
Chapter 12
Renormalization Theory

So far we have shown only the lowest order calculations, but when computing
higher order corrections, divergences must show up. A method for deducing finite
consequences by a suitable interpretation is called a renormalization theory. As
mentioned once or twice before, the basic idea of such a formalism is to specify
a way of separating the Lagrangian density into the free part and the interaction
part. This grouping is related to the definition of the interaction picture. We call
the interaction picture defined by the correct grouping a renormalized interaction
picture. Several properties of the Green’s functions discussed in the previous chapter
hold true in the renormalized interaction picture, while they may not hold true in
other pictures.

In this chapter, in order to show that such a separation of the Lagrangian or
the Hamiltonian is not necessarily trivial, we first review the scattering theory in
non-relativistic quantum mechanics. The formal system discussed here has many
similarities with the S-matrix theory based on the reduction formula given in the
last chapter.

12.1 Lippmann–Schwinger Equation

In this section, we introduce the formal logic for the standard quantum mechanical
system. This theory has a lot in common with the theory of Green’s functions.
What is important in the scattering problem is the way we formulate the boundary
conditions. This issue is discussed in detail in my book, “Relativistic Quantum
Mechanics” [78], but here we shall present it in a slightly different order.

In this section, we formulate the scattering problem using the notion of Stueck-
elberg causality:

Assuming that the potential V (t) is a function of time, if V (t) = 0 in the region t < T ,
then there exists no scattered wave for t < T .
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264 12 Renormalization Theory

The principle above has already been used for the quantization of free fields in
Sect. 4.3 and for the derivation of the Yang–Feldman equation in Sect. 6.3. Here we
apply it to the non-relativistic formulation. We consider the Schrödinger equation

i
∂

∂t
ψ(t) = [H0 + V (t)]ψ(t) , (12.1)

where we have omitted the spatial coordinate for simplicity, and V (t) is defined by

V (t) =
{

V , t > T ,

0 , t < T .
(12.2)

For t < T ,

i
∂

∂t
ψ(t) = H0ψ(t) . (12.3)

Since this is the equation for the incident wave, we write its solution as

ψ(t) = ψin(t) , H0ψin(t) = Eψin(t) . (12.4)

Therefore, the scattered wave appears at a generic time t and its equation is

ψ(t) = ψin(t) + ψscatt(t) , (12.5)
(
i
∂

∂t
− H0

)
ψscatt(t) = V (t)ψ(t) . (12.6)

To solve this equation, we introduce the Green’s function, which is the solution of
the equation

(
i
∂

∂t
− H0

)
Kret(t, x : t ′, x ′) = δ(t − t ′)δ3(x − x′) , (12.7)

Kret(t, x : t ′, x′) = 0 , t < t ′ . (12.8)

Therefore, the solution of (12.6) satisfying the causality condition is

ψscatt(t, x) =
∫

dt ′d3x ′Kret(t, x : t ′, x′)V (t ′, x′)ψ(t ′, x ′) . (12.9)

Here, taking the limit T → −∞, the t-dependence of the potential disappears,
whence

ψscatt(t, x) =
∫

dt ′d3x ′Kret(t, x : t ′, x′)V (x′)ψ(t ′, x ′) . (12.10)
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Then, if H0 does not depend on the space-time coordinate,

Kret(t, x : t ′, x′) = Kret(t − t ′, x − x′) . (12.11)

Thus,

ψ(t, x) = ψin(t, x) +
∫

dt ′d3x ′Kret(t − t ′, x − x′)V (x′)ψ(t ′, x′) . (12.12)

This is the integral equation governing the scattering, and corresponds to the Yang–
Feldman equation. To remove the time variable, we take

ψin(t, x) = e−iEtψin(x) , ψ(t, x) = e−iEtψ(x) , (12.13)

leading to

ψ(x) = ψin(x) +
∫

d3x ′G(x − x′ : E)V (x′)ψ(x′) , (12.14)

where

G(x − x′ : E) =
∫

dt ′eiE(t−t ′)Kret(t − t ′, x − x′) . (12.15)

We now introduce the Fourier representation of the retarded Green’s function:

Kret(t, x) = 1

(2π)4

∫
dE d3p eipx−iEtK(E,p) . (12.16)

Furthermore, we restrict H0 to the form

H0 = p2

2m
. (12.17)

Thus, the equation for K(E,p) obtained from (12.7) can be written in the form

(
E − p2

2m

)
K(E,p) = 1 . (12.18)

As will be shown later, the solution of this equation satisfying the boundary
condition (12.8) is

K(E − p) =
(

E − p2

2m
+ iε

)−1

, (12.19)



266 12 Renormalization Theory

Fig. 12.1 Path of
E-integration in (12.22)

where ε is a positive infinitesimal. Taking E = k2/2m, Eqs. (12.15) and (12.16)
imply

G(x − x′ : E) = − m

2π

eik|x−x′|

|x − x′| . (12.20)

Thus, (12.14) can be written in the form

ψ(x) = ψin(x) − m

2π

∫
d3x ′ eik|x−x′|

|x − x′|V (x′)ψ(x′) . (12.21)

This equation indicates that the scattered wave becomes an outward-directed
spherical wave as a consequence of causality. When t − t ′ < 0,

Kret(t − t ′, x − x′) = 1

(2π)4

∫
d3p eip(x−x′)

∫
dE

e−iE(t−t ′)

E − p2

2m + iε
. (12.22)

Then, since −iE(t − t ′) = iE|t − t ′|, if ImE > 0, this exponential decreases
exponentially with ImE. Hence, selecting the integration path as in Fig. 12.1 and
taking into account the fact that the pole is located outside the semicircle, it vanishes
by Cauchy’s theorem. Thus, if t − t ′ < 0, then Kret = 0 and we see that (12.8) is
satisfied.

Clearly, using (12.22) and takingΨ = ψ andΦ = ψin, Eq. (12.21) can be written
formally as

Ψ = Φ + 1

E − H0 + iε
V Ψ (E > 0) , (12.23)

In fact, looking at the Fourier representation of the retarded Green’s func-
tion (12.22), we see that this corresponds to the operator which gives the energy
denominator in the equation above. From (12.23) and (12.3),

(E − H0)Ψ = V Ψ , (E − H0)Φ = 0 . (12.24)
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Moreover, for the bound state (E < 0), the inverse of (E −H0) is uniquely defined,
so we obtain the homogenous equation

Ψ = 1

E − H0
V Φ (E < 0) . (12.25)

The pair of Eqs. (12.23) and (12.25) is known collectively as the Lippmann–
Schwinger equation [114]. The solution of (12.23) consists of the incident wave
and the outward-going spherical wave, and it can be written as

Ψ (+)
a = Φa + 1

Ea − H0 + iε
V Ψ (+)

a . (12.26)

Mathematically, it is useful to consider the solution which consists of the incident
wave and the inward-going spherical wave. The equation for such a state can be
obtained by replacing iε with −iε :

Ψ (−)
a = Φa + 1

Ea − H0 − iε
V Ψ (−)

a . (12.27)

The two cases are solutions of the same Schrödinger equation under different
boundary conditions:

(Ea − H0)Ψ
(±)
a = V Ψ (±)

a . (12.28)

Thus,
{
Ψ

(+)
a

}
and

{
Ψ

(−)
a

}
form complete systems separately. Solving (12.26)

sequentially,

Ψ (+)
a = Φa + 1

Ea − H0 + iε

(
1 + V

1

Ea − H0 + iε
+ . . .

