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PREFACE

Nowadays, algebra education is subject to worldwide scrutiny. Different opinions on
its goals, approaches and achievements are at the heart of debates among teachers,
educators, researchers and decision makers. What should the teaching of algebra in
secondary school mathematics look like? Should it focus on procedural skills or on
algebraic insight? Should it stress practice or integrate technology? Do we require
formal proofs and notations, or do informal representations suffice? Is algebra in
school an abstract subject, or does it take its relevance from application in (daily life)
contexts? What should secondary school algebra education that prepares for higher
education and professional practice in the twenty-first century look like? 

To address these questions, the authors of this book, all affiliated with the Freu-
denthal Institute for Science and Mathematics Education, take different perspectives
to describe the opportunities and pitfalls of today’s and tomorrow’s algebra educa-
tion. Some authors wonder how the historical development of algebra informs its
teaching and learning (Chapter 2), or what a learning trajectory from arithmetic to
algebra would look like (Chapter 3). Other chapters deal with specific strands within
algebra curricula, such as patterns and formulas (Chapter 4), restrictions (Chapter 5),
and functions (Chapter 6). Chapter 7 makes a plea for productive practice of algebra-
ic skills. The perspectives of technology for algebra education (Chapter 8), and the
ways algebra is used in science and engineering (Chapter 9) complete the book. In
spite of their different foci, the chapters in this book share a common philosophy,
which acts as a  sometimes nearly invisible  backbone for the overall view on al-
gebra education: the theory of realistic mathematics education. 

By addressing this diversity of perspectives on algebra education, we hope to pro-
vide the reader with inspiring examples and points of views, not just to clarify the
institute’s position, but hopefully to provoke the reader’s thinking, and, as its ulti-
mate goal, to contribute to algebra education that appropriately meets students’
needs.

Paul Drijvers
Utrecht, the Netherlands, June 2010
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1. ALGEBRA EDUCATION: EXPLORING 
TOPICS AND THEMES

There is a stage in the curriculum when the introduction of algebra may make
simple things hard, but not teaching algebra will soon render it impossible to
make hard things simple. (Tall & Thomas, 1991, p. 128) 

ALGEBRA EDUCATION UNDER SCRUTINY

Nowadays, algebra education is subject to worldwide scrutiny. Different opinions on
its goals, approaches and achievements are at the heart of ‘math war’ debates that are
taking place in many countries (Klein, 2007; Schoenfeld, 2004). Crucial to these de-
bates is the relationship between procedural skills and conceptual understanding in
teaching and learning algebra. On the one hand, computational skills are seen as a
prerequisite for conceptual understanding (US Department of Education, 2007).
Complaints from tertiary education focus on the lack of such procedural skills, and
in several countries higher education is using entrance tests involving basic algebraic
skills. Faculty members are often disappointed with students’ results on such tests.
Secondary school teachers, accused of being too soft on teaching skills, may in turn
respond with complaints about the declining level of arithmetic skills that students
acquire in primary school; as a result, they lack the elementary number sense and the
factual knowledge to recognize 144 as the square of 12 or to notice that there is a re-
lationship between 12/16 and 3/4. 

On the other hand, some see the core goal of algebra education as the development
of strategic problem solving and reasoning skills, symbol sense and flexibility, rather
than procedural fluency. According to this point of view, future societal and profes-
sional needs will focus even more on flexible analytical reasoning skills, rather than
on procedural skills. Consequently, algebra education should change its goals; it
should focus on new epistemologies and aim at new types of understanding. 

The relationship between procedural skills and conceptual understanding is a
well-researched field. The book Adding it up (Kilpatrick, Swafford, & Findell, 2001)
synthesizes the research on this issue as the concept of mathematical proficiency,
which comprises five ingredients: conceptual understanding, procedural fluency,
strategic competence, adaptive reasoning and productive disposition. Conceptual un-
derstanding is defined here as ‘the comprehension of mathematical concepts, opera-
tions, and relations’ (p. 116), and procedural fluency as the ‘skill in carrying out
procedures flexibly, accurately, efficiently, and appropriately’ (ibid.). The authors

P. Drijvers (ed.), Secondary Algebra Education, 5–26.
© 2011 Sense Publishers. All rights reserved.
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claim that the five ingredients are interwoven and interdependent in the development
of proficiency in mathematics. 

The debate on procedural skills and conceptual understanding is influenced by the
issue of technology in algebra education. The availability of educational technology
challenges the goals of algebra education, as is expressed in the Discussion Docu-
ment of the 12th ICMI (the International Commission on Mathematical Instruction)
study: 

An algebra curriculum that serves its students well in the coming century may
look very different from an ideal curriculum from some years ago. The in-
creased availability of computers and calculators will change what mathemat-
ics is useful as well as changing how mathematics is done. At the same time as
challenging the content of what is taught, the technological revolution is also
providing rich prospects for teaching and is offering students new paths to un-
derstanding. (Stacey & Chick, 2000, p. 216) 

How much procedural fluency is needed if computer tools can do the work for us?
What types of skills will be needed, or will become increasingly important, due to
the availability of technological tools? Technology offers opportunities for algebra
education, and in that sense is not only part of the problem, but could also be part of
its solution. Still, the adequate integration of technology into the teaching and learn-
ing of algebra is not a straightforward issue (Stacey, Chick & Kendal, 2004). What
is adequate, of course, depends on the goals of and views on algebra education, as
well as on situational factors. 

All together, an important point of discussion is whether the focus of algebra ed-
ucation should be on procedural skills or on conceptual understanding. We agree
with the US Department of Education (2007) in its aim at integration instead of po-
larization: a balanced equilibrium is to be preferred above an extreme position. Still,
the question is how to deal with the high expectations for algebra education and with
its disappointing achievements. To answer this question, various routes can be taken,
each of which elicits new questions: 
– Should there be more time for practicing skills? If so, should this take place sep-

arately or be integrated with other material? 
– Use more educational technology? Is that old wine in new bottles, or does it really

produce results?
– Should there be differentiation between students, or should there be simply as

much algebra as possible for everyone? Should they all study the same algebra or
preferably different algebra topics? 

– Should other topics be chosen, creating a modified curriculum in which the alge-
bra handicaps are no longer disturbing? If so, which topics, and why? 

These issues can be approached from different perspectives. Three basic principles for
this book can already be mentioned explicitly. The first is that algebra is an integrated
part of mathematics teaching and is not an isolated piece of mathematical acrobatics.
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Secondly, from the student’s perspective, algebra is both a meaningful way to solve
problems and a field in which challenging questions can be investigated. Thirdly, dur-
ing both the teaching process and application, insight and skill go hand-in-hand.

WHAT IS ALGEBRA?

Before we continue with this exploration of algebra, it is important to clearly define
what we understand as algebra. The word ‘algebra’ is a derivation of the Arabic al-
jabr from the title of the book Hisab al-jabr w’al-muqabala written by Abu Ja’far
Muhammad ibn Musa al-Khwarizmi. Al-Kwarizmi lived in Baghdad from about 780
to 850. Al-Khwarizmi defined al-jabr as eliminating subtractions. For example, (if
the geometry of rectangles and squares is converted into contemporary notation), by
applying al-jabr

is reduced to 

In this way, a very specific method for dealing with equalities later became the
name for an entire field of mathematics. In Chapter 2, the historical development of
algebra is addressed in more detail. 

Now let us compare the above definition with a definition from a modern ency-
clopaedia of mathematics, which concerns the algebra of mathematics professionals. 

One use of the word ‘algebra’ is the abstract study of number systems and op-
erations within them, including such advanced topics as groups, rings, invari-
ant theory, and cohomology. This is the meaning mathematicians associate
with the word ‘algebra’. When there is the possibility of confusion, this field
of mathematics is often referred to as abstract algebra. 
(Weisstein, http://mathworld.wolfram.com) 

The above quote shows that algebra involves more than just the equalities to which
the original Arabic word referred; it involves investigating number systems and their
operations. However, the online encyclopaedia continues with the remark that algebra
can also refer to algebra at school. This includes operating with variables, solving
equations, creating formulas for problem situations (algebrafication), working with
functions in terms of formulas, tables and graphs, finding derivatives, etc. Sometimes
it seems that everything in mathematics in which a letter appears is called algebra.
However, Freudenthal (1977) argued for not limiting algebra to working with more
advanced symbols, but to see it instead as the ability to describe relations and proce-
dures for solving problems, and the techniques that are involved in a general way:

What is algebra? There is no Supreme Court to decide such questions. Never-
theless, ‘algebra’ has a meaning in everyday language just as ‘chair’ and ‘table’
have. For instance, at school algebra is solving linear and quadratic equations.

x2 40x 4x2–=

5x2 40x=
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It is the kind of algebra the Babylonians started with. Was their algebra not al-
gebra, because their symbolism was not smooth enough? Are ‘length’ and
‘width’ much worse than ‘x’ and ‘y’ if you can give clear recipes for solving
quadratic equations in such terms? Is it not algebra if the sum of the first 10
squares is laid down in a numerical formula that allows one to extend the result
to any n? This ability to describe relations and solving procedures, and the tech-
niques involved in a general way, is in my view of algebra such an important
feature of algebraic thinking that I am willing to extend the name ‘algebra’ to
it, as long as no other name is proposed, and as far as I know no other name has
been put forward. But what is in a name? 
(Freudenthal, 1977, p. 193-194) 

Clearly, there is a difference between algebra as it is used and developed by mathe-
maticians, and algebra as it is taught in school. Although such a difference should
ideally not exist, and algebra at school and abstract algebra should have as much in
common as possible in terms of their method and mode of thought, it turns out that
an excessively structuralist approach to algebra in secondary education overshoots
the mark (Kindt, 2000). Therefore, regarding the delineation of algebra at school, let
us primarily seek inspiration from Al-Kwarizmi. For the school situation, algebra is
first of all a way of working, where ‘working with formulas that contain letters’ is
important, but is not everything. Algebra at school is strongly associated with verbs
such as solve, manipulate, generalize, formalize, structure and abstract. Although a
certain amount of brain work is required for these activities, the emphasis in educa-
tional practice often lies primarily on activity. 

It is unnecessary – and nearly impossible – to clearly delineate algebraic activity.
Algebraic activity is characterized by working with numbers or number structures. The
link with numbers and number structures means that the relationship between arithme-
tic and algebra deserves additional attention (see Chapter 3). In many cases, algebraic
activity has one of more of the characteristics listed below. A mathematical activity be-
comes more ‘algebraic’ to the degree that it has more of the following characteristics: 
1. Implicit or explicit generalization takes place.
2. Patterns of relationships between numbers and/or formulas are investigated. 
3. Problems are solved by applying general or situation-dependent rules.
4. Logical reasoning is conducted with unknown or as yet unknown quantities.
5. Mathematical operations are conducted with variables represented with letters.

Formulas are created as a result.
6. For numerical operations and relationships, special symbols are used. 
7. Tables and graphs represent formulas and are used to investigate formulas. 
8. Formulas and expressions are compared and transformed. 
9. Formulas and expressions are used to describe situations in which units and quan-

tities play a role. 
10.Processes for solving problems contain steps that are based on calculation rules,

but that do not necessarily have any meaning in the context of the problem. 
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This list of characteristics of algebraic activity in mathematics education – in the re-
mainder of this book we will simply write ‘algebra’ when we mean ‘algebra in
school’ – is certainly not complete. It does not have to be complete, as long as it is
sufficiently effective to delineate algebraic activity. These characteristics imply that
the algebraic activity does not focus exclusively on solving a concrete problem, but
detaches itself somewhat from the problem. This detachment leads to the construc-
tion of a more abstract ‘world of algebra’, where generalization and formalization
play important roles. Nevertheless, it is still important to be able to connect with the
original concrete problem. Let us review some examples regarding the above char-
acteristics:
– Calculating the answer to 123 + 56 is arithmetic and not algebra.
– But calculating , assuming , can be seen as an algebraic activity.
– Proving that  is independent of n is also algebra.
– Knowing that 1.41... is not algebra, but understanding that

 is part of algebraic knowledge. 
– Deriving  from  is an

algebraic activity.
– Proving the product rule of differential calculus involves a combination of calcu-

lus and algebra. Using the product rule with known functions is an algebraic ac-
tivity. 

– What about integrating  over an interval? The concept of the integral as the lim-
it of covering rectangles is not algebra. However, calculating with an antideriva-
tive function, which is found by using the formula structure, is algebra. 

These examples make it clear that algebra plays an important supporting role within
other mathematical domains and within physics and chemistry. Nevertheless, the im-
portance of algebra is discounted if it is only seen as serving other subjects; this can
lead to ‘target didactics’ that exclude possibilities for reflection and mathematical
thinking. 

The description of algebra as a specific type of activity elicits two questions: how
can we prevent these activities from becoming separate, independent ‘tricks’, and
how can we ensure that they form a coherent and viable whole? In the chapter ‘The
algebraic language’ in his book Didactical phenomenology of mathematical struc-
tures, Freudenthal (1983) took a step towards answering these questions. At the end
of the chapter, he sketches out several important algebraic strategies that are impor-
tant because they situate the micro-methods and skills in a larger context. For exam-
ple, he refers to the algebraic transposition of a context or problem situation, the use
of analogies between situations and the algebraic permanence principle. The latter is
the idea that we, for example, determine the product of negative numbers in such a
way that desired properties such as  and  con-
tinue to apply to all combinations of positive and negative. The idea of algebraic per-
manence is based firmly on thinking in terms of structures with invariant properties.

101 99 100 100
n n 5+ n 2+ n 3+– 6+

2
2

4
22 4= =

2xsin 2 x xcossin= a b+sin a b b acossin+cossin=

x2

a b b a= a b c+ a b a c+=
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In summary, algebraic activity is central to algebra education, where students
work with numbers, number structures and operations. The algebraic activity is char-
acterized by a number of the characteristics identified above. The central intention
of this book is that students experience algebraic activity as a coherent, meaningful
and applicable whole of concepts, techniques and proofs. 

APPROACHES TO ALGEBRA

Algebra as taught in school has various aspects, which are also referred to in various
ways in the relevant literature. Bednarz, Kieran and Lee (1996) distinguished several
approaches to algebra: generalization, problem solving, modelling and functions.
The National Council of Teachers of Mathematics (NCTM, 2009) reports the follow-
ing standards for algebra education: understanding patterns, relations and functions;
representing and analysing mathematical situations and structures using algebraic
symbols; using mathematical models to represent and understand quantitative rela-
tionships; and analysing change in various contexts. One of the textbook series for
middle school in the USA, Mathematics in Context (WCER & FI, 2006), splits the
algebra teaching-learning trajectory into three strands: Patterns and regularities, re-
strictions, and graphing. For the purpose of this book, we distinguish the following
strands in algebra education:
– Patterns and formulas 
– Restrictions 
– Functions

These three strands depict how algebra is used in mathematics and other subjects; in
this book one chapter is dedicated to each of these approaches. A fourth important
aspect concerns language: algebra as symbolic language. Below, we will explain
these four aspects in greater detail. Of course, these four aspects of algebra are not
entirely separate, and the accent often shifts from one to the other while working on
a problem. 

Patterns and formulas 

Algebra involves researching regularity, patterns and structures: seeing a pattern in
apparently different situations and recognizing a common algebraic structure (Van
Reeuwijk, 2002). This may invite generalization, including generalization across
classes of situations and generalization and transfer to new situations.
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Figure 1.  The Algebra Off Course poster (Kindt, 2004) 

The algebra of patterns and structures can be addressed early in algebra education.
For example, Figure 1 shows an intriguing number spiral (Kindt, 2004) which can
give rise to interesting pattern recognition activities. The numbers in the corners, for
instance, are eye-catching. The observer can quickly see that half of them are
squares. This is because the differences between consecutive squares increase line-
arly; if 0 is seen as a square, then the sequence of differences will be: 1, 3, 5, ... The
sequence of differences for the other series of corner numbers (including 0) is 2, 4,
6, ... These corner numbers – products of two consecutive numbers – are referred to
as oblong numbers. A possible question to evoke students’ activity might be: What
would be the corner numbers if the spiral continues with two more full laps? The di-
agonals also reveal fascinating patterns (Figure 2). How can we be sure that a diag-
onal contains only even numbers or only odd numbers? Can we use formulas to
prove this?
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Figure 2. Diagonal patterns and formulas (Kindt, 2004) 

This problem is so appealing because it offers room for seeing different patterns as
well as different solution strategies at different formalization levels. Such a diversity
of patterns and formulas is an opportunity for the teacher to challenge students to
compare their findings with each other and to defend their own work.

The algebra of patterns and structures, therefore, is about investigating, identify-
ing and formulating similarities relating to general patterns and underlying algebraic
structures. During this process, generalization often plays a role: from specific cases
the students make a leap to the general level, to a class of cases. Consequently, the
variables often represent generalized numbers. Formulas are powerful means to cap-
ture and describe the patterns and structures. In Chapter 4, the algebra of patterns and
structures is explicitly addressed. 

Restrictions

Algebra can be a powerful tool for problem solving activities, particularly if the
problem can be formulated in terms of equations or inequalities. The question in such
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problem situations often is: what value(s) of the unknown variable satisfies the re-
quired conditions? Such problems not only originate from mathematics itself, such
as geometry, analysis or probability, but also come from physics, economics, the life
sciences and daily practice (professional or otherwise). 

As an example, let us consider a linear programming problem taken from the
Dutch journal Pythagoras (Vol. 5, issue 1, 1965) and presented in Figure 3. 

Figure 3. Linear programming problem

A businessman, due to his algebraic training, reasons as follows. Assume that I have
x trained employees and y trainees. There can be no more than nine employees, there-
fore . Altogether, they must manufacture at least 30 units, therefore

. The trade union stipulates that . And the law requires that
.These four inequalities can be shown on a coordinate plane, and that leads to

a quadrangular region (Figure 4). The four vertices of this area represent the possible
distributions of personnel; after calculating the profit in each of the four cases, it
turns out that the most advantageous composition is seven trained employees and
two trainees. 

A tempting misstep when establishing the restrictions is the reasoning: x trained,
y untrained, two trained employees per trainee, which results in . This
change of roles is known in the literature as the Student-Professor problem (Rosnick,
1981) and can best be refuted (or preferably prevented!) by first thinking about con-
crete numbers: if there are three trainees, then ...

Another difficulty for students is that a restriction on the total number of employ-
ees (here  ) is combined with a restriction on the total number of products
(here ). This is like adding apples and oranges. Although the intersec-
tion of the lines  and  happens not to play a role here, many
similar problems can be thought of where such an intersection is essential. In that

A ‘small businessman’ has a company that can have no more than nine em-
ployees. The employees consist of trained employees and untrained ones
(trainees). A trained employee can manufacture five units of the product the
company makes per day, and a trainee can manufacture three units. If the busi-
nessman does not want to make his clients wait too long, then he must manu-
facture at least 30 units per day. His question is: what are the ideal numbers of
trained employees and trainees? It goes without saying that this question con-
cerns even more factors than those referred to above. For example, the trade
union requires a minimum of two trained employees for each trainee, but the
law does not allow more than five trained employees per trainee. Of course, the
salary paid to both types of employees also plays a role. A trained employee
earns € 40 per day and a trainee earns € 20 per day. Finally, the businessman
must take into account the fact that he receives € 25 for each delivered unit. 

x y+ 9
5x 3y 30+ x 2y
x 5y

2x y=

x y+ 9
5x 3y 30+

x y+ 9= 5x 3y+ 30=
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case, during the solution process, students should concentrate on the pure algebra and
for the time being leave the context for what it is. 

Figure 4. The allowable area

Generally speaking, the process of translating problems into algebra often consists
of creating one or more equations and inequalities. One (or more) of the variables
appearing in the problem is then the unknown, for which a numerical value is sought.
Solving equations then becomes the key to solving the original problem. Chapter 2
goes more deeply into the historical background of the role of algebra as a servant
for solving problems in geometry and other applications. In Chapter 5, the topic of
restrictions is addressed in depth.

Functions

The functional approach sees algebra primarily as the study of relations and func-
tions, which explains the term ‘functional’. Algebra, then, is a means to formulate
and investigate relations between variables. This involves covariance and dynamics:
how does a change in one variable affect the other? The variables have the character
of changing quantities. As a result, algebra offers the means to express and investi-
gate relationships between quantities. An example of the ‘algebrafication’ of such a
relationship is the well-known lens formula (Figure 5).

Figure 5. The lens formula sketched
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The formula describes the relationship between three quantities: the focal distance,
the distance from the object to the lens and the distance from the lens to the image.
If the focal distance f and the distance from the object to the lens v are known, then
the distance from the lens v to the image b can be calculated, and we find ourselves
in a situation comparable to that in the previous section. However, an interesting
question is the following: how does the distance from the lens to the image change
with a given lens (where f is fixed) if the object moves away from the lens? The fol-
lowing geometric solution is based on the above construction. If the line segment PQ
moves to the left, then the angle of the line PO makes with the horizontal axis be-
comes smaller, causing P' to ‘crawl’ towards F. The question can also be answered
using the following algebraic reasoning. For a given lens, the sum  is constant.

If v becomes larger, then  becomes smaller. Because the sum does not change,
 must become larger, so b becomes smaller. Of course, the reverse is also true: if

v becomes smaller, then b becomes larger. Consequently, we encounter a process of
co-variation, in which the value of b depends on that of v, or vice versa, and where f is
a parameter.

The functional connection between v and b can be represented most beautifully in
algebra by an implicit formula, i.e. without expressing b explicitly in terms of v.
However, the functions that frequently appear in our mathematics education are usu-
ally described with explicit formulas. If we consider the distance from the lens to the
image to be a function of the distance from the object to the lens for various values
of the parameter f, then an explicit algebraic function description, which effectively
illustrates the input-output character of the function, is useful: 

 or 

A second example has a geometry background. On the left of Figure 6, a geometry
program has been used to construct a parabola. This parabola is cut by several parallel
lines. We now pay attention to the midpoints of the intersections of the lines and the
parabola. The geometrical locus of these midpoints appears to be a vertical ray. But is
that really so? And how can we know the position of that line?

Figure 6. Cutting a parabola with a line with a fixed direction
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This problem can be effectively tackled with algebra. Assume that a line with a fixed
direction cuts the parabola at two points. We call the x-coordinates a and b, so the
points are A(a, a2) and B(b, b2), as shown on the right side of Figure 6. The slope of
AB is now 

Because in the geometric situation we have chosen the fixed direction of the lines,
we know that this expression in a and b has a fixed value. The algebra tells us that

We now know that  is constant. So  is also constant. The connection
between algebra and geometry now becomes obvious: the x-coordinates of the mid-
points of AB are , so they are constant. From this follows the geometric
fact that the midpoints lie on a single vertical line. If we look back at the solution, we
see in the algebraic part that the simplification of the expression for the slope is an
important link. Also important is the observation that the essential steps, the factor-
ization of  and cancelling out a common factor , are essentially algebra-
ic and have no immediately visible referents in the geometric situation.

This example makes it clear how the translation of algebraic properties into alge-
bra, followed by reverse translation back into geometry, plays a crucial role in solv-
ing problems. In this way algebra can play a role in solving problems that at first
glance do not call for this, which is one of the powerful characteristics of algebra.
Translating and reverse translating between algebra and geometry are skills that are
required to exploit this power. 

The algebra of functions and graphs concerns the functional dependence relation-
ships between quantities that are shown as a formula. Often, as in the example of the
lens formula, we are interested in the effect of change. By emphasizing this dynamic,
the algebra of relationships and functions comes closer to analysis. Variables have
the character of changing quantities. Graphs provide generally useful visualizations
for functions and relationships. In Chapter 6, functions and graphs are addressed in
greater detail. 

The language of algebra

A fourth and final approach to algebra stresses its language aspect and views algebra
as a system of symbolic representations. Algebra uses its own standardized set of
signs, symbols and rules about how you can write something; algebra seems to have
its own grammar and syntax. This makes it possible to formulate algebraic ideas un-
equivocally and compactly. This compact unequivocality is one of the reasons why
algebra is also used in other subjects (see Chapter 9). 

Chapter 2 describes how this compact and internally consistent algebraic notation
developed. Historically, this development was shown primarily by algebra becoming

a2 b2–
a b–

----------------

a2 b2–
a b–

---------------- a b+=

a b+ a b+ 2

a b+ 2

a2 b2– a b–
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increasingly independent from geometry, but also by the development of a system
where it became possible to see – by grammar alone – if a formula could be viable.
For instance, we immediately recognize ‘a b +’ as nonsensical in the context of our
notation system, while  is viable. 

The language aspect of algebra involves more than compact notation; as rule, the
use of algebraic grammar goes hand-in-hand with formalization and abstraction. Al-
gebraic language is used to express algebraic ideas in a way that is detached from the
initial, concrete problem. In this sense, abstraction takes place. It would be going too
far to say that algebra is a language, but algebra does have a powerful language. In
this symbolic language, variables are simply signs or symbols that can be manipulat-
ed with well-established rules, and that do not refer to a specific, context-bound
meaning. 

An important part of algebraic activity is what is often called the translation of a
problem or situation into ‘algebra’. In fact, this involves more than translation; it
concerns building a structure that algebraically represents the problem variables and
their mutual relationships in the situation; essentially, this is modelling. Of course,
the reverse process – reformulating the algebra in words about the original problem
– is also part of mastering the language of algebra. True algebraic translation in-
volves the conversion of algebraic expressions into day-to-day words, and especially
the reverse. It is advisable to focus attention on these aspects, for example by occa-
sionally holding an ‘algebra dictation’ session in class. During the session students
are asked to write down language expressions as algebraic expressions, for example
‘the half of x, one half times x, the sum of the square of x and the square of y and the
square of the sum of x and y. Note that the latter problem is ambiguous: depending
on the position of the break in the sentence (‘the square ... of x plus y’ or ‘the square
of x ... plus y’) the algebraic expression could be either  or . Parenthe-
ses play an important role in algebra ‘sentences’. The reverse activity, converting al-
gebraic expressions into sentences, is also a good exercise.

In this book, the language aspect of algebra does not have its own chapter, but is
addressed throughout different chapters. 

KEY DIFFICULTIES IN ALGEBRA: WHAT a IS, YOU CAN’T KNOW

Let us start with an observation made in a class of 13 year-old mid-achieving stu-
dents, who were working with a ‘number machine’ (Goddijn, 1982). This machine
works as follows: you put a number into the machine; it subtracts 8 from the number
and the result comes out. The assignment for the students is to fill in the table of out-
put values (see Figure 7). 

a b+ c

x y+ 2 x2 y+
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Figure 7. The number machine task 

All students filled in the beginning of the ‘out’ column flawlessly, but a number of
them stopped at a. The following discussion took place:

This observation, from which the title of this section is derived, shows one of the key
difficulties in algebra. The student has understood the operation of the number ma-
chine: he can express the calculation process in words. But when the a appears, after
some urging the student writes the requested , but this does not satisfy him be-
cause ‘what a is, you can’t know’. For the student, the ‘algebrafication’ of the situa-
tion has no meaning, nor does it help him to understand the situation better. 

Algebra is not easy; not easy to learn and not easy to teach. For many students it
can be a stumbling block that creates obstacles for further education. What is so hard
about learning algebra? Where is the difficulty? In the following section, we will at-
tempt to understand this problem based on the following keywords and dualities: ab-
straction, generalization and overgeneralization, procedural fluency and symbol
sense, and process and object. 

OUT

IN

– 8

IN OUT
15
10

8
6

-2
a

The number machine below subtracts 8 from every
number you put in and throws it out. Copy the table and
fill it in.

Student: You cannot know what to fill in under a.
Observer: How did you figure out the 7 under the 15?
Student: I just subtracted, 15 – 8
Observer: And how did you get that 0?
Student: 8 – 8
Observer: Try writing that underneath.
The student writes: 15 – 8, 10 – 8, 8 – 8 underneath ... and even writes a – 8.
Observer: So what comes ‘out’ at the right end of the row?
Student: What a is, you can’t know. 

a 8–
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Abstraction

One of the first difficulties in learning algebra is abstraction. In algebra education,
tangible and meaningful situations are often used to introduce algebra. For example,
situations with fixed and variable costs appear regularly in grades 7-9 of Dutch math-
ematics education. In the example shown in Figure 8, question a. is an item that
would fit in the restrictions strand. Question b. has a somewhat more functional char-
acter, and with question c. a second formula must be created. When comparing the
prices charged by various repair services, the recognition of the general structure and
the linear relationships plays a role. Abbreviating the formulas is an obvious step,
and in the first case leads to . If we let go of the context and keep
to the usual conventions for ordering the symbols (three order changes) we obtain the
form  or, more generally: . 

Figure 8. Contextual task 

Most concrete questions concerning this context can be solved without algebra,
for example by calculating in reverse. However, when students take a different point
of view, algebra can become important. Consider the point of view of the repairman,
who may be asked for a price in advance, or the point of view of the company man-
ager, who wants to compare their rates with those of the competitor. Moreover, there
are other tangible situations that are algebraically identical. Similar shifts in perspec-
tive can elicit the need for abstraction: letting go of the tangible concept and devel-
oping a transcendent world of algebraic objects and operations. This is difficult:
letting go of a familiar frame of reference and building a new one. In this context,
Van Hiele (1986) referred to the transition from the basic level to the first level,
where a meaningful relationship network of mathematical objects is created. If ab-
straction indeed takes place, this abstract world of algebra can become increasingly
tangible for the students. The core of the tangible-abstract problem is primarily that
the originally abstract world of algebra must become a meaningful ‘reality’ for the
students, which also helps them to solve tangible problems.

30 R 45+ K=

y 45x 30+= y a x b+=

An appliance repair company has a call out charge of € 30 and an hourly rate
of € 45. The following algebraic relationship applies to the cost of repair: 

30 + Repair time × 45 = Total repair cost 

a. You only have € 100 in cash. How long can the repair take before you
exceed this amount? 

b. How much does the cost go up for each hour that the repair takes? 
c. Another company has a call out charge of € 45 and an hourly rate of 

€ 30. Which company is the cheapest for long repairs, and which is the
cheapest for short repairs? How do you decide which company to call? 
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In some cases, the tangible problem situations are such that it is not necessary to
enter the more abstract world of algebra; it is therefore better to omit this step. The
subtle game of maintaining contact with the tangible context and temporarily letting
go of this context to work with pure algebra is not easy, certainly not in cases where
thinking about the tangible situation becomes a blockade for abstraction and vertical
mathematization. 

Generalization and overgeneralization 

The description of the Patterns and formulas strand stated that generalization is an
important aspect of algebraic thought and activity. Studying, describing and using
generalizations is one of the core aspects of algebra. The algebraic permanence prin-
ciple referred to above essentially means that we make algebra in such a way that
generalization can be used as much as possible. Generalizing about situations is often
linked with abstraction, because it frequently requires a more detached view of the
topic of study. One of the difficulties here is the problem of overgeneralization. For
example, consider the following simplification that students are sometimes tempted
to apply:

  so  
This simplification indeed is visually very attractive (Kirschner & Awtry, 2004). The
reasoning appears to be that you can take square roots ‘piece-wise’: 

This idea isn’t totally absurd because with x instead of + it does work:

And with the operation ‘multiply by 5’ instead of ‘take the square’ it is also correct:

But with the lens formula, it doesn’t work:

If  then 

Students who make such mistakes are guilty of overgeneralizing the distributivity
of algebraic operations. One could call this an illusion of distributivity. Generally
speaking, students have difficulty with identifying generalizations and the limits of
generalization. It is possible to avoid errors such as that described above by referring
to numerical or geometrical examples. However, it is striking that such errors con-
tinue to return in new, somewhat more complex situations, even though the students
learned to avoid them in the simpler situation. In this respect, learning algebra is a
growth process; this is why Chapter 7 is about teaching and maintaining skills. It ar-
gues clearly in favour of striking a balance between learning from meaningful activ-

x2 y2+ 25= x y+ 5=

x2 y2+ x2 y2+=

x2 y2 x2 y2=

5 x2 y2+ 5x2 5y2+=

1
f
--- 1

v
--- 1

b
---+= f v b+=
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ities and performing well conceived skill exercises. The chapter also argues for
restoring practice for techniques at various levels. 

A different way to focus attention on possible structural mistakes is to take advan-
tage of the situation by addressing the mistakes explicitly and problematizing them,
as shown in the example in Figure 9. 

Figure 9. Problematizing algebraic mistakes 

Procedural fluency and symbol sense

The above mistakes demonstrate the importance of procedural fluency. What does
this fluency consist of? The mistakes that students make, like those shown above, are
the ultimate manifestations of the algebraic difficulties they experience. Besides sim-
ple errors, which are caused by lack of concentration or time pressure, these mistakes
also include structural errors related to the students’ lack of algebraic experience; as
a result, they lack insight during certain algebraic steps, such as reversing the order
of operations or dividing or multiplying with an expression that is possibly equal to
zero. Algebraic expertise involves an interplay of various types of skills. Initially, it
is important that students develop procedural skills. These are skills such as solving
simple equations or simplifying expressions. This concerns procedural algebraic cal-
culations, which often have a local focus. It is important to be able to conduct such
procedures fluently, routinely and without making errors. Besides requiring insight,
this also requires students to practice skills and maintain them (see Chapter 7). 

Simplify:

One student tackles the problem as follows. The first step is to cancel out  in the
numerator and denominator:

After this you subtract  from the numerator and denominator:

Then you subtract that 6 in the numerator from 12 in the denominator. Nothing re-
mains in the numerator, so it disappears. So the answer is:

 

The student made several mistakes. What are the mistakes and why are they
wrong? 

y2 7y 6+ +
y2 8y 12+ +
-----------------------------

y2

7y 6+
8y 12+
------------------

7y

6
y 12+
---------------

y 6+
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Algebra involves much more than mastering basic skills; it also involves choosing
a sensible strategy to tackle problems, maintaining an overview of the solution proc-
ess, creating a model, taking a global view of expressions, wisely choosing subse-
quent steps, distinguishing between relevant and less relevant characteristics and
interpreting results in a meaningful fashion. In the professional literature, this type
of meta-knowledge is called symbol sense (Arcavi, 1994, 2005; Fey, 1990; Zorn,
2002). Symbol sense is for algebra what number sense is for arithmetic: the flexible
algebraic expertise or algebraic literacy that often operates in the background with-
out our conscious awareness. Based on insight into the underlying concepts, it directs
the implementation of the basic routines. Arcavi (1994, 2005) provided a number of
examples of symbol sense. It plays a role in planning, coordinating and interpreting
basic operations and consists of three interrelated skills:
– The strategic skills and heuristics to arrive at a problem approach; the capacity to

maintain an overview of this process, to make effective choices within the ap-
proach, or if a strategy falls short, to seek another approach. 

– The capacity to view expressions and formulas globally, in order to recognize the
structure of expressions and sub-expressions, to understand the meaning of sym-
bols in the context and to formulate expressions in another way. Process-object
duality plays a role in that skill. 

– The capacity for algebraic reasoning. This often involves qualitative reflections
on terms and factors in expressions, symmetry considerations or reasoning with
particular or extreme cases.

Figure 10. Algebraic expertise as a spectrum ranging from basic skills to symbol sense 

The algebraic expertise spectrum has basic skills on one side and symbol sense on
the other. Figure 10 illustrates this spectrum. One of the difficult facets of algebra is
combining these two aspects: the interplay between the routine of basic operations
and the implicit meta-skills that play a guiding role. For that matter, one element can-
not exist without the other: algebraic reasoning is only possible once you have rea-
sonably mastered the basic operations, and with algebraic computation you often
need reasoning as well, certainly if the ‘automatic pilot’ is not functioning smoothly
or the situation is unusual. A good balance between skill and insight, between acting
and thinking, is therefore crucial. It is impossible to make a sharp distinction between
basic skills and symbol sense. However, it is suspected that the development of the
symbol sense side of the spectrum is given too little explicit attention in algebra ed-
ucation. 

Algebraic Expertise

Basic skills
• Procedural work
• Local focus
• Algebraic calculation

Symbol sense
• Strategic work
• Global focus
• Algebraic reasoning
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Process and object 

A final difficulty of algebra is that students have to be able to view an algebraic ex-
pression as both a process and an object, and must acquire a sense of which view is
most suitable at any one time. Initially for students, a formula often has the character
of a process description, a calculation procedure or a step-by-step plan. To return to
the example of repair costs from figure 8, 30 + Repair time × 45 = Cost may be un-
derstood as a recipe to calculate the repair cost from the repair time. Interpreted this
way, the formula says ‘if the repair time is 1.5 hours, then take that 1.5, multiply it
by 45, add 30, and the result is the total cost’. The symbols +, × and = acquire an
action character and appear to invite a calculation. 

However, in algebra there often is nothing to be calculated at all. An identity such
as  does not have a process character; it indicates that the
expression on the left hand side is equivalent to the expression on the right hand sidei.
In this case, the equal sign does not stand for ‘and the result is...’, but stands for ‘is
equivalent to’. The plus symbol also has a different character: instead of ‘take a and
add b’ the + in  stands for ‘the sum of a and b’. The expression  is
not a process description, but an algebraic object (Freudenthal, 1983). 

Several authors have pointed out the students’ difficulties with this dual nature of
algebraic expressions, and with the object view in particular (Sfard, 1991; Tall &
Thomas, 1991). For example, students find it difficult to accept an expression as a
solution to an equation, because ‘then you still don’t know how much it is’ (cf. the
observation on the number machine task in Figure 7). As the object view is supposed
to form a higher conceptual threshold than the process view, algebraic expressions
are initially presented as processes. Nevertheless, the flexibility to switch between
the two views is an important algebraic skill. In arithmetic, the process view is gen-
erally predominant. Consequently a didactic gap between arithmetic and algebra is a
point of discussion (Van Amerom, 2002; Malle, 1993). 

ALGEBRA IN SCHOOL: WHY AND HOW? 

Now that we have more clearly delineated our definition of algebra and the possibil-
ities that play a role in learning algebra, the question is why and how algebra can be
taught in school. 

Why teach algebra in school?

As clearly expressed in the quotation from Tall and Thomas at the beginning of this
chapter, learning algebra requires a costly initial investment, but it ultimately returns
a profit, especially in subsequent courses in subjects like physics. It is precisely due
to algebra’s detachment from the original meaning of a problem that it is an especial-
ly powerful tool: 

a b+ 2 a2 2ab b2+ +=

a b+ 2 a b+ 2
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In fact, from one point of view, this is one of the strengths of symbols – they
enable us to detach from, and even ‘forget’, their referents in order to produce
results efficiently. (Arcavi, 1994, p. 26) 

This is especially true for students who are headed for a subsequent programme in
subjects like physics in higher education. For them, adequate preparation for higher
education and the profession that follows is one of the most important aims of alge-
bra education. However, even for students who will hardly come into contact with
mathematics in their further education or profession, some degree of algebra educa-
tion is still important. After all, algebra can be a means to organize and sort phenom-
ena from their work and their environment, to discover patterns and regularities, and
to reason logically with them. In this sense, algebra is a component of mathematical
literacy, which is relevant for all citizens, helping them to find their way in a society
full of numbers, procedures and patterns. Algebra education that focuses on this as-
pect is different than algebra education that prepares students for subsequent courses
in physics: here, algebra is more a tool to solve practical problems than an objective
in itself. It concerns an informal, application-oriented and close-to-reality approach
to algebra. A third aim of algebra education is one of the motives of mathematics ed-
ucation in general; it concerns, as formulated by Polya (1945), learning to think. This
general educational value of algebra is less tangible than the aims described above,
but still deserves attention.

In summary, algebra education serves various aims: it helps to prepare students
for their subsequent education, profession and their future roles in society, and it has
a general educational value. The relationship between these aims and the way in
which they are realized varies greatly and depends on the needs and capacities of the
target group. 

Our view on learning algebra 

The point of departure of this book is our vision about learning algebra, which
emerges from the more general perspective of realistic mathematics education (Freu-
denthal, 1991; Treffers, 1987). The core of this vision can be summarized as follows: 
– Algebra as human activity. 

In the course of history, algebra has been constructed by people. From this cultur-
al-historical perspective, it is important that students do not experience algebra as
rigid and uncompromising, but as a human construction of tools and knowledge
that can be used for solving recognizable problems. 

– Algebra as brain activity. 
This not only means that people think about things, but also that students experi-
ence something of the detachment from tangible problems that often occurs when
working with algebra. A context problem will initiate a process in which context-
transcending reflections lead to the development of algebra at a more abstract lev-
el, i.e. algebra as an abstract world of mathematical objects. The brain activity
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comprises a combination of skills and understanding, which are generally not sep-
arate from each other. 

– Algebra as personal activity. 
Based on their intuition and ideas, students can independently design representa-
tions and develop algebra along the route of progressive formalization. In this
way, students can ‘internalize algebra’. 

– Algebra as meaningful activity. 
Whether students use algebra at a tangible or an abstract level, it is crucial that the
activity is experienced as meaningful. Sometimes this requires a tangible problem
situation taken from the students’ world of experience. In other cases, the meaning
for the students is contained in a more abstract, theoretical context. But what is
most important is that the problem situation is ‘experientially real’; the students
must experience it as meaningful and realize what they are doing. 

CONCLUSION AND PREVIEW

The exploration of topics and themes in algebra education has resulted in a delinea-
tion of algebra and a division of the topic into three strands: patterns and formulas,
restrictions, and functions and graphs. Various approaches to algebra have been dis-
tinguished, and a number of difficult aspects of learning algebra have been identified.
Several themes have emerged in this process, including the historical development
of algebra, algebra as a way of working with numbers and number structures, prac-
ticing and maintaining algebraic skills, and using technological aids with algebra.
We have also addressed the fact that algebra can be used with problems from other
subjects or sub-areas of mathematics. All of these aspects together have led to a vi-
sion of algebra education. The following is a brief outline of the remainder of this
book. Chapter 2 describes the historical development of algebra in global terms.
Chapter 3 addresses the relationship between arithmetic and algebra. This is fol-
lowed by three chapters that discuss the three main strands: patterns and formulas in
Chapter 4, restrictions in Chapter 5, and functions in Chapter 6. Chapter 7 addresses
the question of productive practice of skills. The role of ICT in learning algebra is
the topic of Chapter 8. Finally, Chapter 9 discusses how algebra is used in physics
and other technical subjects.

NOTE

i Some algebra textbooks use a special notation for equivalence .
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2. ALGEBRA FROM AHMES TO APPLET

Some things are so normal that it would seem that they have always existed.
We are so accustomed to our method of writing equations that is difficult to
conceive of anything else. Can you imagine that there was a time when people
would not have recognized an expression such as  as an equa-

INTRODUCTION

There is no definitive history of algebra. Writing the history of a topic requires mak-
ing choices, and this applies to the history of algebra in the same way it applies to the
history of music or to the history of human capability to make the world liveable.
These are choices such as: do we demonstrate the full power of algebra, such as how
it evolved from cuneiform script to computer language, or do we emphasize the proc-
ess of trial and error, searching for usable forms of notation and methods of solution?
For an educational book such as this one, the latter appears to be the best choice; after
all, we learn primarily from our mistakes in the hope of achieving success. 

But what is ‘searching’? Was Ahmes searching for  on the
shores of the Nile when he wrote  approximately 3700 years ago?
No, probably not. Out of the sea of possibilities, it is most likely that specific nota-
tions and strategies floated to the top and ultimately made into the mathematics
books of 2010. Whether or not Ahmes contributed to this process is not important to
us at the moment. However it is important that we – in hindsight – can find some-
thing from the historical record which is inspiring for learning and teaching algebra
today and which also enables us to improve our understanding of the essence of al-
gebra, which is the aim of this chapter.

To this end, we will now include a series of algebra ‘snapshots’ to demonstrate
the old and new faces of the phenomenon of algebra. These are ranked according to
themes such as equations, notations, algebra and geometry, algebra and applications
and several others. Such observations can inspire thoughts in the reader such as: my
student actually took the same steps on his worksheet as Diophantus did. Or, after
reading the history of the parentheses, I began to question how I approach things in
class. Or, the geometric representation of products such as rectangles has advantag-
es, but apparently also has disadvantages. Or, the historical development of the no-
tation of variables inspires me to take a new didactical approach to the concept of the
variable.

x2 4x– 3+ 0=

x 1 1
2
--- 1

4
---+ + 10=

tion? (Van Maanen, 1998, p. 12)

P. Drijvers (ed.), Secondary Algebra Education, 27–68.
© 2011 1Sense Publishers. All rights reserved.
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However, you will not find a systematic chronological and exhaustive overview of
the history of algebra here. If you are interested in this, there are many sources you
can consult; the main sources on which this chapter is based are listed at the end. 

In general terms, this chapter focuses on the theme of ‘meaningful algebra’; con-
sequently, there is more attention for the connections between notation, meaning and
applications than on specific subjects such as negative numbers or square roots. 

The following is a brief outline and description of the components of this chapter: 
– Algebra is solving equations. This appears to be a central theme in the history of

algebra. Three times some number is 15; which number is it? The question about
the unknown value that ultimately leads to special theories.

– Algebra: a notation that clarifies and organizes. Algebra began with hardly any
additional symbols besides those for numbers and normal words. The nature and
importance of algebraic notation.

– Algebra and geometry: helpful neighbours or opposites? Algebra began in both
the world of shapes and in the world of numbers. Geometric methods for solving
equations, from Euclid to the present day. 

– Analysis and synthesis, the lessons of Descartes. Algebra is not only a systematic
use of mathematics with unknowns or variables, but it is also closely related in
history to a specific mathematical method: analysis. This refers to analysis in the
traditional sense, because modern analysis means something else. An extensive
discussion about La Géométrie by Descartes, which is seen as the origin of ana-
lytical geometry; this book connected algebra and geometry in a new way. 

– Has everything become computable with algebra? This was a dream that accom-
panied the application of algebra to geometry: to solve every problem (geometric
and otherwise) by giving it to the ‘automatic’ calculation method known as ‘alge-
bra’. 

– Towards the broad spectrum of modern algebras. In the 19th century, it was dis-
covered that solutions of quintic and higher degree equations were subject to lim-
itations. On Abel, Galois and the 20th century algebraic panorama.

– Back to algebra as taught in school. In school, algebra is overrun with graphs.
Where do these graphs come from? Not from the history of algebra!

ALGEBRA IS SOLVING EQUATIONS

What we now refer to as solving equations is actually arithmetic, but in reverse. In the
equation situation, ‘someone or something’ has begun with one or more numbers or
quantities and has conducted some arithmetic operations with a numerical final result.
The challenge is to retrieve the original number, numbers, or the lengths of segments.
This is the perspective from school: that someone already knows the answer and asks
you the ‘trick question’. This school perspective is also present to some degree in his-
tory: there was much emphasis on polynomial equations, much time was spent linear
and quadratic equations, and then within a much shorter time period mathematicians
raced through the cubic and quartic equations as if it were a contest. But the history of
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algebra is richer than algebra as taught in school: number-theoretical problems together
with geometric, indeterminate equations, precise case distinctions, a broad palette of
solution methods for apparently simple  but fundamental  problems.

