of this knowledge concerns the way in which the professor understands 
the content within a curriculum, develops exercises to give to students, and 
interprets student knowledge. This type of fairly large investigation does not seem 
to us to take into account the chronology of the lessons, or the way they unfold in 
class, which become secondary. The manner in which actions, such as taking up a 
student’s idea or offering help, are taken, are thus not described and have no place. 
 From the TAD viewpoint, the actual lessons that take place are systematically 
related to the didactic organizations that are developed independently of classes, 
teachers, and concepts (Chevallard, 1999). Thus, different points in the lesson 
(introduction, work on the technique, etc.) are taken into account. However, in 
these studies, the import of the effected lessons and the specifics of individual 
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subjects, which we take into account through the intermediary of the analysis of 
effective activities, seem to us to be discounted. 
 Finally, more recently, researchers have developed a model of the action of the 
professor in class, which has been expanded into a model of the joint professor-
student action within the framework of the compared didactic (Sensevy et al., 
2000). The decomposition of the teacher’s action into four dimensions, and the 
systematic consideration of the  mesogenesis, chronogenesis, and topogenesis, also 
do not seem to us to be well adapted to our project of realtime introduction and 
individual and conceptual variabilities. The explicit theoretical references to 
cognitive characteristics of student knowledge and to effective student activities 
are not called upon. 
 In this step, working consists of bringing activities into play, and analyzing 
consists of studying the activity (what is thought, said, unsaid, done, undone, etc.). 
We are less interested in knowledge than in its application, and we do not reduce 
teachers’ activities to professional gestures, even if it is interesting to introduce 
levels tied to the temporality and grain of these activities. 
These different viewpoints clearly have consequences on teacher training and 
corresponding research. We will return to this in the conclusion. 

Concerning professional didactics 

Although our work falls within the general double approach framework, it borrows 
more or less specific elements from professional didactics (Pastré, 2005a, 2005b). 
We have allowed ourselves to be more directly influenced by research on the 
integration of technology into teaching practices. 
 For example, in some research, we study the teacher’s activity in a specific 
situation of integrating technological tools in the classroom. Our approach is 
directly inspired by professional didactics. In these studies, the dialectic between 
“productive activity” and “constructive activity” is introduced to clarify that the 
teacher acts to transform what takes place by contributing to students’ activities, 
and that the teacher is also transformed though a longterm development process 
(Pastré & Rabardel, 2005). 
 We would like to add in this section several difficulties that arise from these 
borrowings. They are first tied to our difficulty in defining schemes and integrating 
the concept of competence. They are also tied to questions of expertise. There is 
not always agreement in mathematics on the orientation of the teacher’s action. 
There is far from being a universal definition of “good ways” to teach, nor 
common adoption of reference models for analyzing practices. Moreover, the test 
of a teacher’s practices is not made on learning, the ultimate goal of practices (or 
only partially, by the intermediary of proofs for which everyone agrees to underline 
the insufficiencies inherent to the complexity of such an evaluation). By contrast, 
the teacher, and even the educational inspector or other colleagues, can verify that 
“the class functions” or that the students succeed on tests. It is not the goal of the 
action that is easily and directly tested, but only a partial subgoal of student 
investment, which is a no doubt necessary condition but which can not reveal 
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learning. We wonder if a multi-expertise is not necessary in this professional 
domain. 
 The individual/invariant/generic relationship, and the differences between the 
action sequence and the significance for each and invariants, are unique to the 
teaching profession, as is working in a human open dynamic environment. 
Complexity, variability, and unpredictability make the subdivisions that allow us to 
locate the execution of the action, and no doubt require several simultaneous and 
interrelated approaches, problematic. 
 Finally, the analyses of actual work structure many ergonomic studies. In the 
studies on teacher practices, this type of analysis is difficult to perform, given its 
complexity (the presence of students, the difficulty of the evaluation). 
Consequently, many teacher trainings, for example, are inspired by the work 
desired by the trainers, without always being anchored in the real work of teachers, 
contrary to many formations inspired by professional didactics. 

Technology in education: details on the case of work on the computer 

In the case of computer-based work, a preliminary examination on the use cases of 
technological tools is specifically relevant, to the extent that the discussion of the 
longterm of computer-based lessons with classical lessons is a factor in student 
activities. The a priori task analysis should be completed by an equivalent analyses 
of environments, assistance, and possible feedback. Along with teacher assistance, 
they can modify the expected possible activities. 
 For in-class events, the length and nature of student work differ from one type 
of tool to another. Work is, however, often individual, and students have a priori a 
lot of autonomy. They can have different work progressions with different amounts 
of time spent on the proposed tasks. They can also benefit from individualized 
feedback, and can discuss with partners or with the teacher. There is thus in general 
more material to observe than during traditional lessons in which the rhythm is 
often dictated by the collective progression of the class. Students can thus be 
followed individually. We have access not only to their possible activities, but to 
their actual actions. The reconstitution of the activity is this closer to reality than it 
is with classical methodology. We can better determine if constructive assistance 
serves its purpose, and thus to go towards effects in terms of learning. However, 
there is a loss of generality, as only a few students can be observed. 
 Learning specific to the use of technological tools, combining mathematics and 
knowledge of the tools themselves, appear in particular in students’ use of open-
ended software (dynamic geometry, spreadsheets, etc.). They can justify using a 
theoretical approach centered on learning. It involves using an instrumental 
approach (Rabardel, 1995) specific to the mathematics (Artigue, 2002). 
 Finally, some assistance from the teacher is uniquely tied to the computer 
environment and the manipulation of tools. It is not found in the traditional paper-
and-pencil environment (except when non-technological tools, such as a compass, 
straightedge, etc., are used). We introduce in some work a third type of assistance 
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(after procedural and constructive assistance) which we call “manipulatory” 
(chapter 10). 

Conclusion 

We could diagram the main dimensions that allow us to distinguish researchers’ 
choices. 
 An initial source of diversity is the connections maintained by didactic studies to 
the situation (the time and the problems found in the countries involved), to the 
terrain (the school, the students, and the teachers), and teacher trainings, in relation 
to the institutional conditions that are imposed on research.  In concerns the 
position that is adopted concerning the links between the research and the 
instruction prescribed in a given area, the curricula, the instructions, but also the 
cultural or social habits. In a word, does the research have a prescriptive or 
prospective impact? Do they provide diagnostics or propositions to be tested (or 
not)? What variables are introduced? In relation to the problems to be treated, in 
what theoretical or conceptual framework does the research take place? What is its 
role? 
 Some studies fit directly in a given educational system, with goals of acting on 
the system. We note particularly anglophone studies attempting to increase the 
effectiveness the NCTM standards established in the 2000s to improve 
mathematics instruction in the US (and in other countries that have adopted the 
same types of standards). Analyses of tasks that are then produced, for example, 
seek to translate not the epistemological characteristics of the mathematics content 
but student skills to be accessed (looking for a solution, conjecturing, writing up a 
solution, etc.). Other researchers work with the same goals as, and even together 
with, teachers. They have analogous goals tied to the reality of what takes place in 
class. They declare explicit objectives of transforming instruction and improving 
learning (Boero, 2007). Still more look for cultural or social sources for the groups 
involved within the mathematics content (Radford, 2010). By contrast, some 
researchers focus more on characterizing universal forms that are necessary for 
mathematics instruction, tied to content (fundamental situations) or to 
understanding how knowledge evolves and diffuses, establishing for example a 
structure of knowledge (Brousseau, 1997; Chevallard, 1992; Sensevy et al., 2000 in 
France). Still other researchers attempt to clarify how teaching and learning are 
tied, and what are the resiliences, the invariants, and the diversities, and beyond 
this the local or general situation (Vergnaud et al., 1979). These latter researchers 
call more on theoretical frameworks, which are often models serving as reference 
to research, to choose before studies to adapt or develop. The first types of 
researchers work with local or general theoretical frameworks (or a mixture of the 
two) that seem appropriate to begin working on the questions to be treated. Other 
researchers remain working on empirical or positivist studies. In France, research 
on mathematical didactics was able to develop with some independence of the 
situation. From this, theoretical frameworks from anthropological theory to be 
adapted to didactics, from game theory as a model of learning, from Vygotsky and 



WHY AND HOW TO UNDERSTAND WHAT IS AT STAKE IN A MATHEMATICS CLASS 

67 

Piaget’s theories applied to the theory of activity, were developed, ahead of 
contextualized research. 
 Finally, research on training mathematics teachers in teaching or mathematics 
are more or less associated with didactic research. In some countries, this is even 
the origin of the didactic question. Here again is much diversity. We will return to 
this in the last part of the book. 
 Another distinction, which is not unrelated to the preceding and to theoretical 
choices, relates to what is taken into account in research in terms of students and 
teachers, and the corresponding variables that are introduced in studies, in 
connection with the theoretical or conceptual frameworks adopted and their 
definitions. A student learning mathematics and a teacher teaching mathematics 
can be “approximated” and analyzed in several (non-exclusive, non-independent 
ways): 
– As an “epistemic” subject (studied in relation to the invariants that characterize 

the subject’s evolution, and in terms of the subject’s function or role—student or 
teacher). 

– As an institutional subject (studied in terms of  “subservience” as a function of 
the institutions to which the subject belongs). 

– As a social subject (related to both the subject’s sociocultural origins, 
particularly for the student, and the subject’s profession, particularly for the 
teacher). 

– As a psychological subject, with multiple points of view. 
– As a cognitive subject (studied in terms of the subject’s development, in terms 

of learning potential for the student, and practice enrichment potential for the 
teacher). 

– As an affective subject (studied in terms of emotions, tastes, self-confidence, 
etc.). 

– As an individual or psychic subject (with a personal history, representations, 
knowledge, character traits, etc.). 

Even the name of the corresponding scientific field in different countries can be 
revealing.  
 One final dimension is tied to the consideration of quantitative aspects and 
validation in studies and, more recently, to the role given to evaluations. Do we 
work on individuals, on a few classes, on a large number of classes, on a category 
of students (possibly characterized by a “generic” representative), on a professional 
group (such as middle school teachers)? Is there a place to validate the conclusions, 
and if so, how? 
 This dimension is effectively tied to the mode of validation predicted in the 
studies, and to the theoretical frameworks. A strong coherence with a certain 
framework can serve as auto-validation to certain studies. This, the role given to 
experimentation, and more generally to all data analyses, varies widely in relation 
to the theoretical model and with the potential discussion of or the search to 
enlarge this model. If used to explore new fields of mathematics instruction, 
experiments serve to collect data for which the model prescribes analyses38. If not, 
if the research is led by questions that do not fall directly under a model, or that 
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contradict it, or that borrow from general theories, experimentation can also serve 
to establish commonalities, hierarchies, causality, or dialectics contributing to 
increase or renew the understanding of the phenomena. 
 For now, research in France is mostly clinical. It is qualitative, and, depending 
on the case, often validated by comparing predictions to outcomes. There are many 
people who imagine changing the scale of this research. Here there is another link 
to the objectives. Research that is very linked to the objectives to be obtained for 
student learning cannot go without quantitative evaluations, even if we know the 
main limits: uncertainty on the causes of learning, on the moment to evaluate, on 
the tasks to propose (not to close or too far from the information learned), etc. 
 International evaluations are not always associated to didactic research. 
However, their results allow us to revise quantitative perspectives thanks to 
powerful statistical tools and extraordinary improvement of ways to improve data 
collection and associated processing. 
 Depending on the role given to the situation and the terrain in studies, and 
according to the types of situations considered, some variables are more or less 
imposed on researchers. Thus, in France, the analysis of tasks in terms of types of 
tasks, techniques, technologies, and theories is more adapted to an overall, more or 
less exhaustive analysis of the knowledge content to be taught. This analysis can 
critique and even break from curricula, concerning primarily institutional subjects 
(in various institutions. Our a priori  analyses (presented above) are more adapted 
to understanding possible student and teacher activities within a given curriculum 
(concerning epistemic and cognitive or even social subjects). They require placing 
task within an overall cognitive itinerary, with reference to a conceptual field (or to 
a level of conceptualization). From this viewpoint, curricula can be contested 
through arguments that are not only epistemological but also tied to subjects 
(particularly students). Studies that involve teachers as psychological subjects 
(from a certain point of view) are also different from studies involving institutional 
subjects only to the extent that other variables are taken into account, such as 
leeway for constraints and their investment, consisting of choices, alternatives, etc., 
and not only constraints. Still other research very tied to the terrain has developed 
methodologies specific that involve diverse communities of practice and discourse 
created with researchers, teachers, and teacher trainers. 
 That being the case, researchers in mathematical didactics all have the goal of 
first taking into account the specifics of the mathematics to be taught—to the 
extent that they share the fundamental postulate of the importance (and specificity) 
of the nature of the content in play in the learning. But the descriptions of the 
mathematics necessarily depend on the nature of the students and teachers 
considered, and even the nature of the relationships between learning and teaching 
in which we are interested. Several types of relationships between teaching and 
learning have been studied. This, if all agree to extract, from the history and 
epistemology of mathematics, curricula, and their evolution, a description of the 
content to be taught (concepts, mathematic chapters, mathematic domains, or 
mathematical fields, then the very modalities of these descriptions depend largely 
on the didactic project and the studied “subjects,” as we have already discussed 
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above for francophone research. Some other researchers place a lot of weight on 
the language developed in class, and specifically study the communication that is 
established. Others insist on the semiotic analysis that can be done, notably from 
the moment instruments become involved. 
 If the problems are approached quantitatively, we can extract important 
variables that are susceptible to revealing the recorded variations. They can be used 
both to describe the modes of investigation and to analyze them. There is no 
question of looking at individual differences, tied to taking into account individual 
subjects. There is also no question of attributing to a specific result an 
interpretation that goes beyond the variables selected. This is no doubt the origin of 
the week impact of some international evaluations, which, wanting to include to 
much, do not leave much room for interpretation. 
 By contrast, if we wish to understand the more individual games played in class, 
the margins that remains at the interior of a given system, then the choice of 
variables selected and the types of subjects studied may be different. If, for 
example, we want to introduce the student as a “cognitive” subject, and the teacher 
as an individual subject, then we need descriptions that are not limited to the 
mathematics that is structured and analyzed in relation to the knowledge only. It is 
necessary to given, in the descriptions of content, ways to describe potentially 
unexpected student difficulties, and, more generally, the learning that evolves. It is 
also necessary to give methods to analyze what takes place in class, along with 
what was predicted. The concepts of “conceptual field” and level of 
conceptualization are a response to the first expectation, while the analyses of in-
class events respond to the second. It is also necessary that these latter analyses can 
reveal what we are looking for. Thus, the a priori analyses of tasks in terms of 
adaptations were introduced specifically to allow for studying the outcomes of the 
predictions in class and to better appreciate subjects’ activities in response to tasks 
processed in class. 

Concerning other disciplines 

In France, various types of didactics have been developed with different histories. 
Some come from teacher trainers (didactics of the French language), and others 
from universities (didactics of mathematics and physics). Some interdisciplinary 
studies related to science (particularly mathematics and physics) begin to be 
conducted. This usefully increases the spectrum of questions that are posed. But 
this is another story. 

APPENDIX 1  
FRAMEWORKS, REGISTERS AND POINTS OF VIEW 

We adopt the Douady’s categories (1986): a “framework” corresponds to some 
mathematical field (or domain), in which a given notion is introduced, not alone of 
course. It is characterized by some fundamental axioms, implicit or not, a corpus of 
definitions (objects), theorems, and propositions and a set of problems that can be 
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resolved within this field. For instance, the middle of a segment [AB] can be 
studied in an analytic way (involving the analytic field), a geometric way 
(geometrical field), and so on. 
 According to Duval (1995), we call “register” a precise way of writing 
mathematics, using a given formalism, introducing so a semiotic view. For 
instance, to work on decimals numbers, some can choose such writing as 4, 567, or 
4 + 5/10 + 6/100 + 7/1000: these two registers differ and inside each of them the 
treatments (operations) are not exactly the same. 
 The “points of views” refer to different ways of tackling a problem, leading 
often to different strategies. For instance one may consider the intersection of three 
lines as a point belonging to each of them, or may consider that the intersection 
point of two of them belongs to the third one, or may look for a transformation 
such that the three lines are the image of three other intersecting lines… Each point 
of view induces another strategy to tackle a problem. They differ from field or 
registers because they can occur inside of the same field or the same register. 

APPENDIX 2 
SOME HYPOTHESIS FOR THE TEACHERS 

We have list general hypothesis, concerning only the cognitive point of view, that 
may help the teachers when choosing their scenario and their classroom’s 
management but that each of them has to adapt to the precise content he wants to 
teach, to his students, etc. 

1) Related to the contents’ choices 

Apart from conceiving an appropriate scenario, more local decisions may occur. 

a) To introduce a new notion 
Depending on the very type of the concept (cf. supra), one can or cannot find a 
“good” problem making the students easier to apprehend the meaning of the 
concept. 

b) To work on a notion 
Solve some SIT seems indispensable. But conceptualizing depends also in 
particular on the variety of tasks that the teacher suggests solving during the lesson. 
If there are only simple and isolated tasks (SIT), one may guess that the students 
will lack some tools to adapt their knowledge.  
 The order of the tasks is another “variable” on which the teacher may play. 
Working on complex problems, involving not only one notion in one field, may 
also increase the level of available knowledge so as mixing new and old 
knowledge. 

c) The obligation of writing 
It allows an important and useful students’ work on rigor and precision.  
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For instance writing completely a proof let students realize that they had not 
consider particular cases, that their notations were incomplete, etc. … It helps to 
understand precisely what is involved in reasoning. 

d) The presentations of the lesson 
In every case, the moments of teacher’s presentation of knowledge are 
indispensable, to define and formalize what the students have to know. And it is 
yet more important when students have work by themselves before, so that they 
need to be informed of the corresponding knowledge. 
 Of course if there is nothing else during the classroom that this kind of teacher’s 
presentation, one may guess that many students will switch off. 

2) Related to the class management’s choices 

a) Various tasks with time to solve them 
The general idea is, in relation with the corresponding tasks, to choose an 
appropriate management. For instance when the tasks are complex, the idea is to 
associate a management that let students work alone, without the teacher during 
some time, so that he can afterwards lean on the students’ actual work to make 
them go up.  

b) Autonomous work in class (or in small groups) 
It is important to give students occasions to work by themselves, to discuss 
between them, eventually to work in small groups, and to give individual 
appropriate assistance when there is a need of it. But it is also important to detect 
what the students have done when working alone and to make the most of it. 

c) Habits 
It is when repeating sometimes a way of unusual work that the students may 
benefit of it.  

d) Home work 
It is important to give homework that all the students may realize, to improve them.  

e) Appropriate assistance 
There are many types of assistance and it is important to choose the moment to 
deliver them – before the work on a task, during it or after it. They may be general 
or particular, direct or not, they may take the shape of questions, or explanations … 
The important thing is to adapt the assistance to the students’ question and 
knowledge. 
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NOTES 
1  This corresponds to what Rogalski refers to under the term “open dynamic environment 

management” in the previous chapter. 
2  See previous section. 
3  Knowledge presentation phase 
4  The importance and variability of the relationship with knowledge, in terms of the student’s socio-

cultural origin, and the potential weight of emotional factors tied to the parents’ level of schooling 
(Charlot et al., 1992 ; Bautier, 2006; Bautier & Rochex, 1998). 

5  The Zone of Educational Priority includes institutions attended primarily by underprivileged 
students. 

6  For the most part. In some studies, the teacher’s activity is examined in terms of its effects on the 
teacher (cf. regulation loop). 

7  In no case do we consider the (nonetheless important) domain of the unconscious. 
8  The idea of “availability” of these aspects is our way of translating the characteristic invariance of 

acquisitions under Vergnaud’s models. 
9  Less and less, if we look at the current direction of French curricula. 
10  Despite what might be implied by the word “level.” 
11  In-class lessons and/or textbook lessons. 
12  In certain studies, we speak of complex tasks. 
13  This is less frequent in general outside of university level classes. 
14  “Concept” should be understood broadly, and includes some important theorems that are the object 

of a chapter. 
15  As defined by Brousseau (1990): The respective expectations of teachers and students. 
16  A chronology of class periods is established, based on the a priori task analysis and the effective 

unfolding of in-class events. 
17  Studies on the environment should be inserted here. 
18  Cf. Vygotsky, tied to his social analysis of knowledge under which “the collective appropriation 

may precede individual appropriation” (Vygotsky, thought and language). 
19  They studied the type of interactions beyond mathematical content. 
20  Proximal development zone (chapter 1) 
21  In the sense of the double regulation schematic from part 0. 
22  We find again here the idea of assistance with a constructive function. 
23  Establishments for educating future primary school teachers. 
24  Professional establishments for training future teachers. 
25  Short for “didactic and ergonomic double approach” for the analyses of teaching practices (Robert & 

Rogalski, 2002). 
26  In our initial findings, we described the way activities are set into motion, as well as the maintenance 

of students in the activity, called the student investment or more broadly, “keeping the class going.” 
27  With a restriction: They place themselves within the approach they are helping to legitimize. 
28  This result comes from one of the OPEN (Observation of educational and teaching practices, 2008) 

subgroups concerning “practice organizers.” In this subgroup, researchers in professional and other 
forms of didactics worked together with sociologists. Researchers were invited to respond to the 
question “For you, how should the term ‘practice organizer’ be defined?” 

29  What ergonomists call “discretionary tasks.” 
30  There is a very important discussion here on the information supplied by evaluations. 
31  The levels of organization introduced in the appendix, which also take into account the flow of 

activities and the timeframe of the action, should also be distinguished. 
32  In previous studies, we have used the terms “lines of action” and “singularization” in discussing the 

macro and local levels. 
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33  Subdivisions on the order of several minutes, punctuated by activities organized for students. 
34  We have established these assessments of 9th and 10th grade (predominantly algebra) class periods 

after careful study. The problems given to students were not exercises of immediate application, but 
were introduced just before or after a lesson, and did not stray far from the lesson. 

35  This is, however, one of the strongest assessments made of the knowledge CAPES students 
developed at the university. 

36  A theory that to us does not seem to be contradictory but complementary to what we do, but which 
we would not be able to summarize briefly. 

37  Also this term is impossible to summarize briefly. 
38  In short, there should be no surprises. 
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ERIC RODITI 

3. DIVERSITY, VARIABILITY AND COMMONALITIES 
AMONG TEACHING PRACTICES  

INTRODUCTION 

Researchers in mathematical didactics aim to understand and improve the teaching 
and learning of the discipline. However, the weak diffusion of research results into 
teaching practices prompts us to look closer at various teaching practices. Do 
institutional constraints and professional norms render these practices mostly 
homogenous? Do teachers have some amount of leeway, resulting in individual 
differences in styles? Are students’ classroom activities completely determined by 
their teacher, or are teachers reciprocally affected by their students? And could this 
mean that students are themselves responsible for variation in their teachers’ 
practices? 
 We will address these questions through the case of teaching decimal 
multiplication to French sixth graders (age 11), beginning with a study of the 
regularity and variability of mathematics teachers’ practices. The “double 
approach” presented in chapter 2 consists of understanding teachers’ work as 
involving goals beyond student learning, taking into account their own professional 
objectives as well. 
 We will analyze the practices of four teachers who work under similar 
professional conditions. By examining commonalities in their practices, we will 
analyze the constraints under which these teachers work. This will allow us to both 
determine if all the originally anticipated scenarios are feasible, and to understand 
teachers’ pre-class and in-class constraints. By examining the variability in 
individual practices, we intend to present coherences in teaching practices. It is the 
internal coherence in a teacher’s practice that forbids the spontaneous adoption of 
another way of operating. 
 After specifying the research topic and the methodology adopted for the “double 
approach,” we will present our results regarding the originally anticipated 
scenarios, the institutional constraints in place, and finally the scenarios deemed 
realizable under these constraints. We will then describe our observations of 
teachers in terms of the regularity, variability, and coherence of their teaching 
practices. 

A METHODOLOGY BASED ON THE DOUBLE APPROACH 

We will specify the research topic and present the methodology used, developed 
under the framework of the “double approach.” 
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A research topic aimed at interpreting the constant and variable aspects of 
practices, in terms of the constraints and flexibility afforded teachers 

We have subdivided the overall investigation of regularity and variability in 
teaching practices into three subtopics. We will detail each topic and indicate 
briefly for each the approach used to resolve the issues involved. 
 The first subtopic concerns the various ways a class can be taught, in terms of 
the institutional and social components of teaching practices. This subtopic also 
includes the choices made by teachers from among these various possibilities. 
After evaluating the issues at play in teaching decimal multiplication, we will 
investigate the possible didactic transpositions in light of the numerous 
publications on this topic. We will then compare the observed practices to those 
that were originally anticipated. 
 The second subtopic, which includes personal, cognitive, and mediatory 
components, concerns the development of lessons, focusing on student work as a 
function of their teachers’ activities. Our goal was to compare students’ effective 
activities to the tasks as envisioned in the scenario, while also examining classroom 
interactions and assistance provided by teachers during the completion of the tasks. 
 Teacher constraints, the amount of freedom allowed within these constraints, 
and overall practice coherence constitute the third subtopic. Through a survey of 
official documents, we determine the constraints of the school system regarding the 
number of hours of class time as well as curriculum topics. Through interviews 
with teachers, we attempt to evaluate the weight of the constraints tied to the 
expectations of the school system, and of those tied to practicing the profession, in 
the classroom, with students. The variability of practices can be explained by the 
fact that teachers make different choices while operating within the leeways 
afforded them under these constraints. We attempt to define the limits of the 
leeway afforded teachers in order to specify the space of possible professional 
activities. Finally, between constraints and leeway lies the question of the 
coherence of teachers’ choices. Even if, from the theoretical standpoint, this 
coherence of practice is a given, we are still interested in understanding how it is 
manifested. We look for indicators of this coherence by examining differences 
between the choices the teachers made during the preparation stage and the ones 
made during the actual classroom practice. 

A corpus of published sources and classroom observations 

The first subtopic involves determining the scenarios that are actually realizable in 
the classroom. This determination was conducted using studies on the 
mathematical topic and examining them in light of the institutional requirements 
and the constraints that stem from students’ prior knowledge and their difficulties 
learning the topic. These studies rely on published sources such as curricula, 
manuals, evaluations of student competencies, publications intended for teachers, 
and research conducted in mathematical didactics. 
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 We begin with an analysis of the mathematical concept at hand, decimal 
multiplication. The meaning of the multiplication must be understood in reference 
to the theory of the conceptual fields (Vergnaud, 1990). Studies of the 
mathematical issues involved in teaching decimal multiplication include the work 
of Brousseau (1987, 1998) and Douady and Perrin-Glorian (1986) on decimal 
numbers, and the work of Vergnaud (1979, 1981, 1983), Rogalski (1985) and 
Butlen (1985) on multiplication. Data extracted from these studies touch on 
multiplicative situations, properties of the multiplicative operation, calculation 
techniques, multiplicative written expressions and their potential transformations, 
and the connections between situations, properties, and their written forms. These 
data were then used to analyze the possible and observed teaching scenarios. 
 These possible scenarios were determined by assessing two constraints that have 
a strong influence on teachers’ choices: The didactic transposition from the concept 
to the lesson, and students’ difficulties in learning the subject. We first analyzed 
the diverse lesson plans proposed in didactic research, official curricula, and 
teachers’ manuals. We also analyzed the results of various evaluations conducted 
by the Ministry of National Education and by the Association des professeurs des 
mathématiques (Mathematics Teachers Association) in order to better understand 
the difficulties on the part of students that teachers confront and that they therefore 
may keep in mind while planning their course. 
 The teachers whose lessons were observed were chosen according to precise 
criteria derived in accordance with the research topic. All variables concerning the 
lesson, except those tied to the teacher as an individual, were fixed. All the 
observed lessons involved experienced teachers using the same manual to teach the 
same topic to sixth grade classes who were at the same overall level, of similar 
size, and for similar lengths of time. In order to neutralize the time factor, each 
teacher was observed during all class periods dedicated to decimal multiplication. 
The term “sequence” refers to the set of these class periods. 
 The observable factors used for collecting data on teachers’ lesson plans and 
class period activities are described in the two following sections. These factors 
were defined so as to be neither so fine that they hide commonalities, nor so broad 
that they mask differences. 

The observable factors in scenario analysis 

As indicated in chapter 2, the planning of a lesson is called a “scenario,” both to 
acknowledge the fact that teachers picture themselves in class during lesson 
planning, and to differentiate the planned lesson from students’ actual activities. 
Three observable factors are used to analyze scenarios: the mathematical field, the 
teaching strategy, and the mathematical tasks assigned to students. The 
mathematical field describes the set of content introduced during the sequence: 
concepts, situations, symbolic representations and their transformations, properties, 
and theorems. The teaching strategy consists of the organization of a sequence’s 
mathematical content along a path chosen for mathematical or cognitive reasons. 
These reasons can vary with the teacher. Some teachers begin by providing the 
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information to be learned before giving students mathematical problems to solve, 
while others choose the reverse strategy. We can also differentiate teachers by 
whether or not they institutionalize the mathematical knowledge that may or may 
not have been constructed by students through the in-class problems. Finally, the 
mathematical tasks are analyzed in reference to the criteria presented in chapter 2. 

The observable factors in lesson analysis 

In order to analyze the events of a class period, three observable factors were 
defined: students’ effective activities, the assistance provided by teachers, and the 
order and organization of the lesson. 
 Recall that once a task has been assigned to the class, the potential activity is 
what the student ought to do to complete the task, the real activity is what the 
student does, and the effective activity is the reconstruction by the teacher of the 
probable real activity, as a function of the potential activity and of productions by 
the student (such as what the student says). 
 Below are three examples of tasks, together with the corresponding potential 
activities. All three can lead to the same effective activity: determining the product 
of two decimal numbers using a calculator. 
– Task 1: Calculate 3.14 × 2.08. Potential activity: Apply the standard solving 

technique for calculating the product of two decimal numbers. 
– Task 2: True or false? 3.14 × 3 = 9.43. Potential activity: Determine the last 

digit of the product of two decimal numbers. 
– Task 3: Place the decimal point in the result of the equation 3.4 × 2.5 = 85. 

Potential activity: Determine the order of magnitude of the product of two 
decimal numbers. 

 The assistance provided to students by the observed teachers was primarily 
procedural, responding to what we call didactic incidents. As a result, this 
assistance was assimilated into incident management methods. The incidents 
considered here are not breaches of discipline, but actions that do not correspond to 
the possible correct responses. Four types of incidents were identified: Questions, 
errors, incomplete answers, and silences (when a student does not respond to a 
question asked by the teacher). Below are examples of the most common incidents. 
All are in reference to Task 4: Place the missing decimal point in the equation 1.35 
× 42 = 5.67. 
– Question. Raphael asks, “Can we say there is no missing decimal point?” 

Clearly, Raphael is counting digits after the decimal point. His question shows 
negative progress towards activity that would lead to the correct answer. 

– Error. Maud says, “To place the decimal point, I added a zero. I wrote, ‘1.35 × 
0.42 = 5.67.’”1 Maud’s error is most likely a carry-over from decimal addition. 

– Incomplete response. If Maud had only said, “To place the decimal point, I 
added a zero,” her incomplete response would have been an incident. The class 
could then have wondered if Maud was thinking of .42, 4.02, 4.20, or 42.0, all 
of which could have corresponded to possible attempts to solve the problem. 
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 An incident is managed through the subsequent intervention of the teacher. 
Methods of incident management that were observed during sequences led by the 
participating teachers were classified into two groups, depending on whether they 
tended to provoke students into re-tackling the task. We understand teachers’ 
reception and management of incidents as factors that influence students’ work, as 
well as, we hypothesize, student learning. 
 Class periods were divided into episodes characterized by the teacher’s specific 
goals. This provided a chronology to the sequence. At a global level, this 
chronology allows us to analyze the organization of learning moments, as well as 
the dynamics between the class and the solving of problems. At a local level, this 
chronology feeds into the analysis of incident management, particularly regarding 
the influence of the passing of time on the interactions between students and 
teachers. 

FROM POSSIBLE SCENARIOS TO REALIZABLE SCENARIOS 

Using the previously referenced studies, we identified the possible ways to teach 
decimal multiplication. After evaluating the constraints, and examining teaching 
manuals, we determined the realizable scenarios. 

A typology of possible scenarios 

In the research literature, strategies for teaching decimal multiplication are 
differentiated by their representations of decimal numbers and by their global 
didactic choices. In terms of representations, decimal numbers can be considered as 
particular cases of rational numbers, or considered independently of fractions. This 
decision has consequences on the proposed tasks, particularly regarding rewriting 
and the available methods of justifying the solving technique. In terms of students’ 
planned cognitive itinerary, three types of scenarios can be identified. In the first 
type of scenario, the solving technique is first introduced by the teacher, and then 
applied by students to calculate products. These products may serve as answers to 
problems in which the multiplication is contextualized. In the second type of 
scenario, the teacher first presents an introductory problem. The solving technique 
is partially determined by students, and may be defined in terms of the example 
problem. The technique is then applied. In the third type of scenario, problems 
arising from multiplicative situations are given to students. The solving of these 
problems leads to the determination of the solving technique, which will be 
reinforced and reapplied to new problems. 
 All teaching manuals propose scenarios of the first two types, and consider 
decimals independently of fractions. The algebraic properties of the operation on 
which the solving technique relies always remain implicit. The study of 
multiplicative situations is largely neglected: The multiplication is always 
decontextualized, except when the problems involve price calculations. By 
contrast, literature aimed at teachers (generally written by teacher educators or 
researchers), as well as research in mathematical didactics, suggest only scenarios 
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of the third type. Our analysis also shows that authors writing directly to teachers 
connect fractional and decimal representations, but do not always connect the 
meaning of the multiplication to the solving technique. 

From possible scenarios to realizable scenarios: The effect of constraints 

To develop a teaching scenario, teachers use published sources and their own 
mathematical knowledge. They also keep in mind certain constraints, with the most 
important being official requirements, students’ current knowledge, and known 
difficulties in learning the specific topic. 
 In France, fractions are introduced in elementary school, but are not studied at 
much depth until later. Calculating with fractions is taught in secondary school. At 
the time this study was conducted, multiplication in elementary school was limited 
to multiplication of a decimal number by an integer. Multiplication of two decimal 
numbers was not taught until secondary school. The specific mathematical content 
to be taught was prescribed: Exploration of different methods of calculation 
(written, mental, reasoned, approximate, or with calculation tools) and a number of 
multiplicative situations. There was a strong time constraint. Considering the entire 
curriculum, we can estimate that overall 4 to 6 hours were spent on a sequence 
covering decimal multiplication (including solving problems arising from 
multiplicative situations). 
 The evaluations of student competency conducted at the end of elementary 
school or the beginning of sixth grade provide precise information on students’ 
mastery of decimal numbers and solving techniques, but less information on their 
recognition of the multiplicative model within these problems. 
 Decimal numbers remain, for some students, two integers of possibly different 
status separated by a decimal point. In French, to read the number 3.14 aloud, we 
do not say “three-point-one-four” but “three-point-fourteen,” without reference to 
units and subunits.2 The proportion of errors corresponding to the misconception 
that a decimal number is composed of two integers varies between 10% and 50%, 
depending on the problem. Problems involving multiplication of a decimal by a 
power of ten (10 and 0.1, 100 and 0.01, etc.) are solved correctly by 50% to 70% of 
students. 
 Integer multiplication problems are solved correctly by approximately three out 
of four students, depending on variables such as the presence of a zero in the 
multiplier, or the necessity of using a product from the multiplication table of two 
factors larger than five. This proportion remains approximately constant for the 
multiplication of a decimal by an integer. Exam questions given after the unit that 
involve multiplication of two decimals show certain difficulties in learning. The 
questions are solved correctly by only 35% to 55% of students. Twenty percent of 
the errors are in the placement of the decimal point. 
 We find few multiplicative situations on exams. Does this represent the actual 
intentions of the school system, or the assumptions of test creators as to teaching 
practices? In any case, the only situations covered on exams are size isomorphisms 
and finding the area of a rectangle. Otherwise, the results of the multiplication are 
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largely unused. Situations involving a unit price and a quantity are recognized as 
multiplicative by 80% of students. Finding the area of a rectangle is a source of 
difficulties for more than half of students, who confuse the concepts of area and 
perimeter or their respective formulas. 
 Such results cannot help but affect teachers’ choices. The task is considerable 
(effect students’ acquisition of the concept of a decimal number, broaden the 
meaning of multiplication, and teach a solving technique which causes many 
students to stumble) and the teaching time is limited. It is therefore unlikely that a 
teacher will develop a scenario where multiplication is contextualized, where 
fractions and decimals are connected, and where students construct and justify their 
solving technique with reference to a multiplicative situation. 

OVERALL SIMILARITIES IN SCENARIOS 

The sequences of four teachers were compared, from the outline of their scenarios 
to classroom activities, in order to respond to the central research question 
concerning commonalities and variance among teaching practices. Results are 
presented in the two following paragraphs. The first discusses scenarios, and the 
second, activities in class. 
 The teachers are given names of mathematicians in order to distinguish them 
and to refer to them throughout the analyses. We call them Ms. Germain, Ms. 
Agnesi, Ms. Theano, and Mr. Bombelli. The reader should be aware that 
mathematics teachers at this level of schooling teach only this subject. They have 
studied mathematics for at least three years at the university level, and have 
received training analogous to that of future engineers or mathematics researchers. 

Analysis of the mathematical field 

Teachers’ choices did not diverge widely. Their scenarios were all of the first or 
second type, as defined in the publications cited above, and decimal numbers were 
always treated independently of fractions. 
 The mathematical field is composed of the content studied: Calculation 
techniques, properties of the operation, symbolic representations of numbers, 
multiplicative situations, etc. Table 1 summarizes the comparative analysis of the 
mathematical fields. 
 All teachers taught the solving technique, justified it, and presented alternate 
calculation methods to students, such as mental, reasoned, or approximate 
calculation. All teachers also treated the case of multiplication by a factor less than 
one. This case is crucial, as it challenges the idea that multiplication results in a 
larger number. This property, carried over from working with integers, is the 
source of numerous difficulties. The teachers were also unanimous in not 
discussing multiplication by zero or one. This unanimity disappeared, however, for 
the algebraic properties of multiplication and its effects on the order of magnitude. 
As for symbolic representations, all of the teachers covered the signification of 
decimal notation, but none made the link with fractional representations. Ms. 
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Agnesi was the only one to propose a connection between decimal writing and 
changes in units of measurement. Teachers were completely unanimous in 
neglecting the study of multiplicative situations. The only problems in which 
decimal multiplication was contextualized were price problems within a numeric 
framework. No other situation was studied, and no other framework was called 
upon, even in the sixth grade classes. Teachers preferred to introduce these subjects 
later on in the school year, without specifically discussing multiplication. 

Table 1. Mathematical fields of the observed sequences. 

Mathematical content Ms. 
Germain 

Mr.  
Bombelli 

Ms.  
Agnesi 

Ms.  
Theano 

Technique et properties     
Solving technique ♦ ♦ ♦ ♦ 
Justification of the technique ♦ ♦ ♦ ♦ 
Mental, reasoned, or approximate calculation ♦ ♦ ♦ ♦ 
Multiplication by zero or one     
Algebraic properties of the operation ♦ ♦ ♦  
Effect of the multiplication on the order of 
magnitude 

♦  ♦  

Multiplication by a factor less than one ♦ ♦ ♦ ♦ 
Representation of decimals     
Decimal notation ♦ ♦ ♦ ♦ 
Fraction notation of decimals     
Representation using units of measure   ♦  
Multiplicative situations     
Size isomorphisms ♦ ♦ ♦ ♦ 
Product of lengths     
Operation on a length     
Composition of operators     

Analysis of teaching strategies 

A certain pattern emerges in terms of teaching strategies, particularly regarding the 
construction of new knowledge: There was no non-didactic situation, no change of 
framework, and no tool/object dialectic. Thus, our assessment of the lack of 
didactic engineering in everyday teaching is confirmed. The teachers, like the 
authors of teaching manuals, have never imagined scenarios of the third type. We 
will see that one of the teachers designed a scenario of the first type, and the other 
three designed scenarios of the second type. 
 Despite these overall commonalities, we note different dynamics between the 
course and the exercises, exercises which are sometimes problems aiming at the 
introduction of new knowledge. For example, Ms. Germain introduced the topic by 
asking her students the question “How can we calculate the product of two 
decimals?” She let them produce rules that were effective for certain particular 
cases. At the end of the sequence, all of these rules allowed students to construct 
the usual technique. Mr. Bombelli, by contrast, began by presenting the solving 
technique, which he justified with the help of multiplicative operators. He then 
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gave students exercises on which to apply the technique. Ms. Agnesi began with 
price problems in which the products of decimal factors could be calculated 
through conversions. These examples allowed students to infer the solving 
technique, and the rest of the sequence was dedicated to application problems and 
the systematic examination of multiplication properties. Ms. Theano introduced the 
calculation of the product of two decimals using orders of magnitude, allowing 
students to again infer the solving technique. Students could then check their 
conjectures with a calculator. Next were application problems and mental exercises 
that helped students begin to question the solving technique. 
 Overall, there was general homogeneity as to the content taught, and diversity as 
to the dynamics between constructing new knowledge and putting it into use for 
solving problems. What, then, can we say about the mathematical tasks presented 
to students? 

Analysis of mathematical tasks proposed to students 

Among tasks proposed by teachers, we distinguish those that aim to introduce new 
knowledge, and those that lead to applications, to theoretical questioning, or to 
solving problems arising from mathematical situations. Table 2 summarizes our 
results. 

Table 2. Tasks proposed to students as a function of the intended activity. 

Mathematical tasks Ms. 
Germain 

Mr.  
Bombelli 

Ms.  
Agnesi 

Ms.  
Theano 

Introduction of new knowledge     
Non-didactic situation     
Frameworks mobilized Numeric Numeric Numeric Numeric 
Multiplication as a knowledge object ♦ ♦ ♦ ♦ 
Multiplication as a tool     
Multiplicative situation   ♦  
Potential activities     
Determination of a product 75% 71% 50% 64% 

By written calculation or with tools 17% 14% 17% 09% 
By mental, reasoned, or approximate calculation 58% 57% 33% 55% 

Theoretical questions 25% 29% 33% 18% 
Multiplicative situation 00% 00% 17% 18% 

 The analysis of proposed tasks confirms the uniformity in teachers’ choices 
regarding the introduction of new knowledge: No non-didactic situations, no 
change of framework, and no tool/object dialectic. Only Ms. Agnesi proposed 
problems relying on a multiplicative situation. However, the solving technique was 
not constructed with reference to this situation. 
 We also noted a certain homogeneity concerning the exercises given to students. 
However, this result was not statistically significant due to the small population 
size. Many of these exercises (50% to 75%) led to a potential activity of calculating 
the product of two decimals, but applications of the solving technique (9% to 17%) 
were less frequent than mental, reasoned, or approximate calculations (33 to 58%). 
Other exercises led to theoretical questions (18% to 33%) or to solving problems 
arising from multiplicative situations (0% to 18%). 
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 Overall, the lessons of the observed teachers were convergent in terms of 
content introduced and tasks prescribed, but were distinguished in part by the 
teaching strategies used. Following this assessment, we will attempt to determine 
if, despite the similarity of tasks, students’ activities will differ, particularly 
regarding knowledge construction. The analysis of classroom activities will allow 
us to evaluate this prediction. 

DIFFERENCES IN CLASSROOM ACTIVITIES 

The study of classroom activities has two parts: Analyzing the effective activities 
of students and analyzing the assistance given by teachers. 
 Before analyzing the activities, we should note that observed sequences lasted 
between 2.5 and 5 hours, not including evaluation. The estimated timespans from 
lesson plans were thus respected. Presumably, no teacher spent longer on these 
multiplication lessons as a result of being included in this study. 

A larger variety of effective activities than potential activities 

The passage from potential to effective activities requires some methodological 
explanations. Once students have difficulties with a task, teachers can provide 
assistance that will guide students to different activities. For example, a teacher 
who has assigned Task 4, “Place the missing decimal point in the equation 1.35 × 
42 = 5.67,” may ask students to find the result of 1.35 × 42. This will provoke 
student activity, leading to a response of 56.70. The teacher can then prompt 
students to apply this result to the original task, which will this time lead to using a 
reasoned calculation to deduce that 1.35 × 4.2 = 5.67. But a teacher who asks 
students to think of orders of magnitude will provoke very different activities. This 
example demonstrates why the effective activities arising during the observed  
class periods were both more numerous than, and different than, the potential 
activities identified during task analysis. It is exactly the effect of the teacher on 
this transformation that we aim to evaluate and interpret. Our results are given in 
Table 3. 

Table 3. Classification of potential and effective activities. 

Potential and effective activities Ms. 
Germain 

Mr.  
Bombelli 

Ms.  
Agnesi 

Ms.  
Theano 

Potential activities     
Written or tool-based calculation 17% 14% 17% 09% 
Mental, reasoned, or approximate calculation 58% 57% 33% 55% 
Theoretical questions 25% 29% 33% 18% 
Problem (contextualized multiplication) 00% 00% 17% 18% 
Effective activities     
Written or tool-based calculation 9%  62% 27% 40% 
Mental, reasoned, or approximate calculation 58% 25% 50% 44% 
Theoretical questions 33% 13% 16% 13% 
Problem (contextualized multiplication) 00% 00% 07% 03% 
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 The table reveals differences between the scenario and the in-class activities of 
each teacher, as well as between the in-class activities of the four teachers. These 
differences are confirmed through statistical analysis: A number of chi-squared 
tests of independence with a 1% threshold were performed on the raw data that 
produced the above table. These tests confirmed both a significant difference for 
each teacher between the potential and effective activities, as well as a teacher 
effect on the effective activities. 
 Examining the respective teaching strategies allows us to interpret these results. 
Ms. Germain’s strategy was to let students develop rules for calculating products, 
with the intention that these rules would lead them to the solving technique. For her 
students, technical exercises were often enriched by complementary questions 
favoring reasoned strategies or student introspection. Mr. Bombelli’s strategy, by 
contrast, was to present the solving technique and have the students apply it. This 
teacher reinforced written calculation activities over mental, reasoned, or 
approximate calculation activities, and over theoretical questions. Ms. Agnesi 
chose to introduce the solving technique through price problems, leading her 
students to reasoned calculation activities. Finally, Ms. Theano asked her students 
to place the decimal point by determining the order of magnitude of the product, 
and then to check this result with a calculator, leading to approximate and tool-
based calculation activities. 
 To conclude our analysis, we note that students’ effective activities show a 
wider variety of practices that the potential activities would have allowed us to 
predict. A teacher’s in-class work therefore seems to determine students’ activities. 
During the lesson, the teacher modifies the proposed tasks appropriately in 
accordance with a teaching strategy. 

Didactic incidents and teacher assistance 

To consider students’ actions in class, and their management by teachers, we will 
present didactic incidents observed in class, and the assistance provided by 
teachers in response to these incidents. 
 The number of incidents per class hour varied as a function of the teacher. 
Overall, incidents were frequent. Mr. Bombelli, who had the fewest incidents, had 
an average of one incident every three minutes. Ms. Agnesi, who had the most, had 
double this incident rate. Incident classifications are given in Table 4. While the 
effect of the teacher on incident classifications was not significant, we observe four 
values that are noticeably different from the average values (highlighted in bold). 
These values will inform our interpretations of teaching practices. 
 In Mr. Bombelli’s class, questions predominated, while in Ms. Agnesi’s class 
incomplete answers were the most common. This difference provides evidence of a 
pedagogical divergence: While Ms. Agnesi values student participation, Mr. 
Bombelli’s students are expected to answer completely and correctly. Thus, when 
Mr. Bombelli’s students are unsure, they prefer to ask questions rather than answer 
incompletely. We note also numerous student answers to questions posed by Ms. 
Theano that indicated that the questions were completely out of reach for students. 
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Ms. Theano focused predominantly on orders of magnitude, despite this concept 
posing numerous theoretical problems. 

Table 4. Classification of incidents in the observed sequences. 

Didactic incidents  Total 
Ms. 

Germain 
Mr.  

Bombelli 
Ms.  

Agnesi 
Ms.  