)
V Φa

= Φa + 1

Ea − H0 + iε

(
1 − V

1

Ea − H0 + iε

)−1

V Φa . (12.29)

Then using A−1B−1 = (BA)−1,

Ψ (+)
a = Φa + 1

Ea − H + iε
V Φa (H = H0 + V ) . (12.30)

We call this the Chew–Goldberger formal solution [115]. Another solution is

Ψ (−)
a = Φa + 1

Ea − H − iε
V Φa . (12.31)

Although this formal solution is in fact not useful for solving the problem, it is very
useful for deriving the general properties of the S-matrix, and we will show this
application below.
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We assume that the state of the incident wave is suitably normalized, i.e.,

(Φb,Φa) = δba . (12.32)

Therefore, combining the LS equation with the CG formal solution,

(
Ψ

(+)
b , Ψ (+)

a

) =
(

Φb + 1

Eb − H + iε
V Φb,Ψ

(+)
a

)

= (
Φb,Ψ

(+)
a

) +
(

Φb, V
1

Eb − H − iε
Ψ (+)

a

)

=
(

Φb,Φa + 1

Ea − H0 + iε
V Ψ (+)

a

)
+

(
Φb, V

1

Eb − H − iε
Ψ (+)

a

)

= (Φb,Φa) +
(

1

Ea − Eb + iε
+ 1

Eb − Ea − iε

)
(Φb, V Ψ (+)

a )

= (Φb,Φa) , (12.33)

so we see that
{
Ψ (+)

}
forms an orthonormal system just as {Φ} does. The same is

true of
{
Ψ (−)

}
. Thus, the transformationmatrix between these two pairs of complete

orthonormal systems, viz.,

Sab = (
Ψ

(−)
b , Ψ (+)

a

)
, (12.34)

is unitary. Comparing with (11.136), Ψ (+) and Ψ − correspond to Φ in and Φout,
respectively. The unitarity condition is

S†S = SS† = 1 . (12.35)

Starting with the definition and modifying it suitably, the S-matrix above can be
written as

Sba =
(

Φb + 1

Eb − H − iε
V Φb,Ψ

(+)a

)

= (
Φb,Ψ

(+)
a

) +
(

Φb, V
1

Eb − H + iε
Ψ (+)

a

)

= (Φb,Φa) +
(

Φb,
1

Ea − H0 + iε
V Ψ (+)

a

)
+

(
Φb, V

1

Eb − H + iε
Ψ (+)

a

)

= δba +
(

1

Ea − Eb + iε
+ 1

Eb − Ea + iε

) (
Φb, V Ψ (+)

a

)

= δba − 2π iδ(Eb − Ea)
(
Φb, V Ψ (+)

a

)
. (12.36)
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Although in the transformation above we have expressed Ψ (−) in terms of Φ,
expressing Ψ (+) in terms of Φ, we obtain

Sba = δba − 2π iδ(Eb − Ea)
(
Ψ

(−)
b , V Φa

)
. (12.37)

Therefore, if Eb = Ea , the transition amplitude Tba can be written in a symmetric
form:

Tba = (
Φb, V Ψ (+)

a

) = (
Ψ

(−)
b , V Φa

)
. (12.38)

We now express the unitarity of the S-matrix in terms of T . Using T as above,

T
†
ba = T ∗

ab = (
Φa, V Ψ

(+)
b

)∗ = (
Ψ

(+)
b , V Φa

)
,

T
†
ba − Tba = (Ψ

(+)
b , V Φa) − (Φb, V Ψ (+)

a )

= (Φb, V Φa) +
(

1

Eb − H + iε
V Φb, V Φa

)

−(Φb, V Φa) −
(

Φb, V
1

Ea − H + iε
V Φa

)

=
(

V Φb,

(
1

Eb − H − iε
− 1

Eb − H + iε

)
V Φa

)

= 2π i(V Φb, δ(Eb − H)V Φa) , (12.39)

then inserting the complete system {Ψ (−)}, we obtain

T
†
ba − Tba = 2π i

∑
n

(V Φb,Ψ
(−)
n )δ(Eb − En)

(
Ψ (−)

n , V Φa

)

= 2π i
∑
n

T
†
bnδ(Eb − En)Tna , (12.40)

where

T
†
bn = T ∗

nb = (
Ψ (−)

n , V Φb

)∗ = (
V Φb,Ψ

(−)
n

)
.

If we inserted the other complete system {Ψ (+)} instead of {Ψ (−)}, then instead
of (12.40) we would get

2π i
∑
n

Tbnδ(Eb − En)T
†
na . (12.41)
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Thus, the unitarity condition can be written as

T
†
ba − Tba = 2π i

∑
n

T
†
bnδ(Eb − En)Tna

= 2π i
∑
n

Tbnδ(Eb − En)T
†
na . (12.42)

Using this unitarity condition, we can reproduce the optical theorem already
discussed in Sect. 9.4. Although the content is exactly the same, let us express it
in terms of the notation used in this section.

The probability per unit time for the transition a → b is

wba = 2πδ(Eb − Ea)|Tba|2 . (12.43)

If we take the sum over all probable final states, then from (12.42),

wa =
∑
b

wba = 2π
∑
b

δ(Eb − Ea)|Tba|2 = 1

i
(T †

aa − Taa) = −2ImTaa .

(12.44)

Starting with the two-particle state a, the total cross-section can be obtained as

σa = Ω

vrel
wa , (12.45)

where Ω is the volume of quantization and vrel is the relative speed of the two
particles. Therefore, from (12.44),

σa = −2Ω

vrel
ImTaa . (12.46)

Then, since the final result does not depend on Ω , we take Ω = 1. The scattering
amplitude f (θ) in the scattering potential is given by

f (θ) = − m

2π

∫
d3x e−ikf xV (x)ψ(x)

= − m

2π

(
Φf , V Ψ

(+)
i

)
. (12.47)
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Computing wf i/vrel for scattering into a constant solid angle, the cross-section
becomes

dσ

dΩ
= 2π

v

1

(2π)3

∫
k2f dkf δ

(
k2f

2m
− k2i

2m

)
|Tf i |2

(
v = k

m

)

=
( m

2π

)2 |Tf i |2

= |f (θ)|2 , (12.48)

which reproduces the well known result. In this regard, however, Tf i =(
Φf , V Ψ

(+)
i

)
. In addition, from (12.46), the total cross-section becomes

σ = −2

v
ImTaa = −2

v

(
−2π

m

)
Imf (0) = 4π

k
Imf (0) , (12.49)

which also reproduces the optical theorem in its well-known form.
Although in the scattering potential the asymptotic form of the wave function has

been obtained easily, it turns out that the asymptotic form of the abstract Lippmann–
Schwinger state vector Ψ (+) is given by

Ψ (+)
a ∼ SΦa = Φa − 2πiδ(Ea − H0)V Ψ (+)

a . (12.50)

Let us compare this asymptotic form with Ψ
(+)
a itself:

Ψ (+)
a = Φa + 1

Ea − H0 + iε
V Ψ (+)

a .

From this we understand that the asymptotic form can be derived if we make the
following replacement for the scattered wave:

1

Ea − H0 + iε
→ −2π iδ(Ea − H0) , (12.51)

or

Ψ (+)
a ∼ Φa − 2π iδ(Ea − H0)

[
(Ea − H0)Ψ

(+)
a

]
, (12.52)

where we multiply by δ(Ea − H0) after multiplying by (Ea − H0). This operation
reminds us of the Lehmann–Symanzik–Zimmermann (LSZ) asymptotic condition
in Sect. 11.7. In (11.159),Ky corresponds to (Ea − H0), and Δ(y − x) corresponds
to δ(Ea − H0). Moreover, the asymptotic form satisfies the equation for the free
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particle, viz.,

(Ea − H0)SΦa = 0 . (12.53)

This corresponds to (11.124).
Equation (12.52) is the reduction formula. It plays an important role in the dis-

cussion about recombination reactions. So far we have assumed that the separation
of the Hamiltonian into the free part and the interaction part is unique, but in general,
if a bound state appears, this uniqueness is lost. It is due to recombination reactions
that this grouping in the initial state differs from that in the final state. For instance,
consider a reaction such as

n + d → n + n′ + p , (12.54)

where d stands for the deuteron and n′ has been labeled by the prime in order to
distinguish it from the other meson n. The total Hamiltonian is