In this section, we will initially stay close to the appearance of mathematics as
shown in the older sources; this will make it very clear that ‘old’ algebra did not use
letters to stand for numbers, and that working with unknowns initially appeared in a
totally different shape than that which we are used to today. However, it is interesting
that the mathematics used by the Babylonians and other ancient peoples is still close
to what is done in school today. 

To make things not too difficult for the reader, we will often translate the sources
into more modern forms of notation; although this type of translating always distorts
the source, we also want to demonstrate the differences in notation and meaning with
today’s standards.

From Thebes in Egypt to Babylon, from arithmetic to algebra?

Figure 1. Part of the Rhind papyrus (1650 BC) with transcription

10 makes  whole it it it  heap

1 1

1 3 2
7 4

is heap together

1
4
--- 1

2
---

1
2
--- 1

28
------ 1

4
---+ 1

4
--- 1

2
---

1
14
------ 1

2
---+ 1

2
---

1
14
------  1

7
---  1

2
---  5 1

4
--- 1

7
---
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We begin with two examples from the second millennium BC. First, the top part of
Figure 1 shows a problem from the Egyptian Rhind papyrus, from around 1650 BC.
It was copied by the scribe Ahmes, who stated that the original was about 200 years
older. At the bottom is a partial transcription of the original hieratic. Like the original
papyrus, read the transcription from right to left. 

The first line states that we must take it one time whole, a  time and a  time to
get 10 as the answer. The question (not explicitly stated) is: ‘How big is it?’
In the column on the far right in the transcription, we see 1, 2, 4 and  on top of each
other under ‘heap’, (Hau in the original). The solution is therefore built up under
Hau. 

First (1+  + ) is written individually, directly to the left of the ‘1’. Then this is
doubled (see to the left of the 2), and doubled again (left of the 4).  of (  +  +1)
is also determined, which is ; see the fourth line. The rows marked with arrows
(compare the corresponding slashes in the original) give 9 for the ‘heap’ together,
and for the number of times that (  +  +1) is multiplied,  is used temporar-
ily; in the heap, which is still 1 too little to make the required 10. This ‘1’ will be built
up from multiples of  that correspond with the  which belongs to the numbers that
build up the final answer. Therefore, we must find the double of the double of , be-
cause the double of the double of  makes 1. For doubling unit fractions such as  a
table was available that also gives the result in unit fractions: in this case we encoun-
ter . 

This expression is located in the second row on the left, to the right of the . Dou-
bling this row easily yields the ‘1’ next to the  in row 3 on the left.

The overall solution  is shown at the left of row 4. The rows marked with
arrows yield 9 corresponding to 5 and ; together with the , this provides the
final answer.

The lower half of the fragment also contains a calculation; this tells us something
more about the method in general. The first row of text under Ahmes’ line says: ‘The
start of the proof’. The second row under the line contains the same expression as the
first row above the line, where the answer is at the far left; this is clearly visible in
the original. This is what happens: with his calculations, Ahmes shows through di-
rect calculation that the expression  is indeed the solution to the problem.
The phase of building the solution is followed by proving that the solution answers
the original question. 

Could this be something like solving the equation ? In this case,
this is giving perhaps too much credit to Ahmes. In fact, this problem involves a di-
vision operation (reversing a multiplication operation), while most of the calculation
takes place using the rather difficult system of unit fractions. In this system, the so-
lution is achieved by doubling and then adding up the results. It is actually very sim-
ilar to a long division problem. Giving the name of ‘Hau’ to the right-hand column
can also be interpreted as ‘algebra’, but the specific numerical computations are still
the main part of the text.
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The example of Ahmes places little or no emphasis on the general aspects of the
method. It is certainly not yet algebra, in the modern sense of a systematic approach
to a problem that is independent of the specific numbers. This is very different in an-
other example from Mesopotamia, about 200 years later, where the specific numer-
ical data do not completely control the solution process. Clay tablet AO 8862  the
original is in the Louvre, Figure 2 shows the transcription made by Neugebauer  is
from the same period as the famous Code of Hammurabi, about 1700 BC.

In cuneiform script on clay tablets, numbers up to 60 are written in a decimal tally
system, which can be easily pressed into soft clay with a flattened piece of reed.

Figure 2. Tablet AO 8862



AAD GODDIJN

32

Based on the transcription of this fragment (Neugebauer, 1935-37), from line 8 the
system becomes clear: 

The 27 is evidently: 2 × 10 + 7. But where does the 183 come from? In the sexages-
imal (base sixty) systemi, this number should be read as 3,3 where the first 3 stands
for 3 times 60 and the second 3 stands for 3. The meaning of the uppermost rows on
this tablet is the following:

Length, width. I have multiplied the length and width and in this way formed
the area. I have added the excess of the length above the width to the area: 3,3.
I have added the length and the width: 27. Find the length, the width and the
area. 

We have already seen that 3,3 means 183, and the reader can get to work with the
following system of equations:

The approach used on the clay tablet is clever. It starts, translated to modern ideas,
with substituting y' for y + 2. This is hidden in the mathematical operations; the step
is taken without explanation. The system now becomes: 

and the solution is found by applying a famous Babylonian recipe. The arithmetic
mean of x and y' is 14 .  – 210 is calculated, which is . The square root of
this number is  and according to the recipe, the correct values for x and y' are then
14  + and 14  – , respectively. The final solution is x = 15, y = 12; this can be
seen on the pictured fragment under the line with 27 and 3,3, because the solution is
shown first, and the method used is shown underneath. The area 3 (180!) is promi-
nently visible.

The solution of the transformed system of equations concerns a standard solution
process for a standard problem; this is shown by the fact that the x and y' are in turn
called length and width. In this example, length and width indicate the factors of a
product, which is consistently called the area. It is a subtle but relevant distinction:
the length, width, and area in the Babylonian text refer to roles in the process, while
our x, y and y' refer to specific numbers, which we still have to find. So we will resist
the temptation of seeing the birth of the algebraic unknown in this example, also be-
cause another essential link is missing: the words length and width only appear in the
surrounding text, but are not used in the calculations themselves, where we only find
the numbers.

(27) (183)

xy x y–+ 183=

x y+ 27=

xy 210=

x y+ 29=
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Of all calculation steps, only the result is consistently reported; the version with
all the calculations is not shown on this tablet. This is also the case with calculating
square roots. The emphasis is placed on the recipe-based structure of the solution
process, and not on the dependency on the specific numbers. Consequently, we can
see more algebra in these examples than in the work of Ahmes: the general solution
process is made visible, even though it is only shown with explicit exemplary num-
bers.

Babylonian clay tablets contain many examples of this type. There are linear
equations, quadratic equations, systems of two or sometimes three equations, of
which one in the second degree. The tablets give exemplary calculations in the form
of recipes to be implemented with the given numbers. We do not understand very
well how the Babylonians arrived at the methods of solution. Based on various ex-
amples, extensive theories have been developed on this topic, which are still being
discussed. 

We may draw the conclusion that algebra at this high level requires a good calcu-
lation system for numbers which has been mastered impeccably, so that all attention
can be focused on the method itself. Today, our students have such a perfect calcu-
lation system: their electronic calculator. The author of the clay tablet had multipli-
cation and division tables at hand on other tablets!

Diophantus finds the unknown

There is a verse about Diophantus of Alexandria that was written around 500 AD. It
is an epitaph in the form of a word problem. In a modern school book it was trans-
lated as follows:

Here lies Diophantus, the wonder behold.
Use x’s and applets to tell us how old!
‘God gave him his boyhood one-sixth of his life;
One twelfth more as youth while whiskers grew rife.
And then one-seventh more when his marriage had begun.

In five years there came a bouncing new son;
Alas, the dear child of master and sage 
after attaining half the measure of his father’s age,
died and was buried in a cold grave. With numbers Diophantus consoled his
fate for four years more, living but then he also passed through life’s final door.

Despite this verse, the dates of Diophantus’ birth and death are unknown, but based
on many links between his writings and those of others, the period 200–284 AD is a
good guess. 

Diophantus’ Arithmetica, of which only six of the original thirteen volumes re-
main, is almost entirely about solving number problems told in words that lead to
equations. Arithmetica: on positive integers and rational numbers. There are deter-
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minate and indeterminate equations, depending on whether there is a single solution
or a number of solutions, although Diophantus consistently gives only one solution
for equations in the latter category as well. 

Here we focus on problem 39 from Book IV, because it provides a good example
of Diophantus’ skill. The details of the solution process provide insight into what an
‘unknown’ could have been in Diophantus’ eye. For purposes of clarity, we will first
show the solution in modern notation, and then go more deeply into Diophantus’ fa-
mous notation for powers of the ‘unknown’. This is the assignment:

Find three numbers so that the difference between the largest and second larg-
est number forms a given ratio with the difference between the second largest
and the smallest number, in such a way that the sum of two of the three numbers
is always a square.

The problem is stated in general terms; the given ratio is not even stated. But 
Diophantus’ solution begins by specifying this ratio:

Assume that the difference between the largest and second-largest numbers has a
ratio of 3:1 with the difference between the second largest and smallest numbers.

If we know a single solution to the problem, we will know more solutions because
you can multiply the three numbers of the solution with the square of any number to
find a new solution. Diophantus does not explain this in the problem, but he does in-
dicate the value of the smallest of the three squaresii:

The sum of the second largest and smallest term must be a square; let it be 4.
Then the second-largest term is larger than 2; let us assume it is , then the
smallest term is .

Because the first two terms are  and , we know that the final term must be
; the difference of 2x between the first two terms has a 1 : 3 ratio with the dif-

ference between the last two, so that must be 6x. We therefore know that the other
two sums of two of the three numbers are  and , which also must be
squares. The original problem statement, which is fairly complex, has now been
transformed into finding a single unknown, which we have named x.
The second square, the number , lies between 4 and 16; Diophantusiii calls the
side of the square ‘unknown plus 2’, which we have written as , where z is
therefore smaller than 2.

Diophantus immediately gives  for the square and calculates that the
largest of the three squares must therefore be . Multiply this by the
square ; result:  is a square.

Now the story takes an elegant algebraic turn. Diophantus expresses the side of
the square as ‘a number of times z minus 3’. From:

it is directly derived that:

x 2+
2 x–

2 x– 2 x+
2 7x+

8x 4+ 6x 4+

6x 4+
z 2+

z2 4z 4+ +
11

3
---z2 51

3
---z 4+ +

9
4
--- 3z2 12z 9+ +

3z2 12z 9 mz 3– 2=+ +

z 6m 12+
m2 3–

--------------------=
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The elimination of the 9 from both sides is prepared by stating that the unknown
side of the square is ‘a number of times z minus 3’. As a result, the equation can be
reduced to a linear equation. An important observation: Diophantus chose ‘a number
of times z minus 3’ with an eye to the further development of the problem, and with
a great deal of insight into the strategy to be followed later on.

Diophantus concludes with deriving from z < 2 that m = 5 provides a good solu-
tion. During this process, a second-degree equation is solved in passing by complet-
ing the square. This is followed by . The final solution for the problem itself
is found by substituting this value in z + 2 and squaring: . This number is the sec-
ond-largest square and must therefore be equal to . 

After finding the value of  this gives the following three numbers as a
solution:

As shown by the final steps of his treatment, Diophantus no longer wants to use frac-
tions in the numerator or denominator, but in this case he does use the common quad-
ratic numerator, so that the fractions are not given in their simplest form. Diophantus
closes with the statement: “And the proof is evident.” It is certainly evident, and cal-
culation shows that the solution is correct. Nevertheless, it is striking that Diophantus
does not use the word ‘proof’ until this point in the text. We previously noted some-
thing similar, on the Rhind papyrus. In this papyrus, the solution was first construct-
ed, and after this the result was explicitly checked in the original problem;
Diophantus leaves the verification to the reader. Many other problems end with sim-
ilar closing remarks. As a whole, the solution process has several striking character-
istics:
– Unknowns are sometimes used consistently, but are not necessarily the solution

to the problem; they appear to be more of conveniently chosen auxiliary variables.
– In the part where (in our notation) z is used, Diophantus presents an interim prob-

lem which must be solved first; he returns to the original problem when a number
is found as a solution to that interim problem. By means of this meaningful struc-
ture, the processes do not become confused. This is important, because as we will
see later, Diophantus did not have a way to distinguish different variables, like we
use x and z.

– The coefficients of the problem (for example, the ratio given here) are written nu-
merically. However, it is questionable whether the solution would proceed so
smoothly if a ratio was chosen different from 3 : 1.

– Specific numbers are given as solutions. In the present case, the reader under-
stands that values such as m = 6, 7, etc. also lead to solutions, but this ‘parametri-
zation’ of the solution is not visibly present and is certainly not made explicit.

The practical algebraic manipulations that are required in order to verify all of this
are not all included in Arithmetica, which is not a textbook for elementary algebra.
Diophantus assumed that the algebraic rules for the addition, subtraction or multipli-

z 21
11
------=

1849
121

------------

6x 4+
x 1365

762
------------=

58
484
--------- 1878

484
------------ 7338

484
------------
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cation of the various formula components were known to the reader. However, he in-
itially provided rules for the transformation of the ‘equations’ that were created in
this way; for example, he says the following about simplifying:

If a problem leads to an equation in which specific terms are equal to terms of
the same type, but with different coefficients, then it is necessary to subtract
equivals from equivals until on both sides one single term is equal to one single
term.

The introduction of the book states that ‘a deficit times a deficit yields a surplus.’ We
should not read this as a rule that means a minus times a minus is a plus; negative
numbers are not present in Arithmetica. The rule only indicates how to deal with ‘dif-
ference times difference’. The avoidance of negative numbers is apparent in the so-
lution to the above problem 39. 

Finally, here is a quotation from the beginning of Arithmetica, which immediately
follows the dedication to Dionysus:

Perhaps the topic [of this book] will appear fairly difficult to you because it is
not yet familiar knowledge and the understanding of beginners is easily con-
fused by mistakes; but with your inspiration and my teaching it will be easy for
you to master, because clear intelligence supported by good lessons is a fast
route to knowledge.iv

Cubic and quartic equations

In the above examples, we have seen that before the year 1000, people were working
on second-degree equations in various ways. We saw special examples with the Ba-
bylonians, and with Diophantus we found indeterminate equations, where whole or
rational solutions were sought. Later on, we will address the geometric methods,
which Euclid and the Arabic mathematicians used for quadratic equations in one un-
known. 

For many years, the geometric methods (where squares are actual geometric
squares) and arithmetic approximations made that equations in the form (in modern
notation)  and  had to be treated differently. If we
think about representations in the form of area or numbers, then it is clear why this
was the case: all amounts on the left and right sides of the equation have to be posi-
tive. These equations showed to be of the same type only after it became possible to
do algebra with a comprehensive system of negative and positive numbers from
which we can take the difference and with which we can perform addition. There-
fore, with the oldest solutions of equations, we still see extensive handling of cases. 

For the most important step to the exact and general solution of the third and
fourth-degree equation, we now go to the great Italian trading cities of the 15th and
16th centuries. It is known that Leonardo Pisano Fibonacci (1170–1250) provided an
approximate solution to a third-degree equation, but for the story of the general exact

x2 10x+ 39= x2 10+ 13x=
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solution of the third-degree equation, we have to wait three more centuries. It is a
dramatic story of broken promises and has been described in many histories of math-
ematics. A brief version of the story belongs here as well; due to the easily accessible
sources on the internet, this is an outstanding research assignment for students, even
if they cannot entirely understand the third-degree equation and its solution. The
leading roles are played by:
– Scipione del Ferro, 1465–1526, mathematician at the University of Bologna 
– Antonio Fiore, 1506 –?, from Venice, and a student of Del Ferro 
– Nicolo Tartaglia, 1499–1557, mathematics teacher in Brescia 
– Girolamo Cardano, 1501–1576, physician in Milan
– Ludovico Ferrari, 1522– 1565, student of Cardano
Equations of the type  were solved by Del Ferro around 1515, but he did
not publish the method. Del Ferro died in 1526. Fiore, who probably became ac-
quainted with the solution while studying in Bologna with Del Ferro, challenged Tar-
taglia in 1535 to solve a series of thirty problems of the type . Of course,
the challenger must have been familiar with the solutions. Tartaglia replied with his
own list of problems, which was more varied. Just before the expiration of the dead-
line, Tartaglia discovered the correct method, solved all the equations within two
hours and beat Fiore, who had solved almost none of the problems on Tartaglia’s list.
Tartaglia was satisfied with the honour and waved off the thirty banquets that had
been planned for the winner.

In 1539, Girolamo Cardano, who was busy writing his own Practica Arithmeti-
cae, heard about Tartaglia’s accomplishments and tried in vain to find the solution
of  himself. After this, he tried to get Tartaglia to reveal his solution.
Tartaglia did so, but only after Cardano offered to use his influence on Tartaglia’s
behalf with the military commander of Milan. According to Tartaglia, Cardano
swore an oath not to publish the solution before Tartaglia.

Later on – in cooperation with Ludovico Ferrari – Cardano was also able to adapt
the solution method for equations of the types  and . More-
over, Ferrari succeeded in solving a fourth-degree equation by reducing the problem
to solving a third-degree equation. But what could he do with all these wonderful dis-
coveries? Cardano and Ferrari felt that they were bound by the oath. In one version
of the drama, they heard rumours that Scipione del Ferro knew the solution even be-
fore Tartaglia. It required little difficulty to find this information in Del Ferro’s leg-
acy; indeed, it was clearly stated.

In 1545 Cardano published the complete solution for all three types of equations
in his Ars Magna; he reported both Del Ferro and Tartaglia as being the discoverers
of the solution for equations of the type , claimed the other two types for
himself, and gave Ferrari the honour for the fourth-degree equation. He was honest,
that is certain. However, the publication elicited the boundless fury of Tartaglia, who
claimed that he had solved the three types himself. 

Let us now look at the solution method, which was a long-held secret, with the
following example:

x3 px+ q=

x3 px+ q=

x3 px+ q=

x3 px q+= x3 q+ px=

x3 px+ q=
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cubus p 6 rebus aequalis 20
(a cube and six times its side is 20)

Because this is how the equations were written. In our notation: . 
Cardano (Del Ferro, Tartaglia?) replaced the side (x) by a difference between two
other lengths. In other words, he substituted . 

Reducing  to  is now crucial.
. 

If it is possible to choose u and v so that  and , then
 is a solution for . Because these conditions for u and v are

equivalent (everything is positive!) to  and , there is no longer
a problem because every mathematician in this era could deal with this system of si-
multaneous equations: given the difference between and product of two numbers,
find the numbers themselves. But the present-day reader finds  and

. So here is the solution of , as shown in Cardano’s formula:

.
In this case it all appears fairly simple and very elegant, but in those days there

were many cases where impassable obstacles still appeared during the solution proc-
ess, even if it could be easily seen that a real solution must be possible. Rafael
Bombelli (1526–1572) succeeded in interpreting cubic roots so that he always found
a solution, even if there were negative numbers inside the root sign. During this proc-
ess he used what were later called complex numbers.

General solutions: François Viète

François Viète (1540–1630) took two important steps to clarify the relationship be-
tween roots and equations. First of all, he used a notation of equations in which the
specific value of the coefficient was no longer given, but both the coefficient and the
unknown were represented by a letter. For the unknown (known as the cosa), Viète
used a vowel; for the coefficients, he used consonants. He wrote a second-degree
equation as follows:

B in A quadratum, plùs D plano in A, aequari Z solido.

Translated:

B times the square of A plus area D times A will be equal to the volume Z.

Our equation 

is an efficient but meagre shadow of the original. Viète clearly believed it was im-
portant for the equation to be formulated homogeneously, that all components had to
be either linear, plane or solid. Apparently he assumed that B is a line segment. B in

x3 6x+ 20=

x u v–=
u v– 3 u3 v3– 3uv u v––

x3 6x+ u v– 3 6 u v–+ u3 v3– 3uv u v–– 6 u v–+ 20= = =
u3 v3– 20= 3uv 6=

x u v–= x3 6x+ 20=
u3 v3– 20= u3v3 8=

108 10+
108 10– x3 6x+ 20=

x 108 10+3 108 10–3–=

BA2 DA+ Z=
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A quadratum is therefore a ‘solido’. If D plano is an area, D plano in A is also a so-
lido. A itself is clearly linear. In our present-day notation, these aspects are no longer
visible.

Viète, in his De equationem emendatione, took a route that appears very similar
to that of Cardano, and found a solution to the equation

namely:

In this equation, Z therefore represents a volume and B an area; to make sure that all
the operations in the radical expression make sense, it is useful to briefly check this.
The conclusion must be that 2 and 3 in the original equation are dimensionless. 

Here the advances made on Diophantus’ work are clear: you only have to fill in a
newly chosen B and Z in the pattern, and the new solution rolls right out. With Di-
ophantus’ approach, at the beginning of the solution process for a problem another
constant value could be chosen, but after this the entire solution process had to be
gone through again; we noted a similar difference with Ahmes and his Babylonian
colleague. 

Regarding the concept of generalization, which is in Chapter 1 mentioned as an
essential characteristic of algebra, something special is also taking place here. For
Viète, the generalization aspect was not in the unknown, A, of the equation, but in
the coefficients, here B and Z. In the final section of this Chapter, which deals with
school algebra, we will return to this aspect in connection with the current insights.

Further developments 

It is remarkable that Viète also knew that the solution of an equation determines the
coefficients in a certain sense. Viète:

Si A cubus – B – D – G in A quad. + B in D + B in G + D in G in A, aequatur
B in D in G: 
A explicabilis est de quadlibet illarum trium, B, D, vel G.

In today’s language:

If 
then A is equal to one of these three: B, D or G.

However, here we are given the strong impression that A, B, D, and G have equiv-
alent roles in the equation. After all, A is equal to one of the three. Thomas Harriot
(1560 – 1621) made this much more explicit by ascertaining that if a, b and c are the
solutions of a third-degree equation, then the equation must be:

A3 3BA+ 2Z=

A B3 Z2+ Z+3 B3 Z2+ Z–3–=

A3 B– D– G– A2 BD BG DG+ + A+ + BDG=

x a– x b– x c– 0=
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Later on (in 1673), in a letter to Huygens, Leibniz used pure algebra to shown that
if a, b and c are given by the solution formulas of Cardano/Bombelli, then the third-
degree equation can indeed be found. This is a completely algebraic verification of
the formulas, which had not been done until then.

Ferrari, Viète, Harriot, Tschirnhaus (1651–1708) and others found solutions for
the general fourth-degree equation; once again this was done by inserting an extra
variable that led to a solvable third-degree equation. The calculation work that was
required for this discovery does not provide us with much more insight into the his-
torical development of algebra.

Almost two centuries later, it turned out that there can be no solution formula (in
a strictly defined algebraic sense) for the general fifth and higher-degree equations.
But in this proof of inexistence, the understanding that the coefficients of the equa-
tion can be expressed in the roots plays an important role. There will be more about
this in the section on the question whether everything has become computable with
algebra.

ALGEBRA: NOTATION THAT CLARIFIES AND ORGANIZES

The nature of algebraic text

From the above it can be seen that during the search for the solution of equations,
new forms of notation appeared. This is an important phenomenon which we will
now explore more deeply; it is also a good time to reflect briefly on the role of vari-
ous notations in algebra. There are two extreme standpoints regarding the relation-
ship of algebra to its notation: 
1. Without notation using letters, there would be no algebra. 
2. Algebra concerns relationships and structures; notation is only a memory aid. 

The first standpoint is a superficial definition of algebra; the second standpoint ap-
pears to go far beyond the superficial appearance, but does disregard the fact that we
require such a memory aid in complex situations. And isn’t it obvious that algebra
could not have developed without notation?

The title of this section indicates that the situation is not that simple. In a certain
sense, the notation of algebra has evolved from being a memory aid to an active
mechanism, which has its own part in solving complex problems. In this section, we
will map out this idea in greater detail based on the historical development of two
components of ‘our’ notation: the notation of powers and the representation of struc-
ture in algebraic expressions. 

Notation is a means of communication: a notation must clearly indicate what is
meant. All of this leads perhaps to the following question: is mathematics (or alge-
bra) a language? The answer can be yes or no, it does not make much difference, be-
cause the statement that mathematics is a language (or not) says little about what
doing mathematics actually is. Nevertheless, ‘the language of mathematics’ is a very
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popular expression, and has a history that seems to begin in the 17th century. Prob-
ably Galileo’s most widely quoted statement is:

This [the book of nature] is written in the language of mathematics and the
main characters are triangles, circles and other geometric figures, without
which it would be impossible for people to understand a single word. Without
this language, people would get lost in a maze.v

Galileo claimed especially that geometric objects are necessary for us in order to find
our way in the universe. This is a philosophical point of view that outstandingly ex-
emplifies the 17th century; Galileo’s scritto in lingua matematica is a gripping way
to express this view, but the one-sided emphasis on the aspect of language in the quo-
tation disregards the importance of the geometric objects that Galileo also refers to:
triangles and circles.

How does this apply to algebra? What are mathematical objects in algebra and
what is their relationship in and with language? These days, an algebraic formula or
equation in a running text usually takes the grammatical role comparable to a name;
the name has its own inner mathematical structure, not influenced by the structure of
the sentence. For example: 

The equation  has 10 solutions 

This is syntactically similar to:
“The Londoner Jack the Ripper committed 5 murders.”

The fairly literal translation that we made of a proposition of Viète 

If ,
then A is equal to one of these three: B, D or G.

is a mixed form in which the sign of equality between two algebraic formulas acts as
a verb in the conditional subordinate clause. This clearly shows that the algebraic no-
tation can function as an abbreviation system within regular language. The reader is
advised to check the Viète original above. 

Not everyone will have objected to this example of Viète, but mixing a mathemat-
ical notation with everyday language may have a strange effect in other situations:

The length of a football field = 90 meters and the width = 60. What is its area?

The separation of normal written language and the formalism of the mathematical
objects is the product of a long development. In a later example, we will clearly see
that the conjugations of Latin words still held a grip on the names for unknowns in
algebraic expressions until well into the 17th century.

The mathematical text also places special restrictions on the meaning of normal
words. In the mathematical context, words such as line, variable, point and function
have their own, limited meaning. This is not so remarkable; the words used in other
disciplines also have restricted meanings. Jargon: the half-formalized language ele-
ments of a specific discipline.

x2 10 xsin=

A3 B– D– G– A2 BD BG DG+ + A+ + BDG=
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Unknowns and their powers: from abbreviation to complete arithmetization 

On the Rhind papyrus, we previously saw that no sign was used for finding an un-
known or variable in a problem. We also saw that the Babylonian mathematician
consistently referred to the unknowns-to-be-found, of which he knows the sum and
product (the ‘area’), as the ‘length’ and ‘width’. He gave functional names to a quan-
tity in a specific situation, but did not use the terms in the calculations themselves.
This was different with Diophantus.

Diophantus

The assignment in Figure 3 appears in problem 39 from Book IV. In the Greek sen-
tence it is easy to see where the mathematical components are located; with the mod-
ern transcription underneath, we quickly understand the notation method. We will
examine several components.

Figure 3. Problem 39 from Book IV by Diophantus

First of all, we are struck by the use of the small square, which is used like a
word, in the second row of the text. The square is an abbreviation for the Greek word

: the square of a number. There appears to be an exponent (on) after this
element, but it is actually an inflection; for us, this emphasizes how the formal ele-
ment of the square in the text is still an actual part of the running language.

The Greeks wrote numbers with letters, from 1 through 9 simply in the se-
quence of the alphabet, often written with a line above the letter for clarity. 

. This represents 4, because the M with a circle above means (accord-
ing to Diophantus) that it concerns units, Monaden; so here the 4 is just a number.
The letter  next to  represents 10, the following letters stand for 20, 30, etc. This is
followed by the nine hundreds. There were separate words for 1000 and 10,000.

We can now read the ‘1’ and the ‘2’ units (monads). The sign  in the
front is new; this is the building block of Diophantus’ fame. Diophantus said that this
was the unknown quantity of units to be found, the arithmos. Note that the letter al-

Because the sum of the middle term and the smallest term
is a square, let it be 4. Then the middle term is larger than
2. Let it be . Then the smallest term is .x 2+ 2 x–
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pha ( )explicitly indicates that the arithmos is taken only once. Here is something
that we would like to read as .

Diophantus did not use a real minus sign, but he did have a difference
sign, . We can see this from the fact that this sign is never placed at the front. ‘Two
take away one times x’ is a good translation, or .

Equality is simply expressed in words, but with an abbreviation. 
In we read:  is a square and  is
a square. But in this case we can also read ‘the number  has the square-prop-
erty’. Like ‘this rose is red’, which doesn’t imply equality of a rose and a colour.
Diophantus gave each power of the unknown its own sign. 
The transcription of  is our trinomial .
Diophantus used the  (dynamis) for the square of the unknown and K (kubos) for
the cube, both with an index Y, that undoubtedly descended from the second letter,
the Greek upsilon. The fourth and fifth and six powers were created by making com-
binations. The symbol combinations:

Y Y Y Y Y

now ‘mean’ x2, x3, x4, x5, x6 respectively.
But the conversion to a letter such as x and an exponent obscures the original no-

tation. For various powers of the same unknown quantity, Diophantus used various
signs, but in the structure of the sequence of powers, it can be seen which power a
product of two powers leads to.

Diophantus was unable to make a difference in notation between two unknowns,
but in modern interpretations of Diophantus this cannot be seen; for example, the
modern interpretations refer to x and z and act as if Diophantus was able to do some-
thing similar. This is very misleading!

The transcription of problem 39 shows how Diophantus dealt with the situation.
For example, while solving the main problem, a step is made to solving a ‘sub-prob-
lem’. In this sub-problem, the arithmos temporarily functions in a different role.
When the sub-problem was solved, Diophantus returned to the original story line
with the original arithmos. This was a story within a story, a well known narrative
device in classical literature. For example, in Homer’s Odyssey, a singer at the court
of Alkinoös tells a story about the Trojan war, while Ulysses himself is present, who
then tells the story of his own travels. Both stories are stories within the Odyssey it-
self.

It is very clear that Diophantus’ algebraic notation has the character of handy ab-
breviations. Due to these abbreviations, Nesselman (1842) refers to syncopic nota-
tion, as opposed to rhetorical notation in which everything is written out in text form.
In syncopic notation, the symbols do not yet have their independent symbolic mean-
ing and algebra-only mutual relations; Nesselman refers to symbolic notation only
after Viète. It is very clear that there are three types of notation, but linking them to
historical periods, as is frequently done, is not very sensible. They also appear at the
same time, often in the same text.

1x 2+

2 1x–

8x 4+ 6x 4+
8x 4+

3x2 12x 9+ +
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Notations for the unknown and powers of the unknown, 1450–1637

During the European Renaissance, many words (and their abbreviations) for the un-
known were in circulation. One of the most well known was cos (the thing) with its
variants cosa and coss. But other words were also used such as res (the matter), latus
(the side, note the link with square) and thynge (Robert Recorde, Engeland, 1556).
Every writer could use different terms for the powers of the unknown, often accord-
ing to the Diophantic pattern, but sometimes based on a different structure. For ex-
ample, Pacioli (1494) wrote cosa-censo-cubo, where we would write x, x2, x3. He
abbreviated to co, ce and cu and then continued with ce.ce for x4, ce.cu for x6 and p.r.
(primo relato) for x5. So we must see the ce.cu as the second power of the third power
of the unknown, and not as the second power times the third power. 

Still similar to Diophantus, William Oughtred wrote in 1647 in his Clavis mathe-
maticae , 
which is our , because the q, c
and l stand for quadratus, cubus and latus. With this construction, Oughtred kept to
the conservative side; at that time, other methods were already becoming popularvi.

The arithmetical structure of our notation with powers of variables, where multi-
plication of two powers leads to the addition of the exponents, was preceded by no-
tations that only wrote down the so-called index, instead of writing the unknown and
its powers with abbreviations. If there was only a single unknown (as we have seen
with Diophantus), this approach was sufficient. For example, in the notation used by
Chuquet (1445–1488),  stood for 10 times the square (of the unknown).

Although there were predecessors, we have chosen the Dutchman Gielis van der
Hoecke as an example with his In arithmetica een sonderling excellet boek (Antwer-
pen 1537). Van der Hoecke provides a list of symbols for the notation of powers of
the unknown, but also provides a rule for the multiplication of powers. See Figure 4.

The symbols are actually the Latin ordinals, where the first two words are written out
and the rest after Terza are shown as numerals. We encounter Diophantus’ Monade
in the first line: Numerus, number. A number without the unknown, therefore the ab-
solute numbers.

1qc 15qq– 160c 1250q– 6480l+ + 170304782=
x5 15x4 160x3 1250x2 6480x+–+– 170304782=

102

Figure 4. The rule for adding exponents, here called ‘nommers’
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Van der Hoecke not only provides an explanation, but also uses a table to show
how powers can be combined during multiplication. ‘So en hebdi maer te addiren
haerlieder ghetalen oft nommers’ (You only have to add their numbers). In the table
we see a 0 (zero) above the N of Numerus to show the number that people have to
add in this case. 

Finally, Figure 5 shows an example of the multiplication of two binomials, which
shows 10se – 6 pri times 8 pri + 12 ni. The notation is still not entirely symbolic; in
this example it is especially the n of numerus that reveals its role as an abbreviated
text element concerning the declension to the plural (ni, for numeri), including the
notation of the small letter i above the n. But the result is correct, and the multiplica-
tion scheme is clear. 

From Descartes to the present

In 1637, Descartes used almost the same notation as we still use today. Descartes still
deviated from present-day notation for the second powers, which were frequently,
but not always, represented by doubled letters. Figure 6, taken from his Géométrie,
shows some of the variation.

Figure 6. Fragment of La Géométrie (Descartes, 1637)

Descartes provided guidelines for the use of the letters in the same way as Viète. We
consistently find the final letters of the alphabet (x, y and z) being used for the un-
knowns, and the first letters (a, b, and c) being used as coefficients in the equations

Figure 5. Multiplications of two binomials
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or problem situations. This division of the alphabet into its first and final letters re-
placed the division into vowels and consonant used by Viète. Later on, the conven-
tion was established to indicate typical counting variables, such as indexes for rows,
by the letters n, m, i, j and k. 

Standardization of the notation took place very gradually. It was only after the in-
finitesimal calculus in the style of Newton or Leibniz became widely known (which
was many years later) that some uniformity was established. These two mathemati-
cians established the ultimate norms for mathematical notation in principle, in the
same way that the great Bible translations (Luther, King James) established the
norms for grammar and spelling in various countries.

Fractional, negative and literal exponents

Nicole Oresme (1323–1382) used what we could call fractional exponents in his Al-
gorismus proportionum, but these did not become commonplace. In his Van de
Spiegheling der Singh-konst (Theory of the art of singing) Simon Stevin (1548–
1620) was already using fractional exponents; in this book, Stevin addresses the
mathematics of equal temperament, i.e. the division of the musical octave into twelve
equal parts (semitones). In mathematical terms, this amounts to determining the
twelfth root of two and its powers. Stevin used a notation with fractions, but only in
this book, which was not published in his lifetime; he did not use fractions in his al-
gebraic books. 

Figure 7. Wallis’ investigation of the sum of powers

In the work of John Wallis, we encounter the active use of fractional exponents and
negative exponents; in his Arithmetica Infinitorum from 1656, he investigated sums
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of powers of this type  in proportion to sums of the val-
ue of the largest term, in this case . Wallis used
what he called inductionvii to show that such a proportion approaches 1 : 3. The il-
lustration next to proposition 23 (Figure 7) clearly shows the essence of the problem:
the area of ATTTOOOA above the parabola with respect to the area of the entire rec-
tangle. For the cube, Wallis discovered the proportion 1 : 4, and so forth. 

Later on in the book, Wallis investigated other number sequences (and therefore
other types of parabolic curves), for example a series of various types of roots and
sequences that are created by multiplying or dividing the terms from two sequences.
During this process he explicitly referred to what he calls the index of the sequences.
In this way, for example, the sequences of square roots 

is multiplied by a series of fifth roots

via the interim steps

and 

to

where a series is created that Wallis described with index . 
In the book, Wallis used sums and difference of indices in expressions such as:

 and . 

But Wallis did not use the index as an exponent; he still wrote the denominators
of the index with radicals, and still classified the negative indices of differences of
indices as division.

Finally Newton had the honour of being the first to use letters in the exponent; he
immediately used also fractions such as m/n in the exponent.

Review and conclusion

The history of the notation of powers shows how algebraic formalism began by de-
scribing problems in words, then used abbreviations and symbols, and finally devel-
oped into a mechanism where the notation of a problem took over the role of the
‘brainwork’. In that regard, the table of Van der Hoecke (Figure 4) illuminates an es-
sential aspect: in algebra, simple calculation rules can be provided, and correctly fol-
lowing the rules leads to the correct result, in this case the rule for multiplying
exponents (product rule) by adding them. This is an important aspect when doing

0 1 4 9 16 25 36+ + + + + +
36 36 36 36 36 36 36+ + + + + +

0a2 1a2 2a2 3a2

0b5 1b5 2b5 3b5

0a510 1a510
32a510

243a510

0b210
1b210

4b210
9b210

0a5b210
1a5b210

128a5b210
2187a5b210

7
10------ 1

2
--- 1

5
---+=

2 1
2
---+ 5

2
---= 2 1

2
---– 3

2
---=
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mathematics with algebra (in the sense of mathematics using letters and symbols):
the shift from reflection to algorithmic action based on rules that describe the form
of the written algebra, but no longer explain it. Whether we as teachers like it or not,
this loss of meaning is essentially built into this process. 

The loss of visible meaning could also be seen in the gradual transition from the
old, geometry-based notation of A-squared and A-cubed to A2 and A3. The notation
with numerals puts the old geometric meaning out of the picture, and almost auto-
matically places the two powers of A in a sequence, which begins with A, moves onto
A2, then A3 and A4 and never stops. The new, less geometrically oriented notation of
powers made it possible to consider the power An, the general model for the elements
in the series A1, A2, A3, .... .

Aggregation, grouping   
In the following four expressions 

, , 

 and  are sub-expressions. Parentheses, root signs, the horizontal line
and exponentiation are forms of notation that group related symbols together. This is
known as aggregation. Today, aggregation determines the order of the operations,
but in history it was limited primarily to grouping with respect to adding and sub-
tracting a series of terms. 

Here is a small selection of historical uses that deviate from present-day custom.
The selection is large enough to ascertain that the meaning in specific situations in-
terferes with discovering general forms, and that ultimately a systematic grouping
method developed: the paired parentheses. However, until about 1825, forms of no-
tation were used that seem bizarre from a modern perspective. 

Parentheses are one of the oldest grouping methods. In this example from
Bombelli (1550), square brackets are used in combination with underlining:

 for 

Regarding the use of parentheses (or brackets), this is an early and isolated example.
In the printed versions of his book, Bombelli also used the letter L (Legata) and its mir-
ror image to show what was covered by the R.q (square root). Note the minuscule signs
for the variable above the 20 and the 2 on the right-hand side of the equation.

That is . For many years, the preference was given to grouping
items with a single, additional graphic element, and not with two pair-forming signs,
as is the case with parentheses. 

x2 4+ 3 2x– x2 4+ 3 2x–+ 3 2x–
x2 4+
--------------- ax2 4+ b3 2x–+

x2 4+ 3 2x–

R3 2m̃R 0m̃.121 2 121––3

4 24 20– x+ 2x=
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Lines above the letters, Newton (1669):

for
.

This was very common in the 17th and 18th centuries. The lines were also used in
combination with roots; the long tail of the root sign that we use today has its origin
in this line.

In La Géométrie (1636), Descartes used no parentheses at all, but we do find
forms such as the following, often with even more layers of terms next to the braces:

Points were also frequently used to mark the aggregation, especially in combina-
tion with roots. For example, with Descartes  plays the role of our 
and the points could therefore be read as a pair of parentheses. But the point behind
the root could also indicate that the root must be taken over the remaining part of the
formula. We therefore also encounter:

.2 – .2 + .2 + .2 + .2 + 2
for the side of a regular 128-sided polygon with outer radius 1, i.e.

This example is from a text by Dibaudius (1605) on book X of Euclid’s Elements,
which contains root expressions of the type . In this situation, this notation
is ideal.

With binomial coefficients, from the 17th century until far into the 19th century
factors such as n, n – 1, n – 2 were often separated only by points, so that the follow-
ing notation regularly appeared: . Or were n and 1 held together by
the points, as with the root notation? This example is from the Exercises de Calcul
Intégral van Legendre, from 1811! These forms of notation were very common for
mathematicians such as Wallis, Leibniz, Bernoulli, Euler and Gauss. 

We find a special notation for writing polynomials in an ordered form for the first
time with Descartes, but it also appears later. With the expression , the
missing powers of x and the constant term are now visibly absent.

y 4– y 5+ y 12– y 17+ 0=

.2 2.– 2 2–

. . . . . .

2 2 2 2 2 2++++–

A B+

n n 1 n 2––

x6 bx– 0=
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Universal substitution

The examples of the points used with roots and binomial coefficients demonstrate
that notations were often linked to the specific algebraic context and were not gener-
ally applicable. Lines (with roots and in division) and parentheses (as a universal
grouping indicator) did not have that drawback, and these two types of notation
therefore continued until the 21st century. 

This is a good time to reflect on an important characteristic of modern notation: the
possibility for universal substitution. As a starting point, take an expression such as 

Without destroying the syntactic structure of the formula, the elements 2, 1 and x
of this expression can be replaced not only by other numbers and letters, but also by
entire formulas. To ensure that the new component does not interfere with the rest,
we place it inside a pair of parentheses if necessary; this makes the formula into a
block which cannot be influenced from the outside. In this example, if you replace 1
with , replace 2 with some integral formula and replace x with the original
formula, the overall formula retains a correct grammatical-syntactical structure:

Comparing the two expressions (the old one and the new one) shows that our modern
notation unites both the global structure and the detailed structure. Every detail can
become a new whole, in the same way that a word in a sentence can be replaced by a
long description. Modern notation primarily shows the syntactical structure, and to a
much lesser extent an operation to be executed (cf. Chapter 1 on the operational-struc-
tural dimension). If values for x and y for the large formula above are given, then it is
not at all obvious what must be ‘done’ first or calculated first. Our modern algebraic
notation is initially a syntactical notation, and only secondarily a calculation notation.

New notations for human and computer calculation  Algebra as taught in school has
retained at least one notation element from the New Math era: the so-called arrow
language. In this language, the arrows represent operations. The upper part of Figure
8 provides an example. The lower part of Figure 8 shows an arrow chain created in
the educational applet Algebra Arrowsviii.

Figure 8. Two types of arrow chains

2
1 x+
------------

x2 y2+

td
2 tsin tcos+ +
------------------------------------

x–

y

x2 y2+ 2
1 x+
------------+

--------------------------------------

12
+ 8 5 - 34

66
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Arrow language emphasizes the sequence in which operations are conducted. The
sequence is written out completely, and the notation does not provide any visible
grouping into sub-formulas, as is the case with traditional notation. Notations are fo-
cused on a specific type of reader. For example, if the reader is a machine performing
calculations, then such an arrow-based notation is extremely functional. The most
prevalent form of this notation in the computer world is the so-called postfix system,
which we will illustrate with the following example.

This is a calculation written in postfix notation (also called Reverse Polish Nota-
tion or RPN): 

4 5 + 25 2 –

The operations take place by reading from left to right, while taking the following
steps: 
– putting numbers on a stack 
– performing operations on the topmost elements of the stack
– if necessary, the result goes back onto the stack 
– if the entire sequence has been executed, the result remains on the stack. 

The status of the stack after every step is shown in Figure 9 from left to right; below
the stacks are the objects read from the input line.

Figure 9. Visualization of the calculation process

An essential aspect of RPN is that there are no parentheses. This is because grouping
is unnecessary. However, we can leave the operation steps in standard notation, and
then the machine provides an algebraic expression as the result: the grey fields below
are therefore pieces of the formula built up in standard notation. In Figure 10 we see
an automatic translation process from RPN to standard notation.

Figure 10. From postfix to standard notation

In this way, the formula can be built up in steps in a given arrow chain; an activity
that would appear to be educational; nonetheless, it is rarely used in school. 

4

5

+ 25 2 –
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+ 25 2 –
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We find another new notation method in spreadsheets generated by software such
as Excel. A spreadsheet is a grid in which every cell represents a value, which is cal-
culated by a formula linked to the cell, which can also refer to other cells. 

Figure 11. Spreadsheet with Pascal’s triangle

In this way we have a two-dimensional scheme of variables, each of which is given
the name of its coordinate pair on the grid. In Excel, for example, the formula

 can be placed in cell C7. The values of the cells left of and above C7 are
then added. If we place the value of 1 in the cells in column A and in the cells in row
1, and if we copy cell C7 to the remainder of the cells, then we have a slanted version
of Pascal’s triangle.

The power of spreadsheets is, among other things, that a formula from a cell can
be copied to a group of other cells, where references will be copied relatively or ab-
solutely as desired. Entirely new possibilities and methods have been created in this
process, not only for bookkeeping and calculating weighted averages with tests, but
also for mathematics itself!

ALGEBRA AND GEOMETRY: HELPFUL NEIGHBOURS OR OPPOSITES?

Euclid and Applet Area Algebra

Around 300 BC, 1200 years before the word ‘algebra’ began to take its place in
mathematics, Euclid formulated proposition II, 4:

If a straight line is cut at random, the square on the whole equals the squares on
the segments plus twice the rectangle contained by the segments (Heath, 1910).

Even the oldest known manuscripts of Euclid’s elements contain figures. In propo-
sition 4 of Book II, we find the drawing shown in Figure 12 on the left. For a reader
from the 21st century, it is tempting to read the following into this figure:

B7 C6+

x y+ 2 x2 y2 2xy+ +=
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referring to an applet from the Wiswebviii , as shown on the right. They do appear
very similar. But why does Euclid use the diagonal line BD? It doesn’t have anything
to do with the problem, or does it?

Figure 12. Euclid and Geometric Algebra applet, both geometry and algebra

The answer becomes clear when we examine Euclid’s proof. This proof consists of
constructing a square on AB, which is based on proposition 46 from Book I; this
proposition is included in the Elements just before the Pythagorean theorem. After
this, the diagonal line BD is drawn, and finally HK is drawn parallel to AB through
the intersection of CF and BD. The proof consists of a long argument to show that
DFGH and GKBE are equal to the squares on the segments AE and EB and that
HGEA and FCKG are each equal to the rectangle built by AE and EB. 

The diagonal BD plays a dominant and essential role in this reasoning. It creates
all kinds of equal angles and a game with isosceles triangles is the backbone of the
substantiated construction of the figure, which – for Euclid – is the actual proof of
the proposition.

