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CHRISTIAN D. SCHUNN AND ELI M. SILK 

1. LEARNING THEORIES FOR ENGINEERING  
AND TECHNOLOGY EDUCATION 

INTRODUCTION 

Optimizing technical systems depends on scientifically grounded models of system 
performance. Similarly, the development of engineering and technology education 
systems fruitfully builds upon relevant learning theories. Engineering and technology 
involve complex skills and concepts embedded in rich contexts. We review learning 
theories particularly appropriate for supporting learning of such complex concepts 
in rich contexts, drawing heavily on information processing, distributed cognition 
and cognitive apprenticeship. 

OVERVIEW  

The goal of this chapter is to articulate ways in which contemporary learning 
theories drawn from the learning sciences can enhance Engineering and Technology 
Education (ETE). We believe that ETE has much to gain by grounding research, 
instructional innovation and evaluation in existing theoretical frameworks. Connect-
ing to theory helps guide instructional designers in the construction of learning 
environments that are likely to be effective as they build on the scientific work 
encapsulated in well-established learning theories and they are also then able to 
contribute further to what is known in ETE disciplines by refining and expanding 
on those theories. 
 But connecting to learning sciences theory is difficult for many experienced 
engineers and engineering/technology educators who seek involvement in educa-
tion research, but who were not trained in a social science such as psychology or 
education (Borrego, 2007). To that end, this chapter intends to explore a number of 
contemporary learning theories that could serve to ground ETE research, design and 
evaluation. Although we cannot possibly cover all such learning theories, the ones 
we have chosen may be particularly useful to the work of ETE in which students 
must learn complex skills and concepts and to use those concepts adaptively in rich 
contexts. 
 The chapter is organized around the following two questions: 
– Goals: What is ETE as something to be learned? 
– Theories: What are some currently influential learning theories that could be 

applied to ETE? 
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ENGINEERING AND TECHNOLOGY EDUCATION GOALS 

In thinking about learning theories that may be relevant for ETE, it is important to 
be explicit about the outcomes that educators would like to see in their students. 
There are two dimensions to consider with respect to ETE. The first dimension is 
that ETE naturally involves elements of science, technology, engineering and 
mathematics (STEM). While technology and engineering elements are clearly the 
most central, they inevitably draw upon science and mathematics at various points, 
and the design of effective ETE environments should take those connections into 
account. 

Second, there is the question of what fundamental form the elements to be learned 
take. Since the days of behaviorist learning theories, it has been clear that competent 
activity in a domain consists of many individual components, each of which must be 
acquired and developed through experience (Thorndike, 1913) —addition and multi-
plication, for example, are separate math skills, each requiring their own practice. 
This need for decomposition of learning goals and practice on the components 
continues to receive theoretical and empirical support (Singley & Anderson, 1989; 
Anderson, Bothell, Byrne & Lebiere, 2004). However, developments in education, 
cognitive psychology and neuroscience after the days of behaviorism have shown 
that there is more to learn than just skills (or stimulus-response associations in the 
language of behaviorism) and further that different kinds of learning involve different 
methods. For example, procedures and concepts rely on different brain areas for 
learning (Knowlton, Mangels & Squire, 1996); procedures become less introspectable 
with practice whereas concepts become more introspectable; and procedures are 
most robust but least flexible when automatized whereas reasoning is generally 
more flexible but requires conscious control (Anderson, Fincham & Douglass, 
1997). Both are important for developing expertise in a domain. 

In engineering terms, a solving a problem in a domain involves a complex 
system requiring many skills, concepts and other competencies rather than just a 
simple list of skills. Here is a division that was first developed in mathematics 
education (Kilpatrick, Swafford & Findell, 2001) that could be applied productively 
to ETE. Success appears to require all five elements: 
– Procedural fluency—skill in carrying out procedures flexibly, accurately, 

efficiently and appropriately. This would include the use of tools, models and 
mathematics in technology/engineering problem-solving. 

– Conceptual understanding—explicit comprehension of relevant concepts from 
engineering, technology, science and mathematics, understanding what possible 
operations are available and why they work, and an understanding of the 
relationships between concepts and operations. 

