

L. D. Yore et al (Eds.), Pacific CRYSTAL Centre for Science, Mathematics, and Technology
Literacy: Lessons Learned, 99–112.
© 2011 Sense Publishers. All rights reserved.

SARAH CARRUTHERS, TODD M. MILFORD, YVONNE COADY,
CELINA GIBBS, KATHERINE GUNION AND ULRIKE STEGE

6. TEACHING PROBLEM SOLVING AND COMPUTER
SCIENCE IN THE SCHOOLS

Concepts and Assessment

Computer science is no more about computers than astronomy is about tele-
scopes. (Dijkstra, n.d.)

Computer Science Education (CSEd) is a young field that is comprised of numerous
established disciplines, such as science, mathematics, education, and psychology.
Fincher and Petre (2004) in their seminal text on CSEd suggested that moving the
discipline toward independence would require that researchers ask questions that
may only be answered through computer science. Because of CSEd’s relative youth,
it is common for researchers in this problem space to look to other disciplines for
theory to help answer research questions. This chapter outlines pilot studies that
exposed middle school students (11 to 13-year-olds) to a series of new and unique
hands-on curricula associated with numerous fundamental concepts in Computer
Science (CS). We hypothesized that through experiences for youth with activities
such as those outlined here the number of students who understand the concepts
covered and who might potentially pursue CS in postsecondary education will
increase. In this chapter, the curriculum, classroom experiences, preliminary (largely
descriptive and qualitative) results, and next steps in our research are discussed.

The importance of attracting students to the discipline of CS is well recognized
(Carter, 2006; Flakener, Sooriamurthi, & Michalewicz, 2010; Klein, 2006; Slonim,
Scully, & McAllister, 2008; Zweben, 2008). There is a severe shortage of individuals
pursuing CS at the postsecondary level—the essential pipeline issue. Since the CS
industry’s peak around 2000–2001, CS departments in universities and colleges
across Canada have experienced declining enrolment (Slonim et al., 2008). At the
same time, CS graduates have emerged into a job market with a higher projected
demand level than the average in other areas (1.9% vs. 0.7%) and a higher percent-
age making above $50,000 annually compared to other occupations (52% vs.
31.1%; Service Canada, 2011).

While it appears that this trend of declining enrolment may be reversing in the
USA, the same is not yet certain in Canada (Zweben, 2008). However, there continues
to be concern with enrolment in CS at the postsecondary level. Thus, attracting
more students to the CS discipline will potentially improve enrolment and retention
in postsecondary CS programs and increase the number of graduates and will more

CARRUTHERS ET AL

100

closely match industry’s needs. It is hypothesized that this enrolment concern is the
result of a perception of a decreased number of jobs in the industry, inaccurate per-
ceptions of what computer scientists do, and general unfamiliarity with the content
of the discipline (Carter, 2006; Klein, 2006). However, Flakener et al. (2010) take
this idea further to suggest that this is even more serious as “today’s marketplace
needs more skilled graduates capable of solving real problems of innovation in a
changing environment” (p. 20). What they believe is missing from the majority of
CS curricula is a focus on developing problem-solving skills. To address this concern,
we have focused our research interests on the teaching of problem-solving skills.

There are many approaches to addressing the pipeline issue and to improving
enrolment and retention in CS programs, including informing students about CS
and better preparing students before they enter undergraduate programs (Slonim
et al., 2008). This solution would address both the pipeline issue and the mainline
issue of seeking to improve citizens’ general CS understanding (Yore, Chapter 2 this
book). Various strategies for improving elementary, middle, and secondary school
CS education are suggested, including supporting CS teacher education and improving
curriculum by better defining what constitutes the CS knowledge base (Goode, 2008).
While these efforts are laudable, elementary mathematics and science curricula
should also be examined to identify where elements of CS can be infused to support
these subjects before secondary school, a seemingly appropriate strategy for this
highly interdisciplinary area. As in all fields, we should constantly reflect upon and
re-evaluate what we are teaching. By strengthening the foundation of CSEd, we
will have a more educated student body around the fundamental CS concepts as
well as one that better understands how CS fits into society (i.e., an understanding
of what computer scientists do).