Theano 

Error 25% 27% 28% 21% 26% 
Question 18% 16% 32% 15% 20% 
Incomplete response  38% 36% 16% 49% 36% 
Silence 9% 12% 8% 6% 7% 
Question out of reach 4% 1% 0% 4% 11% 
Disagreement 6% 7% 16% 5% 0% 

  
 Examining the assistance provided by teachers in response to in-class incidents 
reveals both their practices and the effect on students’ activities. Table 5 shows the 
classification of each teacher’s incident management methods into those that 
provoke students to further activity and those that do not. 

Table 5. Incident management by teachers. 

Incident management Ms. 
Germain 

Mr.  
Bombelli 

Ms.  
Agnesi 

Ms.  
Theano 

Provokes further student activity 72% 21% 42% 50% 
Does not provoke further activity 28% 79% 58% 50% 

 
 Ms. Germain’s incident management provokes further activity in students in 
more than 70% of cases. By contrast, Mr. Bombelli prefers, almost 80 times out of 
100, to not pass the activity back to students but instead to complete the proposed 
task himself. The management methods of Ms. Agnesi and Ms. Theano fall 
between these two extremes. The substantial differences that appear between 
teachers in Table 5 are confirmed by statistical analysis: A chi-squared test of 
independence at a 1% threshold was conducted, which allowed us to conclude that 
teachers have a significant effect on incident management. Incident management 
methods therefore appear to be a personal aspect of teaching practices. 
 In conclusion, our analyses show that teaching scenarios are overall constrained, 
particularly by institutional factors, but that there remains a certain amount of 
leeway that teachers use as much for designing a cognitive path for students as for 
managing in-class interactions. Their choices conform to their conceptions of 
teaching and learning. 

SOCIAL, PERSONAL, AND COHERENT PRACTICES 

The ergonomic approach, by considering teachers’ practices as simultaneously 
personal and as taking part in a professional arena, allows us to propose several 
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hypotheses for interpreting the results discussed above, in terms of the overall 
commonalities of practices, as well as their local variations. 

Between the scenario and the in-class activities: Results in the form of hypotheses 

Whenever teachers make the same choices in their work, we must ask what 
professional necessities their choices are reflecting. Our analyses and interviews 
have prompted several hypotheses. As teachers act as if they were all respecting 
principles of professional necessity, we will describe these hypotheses in terms of 
principles. 
 The observed teachers respected the curriculum’s content, as well as its rhythm. 
They thus responded to a “principle of conformity to official curricula,” which 
assures them professional legitimacy in encounters with students and their parents, 
with colleagues who will teach the same students in the following year, and with 
inspectors who are charged with implementing instructions from the ministry. 
 Two other principles allow us to better understand commonalities between 
teachers in terms of the field of mathematical content to be taught. The “principle 
of pedagogical efficacy” reflects the fact that teachers do not introduce 
mathematical content with which students show difficulties unless it is 
indispensible to the sequence. We can see this principle at work in the omission of 
problems involving fractions and finding the area of a rectangle. In addition, the 
“principle of an enclosed mathematical field” leads teachers to avoid teaching 
content that is too directly tied to the omitted concepts. As a result, the 
mathematical objects that remain within the field of the sequence connect to each 
other, but do not depend (or depend only slightly) on non-integrated objects. These 
principles are surprising, as they apparently lead to excluding from instruction 
those topics that students find the most difficult! In fact, these two principles lead 
to a hierarchy of content, and to avoiding subjects that threaten to pose difficulties 
that the teacher cannot handle without deviating from the intended path and risking 
confusion that will not be beneficial to student learning. This guarantees a strong 
guideline that keeps teachers within what Rogalski (2003) calls “the envelope of 
acceptable trajectories.” 
 Finally, the “Principle of the necessity of success by steps” explains how 
teachers segment their instruction in such a way that students regularly engage in 
the activity of applying what they have just learned. Without making use of any 
complete model of learning dynamics, teachers use isolated simple technical tasks 
to evaluate the impact of their instruction as they go along. 

How coherent are teaching practices? 

The assessment of commonalities and variance of teaching practices raises the 
question of the coherence of these practices for each teacher. Analyzing each 
sequence, and comparing the different results obtained, allows us to identify levels 
of coherence of practices. These levels may seem unjustified, as they are based on 



ERIC RODITI 

88 

only four examples of practices. We mention these results due to their confirmation 
by other research presented in this volume. 
 We have repeatedly remarked on the contrast between Mr. Bombelli’s sequence 
and that of Ms. Germain. The factor dividing these teachers seems to be tied to 
their conceptions of the classroom. For Mr. Bombelli, it is a place for 
demonstration and application of knowledge. For Ms. Germain, the classroom is a 
place for construction of knowledge by students. These conceptions give coherence 
to their respective practices. In a classroom that is conceived as a place of 
demonstration and application of knowledge, the demonstration of knowledge 
takes place very early. The effective activities are primarily applications. Incidents 
are mainly questions or errors, and their management rarely provokes further 
activity from students, as the teacher can, if necessary, show an example. In a 
classroom conceived as a place of knowledge construction, knowledge is 
established fairly late. Research activities predominate, and incident management 
provokes further activity by students. 
 Ms. Agnesi’s practice does not fall under one of these extremes. This is a 
teacher who would like her students to express themselves easily. She tries to 
involve them as much as possible in the class, and encourages their activity. Her 
conceptions of teaching and learning lead her to expect her classroom to be above 
all a place of exchange between teacher and students. Her students respond to this 
expectation. The number of didactic incidents in her class is substantial, 
particularly for incomplete responses, for which the rate is markedly higher than 
those found in the other classes. 
 Before concluding, we should note that this study also shows the variability of 
each teacher’s practice. Despite the constraints and the conceptions that organize 
their instruction, teachers are continuously adapting their actions in class. One 
result particularly concerns the effect of time pressure on the practices of certain 
teachers. The classroom conceptions of Ms. Germain and Ms. Agnesi, as a place of 
knowledge construction or of exchange, require giving plenty of time to students. 
However, to respect the rhythm imposed by the principle of conformity to official 
programs, once the first half of the sequence is over, teachers find themselves 
obligated to adopt a more closed style of student interaction. 

CONCLUSION 

This study of the teaching practices of mathematics teachers is a clinical study. The 
results refer only to the work of four teachers, which limits the applicability. 
Nevertheless, these results have not been invalidated by a large number of studies 
on teaching practices, several of which are presented in this volume. 
 The observed regularities show that the school system, in fixing the content to 
teach and the length of the lesson, constrains teaching practices from initial lesson 
preparation to the eventual in-class activities with students. Other research shows 
that it is often gaps in the curriculum that constrain teaching practices. The study 
presented in this volume by Julie Horoks gives one example, in the case of similar 
triangles. Our research on histograms (Roditi, 2009) provides another. In addition, 
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the conditions of the profession lead teachers to share several general principles, 
and, consequently, to make overall analogous choices as to content and the 
organization chosen to transmit it. These invariants outline an envelope that 
contains the observed teaching practices, but that does not contain all the scenarios 
that would be a priori imaginable, if only criteria tied to student learning were 
taken into account. These results have implications for teacher training. 
 Nevertheless, practices are varied. Teachers use the leeway available to them 
beyond the constraints, and the range of observed differences includes the inferred 
activities of students as much as the assistance provided by teachers. The observed 
diversity can be explained by the personal component of practices, whose 
connection to conceptions of teaching and learning was shown above. The research 
presented in chapter 11 shows the greater or lesser influence on practices of other 
personal characteristics of teachers, such as age, gender, and initial training. In 
addition, linguistic analyses of teachers’ speech, such as the study presented in 
chapter 4 show the specificity and global stability of a teacher’s speech patterns. 
Hence, not everything is possible for a single teacher, and the numerous choices a 
teacher makes seem to center around a pre-determined logic, while constantly 
adapting during every instant of class. 
 Overall, this research has highlighted elements related to individuals that 
explain the diversity of teaching practices. It has also shown that teachers share 
certain elements, and that this commonality homogenizes their practices. These 
elements are undoubtedly tied to institutional constraints, but also, more largely, to 
their profession. 

NOTES 
1  In France, we always write the ones digit, and thus write 0.42 and not .42. 
2  Translator’s note: In France, the decimal separator is actually a comma. The number is written 3,14 

and pronounced “three-comma-fourteen” (trois-virgule-quatorze). 
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4. STABILITY OF PRACTICES: WHAT 8TH AND 9TH 
GRADE STUDENTS WITH THE SAME TEACHER DO 

DURING A GEOMETRY CLASS PERIOD? 

In this chapter, we will present a comparative study examining excerpts from two 
geometry classes1 taught by the same teacher.2 The classes involve students in two 
different grades at the same junior high school. The first class contains 8th graders 
(quatrième in France, students age 13-14) and the second 9th graders (troisième, 
age 14-15). The study focuses on ordinary teaching practices at a relatively 
privileged establishment. The class periods we will examine cover the first non-
self-evident exercises given to students after lessons (in the previous class period) 
on two of the most important theorems studied in junior high: The Pythagorean 
theorem (8th grade), and Thales’ intercept theorem (9th grade). In both cases, these 
exercises are given to students as in-class problems, and follow the in-class 
correction of a simpler exercise that was given as homework. 
 Our goal is to make progress on two research topics. The first concerns teaching 
practices, their stability for a given teacher, and, more specifically, the 
identification of intra-personal regularities, or “practice invariants.” To understand 
these invariants, imagine if we were to enter another class taught by the same 
teacher. What, beyond personal characteristics (voice, gestures, etc.), could tell us 
that this was the same teacher? 
 The second topic, which we will touch upon only briefly, is that of the ultimate 
consequences of these invariants on students’ activities. 
 As discussed previously, these analyses of in-class teaching practices fall within 
the framework of studying the five identified components of teaching practices, 
which can lead to several levels of work. This study is primarily focused on 
directly observable components (cognitive, mediative – cf. Robert & Rogalski 
2005, and to a certain extent, personal), which are tied to in-class actions and 
which we will examine on local and micro levels. 
 Our study examines excerpts from two classes of similar makeup led by the 
same teacher. By studying two classes with similar student populations, we intend 
to neutralize any social or personal components. To lessen as much as possible the 
influence of the “institutional” parameter, we are focusing on two geometry class 
periods, and specifically on students’ in-class work on two exercises that are given 
almost immediately following the corresponding lesson. In both cases, these 
exercises are the second given during the class period, and the first exercises on the 
subject to be somewhat complex. Students work on solving these problems during 
the classes’ second half-hour. 
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 Our work is based on (transcribed) videos of class periods and on an interview 
with the teacher, called D. 
 We will define three types of progressively finer analyses: 
– An analysis of assigned tasks, of how these tasks unfold in class, and of possible 

student activities, at a local level (first section); 
– An analysis of selected periods of interaction between the teacher and students 

and their corresponding linguistic actions (second section); 
– An analysis of linguistic markers (third section). 
 The analysis of tasks and of their realizations in class enables us to determine 
students’ possible activities and to identify areas of potential regularities in 
teachers’ practices. 
 The analysis of interactions reveals the manner in which the teacher, sentence 
by sentence, guides the progress of the didactic project while simultaneously 
guiding students’ understanding. This analysis also allows us to more precisely 
define the invariants discussed above. 
 The analysis of linguistic markers allows us to identify patterns in teacher 
interactions with students (Robert & Rogalski, 2005). We will compare the nature 
and classification of these patterns in the two classes to complete the analyses. 
 This study, focusing on excerpts from just two class periods, can clearly serve 
only as an introduction to practice stability analysis. However, our hypothesis is 
that our results, though based on only a few class periods, can be taken as 
representative of the stability we seek. 

ANALYSIS OF ASSIGNED TASKS, THEIR UNFOLDING IN CLASS, AND  
POSSIBLE STUDENT ACTIVITIES DURING THE TWO EXCERPTS 

We will describe and compare the tasks assigned to students, the realization of 
these tasks, and student activities, following the methodology given below. Next, 
we will conduct a global analysis to identify possible invariants. 

 Analysis of the two exercise tasks 

The 8th grade exercise  
The lessons preceding this class period discussed the Pythagorean theorem, as well 
as the converse property (that any triangle for which the square of the length of the 
hypotenuse is equal to the sum of the squares of the lengths of the legs is a right 
triangle). 

After a simple exercise on applying the theorem’s converse, the teacher assigns 
the following exercise: 
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1) Construct the following figure, 
with BC=6,4cm     
AC= CD=4,8cm      
AD=6,8cm and BA=8cm 
2) Are points B, C, and D collinear? 
Justify your answer. 

 

 The given figure is ambiguous, as we cannot tell if C is on BD. It is not 
explicitly stated that B and D are on either side of C, but all students will take it for 
granted that they are. We note that a figure in this type of geometry problem should 
be accurate enough to inspire the strategy to follow, but it should also inspire 
doubt, so that students will begin to work on the problem. This double role, 
described by Perrin-Glorian, is found in figures illustrating other geometry 
exercises. 

Table 1. Tasks and task analysis in the 8th grade “Pythagoras” exercise. 

A1. (Partial) recognition 
of the knowledge to be 
used and the way to do it  
 
A2. Introduction of 
intermediates.  
 
A3. Combining of 
multiple strategies or 
concepts. 
 
A4. Introduction of steps. 
 
A5. Introducing results 
from previous questions.  
 
A6. Choice. 
 
 

Students are asked to complete a multistep reasoning process (A4) with 
multiple successive changes of viewpoint (A3), including: Going from 
looking for collinearity to identifying a 180-degree angle, from 
investigating one angle to seeing it as the sum of two, and from finding 
the measure of these angles to finding whether the triangles are right 
triangles.  
Note that there are three possible cases, as neither, one, or both of the 
triangles could have a right angle. If neither is a right triangle, students at 
this level will not be able to answer the questions. We can, however, count 
on the didactic contract to exclude this possibility. 
Note also that no comparison of the length of BD to the sum of the lengths 
of BC and CD is mentioned or implied. 
Two isolated tasks are included in these steps: the respective 
investigations of the natures of triangles ABC and ABD. The sides 
opposite the potential right angles are easily identifiable as the longest 
sides, so choosing the strategy of applying the Pythagorean theorem (or its 
converse) requires only a single adaptation: the choice of the “legitimate” 
theorem (A1). The required calculations involve integers or decimals with 
one digit after the decimal point, so calculator use is appropriate. 

  

 We note that the order of tasks as given in the exercise may actually be the 
reverse of the order in which they are completed by students. 

The 9th grade exercise (ages 14-15) 
The lesson that preceded this class covered Thales’ intercept theorem. This 
theorem concerns the parallelism of two lines that cross a pair of intersecting lines, 
and equates this potential parallelism to the presence of equal length ratios. 
 After a simple exercise on applying the converse of the theorem, the teacher 
assigned the following exercise: 
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Triangle EFG has EF = 5, EG = 7, and FG = 9 (all units in cm). Point M lies 
on EF with EM = x. Point N is placed on EG such that lines MN and FG are 
parallel. 
Express EN and MN in terms of x. 
Find x such that the perimeter of trapezoid MNGF is equal to 19.8. 

Below is a list of tasks corresponding to this exercise, taking into account the 
curriculum and the level of the class. Tasks marked in italics will not be analyzed. 

Table 2. List of tasks and analysis of tasks in the 9th grade “Thales” exercise. 

A1. (Partial) recognition of 
the knowledge to be used 
and the way to do it.  
 
A2. Introduction of 
intermediaries. 
  
A3. Combining of multiple 
strategies or concepts. 
 
A4. Introduction of steps. 
 
A5. Introducing results 
from previous questions.  
 
A6. Choice. 
 

Create a figure with a variable point. This first step is not explicitly 
indicated. The numeric data provided do not preclude a construction based 
on true lengths and proceeding by measuring. Placing M needs an 
adaptation (A1). 
Recognize that Thales’ theorem must be used with the given figure. To use 
it, adapt the statement of the theorem as given in 8th grade. In effect, the 
length EM must be replaced by the variable x. This is not a simple use of 
the theorem (A1). 
Perform an algebraic transformation on quotients involving numbers and 
letters to set in fractions. This task must be performed twice, independently, 
constituting work in a second framework (A3). 
Express the perimeter of a trapezoid, the definition of which is not given 
(but assumed to be known), by an algebraic expression derived from 
previous steps (A2). 
Write and solve an equation in x (unknown) of the type cx = ax +b 
(algebraic work). 
Verify that the solution is geometrically acceptable (not explicitly 
indicated). 

 
 Some ambiguities may appear. The figure is not described strictly according to 
the order of its construction: N is given to be on side EG before MN and FG are 
revealed to be parallel. Students are accustomed to this type of text; nevertheless, 
could this result in differentiation among students? In addition, students at this 
level have not yet begun to frequently encounter the word “express.” 
 The steps are mostly indicated in the problem statement, with the exception of 
the first and the last. The questions are not completely independent, but there is no 
preliminary conjecture or intermediary to introduce. Work can begin quickly. 

Comparison of problem statements of exercises on using the Pythagorean theorem 
(8th grade) and Thales’ theorem (9th grade) in terms of intended tasks. 
The two problem statements differ with respect to ways the students have to adapt 
the relevant theorems to solve them. In the 9th grade exercise, adaptations are tied 
to contextualizing Thales’ theorem through the recognition of the appropriate 
solving strategies and the integration of an algebraic work in a geometric task. The 
change of framework is indicated, with the algebraic portion treated almost 
independently. The only intermediate calculation is very guided. The theorem, 
while unmentioned in the problem statement, serves as a tool for a calculation that 
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is directly tied to a figure emblematic of the theorem. The theorem itself was 
previously encountered in 8th grade. 
 By contrast, for the 9th grade exercise, students must first undergo an adaptation 
tied to a complete reasoning process, with multiple steps and numerous changes of 
viewpoint. Only then can students place the Pythagorean theorem (and its 
converse) in context. In this case, the context involves a figure that clearly features 
at least two triangles. At this point, the only adaptation required is to twice choose 
the appropriate theorem from three possible choices. These choices were given 
immediately prior to this exercise,3 and were used in isolation in the previous 
exercise. Again, the theorems function as tools, and are not cited in the problem 
statement. We see that their use is not obvious for students, despite the possible 
effects of the didactic contract. 
 The 8th grade exercise thus involves levels of action that require more initiative 
from students than is required by the 9th grade exercise. We can predict that few 
students will be able to solve the exercise by themselves. 
 How will the teacher organize the lesson to take these differences into account? 
And how will this translate into the class structure and into patterns of interactions 
with students? 

Comparison of classroom events, teacher assistance, and student activities during 
the two excerpts 

General characteristics of work 
With the exception of board writing, the work done by students in the two classes 
is analogous. Students work at their desks, sitting by themselves. There, they work 
individually, or discuss strategies and share results as a group. Students raise their 
fingers to answer a question, and recopy correct answers written on the board. In 
8th grade, these answers are dictated by students to the teacher to write. In 9th 
grade, students write at the board under strict supervision (except for the 
calculations). The board plays the same role in both classes (as a model). 

Chronology and nature of work (overall) 
Again, these exercises lasted approximately a half-hour and concluded the class 
period. 
 Table 3 compares the respective lengths of time allotted by the teacher to the 
“Pythagoras” and “Thales” exercises. (This table is only a rough indication of the 
lengths of time. It does not give exact seconds, and does not take into account 
transitions between activities, which lasted up to around 20 seconds.) 
 Despite the differences in tasks, we can note substantial structural similarities in 
the 8th and 9th grade classes in terms of organization, the breakdown of work, and 
the length of different subtasks assigned by the teacher. 
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Table 3. Time allocated to activities in the two classes. Percentages  
are calculated out of the total. 

 Pythagoras (8th)  Thales (9th) 
Organization of 
the work 

 First question : in two 
steps (1) beginning, (2) 
end 

Work on the 
figure  

 6 min. (37%) Construction: 2′30″ 
(17%) 

Finding a 
strategy 

Individual work 
followed by group 
work: 8′30″ (30%) 

Group work (1): 5′30″ 
(37%) 
 

Finding the 
solution 

Individual work: 
4′30″ (16%) 

Individual work, in two 
separate periods: 2 min. 
(13%) 

Recopying the 
solution 

9 min. (32%) (1) 2 min. 
(2) 3 min.  (33%) 

Total 28 min. 15 min. 
 
  
 The teacher first requires students to recopy the problem statement and the 
figure (if given). In both cases, he requires them to in some way “enter” the 
problem statement. In 8th grade, the required description of the associated figure 
prolongs the length of this stage. 
 In both cases, the teacher then assigns as a subtask the determination, as a 
group, of the strategy to follow. In the 8th grade class, students first try to find a 
strategy by themselves, and then share their ideas during the group phase. The 
percent of time spent on the group strategy stage is comparable in the two classes. 
The teacher then lets students work individually on solving the problems. In the 9th 
grade class, there are two separate periods of individual work. Again, the amount 
of time allotted to the activities is similar in the two classes. The teacher concludes 
both classes by providing a model of a correct answer, which is either dictated by 
students and written by the teacher, or written by a student under strict guidance. 
The drafting of this model answer occupies a third of the exercise time in each 
class. 

Assistance 
In both classes, the assistance provided to students is primarily procedural, and 
usually consists of identifying a step of the task to be solved. Assistance is 
particularly common at the beginning of each question or sub-question. For 
example, the teacher begins by asking students to construct the figure, and then 
divides the first and second questions into subtasks: “Now then, of course, you 
should first draw the figure,” or “Now then, what is it like? Arthur, describe the 
figure for us.” The teacher then engages students in finding a strategy (which 
consists of dividing the main task into subtasks). During the strategy finding stage, 
the teacher uses incomplete responses from students, and throws them back, 
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slightly modified, to ask finally the precise question with the waited answer. In this 
way, he constructs a path for the strategy. He then summarizes the strategy, and 
lists the steps on the board. 
 Some informational assistance is given in response to questions on the definition 
of the perimeter and on recognizing an equation. 
 Finally, the teacher’s assistance on the writing up of the solution is both 
procedural and constructive, as he explains in a somewhat general manner what to 
justify and how to do so. In particular, he notes how to contextualize the theorem 
and where to place the justifications. 
 In both classes, constructive assistance is present during exercise correction, 
with a link between old and new knowledge established through reminders and/or 
repetitions. This type of assistance is reserved for partial results, such as why 
fractional representations are preferred over decimal representations, when to use 
the Pythagorean theorem or its converse, how to explain the answer, remembering 
this type of exercise that mixes algebra and geometry, etc. By contrast, in both 
classes, no constructive help is given concerning the global solving method of 
beginning by drawing the figure, finding a strategy, etc. 

Possible activities – A minima 
We find two types of possible activities during the exercises: a minima activities, 
for students who wait for indications from the teacher before beginning, and a 
maxima activities, for those who can directly embark on the strategy suggested by 
the teacher. 
 We assume that all students draw the figure and then try to find a strategy. For 
8th graders, this search may beunclear, while for 9th graders, it may be incomplete. 
We cannot know for sure that they proceed in this sequence, nor even that they 
begin under the suggested method. Some of the intended adaptations may have 
escaped them, without this omission having any perceptible effect on their final 
work. Thus, at the moment of solving, many students may have completed the 
calculations (but nothing more). 
 They have, however, been able to recopy a completely solved example from the 
board and hear the teacher’s explanations. 
 They will then have had access to isolated activities, each involving a single 
mathematical concept, but will not have been able to link them. 

Comparison of proposed mathematical activities and possible activities according 
to the a priori task analysis 
The commonalities found in Table 6 are more closely linked to the nature of the 
work provoked by the teacher and to the sequence of activities than to the 
mathematical content involved. 
 The consistency thus comes from the organization of the series of activities 
proposed to students, in which only the overall nature of the work (form and type, 
length of approximately five minutes) is imposed by the teacher. 
  



MONIQUE CHAPPET-PARIES ET AL. 

98 

Table 4. Tasks and activities for both exercises (with the less studied elements in italics). 

 “Pythagoras” (8th grade) “Thales” (9th grade) 
A priori 
tasks given 
in the 
problem 
statement 

Use the Pythagorean theorem and its 
converse as steps in an overall reasoning 
process to determine if an angle is 180 
degrees and if points are collinear. 
Recognize the methods of applying each 
property. 

Use Thales’ theorem to complete 
algebraic calculations (combining 
geometry and algebra). 
Recognize the methods of applying each 
theorem. 

Mathematic
al activities 
proposed by 
the teacher4 

Understand the problem statement and draw 
the figure. 
Find a global strategy with viewpoint 
changes (alignment  180° angle  two 
right angles  two right triangles) (A4, 
A3). 
Solve. 
Show that ABC has a right angle at C 
(Pythagorean converse) (A1). 
Show that ACD does not have a right angle 
at C (contrapositive) (A1). 
Conclude by evaluating angle BCD. 

Understand the problem statement and 
draw the figure. 
Find a strategy. Recognize that Thales’ 
theorem is required and that EM should 
be replaced by x (A1). 
Solve. 
Complete two independent phases of 
algebraic work involving numbers and 
letters (A3). 
Find the perimeter of a trapezoid 
(presumably a known task). Use the 
previous calculations to express it as an 
algebraic expression (A2). 
Write and solve a first-order equation 
(algebraic work). Verify that the solution 
is geometrically acceptable (not explicitly 
indicated).  

Possible 
student 
activities 

Draw the required figure (SIT): 
– Describe as a group. 
– Draw individually. 
Try to solve the problem, possibly without 
success. (Individual and group work.) 
Listen to the correct method for completing 
all three steps. 
Note the three steps and treat them 
successively as simple, isolated tasks. 
Individual work. 
Calculate AB2 and BC2 +AC2 (SIT). 
Recopy the completed example of the above.
Calculate AC2 +CD2 and AD2 (SIT) 
Recopy the completed example of the above.
Calculate angle BCD. 
Recopy the final example.  

Draw the required figure (A1). 
Try to solve the problem, possibly 
without success. (Group work.) 
Listen to the described strategy. 
Use Thales’ theorem geometrically (A1). 
Individual work (1). 
Recopy the example. 
Begin the algebraic work (A3). 
Individual work (2). 
Recopy the example. 
Listen to the group strategy discussion 
and begin to calculate the perimeter (find 
the missing lengths). 
Individual work. 
Correction, recopying.  

 
  
 By contrast, the mathematical subtasks that determine the specific possible 
activities (notably the a minima activities) differ in nature, with the order of 
adaptations inversed between the two classes. In 8th grade, students pass from A4 
to A1, while in 9th grade the sequence is from A1 to A3 and A2. Once the 
strategies are established, the 8th grade students are more likely than the 9th 
graders to continue to work on the sequence of simple, isolated tasks (SIT) that 
follow from their theorems. This can lead to variations in the students’ knowledge 
development. 
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 We realize that finer analyses will be necessary for evaluating this hypothesis. 
How, in particular, does a teacher’s speech contribute to this consistency? 

In terms of the mediative component of the teacher 
At the very beginning, the teacher adds a subtask to the list of intended tasks: 
constructing the figure – we cannot know how long it would have taken students to 
come up with this step without help. This allows students to enter the exercise and 
the teacher to explain the concepts in play. 
 A period of trying to find a strategy is immediately imposed by the teacher as a 
“general” strategy. The teacher ensures that the presentation of the strategy to be 
followed is relevant to all students. This presentation occurs after a period of 
individual work. By having students share their thoughts, the teacher can reconcile 
a wider variety of ideas, holding onto ones that can help make progress toward a 
strategy. Any viewpoint changes are mentioned as part of the reasoning process, 
but, unlike changes of framework, are not highlighted. Students complete the 
(indicated) calculations during an additional period of individual research, and a 
detailed correct example on the board (the model) concludes each question. 
 We can say that this teacher introduces a number of systematic work patterns. 
The words “habit, habitual” appear frequently, both as actual words spoken 
repeatedly and as aspects of students’ activities, which repeat. Thus, in this class it 
is habitual to draw the figure, to identify hypotheses and a conclusion before 
beginning, and to work as a group at the teacher’s request to find the specific 
methods to use before beginning. This, we have seen, can take a variable amount of 
time. Each time, the teacher provides a corrected model on the board, possibly 
written by a student. 
 The teacher also provides substantial guidance to students. He does not let them 
follow their own initiative for long. Nor, with the exception of two or three 
students, does he make use of their ideas for finding a strategy. Only the quickest 
students will be able to develop their own methods before beginning to solve the 
problem. By contrast, D gives all students a certain amount of autonomy once the 
tasks have been laid out. 

First assessment 

The analyses above are associated with what we call the cognitive and mediative 
components of D’s practice, during each of the excerpts studied. We noted 
important similarities in classroom activities, despite differences in the tasks’ 
possible student activities. To what extent can consistency hypotheses based on 
only two excerpts be valid? 
 To answer, we will examine the personal component of D’s practices (for 
certain elements). 
 We obtained some supplementary information on this component though a 
questionnaire completed by the teacher on the use of the board in 9th grade. The 
questionnaire was completed after the teacher watched a video of his own class 
(Beziaud et al., 2003).5 
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 The responses to the questionnaire showed that the teacher considered the 9th 
grade class period under study to be a typical one. He described his practices as 
fairly stable, and did not imagine there to be possible alternatives to the choices he 
had made. 
 The teacher stated that his goal was to supervise students fairly closely and to 
encourage student-teacher interactions, both with the class as a whole and with 
individual students. He also stated that he chose what was to appear on the board 
carefully, preferring the amount of time spent on writing on the board to remain 
short. 
 These elements, apart from the two class periods under study, support the 
existence of practice invariants. 
 The questionnaire also allows us to partly deduce the manner in which D claims 
overall to manage his constraints and leeway. The time spent on an activity is 
dictated by the progression of the curriculum, which must be completed. The 
teacher is there to help students, to reassure them, to encourage them, and to allow 
them certain autonomy, but within a framework that is defined strictly enough that 
even the most “fragile” students can find something to do. 
 It thus seems valid to us to identify this teacher’s “intervention logic” as a kind 
of recombination of the mediative and personal components. The fact that we can 
engage in this reconstitution is proof of the desired stability and explains the 
consistency suggested above, in the case of the first non-trivial exercises given 
after a geometry lesson on one of the curriculum’s “big theorems.” The teacher 
chooses to give problem statements that are different in terms of how they call 
upon their theorems, and analogous in terms of the management system they 
enable. From the teacher’s point of view, the exercises allow some students to take 
initiative and others to work on simple isolated tasks. 
 In this type of class period, regardless of the task details, students’ work is first 
established as a group. This process consists of listing at least the first subtasks, 
which then become isolated if not simple (cf. SIT, chapter 2). This listing of 
subtasks more or less transforms the activity on the corresponding tasks. To 
develop the list of subtasks, the teacher modifies and completes students’ responses 
to open-ended questions. The students do not have control of the preliminary 
investigation. 
 Next, the time given to students for individual work allows them to attempt and 
even complete at least the first of these subtasks. The teacher circulates among 
students and occasionally publically uses volunteers’ indirect assistance.  
 Finally, once a certain number of students have finished working, a carefully 
completed example solution on the board gives students who recopy it into their 
notes a model to follow. 
 During the development of the example solution, there is little reference made to 
individual work. There is no overall assessment of strategies, or reference to 
subtasks or to methods used. There are comments on how this exercise differs from 
others or on how to write the example. “Constructive” assistance does not involve 
the global strategy. 
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 The 8th grade/9th grade comparison leads us to ask if the consistency in the in-
class activities might cause a more difficult task to be even more divided into 
isolated simple tasks. Perhaps the teacher compensates for the difficulty of a task 
by subdividing activities? Would students who work a minima have sufficient 
information to allow them to return on their own to the exercises completed in 
class? 
 There are alternatives: choosing other ways of working, or a different 
organization of the sequence of activities to engage weaker students in developing 
(even partially) the overall reasoning processes (A4). 
 Furthermore, we wonder if, implicitly, the teacher is delegating certain aspects 
of learning geometry to these strict procedural habits. The teacher behaves almost 
as though these types of routines could be transferred to students without being 
explicitly taught. The stages of drawing the figure, determining the hypotheses and 
the conclusion, finding a strategy and/or method, and writing out the answer are 
each distinct, and are always completed in the same order, with the same process. 
This is correlated to the reduced role of constructive assistance. 
 Question to pose at this stage: 
– Can we find other invariants in teachers’ speech? How do they fit into the 

already noted invariant organization of the sequence of activities proposed to 
students? 

– What influence do these invariants have on student activities? 
 We have seen, for example, that more complex tasks lead to a more substantial 
subdivision, and that a certain number of elements remain implicit or absent. All 
students appear to be working, with some even reporting “success” on the 
mathematical task. Are there, nevertheless, misunderstandings or missing links in 
some students’ mathematical work? 

ANALYSIS OF STUDENT/TEACHER INTERACTIONS 

We will first focus on the teacher’s speech during interactions with students, to 
look for potential similarities. 
 This third analysis will supplement our a priori analysis of tasks and possible 
student activities, and enrich our detailed understanding of the way the teacher 
considers his students, interprets their work, and keeps them working on the 
mathematical activity, stage by stage. These local analyses therefore have global 
goals. 
 Note that in this study we are only analyzing interactions aimed at the whole 
class (which may nevertheless involve only a single student directly). We are also 
only considering interactions that involve more than two exchanges. Each 
interaction studied is initiated by a question from the teacher or from a student, and 
each interaction ends once the desired response has been given and the teacher is 
satisfied that everyone has heard it. 
 This choice of which interactions to study is supported by the fact that only 
these interactions represent a true negotiation between the teacher and the students, 
and only they are indispensible, from a didactic point of view, to in-class events. In 
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particular, student/teacher interactions initiated by the teacher are opportunities for 
him to mark a step in the progress of his plan for the class period6. These 
interactions help us to understand what information students receive. They also 
provide us with information about the division of work between the students and 
the teacher. In other words, we can identify regularities or similarities in the 
manner in which the teacher, sentence by sentence, guides the progress of the 
didactic project as well as students’ understanding, or in how he contributes to 
students’ mathematical activities during these interactions. How does the teacher 
enlist students into the activity, and then keep them there? What autonomy do 
students have? How does the teacher contribute, at different moments, to the 
knowledge adaptations that were expected based on the a priori analysis? How 
does he intervene into the difficulties encountered by students, or keep track of 
what students have done, particularly during the presentation of the correct 
response? How does he handle contributions from students, and particularly from 
strong students? Does he revisit the methods and potential choices? Does he 
reassemble the subdivided steps? What type of help (procedural, constructive) does 
he provide? 
 The identification of linguistic actions from the transcripts will reveal the role of 
the teacher’s speech during in-class interactions. It will also enrich our analysis of 
student and teacher activities. We will first present our methodology, and then the 
comparisons we found by using this methodology in the two class periods studied. 

Methodology: Tools for analyzing linguistic actions in the teacher’s speech  

The teacher’s linguistic actions allow us to identify the choices in speech that may 
contribute to the development of students’ activities. 
 We use the term “linguistic actions,” with its connections to language and 
context, to indicate various considerations. These considerations cause us to 
attribute a different linguistic action to a phrase depending on the circumstances of 
its utterance. A single phrase can also correspond to multiple linguistic actions. 
For us, a linguistic action is a quadruple with four components. These components 
are the episode, the syntax type (question or statement), the content (mathematics, 
meta, etc.), and the speech’s function. 
 The first component, the episode, is identified following the a priori analysis, 
and is characterized by students’ work on a task or subtask. The linguistic 
interactions defined above are analyzed within the context of this episode. 
 For the syntax type, we identify questions posed by the teacher. These questions 
contribute to students’ participation in the task, and provide information regarding 
how the teacher takes students into consideration.  
 When the content of the teacher’s speech is “meta,” it concerns his own 
interventions. This can include indications of method, elements of structuring class 
time or reminders, or placing work in a larger context. Meta speech helps us 
reconstruct the teacher’s intentions. For example: “Remember, you can find the 
sum of two squares directly with the calculator. You can write down the 
intermediate results, or you can do it directly.” 
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 Finally, we analyze the functions of speech, as identified by Bruner for the 
processes of tutoring and the support provided by an adult when helping a child 
(Bruner, 1983; chapter 1). For Bruner, these functions define the manner in which 
the teacher contributes to students’ work step-by-step, while trying to support their 
activities. Does he talk to them about what they have done, correct them, 
encourage them, or do something else? 
 Our functions are defined in terms of the work involved in leading a 
mathematics class. They are designed to allow characterization of the multiple 
forms of support possible in a class. 
 Below are the functions of speech that we have identified: 
– Participation functions: 
  Engagement: “Let’s go.” 
  Repeating information. 
  Calling for attention: “Now then, pay attention.” 
  Encouragement. 
  Sharing student responses. (Student: “Variable.” Teacher: “Variable, x is 
a variable. The point M varies, then x varies from what to what?”) 
– Other functions, identified by comparing adaptations that students must make of 
their knowledge, the state of their work, and teacher remarks: 
  Identification of student work. The teacher considers student productions 
or questions: “Now then, to answer Raphael, who just asked if we should write the 
hypotheses or the conclusion…” 
  Information. The teacher provides or requests information regarding the 
knowledge in play. For example, he may ask for or provide results, theorems, etc.: 
“EFG is a triangle such that, then I’ll give you…EF = 5, EG = 7, FG = 9, and all 
units are in centimeters.” 
  Evaluation. The teacher gives his opinion only on the validity of students’ 
responses, without other commentary. 
  Structure. The teacher punctuates students’ work by placing them in a 
larger context: “Now then, J. B., for the second step, tell me what should be done.” 
  Orientation. The teacher orients students’ work without giving everything 
away: “We don’t really know its true location on EG, huh. In other words, it’s a 
point?” 
  Justification. The teacher engages in the justification process: “Now then, 
why do we begin with AB squared? Why not one of the others?” 
  Assessment. This indicator can refer to a recap or a reflection: “We put the 
point M somewhere, and MN is parallel to FG. Now we apply Thales’ theorem and 
write it up like we did in the earlier exercise.” 
 The teacher can express multiple functions in a single discussion, as in the 
example below: 
Student: “Well, we’ll say we’re using Thales’ theorem.” 
Teacher: “There you go. We’re going to use Thales’ theorem because we evidently 
have straight lines?” 
 The teacher evaluates the student’s contribution while sharing it. He poses a 
question that orients the student toward a mathematical justification. The word 
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“evidently” adds meta content to this discussion because it may refer to a habit or 
remind students of something. 
 For each episode, we use this labeling system to characterize the functions in 
play in each linguistic interaction and in the set of interactions. We deduce from 
our analyses elements that involve taking students into account: questions, 
assistance, or support for students’ work. This enables an initial approach to the 
class period excerpts, particularly in terms of “internal” regularities. It can also 
lead to other comparisons. 
 We used this methodology on the two phases analyzed below. 

A comparison of linguistic actions in the two classes 

To study the linguistic actions (and attribute the quadruples described above), we 
chose three episodes to study from the 8th grade class (Pythagoras). The first 
involves the description of the figure. The second, which includes two disjoint 
periods of time, focuses on the group efforts to find a solving strategy. The last is 
the presentation of the correct solution. The episodes are sufficiently long (more 
than two exchanges) to allow a true dialogue to be established in which the didactic 
stakes are perceptible. 
 For the 9th grade class (Thales) we analyzed interactions involving more than 
two exchanges, of which there were four: Finding a solving strategy for the first 
question, correcting the first question, finding a solving strategy for the second 
question, and finally correcting the second question. 
 In the appendix, we provide an extract of the complete analysis and the results 
for each exercise. These results provide the basis for what follows. 
 We are only comparing the linguistic actions in two analogous episodes in the 
two classes: development of a solving strategy and correction. For the 9th grade 
class, we are only considering the first exercise. We will try to identify similarities 
and differences in the episodes. 

Comparison of functions of speech 
Within the strategy development phases. In both classes, the teacher speaks much 
more often than the students. This is clear from the transcript. 
 With that said, students’ participation is substantial, instigated through the 
questions asked or due to participation functions. The teacher systematically shares 
student results. This sharing often involves validation, which can then be modified 
with a commentary or question from the teacher, leading students to the intended 
results: 
Teacher: “So, this situation is fairly banal, huh. Given all that we’ve done, what is 
the only new thing, Bertrand?” 
Student: “Uh … x.” 
Teacher: “x, that is, the point M. What do you say about point M?” 
Student: “Well, we don’t know its real place on EG.” 
Teacher: “We don’t know its real place on segment EG. In other words, it’s a 
point?” 
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 The structuration function is used frequently in both classes, but more in 8th 
grade than in 9th grade: “For the first step, what will I do?” “For the second step, 
continue, Alexander.” 
 The information provided by the teacher in the 8th grade class primarily 
concerns mathematics: “So, what, what are we going to look at? Well, if each is a 
right angle, and then we’ll look at angle BCD. Okay? And it will either be flat or 
not.” 
 However, in the 9th grade class, there is also “meta” information that situates 
the proposed exercise in terms of students’ knowledge (“that theorem of Thales”) 
and in terms of old and new (“Now then, the only thing that’s going to be a little 
different from usual is?”). 
 In both classes, the mathematical information constitutes help that is apparently 
procedural. 
 
In the correction phases. In this phase, the teacher again speaks much more than 
students. 
 In 8th grade, the exchange is marked by strong participation by students. This 
translates into questions posed at each teacher contribution, which engage students 
(“Kurdis, can you give us the first step in detail?”) while structuring their 
reasoning (“Now then, J. B., for the second step, tell me what we should do?” “Now 
then, how will we finish?”). The questions can orient students toward the intended 
response (“What can we conclude about BCD? That is isn’t …?”). This student 
participation through constant questioning is reinforced by the sharing function, 
which allows the teacher to share with the class the dialogue that he has established 
with the student at the board. The teacher frequently uses structuration. Different 
steps in the reasoning process are explicitly identified and are reassembled at the 
end. The teacher leads the process, and students’ autonomy is weak. The teacher 
leads them step-by-step towards the intended answer while orienting their 
reasoning process. 
 Assistance is therefore more procedural in nature. However, the assessment that 
marks the end of the exchange can represent constructive assistance for some 
students: “Now then, what is interesting in this exercise is that we have a single 
question and, ultimately, we applied the converse of the Pythagorean theorem: the 
result where the formula doesn’t hold but we can conclude that the triangle is not a 
right triangle, and with some help after adding two angles we were able to get a 
conclusion.” 
 The teacher relies on students’ work before indicating the desired write-up of 
the demonstrations: “But I just explained, J. B., that the converse wasn’t applicable 
when the equation was true.” The teacher’s speech has mainly mathematics as its 
object; the meta content concerns possible solving methods. 
 In the 9th grade class, participation is less expressed by the speech’s functions 
than in 8th grade. However, there are still numerous questions posed. The 
information in the exchanges primarily concerns mathematics; there is little meta 
information. Considerations of students take place orally, but are also based on 
what the teacher is able to observe in written work: “Now then, remember when 
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we’re writing it up, that to apply Thales’ theorem there is no ‘if then.’ Some, not 
many but two or three, wrote the exercise on the sheet with ‘If the lines are parallel 
…’.” 
 An explicit allusion to the exercise and a reminder on the write-ups can 
constitute constructive help for some students: “Remember that this is the general 
problem statement and we’re applying it. So we know whether or not the lines are 
parallel.” Reminders of new information were featured in the teacher’s speech 
during the entire period and revealed his goals during the class. 
 
Global results In almost every discussion in each episode of both classes, the 
teacher used questions to mobilize students. 
 During both classes, the teacher assessed, evaluated, and shared with students. 
Students were required to engage in tasks that were often subdivided. They were 
also required to mobilize their attention, and to collaborate with the teacher on 
justification and structure. 
 Student participation differed in the two classes, but this difference was in large 
part due to the task. Again, the 8th grade exercise required more adaptations than 
the 9th grade problem, and the 8th graders were perhaps less comfortable with 
solving such an exercise. The teacher needed to ensure that students understood the 
solving strategy. He therefore gave them time to put it in their own words after 
describing the three required steps. In 9th grade more than in 8th grade, a single 
word was often sufficient for students to complete the teacher’s sentence. 
Furthermore, we note again that the correct answer was not presented in the same 
way in 8th grade as in 9th grade. In 9th grade, a student wrote on the board 
(occasionally prompted by questions by the teacher). By contrast, in the 8th grade 
class, the teacher wrote as dictated by students, who were therefore required to 
express themselves orally. 
 In comparison, we noted that this teacher had an overall stable use of functions 
during the strategy development phase, with little variation in details. We can note, 
however, more information, justification, and sharing functions in this phase in 9th 
grade, and more structuring in 8th grade. We hypothesize that these variations stem 
from the unfolding of events that are tied more or less strongly to the task, but that 
are certainly tied to students. The greater difficulty and lesser subdivision of the 
initial 8th grade task explains the greater presence of structuring, while their lower 
response frequency led to less sharing and assessment than for the 9th graders, who 
had more propositions to create. 
 For the correction phase, during which a correctly solved example was written 
on the board, we note stability in the use of structuration functions and in the direct 
involvement of students (beyond sharing). The sharing function is used more in 8th 
grade. We note again that the 8th grade exercise was more difficult, that students 
were less accustomed to it, and that the majority of them did not solve it. For 8th 
graders, the presentation of the correct response was also a time for students to 
solve and work on the problem. The teacher again engaged students during this 
phase and used their answers. In the 9th grade class, where many students were 



STABILITY OF PRACTICES 

107 

able to solve the problem, the correction phase served more as a time for evaluation 
or assessment. 
 Finally, a close study of the functions of speech allows us to identify another 
invariant: The use of sharing/evaluation/orientation functions that correspond to a 
light modification of student responses by the teacher to get closer to the desired 
response: 
 8th grade: 
Student: “We have a triangle ABD …” 
Teacher: “We see a triangle … ABD …” 
Student: “See if it’s a right triangle.” 
Teacher: “Ah, we could know if it’s a right triangle.” 
 And in 9th grade: 
Teacher: “What is the only new thing, Bertrand?” 
Student: “Uhh … x.” 
Teacher: “x, that is, point M.” 

Taking students into account 
The teacher takes students into account at several levels: 
– Directly in exchanges. The teacher may take students into account by varying 

his responses depending on whether they give the desired response. He may also 
take them into account by choosing the answers according to the moment the 
students give them. 

– In answering students’ questions. 
– In reference to their work during the individual work time. 
Some examples: 
− In 8th grade, during the correction phase: “Now then, I would like to insist on 

the placement of this sentence. Corentin did the same thing, but he put this 
sentence a little earlier. He stated right away that he had, that he was going to 
apply the converse of the Pythagorean theorem. Now then Corentin, what did I 
say to you? Did you understand what I said?” 

− In the same phase: “There you go. We’re not at all sure that we’re going to 
apply the converse of the Pythagorean theorem, because at the beginning you 
don’t know if the equality will hold or not. If it does, you’ll say that it follows 
from the converse of the Pythagorean theorem, sure; but if it doesn’t, we can’t 
justifiably apply it. So it’s really important that you do this in this order. Do you 
understand?” 

− Or in 9th grade: “Fanny, you have 2x/5 – 5x/5. That makes -3x/5.” 
− 9th grade: “It’s not clearly false. Well, now then, here’s the first question. So we 

have answers in function of x. Re member that 7x over 5, then, that can be 
written in different ways. There are some … raise a finger those of you who 
wrote a decimal, like Ludovic. What did you write?” 
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Assessment: What analogues are there in the speech during interactions in both 
classes? 

In both classes, the overall use of speech functions is similar, with a few variations. 
Most notably, there were more participation functions during the 8th grade episode 
than in 9th grade. 
 In particular, we see large analogues, adapted to the level of the class, in the 
teacher’s responses to students’ answers. For example, during interactions with 
students, the teacher always takes their responses and shares them, validates them, 
and modifies them in ways adapted to the class and the students. The teacher 
negotiates the desired response while remaining careful to maintain 
communication. 
 The teacher’s role in class is to evaluate, share, and assess, while the student’s 
role is primarily to resolve subdivided tasks. Students are all asked to participate 
and are encouraged by participation functions, which are more frequent in 8th 
grade than in 9th grade. 
 The teacher’s speech thus adapts itself to the class and to the type of task: more 
calling for student involvement when they’ve been working on their own, more 
maintaining student attention in 8th grade when the solving work is taking place in 
real time during the correction phase (for example), and more controlled by the 
teacher in 9th grade when he is validating a model solution at the board. 
 This analysis is still missing elements that could further reinforce (or weaken) 
the mark of the teacher on the speech. For instance, we have not examined the use 
of personal pronouns (we, one), which could help the teacher place himself on the 
same side of the task as students. In fact, such a study, as yet done in Chappet-
Pariès (2008) shows an analogous usage of the use of personal pronouns in the two 
classes 
 We borrow several practical tools used in research led by Trognon at the Ecole 
de Nancy (Gilly et al., 1999) to describe more precisely the illocutionary goals that 
indicate what speech content is trying to produce. Here, again, the choices of goals 
manifested during the exchanges are very close in the two classes (Chappet-Pariès, 
2008). 
 Possible next steps include the treatment of other class periods to see what 
analogies prove persistent and to understand the impact on students. What do 
students understand, with which potential effects? 