– Strategic competence—ability to formulate, represent and solve complex STEM 
problems. 

– Adaptive reasoning—capacity for logical thought, reflection, explanation and 
justification. 

– Productive disposition—habitual inclination to see STEM as sensible, useful and 
worthwhile, coupled with a belief in diligence and one’s own ability to solve 
technology or engineering problems. 
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 A strong ETE curriculum will help students make progress at all five levels. 
Thus, it is important to consider each of these elements and learning theories that 
describe their acquisition. In the sections that follow, we will describe more concrete 
actions that ETE designers can use to develop more effective learning environments 
for each element. 

ENGINEERING AND TECHNOLOGY EDUCATION LEARNING THEORIES 

There are several broad theories of learning to consider that highlight some of 
the major outcomes from the learning sciences. Within each broad learning theory, 
there are more detailed theories of particular factors that influence learning, but 
here we focus only on the broad theories and the key distinctions they raise for the 
ETE teacher and designer. 
 One can roughly organize the components to be learned from more micro compo-
nents (a large number of small pieces to be learned that are each executed quickly 
in time during problem-solving) to more macro components (a smaller number of 
larger pieces to be learned that are applied more pervasively during problem-solving). 
For example, there are many simple procedures to learn, each of which might only 
take a second to execute, whereas there are a few productive dispositions that need 
to be active through a potentially multiple-week-long process of solving a complex 
engineering problem. Similarly, one can organize learning theories in terms of having 
a more micro (short time scale focus on micro features of behavior) vs. macro (longer 
time scale focus on macro features of behavior) perspective (see Figure 1). This 
difference is more heuristic/approximate than absolute in that all of the theories 
make some contact with all of the components. However, a clear point of emphasis 
exists within each theory. 
 

Theories Micro Components 
Information Processing  Fluent procedures 

Conceptual understanding 
Distributed Cognition  Strategic competence 

Adaptive reasoning  
Cognitive Apprenticeship  Productive disposition 

 
 

Macro  

Figure 1. Micro to macro organization of learning theories and components  
of competent behavior in ETE. 

INFORMATION PROCESSING (COGNITIVE) THEORIES OF LEARNING 

One of the key insights of Information Processing theory is that complex tasks 
must be decomposed into informational components that are encoded, stored and 
processed, and fundamental cognitive limitations exist at each step that influence 
performance and learning. The mind, like a computer, does not have infinite capacity. 
A general flow of information is shown in Figure 2.  
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Figure 2. Flow of information from the environment into the mind. 

Attention Issues 

The problem-solver, especially in more complex engineering and technology settings, 
sits in a rich environment with all kinds of sensory signals impinging on his/her 
body (sights and sounds most importantly, but also smell, touch, temperature, pain 
and hunger). Well-practiced, automatic skills can make some use of much of this 
information, but more conscious, deliberate problem-solving depends on using infor-
mation in working memory. The problem-solver actively selects which information 
to encode into working memory via an attentional filter: only information that is 
attended is moved initially to working memory, and only a very small bandwidth of 
information that is perceived can be attended. The mind appears to attend to locations 
and modalities one at time, but can switch rapidly between locations and modalities 
(Wickens & McCarley, 2008).  
 Novices often do not know what information to attend in a complex environment, 
and so the instructional designer and teacher must support the learner in attending 
to the right features at the right time. This might involve simplifying the environment 
to remove less relevant features, making critical features more salient, or bringing 
features closer together that must be encoded immediately to solve a problem 
(Wickens, 2008; van Merrienboer & Sweller, 2005). But note that learners will have 
trouble moving from a very simplified learning environment to the real performance 
environment if the information found in the simplified environment is perceptually 
different from the real environment and different information encoding skills are 
required.  
 Simply pointing out critical features to encode by itself can produce large speedups 
in learning because feature noticing can be subtle. For example, the skill of chicken 
sexing (determine a day-old chick’s sex by visual inspection) used to take thousands 
of hours to perfect, but was later learned in a matter of a few hours once learners 
were explicitly told which features were important to encode (Biederman & Shiffrar, 
1987). Closer to ETE, Kellman, Massey and Son (2010) found that training middle 
and high school students in mathematics classes to recognize patterns and fluently 
extract meaningful perceptual structures in mathematics problems greatly improved 
equation solving performance and solving novel problems. 
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Working Memory Issues 