ELEMENTARY SCHOOL COMPUTER SCIENCE

The question is whether or not CS should be taught in elementary schools. The
current prescribed elementary school curriculum is overcrowded and continues
to expand with requests to add new disciplines (e.g., environmental education,
engineering design, etc.; see Yore, Chapter 2 this book) while instructional time in
the school year is not increasing. At the 2010 Western Canadian Conference on
Computer Science Education in Kelowna, British Columbia (BC), critics of the
introduction of CSEd in elementary classrooms pointed out that, while students today
ride in automobiles, they are not taught automotive mechanics in elementary class-
rooms and, therefore, being surrounded by computational devices, computers, and
other information communication technologies does not imply that they need to be
taught CS. However, while the elementary science curriculum in Canada does not
contain automotive mechanics, it does include units in physics and chemistry—the
fundamental sciences that allow us to understand how and why automobiles work.
Similarly, elementary students ought to be able to learn some foundational elements
of how and why computers work as well as the use of CS to facilitate problem
solving. Carruthers (2010a) noted that most youth currently use technological devices
on a daily, if not hourly, basis; communication via cell phones or instant messenger

TEACHING PROBLEM SOLVING AND COMPUTER SCIENCE

101

programs on laptops and desktops are examples. Internet access via mobile devices
is on the rise, and mobile phone use is overtaking traditional phone networks world-
wide. These changes in technology use happen rapidly and have implications for
personal privacy protection (e.g., Facebook©). Basic CSEd, integrated into today’s
curriculum, can be the basis for understanding how these technologies work, how
this may be possible (Carruthers, 2010b; Romanow, Stege, Agah St. Pierre, &
Ross, 2008).

Perhaps even more important, CSEd has broad benefits. Beyond being simply
an intellectual pursuit, CSEd teaches problem solving, supports and connects to
other sciences and disciplines, can be engaging for different types of learners, and
can lead to many career paths other than software developers or designers. A Model
Curriculum for K–12 Computer Science (United States Computer Science
Teachers Association [CSTA], 2006) stated that, “Professionals in every
discipline—from art and entertainment, to communications and health care, to
factory workers, small business owners, and retail store staff—need to understand
computing to be globally competitive in their fields.” (p. 11). Giving young
students an understanding of basic CS and nurturing an interest in the field is
beneficial not only for students who go on to pursue a major or career in CS
(pipeline goal) but also for all students (mainline citizenship goal). Further, “Basic
computer science education can provide world citizens with the tools and
knowledge necessary to make informed decisions about how to use technology,
and how to share information” (Carruthers, 2010a, p. 7).

THREE CORE CONCEPTS IN COMPUTER SCIENCE

For each of the three studies detailed below, we selected a CS core concept: con-
currency, recursion, and graph theory. These concepts are in line with those identified
as required in the model K–12 CS curriculum (CSTA, 2006). Each concept plays
an important role in basic problem solving and, once learned, enriches students’
general problem-solving skill set. Further, all play an important role in algorithm
development and programming. These studies are presented in the order in which they
were conceptualized and conducted. The collaboration between Computer Science
and Education was established midway through both the concurrency and recursion
studies and was only fully involved in all aspects of design, implementation, and
analysis of the graph theory study. This increased collaboration will be reflected as
the reader moves through the studies; we are excited about the future possibilities
this collaboration holds.

Our approach to presenting the CS concepts in the three studies is decidedly
constructivist (Yore & Van der Flier-Keller, Chapter 1 this book). We accepted the
idea of constructivism in our program design that views individuals as actively
involved in constructing knowledge for themselves (Schunk, 2000). The core concept
of constructivism is that knowledge is built by learners rather than simply transmitted
among persons. In Education, there is increasing understanding and acceptance of
the value in students working together to construct meaning about subject matter,
resulting in student groups constructing more complex understanding of a topic

CARRUTHERS ET AL

102

than any single student could do alone (Ormond, Saklofske, Schwean, Harrison, &
Andrews, 2006). In all activities, the students were provided with materials with
which they could become actively engaged through manipulation and social inter-
action. Some of the ways we sought to aid students to construct their knowledge base
was through experimenting with challenging activities, negotiating in small groups,
encouraging the presentation of individual and group ideas to others, and emphasizing
conceptual understanding by focusing on a few core topics then exploring them in
detail. We did this by using authentic activities and resources, promoting dialogue
with peers in the sessions, and creating a community of learners to aid in learning.

METHOD

We used a lesson study design to explore and improve the teaching and instructional
resources (Bell, Witten, Fellows, Adams, & McKenzie, 2006). The lessons focused
on an important CS concept related to problem solving that did not necessarily
require computer technologies. The preliminary lessons were taught to a target group
or intact class of elementary school students. Observations and field notes of the
instruction, students’ actions, and outcomes were used to document the initial teaching
and learning. These data were interpreted to make inferences about lesson effective-
ness and improvements needed regarding the students’ actions, understanding, and
use of the CS concepts. Lessons were modified to address the strengths and weak-
nesses identified in the first cycle of lesson study. However, in this chapter, we
report only the preliminary lesson design and study results.