H = Tp + Tn + Tn′ + Vnp + Vn′p + Vnn′ , (12.55)

where T and V denote the kinetic energies and the potentials for the two-body
forces, respectively. The decomposition of the Hamiltonian corresponding to the
initial state is

H0 = Tp + Tn + Tn′ + Vn′p , V = Vnp + Vnn′ . (12.56)

This is because, if we do not insert Vn′p into H0, there is no way to make d. On the
other hand, the decomposition in the final state is

H ′
0 = Tp + Tn + Tn′ , V ′ = Vnp + Vn′p + Vnn′ . (12.57)

In general, we introduce two decompositions, one for the initial state and one for
the final state:

H = Ha + Va = Hb + Vb . (12.58)

The free state vectors corresponding to each decomposition are Φa and Φb

satisfying

(Ea − Ha)Φa = 0 , (Eb − Hb)Φb = 0 . (12.59)

Of course, in order for the transition a → b to occur, we must have Eb = Ea . Let
us derive the transition amplitude Tba in this case. Corresponding to the initial state,
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we have

Ψ (+)
a = Φa + 1

Ea − H + iε
VaΦa . (12.60)

Then, to construct the asymptotic form corresponding to the final state, we use the
formula

1

A
− 1

B
= 1

B
(B − A)

1

A
. (12.61)

Therefore,

1

Ea − H + iε
− 1

Ea − Hb + iε
= 1

Ea − Hb + iε
Vb

1

Ea − H + iε
, (12.62)

which yields

Ψ (+)
a = Φa + 1

Ea − Hb + iε

(
1 + Vb

1

Ea − H + iε

)
VaΦa . (12.63)

In the following, we write Ea = Eb = E and make the replacement

1

E − Hb + iε
−→ −2π iδ(E − Hb) , (12.64)

corresponding to (12.51). Then the asymptotic form corresponding to the final state
is

Ψ (+)
a ∼ −2π i

(
1 + Vb

1

E − H + iε

)
VaΦa . (12.65)

Thus, Tba can be given by the inner product of this asymptotic form and Φb :

Tba =
(

Φb,

(
1 + Vb

1

E − H + iε

)
VaΦa

)

=
((

1 + 1

E − H − iε
Vb

)
Φb, VaΦa

)

= (
Ψ

(−)
b , VaΦa

)
. (12.66)

Note also that, corresponding to (12.38), there are also two ways to represent Tba .
Using Ψ

(+)
a instead of Ψ

(−)
b ,

Tba = (
Ψ

(−)
b , VaΦa

) = (
Φb, VbΨ

(+)
a

)
. (12.67)
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This is because, subtracting one from the other,

(
Ψ

(−)
b , VaΦa

) − (
Φb, VbΨ

(+)
a

) = (Φb, VaΦa) − (Φb, VbΦa)

+ (Φb, VaΦa) −
(

Φb, Vb
1

E − H + iε
VaΦa

)

= (Φb, (Va − Vb)Φa)

= (Φb, (Hb − Ha)Φa)

= (Eb − Ea)(Φb,Φa) = 0 .

This shows that the two expressions in (12.67) are equal.

12.2 Renormalized Interaction Picture

In Chap. 8, we described the computational method for obtaining the S-matrix in the
interaction picture based on a covariant perturbation theory. To define the interaction
picture, we have to decompose the Hamiltonian or the Lagrangian into the free part
and the interaction part. We took this decomposition to be trivial, but it is clear
from the discussion about the recombination reaction in the previous section that
this decomposition is not unique. Although at the lowest level of the perturbation
it has not posed serious problems, it will turn out that this difference between
decomposition methods has an important implication when computing higher order
corrections.

We thus set down several conditions to determine the decomposition method.
These conditions are called renormalization conditions. The interaction picture
defined by the decomposition satisfying these conditions is called the renormalized
interaction picture. In fact, it is in the renormalized interaction picture that the Gell-
Mann–Low relation derived in Chap. 11, the related asymptotic conditions, and so
on, all hold true, although we have not stated this clearly up to now. Another aspect
of renormalization, and in general only this aspect is emphasized, is that it can
remove the divergences appearing in higher order corrections. Indeed, it was through
this that, in the period after World War II, there was a major development of QED. A
theory in which divergences can be removed in this way is said to be renormalizable,
and renormalizablity has been promoted as one of the guiding principles. It was also
an important motivation for the more recent development of gauge theories.

Let us now go back to the problem of the decomposition of the Hamiltonian:

1. We have two complete orthonormal systems of eigenstates of the Hamiltonian:

{
Ψ (+)

a

}
and

{
Ψ (−)

a

}
. (12.68)
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Furthermore, in relativistic quantummechanics, these are eigenstates of the four-
momentum:

PμΨ (±)
a = (pμ)aΨ

(±)
a . (12.69)

The S-matrix element is given by

Sab = (
Ψ

(−)
b , Ψ (+)

a

)
. (12.70)

It is clear from this expression for the S-matrix element that these two complete
systems can be considered to be the same as

{Φ in
a } and {Φout

a } . (12.71)

2. In field theory, the vacuum state Φ0 and the stable one-particle state Φα satisfy
the conditions

Φ in
0 = Φout

0 , Φ in
α = Φout

α . (12.72)

If we express these conditions in terms of the S-matrix, then

SΦ0 = Φ0 , SΦα = Φα , (12.73)

where (12.72) implies that Φ0 and Φα have been written without distinguishing
between the in-state and the out-state. Equations (12.72) and (12.73) are called
renormalization conditions.

Then, since the condition on the vacuum is satisfied by (8.70), this means that the
S-matrix is defined by dropping all bubble diagrams. It turns out that we define the
interaction picture in such a way as to satisfy these conditions. This requires as a
consequence reintroducing several kinds of physical observable using the following
two kinds of renormalization

• Mass Renormalization. In field theory, no elementary particles are in the
bare state, because they have self-interactions. For example, even within the
framework of classical theory, a charged particle carries the Coulomb field. Thus,
considering an electron, the conditions (12.73) should hold true for the electron
carrying its own field and not for the bare electron. Due to the existence of the
self-interaction, the mass of an electron increases by what we call the self-energy
δm. Thus, the observable mass of an electron is not just the originally given mass
m, but changes to m + δm. We call m and m + δm = mobs the bare mass and
the observed mass, respectively. We interpret this by saying that the one-electron
state is the state with mass mobs. We determine the self-energy δm from (12.73),
i.e., we consider mobs as the given mass rather than m. In the sense of absorbing
δm into the mass, we call this reinterpretation a renormalization of the mass.
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• Charge Renormalization. As discussed in Chap. 8, due to the phenomena of
vacuum polarization, the vacuum behaves like a dielectric medium in field theory.
Thus, taking the permittivity of the vacuum as ε, when the distance r between
two charges e1 and e2 is large enough, the Coulomb potential between them is

V = e1e2

ε

1

4πr
. (12.74)

However, since the permittivity of the vacuum is normalized to unity,

V = (e1)obs(e2)obs
1

4πr
. (12.75)

Comparing (12.74) and (12.75),

(e1)obs = e1√
ε

, (e2)obs = e2√
ε

, (12.76)

where (e)obs is the experimental value. Thus, we must reinterpret (e)obs as the
given charge, and not the bare charge e. Since the permittivity of the vacuum ε is
absorbed into the definition of the electric charge, this is called a renormalization
of the electric charge.

Renormalization can thus be additive, as for the mass, or multiplicative, as for the
electric charge. Moreover, when we compute the self-energy δm or the permittivity
ε using QED, we find that they diverge.

What we have discussed above is the renormalization of specific quantities due to
the self-energy and the permittivity. There exists a procedure called renormalization
of the field operators, which is a slightly abstract renormalization condition. This
has already been required in Chap. 11 and expressed in (11.145). There exists a
condition whereby the wave function of a given body is not varied by introducing
interactions, i.e., the normalization is unchanged.What this condition means will be
explained in detail later.

