
Chapter 18
Quantization of Gauge Fields Using
the Path-Integral Method

The quantization of the electromagnetic field, which is the simplest gauge field,
was discussed in Chap. 5. The problem arising in that case was that, if we apply
the usual quantization discussed in Chap. 4 using the gauge invariant Lagrangian
density, then the operatorD(∂) defined in (4.43) does not have an inverse. A related
difficulty should thus arise in the path-integral method. In this chapter, we shall see
how we can avoid this difficulty.

18.1 Quantization of Gauge Fields

Faddeev and Popov showed for the first time how to quantize gauge fields using
the path-integral method [164]. Given a field A, in order to compute its Green’s
functions, we need to introduce the action integral S[A]:

S[A] =
∫

d4x L (x) . (18.1)

The vacuum expectation value of an arbitrary operator F [A] containing the field A

is given by

〈F [A]〉 =

∫
DA F [A] exp{

iS[A]}
∫

DA exp
{
iS[A]}

. (18.2)

However, the denominator and numerator are both divergent. The reason is that,
if A is a gauge field, then since all configurations of the gauge field which can
be obtained by gauge transformations from any given configuration correspond to
exactly the same state physically, the same physical state will appear infinitely many
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422 18 Quantization of Gauge Fields Using the Path-Integral Method

times. This divergence corresponds to the fact that the differential operator D(∂)

does not have an inverse. However, if F [A] is a gauge invariant quantity, then such
divergences will cancel between the denominator and the numerator.

Hence, if we introduce a gauge function Ω and write the corresponding
transformation for the gauge field A as

A(x) → AΩ(x) , (18.3)

we need to divide each path integral in the denominator and in the numerator
of (18.2) by

∫
DΩ . (18.4)

Faddeev and Popov provided a method to do this. We arrange for one configuration
of the gauge field to correspond to one physical state. The condition for picking one
configuration is called the gauge condition.

18.1.1 A Method to Specify the Gauge Condition

We can specify the gauge condition using a functional f [A] of A and writing

f [A] = 0 . (18.5)

Alternatively, for arbitrary A, we can choose a suitable Ω and require

f
[
AΩ

] = 0 . (18.6)

We can then define the gauge-invariant functional �f [A] by

�f [A]
∫

DΩδ(f [AΩ ]) = const. (18.7)

Therefore,

∫
DA exp

{
iS[A]}

∫
DΩ

∼
∫

DA exp
{
iS[A]}�f [A]δ(f [A]) . (18.8)
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If we now introduce an external field, the generating functional of the Green’s
function is

Tf [J ] ∼
∫

DA exp

{
i
∫

d4x
[
L (x) − J (x)A(x)

]}
�f [A]δ(f [A]) . (18.9)

18.1.2 The Additional Term Method

Adding a term to S and setting

ϕ[A]
∫

DΩ exp
{
i�S[AΩ ]} = const. , �S =

∫
d4x�L (x) , (18.10)

as in the case above, the equation corresponding to (18.9) is

T [J ] ∼
∫

DA exp

{
i
∫

d4x
[
L (x) + �L (x) − J (x)A(x)

]}
ϕ[A] . (18.11)

This is the customary way of quantizing gauge fields. We now turn to examples.

18.2 Quantization of the Electromagnetic Field

We apply the abovemethod for quantizing gauge fields to the case of the electromag-
netic field, which is the best known Abelian gauge field. The canonical quantization
of the electromagnetic field is well understood. We shall now check whether the
same result can be obtained using the path-integral method. The Lagrangian is

L = −ψ̄
[
γμ(∂μ − ieAμ) + m

]
ψ − 1

4
FμνFμν ,

= Lf + Lint , (18.12)

where Fμν = ∂μAν − ∂νAμ and

Lint = ieψ̄γμψAμ = jμAμ . (18.13)

This Lagrangian density is invariant under the gauge transformations

Aμ(x) → Aμ(x) + ∂μλ(x) , ψ(x) → eieλ(x)ψ(x) , ψ̄(x) → e−ieλ(x)ψ̄(x) .

(18.14)
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18.2.1 Specifying the Gauge Condition

Here we consider the Lorenz gauge and the Coulomb (or radiation) gauge:

fL[A] = ∂μAμ = 0 , fR[A] = divA = 0 . (18.15)

In both cases, if we implement the gauge transformation with the gauge function
−λ, then

�L[A]
∫

Dλδ(∂μAμ − �λ) = const. , (18.16)

�R[A]
∫

Dλδ(divA − Δλ) = const. , (18.17)

noting that � does not depend on A in either case. For this reason, QED remains
simple. We thus consider the generating functional in the Lorenz gauge:

T [J, η, η̄] ∼
∫

DAμDψDψ̄ exp

[
i
∫

d4x(L − η̄ψ − ψ̄η − JμAμ)

]
δ(∂μAμ) .