LINGUISTIC MARKERS IN THE TEACHER’S SPEECH 

We will now compare the above analyses with a different approach to the teacher’s 
speech. This approach relates verbal formulations to the organization of the 
teacher’s contributions to students’ in-class work. This organization is identified 
through verbal indicators we will call “speech markers.” Speech markers are 
“particles,” such as “good!” or “so” (when not used as a logical connector). They 
are grammatically optional and do not change a statement’s truth-value. They have 
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been studied in teaching activities, with initial work done in the teaching of English 
as a foreign language (Sinclair & Coulthard, 1975).  
 These markers have two functions. First, they mark the organization of 
verbalized content, and thereby play a role in speech coherence. Particles such as 
“now then” (alors) and “so” (donc) play this role. The second function of markers 
is to ensure the pragmatic structure of the interaction and mark the roles of the 
speaker. This function is played by terms such as “good” (bien) and “Okay” 
(d’accord). The markers are therefore a signal of the relationship between the 
student’s statement and the teacher’s reaction, between the teacher’s statement and 
the desired student response (statement or action), or between the teacher’s units of 
speech. They can also simply “punctuate” the teacher’s public activity, such as 
writing on the board. They can mark the introduction of a new element in the 
teacher’s speech, or return to a previous line of speech after an interruption by a 
student’s action or by an observed action to which the teacher responds. 
 We will first present these markers as evidence of the organization of the 
teacher’s speech. We will examine their use in the initial “draw the figure” episode 
in D’s classes in the 9th grade “Thales” exercise and the 8th grade “Pythagoras” 
exercise. We will see how they constitute indicators of invariants in the 
organization of the speech. We will also identify variations, which we can then 
interpret in terms of the relationship between the mathematical content in play and 
students’ ability levels. 

Markers: a diversity of contributions in speech 

Markers can introduce acts of speech (analyzed above) that place students in their 
role as students by using imperatively tensed verbs (or present tenses or infinitives 
with the same intent as imperatives). These acts of speech can also involve posing 
questions requiring a response. The teacher uses these markers to call for student 
participation. 
− “Now then, listen closely to what he says …” (Pythagoras, 8th grade.) 
− “Now then, this says you draw a figure.” (Thales, 9th grade; present tense 

functioning as an imperative.) 
− “… and then, it will vary from what to what?” (Thales, 9th grade.) 
− Markers also punctuate the progress of the class activity. They ensure that 

students are all working on the same goal at the same time. 
− “Now then, I’m going to write the third step here …” (Pythagoras, 8th grade; 

announcement of an activity.) 
− “Now then, there are some who have finished …” (Pythagoras, 8th grade; state 

of activity in the class). 
− “So, here we’ll pick, sure, the first and the last relationship.” (Thales, 9th grade; 

commentary on current activity at the board.) 
 Different markers may specifically signal the end of an activity and the 
completion of a (sub) task. For example, “There you go!” (voilà), “Okay” 
(d’accord), and “Good” (bon) are examples of considering a result proposed by 
students. We see them function here within an interaction: 
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Teacher: “Now then, we’re at our main exercise. How many results are there in 
this chapter? […]” 
Student: “The Pythagorean theorem.” 
Teacher: “The Pythagorean theorem.” 
Student: “The converse of the Pythagorean theorem.” 
Teacher: “The converse of the Pythagorean theorem, and then, the one that doesn’t 
really have an official name. Well, it’s when the equality doesn’t hold and we can 
conclude that the triangle isn’t a right triangle. Okay?” (Pythagoras, 8th grade.) 
 And this other one interaction: 
Teacher: “And these, these are what?” 
Student: “Hypotheses.” 
Teacher: “Hypotheses. Now, then, pay attention. So, we will put the conclusion 
here, okay?” (Thales, 9th grade.) 
 “So” (donc) as a marker can have a “conclusive” function, or can function by 
connecting previous activities to those that will follow, appearing in the 
introduction of a new unit of interaction. 
 We see in these last examples that the markers indicate the boundaries of units 
in which the teacher and students take turns speaking. These units are not 
necessarily limited to the well known triplet of “question from the teacher,” 
“answer from the student,” “evaluation by the teacher.” 
 Finally, the markers can “punctuate” the continuous speech of a teacher: “Now, 
then, remember when we’re writing it up, that to apply Thales’ theorem there is no 
‘if then.’ Some, not many but two or three, wrote the exercise on the sheet with ‘If 
the lines are parallel…’ Now then, remember that this is the general problem 
statement and we’re applying it, so we know whether or not the lines are parallel 
…” (Thales, 9th grade). We note here that “so” is used as a logical connector 
relating to the current mathematical activity: “… so we know …” 
 “Now, then, what is interesting in this exercise is that we have a single question 
and, ultimately, we applied the converse of the Pythagorean theorem: the result 
where the equality doesn’t hold but we can conclude that the triangle is not a right 
triangle, and with some help after adding two angles we were able to get a 
conclusion. Okay? (Pythagoras, 8th grade.) 

Speech markers as traces of the organization of the teacher’s activity 

The analysis of markers leads to defining “interaction units” bounded by 
introductory markers (particularly “Now, then”) and conclusive markers 
(particularly “There you go,” “Okay”). These units include a variable set of turns at 
speaking by the teacher and the students. The teacher’s turns at speaking (and 
occasionally the students’ as well) themselves contain one or more semantic units 
(the equivalent, for oral speech, of multiple clauses on the same content). 
 An initial analysis of speech markers for a 10th grade algebra teacher (Robert & 
Rogalski, 2005) has revealed the existence of patterns of interaction that are 
identifiable by markers. These interaction patterns contain an introductory marker, 
a set of treatments of the task object, an assessment of the activity, and a 
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conclusive marker. (The assessment phase is optional, and can also take place after 
the conclusive marker). When such patterns are recurrent in a teacher’s speech, 
they indicate an invariant organization of the teacher’s activity. 
 Our analysis of D’s speech markers during the Thales (9th grade) and 
Pythagoras (8th grade) problems shows the same organization for the initial 
phases, when the students need to make a figure according to the problem 
statement. 
 After the statement is read, an interaction unit begins: 
“Good, then, this says you draw a figure” (Thales, 9th grade). 
“Then, so, you go in the exercise book; you paste this little piece of paper and you 
draw the figure” (Pythagoras, 8th grade). 
 In both cases, the link with previous activities is marked, by “Good … this says” 
and by “so,” respectively. The “then” marker introduces the task to complete: 
“Draw a figure.” In both classes, there was an analogous closing marker several 
minutes later, with a number of contributions in between: 
“Everyone has had time to draw a figure? It’s going okay?” (Thales, 9th grade.) 
“Now that everyone has had time to draw a figure …” (Pythagoras, 8th grade.) 
 Inside this interaction unit are several subunits of interaction. The first involves 
analyzing the situation through questioning a selected student. 
“So, this situation is fairly banal, huh. Given all that we’ve done, what is the only 
new thing? Bertrand!” (Thales, 9th grade.) 
“Now then, what is it like? Arthur, describe the figure for us!” (Pythagoras, 8th 
grade.) 
 These interaction units are themselves concluded by once the answer to the 
question is given. This conclusion happens after several exchanges and a number 
of semantic units (analogues of clauses) from D. The interaction subunit remains 
enclosed within the main unit. 
 In 9th grade, the teacher wanted to explicitly highlight the presence of a variable 
(x as a number, M as a point), which constituted the introduction of an important 
new factor. This factor is made explicit in the closure of the main interaction unit: 
“So x is a variable, M varies.” 
 In 8th grade, it is important that the figure be described as composed of two 
separate triangles, and not as one “big” triangle (as the drawing in the problem 
statement could imply). The closure of the interaction unit is strongly marked: “So 
we describe it [the figure] as you said afterward; that is, two triangles. So you 
have ABC and you have ACD. There you go!” 
 Beyond these invariants, the study of markers during this figure-constructing 
episode reveals a difference that is linked to students’ ability levels in terms of the 
mathematical content in play. We therefore find in 8th grade a long, argumentative 
contribution from D that is aimed at involving students in analyzing the figure by 
taking “what we see” (in the figure, the sides of the two smaller triangles seem to 
form a side of another triangle) and distinguishing it from what we can deduce 
from the problem statement (which raises the question of the collinearity of three 
points on these sides). Involving Arthur (a student) in this analysis will require an 
interaction between what Arthur sees in the figure, and what is really there. The 
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teacher’s remark at this point is organized with multiple clauses, using both 
argumentative connectors (because, if, yet, so) and markers (now then, so, there 
you go), until the conclusion: “We do not define the figure like that.” After 
delivering this long argumentative thread, the teacher restates the initial task: “Now 
then, first job, so, you’re told to draw the figure” (where the “so” marker brings us 
back to the figure). 
 We have also compared the role of the particles “now then” (alors) and “so” 
(donc) in D’s remarks, as well as in the comments of four other 9th grade teachers, 
in class periods devoted to exercises or discussion sessions. 
 In general, “now then” predominates over “so” as a speech marker (appearing 
twice as frequently, with some variability). One teacher, however, used “so” 80% 
of the time. The particle “now then” appears most often functioning as a marker, 
and only very rarely in its function as a logical connector. “So,” however, is 
consistently present as a logical connector, but with wide variability between 
teachers in the same grade. For teacher D, “so” is as much a logical connector as a 
marker, and is the connector used in approximately half of all logical connections, 
in both grades. 
 These data, though “surface” data, indicate a larger variability between teachers 
than within a single teacher’s practice. The stability of a given teacher’s practice is 
tied to the teacher’s style, and is not only reflected in general invariants (the genre) 
of the mathematical activity. 

DISCUSSION AND CONCLUSION 

Given these three analyses, we ask: If we were to enter a class taught by this 
teacher, with his body hidden from view and his voice distorted, what would allow 
us to say, “This is the same teacher”? 
 A first type of teacher invariance concerns the global organization of in-class 
events (first analysis; first section). 
 The types of work are the same in both classes. Students’ activities take 
analogous amounts of time, and the speech that accompanies these activities is also 
managed in the same way. 
 After an initial period spent on the figure and on the question in play, a  
second phase, which may take place immediately, is dedicated to listing the  
solving strategies. The teacher responds to the choices of the students who are 
called upon, and moderates the sharing of their answers. The third phase is  
more directed, and gives students time to work on their own, according to the  
plan that was designed in the previous phases. This third phase is followed by a 
very structured correction period in which a model solution is written on the board. 
In both classes, there is little constructive assistance from the teacher. There is 
more or less a kind of procedural assistance, actually of the same nature when it 
occurs. 
 A second type of teacher invariance relates to certain characteristics of the 
teacher’s speech during interactions with students (second section). The functions 
of the speech are relatively stable. Some of these functions are more variable than 
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others, and are associated with adaptations that the teacher implements as part of 
his goals for the class, while taking the task and the students into account. Broadly, 
for example, the role played by direct participation in a more difficult exercise 
appears to be compensated by sharing for in an easier exercise. 
 Moreover, consideration of students’ work and student questions is very similar 
in the two classes. During the strategy-finding period, contributions from all 
students are regularly and systematically considered for evaluation and sharing. 
During the correction phase, the teacher refers to his observations of students 
during the individual work period. He worries about showing the details of the 
calculations to students who were not able to start working on the problem. 
However, students called upon in class are never allowed to describe a complete 
reasoning strategy other than the one intended. It is as if only one course of 
reasoning is acceptable and only one could lead to a correct result. In each class, 
the differentiation between students is apparent from the moment they are called 
upon, in the form and length of their exchanges. Occasionally, exchanges are 
initiated by students. In addition, the teacher addresses some “meta” responses in 
an aside to certain students. 
 A third invariance concerns the similarity in the use of linguistic markers that 
structure speech (third section). 
 There are differences between grades in the phases of teacher interaction with 
the class. These differences indicate adaptations by the teacher based on students’ 
reactions. We note variations in the number of students who are called upon at their 
desk or to write on the board. The length of each phase also varies between the two 
grades. In addition, the greater difficulty of the 8th grade exercise led the teacher to 
divide the problem into more simple and isolated tasks than in 9th grade. The 
teacher also included students more frequently in the correction phases and 
encouraged more sharing. 
 Our analyses have thus allowed us to show a real stability in the mediative 
component of this teacher’s practice, both at the most global level (in-class events) 
and at the most micro level (linguistic markers). A local analysis reveals more 
variations (in procedural assistance and functions) that are determined by students’ 
reactions, but no modification of the sequence of planned activities associated to 
the different tasks assigned in the two classes. 
 If we suppose that students’ activities presumably occur multiple times in the 
year in analogous unfolding initiated by the teacher, there can be repetition effects 
that differ for different students. Based on the results above, we present some 
examples of possible such effects over the long term.  
 If the teacher suggests every time that students begin a geometry exercise by 
trying to find a strategy, will students all appropriate this step without constructive 
assistance? 
 Some types of tasks given by the teacher for short individual work periods 
encourage a maxima activities, which are visible in the work of some students. 
Will others students be always excluded? 
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 The highly structured correction phase does not allow for questions from 
students who are still very far from solving the problem after working on their 
own. Will these students always have doubts as to the validity of their resolution? 
Will they be able to use the calculations they have recopied? 
 Local assistance is provided by the teacher to all students. Is this sufficient for 
them to learn? 
 Finally, some intended activities are only possible as long as the teacher’s usual 
management style does not contradict the necessary course of action. For example, 
if there were never any long individual or group work periods, we might wonder if 
students were capable of coming up with the steps of a complex exercise by 
themselves. 
 In other words, does the stability of this teacher’s practice contribute to all 
students’ learning in the same way? And does this always play out in the same way 
for each student? 
 In addition, the invariant linguistic characteristics shown in the analyses of 
communication and speech (with priority given to the use of certain associations of 
functions) are tied, to a certain extent, to the personal component of the teacher. 
We can investigate more generally the relationships between the cognitive, 
mediative, and personal components of a single teacher. 
 The possibility that certain student activities are incompatible with certain 
practices has not been ruled out. The teacher cannot develop these activities 
without making changes that are all the more costly since his practices are stable. 
We can then wonder if this stability of practices, as studied for experienced 
teachers, can be modified, and how much expensive it may be. 
 A comment made by D at the end of the 8th grade class period led to a glimpse 
of the difficulty involved: “Now, then, what is interesting in this exercise is that we 
have a single question and, ultimately, we applied the converse of the Pythagorean 
theorem: the result where the equality doesn’t hold but we can conclude that the 
triangle is not a right triangle, and with some help after adding two angles we 
were able to get a conclusion. Okay? Now then, we could certainly imagine this 
exercise with intermediate questions. It would definitely have been simpler. You 
were all completely capable of finding what needed to be done each time.” 
 We can also ask what invariants are shared between teachers. This question 
leads to an examination of constraints and personal choices. 
 Learning more about the stability of experienced teachers’ practices may allow 
us to better adapt professional development trainings, by more clearly outlining the 
links between tasks, intended activities, and adapted management. 
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APPENDIX 

Example of the speech methodology analysis 

Finding an overall strategy (9th grade) 
 
Teacher’s and students’ speech Linguistic actions 
So, this situation is fairly banal, huh. Given all that we’ve done, what is 
the only new thing, Bertrand? 
Uhh…x 

Meta. Information, 
question, participation 
 

X, that is, the point M. What do you say about point M? 
Well, we don’t know its real place on EG. 

Sharing. Question, math, 
orientation 

We don’t know it’s real place on segment EG. So in other words it’s a 
point? 
Unknown. 

Sharing. Question, math, 
orientation 
 

Unknown.  
What other word could we…  
We don’t know where it is. 

Sharing. Question, math.  
Orientation 

We don’t know where it is, Marc? 
Variable. 

Sharing. Question, math 

Variable, x is a variable. The point M varies, so x varies from what to 
what? 
From…well from 0 to 7. 

Sharing. Math, orientation, 
question, math, information 
 

From 0 to 7, we can even write that at the beginning. They don’t ask for 
that, huh. One time we did a problem where they asked for that. But we’ll 
write right away that x goes between? 
Zero and 7. 

Sharing. Math, information, 
structure, question, math 
 

Zero and 7. Okay? 
Zero and 5. 

Sharing. Question, getting 
attention. 
 

Zero and 5? I wasn’t paying attention to… M is on EF and EF, look, it’s 
5. Ah you switched them, pay attention. Everyone has had time to draw a 
figure? It’s going okay? 

Evaluation. Getting 
attention, information. 
Question. Other, getting 
attention. 

 
This episode is dominated by participation, with a strong sharing component and 
numerous questions. The information from the teacher primarily concerns 
mathematics. 
 All episodes were analyzed in this way, which allows for rough quantitative 
evaluations. The overall results are presented below. 
 In the 9th grade class, in the first episode (work on the problem statement) we 
find a mix of structure, mathematical information, and meta speech. Participation is 
fairly week and is dispersed during the course of the exchange through a few 
questions and through contributions from students. 
 In the next episode, which takes place before the individual work phase, we note 
strong participation. The first part of this episode concerns primarily mathematical 
information, and the second integrates more meta content that situates the exercise 
relative to new and old elements. 
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 At the beginning of the correction phase, there is less participation. Most of the 
information relates to mathematical justification. The teacher refers frequently to 
students’ work. 
 In the 8th grade class, the teacher encourages student participation through 
questions and participation functions, which include a strong sharing element. The 
teacher speaks after students’ responses to share their comments with the class, and 
then orients students’ work towards a path that will more effectively lead them to 
the desired response. The episodes we analyzed are also marked by their strict 
structure. Different steps in the reasoning process are first identified in the search 
for a strategy, and then elaborated explicitly during the correction phase. 
Justifications are requested: “Now then, why do we begin by AB squared? Why 
don’t we begin with the others?” 
 
Above all, the speech concerns mathematics. Nevertheless, the teacher does pose 
several questions concerning the reasoning process: “Now then, we will try to put 
several ideas on the board, without writing them out in full. Dominique, do you 
have an idea? What could we look at?”) and comments on the calculation: 
“Remember, you can find the sum of two squares directly with the calculator. You 
can write down the intermediate results, or you can do it directly.” 

NOTES 
1  Each class had approximately 30 students. 
2  The name of the teacher has been changed (we refer to him as “D”). 
3  Immediately before presenting the problem statement, the teacher had a student list the possible 

three theorems to be used: The Pythagorean theorem, its converse, and its contrapositive (which 
does not have a specific name in this class). 

4  Key: SIT = Simple isolated task; A1 = recognition of methods of application; A2 = introduction of 
intermediary; A3 = combination of multiple frameworks; A4 = introduction of steps. 

5  This was completed through an interview that strictly followed the questionnaire (private oral 
communication). 

6  Interactions initiated by the student (which were rare in the observed class periods), if aimed at the 
whole class, were also indispensible for determining the progress of students’ activities and were 
analyzed with this in mind. 
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CHRISTOPHE HACHE 

5. THE CASE OF TEXTBOOKS IN  
MATHEMATICS TEACHING 

INTRODUCTION 

The mathematics textbook is, in France, a central object to teachers’ professional 
practices (and more markedly among beginners), and in students’ daily work, 
whether in class or in their personal work. Paradoxically though, it is rarely studied 
for itself in the education research in France (Bruillard, 2005) and especially in the 
mathematics education1 research. 
 We first need to point out that in France, the design of the textbooks is the task 
of private publishers who, each, suggest their textbooks to the teachers. Hence, the 
choice of the textbook given to the students is done by the team of teachers in each 
school, the financing is provided by the administration. 
 A textbook is the result of a complex interaction between multiple constraints. 
We are interested as a first step in describing the perception of that interaction 
which we have developed through an experience of writing and editing a textbook. 
We make it a point to underline the resulting leeways.   
 Taking into account this description, it seemed interesting to evaluate the 
homogeneity of the textbook, to research whether the authors benefit from this 
leeway while writing, mainly when writing exercise panels which they have 
suggested. We have thus analyzed the exercises of four textbooks (covering the 
same theme) in terms of the knowledge at stake and the activities that they would 
generate for the students.  

CONSTRAINTS AND LEEWAYS IN THE CONCEPTION OF A TEXTBOOK,  
A POINT OF VUE BASED ON EXPERIENCE 

This first section attempts to describe the interactions of the constraints that weigh 
on the writing and in a less central manner on the use of textbooks. It is based on 
the experience of Christophe Hache as the person in charge of the Domino 
collection at the time of the publishing of the textbooks for grades six2 (Hache, 
2005) and seven3 (Hache, 2006). 
 The textbook in question is that “of the student.” This textbook is given to the 
student at the beginning of the year and then taken from him at the end of the year. 
 The constraints imposed by the fact that, materially speaking the textbook is a 
book, concern not only the users, of course, but the designers of the textbook as 
well.  
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 As a first example, the fact that the student has at disposition the whole textbook 
complicates matters, and affects the statement of any discover activity of a notion 
(the entire chapter about a certain notion is in fact not very far), having the entire 
set of questions of a problem can interfere in the genuine research process while 
solving the first few questions. Similarly, the position of an exercise in the 
textbook is an indication de facto with respect to its solving.  
 The teachers can have access to a “teachers’ textbook.” However, if we exclude 
the re-transcription of the official programs and the exercise corrections from the 
textbook, their content turns out to be poor in general. In middle school,4 in 
mathematics, teachers seldom use this teachers’ textbook5 (things are less clear at 
the primary level6 for example, where the content is much more developed, and 
where teachers are generally not specialized in mathematics). 
 Therefore, group work sessions, long research sessions, or sessions where 
arrangements for special modalities need to be made (exchanges between students, 
debates, etc.) are hardly accounted for in the textbooks.  
 The paper format makes the appropriation or modification of the text by the 
teachers less natural (adaptation to the chosen approach, adaptation to students, 
etc.). Regarding this point, we can mention the novelty of the Sésamath textbook 
(Sésamath, 2006): the textbook is sold in paper form but is also entirely available 
in digital form with a format that allows all modifications (Sésamath website). 
 A third constraint is related to the stability of the practices related to textbooks 
(writing, use, manipulation…). The expectations of the teachers (who choose the 
textbooks), the representations of the authors or publishers regarding what should 
be included in a textbook, and the way to present things are strongly influenced by 
the omnipresence and homogeneity of the existing or previous textbooks. We can, 
for example, refer to the Sésamath textbook experience (Sésamath, 2006) which 
was designed by a significantly large group of volunteer teachers without any 
intervention from a publisher. We will show that the non-commercial aim of the 
project and the absence of publisher during the writing eliminate a large number of 
constraints; the textbook however remains mostly classical. The project was not to 
produce a revolutionary textbook, but the proximity of the results and the standards 
shows well an important stability in the representations and expectations.  
 Last but not least, there is a time constraint to the writing of the textbook. The 
changes in official programs usually follow an age group: the programs are for 
instance changed for grade six at the beginning of the 2005 school year, then for 
grade seven at the beginning of the 2006 school year, and so on until 2008 when 
changes are applied for grade nine. These official program changes go hand in 
hand with renewing the textbooks. The author teams are usually not overloaded7 
and hence work on one textbook at a time. They therefore have around a year to 
conceive the textbooks based on the official program. This one-year deadline is one 
the heaviest constraint applied to the conception of a textbook: not much back 
stepping or possibilities to go backwards, not much proofreading, very few 
experimentations, a lot of urgent work,  external collaborations and consultations 
are difficult to set up, etc. 
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 The relationships between publishers of a textbook8 and the authors are 
continuous: the publisher is present from the start of the work and follows the 
writing process in an uninterrupted9 manner. The structuring of the book, the 
layout of the chapters, the exercise sections, and so on, are also elements which 
interfere at a very early stage in the conception of the textbooks. They link content 
(which is mainly the responsibility of the authors) and form (which is mainly the 
responsibility of the publisher). Thus the work of the authors cannot be done 
without taking into account the constraints of publishing (and vice versa). The 
publisher has, in a central way, a commercial objective: s/he designs products, 
looks for clients (tries to seduce them despite the competition) and wants to sell. 
The quantity of sold products determines the profit made. We can for example 
refer to the fact that in 2008, there were no textbooks for the grade 1210 humanities 
track because the market was “too small.” From a commercial point of view, the 
“client” is easily defined: it’s the teacher who, within his/her team and once having 
received all the published textbooks, must choose the one that will be bought by 
the students of his/her school the next year. The “client” expectations are however 
difficult to define, the choice criteria not being explicit nor totally rational. “The 
publishers naturally seek, as a priority, the support of prescribing teachers; the 
textbooks are hence conceived in terms of the wishes of the teachers more than 
those of the institutions or the needs of the students. (…) If the publishers continue 
to propose, as they constantly claim, the product desired by the teachers, and if 
these same teachers prefer a safe product which reassures them in their habits, then 
how can pedagogical innovation be made?  (…) Reflecting on the textbook and its 
necessary evolutions must start from the needs of the students and not the wishes 
of the teachers” (Borne, IGEN,11 1998). 
 Appeal to a maximum number of teachers (regardless of their practices) and 
eventually get the students interested (which is reflected by “show the teacher that 
the textbook will be interesting to the students”) goes through a certain number of 
rules, as far as the publisher is concerned. An example: the principle of elaborating 
the most omnipresent textbook, and this for all levels, is that the principe of 
regularity. In order for the textbook to be “well done,” in order for it to be “user-
friendly to the students,” in order to reassure the teachers, all chapters “must” be 
structured in the same way (sections, number of pages, etc.). The irregularity of the 
types of notions considered is not really taken into account.  
 The mathematical content of the textbooks is framed by the official programs. 
These are commented and underlined through the “program accompanying 
documents” or the “program implementation documents.” Note that, in general, the 
official programs are issued one year before being implemented, and these 
accompanying or implementation documents12 are issued at a later stage, 
commonly after the publishing of the textbooks.  These are not the only constraints 
linked to contents of teaching. In fact, the mathematical contents impose layout and 
organization constraints; this is one subject of research in mathematics didactics. 
The choice of the type of task suggested, their declination into exercises, and the 
balance in volume between the different types of expected activities are also 
elements constrained by the addressed content.  
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 The work on the mathematic contents is mainly the task of the authors. Usually, 
the publisher’s influence is indirect, in particular through the rigidity of the layout 
or the time constraint. It could happen that the publisher interferes at the level of a 
exercise, or less commonly a chapter, refusing a certain way of presenting a notion 
(the official instructions argument is then negligible compared to, for example, that 
of the teachers being used to a certain way of doing, or being ready, or supposedly 
ready, or not, to accept certain changes).  
 Leeway is given to authors (and then users) of textbooks. During the elaboration 
of the textbook, the setting up of the team of authors (and the team of reviewers), 
and macroscopic editorial choices (ways of approaching programs, chapter 
division, etc.) are aspects for which constraints seem less pressing (excluded, 
always, the time constraints for reflection, experimentation, etc.). 
 Leeway during the writing phase is also important, especially when it comes to 
the “exercises” section of the book. In fact, the publisher focuses on the first parts 
of the chapters: e.g. introductory activities, lesson pages, solved exercises. We can 
put forward the following explanations: 
– The publishers refer to the teachers’ declarations, who say that a significant 

attention is given to the lesson pages and solved exercise (rigor, accessibility for 
the students, etc.) in the choice of their textbooks,13 

– The publishers (and teachers) have very few tools to analyze and evaluate an 
exercise or set of exercises. 

 Writing the exercises is hence essentially dictated by quantitative constraints: 
size of exercise given, number of exercises, and sometimes the possibility of 
illustration.  
 Of course, beyond the making-of of the textbook, teachers are allowed 
significant leeway. The work of Arditi (2011) explores precisely the variability of 
practices of teachers using the same textbook. The job habits don’t leave much 
choice with respect to buying or not a textbook, but it can be noted that certain 
teachers don’t use a textbook; they are self-produce the pedagogical material 
needed, or they use equality different textbooks, or other resources at their 
disposal, and the photocopier (Ben Salah Breigeat, 2001). The choice of textbook 
is an important aspect for which the criteria are rarely explicitly stated (there is no 
research about this topic nor any training, or only little). This is where the teacher 
plays his/her role of client for the publisher.  
 The main freedom for the teacher with respect of the textbook remains of course 
that of organizing his/her teaching. The way of using a textbook is beyond any 
doubt very varied. During the design of a teaching session or a sequence of 
sessions, the teacher takes ownership of the textbook, and reconstructs what s/he 
needs from what is suggested. During the teaching process, when s/he uses the 
textbook, the teacher also adapts the content of the textbook to the flow of the 
session, whether consciously or not.   
 Several fields of questions come to mind based on the notions discussed above. 
We can first wonder about the different effects of these constraints: is there a 
strong uniformity in the content of textbooks? Can we see some variations? We can 
wonder about the things that do not appear in the textbooks because of these 
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constraints. Reading between the lines is always difficult, but it is always possible 
to confront, from this point of view, the content of textbooks with the official 
programs. Identifying and describing a potential uniformity, or at least similarity, 
of the textbooks brings out the question of how to describe, or characterize the 
textbooks.  
 Considering what precedes, we can question in what way the textbook can be an 
efficient tool to diffuse research results and new teaching approaches: what 
textbook allows such transposition? What type of organization is required while 
writing?  
 Several questions are laid forward in what precedes: how to organize teaching 
contents over the year (as the author of a textbook, but also in a broader sense, to 
teach in class)? How to analyze teachers’ expectations while they choose a 
textbook, and then while they use one? Are teachers’ practices linked to the used 
textbook? How do students use the textbooks inside and outside the classroom?  
 The idea that mathematics textbooks are very similar to each other for a same 
class level and a specific time period is widely spread. The layout, number of 
chapters (typically between 15 and 20 chapters in middle school, each tackling a 
specific notion), and the division of each chapters into sections (typically 
“activities,”14 “lesson,” “solved exercises,” “direct application exercises,” 
“challenging/practice exercises,” all on around 20 pages) reinforce that impression. 
Moreover, we saw in the previous paragraph that several elements seem to concur 
with this standardization.   
 These declarations can be opposed by the fact that teachers mainly use the 
textbooks as a source of exercises, and that the elements mentioned above (layout, 
number of chapters, division of chapters, etc.) are essentially linked to the form: 
the choice of textbook can keep its meaning if we only rely on the content (choice 
of approach to notions, suggested exercises, etc.). It is important to note that the 
form is of course not without any link to the content: the division of chapters and 
the allocation of weight to a notion in a chapter does not allow for example, and 
very generally, the valuing of the work done on multiple notions (except in the last 
chapters, if the notions have been discussed in the order suggested by the 
textbook). Changing frames becomes rather rare, and when it happens, they seldom 
link two new notions. It is not rare that once a chapter is covered, the studied 
notion is only evoked once or twice in the rest of the textbook. What can be said 
then about the structure and organization of the student knowledge? 

ANALYSIS AND CHARACTERIZATION OF EXERCISES IN TEXTBOOKS 

In what follows, we propose to present a work methodology to tackle the question 
of similarity of textbooks, in a second time we present some of the results obtained 
(a more detailed account of the corresponding research can be read in Hache, 
2008).  
 We wondered, while limiting ourselves to the set of exercises suggested in 
comparable chapters, to what extent do the constraints described in the first section 
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of our chapter have a unifying effect on the content of the exercises in the 
textbooks. 
 Our choice to focus on the exercises has several justifications: 
– The teachers use several textbooks as a database for exercises (the textbook 

distributed to students as well as other textbooks that they have at their 
disposal). 

– We have seen that writing the exercises is one of the parts of the textbook where 
constraints imposed to authors are the least weighing hence this is where most 
of the diversity should be found, a priori.  

 We studied a given chapter in four textbooks. The methodological choices 
(choice of textbooks, choice of studied chapter, and as mentioned earlier choice of 
analyzing exercises in this chapter) have been made such that we increase the 
chances of finding differences between the textbooks. The notion studied through 
the analyzed exercises, proportionality, was chosen according to the following 
criteria. It is one of the notions traditionally studied in middle school, but the new 
programs give it a much more central position than before. Its approach has 
evolved with respect to the old programs, its study starts now more explicitly as of 
grade six. The organization of the chapter (the grouping of exercises for example, 
as well as their content) had to be “reinvented” by the authors: for example, the 
cross multiplication is not studied until grade eight although it used to be seen in 
grade seven. Since the position of the notion changing in the programs, the way it 
is handled in the textbooks cannot conform to pre-established canons. 
 The chosen textbooks are the following: Phare 5ème (Brault et al., 2006), 
Domino 5ème (Hache, 2006), Transmath 5ème (Malaval, 2006) and Sésamath 
5ème (Sésamath Ass., 2006). The choice was also made here so that it favors 
heterogeneity. Phare is a recent collection, for which the grade six edition was a 
major success among the teachers in 2005. Domino is also a recent collection 
written by a team of authors, among which some are researchers in mathematics 
didactics (but it had little success among grade six teachers). Transmath is one of 
the oldest existing collections, the grade six textbook was also a big success in 
2005. Sésamath is a new collection (no grade six textbook in 2005). The textbook 
is written by a team of around 30 teachers, it is available online for free (and sold 
in paper form, the publisher is not a school publisher but a publisher of educational 
and cultural CDs and software, the paper form of the textbook sold well in 2006).      
 At this point of our work, we have four complete sets of exercises from the 
chapter about proportionality, from four textbooks of grade seven edited in 2006. 
We will hence present the analysis method that has been set up in order to better 
understand the similarities, or on the contrary the differences, between these 
textbooks.  
 We analyze the proposed tasks in the textbooks with respect to the activities that 
we believe they generate for the students. In order to do so, we place ourselves in a 
theoretical situation where the student masters his/her lesson (in case of hesitation 
about the content of the lesson, we can’t refer to the teacher’s lesson, we refer to 
the lesson in the studied textbook), where he has taken ownership of the question, 
and where he wants to solve the exercise. 
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 In order to describe the possible student activities from the exercise given, we 
have used the classification of adaptations introduced by Robert (chapter 2). For 
each studied given, we have detailed the different necessary adaptations for the 
expected answer, while specifying the knowledge at stake. Hence, it seems 
important to specify and classify the different types of knowledge related to 
proportionality used in grade seven (whether they are directly related to this notion 
or used in parallel).  

Analysis of tasks: Mathematical content 

In this paragraph, we detail the way we analyze the mathematical content to be 
taught. This step is a prerequisite to the analysis of exercises.  
 Excerpts for national programs: 

Programs of grade six 2004 (Official bulletin special issue n°5 on Sept 9th 
2004): 
“Solving proportionality problems has already been done in elementary 
school. It is carried on in grade six, with new tools 
Handling “proportionality” problems, using appropriate reasoning, in 
particular: 

− using de image of one unity; 
− using a linearity ratio expressed, if needed, in the form of a quotient; 
− using a proportionality coefficient expressed, if needed, in the form of a 

quotient. 
Recognizing situations which are related to proportionality and those that are 
not related. Applying a percentage rate.” 

Programs of grade seven 2005 (Official bulletin No. 5 on Aug. 15th 2005): 
“Proportionality still has a central position; 
Completing a table of numbers whose values are only partially provided, 
which represents a proportionality relation. In particular, determine a fourth 
proportional;  
Recognize if a complete table of numbers is, or isn’t, a proportionality table. 

− Use proportionality in the following case: Comparer proportions, 
− Calculate and use a percentage, 
− Calculate and use the scale of a map or a sketch,Recognize a uniform 

movement from the existence of a proportionality relation between 
duration and distance, use this proportionality.” 

The skills studied in grade seven, through the filter of the textbooks, have been 
classified as follows. 

Recognizing a situation/ a proportionality table 
Many things in the textbooks remain as hidden knowledge of this domain. When 
this is the case, the fact that the situation is a proportionality situation by choice, by 
modeling, in order to make calculations, is always implicit. This will be a problem 
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in statements where proportionality is assumed whereas it could also be questioned 
(which is in general done in one or two exercises in each textbook). 
 An example of a situation where proportionality doesn’t go without saying: 

What distance does a snail travel in 2 hours 30 minutes at a speed of 14 meter 
per hour? (Transmath, No. 56, p. 99)15 

An example of calling into question: 

“Currently, the length of a day (between sunrise and sunset) decreases by 3 
minutes every day. What would be the total decrease within 30 days?” What 
is implied by this statement? Is it correct or wrong and why? (Transmath, No. 
46, p. 99) 

Similarly, the distinction between proportionality situation and proportionality 
table is sometimes blurry: 

A snail is moving on a branch. The total duration of its trip, in minutes, and 
the distance covered, in centimeters, are given in the table below.  

 Duration (in min) 4 6 9 
 Distance (in cm) 26 39 58.5 

1) a. Show that the movement of the snail appears to be uniform.  
b. Specify the proportionality coefficient of this situation.  
2) (...) 
b. What distance can the snail travel in one hour if its movement remains 
uniform? (…). (Phare, No. 70, p. 130) 

The use of the expression “appears to be” seems to indicate that the statement is 
emphasizing the fact that the proportional character of the table does not allow to 
prove the fact that the movement is uniform. The 2b) questions seem to imply the 
opposite. 
 Similarly: 

For exercises 14 through 19, state whether the table corresponds to a 
proportionality situation or not. If it does, specify the proportionality 
coefficient.  (…). (Phare, p. 124) 

We have labeled five skills related to identifying a proportionality situation (or 
table): 
– Being able to recognize the existence of a proportionality situation, or the strong 

presumption of existence (coded Rr); 
– Being able to identify (or propose) proportional magnitudes (coded Rg); 
– Being able to admit the proof of proportionality (it’s the case in many concrete 

situations) (coded Ra); 
– Being able to prove proportionality (calculation of quotients for a table, 

existence of a formula in a situation, existence of a uniform movement, of a 
scale …) (coded Rp); 

– Being able to prove non-proportionality (coded Rnp). 
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 Example: 

On the label of a one liter fruit juice bottle we read: 
Proteins:       0.4 g / 100 mL 
Average energetic value:      50 Kcal 

Copy then complete the following table: 
 
 
 
 

(Sésamath, No. 5, p. 76) 

This exercise requires, among other things, recognizing in this situation several 
proportionality situations (Rr), the case of lipids (upper bound) and of energetic 
value (50 Kcal / 100mL or 50 Kcal / L ?) are particularly delicate, they could be 
coded Rg. In all cases, the proportionality is eventually admitted (Ra). The last two 
categories are linked to proofs. 

Exploring a proportionality situation 
Proportionality whether given, admitted or proven, several explorations can be 
considered. We have distinguished the following cases: 
– The coefficient (or scale, or speed, or percentage…) being known, as well as 

one more value given, calculate the missing value  
° [Cmu] We multiply by the coefficient,  D 

x 
° [Cdi] We divide by the coefficient x 

D   
  
– Similarly, given a formula, knowing how to use it: 

° [Fmu] directly, 
 
° [Fdi] begin by inversing it. 

 
The use of the coefficient alone rarely appears in the textbooks. 
The use of formulas is not considered. Therefore, the work is focused on the 
following three skills: 
– [Coef] Two values are known, knowing how to 
calculate the coefficient 

D1 
D2 

– [QP] Fourth proportional. Three values are known, 
knowing how to calculate the fourth. Usualy, several 
methods are possible: calculation (then use) of the 
coefficient, using the image of one unity, multiplication 
of one “column” to obtain the other (the method can be 
imposed or not). 

 
D1 D13 
D2  

  

Proteins     
Lipids     

Energetic value     

x 

C 

C 



CHRISTOPHE HACHE 

126 

– [DonInc] Values to be completed: the known values are not enough to calculate 
the missing value (either they are “too many” values, or there are several missing 
values). A new skill emerges, for example: being able to use addition of “columns” 
(the method can be imposed or not). 

Other practiced skills 
In the chapters where the notion of proportionality is practiced, other skills are 
used or practiced. We retain the following groups of skills: 

– Graphs, tables 
Proportionality is practiced in grade 6 (and before) through the concept of 
proportionality between two magnitudes. The tables and graphs are also tools 
which are practiced in grade six (reading and interpretation, some constructions are 
considered). In grade seven, the proportionality table is introduced as well as how 
it is related to previously studied proportionality situations.  
 The link between the alignment of points with the origin of a coordinate system 
and proportionality can be seen without being required, it will be explicitely 
studied in grade eight. However, there exists a strong link between graphical 
representations of data and proportionality (proportionality between frequency and 
height in a bar diagram, between frequency and angles in a circular diagram, etc.).  

– Skills related to magnitudes 
We have distinguished between the skills related to converting different 
magnitudes (lengths, areas, weights, volumes, durations, speed), from the skills 
related to the notion of magnitude itself (recognize the magnitude at play, compare 
magnitudes without measurement or with an ad hoc unit). 
 Regarding this last point, it should be noted that the first magnitudes and their 
measures are studied starting elementary school (length, weight, capacity and 
duration are for example studied in cycle 2), angles and volumes are studied in 
cycle 3, and their measure is studied in grade six. The conversions of volume 
measures are skills in the process of being acquired during grade seven. 
 Speed has a special status: it is not studied on its own, only the idea of “uniform 
speed” is covered (as an example of a situation of proportionality relation between 
duration and distance). 
 The quotient magnitudes are introduced by the program in grade eight. 

– Skills related to context 
Many skills are used in solving exercises linked to proportionality. In addition to 
those mentioned above (related to magnitudes, graphs and tables) several old skills 
related to geometry are used (mainly drawings, measures, formulas, eventually in 
space geometry). In addition, manipulations of rounding, orders of magnitude, 
fraction notion, and percentages are carried out (notions studied in grade six).  

– Others 
Some exercises attempt to link the work on proportionality to the beginning of 
algebraic manipulations in grade seven. A textbook suggests some exercises using 
the scientific notation of numbers, which is a notion studied in grade eight. 
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Analysis of tasks: adaptations 

These adaptations are grouped into eight categories (see chapter 2): 
– SIT: simple and isolated tasks, these are tasks for which the student uses a skill 

without adaptation while solving. Ref. examples 1, 2 and 3.   
– A1: the student must recognize the modalities of the application of a skill in 

order to be able to use it. Ref. examples 2, 6 and 8. 
– A2: the student must introduce an intermediate item to be able to progress in 

his/her work. It could be placing a new point in geometry (or simply naming an 
existing point), doing intermediate calculation, etc. Ref. examples 3, 4 and 5. 

– A3: it’s about being able to relate several skills to each other, make a change of 
frame, link the work on new skills with old ones. Ref. examples 3 and 6. 

– A4: the given leaves it up to the students to introduce a new reasoning step. It is 
not uncommon that, for example, in exercises related to proportionality using a 
context, the hypotheses of proportionality be kept hidden, hence the student 
must theoretically decide or admit it. Ref. example 7. 

– A5: the answer to a question requires the use of a result established in the 
previous questions. 

– A6: choosing one method among many. Ref. example 8. 
– A7: working with skills that have not yet been introduced as is at this level, not 

yet formalized. Ref. example 9. 

Example 1 (it’s a Multiple Choice Question):  

 
(Transmath, n°60 p100) 

Proportionality is explicitely stated in the given. The question is specific  

 Here is a proportionality array. The missing coefficient is… 

and refers to a notion in the lesson. We can think that the absence of context allows 
an application of the lesson without any particular difficulty.  
The question was coded SIT-Coef. 

Example 2: 

The price of a pair of sunglasses has increased by 3.2€. Its initial price was 
40€. What percentage of the initial price does this increase represent? (Phare, 
No. 3, p. 122) 

The necessary numerical values are provided in the given, the student must 
however adapt his/her knowledge to the situation. The question was coded A1-QP 
(in fact, it has been decided to coded percentage calculations QP: they are 
introduced in grade seven as a calculation of the fourth proportional). 
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The distinction between SIT and A1 is done according to the context. The 
existence of a casing, the existence of examples close to the exercise situation in 
the lesson, the position of the exercise in the chapter are all elements which can be 
taken into account while deciding of the necessary qualification and adaptation for 
the student. 

Example 3: 

1st example: “Give a possible scale for a doll house which is 50 cm high.” 
(Domino, No. 39, p. 63)  

It is necessary at this point to introduce the order of magnitude of the size of a 
house (as we imagine it), and this was coded A2-Order of magnitude. Two other 
activities are coded for this exercise: the change of unit (A3-Length conversion) 
and the scale calculation once the real height is chosen and the conversions 
computed (SIT-Coef). 

Example 4: 

1. Represent by a circular diagram 
the distribution of the population by 
continent in 2003 

2. What complimentary information 
would allow you to complete the 
study?  

(Domino, No. 45, p. 64) 

 Distribution of the population by 
continent in 2003 

Continent Percentage 
Africa 13.6% 

America 13.7% 
Asia 60.7% 

Europe 11.5% 
Antarctica 0.5% 

 
To solve question 1), the student must introduce numerical data: in one way or 
another, s/he must introduce a line for the “Total.” This part of the question is 
coded A2-Total. 
 Just like the below exercise, s/he must decide of which measure to make in 
question 1) (This part of the question is coded A2-Measures). 

Example 5: 

The sketch of an apartment is given, dimensions a, b, c and d are coded. 
Length a is in reality equal to 17.2m. Determine the scale of this sketch. 
Determine the real lengths b, c and d. (Phare, No. 8, p. 123) 

Example 6: 

During a cross Atlantic sailing trip, the skipper has noted the caps in order to 
trace back the route he sailed. A broken line is drawn (6 segments, “Boston” 
on the left, “Lisbon” on the right).  
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a. What is, rounded to the nearest millimeter, the length of the broken line 
representing his route? 
b. His drawing is done at a scale of 1/600 000 000. What distance did he sail? 
(Sésamath, No. 14, p. 77) 

The student will probably realize the usefulness of converting the length unit in 
order to answer question b., conversions of lengths being old skills (reviewed in 
grade 6). This part of the question is coded A3-Length conversion. The use of a 
scale in question b. was coded A1-Cdi. Note that this is one of the rare cases in the 
studied set of exercises where the coefficient is used with only one value (Cdi or 
Cmu). 

Example 7: 

In a salted swamp, for each 1000 g of evaporated water we get 32 g of salt. 
a. Calculate the mass of salt obtained from 5000Kg of sea water. 
b. How much water must be evaporated in order to obtain one ton of salt? 
(Transmath, No. 17, p. 96) 

Even if undoubtedly the chosen model here is proportionality, it is still part of the 
student’s job to indicate that (and eventually be convinced of it). This part of the 
work was coded A4-Rr. 

Example 8: 

Below are the US Metric conversions:  
For length: 
1 yard = 0.9144 m 
1 foot = 12 inches  
1 yard = 3 feet  
1 mile = 1760 yard 

For mass: 
1 pound = 16 ounces 
1 pound = 0.4536 kg 

Express the height and weight of the students of the class using these units. 
(Domino, No. 69, p. 67) 

It is the student’s job to set up his work method in order to find the adapted units to 
the situation, and to make the corresponding calculations. This part of the question 
was coded A6-Magnitude.  
 It must be noted, that here also, the qualification as A6 can depend on the 
context. It is possible that while reasoning, a student might a have to make method 
choices, the adaptation can hence be classified as A1 for instance if the choice is 
very local and is made explicit and detailed in the lesson.  When an incomplete 
proportionality table is given, there exist, for example, several methods to complete 
it (calculating a coefficient, adding columns, etc.). This type is generally classified 
as A1.  
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Example 9: 

The speed of sound is 340 meters per second and that of light is 299 792 480 
meters per second.  
a. Express these speeds in kilometers per hour (…) (Sésamath, No. 28, p. 

78) 

The notion of speed and corresponding conversions of measurement units are 
studied in garde eight (coded A7-Speed). 