12.3 Mass Renormalization

We call a Feynman diagramwhich starts with and ends in a one-electron state a self-
energy diagram. Any diagram which cannot be separated into two disconnected
diagrams by cutting a single electron line is called an irreducible self-energy
diagram (see Fig. 12.2 left). Others are said to be reducible (see Fig. 12.2 right).
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Fig. 12.2 Left: Irreducible self-energy diagram. Right: Reducible self-energy diagram

Considering the S-matrix element for the case where an electron with the four-
momentum p enters and electron in the same state comes out, we have

〈p|S|p〉 = 〈p|p〉 +
∞∑

n=1

(−i)n

n!
∫

d4x1 . . . d4xn〈p|T [Hint(x1) . . .Hint(xn)]|p〉conn.
(12.77)

Here, in order to drop contributions from bubble diagrams, after the second term
we keep only contributions from the connected parts in which bubble diagrams are
omitted. The subscript ‘conn’ stands for dropping bubble diagrams which are not
connected to any points in x1, . . . , xn. The condition (12.73) requires the terms after
the second term on the right-hand side of (12.77) to vanish. Taking mobs as the mass
in the free part, the difference from m, viz., δm, is included in the interaction part,
so that in a first approximation where we consider only the renormalization of the
mass, we can write

Hint = −ieψ̄γμψAμ − δmψ̄ψ . (12.78)

Computing the S-matrix element to order e2, if we consider δm to be of order e2,
then from the Feynman–Dyson rule,

〈p′|S(2)|p〉 =
∫
d4x〈p′|ψ̄(x)|0〉

[
iδm(2) + e2

∫
d4y γμSF(y)γμDF(y)e−ip·y

]
〈0|ψ(x)|p〉 ,

(12.79)

where we have taken into account only the first two irreducible self-energy diagrams
shown above. This is because the third is of order e4. We now introduce

Σ∗(2)(p) = ie2
∫

d4y γμSF(y)γμDF(y)e−ip·y , (12.80)

where the computation above is carried out in the Fermi–Feynman gauge corre-
sponding to α = 1. In general, the sum over contributions from all irreducible
self-energy diagrams is called a proper self-energy operator or a mass operator.
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Fig. 12.3 Self-energy
diagram in momentum space

Hence,

〈p′|S(2)|p〉 = i
∫

d4x〈p′|ψ̄(x)|0〉[δm(2) − Σ∗(2)(p)
]〈0|ψ̄(x)|p〉 . (12.81)

The renormalization condition requires the expression above to vanish.Writingmobs
simply as m, we now have (Fig. 12.3)

Σ∗(2)(p) = ie2

(2π)4

∫
d4kγμ

i(p − k) · γ − m

(p − k)2 + m2 − iε
γμ

1

k2 − iε

= ie2

(2π)4

∫
d4k

−2i(p − k) · γ − 4m

(p − k)2 + m2 − iε

1

k2 − iε

= ie2

(2π)4

∫
d4k

∫
dx

−2i(p − k) · γ − 4m

(k2 + xp2 − 2xp · k + xm2 − iε)2
, (12.82)

where we have used the fact that γμγμ = 4 and γμγλγμ = −2γλ. Making the
change of variable

k → k′ = k − xp , (12.83)

rewriting (12.82), and dropping odd-order terms in k′, we obtain

Σ∗(2)(p) = −ie2

(2π)4

∫ 1

0
dx

∫
d4k′ 2i(1 − x)p · γ + 4m[

k′2 + x(1 − x)p2 + xm2 − iε
]2 . (12.84)

Since p2 = −(ip · γ )2, Σ∗(p) can be identified with a function of ip · γ , and
expanding this as a power series in (ip · γ + m), we have

Σ∗(2)(p) = A + B(ip · γ + m) + C(p) , (12.85)

where C(p) is the sum over all terms higher than the second order in (ip · γ + m).
Therefore, A can be obtained if we set ip · γ = −m in Σ∗(2)(p). This yields

A = −ie2

(2π)4

∫ 1

0
dx 2m(1 + x)

∫
d4k′ 1

(k′2 + x2m2 − iε)2
. (12.86)



12.4 Renormalization of Field Operators 279

To carry out this k′-integral, we use

1

(k′2 + x2m2 − iε)2
= 2 lim

Λ→∞

∫ Λ2

m2

x2dM2

(k′2 + x2M2 − iε)3
. (12.87)

Plugging this into (12.86) and carrying out the k′-integral, we obtain

A = 2π2e2m

(2π)4

∫ 1

0
dx(1 + x)

∫ Λ2

m2

dM2

M2

= 3

2π
αm ln

Λ

m
, where α = e2

4π
. (12.88)

Going back to (12.81) and using the wave functions (3.191a), (3.191b), (3.192a)
and (3.192b),

〈p′|S(2)|p〉 = i(2π)4

V
δ4(p′ − p)ū(p′)

[
δm(2) − Σ∗(2)(p)

]
u(p) . (12.89)

Using Dirac’s equation for u(p), we can replace −p · γ by −m in the equation
above. Thus, the condition that (12.89) should vanish can be written as

δm(2) = A . (12.90)

This stands for the self-energy of the electron up to order e2. It is clear from (12.88)
that this diverges logarithmically in the limit Λ → ∞. However, what we should
emphasize here is that the renormalization condition (12.73) requires a choice of
interaction part of the form (12.78).

12.4 Renormalization of Field Operators

We have used (12.90) to understand the meaning of A in the expansion (12.85), but
what about B? To answer this, we write down the condition for the normalization of
the one-body wave function to remain unchanged when interactions are introduced:

〈
0
∣∣T [ψ(x)U(∞,−∞)]conn

∣∣p〉 = 〈0|ψ(x)|p〉 . (12.91)

The Feynman diagram corresponding to the left-hand side is shown in Fig. 12.4.
Here, Σ∗ is the contribution from all the irreducible self-energy diagrams except

for δm. It should be clear from the diagram above that the contribution from the
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Fig. 12.4 Feynman diagram corresponding to the left-hand side of (12.91)

left-hand side of (12.91) is

ip · γ + m

ip · γ + m + Σ∗(p) − δm
u(p) =

{
1 − [

Σ∗(p) − δm
] 1

ip · γ + m
(12.92)

+[
Σ∗(p) − δm

] 1

ip · γ + m

[
Σ∗(p) − δm

] 1

ip · γ + m
+ · · ·

}
u(p) .

The discussion so far is based on the assumption that the interaction part is given
by (12.78). ExpandingΣ∗ as suggested by (12.78), we can take ip·γ = −m because
u(p) appears in (12.92). This yields

lim
ip·γ+m → 0

ip · γ + m

ip · γ + m + Σ∗(p) − δm
= 1

1 + B
. (12.93)

This is not equal to unity unless B = 0, so (12.91) cannot be satisfied. Recall the
origin of the condition that the normalization is unchanged. In fact, it originally
arose from the asymptotic condition (11.126) for the operator in the Heisenberg
picture. It was not assumed that the operator used in this case was the same as
the original one. Hence, we may consider that the Heisenberg operator satisfying
the asymptotic condition has a different normalization from the original Heisenberg
operator appearing in the Lagrangian. We call operators satisfying the asymptotic
condition renormalized field operators. They carry the subscript r and we assume
the following multiplicative renormalization:

ψ(x) = Z
1/2
2 ψ(x)r , ψ̄(x) = Z

1/2
2 ψ̄(x)r , Aμ(x) = Z

1/2
3 Aμ(x)r .

(12.94)

The multiplicative renormalization has already appeared in the renormalization
of the electric charge, and we shall see that this is in fact closely related to the
renormalization of operators mentioned above.

Going back to the general gauge, let us express the whole Lagrangian in
terms of renormalized operators. Since in this case the operators are originally the
Heisenberg operators, we should use bold face for them, but there should be no
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confusion if the usual type face is used:

L = −Z2ψ̄r

[
γμ

(
∂μ − ieZ1/2

3 Aμr
) + m − δm

]
ψr − 1

4
Z3FμνrFμνr − 1

2α
Z3(∂μAμr)

2 .