(18.18)

Setting e = 0, we carry out the path integral for the free field.
For the fermionic field, we take η and η̄ to be anti-commuting c-numbers and

consider

∫
DψDψ̄ exp

{
−i

∫
d4x

[
ψ̄(γμ∂μ + m)ψ + η̄ψ + ψ̄η

]}
. (18.19)

In order to evaluate this integral, we generalize the example in Sect. 17.2. We define
an inner product by

(x,Ax) =
∑
j,k

x∗
j Ajkxk . (18.20)

We then write a generalization of the integral (17.52):

I =
∫ ∏

j

dxj

∏
k

dx∗
k exp

{
− i

[
(x,Ax) + (x, y) + (y, x)

]}
. (18.21)

Introducing the change of variables

xj = −(A−1)jkyk + zj , (18.22)
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we can carry out the integral, viz.,

I =
∫ ∏

j

dzj

∏
k

dz∗
k exp

{ − i
[
(z,Az) − (y,A−1y)

]} ∝ exp
[
i(y,A−1y)

]
.

(18.23)

Making the same replacement as (17.56),

A−1(x − y) = 1

(2π)4

∫
d4p

eip·(x−y)

ip · γ + m − iε
= iSF(x − y) . (18.24)

The integral (18.19) thus assumes the form

exp

[
−

∫
d4x

∫
d4yη̄(x)SF(x − y)η(y)

]
. (18.25)

Although we should in fact take into account the anti-commutativity of the variables
ψ , ψ̄ , η, and η̄, here we have just given the result by analogy.

Now, for the electromagnetic field, using

δ(∂μAμ) ∼
∫

DB exp

[
i
∫

d4x B(x)∂μAμ(x)

]
(18.26)

and integrating by parts in the exponent above, we obtain

∫
DAμDB exp

[
−i

∫
d4x

{
1

2

[
Aμ(∂μ∂ν − δμν�)Aν + ∂μBAμ − B∂μAμ

] + JμAμ

}]
.

(18.27)

For a pair (Aμ,B), the operator corresponding toAij is then expressed by the matrix

(
∂μ∂ν − δμν ∂μ

−∂ν 0

)
. (18.28)

Its inverse matrix appears in the propagator. It can be shown to be

⎛
⎜⎝

1

�

(
∂μ∂ν

� − δμν

)
−∂μ

�
∂ν

� 0

⎞
⎟⎠ . (18.29)

Inserting this, the path integral (18.27) becomes

exp

[
−1

2

∫
d4x

∫
d4yJμ(x)Dμν(x − y)Jν(y)

]
, (18.30)
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where

Dμν(x) = −i

(2π)4

∫
d4k

1

k2 − iε

(
δμν − kμkν

k2 − iε

)
eik·x . (18.31)

The propagator appearing here, corresponding to the gauge condition (18.15), is
written in the Landau gauge. The introduction of the auxiliary field B has already
been discussed in Sect. 15.5.

18.2.2 The Additional Term Method

As an additional term, we choose

�S =
∫

d4x�L , �L = − 1

2α
(∂μAμ)2 . (18.32)

Since ϕ[A] does not depend on A, the generating functional has the simple form

T [J, η, η̄] ∼
∫

DAμDψDψ̄ exp

[
i
∫

d4x(L + ΔL − JμAμ − η̄ψ − ψ̄η)

]
.

(18.33)

The ψ-part is the same as above, but the propagator of the electromagnetic field is

Dμν = −i

(2π)4

∫
d4k

1

(k2 − iε)2
(
k2δμν − kμkν + αkμkν

)
eik·x , (18.34)

where α is a gauge parameter. This form coincides with the integral expression
already derived in (12.251) with σ = 0.

18.2.3 Ward–Takahashi Identity

The path-integral method gives the same result as the canonical quantization. We
can use this method to derive other properties, such as the Ward–Takahashi identity
[118, 119].