Moving information into attention is a first step, but not the last one in terms of 
information processing. In addition to limitations on how much can be attended at 
once, working memory is extremely limited in capacity—approximately four inde-
pendent visual/spatial items and four independent verbal/acoustical items (Baddeley, 
2003). Thus, as problem-solvers attend to new things, old things are lost from working 
memory; they must be mentally rehearsed (or reexamined to re-encode them) to be 
kept in working memory over time.  
 With experience, problem-solvers can ‘chunk’ combinations of information so that 
these familiar combinations only consume one item, effectively increasing working 
memory capacity in that familiar situation—for example, a chess expert can re-
member a whole board because sets of pieces can be grouped into familiar chunks, 
but a chess novice is stuck thinking about each piece on its own (Chase & Simon, 
1973). Similarly, complex devices to a novice are overwhelming to remember because 
the novice cannot encode the subsystems of the device in terms of familiar groupings 
(Moss, Kotovsky & Cagan, 2006). 
 This severe capacity limitation on working memory has a number of implications 
for the instructional designer or teacher, especially because reflection by the learner 
on the task or situation, thought to be useful for learning, also relies on this same 
limited working memory capacity (van Merrienboer & Sweller, 2005). First, it is 
important to think through how many components the task being performed requires 
for a problem-solver to consider simultaneously in working memory (called the 
intrinsic cognitive load). It is important not to overwhelm the learner, taking into 
account the chunks that a learner is likely to already have. The peak cognitive load 
moment in a task is when errors are most likely to occur (Carpenter, Just and Shell, 
1990). Addressing this issue might involve using familiar situations when first 
introducing procedures/tasks having a higher intrinsic load. 
 Second, it is important to find and reduce additional features of the learning 
situation that might be adding to working memory requirements (called the extrinsic 
cognitive load). For example, cluttered displays often imply that learners must keep 
track of where key information is being kept. Somewhat counter-intuitively, giving 
learners a very specific result to compute in an example produces a higher cognitive 
load than just asking students to compute a variety of results in the same situation 
because the specific goal must be stored in working memory (van Merrienboer & 
Sweller, 2005)—as a result, the specific goal situation produces more errors and 
reduces learning. Similarly, initially studying examples that show the solution process 
produces better learning outcomes than having students immediately solve problems 
on their own because the cognitive load of solving problems is higher than that 
associated with studying worked examples. 

Consolidation/Fluid Fact Retrieval 

As noted above, the working memory requirements of a situation are reduced when 
the problem-solvers can encode the situation in terms of larger familiar chunks. 
Where do these chunks come from? The chunks reside in long-term memory, 
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which has essentially unlimited capacity (i.e., it never gets ‘full’), but information 
is stored relatively slowly in working memory through a process called consolidation. 
In addition, problems may occur in retrieving the right chunks at the right time 
(i.e., stored information can get lost in the sea).  
 Expert performance involves having rapid access to relevant long-term memory 
chunks and this rapid access is built up gradually through repeated exposure. Here 
there is no free lunch, no cognitive shortcut (Anderson & Schunn, 2000). Rather, a 
relatively simple relationship exists by which each exposure slowly increases the 
probability of retrieving the information later and decreases the rate at which informa-
tion is forgotten. There is one important caveat: studying information repeatedly 
spread out over time, rather than cramming, can have a large effect on how quickly 
information is forgotten (Pavlik & Anderson, 2005). So, for foundational information 
that is to be used in subsequent units or courses, it is very useful to revisit that 
information repeatedly at multiple points in the curriculum, spaced out over time.  