CONCLUSIONS 

In the work discussed above (Hache, 2008), we have tested, in the context of 
research in mathematics didactics, constraints and leeway perceived throughout the 
conception of a school textbook. We described in particular the methodology that 
was put in place to test the similarity between sets of exercises proposed in four 
French textbooks (for the chapter about proportionality in grade seven). For this 
purpose, we have analyzed each exercise in the textbook, detailing the different 
adaptations needed for solving it, linking them to the mathematical skills at work.   
 The conclusions can be of different orders. We can first ask ourselves whether 
the analyses made reinforce the impression of uniformity in the content of the 
textbooks for the reader, and thus by this means, question the effectiveness of the 
constraints perceived during the design. We can furthermore draw conclusions 
regarding the processing of proportionality in the textbooks: the analyses 
conducted allow us to distinguish the types of activities proposed to students… and 
certain activities which are not proposed.  
 Before concluding about these issues, we need to highlight the gap that exists 
between the analyses of the exercise statements in a textbook and the student 
activities in the classroom. Three important filters intervene between the two: 
– - The teacher, when preparing his session, assuming that s/he picks exercises for 

the students only from the designated textbook, will not solve all of them. 
Quantitative analyses including the set of all exercises are thus left with only a 
restricted meaning, an indicative value: this set of exercises corresponds to the 
offer proposed to teachers, the offer would be more interesting for certain types 
of activities possible for the students, and less interesting for others. The teacher 
could (or not) differentiate, in a certain way, these relative important notions 
while selecting the exercises.   

– - On the other hand, the teacher can modify the exercise statement. S/he can do 
it consciously and a priori, before proposing it to the students, but s/he will 
above all (and necessarily) do it during the teaching session. We can see in other 
chapters of this book that these modifications of the proposed tasks are usually 
in the sense of a simplification and a reduction of the adaptations which are left 
for the students. Refer to the work for Sara Arditi about this last point (Arditi, 
2011).  

– - Lastly, the study of the gap between the possible activity inferred from the 
analysis of an exercise statement and the actual activity of a student in the 
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classroom while working on this statement is a research filed still under 
development.  

 The analyzed exercises show that nevertheless, there are heavy and recurring 
tendencies while processing a chosen notion. We could allow ourselves to deduce 
some elements with respect to the teaching of proportionality. The objective of the 
study was more restricted and consisted in studying the proposed content in the 
textbooks, and estimate the similarity between textbooks.  
 Globally, even if the global “portrait” of the textbooks leaves some room for 
fluctuations (the perceived tendencies are well underlined), we can still observe 
some specificities for each textbook. 
 We can first detect that an important part (usually more than half16) of the 
possible student activities are about simple and isolated tasks (SIT): no adaptation 
is needed for the use of the intended skill. If we include the uses where students 
need to “simply” recognize the application modalities, we realize that in almost 
three quarters of the situations the skills are used without leaving any real initiative 
to the student: the work necessary for learning is thus mainly perceived as using 
skills without really taking any step back. This phenomenon is very stable in three 
of the textbooks and less clear in one of them (Sésamath), where the reasoning 
steps are, for example, left to the students (in fact, it’s mostly about introducing the 
idea that’s there’s actually proportionality).  
 Moreover, it can be noted that the skills related to proportionality and used in 
the exercises are mainly linked to the exploration of a proportionality situation 
(calculating missing values), and are barely linked to the questioning about the 
proportional character of the situation (the ratio is almost two thirds to one third). 
In this case also one of the textbook (Domino) is shifted compared to the others: 
more than half of the items are linked to the question of proportionality and not to 
the exploration of the situation of proportionality.   
 In these chapters about proportionality, many skills not directly related to 
proportionality are used: skills related to measures of magnitudes, to graphs, to 
tables, to geometry, to writing numbers, and so on. Globally, the proportion of 
skills linked to proportionality represents the majority, this phenomenon is found in 
three textbooks. In one of the textbooks (Domino), we find a more significant 
proportion (66% instead of 38% for the other three textbooks) of possible activities 
which use skills not directly related to proportionality. 
 The skills not directly related to proportionality vary from one textbook to the 
other depending on the explored situations. The contexts of exercises, the 
recommended tools, the skills used differ (scales, uniform speeds, percentages, 
graphical representation of data, etc.).  
 Beyond these variations, which lead us to believe that the leeway given to 
authors is only used in minimal way,17 the global portrait of the work about 
proportionality in the textbooks is very particular: using mainly calculations 
instead of explorations and exercises which are almost systematically guided (the 
student only having to take punctual initiatives).  Even we globally notice a relative 
variety of the tackled notions accompanying work done on proportionality, for 
each textbook the skills practiced are not many (even very few for Phare and 
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Sésamath). We detect through these analyses a relative absence of exercises 
allowing the student to take ownership of the question of proportionality for a 
given situation, to take the initiative in choosing the calculations to be done, the 
method to be followed, or the other skills that need to be mobilized.  
 Certain questions are asked with more acuity stemming from this work. Are the 
results found generally applicable? In particular, the small number of situations 
allowing the student to take the initiative for some adaptations would be reason to 
worry about the reality and nature of the possible learning from exercises. A study 
about several contents would allow us to make progress regarding this point.  
 It seems fundamental on the other hand to complete the above analyses in two 
directions: do the choices made by the teachers and the modifications made change 
the conclusions drawn above? In what sense? In what way, if need be, does the 
work of students on exercise statements, whether in the classroom or at home, 
compensate for the evoked gaps? 

NOTES 
1 We can refer to the thesis of Ben Salah Breigeat (2001) which focuses on the implementation of the 

practices of young teachers, and analyzes among other things the similarity between their discourse 
and that of the textbook used. The work of Robert and Robinet (1989) studies the meta-cognitive 
representations of authors of textbooks through exercises they propose. In parallel, the APMEP 
(association of mathematics teachers in public teaching) has guided several reflections about the 
textbook as an object.  

2 Mainly 11 year old students. 
3 Mainly 12 year old students. 
4 School grades six, seven, eight and nine (mainly 11 to 14 years old students). 
5 We can for example consider the revenue from selling these textbooks when they are proposed 

separately from the student textbook.  
6 Mainly 6 to 10 years old students. 
7 The Sésamath textbook is distinguished by the fact that is was designed by a group of around 50 

teachers (regarding the grade seven textbook). Several teams work in parallel and the deadline for 
elaborating a textbook is so far around two years. It should also be noted that the e-version of the 
textbook (can be downloaded) can theoretically be modified even after the paper form is published.  

8 The word “publisher” remains relatively blurry here. It designates at the same time a company, the 
people working in it, including but not exclusively those who work on a mathematics textbook. 

9 Note that nevertheless among current textbooks commercial marketed in middle school, two are 
distinguished with respect to this point of view: the Sésamath textbook, the editor participates a bit 
in the design. And the  Aventure math textbook (Busser et Massot, 2006) designed and edited by the 
team of a magazine (Tangente). 

10 Mainly 17 year old students 
11 General Inspection of  National Education. 
12 Official documents which complete, explain and enrich the texts of the programs. 
13 Paradoxically the teachers claim at the same time using exclusively lists of exercise in their daily 

practice. 
14 The word “activity” in the textbooks very generally refers to exercises that are to be done before the 

lesson to introduce it: revision, discovery and introductory exercises, etc. This meaning is different 
than that of the theoretical framework of this book. 

15 For more simplicity, we will name the textbooks by the collection names (and not by the author 
name), we will only indicate the grade level and year when it’s not a grade seven class in 2006. 
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16 For more quantitative data, see Hache (2008). 
17 The notion and textbooks were chosen in a way that maximizes differences between the textbooks 

(see above, the paragraph about methodology).  
 

Christophe Hache 
Laboratoire de didactique André Revuz 
Université Paris Diderot 
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JULIE HOROKS 

6. TEACHING PRACTICES AND STUDENT 
LEARNING: A CASE STUDY 

INTRODUCTION 

The following study is an example of the analysis of the relationship between 
teaching practices and student learning of a mathematical notion. In this research, 
we tried to describe in what way what is proposed by a teacher in class can 
influence student learning, using different tools to analyze tasks and mathematical 
activities previously exposed. 
 Our aim is to understand the effect of teaching practices on student learning of 
mathematics, for a given content. 
 In an attempt to specify this influence, we can discover more specifically, by 
comparing several possible class management choices, if there are conditions of 
student work that seem to trigger learning differently, while favoring for example 
the acquisition of a targeted property by a larger number of students. Are there 
certain ways of organizing class work which turn out to be more beneficial for 
student success? In case of failure, we can wonder about what was “lacking” for 
the students in class, among everything that was proposed by the teacher, which 
helped initiate their learning, and we can try to distinguish these types of lacks. 
 Naturally, we are not questioning the teacher’s work, and we will consider the 
different components of his/her job to explain certain choices made for his/her 
class.  

THEORETICAL HYPOTHESES OF OUR METHODOLOGY 

We focus our study on what actually takes place in the classroom and what remains 
accessible to research. We build our hypotheses on the activity theory, which 
explains our interest in activities that students have had the chance to carry out in 
class, and hence apprehend the subsequent student learning from the actual 
observed resolution of tasks in the classroom.  

Student activities as a way to describe teaching practices and link them to learning 

In order to describe teaching practices in the classroom, and consider them in light 
of the “progress” observed among the students, we systematically analyze what is 
proposed by the teacher (in particular the mathematical contents and real class 
management), and we attempt to evaluate the knowledge that could follow from it 
for the students, and then control this potential learning for all the students. Hence, 
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we can understand how these acquisitions (even if provisional or partial) depend on 
what has been previously done in class. 
 Actually, we only determine the possible activities (a minima and a maxima 
depending on the students), or presumably impossible for the class, but we can’t 
really tell what happens precisely with each student. We do not go as far as the 
actual activity of each student, and hence maybe not as far as what lacks 
individually in class. Nevertheless, we can link these possible activities with the 
success of each student through the evaluations conducted by the teacher and 
prepared by all that has been done in class. As a witness of the learning prompted 
by the observed teaching, we choose to retain the results of the students in the 
exam sanctioning the end of the chapter.  
 This study supposes being able to observe a whole set of sessions taking place in 
an ordinary classroom, while comparing if possible several analyses in different 
classrooms. In order to enable a comparison between several administered 
teachings, we have preferred to limit our observations to sessions covering the 
same mathematical notion. We have chosen to focus on similar triangles (in grade 
10), we explain this choice further below.  
 In order to bring to light the relationships between teaching practices and 
student learning, we seek to characterize what has been proposed by the teacher in 
class regarding similar triangles and measure its impact on students’ results in an 
exam covering this notion. By conducting an analysis of all the sessions of this 
chapter, we can, for each skill evaluated in the exam, rebuild – with a certain scale 
– the entire work proposed beforehand regarding this topic, as well as the work 
conditions. This will eventually allow us to identify the conditions that lead to the 
success of a certain number of students, by considering their exam results. 

The limits of the framework 

Obviously, learning does not occur only through what happens in the classroom, 
and we should particularly take into account the influence of a longer time span on 
student knowledge, by studying for example the exams given some time after in-
class sessions, which was not possible here. We must take into consideration other 
factors which could also influence student learning, such as external help which 
certain students resort to in their personal work, or the state of their previous 
mathematical knowledge, but also the level of the school and class, the social 
origin of students, etc. However, it would be impossible for us to measure the 
influence of these different variables, or even to observe them in order to analyze 
them. Through our methodological choices, we have tried to limit external factors, 
by choosing whenever possible, appropriate fields of observation. In particular, the 
choice of the notion of similar triangles allowed us to limit as much as possible the 
knowledge taught to the observed sessions. 
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A BRIEF ANALYSIS OF THE NOTION OF SIMILAR TRIANGLES 

In order to establish, from the observations, links between what happens in class 
and potentially generated learning, we needed to observe all the sessions about a 
whole chapter of the mathematics program, and then find a notion whose teaching 
can be limited to a reasonable number of classroom sessions. This choice also 
needed to allow us to minimize the contribution of previous knowledge, thus 
favoring a new notion for which the learning is essentially happening in the 
observed classrooms. Therefore, we have chosen to focus on similar triangles: 
triangles with identical angles and proportional sides.  
 Nevertheless, this choice is not without consequence. We can ask ourselves if 
the specificity of the notion – which has only been recently introduced in the 
programs at the time the observations took place – would have an influence on the 
observed teaching practices, and consequently on what could be lacking to students 
in class – in terms of justification or proposed tasks for example. An analysis of the 
chosen notion, as a mathematical object as well as a teaching object, appears to be 
indispensable to better understand the choices made by the teachers, but it does not 
exempt us from a discussion about the possible generalization of our results to 
other types of notions.  

Introducing the notion of similar triangles 

Similar triangles are defined as two triangles having two respectively equal angles, 
and with the property of having proportional sides: if two triangles are similar, then 
their sides are proportional. This definition and the corresponding property, 
respectively noted D and P, will be used subsequently in the task analysis of 
similar triangles. 
 In the supporting documents for the 2000 programs, similar triangles are 
associated to isometric triangles, for which several introductions are proposed, 
through the Euclidean equality, or using transformations. For similar triangles, 
which can be considered as an extension of this first notion, only the introduction 
using the cases of similitude is possible, the students not having the necessary 
knowledge about transformations at that stage (such as homothetic 
transformations). In fact, it is specified that no new transformation should be 
introduced to students during that year. 
 How, in light of these considerations, can we choose an introduction to the 
notion of similar triangles in grade 10? The absence of non isometric 
transformations in the programs does not allow other introductions than the one 
using the cases of Euclidean similitude, but we will see that this absence can as 
well cause some problems in the processing of the notion, particularly in what 
concerns identifying corresponding vertices.  
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The problem of identifying corresponding vertices 

In most exercises about similar triangles, it is necessary to associate corresponding 
vertices in geometrical figures, in order to be able to deduce the ratios between the 
different side lengths, or inversely, to associate corresponding sides in order to 
deduce angle equality. Yet, this approach, which often requires a preliminary 
identification, is not always obvious, particularly in certain geometrical 
configurations.  
 In the programs and accompanying documents, nothing is specified as to this 
issue, but it can be found in the textbooks as well as in the classrooms a form of 
writing that is supposed to make this approach easier, by placing the letters which 
refer to the corresponding vertices on top of each other. This actually allows a fast 
enough deduction of the ratio equalities between corresponding lengths. By 
contrast, in the other direction, to go from lengths ratios to angle equalities, the 
difficulty remains, if we want to give a method to identify vertices from the lengths 
ratios. The theorem that states that this correspondence exists does not give a 
technique to automate this identification. How can we thus give an algorithmic 
method of identification without using similitude?  
 This suspected obstacle will be detected in the classes that we have observed 
through the students’ difficulty in solving the problems which involve 
identification. Moreover, the teachers do not dispose of a technique which they can 
suggest to students. In fact, we did not identify any discourse about this topic in the 
observed classrooms, except for the use of the particular form of writing the 
vertices found in some textbooks. Here, we can question the possible link of this 
lack with the novelty of the notion in the curriculum. 

SOME METHODOLOGY ELEMENTS AND ANALYSIS EXAMPLES 

We now present the data that we have collected for our research, define the 
different variables retained for the analysis, and finally apply this methodology to 
an example from our work, to illustrate our methodology. For more details, see 
Horoks (2006). 

The data collected and their analysis 

We have filmed three teachers in their grade 10 classroom, throughout a chapter 
about similar triangles, in different schools. These observations were sometimes 
made without needing the presence of the researcher in the classroom (two out of 
the three observed classes), which allowed us to minimize the occasional 
disturbance, but given that we did not receive certain videotapes, we weren’t 
always able to draw precise information for all sessions.  
 We collected exam papers sanctioning the end of the chapter about similar 
triangles, after their correction by the teacher. We got some complementary 
information from the teachers, in particular about the level of the students in their 
class, in order to refine our interpretations of the exam results. We use these results 
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in order to evaluate the knowledge of the students following the observed 
classroom sessions.  
 Afterwards, two similar observations were conducted as part of a master’s thesis 
study (Cisse & Corlay, 2006). We took these into consideration to confirm the 
results that we were able to obtain with the other three teachers.  

Methodology to analyze the sessions 

Using the videotapes, we have noted and categorized all the tasks proposed by the 
teachers, through the exercises, about similar triangles. By looking at the details of 
the resolution of these tasks as led by the teacher in class, we try to define what 
parts of the tasks that are potentially carried out by the students in class.  
 We then compare the exam tasks with similar tasks proposed beforehand in 
class, and try to relate the success of students in some of these tasks with the way 
they took place in class. Therefore, we try to highlight certain ways of organizing 
the work which favor learning, for a big part of the students in the class, or of some 
of them only. 
 In order to be able to synthesize this large amount of data (we have collected 
several dozens of film hours in total), we have built analysis grids which we will 
present below through an example.  

Methodology to analyze tasks 

To analyze the tasks proposed in every exercise of the chapter, we will consider: 
– The complexity of the tasks, i.e. determining in particular if it is simple, 

isolated, or on the contrary if it requires adaptations of theorems from the lesson 
to be used; 

– The type of adaptation of the notion of similar triangles (ref. chapter 2), needed 
to solve the task; 

 A1. Recognizing (partially) knowledge application modalities (notions, 
theorems, methods, formulas, etc.): typical in geometry, recognizing the 
configuration(s) where Thales is used. This can include recognizing variables, 
notations, or recognizing formulas or theorem application conditions, etc. 
A2. Introducing intermediates – notations, points, expressions: typical in 
geometry, introducing a parallel line, or naming a point using Thales. 
A3. Mixing several frames or notions, changing points of views, frame changes 
or interplays, connections or interpretations, etc.: typical in geometry, using 
algebraic calculation to reach a result (for example, solving x² = 1 in the middle 
of a geometry problem). Problem texts that play on the graph/function 
automatically contain this adaptation.  
A4. Introducing steps, organizing calculations or reasoning (after repetitive 
(in)dependent use of the same theorem for a reductio ad absurdum argument 
invoking the theorem): typical in geometry, using four times Thales’ theorem in 
a non-independent way then its reciprocal. The steps can be classical (studying a 
function) or must be imagined.  
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 A5. Using previous questions in a problem. 
 A6. Having choices – imposed (only one way to do things after all) or not.  
We have taken into account other variables related to the studied notion, in 
particular previous knowledge that could interfere (geometrical or algebraic) and 
the geometric configuration within which is situated the exercise. We have this 
taken into consideration everything that seemed to have a possible influence in 
terms of student activities out of the suggested exercise texts.  

Analyzing tasks and activities through an example 

Below is an exercise proposed by one of the observed teachers to his class: 

(C) is a circle with center O and radius r, [AB] is a diameter of (C) and P is 
the point of [AB] such that AP=1/3r. A line d distinct from (AB) passes 
though P and cuts the circle at two points M and N. 
1) Show that the triangles APM and NPB are similar triangles. 
2) Deduce that PM xPN = 5/9 r² 

 To solve the first question of this exercise, we show that the two triangles have 
two equal angles, using vertically opposite angles, and the inscribed angle theorem. 
They are therefore similar. 
 Since two similar triangles have respectively proportional sides, after identifying 
the corresponding vertices we get: MP/BP = PA/PN, and so prove the intended 
equality.  
 Below is the task analysis that we conducted, using previously presented 
variables: 

Table 1. Analysis of the tasks of the exercise completed in class. 

 Configuration Knowledge Adaptation 

old new 

1) Circle inscribed angle D A1 

2) Circle algebra “without x” P A2 

 
 However, this first analysis does not precisely inform us about the tasks that are 
potentially completed by the students. Therefore, we should look at the actual 
resolution of the exercise in the classroom, to understand, for example, what the 
teacher has left for the students to do, and what s/he has taken in charge 
him(her)self. To conduct an analysis of the actual exercise resolution, we have 
taken into account: 
– The time spent on each task, and on the different steps of the same task. 
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– The forms of work adopted (whole class, group work or individual). 
– The help provided by the teacher, and the way it modifies the prescribed task (at 

what time of the activity does it occur, does it change or not its nature). 
 Finally, we are interested by the adaptations, autonomies, and initiatives left to 
the students, and which allow us to determine more closely their possible activities 
in class. For example, taking into account the moments of silence of the teacher 
indicates possible individual search by the students. Naturally, we consider them 
more as activities a minima and a maxima, since we suspect that the completed 
activities are not the same for all students. 
 Therefore, we present in Table 2, in the same grid as before, the information 
gathered about the actual resolution of the previous exercise in class, and we 
specify the moments of silence of the teacher, the nature of help provided (what it 
is about), the moment of intervention, and the more or less directive form they 
have for the students (when we can determine it). 

Table 2. Analysis of the actual resolution of the exercise in class. 

Task Actual resolution 

Silence moment Help 

nature moment Form 

9   1) 29 min from the start About the method After search Individual 

9   2) 15 min from the start About the method After search Individual 

 
 We conduct the same analysis for each exercise that was given in the three 
observed classes, and we complete a report of all the sessions about similar 
triangles. 

Considering the exam 

We then analyze the exercise tasks given in an exam, without analyzing the course 
of the exam this time, since for these exercises, students do not receive any help 
from the teacher. We then compare these exercises with those given in class and 
which might have better prepared the students for the final evaluation. Below is an 
example of an exercise given in the exam of the same class as before, followed by 
the solution: 

We consider a circle (C) and a triangle MNP inscribed in the circle. 
The bisector of angle NMP cuts [NP] at D and (C) at E. 
1) Show that triangles MNE and END are similar. 
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2) Deduce that EN² = EM x ED 

To solve the first question, we can show that the two triangles are similar because 
they have two respectively equal angles: one common angle and two angles equal 
by transitivity (using the bisector and the inscribed angle theorem), which allows 
us to say that by definition, the two triangles, having two equal angles, are similar. 
 For the second question, we identify the corresponding vertices (E, N, D and E, 
M, N) and we apply the proportionality of sides: EN/EM = ED/EN, which yields 
the desired equality, using the property of proportional sides in similar triangles.  

Comparison with similar exercises done in class 

We compared this exercise to all the similar exercises done in class, in particular to 
the “closest” one in terms of the retained variables (configuration, old and new 
knowledge, adaptation), and which could have – among other things – prepared the 
students for this exam exercise. Naturally, everything that was given in class could 
have prepared the students for the exam, and we try to take into account the work 
habits of a given class in order to better interpret the autonomies left to the 
students.  
 In fact, we will see in the next section that teaching practices are stable and 
coherent, and that we find the same type of choices in the actual resolutions of the 
tasks all along the chapter for a same teacher. 
 Regarding the exam exercise, it’s actually the exercise presented above which 
seems to be the closest to what was asked in the exam. In fact, the configuration is 
the same, though the one that was worked in class is bit simpler, since in the exam 
the triangles are “nested,” which does not make it easy to identify corresponding 
vertices. The associated old knowledge is also the same in both cases. Moreover, 
it’s an exercise for which the students have been let quite a long time to look for 
the answer. How will this work organization in class influence the results of the 
students for a similar exercise in the exam? We will look at the results of the 
students for this exercise and how to interpret them. 

Interpreting the exam results of the students  

In order to push further this interpretation, we wanted to check whether certain 
organizations were only beneficial to certain students. Therefore, we have divided 
the students into two categories, “good” and “weak,” based on their answers in the 
analyzed exam, as well as their results over the year, the assessment of their 
teacher, and their orientation for grade 11. We can hence, in this example, split the 
class into two groups of almost same size (16 “good” and 17 “weak” students). We 
remain however vigilant in the use of this categorization, since we do not know if 
the good students are the ones benefiting from certain choices made by the teacher, 
or if those who benefit from these choices become good students! 
 For the first question of the exam exercise, Table 3 sums up the comparison 
with the exercises completed in class. 
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Table 3. Comparison with the exercises completed in class –  
question 1 of the exam exercise. 

Exercises completed in class 3 exercises 

Configuration same as in class 

Previous knowledge same as in class 

New knowledge Identical 

Adaptation to the notion  in the exam  
compared to the one encountered in class 

Harder 

Type of class work long time to search for the 
answer 

 

 Out of the 25 students who have answered this question, only 10 have correctly 
applied the definition D, and these 10 are part of the group that we have named 
“good students.” So it seems the difficulty of the adaptation, which was higher in 
the exam compared to the class work, was an obstacle for a large number of 
students, and was only overcome by few good students. 
 By contrast, for the second question, where this time the type of adaptation was 
simpler in the exam (ref. Table 4), the results of the students are far better than 
those obtained in the previous exercise: out of the 25 students who answered this 
 

Table 4. Comparison with the exercises completed in class –  
question 2 of the exam exercise 

Exercises completed in class 3 exercises 

Configuration same as in class 

Previous knowledge same as in class 

New knowledge identical 

Adaptation to the notion  in the exam  
compared to the one encountered in class 

easier 

Type of class work long time to search for answer 
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question, 23 applied correctly the property P, among those were all the good 
students (16) and some of the weaker ones (7). It happens that the adaptation of the 
property expected during the exam was prepared by applications about the 
proportionality of the sides of similar triangles of higher level in class than in the 
exam. Moreover, in both cases, the students had longer time to search for the 
answer, so we can assume it could have prompted real activities about the new 
properties in question.  
 Another important observation that can be made, and that can’t be directly read 
from these first two results, is the difficulty of the sequencing between these two 
questions. In fact, it requires identifying the corresponding vertices in the triangles 
in order to correctly associate the lengths of the corresponding sides.  
 This offers us the chance to detect whether the students have assimilated this 
inescapable step. Many students here did not succeed in showing the similitude of 
the two triangles (question 1), yet they were able to answer successfully the next 
question, which followed from it. We can thus notice, by observing the adopted 
techniques in the students’ papers, that many rely on a certain type of “cheating:” 
certain students deduce the corresponding sides from the expected final answer 
about the lengths, and not by recognizing the corresponding vertices. This might be 
linked to the fact that the teacher has taken in charge this systematic step while 
solving the exercises in class. On the other hand, the distinction between the two 
steps - showing the triangles' similitude and then deducing the application of the 
proportionality of sides that follows from it - is systematically indicated, by usually 
being cut out into two different questions, in the exercise texts given to students. 
Hence, using similar triangles as a non-explicitly-indicated tool to calculate or 
compare lengths is never entirely left for the students to do on their own. This 
might be explained by the absence of elements about this topic in the school 
mathematics programs.  
 According to this example, it seems that analyzing tasks in terms of adaptation 
types is very appropriate to evaluate student learning. The work organization in the 
classroom, in this case a long individual time of search for the solution, with little 
or no intervention from the teacher, nor sharing, seems to have been only beneficial 
to few “good” students, allowing them to overcome, during the exam, the difficulty 
of a functioning level higher than the one completed in class. Finally, the difficulty 
linked to correspondence detected in our analysis of the notion seems to be proven 
for the students. 
 By conducting this same analysis for every exercise in the exam, we were able, 
by comparison, to draw conclusions about the relationship between the system 
{tasks + actual resolution} in class and the student learning. Moreover, by 
extending the same analysis to several grade 10 classes, with different teachers, we 
were able to confirm some of our results about the links that exist between what 
happens in class and the learning, as well as draw conclusions about the regularity 
of observed teaching practices.  
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OUR RESULTS ABOUT LEARNING 

Our results cover the links between what took place in the classroom and student 
learning, which was our initial concern, as well as – and it’s not negligible if we 
place ourselves in the perspective of analyzing teaching practices – the diversity 
and regularity of these on the notion of similar triangles. We present below both 
types of results. 

The success in exams linked to what took place in the three classes.  

We have chosen to compare the exams given in the three observed classes in an 
attempt to deduce the influence of the choices made by the teachers in terms of 
tasks and actual resolution, on the success of the students. 
 The results of the students are quite different in the three classes, and this is not 
surprising, given that the exams are not the same and our observation fields are not 
identical. In fact, it was intentional to conduct observations in schools with 
different levels, going from “average” to “excellent” – according to the observed 
teachers. Therefore, we cannot settle, for example, for looking for the class in 
which the exam was most successful, since this would not allow us to deduce the 
types of proposals, by the teachers, that contribute to student learning.    
 Instead, we can be interested, for each exam, in the exercises that are associated 
with the most success among the students, or on the contrary, the most failure, in 
order to link them in each case with what has been previously proposed in class. It 
is this relationship that we can efficiently describe in the three classes. 

The exam exercise that was mostly successful in the three classes 

Regarding the exam exercise which the students most successfully completed in 
each of the three classes we were able to note that it was in each case an exercise 
which was previously prepared in class, through applications more difficult than or 
as difficult as the one in the exam, and sometimes through a repetition of similar 
applications about new notions. In the three cases, it’s an exercise that requires 
applying the definition of similar triangles in its simplified version (two equal 
angles are enough for the triangles to be similar); in fact it’s the property that was 
most frequently applied in the classrooms in the proposed tasks. It is also the one 
that we find most commonly in manual exercises. In all cases, these are the 
exercises for which the students took advantage at least once from an individual 
work time. 
 Thus, it seems that the students are capable of carrying out on their own certain 
tasks when they have been previously exposed to them, and when they had to solve 
them alone, while they were associated to the same knowledge and in similar 
configurations as those of the exam.  
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The exam exercise that was least successful 

Regarding the exam exercise which the students least successfully completed, the 
comparison is not straightforward. These exercises more or less “failed” by the 
students are about different property applications. In Mrs. B’s class, it was an 
exercise for which no similar application was done in class, and the students’ 
failure seems to confirm our previous comment. We actually observe in the three 
classes that when the previous work is not as difficult as the one expected in the 
exam, the student fail significantly, regardless of the form of work adopted in class. 
This seems to indicate that students’ knowledge is not transferable to adaptations 
of higher difficulty, which takes us back to an observation made by Crahay (2000): 
at the end of the day, the students learn … what we teach them. However, by 
digging further, we realize that the exercises in the three exams that were least 
successful included questions that required a non trivial identification of 
corresponding items in the figure. This difficulty seems to be detected among 
students. It is not linked to the organization of the work in classroom by the 
teacher, but it’s still related to an important element of the choice made by the 
teacher, since we didn’t detect in any class a discourse or specific work about this 
identification. We need to look more precisely at how, in the exercises where such 
identification is essential, the task is dealt with. Do the students take the initiative? 
Or is it always indicated by the teacher, or by the ordering of the letters in the 
exercise's text? And how is the task corrected? During the analysis of the 
observations conducted as part of the DEA thesis of Cisse and Corlay previously 
mentioned,  the obtained results regarding the identification are very interesting: 
the two teachers had only proposed in the classroom exercises where the 
corresponding vertices were in the correct order in the text of the tasks, but not in 
the exam, composed by the researchers, and this identification was a major source 
of difficulty for the majority of the students, particularly one exercise where the 
letters were given for the first time in a different order.  

The exam exercise that had the most heterogeneous results 

We were finally able to consider the exam exercise for which the students obtained 
the least homogeneous results in each class, i.e. the ones for which there was a 
notable difference between the answers of the “good” and “weak” students, as we 
labeled them. In each case, it is an exercise which was prepared only through 
activities giving the students more autonomy: a work completed at home, or in 
class, but most importantly without intervention from the teacher during or after 
the activity. This seems to indicate that the autonomous student work is not equally 
beneficial for all students, which converges with the results obtained by Felix 
(2004). 
 In one of the three classes (Mrs. B), the exam exercise where the differentiation 
between the students was the most distinctive was prepared during a small group 
work session, so it was impossible to observe precisely for each student, or even 
each group, how the occasional and personalized interventions of the teacher could 
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have modified the nature of the activities. Nevertheless, we were still able to notice 
during this session the absence of collective intervention during and after the 
student work, and link this fact credibly to the heterogeneous results of the 
students. 

SOME OF OUR RESULTS ABOUT TEACHING PRACTICES 

In all the cases detailed above, the choices made by teachers regarding the 
organization of their teaching of similar triangles – whether related to the content 
and the variety of suggested tasks, or the course of the activities that follow from it 
– have had probable influences on the students learning of this notion. However, 
these choices are also subjected to certain constraints including those imposed by 
the programs, which we have already mentioned, and which should take into 
consideration to better understand the offer given to the students of these three 
classes about this chapter.  

Teaching practices about similar triangles: common points 

We find common points to the three observations conducted: for example, the time 
spent to cover the chapter, or even each new notion of the lesson. For the three 
observed teachers, we don’t find any discourse about the identification of 
corresponding elements, and little work about this difficulty, which does not seem 
surprising giving the absence of instructions in the scholarly programs, and the lack 
of exercises corresponding to this specific task in the manuals. This reflects in 
particular the importance of the institutional constraint which weighs on the 
teachers.   

The management of moments of task solving by the three teachers 

To refine our comparison, we have tried to look precisely, for a given task 
proposed by the teacher, at how his/her interventions redefined the initial task – by 
simplifying it or modifying it through the introduction of new elements – which 
could have therefore lead – again a minima and a maxima – to constituting the 
activities of the students about this set of sub-tasks. This allowed us to determine in 
particular what has been taken in charge by the teacher, as well as what has been 
left as autonomous work for the students. By conducting this analysis for each of 
the proposed tasks, we can get a more precise idea of the possible activities of the 
students in a class, as well as an insight of the teaching practices about this notion.  
In the three classes, such an analysis for all the tasks shows us that the 
simplification of an initial task is systematic, but does not interfere at the same 
rhythm, nor with the same frequency, depending on the teachers and the proposed 
tasks. However, for a same teacher, this modification of the task is always carried 
out following the same model, all along the chapter.   
 For example, for Mrs. B, this simplification interferes quite early in the course 
of the student activities, and they have enough time, especially after the shoring of 
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the exercise or the correction, to complete simple and isolated tasks, or to write the 
correct answer. Conversely, Mrs. P doesn’t interfere except after an autonomous 
time of search for the students, and thus potentially leaves complex tasks to the 
students, with a much higher level of adaptation than in the other classes. Finally 
for Mrs. M, the tasks proposed in class, although more complex initially, are 
quickly simplified, and the students only get a time of search for the most difficult 
questions while working at home.  

The limits of our study 

It isn’t easy to interpret the influence of these choices on the results of the students, 
since they also depend on external factors, such as the level of the school. The 
results of Mrs. F’s students are very good, despite the little actual work done in 
class concerning the mathematical difficulties of the chapter. How can we thus 
explain that the exam was successful despite all? 
 Therefore, we compile the report for the complexity of the proposed tasks in 
each class, as well as the tasks that are left for the students to do in class after the 
simplification by the teacher, or to be done at home, and finally the tasks of the 
exam. This report is summarized in table 12.  
 We notice that in Mrs. F’s class, the possible activities of the students 
correspond least to the tasks initially proposed – and this reinforces more the 
legitimacy of the fact that not only the tasks should be taken into account, but their 
actual resolution as well to infer consequences about the potential learning. The 
gap between what is proposed and what is potentially completed by the students in 
class has a very likely influence on their aptitude to solve complex tasks, but this 
influence cannot be evaluated by the exam proposed by the teacher, since the latter 
only includes simple tasks.  

Table 5.  Complexity of the tasks proposed by the three teachers. 

 Mme B Mme P Mme F 

School level weak good very good 

Tasks in class simple complex complex 

Part left up to the 
students 

simple tasks complex tasks simple tasks 

At home simple simple or complex complex 

In the exam complex complex simple 

Results of the students average and heterogeneous good good 
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 This is one limit of our study, the fact of not having participated in the 
elaboration of the exam text, but the time constraints that weigh at the same time 
on the researcher’s work as well as that of the teacher did not allow us to analyze 
all the observed sessions before the exam, fast enough so that the latter would take 
place soon after the end of the chapter.  
 The stability and coherence of the observed practices still allow us to draw 
conclusions about the links with student learning, even if we can only rely on this 
one chapter. Obviously, it would be necessary to extend this study to other 
mathematical notions, to determine in what way our results are specific to the 
chosen notion.  

CONCLUSION ABOUT THE PRACTICES AND THE LEARNING 

A first lack in the teaching of similar triangles in these three classes – a lack that 
we had detected as early as the analysis of the notion – is the one linked to the 
scholarly programs and manuals, and this is regardless of the choices of the 
teachers concerning class management. In fact, the problem of corresponding 
elements is above all linked to the gap in the programs (relayed by the manuals) 
which does not allow the teacher to offer the students a systematic method of 
identification, and even less a mathematical justification of the technique 
potentially indicated. Perhaps there would be one using transformations? 
 A prospective limitation is the reduced variety of tasks proposed to the students 
compared to the possibilities. In the classrooms, certain applications are little, or 
not at all worked on, and this can be related to the incapacity of the students to 
complete them on their own afterwards, during the exam. This can be once again 
related to the institutional constraints: at the same time the necessity to respect the 
advised times, and also the impossibility to pick adequate exercises in the manuals, 
where we find, to a more or less large extent in the textbooks, this same lack of 
diversity.  
 By considering what was really allotted to the student, in terms of entering the 
task, as well as adaptation of the theorems, we notice that the possible student 
activities do not always reflect the proposed tasks, considering the teacher 
interventions. In fact, two of the three teachers reduce, for certainly different 
reasons, the activities of the students to working on simple and/or isolated tasks. 
This dimension actually allowed us to interpret the exam results, even though we 
didn’t choose its text. 
 Last but not least, we were able to identify absent elements in the discourse held 
in each class, for example the validation discourse: the lack of institutionalization 
for Mrs. B, following a small group work session, could eventually act as a brake 
for the learning of the less good students.  
 

Julie Horoks 
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AURÉLIE CHESNAIS 

7. THE STUDY OF A SCENARIO AND ITS 
IMPLEMENTATION IN THE CLASSES OF TWO 

DIFFERENT TEACHERS  

Comparison of the in-class events  
and the effects on the work of students in exams 

INTRODUCTION 

In this chapter, we compare the implementation of a same teaching scenario about 
orthogonal symmetry by two experienced teachers (we will name them Martine 
and Denis in what follows) in their respective grade six1 classes, Denis being a 
teacher in an Education Action Zone2 (a.k.a. ZEP).  
 The study we present here fits into the general theoretical framework exposed at 
the beginning of this book. Our specific aim is to contribute to the study of 
regularities and variability of practices between teachers, as well as to the one 
regarding the relationship between teaching practices and student learning. We also 
try to link these elements with the logic underlying the teachers’ practices from 
traces that we perceive in the analyses.  
 We begin by specifying the methodological elements that we have retained for 
our study. Next, we present the characteristics of orthogonal symmetry that we 
have retained for the study of the scenario, before we present the latter. We then 
compare the events in the classrooms of Denis and Martine, during the 
implementation of this scenario. Analyzing student works in exams and linking 
them to the analysis of the class activities allows us to explore the effects of the 
practices on the learning of students.  

ELEMENTS OF METHODOLOGY 

In accordance with the theoretical framework described in the first chapters of this 
book, student activities are central to our analyses, as intermediates between 
teachers’ practices – of which they are partly the consequence – and students’ 
learning – which they are likely to induce.   

Studying the object of teaching 

Exploring student activities requires a preliminary study of the targeted object of 
teaching – here, orthogonal symmetry. It implies considering epistemological, 
didactical and curricula elements. This study allows us to determine the different 
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dimensions that permit characterizing a teaching scenario of orthogonal symmetry 
in grade six in France.  

Analyzing the scenario 

The scenario designates here, like in previous chapters, the project conceived by 
the teacher before the classroom sessions. It includes the set of exercises and the 
lesson the teacher intends on presenting to students.  
 The a priori analysis of exercises and lessons as well as their articulation aims at 
determining activities which they are likely to induce for students. We “convert” 
the text of the exercises into mathematical tasks and establish solving procedures 
that the students may implement to complete these tasks. A possible solving 
procedure is characterized by the mathematical knowledge it mobilizes, as well as 
the adaptations (chapter 2) needed for their functioning, the geometrical paradigm 
(Houdement & Kuzniak, 2003) to which it refers, the misconceptions about 
symmetry that are likely to interfere in the solving, and finally the means of control 
of the validity of their procedures at the disposal of the students. Hence, we take 
into consideration the position of the tasks in the scenario from two perspectives: 
the knowledge already available to students at this point and the function of the 
task within the scenario. 
 The tasks of the scenario are therefore classified into four categories:3 tasks for 
recognizing properties of a figure (axes of symmetry, etc.), construction tasks 
(symmetrical of figures, axes of symmetry, perpendicular bisector of a segment, 
etc.), proving tasks (justifying a statement using properties of a figure), and 
drawing tasks (for example freehand drawing).  
 This a priori analysis of the whole scenario allows us to make a first prevision 
of the set of activities it is likely to induce for the students, thus giving access to 
the cognitive itinerary elaborated by the teacher.  

Analyzing the in-class events 

The analysis of the observed class period is also guided by the search for the 
characterization of possible student activities. It should be reminded that real 
activities are not accessible, mainly because part of them happens inside one’s 
head, but we can rebuild possible activities a minima and a maxima using 
observable traces of real activities (oral interventions of the students and the 
teachers, written traces in notebooks, etc.). 
 Our analyses of classroom sessions are therefore centered on identifying traces 
of student activities, as well as anything that could influence these activities: 
modifications – reductions or enrichments – of initially prescribed tasks. For 
example, a reduction of a task may come from a hint given by the teacher when 
presenting the task thus triggering a procedure strongly; similarly, if the teacher 
adds a justification request for an answer, this can enrich the task.  
 We proceed from videotapes of the sessions, which are transcribed and 
completed by the teacher documents (course preparation, exercises, etc.). Using the 
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transcriptions and videotapes, each session is divided into episodes. We distinguish 
five types of episodes: exercises, lessons, corrections – of works completed at 
home or during a previous session – lesson recitation/recalling, other; the division 
matches teacher interventions (such as: “we correct the exercise that was 
assigned”, “now, we move to the lesson notebook”). 
 We then divide each episode into phases depending on the form of the work – 
individual, small groups, whole class – and its nature (a certain task, a certain 
lesson statement, answering a given student question if it produces a development, 
etc.) determined through the teacher’s questions and the students’ interventions.  
 The retained indicators for the analysis are: time allocation in terms of the forms 
of work, the nature of the work and its distribution in terms of the forms of work, 
and finally the part of the work which is left for the students to complete.  

Analyzing students’ works in exams 

Exams are graded evaluations conducted in class. We consider students’ works 
during these evaluations as traces – definitely imperfect – of the attained learning 
following the received teaching. 
 Each work leads to a coding of 0 and 1. It is considered as a success (coded 1) if 
the work contains a trace of the knowledge which is expected to be mobilized to 
solve the task, even if the solution is incomplete or wrong. For instance, at this 
school level, for tasks requiring to justify the length of a segment knowing that of 
its symmetrical segment, the main purpose is to evaluate if the student mobilizes 
the property of conservation of lengths by orthogonal symmetry rather than 
actually measuring the length: we hence coded 1 any work that mentions this 
property, even if the answer is not well written or if the student doesn’t explicitly 
mention the symmetry of the segment extremes (an element required by certain 
teachers). We coded 0 when there was no trace of the expected knowledge, 
including when the task was not started.  
 This coding for each student and each task thus allows us to calculate success 
rates, as percentages of 1s with respect to the whole or to groups of tasks, for a 
given student, or for the whole class for a given task, or group of tasks. Hence, the 
success rate for a group of tasks represents at the same time the average number of 
students having succeeded in the tasks and the average number of tasks achieved 
by student.  

The data of the study 

The scenario that we present here is the one elaborated and implemented without 
any intervention from the researcher during the school year 2006-2007 by Martine. 
As part of a particular experimental system (Chesnais, 2009), it was transmitted to 
Denis who implemented it in his own class during the following school year 2007-
2008, with the support of the researcher.  
 We have videotapes of all the sessions devoted to orthogonal symmetry by both 
teachers, so for each teacher a dozen of sessions each around one hour long.  
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 As for student works in exams, we have those for a round twenty tasks in each 
class, spread over three exams for Denis (during the teaching, at the end of the 
teaching, and few weeks after the end of the teaching of the notion), and two exams 
for Martine (during and at the end of the teaching).  

THE CARACTERISTICS OF THE TAUGHT NOTION 

Epistemological aspects 

Orthogonal symmetry is not only a mathematical concept; it is also an object of 
shared culture in the society. According to us, in the second case, this covers the 
perception of a bilateral ‘approximate’ symmetry with a vertical axis, without 
however associating it to the underlying mathematical notion; we thus speak using 
Vygotski’s terminology of the everyday concept of symmetry, as opposed to the 
scientific (mathematical) concept.  
 The scientific concept is nowadays defined as a geometrical transformation; 
however a study of the historical genesis of the concept shows that it is first and 
foremost associated with the harmony, the equilibrium of a figure or object. We 
thus distinguish two aspects of symmetry, which we describe as static and 
dynamic.4 The first refers to the properties of a figure, the second to the 
transformation, i.e. the relationship between two sets of points (eventually 
overlapping). In the everyday concept, the static aspect is omnipresent, whereas the 
idea of transformation, movement or displacement, is almost absent (it is limited to 
an association with the folding which allows superimposing two parts of a figure). 
However, in the mathematical concept, ever since orthogonal symmetry was 
defined as an element of the group of plane isometries, the transformation pre-
exists somehow, since the existence of axes of symmetry in a figure is nothing but 
the corollary of the existence of an orthogonal symmetry which preserves it 
globally.  
 What is targeted by the teaching is, eventually, the scientific teaching and the 
syntheses of the static and dynamic aspects. However, the everyday concept can 
play the role of a lever or an obstacle. For example, the idea of an axis of symmetry 
as splitting a figure into two identical matching parts, linked to folding, prevents 
from understanding that the image of a figure can be the figure itself. This makes it 
impossible to access the second level of apprehension of transformations (Grenier 
& Laborde, 1987) that is the symmetry as an application of the plane onto itself, an 
involutional bijection whose axis points are invariant points – the first level 
consists in considering the transformation through its action on the figures.  

Didactical aspects: Alternative conceptions 

Grenier (1988) has identified several conceptions of symmetry that are expressed 
through theorems-in-action (Vergnaud, 1990) with limited validity domain. We 
describe them as alternative conceptions and we retain three of them: 
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– Orthogonal symmetry as transformation from a half-plane onto another. This 
conception is linked to the everyday concept (mainly through the folding and 
mirroring). It is associated with the idea that this transformation only works in 
one direction (most commonly, downwards or left to right). It represents an 
obstacle to the conception of the symmetrical of a figure cut by an axis as well 
as the definition of the symmetrical of a point using the perpendicular bisector 
of a segment, given that the latter is “meaningless” through this conception.  

– The confusion with other geometrical transformations. Students sometimes 
build the symmetrical of a figure touching the axis by central symmetry around 
the contact point or by translation; or even recognize an axis of symmetry on a 
figure that does not have one but has a center of symmetry instead (such as a 
non rectangular parallelogram for example). 

– The conceptions linked to special cases of vertical and horizontal axes. In 
particular, they lead to the construction of the symmetrical of a point on a same 
horizontal line as the point, despite an oblique axis, or by only noticing the 
vertical and horizontal axes of symmetry on a figure. Together with the 
confusion with the central symmetry, this also implies theorems-in-action such 
as “a segment and its symmetrical are supported by the same line.”  

 Overcoming most of the alternative conceptions and completing a synthesis of 
the static and dynamic aspects requires a (re-)definition of the symmetry without 
the folding tool. Furthermore, the work of Grenier (ibid.) gives evidence of the 
resistance of these conceptions despite the teaching. Moreover, the organization of 
a specific work seems essential to allow the students to overcome them and favor a 
scientific conceptualization of the notion.  

The teaching curriculum 

The current curricula of grade six in France, at the time of our study,5 regarding 
geometry, are organized around the progressive introduction of geometrical 
transformations and the objective of transiting from an essentially perceptive and 
instrumented geometry to a deductive geometry – which we reformulate using 
geometrical paradigms defined by Houdement and Kuzniak (2003) as a transition 
from a geometry labeled natural (geometry 1) to a geometry labeled natural 
axiomatic (geometry 2). 
 These curricula stem from those of 1985, with some modifications; in particular, 
regarding orthogonal symmetry, it was clearly indicated that the static aspect must 
be (re-)defined as the invariance under the transformation: 

Depending on the situations, [orthogonal symmetry] will appear under the 
form: of the action of a given axial symmetry on a figure; of the presence of 
an axis of symmetry in a figure, that is an axial symmetry which preserves it.  