The propagator of the electron in the Landau gauge is

〈
ψ(x)ψ̄(y)

〉
L = 1

NL

∫
DAμDψDψ̄ ψ(x)ψ̄(y)eiS[ψ,ψ̄,A]δ(∂μAμ) , (18.35)
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where NL is a normalization factor given by

NL =
∫

DAμDψDψ̄ eiS[ψ,ψ̄,Aμ]δ(∂μAμ) . (18.36)

We make the change of variables

ψ → ψ ′ = eieλψ , ψ̄ → ψ̄ ′ = e−ieλψ̄ . (18.37)

Changing the integration variables to ψ ′ and ψ̄ ′, and then rewriting them again as
ψ and ψ̄ , the expression (18.35) takes the form

〈
ψ(x)ψ̄(y)

〉
L = 1

NL

∫
DAμDψDψ̄ ψ(x)ψ̄(y)eiS[ψ,ψ̄,A]δ(∂μAμ) (18.38)

× exp

{
ie

[
λ(x) − λ(y)

] − i
∫

d4zjμ(z)∂μλ(z)

}
,

where the last term is originated from the electron part of the Lagrangian density.
Carrying out the functional differentiation of this equation with respect to λ(x), and
then setting that λ = 0,

ie
[
δ4(x−z)−δ4(y−z)

]〈
ψ(x), ψ̄(y)

〉
L+i∂μ

〈
jμ(z),ψ(x), ψ̄(y)

〉
L = 0 . (18.39)

Taking the Fourier transform of this equation, we obtain the Ward–Takahashi
identity (12.200):

− i(p − q)μS′
F(p)Γμ(p, q)S′

F(q) = S′
F(p) − S′

F(q) . (18.40)

The discussion about the derivation above only refers to the fermionic (electron)
part, and not the electromagnetic field, so it turns out that this result holds true for
any gauge fields.

Next, we discuss the gauge transformations for Green’s functions.

18.2.4 Gauge Transformations for Green’s Functions

We ask ourselves what kind of relations exist among Green’s functions in different
gauges. As an example, we investigate the relation between the Landau gauge and
the radiation gauge, viz.,

〈
ψ(x)ψ̄(y)

〉
R = 1

NR

∫
DAμDψDψ̄ ψ(x)ψ̄(y)eiS[ψ,ψ̄,A]δ(divA) , (18.41)

NR =
∫

DAμDψDψ̄ eiS[ψ,ψ̄,A]δ(divA) . (18.42)
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We insert the following factor into the denominator and the numerator:

∫
Dλδ(�λ − ∂μAμ) = const. (18.43)

If we now carry out a gauge transformation, then S and DAμDψDψ̄ are invariant.
In the integral,

δ(�λ − ∂μAμ) → δ(∂μAμ) , δ(divA) → δ(divA + �λ) , (18.44)

and in the numerator, the following factor shows up:

exp
{
ie

[
λ(x) − λ(y)

]}
. (18.45)

From (18.44),

divA + �λ = 0 , (18.46)

so by solving this equation, we can find the constraint on λ :

λ(x) =
∫

d4zφ(x − z) ·A(z) , (18.47)

φ(x) = −δ(x0)∇
(

1

4π |x|
)

. (18.48)

When we carry out the functional integration with respect to λ, δ(divA + �λ)

disappears, whence

〈
ψ(x)ψ̄(y)

〉
R =

〈
ψ(x)ψ̄(y) exp

{
ie

∫
d4z

[
φ(x − z) − φ(y − z)

]
A(z)

}〉
L

.

(18.49)

Thus the propagator in the radiation gauge has been expressed in terms of the
propagator in the Landau gauge.

18.3 Quantization of Non-Abelian Gauge Fields

Using the standard path-integral method for quantizing gauge fields, we consider
the non-Abelian gauge fields.
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18.3.1 A Method to Specify the Gauge Condition

We choose the gauge condition

f [A] = ∂μAa
μ = 0 . (18.50)

Applying an infinitesimal gauge transformation, from (14.23),

δAa
μ = 1

g
∂μλa + fabcA

b
μλc ≡ 1

g
(Dμλ)a . (18.51)

Thus, under an infinitesimal gauge transformation,

(
∂μAa

μ

)Ω = ∂μ

(
Aa

μ + δAa
μ

) = ∂μ

[
Aa

μ + 1

g
(Dμλ)a

]
. (18.52)

In the usual way, we compute �f [A]. If we use (18.7), we have
∫

DΩδ
[
(∂μAa

μ)Ω
] =

∫
Dλδ

[
(∂μAa

μ)Ω
]

=
∫

D
[
(∂μAa

μ)Ω
] {

D
[
(∂μAa

μ)Ω
]