Proceduralization 

Chunking and storage in long-term memory is what happens to facts or memories 
for particular task arrangements and outcomes. A different kind of learning happens 
with skills. Here, information moves from being represented as facts to being re-
presented as actions, a process called proceduralization. As a simple example, learning 
to drive a car begins with being told or reading about the steps involved. Students 
might be able to recite what the steps are, but they cannot actually consistently 
execute the steps until they have practiced the steps repeatedly. Over time, with 
enough practice, a problem-solver might actually lose the ability to recite the steps 
involved verbally because he or she no longer relies on that form of knowledge. 
 Similar to consolidation, proceduralization is a slow learning process with no 
magic bullets other than finding ways for students to more consistently practice only 
relevant steps. If a problem-solver wants to become fast and accurate at a procedure, 
hours of practice are required. Interestingly, there does not appear to be any point 
at which improvements stop with practice: even after thousands of hours of practice, 
people appear to keep getting faster with increasing practice, although of course the 
amount of improvement with each hour of practice diminishes (Anderson, Fincham & 
Douglass, 1997). 
 Proceduralization reduces working memory requirements because elements of 
the procedure do not need to be represented in working memory. Proceduralization 
does not by itself automatize the skill in that the skill, when first proceduralized, 
depends on explicit goals found in working memory and can be easily stopped or 
adapted through metacognitive reflection. However, with enough practice, the skills 
become automatic in the sense that they do not require any attentional resources to 
start the procedure, but they also cannot be easily stopped or adapted. For example, 
adults automatically read words as soon as they appear and cannot prevent themselves 
from reading the words. Sometimes problem-solvers need to complete multiple skills 
simultaneously; this dual task activity becomes more feasible when at least one of 
the skills has been practiced to the point of automaticity. 
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Prior Knowledge/Misconceptions 

The previous analysis gives the sense of knowledge elements in isolation, each 
practiced in isolation. However, there are connections, particularly with respect to 
concepts. Cognitive research has found that one of the strongest predictors of how 
well a student is likely to learn something is how the new learning is related to what 
the student already knows and how their prior knowledge is organized (National 
Research Council, 1999, 2007). If the concepts to be learned and the way they 
are organized match neatly with a learner’s pre-existing knowledge base, then the 
learning is likely to be smooth and rapid. However, in science and engineering, 
students often lack relevant conceptual frameworks or have frameworks that are 
not developed enough to support new learning adequately. If students cannot relate 
new information to a meaningful framework, they will probably resort to memorizing 
terms that will be quickly forgotten or that will remain in isolation, unable to be 
connected to other knowledge or applied when relevant. 
 ETE, including supporting science education, often extends everyday under-
standing to new levels that cannot be seen directly or experienced in everyday life. 
For example, much of biology and chemistry involves learning about entities and 
processes at a microscopic level. In biology, many students correctly associate 
properties like breathing, growth and reproduction with living organisms, but their 
understanding of these properties is based on their everyday experience. They under-
stand something like breathing as taking air in and out through one’s mouth or 
nose, and the need to do so is self-evidently obvious. This is correct as far as it goes, 
but a scientific understanding delves much deeper and explains these properties in 
terms of exchanges of gases that are required at the cellular level for cells to engage 
in the metabolic processes that support life. The way a person, a fish and a tree 
“breathe” may appear quite different on the surface, but the processes of cellular 
respiration unify and explain the common need to exchange gases and help us under-
stand how different groups of organisms meet that need (see Chapter 5 for a more 
detailed discussion of the transfer of conceptual knowledge). To make sense of this, 
students must add new levels of concepts and explanatory systems to their under-
standing of the natural world and then work out how those levels are connected to 
their pre-existing views of the world (Smith, Maclin, Grosslight & Davis, 1997). 
 While some elements of ETE involve concepts very foreign to students, some 
concepts are misleadingly familiar to students. Through everyday informal interaction 
in the world, students sometimes develop misconceptions of how the natural and 
man-made world around them actually works. For example, in physics, most students 
have very serious misconceptions that are in direct opposition to Newton’s Laws: 
students strongly believe that a table does not push up on a book sitting on it and 
they strongly believe that objects stay in motion only because a force continues to 
be applied to it (Clement, 1982). Because these informal understandings have been 
developed through years of experience, they are incredibly resistant to change through 
instruction. Instruction that ignores these misconceptions tends to fade quickly, 
leaving only the misconceptions in the learner’s head, whereas instruction that evokes 
and directly attacks these misconceptions has significantly improved student learning 
(Hammer & Elby, 2003; Kim & Pak, 2002). 