Lesson Study 1: Concurrency

Concurrency may be best described as acting together either as events, circumstances,
or agents. In CS, concurrency describes a property of systems: several computations
executed simultaneously while potentially interacting with each other. These compu-
tations may happen on the same processor or on separate processors. Concurrency
has achieved more importance with the arrival of a new era of programming where
developers must consider the subtleties of concurrency inherent in modern many-
core architectures. This calls for a revamp of the area, ranging from fundamental
pedagogical processes to software development tools. An observed problem with
teaching, learning, and using concurrency is that corresponding real-world scenarios,
commonly leveraged in pedagogical practices, contain implicit relationships that
are difficult to explicitly anticipate in complex code-bases. In our study on the
concept of concurrency, we observed students’ abilities to come up with both valid
and creative solutions to the assigned problems addressing these issues. We highlight
three activities and various students’ solution approaches to investigate ways to
introduce key concepts to Grade 7 students (Gunion, 2009).

All three activities used real-world scenarios or a storyline style approach. The
first activity, the dishwashing scenario, is about two people washing a set of dishes:
a stack of dirty dishes needs to be cleaned, dried, and put away. The second activity,
the movie ticket scenario, involves two people and two ticket queues: two friends

TEACHING PROBLEM SOLVING AND COMPUTER SCIENCE

103

wishing to purchase nonrefundable tickets for a popular movie at a theatre with two
long queues. The movie theatre has two cashiers—each positioned in such a way
that people in the two different queues cannot see each other. The movie has begun
and the students need to decide if they will split up to try to buy tickets. The third
activity, the dining philosophers’ scenario, is an altered version of the classic peda-
gogical, concurrency scenario of the dining philosophers: here, five knights are
sitting at a round table with a single fork between each two neighbours. Each knight
requires the acquisition of two forks in order to eat. Students were asked to come
up with solutions to manage the forks shared between the knights.

Each scenario allows a range of concurrency to be introduced within the possible
solutions for completing the activity. While different strategies for solving the
problem(s) introduce different levels of complexity in executing a solution, the core
activity remained the same. We refer to the general notion of tasks associated with
each activity as computation. With the introduction of multiple students participating
in each activity, some level of communication between individuals was required
while solving the activities’ problem. The following subsections indicate the ways
in which computation tasks and communication play out within the solution space
defined by the students for each scenario. We studied the two core concepts of
communication and computation individually as well as their interaction, concept
overlap. Further, we discuss some of the associated consequences encountered
when concurrency is introduced.

Scenario 1: Dishwashing. Although the students proposed a variety of solutions
for distributing the work, the core task remained the same with differing
communication levels in each case.

Computation The subtasks of washing a dish, drying a dish, and putting a dish
away—for all of the dishes in the stack—were immediately identified by all
students as core elements of computation. All of these subtasks can be considered
small, distinct pieces of computation that combine to make up the larger complete
task.

Communication The exact communication between participants in this scenario is
solution-dependent. In general, students identified a visual communication mechan-
ism that would occur between participants as one person handing off a dish to the
next person. While the concrete hand-off point varied, the idea that one person
must complete a portion of the task before the next person can receive that dish
prescribed a partial ordering of the subtasks.

Concept overlap Although students seemed to immediately recognize elements
of computation and distinguish them from elements of the communication process,
both concepts are tightly coupled; namely, the act of completing one computation
is a form of communication to a partner.

Scenario 2: Movie Tickets. This scenario is a slightly concocted problem in which
communication is limited by lack of visual contact between the queues. Students had

CARRUTHERS ET AL

104

to come up with solutions that involved sticking together or splitting up while
considering the consequences of each.

Computation The computation in this scenario is simply the act of purchasing a
ticket. Depending on the solution, multiple tickets can be bought by one person or
a single ticket by each person.

Communication Communication was necessary in cases where students decided
the quickest way to get tickets was to split up. They soon realized the associated
consequence of possibly buying too many tickets. This required them to consider
creative ways to communicate beyond subtle visual cues.

Concept overlap The overlap between computation and communication in this
scenario is solution-dependent. In the case of students using two ticket queues,
computation can be performed at the two ticket booths but this introduces the need
for communication. In the case of the students staying together in one queue, commu-
nication is not necessary; however, the concurrency is sacrificed.

Scenario 3: Dining Philosophers. The students discussed whether a time exists
when every knight can eat to avoid starvation. At any one time, a knight either
eats—requiring access to the forks on their left and right at the same time—or
thinks.

Computation The tasks are the actions of eating and thinking—although attempting
to acquire a fork is arguably a subtask as well. However, this task is considered a
second priority task.

Communication Communication is aided by the visual cue of a fork being available
for use by a knight wishing to transition from thinking to eating. This communication
of one participant attempting to acquire a fork from two adjacent participants is
required to allow a knight to eat.

Concept overlap Similar to the dishwashing scenario, visual cues (e.g., an adjacent
knight releasing or acquiring a resource) prescribed an ordering such that the end
of one subtask could trigger the beginning of another although this was not a pre-
condition for the subtask. Students encountered classic CS concurrency issues (e.g.,
race conditions, deadlock, starvation, etc.) through role playing and devised multiple
strategies for managing the shared resource to facilitate each participant’s ability to
eat. Each strategy required some form of communication between participants based
on the computation (e.g., eating, thinking) patterns.