(12.95)

Although m − δm should be written as mobs − δm, as already mentioned, for
simplicity we have written mobs as m. We decompose (12.95) into the free part
and the interaction part as follows:

Lf = −ψ̄r(γμ∂μ + m)ψr − 1

4
FμνrFμνr − 1

2αr
(∂μAμr)

2 , (12.96)

Lint = (1 − Z2)ψ̄r(γμ∂μ + m)ψr + (1 − Z3)
1

4
FμνrFμνr (12.97)

+ieZ2Z
1/2
3 Aμrψ̄rγμψr + Z2δmψ̄rψr ,

where αr is the renormalized gauge parameter. Hence, the gauge parameter changes
under renormalization. The interaction picture corresponding to the partition above
is called the renormalized interaction picture. The renormalized gauge parameter αr
is defined by

αr = αZ−1
3 . (12.98)

Since we will only use the renormalized interaction picture in the following
discussions, for simplicity we will drop the subscript r. In perturbation theory,
several kinds of renormalization constant can be expanded as power series in e2.
We thus assume the expansions

δm = δm(2) + δm(4) + · · · , (12.99)

Z2 = 1 + Z
(2)
2 + · · · , (12.100)

Z3 = 1 + Z
(2)
3 + · · · . (12.101)

In the interaction picture, the interaction includes derivatives of field operators, so
we use Matthew’s theorem to express the S-matrix in the form

S = 1 +
∞∑

n=1

in

n!
∫

d4x1 . . . d4xnT
∗[Lint(x1) . . .Lint(xn)

]
conn . (12.102)

We now repeat the discussion in the last section in this new interaction picture:

〈p′|S(2)|p〉 =
∫

d4x〈p′|ψ̄(x)|0〉S (p)〈0|ψ(x)|p〉 . (12.103)
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The new quantity S (p) is given by the following equation, corresponding to
i[δm(2) − Σ∗(2)(p)] in (12.81):

S (p) = iZ2δm + i(1 − Z2)(ip · γ + m) − iΣ∗(p) . (12.104)

In the lowest order approximation, Σ∗ is given by

Σ∗(p) = ie2Z2
2Z3

∫
d4y γμSF(y)γμDF(y)e−ip·y . (12.105)

Replacing Z2 and Z3 by 1, this coincides with the expression in the last section.
Then in general, expanding as

Σ∗(p) = A + B(ip · γ + m) + C(p) , (12.106)

the expression (12.103) vanishes. Using the fact that the normalization of the one-
particle wave function is unchanged, we have

Z2δm = A , 1 − Z2 = B . (12.107)

It turns out that δm and Z2 can be determined from this renormalization condition.
Hence,

S (p) = −iC(p) ≡ −iΣ∗
ren(p) . (12.108)

This equation defines the renormalized mass operator Σ∗
ren. Although A(2) and B(2)

diverge logarithmically, C(2)(p) is finite.

12.5 Renormalized Propagators

In the renormalized interaction picture, the electron propagator is defined by

SF(x − y) = 〈
0
∣∣T [ψ(x)ψ̄(y)]∣∣0〉 = −i

(2π)4

∫
d4p eip·(x−y)SF(p) ,

with

SF(p) = 1

ip · γ + m
. (12.109)
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A propagator including higher order corrections can be expressed in the Heisenberg
picture by

S′
F = 〈

0
∣∣T [ψ(x)ψ̄(y)]∣∣0〉 =

〈
0
∣∣T ∗[ψ(x), ψ̄(y), U(∞,−∞)]∣∣0〉

〈0|U(∞,−∞)
∣∣0〉 . (12.110)

In in the renormalized interaction picture,

U(∞,−∞) = 1+
∞∑

n=1

in

n!
∫

d4x1 . . . d4xnT
∗[Lint(x1) . . .Lint(xn)

]
. (12.111)

From the discussion about the Feynman diagram, the Fourier transform of S′
F is

S′
F(p) = SF(p) − SF(p)Σ∗

ren(p)SF(p) + · · ·
= SF(p) − SF(p)Σ∗

ren(p)S′
F(p) . (12.112)

This is called Dyson’s equation. Its solution is

S′
F(p) = SF(p)

[
1 + Σ∗

ren(p)SF(p)
]−1 = [

ip · γ + m + Σ∗
ren(p)

]−1
. (12.113)

Since Σ∗
ren(p) is a sum over terms higher than second order in ip · γ + m,

lim
ip·γ+m → 0

(ip · γ + m)S′
F(p) = 1 . (12.114)

This is an important property of the renormalized propagator. Then in the computa-
tion in Sect. 12.3, and in particular in (12.84), we make the change of variables from
the Feynman parameter x to M , where

m2 = (1 − x)M2 , (12.115)

whence S′
F(p) can be written to order e2 as

S ′
F(p) = SF(p) − SF(p)Σ∗(2)

ren (p)SF(p)

= 1

ip · γ + m
+ e2

16π2

∫ ∞

m

dM

M3(M2 − m2)

[
(M + m)2(M2 + m2 − 4mM)

ip · γ + M − iε

+ (M − m)2(M2 + m2 + 4mM)

ip · γ − M + iε

]
.

(12.116)
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This integral diverges atM = m. In this case, we need to improve the approximation
near the mass shell using some suitable method. We will return to this when
discussing the renormalization group method in Chap. 20. However, what we call
the ultraviolet divergence disappears completely.

Next, let us study the propagator of the electromagnetic field. Here we consider
the renormalized Fermi–Feynman gauge αr = 1. In the interaction picture,

δμνDF(x − y) = 〈
0
∣∣T [Aμ(x)Aν(y)]∣∣0〉 = −i

(2π)4
δμν

∫
d4keik·(x−y)DF(k) .

(12.117)

In the renormalized Heisenberg picture including higher order corrections, this is
not proportional to δμν :

D′
Fμν

(x − y) = 〈
0
∣∣T [Aμ(x)Aν(y)]∣∣0〉 =

〈
0
∣∣T ∗[Aμ(x)Aν(y)U(∞,−∞)]∣∣0〉

〈0|U(∞,−∞)|0〉 .

(12.118)

Let us compute corrections up to order e2. In this case, the diagrams which should
be taken into account are shown in Fig. 12.5.

The terms in the interaction Lagrangian needed for this calculation are

1

4
(1 − Z3)FμνFμν + ieZ2Z

1/2
3 Aμψ̄γμψ .

The first term and iterations of the second term correspond to the first diagram and
the second diagram in Fig. 12.5, respectively. However, to order e2, Z2 and Z3 in

Fig. 12.5 Feynman diagrams
for the electromagnetic field
propagator up to order e2
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the second term can be set equal to 1:

D′
Fμν

(x − y) = δμνDF(x − y)

−e2
∫

d4x′d4x′′DF(x − x′)DF(x′′ − y)Tr
[
γμSF(x′ − x′′)γνSF(x′′ − x′)

]

+ i

2
(1 − Z3)

∫
d4x′

(
δμν

∂

∂x′
ρ

− δμρ
∂

∂x′
σ

)
DF(x − x′) . (12.119)

Taking the Fourier transform of this equation yields

D′
Fμν

(k) = δμν

k2 − iε

− ie2

(2π)4

1

(k2 − iε)2

∫
d4pTr

[
γμ

1

ip · γ + m − iε
γν

1

i(p − k) · γ + m − iε

]

+(1 − Z3)
1

k2 − iε

(
δμν − kμkν

k2 − iε

)
. (12.120)

The second term is the Fourier transform of the expression

〈
0
∣∣T ∗[jμ(x), jν(y)]∣∣0〉 .