However, this indication has disappeared, leaving uncertainty regarding the way 
the two aspects should be approached. The competencies about orthogonal 
symmetry targeted in the 2005 curricula are essentially linked to the constructions: 
this seems to indicate at first sight that the focus is on an instrumented geometry, 
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but the construction of the symmetrical of a figure on plain paper without folding 
or using tracing paper requires, mainly for polygons, constructing the symmetrical 
of the vertices using the straightedge and compass – or only the compass –, then 
linking the obtained points: these constructions rely on the definition of the 
symmetrical of a point via the perpendicular bisector and on the conservation 
properties (of lengths and angles).  
 It seems possible to interpret these curricula in different ways. In fact, they 
recommend on one hand an “experimental work (folding, tracing paper)”, which 
places the problem in the geometry 1 frame, and on the other hand a work on the 
properties of symmetry and the definition of the symmetrical of a point, which 
pertains to geometry 2. The articulation to be done between the two and the 
objective in terms of the apprehension level of transformations (Grenier and 
Laborde, ibid.) that must be targeted remain vague. 

Overview of the study of the notion 

There are several possible scenarios and the curriculum does not allow making a 
definite choice among them. A scenario is then characterized by the choices related 
to: taking into consideration the articulation between everyday and scientific 
concept – the second one must progressively replace the first; the share of 
perceptive, instrumented and deductive work; the link to be established between 
the static and dynamic aspects – aiming at the articulation of the two; and finally 
the way it deals with the alternative conceptions – aiming at their disappearance in 
fine. 

PRESENTATION OF MARTINE’S SCENARIO 

Due to lack of space, we cannot present the scenario in a comprehensive way. That 
is why we only present its chronological structure, followed by the way the 
different dimensions – mentioned in the above overview – are updated throughout 
the scenario.  

Chronological structure 

Martine’s scenario is organized into three parts:  
– The first introduces the symmetry in its dynamic aspect and includes the 

characterization of symmetrical figures as superimposed through folding, then 
the definition of a symmetrical of a point,6 the construction of symmetrical of 
figures (points, segments, half-lines, lines, circles) and the conservation 
properties (of alignment, lengths, areas, angles, parallelism, and orthogonality).  

– The second part is about the static aspect of symmetry and includes looking for 
symmetry axes of geometrical figures on one hand (segment, line, angle, special 
triangles, special quadrilaterals, circles), and of figurative drawings (for example 
a house) on the other hand; it includes a “method to determine if a figure has an 
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axis of symmetry” and ends with an exercise about finding common figures 
having a given number of axes of symmetry.  

– The last part covers the notion of perpendicular bisector of a segment and links 
the two aspects of symmetry. It includes the definition of the perpendicular 
bisector as a line perpendicular to a segment at its midpoint as well as the fact 
that it is an axis of symmetry to the segment. We also find the property of points 
of the perpendicular bisector being equidistant from the endpoints of the 
segment (direct and reciprocal), used mainly to carry out and justify the 
construction of a perpendicular bisector of a segment and of a symmetrical of a 
point using a compass. It ends with the reformulation, using the perpendicular 
bisector, of the definition of the symmetrical of a point and with exercises 
involving simultaneously several elements of the chapter as well as previous 
knowledge.  

 The scenario is thus clearly organized around the dynamic and static aspects of 
orthogonal symmetry, introduced successively. Starting with the dynamic aspect 
allows the redefinition of the static aspect using global invariance (however this 
does not appear explicitly a priori). Lastly, the fact that the third part is designed to 
link the two aspects, in particular through the notion of perpendicular bisector, 
shows that the scenario is guided by the requirement of a certain mathematical and 
didactical coherence. 

Mathematical concept and everyday concept 

The scenario revolves mainly around the mathematical concept. The place of the 
everyday concept is not very important, and the transition from one to another is 
partially supported. The first exercise of the chapter refers to the everyday concept 
of movement (via the displacement of a tracing paper) in order to characterize the 
orthogonal symmetry by the folding and/or the turning over of the tracing paper. 
The introduction of the definition of a symmetrical of a point with respect to an 
axis (as a point such that the axis cuts the segment perpendicularly at its midpoint) 
is based on the above characterization: we believe this contributes to articulating 
the everyday concept and the mathematical concept. However, in the work about 
the axes of symmetry (second part of the scenario), the recognition and drawing 
tasks include figurative drawings, usually in one block: the intervention or not of 
the mathematical concept in solving these tasks seems very dependent on how the 
course is led (for example if the teacher asks for justification or not), as the axes 
can be identified by mobilizing only the everyday concept.  

Dynamic and static aspects 

The structure of the scenario shows that the articulation of the two aspects is one of 
its main objectives, and that it is handled in a very organized way.  
 To start with, certain exercises allow working on the articulation between the 
two aspects. For example, one of the tasks consisting in “complet[ing] a figure so 
that it creates an axis of symmetry” allows linking the notion of an axis of 
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symmetry with the construction of the symmetrical of a figure. Next, we find 
exercises where a figure and its symmetrical are partially overlapping (for 
example, one of the tasks is to construct the symmetrical of a segment with respect 
to a line which is perpendicular to it at a point distinct from the midpoint). Finally, 
certain tasks, after having constructed a symmetrical, consist in proving a property 
of a figure formed by two elements situated on both sides of the axis (for example, 
students are asked to justify the nature of a triangle ABA’, where A’ is constructed 
as the symmetrical of A with respect to a line passing through B). Yet, as we have 
specified previously, these tasks are designed to alter the conception of 
transformation from a half-plane onto another: they thus favor the mathematical 
conceptualization of the symmetry and prepare the transition to the second level of 
apprehension of transformations.  

Levels of apprehension of the transformation 

The symmetry is introduced as an action on figures that is at the level 1 of Grenier 
and Laborde (1987). The symmetrical of a point is then studied as the symmetrical 
of a particular figure which is used to establish a construction method for a more 
complex figure. The scenario thus mobilizes the transformation between the first 
and second levels of Grenier and Laborde (1987), in compliance with curricula 
indications. For example, the conservation properties (mainly the conservation of 
lengths and angles) are evoked since the very first exercise, that is in the case 
where the apprehension of the figures remains global, then it is worked out again 
with the symmetrical constructions and the proving tasks which mobilize them in a 
more local apprehension of the figures.   

The interplay between geometrical paradigms  

The structure of the scenario itself seems to be underlined by a theoretical 
coherence related to the mathematical concept – thus to geometry 2 – in the sense 
that the set of symmetrical constructions and proving tasks, for example, are based 
on the definition of the symmetrical of a point and the properties of symmetry 
established in the lesson.  
 Moreover, the initiation to deductive reasoning constitutes an important object 
of the scenario. In fact, first of all, the tasks of proving (requiring precisely, most of 
the time, such a type of reasoning) represent 20% of the tasks of the scenario; then, 
this initiation is explicitly taken in charge via a sequence of exercises, in the first 
part of the scenario: it is about leading students to justify a statement by using the 
properties of a figure and to thus clarify the “rules of the mathematical game” – in 
particular the invalidity of measurement or perception in this type of tasks. Certain 
construction tasks also contribute to the transition towards geometry 2: for 
example, the students must develop themselves the method of construction of the 
symmetrical of a point, starting from the definition. This type of work seems to 
pertain precisely to geometry 2, whereas the construction tasks often consist, in 
grade six, in applying a procedure, the main challenge being the mastery of the 
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instruments – a work that is more related to geometry 1. In addition, what is at 
stake in most of the construction tasks of the scenario is the mastery of the 
construction of the symmetrical of a point in complex configurations (i.e. where 
the figure is not limited to the point and the axis of symmetry, where the 
construction eventually requires involving a reasoning or is likely to involve 
alternative conceptions): the construction of the symmetrical of a point is thus not 
targeted for itself, but is rather the means to a more elaborate work on the concept.  

Alternative conceptions 

They are taken into consideration in two ways.  
 On one hand, certain tasks have a clear objective to bring out and question some 
conceptions. Thus, an exercise consists in “finding the mistakes” in the drawing of 
symmetrical or non symmetrical figures; for example, when the drawing is made 
up of two parts such that one of them is obtained by a transformation other than 
orthogonal symmetry, then the work focuses on the confusion with other 
transformations. Similarly, certain constructions of symmetrical of figures cut by 
the axis can be an opportunity to question the conception of transforming from a 
half plane onto another.  
 On the other hand, particular cases – mainly those related to vertical and 
horizontal axes – are not overrepresented in the first and third parts of the scenario. 
In particular, in the third part, they are almost absent: we believe this can either 
have as a consequence overcoming these alternative conceptions, or it can allow 
alternative conceptions relating to special cases to coexist with correct conceptions, 
their respective application domains being different. In fact, we can think that the 
effect varies depending on the students, on the particular alternative conceptions 
and on the tasks. As for the transformation of a half plane onto another, it seems 
that the focus of the work on the mathematical concept and the important number 
of tasks through which this conception is questioned would allow overcoming it. 
Nevertheless, in the second part of the scenario (the one that handles axes of 
symmetry of figures), the geometrical figures are often presented in stereotyped 
positions (for example, the rectangle with parallel sides on the edge of the paper) 
and the figurative drawings are such that almost all the axes are vertical or 
horizontal. Yet, Grenier had pointed out in her work that it is precisely in the case 
of figures that the associated alternative conceptions arise the most and not in the 
case of points. This part of the scenario thus exposes to the risk previously 
mentioned: dealing solely with the static aspect from the perceptive point of view 
(related to the everyday concept) and reinforcing the alternative conceptions linked 
to these particular cases. 

Organization of the exercises and their links to the lessons 

Martine’s scenario includes a significant part of work on exercises (overall 75 
tasks) most of which is planned as class work, with a part of individual work. 
Homework consists essentially in solving tasks similar to the ones handled in class. 
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 Exercises in each part are organized in a very progressive manner: the number 
of tasks per exercise increases progressively, as well as the variety and complexity 
of tasks (quantity of knowledge involved, mixing progressively new knowledge 
with old ones, with more and more adaptations, also increasing in difficulty).  
 Finally, the exercises are systematically linked to the lesson, whether they 
constitute an application (more or less direct, depending on the adaptations at 
stake), or they allow the introduction of new knowledge which then become the 
object of a lesson.  

Overview of the analysis of Martine’s scenario 

The scenario thus appears to be organized around the change of geometrical 
paradigm and the initiation to deductive reasoning. The learning objectives are 
clearly oriented towards the mathematical concept of orthogonal symmetry – even 
though some ambiguity remains in the second part – and to the link between its 
dynamic and static aspects. 

COMPARISON OF THE IN-CLASS EVENTS 

Due to lack of space, we will only present the common points and the main 
differences that have emerged during the analysis of the in-class events in Denis’s 
and Martine’s classrooms. 

Time allocation  

Studying the class period activities from a quantitative and global perspective, we 
essentially observe convergences: Denis and Martine take noticeably the same time 
to cover the chapter (a dozen hours). Moreover, the proportion of time 
corresponding to the same type of episodes (lesson, exercises, corrections, etc.) is 
nearly identical in both classrooms. In particular, around 60% of the time is 
allocated by both teachers to solving exercises.  
 However, while we observe the progression throughout the chapter, we notice 
that Denis spends more time on the construction of symmetrical of figures and on 
the methods to find axes of symmetry or construct the perpendicular bisector of a 
segment, while Martine lingers longer on the definition of the symmetrical of a 
point and the properties of the perpendicular bisector of a segment.  
 We also notice that on average, the length of episodes according to their nature 
is similar in both classrooms: exercises, lesson and correction episodes last 
respectively around 15 minutes, 6 minutes, and 13 minutes on average in Martine’s 
classroom, 15 minutes, 8 minutes, and 11 minutes in Denis’s classroom. Moreover, 
the distribution of time between individual work and collective work is in the ratio 
of around one third to two thirds in both classrooms.  
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The nature of the work: Mainly differences 

During the exercises episodes, Denis intervenes in general collectively at a very 
early stage, sometimes even from the beginning, to reformulate the task, simplify it 
or divide it and he usually takes in charge part of the work – mainly the adaptations 
– whereas Martine almost always lets the students work directly on the tasks, even 
when they require adaptations. Consequently, while Martine’s students often face 
exercises for which they must develop a solving procedure based on the lesson 
content on their own, Denis’s students are less often put in such situations: for the 
constructions of symmetrical of points or figures, no method is given to the 
students prior to the individual work in Martine’s classroom (for example, for the 
symmetrical of a point, the only help provided is a reminder of the definition of 
two symmetrical points); on the contrary, in Denis’s classroom, procedural 
elements are sometimes provided from the beginning (for the construction of the 
symmetrical of a point, the instruments to be used are indicated after only 2 
minutes). As for proving tasks, Denis could go as far as solving them entirely 
collectively, whereas part of the work is individual in Martine’s classroom.  
 Both teachers seldom provide individual help during the phases of individual 
work.  
 Collective work on the exercises is very different, in its own nature and also 
because of the contributions of the two teachers, which exceed the simple 
correction of the task. In fact, for Martine, this collective work often involves the 
targeted knowledge – related to the function of the task in the scenario – whereas 
for Denis, it is either limited to the task, or it covers knowledge other than those 
targeted; for example, in the first exercise of the chapter, the collective work 
phases’ subject in Martine’s classroom is not only the correction of the exercise 
(that is indicating the movement of the tracing paper required to go from one figure 
to another), but also naming and characterizing the geometrical transformations 
involved, in order to identify the axial symmetry as being the one that corresponds 
to the folding or the turning over of the tracing paper. During the corresponding 
collective work phase in Denis’s classroom, the aim is not only to find how the 
tracing paper must be moved: his aim is clearly to identify and characterize the 
transformations, and yet all of the involved transformations are mentioned but 
“axial symmetry”! Similarly, in solving the exercise targeting the introduction of 
the definition of a symmetrical of a point, the nature of the individual work and 
collective work is very different between the two teachers: for Denis, the individual 
work, at the start of the task, consists in carrying out a manipulation with tracing 
paper in order to obtain the symmetrical of a point, then drawing a segment and a 
line, the collective work which follows aims at completing sentences with gaps by 
the words “perpendicular,” “midpoint,” “symmetrical” and “perpendicular 
bisector.” As for Martine, she alternates individual and collective work throughout 
the episode: when she realizes that the students are taking time to carry out the 
material manipulation, she handles it collectively, and then comments this 
manipulation trying to make the students realize that they have constructed the 
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symmetrical of a point (which was not explicit in the text of the exercise). She then 
asks the students:  

Martine: “Now, observe the figure, and try to tell what you see, what you 
notice, […] what can you say about this line AA’, compared to the line d?” 

This question raising difficulties for the students, Martine alternates individual 
reflection time and collective synthesis until the students reach explicitly the 
characterization of the symmetrical of a point. In Denis’s classroom, the fact that 
the axis is perpendicular to the segment and goes through its midpoint is not 
explicitly presented as the characterization of a figure, which would allow defining 
symmetrical points: the only challenge seems to be completing sentences with “the 
right word,” but arguments such as “we already mentioned this word” are used to 
invalidate students’ answers. On the other hand, in both classrooms, the case of one 
point belonging to the axis is mentioned – which was indicated in the scenario for 
Denis – then both teachers come back to the result of the observations – however 
with diverging perspectives: Denis asks the students to place another point in the 
same way and to place the coding that indicate perpendicular lines and midpoint, 
whereas Martine asks:  

Martine: “What conditions make the points A and A’ symmetrical with 
respect to a line d?” 

This difference in the approach is typical of the teaching of Denis and Martine: the 
latter often makes the students reformulate ideas and reasoning, while Denis is 
more keen on getting them into action.  
 As for proving tasks, they are entirely solved collectively in Denis’s classroom, 
whereas in Martine’s case, only the correction is done collectively after an 
individual work completed by the students. Furthermore, Martine leaves the 
validation and justification of reasoning to the class during the collective phases, 
which Denis only does exceptionally.  
 The contributions during the exercise phases are also more systematic and more 
focused on the targeted knowledge in the case of Martine. 
 Lastly, Martine’s interventions always seem to be adapted to the students’ 
interventions, thanks to a good interpretation of their works and their errors. She 
can even go as far as resuming at length, during lesson episodes, students’ 
reasoning about given tasks. Such interventions, much more limited and rare in 
Denis’s case, are, above all, sometimes less well focused.  
 As for the lesson episodes, the responsibility of the contents is better shared 
between Martine and her students than Denis and his students. In the first case, 
lesson statements are always generated as a synthesis of the exercises, and are 
grounded in the students’ activities, whereas this articulation, although present in 
Denis’s classroom, seems to be artificial sometimes.  
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Overview of the comparison of the in-class events between Denis and Martins 

On the largest scale, we observe similarities between the developments of lessons 
of Martine and Denis. Is it by chance or are the in-class events, or at least what is 
related to time allocation, entirely determined by the content of the scenario? It 
seems unlikely that the time distribution between individual and collective work 
for an exercise only depends on the handled task. On the other hand, the function 
of the task in the scenario with respect to its global coherence could play a role 
given that, if the objective is to bring out such or such content, this would require 
collective time.  
 What appears as a main difference is that, other than the tasks effectively 
prescribed to students, the content and modalities of the collective phases can be 
very different between the two classes. Martine often leaves up to the students a 
part of the responsibility in the wording of the answers, whether to let them 
develop this competency, to evaluate their degree of comprehension, or even to 
facilitate their comprehension.  

EFFECTS ON STUDENTS’ WORKS  

The exams given in the classrooms of Denis and Martine include identical 
exercises as well as different exercises but with certain similar comparable tasks.  
 The results (success rate in percent of the students of Martine and Denis for 11 
identical tasks, ref. Figure 1) reveal relatively significant differences for certain 
tasks, but mostly similarities in the success rates depending on the tasks. It should 
be noted that rates of success were significantly different between the students of 
Denis and Martine for almost all the types of tasks during the first year of the 
experiment, in the situation where each teacher implemented his own scenario 
(Chesnais, 2009). 
 In particular, for the six tasks about recognizing and drawing axes of  
symmetry (labeled “rec. axes fig. x” in Figure 1), the success rates are only slightly 
lower in Denis’s class, except for the third one (where the difference is more 
important) which is discussed below. As for the unique proving task, the rates are 
also similar.  
 In certain cases, the differences are more important, in particular in the tasks 
that consist in citing the definition of the symmetrical of a point: the rate is 70% for 
Martine and barely 15% for Denis. These differences could be explained by the 
fact that Denis’s students are not quite used to cite decontextualised knowledge 
during the exams, and also by the fact that this type of tasks causes particular 
problems related to language (ZEP students being more exposed to this kind of 
difficulties). However, this result should also be linked to what took place during 
the in-class events.  
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Figure 1. Comparison of exam success rates (in %) between the students of  
Martine and those of Denis on identical tasks. 

 The task “rec. axes fig. 3” has a success rate of 50% in Martine’s class and 20% 
in that of Denis. This was the most difficult task among those of the same type, 
since it included other axes than vertical and horizontal ones. In this case, relating 
things to what has happened during the chapter did not allow us to identify a factor 
that could explain this difference, but we put forward the hypothesis that this is not 
exclusive to the chapter on axial symmetry: unusual and particularly difficult tasks 
cause more problems to ZEP students.  
 We also compared success rates relative to other proving tasks, not identical, but 
similar: for two elementary proving tasks (involving conservation of lengths and 
conservation of angles), the success rate is 80% for both in Martine’s class and 
respectively 50% and 43% for Denis’s students. In other words, an important 
difference persists between the students of the two teachers for this type of tasks.  
 To sum up, the success rates are in general very close in Denis’s class to those 
obtained in the class of Martine, except for the lesson question, a particularly 
complex task and certain proving tasks.  

CONCLUSION AND EXPLANATION HYPOTHESES  

The implementation of the same scenario by two different teachers in their 
respective classrooms has allowed us to identify common points as well as 
important differences both in the classroom events as well as in the effects on the 
students’ works in exams. Despite the obviously very limiting factor of the small 
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number of observations (mainly the fact that the experiments only included two 
teachers), we propose in this last part an interpretation of these results based on 
both the scenario properties and the question of the logic underlying the practices. 
 The study of Martine’s scenario highlighted its qualities, in terms of the 
potential for student activities. The analysis of its implementation in Martine’s 
classroom then Denis’s allowed us to confirm to a large extent this a priori 
analysis, and it even suggested a certain “sturdiness” of the scenario to 
transmission. In fact, the research on didactical engineering has shown a long time 
ago that the transmission of a scenario in classrooms does not necessarily guaranty 
the reproducibility of the in-class events nor the results of the students. This 
scenario definitely deserves to be more tested, but we still put forward the 
hypothesis that its strong coherence from a mathematical and didactical point of 
view as well as the presence of certain “sensitive” tasks, i.e. playing a key role to 
reach the targeted learning (for example, the list of exercises allowing the initiation 
of deductive reasoning rules) contribute to its efficiency.    
 As for the differences observed between the implementations in the two classes, 
we first need to indicate that the modalities of the experiment probably play a role. 
Certain variations in the in-class events can thus certainly be explained by the fact 
that the scenario was designed by Martine: since she masters the task objectives 
and the global organization of the scenario, she’s able to establish links more easily 
and put the tasks into perspective during the collective phases. It should also be 
reminded that Denis was supported by the researcher during the implementation of 
the scenario: this support essentially consisted in a discussion during which the 
scenario was presented to him along with explanations concerning its structure and 
some elements of the didactical study of the concept (in particular about alternative 
conceptions). It seems important to indicate also that Denis was observed – without 
intervention from the researcher – the year that preceded the experimentation of the 
scenario of Martine. The comparison between Denis’s practices during the first and 
the second year (Chesnais, 2009) shows a development towards practices likely to 
induce richer activities for the students, as well as a clear progress in the students’ 
works in exams.7 The respective parts of the effect of the change in scenario and 
the support of the researcher on this evolution remain however unknown.  
 The theoretical framework of the double approach allows us to bring forward 
hypotheses regarding the differences in the observed practices. In fact, the 
differences of career paths and even of age between Denis and Martine – elements 
accounted for by the personal component of the practices – suggest that the two 
teachers do not have the same resources at their disposal. For example, Martine 
being older than Denis has taught while the previous curriculum was implemented: 
at the time, the fact that the static aspect needed to be redefined as global 
invariance in the transformation appeared explicitly. Likewise, it must be reminded 
that Denis teaches in a ZEP, with students who come in majority from 
disadvantaged social environment and whose level in mathematics at the beginning 
of grade six – as measured by national tests conducted by the ministry – was 
clearly below that of Martine’s students. We can assume that these elements – 
accounted for by the social component of the practices – influence Denis’s 
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practices: he “adapts” his practices to his audience. However, our analyses do not 
allow us to know whether these differences between Denis and Martine are 
responsible for the differences in the students performances, or on the contrary for 
the similarities: in fact, the question remains to know whether in-class events closer 
to those observed in Martine’s classroom would have allowed Denis’s students to 
obtain even better results, or if the characteristics of Denis’s in-class events are a 
necessary adaptation to his students and partly explain that they got results close to 
those of Martine’s students. 
 We therefore hope that we have been able to show in this study the fertility of 
the theoretical framework presented at the beginning of this book, when it is 
applied to study teaching practices and their effects on student learning. 

NOTES 
1  Grade six, in France, stands for the first class in secondary teaching (10-11 years old students).  
2  The Education Action Zones (a.k.a ZEP) designate, in France, clusters of schools that take in a big 

proportion of students from underprivileged social backgrounds. 
3  The first three categories are stem from a categorization proposed by Lima (2006) regarding 

exercises about orthogonal symmetry in grade six textbooks; we have added the last category.  
4  We believe to be the first to attribute these qualifiers to orthogonal symmetry, but the distinction 

between dynamic and static conceptions for a given concept is not new (see for example, for the 
circle, Artigue and Robinet (1982) or for the convergence of sequences, Robert (1982)).   

5  They are defined by the Official Bulletin Special Issue N°5 of September 9th 2004. Reforms in 
2007and 2008 have changed them since. 

6  The definition is stated as follows in the lesson:  

Point A’ is the symmetrical of  point A with respect to a line  (d) means that: if A belongs to 
(d), A and A’ are overlapping; if A doesn’t belong to (d), the line (d) is perpendicular to the 
line (AA’) and (d) passes through the midpoint of segment [AA’].  

7  Since the observations took place over two consecutive years, the students are not the same, but their 
characteristics (mainly in terms of social origin and level measured by the results of national tests at 
the beginning of grade six) are similar.  
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CLAIRE CAZES AND FABRICE VANDEBROUCK 

8. STUDENT ACTIVTIES WITH  
E-EXERCISE BASES 

INTRODUCTION 

In this chapter, we examine the use of specific Internet resources: electronic 
exercises bases. We call an electronic exercises bases (EEB) for mathematics an 
Internet resource developed for mathematics teaching and learning purposes, 
consisting of mathematics exercises following a certain classification, and such that 
each exercises is associated to an environment, which includes different types of 
suggestions, aids, tools (graphs, calculators, etc.), lesson reminders, as well as 
explanations, answer analyses or complete solutions. In most of these products, the 
exercises have parameters which are randomly generated. This allows students to 
work on the same exercise several times. In such a case, the structure of the newly 
proposed exercise remains the same but the variables (e.g. numerical values, 
functions) differ. 
 Such resources, whether free or not, exist for all school levels and are more and 
more common. They can differ largely depending on their didactical structure, the 
type of accepted answer, or their type of implemented interactivity. Nevertheless, 
although the study of the use of technologies in mathematics learning is a fertile 
and expanding field of study, only few studies are specific to the use of EEB. Most 
of the articles dedicated to mathematics and digital technologies deal with “open 
environments” (microworlds or Computer Algebra Systems). These studies usually 
aim at conceiving and testing several didactical engineering, in which the 
“antagonistic milieu,” within the meaning of Brousseau (1997), includes the 
technological tool and is resistant to students’ actions, producing retroactions 
which help them to construct new knowledge. On the contrary, EEB constitute 
“allied milieu” designed to help learners. Moreover, using an EEB does not present 
any major technical difficulty. Many EEB have originally been designed for 
private use by students. Therefore, the question of handling technological tools is 
less complex in the cases of EEB and arouses less questions of instrumental 
genesis developed in the case of open environments (Artigue, 2002). The results of 
research are thus not transferable from one technology to the other. The question 
for the researcher studying the use of EEB in the classroom is to qualitatively 
analyze the use of resources in ordinary classrooms and to derive information 
about the activity of the students and teachers using these tools. This concern 
corresponds to the general question of this book, in which we try to analyze the 
teaching and learning of mathematics as they are, and not as they could or should 
be. 
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 Positive consequences of the use of EEB have already been observed in certain 
research studies. Ruthven and Henessy (2002) have for example carried out an 
extensive study about the use of technologies in mathematics teaching in England. 
They observe that drill and practice products, which are particular EEB, allow a 
work adapted to the rhythm of each student, as well as an increase of the 
motivation of these students. However, it seems important to pursue more precise 
investigations about student activity using these tools, in order to determine the 
contributions, limits and constraints of using EEB in mathematics classrooms.  
 We directly import the model of double regulation of activity introduced in 
chapter 1 to analyze students’ activity on EEB. In fact, the scenarios of use of these 
resources expect students to repeat several times the same exercise, with variant 
exercise statements, or to solve a series of similar exercises. The actual activity of 
the students thus produces results, mainly feedbacks from the software, which 
modify the initial situation on the EEB: we can talk about productive1 activity of 
the students and functional regulations of their activity. The student actions and the 
software retroactions are particularly observable with EEB because students repeat 
several times the exercises. The evolution of the productive activity results for a 
given exercise, in the course of regulation loops, can hence be observed and 
interpreted or not in terms of constructive students’ activity (during the average 
time of action). The question of the long-term learning, and the study of the effects 
of learning through the EEB in a paper-pencil environment, is more complex and 
therefore our results are necessarily limited.  
 Based on our observations, we conduct a priori analyses of the situations 
proposed to students, and in regards to chosen episodes, we analyze, in particular, 
the tasks prescribed to the observed students. For the mathematical analyses of 
tasks, we retain the tools developed in chapter 2. In particular, we wonder whether 
the tasks are direct applications of explicit mathematical knowledge or, on the 
contrary, if there are adaptations and/or recognitions of knowledge to be made. We 
also take into consideration the software environment of the tasks, that is all the 
external hints or instrumental factors that could be of help, or not, in completing 
the tasks. We finally specify personal data about the observed students even if we 
often only have few elements on that matter. The results of the productive activity 
of the subjects are observed through the answers entered by the students into the 
computers. In particular, the software retroactions, as well as the aids given by 
teacher, if any, provide us with data regarding the modifications of the situations in 
the regulation loops (chapter 1).  
 In the second section, we give a first example of situation analysis that consists 
of analyses of tasks and software environments for EEB exercises suggested to 
students. In the third and fourth section, we study, using examples, how the 
situations influence the students’ activity. In particular, we show that the expected 
activity is not always the activity developed by the students. We also show how 
difficult it is for the students to regulate their activity while facing the software 
without teacher intervention. Finally, in the fifth section, we conclude about the 
favorable conditions for a reasoned use of the EEB with the students. 
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EXAMPLES OF TASKS AND SOFTWARE ENVIRONMENTS ANALYSES 

From the point of view of the mathematical knowledge at stake, the methodology 
to analyze these tasks is the one presented in chapter 2. We distinguish in particular 
the task of direct application of knowledge from all the other tasks which are 
described as complex.2 The analysis of the tasks depends from the scenario in 
which these tasks intervene. For example, the fact that the implemented tasks are 
old or new for the student, with a level of knowledge which is “available” or 
“indicated” (see chapter 2), is an information which must be taken into account. 
Some elements of the scenario are implemented in the resources whereas other 
items are left at the discretion of the teacher. 
 From the point of view of the interface with the software, the characteristic 
elements of the tasks are the type of expected answer (multiple choice, numerical 
value, geometrical drawing, and so on), the aids proposed by the software (in 
particular the occasional corrections), and more generally the software 
environment of the exercise which can facilitate or complicate the solving of the 
tasks. This makes the analysis of the tasks more complex for the researcher than in 
the traditional environment. Below is an illustration of this complexity through an 
exercise from EEB Euler.3 
 It’s an exercise which involves old knowledge from grade 9 at the indicated 
level; no recognition of knowledge at stake is necessary. Knowledge is explicit 
with the statement of the exercise. The exercise given is “Given an orthonormal 
coordinate system, move the points A and B such that the line (AB) represents the 
function defined for all x by f(x)= 7/2 – x/8.” Hence, the task consists in moving 
two points on the gridline so that the line passing through those two points 
becomes the curve representing a linear function randomly given. So the work is 
on the transition from the algebraic registry to the graphical registry (Duval, 1995).  
 

 

Figure 1. Exercise from the EEB Euler. 
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 The task is however not immediate since there are two sub-tasks for a grade 9 
student: the first is finding the coordinates of the two points of line (AB) using its 
equation stemming from the algebraic expression of the given function f. The 
second sub-task is to move the points A and B on the screen until they reach the 
correct position. 
 The software environment brings difficulties because the presence of the line 
(AB) on the graph, from the beginning of the exercise, disrupts the student’s 
perception of the expected task. Indeed, the task is to move points A and B which 
are already given, whereas in a traditional environment, the task consists in placing 
these points. Moreover, we can only move these points onto positions with integer 
coordinates. This constitutes a major difficulty related to the task environment and 
this complicates it since it doesn’t allow the student to place all the points found by 
calculation. Students must test their calculation in order to find points A and B with 
integer coordinates. Finally, the points that can be placed must have abscissas and 
ordinates of values between -5 and 5, which is another difficulty for the students 
while they look for the points. In a paper-pencil environment, we can extend the 
graphical representation to place the points with abscissas or ordinates outside  
[-5, 5]. Here, this is not possible. The interest of the software is yet considerable. 
On one hand, it offers the possibility of repeating the exercise with random 
variables. The students can thus repeat several times the exercise with new lines 
and practice until they succeed. On the other hand, the retroaction in the case of a 
mistake indicates that the student’s answer is wrong and gives the function 
represented by the line (AB) suggested by the student, as is shown in the example 
in Figure 2. 
 

 

Figure 2. Graphical feedback for the exercise. 
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The software message is “The points A and B that you placed define the line 
representing the function g defined by g(x)=12/5-x/5.” This feedback allows 
students to reflect on their propositions and understand their mistakes. This could 
allow rectifying their answers but they are unfortunately not entitled to a second 
trial.  
 Analyses of teaching practices with EEB developed by Cazes, Gueudet, 
Hersant, and Vandebrouck (2006) show that such quite immediate exercises seem 
to be necessary for the learning of the students. However, due to their over 
simplicity when they are solved in a paper-pencil environment, such exercises are 
rarely proposed in class, particularly in classical solving sessions at university 
level. This simple example gives an idea of the work possible through EEB, but 
only a thorough exploration of each of the websites would allow us to discover the 
numerous possibilities offered by these resources. In particular, we have observed 
that tasks are made possible thanks to the work on the EEB, with new associated 
activities; whereas new activities about tasks similar to the paper-pencil ones can 
be created. The sections below are dedicated to the study of examples of the actual 
activity of students on EEB, in a grade 10 classroom on one hand, and in higher 
education on the other hand.  
 While many tasks, which are well represented in EEB, seem adapted to be easily 
solved using a computer, definitely not all tasks can be completed using a 
computer. The teacher can, for example, choose to leave certain immediate 
applications for computerized work, so that the paper-pencil environment activity 
is centered on more complex tasks. We will come back to the work of the teacher 
in chapter 9.  

EXAMPLES OF ACTIVITIES IN GRADE 10 

The examples presented in this paragraph stem from observations conducted 
during the 2004-2005 and 2005-2006 school years in general and professional high 
schools. In each case, an observer is placed behind a student and notes all his/her 
visible actions. The methodology is the one detailed in chapter 2, with specificities 
related to the computerized work of the students. Only few episodes which are 
significant for our chapter are analyzed below, in order to directly access 
interesting results. These are observations of sessions organized in half-group, 
supervised by the teacher who is responsible of the class, who provides the 
students with individualized help. Each student works on a computer to solve a 
series of exercises selected by the teacher. The two students observed during one 
session are called Alice and Fanny. These two students are good tenth graders, and 
they work during one session on the functions theme on the EEB MathEnPoche.4 
The lesson has already been covered during the year but some new knowledge 
about functions is still ongoing learning. For each proposed situation, and for each 
student, we examine the expected activity, then their actual activity.  
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First situation proposed to Alice and Fanny, expected activity 

The first exercise that they come across is a multiple choice questions type. It is a 
series of 5 questions which are immediate applications of knowledge about images 
and pre-images. The environment facilitates the activity since there are only two 
possible choices, like in the following question 1: 

 
Question 1: Complete 
 
We know that  
2 has for image 1 by function  f  
Therefore 

The point of coordinate  (   , ; ,             )  is on the graph of  f. 
 

Figure 3. First multiple choice questions with two possible choices  
(with English translation). 

 For example, Alice answers correctly 3 out of 5 questions. For the other two 
questions, she mixes up “image” and “pre-image,” receives a simple error message 
and rectifies her answer during the second trial: “it’s enough to invert the 
answers!” The same exercise is followed by 5 other analogous questions where 
now there are more choices, as shown in the following question 6: 
 
Question 6: Complete 
 
We know that  
-5 has for image 2 by function  f  
Therefore 

f (    ) =          
 
            has for pre-image          by function  f   

The point of coordinate  (    ,              ) is on the graph of  f. 
 

Figure 4. Other multiple choice questions with numerous possible choices  
(with English translation). 

 The questions are the same as before, but now there are six blanks to complete. 
The expected activity is not the same as in the previous question, elsewhere more 
than two writing registries are mixed, which constitutes an additional adaptation. 
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The strategy consisting of answering sort of randomly then eventually rectifying 
during the second trial does not work anymore, since the software does not indicate 
the error locations.  

Alice’s actual activity 
Alice understands that she cannot simply rectify her answer during the second trial 
if needed. She thus looks at her lesson book before each answering and reads in a 
low voice the explanation about “pre-image” and “image.” Hence, she answers 
question 6 correctly. Again, she still gets mixes the two terms in questions 7 and 8, 
looks at her notebook again, and then corrects her answer. She makes the same 
mistake in question 9 and so she decides to call the teacher. He explains 
immediately. She solves the last question without any mistake.  

Second situation proposed to Alice and Fanny, expected activity 

During the rest of the session, Alice and Fanny work on finding graphical images 
and pre-images (exercise 8) and graphical solutions of equations of the type f(x)= a 
(exercise 9). This is new knowledge for grade 10 but it has been studied previously 
in traditional sessions (knowledge in the process of acquisition).  
 In exercise 8, given a function defined through its algebraic expression and a 
representative curve, students must determine the image of a number and the pre-
image(s) of another number if any.  
 

 

Figure 5. Exercice 8: Reading the image and the pre-image(s).  

 A series of 5 consecutive questions of the same type is given. The considered 
functions are random polynomial functions of first, second and third degree, with 
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decimal coefficients having at most one digit after the decimal point, defined on an 
interval. The value of the image should be typed in a box. For the pre-image(s), a 
rolling menu (see figure 5) allows the selection of the answer. In this example 
above, the algebraic expression of f is f(x) = x3+3.3x2+3.3x+1.3. The two questions 
are “The image of -2.4 by f is: …” and “-1: doesn’t have any pre-image; has one 
pre-image; has two pre-images; has three pre-images.” Depending on the choice 
made, one or several boxes are displayed to enter the value(s) of the pre-image(s). 
A point A which moves on the curve allows students to read the requested values. 
We note that when several pre-images exist, the tool does not allow visualizing 
them simultaneously. Students should not stop at the first found value. The 
expected activity is to move the cursor in order to graphically read the images and 
pre-images. Hence, the work only covers the graphical registry and immediately 
applies the knowledge about this registry. The choice of work registry is thus 
imposed and this registry, for this kind of questions, does not belong to the usual 
didactical contract of the students. Moreover, the environment which imposes the 
cursor manipulation complicates the proposed task as we will see.  

Alice’s actual activity 
The first curve proposed to Alice in exercise 8 is that of the function f(x) = x2-4. 
Alice must determine the image of 1.2 and the pre-image(s) of -7, if any. In 
compliance with the usual didactical contract, Alice calculates algebraically the 
image of 1.2. This approach is reinforced by the fact that the second degree 
polynomial is a polynomial that she can easily handle algebraically. In order to find 
the pre-image, Alice notices right away that there isn’t any on the graph, since the 
value -7 is relatively far from the minimum of f. Alice validates her answer, and 
receives a congratulations message. She does not find the exercise very interesting 
and moves to exercise 9.  

Fanny’s actual activity 
The first curve proposed to Fanny in exercise 8 is that of the function  
f(x) = x2-5,19. She is asked to find the image of 0.2 and the pre-image(s) of -4.7, if 
any. Fanny also calculates algebraically the image of 0.2 but finds it hard to 
complete her calculation to find the pre-image of -4.7. Some adaptations emerge 
and are linked to the presence of a decimal number. The teacher walks nearby 
Fanny who calls her: “it’s not clear to find the pre-image!” The teacher shows 
Fanny how to move point A to obtain a display of the coordinates of the points on 
the curve. Fanny immediately applies this instrumented method, answers correctly, 
and completes successfully the 5 exercises of the series, proceeding in the same 
manner, graphically looking for the pre-images as well as the images and using the 
cursor.  

Third situation proposed to Alice and Fanny, expected activity 

In exercise 9, the aim is to solve graphically a series of five equations of the form 
f(x) = α, α being a decimal number with at most one digit after the decimal point, 
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and f defined by its graphical representation on an interval. Depending on the 
cases, there are 0, 1, 2 or 3 solutions.  
 

 

Figure 6. Exercice 9: Solve equation graphically.  

 In the example in Figure 6, the equation to solve graphically is f(x) = 6.5 in  
[-5,5]. Hence, students’ activity is always to immediately apply knowledge still in 
acquisition. Note that the task is again made complicated by the computer 
environment. In fact, for each question, students must move the cursor on the 
curve, the cursor being originally placed at the origin. Moreover, the cursor 
coordinates are not displayed, and students have to read those coordinates over the 
axis.  

Alice’s real activity 
In exercise 9, Alice does not figure out that she must use the movable cursor since 
she did not have the chance to do so during exercise 8. Moreover, in this exercise, 
it is not possible to proceed algebraically. She hence tries to estimate the answer 
and gives successively two coherent answers but not precise enough. So she comes 
across the aid window which does not help her. Indeed, the aid explains how to 
find the solution graphically whereas Alice’s problem is that of handling the 
cursor. So she calls the teacher who shows her how to use the cursor. Alice then 
engages correctly in the expected activity. But she still can’t validate exercise 9 
because of three mistakes in three consecutive statements. These three mistakes 
have different causes:  
– Alice forgets a solution; 
– Alice doesn’t see one solution which is at the border of the frame of the graph; 
– Alice reads the coordinates incorrectly. 
In the latter, Alice thinks that the precision of her answer is insufficient. She 
doesn’t see that in fact she made a mistake while reading the given. The observer 
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explains to her this mistake. In the two other cases, the mistake is more serious, but 
Alice does not have the possibility to rectify it because of a poor manipulation of 
the software. Alice’s activity is therefore not regulated since she does not 
understand her mistakes or she cannot correct them due to her manipulation errors. 
However, Alice seems to be able to globally complete the requested task. 

Fanny’s real activity 
In exercise 9, Fanny spots the red cursor and manages to move it, like in exercise 8. 
Then, she starts the expected activity. In general, she finds the correct answers 
using the cursor. However, for question 3, she comes across a sinusoidal curve and 
the equation “f(x) = 4.5” which has three solutions. Yet, Fanny forgets one of them 
and provides successively two wrong answers: -1.5 and 4.8 then -0.5 and 4.8. She 
is directed to the aid window, which gives her, like Alice, the method to 
graphically find an image or a pre-image. Since she knows how to solve the 
exercise, she says: “I don’t want these aids!” The teacher passing by, she asks her: 
“how can I delete this?” The teacher points out the red button to close the aid 
window. Fanny clicks on it and the correction is displayed (something that Alice 
was not able to find). She looks at the displayed values in the correction having 
two decimals and this attracts her attention. She then attributes her mistakes not to 
the fact that one solution was missing, but to the fact that she did not find all the 
decimals since she did not use the magnifying glass.  

Analysis of Alice and Fanny’s actual activity 
In the first questions proposed to Alice (the questions with two choices, Figure 3), 
the students can reach the expected result as of the second trial. All seems to be 
happening as if information allows them to develop a “two shots strategy” based on 
the feedback. This strategy is fostered by multiple choice questions with two 
options. It is only when this “two shots strategy” stops working and when the task 
gets complicated that Alice tries more in-depth work to rectify her mistakes. These 
examples illustrate the idea that students take into consideration the feedback only 
when they feel the need to do so. We can nevertheless hypothesize that Alice’s 
confusion of “image” and “pre-image” is well corrected since she correctly tackles 
exercises 8 and 9 afterwards. The learning does not however happen on a short 
cycle of regulations: the correction is long and progressive. In particular, Alice 
needs to take several initiatives, the situation must become problematic for her 
(Alice only tried to understand when more than two registries were mixed, that is 
when there were 6 blanks to fill), and the teacher must intervene fast and advisedly.  
 In exercise 8, there is, since the beginning and for both students, a gap between 
the expected activity and the activity developed by the observed students. The task 
is the same as in the paper-pencil environment, but the expected activity is not the 
same. The students do not develop the expected activity since they do not 
understand that the EEB expects them to manipulate the cursor. Moreover, the 
algebraic expressions are provided by the software and this does not favor 
graphical work. Finally, the random expressions which Alice and Fanny come 
across are of second degree, which does not discourage them from looking for 
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answers algebraically. This would probably not be the case if the expressions had 
been systematically more complex or of third degree.  
 Lastly, the examples illustrate the software feedback, and if though they are 
taken into account by the students, they do not allow them to easily regulate their 
activity correctly. In the multiple choice exercise, the feedback is not enough to let 
Alice regulate her activity on her own. She needs her lesson notebook, then a 
conversation with the teacher, in order to successfully complete the task. The work 
which consists in interpreting information provided by the software is generally 
hard to do. In exercise 8, Alice suggests a correct answer and receive a retroaction 
validating her answer but without any explanation of the expected procedure. Thus, 
she has no indication allowing her to detect the gap that exists between the work 
she completed and what was expected from her. We can wonder about what made 
Alice gives up that exercise. She probably, subconsciously, has the impression to 
be missing something, but not enough to ask for the teacher’s help. The activity in 
exercises 8 is hence not at all regulated. As a result, Alice cannot tackle correctly 
the activity in exercise 9, since she does not know that she can manipulate the 
cursor. Here as well, the aids proposed, reminding her that the mathematical 
method to solve equations, does not allow her to regulate her activity since her 
problem is now the manipulation of the cursor. Once more the teacher comes to the 
rescue and shows her how to use the cursor.  
 On the other hand, Fanny, possibly thanks to her critical look at the software 
work, calls the teacher as early as exercise 8 which quickly regulates her activity. 
So Fanny adapts to the situation in exercise 9 on her own. However, like Alice, she 
cannot regulate correctly alone her activity in exercise 9 and gets angry at the aids 
(“I don’t want these aids!”). Reading the correction is not enough for her to 
understand that one solution is missing. This seems to be an ambiguity of the 
software: the answers are accepted with a 0.1 error margin, but in the correction, 
they are given with a 0.01 precision. In this situation also, because of her critical 
look at the software, Fanny prefers to say that the software is hard to use rather 
than question her own work.  
 The examples of Fanny and Alice illustrate the importance of taking into 
consideration the instrumental aspect in the proposed situations. The more the 
resource environment gets sophisticated, the more the students have to articulate 
the software manipulation with the learning of mathematics. The examples always 
show that the role of the teacher is fundamental.  

EXAMPLES OF UNIVERSITY ACTIVITIES (L1) 

The example developed in this paragraph stems for observations conducted over 
the course of the school year 2004-2005 in a university. The student is called 
Charles, and we study his activity during a computerized solving session during 
which the students work on the EEB Wims5 and the teacher walks around 
providing individual help. Charles works alone on his PC and the session is 
focused on practicing previous knowledge or ones in the process of acquisition. 
The observation methodology is different from the one used in the previous 
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paragraph as students working with EEB Wims are logged, which allow to recover 
their activity traces through log-files. No one directly observes Charles’ activity, 
but we can note the times of work of the student on a Wims exercise called Joint. 
Then, we examine a posteriori Charles’ work on an exercise similar to the exercise 
Joint, proposed in a paper-pencil exam.  

Situation proposed to Charles, expected activity 

The exercise in Figure 7 deals with knowledge about continuity and 
differentiability of functions of a real variable. An adaptation of knowledge is 
required from the students since they have to recognize that the given functions are 
of class C1 on the considered intervals. Then, it is enough to compute the limits and 
the derivatives of the two given restrictions and to equal the results, which is a 
direct application of the algebraic knowledge about limits and derivations. They 
must write that the two limits and the two derivatives should be equal, which 
allows calculating a1 and a2 through an immediate calculation also. When the 
student gives an incorrect answer, Wims provides a retroaction of the type as 
presented in Figure 8. 
 

 

Figure 7. Wims Joint exercise.  

Software retroaction for the Joint exercise 
It is not possible to solve this exercise by trial and error since only one answer is 
accepted. After the first student answer, Wims provides a retroaction. This 
retroaction is in the graphical register whereas the exercise statement is in the 
analytical register. It does not necessarily help the student in finding the correct 
answer but it does suggest another point of view. Nevertheless, the student cannot 
go back to propose another solution. Wims proposes directly another analytic 
function, built from a panel of reference functions and linear combinations.  
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Figure 8. Example of feedback for the Joint exercise.  