The three pedagogical activities in Lesson Study 1 helped identify common
ways in which these students thought about problems associated with concurrency.
In each case, students immediately identified tasks or subtasks and coupled them
with the often implicit communication mechanisms, including visual cues.

Lesson Study 2: Recursion

Recursion (Goodrich & Tamassia, 2002; Grimaldi, 1998) is a mathematical concept
as well as a CS programming construct that can serve as a problem-solving strategy.

TEACHING PROBLEM SOLVING AND COMPUTER SCIENCE

105

It is a method commonly used to approach and solve numerous problems (e.g.,
searching and sorting tasks) and consists of defining functions where the function
being defined is called within its own definition until a stop condition (i.e., base
case) is met. Recursion is observed in the built and natural worlds (Briggs, 1992);
for example, virtual advertisements such as the Borax Soap Box (http://piscines-
apollo.com/images/borax_box.jpg), a picture within a picture often referred to as
the Droste effect. This common occurrence of recursion within day-to-day experi-
ences of many people, including the middle school students in this study, adds to
the appeal, relevance, and application of the concept.

Because of its ubiquity and usefulness, recursion is usually taught in its most basic
form in the first 2 years of programming (Hsin, 2008). When and how to teach
recursion has long been a topic of debate within CS because it is both central in
the discipline and thought to be difficult to learn and comprehend (Haberman &
Averbuch, 2002). Once recursion is understood, it may be applied to many traditional
CS problems. There is a rich literature base documenting efforts to improve the
teaching of recursion at the elementary CS level. Some CSEd researchers have
suggested that (a) expanding the instructional approach toward a nontraditional, more
active and inclusive one would be worthwhile and (b) providing outreach activities
beyond university classes would have the added benefit of appealing to nontraditional
and underrepresented populations in CS (Ford, 1982; Goode, 2008). This approach
to instruction guided our lesson study.

We conducted a pilot study with students in an after-school program (SPARCS,
http://outreach.cs.uvic.ca/) that sought information on an appropriate and successful
set of engaging hands-on lessons in recursion for a small (n = 9) group of Grades
6–8 students aged 11 to 13 years (Gunion, 2009; Gunion, Milford, & Stege, 2009a,
2009b). We focused on three basic types of recursion: head recursion, tail recursion,
and divide and conquer. The activities designed to teach recursion investigated a
combination of kinaesthetic learning and programming activities. These activities
were similar to those used by Bell et al. (2006) and involved hands-on, problem-
solving, group activities focused on CS basics without the direct use of technology,
called unplugged. A series of weekly unplugged activities was developed to convey
the mental models needed, building upon topics that were covered in the previous
weeks. Each lesson attempted to explore at least one of the main questions: Can
students (a) recognize recursion, (b) understand recursion, and (c) develop a more
positive attitude toward CS and recursion? Furthermore, students were asked to
solve programming activities in the LOGO-based language (MicroWorlds EX, 2010)
to deepen and apply their understanding of recursion in a programming context.

Using a variety of data collection tools (i.e., clickers, written answers, video and
audio recordings), the pilot study results found middle school students increasing
their recognition of recursion and enjoyment of these activities and, in some cases,
their ability to problem solve with recursion improved. We were able to show on this
small scale that exposing these students, long before they find themselves in first
year university CS, may ease the challenge that both students and instructors face
when covering this topic. Furthermore, after being introduced to similar concepts
in ways that foster enjoyment and interest, we may find more and better suited

CARRUTHERS ET AL

106

undergraduates studying CS at university—an outcome that would benefit the
students, the university, and society.

Lesson Study 3: Graph Theory

One important area based in theoretical CS is graph theory. Graphs—not to be
confused with the more commonly known bar or line graphs—are a mathematical
construct that can be used to model relationships and connections. A graph is a set
of vertices and a set of edges. Vertices (typically indicated by a dot or circle) can
be connected by edges (represented by lines) to indicate a relationship or connection
between them. An evolutionary tree is an example of a graph, where species are rep-
resented by vertices and evolutionary connections are represented by edges. Another
example is a road map, where roads connect cities and towns (see Carruthers, 2010c,
for more examples).

Graph theory has its origins in the historical Seven Bridges of Königsberg Problem
proposed by Leonard Euler in 1735. Parts of the city of Königsberg (including two
islands) are divided by a river and connected by seven bridges (Figure 1 left). The
question posed is: Is there a way to walk through the city and cross every bridge
only once? This problem can be modeled as a graph with the distinct land masses
(the two islands and the mainland on either side of the river) represented by vertices
and the bridges as edges (Figure 1 right).