SCHUNN AND SILK 

10 

 Because these connections and reparation of existing knowledge are so crucial 
to learning, teaching and learning strategies that involve sense-making by the students 
have often been found to be especially effective. For example, encouraging students 
to self-explain during reading (i.e., monitor whether they understand what was read, 
make connections between paragraphs or between text and diagrams, make pre-
dictions and provide explanations for the provided information) can lead to great 
improvements in understanding the text, in retaining the material and afterwards 
the ability to apply the information later in new contexts (Chi et al., 1989). See 
Chapter 5 for a broader analysis of factors that influence this kind of learning. 

Cognitive Task Analysis 

Practice is the key to expert performance. But it is critically important that time be 
devoted to practicing all critical skills in the goal task. The benefits of practice are 
very specific to the particular skills that were practiced. For this reason, it is important 
to do a cognitive task analysis of the steps involved in completing a task. Note the 
term ‘cognitive’ in cognitive task analysis. A non-cognitive task analysis involves 
analyzing the external steps involved in completing a task. A cognitive analysis 
includes the mental steps required in the task, including mental calculations and 
retrievals from long-term memory. 
 A cognitive task analysis can be difficult to complete, especially by experts 
who have proceduralized many elements of the task, thereby losing the ability to 
articulate the procedures they execute verbally. So, one cannot simply interview 
experts to determine required skills. Instead, one must observe experts at work, per-
haps having them give a think-aloud protocol that offers some access to the contents 
of verbal working memory (Ericsson & Simon, 1983). From this trace of external 
actions and contents of verbal working memory, one must infer the steps taken by 
the problem-solver. 
 Why is it worth the effort to do a cognitive task analysis? First, it clarifies what 
skills and concepts must be practiced, which makes it clearer as to what kinds of 
practice tasks should be assigned to ensure that all components skills and concepts 
receive some practice. Different problems can involve different subsets of skill applica-
tion. As a simple example, different subtraction problems may or may not involve 
particular borrowing steps.  
 Second, the cognitive task analysis creates some opportunities for improving the 
efficiency of learning with intelligent learning systems that track student performance 
at the cognitive components level. Solving problems can take considerable learning 
time. If a given student has already made considerable progress on skills A, B, C 
but not skills D, E, less efficient use of learning time would be made to present 
more problems involving A, B, C or A, B, E and more efficient use of learning time 
to present problems involving just D, E. Cognitive tutors that present problems in 
exactly this way (in addition to providing immediate feedback on which cognitive 
steps were incorrectly completed) can take students to the same learning outcomes 
in much less time (Anderson, Corbett, Koedinger and Pelletier, 1995). 
 Third, important transfer across tasks can happen at the level of shared cog-
nitive components. So, learners can be given simplified learning tasks (to simplify 
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attentional demands, to reduce working memory requirements and to focus time 
on unlearned elements) but still transfer to real tasks if the tasks share important 
cognitive components. For example, Klahr and Carver (1988) conducted a cognitive 
task analysis of program debugging skills. They then explicitly taught these skills 
to students, which they quickly mastered and practiced. Then, in a test of trans-
ferring these skills to a completely different task that should have shared important 
cognitive elements of debugging, Klahr and Carver found that students were much 
better at debugging errors in written instructions, such as arranging items, following 
map routes, or allocating resources. 

Summary of Information Processing 

From an information processing point of view, it is important to determine the 
information that students need to be processing, considering perceptual encoding, 
working memory, and long-term conceptual and skill components. Further, this 
analysis must examine both eventual fluent problem-solving and the learning environ-
ment. Learning takes place through accurate focus on and practice with the critical 
elements. Given the frequent complexity of ETE, it is easy to overlook critical skills 
or concepts without a careful cognitive task analysis conducted by the designer of 
the ETE learning environment. 