Charles’ actual activity 
The log-file shows that Charles worked for 34 min on this exercise. He also 
worked on four consecutives statements of this exercise. In his first trial, he worked 
for 9 min and got the score of 5/10; this means that he only found the missing value 
a1 (like in the previous error example, Figure 8). After reading the correct answer, 
that is the missing value a2, he did not try to understand where this value came 
from. Indeed, the log-file shows that he quickly restarted the exercise with a new 
statement. This attitude is not abnormal; students almost always restart the next 
exercise immediately. He worked for 13min and obtained the score 10/10. Then he 
restarted this exercise two additional times, worked each time for 5min, and 
obtained in both cases the score 10/10. So we can see that Charles did solve the 
exercise correctly, that is he regulated correctly his activity a prioiri. However, we 
can wonder why his calculations last 5 long minutes each time despite the fact that 
they should be immediate algebraic calculations? What does he do for the same 
exercise in the exam? Below is his exam paper. The statement is “f(x) is a real 
function defined on [-0.5,0.5] by the following formulas : f(x) = -5 exp(-5x) if x < 0 
and f(x) = a1+a2x if x ≥ 0. Find the values of the two parameters a1 and a2 such as 
f(x) is continuous and derivable of order 1.” 
 We notice that Charles develops well the expected activity to find the missing 
value a1. On the other hand, to calculate the derivative to the left then to the right, 
he uses the limit of the rate of change, whereas it would be enough to apply the 
classical derivation formulas in the definition intervals. In other words, Charles 
uses a correct procedure but it isn’t the fastest and most suitable one. This explains 
the considerably long time spent on this exercise for each trial during the Wims 
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session and which certainly penalizes Charles during the exam (since he is left with 
less time to solve the rest of the exam than what the examiner had scheduled).  
 

 

 

 

 
Figure 9. Charles exam, exercise Joint.  

Analysis of Charles’ activity 
In this case, Charles is able to solve the exercise. A regulation of the activity has 
been made after the first trial where he was able to solve only partially the exercise. 
It is the software retroaction in the form of a note which allows Charles to regulate 
his activity. The log-file indicates that this regulation happens in a very short time. 
During the second trial, he provides a complete answer for the exercise. His only 
problem is that his solving strategy is not optimal. Unfortunately, at this time, 
neither the software retroactions, which connect two points of view, nor the 
presence of the teacher during the Wims session, allow Charles to improve his 
strategy. In particular, the software regulation “correct answer” as of the second 
trial, does not allow Charles to realize that his procedure is not optimal. He cannot 
regulate best, autonomously, his activity during the Wims session. This leads to 
two new activity loops, where Charles applies the same solving strategy without 
having any doubt. He always succeeds, but does not visibly increase his speed 
between the last two trials and by using a relatively long solving method (5 
minutes).  
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CONCLUSIONS 

We have described in this chapter results of the students’ activity using EEB, 
which complete those developed in Cazes, Gueudet, Hersant, and Vandebrouck 
(2006). In the observed situations of EEB use, whether in high school or university, 
the EEB allow a strong individualization of the students’ activity with respect to 
their work in sessions of traditional exercises (mainly in university solving 
sessions), even though the student always follow a work plan proposed at the 
beginning of the session par the teacher. The model of double regulation of the 
activity (chapter 1, Leplat 1997) allows us to analyze precisely the activity of the 
students with the EEB and to highlight in particular the regularities and differences 
between the students with respect to the organization of this autonomous activity. 
 Introducing task analyses reveals that the latter are often very close to the tasks 
that can be proposed by the teachers in traditional sessions. Nevertheless, the 
observations show that the students work much longer on a same exercise during 
the EEB sessions than during the traditional sessions. For example, in Charles’ 
case, the log-file tracking the EEB activity shows that even on a task with 
immediate application of knowledge, Charles works for several minutes, restarting 
the exercise as many times as needed. In a paper-pencil environment or during a 
classical solving session, he would have only solved one example. This same log-
file shows that in other situations, the students are not easily discouraged, in 
general, by exercises which require adaptations of knowledge. The situation is thus 
different from the traditional paper and pencil situation since the students have 
more responsibilities in their activity and can follow at their own rhythm the work 
plan proposed by the teacher. If they do nothing, then nothing happens, and so they 
are somehow obliged to work. In particular, there are rare moments of collective 
corrections where the students can just wait for the answers. However, managing 
the progress of the path, repeating or changing the exercise, activating an aid or a 
correction, choosing to take notes, all definitely contribute to the empowerment of 
the students but also seem to be a source of difficulty, especially for weak high 
school students. Furthermore, in certain cases, some of them prefer to continue 
succeeding in competing simple exercises rather than facing more difficult 
exercises, an observation we had previously noted in Cazes, Gueudet, Hersant, and 
Vandebrouck (2006). 
 Here, the results illustrate the valuation of the occasional productive activity 
using these tools, with often gaps between the expected activity and the students’ 
observed activity. It could be that the task is not a direct application task, that the 
knowledge to be used is not explicit or sometimes the software environment 
complicates the task compared to the traditional environment. From the start of the 
exercise flow, a modification of the initial situation must be applied in order for the 
actual student activity to be in compliance with the expected activity. This 
modification is made thanks to the teacher, if s/he is present at the right time. This 
pertains to the problem of working in total autonomy with these tools, whenever 
we want to tackle slightly more complex tasks. Charles’ case is a good example of 
the teacher not intervening at all, the completed activity is then deferred with 
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respect to the expected one. This gap can also be due to the denaturation of the task 
by the software environment, which can permit for example obtaining the correct 
answer without developing the expected mathematical activity (mainly in the case 
of the multiple choice with two choices, but we did identify more complex 
examples), or it can favor a more economical activity, of the type trial and error in 
particular. As for the results of the activity, we also found that the software 
retroactions to the students’ actions are often not enough, too difficult to 
understand by the students to allow them to regulate alone and correctly their 
activity, and even not adapted to the actual activity. In fact, the retroactions can 
only be generated for the result of the activity and not the activity itself. It is 
therefore very hard to implement a priori retroactions which are relevant and 
adapted to the diversity of the students.  
 These difficulties, as soon as the tasks are not easy for the students, can generate 
ineffective activity loops (see chapter 1). The students can for example be satisfied 
by inadequate procedures by repeating several times an exercise, since these lead to 
a correct result, or even “very often” to the correct result. The allied environment 
can also reinforce certain “action logic” at the expense of a “learning logic”: in the 
“action logic,” the aim of the students is exclusively to obtain the answer expected 
by the software (valuing the productive activity at the expense of the constructive 
activity). It is the case of Alice when she responds to her two-options multiple 
choice questions. In other examples, the students can intentionally identify 
regularities in the correct answers displayed by the EEB, after several unfruitful 
attempts. These regularities can allow them to gradually infer the correct answer 
without fail (misappropriation of the EEB), without being able to know if it is 
based or not on a learning. In certain extreme cases, the gaps between the activities 
are not intentional and result in undesired learning.  
 The EEB seem to be at first well adapted for a students’ work on technical 
exercises, that is to say exercises of immediate application of knowledge. This 
wasn’t the case in exercises 8 and 9 for Alice and Fanny, nor for the Joint exercise 
proposed to Charles. The task analyses thus appear to be important in determining 
the exercises that are proposed to students with an EEB. In this sense, the EEB re-
emphasize the importance of the technical exercises, which are important for the 
learning and which are often neglected in work sessions. The observations or the 
activity log-files provided by certain EEB show that this work is important, that 
students need time to successfully solve these technical exercises, and that the 
work is less repellent thanks to the technological potentialities of the EEB.  
 As soon as the tasks move away from the technical level (whether the 
application is not direct, or whether the knowledge are assumed to be available for 
students), it is more difficult to get from the students autonomous activity loops 
(the activity and its regulations) which are mathematically acceptable, in other 
words that the produced or returned mathematics be correct and consistent. This 
does not however mean that the EEB cannot be used in other ways than for simple 
or direct tasks. This means that there is a margin phenomena which, if placed too 
high in terms of task complexity, excludes weak students. The notion of ZPD 
(Vygotski, 1978, chapter 1) is particularly useful here in the sense that the students 
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essentially work autonomously. In particular, the EEB can emphasize the 
differentiation between students if the teacher is not specifically vigilant to the 
student difficulties. Learning is observed, on an average term, for students 
confronted to tasks which include adaptations that are accessible and for which 
they find immediate resources. It is the case of Alice who, after the multiple 
choice, and using her notes and with the help of the teacher, seems to have well 
understood the difference between image and pre-image. She was obviously able to 
reinvest this knowledge during exercises 8 and 9. However, we saw how she went 
from an “action logic” to a “learning logic” as soon as the exercise was not a 
questionnaire with two blanks anymore, but had six blanks, that is as soon as her 
“two shots strategy” stopped working and the task mixed more than two writing 
registries. This example thus shows that the distinction that we introduce between 
“action logic” and “learning logic" depends on the student of course, and on the 
situation s/he faces on the EEB as well. We go back to the initial idea of a situation 
that must include knowledge adaptations in order to hope for an intentional 
constructive activity and in particular for a mathematical learning. Quite often, it is 
the teacher, present and vigilant, who can react to the actual activity of the students 
and emphasize this learning. The teachers must hence develop a specific work for 
help and for the integration of the EEB use in the usual classroom practice. We will 
examine the activity of the teachers who use EEB in the next chapter. 

NOTES 
1 The terminology of productive activity comes from the field of professional didactics but could be 

understood in a more naive way, in the sense that the student activity produces results numerical 
answers, implementation... 

2 For which we can specify the types of adaptations of knowledge at stake (A1 à A7). See chapter 2. 
3 http://euler.ac-versailles.fr/baseeuler/recherche_fiche.jsp 
4  http://mathenpoche.sesamath.net/ 
5  http://wims.unice.fr/wims/ 
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9. TEACHERS’ PRACTICES USING  
E-EXERCISE BASES IN THEIR CLASROOMS 

INTRODUCTION 

This chapter examines teachers’ uses of specific computational tools: electronic 
exercise bases (EEBs, see chapter 8). The data come from a project tracking the 
use of online resources in grade 9 mathematics classes (ages 15-16) in the Paris 
region. Here the use of EEBs constituted a case of special innovation and should 
for this reason be distinguished from ordinary classroom situations, where the 
emphasis is placed on coherence and stability of practices. The stability factor in 
the use of EEBs is not therefore discussed. Instead we raise questions concerning 
the way in which these new tools are appropriated by teachers, the different uses in 
terms of student activity, the changes they bring about in the day-to-day activities 
of teachers, and, more generally, their impact on the evolution of teachers’ overall 
classroom practices. 
 The theoretical framework adopted in addressing these questions is the double 
approach. Special importance is given to concepts drawn from Activity Theory. 
The activity of the acting subject depends in part on the subject him/herself and 
his/her conceptions and representations; but it also depends on the situation1 in 
which the subject is placed. In terms of the data referred to here, the subject is the 
teacher, and the situation refers to the particular computational tool used (EEB), 
though it also takes into account an array of other factors, including the teaching 
establishment, the social context, and the specific teachers and students involved. 
Via his/her activities, the subject “transforms the real and transforms himself” 
(Pastré and Rabardel, 2005). The results of the activity can therefore be divided 
into two categories: transformations of the real – that is, of the subject’s 
environment – and transformations of the subject him/herself. In order to 
distinguish these two categories of result, Samurçay and Rabardel (2004) introduce 
the notions of “productive activity,” which refers to changes in the subject’s 
environment, and “constructive activity,” which refers to changes in the subject 
him/herself. In terms of our data, productive activity refers to the effects of the 
teacher’s activity on the students, whilst constructive activity refers to the 
transformations of the teacher’s personal representations and, more particularly, the 
transformations of his/her teaching practice. Although distinct, productive activity 
and constructive activity are nonetheless closely connected. More particularly, 
constructive activity cannot take place without productive activity. Additionally, 
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we should note that productive activity ends when the execution of a task is 
complete, whereas constructive activity can continue over a longer period. Thus the 
results of teachers’ activities are analyzed both in terms of direct observation of 
their implementation of student activities (productive activity), and in terms of the 
transformations of the teachers themselves, in so far as such transformations can be 
determined (constructive activity). 
 By analysing both the teacher’s productive and constructive activity, we are 
therefore better able to assess the cognitive and mediative components of his/her 
practice – even if we cannot describe them in full. We should recall that the results 
of the activity of the subject (the teacher) have a retroactive effect on the three 
other components of his/her practice by means of a ‘double regulation’ that is both 
‘external’ (affecting the institutional and social components of practice) and 
‘internal’ (affecting the personal component of practice). This double regulation 
functions according to different timeframes (see chapter 2): 
– In the short term – that is, limited to an “episode” within a given lesson. From 

the point of view of the teacher, we define an “episode” as an instance of 
exchange/dialogue with one or more students or indeed the whole class. We do 
not discuss this short-term action in detail here. This is because, firstly, the 
effects of the teacher’s activity on students are in this case too limited to be 
interpreted in terms of learning outcomes. Secondly, the regulations resulting 
from the teacher’s activity take place in real time. The effects of constructive 
activity on the teacher him/herself seem to be too limited to be consciously 
recognised and reinvested by the teacher (Rogalski, 2003) 

– In the medium term – that is, within the space of a lesson or a lesson sequence (a 
series of lessons on the same topic). Within this larger timeframe, regulation 
begins to have an effect on the teaching subject. For example, the teacher might, 
over the course of the lesson, become aware of persistent difficulties for the 
students that s/he had not expected; as a result s/he will modify the structure of 
the lesson in an impromptu manner, going back over certain material and 
establishing connections with previous topics. From the point of view of the 
students, the consistencies in the teacher’s activity can also allow us to 
presuppose certain effects on their learning. 

– In the long term – that is, in the course of planning, preparations etc. This is the 
most relevant timescale in terms of the effects on students and the effects of 
constructive activity on the teacher him/herself. Here we draw on the notion of 
“geneses of the technology uses” (Abboud-Blanchard & Vandebrouck, 2012) to 
designate the effects of the teacher’s constructive activity. We then attempt to 
understand, in terms of the five components of the teacher’s practices, how the 
geneses of the EEB uses can be integrated into the global practice of teachers. 
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 In the next section, we introduce the data collected and the methodology 
employed. This is then followed by an overview of the results of our study of 
teachers’ activity in terms of lesson preparation and class proceedings (third 
section). Finally, the last, fourth, section examines three detailed case studies that 
supplement the more generalized findings set out in the third section. 

DATA COLLECTED AND METHODOLOGY  

The data come from two different samples. The first broader sample consists of 
thirty or so teachers who were involved in the project from 2004-2006. These 
teachers were observed either directly or indirectly (i.e. via observations of their 
students’ activity). They also filled out questionnaires about their use of EEBs; 
these questionnaires are especially useful as a supplement to the observations made 
during lessons. The second smaller sample consists of six teachers whose practices 
were studied more extensively. 
 The data collected for each teacher can be organised chronologically in 
accordance with the timeframes described above – that is, lesson preparation and 
proceedings (short and medium-term timeframes) and teachers’ critical re-viewing 
of their lesson(s) (medium and long-term timeframes). 
 As far as concerns lesson preparation, teacher activity is analysed first of all in 
terms of his/her choice of EEB, lesson content and specific exercises. That is, the 
initial focus is on the classroom scenario (incorporation of the lesson in a 
progressive, global learning agenda) and the lesson’s learning trajectories, as set 
out by the class teacher.2 Such features provide information on the cognitive 
component of the teachers’ practices. However, such details as, for example, the 
complexity of the tasks set, which are important when studying student activity, are 
not taken into account here. Indeed, such details are meaningless when examining 
the activity of several teachers teaching different topics and at different periods in 
the school year.  
 The lesson proceedings are analysed by means of the transcripts of the 
recordings made and the notes taken by the observers. They provide information 
relative to class management and teacher-student interactions. Particular attention 
is paid to the way in which different media are used (EEBs, but also hand-outs, the 
black/whiteboard, exercise books, project notebooks) and to the teacher’s 
interventions. The latter permits a description of the ways in which teachers help 
students to complete the tasks they have been set using particular resources. This 
second phase of the study provides access essentially to the mediative component 
of the teachers’ practices, though this may also corroborate and reinforce certain 
considerations relating to the cognitive components of practices. 
 Finally, the third observation phase, in which the teacher “learns from,” so to 
speak, his/her classroom experience, is very difficult to observe because it takes 
place over a protracted period of time. Often the teacher will not give a similar 
lesson until the following year. Furthermore, the modifications to be made to future 
lessons are not always made explicit; when they are, it is usually during 
questionnaires or interviews conducted after the lesson itself. Changes may also 
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become visible over the course of a sequence of several lessons on the same topic. 
The information collected here aids understanding of the possible long-term 
evolution of the cognitive, mediative and personal components of practice. 
Moreover, it helps us to consider the geneses of EEB uses in relation to the 
evolutions of all five components of teaching practices. 

RESULTS  

The results obtained provide information on those features of the cognitive and 
mediative components of teaching practices that are visible during observation; 
some features of the other three components were also visible, but to a lesser 
extent. We will present the various actions carried out by the teachers in 
chronological order, beginning with lesson preparation, moving onto the 
proceedings of the lesson itself and ending with subsequent modifications. 

Lesson preparation  

All of the teachers whose lessons were observed chose a single EEB to be used 
throughout the year and for all of his/her classes. Some teachers used different 
digital resources, such as spread sheets or interactive geometry software, but none 
of them used more than one EEB. The first of the teacher’s actions is therefore to 
select “his”/”her” EEB. In some cases this choice was the same for all the teachers 
in a given establishment. 
 The teacher’s second action is to choose the type of lesson s/he will give. 
Lessons using EEBs are nearly always made up of a small number of students 
working alone or two on a computer, with the teacher offering individual help. 
EEB-based lessons can even sometimes be supplementary sessions in which 
students participate on a voluntary basis. The frequency of EEB usage varied 
considerably from teacher to teacher. In the questionnaires, the majority stated that 
one EEB-based session per week would be desirable but that, for practical reasons, 
many of them had actually given fewer than this.  
 After the initial sessions in which the EEB was rapidly explored, all of the 
teachers produced what we will later refer to as “work plans” – that is, a structured 
sequence of exercises chosen from the EEB. Most often the work plan was the 
same for all the students. However, some inclination to adapt it to different 
students’ needs was observed. For example, in a remedial session following a test, 
the students were given exercises addressing the mistakes they had made in the 
test. Or again, in the same establishment, several teachers grouped together and 
decided that each would offer a workshop on a different topic; their students were 
then redistributed, each being sent to the session that best corresponded to his/her 
needs. When work plans were used, many teachers inserted some personal remarks 
at the beginning. The work plans were quite precise and generally too long to be 
completed in a single session. 
 The exercises set by teachers always related to topics that had either already 
been studied or else were currently being studied. Their format and title were 
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similar to those of traditional exercises. No exercises introducing new topics were 
used. Furthermore, the teachers’ goals for the sessions were always limited: the 
aim was to work on a specific topic or to revise specific concepts. Exercises 
drawing on several concepts at the same time were only very rarely used, with the 
exception, now and again, of a few exercises at the end of the work plan, intended 
for the strongest students. Additionally, teachers in their first year of using the EEB 
preferred to use simple exercises featuring a single problem to solve and closed-
ended questions; they then expanded their repertoire of exercises in subsequent 
years. Various mathematical topics were covered in the sessions, from geometry 
and factorisation to functions and statistics. The topics were always chosen in 
relation to the class’s overall progress.  

Lesson proceedings 

All of the teachers observed structured their lessons in the same way – in three 
sections of very different length: first, a very short start-up phase; second, the bulk 
of the lesson, or what we call the “cruise” phase; and, finally, a very short, even 
barely existent closing phase. We structure our findings on lesson proceedings 
around these three phases. 

The start-up phase 
In the start-up phase the teacher mostly addresses the whole class, giving practical 
instructions regarding the distribution of students among the workstations and how 
to access the exercises.  
 For example: “Sit down, ideally one of you at each desk (…) When you’ve 
opened the session, I want you to pay close attention to the instructions I’ve given 
you. I’ve written these at the beginning of the session (…) I want you to call me 
when you’re ready to start. I want to see some good work (…). And don’t forget to 
show your working out for worksheets one and two (…).”  
 In this example the instructions also deal with the way in which the tasks are to 
be completed and the arrangements for addressing the teacher. This initial phase is 
always very short; it may even be missed out completely once the teacher and the 
students have got used to the equipment and the initial lesson set-up has become 
“routine.” On the other hand, when the technology is used for the first time 
extensive practical instructions will be needed.  

The “cruise” phase  
In all the lessons we studied, this phase made up close to the entirety of the lesson, 
with the teacher no longer addressing the whole class and instead speaking almost 
exclusively with one or two students at a time. Likewise, there is no collective 
review of the answers on the blackboard. These two features demonstrate 
important departures from traditional exercise-based lessons. A further difference 
is that the students cannot wait for a collective answer review because they know 
there will not be one. Indeed, the observations made in these lessons show that the 
students were “active.” They also interacted with the software by, for example, 
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reading the “help” box that accompanied the exercise or providing an answer and 
viewing its evaluation. 
 Amongst the various kinds of assistance supplied by the teachers, we can 
distinguish “mathematical” help (which can be procedural or constructive; see 
chapter 2) and “instrumental” help. We also see, though rarely, certain teacher 
interventions relating to the students’ application to their work; where such 
interventions took place, there aim was to encourage, praise or push the student. 
Instrumental help concerns the handling of the exercise database; at times it is 
difficult to distinguish this from mathematical help. We noted that, in all the 
lessons observed, instrumental help was often initiated by the students. Most of the 
mathematical help provided by the teacher was procedural: s/he helps to resolve 
the difficulties encountered in the exercises and checks the students’ work. 
However, individual assistance can be constructive. For example, if a student is 
making a persistent mistake, the teacher will re-explain a particular concept they 
have studied and its relation to the exercise. There are thus various types of teacher 
interventions, each adapted to a specific case. This means that the teacher is often 
required to assess diverse situations rapidly so as to respond accordingly.  
 We will now provide a few examples of different types of teacher intervention. 
They are all taken from the “cruise” phase and are specific to the use of EEBs. The 
assistance offered is usually a mixture of the mathematical and the instrumental. 
 Example 1: “Yes? What is it you don’t understand? Right, where’s the question, 
first of all? I didn’t see your answer just now. What does this value represent? Go 
back …” The teacher has to understand which exercise the student is working on, 
which is all the more difficult because many EEBs set the exercises in a random 
order, which means that the question asked at any one time can differ from one 
session to another. In the case of a set of questions proposed in sequence, the 
teacher has to grasp the student’s whole chain of reasoning. 
 Example 2: “They sometimes offer you some comments on your answer; you 
should always click ‘yes.’ It’s not enough just to read the ‘well done,’ you need to 
read the rest as well (…) You don’t have to read and copy out everything …” Here 
the same teacher adapts his/her advice to the specific student and the specific 
exercise and encourages the student to interact directly with the EEB. 
 Example 3: “You will all need at the very least your exercise book and a pen or 
pencil. Because you won’t be able to do everything in your heads. Some of the 
exercises you can do mentally, but at times you’re going to need to do some 
working out on paper.” Here the teacher repeatedly encourages the students not to 
neglect pen and paper when working out their answers. 
 Example 4: “So you did the calculations, you gave all the answers … did you get 
them right? OK, then move on to this one. I recommend you go to ‘information’ 
and read exactly what they want you to do.” In this single intervention the teacher 
performs three actions: s/he finds out what the student had done before s/he came 
over, s/he advises the student to move on with the exercises and, aware of the 
difficulties of the following exercise, s/he asks the student to read the information.  
 These examples show that the EEB is an action tool for the teacher, who finds 
him/herself playing a dual role: s/he is both mediator between the student and the 
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software, explaining how to use the EEB, and monitor, checking whether the 
questions have been answered correctly. These two roles are not in themselves new 
for the teacher, since they have to be adopted whenever a new instrument is 
introduced, be it “traditional” (e.g. protractors in the grade 5/6 – age 11-12) or 
technological (e.g. a new model of calculator). The difference is that the teacher 
must now simultaneously keep in mind not only the kind of mathematics the EEB 
proposes and the automatic structure and sequencing of the exercises, but also the 
means of assessment and the kind of help that is to be provided. Depending on the 
teacher, these functions are more or less close to his/her usual practice and thereby 
more or less easy to perform. For example, a teacher who usually monitors 
students’ work individually will have less difficulty conducting EEB sessions than 
a teacher who adopts a more collective approach, mostly teaching from the front of 
the classroom. 
 Furthermore, the teacher’s interventions are always adapted to the work of a 
specific student, without making generalizations on the basis of the rest of the 
class. It is as if the task of collective correction has been taken over by the 
computer, with the teacher instead providing personalized comments for each 
student. It may be that work with EEBs provides opportunities for the furnishing of 
“meta” information (Rogalski, 1997). Again, the extent to which this opportunity is 
exploited or not depends on the individual teacher.  
 In the next section, we will examine a case study (the case of Diane) to see how 
a teacher, given the specificities of working with EEBs, adapts his/her 
interventions and fulfils the new roles required to manage the lesson’s “cruise” 
phase. 

The closing phase 
The closing phase is very short. In most cases it begins when the bell rings to 
indicate the end of the lesson. The teacher announces the lesson is over and asks 
the students to switch off their computers. Sometimes s/he will try to gauge how 
far the students have advanced with the exercises because each of them is likely to 
be at a different stage in the work plan; this will only rarely be followed by some 
further comments. 
 Example: “I want you to write down the last results you’ve got and then close 
everything down as usual....OK?... Who managed to get to the last exercise? 
Charlène, you did, didn’t you? Aurélia, you were more or less there. Marianne?” 
 There is thus no summing-up and very little in common with traditional lessons. 
On these points teachers are divided. Some do not mind ending the lesson in this 
way. First, as we said above, these lessons aim at the consolidation of existing 
knowledge; the teachers do not therefore feel the need to do a collective summing-
up of the mathematical topics being practised. Second, the students and the teacher 
feel that they have “worked hard” in so far as they have made use of new 
technology and met institutional requirements; but this work ends the machines are 
switched off. Meanwhile for other teachers this lack of conclusion at the end of 
class marks a break with their usual practice and can generate frustration. In the 
previous example we can see how the teacher tries at the last minute to glean as 
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much information as possible as to where exactly the individual students have got 
to in their work. 

Proposed modifications  

In the interviews conducted after the lessons, some of the teachers offered 
immediate reflections on their activity in the classroom and proposed some short-
term modifications. 
 For example, in one of the lessons the teacher met with the following difficulty: 
for many students it is not evident that “divide by three” means the same thing as 
“multiply by 1/3.” However, the particular setup of the software means that it is not 
possible to divide by three. In the interview the teacher explained that she had not 
anticipated this problem because she had never encountered it when setting 
traditional exercise work. 
 More generally, the teachers found it hard to integrate the EEB lessons into their 
overall teaching agenda. Indeed, given that they are conducted in a classroom other 
than the one usually used and make use of a special technological resource, these 
lessons can seem marginal. This is even more so in the case of sessions tailored to 
students’ individual needs. To offset this problem, some teachers take exercises 
similar to those encountered in the EEB and insert them into their class tests or ask 
students to perform them in front of the class during the next (non-EEB) lesson. 
Likewise, the students are asked to work with EEBs as part of their homework, for 
example when revising for tests. 
 After the first year of experimentation, almost all of the teachers wanted to 
continue in the following year. They envisaged some adjustments in terms of: 
– their work plans (“construct lesson plans”; “make shorter and more targeted 

lesson plans”) 
– the overall structure of the timetable (“get started from the first day of term so as 

to get into good habits and normalize the use of EEBs”; “try working as a team, 
rotating the students”; “arrange for ‘maths help sessions’ to coincide with those 
of other colleagues so the students can choose whether to work with computers 
or not”). 

 Following the second year of experimentation the teachers generally envisaged 
reinforcing the use of EEBs (“more regular use”) or integrating their use of EEBs 
in full-class sessions by using a video projector (“use also in class”; “greater use in 
class”) or extending their use “at home and in the library” or indeed adapting their 
use of EEBs to the needs of different students (“increased use to deal with weak 
points”). We also observed the beginnings of a teamwork initiative; an example of 
this will be given in the following section where we discuss the case of Flora. 
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EVOLUTION OF TEACHERS’ ACTIVITY: THREE CASE STUDIES 

We now turn to the question of long-term evolutions in teaching practice as seen in 
three case studies. Where possible, these evolutions are interpreted in terms of 
constructive activity. The interpretations are particularly difficult because, firstly, 
the evolutions are closely linked to the personal component of teaching practices, 
for which the data are not always sufficient. Secondly, the long periods of 
observation needed to detect such evolutions are not always possible. We will 
present the cases of three teachers who were part of the sample taken at the end of 
our study. 

Michel 

Michel teaches in a lycée professionel (vocational college, ages 15-18). We 
collected data on the classroom proceedings of five of his lessons given within a 
two-year period. 
 Over the course of the lessons Michel enriched the work plans he used with the 
target age 15-16 (first year of lycée) section of the EEB Paraschool3 with 
supplementary study sessions and exercises taken from the target age 14-15 [final 
year of French collège] section. In this way he increased the bank of exercises 
proposed to students so as to facilitate the transition between the two levels. 
Indeed, Michel was conscious of the difficulties previously encountered by his 
students and tried to overcome these by setting exercises from the age 14-15 
section, which he began to consult in his second year of teaching with Paraschool. 
We can say that the modification in his use of the EEB was guided by the cognitive 
component of his habitual teaching practice. 
 Other changes Michel made suggest an evolution in the mediative component of 
his practice. For example, over the course of the lessons he perfected a new format 
for the dialogues he conducted with individual students as he walked around the 
classroom: he would systematically ask them to go back over their thinking to 
check they have understood. We see this taking place in the following dialogue: 
“Yes? What is it you don’t understand? Right, where’s the question, first of all? I 
didn’t see your answer just now. What does this value represent? Go back …” 
Michel also devised a special strategy for addressing the whole class. When he first 
started using the EEB, he used a function that blocked all the computers and 
stopped the activity of all the students whenever he needed to give an explanation 
to a group of students or even to just one student. However, these explanations had 
no relevance to the activity of students who had advanced at a different rate and 
were at a different point in the work plan. After several lessons he began instead to 
give his explanations to groups of students on the board, leaving the rest of the 
class to continue working at their computers. In this way the explanations on the 
board remained visible to any other students who might need them. Here it seems 
that the evolutions in Michel’s EEB activity resulted from constructive activity, 
which had an influence on the mediative component of his practice. Certainly we 
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can see a learning curve in Michel’s method of dialogue with students and his way 
of managing blackboard use in relation to the autonomous activity of his students. 
 

Flora 

Flora teaches in a lycée d’enseignement général [ages 15-18 and giving access to 
higher education]. We observed two of her exercise-based lessons, given to a group 
of fifteen students aged 15-16 using the EEB Euler.4 In addition to watching 
Flora’s classes, we also conducted an interview in which she described the changes 
she had made during the year and her plans for the following year. 
 An initial evolution in Flora’s activity seems to have been the desire to integrate 
the EEB into her overall teaching agenda; in other words, she thought to establish 
connections between her traditional classroom lessons and her EEB-based lessons. 
For example, she noticed during an EEB session that the students frequently 
struggled with linear functions; she therefore decided to adapt next year’s 
traditional classroom session so as better to deal with this topic. In addition, she 
aimed at a regular use of the EEB even in her traditional classroom sessions. More 
generally, Flora envisaged restructuring her annual lesson plan so as to begin with, 
for example, lessons on how to use the EEBs. Flora’s progressive integration of the 
EEB indicates a change in the cognitive and mediative components of her practice 
that in turn testifies to the presence of constructive activity. 
 We also detected some localized evolutions in the proceedings of Flora’s EEB 
lessons, though Flora did not seem to notice these herself. For example, her 
addresses to students during the second lesson we observed aimed to clarify, 
simplify or develop the methods used to arrive at the answer. She appeared to tailor 
the help she provided to each student, improving the methods of struggling 
students and enriching the stock of possible methods in the case of more confident 
students. Yet in the interview she did not seem to be aware of this “differentiation” 
in the help she offered. It would therefore appear that this is a stable feature of the 
mediative component of Flora’s practice, common to all her exercise-based 
lessons. 
 Finally, Flora helped to create a community of EEB users in her establishment. 
At the end of the experiment she persuaded two of her colleagues to work with her 
as a team during special tutoring sessions (i.e. individual help sessions), which are 
all timetabled at the same time in her establishment. The teachers began to think 
collectively about how to combine the teaching of topics with the use of EEBs. 
They also thought of possible ways to link up the EEB-based special tutoring 
sessions, which are attended by only the weakest students, with their regular, 
whole-class lessons. For example, they might ask a student from the special 
tutoring session to come up to the front during an ordinary lesson and explain what 
they had covered in the tutoring session. What we have here is an evolution in the 
institutional, social and personal components of Flora’s teaching practice. We can 
therefore affirm the presence of constructive activity. Flora developed, in 
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particular, an inclination towards teamwork and she now participates in other 
projects aiming to integrate new technology in teaching.5 

Diane 

Diane had been interested in educational ICT for many years. Prior to our project 
she had already participated in experiments on the use of spread sheets and 
interactive geometry software in secondary schools. The evolutions we observed 
therefore stretch over a very long period, and it would seem that they too can be 
interpreted in terms of constructive activity. The EEB used this time was 
Mathenpoche.6 
 The first long-term evolution observed in Diane’s practice relates to the use of 
paper and pencil. During the early experiments with spread sheets, she handed out 
a sheet for the students to fill in and stick in their exercise books. When observing 
her lessons, we noticed that the students had a technology’s exercises book that 
they used throughout the lesson. Diane also gave precise instructions on what the 
students should write down in theses books – for example, the answer to an 
exercise plus each stage in their working out. Additionally, many of her addresses 
to the students during the lessons concerned the use of pencil and paper. This goes 
hand in hand with her idea (expressed in a questionnaire prior to the experiment) of 
“keeping track” of the students’ computer-based activity so that they would have 
notes to refer to when working independently. 
 The second evolution we observed in Diane’s practice relates to her desire, like 
that of Flora, to integrate the EEBs into her overall teaching agenda. This can be 
seen particularly in the questions she set for class tests. At the beginning of the 
experiment she systematically included in paper and pencil tests exercises taken 
from one of the EEB sessions and presented as a screenshot. Later on she changed 
this slightly, instead using exercises that were similar to those from the EEB 
sessions, but that she had adapted for the test. In both cases she asked the students 
not simply to write their answer but also to show every stage in their working out; 
in this way the students recognised the importance of her instructions to take notes 
during EEB lessons. We can therefore observe that the effective integration of 
EEBs into Diane’s classroom work brought about, first and foremost, an evolution 
in the cognitive component of her practice. 
 Bearing in mind these two evolutions, it is clear that Diane was working in the 
long-term towards the inclusion of the EEB in her global teaching agenda. As in 
the case of Flora, this corresponded to a progressive integration of the EEB into her 
teaching practice. Her actions regarding the use of pencil and paper are typical of 
the sort of strategies we have seen employed by a number of teachers. Indeed, the 
aim of Diane’s various actions was to “oblige” students to keep a written record of 
their work at the computer; afterwards they were required to employ a similar 
technique in class tests. If the students are conscientious and use their notes to 
revise the exercises they have done in class, this may well have a positive effect on 
their marks. 
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 A third evolution relates to the important role that Diane accorded to the EEB in 
the last few lessons we observed. Indeed Diane more so than other teachers, 
seemed to “fade into the background” during EEB classes, her aim being to train 
the students to work independently with the computers and with as little assistance 
as possible. In her view, the teacher’s role is to help the students to acquire a sound 
method that will allow them to deal with the exercises independently. Moreover, 
we noticed that when Diane did monitor or assist the students, she generally 
concerned herself very little with evaluation. This shows, again, that Diane was 
willing to delegate part of her usual activity to the EEB. In this case she allowed 
the software to do the evaluating for her. This contrasts with other teachers, such as 
Michel, who attributed more importance to the function of evaluating students’ 
work. We should emphasise here that Diane had a thorough understanding of the 
EEB she was using. This meant that she could, in the course of her explanations, 
refer students to the appropriate help sections provided by the software. This 
allowed her to encourage the students as much as possible in developing their 
autonomy. Certainly, the effort to develop student autonomy is one of the strong 
points of the personal component of Diane’s teaching practice. We can therefore 
assert the presence of constructive activity in Diane’s practices: she acquired a 
thorough knowledge of how to use the EEB and this because the EEB was the best 
means of achieving her teaching objectives. 
 Finally we should note that, thanks to her thorough knowledge of the EEB, 
Diane’s interventions during the lesson sometimes succeeded in promoting the 
construction of mathematical knowledge (constructively oriented assistance) and 
not simply the execution of the task in hand (procedurally oriented assistance, see 
chapter 2). In the final lesson we observed, for example, she explained that the 
concepts of images and pre-images often pose problems for students because they 
tend to mix them up or else do not understand how they relate to whether a point is 
positioned on or off the curve. Diane thus helped the students to distance 
themselves from the specific EEB tasks they worked on and to think back over 
their mathematical knowledge. This can be seen in the following conversation she 
had with a student:  
Diane: “When you draw a curve, what are the coordinates of point M on the curve? 
Student: M. 
Diane: No. When you have a curve, what do you do to find the position of M? If I 
ask you to draw the curve x², what do you do first? You make the table of values, 
and then? You’ve got the x values, now you need to find the y values, in other 
words the x² values. Then once you’ve got your table of values, how do you move 
onto the curve? …” 
 It is clear that the use of the EEB brought about changes and privileged new 
types of interactions with the students. Could we see this as an evolution in the 
mediative component of Diane’s practice? 
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CONCLUSIONS 

Let us recall that one of the conclusions of the study of students working with 
EEBs (chapter 8) was the primordial importance of the role played by the teacher. 
This was true across all class levels. Without the mathematical assistance of the 
teacher, it is unlikely that students would be able to complete the exercises 
proposed. We can therefore appreciate the importance of the present chapter in 
which we have looked at the practice of teachers using EEBs and addressed the 
underlying question of the effects of EEBs on students’ progress in mathematics. 
We have also asked more specific questions relating to teachers’ appropriation of 
this new tool, its possible uses in terms of student activity, and the changes it 
brings about in teachers’ daily activities and the evolutions of their global practices 
more generally. We have made several important findings. 
 Firstly, the teacher’s productive activity is determined by the circumstances 
pertaining to the use of EEBs in class. Indeed, we have seen that a number of 
features relative to the organisation of the lesson tend to be adopted fairly quickly. 
These include a relatively long and rigid work plan, a smaller class size, work on 
topics that either have already been studied or are currently being studied, student-
teacher interactions that is chiefly one-to-one, the absence of a summing-up 
addressed to the whole class at the end of the lesson, and limited use of the 
black/whiteboard. These features, which are both cognitive and mediative, seem to 
be linked both to the short- or medium-term “external” regulations of the teacher’s 
EEB-related activity and, especially, to the significant constraints associated with 
the use of EEBs in class.  
 Secondly, the circumstances of the use of EEBs during lessons determine a 
teacher’s geneses of the EEBs uses. In particular, teacher’s activity will 
unavoidably, if progressively, acquire certain specificities. Thus we have the 
insistence that students keep a written record of their work and the linking up of 
EEB-based lessons with the ordinary (traditional classroom) lessons and class tests. 
These evolutions seem chiefly to affect the cognitive and personal components of 
teachers’ practice. They are the result of constructive activity (“internal” 
regulations, chapter 1) but can accompany (as in the case of Flora) a desire for 
professional development. Nonetheless, these evolutions all have their limits. We 
can see this, notably, in the teachers’ work plans, where, even after extended use of 
the EEB, crossovers between different mathematical topics still tend to be avoided. 
 Furthermore, the disparities between teachers and the different evolutions in 
their activity can testify to more complex geneses of uses that are linked to the 
teacher him/herself. These seem to be more directly linked to the mediative and 
personal components of practice. However, to detect geneses of this kind would 
require study over a much longer period of time. It is hard to say whether Diane’s 
relinquishment of a part of her evaluation work to the EEB was really a matter of 
professional development or rather a helpful adjustment when integrating the EEB 
into the mediative and personal components of her practice. Flora’s tailoring of the 
assistance she offered based on the needs of individual students did not seem to be 
conscious and so could be a pre-existing feature of her practice. We might also ask 
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ourselves whether Michel’s methods for helping students during EEB sessions (a 
very specific use of the blackboard and a particular dialogue format when 
discussing students’ work with them) really evolved because of his use of the EEB 
or is rather a reflection of the mediative component of his pre-existing practices. 
 Lastly, another conclusion of the study of students working with EEBs (chapter 
8) was that students must adopt a reflexive attitude in order for their work to be 
profitable. Whereas we might say that such an attitude is always desirable in 
learners, it is actually shown to be necessary when working with EEBs. Attempts 
by teachers to develop this reflexive attitude in their students would therefore 
appear to be beneficial. According to our observations, teachers actually do this, 
more or less consciously and in harmony with the different components of their 
practices. Thus, Michel felt that he should make available a written explanation 
that his students will be able to use “where necessary.” Meanwhile Flora, when 
helping students with a given exercise, altered her assistance, more or less 
consciously, to meet the needs of different students. Finally, Diane worked on 
developing her students’ independent learning skills by, for example, leaving them 
to evaluate their own work with the help of the EEB. Drawing on these three 
examples we can thus see that, in spite of various disparities resulting from the 
mediative component of these teachers’ practice, all of them seem to have paid 
attention to the development of a reflexive attitude in their students. 

NOTES 
1    The use here of the term ‘situation’ is the same as in chapter 1. 
2   The precise methodology at this stage is the same as that laid out in chapter two and is consistent 

throughout the book. In particular, we attempt to analyse the complexity of the tasks required to 
complete a given set of exercises, bearing in mind the help offered by computer technology. An 
analysis of the difficulty of applying knowledge to specific maths problems is important in gauging 
the quality of students’ mathematical activity. 

3 http://www.paraschool.com/ 
4 http://euler.ac-versailles.fr/ 
5 http://www.edumatics.eu. 
6 http://mathenpoche.sesamath.net  
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MAHA ABBOUD-BLANCHARD AND MONIQUE CHAPPET-PARIES 

10. TEACHER’S ACTIVITY IN DYNAMIC GEOMETRY 
ENVIRONMENTS  

Comparison with a session in traditional environments  

INTRODUCTION 

Research about Information and Communication Technologies (ICT) has focused 
in priority, over the past few decades, on the potentialities and limits of these 
technologies for the mathematics students’ learning. There were relatively few 
studies about teachers’ practices in these environments. Over the past few years, 
we witness an increasing tendency in the research to take into consideration the 
“teacher/teaching dimension” in the use of ICT, given its influence on the students’ 
learning. The studies related to this dimension drew frequently on theoretical 
frameworks and methodologies which are developed in traditional non 
technological environments. For example Monaghan (2004) based his investigation 
of teachers’ practices on Saxe’s cultural model of “emerging goals.” Abboud-
Blanchard, Cazes, and Vandebrouck (2009) use in their work the model of 
Engeström stemming from the activity theory. Other researchers have developed 
specific frames allowing the study of teachers’ practices in technological 
environments such as the frame introduced by Ruthven (2009), defining five 
structuring features of classroom practices. The “instrumental orchestration” is also 
such a framework, defined by Trouche (2004), that extends the instrumental 
approach developed by Rabardel (1995) and that was itself enriched through the 
work of Drijvers et al. (2010). The last ICMI study (Hoyles & Lagrange, 2010) 
shows the variety of these frameworks and some attempts to cross-analyze them.  
 Our current research aims at analyzing the activity of an ordinary teacher using 
a dynamic geometry system. It is based on the double approach theoretical 
framework defined in chapter 2 of this book and the related methodological tools. 
We aim to cross-analyze the results of the analysis with those of a study, which 
uses the same theoretical framework, for a “similar” session in a paper and pencil 
(p&p) environment. This cross-analysis allows us to identify in teachers’ practices 
what seems to be common and what seems to differ from one environment to the 
other. 
 Other researchers have already highlighted issues, sometimes in the form of 
observations made during analyses, or have brought forward results which 
constitute research paths that we aim to explore. We mention for example two 
studies that explored the practices of ordinary teachers using technological tools in 
their classrooms, while considering these practices in their entirety and complexity. 
The first is that of Monaghan (ibid.) who talking of social interactions in the 
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classroom stresses that the teacher in a technology-based session spends more time 
addressing small groups (few students to a computer) than making collective 
interventions for the whole class. He also highlights the fact that in these 
environments, the teacher has a more coaching-students activity to perform the 
requested tasks than in a p&p environment. The second study is the one of Kendal 
and Stacey (2002) who state in their conclusion that mathematical knowledge/skills 
used during ICT-based sessions remain globally in the same range of those 
mobilized during p&p sessions. They add that the main contribution of the 
technological tool, at least as perceived by the teacher, pertains essentially to the 
knowledge/skills related to the use of this tool.  
 The study we present in this chapter focuses on studying in a more detailed way 
the features of a teacher’s practice in technology-based sessions, particularly those 
related to the teacher-students interactions and their influence on the students’ 
activities. Our methodology, in particular the study of the cognitive functions of 
discourse, will also allow to revisit and refine certain phenomena pointed out  by 
Monaghan or to introduce “nuances” to the conclusions of Kendal and Stacey. 
 We have analyzed a space geometry session, in a grade 9 class (aged 14/15 
years), with a dynamic geometry software. Generally, teachers seem to be aware of 
the contribution of this type of software when tackling space geometry learning in 
middle school. Thus the teacher was convinced about the usefulness of dynamic 
geometry to improve the students’ “vision” of 3D geometric figures. The results of 
the analysis were contrasted with those of a similar analysis of a session in a 
traditional p&p environment about the same topic, in another grade 9 classroom.  
 We employed the methodological tools introduced in chapter 1 of this book to 
analyze how the tasks designed for ICT environments differ (or not) from those of 
non ICT ones.  We explored the differences in classroom management, the forms 
of aids and the assistance discourse of the teacher. We thus tried to understand the 
possible impact on the students’ activities. 
 In the first section, we present the technology-based session and in the second 
one, the session in a p&p environment. For each of these two sessions, we first 
present the analysis of the tasks proposed to the students then the study of the 
session’s progress together with the reconstitution of the student activities triggered 
by the teacher. We complete this analysis by a study of the teacher’s discourse, but 
we limit this study, as we explain further below, to the functions of the discourse. 
In the third section, we put forward some elements of comparison of the two 
sessions.  

A SPACE GEOMETRY SESSION IN TECHNOLOGY ENVIRONMENT 

The session we study was videotaped in the classroom of a teacher that we will call 
Anne; it is a grade 9 class with relatively low level of achievement. The students 
are in a computer lab and work by groups of two to a computer; the dynamic 
geometry software is GeospacW.1 The usable recordings concern only 9 groups. 
The objective of this space geometry session is to establish the theorem of the  
ratio of areas and volumes for a particular geometric reduction (the scale factor is a 
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half) of two pyramids. The corresponding lesson was seen during a previous 
session on the same day. 

Analyses of mathematical tasks and task pertaining to the technological tool 

During this session, the students worked on the third part of a space geometry 
problem, the first two parts having been solved during a prior session. Anne did not 
design the problem herself; she took it from a document written by the software 
designer.  
 The students have first to download the folder containing the figure and the 
constructions completed during the previous session. They then have to perform 
the tasks described in Figure 1.  
 

 

Figure 1. Student worksheet. 



MAHA ABBOUD-BLANCHARD AND MONIQUE CHAPPET PARIES 

202 

Through the first and second parts of the exercise, the students were able to: 
– download the folder where the cube ABCDEFGH (of side 2cm) was already 

drawn, construct the midpoints I of [EF] and J of [AB]; 
– conduct a guided exploration of the figure by rotating it; 
– conjecture that triangle JCD is isosceles;  
– calculate the lengths: JC = JD = √5; 
– calculate the area of JCD: 2 cm2; 
– identify that IJD is right at J; 
– calculate the volume of IJCD: 4/3 cm3. 
 In this third part, the students must first (question 1) construct using GeospacW 
the section of pyramid IJCD by the plane parallel to the base (JCD) and passing 
through the midpoint M of the altitude [IJ], thus obtaining points N and Q. 
 The construction task of the section using GeospacW is entirely guided. The 
manipulation instructions are provided step by step in the worksheet; the students 
only need to follow these instructions.  
 Then the students must inspect the planes (JCD) and (MNQ) using GeospacW. 
One can expect that at this point the student will perceptually identify a reduction: 
the two triangles are both isosceles, respectively at J and M, and MNQ seems to be 
a reduction (the scale factor is ½) of JCD.  