Figure 1. Euler’s problem of the seven bridges of Königsberg
and a graph model of same (Carruthers, 2010a).

Graph theory investigates properties of graphs such as paths, cycles, topology,
and connectivity. Graphs are used to represent data structures in computer programs.
For example, file systems that navigate and search for files on a computer are often
modeled as a graph, where files and folders are represented by vertices and edges
indicate the hierarchy or an is in relationship—a file is in a folder that in turn is in
another folder. Findings in theoretical CS lead to better, more efficient methods for
accessing and manipulating files and folders in these file systems. This connection
between data structures and graph theory is important and is an example of one of
the many ways in which a sound understanding of theoretical CS can lead to better

TEACHING PROBLEM SOLVING AND COMPUTER SCIENCE

107

programmers and more user-friendly computer programs. Like many other areas of
theoretical CS, graph theory has connections to other disciplines including biology
(modelling habitat and migration patterns) and sociology (analysis of social net-
works). Using graph theory in problem solving is particularly important. Relational
graphs provide a means to distil a problem, highlighting only the relevant informa-
tion. Extracting relevant data from a problem is fundamental to successful problem
solving.

In a recent pilot study investigating the impact of graph theory instruction in
Grade 6 mathematics classes, students were taught the basics of graph theory,
including how to correctly construct a graph, and how to abstract a problem to a
graph representation (Carruthers, 2010a; Carruthers, Milford, Pelton, & Stege, 2010).
Participants learned the basics of graph theory and, on certain types of problems, to
adopt graphs as a problem-solving strategy. Additionally, for some students, there
was a positive association between the use of graphs in solving problems and the
correctness of these solutions. Once students learn to apply graphs to represent
the information in problems, they can potentially learn to apply algorithms to solve
problems.

DISCUSSION

Reflections across the three lesson studies revealed limitations and concerns, informed
our research approach, and identified future research questions and studies. The
following sections will address these reflections.

Limitations and Concerns

We have been able to draw a few ongoing lessons from these early explorations
into interdisciplinary collaboration. For example, when working with teachers and
students in actual classrooms, the attrition rate is much larger than anticipated, which
likely stems from demands on teachers’ time and the overcrowded school day. The
addition of other researchers to assist in the classroom would eliminate some of the
factors that lowered the overall numbers. Further, research ethics requirements have
increased the demands on researchers and may have negative effects on students
and parents being willing to participate in research studies. Clearly, classroom-based
research requires collaboration and trust amongst researchers, teachers, students,
and parents (Anthony et al., 2009). We believe that to broaden these interdisciplinary
collaborations from Education and Computer Science into other areas (e.g., psychol-
ogy and applied statistics) may prove fruitful and improve the validity of this re-
search.

Computer Science Education

An understanding of technology, the role it plays in society, and how to use it
responsibly are important components of education today. In addition to supporting

CARRUTHERS ET AL

108

learning in general, CS students learn a number of important skills, including problem
solving, algorithmic thinking, and logical reasoning (CSTA, 2006). The integration
of CS topics into mathematics classes has the potential to support a number of
processes; for example, visual abstractions common in computer science can support
the communication process; logical reasoning is a fundamental component of the
reasoning process; and problem solving, an integral CS skill, is fundamental to many
aspects of learning. CS is a broad subject, comprised of many different specialized
areas of study; a key step in evaluating its teachability in elementary classrooms is
determining appropriate CS topics. Niman (1975) identified graph theory as a
potential topic for elementary school instruction due to its versatility in visually
representing ideas and its application to puzzles.

Just as important as an understanding of technology is ensuring that future CSEd
research has a sound theoretical and practical foundation. If existing publications
are indicative of the current state of CSEd research, then researchers in this area
should select studies upon which to base their work with caution. Randolph, Julnes,
Sulinen, and Lehman (2008) noted a number of shortcomings and flaws found in
CSEd research publications, including flaws in reporting the elements recommended
by the American Psychological Association, problems with sampling of participants
and self-selection, and a lack of validity and reliability of measures. They also
noted that many of the studies analyzed used research designs that suffer from
weak internal validity.

With this constructive criticism in mind, our research group chose a collaborative
approach in designing and deploying research studies. We addressed some of these
concerns about individual studies by a planned research agenda that evolves from
individual lesson studies that explore appropriateness, to sequential lesson studies
that develop valid and reliable measures and documentation procedures, and further to
experimental designs that investigate cause–effect relationships using proper inter-
pretation techniques for the data. Recognizing that as computer scientists we are
not experts in the field of human research, we have made connections and found
collaborators in the field of education research. Equally important, we keep in mind
that human research studies almost invariably fail to conform exactly to theoretical
plans (i.e., working within the educational system with students and teachers can
prove ‘messy’). Faced with improperly implemented testing procedures and partici-
pant attrition, researchers ought to be flexible and need to be adaptable. Ultimately,
just because a study deviated from the intended design, this does not mean that no
valuable information can result.