At first glance, it would thus appear that Euclid does not have much to do with
.The formula looks like a calculation with objects that ap-

pear to represent something numerical; the geometric proof refers to shapes of fig-
ures, taking together what the lines ‘contain’.

The present-day student and the creator of the applet no longer see the possibility
of positioning the squares and rectangles in the figure as a problem. The emphasis in
the applet Geometric Algebra is on other aspects:
– identifying a product of two factors as an area; 
– investigating the geometric-combinatorial structure that corresponds with the ad-

dition of line segments x and y to become x + y, and multiplying this term by itself
to become .

– interpreting  as a summary of the result.

Viewed in this way, the applet becomes more of an algebraic continuation of Eu-
clid’s proposition problem in a somewhat different direction and using other means,
rather than a contrasting approach to that of Euclid.

A B

CD

E

F

GH K

x y+ 2 x2 y2 2xy+ +=

x y+ 2 x2 y2 2xy+ +=
x y+ 2 x2 y2 2xy+ +=
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Classical Greek mathematics is itself dualistic. There is the Pythagorean move-
ment, which is based on numbers, and there is the geometric movement, where figures
made of points and lines set the tone. The geometry books of Euclid’s Elements are
vital to the latter movement. In these books, Euclid did what no modern teacher would
dare: present the Pythagorean theorem without mentioning the 3-4-5 triangle. Di-
ophantus, on the other hand, appears to represent the numerical tradition. However, in
his description of the reasoning steps in the calculation process, Diophantus uses the
same terminology as Euclid did in his General Rules, which states, for example:

If equals are subtracted from equals, then the remainders are equal.

In the Arabic-Persian mathematics that took place during our Middle Ages, the
Greek geometric style was continued. Equations were solved by means of geometric
figures, and the link with the geometric algebra of Euclid is obvious. However, an
example from the Hisab al-jabr w’al-muqabala by Al’kwarizmi (780–850) of Bagh-
dad leads one to suspect that there is something more going on than was the case with
Euclid. In this tradition, Jabr has the meaning of adding the same to both sides of an
equation in order to eliminate terms from both sides that could be removed (the fre-
quently used formulation ‘to eliminate negative terms’ is somewhat anti-historical;
moreover, jabr has other meanings such as regrouping and setting broken bones).

In the following example, something is added to both sides of the equation. The
question is:

A square added by 10 of its roots is equal to 39, how big is the square?

First there is a solution presented as a mathematical recipe: take half of 10, which is
5. Add the square of this number to 39, the result is 64. Take the square root, which
is 8. Subtract 5. The answer is 3. It is once again immediately clear how the recipe
can be generally applied to similar equations. As proof for the method, we draw a
square that represents (or is) the square to be found. On the four sides, rectangles are
placed with a width of . Added together, these four rectangles are 10 times the
square root. The four squares that are attached to the four corners, taken together,
form the square of 5. We now know the length of the side of the large square: 8; after
all, the total area is 64. So the square root is 3, because this is 8 minus two times . 

Figure 13. Visualization of the proof 
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The proof of the method is purely geometric, in the style of Euclid. But nevertheless,
it has a different flavour! Euclid drew a general position of squares, and a relation-
ship between areas follows from the mutual position; in the Arabic-Persian style, the
figure is in a certain sense already based on the square to be found. After all, the prob-
lem is determined by the given values of 10 and 39. That’s why the drawing in Figure
13 is on scale!

Arabic mathematics continued the tradition of allowing other means of construc-
tion besides straight lines and circles when building a solution; Omar Khayam was
especially famous for his solution of a cubic equation using a circle and hyperbola.
Omar was actually even more geometric than Al’kwarizmi. He made sure that the
various quantities in the equation are all linear, plane or solid, for example by con-
structing a rectangle with a given length and a unit length.

Viète made a very explicit distinction between numbers and quantities. In his In
artem analytice isagogen (1591), he built a system of quantities in which only the
same species can be taken together/added. In concrete form, we saw this previously
in the way in which Viète wrote his equations: homogeneously.

However, quantities can always be multiplied. This process results in new types
of quantities such as area and volume. But Viète used quantities to build a general,
abstract system, in which a cube can also be multiplied by a cube, to form a new
quantity, which cannot be interpreted so concretely!

The true unification of the diversity of geometry and algebra came about in the
17th century. During this process, algebra matured, developing from a child who
plays with somewhat non-worldly problems involving equations into a craftsman
who is extremely skilled in helping to solve mathematical and even non-mathemati-
cal problems. 

ANALYSIS AND SYTHESIS, THE LESSONS OF DESCARTES

In 1637, René Descartes (1596–1650) published his Discours de la méthode pour
bien conduire sa raison et chercher la vérité dans les sciences. The Discours itself
was followed by three essays, La Dioptrique, Les Météores and La Géométrie, which
demonstrated the method in various areas. La Géométrie is therefore part of his gen-
eral method for scientific problems. His point of departure is that only the mathemat-
ical method can lead to true certainty in science. This resulted in a method which, in
simplified form, amounts to the following:
a. every question about quantities can be reduced to a geometric problem;
b. every geometric problem can be reduced to an algebraic problem;
c. every algebraic problem can be reduced to solving one or more equations with one

or more unknowns.

Regardless of the value of the philosophical-methodological point a, points b and c
provide a methodology that can be evaluated and discussed from a mathematical
standpoint. Descartes comes straight to the point in the first sentence of Book I of La
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Géométrie (Figure 14): “Any problem in geometry can easily be reduced to such
terms that a knowledge of the lengths of certain straight lines is sufficient for its con-
struction”. The final word states the mathematical method that is used for this proc-
ess: ‘construire’. The importance of this word cannot be underestimated: it means
determining the solutions of problems by explicitly constructing the solutions; in this
framework, a proof by argumentation is not a complete solution for a problem. Ex-
plicit constructions are required, and Descartes also provides geometric construc-
tions for solving equations.

Figure 14. The opening phrase of La Géométrie

For transforming a geometric problem into algebra, Descartes then provides a con-
crete operational plan. The first step of the plan is important and requires additional
explanation, because the step is the core of the method:
1. pretend that the problem has already been solved;
2. give names (letters) to all line segments, both known and unknown;
3. try to express a single quantity in two different ways in the above-named line seg-

ments; these expressions are equal, which results in an equation;
4. solve for the unknown of the equation.

The analytical method  
Pretend that the problem has already been solved: with this statement, Descartes re-
fers to Pappus (4th century A.D.). According to Pappus, to find the solution to a
problem (i.e. the construction of the proof that is sought), you can begin from the sit-
uation where the construction has already been completed. You then study the figure
in order to find the essential characteristics and the relations with simpler proposi-
tions. This is the phase of analysis, during which the situation is essentially untan-
gled. This phase is followed by synthesis, during which the construction, or the
proof, is built up from the analysis. 

In Greek geometry, the synthesis phase is the actual solution, because the proof –
or the construction that is to be found – is ‘the solution’ to the problem. In this ap-
proach, the analysis phase is actually a preliminary research phase, a technique to
find a proof. 

The analytical method in geometry owes its name to this distinction of Pappus.
The new aspect of Descartes’ method is that during the analysis phase, he uses alge-
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bra in a special fashion, in the global manner described above. Later – and certainly
today as taught in school – the algebraic process is viewed as the only solution phase,
culminating in finding values for unknowns or for equations that establish the solu-
tion set. The calculation of ‘the solution’ in the initial situation and the possible ge-
ometric tests are then used to check the solution, and do not form the solution
themselves. For people who feel certain about their algebraic technique, these checks
are not even essential. This is an important shift in the core of the mathematical ac-
tivity: from construction to analysis. However, in many places in La Géométrie, it is
very clear that the synthesis phase has not yet been forgotten, on the contrary.

Multiplication, unit, abandoning homogeneity 

At the beginning of Book I, Descartes shows the basic operations of algebra, applied
to line segments. Taking together or removing compare to addition and subtraction,
the traditional relationship. The first real construction in the book, shown in
Figure 15, concerns multiplying line segments, and it is striking.

Figure 15. First construction in La Géométrie

Previously, Descartes indicated that he assumed a unit segment, which can be chosen
randomly. In the figure, that is line segment AB. DB and CB are given line segments.
ED is made parallel to AC, and then AB is to DB as BC is to EB. EB is the fourth
proportional of AB, DB and BC. The text next to the illustration reads: “EB is the
product of DB and CB”. In this example, the product of two line segments is another
line segment, and not an area, as with Euclid, Viète and in the Wisweb-applet!

Thus,  is defined as the fourth proportional of 1, a and a, in other words by
. To make it very clear, Descartes frankly states that he is using the terms

square and cube with their customary meanings, but that  and  really are line
segments. As a result, expressions such as ab – c become meaningful; the require-
ment that algebraic forms and expressions must be homogeneous has been aban-
doned. However, Descartes does explain that by adding or removing units in the
terms of aabb – b, a quantity of dimension three can be created, from which the cube
root can be taken. Descartes determines the cube root of a quantity, a line segment a,

a2

1:a a:a2=
a2 b3
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by means of continued proportion, therefore through the x in 1 : x = x : y = y : a, and
not by finding a side x of a given cubic quantity a.

True to the title of La Géométrie, Descartes’ algebra is an algebra of line seg-
ments, created to solve geometric problems and to deal with algebraic problems ge-
ometrically. 

Making algebra from geometry, algebraic modelling 

Figure 16. x and y as distances to two given lines
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Give names to all line segments in the figure, both known and unknown.
In combination with ‘Pretend that it is solved’, this is a powerful description of what
we would currently call the modelling phase of a problem. In his solution strategy,
Descartes also provides a wonderful tip: choose the letters a, b, c, d for the known
line segments and x, y, z for the unknown line segments. It goes without saying that
this tip has been generally followed ever since.

La Géométrie is about geometry, the algebra used in the book is an aid. Descartes
primarily aimed to classify which means of construction were required for specific
problems. A special and widely applicable tool that he developed in this process is
his method of determining points by using the distance to two given lines. Because
the point to be found is unknown, these distances are indicated with x and y, in ac-
cordance with the tip given above. 

The problem shown in Figure 16 is the first one in the book where this happens.
The problem concerns the dotted curve, which was made with a simple mechanism.
Mechanically generated curves were an important theme in the geometry of the 17th
century; for example, consider the cycloid, the curve defined by the path of a point
on the edge of a circular wheel as the wheel rolls along a straight line.

GA is a fixed line segment. Point L moves on the vertical line through A. The fixed
triangle KLN slides as L moves over the vertical line. Point C, the intersection of line
GL with the line passing though K and N, describes the dashed curve. Here, line seg-
ment CB is named y and BA is named x. In addition: GA = a, KL = b, NL = c, the
known (fixed) quantities in the problem. 

In the figure, direct proportionalities can be found due to two pairs of similar tri-
angles: KNL~KCB and GAL~CBL. The line segment BL can therefore be calculated
in two ways; Descartes thus arrives at an equation which shows the relationship be-
tween x and y. It is a problem with an indeterminate solution: there are many possible
points – or pairs of line segments x and y, if one prefers. In this case, the solution is
a locus, a set of points, satisfying the conditions of the problem. This is a second-
degree equation; Descartes refers to a curve du premier genre. He concludes that the
curve is a hyperbola.ix

Equations of the third and higher degree 

Solve for the unknown in the equation. Descartes provides explicit instructions for
solving equations from the third through sixth degree. In the constructions for third
and fourth-degree equations, a circle is cut by a parabola; the position and measure-
ments of these figures are expressed in the coefficients of the equation. For the fifth
and sixth-degree equation, Descartes intersects an extra curve, which is generated by
a mechanism of a rotating line and a sliding parabola. In the above example in Figure
16, GL is a rotating line and KN is a sliding line; in the new construction the sliding
line is replaced by a sliding parabola. An important theme in La Géométrie is indi-
cating which curves – which are produced in similar ways – are geometrically ac-
ceptable in constructions. For the third and fourth-degree equations these are the
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conic sections, for the fifth and sixth-degree equations it is the above-named Carte-
sian parabola. The degree (in an algebraic sense) of the Cartesian parabola is higher
than that of the normal parabola; Descartes’ suggestion at the end of the book that all
constructions (of roots of equations) can be solved with his general method is per-
haps too abrupt, because he does not work it out any further. However, it does appear
that Descartes saw his approach as essential for his plan to be able to solve all geo-
metric problems.

Throughout La Géométrie, the reader encounters many other practical algebraic
tips. For example, in many situations we know a point to be found or a curve to be
investigated, and we search for the second intersection with the curve of a line pass-
ing through that first point. In algebraic terms, this amounts to finding a second so-
lution for an equation when a first solution is known. In this case, it is clumsy to solve
generally; it is easier to divide out the factor corresponding to the known solution.
Descartes demonstrates this process extensively, including the long division for di-
viding a polynomial by a linear factor.

Final remark

It is widely assumed that René Descartes was the first to use analytical geometry (in
the sense of using coordinates in geometry), and that this was his greatest contribu-
tion to mathematics. However, this assumption is incorrect. Fermat and Mersenne
used related methods, and English mathematicians also claimed priority. But even
worse, this assumption does not take into consideration Descartes’ main goals. His
primary accomplishment in La Géométrie was to expand the construction repertoire
of geometry from the circle and line to the higher-degree curves, which he systemat-
ically generated. Descartes also indicated which curves he believed were acceptable
for this purpose. The title of the book in which Bos (2001) provides detailed support
of this vision of La Géométrie is significant: Redefining geometrical exactness: Des-
cartes’ transformation of the early modern concept of construction. 

HAS EVERYTHING BECOME COMPUTABLE WITH ALGEBRA?

Descartes’ statement about being able to solve all problems via the geometric-alge-
braic route sounds overconfident. Nevertheless, it is a good idea to explore the rela-
tionship between geometry and algebra in what is historically perhaps the most
important area of application for mathematics: astronomy. This tells us something
about the limited computability of ‘the world’. The five greatest books in Western
European astronomy from before 1700 are without a doubt:
– Almagest (Ptolemy, 85–165 AD);
– Revolutionibus orbium coelestium (Copernicus, 1543);
– Harmonices mundi (Kepler, 1619);
– Dialogo dei massimi sistemi (Galileo Galilei, 1624);
– Philosophiae Naturalis Principia Mathematica (Newton, 1687).
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Ptolemy described the cosmos, with the earth as the central point of a complex sys-
tem of moving spheres and circles. In other words, he used geometry. The presenta-
tion of the material also followed the lessons of geometry. In his approach,
Copernicus linked up closely with Ptolemy; he used the same geometric methods,
but he opened the point of view that the earth does not have to be the fixed central
point of the universe. Galileo supported him especially in this point of view, and also
kept to the geometric style. In Astronomia Novae Kepler also provided a geometric
model that determines the mutual distances between the planetary orbits: the nested
spheres with the five regular polygons in between. Later he introduced the elliptical
orbit of the planets around the sun. 

Figure 17. Newton’s proof for the elliptical orbits of the planets

Of Newton it is sometimes said that he used analysis (calculus) to prove that the el-
liptical orbits of the planets are a result of the universal law of gravitation, which
states that this force is inversely proportional to the distance between the attracting
masses. Figure 17 is Newton’s sketch for accompanying central proposition 10,
which addresses the elliptical orbit.

Here, Newton shows that if planet P is held by a centripetal force to S in an ellip-
tical orbitx, that force must be inversely proportional to the square of SP. In other
words, he used geometry. The small components of the figure, near planet P, essen-
tially represent the motion directions, and these can certainly be analysed in the mod-
ern sense of the word. Regarding the concepts of motion and limit (Newton used
other terminology), this is correct. But it is not algebra like we saw in Descartes’ ge-
ometry. The proof takes place entirely in Euclidian style by means of composed ra-
tios while using the properties of the ellipse. But here as well, a limit has been
reached. In Principia, the elliptical shape of the planetary orbit is proved geometri-
cally. However, predicting the moment when a planet will be at a specific position
of its orbit is another story. During the calculation process, given the average anom-
aly M and eccentricity e, the true anomaly E (in radials) is found from

M E e Esin–=
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Solving for E in this transcendent equation is impossible with the tools of classic
geometry (and algebra). Moreover, the ellipse represents the two-body problem. In
this problem, one planet moves around one sun, without being disturbed by other
planets. It is precisely these visible disturbances of orbits that led later on to the dis-
covery of previously unobserved planets such as Uranus and Neptune. The calcula-
tion of these disturbances, and the reverse process of determining the positions of
unknown planets based on these disturbances, are great achievements. These calcu-
lations are truly algebraic/analytical.

TOWARDS THE BROAD SPECTRUM OF MODERN ALGEBRAS

The algebraic solution of polynomial equations, which in this chapter we left with
the work of Ferrari, remained an important focus of mathematical interest. The at-
tempts to find an explicit solution for fifth-degree and higher equations using alge-
braic means also led to a great deal of research.

As early as 1798, Carl Friedrich Gauss (1777–1855) showed that the regular 17-
sided polygon could be constructed with compass and straightedge. Algebraically,
this meant that the complex solution of the equation  could actually be cal-
culated by solving a series of second-degree equations, where the coefficients of the
following equation are rational expressions in the roots of the previous ones. 

Gauss also found which regular p-gons (p prime) could be constructed in this way:
p must be a Fermat prime number, therefore a prime number of the form .The
only known prime numbers of this form are 3, 5, 17, 257 and 65,537. In 1799, Gauss
also showed that every polynomial equation with real or complex coefficients has a
solution in the complex plane; this is the so-called fundamental theorem of algebra.
However, theorizing about the existence of solutions does not say much about find-
ing the solutions, let alone about expressing them in the coefficients. Of course, the
search for explicit algebraic expressions in the coefficients of the equation for the
roots was continued. But without success! ‘Algebraic’ means with expressions built
up from the coefficients, with the usual basic operations and extracting roots, where
the index of the root is a natural number, therefore with so-called radicals.

Paolo Ruffini (in 1799) and Niels Abel (in 1824) showed that such expressions
cannot exist for the general ‘quintic’ (the fifth-degree equation). Ruffini’s proof
made use of modern tools such as the permutation properties of the roots of an equa-
tion. His proof is complete, except for a small defect. Abel was given the honour of
providing the complete proof. The relationship between the solutions of the equa-
tions and the number structures in which they exist (the so-called fields) was inves-
tigated later by Galois, who was able to define which equations could be solved with
radicals. Galois’ work also relied strongly on the permutation properties of the roots
of equations, especially on subsets of permutations that do not move some of the
roots. His most important results are known under his name: Galois Theory.

During the 1920s and 1930s, Emmy Noether and Bartel van der Waerden brought
19th-century algebra to a higher level of abstraction. Structures such as groups, rings,

x17 1=

22n 1+
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modules, fields and vector spaces now define the image of algebra; equations and
their solutions became an illustration in the margin of a theory that they originated
initially.

Following this step to higher levels of abstraction, progress continued with tran-
scendental extensions, an ‘algebrafication’ of what a derivative of a function is, ideal
theory, curves and manifolds, which on the one hand appear to be special ideals in a
polynomial domain, and on the other hand solution sets of a set of equations. Topol-
ogy also acquired its algebraic characterization methods. In knot and graph theory,
the classification of the elementary particles in quantum mechanics and so forth, eve-
rything appears to be characterized by groups. The general cataloguing of finite and
infinite group structures was therefore an important theme of research during the past
200 years!

BACK TO ALGEBRA IN SCHOOL

The perhaps somewhat overly modernized students of today find the solution of an
equation such as  in a totally different fashion than Ahmes, Diophantus
and Galois did. They enter the left and right parts of the equation into their graphing
calculator, have the graphs for both parts drawn on a broadly chosen domain, and use
the Intersect option (see Chapter 8). After several moments of approximation, some
correct decimals are shown. This method differs from traditional algebra in various
ways:
– Variable and unknown

Traditional algebra sees ‘x’ as indicating a solution for which the existence is as-
sumed, and after transforming the equation to a different form, for example by re-
ducing to zero and factorization, the unknown is essentially revealed. It turns out
to be simply 11 (or -7). The graphing calculator approach shows that both 
and 77 are descriptions of lines in the plane. The solutions (x = 11 and x = -7) are
now associated with the intersection points of these geometric curves. In these de-
scriptions, x must be seen as a changing quantity, which can take on all possible
values in a domain in order to provide the graph. In traditional algebra, there is no
such interpretation of the letter x in the equation.

– Analysis versus algebra
The graph concept is closely linked with the concept of change, which has a rather
limited place in algebra, but is of great conceptual importance for analysis. The
intersect button of the graphing calculator is also part of analysis; with the numer-
ical graphing calculators this is based on a step-by-step approximation process,
and not on an algebraic strategy constructing the roots with some general solution
formula (although some students expect this).

– Function versus equation
When solving equations, with Descartes we also encountered geometric figures –
still in a coordinate-like system – but these were of an entirely different nature:
the solutions for an equation were constructed geometrically and the drawn fig-

x2 4x– 77=

x2 4x–
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ures (lines, circles, parabolas) had nothing to do with the equation to be solved in
the sense of a figure that represents the equation. An essential aspect of analytical
geometry with a Cartesian coordinate system is the equivalence of the x and y di-
rections. This concerns the plane, and the coordinates describe the points. With a
graph, also in the graphing calculator example just mentioned, one variable – here
the x – has the independent role, and the other variable is dependent, in this case
via a formula.

Figure 18. One of the oldest graphs (10th or 11th century): planetary positions?

Figure 19. Graph of the British trade balance (Playfair, 1782)
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The graph, as a representation of change processes in time, also has its historic roots,
but these do not lie in the history of algebra. In Figure 18, we see one of the oldest
known graphs, a 10th or 11th century figure which possiblyxi represents the positions
of planets (in any case: these are the symbols on the left) in the course of time. Time
charts, now with typical economic variables such as import and export, are subse-
quent examples in history; the example in Figure 19 is from Playfair, 1782. High
school mathematics pays a great deal of attention to these types of graphs. However,
little historical support is available to link these graphs with algebra. 

The true graphs, as shown in these two historic examples, are highly suited for vis-
ual representation of data, and especially for comparing different time series in a sin-
gle figure. Historically, graphic representations of formulas originated from
analytical geometry; the approach used for problems involving tangent lines and ar-
eas also has its historical roots in analytical geometry. However, since the 1960s the
school curricula have linked the analytical geometry approach and the graphical ap-
proach directly to each other, the latter as visual representation of change in analyti-
cal geometry, possibly with occasional confusion between the two.

School algebra took its own track in history even in more ways. In arithmetic
books from the 16th century, we often find a chapter that includes algebra, some-
times referred to as ‘the Rule of Cos’. An interesting author is Robert Recorde, who
wrote a book about arithmetic with the title The Whettstone of Witte (1557). In this
book, Recorde makes a distinction between ‘abstract nombers’ and ‘nombers de-
nominate’. Abstract nombers are the pure numbers themselves, and nombers denom-
inate are, among other things, expressions such as 10 shillings or 13 miles.
Surprisingly, the denominate nombers also include the Cossike nombers 3 times cos,
4 times the square, with a Diophantus-like notation. Today (2010), if teachers were
to explain expressions such as  with images of 3 apples and 5 bananas, they
would no longer be taken very seriously by mathematics educators, but they would
have an important English schoolbook writer from the 16th century behind them! 

Recorde discusses exercises and operations with these nombers for many pages,
and only then arrives at the actual Algebers Rules for solving equations. Such an
equation always arises in a specific situation. The first example is of a type that is
still loved (and perhaps maligned):

Alexander, when asked his age, said that he was two years older than Ciphesto.
Yes, said Ciphesto, and our father is 4 more than our ages together. 

Taken together, the years of ourselves and our father are 96. 
How old are we?

The student is then given an important tip (the book is written in dialogue
form): indicate the unknown.

.... I will begin with the youngeste mannes age, and that will I call  which
is the common supposition in all such questions. 

3a 5b+



AAD GODDIJN

66

The sign  stands for one times the number to be found. There is also a sign 
for abstract numbers, once again the same as with Diophantus and others. The
amount taken together is quickly set equal to 96: .
Eight units are removed from the left and right; and then it turns out that Alexander
is 22. 

In contrast with the Whettstone, Descartes’ La Géométrie does not emphasize the
student who drills and learns; the accent is primarily on building up new theory.
These are therefore two distinct types of literature, one for students and one for sci-
entists; this distinction appears to typify the early and modern history of algebra. For
example, until 1900, geometry education appeared to be largely dominated by Eu-
clid’s Elements, in which the axiomatic system was clearly visiblexii. Schoolbooks
followed, although with more and more deviations from the original system and in-
sertions from translators and adaptors to the work as it was handed down. However,
teaching algebra appeared to go its own way and quickly tended to disseminate tech-
niques and rules, supported at most by imitation applications in questions about fa-
thers that are three times older than their four daughters together will be in five years
from now. This resembles some aspects of modern mathematics education, such as
competitive taxi rates from which the client can choose, even though the client is
more concerned about whether there will be even a single a taxi waiting at the station.
None of these were realistic applications.

Looking back on history, we see that the systematic formation of theory in algebra
took place later than that in geometry, and that the theory immediately reached such
a high level at the beginning of the 19th century that it was almost completely outside
the reach of general preparatory education, which we now know as secondary edu-
cation. Beautiful elements from the theory of equations were the recognition of the
sum, product and other symmetrical functions of the solutions of an equation in the
coefficients. We saw this with Viète, it was one of the pillars of Galois theory. Before
the Dutch secondary education mathematics curriculum reform in 1968, such an el-
ement was still a backwater of the formula for second-degree equations. 

With traditional Euclidian geometry, the relationship between school and theory
was different still in the 19th century. Amateurs such as Napoleon (emperor), Bro-
card (lieutenant), Lemoine (musician) and Emmerich (teacher) contributed substan-
tial new discoveries. And – clearly with the latter – also kept in the link between
research and education alive.

The emphasis on precise algebraic calculation at the cost of reasoning in educa-
tion possibly has its fundamental origin in the 17th and 18th centuries, especially due
to the belief that all problems could be solved by means of industrious calculation.

In the novel War and Peace by Leo Tolstoy, the somewhat old-fashioned and
strict Prince Nicholas Bolkonski gives lessons in geometry and algebra to his daugh-
ter Mary. In pedagogical terms, he characterizes the two disciplines as follows: 

He used to say that there are only two sources of human vice: idleness and su-
perstition. He acknowledged only two virtues: activity and intelligence. He
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himself undertook his daughter’s education, and to develop these two cardinal
virtues in her gave her lessons in algebra and geometry. He arranged her life so
that her whole time was occupied by lessons and other useful activities. 

Activity as opposed to intelligence, algebra as opposed to geometry; the ‘meaning-
less’ algebra as taught in school has its roots in times that go further back than the
educational reform following World War II, they go back at least to Napoleon’s Rus-
sian campaign in 1813.

In the 21st century, school algebra still seems to be growing completely away from
its own mathematical challenge (or perhaps it has grown away yet again). Is there a
way to go back to meaningful algebra? Of course there is a way back, and innumer-
able moments from the history of algebra offer many starting points for restoring
meaning to algebra. 

NOTES

i This sexadecimal number notation, in which the ‘digits’, ranging from 1 to 59, are notated in a decimal
sub-system, existed in Mesopotamia since about 3000 BC. Extensive tables were available for divi-
sion, multiplication, inverse and square roots. The system is not as much a position system as we are
used to; the arithmetical context informs the interpretation. Sexadecimal fraction calculation is also
possible, similar to our decimal fractions. This sexadecimal fraction calculus in particular survived un-
til the Italian Renaissance.
From the sexadecimal system we inherited our sexadecimal angle measuring system in degrees, min-
utes and seconds, as well as our time measurement. These two are closely related. Time and angle meet
in the cosmic clock within astronomy. 

ii Diophantus’ notation will be addressed in more detail below. 
iii In the original text Diophantus uses the same sign for the new unknown.
iv According to Paul Tannery, who edited a text edition of Diophantus’ Arithmetica in 1895, this Dion-

isius was bishop of Alexandria from 248-265. Diophantus may have been Christian and a disciple of
Dionisius. This quote is also included at the start of this book. 

v Egli è scritto in lingua matematica, e i caratteri son triangoli, cerchi, ed altre figure geometriche, senza
i quali mezi è impossibile a intenderne umanamente parola; senza questi è un aggirarsi vanamente per
un oscuro laberinto.[Galileo Galilei, Il Saggiatore, in Opere di Galileo Galilei (a cura di Franz Brunet-
ti), UTET, Torino, 1980, vol. I, pp. 631-632 ]

vi Ougthred’s equation has as solution the two final digits of the year of publication.
vii Wallis does not provide Induction in the moderns sense. He is satisfied with showing a pattern of frac-

tions with differences increasingly smaller than 1/3 for the cases with top term 1, 2, 3, 4, 5 and 6.
viiiSee http://www.wisweb.nl for many more applets on algebra.
ix Frans van Schooten (1615 – 1660) translated La Géométrie in Latin, to improve the book’s dissemi-

nation. He added in his book a (synthetical) proof that it concerns the hyperbola.
x He finishes the proof later, in proposition 17, by showing that a given starting point and initial velocity

determine one unique orbit of planet P.
xi The exact meaning of the graph is unknown. It seems to suggest a back-and-forth movement of plan-

ets, but these cannot be linked to the real movements of the planets. As there are no related graphical
representations available from this period, every interpretation  even the one that this is a graph in-
deed  remain speculative.



AAD GODDIJN

68

xii There are some exceptions, such as Éléments de géometrie by Alexis Clairaut (1741) and Grondbe-
ginsels der Meetkunst (Principles of Geometry) by Pibo Steenstra (1763). More applied geometry
books are available in the 17th century, mainly for architects, land surveyors, and fortress builders.
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3.  FROM ARITHMETIC TO ALGEBRA

“You can’t know that (...), do you? You don’t know how many there are.” 
(Student during classroom observation, this chapter)

INTRODUCTION

Algebra, isn’t that just advanced arithmetic? It’s not quite as simple as that. In prac-
tice, the relationship between arithmetic and algebra is not an easy one, and the tran-
sition between various types of education creates an additional complication. Students
in secondary education continue to work with arithmetic, but differently than in pri-
mary school. Education for young children pays little attention to algebraic thinking,
even though there are certainly opportunities to do so. Important aspects of algebraic
thinking include implicit reasoning and generalization. If young students are encour-
aged to develop algebraic thinking, and this thinking is maintained and expanded in
the subsequent years, a longitudinal learning trajectory for algebra is created. This can
not only narrow the gap between arithmetic and algebra, but also between the various
types of education. This chapter shows how such a longitudinal learning trajectory
could be given shape.

Teachers in primary education have long thought differently about arithmetic les-
sons than teachers in secondary education. Many high school mathematics teachers
appear to think that their students have not learned arithmetic properly before they
came into their class, while teachers in primary education tend to say that arithmetic
skills are not properly maintained in secondary schools, and that students start using
the calculator too early. It is unclear whether there is a transition problem here that can
be solved by making better agreements about the content of education, or whether the
education in one or both types of schools is below par. This discussion has been going
on for many years, as shown by the following examples from the Netherlands.

In the first volume of the journal Euclidesi, Beth (1925) wrote that the level of
both primary and secondary education, generally speaking, had declined. In that era,
the discussion focused partly on the question of what aspects of arithmetic should be
addressed in secondary education. Beth lamented that reducing composite fractions
and taking square roots and cube roots contributed little to the formation of concepts.
A short time later, Wijdenes (1927) described his mathematics lessons during the
first year of the HBS (grade 7 in the former Dutch high school). He clearly focused
on doing arithmetic with letters, which he distinguished from algebra. According to
Wijdenes, doing arithmetic with letters concerns the first manipulations with sym-

P. Drijvers (ed.), Secondary Algebra Education, 69–87.
© 2011 Sense Publishers. All rights reserved.
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bols, for example simplifying expressions such as  to become
.

‘Arithmetic with letters’ also included reversing the order of addends
( ) and reading formulas. Today, we would refer to these activities as al-
gebra, not arithmetic. Much later, this delineation was again addressed when people
began discussing algebra in primary education. At that time Wijdenes (1953) support-
ed the idea that primary education should provide an introduction to algebra by doing
arithmetic with letters. Negative numbers, and certainly rules such as ‘minus times mi-
nus is plus’, appeared to belong to the domain of algebra, and therefore to secondary
education. 

In 1989, a group of instructors from various teacher education programmes in the
Netherlands again addressed the developments during the transition from primary to
secondary education (Goffree & Buys, 1989). Based on the theme of negative num-
bers, this group explored the twilight area between primary and secondary education;
this chapter also explores this area. We will focus primarily on the relationship be-
tween arithmetic and algebra, in particular on promoting algebraic thinking, which
could start early in primary school. We will also pay attention to building upon ar-
ithmetical strategies and developing arithmetical skills in secondary education. The
examples we have chosen are all from the algebra strand Patterns and Regularities.
For that matter, they can be supplemented with many other examples from the other
learning-teaching trajectories.

ALGEBRA AND ALGEBRAIC THINKING

In the first chapter of this book various facets of algebra (as taught in school) are de-
scribed. For example, it is noted that the use of the verb form is important. In this re-
spect, the authors of that chapter are walking in the footsteps of Freudenthal (1968),
who proposed that we should not speak of mathematics, but of mathematization. By
extension, we prefer the term ‘algebraic thinking’ to ‘algebra’. Algebraic thinking con-
sists of aspects such as generalized arithmetic (using literal symbols), the development
of mathematical models and the development of the language of algebra. Usiskin
(1997) distinguished five aspects of this algebraic language: unknowns, formulas, gen-
eralized patterns, place value and relationships. These aspects of algebra as a language
are also important to algebraic thinking, but they are not didactic goals in themselves.

We believe that the following mathematical activities are important for develop-
ing algebraic thinking:
– implicit and explicit reasoning and generalization;
– developing mental models;
– constructing fundamental algebraic ideas;
– observing, formulating, researching and visualizing patterns and relationships;
– solving problems.

2a 3c 9a 2b+ + +
11a 2b 3c+ +

a b+ b a+=
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Very young children sometimes develop their own methods of what we could call
algebraic thinking. For example, Susan (3 years old) is playing Mankala with her
grandmother; this is a game with beautifully coloured pebbles that you can play even
if you cannot yet count (Figure 1). The player with the most pebbles at the end of the
game is the winner.

 

Figure 1. The game of Mankala

Grandma: I think you won, Susan. Your pile is bigger than mine.

Susan hesitates, she is obviously not convinced.

Susan: You can count, grandma, so you should count them.
Grandma: One, two, three, four,..... I have 20 and you have 24. So you have

more. You win! 

Susan is still not convinced. Of course, numbers don’t yet have any meaning for her.

Susan: I can also do it this way. I’ll keep taking one from your pile and then
one from my pile.

The double row of pebbles becomes longer and longer; and yes, Susan’s row is long-
er. So... but you don’t know Susan. She pushes the two rows back into two piles:

Susan: My pile is bigger, so I win.

As far as Susan is concerned, it is now clear how you can tell if you won the game.
She has devised a method herself, which agrees with what her grandma already said.
But she did not take it on her grandma’s authority who won. Susan can compare the size
of two quantities, although she cannot count. She also uses this method later on when
playing a game with her sister to determine who has more marbles. Reasoning, gener-
alizing, and developing a mental model are all part of this process, although implicitly.

Actually, it would be preferable for all children to acquire comparable experienc-
es at school, which the teacher would also notice at the right time. This is not possi-
ble, of course, but arithmetic education for young children offers plenty of
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opportunities for addressing algebraic thinking. However, the teacher must direct
this process; it does not happen by itself. 

The following is an example to clarify this situation. You can explain to the stu-
dents that in our system for writing numbers, the 2 in the number 23 actually means
20, and that the 3 means three ones. The students will probably accept this explana-
tion on the authority of the teacher. But there is another way to go about this, where
the teacher thinks up meaningful activities, guides the students in the right direction,
helps organize things and asks questions. The children discover new patterns and
structures and try to persuade each other and themselves. During a class discussion
and/or discussions with individual students, the teacher tries to focus on the devel-
opment that the students are going through, and makes use of their struggle to acquire
control over a new concept. When you have discovered the structure of the number
system for yourself, you will not forget this as quickly as when you are simply told
how the number system is structured. This will be helpful when you have to deal with
the structure of various number systems in secondary education, and it helps you to
independently continue developing fundamental algebraic ideas starting from an in-
formal level. Appropriate questions are asked such as: Do you see a certain pattern?
Is this always the case? Can you know that for sure? 

In the video of the Taking Inventory activity (Dolk & Fosnot, 2004), we can see
how something like this can happen in daily practice at school. This video shows
how the children can independently develop strategies, and can reason and general-
ize as a group. 

Students between 5 and 6 years old are taking an inventory of school supplies in
the classroom. Because, says Jodi, the teacher, then we will know how much of eve-
rything we have, and if someone has borrowed something, then we will know for cer-
tain if we have gotten it back. Do you remember when were missing some scissors?
This is a meaningful assignment and sufficiently open to enable the children to work
at various levels. Some children count everything one-by-one, which sometimes
makes for a lot of counting, while others make packets of five – and then ten – to
simplify the counting. One group of students is counting envelopes by making pack-
ets of ten held together with rubber bands, while in another group blocks are being
counted by colour. There is a discussion about how you should write one hundred
twenty, is that 10020 or 120? 

At a certain point, after a discussion about flexible counting by making packets of
items, Jodi draws a table on the blackboard with the following headings: type –
number of packets of 10 – number of loose objects – total number of objects, and asks
the students to write down their results. Jodi repeatedly asks the following questions,
but alternates the sequence of the questions: “How many packets (of blocks, books,
envelopes, etc.) have you counted? How many loose objects do you have? How
many is that all together?”, until Cosmo, who first thought that two packets of 10 and
three loose objects together are 13, suddenly sees a pattern being formed, and calls
out: “The board! It’s right there on the board!” 
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Two packets of 10 and three loose objects are the same as the total of 23. 

type packets of 10 Loose total
books 4 7 47
envelopes 8 2 82
blocks 2 3 23

1 2 14?

Instead of being confused, the children are now thinking about a pattern that is being
created. However, the ‘why’ question must still be answered. During the class dis-
cussion, Jodi asks: “Does it always works this way with groups of 10 and loose ob-
jects?” When a child remarks “I’m not sure”, Jodi asks him what he needs to be
convinced. Certainty, persuading each other, realizing this pattern always holds true,
this is where algebraic thinking begins. This is not just knowledge about the decimal
number system, but independently developed knowledge about the number system.
Finally, when Jodi points out the findings of one group – 14 in total, one packet of
10 and 2 loose items – some of the children think at first that the general pattern has
been broken. And then a girl says: “I think it might be a mistake, and maybe 14
should be 12.” The children are relieved because the pattern still holds true. 

Some children reach a certain level sooner than others. They use this knowledge
to help others in their group, and to go further together. 

Thinking about the structure of numbers can begin at a very young age, and can
be considered as an example of algebraic thinking. The teacher provides direction to
the process and asks questions that help the children organize their thoughts and rea-
son mathematically. By integrating activities focusing on developing algebraic
thinking into the standard curriculum of primary education, not only the transition
from basic arithmetic to advanced arithmetic becomes easier, but it also eases the
transition to algebra in secondary education. 

A LONGITUDINAL LEARNING TRAJECTORY IN ARITHMETIC

There is a lot of arithmetic in primary school; most schools have arithmetic on the
programme every day. We estimate that in the Netherlands between ten and twenty
percent of school time is spent on arithmetic. During the arithmetic lessons, there is
only a limited differentiation in subject matter and student levels; usually the chil-
dren are first given class instruction, and then they work on the practice material,
which is differentiated according to level and pace (Janssen et al., 1999; Kraemer et
al., 2005). 

If you scan a randomly chosen schoolbook for Dutch primary education, you see
immediately that most of the material concerns working with numbers (approximate-
ly 80%) and measuring/geometry (about 20%). You will also notice that all kinds of
activities are combined during the arithmetic lesson. The following example is from
a randomly chosen page from an arithmetic book for students aged 10 (Figure 2).
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– One sequence of big numbers, for example 52,100; with tasks to take away 10,
add 10, take away 100, add 100;

– One sequence of ‘easy’ numbers above 1000, with tasks to take away a small
number, for example 2300 – 7;

– How long does it take? Calculations with time, for example from 08:30 hours to
10:00 hours;

– Adding and subtracting two or three numbers above 100;
– Complete a number to make 10,000, for example 7,250;
– A cheese is cut into pieces; how much do the pieces in the picture cost? In the ex-

ample where  of the cheese is shown, the whole cheese costs € 60.

Figure 2. Page from a Dutch fourth grade arithmetic textbook

This arrangement of assignments is very suitable for practicing and maintaining
arithmetic algorithms. Undoubtedly, there will be a certain structure underlying the
various types of assignments throughout the book and through the years. To know
this for sure, however, a more in-depth study of the various textbooks for Dutch pri-

2
3
---
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mary education is required than would be suitable for this chapter. We should also
emphasize that not all students in primary school achieve the same final level of
arithmetic skills. For some students, their arithmetic skills will remain at the fourth-
grade level, while others will not only reach the sixth-grade level (students aged 12),
but they will also complete extra assignments. Teachers in secondary education must
be aware of this. The differences between students can be large, even in the fairly
homogeneous groups that are customary in Dutch secondary education.

In secondary education (starting around age 12-13), advanced arithmetic is on the
programme, and the students indeed work on lots of arithmetic assignments. Skills
with fractions and percentages are brushed up and maintained, although many stu-
dents continue to have difficulty with these topics. The students are now required to
have more insight than simply being able to find the answer quickly using arithmetic
algorithms. This is especially true for students who are already skilled at using the
algorithms. For teachers in primary and secondary education, it is not always clear
that arithmetic at this stage has a somewhat different character, and this also applies
to the students. When they begin secondary school, the students sometimes say: “I
used to be good in arithmetic, but now I just don’t get it.”

Consider the previous example about the place value of numerals. In secondary
education, students are not only expected to understand our common number system,
but also other systems such as the binary numeral system. What does place value
mean in these other systems? Working with fractions not only means that the stu-
dents can use arithmetic rules properly, but they also have to know that there is an
infinite number of fractions, they must be able to place fractions on a number line,
use fractions in all kinds of situations, understand the relationship of fractions with
decimal numbers and so forth. 

The calculator is a standard part of secondary education, but there is also a great
deal of emphasis on estimating, smart calculations and especially on interpreting an
answer. Can this answer be correct in the given situation? How many decimals are
reasonable in this context? Should you round off or round up? There is less emphasis
on procedures, and more insight is required into the structure of numbers and using
flexible calculation. Students decide for themselves if the calculator is useful in cer-
tain situations. For that matter, it seems that many students decide to use the calcu-
lator in all situations, even if they have to calculate 3 × 3!

In secondary education, much less time in total is spent on doing arithmetic than
in primary school; in the first grades of secondary school, two or three lesson hours
(of 50 minutes per week) are available for mathematics, of which arithmetic is only
a small part. Especially in vocational education, advanced arithmetic takes a bigger
role in providing ‘numeracy’, focusing on enabling the students to get by in society.
Of course, there is disagreement about the right amount of arithmetic in the mathe-
matics textbooks, but in any case a longitudinal trajectory is visible, from arithmetic
to advanced arithmetic, and from primary education to secondary education. How-
ever, the demands that are placed on the arithmetic skills of the students change in
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secondary school, which perhaps explains the gap between primary and secondary
education that is experienced by the students. In that respect, primary and secondary
school teachers can certainly learn something from each other. The encouragement
of algebraic thinking referred to above – encouraging students to think about number
systems and not just follow procedures using numbers – can help in this process. 

A LONGITUDINAL LEARNING TRAJECTORY FOR ALGEBRA?

In Dutch education, we have seen that there is a longitudinal learning trajectory from
arithmetic in primary school to arithmetic in secondary school. But is there also a
longitudinal trajectory from algebraic thinking and informal algebra in primary
school to more formal algebra in secondary education? In the textbooks used in pri-
mary education that we have seen, this is limited to incidental topics without mutual
coherence, in the same way that various components of arithmetic are offered. For
example, an introduction to negative numbers is very suitable for primary education.
In one of the Dutch primary school textbooks, these are introduced in the context of
temperature and reading thermometers in degrees Celsius. This book also asks a
question that precedes calculating with negative numbers: 
– What is the difference between 4º and –1º? 

(A better question would be: the temperature early in the morning was still –1º,
but later in the day the temperature rose to 4º. How many degrees did it warm up
during the day?)

There is only a single, isolated problem on negative numbers, arbitrarily placed be-
tween other assignments. In the following section, negative numbers are applied to
a coordinate system. Of course, it is possible to link the isolated assignments in the
book by using guided questioning during a classroom discussion, by discussing more
examples in class and by providing more problems. This is up to the teacher. Some
teachers will tend to skip such a mathematical component because they think it is un-
important. The teachers’ own mathematical knowledge is often inadequate to enable
them understand the usefulness of the topic. The fact that such assignments seem to
appear arbitrarily in the book then invites these teachers to skip them. The processes
of generalization (is it always true, and how do you know that?), abstraction (sepa-
rating an idea from the context) and formalization (using symbols and formal math-
ematical language) are currently not visible in textbooks for primary education.
However, when using the existing textbooks there are still good possibilities to ad-
dress these processes. As a teacher, you must use these possibilities to make the lon-
gitudinal learning trajectory visible, also for the students. For example, how can you
introduce negative numbers in a way that encourages algebraic thinking and im-
proves the preparation for what is expected later in secondary education?

The introduction should preferably take place using various contexts. The con-
texts can also be found outside the arithmetic lesson, for example if there is an article
in the newspaper about an imminent breach in a dike or when the geography lesson
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is on polders (low-lying tracts of land enclosed by dikes): how high is the dike above
sea level, how many centimeters below sea level is the water in the sluice? When it
freezes in the winter, reading the thermometer (in degrees Celsius) is bound to come
up for discussion. Negative numbers can also come up when working with money
and shortages of money. Another possibility, which is somewhat more formal, is to
have the children play an arithmetic game where they count backwards from 100
with jumps of 7. Does anyone in the class go beyond 2 on their own initiative? What
does it actually mean that you cannot calculate the difference 26 – 34 = ... ? 

This is followed by the expansion of the number line with negative numbers,
which the students have previously seen and used only with positive numbers. Stu-
dents often independently come up with the idea of expanding the number line below
zero. Are there also negative fractions and negative decimals? Do negative numbers
also continue forever, like the numbers on the positive side of zero? In this way, in-
sight into the expansion of the number system is created in a way that is feasible for
most students in primary education. 

Simple operations such as addition and multiplication with a whole (positive)
number are also possible, especially if the students have the support of the number
line. In the example ‘Taking Inventory’, we saw that young children can develop
knowledge about the number system. After the negative numbers are introduced, it
becomes clear that the number system has been expanded: we suddenly have many
more numbers at our disposal. This observation leads to a whole series of questions.
Can you make general rules for adding two positive numbers, two negative numbers
or a positive and a negative number? How can you show that your general rule al-
ways applies (for example by using the number line)? In secondary education, this
knowledge is reviewed and expanded with multiplication and division of a positive
and a negative number, and with the very abstract multiplication and division of two
negative numbers, for example by using the concept of slope. And mathematical op-
erations are practiced; this takes place in a way that challenges the students, as shown
by an example of Martin Kindtii in Figure 3.