And formally, this satisfies the condition

∂

∂xμ

〈
0
∣∣T ∗[jμ(x), jν(y)]∣∣0〉 = 0 . (12.121)

In momentum space, this condition becomes

kμ

∫
d4pTr[. . .] = 0 . (12.122)

The integral in the equation above, denoted by fμν(k), has the general form

fμν(k) = δμνf (k2) − kμkνg(k2) . (12.123)

From the condition (12.122),

kμfμν(k) = kν

[
f (k2) − k2g(k2)

] = 0 . (12.124)

Thus,

fμν(k) = (k2δμν − kμkν)g(k2) . (12.125)
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Computing the trace in the integral in (12.122),

Tr = 4
[
δμν(p

2 − p · k + m2) − 2pμpν + pμkν + pνkμ

]
(p2 + m2 − iε)

[
(p − k)2 + m2 − iε

] .

Therefore,

fμν(k) = 4
∫

d4p
δμν(p

2 − p · k + m2) − 2pμpν + pμkν + pνkμ

(p2 + m2 − iε)
[
(p − k)2 + m2 − iε

]

= 4
∫ 1

0
dx

∫
d4p

δμν(p
2 − p · k + m2) − 2pμpν + pμkν + pνkμ[

p2 + m2 + x(k2 − 2p · k) − iε
]2 .

We make the change of variables

p → p′ = p − xk . (12.126)

Thus,

fμν(k) = 4
∫ 1

0
dx

∫
d4p′ N[

p′2 + m2 + x(1 − x)k2 − iε
]2 , (12.127)

where

N = δμνp
′2 − 2p′

μp′
ν + δμν

[
m2 + x(1 − x)k2

] − 2x(1 − x)(δμνk
2 − kμkν) .

(12.128)

All terms except for the last produce terms proportional to δμν . Hence, for this to
coincide with (12.125), only the last term can survive. Thus,

fμν(k) = −8(δμνk
2 − kμkν)

∫ 1

0
dx x(1 − x)

∫
d4p[

p2 + m2 + x(1 − x)k2 − iε
]2 ,

(12.129)

and we can write

1[
p2 + m2 + x(1 − x)k2 − iε

]2 = 1

(p2 + m2 − iε)2

+
{

1[
p2 + m2 + x(1 − x)k2 − iε

]2 − 1

(p2 + m2 − iε)2

}
.
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Therefore, the expression for D′
Fμν

becomes

D′
Fμν

(k) = 1

k2 − iε
+ 8ie2

(2π)4

k2δμν − kμkν

(k2 − iε)2

∫ 1

0
x(1 − x)dx

×
∫

d4p

{
1

[p2 + m2 + x(1 − x)k2 − iε]2 − 1

(p2 + m2 − iε)2

}

+k2δμν − kμkν

(k2 − iε)2

[
1 − Z3 + 8ie2

(2π)4

∫ 1

0
x(1 − x)dx

∫
d4p

(p2 + m2 − iε)2

]
.

(12.130)

Then to determine Z3, corresponding to (12.114) in the case of the electron, or the
equation

SF(p)Σ∗
ren(p)u(p) = 0 , (12.131)

we adopt the condition

DF(k)Π∗
ren(k)μνeν = 0 , (12.132)

where eν is the polarization vector of transverse photons andΠ∗ is called the proper
self-energy operator of the photon or the polarization operator, which corresponds
to Σ∗ in the electron case. Thus, similarly to Dyson’s equation (12.112) for Σ∗ in
the electron case, Π∗ is defined by

D′
Fμν

= δμνDF(k) − DF(k)Π∗
ren(k)μνDF(k) + · · ·

= δμνDF(k) − DF(k)Π∗
ren(k)μλD

′
Fλν

(k) . (12.133)

To order e2,

Π∗
ren(k)μν = − 8ie2

(2π)4
(k2δμν − kμkν)

∫ 1

0
x(1 − x)dx

×
∫

d4p

[
1[

p2 + m2 + x(1 − x)k2 − iε
]2 − 1

(p2 + m2 − iε)2

]

+ 8ie2

(2π)4
(δμνk

2 − kμkν)

[
1 − Z3 + 8ie2

(2π)4

∫ 1

0
x(1 − x)dx

∫
d4p

(p2 + m2 − iε)2

]
.

(12.134)

Then, in the one-photon state, taking into account k2 = 0 and k · e = 0, the
condition (12.132) requires the coefficient of δμνk

2 − kμkν to vanish when k2 = 0.
Since the first term in (12.134) satisfies this condition, it implies that the second
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term vanishes, i.e.,

Z3 = 1 + 8ie2

(2π)4

∫ 1

0
x(1 − x)dx

∫
d4p

(p2 + m2 − iε)2
. (12.135)

Therefore, carrying out the Feynman integral,

Π∗
ren(k)μν = e2

2π2 (k2δμν − kμkν)

∫ 1

0
x(1 − x) ln

m2

m2 + x(1 − x)k2 − iε
dx .

(12.136)

In particular, when |k2| � m2,

Π∗
ren(k)μν ≈ e2

60π2 (δμνk
2 − kμkν)

(
− k2

m2

)
. (12.137)

We see that, from the renormalization condition (12.132),Z3 is uniquely determined
by (12.135), and it turns out that D′

F is divergenceless.

12.6 Renormalization of Vertex Functions

We have seen that the propagator becomes finite in the renormalized interaction pic-
ture. However, there is one thing that does not become finite without multiplicative
renormalization, namely the vertex function. We now consider its renormalization.
Up to now, we have investigated the proper self-energy diagrams, but these are all
related to two-point functions or propagators. We now consider the corrections to
the vertex function γμ shown in Fig. 12.6.

These are diagrams in which the propagator, including the self-energy diagram,
is removed from the Feynman diagrams of the three-point function. They give the
correction to the vertex operator. With this correction, the vertex function γμ is

replaced by the vertex function Γ
(0)
μ . This is the same as replacing SF and DF by S′

F
and D′

Fμν
.

Fig. 12.6 Corrections to the
vertex function
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Fig. 12.7 Feynman diagram
for the complete three-point
function

Thus, the Feynman diagram corresponding to the complete three-point function
(Fig. 12.7) can be written like the one above, i.e., the general three-point function
can be expressed as a product of three propagators and one vertex function.
Corresponding to this diagram, we have the expression

〈
0
∣∣T ∗[ψ(x), ψ̄(y),Aν (z)]∣∣0〉 =

〈
0
∣∣T ∗[ψ(x), ψ̄(y),Aν(z), U(∞,−∞)]∣∣0〉

〈0|U(∞,−∞)|0〉
= −eZ2Z

1/2
3

∫
d4x′d4y′d4z′S′

F(x − x′)Γ (0)
μ (x′, y′; z′)

×S′
F(y

′ − y)D′
Fμν

(z′ − z) . (12.138)

Here, the Heisenberg operators and the interaction picture are renormalized. In the
renormalized interaction picture, a propagator is automatically renormalized, but the
vertex function is not. To the lowest order,

Γ (0)
μ (x, y, z) = γμδ4(x − z)δ4(y − z) . (12.139)

Since in general Γ (0)
μ becomes a function of (x−z) and (y−z), we define its Fourier

representation by

Γ (0)
μ (x, y, z) = 1

(2π)8

∫
d4p d4q eip·(x−z)+iq·(z−y)Γ (0)

μ (p, q) . (12.140)

Therefore, according to (12.139), to lowest order,

Γ (0)
μ (p, q) = γμ . (12.141)
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We renormalize the vertex function in which higher-order corrections are included
by the equations

Γμ(p, q) = Z1Γ
(0)
μ (p, q) , (12.142)

ū(p)Γμ(p, p)u(p) = ū(p)γμu(p) . (12.143)

However, in (12.143), we have assumed that p is on the electron mass shell.
Replacing Γ

(0)
μ on the right-hand side of (12.138) by Γ , it turns out that the

coefficient in front of the integral on the right-hand side of that equation is given
by

eobs = eZ−1
1 Z2Z

1/2
3 . (12.144)