Dλ

}−1

δ
[
(∂μAa

μ)Ω
]

=
{
D

[
(∂μAa

μ)Ω
]

Dλ

}−1

. (18.53)

Thus, �f [A] is the functional Jacobian

�f [A] = D
[
(∂μAa

μ)Ω
]

Dλ
= det

(
−1

g
∂μDμ

)
. (18.54)

Normalizing this determinant to unity when Aa
μ = 0,

�f [A] = det

(
∂μDμ

�

)
. (18.55)

To compute this expression, we use the method due to ’t Hooft in 1971 [165]. The
generating functional for the Green’s functions is

T [J ] =
∫

DAμ exp
{
iS[A, J ]}�f [A]δ(∂μAμ) , (18.56)
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where

S[A, J ] = S[A] −
∫

d4x Aa
μ(x)J a

μ(x) . (18.57)

The δ-function in the integral is given by

δ(∂μAμ) ∼
∫

DB exp

[
i
∫

d4x B(x)∂μAμ(x)

]
, (18.58)

but note that we do not discuss the normalization here. We use
∫ ∏

j

dxjdyj exp
[
i(x,Ay)

] = (2π)n(detA)−1 . (18.59)

And so we obtain

det

(
∂μDμ

�

)−1

∼
∫

DϕD ϕ̄ exp

[
i
∫

d4x ϕ̄(x)∂μDμϕ(x)

]
. (18.60)

Note also that (18.60) is the inverse of (18.55). Let us therefore consider how to
obtain the inverse.

We treat the expression (18.60) as a sum of loop contributions obtained by
contractions among the scalar fields ϕ and ϕ̄, while the gauge field A appears as
an external line. According to the discussion in Sect. 11.2, this sum is the connected
part, so in order to derive the inverse, we need to invert the sign of the connected
part. However, the connected part consists of single loops obtained by contracting
ϕ and ϕ̄ before A is quantized. Thus, we must reverse the sign of each loop. As
mentioned in Sect. 8.4, this reversal happens when ϕ and ϕ̄ are anti-commutative,
i.e., when they obey Fermi statistics. For a path integral involving these so-called
Grassmann numbers, which anti-commute, we need an additional discussion, but
for the moment we avoid getting further involved and just write down the result:

�f [A] ∼
∫

DϕD ϕ̄ exp

[
i
∫

d4x ϕ̄(x)∂μDμϕ(x)

]
. (18.61)

Although ϕ and ϕ̄ are scalar fields, they obey Fermi statistics. It turns out that this
introduces an indefinite metric. The effective Lagrangian density in this theory is

L [A] + ϕ̄∂μDμϕ + B∂μAμ . (18.62)

Here we have summed indices standing for components, although this has not been
written explicitly. This Lagrangian corresponds to the one in the Landau gauge in
QED. The scalar fields ϕ and ϕ̄ are called Faddeev–Popov ghost fields.
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18.3.2 The Additional Term Method

We take �L to be expressed in terms of ∂μAμ and define ϕ[A] by

ϕ[A]
∫

DΩ exp
{
i�S

[
(∂μAμ)Ω

]} = const. (18.63)

In order to compute this, we use

exp
{
i�S

[
(∂μAμ)Ω

]} ∼
∫

DC ei�S[C]δ
[
(∂μAμ)Ω − C

]
. (18.64)

This computation is the same as the example above, so ϕ[A] can be readily derived.
As a consequence, the effective Lagrangian density, considering the first term as a
gauge-invariant term, is

L [A] + ϕ̄∂μDμϕ + �L . (18.65)

We choose the following form for �L :

�L = − 1

2α
(∂μAμ)2 . (18.66)

Therefore, the total Lagrangian density is

L [A] + ϕ̄∂μDμϕ − 1

2α
(∂μAμ)2 . (18.67)

18.3.3 Hermitization of the Lagrangian Density

In the discussion so far, we used the effective Lagrangian density to compute the
S-matrix and Green’s functions. In the operator formalism, the Lagrangian density
should be Hermitian. The Faddeev–Popov ghost term in (18.67) is not Hermitian.
Integrating this term by parts,

LFP ∼ −∂μϕ̄Dμϕ = −∂μϕ̄a
(
∂μϕa + gfabcA

b
μϕc

)
. (18.68)

If ϕ and ϕ̄ are Hermitian, then (18.67) is obviously not Hermitian. This is because
ϕ and ϕ̄ are anti-commutative scalar fields. We thus change the phase of this part:

LFP → eiαLFP . (18.69)
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Consequently, the phases of the ghost propagator and the coupling constant for the
ghost and the gauge field change according to

〈
ϕ(x)ϕ̄(y)

〉 = DF(x − y) → e−iαDF(x − y) , (18.70)

g → geiα . (18.71)

Note that, when ϕ and ϕ̄ only appear in closed loops, the numbers of DF and g

are the same, so the contributions to the S-matrix or Green’s functions are invariant
under the above phase transformation. That is, it turns out that the phase α can
be freely chosen. If we choose eiα = −i, and write c and c̄ instead of ϕ and ϕ̄

[see (4.89)], we have

c† = c , c̄† = c̄ , (18.72)

LFP = i∂μc̄Dμc . (18.73)

This Lagrangian density is then Hermitian.
The Lagrangian density in a general gauge (also called the α-gauge) is

L = Lint + LGF + LFP , (18.74)

where, dropping indices for the gauge field,

Linv = −1

4
FμνFμν, (18.75)

LGF = (∂μB)Aμ + α

2
B · B , or − 1

2α
(∂μAμ)2, (18.76)

LFP = i∂μc̄Dμc. (18.77)

The first term in (18.74) is gauge invariant, the second is a gauge-fixing term, and
the third is a ghost term. This form was given by Kugo and Ojima in [166].

18.3.4 Gauge Transformations of Green’s Functions

In the last section, we investigated the relations among Green’s functions defined
using different gauge conditions in QED. Here we discuss the different relations
among Green’s functions defined by including an additional term. The gauge-
invariant term is the same, and we thus treat two theories which are physically
equivalent in different gauges. Hence, we introduce two Lagrangian densities and
two action integrals:

LII = LI + �L , SII = SI + �S . (18.78)
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Then considering the field operatorsA,B,C, . . ., we introduce the Green’s function
in the second gauge:

〈ABC . . .〉II = 1

NII

∫
DAμ . . . ABC . . . exp(iSII ) , (18.79)

NII =
∫

DAμ . . . exp(iSII ) . (18.80)

Then from (18.78), we decompose SII , considering �S as a perturbation and
treating exp(i�S) like A,B,C, . . .. Therefore,

〈ABC . . .〉II = 1

NII

∫
DAμ . . . ABC . . . exp(i�S) exp(iSI )

= NI

NII

1

NI

∫
DAμ . . . ABC . . . exp(i�S) exp(iSI )

= NI

NII

〈
ABC . . . exp(i�S)

〉
I

, (18.81)

NI

NII

= 1

NI

∫
DAμ . . . exp(i�S) exp(iSI ) = 〈

exp(i�S)
〉
I

. (18.82)

We thus obtain

〈
ABC . . .

〉
II

=
〈
ABC . . . exp(i�S)

〉
I〈

exp(i�S)
〉
I

. (18.83)

This gives the relation among Green’s functions in two different gauges. For
example, considering (18.74), we choose the Landau gauge with α = 0 and the
gauge with α �= 0 for LI and LII , respectively, and distinguish the Landau gauge
by the index L . Then,

〈ABC . . .〉α =

〈
ABC . . . exp

[
iα

2

∫
d4x B(x) ·B(x)

] 〉
L〈

exp

[
iα

2

∫
d4x B(x) ·B(x)

] 〉
L

. (18.84)

This equation shows the α-dependence of an arbitrary Green’s function. We may
also interpret operators appearing in the discussion above as being unrenormalized.
The subscript L indicates that these Green’s functions should be evaluated in
Heisenberg’s picture in the Landau gauge, while the subscript α indicates that they
should be evaluated in the Heisenberg picture in the gauge α �= 0. This formula
provides a basis for the discussion about the gauge invariance of various kinds of
Green’s functions.
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18.4 Axial Gauge

In the last section, we introduced the effective Lagrangian density in the covariant
gauge, and thereby understood the need for the Faddeev–Popov ghost. However, if
we do not require manifest Lorentz covariance, there is a gauge in which we can
quantize without ghosts. This is the axial gauge.

We replace the gauge condition (18.50) discussed in the last section by

nμAa
μ = 0 , (18.85)

where nμ is a constant vector. For the infinitesimal gauge transformation (18.51),

δ
(
nμAa

μ

) = 1

g
nμ∂μλa + fabc(nμAb

μ)λc . (18.86)

Under the gauge condition (18.85),

δ
(
nμAa

μ

) = 1

g
nμ∂μλa . (18.87)

This is independent of Aμ. Hence,

∫
DΩδ[(nμAa

μ)Ω ]

does not involve Aμ and �f [A] is a constant. Therefore, it turns out that the
Faddeev–Popov ghost term is not produced here.