Analysis of mathematical tasks (related to the end of question 1 and to questions 2, 
3 and 4) 
To calculate the exact values of MN, NQ and MQ, the difficulty could be that the 
students are tackling for the first time an exercise about the section of a pyramid by 
a plane parallel to the base. So they must apply the previously seen theorem in the 
particular case of this exercise, and use it to deduce a section of MNQ of the same 
nature (isosceles) as the base JCD and the parallel lines: (MN)//(JC), (MQ)//(JD), 
(NQ)//(JC). 
 The students can, for the first two calculations, choose and adjust the same 
reasoning: either the midpoint theorem or Thales’ theorem. For the length of MQ, 
they can also use the same theorem or apply the theorem seen previously: the 
section of a pyramid by a plane parallel to the base is a reduction of the base.  
To calculate the area of MNQ, students have to identify the formula and apply it to 
their figure then to determine a method allowing them to find the missing elements. 
Hence, they must take initiatives: construct the altitude of triangle MNQ from point 
M, place point H foot of this altitude, and calculate MH.  
 Finally, to calculate the volume of IMNQ, students have to adjust the formula 
which gives the volume of a pyramid. To compare it to the volume of IJCD, they 
need to shift to numerical frame by introducing the comparison of two numbers 
within a geometric frame, which could represent a difficult task for them. 
The different mathematical tasks proposed to students are thus complex tasks since 
they require several adaptations of different types. In addition, repeating in this 
first question the application of a same theorem is also in itself difficult.  
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Analysis of tasks related to the technological tool  

We are interested here in student tasks related to the use of the technological tool 
(labelled T in what follows). We will zoom in on these tasks, a zoom that will 
momentarily isolate them from the associated mathematical tasks. These T-tasks 
are exclusively related to the first question, the three following questions are to be 
achieved only with paper &pencil. We can identify four T-tasks: 

Downloading the geometric figure 
The student must first download the folder containing the figure constructed during 
the previous session. This technical task consisting in downloading a folder 
identified through its name is a simple task with no particular difficulty for the 
student. The students have already done this manipulation during the previous 
session.  

Creating point M 
The figure displayed on the screen is the cube ABCDEFGH, represented in 
cavalier perspective, with points I and J already constructed. The student must 
hence create the point M midpoint of [IJ]. It is a simple task that consists in 
opening the menu “create,” selecting the item “point,” choosing “midpoint of a 
segment” and specifying in the window that pops up the names of the extremities 
of the segment and that of the midpoint, M. The students have already completed 
this same task in the previous session to create points I and J. Thus they only need 
to recognize the application modalities of the command series needed for the 
creation of M.  

Creation of the section 
Once M is created, the worksheet provides the student with a detailed list of 
instructions to execute for the creation of the pyramid section and of points N and 
Q. This task is simple and does not seem to require any adaptation; a precise 
execution of the given instructions would be enough to reach the requested 
construction.   

Inspecting the planes 
Ones the construction completed, the student is asked to inspect, using the 
software, successively the planes JCD and MNQ. This task requires two types of 
adaptations: s/he must recognize the application modalities of the command series 
which lead to visualizing only one plane (previously seen in the first parts of the 
problem), and then s/he must go back and forth between the planes JCD and MNQ. 
This successive visualization of two planes will allow, on the mathematical side, to 
visually identify that the triangle MNQ is isosceles, and to conjecture that it is a 
reduction of JCD (already proved as being isosceles in the first part). 
  
The T-tasks are thus, as we mentioned above, concentrated in the first question. 
The most complex part (construction of the section) is deliberately made easy (by 
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the designers of this scenario) by providing a list of guided instructions to be 
executed. The other parts call upon knowledge related to the use of the software 
which was already experienced in the previous session. Therefore, it is reasonable 
to think that these tasks will only require a limited time of the expect student 
activity, the mathematical tasks being more complex and requiring more time to be 
performed.  

The lesson in progress 

We analyze in the following the lesson in progress both at a mathematical side and 
at technology use side.  For the latter, we present elements related to two levels: the 
global level of the session through the collective interventions of Anne; the local 
level of the groups (two students per computer).   
 To start, it is useful to emphasize the fact that the teacher can only coach each 
group for a very short time and that her help must be efficient enough so that the 
students could complete the work alone.  
 This prelude might explain why the aids provided by the teacher are all almost 
with procedural function, whether instrumental or not, and that they simplify after 
all the students’ activities. In fact, the division of the student’s work into simple 
and isolated tasks is obvious.  
 The teacher having only very little time to spend with each group uses the 
fastest way possible to help them, almost dictating the work to be done. Most of the 
time, when teacher is with the students, they have only to execute her instructions, 
to finish a sentence she began, knowing that when she will leave they will be alone 
for a long moment.  
 However, we notice that the teacher did not succeed in reaching the desired goal 
within the allocated time. In fact, the students took “too” much time to execute the 
construction of the pyramid section; some of them were still doing it 10 minutes 
before the end of the session.  
 Anne had planned the T-tasks as an aid in the starting phase in order to 
accelerate access to the mathematical task. The time allocated to this was supposed 
to be limited. Her collective intervention at the beginning of the sessions proves it: 
“So I remind you all that for this 3rd part, you will directly examine the plane, this 
will help you think how to answer the following questions.”  
 Realizing during the session that these T-tasks took longer than expected, she 
tried to speed up the execution either by doing the work herself (while involving 
the students verbally), or by coaching the execution of the instructions given in the 
student worksheet until the whole set of T-tasks is completed. She also tried to 
make a collective intervention to let the students realize how slow their work was. 
 The aids provided by the teacher are centered on the construction of the section 
which, a priori, only required the meticulous execution of the given list of 
commands. We cannot consider these aids to have a procedural function (as 
defined in chapter 2 of this book), since there is no modification of the expected 
activities. We prefer to introduce in this context a type of aids that we label: 
“handling aid.” It consists in accompanying the student in handling the software so 
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that the mathematical activity is achieved without modification of the planned task. 
This type of aid is directly dependent on the use of tools. It is present in 
technology-based lessons (but it also can be observed in a non-technology 
environment when a tool is used for the first time); especially when the students 
cannot all handle the software with ease.  
 We can also underline that the teacher did not plan to use the software to help 
recognizing the cases of use of Thales’ theorem or the midpoint theorem, to 
calculate the lengths MN, NQ and MQ, although examining  planes (IJD), (IJC) 
and (ICD) with the software provide an unequalled aid as compared to the p&p 
environment. Anne noticed this fact with one group but did not propose this aid to 
the entire class.  

Possible students’ activities – activities “a minima” 
The groups that we have listed, numbered 1 to 9, even though they don’t have the 
same work rhythm, have all created the pyramid section and inspected the planes 
(JCD) and (MNQ). Yet very few have calculated the length MN which was the 
object of question 1. 
 Below, we give several examples of the groups’ work.  
 Group 1: This is the group with which Anne intervened several times. Following 
the teacher’s instructions, the students create the pyramid section by the plane and 
name it, inspect a plane and measure the lengths of the segments using the 
software. Next, they look alone for the theorem to be used in order to calculate the 
length MN. The teacher leaves them alone for 20 minutes then returns, following 
their request, to help them to use the midpoint theorem that they had already 
chosen. She then leaves them again for 12 minutes and come back to evaluate an 
area which we assume to be that of triangle MNQ.  
 Group 5: The teacher intervenes 17min50 after the beginning of the session. The 
students have created the section of the pyramid by the plane, and are trying to 
calculate MN. The teacher points the key elements on the figure: the length of the 
side of the cube, the nature of certain triangles, faces and base of the pyramid… 
She points out elements to organize their work: the use of the software to inspect a 
plane, the choice of a theorem to calculate a length; she leaves the students alone to 
find and apply this theorem.  
 Group 8: The teacher intervenes with this group after 43min. The students have 
constructed the figure with the software. They used Pythagoras’ theorem to 
calculate IC and are looking for MN. The teacher indicates that 2 methods are 
possible and encourages them to use the notebook to find the useful theorem then 
turns to another group.  
 Group 9: The teacher intervenes with this group at the end of the session, after 
47 minutes. We hypothesize that the students had succeeded in constructing the 
section and inspecting the required planes. They calculated correctly the length 
MN but the other lengths were inexact since they misplaced the main vertex of the 
isosceles triangle MNQ. 
 The activities of the students are hence very different from one group to  
another. None of them was able to reach neither the comparison of the pyramid’s 
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volumes nor even that of the areas. Nevertheless, some students were able to carry 
out on their own some adaptations such as the choice of the theorem to use, in 
particular group 1 which unlike the other groups and contrarily to the teacher’s 
expectation, used one of the midpoint theorems to calculate the lengths of the sides 
of triangle MNQ. This group succeeded in organizing a reasoning to calculate the 
area of MNQ.  

About the mediative component of the teacher 
As we previously underlined, the students are autonomous for very long moments 
and when she is present, the teacher divides the task into sub-tasks which the 
students can immediately execute, in order to “give them a boost.” Her 
interventions with the different groups are often similar as we will see below when 
we examine them more closely.  
 The few collective interventions of the teacher which address the whole class 
are almost all concentrated at the beginning of the session and are about how to 
start the work.  Anne intervenes collectively at two other moments within the 
session: a first time, after half an hour, to tell the students that they can use a result 
seen recently in class (nature of the section of a solid by a plane parallel to the 
base), a second time, at the end of the session, regarding the work to be finished as 
homework.  

Analysis of the students-teacher interactions 
The authors of chapter 4 have introduced tools for discourse analysis and have used 
them to study the linguistic interactions in the classrooms in a traditional p&p 
environment. These are tools which allow the analysis of linguistic actions of the 
teacher through the study of discourse functions, what it is about, and through the 
identification of the questions asked to the students. We use these tools here to 
analyze the linguistic interactions in Anne’s classroom. We are interested in the 
teacher’s discourse functions.  
 We first notice that the enrollment functions represent a very small percentage 
of all the discourse functions (7%). We attribute this fact, in ICT environment, to 
the management of the mobilization of the students’ attention and of the 
engagement in the tasks by the environment itself. In fact, the students seem to be 
involved rapidly in the T- tasks which are proposed to them. Their attention seems 
to be maintained throughout the session, the software allowing them to perform 
manipulations (even incorrect) while waiting for the teacher to pass by. The only 
moments where they “switch off” are those where they encounter a technical 
problem and where the teacher does not come fast enough to deal with it.  
 This small percentage can also be a result of the fact that the teacher addresses, 
most of the time, students individually. Indeed, after the first phase of the activity 
launching (beginning of the session), we witness a split of the class group into 
several “mini-classes” (groups of 2 students to a computer) who function in an 
autonomous way and to whom the teacher addresses as such.  
 This is clearly attested by the fact that there has been throughout the session 
(except for the beginning) only two collective interventions: one to structure the 
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time (with the hope of speeding up (see above)) and another to remind the students 
of the theorem seen previously. 
 We secondly notice that the structuring functions take on a considerable 
importance (28%). We first identify the time structuring which occupies an 
important place. This is aligned with our analysis of the lesson in progress with 
respect to time management (see above). The tasks execution time progresses 
slowly; the teacher is aware of this and tries to fix it through structuring. We also 
spot the presence of the orientation function which, associated with the 
information function, allows by introducing sub-tasks (21%) to guied the work of 
the students.  
 The task distribution and the introduction of sub-tasks concern particularly the 
mathematical tasks. Those relative to the T-tasks are a minority 5%, we attribute 
this fact to the nature of the T-tasks which are simple and well detailed in the 
student worksheet.  

The successions of discourse functions: 
We are now interested in the succession of functions within the observed groups 
(mini-classes). In fact, we have noticed while studying the teacher’s discourse that 
some functions seem to alternate in the same order in all the groups.  
 The interventions of the teacher begin mainly by an evaluation (sometimes 
associated with a structuring) followed by an orientation towards a division in sub-
task: 13 times. They can also begin with information (associated sometimes to a 
structuring) followed by an orientation towards a sub-task: 7 times.  
 We can thus establish the succession of the teacher’s actions: 
– she arrives into a mini-class; 
– she makes an evaluation or summary of the work completed; 
– she guides the student (with possibly a structuring) and directs his/her work 

through a division into sub-tasks; 
– if the student begins the execution correctly, she leaves him/her to go to another 

mini-class.  

A SIMILAR SPACE GEOMETRY SESSION IN A PAPER  
AND PENCIL ENVIRONMENT 

We observed the teacher Dany (the same observed in chapter 4) during a space 
geometry session in a grade 9 classroom.2 We analyzed this session and compared 
it with Anne’s session. In fact, the two sessions are about the same notion, the 
section of a pyramid by a plane parallel to the base, and allow comparisons which 
are likely to highlight specificities of the ICT sessions.  
 The study of Dany’s session does not cover all the points that were examined for 
Anne’s session. Those on which we focus here are: the organization of the way that 
students get to work; the  aids of the teacher; the teacher’s discourse during the 
students-teacher interactions, in particular the rephrasing of the students’ answers 
and finally how the students are “taken into account” in the course of the lesson.  
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Analyses of mathematical tasks 

We present briefly the session in order to situate the analyzed interactions. The 
students are not left to search autonomously at all; we can rather speak of a 
“dialogued lesson.”  
 The teacher first presents to the students the objective of the session: “So far, we 
dealt with sections of solids such as the rectangular parallelepiped or the cube, 
today we will deal with pyramids.” He then asks them to imagine what could 
happen if different pyramids that he shows them are sectioned by a plane parallel 
to the base.  
 The students chosen to answer give the expected answers. The teacher proves 
then the expected result in a special case, that of the exercise which he dictates 
“SABCD is a regular pyramid with square base; for the side we will take AB equal 
to 3cm, and a height; last time we specified that when the pyramid is regular, O is 
the center of ABCD, we will let SO be equal to 6cm.”  
 On the white board, he projects the drawing of the initial pyramid SABCD 
(Figure 2). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Drawing projected on the board. 

The teacher asks the students to draw the figure while giving them very precise 
instructions, then he questions them about the plane parallel to the base: “What 
should I specify now when we say that we are cutting the pyramid by a plane 
parallel to the base, this is too general, a plane parallel to the base, what should 
we specify to speak more concretely of the section?” The rest of the session is 
about finding the nature of the section A’B’C’D’ (a square), drawing it on the 
figure, identifying the parallel lines and then elaborating the proof that A’B’C’D’ is 
a square. Beforehand, the teacher asks the students to draw “sub-figures” in real 
dimensions: the square ABCD, the line segment [AC] and its midpoint O, the 
height SO and so on. 
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 A last phase is related to the ratio of areas of the bases of the “big” pyramid 
SABCD and the “small” one SA’B’C’D’. 
 The proposed tasks are not announced from the beginning of the exercise but 
progressively throughout the session. The only adaptations that the students need to 
do pertain to recognizing parallel lines and applying Thales’ theorem, except in the 
case of finding the ratio of the areas, where the students need to shift from one 
purely geometrical frame to a numerical frame.  

The lesson in progress  

Firstly, we notice the repetition of two phases, a first one of elaboration of the 
reasoning orally, and a second one where a student repeats it while the teacher 
writes it on the board. Secondly, a very long time is dedicated to the construction 
of “sub-figures.” It is as if the teacher wants to implicitly show the meaningfulness 
of these figures and the contribution that can have, in a space geometry exercise, to 
return to plane geometry.  
 Considering the aids provided by the teacher, most of them have a procedural 
function that contributes to structuring, organizing and to finally simplifying the 
activities. Dividing the work into simple tasks or even simple and isolated tasks is 
very obvious.  
 The teacher uses the students’ answers which he chooses, and continues to 
explore them until he reaches the correct answer. He thus builds himself the thread 
of the very precise strategy that he has chosen to follow. What is written on the 
black board serves as a model to the students.  

Possible students’ activities – Activities a minima 
During this session, the students can try to answer the questions asked by Dany or 
wait to copy the answers from the board. Hence, there are two types of activities, a 
minima and a maxima.  
 We can assume that also students manage to copy the drawing in cavalier 
perspective and the three plane figures drawn on the board.  We can also assume 
that all the students wrote the reasoning dictated by the teacher. Some of them 
might have anticipated and completed successfully, on their own, the required 
constructions. Nevertheless, no complete proof of the nature of quadrilateral 
A’B’C’D’ was presented at the end. Right angles are not mentioned and as for the 
length equality, even if it is mentioned, it is not completely written. It is true that 
this type of activity is time-consuming and that the work of the next session will 
probably draw on the drafted results.  

About the mediative component of the teacher 
Everything related to the organization of the work, the choice of elements to be 
taken into account, the tasks division and the succession of activities to be 
conducted is taken care of by the teacher.  
 He manages the changes in points of view, the transition from the perception of 
the nature of the section to its representation then to the calculation of length.  
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As we have previously indicated, he does not seem to give much importance on the 
proof regarding the nature of the constructed section since he does not complete it 
and it is only initiated in the dialogue with students.  
 The announced project “section of a plane parallel to the base” is maybe not 
really carried on to its end.  We can hypothesize that it was transformed, the new 
project being to bring forward the theorem about the reduction and ratio of lengths, 
areas and volumes.  

The study of two students-teacher interactions 
We chose to study two episodes which take place, for the first at the beginning of 
the session, and for the second almost at the end. We chose them since we consider 
that they clearly illustrate the practice of this teacher.  
 The first is an exchange which accounts for Dany’s strategy to lead a 
negotiation with the students. He starts by asking an open-ended question whose 
expected answer is yet very precise “when we say we are cutting the pyramid by a 
plane parallel to the base, what should we specify to speak more concretely of the 
section?” When the students answer “the length AA’,” he dares not reject the 
answer, which is not expected, since it is relevant, but he makes a detour towards 
other elements of the figure and asks: “Who sees something else, what can I 
specify? Juliette is thinking of A’. Charlotte, here you see O and you see O’. So 
another possibility is to specify the position of which point?” The odd thing about 
this exchange is the lack of arguments on behalf of the teacher to assert his point of 
view: the choice of O’ instead of A’. To be noticed also that he says “Well which is 
the point that I am interested in on [SO]?” 
 In this episode, the enrollment of the students is important. It could be identified 
through the large number of questions asked and the use of mutualization and 
engagement functions.  
 The second episode is surprising, because the teacher answers his own 
questions. Obviously, this is a way to speed up didactical time. In fact, during the 
proving phase, the teacher dictates the reasoning without even asking the students 
for some hints.  
 The orientation function is a majority in this episode. It allows the teacher to 
guide his students towards the expected answers. The questions calling or not 
answers from the students are quite present which reinforces their strong 
enrollment: “Yes, SO’ and SO. In the sequence of all these ratios, we will have SO’ 
over SO, and we know what SO’ over SO is. And SO’ over SO is equal to … 4 over 
6, and 4 over 6 is what ratio? Simplify. Two thirds, Ok?”  
 The teacher’s discourse seems to reflect a sort of paradox that he is trying to 
deal with as best as he can: the students should construct their representation of the 
section to then deduce the important results in grade 9, but they shouldn’t spend 
too much time on it. The teacher thus guides the task by dividing it into several 
sub-tasks, or simply by doing the work himself. The lack of mutualization of 
students’ answers can be a mean to let the work progress. The enrollment by 
regularly questionning the students helps in maintaining the students’ attention.  
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 COMPARISON OF THE TWO SESSIONS 

The proximity of the two sessions lead to a comparison of what could be particular 
of a technology environment and what is common to both environments. The 
comparison issues pertain essentially to: the mathematical tasks proposed to 
students, the teacher’s project, the students’ activities, the teacher aids, the forms of 
work, as well as the teacher discourse.  
 The mathematical tasks proposed to the students are richer in Anne’s session 
since they require several adaptations such as the construction of reasoning steps.  
 As for the tasks related to the technological tool, they are well detailed in the 
student’s worksheet.  
 Dany’s session is more “beaconed” i.e. the teacher does not define the global 
task straightaway; instead he builds it throughout the session. So the students 
follow the path drawn by the teacher.  
 The student activities a maxima are richer, thanks to the nature of the tasks, for 
some of Anne’s students than those of Dany’s. We cannot measure the activities a 
minima of Anne’s students since we only observed part of the class. Nevertheless, 
it seems that all the students in Dany’s class have listened to the reasoning and 
copied what was on the board. 
 By reconstructing the activities of the different groups in the ICT-based session, 
we note that the use of the technological tool seems to have a differentiating effect, 
whereas in the p&p session, the teacher tries hard to neutralize the differences 
between the students by providing what is on the blank board as model. We note 
also a differentiating effect with respect to time. For example, after 38 minutes, one 
group in Anne’s class is still working on the first task. The groups do not have the 
same trajectory of performing tasks within the session. The teacher does not try to 
standardize the progress of the work. It is as if Anne is addressing successively 
several “mini-classes” that work autonomously. This functioning mode seems to be 
characteristic of the technology-based sessions in computer lab, even if we can also 
observe it, in a less-obvious way though, in a p&p group session.  
 The aids provided by both teachers are of the same nature, in general of 
procedural function, leaving even less leeway to the students during the 
technology-based session when Anne is present by their side. Therefore, the 
teacher’s interventions lead to a division of the tasks into simpler tasks, or to a 
mere execution of a series of technical instructions.  
 Another element of difference is related to the forms of work adopted in class 
and reflecting on the students’ activity. The students in Anne’s sessions have 
longer autonomous research time: 12min, 20min … The teacher is present with 
each group for not more than 5 minutes. This explains in part the very detailed 
presentation of the T-tasks that we have explained above. In Dany’s class, the 
students collectively follow the teacher’s reasoning are never autonomous.  
 This students’ autonomy, in a ICT environment, also implies a necessity for the 
teacher to adapt to their reasoning. When s/he comes to help a student, s/he has to 
reconstitute what s/he has already done in order to validate it or to provide the 
adequate aid. On the contrary, in the paper-pencil environment, the teacher carries 
on his project and the students adapt to it.  
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 As for the teachers’ discourse, the succession of functions for Dany ends with a 
summary function whereas they are extended through a sub-task for Anne. This 
difference is certainly due to different session objectives. Dany’s session is a 
discovery session, during which he only proposes tasks that students should 
complete progressively. His aim is to let them understand the results on which he 
will base his lesson.  Anne, on the contrary, has chosen to let the students face 
alone the results they find. Her aim is to engage them in autonomous research 
during her absence, which she obtains by boosting them. 
 Nonetheless, there are analogies between the two analyzed sessions. In both 
cases, the exercise was not completed. Moreover, the repeated use of the same 
theorem to deal with a space figure seems to be problematic. This might be related 
to the specific difficulty of the space geometry chapter. Finally, returning to the 
plane is a method used in both session and for very different reasons over a very 
long time.  For Anne, we have noted difficulties of students relative to the use of 
the tool “inspection of a plane.” For Dany, it is the duration allocated to the 
construction of the plane “sub-figure” that seems to be an implicit methodological 
aid provided to students.  

CONCLUSION  

To conclude, we will go over our results and extract the relations between the 
prescribed tasks and what really happened in the classes.  
 The two environments do not lead the teachers to radically different projects. In 
both cases, all the students have to solve the same mathematical tasks, not specific 
to technology environment. These findings join those of other researches 
addressing similar issues. They are close to what Kendal and Stacey (2002) 
underline about CAS3, that is mathematical knowledge and skills stay globally 
within the range of those expected in non-technological environments.  
 However, working in a computer lab generally implies that students are divided 
into groups with two students working on a computer. Consequently, the class is 
split into several mini-classes who function in a relatively independent way. This 
fact also entails a quasi-disappearance of the collective phases as well as the 
collective time management. The teacher can in certain cases refrain from making 
public indications given to some students, which could be useful to others. In 
addition, the limited time that the teacher can spend with a mini-class leads him/her 
to simplify the tasks so that the students, even in him/her absence have always 
something to do. The two environments don’t thus have the same repercussions on 
the organization of the progress of the didactical time. 
 Moreover, the succession of the discourse’s functions, in technology-based 
session, is always the same, which leads us to describe in an orderly manner the 
teacher’s activities: 
– arrival into a mini-class; 
– evaluation or assessment of the accomplished work;  
– coaching the students by dividing the task into sub-tasks; 
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– moving on to another mini-class when the students begin the execution 
correctly. 

We find in this functioning mode one of the observations raised by Monaghan 
(ibid.) namely, the teacher in ICT-based session spends more time addressing small 
groups than the entire class. Therefore, the teacher activity is reduced to a coaching 
of the students in the execution of the prescribed tasks.  
 We have nevertheless identified specificities of the ICT environment which are 
not only related to the form of work (small groups). The aids of the teacher are 
mostly of procedural function and are motivated by a concern to advance the work 
so that the students move on faster to the mathematical tasks. This leads to a 
division of the tasks, of which some require only the mechanical execution of a 
series of commands. This led us, on a methodological level, to the introduction of a 
new type of aid to take the latter into account: the handling aids.  
 Another specificity of the ICT environment seems to be the limited presence of 
the enrollment functions in the teacher’s discourse. The students are mobilized 
directly through interactions with the machine. More generally, these interactions 
lead to a certain autonomy of the students which gives the teacher the impression 
of not having to enroll throughout the session. In fact, remaining mobilized in front 
of the computer does not guarantee maintaining the mathematical activity. This 
contradiction in an ICT environment disturbs the teacher since it is rarely present in 
a traditional environment.  
 Finally, for the teacher, working in ICT environment seems to be more costly 
than a functioning in a p&p environment. A certain number of difficulties are 
related to the organization of the students’ work of in small groups. Even though 
globally the teacher’s interventions are almost analogous, they have to be repeated 
in each “mini-class” with the necessary corresponding adaptation. Trying to have 
collective interventions in order to make a summary and unify the knowledge of 
the students is even more difficult since the students have very different solving 
trajectories. This can contribute to explain the feeling of “unfinished work" that 
teachers often refer to at the end of a session in a computer lab. Other difficulties 
seem to be more linked to the specificities of the environment and reinforce the 
previous difficulties. These could be the heterogeneity of the students with respect 
to the use of the technological tool or the need to provide unusual handling aids. It 
could also be the fact of sharing with the computer certain enrollment's functions, 
which disrupt the usual classroom management.  
 Several studies using the double approach theory have confirmed the stability 
and coherence of the practices of experienced teachers (see first chapters of this 
book). In this chapter, we have showed that a teacher who is not an expert of 
technologies, and who uses them occasionally, sees this stability disrupted mainly 
with respect to the mediative component of his/her practices. In these conditions, 
which are the most frequent in the French educational context, this disruption 
experienced by the teacher can lead him to a “a minima use,” which complies with 
the institutional injunctions but does not exploit the potentialities of the ICT. Some 
teachers however modify their practices, and thus access to a new stability, like 
some of the teachers studied in the previous chapter. 
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NOTES 
1  http://www.aid-creem.org. 
2   It is not the same as the one in chapter 4. 
3  Computer Algebra Systems. 
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SAYAC NATHALIE  

11. QUALITATIVE AND QUANTITATIVE STUDIES 
ABOUT MATHEMATICS TEACHERS IN FRANCE 

INTRODUCTION 

The below research fits well into the research problem of this book and into the 
theoretical framework of the double approach, yet it presents a particularity which 
distinguishes it from the other works: it is based mainly on a quantitative study, 
carried out on a large scale, about the practices of high school mathematics 
teachers.  
 The aim of this research is also within the scope of the common objective of 
identifying regularities and irregularities in the practices of teachers, teaching 
mathematics in high school, but this time the aim is to do so on a large scale, which 
is not without effect on the analysis and processing of the collected data, as we will 
see further below.  
 Obviously, apprehending the real work of the teachers by finely analyzing the 
activities implemented in the classrooms can only be done through a limited 
number of observed teachers, but our choice has been to explore the practices of 
high school mathematics teachers, in a more global manner, by trying to express, 
not for an “authentic” reality of the teaching job, but to approach a certain reality.  
 As we saw in chapter 2, a teacher’s practices are partly the result of external 
components which intervene in his/her choices and which we try to apprehend 
through different analyses. Depending on our different research objects, we were 
brought to consider such or such component, more particularly allowing a better 
illustration of our questions. For this research, was paid to the personal component 
special attention, through the exploration of three variables which were studied 
more thoroughly: the age, the gender and the professional/academic background of 
the teachers. In fact, we assumed that these variables can have an influence on the 
practices of mathematics teachers teaching in high school, and can account for the 
irregularities or regularities. To carry out this study properly, we conducted several 
investigations: large scale questionnaires, interviews, session observations.  
 In the next section, we specify our research problem and the theoretical 
elements on which we relied to conceive our research, then in the second section, 
we present the global results of the questionnaire, and in the third section, we focus 
on the clinical study of five teachers who completed the questionnaire, then we 
compare the results of these two investigations before concluding on the question 
of the practices of high school mathematics teachers.  
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RESEARCH QUESTIONS AND METHODOLOGY 

The research studies presented in this book all have a specific entry to deal with the 
question of regularities and irregularities of mathematics teachers’ practices: Roditi 
(chapter 3) has chosen for example to focus on the maneuver leeway intervenes by 
four teachers for teaching multiplication of decimals in grade 6, Abboud-Blanchard 
and Paries (chapter 10) have tried to analyze the influence of the integration of 
computer tools into the practices of a mathematics teacher.  
 The research presented in this chapter has the particularity of relying on two 
studies, one quantitative and the other qualitative. In fact, it seems important to 
work on a large scale in order to have a global vision of mathematics teachers’ 
practices, and to be able to explore more particularly the personal component 
which intervenes in their foundation, as well as to work on a reduced scale to refine 
and specify the study of their practices.  

Research problem 

We seek to understand the practices of mathematics teachers equally from both a 
general and a particular point of view, in order to define the “field of possibilities,” 
to describe a certain professional reality which best approaches the “authentic” 
reality, to give a complete overview of the teaching practices in light of the 
specificity of the individuals bring them to life.  
 To properly carry out this research, we will ask simple questions such as: 
– Who are the mathematics teachers in high schools in France? 
– What are their professional practices in their everyday routine, inside and 

outside their classrooms? Are there personal variables which are more 
discriminating than others for the comprehension of the diversity of these 
practices? 

– Can we establish a categorization of teachers which could account for the 
common practices and the personal shared characteristics?  

Theoretical references 

Like all the works presented in this book, the theoretical framework used in this 
research is that of the “double approach,” inspired by the activity theory with the 
differences specified in chapter 2.  
 The main difference with other works, regarding the quantitative study, is that 
the teachers’ practices are not directly apprehended, this is rather done through 
fictional teaching situations proposed to the teachers in a questionnaire which 
includes several questions designed to explore their personal component as well. 
As for the qualitative study of the practices of the five teachers who completed the 
questionnaire, the loans are direct and compliant with what was presented in 
chapter 2.  
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 All the mathematical contents presented in this research are analyzed using tools 
stemming from mathematics didactics, and more particularly the theory of 
situations by Brousseau (1997) and the tool-object dialectic of Douady (1986).  
 To complete these references, we will mention the concept of “ideal-type”1 
borrowed from Weber (1965), which seems quite adapted to describe, the teaching 
practices as a whole. In fact, this concept allows the construction of a certain 
reality which can be used as a framework to study the practices of high school 
mathematics teachers. The sociological references do not go beyond this simple 
loan.  

Methodology 

For this research, we have chosen to carry out two studies, one quantitative 
designed to try to comprehend the practices high school mathematics teachers, in 
its entirety, and the other qualitative to put to the test this entirety by comparing the 
results gathered indirectly to the results gathered directly, and to study some points 
in more detail. In fact, in order to carry out a quantitative study on the teachers’ 
practices apprehended in a fictional manner, we found it advisable to carry out 
another investigation, this time qualitative and related to actual reality of the 
classroom, on a restricted number of teachers who had filled out the questionnaire.   
 At first, the quantitative study using the questionnaire will be used for a global 
overview of the high school mathematics teachers and to establish a typology of 
these teachers and their practice through the personal and professional shared 
characteristics.  
 Then, the qualitative study through the observation of sessions will allow us to 
specify some elements of the real practice of five teachers who are part of the 
quantitative study and test the typology which was drawn through the study using 
the questionnaire.  
 The global methodology of this research study uses tools and concepts presented 
in chapter 2, which were however adapted to a large scale study for the quantitative 
study.  

The questionnaire   

The questionnaire which was the basis for our study should at the same time 
enlighten us on the personal characteristics of the teachers and give us an idea 
about their professional practices. Hence, it was conceived in different parts, each 
with different aims: the first part is to gather as much objective information as 
possible and about the teacher and the second, to try to apprehend his/her practices 
“in class” based on fictional situations. The teachers were given quite a heavy 
questionnaire, including around thirty questions.  
 The first part had three sub-parts, each designed to gather specific information 
about the teacher filling out the questionnaire: 
– “Who are you?”: personal information about the teacher (age, gender, education, 

administrative situation, schools worked in, etc.). 
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– “Your training?”: to explore his/her career path (training, workshops, etc.). 
– “Your practice?”: information about the elements of his/her professional 

practice, “outside the classroom” (teamwork, organization of lessons, averages, 
commitment to official instructions, etc.). 

 The second part of the questionnaire was aimed at confronting the teacher with 
fictional teaching situations in order to apprehend the elements revealing their 
practices at specific moments: 
– Choice of problem subjects: the teacher had to choose his/her preference out of 

three subjects that were, almost equivalent in terms of mathematical content, but 
with different prescribed tasks and formulations. The first (subject 1) is very 
classical and directive in its formulation and includes questions which allow a 
simple and guided identification of the function-tangent link, the second (subject 
2) is much more concise, leaving the linking of the two notions at stake up to the 
students, whereas the third (subject 3) imposes the use of a calculator even 
though it is not really necessary or useful for solving the problem, with 
questions closer to those of subject 1. The teacher also had to indicate the 
implementation elements.  

– Types of aids recommended in case of difficulties encountered by a student: the 
teacher had to choose between several types of proposed aids (reference to the 
lesson, partial information, methodological comments, etc.). We could not at 
this level differentiate “procedural assistance” and “constructive assistance” 
(chapter 2) given that the nature of these aids could only be determined a 
posteriori.   

– Reaction to an “incident”: the teacher had to react to an unsuitable use of a skill 
used by a student (using the limit of the rate of change to determine the slope of 
the tangent to a curve at a given point).  

 We are aware that this indirect reasoning can create gaps with reality, but it was 
important to collect as many answers as possible in this study.   
 All the collected information was processed statistically, using a data processing 
software (SPAD). First, we carried out descriptive statistics on the two parts of the 
questionnaire, and then we analyzed these two parts using factorial analyses to 
create the desired regrouping.  

Observations on the sessions 

To complete this study using the questionnaire and test our typology, we studied 
the practices of five teachers who filled out our questionnaire very closely. We 
chose these teachers since they allowed us to account for the diversity of teachers 
in our sample, in terms of their personal characteristics. We hence observed and 
analyzed one “exercise” session of their choice. To analyze these sessions, we 
studied three dimensions related to the given couple:  
– Global study of the scenario; 
– Study of the tasks related to the exercises proposed; 
– Study of the process and the work conditions of the students. 
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 In this chapter, we do not describe these different elements of analysis 
explicitly, but we refer to them to compare the two studies.  

The teachers’ typology 

In order to determine a typology of high school mathematics teachers based on 
personal characteristics and the elements of their practice, we conducted factorial 
analyses based on their answers to the questionnaire.  

THE QUANTITATIVE STUDY 

Global overview of high school mathematics teachers 

We have gathered 225 questionnaires, mostly sent by teachers from the Académie 
de Versailles.2 Even though our sample is not representative of all high school 
mathematics teachers, its non-negligible size encouraged us to believe that 
exploring it would allow us to get a global idea about all high school mathematics 
teachers in France.  

Who are the high school mathematics teachers? 
Almost all the high school mathematics teachers had some experience in middle 
school before teaching in high school (almost 80% of them, 6.6 years on average). 
Almost half of them had already taught in a “difficult” or “sensitive” school, on 
average during 7.3 years. Their involvement in professional development is 
relatively important, since 56% of them said to have attended at least 3 workshops 
since they started teaching.  
 If we consider their educational path, we see that there are slightly more 
teachers who have attended “Classes Préparatoires”3 (56% compared to 44% who 
went to university exclusively), and they are generally overqualified with regard to 
the recruitment examination4 they sat for. 
 Furthermore, almost one quarter of high school mathematics teachers are 
members of the APMEP,5 and they have expressed an interest in the history of the 
subject matter they teach (more than 57%) and in computer science (44%), 
however only 23% are interested in mathematics didactics. They occasionally read 
professional magazines (57%), some do regularly (29%), and others never do 
(14%). 
 It should be noted that few teachers had another job before becoming teachers 
(almost 10%).  

What are their “outside classroom” practices? 
High school mathematics teachers work readily work in teams (47% “regularly,” 
46% “occasionally”), in particular to plan their school year progression (71%). In 
general, they follow the official instructions carefully (only 9% don’t “always” 
follow them and 21% follow them “scrupulously”) and finish the program in their 
classes (4% “rarely” finish it and 19% “not always”).  
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 To prepare their course, teachers use several manuals (71%), or only the class 
manual (13%), or even have a personal course plan which they adapt to the levels 
of the pupils in their classes (20%). 
 The averages are generally increased to the higher half mark (40% of the 
teachers), or even to the tenth of the mark (30%), very few are increased to the 
mark above (20%). 

What are their “in- classroom” practices? 
Students working in small groups is not a very common practice (62% never use it, 
33% do so occasionally).  
 Regarding the choice of exercises which the teachers were given to work on, it 
seems that the first two subjects, more classical in form even though they were 
different in terms of the tasks prescribed to the students, were more commonly 
chosen (51% chose the first one, and 48% the second one). The third exercise, less 
conventional in form, only got 32% of the votes, but it was often selected as a 
unique choice (most teachers chose at least two exercise). 
 As for the choice of the implementation of the subjects, the teachers answered 
with respect to their interpretation of this question6: 46% of them gave us 
indications about classroom management, 33% made comments about the nature of 
the exercise, 13% commented them regarding their students.   
 The question of possible aids did not allow us to determine the function of these 
aids, whether procedural or constructive. The answers were given in terms of the 
suggestions that were made. Thus, almost all the teachers (84%) chose the 
reference to the lesson to help the students with difficulties while solving the 
proposed problem (this choice was most often accompanied by other propositions). 
Almost one out of three teachers indicated that he/she would definitely give 
methodological comments, other specified that they would ask their students to use 
a calculator (29%), or evoked the possible links with previously solved exercises 
(35%) or with the different questions of the exercise (42%). Some even suggested 
providing a partial answer (42%) or intermediate results (15%). 
 The reactions of the teachers confronted with the proposed fictional incident7 
were very varied, depending on whether they assumed responsibility for this event 
or they left it to the students. Hence, they either validated the procedure used by the 
student while ensuring the necessary readjustment (40%), or they left that 
readjustment to the students (16%). Some teachers completely rejected the used 
procedure (6%) or referred the student to the corresponding lesson (15%). 
 These results provide indications about the way high school mathematics 
teachers perform certain tasks inherent to their job. They give us a quantitative 
preview of their practices, while specifying certain elements related to their 
personal characteristics. They do not claim to convey the professional reality of 
high school mathematics teachers as it really exists, but rather simply an 
“approximate” reality.8  
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Results of three specifically studied variables 

To explore the answers to our questionnaire more specifically, we chose to look 
more closely at three variables which we believe are likely to engender differences 
in high school mathematics teachers’ practices: the teachers’ gender, their age in 
terms of three particular age groups (under 36 years, between 36 and 36 years and 
over 36 years), and their academic background through the examination they sat 
for (Capes et Agrégation,9 externally or internally).  
 The observations made in the study of these three variables were revealed in the 
set of teachers’ answers and hence must be considered in regard to the limitations 
due to the relative representativeness of our sample.10   

Gender 
– Women seem to show more “professional sociability” while doing their job, 

through their involvement in group work and professional development. Men 
seem to work in more personal way. In particular, it should be noted that more 
women play the role of pedagogical advisors than men.  

– Women seem to express more concern regarding certain conformity to their 
practices to institutional expectations. Men seem to worry less about this issue.  

– It is also possible that women are more concerned by the transmission of know-
how of mathematics, whereas men focus more on the transmission of knowledge 
which is more strictly mathematical.   

– Women seem to be better mediators than men in the relation of the student to 
knowledge, mainly regarding the provided aids. Men apparently take the 
students into account more frequently on the level of the organization of their 
teaching (“outside classroom” practices), whereas women do it more during the 
lesson (“in classroom” practices).  

– Women can be more open to pedagogical innovations than men, even though 
this observation does not query the professional dynamism of men. Men on the 
other hand have expressed more interest in computers, yet we were not able to 
foresee the impact of this observation on their practices.  

Age 
The age of the teachers is generally related to their professional experience, most 
of the observations we have established reflect this reality.  
– The “students’ parameter” seems hard to account for in the teachers’ practices 

according to their age. It is very prevalent in the practices of middle-aged 
teachers, but less significant among younger teachers as well as older teachers, 
for different reasons.11 

– The youngest teachers’ lack of professional experience seems to be highly 
related to their practices. This is reflected on several levels: they tend to avoid 
dispersion and focus on learning the basic professional gestures,12 and to 
compensate for this lack of experience, they look for more teamwork, unless 
they retreat into their shell.  
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– The older teachers tend to work in a more personal way, whether in elaborating 
their progressions or in planning their lesson. This observation is most probably 
the result of a combination of facts (more professional experience, detachment 
while exercising their job, generational choice, etc.) which lead these teachers to 
become more reserved.  

– Age seem to also be a determining factor regarding the attitude of the teachers to 
official instructions. The youngest teachers are more concerned with their 
practices being in compliance with the institutional expectations, whereas for 
older teachers this concern seems to be less present and this, even though we 
noticed furthermore that more teachers among the older ones “always” finish 
their curricula, while more teachers among the young ones do not “always” do 
so. 

– Most youngest teachers show a significant interest in computers. These teachers 
however show little interest in didactics, while the older teachers seemed to be 
more sensitive to that. The latter are also regular readers of professional 
magazines, while the younger ones rarely read any. Moreover, the APMEP 
members are usually older teachers.  

Academic background  
– The practices of teachers qualified through internal examination differ 

depending on whether their specific path led them to open out retreat into their 
shell for diverse reasons. Moreover, it must be noted that teachers qualified 
through internal examination have a wider professional experience in “difficult” 
or “sensitive” schools, and many of them did not receive any initial training.  

– Regarding the different paths followed by the teachers, it seems that teachers 
who passed an Agrégation internally followed a more similar educational path 
(or even identical) to that of teachers who passed an Agrégation externally than 
qualified teachers.  

– There do not seem to be major differences in the way teachers elaborate the 
annual progression of their teaching in terms of the examination they passed. To 
plan their course, it seems that qualified teachers focus more on one manual 
whereas this practice is quite uncommon among teachers who passed an 
teachers’ Agrégation.  

– Teachers who passed an Agrégation externally may tend more to position 
themselves as privileged arbitrators of knowledge in their practices.   

– Teachers who passed an Agrégation externally are different in several aspects.13 
It seems that the preparation of their examination led them to be positioned 
differently from a professional point of view. We also noted that teachers who 
passed an Agrégation internally create more methodological aids character for 
their students.  

Typology of high school mathematics teachers 

Through our questioning about the practices of teachers studied on a large scale on 
one hand, and through the common personal characteristics and the shared 
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elements of practices on the other hand, we tried to establish a typology of the 
teachers. We hence created partitions (in 3, 4 and 5 classes), based on the answers 
to the questionnaire, by projecting elements related to the practices on elements 
related to the personal characteristics. By examining closely the work in the 
partitions, we finally were able to draw a typology composed of four types of non-
equivalent up importance14, defined by individual and professional criteria. 
 Here are some characteristic elements of these different types:  
 
Type 1: Teachers who are quite resistant to official injunctions, who do not always 
follow the official instructions, who are hostile to pedagogical innovations, who 
organize their course in a personal way, who believe that their practices do not 
differ according to the classes which they teach, who have not or barely taught in 
middle school, and who have started their job after passing external Agrégation.  
 Teachers of this type resist institutional constraints and social adaptations, they 
definitely believe that their level of mathematical knowledge allows them to teach 
legitimately.  
 
Type 2: Teachers whose practices can be described as ordinary, since the 
modalities retained to characterize them show “unexceptional” practices.  
 What we mean by “unexceptional” is the fact of occasionally reading 
magazines, generally finishing the curriculum, producing term mark averages that 
they push up to highest decimal, not being trainers and not being interested in 
didactics. However, in this group we distinguish teachers who teach in “normal” 
schools and those who teach in schools labeled “difficult.”  
– “Normal” schools: annual progression elaborated rather in a personal way, 

occasional teamwork with mathematics colleagues.  
– “Difficult” or “sensitive” schools: annual progression elaborated in 

collaboration, regular teamwork with mathematics colleagues. 
 The differentiation of the schools is reflected on the level of the social exposure 
of the teachers teaching in “difficult” or “sensitive” schools. The pressure they are 
subjected to incites them to social adaptation which is not really necessary in 
“normal” schools.  
 
Type 3: Rather young teachers, who benefited from an initial training in a IUFM15, 
they are not trainers, never read magazines, and have not had any professional 
development training. They do not show particular interest in the history of 
mathematics, or didactics, some of them are interested in computers. These 
teachers, in general, did not choose subject 3. Their lack of experience (related to 
their young age) forced them to avoid dispersion and focus on teaching practices, 
which allow them to fulfill their duties “properly.”  
 
Type 4: Teachers with some professional experience who have benefited from 
training in a CPR16 (hence are not found among the youngest), who have take part 
in many professional development trainings, who read professional magazines 
regularly, who are interested in didactics and the history of mathematics.  In this 
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category, we find pedagogical advisors and a large number of teachers who passed 
the internal Agrégation. When these teachers have to choose and exercise for their 
students, they adapt their choice according to the possible management or the 
content (based on their answers to question a) and do not hesitate to choose non 
classical subjects (such as subject 3). In order to help their students, they 
recommend both referring to the lesson and other pedagogical tools (mainly links).  
 One should remember that this typology aims at providing an “abstractive 
synthesis of several concrete phenomena” (Weber, 1965, p. 179) and does not 
account for the “authentic” reality of mathematics teachers and their practices.  

QUANTITATIVE STUDY OF FIVE TEACHERS 

We then chose to examine more closely the practices of five teachers who filled 
out our questionnaire and accepted our offered to observe their sessions and 
interview them. These teachers were chosen because, considering their personal 
characteristics, they allow us to account for the diversity of the teachers in our 
sample as best as possible.  

The qualitative study 

Hence we chose for our study: 
– a woman over 46, qualified externally: Mrs. CE1. 
– a woman over 46, having passed an Agrégation internally: Mrs. AI1. 
– a woman aged between 36 and 46, having passed an Agrégation externally: Mrs. 

AE2. 
– a man aged between 36 and 46, qualified externally: Mr. CE2. 
– a man younger under 36, qualified through external examination: Mr. CE3. 
 The main objective of our visits to their classes was examining more directly the 
practices of the teachers chosen among those who filled in the questionnaire. The 
visits also aimed at evaluating the contingent gaps between the answers to the 
questionnaire and the practices, which are observed directly, and thus evaluate the 
reliability of our large scale study.  
 By comparing the results found during the visits and those of the questionnaires 
of the teachers, we noticed that they were quite similar, and that they did not show 
any major contradictions. This observation is satisfactory, given that it implies that 
the questionnaire data is somehow reliable, and can be used to support a 
quantitative research on the practices.  
 Some variables are more visible than others when we compare these two 
surveys. Hence, the weight of professional experience is a datum that we easily 
identified during our visits. Many of the different aids selected by the teachers in 
their questionnaires also coincide with those we were able to observe during our 
visits. We were also able to detect in the practices of the visited teachers traces, 
which correspond to complaints expressed by the teachers about their students. The 
choice of subjects also matched what the teachers had offered to their students 
during our visit.  
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 However, we were not able to master some variables in one session. These are 
mainly the variables related to the teamwork of the teachers, the group work, or the 
elaboration of progressions, which is not surprising since these variables account 
for practices, which are difficult to perceive in one single visit. Similarly, it was 
impossible to find traces of the academic level of the teachers (degrees) or the path 
they followed, except for the two teachers who passed aggregations. In fact, the 
practices of these teachers reflect rigorousness or even a rigidity, which can stem 
from their previous experience.  

Comparison of the two studies 

We will now compare the results of the two studies to test their pertinence, even 
though we are aware that the study of few cases cannot validate them.  