In fact, this combination corresponds to the electric charge observed in experiments.
This is manifested by several properties called low-energy theorems. Compar-
ing (12.144) with (12.76), the permittivity of the vacuum is

√
ε = Z1Z

−1
2 Z

−1/2
3 . (12.145)

Although the definition of the renormalized interaction picture is unchanged, it is
more useful to rewrite e as eobs. Then we write

eZ2Z
1/2
3 = eZ−1

1 Z2Z
1/2
3 − (1 − Z1)eZ

−1
1 Z2Z

1/2
3

= eobs − (1 − Z1)eobs

≡ eobs − δe . (12.146)

Thus, in the interaction part of the Lagrangian density, we rewrite as follows:

ieZ2Z
1/2
3 ψ̄γμψAμ = i(eobs − δe)ψ̄γμψAμ . (12.147)

So from now on, we use powers of eobs rather than powers of e in the perturbation
theory. We have

δe = (1 − Z1)eobs = O(e3obs) . (12.148)

The relation between Γμ and Γ
(0)
μ is

(eobs − δe)Γ (0)
μ (x, y, z) = eobsΓμ(x, y, z) . (12.149)
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Fig. 12.8 Feynman diagram
corresponding to the second
term on the right-hand side
of (12.150) in the x-space
(left) and the p-space ( right)

Computing the left-hand side up to order e3obs,

eobsΓμ(x, y, z) = (eobs − δe)γμδ4(x − z)δ4(y − z) (12.150)

+e2obsγλSF(x − z)γμSF(z − y)γλDF(x − y) .

The Feynman diagram corresponding to the second term on the right-hand side is
shown in the x-space and the p-space in Fig. 12.8.

Taking the Fourier transform of (12.150), we obtain

eobsΓμ(p, q) = (eobs − δe)γμ (12.151)

+ (−i)3

(2π)4
e3obs

∫
d4kγλ

1

i(p − k) · γ + m − iε
γμ

1

i(q − k) · γ + m − iε
γλ

1

k2 − iε
.

To determine δe, we use (12.143). Rationalizing the denominator of (12.151), the
numerator becomes

N = γλ

[
i(p − k) · γ + m

]
γμ

[
i(q − k) · γ + m

]
γλ . (12.152)

Summing over λ, we can use the following formulas to calculate products of the
γ -matrices:

(1) γλγaγλ = −2γa ,

(2) γλγaγbγλ = 4δab ,

(3) γλγaγbγcγλ = −2γcγbγa .

The numerator assumes the form

N = −2i(q−k)·γ γμi(p−k)·γ −4im
[
(p−k)μ+(q−k)μ

]−2m2γμ . (12.153)
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Equation (12.151) then becomes

eobsΓμ(p, q) = (eobs − δe)γμ (12.154)

+ (−ieobs)3

(2π)4

∫
d4k

N[
(p − k)2 + m2 − iε

][
(p − k)2 + m2 − iε

]
(k2 − iε)

.

In order to carry out the k-integral, we use the following formula and change of
variables:

1

abc
= 2

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3δ(1 − Σxi)

1

(x1a + x2b + x3c)3
, (12.155)

P = 1

2
(p + q) , Δ = p − q . (12.156)

Up to a factor of 2, the denominator of the integral in (12.154) can be written

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3δ

(
1 −

∑
xi

)
f (x1, x2) =

∫
D

dx1dx2f (x1, x2) ,

(12.157)

where

f (x1, x2) =
[(

P 2 + Δ2

4
+ m2

)
(x1 + x2) + (P − k) · Δ(x1 − x2) (12.158)

−2k · P(x1 + x2) + k2 − iε

]−3

.

The domain of integration D is shown in Fig. 12.9 (left). Changing the variables
in (12.157) according to

x1 + x2 = u , x1 − x2 = 2v , (12.159)

the domain of integration for u and v is given by D′, depicted in Fig. 12.9 (right).
We now change the integration variable from k to k′:

k′ = k − uP − vΔ . (12.160)

The part corresponding to (12.155) becomes

2
∫

D′
du dv

[
k′2 +

(
P 2 + Δ2

4
+ m2

)
u + 2P · Δv − (uP + vΔ)2 − iε

]−3

.

(12.161)
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Fig. 12.9 Domains of integration for evaluating (12.154)

We now express the numerator in terms of k′. We can drop terms linear in k′
because they give zero when we carry out the k′-integral. Since the integral is still
complicated, we assume that p and q are on the mass shell, sandwich it between
ū(p) and u(q), and use the relations

ū(p)(ip · γ + m) = ū(p)

(
iP · γ + 1

2
iΔ · γ + m

)
= 0 ,

(iq · γ + m)u(p) =
(
iP · γ − 1

2
iΔ · γ + m

)
u(q) = 0 .

Moreover, when ū(p)Au(q) = ū(p)Bu(q), we write A ∼ B. From the mass-shell
condition,

p2 + m2 = q2 + m2 = P 2 + Δ2

4
+ m2 = 0 , P · Δ = 0 . (12.162)

Therefore, the term in square brackets in (12.161) simplifies as follows:

k′2 + m2u2 + Δ2
(

u2

4
− v2

)
− iε . (12.163)

Furthermore, assuming that Δ is small, we only keep terms linear in Δ in the
denominator and the numerator, and drop those in Δ2. Using the formula

2iPμ ∼ −σμνΔν − 2mγμ , (12.164)

we obtain

eobsΓμ(p, q) ∼ (eobs − δe)γμ − 4
ie3obs
(2π)4

∫
D′
du dv

∫
d4k′ N ′

(k′2 + m2u2 − iε)3
+ O(Δ2) ,

(12.165)
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where

N ′ = −u(1−u)mσμνΔν +m2γμ

[
(1−u)2−4(1−u)+1

]+ 1

2
γμk′2 . (12.166)

In the limit Δ → 0, the right-hand side should be equal to eobsγμ, so

δe = −4ie3obs
(2π)4

∫
D′

du dv
∫

d4k′ m2(u2 + 2u − 2) + k′2/2
(k′2 + m2u2 − iε)3

. (12.167)

The right-hand side turns out to diverge logarithmically. Inserting (12.167)
into (12.165),

eobsΓμ(p, q) ∼ eobsγμ + 4
ie3obs
(2π)4

∫
D′

du dv
∫

d4k′ u(1 − u)mσμνΔν

(k′2 + m2u2 − iε)3
+ O(Δ2)

= eobsγμ − α

2π

eobs

2m
σμνΔν + O(Δ2) . (12.168)

Here, α is, of course, equal to e2obs/4π . This equation is the one derived as the third-
order perturbation. The effective Hamiltonian which yields the same result up to the
first order in Δ is

Heff = − α

2π

eobs

4m
ψ̄σμνψFμν . (12.169)

This term, which is gauge invariant, is called the Pauli term. When there is only a
magnetic field, applying the non-relativistic approximation, we have

Heff = − α

2π

eobs

2m
σ ·H . (12.170)

This tells us that the electron acquires a supplementarymagneticmoment in addition
to eobs/2m in the Dirac theory. This increase is called the anomalous magnetic
moment. As a result, the magnetic moment of the electron up to this order is given
by

eobs

2m

(
1 + α

2π

)
. (12.171)

This result was obtained by Schwinger and by Tomonaga et al. [116, 117], and it
matches experimental values well. It is considered to be a great achievement of
renormalization theory, which thus succeeded in explaining what we call the Lamb
shift in the hydrogen atom, and has provided a foundation for the development of
field theory.
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So far, we have introduced Z1, Z2, and Z3 as multiplicative renormalization
constants. From (12.148) and (12.167),Z1 is given by

Z1 = 1 + 4ie2obs
(2π)4

∫
D′

du dv
∫

d4k′ m2(u2 + 2u − 2) + k′2/2
(k′2 + m2u2 − iε)3

. (12.172)

Although we have not provided an explicit computation of Z2, it is given
by (12.107), and computing to this order, it coincides with Z1. We will discuss
this equality in the next section.