Using the additional term method, if we choose

�S[A] = − 1

2α

∫
d4x

(
nμAa

μ

)2
, (18.88)

and set

ϕ[A]
∫

DΩ exp
{
iS

[
AΩ

]} = const. , (18.89)

then once again ϕ[A] does not involve Aμ. Hence, we consider the effective
Lagrangian density

L = Linv − 1

2α

(
nμAμ

)2
. (18.90)
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Now quantizing, leaving only terms in quadratic form and applying the variation
principle,

Dμν(∂)Aa
ν = 0 , (18.91)

where

Dμν(∂) = (δμν − ∂μ∂ν) − 1

α
nμnν . (18.92)

Making the substitution ∂μ∂ν → −kμkν in momentum space,

Dμν(k) = −k2δμν + kμkν − 1

α
nμnν , (18.93)

[
δμν − nμkλ + nλkμ

n · k
+ n2 + αk2

(n · k)2
kμkν

]
Dλν(k) = −k2δμν . (18.94)

Thus, it turns out that the propagator is

1

k2 − iε

[
δμν − nμkν + nνkμ

n · k + n2 + αk2

(n · k)2
kμkν

]
. (18.95)

Problems with this gauge include the question of how to treat the pole n · k = 0,
and showing that computations of various physical quantities do not depend on the
choice of n.

18.5 Feynman Rules in the α-Gauge

We now introduce the Feynman rules for the Lagrangian density (18.74). First, note
that

Fa
μν = ∂μAa

ν − ∂νA
a
μ + g(Aμ × Aν)

a , (18.96)

(Dμc)a = ∂μca + g(Aμ × c)a . (18.97)

For the gauge group indices, we use the inner and the outer product symbols:

A · B =
∑
a

AaBa , (A × B)a =
∑
b,c

fabcA
bBc . (18.98)
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We split the Lagrangian density (18.74) into the free partLf and the interaction part
Lint :

Lf = −1

4
(∂μAa

ν − ∂νA
a
μ)2 − 1

2α
(∂μAa

μ)2 + i∂μc̄∂μc , (18.99)

Lint = −g∂μAν(Aμ × Aν) − 1

4
g2(Aμ × Aν)(Aμ × Aν) + ig∂μc̄(Aμ × c) .

(18.100)

Expressing the Feynman rule in the Lagrangian formalism, it turns out that we
assign the factors i(2π)4,−i/(2π)4, and (−1) to each vertex, propagator, and closed
ghost loop, respectively. Considering the gauge particle as the gluon, the propagators
are

gluon
δab

k2 − iε

[
δμν − (1 − α)

kμkν

k2 − iε

]
, (18.101)

ghost
iδab

k2 − iε
. (18.102)

Moreover, we find the following three types of vertex function:

1. three-gluon vertex , 2. four-gluon vertex , 3. ghost–gluon vertex .

1. Three-gluon vertex (Fig. 18.1). Taking all the momenta of the incoming gluons,
the vertex function is

− igfabc

[
δβγ (r − q)α + δγα(p − r)β + δαβ(q − p)α

]
. (18.103)

2. Four-gluon vertex (Fig. 18.2). In this case, the vertex function is

− g2fgacfgbd(δαβδγ δ − δαδδβγ ) − g2fgadfgbc(δαβδγ δ − δαγ δβδ)

− g2fgabfgcd (δαγ δδδ − δαδδβγ ) . (18.104)

Fig. 18.1 Three-gluon vertex
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Fig. 18.2 Four-gluon vertex

Fig. 18.3 Ghost–gluon
vertex

3. Ghost–gluon vertex (Fig. 18.3). Considering the ghost lines to be directed from
c̄ to c and q to be the outgoing momentum, the vertex function is

− gfabcqα . (18.105)

Combining the above propagators and vertex functions, we can compute the S-
matrix elements or Green’s functions. Note that the four-momentum is conserved at
each vertex. For the total amplitude, we then have conservation of four-momentum,
viz., a factor

δ4(Pf − Pi) . (18.106)

Moreover, we have to integrate over all the four-momenta ki in closed loops, which
are not affected by the overall conservation of four-momentum, i.e., we introduce
the integrals

∫
d4k1 . . .

∫
d4kl , (18.107)

where l is the number of closed loops.
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