As an example of this approach, we cite our recent study on the impact of graph
theory instruction in Grade 6 mathematics classes (Carruthers, 2010a). We chose to
use a contingency table analysis for the nominal and ordinal data (i.e., the quality
of a graph drawn by participants in the experimental groups to which they were
assigned). While perhaps less well known than analysis techniques for continuous
(i.e., ratio or interval) data, contingency table analysis can be a useful way to investi-
gate possible associations between variables (e.g., whether or not a graph was drawn
pre- and postintervention) as well as associations between an intervention or outside
influence and variables. Categorical data are quite common in educational research

TEACHING PROBLEM SOLVING AND COMPUTER SCIENCE

109

and these data can be either ordinal or nominal, with each type requiring different
analysis techniques.

For our study, the resulting data were ordinal in nature; that is, there was a sense
of order to the values for the type of picture that participants drew as part of their
solution to the problems: 0 for no picture, 1 for a nongraph picture, and 2 for a graph
(vertices and edges). As the intervention taught how to use graphs to solve problems,
drawing a graph was considered better than a nongraph picture that in turn was
better than no picture at all. We were interested in whether or not there might be a
higher incidence of the use of graphs following graph theory instruction. This type
of association can be evaluated using McNemar’s test of association (Elliot &
Woodward, 2007). Since we are essentially measuring two separate readings of the
same characteristic, it is expected that the measurements would be similar to some
extent; therefore, it is not necessarily meaningful to determine if the variables are
independent. However, if there is an outside force that might influence one measure-
ment more than the other (in this case, an intervention), then there might be a shift
in the counts. The McNemar test of association can indicate whether the observed
shift is significantly different from the probability of no association.

This analysis technique usually requires minimum cell counts of 5; unfortunately,
our small data set (N = 9) rendered it unusable. Reduced participation rates, partic-
ularly in the control groups (those not engaged in the intervention lessons on graph
theory), combined with improperly administered posttests resulted in descriptive
data tables with much reduced cell counts in the final data. In some cases, data
sets were limited to less than 10 data points total; so it was impossible to expect a
minimum cell count of 5 in a 2x2 or 3x3 matrix, which precluded the intended
statistical analysis techniques. This meant that high or low p-values associated
with the measures were suspect and no measure of significance could be given. Sig-
nificance indicates the probability of test statistics occurring by chance. Normally,
a significance value greater than .05 would suggest rejection of the experimental
hypothesis; however, this does not mean that the null hypothesis is true. The null
hypothesis is one of no effect; however, all a nonsignificant result indicates is that
the effect is not big enough to be anything other than a chance finding—it does not
indicate that the effect is zero. Cohen (1990) pointed out that a nonsignificant result
should never be—despite that it often is—interpreted as no relationship between
variables.

Rather than being deterred by the fact that we were unable to claim significance,
we chose instead to treat the results as exploratory in nature. Trends and patterns that
emerged from the data, while not necessarily significant, could still be indicative of
a possible effect and hint at places that may be worthy of further investigation. What
is essential is to carefully account for and report any deviations from the intended
research methodology and analysis procedures. Readers of research studies need to
be informed of the reasons for post hoc changes in analysis or methodology, and
future studies should be able to learn from the mistakes of others in order to improve
practices and refine research designs. We believe that adherence to these practices
by both ourselves and other researchers in the field will contribute to addressing
concerns around internal validity.

CARRUTHERS ET AL

110

Future Research

It is widely assumed that collaboration in research is desirable and that it should
be encouraged (Katz & Martin, 1997). Canada, through its Natural Sciences and
Engineering Research Council, has demonstrated interest in the notion of research
collaboration via Pacific CRYSTAL, of which all the contributors to this book are
a part. Katz and Martin (1997) identified several factors that motivate collaboration:
funding agencies’ need to save money, the growing availability and falling (real)
cost of transport and communication, the desire for intellectual interactions with
other scientists, the need for a division of labour in more specialized or capital-
intensive areas of science, the requirements of interdisciplinary research, and govern-
ment encouragement of international and cross-sectoral collaboration. Many of
these reasons motivated our research through Pacific CRYSTAL in general and the
Education/Computer Science collaboration specifically.

Educational research can be generally defined as the formal, systematic application
of the appropriate scientific method (i.e., quantitative, qualitative, mixed method)
to the study of educational problems. Educational research findings are important
because they shape and influence teacher education programs and help define the
intellectual context within which all involved in education work. However, there is
criticism of the quality of research in the field (i.e., its partisan nature, methodo-
logical shortcomings, nonempirical approaches, ‘great thinkers’ adulation, and lack
of relevance to practice, policy, or theoretical approaches) serious enough to raise both
concerns and misgivings (Tooley & Darby, 1998). A major advantage to our collabo-
ration across disciplines is that some, if not all, of these concerns and misgivings
have been addressed.