Gender 
The three women in our study all showed a rather high professional sociability, 
each in their own way. Mrs. CE1 works equally well in teams, both with 
mathematics teachers and with teachers of other subjects in her high school. Mrs. 
AI1 regularly works in a team with her colleagues and acts as pedagogical advisor. 
Mrs. AE2, although she believes she only works “occasionally” in a team, is in 
charge of the “Kangaroo 19” club of her school. As for the two men of our study, 
Mr. CE2 said he seldom worked in a team (which goes against the type 2 reference 
“difficult teaching”), whereas Mr. CE3 does it more willingly (which might be 
related to the fact that he feels the need to do so as a “young” teacher).  
 Regarding the fact that women seem to be better mediators than men in the 
relation of the student to knowledge and mainly on the level of the aids, we can 
simply indicate that Mrs. AE2 and Mr. CE2 were the only ones who only used 
procedural aids during their sessions, while the three other teachers provided with 
their students constructive aids as well.  

Age 
The practices of the “youngest” teacher in our study do not seem to correspond 
with the characteristics of his age group, since he does not seem to be constrained 
by his lack of experience (rich proposed problem and dynamic classroom 
management) nor is he detached from the contingencies related to his students 
(varied nature of oral exchanges and aids provided during the session). This 
difference can be explained by the fact that, at the very beginning of his career, Mr. 
CE3 benefited from a particular coaching, thanks to a team project in a “difficult” 
school.  
 Mrs. AE2 and Mr. CE2 only used procedural aids during their session. They 
were also the only ones to manage their session exclusively with collective or 
individual (to a lesser extent) exchanges. This observation could be related to the 
particular consideration of the “students” parameter by the teachers of this age 
group.  
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 The two teachers of the oldest age group revealed undeniable professional 
experience during their session, on the level of the global organization of their 
session, as well as the nature of the proposed tasks, or the level of the process.  

Academic background  
The two teachers who passed an aggregation (one internally and the other 
externally) have a similar academic backgrounds, which reinforces our observation 
on similarities in the paths followed by teachers in these two categories.   
 The professional positioning of the only teacher who passed an Agrégation 
externally also corresponds to the one we indicated. The nature of the exchanges 
(mainly collective) and the organization of the session (short research phases, 
strictly procedural aids) allow us to assume that Mrs. AE2 considers herself to be a 
privileged arbitrator of knowledge in her practice.  
 We can also report that the only pedagogical advisor in this qualitative study is 
the teacher who passed an Agrégation internally, which corresponds to what we 
had noticed in our quantitative investigation.  

The teachers’ typology 
It was possible to link the association of each teacher to one of the four types of our 
typology thanks to the information collected during our visits.  
 We had indicated that many of the teachers belonging to type 1 had passed an 
Agrégation externally, while many of the teachers belonging to type 4 had passed 
an Agrégation internally, or were pedagogical advisors, which coincides with the 
types of Mrs. AE2 and Mrs. AI1; yet, we do not attribute a type to a teacher a 
priori, only because of the examination he/she passed. Several parameters must be 
taken into account in order to be able to class a teacher in one of the four 
determined types. 
 Furthermore, a teacher can belong to one type at a given moment of his/her 
career and then to another type at another moment. Type 3 is mainly a transitional 
type which can evolve into any of the other three types; this is the cases of Mr. 
CE3 who is associated to types 3 and 4, since some of his while the others tend 
more towards type 4. Different teaching conditions and personal elements can lead 
a teacher to move from one type to another.  
 Three of the studied teachers were classed in type 4 based on their answers to 
the questionnaire. The sessions that we observed allow us to enrich and illustrate 
the reality of this type.  
 Thus, it appears that these three teachers communicated with their students by 
varying the nature of their exchanges (collective, individual, semi-collective) and 
by using both procedural and collective aids, which was not the case of the two 
other teachers associated with other types. These characteristics can be emblematic 
of this type, even though they are only linked to elements of practice and not to 
personal characteristics of the teachers.  
 Mr. CE2 was classed in type 2, since his practices did not reflect the specificities 
in the other types. Nevertheless, the differentiation that we made the level of 
practices linked to the nature of the school (“ordinary” or “difficult”) does not 



QUALITATIVE AND QUANTITATIVE STUDIES 

227 

seem to be relevant for this teacher. It is possible that Mr. CE2 situates the 
adaptations he must make due to his teaching in a “sensitive” school on another 
level (than the one we were able to observe).  
 Mrs. AE2’s session illustrates the practices linked to type 1 of our categorization 
in an instructive manner, even though she only gives only one visible example. 
Hence, the fact of proposing complex tasks to the students, while systematically 
dividing them into sub-tasks during the class and of only providing procedural aids 
could reveal a practice associated with this type. Similarly, the singular choice of 
subject (Von Koch flake) worked through a problem personally prepared (which is 
a characteristic of this type) by the teacher allows us to consider the relationship to 
teaching of mathematics teachers of this type.  

CONCLUSION  

The two studies that we have carried out allowed us to get to know high school 
mathematics teachers better, to describe a certain professional reality and approach 
some elements of their practices. In accordance with the adopted approach, the 
quantitative studied provided global information about high school mathematics 
teachers and allowed us to catch a glimpse of a “field of possibilities” on their 
“outside classroom” practices (teamwork, following official instructions, finishing 
curricula, using manuals, etc.) as well as their “in-classroom” practices (choice of 
subject, reaction to a mistake, aids) even though the latter were only approached in 
a fictional manner. The qualitative study allowed us to examine these practices 
more closely, to stress some of them, and shed light on a less virtual reality.  
 The particular study of the three retained variables (age, gender, degrees) 
allowed us to perceive some variations in the practices of high school mathematics 
teachers. Professional experience, inescapably related to the age of the teachers, is 
a discriminating factor, which acts either as a vector of autonomy, allowing more 
opening out or reserve for the older teachers, or as an inhibiting yoke for the 
younger teachers, who are thus constrained by a certain pragmatic caution in their 
profession. 
 The gender is also a factor to be considered in order to account for the 
differences at the level of the teachers’ practices (different positioning with regards 
to the institution, mediations of learning or colleagues), even though we regret that 
we were not able to perceive in what way it could have any influence, on the level 
of the relationship with the students.  
 The examination passed by the teachers allowed us to apprehend some 
differences, both on the level of the followed track (external or internal) and the 
level of the type of examination (Capes or Agrégation), but this variable, related to 
the individual background of the teachers, is difficult to perceive and to analyze.  
We should nevertheless remain very careful as far as the results of the study of 
these variables are concerned, that they only reflect a global vision considering, 
and do not lock the teachers in a very reducing characterization.  
 The question of the categorization of mathematics teachers based on personal 
characteristics and modalities of practices has been solved through the choice of 
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the four types defined based on our quantitative study and highlighted in our 
qualitative study.  
 The choise of these four types, in the conditions that we have specified (frontier 
porosity, global coherence, etc.), is a tool for me, allowing a global vision of all the 
high school mathematics teachers’ practices. This tool should not be an excuse to 
lock the teachers in a sterile categorization, which would not take diversity of 
personalities forming the mathematics teachers’ body into consideration and the 
professional freedom to which they are entitled. 

NOTES 
1  For Weber, the conduct of social science depends upon the construction of hypothetical concepts in 

the abstract. The “ideal type” is therefore a subjective element in social theory and research; one of 
many subjective elements which necessarily distinguish sociology from natural science. 

2  This corresponds to approximately 10% of the teachers working in the Academie of Versailles. With 
Académie of Paris and Académie of Creteil, Versailles is one of the three academies of Region Ile 
de France. 

3  First and second year after Baccalaureat for good students devoted to prepare access to ingenious’ 
high school 

4  Among the 37% of certified teachers and 58% of teachers in our sample aggregated over 63% of 
teachers have at least a master’s degree. 

5  Association of Mathematics Teachers from french public schools 
6  The question was: “Can you clarify your choice with the conditions of implementation?” 
7  The teachers must react to the use, by a pupil fictitious, of a method not suitable to solve a simple 

task. 
8  These are only declarative data and there could be a gap with reality. 
9  In France, there are two types of examinations to become a teacher: the CAPES and the Aggregation 

(of high level). Students can pass them externally, while pursuing university studies, or internally 
while they are already teaching without the official title. 

10  The statistical representativeness of our sample is actually not guaranteed, for several reasons (age, 
distribution, gender, professional corps, and so on). 

11  We assume that the youngest teachers would essentially be preoccupied by mastering basic 
professional gestures, and that they would have to “leave aside” the “students” parameter then, after 
getting past this state, they would focus more on this parameter (feeling of guilt or requirement) to 
be detached from it later on through a professional rebalancing, the fruit of more confident 
experience 

12  Being able to organize the progressions, manage the classroom, evaluate the students, etc. 
13  Less group work than other teachers, an implementation more focused on management, using, etc. 
14  For information only, ours ample is divided in the following way: type1 = 20%, type2 = 24% and 

20%, type3 = 16% and type4 = 20%. 
15  IUFM: Institut Universitaire de Formation des Maîtres that is University department for teacher 

training. 
16  Centre Pédagogique de Formation is Pedagogical Training Center (training center prior to the 

IUFM). 
 
Nathalie Sayac 
Laboratoire de Didactique André Revuz 
Université Paris Est Créteil 
IUFM de Créteil  
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MAHA ABBOUD-BLANCHARD AND ALINE ROBERT 

12. STRATEGIES FOR TRAINING MATHEMATICS 
TEACHERS 

The first step: Training the trainers 

INTRODUCTION 

Here we build on the preceding chapters to provide an overview – in keeping with 
the core theoretical framework set out in chapter 2 – of research into teaching 
practices. In the first part of the chapter, we reiterate the book’s shared 
methodological elements and we reconsider its findings, drawing on other studies 
where relevant. We focus in particular on those findings that offer useful insight 
when thinking about how to train mathematics teachers. Our approach here is 
speculative: although we make some suggestions, we do not, for the moment, 
provide extensive research evidence. That will be for another study. 
 In the second part of the chapter we discuss teacher training, but we do so from 
a very specific angle: the training of teacher trainers (or teachers’ educators). 
Indeed, the large amount of research into teaching methods that we now have 
before us is, first and foremost, an invitation to consider the possible channels of 
communication between such research and the actual practice of teachers in 
classrooms, including its impact on students’ learning. One such channel of 
communication is the teacher trainer, who is a messenger between two worlds: the 
world of the school and the classroom, and another, broader world encompassing, 
on the one hand, the diversity of theoretical research relating to schools, learning, 
and teaching and, on the other hand, educational institutions and schooling policy. 
The training (both initial and on-going) of teachers in France is subject to well-
defined institutional frameworks and most of the flexibility in terms of methods 
and goals lies with the trainer. Moreover, recent developments have resulted in a 
school curriculum that is increasingly complex and that encourages innovation per 
se without clearly defining the aims and methods of this innovation (technological 
resources, competence-based learning, personal mentoring, etc.). The question then 
arises of how a teacher training programme can take on board the dictates of this 
curriculum without neglecting its central task, which is the training of teachers to 
teach mathematics to students. Teacher trainers occupy a key place in the answer to 
this question and how they are trained is thus a serious issue that deserves our 
attention. It will be addressed in the second half of this chapter by means of some 
general considerations, followed by a specific example – how teacher trainers 
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could be trained relative to the use of technology in mathematics teaching and 
learning. 

TEACHING PRACTICE IN MATHEMATICS: AN OVERVIEW OF  
EXISTING RESEARCH 

Most of the studies of this book referred to below adopted ‘double approach’ 
methodology. According to the associated theory, students’ learning objectives 
cannot be abstracted from factors pertaining to the teaching profession as a whole – 
this can be understood in terms of the interconnection of the five components that 
constitute practices (see chapter 2). When analysing a given teaching practice, we 
can draw on these five components to study and to establish the connections 
between, on the one hand, the choices made in preparing for class and in class – 
observable during the lesson itself – and, on the other hand, the impact of various 
constraints. Such constraints might be linked to the nature of the teaching 
profession, the conduct and composition of the class, the curriculum and 
timetabling, the various expectations of parents, of colleagues, and of the 
administration, and the teacher’s individual conceptions of his/her work. In 
addition, the complex structure of teaching practices per se can be analysed by 
distinguishing several levels: implementation in the classroom (the local level) 
intersects with the teacher’s projects and conceptions (the global level) and with 
routines and automatisms (the ‘micro’ level).  
 Having provided this methodological background, we will now present a 
selection of research findings. 

Difficulties faced by beginner teachers  

Chesné’s (2006) study serves to reinforce, and to transpose into the terms of our 
core theoretical framework, what teacher trainers have already been reporting for 
some time. Namely, beginning teachers seem to experience a work overload at the 
local level (that is, in their day-to-day work in the classroom). This, added to their 
temporary lack of resources at the global level, means that such teachers often have 
difficulty in conceiving of a complete academic agenda inscribed within a global 
vision. Given that at the beginning of their careers they also suffer from a lack of 
resources at the micro and local levels, these teachers tend to struggle with time 
management during lessons and lack the required routines and automatisms of 
more experienced teachers. They have difficulty managing the class and, above all, 
they fail to pay sufficient attention to their students’ needs. 
 As Chesné notes, when faced with such difficulties, beginning teachers tend to 
overreact in one of two contrasting ways: 
– by paying excessive, often highly individualized, attention to students and 

becoming overly concerned by their reactions, resulting in a mathematics 
programme that remains highly localized and lacks overall coherence. Such an 
approach has been described and criticised by previous studies (Bloch, 2005; 
Margolinas & Rivière, 2005); 
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– by, on the contrary, overemphasising mathematics in itself at the expense of 
attention to students’ needs.  

 In other words, such teachers have not yet succeeded in balancing instruction in 
mathematics with attention to students’ needs. 
 As Abboud-Blanchard et al. (2008) have shown the first of these two 
(over)reactions tends to be exacerbated by the use of technology in the classroom. 
Indeed, because lessons using technology are often conducted in a computer room 
with one or two students per machine interacting directly with the software, the 
inexperienced teacher is likely to favour exclusively individual assistance, 
providing chiefly practical help in completing the exercises and thereby neglecting 
the lesson’s global mathematics agenda. 
 Furthermore, for many beginning teachers, some mathematical concepts are 
already ‘second nature.’ As a result, when teaching these concepts they forget the 
difficulties,1 skipping over explanations, intermediary steps and provisional 
simplifications and dedicating insufficient time both to the concept itself and its 
associated techniques. 
 The illusion of simplicity and, more generally, the lack of awareness of the 
possibility of any gap between what the teacher says and what the student 
understands,2 are particularly apparent amongst beginning teachers who work with 
socially underprivileged students. For this reason, such problems are all the more 
damaging (Chesnais  2006, Coulange 2012).  

Consistencies in teachers’ global choices of content 

Content choices – especially those that bring global content decisions to bear on 
the teaching of a particular concept or topic – are, owing to institutional and social 
constraints, made in a similar way by most teachers of mathematics and associated 
disciplines. This can be illustrated by an example provided in chapter 3. 
Institutional constraints at the global level – timetabling, curricula and the 
(in)availability of resources – lead to identical, ‘forced’ choices regarding student 
progress during the year and the amount of time allocated to each topic. There is 
also frequently a feeling of ‘working against the clock’ to ‘get through’ the 
curriculum. 
 Social constraints, necessary to some extent for the smooth functioning of the 
class, can be what lies behind the creation of ‘shared management principles’ (see 
Roditi, ibid.). Similarities in content choice are also addressed in chapter 9. Here 
the authors emphasise that previous constraints, to which the use of E-exercise 
Bases are now added, mean that teachers using this new tool focus on previous 
knowledge or knowledge they are still in the process of acquiring, thus failing to 
explore more profoundly the potential of computational tools to provide a way into 
new topics. The authors also show that teachers restrict themselves to exercises that 
do not mix different mathematical fields (e.g. algebra and geometry), their aim 
being to avoid complications in lessons where time will already be used up in 
explaining the software. 
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The stability of individual teachers and differences between teachers owing to 
management and lesson content choices 

Analyses of the practices of experienced teachers teaching different groups of 
students (chapter 4) have shown that, in comparable social and institutional 
conditions, the classroom practices of an experienced teacher show relatively little 
variation. Further, this consistency is to be found, above all, in the stabilized, 
consistent management choices made by the teacher as s/he teaches. That is to say, 
such choices are more consistent than the content decisions made in advance when 
preparing the lesson.3 The balance between attention to students, coverage of the 
curriculum and professional compliance seems to be the result of a stabilized 
adaptation on the part of experienced teachers and is difficult to undermine. This 
means that changes in content choice could be introduced into these teachers’ 
lesson preparations without repercussions for the teaching process and the class 
events. 
 By way of contrast, where the use of technology by teachers is sporadic,4 the 
result is disruption of the teaching process (see chapters 9 and 10). Abboud-
Blanchard and Paries (chapter 10) show, in particular, that teachers without 
sufficient training and using technology intermittently find the consistency of their 
teaching practices perturbed as a result, especially in terms of the mediative 
component of these practices. Teachers experiencing this kind of disruption will 
often minimize their use of technology as a result, meeting institutional 
requirements but failing to exploit the full potential of such resources. Nonetheless, 
Abboud-Blanchard and Vandebrouck (2012, 2013) show that repeated use, even 
intermittently, of the same technological resource will sometimes lead teachers to 
modify their teaching practices, whereby they re-establish a new stability. 
 The question can also be asked whether, because of such changes in practice, 
some students – particularly those from underprivileged backgrounds – might not 
find themselves frequently excluded from the mathematics activities of a given 
class: given the teacher’s class management choices, such students might never 
have the opportunity to develop their knowledge to the expected level. The 
assistance offered may be of limited and purely procedural use, merely enabling 
them to carry out the task in hand (see chapter 7). 
 At the same time, as many of the earlier chapters have shown, differences 
between teachers are to be seen in the way in which they realise the details of their 
teaching within the confines of the required framework; their choice, at the local 
level, of a variety of exercises (specific problems set) and of evaluation methods 
and homework; and in the way they organize their class events (lesson structure, 
independent work and how such work is set up and built on by the teacher). As we 
can see, these differences largely concern the local level. In other words, the 
diversity is due to the varying extent to which different teachers exploit the 
freedom they are given in terms of specific class exercises and lesson structure. 
The same differences can be seen when we analyse the detail of teacher’s 
language, which reinforces their other choices (questions to students, register, 
speech functions, use of linking words, lexical flags) (see chapter 4).  
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 Finally, there are some teachers who consistently share some of the 
characteristics laid out in chapter 2. It seems that because of time constraints, made 
ever tighter by current timetable restrictions,5 when teaching some of their 
‘average-ability’ classes and particularly those of upper secondary school (students 
aged 15+), these teachers like to move speedily from topic to topic, emphasising 
the acquisition of new knowledge. But in doing so they provide little (especially 
qualitative) exploration, little revision and little maintenance of existing 
knowledge, and little accommodation of the new material in terms of what has 
already been learned. Rather, we see a univocal reorientation of class activities 
towards the new material, which has to be speedily (even instantly) and accurately 
grasped. All of this is in marked contradiction to the new directives recently 
announced for French upper secondary school (students aged 15+). 
 As is shown by the studies to be cited below, all of this has an effect on student 
activity. 

Relations between teachers’ choices and students’ learning 

A number of recent studies compare students’ results in class tests and the teaching 
they have received (see chapter 6 on the study of similar triangles; Dumail (2007) 
on the teaching of square roots to 14-15-year-olds; and chapter 7, on orthogonal 
symmetry taught to 11-12-year olds). Such research has confirmed the importance 
for students’ assimilation of knowledge of the collective work done in class. 
However, if classroom exercises do offer some guarantees, they can also in some 
cases inhibit adaptability in the application of knowledge, which is also 
indispensable to assimilation. Similarly, some working styles, such as work in 
small groups, are not necessarily of benefit to all students; here the quality of the 
teacher’s supervision plays an important role. 
 Nonetheless, as we have noted, the degree of variation in teachers’ choices is 
limited by the constraints on individual practice that were mentioned above. 

Discussion of consistency 

Now we come to learning and the activities most conducive to it. Here a number of 
wide-ranging questions can be posed regarding consistencies in teaching practice, 
tackling the subject from several different angles and revealing the extent to which 
teaching is a matter of choices, uncertainties, and even gambles and losses. We 
believe that teachers understand better than anyone else the reasons that lie behind 
the choices they make. These reasons need to be analysed. 
 Managing diversity and successfully engaging students are a priority in any 
classroom, whether or not it is composed of ‘difficult’ students. This applies 
equally to work done outside of the classroom. More specific to the teaching of 
mathematics, and especially relevant to the teaching of ‘difficult’ classes, are 
decisions regarding simplifications, shortcuts, reductions in the complexity of the 
material to match students’ abilities, requirements for written work, and, more 
generally, the question of how to interpret and adhere to the curriculum.6 Such 
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questions force us to reflect on what it is that is asked of teachers, how the teacher 
understands these requirements, and to what extent s/he puts them into practice, 
bearing in mind the special context in which s/he works. 
 More broadly speaking, the balance between allowing a large number of 
students, including the socially disadvantaged, to participate actively in class – this 
being necessary for good class management – and the learning benefits that come 
from setting a sufficient number of difficult exercises, is a delicate and 
controversial one that entails both content-related and management choices. 
Indeed, the issue is often openly debated. Should the teacher work through the 
curriculum (too) quickly, or should s/he devote extra time to difficult concepts in 
order to enable more students to grasp them, even if this means that not everything 
will be ‘covered’? Undoubtedly there exist thresholds, different for different 
classes, that can help the teacher make an informed practical decision. Such a 
decision will be something of a compromise, with varying knock-on effects. 
Further research is needed to understand more precisely what is at stake here at the 
various levels.  
    All of these findings and the questions they raise constitute the initial 
groundwork necessary to any discussion of teacher training, both initial and on-
going. It should be added that there have been very few studies to date focussing 
on the training of secondary school teachers. 
    A few pioneering studies of the training of school teachers (Masselot, 2000; 
Vergnes, 2001) have suggested that initial and on-going training does not achieve 
its goals in all cases – far from it. Moreover, and in accordance with the findings of 
another useful precursor (Mangiante, 2012), it would seem that the personality of 
trainees plays an important role in determining his/her future success (or otherwise) 
as a teacher. 
 Grugeon’s (2008) study of an initial teacher training course given at the IUFM 
(University Institute of Teacher Training) in Amiens is another isolated study that 
has not been followed up. However, Grugeon’s evaluation of the course, which 
was inspired by principles similar to those put forth in this book, is encouragingly 
positive. 
 As we have seen, then, studies that attempt to evaluate teacher training courses 
and their effects on the methods of beginning teachers are still very rare. This is no 
doubt because of the difficulties they entail. 

DIFFERENT APPROACHES TO THE TRAINING OF (MATHEMATICS) TEACHERS 

Before describing our own approach, it will be useful to set out different types of 
training that exist. These are as follows: 
– Training that emphasises students’ learning. These may be prescriptive (focus 

on the curriculum, learning activities, lessons, etc.) or didactic (class content, 
class management, difficult students) in nature. 

– Training that emphasises the teacher (and his/her conceptions); in initial teacher 
training this often involves the use of reflexive practice techniques. 
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– Training that emphasises the day-to-day realities of the teacher’s work, offering 
guidance on social and institutional constraints, margins for individual initiative 
and classroom techniques. 

– Training ‘in action’ that takes place as part of collaborative research projects 
between teachers and academics (Bednarz, 2004). 

– Training that concentrates on the acquisition of particular skills selected by the 
institution (mostly during initial training) or even on precise named tasks (e.g. in 
France, the Plan Académique de Formation [Acadamic Training Plan]). 

 In our view, this last type of training is the most questionable because it is too 
limited: it is insufficient to analyse tasks simply in terms of their outcome. Indeed, 
understanding an activity requires an appreciation of the context in which it takes 
place. In other words: “To act always means to choose, to prioritize, to diagnose, to 
assess, to judge, to anticipate, to adapt, to contrast, to construct meanings – all of 
which are eliminated by a breakdown of the task. Destructuring the task results in 
the dissolution of its processes, … [leaving] the dregs of the action from which the 
subject has vanished” (Astier, 2006). 
 We will not go further into the distinctions between these different approaches, 
which are, doubtless, to some extent complementary. Nonetheless, it is worth 
taking a closer look at the third approach mentioned (emphasis on the day-to-day 
realities of teaching) as it has a special relevance in the light of advancements in 
educational research over the past few years.7 Indeed, whereas previously the 
tendency was to blame the lack of application of pedagogical research in the 
classroom on the persistence of teachers’ own conceptions (Robert & Robinet, 
1992), the inadequacy of this argument was later recognised: the cleavage between 
theory and practice cannot be attributed to people alone but must be seen in the 
broader context of teachers’ overall working conditions. We therefore turned to the 
‘double approach’ theory of professional practice (Robert & Rogalski, 2002), 
which argues that the analysis of teaching methods only in terms of students’ 
learning outcomes (i.e. the end goal) contributes neither to an understanding of the 
details of effective practice nor to the creation of new methods. From this point of 
view, the aim of teacher training is to equip every trainee teacher with means that 
would allow him or her to attempt to implement “ideal” teaching, etc. A style of 
training that emphasises the actual practice of teaching is therefore an attractive 
choice. 
 But who should be trained first – the teacher or the teacher’s trainer? 

A TRAINING PROGRAMME FOR THE TRAINERS OF MATHEMATICS TEACHERS 

In chapter 2 we said that we have two aims. On the one hand, we strive to supply 
researchers with information about students’ learning, focussing on a specific area 
of study and bearing in mind the type of teaching that was received and the 
particulars of the schooling system. On the other hand, and from a more long-term 
perspective, we hope to assist and develop teacher training strategies, drawing 
chiefly on conclusions made from the analyses above and the formulation of 
hypotheses guided by our chosen theoretical framework (see above). 
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 We have chosen to approach the teacher training process from the perspective of 
one of its chief participants: the trainer him/herself and, in particular, how s/he is 
trained. Actually, trainers can have very different statuses and some have not even 
been trained (other than on the job) – this in spite of the fact that their work 
requires the mastery of a certain number of non-intuitive skills. The least of these is 
the ability to read teaching publications critically and perhaps resume their content 
for the trainees; to assimilate research findings and translate or ‘transpose’ these 
for teachers to use; to observe their own practice with critical distance; to recognise 
constraints on teachers and opportunities for initiative; to expand and adapt the 
professional ‘toolkit’ proposed to each trainee; to create effective training 
situations, and so on. 
 We envisage a training programme that would arm teacher trainers with the 
tools needed to train secondary school maths teachers both initially and throughout 
their careers. Such a training programme would centre squarely on the tasks of 
teachers in and around the classroom and would, where relevant, be compatible 
with other necessary training components. Within our programme, the trainer is an 
educational researcher. After all, it is researchers who have the knowledge 
necessary to construct, run and, ultimately, evaluate such a programme. The 
training strategy we propose is based on hypotheses developed through the core 
theoretical framework adopted in this book and on data obtained through empirical 
studies that demonstrate the complexity of teaching practices and their impact on 
students’ learning. We also integrate and build on a number of analytical tools 
taken from education theory. 

A general framework for ‘training the trainers’ 

The framework for training teacher trainers that we have put together over the last 
ten years consists of a relatively long period of training (a minimum of several 
months) and is addressed to experienced teachers whose participation in the 
programme is voluntary. The training sessions generally begin with an analysis of 
the teacher’s role in class using, for example, video footage; the rest of the session 
evolves on the basis of participants’ contributions, with new themes and ideas 
being introduced where relevant. In this way, a thorough coverage of a range of 
issues is achieved over the course of several sessions. 
 In what follows we will set out the theoretical basis behind the training 
programme; as we will see, it promotes and is itself structured around three main 
principles. 

Student activities at the heart of the training programme: an interface between 
teaching and learning8 
Our study of teaching practices – begun in 1990 – was part of an effort to clarify 
the relationship between the way a particular topic is taught and the resulting 
learning outcomes. That is, we sought to gain a better understanding of the impact 
teachers have on their students’ learning. From our particular theoretical angle we 
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measure ‘learning’ in terms of students’ handling of activities relating to the topic 
taught, even if, admittedly, other relevant criteria could be considered. 
 The activities analysed are those proposed in class by the teacher him/herself. 
They are ‘rated’ in terms of the degree of conceptualisation expected, which is 
determined on the basis of the curriculum and the difficulty of the concepts being 
tested. 
 As such, it is the activity of students – mostly in class – that serves as a potential 
means of ‘decoding’ the teacher’s work inside and outside the classroom. Learning 
to decode in this way is in fact one of the main goals of the teacher training 
programme for which we wish to prepare teacher trainers. Indeed, the ultimate goal 
is to train teachers who will teach mathematics to a very high standard (in both a 
conceptual and technical sense), notwithstanding, and indeed accommodating, 
institutional (curriculum, timetabling) and social (class makeup, behaviour, 
pressure) difficulties. In our view, the achievement of this goal depends chiefly on 
the teacher’s work inside and outside the classroom. Teaching trainees to analysis 
this work is thus the principle aim of our proposed training programme. It would be 
followed by specific guidance relating to the teaching of mathematics. 
 Indeed, the first of the three principles underpinning the programme is the use of 
analytical tools from pedagogical research to decode the relationship between a 
teacher’s work and the activity of students. These tools are explained to the 
trainees where necessary9 and are combined and developed where appropriate by 
means of analysing video footage of teachers at work in the classroom. We believe 
that the appropriation of such tools will supplement trainers’ existing experience 
and provide a broad range of training material. Their use will allow trainers to 
construct training sessions around student activity, which is of key importance in 
our theoretical framework, engaging the teachers-in-training in a discussion of the 
possible strategies that could be used in a given situation. 
 Mainly these tools facilitate the localized study of selected tasks within the 
confines of each training session. In the course of such study, the trainer activates 
(and where necessary adapts) the teachers’ existing knowledge on the basis of their 
spoken contributions. The analytical tools also permit the study of class sequencing 
and of classroom activities appropriate to each task. Thus the trainees might think 
about the exercises used by the example teacher, the various help s/he offers, the 
questions s/he asks, his/her reaction to students’ questions, how s/he handles 
corrections and how she sums up at the end of class. In a more global sense, the 
tools given to teacher trainers will allow them to appreciate the overall, carefully 
planned package of lessons and exercises needed for the teaching of a particular 
concept, from the initial introductions right through to testing (i.e. concrete 
classroom scenarios). They will also help the trainers to consider the need for 
changes in classroom dynamics, such as the presentation of material in new forms, 
changes in the context of teaching, and variation in the volume and type of learning 
tasks. 
 Finally, in order to guide the creation of these in-class teaching scenarios, we 
introduce a more global analytic approach that would serve to inform ‘strategic’ 
choices. The idea is to identify what we call the ‘relief’ [relièf] of a given 
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mathematical concept. This ‘relief’ is a function of the concept’s specific 
mathematical features and the difficulties frequently encountered by students when 
studying it. Thus, for example, might the initial presentation of the concept in 
question include reference to another, simpler concept with which students are 
already familiar? Or could the mathematical application of the concept be 
approached through the lens of a topic already studied in a subject other than 
mathematics? Lastly, in so far as the teacher’s day-to-day work entails, for the 
teaching of each concept, several factors, including lesson preparation and choice 
of material, the organisation of students’ classwork, and the channelling of students 
activities, the analytical tools we propose will help trainers both to appreciate and 
enrich teachers’ choices. 
 All of this helps the trainers and trainees to express themselves precisely; it aids 
in the construction of an all-important, shared professional vocabulary base 
inspired by pedagogy research. This vocabulary will continue to expand throughout 
the training programme. 

The necessity of appreciating the teacher’s full role in all its complexity 
Nonetheless, a number of studies (including several chapters in this book) have 
shown the inadequacy of considering learning goals alone when addressing the 
variations and consistencies found in teaching practice. Such studies reveal the 
extent to which various professional constraints, surmountable or otherwise, such 
as institutional requirements, student diversity, plus the teacher’s own, individual 
conceptions and routines, impact on teacher’s choices. These studies and the 
theoretical framework they adopt (the double approach theory), have informed the 
second principle underpinning our programme for training teacher trainers, that is, 
that the complexity of the teacher’s role must be explicitly acknowledged and 
directly addressed during training. This complexity means that teachers must learn, 
for example, to anticipate potential in-class difficulties when preparing their 
lessons and that during the lessons themselves they must be able to improvise 
according to students’ reactions. For this reason, pre-class preparation and in-class 
implementation are to be approached as a complementary whole and not studied in 
isolation. Likewise, the reality of professional constraints (the curriculum etc.), the 
real scope for individual initiative, and the consistency of practice between 
teachers should be openly discussed, and their key elements should be explained. 
 The complex nature of teaching will be illustrated by analyses of actual lessons 
(as mentioned above), mostly in video format. The analyses consist of a systematic 
confrontation of the work to be done in class – which is discussed at the start of the 
session – and the related student activities that the teacher can bring into play via 
his/her explanations and class management. What we have in mind when training 
teacher trainers is not so much the analysis of the teacher’s words, nor the analysis 
of his/her class management (such as dealing with student diversity, for example), 
but rather the meeting point between these two types of analysis and all the other, 
more global issues that they imply. 
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Training methods that aim at the development of new practices 
The third principle behind our training programme is shaped by our hypotheses 
regarding the development of teaching practices. This influences in particular the 
methods of training the programme uses. Working with activity theory (which is 
explained to the trainees), we make very schematic use of a model representing 
collective intervention in what we might call a ‘practice-oriented zone of proximal 
development.’ The idea is to adopt a collective style of working in training sessions 
that might influence actual practices – whilst also respecting the complexity of 
those practices – and that remains focussed on teachers’ choices of student 
activities (i.e. the didactic element). At this point our approach is somewhat 
‘homologic’: the training programme we propose for teacher trainers is structured 
in the same way as might be the training programme that our participants will later 
provide to trainee teachers. For the trainers, however, numerous supplementary 
explanations are provided that would be of little use to beginning teachers. The 
most important aspect of our training method can be summed up by the slogan ‘to 
enrich teaching practices together, we should first consider existing practices.’ In 
other words, we create training sessions that move from analysis at the local level 
(classroom work and corresponding choices) to the global level (inscription of 
local choices in larger decisions and projects). This means that, in order to respect 
the inherent complexity of the future, real-time teaching practices that we 
ultimately hope to enrich, we must start by bringing the trainees as close as 
possible during training sessions to the teacher’s own position (especially in the 
classroom), therein encouraging a constructive, non-judgemental understanding 
(via the analytical tools described above) of the teacher’s role. To a certain extent 
this means working with ‘existing knowledge’ (i.e. the ‘tried and tested’ practices 
of the future trainers or of experienced teachers undergoing mid-career training; the 
envisioned practices of beginning teachers), which has to be brain-stormed during 
sessions. Providing that the all-important rules of alternation are respected, 
beginning teachers will develop their own practices over the course of the 
programme. Within this framework, special roles are accorded to the collective 
body of participants and to the trainer him/herself, facilitating permanent toing and 
froing between the inter-individual and the intra-individual perspectives. The aim 
is to promote, through discussion, the emergence of questions and the forming of 
awareness that are prerequisite to the knowledge we wish the trainees to develop. 
Moreover, this allows the trainer to ensure that the knowledge transmitted is 
relevant to the needs expressed by the participants. The trainer will thus carefully 
choose and control his/her interventions during discussions, focussing, when s/he 
does intervene, on the possibilities for exercising individual initiative within the 
teaching profession (bearing in mind the constraints). By working in this way, the 
trainer promotes a move towards questions of a more global nature – that is, 
towards the decontextualisation that is necessary for the future development and 
application of the ideas discussed in training. We can now see why the long 
duration of the training programme is so important: it ensures that a sufficient 
number of subjects are discussed. 
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 The three principles we have named as the basis for the training programme, and 
especially the third one regarding methods, require a constant adaptation on the 
part of the researcher-trainer in order to reduce the gap between his/her own project 
and knowledge, and the needs expressed by his/her trainees. As such, s/he must 
both learn from the participants by carefully scrutinizing their contributions during 
sessions and, at the same time, rework the content of these same group discussions 
so that the participants can learn from it. In other words, the trainer tries to 
understand as thoroughly as possible the participants’ own perceptions of their 
needs and their learning potential; in this way s/he can adapt his/her own 
assessment of their needs accordingly, ensuring that the information and 
suggestions provided during training sessions are pitched appropriately. 

Specific training program for teacher trainers in the use of technology 

Several studies have demonstrated the complexity engendered by the use of 
technological tools in the teaching of mathematics; chapter 8 on the use of online 
exercise bases (EEB) is an example. This complexity translates as an increase in 
the complexity of the overall work of the teacher employing technological tools as 
seen in chapters 9 and 10. By now a large amount of research addressing the 
integration of technology in the teaching of mathematics has improved 
understanding of the corresponding teaching practices. Nonetheless, most teachers 
still receive an inadequate training in the use of technology. 
 Our previous research on the in-service teacher education in the use of 
technology has shown that, firstly, the training sessions are usually specific to the 
trainer’s personal teaching methods (as a teacher himself) and, secondly, that there 
is an excessive focus on the artifact at the expense of cognitive and mediative 
considerations (Abboud-Blanchard & Emprin, 2009). Furthermore, we showed the 
absence of knowledge identified by trainers as the main training objective. Finally, 
little guidance was given in terms of how to integrate the technology into concrete 
teaching practice. 
 On the basis of these findings we propose a training programme for teacher 
trainers that builds awareness of the complexity of teaching with technology and 
that helps trainers to construct a training strategy that is distinct from their own, 
personal practices. Such a programme envisages the use of technology to enrich 
students’ learning whilst maintaining a balance with methods in traditional learning 
environments. Specificities relating to the use of diverse technologies are to be 
provided as the need arises throughout the training program. 
 The technological training programme we propose fits into the overall training 
framework described above; the general approach and the theoretically-informed 
principles are the same. The programme consists in the creation of a collaborative 
environment for the training of teachers in the use of technology that is based on 
movement in two directions: 
– A bottom-up movement, whereby teachers share their experiences, practices, 

visions, and knowledge regarding the integration of ICT. 
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– A top-down movement, whereby, in accordance with their needs, the trainers-to-
be get access to research findings on the subject and are given the chance to 
consider critically the issues being debated in light of their own teaching 
experience. 

 The trainer-researcher has here a dual role. In his/her role of trainer s/he adapts 
the form and content of the training programme to the existing knowledge of the 
participating teachers (the trainers-to-be). In his/her role of researcher, s/he not 
only communicates and explains research findings and analytical tools but also, by 
observing their use and reception, strives to revise and adapt them. It should be 
noted, however, that this dual role is flexible and varies according to specific 
training activities. 
 Let us now clarify what we mean by ‘collaborative environment’ and 
‘collaboration’ in this context. It seems evident that collaboration in itself offers no 
‘automatic’ guarantee that the training programme will be successful. Generally 
speaking, the use of collaborative methods in teacher training brings a number of 
possible benefits: teamwork, shared goals, different perspectives and a range of 
professional knowledge that can be applied to the study of teaching practices, and 
the opening up to new possibilities (Bednarz et al., 2011). In our training 
programme, ‘collaboration’ means both the sharing of professional experience 
(between trainees themselves and between trainees and the trainer-researcher), and 
the sharing of theoretical and empirical experience amongst all the members of the 
group. With the help of the trainer, the aim is to clarify existing views and to tease 
out ideas that are still in their early stages. In this way, each group member 
collaborates by sharing knowledge and experience from his/her own practice, the 
aim being the co-construction of new knowledge that is both theoretically aware 
and rooted in teaching practice. 
 To begin with, the training programme is divided into modules, each one 
dealing with a different technological tool that is familiar at least to some of the 
participants. Each module consists of three stages. In the first stage, a group of 
trainees discuss their own uses of the tool in class and provide an overview of 
relevant online resources. In the second stage, the participants consider useful 
findings and relevant analytical tools drawn from educational research; this 
information is provided by both the trainer-researcher and the trainees themselves 
via selected theoretical readings. In the third stage there is a group discussion of the 
principle issues that need to be raised and the specific aspects that need to be 
emphasised when training teachers in the use of the technological tool in question. 
In terms of the training methods employed, selected key activities are introduced at 
appropriate stages in the training. This includes the analysis of video extracts of 
teachers using technological tools in class. These videos provide a shared 
experience around which activities – such as discussions, theoretical and 
professional readings, and the writing of reports giving the participants’ ideas on 
appropriate use of the technology – can be organised. The reviewing of online 
resources is on-going throughout the programme. This is because, firstly, online 
resources are currently the principal source of material for teachers wanting to use 
new technology in the classroom and, as such, they cannot be overlooked during 
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training. Identifying the right resource for use in a particular class and for teaching 
a specific mathematical concept is in itself a complex and time-consuming activity 
for teachers. Moreover, many resources are of limited use to teachers who did not 
participate to their design because of a lack of information regarding their specific 
benefits for mathematics learning and their insufficient indications about key 
features of their use in class. We can take the example of a teacher wishing to use 
dynamic geometry software. He or she must first of all choose (if the choice has 
not already been made by the school team) an appropriate software package 
amongst those available on the market. The choice might be made in terms of 
product accessibility (open access or otherwise) or in terms of the ergonomic 
and/or didactic properties of a particular product. The teacher must then learn 
him/herself and teach the students how to use the software. Finally, s/he must 
single out amongst the range of possible activities offered those that are the most 
useful and relevant for his/her teaching agenda. In doing so, s/he must be mindful 
of an appropriate balance between the time invested in preparations and setting up 
of software, and the amount of effective learning time that is achieved. The second 
reason why online resources are studied throughout the training programme is 
because the range of such resources is vast (ready-to-use lessons, online exercise 
databases, study plans for a particular topic, etc.), as are their sources (educational 
websites, resources constructed by groups of teachers or individuals, etc.) and their 
format (straight-forward student activities using an technological tool, lesson plans, 
with or without instructions, etc.). The study of such resources allows trainees to 
understand what is available and to identify the relative advantages and 
disadvantages that make them effective or ineffective as teaching aids. 
 By means of the various activities mentioned, we hope to achieve two principal 
results. Firstly, the future teacher trainers will develop a strong awareness of both 
the basic and more intricate particularities of teaching with technology. These 
particularities can be viewed from several perspectives: the student’s perspective 
(e.g. an increase in the variety of class activities; the risk that the computer-based 
activity reduces mathematical reflection); the teacher’s perspective (e.g. greater 
than usual class preparation and planning; changes in the nature and timing of 
assistance offered to students or to the whole class); the perspective of the subject 
matter itself (e.g. provision of new perspectives on geometrical figures with 
dynamic geometry software or spread sheets; provision of multiple approaches to 
concepts thanks to the ease and frequency of changes in presentation); or, finally, 
from the perspective of the special conditions and material constraints that come 
into play when conducting lessons based around technology. The raising of 
awareness of such issues among future teacher trainers will encourage them to 
develop teacher training programmes with a greater focus on didactic aspects rather 
than on the technology itself. Moreover, it will lead to the construction of a shared 
professional vocabulary that will facilitate the description of situations, 
experienced or observed, in less personal, more objective terms that will increase 
the usefulness of such descriptions for other teachers, especially those at the start 
of their careers. The overall aim of the training is thus the progressive guiding of 
trainees towards the ability to identify, as a group, the issues surrounding the use of 
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particular types of technology that would require special mention and/or discussion 
when training teachers. Such issues are various and might include: 
- material conditions and constraints such as the types of software available at 
school, the technical features of resources, the type of classroom available 
(computer room, ordinary classroom with projecting equipment, an interactive 
whiteboard, etc.) 
- differences between traditional and technological working environments and their 
implications for student and teacher activity 
- the gains and the limitations in terms of students’ learning progress in 
mathematics and the range of tasks that could be set to students (these should be 
customised to particular mathematical concepts and particular types of software, 
e.g. arithmetic-algebraic articulation for spread sheets; experiential testing when 
making conjectures and finding proofs with dynamic geometry, etc.) 
- the nature of the teacher’s activity in class, the kinds of interaction used (see, for 
example, chapters 8 et 9 of this book) 
 We now turn to the second result we hope to achieve via the methods used in the 
training programme. This builds on the identification of pertinent teaching issues 
just mentioned. The trainees, working in groups, will ‘embody’ their new insights 
by designing a resource that could be used during teacher training; they will then 
present it and discuss it with the other trainees. The resource is based on an activity 
that was really used in the class(es) of the designer(s). We hypothesize that 
creating a resource based on the real experience of the teacher in question, together 
with the writing up and collective discussion of a report that explains the creation 
of that resource, will encourage reflection and result in an improved understanding 
of the more implicit issues encountered when designing the resource. We thus see 
the creation of the resource not so much as the goal of the exercise in itself10 but 
rather as a useful training method. Furthermore, the exercise heightens awareness 
of the complexity of teaching with technology and increases the participants’ 
understanding of the process by which a teacher becomes a teacher trainer. And 
finally, the thinking through and writing up the written report entails a detailed 
analysis of the tasks to be used and an understanding of the impact of teacher-
student interaction on the latter’s learning. It thus helps to develop a metacognitive 
approach to the potential benefits of technology in the teaching of mathematics. 

Discussion 

In our training programme, the trainees are practising teachers. The question 
therefore arises whether the training process is not twofold: does it develop 
professionally a teacher, a trainer, or both? Moreover, are there differences 
between the two processes of training a teacher and training a teacher trainer and, if 
so, what are they? 
 Comparing the training of teachers and of teacher trainers, Llinares and Krainer 
(2006) identify the main difference as lying with the different constraints 
encountered by the two groups in the exercise of their profession. Whereas teachers 
face serious institutional constraints linked to the curriculum, the different class 
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levels and the specific topics they have to teach, trainers have the freedom to 
choose the content of their programme and its methods. Trainers are also free to 
make their own choices regarding the means by which they develop their 
professional skills. 
 We agree with these observations. We also believe that both teachers and 
trainers learn via the ‘constructive activity’ of their professions (see chapter 1). 
That is, their productive activity generates knowledge linked to the practice of their 
profession, and this knowledge is itself a source of training. When a teacher is 
training to become a teacher trainer, there is a meeting of the different skills and 
knowledge required by each. We might therefore ask ourselves the following 
questions: what connections will take place between these different types of 
knowledge? Will some play a more important role than others? Might different 
types of shared knowledge emerge? If so, how, as researchers, can we detect this 
emergence, and how, as trainers, can we promote it?  
 In terms of the current theoretical perspective of mathematics pedagogy, the 
same frameworks are used to study the two types of practice (that of the teacher 
and that of the trainer) and the corresponding training. Given what we have said 
above, is this approach satisfactory? 
 In fact, if we turn to the question of how to evaluate and compare training 
programmes, we are faced with a complex situation composed of four different 
levels: that of the specific training given; that of the trainers themselves in all their 
diversity; that of the practice of the teachers trained; and that of the 
‘corresponding’ learning outcomes of students. This gives us an appreciation of the 
enormity of the subject and of the need to devise theoretical and practical working 
solutions. 

NOTES 
1  They are simply not aware of such difficulties. Thus, for example, Lenfant’s (2002) study shows that 

many beginning teachers teaching basic algebra fail to draw on arithmetic solutions, even though 
these are often more accessible to students. 

2   This can sometimes be seen to a lesser extent amongst other teachers, notably those working in the 
so-called ‘priority education zones’ (ZEP) [socially disadvantaged districts receiving special 
investment in education].  

3  This has been confirmed by a study of blackboard usage (Vandebrouck, 2002).  Analogous findings 
have been found in studies of primary education (Maurice & Allègre, 2002). 

4  At present time this is usually the case in France. 
5   Timetable restrictions are always evoked when discussing this issue. 
6  The introduction of the socle commun [the minimum knowledge base that all students are expected 

to acquire on completing compulsory schooling in France] has led to even more questions regarding 
the curriculum. 

7  A study of the interaction between these different forms of training remains to be done. 
8  This is a quotation from a paper (‘Les didactiques en questions – État des lieux et perspectives pour 

la recherche et la formation’) published in the proceedings of a conference held at the University of 
Cergy-Pontoise in 2011. 

9  In practical teaching, such tools are not used but transposed; that is they are applied to tasks other 
than those for which they were initially conceived. 
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10 As it is the case with, for example, the pairform@nce training programme 
(http://national.pairformance.education.fr/). 
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