Figure 3. Filling in a number tree (Kindt, 2010)
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No, there are no missing numbers in this example. Students are challenged to inde-
pendently fill in numbers on this tree so that the final answer is zero. Some students
even use decimals or fractions in their own productions. Or they make the problem
more difficult for themselves, for example by not beginning at the bottom, but by fill-
ing in a large number somewhere about halfway. In this way, each student can work
at his or her own level while practicing the mathematical operations.

At the present time in the Netherlands, there is no clear long-term learning trajec-
tory in algebra from primary school to secondary education. Some cautious steps
have been taken, but these have become stalled in isolated assignments without much
coherence. This makes it difficult for teachers to encourage algebraic thinking in pri-
mary education and to develop algebra at an informal level, which can then be built
upon in secondary education. This situation should be addressed in teacher training
programmes, so the teachers can fully utilize the possibilities that are available.
Moreover, it is questionable whether mathematics teachers in secondary education
have sufficient knowledge about the preparations in their subject area that have been
made in primary school.

ALGEBRAIC THINKING IN PRIMARY SCHOOL: A COMPREHENSIVE EXAMPLE

How can you prepare students in primary school for the algebra that will be taught
in secondary education? A few examples are shown above. In this section, we will
outline a comprehensive algebra programme from practice. 

How do you ensure that students do not memorize rules, but learn to think math-
ematically/algebraically? In any case, the problems must give students the opportu-
nity to build, expand and generalize their own mathematical concepts based on
known mathematical operations. This cannot happen if there are only incidental
mathematical problems among the regular arithmetic problems. Instead, a series of
assignments with a clear structure must be provided. In addition, these assignments
must be provided in such a way that the students can work at different levels, because
the differences between the students often become quite large around the end of pri-
mary education.

The extensive example below is from the Mathematics in Context (MiC) textbook
series, which was developed for middle school students (ages 10-14 years) in the
USA by the Freudenthal Institute in cooperation with colleagues from the University
of Wisconsin at Madison (e.g., see Roodhardt et al., 1997). This textbook series pro-
vides a longitudinal learning trajectory for algebra. Every year, the students work
through a number of units, where each unit focuses on a specific mathematical do-
main: algebra, number, geometry and measurement, and statistics. But even when
the main topic of the unit is algebra, the students still do a lot of arithmetic; after all,
arithmetic skills must be exercised and maintained. But you will not find rows of
more or less the same arithmetic problems, as in the Dutch schoolbooks. Similar to
the Dutch curriculum, however, a great deal of attention is paid to the students’ own
solution strategies; many problems can be solved at various levels. The students first
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use informal algebraic models and strategies, followed by pre-formal and then for-
mal ones. When a new concept is addressed, you often see students returning to pre-
viously used informal strategies. This helps them to understand the new concept and
build their own mathematical expertise, instead of accepting a concept on the author-
ity of the teacher without understanding it. The experiences with MiC have shown
that students can start thinking algebraically at a young age. For this reason, we will
go more deeply into the algebra strand of MiC. The algebra in MiC has three longi-
tudinal learning trajectories: Patterns & Regularities, Restrictions and Change &
Growth. The underlying idea is always that of progressive formalization. 

Patterns and Regularities

When describing patterns and regularities, codes and symbols are used along with
both formal and pre-formal algebraic language; expressions and formulas – closely
related to the situation – play a role. A typical example is shown in Figure 4.
 

Figure 4. V-patterns

The above pattern can be endlessly continued. What does pattern number 5 look like?
Number 10? Number 100? An arbitrarily chosen pattern from the row?
In informal algebra language, the pattern can be described as:
Twice the pattern number, and one more. 
In pre-formal language, this can be something like

2 × pattern number + 1
Expressed in formal language, this is:

, where n starts at 1
When two expressions are added, this is first done informally by determining the ex-
pressions that correspond to number strips. Figure 5 shows an example of addition
using number strips, at a pre-formal level. You can perform the operations for each
step and for each number strip, and then look for the corresponding expressions.
Some students, who can already work at a pre-formal level, immediately determine
the expressions next to the number strips and then find the missing expression, where
they use the numbers on the strips to check their answer. In any case, the numbers on
the strips can be used by all students as a supportiii.

2 3 41

2n 1+
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Figure 5.  Addition using number strips 

At a formal level, the following question is asked: 
Fill in the empty place: .

Students can always go back to the source and to the meaning of the problem.
Some students will make a number strip to solve the latter problem, but it is not re-
quired.

Restrictions 

Equations and inequalities are the formal algebraic tools that are used for describing
and solving problems that are addressed in this learning trajectory. As with the other
MiC materials, problems are usually placed in a context. 

It is important to note that the three learning-teaching trajectories are not independ-
ent, but are interwoven. The number strips from the next example have a somewhat
different form than those used before that (Figure 6). The question posed here is:
does the same number ever appear in the two strips? This question leads to the ob-
servation that the difference between the numbers on the two strips must then be
equal to zero, which in turn leads to the realization that this amounts to solving the
equation: . 

5

9
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7
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5 4n+ + 7 n+=

34 5n+ 9 6n+=
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Figure 6.  Other types of strips

It is more useful to calculate and examine the difference between the expressions if
this difference is equal to zero:

 –
 

Now it becomes simple:  if n = 25. So the answer is yes, the same
number does appear on both strips, in the 25th box on the strip.

Change and Growth 

The topics of the Change and Growth strands are closely related to calculus and con-
cern situations in which continuous processes are described. Graphical representa-
tions play an important role; in this chapter, we will not provide any additional
examples of this learning trajectory.

The V-pattern problem

The example on the following page is intended for students 10 years of age and is
part of the Patterns and Regularities strand. This subject matter rarely appears in
Dutch textbooks for primary education, but would actually be very suitable for them. 

In the algebra unit Patterns and Symbols (Roodhardt et al., 1997), the children are
given these assignments after the concept of even and odd numbers has been brushed
up with a series of introductory questions. The students have already used symbols
and codes as a shortcut to describe patterns. In this example, symbols are used to rep-
resent the actual objects: birds. The students are being prepared for a generalization
of the pattern (Question 1c). The data are organized in a table, and the students make

34
39 44 49 54 59 64 69 74 79 84

9
15 21 27 33 39 45 51 57 63 69

R

B

34 5n+
9 6n+
25 n–

25 n– 0=
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a formula in words (Question 4). The final question, Question 5, reviews a property
of odd numbers: 

odd + odd = even. 
Of course, a class discussion accompanies this series of questions. When students

work in groups, they can first consult with each other and try to persuade each other,
before they do this in front of the entire class in a general discussion. 

The material was tested at a Dutch primary school with students between 10 and
11 years of age. The students at the school where this material was tested had never
done similar problems. The school is located near a lake, the IJsselmeer, so most of
the children had seen a group of water birds flying in a V shape; we discussed this
extensively. The context is therefore very familiar. In the real world, you seldom see
such perfect V shapes. “But”, said one of the students, “We can pretend!”

Sometimes you see birds flying in a V-formation:

Figure 7. Birds in a V-formation

1. It is easier to draw such a pattern with dots. Here are the three smallest V-pat-
terns:

Figure 8. Dots in a V-pattern

a. Draw the fourth V-pattern in the series next to the first three.
b. Can a V-pattern have 84 dots? Why or why not?
c. How many dots are there in V-pattern number 6?

And how many in number 10?
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In the trial class, a series of questions about odd and even numbers from the same
unit were first discussed. One student wrote a number with 10 numerals on the board,
ending with 1, and said: “I can’t pronounce this number, because it is too big. But I
know for sure that it is an odd number.” Of course, then he had to explain to the class
why he was so sure. The class was very impressed. 

It was very striking that many children saw every question as being completely
separate, even though the questions were related to each other. This was later con-
firmed by the teacher. When a series of questions appeared in the arithmetic book
(question a, b, c, ...), the teacher said he had the same experience. Because the ques-
tions in the arithmetic book usually do not have any connection with each other, it
was difficult for the students to realize that a new question could have something to
do with the previous one. 

2. Draw a V-pattern with 19 dots.
3. Sometimes it is useful to show your results in a table. The first part of such a

table is shown below:

a. Fill in the rest of the table. 
b. From the V-number, you can tell how many pairs of birds there are in each V-

pattern. Do you see any other patterns in the table?

4. You can make the row with V-patterns as long as you want. How many dots
are there in the pattern with V-number 100? How do you know that?

Two groups of wild geese are flying above the IJsselmeer, both in a beautiful V
formation. Before they fly south, the two groups join together. 

5. Can the new group form a perfect V? Why or why not? 

V-number number of dots

1 3

2 5

3 7

4

5

6
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Most students answered Question 1b correctly. There were answers such as:
– No, that’s impossible because it is an even number.
– No, if you split it up, you have 42 on each side, and one of the birds still has to be

in front.
– No, because there is still one extra at the back of the formation.
– No, because a V-pattern is an odd number.

Clearly, some of the students are still reasoning at an informal level. With Question
4, some of the students even used the image of the birds instead of the more abstract
pattern of dots:
– 201, because one bird is the leader
– 2 × 100 and then the leader, so 201
– 201, it is doubled with one extra 

And one student, who didn’t understand the problem at all, wrote:
– On one side 51 and on the other side 49.

In this context problem, the pattern is generalized; how can you describe the pattern
in general terms? This is an important step in the development of algebraic thinking.
A (word) formula is not yet expected; instead the students make an informal descrip-
tion in words: “It is doubled with one extra”, “Two times the V-number plus 1”. Of
course, a class discussion should also address the fact that you must be able to verify
the formula: is this true for the V-numbers that I already knew? And how do I know
that the result is always an odd number, as we found with 1b?

With Question 5, the children usually did not refer back to the properties of odd
and even numbers that they previously discovered. The students sometimes ap-
proached the teacher to ask how they should solve this problem, because:

You can’t know that because you don’t know how they’re going to be flying,
do you? You don’t know how many there are.

This reminds us of one of the observations in Chapter 1! One group found the right
answer:

No, because then you no longer have a leader.

And there was also a student who wrote:

No, because together it makes an even number.

For the students in the school, this lesson was the only one of this type. But the MiC
textbook series returns to the V-patterns later on, and extensively addresses similar
but more abstract patterns, such as W-patterns (Figure 9). These patterns are also in-
troduced in a realistic context, this time concerning aeroplanes flying in formation.
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Figure 9.  W-patterns

Then the formulas become more complicated as well. Some students are already
writing formulas by using shortcuts, using letters instead of words, so they are work-
ing at a pre-formal level.

In primary school, students become acquainted very early with odd and even num-
bers. In the upper grades of primary school, with older students, you could continue
with this topic by asking the students to make rules for calculations with odd and
even numbers How can you know for certain that a number is odd or even? Do you
always get an even number when you add two even numbers? How can you know
that for sure? Can you convince everyone by just giving examples? What happens if
there are two odd numbers or one odd and one even number? You can optionally ex-
pand this theme to include characteristics of divisibility.

This example has been chosen because it demonstrates a clear, continuous trajec-
tory from informal to pre-formal solution strategies. This trajectory should be con-
tinued in secondary education, so that students are well prepared for creating
formulas from regularities in a table or a series of figures. Unfortunately, this rarely
happens. Is it therefore so surprising that students in the upper grades of secondary
education often have serious difficulty with creating formulas? What percentage of
Dutch students aged 15 do you think gave the wrong answer to the problem in Figure
10 (from the PISA study, see PISA, 2004) or skipped the problem entirely? For this
problem, 25% of the Dutch students scored 0 points! Would students at the end of
primary school be able to solve such a problem if they had worked with assignments
such as the V-patterns? And would it be sensible to ask them such a question?

In the lower grades of secondary education, students are sometimes asked to con-
struct an equation in order to solve a problem. However, this makes finding a solu-
tion often more difficult. Consider the following problem: 

Three consecutive numbers added together are 54. What are the numbers?

1 2 3
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Figure 10. Stair patterns

In this case it is not very obvious that you should first construct the equation
, like the book asks you to do. After all, if all three num-

bers were the same, the answer would be 54 : 3 = 18. So 18 is the middle number,
and the three consecutive numbers are 17, 18 and 19. The one time that the students
are asked to create expressions, they are not even useful or necessary!

In the lower grades of secondary education, a learning trajectory for Patterns and
Regularities should perhaps be given more attention. What do the variables in a for-
mula mean, what happens in the situation to which the formula applies if something
is changed in the formula, or what happens to the formula if something changes in
the situation? Students in the upper grades of secondary education would then have
a good foundation for expanding their knowledge about creating and using formulas.

CONCLUSION

Are the teachers from primary school and secondary education correct when they
complain about the poor linkage between primary and secondary education? We
have shown that there is indeed a longitudinal learning line from arithmetic to ad-
vanced arithmetic, but there is a discontinuity regarding what is expected from the
students. The skills that were learned in primary education must be practiced and
maintained, but the students should also be expected to develop more insight. This
process can begin in primary school. Teachers in the first years of secondary educa-
tion sometimes make inadequate use of their students’ mathematical knowledge.

In addition, it turns out that there is virtually no continuous line of algebraic think-
ing from arithmetic to algebra, even though there are good opportunities for this. Pri-
mary school teachers must take advantage of these opportunities, but to do this they
must also have an adequate mathematical background, which they should have re-
ceived through education or professional development.

Stap 1 Stap 2 Stap 3 
As you can see, he uses one square for Stage 1, three squares for Stage 2 and six for Stage 3.
How many squares should he use for the fourth Stage?

Robert builds a step pattern using squares. Here are the stages he follows.

Stage1 Stage 2 Stage 3

n n 1+ n 2++ + 54=
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In this chapter, we have provided only a few examples of possible activities in pri-
mary and secondary education to benefit the development of algebraic thinking.
Such a longitudinal learning trajectory is possible and desirable; the textbook series
developed by the Freudenthal Institute for the American market for students from 10
to 14 years old makes this clear.

The examples in this chapter are not worked out in sufficient detail to use them
directly in education. But this was not the purpose of this chapter. We wanted to
show that a longitudinal learning trajectory in algebraic thinking is valuable for near-
ly all students as they continue in secondary education, and that there are good ex-
amples of text books in which this actually happens. 

NOTES

i Journal of the Dutch Association of Mathematics Teachers.
ii This example as well as many others used here are taken from Positive Algebra by Martin Kindt

(2010).
iii More practice with number strips can be found at www.wisweb.nl.
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4.  PATTERNS AND FORMULAS

Horizontal mathematization leads from the world of life to the world of sym-
bols. In the world of life, people live, act – and suffer; in the other world, sym-
bols are shaped, reshaped, and manipulated – not only mechanically, but also
with understanding and reflection. This is known as vertical mathematization.
(Freudenthal, 1991, p. 41-42) 

INTRODUCTION

The previous chapter sketched out the subtle relationship between numerical calcu-
lations and algebraic thinking, and suggested ways of introducing young students to
algebraic thinking through the ‘world’ of arithmetic. The present chapter elaborates
on this topic and specifically addresses the topic of patterns and formulas. In
Chapter 1, the domain of patterns and formulas has been identified as an important
strand in algebra education. At the heart of this strand is the ability to recognize pat-
terns and structures in problem situations, to capture and generalize this regularity by
using the mathematical language of formulas. The work with these formulas takes
place within the abstract world of algebra rather than in the tangible world of the
problem situation. In terms of Freudenthal’s proposition quoted above, this strand
therefore involves both horizontal and vertical mathematization. 

Patterns and formulas are fundamental to algebra. Formulas are powerful means
that can be used to describe patterns and express generalities. As such, they reflect
both the meaning and the power of algebra. Due to its abstract and general character,
however, this strand is difficult for many students to grasp. This chapter therefore is
written with middle to high achieving students (10 – 15 years old) in mind. For low
achieving students, the functional use of algebra in concrete and applied problem sit-
uations is more meaningful than the abstract algebra of patterns and formulas. For
the latter group, horizontal mathematization, i.e. in learning to recognize how a prob-
lem situation can be transposed into mathematical action, is more relevant than alge-
bra as a mathematical domain in itself. 

As an introductory example, Figure 1 shows a series of figures that consist of
black and grey dots. The task is to provide an expression that describes the relation-
ship between the number of the figure (n) and the number of black dots in that figure,
and similarly for the number of grey dots. 

P. Drijvers (ed.), Secondary Algebra Education, 89–100.
© 2011 Sense Publishers. All rights reserved.
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Figure 1. Dot pattern problem

The problem is about describing the regularity in a pattern (Palha & Van Reeuwijk,
2002). Such a problem can be approached in various ways. For example, a 12-year-
old student wrote the following: 

For the black dots it adds 2 every time, and for the grey it is 
the number itself. 
Black:  Grey:  itself 

This student describes the number of black dots recursively, i.e., expressed in the
previous number. For the number of grey dots he provides a direct description. After
this, he writes down two direct formulas. The use of the variable n indicates that this
approach has transcended the informal level. However, the current notation is still in
a mixed form of natural and mathematical language. In addition, the mathematical
language is still not entirely formal: although this probably will not lead to errors, the
parentheses surrounding ‘number  1’ are missing in the student’s formula. We
therefore consider this solution to be an approach at what we would call the prefor-
mal level. 

For a teacher, such diversity in solutions can be exploited to compare strategies
and to discuss their advantages and disadvantages with the students. Questions such
as ‘which figure in the series contains more than 1 million grey dots?’ lead to equa-
tions, which can also be formulated and solved at various levels of formalization.
The teacher can also ask the students for an expression to indicate the total number
of dots. This is not only equal to the square of the number of dots n in a row, but also
to the number of grey and black dots together. In this way, the algebraic identity

 emerges, which is a reason for the students to think about
algebraic equivalence, a concept which is not self-evident for them.

The dot pattern in this problem is not a realistic context problem in the sense that
it is something you encounter in daily life. However, it is realistic in the sense that it
is imaginable and meaningful. Isn’t it fascinating to know for certain how many grey
and black dots there are for n = 12345, without having to draw the enormous dot pat-
tern or having to calculate all preceding cases? The satisfaction of being able to solve
such a problem is unique to mathematics.

n = 1 n = 2 n = 3 n = 4 n = 5

1–
n 1– n+ n 1  –

n2 2n 1– n 1– 2+=
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PATTERNS AND STRUCTURES

The process of discovering and representing patterns and structures can be a playful,
challenging and productive algebraic activity, one which can lead in a natural way to
generalization and building formulas. For example, Figure 2 shows part of a problem
from the textbook series that the Freudenthal Institute developed, in collaboration
with the University of Wisconsin, for middle school students in de United States
(Wijers et al., 2006). The problem describes how the metal beams for a roof structure
are constructed welding rods into a triangular pattern. In the larger context of inves-
tigating what such a roof structure looks like, one task for the students is to fill in a
table which indicates the relationship between the number of rods and the length of
the beam. The following task is to describe the pattern that they see in this relation-
ship. 

Figure 2. Building beams with triangles of rods 

An interesting aspect of this problem is that it offers possibilities for seeing different
patterns. Figure 3 shows several formulas that were created by students. In these for-
mulas, N represents the number of rods and L represents the length of the beam, ex-
pressed in rods. Each of the (equivalent!) formulas reflects the student’s specific way
of looking at the pattern and its structure. Besides making such direct formulas, stu-
dents also wrote down recursive formulas such as ‘Next = Current + 4’. 

This diversity of formulas provides an opportunity for the teacher to challenge
students to compare formulas with each other and to defend their own formula: “Are
they all correct? How can you determine that they all amount to the same thing? How
are the direct formulas and recurrent formulas related?” The power of this context is
its strong link between the structure of the formula and the geometric interpretation
of the pattern. At various levels – by sliding matchsticks around, by drawing or by
conducting algebraic operations – it becomes clear that the various patterns that the
students have written down reflect the same underlying algebraic structure. 

Length
of beam

Number 
of rods

1 3

2

3

4
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Figure 3. Pattern descriptions made by students

A more complex problem is shown in Figure 4 (Algebragroep W12-16, 1991). First,
the students are asked to find algebraic expressions for the numbers of grey and white
blocks as a function of the block structure’s number in the row. The second question
is whether the number of white blocks will ever catch up with the number of grey
blocks – and if so, when? “How can you see which of the two formulas will ultimate-
ly ‘win’, based on the structure of the formulas?” The latter question invites a dy-
namic view of the situation because the students determine how both formulas
behave when the independent variable increases. The block’s number acquires the
character of a dynamically changing quantity that runs through the natural numbers.
This situation can also lead to thinking about proportionality and the order of growth. 

Figure 4. Block structures

N = 3L + (L – 1)

N = 4L – 1

N = (3L) + 3(L – 1) – 2(L – 1)

N = 3 + 4(L – 1)

( )

N = L + 2L +(L – 1) 

no. 1

no. 2

no. 3
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The key to the above examples on pattern recognition is that students can describe a
pattern by using an informal representation or a more formal formula. Expressed in
terms of the quotation from Freudenthal at the beginning of this chapter, this is the
phase of horizontal mathematization. Discussing and exploring the various formulas
and representations invite simplification and shortening, which leads to thinking
about equivalence. As a result, vertical mathematization comes into the picture, be-
cause the students reason about the algebraic relationships themselves, which may
become detached from the original problem context. The ‘world of algebra’ becomes
a domain in itself; it is a world in which mathematical objects exist and where you
can think about their properties and relations. 

The examples in this section show that the patterns do not have to originate from
daily life to be suitable for introducing students to this form of algebraic modelling.
Problems with a puzzle-like character in the world of mathematics are very suitable
for this purpose. Examples can be found in the booklet Positive algebra by Kindt
(2010). Problems such as the ones shown above can lead to different answers from
the students. To ensure that the students will not feel uncertain about their answers,
a class discussion during which the various approaches are compared can be very
helpful. 

FORMULAS AND VARIABLES

The algebra of patterns and structures concerns the investigation, identification and
representation of patterns and underlying algebraic structures. Generally speaking,
an algebraic model for a pattern is set up by building a formula. This type of alge-
braic modelling is not a simple task; variables are chosen, and sometimes assump-
tions and simplifications are made. Pattern recognition situations, as discussed in the
previous section, are a suitable starting point for building formulas. 

When they begin modelling, students often use action language that is close relat-
ed to the description of the problem situation. In the example of Figure 4, one pattern
description could be: “You can determine the number of white blocks by taking the
cube of the sequence number”. If these actions are expressed as an algebraic formula,
this often has the character of a ‘recipe’ for the students: a step-by-step plan to de-
scribe the calculations. As such. the formula has the character of a compact process
description. At this stage, word formulas are useful, with variable names that refer
to the context: 

NumberWhite = Object number cubed

Once a formula is constructed, often something has to be done with it. For example,
the formula must be rewritten to allow comparison with another formula. An equa-
tion must be solved, or an inverse formula must be determined in order to carry out
reverse calculation. In such situations, word formulas are no longer very useful; ab-
breviating the formula by using simple symbols turns out to be easier and more effi-
cient. For example, the above formula becomes . In this way the characterw n3=
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of the formula changes; it is no longer a condensed calculation process, but it be-
comes ‘a thing’ that you can use and on which you can conduct mathematical oper-
ations. For example, you may want to expand parentheses in order to write the
formula in a different way, or factorize. As a result, the formula gradually acquires
an object character. This development can be encouraged in various ways, for ex-
ample by comparing different formulas for the same phenomenon (see the example
in Figure 3), or substituting formulas in other formulas. Chapter 7 contains several
examples of such tasks. Switching between the process perspective and the object
perspective was identified in Chapter 1 as one of the difficulties in algebra education,
and therefore deserves attention (Sfard, 1991). When the link with the problem situ-
ation disappears entirely in the notation, as in the example , this is referred to
as an abstract formula. 

A formula can describe a pattern or structure, but it also has a structure itself. It is
important that students are aware of the structure of a formula, because this is often
a prerequisite for being able to appropriately select an operation or a solution strate-
gy. To develop insight into the structure of formulas, students can set up formulas
themselves in problem situations. Or they can discuss a variety of formulas that other
students have made. The reconstruction of the meaning in the work of the co-students
is one way to promote insight into the structure of formulas.

Sub-expressions have their own specific meanings in the formulas students create.
In the example of the dot patterns shown in Figure 1, the sub-expressions on the
right-hand side of the equation  are recognizable as the
number of black and grey dots, respectively. In the example of the beams in Figure
2, the sub-expression  in the equation  stands for the
number of connectors that join the individual triangles together. In this way, the sub-
expressions have a specific meaning as part of the roof construction, and they also
display different growth behaviours: 3L grows three times as fast as . The ca-
pacity to understand the structure of a formula, and to identify the relevant sub-ex-
pressions in it, is an important element of algebraic expertise. 

This capacity to take a global view of formulas and expressions, and to see the un-
derlying structure, is part of what we referred to as symbol sense in Chapter 1 (Ar-
cavi, 1994). However, if students do not have this global view on expressions and
equations, they may be tempted to immediately carry out operations that the visual
appearance of the formula invites (Kirshner & Awtry, 2004). In the case of

, this might be to simplify by removing the brackets, which does
lead to a simplified form, but obstructs the relation with the problem situation. 

Paying attention to insight into formulas deepens the student’s understanding of 
variables. For students, variables initially function as placeholders for numerical val-
ues, or as unknowns, the value of which can be determined by solving an equation. 
But in formulas, other aspects of the variable must be understood. The example of 
the winning formulas refers to the dynamic aspect of the variable: the variable has 
the character of a changing quantity, which represents not just a single value – known 
or unknown – from the domain, but a quantity that runs through the domain set.

y x3=

N2 2N 1– N 1– 2+=

L 1– N 3L L 1–+=

L 1–

N 3L L 1–+=
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When working with formulas, the variable as a generalized number also emerges: 
the variable represents the entire set of numbers. This is visualized in Figure 5 with 
number strips (Kindt, 2000). Working with such number stripsi visualizes the fact 
that these relationships apply to all numbers. Therefore they provide a natural tran-
sition from systematic calculation with numbers to calculation with formulas (see 
also Chapter 3). By labelling the strips, the step to symbolic algebra is taken in a nat-
ural way. For example, it becomes clear that the formula

 does not apply to a single specific value of N, but to all values of N from the domain
of natural numbers. N therefore does not represent just one of these numbers, but the
entire set 

Figure 5. Number strips as an introduction to a different perspective on variables

Chapter 8 addresses the variable concept in greater depth and will discuss how ICT
can play a role in its development. 

GENERALIZATION AND PROOF

The two previous sections showed how building formulas for patterns and structures
can provide an introduction to generalization and interpretation. Generalization is an
important aspect of algebra; based on specific cases, a conceptual leap is made to the
general case, or preferably to the class of all cases. In the example of the roof beams,
a rule such as  shows the relationship between the length of the beam
and the number of rods for all values of N and L. The process of generalization re-
quires attention for the difference between ‘there is a value of x where ...’ and ‘for all
values of x ...’, a distinction that is important in mathematical reasoning. Examples
where the domain consists of natural numbers are perhaps more accessible for gen-
eralization than examples where the domain consists of the set of real numbers. 

2 3N+ 5 2N++ 7 5N+=
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When performing algebraic modelling and generalization, it is important that students
work on meaningful problems, where they are given the opportunity to develop their
own strategies, mental models and forms of notation and representation. Initially, this
has priority above general, formal proofs. Nevertheless, we believe there should also be
attention for reasoning and proving. After all, one strength of algebra is that it can be
used to compactly formulate coherent reasoning, which provides certainty about specific
phenomena. Although this is an ambitious goal, one of the aims of algebra education is
to make students experience something of this themselves. We will provide two exam-
ples of reasoning and proof that emerge from pattern recognition. 

Earlier in this chapter we have shown how the world of numbers may provide ac-
cess to the world of algebra in a natural way. Surprising calculation patterns may in-
vite algebraic reasoning and proof. For example, consider the following method of
squaring. To obtain the square of 65, we multiply the first digit, 6, by 7, which is 42.
Then we add the square of 5, the second digit, to the back. This gives 4225, which is
correct. With 15 this is even easier to check: 1 times 2 is 2, and then 25 attached to
the back is 225. It also works with 95! Students who are 13 or 14 years old are often
astonished that this works, and this astonishment can be exploited by the teacher. A
sensible place to start is to estimate 65 times 65 by calculating 60 times 70. But why
do we end up with 25 less? Does this technique always work out correctly? And how
can we know for sure? With algebra, of course! The key is to expand .

The second example concerns the sequence below, in which the difference of two
products is always equal to 1: 

Here as well, there are obvious challenges. How can the series be continued? How
big is  approximately? Is the difference always equal to one? How can
you know that for sure? What would a line look like if it starts with  instead of 9?
How can you formulate and write down a general rule? By asking such questions in
class, the teacher can invite the students to reason and to find more or less formal
proofs. The formal proof requires much: formalizing in order to write down the rea-
soning, generalizing about all numbers (whole, rational?) and abstracting from the
calculation context. In this case, the students can prove their findings by expanding
the product at the end of . The geometrical proof in Figure 6
may complement the algebraic one. 

10a 5+ 2

9 9 10 8– 1=
10 10 11 9– 1=
11 11 12 10– 1=

999 1001
91

2---

a2 a 1+ a 1––
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Figure 6. An illustration with 

Teachers who want to go further can invite students to find similar surprising se-
quences of arithmetic tasks, or show their students variant such as 

Finally, the generalization of generalizations can be made:

This may lead to the familiar formula for the difference of squares
. Of course, this result must also be proven, which can be

done both algebraically and geometrically (Kindt, 1999). This formula for the differ-
ence of squares is useful to know by heart, as this will ease recognizing its potential
application while working on algebraic tasks. 

Although generalizations and proofs can be difficult, the examples in this section
show that there are indeed opportunities for giving algebraic proofs a place in the
curriculum for mid- and high-achieving students of 10 – 15 years old. The power of
algebra as a method to express compact and coherent reasoning must not remain ob-
scure for this target group. 

CONCLUSION AND RECOMMENDATIONS

The main conclusion from this chapter is that the theme of Patterns and Formulas is
important in algebra education and that it deserves attention in the mathematics cur-
ricula for mid- and high-achieving students of 10 – 15 years old. It is a topic that
lends itself to inner-mathematical activity and both horizontal and vertical mathema-
tization. Moreover, it is a fascinating topic that enables students to experience essen-
tial facets of algebraic thinking. If the degree and pace of formalization are adapted
to the target group, we expect that students will experience this topic as meaningful
and will understand the power of algebraic methods and representations. Sub-topics

a+1

a

1

a 1

a

a2 a 1+ a 1–– 1=

9 9 11 7– 4=
10 10 12 8– 4=
11 11 13 9– 4=

a2 a b+ a b–– b2=

a b+ a b– a2 b2–=
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within this theme include patterns and structures, formulas and variables, and gener-
alization and proof.

The question is then, how can teachers shape the teaching of this rather difficult
topic? Without being exhaustive, we now present some pedagogical recommenda-
tions that are organized along three questions.

Do teachers need concrete problem situations to make the algebra of patterns and
formulas recognizable and meaningful for students? 
Concrete problem situations from daily life or from professional practice (current or
future) can motivate students, but do not always trigger abstraction or lead to the de-
velopment of algebraic thinking. It is not a good idea to artificially involve algebra
with problems that can be approached with common sense reasoning and informal
strategies. For example, consider the following problem: the sum of three consecu-
tive numbers is 66. What are the numbers? From an algebraic perspective, the teach-
ers expect their students to construct and solve the equation

 
However, a more common sense approach comes down to noticing that the middle
number must be one-third of the total, which in this case is equal to 22. Such a clever
solution strategy deserves to be rewarded, and not rejected because no algebra has
been used. 

The algebra of patterns and formulas can also be recognizable and meaningful for
students in a challenging, puzzle-like context, such as numbers, number patterns and
numerical calculation, for example. This chapter provides some examples of this ap-
proach. We also recommend using such problem situations when the actual objective
is to reach for vertical mathematization and abstraction. This involves situations that
are realistic, not in the sense of being taken from everyday reality, but in the sense that
the students can imagine the problem, can feel ownership, can understand what they
can do to solve it and why their methods always work. 

How can we encourage students to take the step to abstraction? 
A problem situation involving a pattern or structure initially requires students to trans-
form the situation into mathematical symbols and operations. This transformation
process between the world of the problem and the world of mathematics, which can be
conducted at various levels, is called horizontal mathematization. By having students
construct formulas themselves in many situations, they acquire a perspective on the
meaning of algebraic (sub-)expressions and they become experienced in this transfor-
mation process. 

The stage at which thinking, representation and manipulation take place within the
world of mathematics, where new mathematical objects and structures are formed, is
vertical mathematization. Abstraction can be seen as the result of vertical mathemati-
zation; from this perspective – paradoxically – it amounts to the mathematical world
being increasingly experienced as concrete and meaningful. To encourage students to
take such steps towards abstraction, it is important that the problem situation itself is

a a 1+ a 2++ + 66=
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not just a common sense problem from daily life, as noted in the previous recommen-
dation, but invites for gradual formalization and progressive abstraction. 

As a pedagogical strategy, we recommend asking ‘silly’ questions, which serve no
practical purpose, but are intriguing. In the example of the dot patterns (Figure 1), the
question “Which number of figure contains more than 12345 grey dots?” is obviously
not relevant for daily life, but at the same time it is fascinating and invites abstraction. 

Finally, we recommend to encourage students to make their ‘own productions’. For
example, after the sequence of sums from the previous section, the students can be
asked to make their own sequence which will always have the same answer, but which
is now not equal to 1. Such productions contribute to the students’ understanding of
the issue at stake, and are challenging. Chapter 7 addresses such tasks in more detail.

How important are algebraic language and formalization? 
The students’ work on the dot pattern task (Figure 1) shows that they are capable of
describing the algebraic essence of a problem by using informal mathematical lan-
guage or sometimes even natural language. However, for students aiming at higher ed-
ucational levels, it is important to become acquainted with formal algebraic language
and notation. Algebraic language and notation are essential and powerful tools to sup-
port reasoning and proof. Algebraic thinking without algebraic language is not impos-
sible, but difficult indeed. We therefore recommend paying attention to formal
algebraic language by carefully and gradually increasing the abstract character of tasks
or solution methods, and by directing the teaching more to the properties of the alge-
braic objects in the mathematical world than to the applications from which they
emerge. 

NOTES

i An applet for operating with number strips is available at http://www.fi.uu.nl/wisweb/en/
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5.  RESTRICTIONS IN ALGEBRA

If we want students to truly understand the power of equality, they need to have
experiences seeing the mathematical symbols of equality used in varied ways,
not always as the symbol that comes before the answer to an arithmetic prob-
lem. (This Chapter)

INTRODUCTION

This chapter focuses on describing the restrictions sub-strand within algebra and how
concepts and relationships are developed across grade levels. Many examples are
also included to support meaningful connections to other mathematics, and hopefully
provide additional motivation for discussing such relationships with students. 

As discussed in Chapter 1, school algebra is generally understood to include pat-
terns, generalization, solving equations, and graphing functions. Yet, one of the most
powerful set of tools and techniques in algebra for representing realistic phenomena
and analyzing mathematical behaviours is found in the domain of Restrictions, gen-
erally defined here as mathematical tasks involving the intersection and union of
multiple solution sets and problems involving multiple variables. These types of
tasks often call for the consideration of one or more equations and how they, togeth-
er, represent the situation. By representing different aspects of the same problem,
they support the modelling and solving of problems that would otherwise be un-
wieldy and complex if attempted holistically. When thinking of algebra through the
lens of Restrictions, equality is a necessary concept that is used to identify and inter-
pret solutions. And so it is with the concept of equality that we begin.

EQUALITY

Children recognize equality of groups and quantity at a very young age, with some
research suggesting its origins in infancy (Gallistel & Gelman, 2000). In studies of
children only six months old, Starkey, Spelke and Gelman (1990) found that children
could quantify small sets of objects and would react when a screen was placed in
front and later removed with one of the objects missing. The idea that one group ‘is
the same as’ or ‘is not the same as’ another group seems so basic, so intuitive. How-
ever, by the time students study algebra the equal sign has lost its meaning as iden-
tifying a relationship between two expressions.

The often used equation in algebra is certainly more than something that needs to
be solved. A well-trained student, when seeing the equation , will2x 1+ x– 7+=

P. Drijvers (ed.), Secondary Algebra Education, 101–118.
© 2011 Sense Publishers. All rights reserved.
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likely, without prompting, solve for x and find that the solution is . Lost in this
reflex to solve for x is the recognition that these two linear expressions are equal to
each other, and that the one solution found for x is true only because one expression,

, is restricted by another expression, , or vice versa. Both of these ex-
pressions on their own could have infinite values depending on the value of x. By set-
ting the expressions equal to each other, infinite possibilities for one expression are
restricted to just one value. Of course, cases of no solution and infinite solutions can
also occur depending on the expressions that are compared. 

Equality is a relationship. As far as student understanding of algebra is concerned
it may be an essential concept. Unfortunately, as we attempt to familiarize young stu-
dents with the equal sign, they often do not see it as a mark of a relationship but as
something that needs to be done. This object duality, as discussed by Drijvers, God-
dijn and Kindt in Chapter 1, can serve as a source of confusion for students. Work-
sheets and workbooks with lists of arithmetic problems often overuse the equal sign.
By the time students have completed hundreds of these practice sheets, students un-
derstand the equal sign as ‘find the answer’. As Faulkner, Levi and Carpenter (1999)
found, when given problems of the type , the most common but in-
correct response for sixth grade students was 12 (84% of 145 students). And yet, the
percentage of third grade students who responded with 12 was 49%, much less than
sixth grade students! As these results suggest, as students progress in school the
equal sign as a relational symbol takes on a different meaning, such as ‘compute’ or
‘find the answer.’ When teachers used problems that emphasized the relational as-
pects of equality, they began to see the equal sign in  as separating
values that needed to be the same (Carpenter, Franke & Levi, 2003). Students would
often describe their reasoning as follows: “Since five is one more than four, the other
number has to be one less than eight – or seven. If one number goes up the other has
to go down, to make it equal.”

If we want students to truly understand the power of equality, they need to have
experiences seeing the mathematical symbols of equality used in varied ways, not al-
ways as the symbol that comes before the answer to an arithmetic problem. When
students communicate the relationships equations describe rather than seeing equa-
tions only as something to solve, a deeper understanding of algebraic relationships is
developed. Likewise, when students are given an opportunity to reason about arith-
metic problems that promote the meaning of equality, they are more apt to develop
number sense along with an understanding of the restrictive properties that will come
into play later as they study algebra.

THREE METAPHORS FOR EQUALITY

Even though young students can reason about equality using tasks involving num-
bers and symbols, problem contexts can motivate mathematical reasoning in ways
that are more meaningful and interesting for some students. Some problem contexts

x 2=

2x 1+ x– 7+

8 4+ 5+=

8 4+ 5+=
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are so closely related to mathematical processes, they serve as metaphors in which
students associate a context with specific mathematics. 

A first metaphor considers bartering. The process of exchanging one set of ob-
jects for an equally valued set, offers an opportunity to reason about substitution and
equality for many variables (Van Amerom, 2002). In this way bartering serves as a
familiar context to support student discussion as well as serving as a mathematical
metaphor for equality (see Figure 1). 

Figure 1. The bartering metaphor illustrated

For example, consider a problem context in which one goat can be traded for six
chickens, and two chickens can be traded for one bag of salt (Figure 2). How many
bags of salt can be bartered for three goats? These sets of equivalent statements, with
some deductive reasoning, can be used to create chains of associated sets such as the
one suggested in the following figure (Webb, Hedges & Abels, 2006).

Figure 2. The goat-chicken-salt task

Within the context, students often associate these trades with ‘the same as’ or equal-
ity, and write statements such as:
– ‘one goat for six chickens’
– G = CCCCCC, or 
– 1G = 6C

Students use combinations of these statements to substitute equivalent values and,
eventually, find the solution to the problem – i.e., nine bags of salt. These multiple
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representations of equality that describe this context can also be thought of as sets of
equations, or a system of equations. 

A second common metaphor that is often used to convey equality and equal sets
is comparing the weights of objects on a balance. Notice how the problem shown in
Figure 3 (from Kindt, Abels, et al., 2006) represents notions of algebraic reasoning
without explicitly using equations. It is important to note that the letters students
might use here to abbreviate bananas and pineapples (e.g., 10B = 2P) are not varia-
bles, since the context focuses on counts of fruit, not weights or prices. But the tran-
sition to the use of variables is not too far removed from this type of problem or
representation of the situation.

Figure 3. The balance metaphor

A third metaphor (from Kindt, Abels, et al., 2006) that can be used to represent
equality is a situation similar to the game ‘tug of war’. Two or more groups of ani-
mals are pulling the same rope in opposite directions (see Figure 4). 

Figure 4. The tug of war metaphor

The problem posed in the above diagrams models two equations:
– 4 Oxen = 5 Horses
– 1 Elephant = 1 Ox + 2 Horses

10 bananas 2 pineapples 1 pineapple 2 bananas
1 apple

1 apple

An elephant is as strong as one ox and two horses

Four oxen are as strong as five horses
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These equations for tug of war suggest that four oxen are as strong as five horses; in
the second equation, one elephant is as strong as one ox and two horses. Using this
information, which group of animals will win the tug-of-war in the diagram below? 

Figure 5. Tug of war task

So for this problem, the goal is not to find the “work” or “pull” of each animal, but
to instead find which group is greater, or a solution to an inequality. Also notice that
with all metaphors, the value of one variable is in relation to another variable. That
is, none of the objects have been assigned a specific value or weight. This approach
emphasizes algebraic reasoning over computation and guess-and-check. The focus
is on relational thinking. 

Figure 6. Student work on tug of war task

Figure 6 contains a typical example shared by a 15-year-old girl in a high school al-
gebra class showing how students use this tug of war representation in their own so-
lution strategy. Notice how in her representation of the problem she replaced the
pictures of animals with letters. As she described her strategy, she explained that the
elephant (E) is the same as an ox (X) and two horses (HH). Replacing the elephant
leaves one ox and five horses on the left side and four oxen (XXXX) on the right side.
From the first diagram, four oxen have the same strength as five horses. Replacing
the horses with the oxen leaves five oxen on the left versus four oxen on the right.
The left side must be stronger. 

To solve this problem students primarily use a substitution method, and need to
identify strategic uses of equivalent sets and represent the final statement in way that
clearly shows which team wins or if both teams are the same. 

REPRESENTING EQUALITY IN THE CARTESIAN PLANE

A fourth, more mathematical approach for investigating restrictions, is through
graphing equations, and possibly inequalities, in the Cartesian plane. Students need
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opportunities to explore combinations of graphs when solving systems of equations
so they can have a visual referent for how different systems involving linear func-
tions can produce infinite solutions when the functions are equivalent or no solutions
when the graphs do not intersect. However, there are also methods that can be used
beyond simply graphing and identifying points or regions of intersection. For exam-
ple, how might changes to the slope of a given function (or the rate of change in a
situation) change the point of intersection? 

The Cartesian plane can also be used, as part of a mapping context, to explore the
use of inequalities to describe a situation. In contrast to the solution of linear func-
tions being represented by lines in the Cartesian plane, inequalities are represented
by regions bordered by one or more lines. 

Using the context of a forest fire, as elaborated in the Mathematics in Context unit
Graphing Equations (Kindt, Wijers et al., 2006) the sightings of a fire from different
stations can suggest (vision) lines on a map (see Figure 7). These lines could be de-
scribed in terms of angle measures or slope from particular points on the y-axis
(North-South line). 

Figure 7. A Cartesian plane problem 

Regions on a map or estimated regions for the location of a fire can further motivate
the use of informal descriptors such as ‘above’ or ‘north of’, which relate to more
formal mathematical language such as  or . In Figure 8 (from Webb,
Krusi, Wijers & de Haan, 2006), the region that is marked could be described as

 and . 

y 5– 3 x 6

6 y 10 6– x 3–
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Figure 8. Inequalities as region in the plane

In elaborating further on the mapping context, there are times in which an exact lo-
cation is required and other situations in which a region is needed. Having students
explore the mathematical equivalents to these situations reinforces the difference be-
tween the singularity of solutions offered with systems of equations and the necessity
of a visual representation to adequately represent systems of inequalities. 

Returning to the theme of this chapter, the barter and balance contexts beg the
question: What is being restricted? In the case of bartering, the value of three com-
modities (goats, chickens and salt) is ‘restricted’ by indicating that one set is equal
to the value of another set. In the second, the weight of three different fruit is restrict-
ed by showing that the weight of one set is the same as the weight of another set. By
using combinations of these equal sets, different relationships can be found without
ever using a specific price or weight. When graphs are used to represent a situation
with two variables, one line in the Cartesian plane suggests an infinite number of so-
lutions – i.e., all coordinate pairs on the given line. But when a second line intersects
the first line, the number of solutions shifts – an infinite number of possible solutions
is restricted to just one solution.

FROM INFORMAL AND PRE-FORMAL REPRESENTATIONS 
TO FORMAL STRATEGIES

Ideally, a learning trajectory of solving sets of linear equations should go from infor-
mal, to pre-formal to formal. As articulated by Gravemeijer (1994) in his discussion
of emergent modelling, the situational models (informal) are closely related to par-
ticular situations. Pre-formal models can be derived by students or introduced by the
teacher to students; some models are derived from problem contexts that suggest the
structure of the model – e.g., consider how the combination of pencils and erasers in
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the student store suggests the need for a combination chart. Pre-formal models pro-
vide greater mathematical structure: they are used to model and solve a wide range
of problems. As the need for a more generalizable, inclusive strategy emerges, for-
mal strategies can be introduced and related to students’ experiences with the infor-
mal strategies and pre-formal models. The underlying issue when designing algebra
education according to this principle is what representations and strategies are acces-
sible for students who do not yet have experiences with formal algebra, but help de-
velop their thinking in this direction.

An introduction can be offered to students using problems that involve situations
with variable amounts that could be expressed, eventually, by equations. However,
instead of giving students equations, we recommend that such problems include pic-
tures of easy to imagine contexts, so that students can invent their own strategies
(Meyer, Dekker & Querelle, 2001). In the beginning, no formal algorithms are intro-
duced since the focus is on informal methods such as guess and check, combining
quantities, and looking for relationships between prices. In this section, examples of
these mostly situation specific, informal approaches are described. 

Figure 9. Eraser-pencil task

The first example, shown in Figure 9, is a problem that invites the use of informal
methods (Kindt, Abels et al., 2006). The prices of each item and their combinations
are easy for students to work with mentally, allowing students to showcase their
number sense. At this point, though, there is no specific problem to solve. This a con-
text that is accessible for students, to begin a discussion of possible amounts that
could be in the cashier box.