DISTRIBUTED COGNITION LEARNING THEORIES  

Information processing theories place a strong emphasis on the mental workings of 
individual minds. Distributed cognition generalizes the information processing theory 
framework to include the physical environment around the learner, including inter-
actions with other problem-solvers. As noted in the previous section, cognitive load 
is a key bottleneck to complex problem-solving and learning. External tools and other 
problem-solvers in the environment can be used to share the load. For example, in 
a plane cockpit, the pilot uses dials to help remember the state the plane is in, uses 
the co-pilot to help run through check-lists before take-off, and even uses simple 
perceptual features of dials and indicators to compute simple computations about 
whether to change the plane’s speed (Hutchins, 1995). 
 This distributed extension of information processing applies to ETE in a number of 
different ways. First, engineering and technological problem-solving tend to involve 
working with complex external environments and groups of individuals working 
together, rather than individuals working alone or doing purely mental calculations. 
Thus, it is not necessary for ETE learners to be able to do complex tasks purely 
in their heads because it is unlikely that they will encounter that performance 
standard later.  
 Second, problem-based learning is often implemented as group-work. By assigning 
different individuals different roles (including monitoring overall performance or 
learning of individuals), the overwhelming complexity of many ETE learning tasks 
becomes manageable. However, it is important that the tasks be divided such that 
the cognitive load is decreased rather than increased. In tightly coupled tasks 
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distributed across individuals, each problem-solver has the additional challenge of 
having to keep track of their partner’s task state as well as their own task state. 
Such distribution increases rather than decreases each learner’s cognitive load. It is 
better to have multiple learners work on more independent tasks or have them attend 
to the same task state but perhaps from different perspectives (Prince, 2004). 
 Third, engineers and technologists use thinking tools, often called models, that 
distribute thinking in another way and this requires an additional strand for learning. 
Models are tools or formalisms that represent aspects of some external situation 
for a particular purpose. Common examples from ETE include graphs, equations, 
physical prototypes, computer-aided design models and design analysis tools. A given 
situation could be represented by any and all of these examples (Gainsburg, 2006). 
Each representational tool has strengths and weaknesses. Which model or combina-
tion of models should be used at any given time depends upon the problem-solver’s 
purposes. Even within a given type of model (e.g., physical prototype), there are 
choices as to which features to include and which to exclude (e.g., color, moving 
parts, structural strength). 
 This last element is a critical component of strategic competence (one of the key 
components from Figure 1)—the ability to formulate, represent and solve complex 
STEM problems. Complex ill-defined problems (as frequently occurs in engineering 
and technology problem-solving) can move from being nearly unsolvable to trivial 
through the selection of the appropriate representational tools (Kaplan & Simon, 
1990). 
 But modeling, as a skill, can be a challenge to learners. Students initially do not 
see models as representational—standing for something else—but rather just things 
on their own, serving no greater purpose. Further, students are usually given models 
rather than being allowed to modify and strategically select models, thereby under-
cutting the development of strategic competence.  

Models & Modeling Perspective and Model-Eliciting Activities 

In the mathematics education and engineering education communities, a new general 
approach to instruction is developing called the models & modeling perspective 
(M&M; Lesh & Doerr, 2003), focusing on the complexities and benefits of models 
as a particular kind of distributed cognition. Whereas the information processing 
theoretical perspective often led to careful arrangements of problem-solving activity, 
the M&M perspective has advocated a different sort of instructional activity exemp-
lified by model-eliciting activities (MEAs; Hamilton et al., 2008). MEAs are a form 
of problem-based learning well matched to ETE in which the problem-solvers 
are asked to produce conceptual tools for constructing, describing, or explaining 
meaningful situations. This process of developing such a conceptual tool typically 
involves a series of express-test-and-revise cycles. The iterative model development 
process helps students both to develop more sophisticated ways of understanding 
important conceptual ideas and to acquire a productive disposition toward thinking 
about their own ideas or models of situations as tools—useful and adaptable for 
solving real problems (Lesh & Lehrer, 2003). 