With the three pilot studies reported in this chapter, we have restarted an investiga-
tion on the possibility of teaching basic CS concepts earlier in students’ schooling.
Our future research plans include expanding on the studies to test the preliminary
but promising findings for the three concepts as well as increasing the list of core
concepts and problem-solving techniques applicable to elementary, middle, and
secondary school students. Besides understanding what concept or technique can be
taught in which grade and at what level, we are interested in long-term consequences
of CSEd; that is, does teaching CS concepts early address the mainline goal for
citizens and the pipeline goal of CS students and careers? What is the best time to
start with CSEd and at what level? Does CSEd improve students’ decision making
regarding career choices? Does CSEd improve the quality of CS students? Does
CSEd increase the number of CS students in postsecondary institutions to a level
that satisfies the supply–demand ratio? Does CSEd improve general problem-solving
capabilities? Does CSEd ensure more responsible use of social networking tools on
the Internet?

Of course, the path to understanding the long-term consequences is not easy. How
can we best realize the teaching of CSEd in K–12? We believe that an inter-
disciplinary and cross-disciplinary approach is the most promising and is possible
in a rather seamless way. CS activities include many prescribed learning outcomes
from K–12 curricula (see a discussion on this topic by Romanow et al., 2008, for BC)

TEACHING PROBLEM SOLVING AND COMPUTER SCIENCE

111

from basically all disciplines. Many activities, if prepared carefully, are easily
approachable (a great example is the ongoing Computer Science Unplugged by
Bell et al., 2006) not just for the students but also for the CS-inexperienced teacher.
Commitment from governments and school districts for including CSEd as a priority
into curricula could make this possible (see BC’s environmental education guide,
http://www.bced.gov.bc.ca/environment_ed/). We believe that a better education in
CS in K–12 does not just educate better citizens (mainline goal) and increase the
number of students in CS programs at universities and colleges—we believe it will
attract a student population better suited to the discipline (pipeline goal).

REFERENCES

Anthony, R. J., Yore, L. D., Coll, R. K., Dillon, J., Chiu, M.-H., Fakudze, C., et al. (2009). Research ethics
boards and gold standard(s) in literacy and science education research. In M. C. Shelley II, L. D. Yore, &
B. Hand (Eds.), Quality research in literacy and science education: International perspectives and
gold standards (pp. 511–557). Dordrecht, The Netherlands: Springer.

Bell, T., Witten, I. H., Fellows, M., Adams, R., & McKenzie, J. (2006). Computer science unplugged.
An enrichment and extension programme for primary-aged children (teacher ed.). Retrieved from
http://www.csunplugged.org/

Briggs, J. (1992). Fractals: The patterns of chaos. New York: Touchstone.
Carruthers, S. (2010a). Grasping graphs. Master’s thesis, University of Victoria. Retrieved from http://

hdl.handle.net/1828/3193
Carruthers, S. (2010b). An interdisciplinary guide for K–8 computer science (CS) education [Poster].

Presented at the 41st ACM Technical Symposium on Computer Science Education (SIGCSE’10),
Milwaukee, WI, USA.

Carruthers, S. (2010c). Relational graphs: What are they? [DVD]. Presented at the 41st ACM Technical
Symposium on Computer Science Education (SIGCSE’10), Milwaukee, WI, USA.

Carruthers, S., Milford, T. M., Pelton, T. W., & Stege, U. (2010). Moving K–7 computer science instruction
into the information age. In Proceedings of the 15th Western Canadian Conference for Computing
Education (WCCCE’10) (pp. 1–5).

Carter, L. (2006). Why students with an apparent aptitude for computer science don’t choose to major in
computer science. In Proceedings of the 37th SIGCSE Technical Symposium on Computer Science
Education (SIGCSE’06) (pp. 27–31).

Cohen, J. (1990). Things I have learned (so far). American Psychologist, 45(12), 1304–1321.
Dijkstra, E. W. (n.d.). Retrieved from Wikipedia, the Free Encyclopedia: http://en.wikipedia.org/wiki/

Edsger_W._Dijkstra
Elliot, A. C., & Woodward, W. A. (2007). Statistical analysis quick reference guide with SPSS examples.

Thousand Oaks, CA: Sage.
Fincher, S., & Petre, M. (2004). Computer science education research. London, England: Routledge Falmer.
Flakener, N., Sooriamurthi, R., & Michalewicz, Z. (2010). Puzzle based learning for engineering and

computer science. IEEE Computer Society, 43(4), 20–28.
Ford, G. (1982). A framework for teaching recursion. SIGCSE Bulletin, 14(2), 32–39.
Goode, J. (2008). Increasing diversity in K–12 computer science: Strategies from the eld. In Proceedings

of the 39th SIGCSE Technical Symposium on Computer Science Education (SIGCSE’08) (pp. 362–366).
Goodrich, M. T., & Tamassia, R. (2002). Algorithm design: Foundations, analysis and internet examples.