Students are later asked to figure out how many erasers and pencils were sold if a
particular amount was left in the cashier’s box. Some amounts, such as $0.75 or
$1.50, result in multiple solutions. Students typically solve the problem using ‘guess-
and-check,’ and as an introduction to the problem they are encouraged to do so. Stu-
dents will soon notice, however, that some method of organization is called for to ac-
count for all of the different combinations. One such method is to create two lists of

Monica and Martin are responsible for the school store. The store is open all
day for students to buy supplies. Unfortunately, Monica and Martin can’t be
in the store all day to take students’ money, so they use an honor system.
Pencils and erasers are available for students to purchase on the honor sys-
tem. Students leave exact change in a small locked box to pay for their pur-
chases. Erasers cost 25c each and pencils cost 15c each.

the prices of each item as shown in Figure 10 (from Kindt, Abels, et al., 2006).
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Figure 10. Price table for the eraser-pencil task

A different approach is the use of a combination chart. Figure 11 shows such a chart,
which combines the two lists above to show the total cost of a variety of combina-
tions of erasers and pencils.i This is a pre-formal model that, in contrast to the fair
exchange method, adds a new way to see the mathematical structure of the problem.
Each cell can represent an equation – e.g., 2E + 1P = 65 – even though students do
not refer to such equationsii when using this chart. The context and representation
work together to remind students that two erasers and one pencil costs 65 cents. The
purpose of introducing the combination chart supports a search for numerical and
visual patterns.

Figure 11. Combination chart

Erasers Price

0 $0.00

1 $0.25

2 $0.50

3 $0.75

4 $1.00

5 $1.25

6

7

Pencils Price

0 $0.00

1 $0.15

2 $0.30

3

4

5

6

7
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The number patterns found in the beginning of the chart helps students complete the
rest of the chart. In addition, these number patterns also support the exploration of
the exchange strategy (Figure 12).

Figure 12. Exchange strategy in combination chart

A horizontal move from right to left can be interpreted as one less eraser, the price
drops by 25 cents. Using formal algebra notation, this ‘move’ can be represented as
follows:

2E + 1P = 65
1E + 1P = 40

With one more move to the left, 1P = 15.

Figure 13. Diagonal ‘move’ in the chart

The diagonal movement up and to the left can be interpreted as if you exchange one
eraser for a pencil, the price drops by 10 cents (see Figure 13). Using equations, this
“move” can be represented in the following way:

2E + 1P = 65
1E + 2P = 55
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One more move up and left, 3P = 45.
This type of diagonal movement through the combination chart models an ex-

change of one item for the other, a trade of one eraser for one pencil. The price drops
by 10 cents with this exchange because the price of a pencil is 10 cents less than the
price of an eraser. 

This type of exchange strategy is also modelled in a more informal exchange strat-
egy that involves a visual comparison of combinations of items with a total price.
The advantage of this representation is the visual rendering of item combinations.
There are few words for students to read, although they have to be able to interpret
the picture. 

The example in Figure 14 from Van Reeuwijk (1995) shows two T-shirts and two
sodas that cost $44. The second combination shows one T-shirt and three sodas and
a total price of $30. 

Figure 14. T-shirt-soda problem

Even without explicitly phrasing the question, it might be clear what the problem
is. Many people solve this problem using the more formal algebraic method shown
below, even though it is accessible to multiple, less formal, and in this case even
more efficient strategies:

Using different informal and pre-formal strategies shown by the examples in Figures
15 and 16 students can find the price of each item. The guess and check strategy is
an example of an informal approach since it is based on specific features of this par-
ticular problem context. The exchange strategy is also informal, although it is a
slightly more generalizable, structured strategy that can be used with other problems
of the same type. Note that in addition to the different strategies used by the students,
their work also shows each student’s preference for a specific notation.  

   
2x 2y+ 44=
x 3y+ 30=

x y+ 22=
x 3y+ 30=

x 22 y–=
22 y– 3y+ 30=

x 18=
y 4=
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Guess and check

In the student work shown in the left part of Figure 15, taken from Van Reeuwijk
(1995), values are verified using the second picture (TSSS). Because these values for
T and S give an amount that is too high, lower values are used next. Although T = 15
and S = 5 work for the second picture equation, the values T = 18 and S = 4 are se-
lected as the answer. Again, because of the close relationship of this strategy to the
problem context, this is an example of an informal strategy.

Figure 15. Two students’ work on the T-shirt-soda task

The work at the right of Figure 15 shows a more organized way to guess and check.
This student’s choice to start with T = 11 and S = 11 can be explained by looking at
the first picture equation: assume the four items are the same price with a total cost
of $44. The student mentally verified these values in the second picture equation.
This process is continued by increasing the value of the T-shirt and decreasing the
value of the soda, verifying these values with both the first and second picture. This
could be considered a more strategic guess and check, but still an informal strategy.

Exchange 

Figure 16. Two students’ exchange strategies

The two students whose work is shown in Figure 16 compared the two picture equa-
tions and noticed that when you exchange one T-shirt for a soda, the price decreases
by $14. They exchanged one T-shirt for a soda again and arrived at an equation that
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shows the price of four sodas. In each case, the cost relationship between increasing
one quantity and decreasing the other is essential to finding a solution.  

All previous strategies can be used to solve a problem where a set of two linear
equations with two unknowns is involved. To solve a set of equations with three or
more unknowns, a different approach is needed.

Using historical developments in mathematics: another pre-formal model

Following Aad Goddijn’s suggestion in Chapter 2, we can often look to historical de-
velopments in mathematics to identify useful models and strategies to support stu-
dent learning. If we look at mathematics developed in China, we find a method
developed in the period 300 BC to 200 AD. It is described in the Nine Chapters on
the Mathematical Arts of Chiu Chang Suan Shu. 

To solve a system of linear equations Chiu Chang Suan Shu used what we now call
‘matrix notation’. He only used the coefficients of the unknowns, represented by count-
ing rods. Red rods were used for positive coefficients and black rods for negative co-
efficients. The counting rods were placed in columns in such a way that each column
represents one equation. Figure 17 shows an example taken from Joseph (2000). 

Figure 17. Chinese ‘matrix notation’

This type of diagram is the first example of the use of a matrix to solve a system of
three equations with three variables. Given the placement of the values, column op-
erations were used to solve the system which is mathematically consistent with the
row operations that are used to solve matrices in modern mathematics.

This diagram represents the
following system of equations
in three unknowns. Each col-
umn represents one equation
and should be read from right
to left:

x– y– 2z– 0=
x 3y– 3z+ 2–=
x y z+ + 8=
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Figure 18. ‘Notebook notation’

Inspired by the Chinese counting rods, in the Mathematics in Context unit Compar-
ing Quantities (Kindt, Abels et al., 2006), the Chinese approach is adapted to pro-
duce a new pre-formal model referred to as notebook notation (see Figure 18).

The notebook notation is less formal from a symbolic point of view, but is very
close to the Row Echelon Form used with a matrix representation of a system of
equations. In the case shown here, the context is taking food orders at a restaurant.
The quantity of items in each order is noted along with the total price of the order.
This same situation could also be represented by the following system of three equa-
tions or its related matrix:

The method of solution proceeds in a manner similar to working with a  matrix,
except the complete system does not have to be rewritten again and again. The focus
instead is on reducing and eliminating items so that the price of one item is found. 

In the example shown below (from Webb, Hedges & Abels, 2006), Order #1 is
doubled to get Order #4. Then Order #4 can be subtracted from Order #2 to find the
price of one salad. This information can be used with order #3 to find the price of one
drink, and then the price of one taco.

Figure 19. Strategy in notebook notation

1T     2D = 3+ +
2T 1S 4D = 8+ +

       4S 4D = 11+ +

1 0 2 3
2 1 4 8
0 4 4 11

3 4
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Notice that in many of the strategies discussed so far – guess and check, exchange,
combination chart, notebook notation – the use of a monetary context and whole
number combinations of different items are used. The context and use of whole
number items reduce the arithmetic demands on students to solve the problem, which
seems appropriate for students who are novices in algebra. This approach elevates
the focus on algebraic reasoning, patterns and relationships. To motivate students to
consider more formal algebraic methods, other contexts, numbers and values can be
used. For example, when equations with whole number coefficients are replaced
with decimal or fraction coefficients, students are more inclined to use numerical
rather than pictorial representations. When quantities and prices are ‘less friendly’ to
mental arithmetic, students are more inclined to use symbolic notation to solve a
problem. Even with this shift to more formal representations, however, the initial
context continues to serve as a concrete reference for students to recall related strat-
egies and provide informal justification to explain why related strategies with equa-
tions and matrices work. 

Even though guess and check, exchange, combination chart, and notebook nota-
tion are all useful strategies that use a monetary context (informal), the combination
chart and notebook notation are mathematical tools that offer greater structure to
solve problems (pre-formal). When students use guess and check strategies, the
choices they make to select and compare quantities depend on their strategic compe-
tence (Kilpatrick, Swafford, & Findell, 2001). This strategy provides no inherent
guidance for solving the problem. In contrast, the combination chart and notebook
notation require the organization of key values that set up a generalizable solution
strategy – e.g, when using the combination chart follow a diagonal pattern to the hor-
izontal or vertical edges to reduce the quantity of one item to zero. As noted earlier,
the solution strategy for notebook notation – a pre-formal tool that suggests a restau-
rant context – is very similar to the formal Row Reduction Elimination Method used
with matrices.

In comparing these two preformal models, the notebook notation has a clear ad-
vantage over the combination chart in that the notebook can be expanded to include
as many columns and rows as needed for the respective number of variables and
equations. With the combination chart the horizontal and vertical axes are defined by
two variables; it cannot be used with situations that have three or more variables –
i.e., a situation with three variables would require a combination cube!

PREPARING TO APPLY INSTRUCTIONAL DESIGN PRINCIPLES

The strategy-building contexts and pre-formal models discussed in this chapter have
a role in developing student understanding of algebra. As with the formal strategies
– namely, the substitution and elimination methods for systems of equations, student
learning must be supported with instruction that emphasizes the essential features of
the model or strategy that is being developed. Rather than having students ‘discover’
these models on their own, the teacher has an instrumental role in supporting stu-
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dents’ guided reinvention of the models through the use of questions, examples, and
counterexamples that can clarify how the model could be used (Webb, 2008). 

We have found that a useful activity for teachers to engage in when planning for
instruction is to review their available instructional materials for examples of useful
contexts (e.g., bartering, balance, mapping, and consumer situations) and pre-formal
models that support student sense-making (e.g., fair exchange, combination charts,
notebook notation, frog jumping, etc.). As part of a research project with middle
school teachers in the United States (Webb, 2009), small groups of teachers engaged
in collaborative planning to identify learning lines in their own instructional materi-
als that included informal, pre-formal and formal representations based on their col-
lective knowledge about a mathematics topic (Webb, Boswinkel & Dekker, 2008).
One group of teachers who selected systems of equations as their topic, was able to
develop an online, interactive guideiii that illustrated how different activities and rep-
resentations could be used to develop student understanding of the formal mathemat-
ics for the domain. This type of planning activity could be used to identify where
their instructional resources include important informal and pre-formal representa-
tions. It is also important to know which representations are not part of available in-
structional materials, so that the introductory contexts and preformal models
discussed in this chapter can be included as instructional activities to strengthen the
learning experience for students.

CONCLUSION

We hope that we have conveyed that the mathematical domain of restrictions in-
cludes important meaningful representations that promote students’ understanding
of equality and equations. The basic relationships described in equations can be ex-
plored in a deeper, more thought provoking manner if the equations are not viewed
as something to solve. Rather, equations should also be understood as a representa-
tion of a restricted relationship.

Systems of equations can then be viewed as a binding combination of relation-
ships that describe a situation – multiple equations or inequalities that work together
to describe different aspects of a whole. One of the common errors that students
make when they are first introduced to a system is to focus on the solution of one part
(or find a solution that works for only one equation) without reconciling if that solu-
tion holds true in the other equations or inequalities used to describe the system. 

An approach that embodies principles of progressive formalization (Van Reeuwijk,
2001; Webb & Meyer, 2007) will likely be initially more accessible to students and
invite alternative ways of reasoning algebraically about the problem. The contextual
referents can serve as reminders of why more formal approaches work as they explore
more formal, symbolic representations devoid of context (Gravemeijer, 1994). 
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NOTES

i The figures on this page are adapted from solutions given in Webb, Hedges & Abels, 2006, p. 8A.
ii In this case, the letters in the equation are not variables since they represent a set price for each item.

Rather, they are abbreviations for the items being sold. If the prices for each item were dynamic or
optional, then E and P could be considered variables. 

iii This guide can be found at http://tinyurl.com/bpeme-systems
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6. ALGEBRA IN FUNCTION

The function is a special kind of dependence, that is, between variables which
are distinguished as dependent and independent. (...) This – old fashioned –
definition stresses the phenomenologically important element: the directedness
from something that varies freely to something that varies under constraint. 
(Freudenthal, 1983, p. 496).

INTRODUCTION

The teaching and learning of the concept of function is strongly related with symbol
sense and algebraic skills. Dealing with functions depends on and supports under-
standing variables, manipulating formulas and relating representations such as ta-
bles, graphs and formulas. Lack of algebraic awareness makes reasoning with
functions very difficult if not impossible. 

The example shown in Figure 1 illustrates the relationship between functions and
algebra. The task for the students is to compare and to reason with two cell phone
offers. This activity is part of an introduction to the function concept through a series
of open ended activities supposed to reveal the students’ thinking, to evoke the need
for organizing series of calculations and to provide opportunities for the teacher to
introduce aspects of dependency relationships.

Figure 1. Cell phone task 

In a teaching experiment, this task invited the students’ situational reasoning, in
which functions emerged as algebraic generalizations of input-output calculations.
The variety of solution strategies and uses of representations students came up with
illustrate their attempts to invent ways to organize the situation mathematically, i.e.,
to organize repeated calculations, define variables and use various representations.
Some students tried to organize their repeated calculations by systematically writing

Two offers from a cell phone company
Tom Often: monthly subscription charge € 7.50, plus 25 cents per minute. The
first 30 minutes are free.
Tom Seldom: monthly subscription charge € 22.50, plus 15 cents per minute.
The first 80 minutes are free.
> Suppose you call 100 minutes each month. Which offer would you choose?
> When would you change from one offer to the other?

P. Drijvers (ed.), Secondary Algebra Education, 119–135.
© 2011 Sense Publishers. All rights reserved.
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them in a list (poster on the left in Figure 2). This helped them to see the pattern in
the calculation, and to apply this pattern to a new situation. In fact, the way in which
these students listed their calculations already resembles an input-output relationship
(the first number varies over the input values). However, calculations on other post-
ers were less structured and the input-output pattern was less clear. The students’ at-
tempts to use formulas to describe the calculations for the two cell phone offers are
shown in the poster on the right in Figure 2. Although the formulas are not in con-
ventional notation, they show that these students identified the two variables of the
dependency relationship (m for minutes and b for costs).

Such strategies can be used by the teacher to build upon the students’ intuitive ide-
as. In a teaching experiment, the teacher discussed the results and compared the dif-
ferent solution strategies. New mathematical goals emerged in this discussion:
repeated calculations are time consuming, general patterns can be found in the cal-
culation procedures, these patterns can be described with input-output machines, dif-
ferent representations are useful for different purposes. The discussion served as an
introduction to the emerging function concept, and invited the understanding of the
variable concept and the methods for constructing and manipulating formulas. 

Figure 2. Posters of students’ calculations

In this chapter we will first address the function concept: what is a function and
which faces does this mathematical concept have? Next, attention is paid in more de-
tail to the different notations and representations of functions. After this, we address
the relationship between the function strand and other strands within algebra educa-
tion. 

An affordance of the function concept is grasping change. Studying change and
variation will eventually lead students into calculus. The next section, therefore, ad-
dressed the function as a bridge between algebra and calculus. 

Traditionally, curricula are aligned from linear functions to quadratic to polyno-
mials, and after that include other types of functions such as trigonometry, exponen-
tional and logarithmic functions. Along such a function line students have to master
the algebraic skills that are related to dealing with the corresponding formulas. As an
alternative, the final section discusses a tilted approach to teaching functions and its
consequences for algebra. 
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WHAT IS A FUNCTION?

In order to investigate the role of the function concept within algebra education, and
its particular relation to the patterns and formulas strand and the restriction strand de-
scribed in earlier chapters, a further analysis of the essence of the concept is needed.
In this section, therefore, we explore different views on the concept of function.

The word ‘function’ in its mathematical sense was first used by Leibniz in 1673
(Eves, 1990; Ponte, 1992). It was derived from the Latin word ‘fungor’, which means
‘I carry out a task’. Later, in 1718, Bernoulli defined a function as ‘a quantity com-
posed of variables and constants’. In the 1750s, Euler described a function as ‘an an-
alytical expression’ and as a quantity being a function of another quantity, if the value
of the first is determined by the value of the latter. In other words: if x stands for an
independent, variable quantity, then all quantities that depend on x, or are determined
by x, are seen as functions of x. 

Nowadays, set theory forms the basis of the function concept: A function links one
set to another, and is seen as a set of ordered pairs. This is clearly expressed in the
Dirichlet-Bourbaki definition, formulated in 1934:

 is a function from one set to another, say A to B, if  is a subset of the Car-
tesian product of A (the domain) and B (the range or codomain), such that for
every  there is exactly one  with .

Even if the Dirichlet-Bourbaki description is the currently used mathematical defini-
tion, one may wonder how useful it is for pedagogical purposes at the level of sec-
ondary mathematics education. We all know that there can be a gap between formal
definitions of mathematical conceptions and the images that students have (Vinner
& Dreyfuss, 1989). Freudenthal considers the Dirichlet-Bourbaki definition as not
very appropriate for teaching: “It obscures the essential action of assigning directed
from A to B”. As the introductory quote of this chapter already witnesses, Freu-
denthal stresses the causal dependency character of a function: 

Indeed, the very origin of function is stating, postulating, producing, reproduc-
ing dependence (or connection) between variables occurring in the physical,
social, mental world, that is, in and between these worlds. 
(Freudenthal, 1983, p. 494)

Examples of dependency relations in which time is the independent variable are dy-
namic processes such as motion, growth, decay, and trend. Speed usually is a func-
tion of time as well. But time is just one of the possible independent variables:
– The light intensity of a lamp at a certain position is a function of the distance from

that position to the lamp; in fact, the intensity is proportional to the inverse of the
square of the distance: 

– The area of a circle is a function of its radius; 

f f

a A b B a b, f

I c
d2
-----=

A r2=



MICHIEL DOORMAN, PAUL DRIJVERS

122

– In the lens example presented in Chapter 1, the image distance b depends on the
object distance v, provided that the focal distance  of the lens is fixed. This func-
tional relationship is described algebraically as 

– In the V-pattern example in Chapter 3, the n-th V-number can be described by 

The nice thing about these algebraic representations is that you can easily put in a
numeric value for the independent variable, to calculate the corresponding output
value. In such an activity, the concept image of the function is the input-output view,
in which the ‘function machine’ calculates output values according to a stepwise pro-
cedure. If we are interested in how the intensity of the lamp changes as we move
away from it, the concept image includes a dynamic, co-variance view. Finally, if we
consider the lens example and study properties of the functions for different values
of the focal distance , we see each of the functions as a mathematical object which
is a member of a class of similar objects. 

These considerations lead to the distinction of three main elements in the students’
concept image of function (Drijvers et al., 2007; Oehtrman et al., 2008; Ponce, 2007;
Vinner & Dreyfuss, 1989):
1. The function as an input-output assignment

The function is an input-output assignment that helps to organize and to carry out
a calculation process. This initially somewhat vague notion gradually gets more
nuances: how does the output depend on the input, how does the input determine
the output?

2. The function as a dynamic process of co-variation
This concerns the notion that the independent variable, while running through the
domain set, causes the dependent variable to run through the co-domain. The de-
pendent variable co-varies with the independent. Initially, the linked change may
be noticed in a somewhat phenomenological way. Next, the question emerges of
how and why this process of joint dynamics takes place.  

3. The function as a mathematical object
A function is a mathematical object which can be represented in different ways,
such as arrow chains, tables, graphs, formulas, phrases, each providing a different
view on the same object. The concept image is an integrated function notion,
which allows for reasoning with functions on a global level.

These three elements of the function concept can be linked to the process-object du-
ality, which was identified in Chapter 1 as one of the difficulties of algebra. The in-
put-output assignment view and dynamic co-variation view stress the process
character of the function: it is an action, it takes the input value and processes it to
find the output. The mathematical object view clearly relates to the object character

f

v f v
v f–
----------
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of the function: it is a ‘thing’, which can be a member of a family, or can be subjected
to higher order processes such as differentiation, or may even act as unknown in a
differential equation. In line with Sfard’s claims on the procedural preceding the
structural (Sfard, 1991), we suggest that the three elements should be addressed in
the above order. Furthermore, the three different views on functions affect the repre-
sentations that are appropriate in problem solving processes, which is the topic of the
next section.

FUNCTION NOTATIONS AND REPRESENTATIONS

Function notations

Reasoning and communicating about functions require notations. To denote a func-
tion, different notations are used, each highlighting specific aspects of the function
concept and its use in the particular situation. One of the most common notations in
mathematics is the ‘equation notation’, as for example in . In
this notation, which was introduced by Euler, the meaning of the equal sign can be
ambiguous. It is unclear if the above formula is a definition of a function , or if 
has already been defined earlier and the equal sign indicates an equation: for which
value of x is  equal to ? Usually, this ambiguity does not lead to
confusion in the context of the problem situation. The ambiguity can be avoided by
using ‘:=’ for definitions and ‘=’ for equations, but this may be too formalistic.

Another, related function notation is the ‘y =’ notation: . Com-
pared to the previous one, this notation obscures the distinction between independent
and dependent variables: even if it is likely that y is considered a function of x, this is
not made explicit by adding an argument to y, as was the case in the ‘  =’ notation.
Furthermore, the letters x and y may be associated with the axes in the Cartesian plane,
and as such this notation has a strong association with the graphical representation of
a function. The ‘y =’ notation may be transformed into an implicit form as well, such
as . In the latter notation, it is still open which variable will get the
role of the independent, and which one is considered as dependent. In these notations,
different functions can be distinguished through different names or subscripts, such
as f, g, h, or f1, f2, f3, or, as is common on some graphing calculators, y1, y2, y3, ... 

The above notations share a somewhat structural, static character, which does not
stress the input-output process character of functions. This is different for the arrow
notation: . This notation highlights the operational input-output
character of the function, and as a consequence its co-variation aspect. It can be pre-
ceded by a function name, and to put in a slightly tautological way, we could even
write f : . This is not very informative for students, but it does shows the dif-
ference between  as the name of the function, and  as the output value of the
calculation procedure for an input x. 

f x x 3– 2 5+=

f f

f x x 3– 2 5+

y x 3– 2 5+=

f x

x 3– 2 y+ 5–=

x x 3– 2 5+

x f x
f f x
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Educational systems show different preferences and choices concerning function
notations. Also, mathematics and science have different function notation traditions
(Freudenthal, 1983). In mathematics, characters such as f, g, h, ..., are used as func-
tion names, while x, y, a, b, c, ..., represent input and output variables, and parame-
ters, which often are detached from meaning. In science domains such as kinematics,
s, v, and a are physical quantities that implicitly represent functions, i.e. functions of
time. Students need to be aware of the different conventions, and be alert for possible
confusion. For example, in a mathematics course d(m) may refer to a function d of
m, whereas in science d(m) may denote a distance d expressed in meters as length
unit. 

We do not claim that one particular function notation or convention is to be pre-
ferred above others. We just want to point out that there are different notations and
traditions, which may be good to address explicitly in order to avoid confusion and
to strengthen the general features of the function concept.

Function representations

Besides different notations, functions have different representations. The main func-
tion representations are verbal descriptions, tables, graphs and the algebraic formu-
las. Additional representations may be arrow chains, nomograms, flow charts, ...
Ideally, all these representations are part of students’ concept image; together, the
representations form an integrated, versatile and rich function concept. In Figure 3,
possible successive representations of the calculation recipe of the earlier cell phone
example (Figure 1) are shown. These subsequent representations suggest a possible
progressive mathematization trajectory for functions, and reflect the three aspects of
the function concept image outlined in the previous section.
 

Figure 3. A chain of function representations

When you know the calling time in minutes, 
subtract 30, this result times 0.25 gives the amount in €, 
and add € 7.50 for the fixed costs.

INPUT OUTPUT
(calling time) (costs) 30 x 0.25 + 7.50

x x 3–

word formula:

chain of operations:

chain formula:

function formula:

function table:
INPUT 30 40 50 60 70

OUTPUT 7.5 10 12.5 15 17.5

x 0.25 + 7.5

f(x) = 0.25 (x  30) + 7.5
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An important aspect of a rich function concept is the ability not only to understand
and use each of the function representations, but also to relate them, to translate prop-
erties of one representation into properties of another, and in this way to connect the
different representations (Janvier, 1987, 1996; Van Streun, 2000). In order to acquire
such a versatile understanding of function and the affordances and constraints of the
representations, tasks have been designed that specifically focus on relations be-
tween representations (e.g. Swan, 2008). Figure 4 shows such a task, in which cards
contain function representations, some of which created by a computer tool which
students used before (Boon et al., 2008). The task for the students is to match corre-
sponding representations and to explain how one can be sure the match is correct. 

Figure 4. Matching representations (Boon et al., 2008)

If the input increases, 
the output decreases.

If the input increases, the output increases 
with increasingly big jumps.

If the input gets 2 bigger, 
the output gets 1 smaller.

As the input increases, 
the output increases slower.

0
1
2
3
4

2
5
8
11
14

0
1
2
3
4

5
4.5
4
3.5
3

0
1
2
3
4

?
1
1/2
1/3 
1/4
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In this section, we saw a variety of function notations and representations, that
each afford specific views on the function concept. As mathematics teacher or edu-
cator, it is good to be aware of these connotations and to design algebra education so
that students become equipped with a repertoire of notations and representations,
with the ability to make appropriate choices and to relate the different notations and
representations to each other. 

FUNCTIONS AND ALGEBRA

Functions in relation to algebra strands

In Chapter 1, we distinguished three main strands within secondary algebra educa-
tion, namely patterns and formulas, restrictions, and functions. The two preceding
chapters address patterns and formulas and restrictions, respectively. How does the
function strand relate to the two others, and which particular role plays the function
strand within algebra at school?

In the patterns and formulas strand, the patterns can be described by formulas. In
the dot pattern example in Chapter 4, the number of dots is represented by ,
with N being the rank order of the pattern. While this may seem to be a somewhat
static algebraic expression, its values are calculated by substitution of values for N,
and as such the number of dots is a function of the rank order of the pattern. If we
consider the change of the number of dots while N increases, the character of N
changes from placeholder to an independently changing quantity, and the number of
dots becomes a function of the rank order N.

As an illustration of the restrictions strand, Chapter 5 gives an example with prices
of erasers and pens, which lead to a system of equations: ,

. The variables E and P are unknowns here, and once a value for one of
the two is substituted, the other can be calculated. If there is a reason to investigate
how the number of erasers depends on the number of pens, the functional aspect
comes into view, and the first equation might be better represented in an explicit no-
tation: . 

These brief examples from other algebra strands show that algebraic problem sit-
uations may invite a functional view. If the situation can be described in terms of in-
put-output processes, of dependency relationships in which the independent variable
changes and evokes co-variance, the functional view is connected to the patterns and
formulas and restriction strands. Even if algebraic expressions and formulas are im-
portant ways to represent functions, the function perspective is different because of
its dynamic dependency perspective and its representational tools.

Functions as a motive for algebra

As formulas and expressions are important ways to represent functions, the use of
functions may provide interesting opportunities for algebraic work. We present three

N 1– 2

2 E P+ 65=
E P+ 55=

E 65 P– 2=
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short examples. The first example refers to the ‘multiplying lines’ task in Chapter 8,
in which the graphs of two linear functions and their product function are drawn.
Questions about specific properties of the ‘product graph’ and the two lines are:
Which relations exist between the zeros? What can you say about the vertex of the
parabola? Which conditions do the linear functions need to fulfil in order for the pa-
rabola to touch the x-axis? Is each parabola the ‘product graph of two lines’? An-
swering these questions requires algebraic reasoning. This type of task with graphs
as the starting point for manipulations with formulas can easily be extended to sums
and quotients of graphs (Figure 5).

Figure 5. Sum and quotient graphs of two linear functions

A second example of algebraic activity while working on functions has a more the-
oretical character and concerns the derivation of the product rule for differentiation
from the chain rule. It is more than just an algebraic exercise, as it also provides in-
sight in the relationships between the rules for differentiation. The idea is to differ-
entiate  as well as its expanded form. To shorten notations, we write f and g
for  and , respectively. 

Differentiation of left and right hand side with the chain rule leads to:

Expanding the brackets in the left hand side leads to terms that are cancelled out. Af-
ter division by 2, we end up with the product rule for differentiation: 

The third and final example shows that analytic geometry, and graphs of paramet-
ric curves in particular, may invite algebra (Drijvers & Kindt, 1998). In the first task
shown in Figure 6, the graphical suggestion that the Lissajous curve indeed is a pa-
rabola in case  begs for algebraic verification: 

f g+ 2

f x g x

f g+ 2 f 2 2f g g2++=

2 f g+ f g+ 2f f 2 f g 2g g+ +=

g f f g+ f g=

t 0=

y 2tcos 2 tcos 2 1– 2x2 1–= = =
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An interesting follow-up question would be to find other values for parameter a so
that the curve is a parabola. The second task in Figure 6 is to verify that the paramet-
ric curve has the given equation, which appeals for algebraic skills with trigonomet-
ric functions. Parametric curves such as the Lissajous family, which students can
explore graphically with technological means such as computer software or the
graphing calculator, provide an inspiring and natural source for the use, development
and maintenance of algebraic skills. 

Figure 6. Parabola and ellipse as Lissajous figure

To summarize this section, we notice that on the one hand, the function view adds
dynamic dependence to the more static patterns and restriction views within school
algebra. On the other hand, working with functions and their algebraic representa-
tions leads to the development and practice of algebraic manipulation skills. 

The above examples, which aim to make these claims more concrete, have an an-
alytical character. The role of the function as a main concept in both algebra and cal-
culus will be explored in more detail in the next section. 

ALGEBRA AND CALCULUS

The relationship between algebra and calculus has a dual nature. On the one hand,
algebraic competence is needed to solve problems within calculus. For instance, it is
necessary to recognize structures of formulas for identifying the appropriate differ-
entiation rules, and for applying these rules correctly. Moreover, a strong and flexi-
ble understanding of the variable concept is needed for reasoning with expressions
such as . On the other hand, the algebraic procedures for computing a de-

On your left, you see three curves
with parametric equations:

x(t) = cos(t)
y(t) = cos(2t+a)

with  and a = 0, /2, . 
The graph in bold looks like a para-
bola. Prove it really is one.

t 0

The curve on your left has the pa-
rametric equation

x(t) = cos(t)
y(t) = cos(t) + sin(t) 

with .
It looks like an ellipse. 
Show that the equation of the cur-
ve is .

0 t 2<

2x2 2xy– y2+ 1=

f x x+
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rivative may also disguise the underlying concepts of instantaneous change and dif-
ference quotient. This two-sidedness of the role of algebra in calculus requires
careful considerations of both teaching and learning trajectories and of the underly-
ing models and representations. 

As a means to bridge algebra and calculus, we argue in this section that students
take the history of this topic into account and deal exhaustively with discrete sums
and differences before entering into continuous calculus techniques (Kindt, 1997).
This will enable them to develop understanding of the relationship between differ-
ences and sums as a preparation for differentiation and integration, and to understand
current notational conventions and graphs.

Calculus is a theory about change and has largely been developed in the context
of understanding motion. This context forms one of the basic motives for calculus:
to establish the relationship between distance travelled and displacement or velocity.
A first example of the algebraic reasoning, therefore, concerns the discrete relation-
ship between taking sums and differences in this context. Suppose s0, s1, s2, ... is a
sequence of distances travelled, and d is the sequence of corresponding displace-
ments:

, , ... 
Combining the two results in 

This equality represents a rather obvious fact: the addition of consecutive displace-
ments results in the final distance covered. In general, a similar mathematical rela-
tionship between sums and differences holds. Let a graph of a quantity S be given.
Define successive differences . From the graph it can be
seen that the sum of all differences 
(see Figure 7). 

In chapter 4 (Patterns and formulas) we have seen a special case of this general
relationship between sums and differences. The differences between successive
squares are successive odd numbers: 1 – 0 = 1; 4 – 1 = 3; 9 – 4 = 5; .... Consequently,
the sum of these odd numbers is a square, or more formally: . 

With this sum-difference property various mathematical relations come within
reach. A nice algebraic task is, for example, to prove that . Ap-
plying the sum-difference property results in the sum formula

. This approach is elaborated in Kindt (1997).
Algebraic activities on relating sums and differences for understanding change

prepare students for the relationship between integral and derivative function. This
can easily be framed in the context of understanding motion and finding relation-
ships between displacements D and total distance travelled S. In this way, algebraic
reasoning and skill go hand in hand with conceptual development on the topic of cal-
culus. Following this line of reasoning, the next step is to decrease time interval
length and, finally, to take limits to reach the notion of instantaneous change. 

d0 s1 s0–= d1 s2 s1–= dn 1– sn sn 1––=

d0 d1 dn 1–+ + + sn s0–=

D k S k 1+ S k–=
D 0 D 1 D n 1–+ + + S n S 0–=

2k 1+ n2=

3k 1+ 3k– 2 3k=

3k 1 2 3n 30–=
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Figure 7. The sum of differences D(k) results in the total change 

This concept is far from trivial in intuitive reasoning about motion. Beth (1928) de-
scribes this in a paradoxical definition of instantaneous velocity:

The velocity is what it would become if it remained what it was.
(Beth, 1928, p. 54; translated from Dutch)

Around 1680 Leibniz invented a symbol system for calculus that codifies and sim-
plifies the essential elements of reasoning about instantaneous change. The invention
of a literal symbolism (e.g. the derivative of x2 is 2x) was essential for the rapid
progress in calculus. It allowed for a straightforward algebraic treatment of the con-
cept of change. Problems that once required the ingenuity of Archimedes now be-
come doable for students: one can mechanically carry out the algebraic techniques,
even without understanding the underlying principles (Kaput, 1994). As a result, cal-
culus education typically has a strong routine aspect and is a rich source for algebraic
work; meanwhile, one should be aware of the long history, including notational and
graphical developments, that underpins these techniques. 

It is useful to look into this history to gain insight into the conventions and to an-
alyze how and why people tried to organize related problems without having any no-
tion yet about the basic principles of calculus (Doorman & Van Maanen, 2008). For
instance, motion graphs with horizontal time axes are used in education to explain
the calculus methods. These graphs illustrate the relationship between distance trav-
elled and velocity. In fact, in most mathematics classrooms, such time graphs are
used as if they were the only way to express motion. However, history shows that
one can also depict changing velocity in a graph with distance travelled along the
horizontal axis (the position along a road). What do slope (a quotient of the two dis-
played variables) and area (a sum of products of the two displayed variables) mean

0 k k+1 n

D(k)

S n S 0–
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in such a graph? Understanding that slope can be interpreted as velocity in a distance-
time graph requires algebraic understanding of its measure.

The issue of the meaning of slope and area becomes even more manifest in the
graph in Figure 8. This sports graph supports reasoning like ‘it takes y seconds to ar-
rive at position x’. The position  instead of time  appears as an independent varia-
ble displayed along the horizontal axis. Split times of a speed skating race are
displayed vertically (with a reference to an average split time). An increasing graph
means that the split times increase and that the velocity of the speed skater decreases.

Figure 8. Speed skating graphs

In addition to the relationship between quantities in graphs and their quotients (when
calculating slope) or products (when calculating area), Pence (1995) points out the
need for an understanding of the variable concept in calculus. He notices that many
students starting a calculus course do not realise that 2x is twice as far from 0 as x.
They are not able to locate 2x on a number line when x is already positioned. These
students do understand that 2x represents a multiplication, but are not able to inter-
pret 2x as representing a quantity twice as large as x. Freudenthal (1983) also high-
lights the required understanding of variables. He argues that variables are often
taught and understood as placeholders or letters to be manipulated, and as a result the
kinematic understanding that the letters refer to something which varies is lost.

The effort to suppress the kinematics of the variable goes hand in hand with the
annexation of the term ‘variable’, stripped of its kinematics undertone. 
(Freudenthal, 1983, p. 493)

Comparison of present-day mathematics with older methods enables us to value our
modern notations and conventions, and helps to establish more coherence between
algebra, calculus and physics. Historical explorations and algebraic reasoning with
sums and differences as support for learning calculus might prevent algebraic algo-
rithms becoming disconnected from their roots (Doorman & Gravemeijer, 2009). 
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A TILTED APPROACH TO FUNCTIONS

As explained earlier in this chapter, there is a dual relationship between the function
strand and the necessary algebraic skills. For instance, dealing with quadratic func-
tions requires the ability to factorize and expand quadratic expressions.

Traditionally, function courses are structured along the increasing mathematical
complexity of the objects of study, and the complexity of the corresponding algebra-
ic techniques: first linear functions, solving linear equations, then quadratic func-
tions and quadratic equations, etcetera. The left part of Figure 9 depicts such an
approach, with the time as a vertical dimension. Often, much effort is spent on ma-
nipulations with variables and expressions. The danger of this approach, however, is
that the algebraic manipulations, such as solving quadratic equations, are practiced
in isolation and not as elements within a range of possible techniques.

Figure 9. Two ways of structuring a function strand

The right part of Figure 9 shows an alternative approach, in which ‘time is tilted’.
According to this approach, the study of relationships remains important, but gets a
different emphasis. These relationships are presented in contextual problems, and are
not limited to linear and quadratic relationships as in traditional curricula: exponen-
tial, periodical and more complex relationships are explored in an early stage, and
the relevant concepts are developed in parallel rather than sequential. Strategies and
problem solving techniques are developed that flexibly can be applied in different
situations for different types of relationships: numerical approximation techniques
with formulas, graphs and tables, use of zoom tools, study of co-variation, and trans-
lations between representations.

To exemplify this tilted approach, Figure 10 shows a comparison task involving
linear and exponential growth for 11-12 year olds. The following questions may
emerge when the students work on this problem and may evoke more sophisticated
representations such as tables and formulas:
– How do you organize your calculations? 
– Is there a week in which both offers result in the same amount of money?
– Can you think of an offer that can compete with offer 1?

– exponential growth
– trigonometric functions
– rational functions
– power functions
– quadratic functions
– linear functions

Ti
m

e

– exponential growth
– trigonometric functions
– rational functions
– power functions
– quadratic functions
– linear functions

Time
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Figure 10. Comparing linear and exponential growth

This example illustrates how a contextual problem can involve linear and exponen-
tional growth, and can be used as a motive for needed algebraic skills. These skills
are developed together with the problems where they are in use, and together with
the representations that are involved: from dealing with word formulas, along inter-
mediate models like arrow chains to graphs, tables and formulas. 

In the Netherlands the longitudinal learning trajectory for functions was revised
in the nineties of the last century. As a consequence, the algebraic methods and skills
needed in this new trajectory were reconsidered and changed according to this tilted
approach (Abels, 1996). This resulted in the following algebraic topics in the curric-
ulum for students of age 12 to 16 (Team W12-16, 1992).

1. Manipulate with and translate between representations
– investigate sum and difference relationships (see also calculus)
– move and stretch graphs by manipulating parameters
– transform formulas (including substitution)

2. Solve equations
– invert arrow chains
– cover-up methods
– numerical methods with zooming, extrapolation and interpolation

3. Growth
– compare relationships
– analyze relationships (which part is most influential in which domain)
– use formulas and patterns in tables (e.g. the additive pattern in linear relations

and the multiplicative pattern in tables of exponential relations)

This tilted approach in the Dutch curruculum was successful in the sense that it en-
hances students’ flexibility and problem solving skills; however, a danger of limited
practice and maintainance of basic skills also became manifest. In the Mathematics
in Context project a balance between the two approaches was searched for (WCER

A pocket money agreement
Suppose you get two offers for pocket money for one year:
1) This week you receive € 0.01 and then every week this amount will be

doubled: next week € 0.02, then € 0.04, € 0.08, etcetera.
2) This week you receive € 1.00 and then every week you receive an extra

€ 1.00.
> Which offer would you choose?
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& FI, 2006). Speaking in general, the two structures of the function strand, as pre-
sented here, should be considered as two extremes of possible approaches.

Recently, the local debate in the Netherlands shifted focus towards traditional ba-
sic skills (see also Schoenfeld, 2004). Students’ lack of procedural skills, as experi-
enced by higher education teachers, might be a result of the new curriculum, but may
also be influenced by other factors, such as societal changes, national cuts in the ex-
penses for education or a competency-based reform in upper secondary education.
The debate led current text book series to restore isolated practice of basic skills at
the expense of a more integrated approach. We hope that this recent development
will converge towards a balanced algebra curriculum that serves both societal de-
mands in the technological era, and students’ further education.
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7.  PRINCIPLES OF PRACTICE

Advocates of insightful learning are often accused of being soft on training.
Rather than against training, my objection to drill is that it endangers retention
of insight. There is, however a way of training – including memorization –
where every little step adds something to the treasure of insight: training inte-
grated with insightful learning. 
(Freudenthal, 1991, p. 114)

GOODBYE TO SKILLS

On 25 October 2005, an article titled ‘Long division.. what is that?’ was published
on the front page of a Dutch newspaper (NRC Handelsblad); its subject was the
shortcomings of first-year students at one of the technological universities in the
Netherlands. At the beginning of their study, these students are given an entry test to
evaluate their basic algebra skills. The results from 2005 were pathetic: only 4% of
the first-year students earned a passing score. Of course, this result could stem direct-
ly from the test’s authors being uninformed about current secondary education.
However, when constructing the test, an important role was given to a mathematics
teacher from secondary education. An analysis of the problems in the test (partly in
multiple-choice form) shows that the type of problem certainly did not link up seam-
lessly with the content of the current mathematics textbooks; nevertheless, one
would expect a much better – if not completely opposite – result from graduates of a
pre-academic programme. The students who failed the test were required to take a
brush-up course. One of the conclusions about this course was the following: “Focus
especially on adding and simplifying fractions.” This obviously indicates a serious
weakness in secondary education.

Of course, we should realize that complaints about the algebra skills of secondary
school students and university students are nothing new. Unfortunately, the serious-
ness and number of complaints have increased strongly in recent years. This applies
not only to observers outside secondary education, but also to those within. Some ob-
servers attribute the problematic algebra skills to the spirit of the time: accuracy and
concentration – to put it mildly – no longer enjoy their former status. Others blame
the current mathematics programme, which pays only limited attention to symbolic
manipulation or the permanent availability of advanced computation aids, such as
the graphing calculator. Still other people claim that it is precisely these electronic
aids that make algebra skills – with the accompanying ready knowledge – more or
less obsolete. 

P. Drijvers (ed.), Secondary Algebra Education, 137–178.
© 2011 Sense Publishers. All rights reserved.
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Regardless of the cause, the lack of basic skills and self-confidence in the area of
algebra is a fact we can no longer ignore. Of course, the question is, should we do
anything about it, and if so, what? In any case, it is clear that practice plays a role in
this process. But what kind of exercises should be used and how should they be ap-
plied? While some observers see promise in the reintroduction of drill-and-practice,
without all that didactical gobbledygook, others are wary because that would push
insightful action into the background, leading to what Van Dormolen (1975) called
‘routine based on tricks’. Instead, Van Dormolen proposed ‘routine based on in-
sight’, where problems are not only approached adequately and intentionally, but can
also be solved within a reasonable length of time. In fact, this was his definition of
‘skill’, and this description is highly compatible with our ideas about the desirable
orientation of practice in algebra.

WHY SKILLS ARE IMPORTANT AFTER ALL

An entry test, like the one given at the technical university mentioned above, is spe-
cifically intended to test only ‘procedural skills’. Virtually all questions can be an-
swered ‘mechanically’, i.e. with a symbolic calculator. However, such an apparatus
is only worthwhile if the user is capable of reading the problems and converting them
into a language that can be entered on the calculator. This requires a certain degree
of knowledge about the grammar of algebraic language, which can only be obtained
through practice.

The mastery of procedural skills, as measured by the test, is certainly not a goal
that stands on its own. If the practiced techniques are not used for other purposes or
are not linked to other topics, doing countless exercises leads to short-term success
at best. If the techniques are forgotten and/or cannot be applied in the appropriate sit-
uations, then this practice is a waste of time. This is why many algebra techniques
and rules have disappeared from the Dutch curriculum, beginning around 1960.

Many techniques and rules have been thrown overboard as useless ballast, such as
long division of polynomials, manipulating surds, rationalizing the denominator and
the formula for sum and product the roots of a quadratic equation, to name only a
few. However, people perhaps neglected the fact that a number of these discarded
topics can provide an opportunity to maintain or improve skills that were acquired
previously. After all, without repeated practice, no actual skills in working with for-
mulas can be acquired.

We will now use several examples to demonstrate why we continue to value the
mastery of basic algebra skills, in any case for students at the pre-academic level.

First, we will describe a recent experience with a selected group of students at
Utrecht University’s Junior College, who were studying algebra at the pre-academic
level. While addressing iterative processes, the recursion formula

xn 1+ axn b+=
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came up for discussion. An essential and sufficient precondition for the existence of
a stable equilibrium in the process represented by such an equation is .
This can be understood at an intuitive level with the aid of graphs (Figure 1).

Figure 1. Graphing an iterative process

A question that arises naturally from this situation is to ask the students to express
the equilibrium value in a and b, which amounts to solving the equation for x: 

But this was asking too much of these students. The teacher saw an opportunity to
use a Socratic discussion to find the answer

But he didn’t stop there; he put the students on the spot: 
Check this solution with substitution by showing that  is equal to .

This step also took place with the greatest difficulty; it became painfully obvious that
algebraic fractions were scarcely practiced in the lower grades of secondary school.

Although a skilled teacher should be able to make ad hoc repairs of such deficien-
cies, such interruptions can obviously stall the learning process if they occur too of-
ten. After all, when introducing new concepts and techniques and when applying
mathematics, teachers continually make assumptions about the knowledge and skills
of the students. If such knowledge or skills are lacking, the possibility of reaching a
higher level is severely limited, if not blocked entirely. In short, it is only when stu-
dents have mastered the previous material with insight and technical skill that the fo-
cus can shift entirely to a new concept and the corresponding new skill. Stated
another way: 

Mastery of skills is an essential precondition for going to a higher level.