LEARNING THEORIES FOR ENGINEERING 

13 

 MEAs have been developed for K-12 and undergraduate mathematics, technology 
and engineering education (e.g., http://modelsandmodeling.net). A number of well-
defined principles for developing MEAs exist (Lesh et al., 2000). In addition, MEAs 
are typically contextualized around a problem where students have to sort through 
a wide range of quantitative data and develop a procedure or process for a client. 
For example, the Nano Roughness MEA (Moore & Diefes-Dux, 2004) challenges 
students to quantify the roughness of nanoscale materials that a biomedical company 
is considering to use for artificial hip joints. One principle of MEAs is the Model-
Construction Principle—that the problem requires students to create a mathematical 
model of the situation. In the Nano Roughness MEA, students examine atomic 
force microscope (AFM) images that provide quantitative data on the surface height 
of materials and use this information to generate their own procedures for quantify-
ing roughness, of which there are many possibilities. 
 MEAs can result in a form of local conceptual development in which students 
make progress in a particular situation with the specific tools available in a way 
that parallels larger developmental processes of more general conceptual structures 
(Lesh & Harel, 2003). Thus, MEAs provide students with opportunities to develop 
their ways of thinking about central conceptual ideas within realistic problem-
solving contexts.  
 We have begun to explore in our own work with robotics technology classes in 
middle schools how the M&M perspective and MEAs can provide a sound theoretical 
basis for improved learning (Silk et al., 2010). For example, we provide middle-
school aged students with the case of a robotics team that programs synchronized 
dancing Lego robots. The fictional team receives different dance routines from fans 
via the Internet. The problem is to program these various dance routines in a way 
that different sized robots will dance in synchrony. The students’ task is to develop 
a script that the fictional team can use to program robots for these arbitrary scripts 
quickly and accurately. Since the situation is open-ended, the students must develop 
their own physical and mathematical models to determine how different robotics 
moves vary across different sized robots and then use these models to develop the 
script. Here, students are thinking about specific proportional relationships in the 
problem, and through a model refinement process, they may further improve their 
mathematical concept of proportionality or their robotics concept of proportional 
control. 

COGNITIVE APPRENTICESHIP LEARNING THEORIES  

All areas of professional education, including engineering and technology educa-
tion, have had a long history of apprenticeship approaches to learning. At school, 
students were meant to learn the underlying principles and most fundamental skills/ 
knowledge (writing, mathematics, science), and then through internships, co-op 
experiences, or on-the-job training, learn the ‘real’ skills of the discipline. Even 
instruction that was intended for all children, rather than just the next generation of 
a particular profession, has been influenced somewhat by applying lessons from 
apprenticeship learning to instruction. 
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Traditional Apprenticeship Learning 

Analysis of learning in traditional apprenticeship situations noticed important 
common instructional features. One important feature is that much early apprentice-
ship learning involves observation by the apprentice of more expert performance, 
rather than immediately having the learner engage in problem-solving, read about 
problem-solving, or hear lectures about problem-solving (Lave, 1988).  
 The second important feature is the expert provides many supports for the learner 
during problem-solving, called scaffolds. For example, the expert may provide 
hints or do parts of the task, leaving the first or last pieces for the learner. Gradually 
over time, these scaffolds are removed, a process called fading (Vygotsky, 1978). 
A number of intelligent computer tutoring systems have successfully used this 
scaffolding and fading approach to speed up learning (Renkl, Atkinson & Grosse, 
2004), including of engineering materials (Reisslein, Sullivan & Reisslein, 
2007). 
 From such apprenticeship experiences related to ETE, students develop a 
productive disposition towards STEM (the last key component listed in Figure 1). 
Because they see performance of STEM in action, the usefulness of STEM compo-
nents is made very persuasively. Observation of a diligent expert provides a good 
model for work ethics in STEM. Finally, the scaffolding and fading help to ensure 
that students develop and maintain high self-efficacy about their own ability to 
solve STEM problems. 