New York: Wiley.
Grimaldi, R. P. (1998). Discrete mathematics (4th ed.). Reading, MA: Addison-Wesley.
Gunion, K. (2009). FUNdamentals of CS: Designing and evaluating computer science activities for kids.

Master’s thesis, University of Victoria. Retrieved from http://hdl.handle.net/1828/2750

CARRUTHERS ET AL

112

Gunion, K., Milford, T. M., & Stege, U. (2009a). Curing recursion aversion. In Proceedings of the 14th
ACM SIGCSE Conference on Innovation and Technology in Computer Science Education (ItiCSE’09)
(pp. 124–128).

Gunion, K., Milford, T. M., & Stege, U. (2009b). The paradigm recursion. Journal of Problem Solving,
2(2), 142–172.

Haberman, B., & Averbuch, H. (2002). The case of base cases: Why are they so difficult to recognize?
Student difficulties with recursion. SIGCSE Bulletin, 34(3), 84–88.

Hsin, W. (2008). Teaching recursion using recursion graphs. Journal of Computing Sciences in Colleges,
23(4), 217–222.

Katz, J. S., & Martin, B. R. (1997). What is research collaboration? Research Policy, 26(1), 1–18.
Klein, A. (2006). K–12 education shrinking future college graduate population in computer studies.

Journal of Computing Sciences in Colleges, 21(4), 32–34.
MicroWorlds EX [Computer software]. (2010). Retrieved from http://www.microworlds.com/solutions/

mwex.html
Niman, J. (1975). Graph theory in the elementary school. Educational Studies in Mathematics, 6(2),

351–373.
Ormond, J. E., Saklofske, D. H., Schwean, V. L., Harrison, G. L., & Andrews, J. J. W. (2006). Principles

of educational psychology (2nd Canadian ed.). Toronto, ON, Canada: Pearson Education.
Randolph, J., Julnes, G., Sulinen, E., & Lehman S. (2008). A methodological review of computer science

education research. Journal of Information Technology Education, 7(1), 135–162.
Romanow, H., Stege, U., Agah St Pierre, A., & Ross, L. (2008). Increasing accessibility: Teaching

children important computer science concepts without sacrificing conventional subjects of study.
Presented at the 13th Western Canadian Conference on Computing Education (WCCCE’08). Retrieved
from http://outreach.cs.uvic.ca/2008WCCCE.pdf

Schunk, D. H. (2000). Learning theories: An educational perspective (3rd ed.). Upper Saddle River, NJ:
Merrill.

Service Canada. (2011). Computer programmers and interactive media developers. Retrieved from
http://www.servicecanada.gc.ca/eng/qc/job_futures/statistics/2174.shtml

Slonim, J., Scully, S., & McAllister, M. (2008). Crossroads for Canadian CS enrollment: What should
be done to reverse falling CS enrollment in the Canadian education system? Communications of the
ACM, 51(10), 66–70.

Tooley, J., & Darby, D. (1998). Educational research - A critique. London, England: Office for Standards
in Education. Retrieved from http://www.ofsted.gov.uk/Ofsted-home/Publications-and-research/
Browse-all-by/Education/Leadership/Governance/Educational-research-a-critique-the-Tooley-report

United States Computer Science Teachers Association. (2006). A model curriculum for K–12 computer
science: Final report of the ACM task force curriculum committee (2nd ed.). New York: Author.

Zweben, S. (2008). Computing degree and enrolment trends from the 2007–2008 CRA Taulbee Survey:
Undergraduate enrolment in computer science trends higher; doctoral production continues at peak
levels. Washington, DC: Computing Research Association. Retrieved from http://archive.cra.org/
taulbee/CRATaulbeeReport-StudentEnrollment-07-08.pdf

Sarah Carruthers, Yvonne Coady, Celina Gibbs, Katherine Gunion
and Ulrike Stege
Department of Computer Science

Todd M. Milford
Department of Educational Psychology
University of Victoria
Victoria, British Columbia, Canada

	6. TEACHING PROBLEM SOLVING AND COMPUTER SCIENCE IN THE SCHOOLS: Concepts and Assessment
	ELEMENTARY SCHOOL COMPUTER SCIENCE
	THREE CORE CONCEPTS IN COMPUTER SCIENCE
	METHOD
	Lesson Study 1: Concurrency
	Lesson Study 2: Recursion
	Lesson Study 3: Graph Theory

	DISCUSSION
	Limitations and Concerns
	Computer Science Education
	Future Research

	REFERENCES