1 a 1–

y = ax + b
y = ax + b

y =
 x y =

 x

b
1 a–
------------ b

1 a–
------------

x ax b+=

b
1 a–
------------

a b
1 a–
------------ b+ b

1 a–
------------
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When practicing techniques, there is always the danger that students will start using
‘recipes’, which will cause them to lose previously acquired insights. Dijksterhuis
(1934) identified this problem. He argued that students should always be able to ac-
count – to themselves and others – for the meaning of the terms that they use and the
methods that they apply. We believe that Dijksterhuis’ proposition, although rather
utopian, is still a valuable ideal that should be pursued in mathematics education.

Let us illustrate this with a simple example: why is  equal to ?
Well, this is because  means 5x times 5x, and that is the same as 5 times 5 times
x times x, or 25 times x2. The latter is based on the associative and commutative prop-
erties of multiplication, but due to the students’ experiences with arithmetic, these
properties are self-evident and can be used intuitively.

Figure 2. Why is  equal to ?

This can best be explained with an illustration such as the one shown in Figure 2.
The illustration also emphasizes the difference between  and , where it
should be noted that the interpretation of the latter form is based entirely on a priority
rule. 

Students must be able to give such simple explanations when they are asked or
when they have doubts... let’s see, how did that go? To this end, teachers and authors
of textbooks should frequently ask the ‘why’ question. When practicing skills, it is
essential that insight should not be submerged, but should indeed be pulled to the sur-
face as regularly as clockwork. This was beautifully formulated by Freudenthal: 

It is most often necessary but not sufficient that algorithms and automatisms
are acquired by insight. The learning process must be steered in such a way that
sources of insight are not clogged during the process of algorithmization and
automatization. This can be achieved, in my view, by returning again and again
during the process of algorithmization and automatization, and even afterwards
where it fits, to the sources of insight. This process aims at an ever greater con-
sciousness of what initially was subconscious and an ever sharper verbalization

5x 2 25x2

5x 2

x2 5x × 5x = 25x2

x

5x

5x

x2

5x

x × 5x = 5x2

5x 2 25x2

5x 2 5x2
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of what initially was not verbalized at all.
(Freudenthal, 1983, p. 209) 

We can summarize the above in a unequivocal proposition:
Without insight, there is no skill, and without skill, there is no insight

The applicability of basic algebra, for example to other school subjects or daily
life, lies primarily in creating, understanding and using simple algebraic models. 

For instance, consider the lookout tower and the panoramic view. Everyone
knows from experience that the higher the tower, the further you can see (with an un-
encumbered view). If a tower is 20 meters tall, the view distance is approximately 16
km. A naïve thought (the illusion of linearity) is that you could see 32 km from a 40
meter high tower. This turns out to not be the case; the view distance is only in-
creased by around 40%. Nevertheless, there is still a kind of proportionality.

The following example is one way you could address this problem in a class. 
Imagine an apartment building on the coast with 25 floors. 
How far out you can see towards the ocean depends on the number of the floor. 
The table below gives the viewing height per floor (in m) and the viewing dis-
tance (in km). 

The question is then to find a relationship between the viewing height h and the view-
ing distance d. A hint would be to look at the internal proportions in the h and d rows.
For example, in the table it turns out that ‘4 times as high’ corresponds with ‘2 times
as far’, and ‘9 times as high’ corresponds with ‘3 times as far’ and that can lead to
the assumption that  is proportional to h or that d is proportional to . After this,
the proportionality factor can be estimated from the table, and the assumption can be
checked for various values in the table. This type of thinking in terms of proportion-
alities is of practical importance in the natural sciences, as well as in fields such as
economics. 

An advantage of this situation chosen here is that the relationship between d and
h can be clearly understood by means of geometry. An introductory question to this
topic could be: what should be the relationship between height and viewing distance
on the moon? This could perhaps bring the students closer to the idea of relating the
problem to vision lines that are tangent to a sphere. The approximation formula that
expresses the view distance d in terms of the height h of the viewpoint and the radius
r of the sphere is: . Understanding this formula requires both geometric
and algebraic-analytic insight.

story

viewing height (m)

viewing distance (km)

1

3

6.2

2

6

8.7

3

9

10.7

5

15

13.8

6

18

15.1

7

21

16.4

8

24

17.5

9

27

18.6

10

30

19.6

11

33

20.5

4

12

12.4

12

36

21.4

....

....

....

d2 h

d 2rh
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Figure 3. Sketch of the viewing distance problem situation

The height of the tower is relatively small with respect to the radius of the earth or
the moon; consequently, the viewing distance d will be nearly the same as the length
of the tangent OP (see Figure 3). Applying the Pythagorean theorem to the triangle
OMP results in: 

 

Now, it turns out that

Because the value of h is negligibly small relative to 2r, this ultimately leads to the
proposed formula. 

If we measure the viewing height in meters and the viewing distance in kilom-
eters, then the proportionality factor on the earth is approximately equal to 3.6; this
leads to the rule of thumb

This rule can then be used in a problem such as: 

Assume that someone in France wants to build a tower that is high enough that
they can see the coast of England from the top, what is the minimum height of
such a tower?

We also want to emphasize that the relationship between height and viewing distance
is a very rich example; to solve such problems, students not only use vision geometry
and perform the algebraic reduction of  to  or , they
also reason by using approximations.

In addition, we have observed that practicing operations where one quantity is
proportional to a rational exponent of the other is very important for algebraic appli-
cations. It goes without saying that computational and algebraic skills also play a role
in this process.

Good skills in arithmetic and basic algebra have practical benefits.

horizon

eye

visible
invisible M

O

P

OP d

MP = r
MO = r+h

d 2 OP 2 OM 2 MP 2– r h+ 2 r 2– 2rh h2+= = =

d 2

h
----- 2rh h2+

h
-------------------- 2r h+=

d 3.6 h

r h+ 2 r2– 2rh h2+ h 2r h+
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According to the standard book Guidelines for Teaching Mathematics (Johnson &
Rising, 1967), one of the aims of computational skills is: 

‘to promote productive thinking in problem solving, research, and other crea-
tive activities.’ 

We would like to add: to promote self-confidence.
Students who have a certain repertoire of practical computational facts, smart

computation methods, algebraic rules and algebraic skills will be less reluctant to
tackle standard situations and will have better judgement about whether and how to
use a calculator. In that case, the actual brain work consists of fathoming the situation
and choosing a suitable strategy. Students who have achieved such an attitude no
longer have to shrink from the technical completion of a problem.

Such students, who have acquired a certain degree of mathematical self-confi-
dence, can focus entirely on matters such as:
– How can you tackle the problem?
– What aids are available?
– Does the result agree with your previous estimate or computation?
– After you find a formula, what are the effects on special cases? 
– Can you generalize any further?
– Can you relate the result to similar problems?
– ...

In short, students are given the possibility of independently doing mathematics
and independently tackling problems. All energy can now be directed to productive
thinking.

Good skills in computation and algebra create space for productive mathematics. 

HOW WAS IT IN THE PAST, AND WHAT NOW?

Past algebra books contained extensive collections of exercises, but their purpose
was also to give teachers a broad assortment of material to choose from. This is ob-
vious when you read the forewords, prefaces, introductions, etc. Not every student
had to solve every problem, and the teachers could base their selection on the
progress of the class and whether or not they could skip certain sections with com-
plicated reductions of algebraic formulas entirely. These books were characterized
by a clear separation between the theory (with examples) and the sections with prob-
lems. Contemporary schoolbooks rarely make this distinction, and many problems
are actually used to explore or develop a new area of subject matter. If you thumb
through the old textbooks, the uniformity of the exercises is very striking. You find
long lists of exercises with equations, factorizations, rational expressions, etc., based
on the idea of progressive complexity. Renowned for their sheer quantity of exercis-
es, the textbooks by Alders (e.g., Alders, 1953) were best-sellers in the 1950s and
were reprinted for many years. It was what you could call a ‘no-nonsense’ textbook
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series: the sections with theory were extremely brief in comparison to the sections
with problems. If there was a didactical approach, it was hidden in the sequence of
examples and problems. To illustrate his methods, Figure 4 shows a section on add-
ing and subtracting fractions from Alders (1953):

Figure 4. A section from Alders (1953) 

The section with theory shown here appeared halfway into the first part of the text-
book, which was intended for grades 7-9 in pre-academic education. The teacher was
expected to provide the explanation, and we can imagine that in this case there must
have been a didactical approach of some sort. This was followed by a section with

Property IV. The sum of like fractions is equal to the sum of the numerators 
divided by the common denominator.

This is because if you multiply both terms by p, you get a + b + c. Of course, a 
corresponding property also applies to the difference of two like fractions. 

Therefore: 

If you have to add or subtract unlike fractions, you must first convert them into 
like fractions. The simplest ways to do this is to find the least common multiple of 
the denominators of the fractions that must be added or subtracted. 
For example:

a
p
---  bp

---  cp
---+ + a  b  c+ +
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twenty problems, some of which were reasonably similar to the initial examples.
Many of the problems were actually at a higher level than those from the previously
mentioned entry test of the Dutch technical university. The miscellaneous problems
at the end of the chapter were even more difficult. So that is how it was in the ‘old
days’.

With every change of the Dutch curriculum after 1950 (in 1958, 1968 and 1993),
school algebra was significantly simplified, usually under protest from a number of
teachers. The most rigorous change took place in 1992. Progressive complification
became progressive formalization, a didactical principle that we fully support. How-
ever, one could state that in some textbooks the formal manipulations were spread
out too far, and algebra chapters provided very little challenge, especially for stu-
dents at pre-academic levels. 

In the newest editions of the textbooks, some changes are apparent, but compared
with the ‘old days’ the algebra remains at a very low level. A survey of experienced
mathematics teachers has shown that a number of them need additional practice ma-
terial for algebra (see Figure 5). The teachers explained that concrete events in the
class caused the setting up of separated, additional practicing lessons. Meanwhile, a
few arguments emerged from this small-scale survey that reveal intrinsic motivation
for mastering algebra by means of drill-and-practice; or as one of the respondents
claims, the teachers should be able to transfer their own intrinsic motivation for
mathematics to the students. If teachers decided to use additional material, this al-
most always concerned ‘old-fashioned’ straightforward algebra exercises. In modern
textbooks as well, this phenomenon of purely reproductive exercising is discernible.
We previously referred to the dangers of this approach, and we can state it is often
counterproductive. Sterk and Perrenet (2005) conclude that making students familiar
with computational techniques must go hand-in-hand with allowing them to experi-
ence the usefulness of the technique and the usefulness of having a certain repertoire
of manipulation skills. This is because more serious problems require targeted ma-
nipulations that often deviate from the traditional computation exercises (such as ex-
panding or simplifying expressions). 
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Figure 5. Four examples of additional activities provided by mathematics teachers

Substitute a = 3 and b = 2 in:

a.   2a2b

b.   2a2b2 - 2ab

c.   3a2b3 + 2ab2 

d.   2a3b  3ab3

e.    5ab2  2a2+ 3b3     

 

Compute and simplify:

a.   

b.   

c.   

d.   

e.       

2
3
--- 1

5
---

2
3
--- 4

9
---

2
3
--- 3

7
---

3
8
--- 2

3
---

5
9
--- 9

25
------

1 + 2b2 + b4 

x2 + 4  4x

x2 + 64

x  y + z + xy y2 + yz 

Compute:

2a  3b = ....... 

2a  3b = .......

......   10a = 5

(a c)(b  c)(c  c) = ....... 

abc : bc

Teacher A uses supplementary practice ma-
terial in the hope that it will help the stu-
dents do the sums in the book. The practice
takes place only during the lesson, in 10-
minute sessions to break the monotony of
the double period.

According to teacher C, mathematics is
more enjoyable if students do not continu-
ously feel uncertain due to their lack of
technical algebra skills. He practices with
his students in grades 10 and 11, and devel-
ops skill tests for this purpose.

Teacher D once noticed that a student
thoughtlessly computed 6 × 0 with his cal-
culator. This led him to develop a brush-up
programme for arithmetic and algebra. It
became a type of dictation exercise: ‘the
Rambam computation contest’. A few gems
from this excellent programme are shown
below. 

Teacher B believes that computational and
algebraic skills receive insufficient atten-
tion in the current programme and are there-
fore learnt too superficially. He uses his
own practice material to replace the exercis-
es from the book.

Factor the following expressions 
(also consider special products):

b.   2a2b2 - 2ab

e.    5ab2  2a2+ 3b3     
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THE ART OF PRACTICE

(...) And then on the board we wrote the numbers from 1 to 100. And then we
joined forces to find the numbers that were not in the multiplication tables, such
as 7, 11, 13 etc. I helped them a great deal ... we erased all those numbers, and
with great relief we noted that not that many were left. The ones that remained,
we tackled those combatively. There were four of us: if one of us didn’t know
something, the other one did. “Twenty is 2 times 10,” said Fok with a grin, and
then Leentje Roos called out eagerly, “Or 10 times 2.” So I said, “And 4 times
5.” To which Leentje again replied, “Or 5 times 4.” And then I tried, “And 3
times 7.” But that caused Kootje Kuiper to protest, “No, it isn’t!” And then we
started summarizing what we should remember about 20 in the future...
(Thijssen, 1925)

This is a fragment from Schoolland by Theo Thijssen (1925). At the beginning of the
course, the teacher, Mr Staal, realizes that three of his students have not yet mastered
the multiplication tables, and decides to practice with this group for an hour after
school. During this process, he has the inspiration to look at the situation from the
other side: start with the result, and ask the students to find the tables in which the
result appears. This appears to work. Besides the three students who are brushing up
on their multiplication tables, another student has to stay after school and do addi-
tional work for punishment. While doing her work, she listens to everything, and the
next morning she hands the teacher a sheet of paper with the following:

,  or ,  or , ... till .
“I can also do problems like that,” she boasts. And during the next few days, it

turns out that the other students have also acquired the taste for doing ‘reverse ta-
bles’; during the fifteen minutes before school begins, they are all working at the
blackboard. Mr Staal writes in his diary: 

This seems to be contagious. They seem to be unable to tolerate that I reserve
this scholarship for my separate hours with the three stragglers. 

This fragment from Schoolland, which, together with De Gelukkige Klas (‘The Hap-
py Class’, 1926) should be mandatory reading for every prospective teacher, shows
an example of the approach that is emphatically promoted by Treffers and others,
which they call ‘own productions’. This simple idea of challenging the students to
independently construct ‘exercises’ could be, or should be, an important aspect of
‘modern’ algebra teaching. 

‘Own productions’ is not the only didactical theme that emerges from Thijssen’s
brush-up lesson. His primary idea – ‘turn the situation around’ – is acknowledged as
a valuable principle in practice. Strictly speaking, Thijssen was asking the students
to factorize numbers, but he did this long before there was a systematic treatment of
factorizing. This is precisely the core of this principle. Although the reversal of an
operation will later on be given the status of an algorithm, the students are now given
the chance to spontaneously take this step themselves. 

4 2 2= 6 2 3= 3 2 8 2 4= 4 2 100 10 10=
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Such anticipatory reverse questions can, especially due to their puzzle-like char-
acter, be stimulating to the students and promote a certain degree of flexibility. 

A third principle, which the designer of practice material must always keep in
mind, and which is also illustrated in the fragment from Schoolland, is to create var-
iation in practice formats. Thijssen first wrote all natural numbers through 100 on
the blackboard; he probably made ten rows of ten numbers. Today, we call this the
‘hundred field’, and the teacher would probably make photocopies and hand them
out to the students. In mathematics didactics, the hundred field is one of a variety of
practice formats. The didactics of algebra also offers many possibilities for variation:
number strips, tables, operation trees, arrow chains, rectangular multiplication mod-
els, etc. make it possible to break through the template of monotonous lists of tasks. 

Since the implementation of the curriculum for children age 12-16 in the 1990s,
an old didactical discovery has re-emerged in many textbooks: the cover-up method;
This amounts to covering up a fragment of an algebraic equation, which clarifies the
structure. It is worthwhile to practice this method – which also has a larger scope than
solving equations – somewhat more systematically.   

In the above text, the word ‘list’ appeared several times. This term is often used
in somewhat contemptuously to mean lists of very similar exercises. But we can also
use a sequence of exercises in a more positive way by getting away from lists with
no mutual coherence. In this regard, we suggest constructing sequences of exercises
so that the second exercise in the row is derived from the first, the third from the sec-
ond, and so on. In this way, the students can make connections between them and
reason logically about them. Here, we call these ‘strings’ of exercises.

Another possibility is to present a string with a fixed pattern; besides solving in-
dividual problems, the students can then be asked to generalize. 

Up to now we have primarily referred to a number of aspects that concern the style
of practicing. In the following sections, based partly on examples, these form aspects
will be addressed in greater detail. Form and content belong together in the same way
as body and spirit. This is why we will now discuss several topics that we believe are
given too little attention in prevailing algebra education. 

Universities have complained for years about the first-year students’ lack of skill
in operating with numerical and/or algebraic fractions. In the past, algebraic factions
were intensively practiced (perhaps too intensively), this is now almost completely
absent from the first years of secondary education. In a digital newsletter for math
teachers, a university teacher wrote about the entry test for mathematics and physics
students at the University of Amsterdam: almost no one could solve the prob-
lem: .

In the current programme, these deficiencies are apparently not remedied in the
teaching of calculus for students in the final two or three years of pre-academic edu-
cation. Considering experiences in recent years, we would strongly recommend that
continuous attention be paid to operations with numerical and algebraic fractions, es-
pecially for students in the first years of pre-academic education. 

1 1
2
--- 1

3
---+
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As a second point of attention for the content of algebra, we refer to formal sub-
stitution, which concerns replacing single variables with expressions, and the re-
verse. This approach also includes the use of the cover-up method, but at a certain
point it becomes desirable for students to use more adult algebraic language. Formal
substitution helps to simplify complicated expressions or equations to more recog-
nizable or more familiar formats. 

The idea of using formal substitution to solve equations can be traced back to the
Babylonian mathematicians who were able to solve every quadratic equation. In the
textbooks of today, the treatment of this classical topic unfortunately amounts to
nothing more than teaching – usually without proof – the recipe known as the quad-
ratic formula. This treatment also disregards the characteristic algebraic technique
known as completing the square, which not only has a greater scope of application
than the quadratic formula, but is also very suitable for practicing algebraic manipu-
lation. 

Formulas in physics and economics usually contain more than one variable. Ex-
ercises for algebra must therefore also focus – much more than is now the case – on
operations with expressions having multiple variables. In addition, the ‘distillation’
of new formulas (equations) from combinations of formulas is important. This often
amounts to eliminating one or more variables (or parameters), once again by using
formal substitution. These activities. i.e. ‘brewing’ formulas from other formulas, re-
quire a certain repertoire of procedural skills and should be given adequate attention
at least beginning in the third year of pre-academic education (grades 9-10).

The development of algebraic skills was formerly a continuous process (there
were two or three hours of algebra lessons every week) Due to the expansion of the
mathematics programme and the reduction in the number of weekly lesson hours, to-
day it is a discontinuous process, with all inherent disadvantages. The only remedy
to this situation is to also work on maintaining and using algebra skills in non-algebra
subjects. The ideal situation, of course would be if algebra could be more or less in-
tegrated into other subjects, but sometimes this is not very easy. Nevertheless, we be-
lieve that there are many more opportunities here than are currently being utilized,
especially in geometry. 

For example, the Pythagorean theorem and computations of areas and volumes of-
fer plenty of handholds for the useful practice of algebra.

The words in bold in the above sections indicate the themes that will be addressed
in greater depth in the following sections.

 REVERSE QUESTIONS

The principle of asking suitable reverse questions can be applied at every level, from
primary school to university. Figure 6 shows seven examples.
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Figure 6. Seven examples

Reverse questions often allow more than one answer. During a class discussion, this
gives students who did not respond immediately a second chance; from a pedagogic
point of view, this is obviously an advantage. In addition, the possibility of multiple
answers also provides an immediate handhold for reflection and exploring the prob-
lem in greater depth: have we addressed all the possibilities, and how do we know
that for sure?

A few remarks about the chosen examples. With example 1, a systematic investi-
gation of all possibilities can be easily performed. It turns out there is only a single
solution where both denominators are unequal to 15.

Example 4 could be used at the initial stage when practicing the multiplication of
simple binomials. Such questions can make students aware of the ‘sum and product
method’ with second-degree polynomials, which is very useful later on for factori-
zation. 

1. Find two fractions with different denominators of which the sum is equal to .
2. Find two fractions with different denominators of which the product is equal

to .
3. Fill in suitable multiples of x or y: 

(..... + .....) + (.... + .... ) = 12x + 5y 

4. Fill in suitable numbers:

Think of an equation for which 9 and -10 are the only solutions.
5. This parabola appears on a computer screen. 

Find a formula that goes with the graph. 
6. Find a function of which x  x3 + 2x is the derivative 
7. Find a function y of x so that y' = 2y

14
15
------

14
15
------

x 8+ x ...+ x2 19x ...+ +=

 0

 1

 2

 0  1  2  3
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Example 6 indeed has only a single solution, but the function that is being sought
can be designed in different ways. The two formulas that immediately throw a light
on the chosen approach are:

 and .

Question 7 could, for example, be asked in grade 10 soon after the students learn how
polynomial functions can be differentiated, although integral calculus is not part of
the subject matter. In that case it is a puzzle-like question, where the role of a con-
stant (as a factor and as a term) emerges during the differentiation. In the same way,
question 8 can be asked when the students have learned how exponential functions
can be differentiated, also if differential equations are not addressed later. Such ques-
tions compel the students to think instead of imitate, and give them the opportunity
to make discoveries themselves. 

COVER-UP METHOD

A well-known and widely used example of the reverse principle in primary education
are the composed ‘fill-in-the-blank’ exercises; these are called equations in the alge-
braic context. Nowadays some textbooks initially use the ‘cover-up’ method. For ex-
ample: what value of x makes 3x + 7 equal to 19? Solution with the cover-up method:

You could call this a ‘multiple fill-in-the-blank’ exercise 
.

The cover-up method is actually a simple search strategy, not based on an artifi-
cial solution procedure, and is therefore very suitable to use and practice at the initial
stage of solving equations. Moreover, even with young students, the teacher can con-
fidently push on to more complicated equations, which lead to two, three or four step
solutions, such as the ones given in Figure 7.

Figure 7. Cover-up method

y 8
9
---x x 3––= y 8

9
--- x 11

2
---– 2– 2+=

3x + 7 = 19

3x + 7 = 1912
3x = 12 x = 4

7+ 19 and 3 12= =

300
2 3x+
--------------- 6=

300
2 3x+
--------------- 6=

50

12 300
x

---------– 7=

2 + 3x = 50

2 + 3x = 5048
3x = 48 x = 16

12 300
x

---------– 7=5

300
x

--------- 5=

300
x

--------- 5=
60

x = 60
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If this solution method is kept up for a time (and is not limited to a single lesson!),
and if sufficient variation is provided in terms of difficulty and complexity, this will
lead not only to a better understanding of what an equation actually is, but will also
give the students courage to first look for a solution using common sense, before ap-
plying a solution algorithm that they have been taught. Without much difficulty,
many exercises can be designed to help develop the skill of ‘looking through a for-
mula’. As an example, Figure 8 shows a series of problems with square roots.
 

Figure 8. Problems with square roots

Note that an applet is available on Wisweb with which the cover-up method can be
practiced interactively.i

VARIATION IN PRACTICE FORMATS

The following argument is often used to support practicing with series of similar ex-
ercises: students enjoy being able to accomplish something, without having to rack
their brains too much, and it contributes to their self-confidence. There is not much
to say against this argument, except that there is a large variation between individu-
als. For example, when presented with sequences of stereotypical exercises, some
students immediately try to solve the last problem in the list. If they can, they simply
skip all the rest. To prevent this from happening, the teacher should aim for more var-
iation and surprise in the task series.

As an example of a list of varied algebra problems, we use the multiplication of
(non-homogeneous) binomials, such as  and , a skill which has withstood
all simplifications of the algebra curricula during the past 50 years, and is still being
taught. We assume that this multiplication has been made in an insightful fashion. A
proven method here is to use the rectangle model, a classical approach which is still
very productive.ii 

x 5=

4 3x+ 5=

2 3x+ 5=

10 x+ 3=

4 10 x– 12=

10 x+ 4=

30 30 x++ 6=

20 20 20 x+++ 5=

Use the cover-up method to solve for x in the following equations: 

a 2+ a 7+
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Figure 9. Rectangle model of multiplication

Figure 9 visualizes the solution procedure. The middle step (either the upper or
lower box) is usually skipped, but it does provide a good illustration of the principle
of ‘double distribution’. At a certain point, the students will practice without the ge-
ometric representation; as a result there will be more opportunities for variation than
are used in present-day textbooks.

For instance, there are almost no examples of ‘vertical multiplication’.
This method, which is analogous to vertical multiplication of
concrete numbers, is very instructive and has the advantage
over the linear method of being more easy to handle with prod-
ucts of polynomials with more than two terms, or products with
more than three factors.

When using the linear method of multiplication, the conven-
tion on the sequence of operations plays a role, and a notation
method is needed to manage this sequence. The usual method is to use parentheses.
Generally speaking, only the passive use of parentheses is practiced, but we believe 
it is important for students to also be challenged to actively use parentheses, or per-
haps alternative ‘aggregation operators’ such as circles or horizontal lines (see Fig-
ure 10).

a

a

2

7

a2 7a

2a 14

a

a

2

7

(a + 2)  (a + 7)

a

a

2

7

a  (a + 7)

2  (a + 7)

a

a

2

7

(a +
 2) 

 a

(a +
 2) 

 7

a + 7
a + 2

2a + 14
a2 + 7a
a2 + 9a + 14
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Figure 10. Actively position parentheses

An advantage of working with operation trees (of which there are many variations in
appearance) is that it is very easy to visualize more composed computations and re-
verse questions. Figure 11 provides some exemplary tasks.

Figure 11. Tasks on operation trees

Uncountable variations of larger trees are conceivable, where the students must first
decide where to start filling in the trees. In this way, the material can also be given a
certain puzzle-like character, and practical experience has shown that these types of
problems are experienced as more challenging than monotonous lists of problems,
which primarily lead to imitation behaviour. 

The multiplication table is another suitable format,
which is currently being used in many textbooks as the
successor to the rectangle model, for example to multiply
two binomials. In this way, it can be derived from the ad-
jacent table that the product of  and  is equal
to . It is simply a question of adding up the
terms after they have been filled in. This property of the
multiplication table: i.e. ‘the sum of the products in the

a 2 a 7++ 3a 7+=

a 2 a 7++ 3a 14+=

a 2 a 7++ a2 2a 7+ +=

a 2 a 7++ a2 9a 14+ +=

Place parentheses in the four expressions to the left of the equal
sign to create an equality:

2a2 + 16a + 14

a + 7a + 2 a + 10a + 5

.... + .... + ....

a + 2 a + 7

 a 7

 a a2 7a

2 2a 14

a 2+ a 7+
a2 9a 14+ +
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table is equal to the product of the sums of the marginal numbers’ can be used in a
problem, as in the example shown in Figure 12. 

Figure 12. Multiplication table task

While the first three questions are straightforward exercises, the fourth question is of
a different calibre. To answer the latter question, the students have to think hard, and
the teacher will have to return to this question in a class discussion. Once the poly-
nomials  and  have been found, the teacher can, of course, assign
another regular problem to ‘prove’ that the students have really learned something. 

In passing, we note that the use of words such as ‘sum’, ‘product’, ‘term’, ‘bino-
mial’ and ‘factor’, which are part of the jargon of algebra, can create obstacles for
some students. However, algebra cannot exist without such language elements, and
students should also practice somewhat more with this language than is generally the
case today. As explained in Chapter 1, teachers can do this by verbally assigning
tasks such as: ‘expand the product of  and ’ or ‘compute the square of the
sum of a and 5’. Students can also be asked to describe algebraic formats in words. 

a + 5 a + 8

a + 5

a + 12

 5  8

 5

12

 5  8

 5

12

I II

III

a. Fill in the empty cells on addition table I and multiplication table II.
b. Use these tables to fill in the empty cells in multiplication table III.
c. Add the products from table III together. 
d. This final expression is the product of two expressions. What are these ex-

pressions?

2a 13+ 2a 17+

a 2+ a 7+
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Multiplication and addition tables are not only suitable for providing variation in
practice formats, but they also provide their own structure on which interesting prob-
lems can be based. The example in Figure 13, adapted from De Moor and Schoemak-
er (1979) features a ‘secret’ addition table, where the marginal expressions have been
left out. This explains why the result, regardless of the choice the student makes, is
always the same. Here as well, this is initially a straightforward exercise, but it can
have a surprising sequel in the students’ thinking.

Figure 13. Tabular structure task

EXERCISES: ARBITRARY SERIES, COHERENT STRINGS AND PATTERNS

Figure 14. Calculation strings

2a 3a a + 4 2a + 3

6a 7a 5a + 4 6a + 3

2a + 2 3a + 2 a + 6 2a + 5 

2a  3 3a  3 a + 1 2a

Select a cell from the table below and write down its contents.
Now cross out the row and column to which the cell belongs.
Choose a cell which has not yet been crossed out, write down its contents, and
then cross out the row and column of this cell.
Do this two more times, and then add the four expressions you have written
down.
Compare your answer with that of your classmates. What do you notice? 

10  72 = 720 20  72 = 71  20 = 

7,1  20 =21 7,1 =

20   36 = 

2,1 7,1 =0,7 7,1 =

7 7,1 = 7 7,5 = 7 75 = 14 75 =

16 75 =....Do you calculate them all
separately, or is there a 
relationship?
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A series of problems can be constructed in such a way that the students can independ-
ently discover relationships between them, and consequently achieve smarter solu-
tions (de Moor & Schoemaker, 1979). Figure 14 contains an example. It is clear that
mental arithmetic is required for this exercise. Of course, such strings can also be de-
signed for algebra. 

Figure 15. Strings of tasks

Another type of list shows a certain type of pattern, where the students are chal-
lenged to discover this pattern and continue the sequence. After this, a generalized
formula can be created, and with the aid of algebra rules, an adequate explanation
can be sought. An example is presented in Figure 16.

Figure 16. Discovery and explanation of a pattern

Solve for x from: 

30
x

------ 12+ 18=

30
x

------ 10+ 16=

15
x

------ 10+ 16=

x
15
------ 10+ 16=

x
15
------ 16+ 17=

a a2 a3=

a a+ a2 =

2a a2 =

2a a2 a2 a2+ + =

2a 3a2 =

6a3

2a
-------- =

6a3

3a2
-------- =

3a2

6a3
-------- =

x 4+
15

------------ 16+ 17=

15
x 4+
------------ 20+ 21=

15
x 4–
----------- 20+ 21=

Write the following as simply
as possible:

152  10  20 

252  20  30 

352  30  40 

Compute the following sequence:
What do you notice? How could
you continue this sequence? 
Can you explain the pattern by 
using algebra?
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The students will discover that the answer is always 25, and can continue the se-
quence with a few more examples. The next challenge is then to reason out or to
prove that the discovered rule is generally applicable. This can take place in different
ways, by means of observation with square and rectangle, or by computation of

. 

Figure 17. Task using position value system

The example in Figure 17 requires insight into our position value system:
.

We encounter another, more concrete type of pattern when representing numbers
by configurations of dots. Well-known shapes, that were studied by Pythagoras and
his followers, are square numbers, oblong numbers and triangular numbers. 

In this way, the sequence , , , ,
etc. is represented by 

The nth oblong number can be described as  or as . Such dot patterns
lead to formulas, and can be practiced interactively using the applets of Wisweb from
the series ‘Spotting number problems’ (Kindt, 2003). 

We find yet another type of pattern in the first volume of Pythagoras, the Dutch
journal for teenagers.

In the sum 3 + 7 + 10 + 17 + 27 + 44 = 108, the first two numbers (3 and 7) are
chosen arbitrarily, and the others are derived according to a rule which you can
easily find.
In this way, create other sums of six numbers, where the first two are chosen
arbitrarily. It will turn out that the number following the equal sign is always
related in the same way to one of the six numbers in front of the equal sign.
What is this relationship? Explain.

After reviewing a number of ‘Fibonacci sequences’ produced by the students, it be-
comes apparent that the sum is always equal to four times the fifth number. In prin-
ciple, this explanation can be discovered by students in the seventh grade. Take the
initial numbers a and b. The following numbers in the sequence are therefore ,

a 5+ 2 a a 10+–

1 +  9 +  1   9  = 19
2 +  9 +  2   9  = 29
3 +  9 +  3   9  = 39 

...

Check the results of the adjacent sequence; what
are the next three lines?
Can you explain the pattern by using algebra?

n 9 n 9+ + 10n 9+=

2 1 2= 6 2 3= 12 3 4= 20 4 5=

oblong numbers

n n 1+ n2 n+

a b+
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,  and ; the sum of the six numbers is , which is
equal to 4 times .

This exercise can be made even more fun. Van de Groep (2005) goes even further,
and works with Fibonacci sequences of ten numbers. In this case, the sum 

 turns out to be 11 times the seventh number .
Of course, the Pythagoras assignment is more of a ‘thinking problem’ than a sim-

ple exercise, and it is defined as such in the journal. But practice and thinking can go
hand-in-hand; in fact, in our vision this should often be the case. 

FRACTIONS

And if there are factions,..... yes, it is difficult, but I am looking for the common
denominator. (Multatuli, The history of Woutertje Pieterse, 1890)

A familiar complaint from teachers in secondary education (not only today, but also
in the past!) is that students cannot deal with algebraic fractions. In his book Struc-
ture and Insight, Van Hiele (1986) observed that it is astonishing how quickly such
tricks are forgotten: 

In secondary education, we encounter fractions with letters. We learn that
. Even at this point, the fractions are a constant source of misery

for the students.

And later on in the book: 

In mathematics, you encounter a great many identities. The above was an ex-
ample of a such an identity. We have always believed that this identity was im-
portant, but now we are beginning to have doubts. 

Does the format  make additional calculation easier? It is worthwhile to deter-
mine what people are doing with fractions in algebra; I suspect that reduction of 
causes us to lose time in as many cases as we save time. Van Hiele therefore then
argues for using the notation  instead of , even in cases where natural num-
bers are included in the numerator and denominator. His wish will remain unful-
filled, perhaps forever, because the fraction is permanently anchored in mathematics
and daily life. Granted, the designation  per litre on a bottle of wine would not
affect the taste, but it would still require some getting used to. Very probably, we will
continue to use numerators and denominators for a long time to come; for example,
the well-known thin lens formula  is unlikely to change appearance over-
night. However, we can agree with Van Hiele that the reduction of the right term to

 does not make the formula more beautiful or manageable. 

a 2b+ 2a 3b+ 3a 4b+ 8a 12b+
2a 3b+

55a 88b+= 5a 8b+=

a
b---

c
d---+ ad bc+

bd
------------------=

ad bc+
bd

------------------
a
b
--- c

d
---+

a b 1– a
b
---

3 4 1–

1
f
--- 1

b
--- 1

v
---+=

v b+
bv

------------
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Figure 18. Calculating with number strips

Today’s secondary education does pay some attention to calculating with concrete
fractions, but students in grades 7–9 are rarely confronted with algebraic fractions.
These first appear in other subjects such as physics and economics, in which the re-
lationship between two quantities plays a role, and later on in calculus at the pre-ac-
ademic level, where students regularly work with rational functions. It is therefore

1

- =

=-

1
2
---

1
3
---

1
4
---

1
2
--- 1

2
---

1
3
---

1
4
---

1
5
---

1
5
---

1
n
--- 1

n 1+
------------

1
6
---

1

x =

=x

1
2
---

1
3
---

1
4
---

1
2
--- 1

2
---

1
3
---

1
4
---

1
5
---

1
5
---

1
n
--- 1

n 1+
------------

1
6
---

Fill in the empty cells:
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certainly advisable to work with algebraic fractions in the first classes in secondary
education, although they do not have to be as complex as those in the textbooks of
fifty years ago. Here as well, it would appear to us to be didactically desirable, or in
fact essential, to link algebra to arithmetic. For example, this could take place by us-
ing so-called number strips (see Figure 18).

The fractions in the strips of this example will have the numerator 1, and are usu-
ally called unit fractions. The ancient Egyptians did not use any other fractions with
numerators not equal to 1 except for . Writing our normal fractions (< 1) as a sum
of unit fractions with differing denominators is a suitable activity to brush up on and
practice using concrete fractions. It is interesting to note that the Egyptians had ac-
cess to tables with such partial fraction expansions (see Van der Waerden, 1961), for
example for fractions with numerator 2 (and of course an odd denominator). Here are
a few examples from that list:

, , 

The third example can be disputed, because also valid is:

There are systematic methods for doing this, but addressing them is going too far,
certainly for young students. From the perspective of algebra, it is interesting to look
at fractions with numerator 2, for which the denominator is an odd multiple of 3. For
example:

, , , and so on.

The denominator of the second fraction in the partial fraction expansion is always
three times the denominator of the first fraction and twice the original denominator.
This discovery is set down in the identity:

.

which can be explained by means of partial fraction expansion:

.

Of course, to prove the above identity, it is just as valid to begin on the other side.
The history of Egyptian mathematics therefore provides a handhold for operating
with fractions or brushing up on this topic. The idea of expanding the fractions and
then putting them together again gives operating with fractions a flexible quality. 
Essentially, the students have to be able to understand and use the distributive law

2
3
---

2
5
--- 1

3
--- 1

15
------+= 2

7
--- 1

4
--- 1

28
------+= 2

13
------ 1

8
--- 1

52
------ 1

104
---------+ +=

2
3
--- 1

7
--- 1

91
------+=

2
3
--- 1

2
--- 1

6
---+= 2

9
--- 1

6
--- 1

18
------+= 2

15
------ 1

10
------ 1

30
------+=

2
3n
------ 1

2n
------ 1

6n
------+=

2
3n
------ 4

6n
------ 3 1+

6n
------------ 3

6n
------ 1

6n
------+ 1

2n
------ 1

6n
------+= = = =

a b+
c

------------ a
c
--- b

c
---+=
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in two directions, just like the distribution rule for multiplication.
Multiplication of fractions is algebraically simpler, but conceptually more diffi-

cult than addition. During the first year of secondary education, many students ap-
pear to have forgotten the rule for multiplication, and apparently do not have a
concrete orientation framework to rediscover the rule. Here, we again recommend
the rectangle model to brush up on and practice the rule ‘multiply the numerators and
denominators’, so that the model becomes the mental property of the students: 

Figure 19. Rectangular model for fraction multiplication

This means making multiplication problems with pictures, and making pictures with
multiplication problems. At a certain point, a rule can be formulated. When learning
such formal rules by practicing them, it is once again important to combine opera-
tions, such as 

Here as well, many variations in presentation can be imagined, such as trees, tables,
strips and patterns (Figure 20).

Figure 20. Trees of algebraic fractions

2
3
---

4
5
---

2
3
--- 4

5
--- 8

15
------=

2
a
--- 5

b
--- 3

b
--- 4

a
--- 10

ab
------ 12

ab
------ 22

ab
------=+=+

+

1
n
--- 3

n
--- 1

2n
------ 5

2n
------

+

-

+

1
n
--- 3

n
--- 1

2n
------ 6

n
---

+
Fill in suitable algebraic fractions:

-
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By making a clear connection with computing with numerical fractions, it should be
possible to have young students work with algebraic fractions and practice using them.

Figure 21. Connecting algebraic and numeric fraction calculations

It is also important that the students learn to recognize the various forms in which
fractions appear and be able to relate them to each other. For instance, the fact that

 and  are two representations of the same number should not be surprising to
them; however, according to recent experiences, this is often the case with students
at the pre-academic level! It is also a good idea for the students to practice tasks such
as the one in Figure 22 in grades 7–9.

Figure 22. Fraction addition table

COMPLETING THE SQUARE

The process of replacing a sub-expression with an auxiliary variable is important.
This is a way to simplify composed expressions to more elementary or recognizable
expressionsiii. From time immemorial, it has been used to solve equations. ‘From
time immemorial’ should be understood literally here, especially when one realizes

1 1
3
---– 1 1

2
---+ 1=

  1 1
4
---– 1 1

3
---+ =

  1 1
5
---– 1 1

4
---+ =

  1 1
6
---– 1 1

5
---+ =

1 1
n 1+
------------– 1

1 1
n
---+

------------=

Explain this formula. What is the con-
nection with the list of computations?

Fill in the results.
Continue the list with two multiplica-
tions. 
Here is a formula that looks complex:

1
2
---

2
---

Fill in appropriate expressions:
+ x1

5
---x 2x

5–
------

x
2
---

2
5
---x

4x
5

------
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that the Babylonians frequently used this principle around 1500 BC. They had an al-
gorithm to solve an equation of the type . 

This essentially amounted to taking half of p, adding the square of this value to q,
finding the square root of this result and then subtracting half of this value from p.
We can now formulate this process more compactly:

.

This is one half of the old ‘p,q formula’, as it was previously taught at vocational
school; at the pre-academic level, students were taught the ‘abc-formula’, which is
in fact excessively heavy artillery, as will be shown below. 
The following riddle appears on one of the many Babylonian clay tablets with com-
pleted mathematics problems: 

I added seven times the side of my square to 11 times the area and it is .
What is the side of my square? 

In short: solve for x from .

The solution, converted into our algebraic language, is as follows.
First multiply both sides of the equation by 11:

.

Replace 11x with y. Then the problem is reduced to the standard equation:

.
with the solution:

.

From  it follows that .
It cannot be said with certainty how the Babylonians derived their algorithm for

solving the equation . An attractive possibility is that they understood
the process of completing a square by means of a geometric figure (see Figure 23),
but there are other options as well.

Figure 23. Geometric representation of solving procedure

x2 px+ q=

x 1
4
--- p2 q+ 1

2
---p–=

61
4
---

11x2 7x+ 61
4
---=

11x 2 7 11x+ 683
4
---=

y2 7 y+ 683
4
---=

y 31
2
---

2 683
4
---+ 31

2
---– 9 31

2
---– 51

2
---= = =

11x 51
2---= x 1

2---=

x2 px+ q=

x
x p

1
2
--- p

1
2
--- p

x
x

= q

= q 1
4
--- p2

1
4
--- p2 q+=

1
2
--- px
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The method by illustration that is sketched here is greatly appreciated by students,
and exercises where they independently make sketches themselves are very useful.
At a certain point, the students will take the step to an abstract approach in order to
open the way to the more general case (p and/or q can be negative), and when taking
square roots, the negative value must also be included. In a group that had first prac-
ticed solving such problems by making sketches in grade 9, two years later there
were still students who made sketches in the margin so they could remember the al-
gorithm for completing the square. By means of a sophisticated series of exercises
with ‘sketch equations’, students were able to independently discover how to com-
plete the square (Figure 24).

Figure 24. ‘Sketch equation’

We strongly recommend completing the square, in addition to factorization, as the
preferred techniques that are initially used for solving quadratic equations. Both al-
gorithms can rely on the comprehension of the students and give them the opportu-
nity for insightful practice.

The danger of presenting the quadratic formula at an early stage (some textbooks even
expect the students to take their word for it, without any proof whatsoever!) is that the
solution of quadratic equations is reduced to a simple substitution exercise in a black box. 

3 3

33

3 3

33

3
3

3
3

3
3

3
3

z

x x

x z

zz

x

calculate x
area = 400

calculate  z

area = 364

a

aa

a

15

15

15

15

calculate  a

area = 396

b

b

20

20
calculate b
area = 384

c

c

34

area = 111
calculate  c
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For that matter, it is possible that students who have learned to understand and use
the completing the square technique, can at some point independently discover a
general formula for solving a quadratic equation, for example to design a program
for the electronic calculator. It is only in a broader theoretical context, where the dis-
criminant becomes important, that the famous quadratic formula can justifiably play
an important role, although it is never truly essential. 

Figure 25. Completing the square

Figure 25 gives an example of an exercise that goes somewhat further than simply
practicing the solution technique. The first question is intended to practice complet-
ing the square. Questions b. and c. are suitable for a class discussion afterwards.
Viewed superficially, the fourth problem does not fit into the sequence, because it
contains decimal fractions. On the other hand, the third pair is different because the
numbers have not been reversed. Moreover, the equations of the other three pairs all
have 1 as one of the solutions, but this pair is different. With question c. it is a good
idea for the teacher to make a list of all the equations that the students thought up
themselves (own productions!) and discuss it with the class. 

If no equations with whole coefficients emerge, the teacher could ask, for exam-
ple, if the pair  and  would fit into the sequence. 

As a follow-up to this discussion, the generalization could be addressed. Assume
that the quadratic equations  and  (with ) have a
common solution. This common solution must therefore be equal to . The reason-
ing is that if there is a number that satisfies both equations, then it also satisfies the
equation obtained by subtracting , therefore:

.

                                          
x2 0.1x+ 0.9=

 

x2 2
3
---x+ 1

3
---= x2 1

3
---x+ 2

3
---=

           Do the same with the pairs : 

andx2 2
5
---x+ 3

5
---= x2 3

5
---x+ 2

5
---=

c. Think up a pair of equations that would fit into the sequence. 
           Solve these two equations. 

andx2 2
5
---x+ 7

5
---= x2 3

5
---x+ 8

5
---=

x2 0.9x+ 0.1=

a. Solve by completing the square:  

and

b. Which of the four pairs does not belong in this sequence?Why? 

and

x2 8x+ 7–= x2 7x– 8=

x2 px+ q= x2 qx+ p= p q
1–

px qx– q p–=

x q p–
p q–
------------ 1–= =
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Substituting  in either of the original equations shows that . 
This demands a great deal from the students because it involves a combination of

reasoning and algebraic operation, but if we want them to be able to use algebra in
many different situations, then these types of exercises are essential. 

FORMAL SUBSTITUTION

As stated previously, formal substitution involves replacing single variables with ex-
pressions and the reverse. It is beneficial to regularly practice this technique (explic-
itly with auxiliary variables, with the cover-up method or with mental substitution)
– where the aim is to ‘convert formulas to your will’ – at all levels and during all
years of secondary education. It not only increases the skill in algebraic manipula-
tion, but also trains the students in fathoming and ‘peeling back’ algebraic expres-
sions with varying degrees of complication with the aim of simplifying them to a
familiar, standard form. 

Figure 26. Formal substitution

Figure 26 contains an example of a problem in formal substitution with quadratic
equations. The ultimate aim, of course, is for students to become independently capa-
ble of solving a problem by using formal substitution. In the past, familiar exercises
required solving equations such as ,  or

.
Perhaps we should start using such types of exercises again, because they un-

doubtedly help students to develop their algebraic skills. In calculus, formal substi-
tution can play a clear role with the chain rule and certainly when applying this rule
to integral calculus. 

The traditional investigation of functions that led to drawing a graph has now been
pushed far into the background due to the arrival of the graphing calculator, and jus-
tifiably so. That this does not take away from the importance of being able to reason
with graphs, for example concerning asymptotes, which the graphing calculator does
not do for you. 

1– p q+ 1=

       
            a. Solve  with the substitution 

b. Solve  with the substitution .