Cognitive Apprenticeship Learning  

Although apprenticeship learning does produce expert performance, the path is often 
quite slow, and the learning that results can be somewhat fragile or specific to the 
particular learning environment of training (Suchman, 1987). This last element was 
particularly troubling for applications to school environments, which could not be 
made like work environments for large numbers of students. Information processing 
theorists examined apprenticeship learning and proposed a hybrid theory called 
Cognitive Apprenticeship that was meant to speed up and make the transfer from 
schooling to other settings more robust (Collins, Brown & Holum, 1991). 
 One element of cognitive apprenticeship is that the expert tries to make all aspects 
of the task visible to the learners, which further supports the learner’s ability to 
engage in more adaptive reasoning across settings (the fourth key component from 
Figure 1). In traditional apprenticeship, it is up to the learner to figure out which 
features to encode and what steps are going on. For ETE, in which many steps are 
mental and abstract, traditional apprenticeship leaves the learner with a huge inference 
task. To make aspects of the task more visible to the learner, an instructor might think 
aloud during problem-solving. For example, in mathematics instruction, Schoenfeld 
(1987) found it particularly useful to show students the heuristics that mathematicians 
use for selecting among possible problem-solving steps rather than just the formal 
steps found in particular algorithms. In addition, an instructor might ask learners to 
alternate between being a critic or guide and a learner or doer receiving critical 
comments. Reciprocal teaching is an approach that has used this element of cognitive 
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apprenticeship to great effect in reading instruction (Palinscar & Brown, 1984) and 
physics instruction (Reif, 1999). 
 A second element of cognitive apprenticeship is the importance of varying 
situations such that transfer to new situations will become more likely. Preferably 
this varying of situations is done by gradually increasing the complexity of the 
tasks and the diversity of the skills and concepts required to complete the task. That 
is, rather than simply working on complete problems as they come and providing 
scaffolding for the students, the order of selected problems is chosen purposefully 
with respect to complexity and diversity of skills and concepts (Collins, Brown & 
Holum, 1991). 
 However, the sequencing of problems does not mean instruction should begin 
with micro-problems that are completely divorced from real problem situations 
because the students will then lose the connection between what they are learning 
and the situations to which these skills and concepts should apply. Instead, instruction 
should go from global to local so problem-solvers can see the relevance. That is, a full 
problem can be introduced, but then instruction can transition to solving components 
of the larger problem. This issue of global/local is particularly applicable to problem-
based learning approaches used in ETE. Rich problems can be attempted and yet 
students can practice critical component skills in effective order by supporting the 
transition from the larger problem to the component sub-problems.  
 For example, in our synchronized dancing robots problem described earlier, we can 
present the larger synchronized robots problem to students at the very beginning of 
a long sequence of lessons and then help the students break down the larger program 
into components, such as linear distance, linear speed, turn amount and turn speed. 
Each of these components can be divided further into measurement and programming 
tasks. But the students ‘see’ the larger problem at the very beginning, rather than 
beginning the unit with a discussion of measuring linear distances with robots, 
which the students see as an odd task out of context. There is now emerging evidence 
that providing a greater ‘need-to-know’ enhances learning in STEM (Mehalik, 
Doppelt & Schunn, 2008). 
 Overall, cognitive apprenticeship approaches support the development of adaptive 
reasoning in problem-solvers by encouraging students to reflect on the skills and 
strategies involved in solving larger, more complex problems. 

CONCLUSION 

Successful problem-solving in engineering and technology settings requires attending 
to five larger elements in the problem-solver: procedural fluency, conceptual under-
standing, strategic competence, adaptive reasoning and productive disposition. These 
five elements are not developed quickly and easily, and learning environments must 
be carefully organized across years of instruction to meet this challenge.  
 Given the complexity of what must be learned, it is not surprising that a range 
of learning theories must be used to explain how this learning happens and what 
environmental features best support it. As a rough heuristic, we have organized the 
learning goals from more micro elements to more macro elements, and have then 
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shown how different learning theories connect to these elements. But the mapping 
is certainly complex and much research remains to be done. In the meanwhile, we 
strongly encourage active sense-making by the reader in terms of trying to apply 
the contents of this chapter to their own ETE setting. 
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