If you have completed problems a. en b. correctly, you will see that the two
equations have exactly the same solutions. 
c. You could have predicted this without solving the equations. Explain why. 

25x2 20x+ 5= u 5x=

5 4
x
---+ 1

x2
-----= v 1

x
---=

x4 10x2 9–= 2 x xcos–2sin 1=
22x 2x 3++ 48=
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For example, take the curve .

Substitution of , therefore , helps to find the skewed 
asymptote:

.

Besides the vertical asymptote , the curve therefore has the skewed asymp-
tote .

Regarding the development of algebraic skills, this method is probably preferable
to the long division with remainder method, which is not really understood by many
students. 

In old algebra books for the first year of secondary education (7th grade) we en-
counter expressions for factorization such as: , , and

. These were actually the best bits in the algebra curric-
ulum; they took students out of the boring automatic work by giving them ‘some-
thing to think about’. People have differing opinions about such assignments, but in
any case the bright students were challenged and the less talented ones were still able
to follow the computation if they were given a clear explanation (for example with
the cover-up method!). At every level we believe it is certainly valuable to think up
questions where a formal substitution, which Freudenthal (1983) refers to as ‘pow-
erful device’, is the key to the answer. 

COMBINING AND ELIMINATING

A skill that is especially useful in other subjects is combining formulas to create a
new formula. This usually happens by eliminating one of the variables that appears
in the formulas, by means of formal substitution.

The Babylonians used a formula that expressed the area of a circle in terms of its
circumference: the area of a circle is the square of the perimeter divided by 12.
We are accustomed to express both the area and the perimeter of a circle in terms of
the radius: 

 and .

Because the circumference of a circular object is easier to measure than the radius,
it is not such a crazy idea to express the area in terms of the perimeter.

Via  this leads to:  or: .

Comparing this with the Babylonian calculation rule shows that they used 3 as an ap-
proximation of , an approximation which can also be found in the Old Testament.iv 

Could our students also perform such an elimination? We fear this would be ask-
ing too much of many of them, even though these types of derivations are very com-

y x2 x– 3+
x 2+

-----------------------=

u x 2+= x2 u2 4u– 4+=

y u2 4u– 4 u– 2 3+ + +
u

------------------------------------------------------ u2 5u– 9+
u

--------------------------- u 5– 9
u
---+ x 3– 9

x 2+
------------+= = = =

x 2–=
y x 3–=

x2y2 18xy– 65+ x y+ 2 z2–
x2 2xy y2 4x 4y 3+ + + + +

A r2= P 2 r=

r P
2
------= A P

2  
--------

2
= A P2

4
------=
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mon in subjects such as physics and economics. Figure 27 provides an example of a
set of problems to use on a test, taken from Van Loon (2005). 

A striking aspect is that the geometry context is reported in problem a., but that
the context for problems b. and c. is completely absent. This seems rather strange
when you realize that the problem concerned a combination of mathematics and
physics. But in any case, in this specific project the usefulness of such exercises has
been ascertained. 

Figure 27. Eliminations in science contexts (Van Loon, 2005)

The booklet Operating with standard functions (Kindt, 1990) includes a special sec-
tion about such derivations. The introductory example is the relationship between
free-fall velocity and distance. From the formulas  and  by elimi-
nating t, it follows that . We note that reasoning beforehand using a chain
of proportionalities (v is proportional to t and t is in turn proportional to the square
root of s, therefore ....) can strengthen the understanding of this relationship. To cre-
ate the formula, it is then only necessary to find the constant factor. 

The assignment in Figure 28 is derived from the above-mentioned FI unit. Geo-
metric contexts are probably still the best way to practice combining formulas, espe-
cially with volume, area and circumference formulas. For example, take a cylindrical
tin. If r is the radius of the base and h is the height (both in cm), then the total area
of the tin in cm2 is given by: .

The volume (in l) is given by: . For litre tins, the area can simply be ex-
pressed in r. After all, from  it follows that . If desired, A
can also be expressed in the diameter (d) or in the circumference (p) of the tin, which
leads to  and , respectively.

 
Now express the volume in terms of the diameter d of the sphere.

b. Given the formulas:

Fc
mv2

r
---------= and v 2 r

T
---------=

    Combine the formulas so that Fc is expressed in terms of m, r and T. 
c. Given the formulas:  

R l
A

---------= en A r2=

    combine the formulas so that r is expressed in terms of r, l en R. 

a. The volume of a sphere with radius r can be calculated with the formula.

4
3
--- r2 Vsphere =

v gt= s 1
2---gt2=

v 2gs=

A 2 rh 2 r2+=
V r2h=

r2h 1= A 2
r--- 2 r2+=

A 4
d
--- 1

2
--- d 2+= A 4

p------
p2
2------+=
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By using one of these formulas, the optimal dimensions of a litre tin can be calcu-
lated, in other words, the dimensions where the area is minimal. An exact solution is
found by means of differential calculus, but in practice, a numerical solution using
the graphing calculator is satisfactory. This also means that the problem can be ad-
dressed as early as grades 9 or 10.

Figure 28. Task from ‘Operating with standard functions’ 

OWN PRODUCTIONS

Let us return to the fragment of text by Theo Thijssen. This not only shows that prac-
tice can be challenging, but also that the students are sometimes prepared to produce
series of examples themselves. This activity, which is currently known as ‘own pro-
ductions’, is therefore not a recent didactical discovery. And what is possible with

LD2 G=

GL2

D4
----------- 680=(1)

(2)

L a G1 4=(3)

L b G3 8=(4)

L
D
---- c G 1 8–=(5)

(6)

For a specific girth and ‘body weight’ of a quadruped, there are limitations on
its ‘length’ due to the ‘sag effect’. This idea can be represented by seeing the
animal as a rod that is supported on both ends.

Someone created the following system of formulas for the particular case,
where G (= body weight in g), L (= length in cm) and D (= diameter in cm)
play a role.

a. If the body weight of an animal is known, its maximum possible length can be
calculated from formulas (1) and (2). Take the example of an Indian elephant
weighing 5000 kg.
What would be the maximum possible length and diameter of such an ele-
phant?

b. Formulas (3) through (6) can be derived from (1) and (2).
Check this and then calculate the constants a, b, c and d.

D d L3 2=
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arithmetic, is also possible with algebra. I have borrowed an example from the method
of Dutch textbook Getal en Ruimte (‘Number and Space’):

For a test, a class has to reduce ten expressions. Every reduced equation has the
result 12ab. Think of ten problems which have 12ab as their result. Have an-
other student check the problems. 

This is a nice assignment which, unfortunately, is an exception in the corresponding
book, but it is not difficult to see how other assignments could be designed in a sim-
ilar way.

When practising algebraic techniques, it is actually quite obvious to have students
construct assignments themselves. This can take place at every level. The example
shown in Figure 29 is an ‘own-production’ assignment for somewhat more advanced
students.

Figure 29.  ‘Own production’ assignment

At least as important as the assignment itself is its follow-up discussion. Many good
variants are conceivable, such as

, , ,  and so on.

which can emerge from the discussion. In addition, many incorrect suggestions will
undoubtedly be made. This entire process makes collecting and analysing the discov-
eries of the students into an exciting and especially educational activity.

1

1 1
x---+

------------ x2 x+
x2 2x 1+ +
--------------------------The algebraic fractions  

a. Show that this is actually the case.
b. Think up a number of other algebraic functions that can be reduced to

 The more varied, the better!

and  

can both be reduced to: x
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Figure 30. A chain of algebraic operations

Another example is given in Figure 30. First of all, two types of reductions are prac-
ticed: taking the square of a binomial and factorizing a trinomial. This exercise is in-
teresting due to the possibility it offers for the spontaneous discovery of a pattern.
The students’ own productions (question c) confirm this pattern, and for the smarter
students there is yet another possibility to actually confirm the discovery by means
of the remarkable product: 

The other way to do this, by first working out and then factorizing, is more difficult:

Figure 31. Task inspired by Sawyer (1959) 

x + 6
square

x2 + 12x + 36

minus 1

x2 + 12x + 35factor(x + 5 )(x + 7)

a. Check the following chain:

b. Perform exactly the same operation with the following sequence: 

c. Think up a few more examples yourself.

d. Can you make a general rule? 

x + 4, y + 10,  z  + 11,  p + 1 

x A+ 2 1– x A 1+ + x A 1–+=

x A+ 2 1– x2 2Ax A2 1–+ +=

A 1+ A 1–

1  2  0  3 = 2
2  3  1  4 = 2
3  4  2  5 = 2
4  5  3  6 = 2
5  6  4  7 = 2
and so on?

 

 

 

a. Check the sums on the board. and continue
the sequence a bit further. Amazing, isn't it?

b. Think up a few more sums that would ap-
pear much further down in the sequence.

c. Can you be sure that the result will always
be 2?
If yes, explain this with algebra.

d. Now think of another regular sequence
which also has the same result.
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The example in Figure 31 is inspired by the work of Sawyer (1959). The explanation
is given, for example, by . But it can also be giv-
en using the rectangle model. The own production then appears in question d.

The idea of having students independently design assignments, after having prac-
ticed a technique or method themselves, cannot be applied often enough; for exam-
ple, the students can design assignments for fellow students or another class that is
working in parallel. It encourages the students to reflect – which is absolutely essen-
tial – on what they have learned, and will lead to greater depth of understanding.
Moreover, it calls for creativity, and this gives them much satisfaction when they
complete the assignment. And isn’t this the basis for all learning?

ALGEBRA IN GEOMETRY

In the second section of this chapter on the importance of skills we stated that some
topics in geometry offer an excellent practice terrain for algebra skills. To start with,
let us address the treatment of area formulas for triangles and quadrangles. The for-
mula for the trapezium, for example, can be written as  or as  or as

. Amusingly, a suitable geometric reasoning accompanies each of these
expressions (Figure 32).

Figure 32. Geometric reasoning

In the third case, the area formula for the triangle is used, which afterwards becomes
a special case of the trapezium formula (take b = 0). For b = a, the parallelogram for-
mula returns. The students can shuttle back and forth between algebra and geometry. 

Another excellent example of an interconnection between algebra and geometry
is provided by the area formula for a ring that is delineated by concentric circles: 

n 1+ n 2+ n n 3+– 2=
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Figure 33. Ring task

Note that the rule  is useful for answering question b. 
Another rich source for algebra is the Pythagorean theorem. Take the example

from Figure 34, which concerns computing the height and then the area of a triangle
with sides measuring 13, 14 and 15.

Figure 34. Pythagorean task

This is another classic example of how functional the special product
 can be, even though it is often – unjustly – no longer ac-

knowledged. In days gone by, this approach was an initial step towards deriving the

A ring is enclosed by two circles with the same centre.
One way to calculate the area of such a ring is: calculate the
average of the circumferences of the two circles, and multiply
this amount by the width of the ring.
a. Do you know another way to calculate the area of such a

ring?
b. Does it give the same result in all cases as the calculation

rule given above?

a2 b2– a b+ a b–=

14

15 13

x y

h

x2 + h2 = 152

y2 + h2 = 132

x2  y2 = 152 132

(x + y)(x  y) = 56
x + y = 14

x  y = 56/14 = 4
x + y = 14

2x = 18
x = 9

h = 12

but

a2 b2– a b+ a b–=
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formula of Heron, which expresses the area of a triangle in terms of the sides a, b and
c and the half circumference s:

.

This classical formula has fallen entirely into disuse. On one hand, this is understand-
able because it has little practical value. On the other hand, the formula is very at-
tractive for algebra education. It leads to useful exercises such as checking the
dimensions (if the sides of the triangle are each multiplied by  the area is multiplied
by 2), examining the special cases (what happens if ?), and special cases (for
example, what happens if a = b = c ?). 
 

Figure 35. Soccer and Pythagoras?

Finally, Figure 35 shows another example of an exercise using the Pythagorean the-
orem to create an equation. The equation that must be formulated here, after working
out the first degree, turns out to be

,
which is easy to solve.

In this way, the geometry that is taught in the first years of secondary education
offers plenty of possibilities for simple algebraic models. We refer here to a few
more, which unfortunately no longer appear in the schoolbooks of today: various ge-
ometric representations of the arithmetic, geometric and harmonic mean, and as part
of the geometry of similarity, the golden ratio. 

PRODUCTIVE PRACTICE

Practice is essential to anchor skills acquired through insight. For most students, the
effect of practice will improve to the extent that the exercises require more thought,
elicit more independent contributions from the students and offer more possibilities
for reflection. In short, the effect of practice will improve to the extent that the exer-
cises have a more productive character. In this chapter, a number of examples of pro-

O s s a– s b– s c–=

s a=

A

B
On a soccer field measuring 60 m by 100 m, the ball happens
to be located at a point which is equidistant from goal A and
from the two corner flags on the other side.
a. On which side of the midfield line is the ball located with

respect to that goal (A)?
b. Calculate the distance from the ball to goal A.

302 100 x– 2+ x2=
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ductive practice has been provided. Here are ten recommendations that have been
explicitly or implicitly addressed in these examples. 

1. Ask reverse questions to promote mental agility.
2. Vary the practice formats and activities as much as possible.
3. Challenge the students to reason logically (for example, by using coherent strings

of problems).
4. Challenge the students to generalize (for example by means of number patterns). 
5. Practice the substitution of ‘formulas in formulas’ (formal substitution).
6. Practice the elimination of variables in systems of formulas or equations.
7. Pay attention to the verbal reading and writing of algebra rules or formulas. 
8. Challenge the students to create their ‘own productions’.
9. Also practice algebra in geometry.

and more generally 

10.Where possible, maintain and strengthen previously acquired computational and
algebraic skills.

 
Of course the question is how you as a teacher or author can apply these points in
practice or use them to organize a curriculum. During the first three years of second-
ary education, the programme is broad and the number of available lesson hours is,
to put it mildly, limited. As a result, the ‘pure’ algebra lessons often become frag-
mented. However, the tendency in secondary education to differentiate according to
level creates more space for teaching algebra to pre-academic students. In fact, start-
ing in 7th grade, every week in the curriculum should contain algebra! If a non-alge-
bra lesson does not provide an opportunity for maintaining algebra skills, then the
students should be given a brief algebra assignment at least every week. In that case,
supplementary material, on paper or in digital form, should be developed to accom-
pany the various textbooks, preferably in the spirit which we have sketched out in
this chapter. 

The Freudenthal Institute certainly has something to offer in this area at present,
but this will be greatly expanded in the near future. First of all, I refer to the algebra
applets on Wiswebv. In addition, we offer a collection of exercises (Kindt, 2010). 

At the beginning of this chapter, reference was made to ‘the old days’, which
means roughly the first half of the 20th century. Our intention was certainly not to
idealize the past, but quite the opposite. In our view, algebra at that time was often
practiced in a mechanical fashion. After secondary education in the Netherlands was
standardized by law, a great deal changed. The traditional deductive element disap-
peared from geometry, but it reappeared in algebra. Structure properties (associati-
vity, commutativity, distributivity) acquired a more prominent place; the idea was
that proper understanding of these properties was more important than doing many
exercises. However, with the introduction of the current programme, the deductive el-
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ement that was intended at that time disappeared almost entirely from algebra. In it-
self, this was an understandable change of course. But the pendulum has swung too
far to the other side. Today, the question ‘how should I do that?’ often seems more
important than ‘why is that true?’ In any case, this reflects the content of the textbooks
and is also shown in the behaviour of the students. The core of mathematics and math-
ematics education is achieving true understanding of mathematics. Moreover, except
for conventions, you should not have to accept anything on authority alone. This view
should also resonate more and more frequently when practicing algebra.
 

PROPOSITIONS ABOUT ALGEBRA EDUCATION

1. During the first two years of pre-academic education, teachers must pay a great deal
of attention to the arithmetic side of algebra, i.e. algebra in relation to arithmetic,
mental arithmetic, number patterns, number theory and combinatorial counting
problems 

2. The mixing of algebra with negative numbers can be temporarily postponed
(‘negative numbers temporarily mothballed’) due to their abstract character and the
resulting complications.

3. Teachers must pay a great deal of attention to doing mathematics with regular
fractions and exponents, first at the ‘number level’, and later on with variables.

4. It is advisable to use historical contexts. Babylonian, Egyptian, Greek and Arabic
mathematics have a great deal to offer in the area of concrete algebra.

5. It is a good idea to memorize certain algebra rules, especially the difference of
squares rule. These rules must be continually applied.

6. It is tempting to present algebraic rules visually: multiplying a sum by a sum,
crossing out, cross multiplying, removing grouping symbols, etc. The danger here
is that this elicits imitation behaviour, and that pupils unthinkingly transfer the
methods to inappropriate situations. These are in fact nothing more than memory
aids and should not play a role in the development of a skill.

7. Once pupils attain reasonable mastery over a number of techniques, algebra can –
and should – be used to make proofs, for example of special properties of natural
numbers.

8. The concept of a ‘functional relation’ between two quantities or variables is more
abstract than many people think. In the history of mathematics, this idea appeared
relatively late, and that fact alone gives pause for thought. The topic (sometimes
called ‘tables - graphs - formulas’) is certainly very important, but is currently being
emphasized too early and too much. It is highly questionable whether the function
concept helps pupils acquire the necessary algebraic skills and insights. One
disadvantage of addressing functions at an early stage is that it leads to a style of
notation for which the pupils are not yet ready. 

9. Proportion tables (didactically a rich concept!) are valuable from many
perspectives. In fact, they can also be seen as naturally leading to the function
concept. It is important that they are expanded at a later stage (proportional to the
square/third power inverse of ...) and are also presented as a graph. 
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NOTES

i Solving equations with tiles.
ii For this, the applet ‘Geometric Algebra 2D’ can be very useful, see www.fi.uu.nl/wisweb/en/.
iii In early algebra this is often called the tiles method.
iv The Babylonians probably noticed that the area of the circle should be equal to half of the product of

radius and perimeter. In combination with ‘perimeter is about six times the radius’ this immediately
provides the formula.

v See also Chapter 8 on Algebra and technology.
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8.  ALGEBRA AND TECHNOLOGY

An algebra curriculum that serves its students well in the coming century may
look very different from an ideal curriculum from some years ago. The in-
creased availability of computers and calculators will change what mathemat-
ics is useful as well as changing how mathematics is done. At the same time as
challenging the content of what is taught, the technological revolution is also
providing rich prospects for teaching and is offering students new paths to un-
derstanding. (Stacey & Chick, 2000, p. 216) 

INTRODUCTION

It is beyond any doubt that Information and Communication Technology (ICT) plays
an increasingly important role in today’s society and in the future professional prac-
tices of current students. This raises the question of whether technology might also
play a similar role in algebra education and, if so, which role that would be. 

In 2008, NCTM, the National Council for Teachers of Mathematics in the United
States, formulated a position statement on the use of technology in mathematics ed-
ucation in general. A core paragraph in this document says: 

Technology is an essential tool for learning mathematics in the 21st century,
and all schools must ensure that all their students have access to technology.
Effective teachers maximize the potential of technology to develop students’
understanding, stimulate their interest, and increase their proficiency in math-
ematics. When technology is used strategically, it can provide access to math-
ematics for all students.
(NCTM, 2008, p. 1)

NCTM acknowledges the importance of technology and recognizes its potential, for
example for enhancing students’ understanding, for stimulating their interest, and for
increasing proficiency. More specific for algebra education, a Study Group of the In-
ternational Commission on Mathematical Instruction, a commission within the Inter-
national Mathematical Union, focuses on the effects of technology on the teaching
and learning of algebra (Stacey & Chick, 2000; Stacey, Chick & Kendal, 2004). The
quotation at the top of this page points out the challenge educators have to face while
developing contemporary technology-rich algebra education. How can the opportu-
nities that technology offers to algebra education be exploited, without neglecting
important aspects of algebraic skills? Which roles can new technologies play in al-
gebra education, and in which way can the teaching and learning of algebra benefit? 

P. Drijvers (ed.), Secondary Algebra Education, 179–202.
© 2011 Sense Publishers. All rights reserved.
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These are the main questions addressed in this chapter. Due to this focus on alge-
bra education, some aspects of the integration of technology into mathematics edu-
cation in general will remain unaddressed, such as the changing role of the teacher,
changes in classroom arrangement and learning organization, and increasing oppor-
tunities for communication and collaborative learning in particular. For more infor-
mation on these topics we refer to the recent work of Hoyles and Lagrange (2010).

AN EXAMPLE: TRIAL-AND-IMPROVE

Two students in grade 8, Annie and Michael, are working with the applet Algebra
Arrowsi. With the applet, they construct arrow chains, which in fact represent func-
tions as input-output machines. The left screen in Figure 1 shows the work of this
pair of students on the screen. The first task was to construct an arrow chain which
gives 3, 3.2, 3.4, ... as an output table and apparently this worked out well. 
The next task is to switch the order of the multiplication and the addition operations
and still get the same table of output values (see Figure 1 on the right). The students
start with some alternatives, such as ‘plus 3 times 0.2’ and ‘plus 6 times 0.2’. Even
if multiplying with 0.2 is correct, they change this factor into 1.2, so their chain is
‘plus 3 times 1.2’. This results in an output table of 3, 4.2, 5.4, ..., which they realize
is not correct. Next, the observer comes by their desk.

Figure 1. Student work (left) and next task (right) 

Observer: Why isn’t it [the factor of 1.2] correct?
Michael: Because we don’t get the right numbers.
Annie: Oh, the integer numbers here ....

(She points at the integer parts of the numbers 3, 4.2, 5.4, .... in 
their output table.)
... each time they get one more, whereas here [the integer values of
the numbers in the output table that is asked for in the task] con-
stantly 3, 3, 3, 3.

Michael seems to be looking whether the output table shows the required values,
whereas Annie pays attention to the increments in the table and notices that these
have become 1.2 instead of 0.2, as is required in the task. The students change the
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factor of multiplication back to 0.2 and try chains such as ‘plus 9 times 0.2’ and ‘plus
18 times 0.2’. In this way, after some trials and improvements, they get the correct
chain: ‘plus 15 times 0.2’. Then Michael notices the relation between the ‘plus 3’ in
the original chain and the ‘plus 15’ in the current one: 15 times 0.2 equals 3!

This observation is typical for the learning of algebra using technology in more
than one aspect. First, the two students are skilled and clever in using the buttons of
the applet and in navigating through the menus. This facilitates their problem solving
behaviour, which we could call ‘trial-and-improve’: they try several options at high
speed, hoping to get closer to the solution. Michael’s first reaction to the observer’s
question, “because we don’t get the right numbers,” suggests that sometimes this ap-
proach is (too much!) like haphazardly trying to get the correct answer. At first, the
students do not notice that ‘plus 15 times 0.2’ comes down to the same as ‘times 0.2
plus 3’. Meanwhile, the work with the applet at the end leads to the reasoning which
shows a growing insight in the phenomenon. After the observer’s intervention, the
students think about the answer they got and find an explanation for it. 

DIDACTICAL FUNCTIONS OF TECHNOLOGY IN ALGEBRA EDUCATION

The question we address now is which roles new technologies can play in algebra
education. Before looking for specific answers to this question for each of the strands
within school algebra, we first identify the following three global didactical func-
tions for technology in algebra education: technology as a tool for doing algebra, as
an environment for practicing skills, and as an environment for developing concepts.
Let us consider each of these three didactical functions in more detail. 

Technology as a tool for doing algebra

The first didactical function of technology in algebra education is the function of a
tool for outsourcing algebraic procedures while doing algebra. Probably the student
would be able to carry out the routine procedures by hand as well, but chooses not to
spend his energy on that. Just like numerical calculations can be left to the calculator,
tables of numerical values can be produced using spreadsheet software such as Ex-
cel, graphs can be drawn with graphical software or on a graphing calculator, and al-
gebraic procedures can be left to a computer algebra system (CAS). In these cases,
technology acts as a tool, as an ‘algebra assistant’, and offers a broad range of appli-
cations, not necessarily designed for educational purpose. To play this didactical role
of tool for algebra, technology should fulfil several criteria, such as mathematical
soundness and correctness, as well as flexible support of conventional algebraic no-
tations, representations and operations.

A characteristic of the use of technology as a tool for carrying out algebraic pro-
cedures is that the initiative usually remains with the students; they decide whether
or not to use the technology for this purpose. A second characteristic is that this di-
dactical function of technology is ‘didactics-free,’ in the sense that this type of use
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does not involve a specific didactic approach to or view on the teaching and learning
of algebra. The advantage of using technology as a tool for doing algebra is that it
relieves the student from a lot of procedural work, and therefore allows for quick in-
vestigations of several examples or situations, which can lead to exploration, reflec-
tion, and theoretical proceedings. 

Figure 2. The task ‘multiplying lines’

An example of the latter approach is the ‘multiplying lines’ task (Figure 2). The
graphs of two linear functions and their product function are drawn. The question is
how specific properties of the product graph are related to those of the ‘building
graphs’. Which relations exist between the zeros? What can you say about the vertex
of the parabola? Which conditions do the linear functions need to fulfil in order for
the parabola to touch the x-axis? In which cases does the vertex of the parabola co-
incide with the intersection point of the two lines? The technological environment –
a graphing calculator in Figure 2, but it could just as easily be graphing software or
Excel – takes over the drawing of the graphs and allows for exploration of the effects
of changes in f1 and f2 on the product graph. The results of the exploration aim at in-
viting students to algebraic thinking. 

Whether or not this works depends on the didactical setting. The danger of using
technology as a generator of examples is that students stick to a superficial, phenom-
enological level of perception instead of entering into underlying fundamental rea-
soning. Through appropriate tasks and targeted questions, the teacher is in charge of
focusing on this deeper thinking level. 

Environment for practicing skills

A second didactical function of technology for the learning of algebra is the function
of environment for practice. Technology offers several options for practicing alge-
braic skills. Through intelligent, diagnostic feedback, the technological environment
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can respond immediately to students’ solutions and strategies. Randomization of task
parameters allows for a huge variety of tasks, so that students can practice without
straight repetition. The pace and length of the session is determined by the student
himself. The technological tool is patient and consistent, and mistakes can remain in-
visible for peers and teacher. There is in fact no need for the teacher to correct mis-
takes, as this task is taken over by the tool; rather, the teacher can focus on the
fundamental and conceptual difficulties that students encounter. The teacher does,
however, determine the type of tasks; in that sense, the practice role of technology is
often more teacher driven than is the case when ICT is used as just a tool for doing
algebra. Also, a digital environment for practicing algebraic skills often implicitly
contains didactical choices through the structure and sequence of algebra tasks.
Therefore, the didactical function of an environment for practicing algebraic skills is
not as didactics-free as the tool functionality described above. Criteria for appropri-
ate tools for practicing algebra are good features for feedback on and registration of
student work, and compatibility of problem solving strategies and procedures within
the technological environment with those of paper-and-pencil algebra (Bokhove &
Drijvers, 2010).

Figure 3. Practicing solving equationsi

An example of a digital environment for solving equations is shown in Figure 3. The
applet Solving Equations functions as an ‘algebra-repetitor’, which offers exercises,
provides feedback, and motivates through its game-like reward structure. The applet
consists of different versions or levels, that differ in the amount of support that is pro-
vided while solving the equations. At the basic level, the student just needs to indi-
cate the operation that is needed, and the applet carries out the algebraic calculation.
At the next level, the student has to carry out the algebraic operations himself, but he
gets feedback on the correctness of the work. The third level is a self-assessment,
which is corrected and graded by the applet. The fourth and final level is the test,
which the teacher does not need to correct either. 
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Environment for developing concepts

A third didactical functionality of technology for the learning of algebra is its use for
the development of concepts and mental models. The aim is to evoke specific think-
ing processes and to guide the development of the students’ algebraic thinking. For
example, ICT may help to visualize a concept, or present it in a dynamic way, which
can lead to a more versatile and deeper conceptual understanding of the mathemati-
cal object or procedure. Also, the ICT environment can function as a generator of ex-
amples, which provoke the students’ curiosity and invite generalization or
investigation of relationships or properties. 

This didactical functionality is the most complex of the three we distinguish. First,
this type of use of technology requires a careful didactical analysis of the relationship
between the use of the tool with its representations and techniques on the one hand,
and the mathematical thinking and skills that the students are supposed to acquire on
the other. This relationship is subtle and complex: a mismatch between the two may
reduce the benefit of the work with technology to zero. In addition, more than the
other two, this didactical functionality of technology is guided by the teacher and
also embodies didactical choices and views. 

Criteria for technology that supports concept development are a perfect match be-
tween the representations and techniques in the tool environment on the one hand,
and the mental images and conceptual understanding on the other. Furthermore,
some construction space is needed for students to develop their thinking.

Figure 4. Multiplying two linear expressions in the applet Geometric Algebra 2D

An example of the use of technology to develop concepts is the work with the applet
Algebra Arrows, described in Figure 1. It aims at the development of a mental image
of the concept of function as an input-output machine, which transforms a number of
input values into a strip of output values through a chain of operations. A second ex-
ample is the applet Geometric Algebra 2Di. It represents an environment to use the

x +5
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area of tiles as a model to think about the multiplication of two algebraic factors (Fig-
ure 4). The applet offers opportunities for splitting up, moving and merging rectan-
gular tiles, which represent algebraic expressions. This way, the area model becomes
a meaningful model to the student, one they can fall back on in future, for example
with expanding.

Such a conceptual model environment allows the student to investigate many dif-
ferent situations. By doing so, a distance emerges between the work in the digital en-
vironment and the concrete context that forms the motive for the task. The work
within the technological environment will exceed the specific context; the reasoning
with the model acquires a more general and more algebraic character. This invites
abstraction and the development of a mental ‘algebra world’. It is in this invitation
that the power of technology as an environment for concept development lies; to ex-
ploit this power remains a task for the teacher. 

Didactical functions intertwined

Figure 5. Schematic overview of didactical functions of technology in algebra education

Figure 5 shows a schematic overview of the three main didactical functions of tech-
nology in algebra education. It should be noted that these three functions are not
properties of the technological tool, but of the way in which it is used in students’
learning activities. This being said, some tools are more appropriate for specific di-
dactical functions than others:

Tools matter: they stand between the user and the phenomenon to be modelled,
and shape activity structures. (Hoyles & Noss, 2003, p. 341)

The three didactical functions of digital tools are not mutually exclusive, but are in-
tertwined. The insights that students develop need application in practice; practicing
tasks and appropriate use of tools require conceptual understanding. As an example
of the intertwinement of didactical functions, Figure 6 shows a sheaf of graphs for
the set of functions . The didactical functionality of the technol-
ogy is the tool function: the graphing, that the student could do by hand, is out-
sourced to the tool, because drawing a family of graphs is time consuming and not

Didactical functions
of technology
in algebra education

Environment for practicing skills

Environment for developing concepts

Tool for doing algebra

Tool for learning algebra

x x4 b x2 1++



PAUL DRIJVERS, PETER BOON, MARTIN VAN REEUWIJK

186

practical to do by hand. Meanwhile, through the visualization that the technology of-
fers, and the opportunity to change for example window settings or parameter values,
exploration becomes possible, and new questions arise. It seems that the curve
through the vertices is a parabola, but is this really the case? How does the number
of zeros depend on the value for the parameter b? This way, technology invites ex-
ploration, which leads to new insights and to the understanding of the concepts of
parameter and families of functions. 

Figure 6. A sheaf of graphs: outsourcing the work to raise new questions

Nowadays, the different didactical functions of ICT for algebra education can be bet-
ter exploited in educational practice than was the case in the past. Through the inter-
net and increasing interoperability, students can continue their work at any time and
in any place, and communicate with their peers and their teacher. The interactive
whiteboard is a powerful means to make students engage in whole-class interactions,
in which technology plays an important mediating role. Electronic learning environ-
ments such as Blackboard, Brainbox, and, more specific for mathematics, the Digital
Mathematics Environment integrate many functionalities: they distribute and pro-
vide content, i.e. digital courseware, they host students’ digital notebooks and port-
folios, and supply virtual workspace in which collaborative work and
communication are supported. The teacher can monitor the students’ progress (see
also Figure 14). In addition to this, he can arrange tools and, by using authoring tools,
customize content and adapt it to mathematical or pedagogical goals. As a result, the
teacher, in his role as designer of his course, acquires ownership of his teaching.

PATTERNS AND FORMULAS WITH TECHNOLOGY 

In previous chapters of this book we distinguished three strands within algebra edu-
cation: patterns and formulas, restrictions, and functions and graphs. How can the
three didactical functions of technology be integrated in each of these strands? In this
section, we answer this question for patterns and formulas; similar discussions of the
two other strands follow in the subsequent sections.
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Patterns and technology

As far as patterns are concerned, the main contribution of technology is that it can
help to generate examples that invite sorting, pattern recognitions, generalization and
investigation. Initially, technology functions as a tool for doing algebra. As the ac-
tivities proceed, the use acquires the character of an environment for conceptual de-
velopment. Figure 7 shows a first example of this, which concerns the reproduction
with Excel of one of the arithmetic patterns described in Chapter 4. The regularity in
the output begs for an algebraic proof. The technological environment, in this case
spreadsheet software, supports the finding of similar arithmetic patterns. Research
suggests, however, that young students (12-13 year old) may encounter difficulties
while copying formulas in a spreadsheet (Haspekian, 2005). 

Figure 7. Creating a pattern with Excel

An example of a higher level of pattern generation and recognition is shown in Fig-
ure 8. Computer algebra acts as a tool to factor expressions of the form  (La-
grange, 2000; Kieran & Drijvers, 2006). In itself, this is just a matter of pressing
buttons. The results, however, raise several questions: in which cases does one get
exactly 2 factors, and in which cases more than 2? Do we always get a factor 
when n is even? How can you be sure of that? For , we might have expected

. Is the result shown on the screen equivalent
with that? How does the software find its answers anyway, and how would we find
the same results with paper and pencil? These and other reflective, mathematical
questions enhance the development of algebraic meaning. 

xn 1–

x 1+
x6 1–

x 1– x5 x4 x3 x2 x 1+ + + + +
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Figure 8. Factoring expressions of the form  with a computer algebra tool

This example shows that computer algebra software can invite exploration and alge-
braic thinking. However, the use of computer algebra does require some prior time
investment, as the algebraic flexibility such environments offer has as its price a syn-
tactic rigidity in relation to entering expressions and commands. Because of this in-
vestment, computer algebra is also used as a backbone of front-end educational
technology, that is put in action to check student results on algebraic equivalence
with desired results, for example. As a result, computer algebra offers better error de-
tection and therefore student feedback.

 

Figure 9. A pattern of derivatives

Another example of the use of computer algebra for generating patterns is provided
by Berry, Graham and Watkins (1994). The idea in the example is that students first
use computer algebra to differentiate a number of functions, to investigate the pattern
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in the results, and finally reflect on the meaning of the differentiation (see Figure 9).
This is an example of the so-called BlackBox-WhiteBox approach, in which students
are first confronted with the results of working with technology, which are the mo-
tive for a subsequent investigation on what is really happening, what it means, and
how one would find these results with paper and pencil. This approach is a reaction
to the WhiteBox-BlackBox principle, where students carry out relevant algebraic op-
erations by hand first, and only use ICT for outsourcing operations after skills and
insights have been developed (Buchberger, 1990). 

The above examples show how the didactical functions of tool for doing algebra
and environment for concept development can be aligned: the algebraic power of the
technology is used to generate examples that in a subsequent step are subject to al-
gebraic reasoning. 

Formulas and technology

In the second and third example of the previous section, formulas play a central role.
The examples show that technology can generate formulas, and, in the case of com-
puter algebra, transform them to other forms. It is interesting to notice that it is not
always trivial to know which command leads to the form the user want to get, and,
conversely, to recognize which ‘story the algebraic form tells’. Figure 10, for exam-
ple, shows how an algebraic function definition is rewritten by computer algebra
through the commands factor and expand. An expert user, who is skilled in ‘reading’
formulas, recognizes the zeros and the vertical asymptote of the graph in the second
form, and the equation of the other asymptote in the third form. The ability to inter-
pret the computer algebra output requires a considerable amount of insight into the
structure of algebraic expressions. That insight is part of the algebraic expertise
which was labelled symbol sense in Chapter 1.

Figure 10. Rewriting a function definition

Several technological tools can help students to acquire that insight, and thus act as
environment for the development of algebraic concepts. An example of this didacti-
cal functionality is the applet AlgebraExpressions, in which students create tree re-
presentations of algebraic expressionsi (Figure 11). These expressions can have an
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increasing complexity, in which the structure of partial trees and the hierarchy of op-
erations remain transparent. The tree representation is a model that can also back up
students’ paper-and-pencil work, when they encounter complex formulas. 

Figure 11. A tree representation of an expression made in the applet AlgebraExpressions

Entering formulas needs attention while working with formulas and expressions in
technological environments. Some ICT-applications provide one-line formula entry,
which means that using brackets is required. Figure 12, for example, shows how the
expression 

is entered in the graphing calculator TI-84 and in Excel. One can imagine a student
forgetting to use brackets, and thereby accidentally entering

To avoid such mistakes, a two-dimensional ‘pretty print’ formula editor is prefera-
ble, and is getting more and more common. 

Figure 12. Entering expressions in the TI-84 and in Excel

x
x2 1+
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RESTRICTIONS WITH TECHNOLOGY

For solving equations and dealing with restrictions, a range of technological tools is
available, each with its own focus on mental models, practice or use. For practicing
solving equations, applets can be used (see for example Figure 3). Figure 13 shows
a variation of this applet, as well as how a student solves a similar equation with pa-
per and pencil. The student’s writing clearly reveals the transfer of strategy and no-
tation from the applet environment to paper-and-pencil.

Figure 13. Solving equations: strategy transfer from technology to paper and pencil

There is a danger that work with technology has a fleeting character for the student.
Screens appear, screens disappear and not much tangible remains after the session.
To avoid this, student results can be saved in an individual digital workspace. This
allows students to review and revise their work and in this way create their personal
digital notebook; for the teacher, this type of registration offers means to monitor stu-
dent progress, and to correct and eventually grade work. Figure 14 shows an example
of the features of such a system for the teacher, in this case the Digital Mathematics
Environmentii. In such systems, teachers can easily check the students’ homework
and, while preparing the next lesson, identify any difficulties they need to give more
attention to. 

The graphing calculator can be used as a tool for just solving equations graphical-
ly or numerically. One method consists of intersecting two graphs, corresponding to
the left hand side and the right hand side of the equation, respectively. An advantage
of this approach is that students develop a mental image of solving an equation as
finding intersection points, which is an appropriate image for equations in one single
variable. An alternative approach for solving equations with a graphing calculator is
to use the solve module. 
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Figure 14. Screen shot of the Digital Mathematics Environment for student registration

If exact or symbolic solutions are required, a computer algebra tool is needed. Solv-
ing an equation with such CAS tools, which are available for both desktops and
handheld devices, seems straightforward and easy. For novice users of this type of
technological tool, however, this is not trivial, because the solve technique highlights
aspects of solving equations that often remain underexposed in work with paper and
pencil (Drijvers & Gravemeijer, 2004). For example, students often are unaware of
the differences between algebraic expressions and equations, which leads to trying
to solve for example  instead of . Also, in cases of
equations with more than one variable, students often do not realize that an equation
is always solved with respect to an unknown, and we can not expect the technology
to know which variable plays that role in the equation at stake. The unknown, there-
fore, must be specified, something which often remains implicit while solving with
paper and pencil. If the solution of a parametric equation turns out to be an expres-
sion instead of a numerical value, students may feel that ‘nothing is really solved’,
as their interpretation of a solution is restricted to numerical outcomes. As a final is-
sue while solving equations with a computer algebra tool, the upper part of Figure 15
shows that the solution of the general quadratic equation in some cases is represented
differently from the form in which it usually appears in text books. The solution of

x2 b x 1++ x2 b x 1++ 0=
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the second equation, , is not copied correctly by one of the stu-
dents in her notebook (Figure 15 bottom part). 

Figure 15. Difficult representations in computer algebra software

Solving an equation algebraically using computer algebra requires intertwined tech-
nical and conceptual insight. This is expressed graphically in Figure 16, taken from
Drijvers & Gravemeijer, 2004. In general, the execution of a problem solving proce-
dure in a computer algebra environment highlights different insights than the paper-
and-pencil method: there is a certain distance to the executive work, but the work
must be formulated at a more abstract level. One has to ‘make the work be done’ in-
stead of doing it oneself. This requires a much deeper awareness of underlying con-
ceptual aspects. 

Figure 16. Conceptual and technical aspects of solving equations with CAS 

x2 b x 1++ 0=

indicate the unknown to solve

‘solve with respect to x’ = ‘express x in b’

an equation should contain an = sign

the solution can be an expression
notice the scope of the square root sign
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FUNCTIONS AND GRAPHS WITH TECHNOLOGY

The concept of function and its representations

In this section we address the part technology can play in the teaching and learning
of functions and graphs. In which ways can technology support the acquisition of the
function concept?

The introductory example of this chapter concerns the applet Algebra Arrows (see
Figure 1). This applet provides options for building arrow chains of operations, an
activity which is intended to support students’ concept image of functions as input-
output machines (see also Chapter 6). It emerged that students also used the arrow
chains as representations of functions on paper (Figure 17).

Figure 17. Transfer of the arrow chain notation to paper-and-pencil work

The same applet can be used to evoke the concept image of a function as a mathe-
matical object with different, interrelated representations (Figure 18). In this case,
the input is variable, and this variation causes the output to vary as well. With the
function as input-output machine as a point of departure, the different function rep-
resentations appear in one window: the arrow chain, the table, the graph and the for-
mula (Doorman et al., in press; Drijvers et al., 2007). These representations are
connected to each other. For instance, when scrolling through the values of x in the
input table, the output value in the other table changes accordingly, as well as the
point in the graph. This allows students to experience the different representations as
different views on the same mathematical object. This way, thee applet provides an
environment that supports the development of an integrated function concept. As
such, it is not unique; many technological environments offer means to view differ-
ent function representations simultaneously, and to study the effects of changes in
one representation to the others. Technology has a lot to offer here.
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Figure 18. Function with different representations in the applet Algebra Arrowsi

Graphs as particular function representations

With formulas, graphs can be seen as the most important function representations.
ICT tools such as graphing calculators, graphical software and spreadsheet software
can draw graphs quickly and accurately. By changing the window settings, students
can easily get different views on a graph and zoom in on relevant details. By tracing
a graph, students can investigate the co-variation of dependent and independent var-
iable (Figure 19, left screen). The independent variable is no longer a placeholder or
a generalized number, but a changing quantity which runs through the horizontal ax-
is, causing the dependent variable to change on the vertical axis. 

Probably the most powerful image of a variable as a changing quantity is gener-
ated through a slider bar, as available in Excel and many other function graphing
tools. By dragging the pointer along the slider bar, the student can dynamically vary
the value of a variable, for instance a parameter, in a seemingly continuous way. The
right screen of Figure 19 provides an example, which is unfortunately static on paper. 

In short, there are many technological tools that generate tables and graphs. Stu-
dents can use them to explore change and to experience the dynamic character of a
variable. These ICT-applications are considered meaningful, as they enrich the stu-
dents’ concept image of function. Whereas in the past, graphs used to be the end
point of a laborious algebraic function investigation, now they form accessible start-
ing points for further exploration (Kindt, 1992ab). In this way, the use of technology
gradually affects the content and pedagogy of algebra education.
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Figure 19. Tracing a graph and using a slider bar

Even if technology can be very useful for graphing functions, we need to be aware
of the difference between the graph as a set of pixels that students see on a screen,
and the mathematical object of a graph, which in fact comes down to the function
definition as a set of ordered pairs. Particularly when screen resolution is low, as is
the case on graphing calculators, the difference can be striking and students are not
always able to bridge the gap between the two.

Figure 20. Misleading graphs on the screen of a graphing calculator

As an example, Figure 20 shows two misleading graphs. The left one is the graph of
 on the domain [-10, 10]. The half circle that the graph in fact is, does

not touch the x-axis on the screen of the  first generation!  graphing calculator. The
graph in the middle is the graph of  on the interval [-2 , 2 ]. How-
ever, zooming in on the box shown in the middle screen provides the graph in the
right screen. Apparently, the graph in the middle screen is too smooth and hides
much of the function’s variation! Student will have to learn to deal with graphical
limitations such as the ones shown here. Classroom discussions are a way to make
explicit the differences between discrete graphs consisting of approximated screen

(1.88; 4.74)
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pixels, and smooth, continuous graphs as they exist in mathematical theory. Another
teaching strategy is to exploit technology’s limitations by challenging students to
create misleading graphs on their screens. This somewhat surprising task may fasci-
nate students and can invite deeper understanding of graphs.

The above example shows that the graphing options of technological tools can be
used to work on unusual tasks. Another example of this is shown in Figure 6. In line
with this is the example in Figure 21. The task is to find an equation of the curve that
‘touches’ each of the line segments of this pattern, or, as an easier variant, to show
that the graph of the function  has this property.

Figure 21. A sheaf of segments motivating algebraic questions

To summarize this section, we conclude that technology offers opportunities to work
with formulas, to draw graphs and tables, and to combine and integrate different
function representations. The technology plays the didactical roles of tool to carry
out the work, and of environment for concept development. 

CONCLUSION AND REFLECTION

Conclusion

The central question in this chapter is which roles new technologies can play in al-
gebra education, and how the teaching and learning of algebra can benefit from these
roles. In answer to the first part of this question, three didactical functions of tech-
nology in algebra education are distinguished: the function of tool for carrying out
the algebraic work, the function of environment for practicing skills, and the function
of environment for concept development. These three didactical functions, which
differ in their degree of guidance by the teacher, are not mutually exclusive and may

f x x 10 2 10x–+=
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merge. However, each function does put specific demands on the technology. For the
tool functionality, it is important that conventional mathematical notations can be
used, that a standard repertoire of algebraic procedures is available and that it is car-
ried out correctly. For the functionality of environment for practice, it is important
that the techniques supported by the technology match with the paper-and-pencil
strategies that students need to master. Furthermore, adequate feedback is an impor-
tant feature. For technology as an environment for developing concepts, a require-
ment is that the activities, techniques and representations in this environment will
indeed evoke the concept images and insights as intended. Even if these criteria may
sound trivial, it is not always easy in practice to foresee the subtleties of the use of
technology in each of the three roles in detail while preparing a lesson. This brings
us to the second part of the question: how can the teaching and learning of algebra
benefit optimally from these roles?

For each of the three algebra strands, patterns and formulas, restrictions, and func-
tions and graphs, the chapter provides examples of meaningful ICT applications,
which aim at capitalizing on the opportunities technology offers for algebra educa-
tion. These opportunities can be labelled as variation and dynamics (e.g. see Figure
19), as generation of examples that invite pattern recognitions and generalization
(e.g. see Figure 8 and Figure 9), as visualization (e.g. see Figure 1 and Figure 11) and
finally also concern exploration and investigation (e.g. see Figure 2). This set of op-
portunities, exemplified in these concrete tasks, forms the answer to the question of
how to use technology in algebra education. These opportunities have in common
that they can help in changing the student from a passive ‘consumer’ of algebra into
an active investigator, which may improve students’ motivation as well as the effi-
ciency of their learning.

Reflection

In this reflection we first focus on the role of the teacher. In spite of the positive de-
scription of the opportunities technology offers for algebra education, ICT is not a
panacea that will make all old didactical difficulties of algebra education disappear.
Exploiting the opportunities identified above requires a profound didactical consid-
eration and preparation of the way in which technology plays a role in the learning
process of the algebra topic under consideration, and how this is made concrete in the
mathematics lesson. Research suggests that this so crucial didactical consideration
and preparation is not an easy job for the teacher (Drijvers & Trouche, 2008; Drijvers
et al., in press; Lagrange & Ozdemir Erdogan, 2009; Ruthven, Deaney, & Hennessy,
2009). Even if the feedback functionality of an ICT environment, for example, can
relieve the teacher from providing feedback, other aspects of teacher-student interac-
tion cannot be taken over by the technology. There remains much to do for the teach-
er: raising reflective questions, summarizing, enhancing convergence by means of
whole-class discussions, sketching lines of thought, inviting exploration of and rea-
soning about the results found through the use of technology, relating the work with
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technology and the work with paper and pencil, monitoring student achievements, di-
agnosing difficulties students encounter in working with technology, etcetera. All
these issues require thoughtful attention, and may require the development of new
teaching techniques and didactical skills. For technological tools that will be used for
a longer period, such as for example Excel or graphing calculators, the teacher may
want to orchestrate the development of shared machine skills, so that a set of standard
techniques emerges in the class. Also, the teacher may need to take care of the chang-
ing didactical contract. For example, students need to develop a critical attitude to-
wards the limited power of technology in mathematical proofs and will need some
guidelines on the paper-and-pencil skills they are supposed to master. Responding to
all the needs and questions the use of technology brings to the fore, the teacher may
extend and adapt the didactic repertoire of teaching techniques en orchestrations used
in teaching. 

A prerequisite for this process to happen, of course, is a good infrastructure. This
comes down to good and accessible ICT facilities, adequate technical support, the
possibility to access work from home as well as at school, and the availability of ap-
propriate means for communication with students and evaluation of their work.
Technological developments such as wireless networks, netbooks, handheld com-
puters and interactive whiteboards contribute to such an infrastructure.

As a second reflection, we want to address an important issue in the discussion on
the role of ICT in mathematics education in general, and algebra education in partic-
ular: the tension that is often assumed to exist between the use of technology for al-
gebra and the acquisition of procedural algebraic skills with paper and pencil. Do
students learn how to carry out algebraic work with paper and pencil, if they can out-
source all the work to a technological device? What is the relationship between the
use of technology for algebra and paper-and-pencil basic skills? As a first remark, we
claim that the use of ICT can contribute to the development of algebraic insight and
the mastery of algebraic skills, as they play a role in paper-and-pencil work. Several
studies (e.g. Heid, 1988) suggest that techniques carried out in a technological envi-
ronment prepare for the algebraic by-hand skills. A prerequisite for this transfer to
take place is that the techniques used with the technology are to a certain extent sim-
ilar to the paper and pencil ones, and that students are able to reconcile the results of
their paper and pencil work with the output technology provides (Kieran & Drijvers,
2006). In addition to this, the use of technology can complement the work with paper
and pencil. The example shown in Figure 16 suggests that solving an equation in a
computer algebra environment stresses other aspects than solving by hand, such as
the notion that one of the variables plays the role of the unknown. Similarly, solving
an equation graphically with a graphing calculator with an intersect technique high-
lights the idea that solving an equation can be considered as finding an intersection
point of graphs. As applying ICT-techniques stresses different aspects compared to
the paper-and-pencil work, it can complement the traditional methods.

Meanwhile, algebraic work with technology often has a different character in
comparison to work with paper and pencil, as the student takes on more the position
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of a supervisor than that of labourer. Because one cannot be a good supervisor with-
out experience as labourer, some paper-and-pencil skill remains indispensable. Pa-
per-and-pencil skills need to be acquired, practiced and maintained in order to
remain operational. If the use of technology means that skills are not maintained, it
can only be expected that mastery decreases. Our concern, therefore, is to find a bal-
anced combination of algebra ‘with the mind, on paper and on a screen’. Even if we
do acknowledge the additional value of technology in mathematics education, it will
not render paper and pencil redundant, but rather support and complement it.

As a final reflection, let us briefly consider the future of technology in algebra ed-
ucation. The development of ICT tools, which mainly takes place outside the educa-
tional community, is expected to continue at a high pace. Think of mobile
technology, netbooks and handheld computers, of serious gaming. Learning can hap-
pen any time, any place, on interoperable platforms; communication facilities guar-
antee that the learning process does not need to be a solitary one. Therefore,
connectivity in more than one sense is a key idea for future developments (Drijvers,
Kieran & Mariotti, 2010). The opportunities for the teacher to monitor, support and
evaluate student work will further increase. Digital portfolios are ways to avoid the
fleeting character that sometimes characterises the use of technology. Assessment
can take place digitally as well, and can be flexible in time and in content. Teacher
and students communicate through the digital learning environment and during dig-
ital meeting hours. These developments have pedagogical consequences. We already
mentioned the need to find an equilibrium between paper-and-pencil skills and the
skills that a technological environment requires to become a meaningful algebra tool
in the hands of a student. The exact position of this equilibrium depends on the goals
of algebra education, which are subject to reconsideration due to the current techno-
logical developments. As a tentative outcome, one may expect a shift towards proc-
esses such as mathematizing and modelling, at the cost of basic procedural skills.
The ability to translate a problem situation into algebraic terms and into machine
techniques, for example, is likely to become more important than it already is, as is
the case for the ability to relate graphical and algebraic properties. Flexible problem
solving behaviour is required, as the affordances and constraints of the technology
will appeal to creative and inventive problem solving behaviour. Assessment of
these types of higher order skills is not easy, but it seems logical that technology will
play a role there as well. Meanwhile, assessment will also include paper-and-pencil
tests for basic algebraic skills.

Conclusive for the success of the use of technology in algebra education will be
the way in which teachers and the mathematics educational community as a whole
manage to integrate the new media into teaching in a natural and meaningful way.
To make the somewhat optimistic scenario sketched above come true, it is crucial
that teachers’ professional expertise concerning the use of technology in mathemat-
ics education will be further developed and that the design of good practice teaching
examples and courses for professional development will be facilitated.
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NOTES

i Available at http://www.fi.uu.nl/wisweb/en/
ii Available at http://www.fi.uu.nl/dwo/en/
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9.  ALGEBRA IN SCIENCE AND ENGINEERING

Traditionally, and philosophically, mathematics has been thought of as a sci-
ence of ideal objects – numbers, quantities, and shapes – that are precisely de-
fined and thus amenable to logically precise relations known as theorems. In
practice, mathematics presents a more rough-and-ready image: it is about solv-
ing problems in the real world that involve measured quantities that are never
perfectly precise. (Steen, 2003, p. 59) 

INTRODUCTION

Preparation for future work is one of the goals of mathematics education. For that
reason it makes sense to have a look at how mathematics is used in workplace set-
tings. From international research (e.g. Bakker et al., 2008; Steen, 2001; Hoyles et
al., 2002) it is well-known that the way in which mathematics is used at the work-
place is quite different from the way it is learned in school. Some important general
aspects of mathematics in a professional context are: reading and interpreting tables,
charts and graphs, use of IT (e.g., spreadsheets), dealing with numbers, often not pre-
cise and with units of measurement, proportional reasoning, representing and analyz-
ing data, and multi-step problem solving. Strangely enough, most of these aspects are
not found in mathematics curricula in secondary education. Where mathematics
learned in school is embedded in a well-defined formal structure, the mathematics
used in the workplace is embedded in a professional context. Practitioners at work
do use situated abstraction in which local mathematical models and ideas are used
that are only partly valid in a different context because they are connected to anchors
within the context of the problem itself (Noss & Hoyles, 1996; Hoyles, Noss, Kent,
& Bakker, 2010; Van der Kooij, 2001).

If we look more closely at how algebra is used in natural sciences and engineering,
then it turns out that there are differences in the approach to important concepts such
as variable, in the nature of the formulas used and even in the approach to ‘regular’
numbers. Algebra is present in vocational courses in secondary and higher vocation-
al education and in all science subjects throughout secondary school, especially in
science. 

In this chapter, we argue in favour of anticipating how algebra will be used outside
the mathematics classroom. This may narrow the gap between mathematics and en-
gineering, and more appropriately emphasize the applicability and usability of alge-
bra. Moreover, we can perhaps learn something from the approaches in STEM

P. Drijvers (ed.), Secondary Algebra Education, 203–226.
© 2011 Sense Publishers. All rights reserved.
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(Science, Technology, Engineering and Mathematics) that might also be useful in the
mathematics classroom.

ORIENTATION AND DEFINITION OF TERMS

How is algebra used in science and engineering? To answer this question, as part of
the TWIN projecti, engineering textbooks were analysed and engineering teachers
were interviewed in relation to the algebraic/mathematical concepts and skills that
are important in vocational courses (Van der Kooij (Ed.), Goris & Temme, 2003). As
part of the SONaTe projectii, a similar approach was taken for the science subjects
in grades 10-12 of pre-university education. Both surveys reached the conclusion
that in mathematics teaching, little or no attention is paid to a number of important
algebraic concepts in science. Below, we refer to a number of these concepts, and
illustrate them by a brief explanation. In the remainder of this chapter, these aspects
will be addressed in more detail, based on examples in which the themes emerge in
an integrated way.

Variables 

In science and engineering, variables consistently have a meaningful name that links
a specific situation: pressure, temperature, cutting rate or density. In mathematics as
taught in school, variables have standardized names: x, y and z for unknowns, a, b
and c for coefficients, and k, m and n for natural numbers. They take various roles,
such as unknown, parameter or slope.

Quantities 

Length, area and volume are geometric quantities. Mathematics, as taught in school
and otherwise, also uses the quantity ‘angle’, but this is pretty much the end of the
story, and beyond this there are only the pure numbers. Engineering has physical
quantities such as time, mass, length and temperature, and can use these quantities to
construct new, derived quantities: velocity, density or specific heat. The nature of the
physical quantity is called the dimension, which is a word that already has a more
extensive meaning than ‘the number of independent spatial directions’.

Proportionality as a key concept

In mathematics education in grades 7-9 of secondary school, the linear function
 takes a prominent place. In the science subjects and engineering, a

comparable central theme is the question about the proportionality of two quantities,
such as weight and volume, or voltage and resistance. In this regard, we should not
think about a linear function with b = 0, but about the relationship between the varia-
bles. The concept of proportionality is also used in situations where one variable is pro-

f x mx b+=
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portional to the square or to the inverse of another variable. This multifaceted use of
proportionality is important, and is still insufficiently addressed in algebra education.

The nature of the formulas used

Formulas in science applications often concern situations where the relationship be-
tween more than two variables is described. Multiple proportionalities are frequently
combined; the variables are not neutral because they represent physical quantities
with a specific nature. Such formulas therefore require a different algebraic approach
than a purely mathematical one. 

Numbers, units of measurement and imprecise values 

In science applications, a number can be the value of a quantity or a ‘pure’ number
such as . However, a number represents the value of a variable. This assumes the
use of a unit of measurement, for example the unit meter; the number actually indi-
cates the ratio with that unit. Different quantities, different units. In applications,
numbers often originate from measurements. This inevitably means inexactness in-
stead of exactness. But it is possible to deal with inexactness in an exact way. This
is an aspect of algebra that makes sense in the world of applications, but is poorly
illuminated in mathematics education.

Many kinds of graphs

The way in which relationships between variables in science or engineering are re-
spresented in graphs are more diverse than one would suspect from the use of math-
ematical coordinate systems. The nature of the applications leads to many variations
and types of scales, and sometimes to complex representations. In engineering,
graphs are compact and clearly presented data sets, with very specific forms of use,
which go far beyond dealing with the classical mathematical graph. 

SPECIAL GRAPHS FOR BICYCLES AND LATHES

Figure 1 shows two sets of graphs, which in engineering are generally called nomo-
grams. The set on the left concerns a bicycle and represents the relationship between
the variables pedalling rate (in rotations or pedal strokes per minute), gear ratio
(number of meters travelled per rotation) and velocity (in km per hour). The graph on
the right shows the relationship between number of revolutions (revolutions per
minute), turning diameter (in mm) and cutting speed (in m per minute) of a chisel on
a lathe. These graphs are similar in several respects. There are three variables, of
which one (pedalling rate, number of revolutions) plays the role of the parameter in
the sheaf of lines. 
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Figure 1. Two nomograms that show proportionality (Van der Kooij et al., 2003)

The other two variables have equivalent roles; so these are not just graphs with an
input variable on the horizontal axis and an output variable on the vertical axis.

Both graphs have axis scales that are chosen specifically according to the nature
of the situation to which they are applied. The chosen units are always shown on the
graph; with the bicycle, the velocity is expressed in km per hour and the gear ratio is
expressed in meters. For bicycles, the usual velocities are 5 to 60 km/h, and the usa-
ble range of gear ratios is 2-10 meters. This is not a very wide range; we can therefore
read the linear scale with relative precision on both the low side and the high side. 

This is different with the lathe. The ratios between the extremes on both scales are
1 to 100. Nevertheless, on the velocity scale we can easily see the difference between
10 and 12.5 m/min on the low side and between 800 and 1000 on the high side. This
has been accomplished by showing the equivalent proportions 10 to 12.5 and 800 to
1000 with equal length scaling, while ignoring the absolute magnitudes. Both scales
on the cutting speed nomogram are logarithmic.

There are proportionalities in both situations. For the cyclist: 
velocity (in km/h) =   rotational speed (in RPM)  gear ratio (in m)

For the lathe: 
cutting speed (in m/min) =   number of revolutions (in RPM)  diameter (in m)

With the bicycle, we therefore see straight lines with various slopes that pass
through the origin (0, 0) of the graph (even though the origin cannot be seen). With the
lathe, all lines are parallel; this is because at every rotational speed, a fixed proportion
on the rotating diameter scale has a fixed proportion on the cutting speed scale. 

Students in vocational education must be able to read and interpret such graphs;
if algebra education can support them in doing so, this is beneficial. However, the

c1

c2
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above graphs obviously describe the use of logarithms completely differently from
the logarithm as the inverse of the exponential function.

PROPORTIONALITIES AND FORMULAS

An elegant and purely mathematical use of the concept proportionality can be found
in the following, somewhat archaic algebraic proposition: 

The areas of two circles are proportional to the squares of their radii.

The proportionality of the areas is one of the same type of quantities, the one of the
radii as well. This is a meaningful proposition which does not include . The rela-
tionship can also be formulated in this style: 

The area of a circle is proportional to the square of its radius. 

This is a more dynamic definition; there is a very strong suggestion that the area will
become four times as large if the radius is doubled. The corresponding formula

 makes the proportionality constant visible and is suitable for use in numer-
ical algebra. In modern applications, this second style is therefore used more fre-
quently; the relationship is formulated as a proportionality. 

We have selected the following formulas from the current science examination
syllabus for pre-university education in the Netherlands:

It is immediately obvious that proportionalities are involved here. Consider the for-
mula for gravitational attraction between two bodies Fz. If we think about a planet
revolving around the sun, then we see that Fz is inversely proportional to r2, the
square of the distance between the bodies. If we think about weights falling to earth,
then r is virtually constant and the formula shows that Fz is proportional to the mass
of the falling weight. In the formula, G is the gravitational constant, not to be con-
fused with the gravitational field strength  m/s2.

In science and engineering courses, it is important that students are capable of ver-
balizing such proportionalities, converting the verbalizations to formulas, and de-
scribing and recognizing the behaviour of the corresponding graphs. The fact that
little explicit attention is paid to proportionality in mathematics education is a missed
opportunity. Proportionality is one of the most frequently occurring algebraic phe-
nomena in science and engineering, and it is not difficult to link interesting mathe-

A r2=

Puseful

Pin
--------------- 100%=R l

A
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matics to this topic. The booklet Evenredigheden en machten (Proportionalities and
powers) was compiled in the SONaTe project based on the materials that were de-
veloped in the Profi-project for the fourth year of pre-university education (Goddijn,
Reuter & Kindt, 1998; Van der Kooij, 2004). A number of ideas in this chapter orig-
inated from this booklet. 

The nature of proportionality formulas

Formulas and equations as they appear in science and engineering usually concern
situations in which more than two variables are involved. If the variables are mutu-
ally proportional, then there are usually products or quotients in the formula, only
rarely sums or differences. For example, in a circuit where a current I flows through
a resistance R, a voltage difference V occurs across the resistance. If I is constant,
then V and R are proportional; if R is constant, then V and I are proportional. Conse-
quently, the relationship must be both  and . The voltage
must therefore be a constant times the product of R and I; in that case, the constant
is chosen as the neutral ‘1’, which defines the nature and the unit of resistance (more
about this later). Ohm’s law states: . 

For these reasons, the formulas that indicate proportionalities between variables
almost always consist of products and quotients of powers. The addition of formulas
and variables is restricted: only similar types of quantities can be added. In applied
formulas, addition and subtraction can often be interpreted as shifts in space or time,
as with the harmonic motion

where a time interval t0 precedes the motion
. 

Addition and subtraction can also indicate that a formula concerns the difference be-
tween two levels, such as the Balmer formula, which shows the wavelength of a pho-
ton that is emitted when an electron in a hydrogen atom jumps from quantum level
2 to quantum level n; the formula describes the energy difference: 

We also encounter many trigonometric functions and exponential functions in the
world of applications. Remember that trigonometric functions have their background
in the proportions of lengths. The function value is therefore not a quantity that is ap-
parent in nature, but a pure number. The fact that the sine function has kept the role
of a neutral number can be seen in the formula . The displace-
ment is shown in proportion to the maximum displacement Umax, a chosen unit of
length. Such considerations also apply to exponential functions, which indicate neu-
tral factors as well. There will be more about quantities and their dimensions later on.

V c1 R= V c2 I=

V I R=

U Umax tsin=

V Umax t t0–sin=

1--- R 1
4
--- 1

n2
-----–=

U Umax tsin=



ALGEBRA IN SCIENCE AND ENGINEERING

209

Global reasoning with proportions

Another example of more than two variables appearing in formulas in science con-
cerns rectangular beam deflection. The deflection (bending) depends on the three
measures of the beam, the load, the quality of the material, and even on gravity,
which is different on the moon, for example. Some of these variables, such as the
characteristics of the material and gravity, can be considered to be parameters, but
then we still have five variables left: deflection, load and the three measures. Assume
that the beam is attached at both ends, (as with a bookshelf) and is loaded with a total
load of Q (kg). The special algebraic possibilities of proportional formulas can be
shown clearly with the formula for deflection f (in mm): 

E is the modulus of elasticity, a quality characteristic of the material used (N/mm2),
w, l and h are the width, length and height of the beam (in mm). What effect does a
change in each of the quantities have on the deflection? It is clear that doubling the
value of h has a more beneficial effect than doubling the value of w: the deflection
then becomes eight times smaller. Floor and ceiling beams have a rectangular cross-
section. We therefore always place the beam on the narrow side, in order to benefit
as much as possible from the cube of h! In addition, an increase in E has a positive
effect on deflection: the bigger the value of E, the stiffer the beam is, and therefore
the deflection becomes less. Such global reasoning with proportionalities is very
functional in applications, and therefore also deserves a place in algebra education.

Algebraic reasoning in such examples is supported by practical experience. This
turns out to be an important factor in vocational education. As long as the manipula-
tion of and reasoning with algebraic expressions and formulas is linked directly to
matters that can be imagined in practice, students can deal with it effectively. For
meaningful algebra teaching, this link is especially important in (pre-)vocational sec-
ondary education. In engineering, students are frequently confronted with similar
formulas: seemingly complex relationships, specifically involving proportionalities.
One objective of algebra education can be to learn to see through such complexity.

Proportionality in words, formulas, tables and graphs 

As is frequently the case in algebra, with proportionality it is also important for stu-
dents to be able to transform a verbal description into a formula, table or graph. In a
dictionary, proportionality is defined as follows: 

If one quantity is multiplied by a certain number, the other quantity becomes
that same number of times larger. 

f 5 Q l3

32 E w h3
-------------------------------- 9 81=
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In practice, the value of one variable, such as P, is usually given, and the task is to
find the corresponding value of the other variable, such as Q, so we use the charac-
teristic: 
– P and Q are proportional if their quotient is constant, so ,

or the equivalent:
– P and Q are proportional if 

The dictionary could define ‘inversely proportional’ as: 

If one quantity is multiplied with a certain number, the other quantity becomes
that same number of times smaller. 

Inverse proportionality therefore has the following characteristics: 
– P and Q are inversely proportional if their product is constant, so .
– P and Q are inversely proportional if . 

With these characteristics, the proportionality – or inverse proportionality – of the
quantities P and Q can be investigated based on a double table with values such as
measurement data: if the quotient or product of P and Q is constant (approximately),
this suggest proportionality or inverse proportionality. An alternative is to determine
whether any multiplication factor in one column correlates with the same factor in
the other column: if P jumps from 2 to 6, does Q jump from 15 to 45 (with propor-
tionality) or to 5 (with inverse proportionality)? This agrees with the definition in the
dictionary. Aa an example, Table 1 shows a directly proportional and an inversely
proportional relationship, taken from the Dutch TWIN textbook series. The numbers
at the top of the columns represent the number of teeth on the front sprocket of a bi-
cycle with multiple speeds. Next to the rows is the number of teeth on the rear
sprocket. The cells contain the gear ratio, expressed in meter per revolution. In this
example, practice also supports algebraic reasoning: a rear sprocket with half the
number of teeth doubles the gear ratio, while reducing the number of teeth on the
front sprocket by half reduces the gear ratio by half.

Table 1. Directly and inversely proportional (Van der Kooij et al., 2003)

P
Q
---- c=

P c Q=

P Q c=
P c 1

Q----=
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In many applications, the proportionality constant c in the formula has the character
of a ‘quality indicator’. For example, Table 2 shows the so-called finesse F or glide
ratio for various gliding objects. This finesse represents the horizontal distance that
can be travelled for each meter of lost altitude (engines off, wings still). The formula

, where g is the horizontal gliding distance and d is the vertical drop, both
expressed in m, applies to all gliding objects. F can therefore be considered as an in-
dicator of the gliding capacity of the object: the larger the value of F, the further the
object can glide. 

Table 2. The finesse of various gliding objects (Tennekes, 1992) 

Figure 2 shows on the left the graphs of the albatross (A), vulture (B) and flying
squirrel (C) on a coordinate system with a standard axis layout. According to the
model, for these three gliding objects, and for all the others, the following applies: if
altitude loss doubles, then the horizontal gliding distance also doubles. This is shown
clearly in the illustration: all three graphs are straight lines through the origin, but
with different slopes. 

Figure 2. Gliding distance as a function of altitude loss for various gliding objects

gliding object F
glider 40
albatross 20
Boeing 747 14
swift 10
vulture 11
cabbage butterfly 4
flying squirrel 2.5
grasshopper 1.5
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The right graph of Figure 2 has logarithmic scales on the axis. Because of the direct
proportionality, the graphs have a 45-degree angle with the horizontal axis. With pro-
portionality of powers, as we will see below, this is different. In such a graph, propor-
tionality to a square is shown as: one horizontal step results in a vertical step that is
twice as big. A good example where this principle can be used is the measured rela-
tionship between leg length l and body mass m of a number of cockroaches; the cor-
responding graph is shown in Figure 3. 

Figure 3. Leg length as a function of mass (McMohan & Tyler Bonner, 1983)

The given formula 2.94 is the result of regression analysis. The ar-
rows on the graph indicate that a formula with an exponent 3 fits reasonably well.
Based on theoretical considerations, this could be expected: leg length is a unit of
length, and mass is proportional to volume, so mass is proportional to the unit of
length to the power 3. 

Proportionality of powers

Proportionality between powers of quantities deserves special attention. This type of
proportionality is very common in science and engineering. The well-known third
law of Kepler, in the classical form

the square of the orbital period of a planet is directly proportional to the cube
of the orbital radiusiii

can be converted to 

6

2
mass = 32590 l 2.94
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If we multiply T by 1000, then R should increase by a factor 100. Three factors 10
for T, two factors10 for R. This applies in the same way to factors other than 10. Mul-
tiplying T by 8 ( ) corresponds with R multiplied by 4 ( ). 

In principle, this is the algebraic essence of general reasoning about proportional-
ity of powers. With the previously used graph paper, on which constant proportions
can be seen on the scales, that should produce a special result. We can see this in data
of the four moons of Jupiter that can be observed with a simple telescope. By making
periodic observations, one can determine the orbital periods. Galileo did this in 1610;
the results are shown in Table 3. 

Table 3. Orbital periods and distances of four of Jupiter’s moons

Figure 4 shows the graph on a logarithmic scale. On paper, the ten steps must be of
equal size horizontally and vertically, but we can adapt the necessary part of the scale
to the data. The slope of the line is , as expected. The graph can be expanded to
include the 28 moons that are currently known. 

Figure 4. Graph on a logarithmic scale

moon orbital period T (in days)  distance R to Jupiter (in 103 km)

Io 1.76 422

Europa 3.55 671

Ganymede 7.15 1070

Calypso 19.69 1882
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Generally speaking, proportionality of powers means that the relationship has the
following algebraic form: 

In this equation c is the proportionality constant, and the exponent b is a real number,
which can be fractional or negative. The above approach is a good way to investigate
proportionality relationships between powers of variables. The slope of the line in-
dicates the ratio between the powers; changes in the constant c cause the line to shift.
‘y is proportional to ’ can also be described as ‘x is proportional to ’ as is il-
lustrated in the following scheme:

Such algebraic skills are useful in science and engineering. 
There is another way to illustrate proportionality of powers on a graph. In the ex-

ample of  which is proportional to v2, we can use v2 for the scale on the hori-
zontal axis instead of v. The graph then becomes a straight line. Dutch science books
in pre-university education call this coordinate transformation. Perhaps it is clearer
to call this substitution: v2 is replaced by the variable u. The equation 
then changes into , and the graph becomes a straight line
(see Figure 5). 

Figure 5. Change of scale on the horizontal axis to illustrate proportionality
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When an algebraic model on a theoretical basis is available, proportionality is appar-
ent in the formula, and a graph like the one above can be made. If such a model is
not available, but measurement data are, we cannot use this method because the
choice of the coordinates transformation depends on the model. In this case, the scale
division that is based on the principle that equal length differences correspond to
equal proportions is helpful. For every power function , a straight line will
appear, and the exponent can be determined from the slope of this straight line. 

Proportionality and density 

Two equations from the selection of science formulas deserve specific attention:

 and 

Although they are very different, they have something in common: they are essen-
tially scalings with respect to a total. Pressure P is the force per unit of surface area
and efficiency  is the best achievable effect relative to the maximum effect. Such
relative measures are common; consider mass density, population density, relative
humidity... in fact, density involves proportionality, where the proportionality con-
stant is the inverse of the total. This becomes visible after rewriting the formula: 

 and .

As a result, a relative unit is created, which allows two or more different situations
to be compared. With densities, direct and inverse proportionality are packaged very
naturally into a single formula: an increase in the population leads to an increase in
population density; annexation of new territory leads to a lower population density.

In summary, many algebraic relationships that occur in science and engineering
are essentially proportionalities. In algebra, proportionality deserves more attention. 

QUANTITY, DIMENSION AND UNIT

Traditional geometry, and the algebra that is closely related to it, only deals with a
few quantities: the spatial quantities of length, area and volume, and angle compo-
nents. In terms of both the number of different quantities and how they are treated,
science made us progress further. This is why we are first looking slightly deeper into
the concept of quantity and related matters. 

Measuring quantities

A quantity is a physical concept that is measurable, such as distance, time, tempera-
ture, mass, velocity, current, force, hardness and colour. Even this brief list shows
how complex the world of quantities is, because the above concepts are measured in
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very different ways. Some of them (such as velocity) appear to be a combination of
two others (time and distance in this case). Moreover, there are obvious questions
about standard quantities, and last but not least, precision. 

Quantities can be measured in many different ways. For example, before crown-
ing a tooth, a dentist has to precisely measure the colour of the adjacent teeth. For
this purpose he uses a sample card with many subtle shades of white. In this case,
measuring is essentially comparing. The values to be measured do not appear in a
single linear sequence. This is different when measuring wind speed with the Beau-
fort scale, a somewhat outdated method where you compare the wind with a force
three wind, which causes a flag to start moving. Or you compare it with a force 9
wind, a storm wind, which may damage chimneys or tear off roof tiles, and causes
light damage to forests. There is a standard scale which ranges from 0 (wind still) to
13 (hurricane force). Our concept of temperature is determined by two calibration
points: absolute zero, the lowest possible temperature, and the triple point of water.
This is the temperature at which water, ice, and water vapour can coexist in a stable
equilibrium. This temperature is defined as 273.16 Kelvin.iv 

Compared to the above, measurement scales for length and time appear to be sim-
ple: you can measure length and time by comparison with an agreed scale unit of
length or time, by repeating measurements, and possibly by refining the unit. Scales
that are created in this way clearly have a strong connection with the world of num-
bers: you can add such measurements (if they are the same type); the numerical value
that corresponds with the sum is the sum of the numerical values of the parts. Such
units are suitable for proportions and for computation, although there are a few
snakes in the grass. With velocity, it appears that we are measuring with two different
measures – distance travelled and elapsed time – which are divided by each other.
That is the customary representation; before we look deeper into such composite
quantities, we will provide some information about standard units. 

Units

In 1960 the SI (Système International) was implemented as a standard system for sci-
entific units. It provides an overview of units that can be used in science and engi-
neering. The SI defines seven basic units, those for length, mass, time, electric
current, temperature, amount of substance and luminous intensity. 

For example, take the units for length. The prevailing unit of length is the meter;
this was redefined in 1983 as the distance that light travels, in a vacuum, in exactly
1/299792458th of a second. The second has been defined as a natural phenomenon
that can be theoretically counted, and is therefore also exact: the duration of
9 192 631 770 periods of the radiation corresponding to the transition between the
two hyperfine levels of the ground state of the caesium 133 atom. This definition re-
fers to a caesium atom at rest at absolute zero. 

Another example is the unit of mass. The unit of mass is still defined in the old-
fashioned way: a cylinder of platinum-iridium located in Sèvres, Paris is used for the
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international prototype of the kilogram (the kilogram is therefore the basic unit, not
the gram!). 

From the basic units, other units are derived such as the centimeter and the light-
year for length, and composed units such as velocity, based on meters per second. 

The SI has also standardized the series of prefixes, of which kilo and deci are per-
haps the most familiar, a series that ranges from yocto for 10-24, to yotta for 1024.
From this we can also see that the metric system was clearly a predecessor of the SI.
In the years following the French Revolution (1795), the metric system initially in-
tended to completely decimalize all units, including a different division of the calen-
dar and the anglev. For that matter, Napoleon appears to have been an opponent of
the metric system; King Willem I implemented the system in the Netherlands in
1816. The USA is still out of step with inches and miles. 

Making quantities and calculating with quantities 

For your security, this bicycle parking facility is under 24-hour video surveillance. 

There is something annoying about this notice at the automated bicycle parking fa-
cility at the train station. We assume that 24 hours per day is meant. But even this is
rather strange, isn’t that the same as ‘60 seconds per minute’? In fact you could say
this, but 24 hours per day somehow sounds much more secure. Obviously, day-to-
day language and the language of science and engineering have their own standards.
We are familiar with velocity in terms of kilometers per hour, but when we drive a
car we often say: I am doing 80. We can convert to SI units as follows: 80 kilometers
per hour is 80000 meter per 3600 seconds. This is 80000/36000 meter per 1 second,
which is 22.22 meter per second, or 5 seconds between each hectometer marker. The
operations used in combining and converting are division and multiplication, that
much is clear. If we express a quantity in terms of a unit, then we use a number to
illustrate this relationship: the numerical value. We can illustrate the relationship be-
tween the numerical value, quantity and unit as follows:

quantity = numerical value  unit

By doing so, we indicate that we are aware of the underlying proportional structure
of the system of linear measurement, but that we still want to work algebraically with
numbers and use multiplication. The relationship is usable because it is so consistent.
For example, take the concept of the area of a rectangle. 

quantity of area = numerical value of area  unit of area

However, we also determine the area by using the formula area = length  width. 
This formula gives us the following: 

(numerical value of length unit of length)  (numerical value of width  unit of
width) 

and from this, of course, we can make:
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(numerical value of length  numerical value of width)  (unit of length  unit of
width). 

We are very familiar with the component (numerical value of length  numerical value
of width), which belongs to the world of numbers, and we have

numerical value of area = numerical value of length  numerical value of width. 

However, in the second component we must have:

unit of area = unit of length  unit of width

If we use the meter m for the two linear measurement units, than the unit of area, as
a consequence of the multiplication structure, is m2. To this rather abstract analysis,
we can add the conversion rules for the same types of units as in 1 inch = 25.4  mm
or 1 foot = 12  inch; this is not especially problematic. However, this analysis as a
whole shows that it is certainly possible to provide mathematical support or descrip-
tion to the physical phenomenon of quantityvi, and that the frequently criticized for-
mulation ‘distance divided by time’ can in fact be justified.

Dimension

We measure velocity in terms of distance travelled per unit of time, or length divided
by time, but a physicist states this somewhat differently: the dimension of velocity is
LT -1, or L/T. L stands for length, T stands for time and the algebraic structure of the
formula illustrates the relationship: length divided by time, or per time. Every quantity
in science has such a dimension. For example, take the quantities of distance, width,
height, distance travelled, braking distance and string length. These are all represent-
atives of the dimension length. It does not matter whether we measure in units of kil-
ometers or millimeters, the dimension of braking distance is length. A dimension of a
quantity is generally indicated with square brackets around that quantity. If we abbre-
viate length with L and time with T, you could write the dimensions as: 

[distance travelled]=[distance]=[width]=[height]= L. [area]= L2 and [velocity] = LT -1

All quantities of area have the dimension L2; this requires no further explanation. We
measure the frequency of a periodic phenomenon in Hertz, meaning number of cy-
cles per second. The dimension of frequency is therefore T -1 or 1/T. The numerical
values that we used above are dimensionless.

Dimensional analysis

Force is mass times acceleration, and therefore has the dimension . Work
is force times distance, power is work per unit of time. For power we therefore find
the dimension . We have now become involved in dimensional analysis,
which is essentially the bookkeeping that keeps track of the type and nature of the
units. In a formula that describes a relationship between quantities, the dimensions

M L T 2–

L2 T 3– M
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must obviously be correct. This is something that a physicist automatically pays at-
tention to. For example, take the formula for the period of a pendulum:

Here, the variables are quantities with a specific meaning: the period of the pendulum
T with unit s, the length of the pendulum l with unit m and the acceleration of gravity
g with unit m/s2. In this case the dimensional analysis involves an interesting exer-
cise in fairly basic algebra. Because [T] = T, [l]= L and [g]=  and because 2
is a dimensionless number, the dimensions in the formula are indeed correct:

 =  so  = T = [T] 

A good illustration of the dimensions of composite quantities expressed in length,
time and mass is shown in Figure 6. Here, the dimensions LxT yM z are all shown as
points (x, y, z) in space. This illustration is from an elegant science-philosophy essay,
On thinking in terms of co-ordinates by Stefan Themerson. However, Themerson
still gives the Ampere the dimension that the quantity had in the m-s-kg system; This
is no longer correct in the SI system, where the Ampere has been redefined as a dis-
tinct basic unit. 

T 2 l
g
---=

L T 2

l g L L T 2 T 2= l
g
---

Figure 6. Dimensions of composite quantities (Themerson, 1974)
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Formulas and dimensions

The following example contains two different but equivalent formulas; a dimension-
al analysis shows that ‘regular’ algebra disregards some important matters (Van der
Kooij, 2000). This involves the problem of two cyclists who take the same route and
travel at the same velocity, but leave fifteen seconds apart. If the cycling velocity is
4 m/s and the first cyclist (A) leaves at time t = 0, then the two formulas for the dis-
tance travelled s for the two cyclists are s = 4t (for A) and s = 4(t –15) for B. 

The dimensional analysis shows the dimensions are correct: [s] = L and [4t] has
dimension . An analysis of the second formula results in the same
conclusion because t –15 has dimension T. Nevertheless, something special is hap-
pening here! In pure algebraic terms, s = 4(t –15) is the same as s = 4t –60, but the
dimension test now provides an insight that dimensionless algebra hides. When re-
writing 4(t –15) to 4t –60, it turns out that the original number 15 (with dimension

), which has been transformed into the number 60, must also have the dimen-
sion L and unit m. This is not apparent during the multiplication of , where
numbers simply produce numbers. The second formula therefore does not describe
a second cyclist who leaves 15 seconds later from the same starting position. Instead,
it describes a cyclist who starts at the same time as A, but from a position 60 m behind
A. This additional dimensional analysis is truly an enrichment of the ‘regular’ alge-
bra used in the problem. Consequently, there are two different graphs corresponding
to two different problem situations. However, the two problems are algebraically
equivalent if you disregard the dimensions of the numbers and variables (Figure 7). 

Figure 7. Two ways to look at equivalent formulas

Dimensional analysis can also clarify problems involving exponential growth or de-
cline, which are frequently used during grades 10-12 of pre-university education, to
acquire a better grasp of the variables and parameters that play a part.
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Variables with roles and dimensions

We have seen that variables in the algebraic formulas and functions used in science
and engineering have a different character than in mathematics, because they repre-
sent quantities with dimensions and a unit. There is yet another difference that we
want to emphasize here. A variable in a science or engineering formula has a specific
role in the applied situation. More than in pure mathematics problems, this role is of-
ten expressed as a traditional abbreviation of a variable name, such as s for distance
travelled, V for voltage, t for time,  for angular velocity, F for force, and so on. This
not only clarifies the connection with the application, but also ensures that the dimen-
sional and unit structure of the formula remains visible. For example, take the fol-
lowing two formulas, the first representing a rational function and next the formula
for the period of a pendulum:

 and 

In the pendulum period formula, the variables have functional names, dimensions
and units: pendulum period T with unit s, pendulum length l with unit m and accel-
eration of gravity g with unit m/s2. Actually, there is a connection between T and l:
if we know l, then we also know T, and the reverse. In the formula, the constant (but
not dimensionless!) quantity g is preferable to the number 9.81, as it shows more ex-
plicitly that the dimensions are correct. In the rational formula, the variables are not
linked to a specific meaning, and there is no problem in replacing x with u. This has
no effect at all on its functioning as an algebraic object. The x in the formula is not a
variable that refers to something outside the definition, but is only a symbol to briefly
notate the structure of an algebraic relationship. In other words, the x is a ‘dummy’
variable, just like the k in the following summation formula and the t in the adjacent
integral formula. Both the sum and the integral are constants! 

The fact that variables in formulas from science and engineering represent quantities
with dimensions and units is an important difference with the way variables often
function in algebra. It is important to be aware of this difference. 

WORKING WITH INACCURATE NUMBERS

The numerical values that are used in science and engineering are often values of
measured quantities and therefore are intrinsically imprecise. Dealing with this issue
correctly is a specialism in itself, which is called error analysis. 

When entering values into a formula such as , there are still other is-
sues; the time t will not be known exactly,  is possibly expressed as radians per sec-
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ond and will be based on the number of decimals of  that are used, the sine of the
calculator is an approximation, and the multiplication with the value of  will be
imprecise: a limited number of decimals is given. The result is an approximation.

There are always inaccuracies in manufacturing processes, which can be disas-
trous in some cases. For example, consider manufacturing a cylinder-shaped bar
10 mm in diameter which must fit into a hole 10 mm in diameter; this is a risky en-
deavour. If we require the cylinder diameter to be manufactured with a negative tol-
erance of 0.01 mm and the hole has the same positive tolerance, then success is more
likely. However, a two-sided tolerance can be problematic. Correct indications of er-
rors and guaranteed tolerances are important. For the above reasons alone, it is clear
that there is more involved in using numbers in science and engineering than the
mathematical approach would initially lead one to suspect. 

Error analysis 

In mathematics education, working with inaccurate values should be given more at-
tention. A concept such as tolerance (allowable deviation above and below a given
measurement in absolute numbers or as percentages) is desirable in many situations.
Algebra is very suitable for describing the effects of errors, i.e. deviations in numer-
ical values. 

For example, place two boards end-to-end; each board is 200 cm long, with a tol-
erance of 0.5 cm. This results in a total length of 400 cm, with a maximum deviation
of 1 cm. When you compare the difference of two units of length, you must also take
account of the sum of the deviations. After all, the extremes of tolerance with 
and  are shown by the sum of a and b by  and in the difference
by  and . The simple rule with sums and differences is there-
fore: 

For the sum and the difference, the absolute error is equivalent to the sum of
the absolute errors. 

It becomes more difficult with the product and quotient of two quantities a and b

so 
With relatively small deviations, the higher order term can be neglected: 

With a quotient, it becomes even worse. In that case, you obtain the largest deviation
by dividing the largest possible numerator by the smallest possible denominator.

These expressions lead to complicated formulations for the deviations in the product
or quotient. However, if you are looking for the relative error instead of the absolute
error, then the rules are still rather simple:
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and

The surprising result of using algebra is the simple rule for product and quotient:

For product and quotient, the relative error is equivalent to the sum of the rel-
ative errors.

At this point we should perhaps issue a warning: the relative error of  does not
behave so predictably and can become unexpectedly large! 

In physics, the coefficient of linear thermal expansion is a property of materials
that indicates the factor with which the material increases in length (relative to the
initial length) for each degree of temperature rise.

The surface expansion and the cubic expansion have expansion coefficients  and
, respectively. These are direct applications of the above rule for the product. In

algebraic terms, this means that in the solution of the expressions  and
, higher powers of the relative error are disregarded. Solved for the vol-

ume coefficient

This example shows that error analysis, which is extremely relevant to science and
engineering, can lead to interesting, albeit rather complex, algebra. 

ALGEBRA TUNED TO SCIENCE AND ENGINEERING

One of the early findings of the Dutch SONaTe project was that the teachers of the
science subjects do cooperate (even if this just involves using the same lab), but that
mathematics operates entirely separate from the other subjects. The need for more
cooperation between the subjects in the pre-university profiles in secondary educa-
tion has led to a search for common ground between mathematics and science.
Through the development of two text booklets (Proportions & powers for mathemat-
ics and Investigating relationships for science) the gap between the subjects has be-
come somewhat smaller. During this process it turned out that the different
disciplines could benefit from each other by using shared notation and concepts. In
the actual lessons given at the participating schools, the attention in mathematics for
proportions strengthened the understanding of experimental research involving pro-
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portions in the science lessons. But the students also thought the treatment of the
same phenomenon in maths or science corresponded specifically to one discipline or
the other. This is comparable with the observations that during mathematics lessons,
students have difficulty tackling a geometric problem with algebraic techniques, and
the reverse. In such a case, reminders such as “But you also did that in science” ap-
pear to be essential to encourage this recognition. Perhaps it would help to teach in
a team context: the science and mathematics teacher could work as a team to teach
the areas where both disciplines share common ground. During these lessons the
teachers could also explicitly address the different ways in which the two subjects
deal with relations. Whether tuning and aligning with other subjects is voluntary or
mandatory, it remains a praiseworthy pursuit. 

In this chapter, several topics are identified where this supporting role of mathe-
matics can be very successful. The emphasis was primarily on the deficiencies in cur-
rent mathematics programmes: lack of attention for proportionalities and disregard
for dimensions and units and for working with non-exact numbers. 

In all application areas for mathematics, quantities play an important role. For this
reason alone, they should not be ignored in mathematics education. The fact that al-
gebra in formal terms does not have anything to do with situation-linked meanings
of variables is an inadequate counterargument. Some algebraically correct methods
lose their value when applied outside mathematics. But including such meanings
also makes algebra accessible for large groups of students. During the TWIN project
it turned out that students in secondary vocational education (grades 9-11), who had
practiced algebra based on quantities and became rather skilled at this, lost many of
these skills in the upper grades because a more formal system of algebra was offered
with an eye to higher vocational education. The consideration of dimensions and
units, besides offering a critical perspective on formulas and the meaning of param-
eters and numbers, also provides some elementary algebraic activity as part of di-
mensional analysis. 

Attention for working with imprecise numbers appears to be useful, due to their
use in science and engineering. But also within mathematics education itself, there
is good reason to pay attention to this. Graphing calculators (and computers as well)
show points on a graph as pixels with larger or smaller dimensions. This is why the
Trace option on a graphing calculator may provides strange coordinate values: the
chosen range for x is simply divided by the number of pixels in the horizontal direc-
tion, and this defines the step size of Trace (see Chapter 8). Similarly, differential
equations in simulation software are calculated with the discrete steps of the Euler
method or its more advanced variants. However, these are still numerical methods,
which provide only approximations of the real, theoretically continuous models. As
a result, you automatically introduce inaccuracies with respect to the theoretical
model, which is based on a continuous scale. Therefore, giving some attention to nu-
merical methods in mathematics education appears to be a step, also in view of the
increasing availability of computer software.
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Let us finish by providing some examples of English language student materials
showing the link between mathematics and science/technology. For the TechMap
projectvii three modules were developed for use in High School: Circular Motion,
Clocks, Insulation and Sound. All three connect mathematical topics to Technology
and Science (Van der Kooij & Goris, 2005 abcd). For a small-scale pilot project in a
Community College in Colorado, a chapter of the College Algebra course was re-
placed by a module on exponential and logarithmic functions, in which scientific
contexts are used to develop the notion of exponential growth and a common-sense
introduction of logarithms (Van der Kooij, 2006). 

NOTES

i The TWIN project (Technology, Mathematics, ICT, science ran from 1996 until 2000. It developed a
modified mathematics curriculum for secondary vocational education, so that it supports engineering
in the technology sector. See Van der Kooij (Ed.), Goris & Temme (2003).

ii The SONaTe project (Interconnected Education in Science and Technology) has as its goal taking
stock of how the four science subjects can be better integrated in secondary education which prepares
for univerity studies in science and mathematics.

iii Assuming circular trajectories. For ellipses the proportionality is with the third power of the long axis
of the ellipse. See http://solarviews.com/eng/jupiter.htm#moons

iv Obviously, such a definition is complex and has a lot more background than can be gone into here.
Wikipedia can be a starting point for finding more information, in this case: http://en.wikipedia.org/
wiki/Triple_point

v The right angle was defined as 100 degrees; the system is still used in surveying.
vi Chapter 2 shows that the French mathematician Viète already made advances in this direction in the

16th century. Also see Van Dormolen (1971) and Griesel (1969).
vii The TechMap project had as its goal connecting mathematics and various vocational fields. The NSF-

funded project was directed by Sol Garfunkel, COMAP. See http://www.comap.com/highschool/
projects/techmap/ 
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