12.7 Ward–Takahashi Identity

We now investigate in detail the relation (12.115) between the bare electric charge e

and the observed electric charge eobs. So far, we have only considered the electron.
Let us consider the case where there is a wide variety of charged particles a, b, . . ..
Then,

(ea)obs = Z−1
1a Z2aZ

1/2
3 ea , (eb)obs = Z−1

1b Z2bZ
1/2
3 eb , . . . . (12.173)

We consider the reaction

a + b −→ c + d . (12.174)

In this case, it is the bare electric charge that is conserved by Noether’s theorem:

ea + eb = ec + ed . (12.175)

However, we know experimentally that charge conservation holds for the renormal-
ized electric charges:

(ea)obs + (eb)obs = (ec)obs + (ed)obs . (12.176)

In order for these two conservation laws to hold simultaneously, Z−1
1 Z2 cannot

depend on the type of charged particle, i.e.,

Z−1
1a Z2a = Z−1

1b Z2b = Z−1
1c Z2c = Z−1

1d Z2d . (12.177)

Ward discovered that these equalities can be replaced by the following, which imply
them [118]:

Z1a = Z2a , . . . . (12.178)

The equation Z1 = Z2 is referred to as the Ward identity. We shall now give its
proof.
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We take ψ(0) and ψ̄(0) to be non-renormalized operators of the electric field.
Setting

Jμ = iψ̄(0)γμψ(0) = iZ2ψ̄γμψ , (12.179)

and using the fact that non-renormalized Heisenberg operators satisfy the canonical
commutation relations for x0 = y0, we have

[J0(x),ψ(0)(y)] = −ψ(0)(y)δ3(x − y) , [J0(x), ψ̄(0)(y)] = ψ̄(0)(y)δ3(x − y) .

(12.180)

Thus, if Jμ is included in the T-product, then using ∂μJμ = 0, we obtain

∂μT
[
Jμ(z),ψ(0)(x), ψ̄(0)(y)

] = T
[[J0(z),ψ

(0)(x)]δ(z0 − x0), ψ̄
(0)(y)

]
+T

[
ψ(0)(x), [J0(z), ψ̄

(0)(y)]δ(z0 − y0)
]

= [
δ4(z − y) − δ4(z − x)

]
T [ψ(0)(x), ψ̄(0)(y)] .

(12.181)

As we have seen before, at the point where the order of two time variables in the
T-product are switched, a delta function in time shows up. Later, we will use a
generalization of (12.181).

The renormalized interaction picture is defined by (12.96) and (12.97). On the
other hand, expressing (12.181) in terms of renormalized operators,

∂μT
[
Jμ(z),ψ(x), ψ̄(y)

] = [
δ4(z − y) − δ4(z − x)

]
T [ψ(x), ψ̄(y)] (12.182)

−
[
ψ(z)

δ

δψ(z)
− ψ̄(z)

δ

δψ̄(z)

]
T [ψ(x), ψ̄(y)] .

We will use this formula later by generalizing it to a certain extent.
In order to apply the reduction formula for the electromagnetic field, we

introduce the differential operator

Dμν(∂) = δμν� − ∂μ∂ν + 1

α
∂μ∂ν . (12.183)

Applying the reduction formula to Green’s function in the renormalized interaction
picture, we compute the quantity

Dμν(∂)T ∗[Aν(x) . . . , U(∞, −∞)
] = T ∗

[
i

δ

δAμ(x)
. . . , U(∞, −∞)

]
(12.184)

−T ∗[ . . . [Lint(x)]Aμ
, U(∞, −∞)

]
,
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where an explicit expression for the Euler derivative is

[Lint(x)]Aμ = eZ
1/2
3 Jμ − (1 − Z3)(δμσ� − ∂μ∂σ )Aσ (x) . (12.185)

Inserting this into (12.184) and taking the derivative in the second term of (12.185)
outside T ∗, we have

Dμν(∂)T ∗[Aν(x) . . . , U(∞, −∞)] = T ∗
[
i

δ

δAμ(x)
. . . , U(∞, −∞)

]
(12.186)

−eZ
1/2
3 T ∗[Jμ(x), . . . , U(∞, −∞)

]
+(1 − Z3)(δμσ Δ − ∂μ∂σ )T ∗[Aσ (x), . . . , U(∞, −∞)

]
.

Here we use the relation

eZ
1/2
3 = e(Z−1

1 Z2Z
1/2
3 )Z1Z

−1
2 = eobsZ1Z

−1
2 . (12.187)

Next, we differentiate (12.186) with respect to xμ and use (12.182). Since the last
term vanishes, we obtain

∂μDμν(∂)T ∗[Aν(x), . . . , U(∞, −∞)
] = ∂μT ∗

[
i

δ

δAμ(x)
. . . , U(∞, −∞)

]

+ eobsZ1Z
−1
2 T ∗

[(
ψ(x)

δ

δψ(x)
− ψ̄(x)

δ

δψ̄(x)

)
. . . , U(∞, −∞)

]
.

(12.188)

Taking the vacuum expectation value of the above equation and using the Gell-
Mann–Low formula, the relation between the Green’s functions involving the
renormalized Heisenberg operators is

∂μDμν(∂)
〈
0
∣∣T ∗[Aν(x) . . .]∣∣0〉 = ∂μ

〈
0
∣∣∣i δ

δAμ(x)
T ∗[. . .]

∣∣∣0〉 (12.189)

+eobsZ1Z
−1
2

〈
0
∣∣∣T ∗

[(
ψ(x)

δ

δψ(x)
− ψ̄(x)

δ

δψ̄(x)

)
. . .

]∣∣∣0〉 .

In the equation above, dots stand for a suitable product of Heisenberg operators.
One feature of this equation is that only renormalized operators show up. Since

Z1Z
−1
2 = 1, as will be shown later, we can now obtain the Ward–Takahashi identity

[119]:

∂μDμν(∂)
〈
0
∣∣T ∗[Aν(x) . . .]∣∣0〉 = ∂μ

〈
0
∣∣∣i δ

δAμ(x)
T ∗[. . .]

∣∣∣0〉 (12.190)

+eobs

〈
0
∣∣∣T ∗

[(
ψ(x)

δ

δψ(x)
− ψ̄(x)

δ

δψ̄(x)

)
. . .

]∣∣∣0〉 .
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To understand the relevance of (12.189), we first insert Aσ(y) in place of the dots to
obtain

∂μDμν(∂x)
〈
0
∣∣T ∗[Aν(x),Aσ (y)]∣∣0〉 = i∂σ δ4(x − y) . (12.191)

Expressing this in momentum space and taking into account the equation

∂μDμν(∂) = 1

α
�∂ν , (12.192)

we find

1

α
k2kνD

′
Fνσ

(k) = kσ . (12.193)

We now write Dyson’s equation for D′
F in an arbitrary gauge, viz.,

D′
Fνσ

(k) = DFνσ (k) − DFνλ(k)Π∗
λμ(k)D′

Fμσ
(k) , (12.194)

where

DFμσ (k) =
(

δνσ − kνkσ

k2 − iε

)
1

k2 − iε
+ α

kνσ

(k2 − iε)2
(12.195)

and

Π∗
λμ(k) = Π∗

ren(k)λμ = (kλkμ − δλμk2)Π∗(−k2) . (12.196)

From this, we obtain the solution of (12.194) in the form

D′
Fνσ

(k) =
(

δνσ − kνσ

k2 − iε

)
1

k2 − iε

1

1 − Π∗(−k2)
+ α

kνkσ

(k2 − iε)2
. (12.197)

This certainly satisfies (12.193).
Another example is

∂μDμν(∂z)
〈
0
∣∣T ∗[ψ(x), ψ̄(y),Aν(z)]

∣∣0〉 (12.198)

= −eobsZ1Z
−1
2

[
δ4(y − z) − δ4(x − z)

]〈
0
∣∣T ∗[ψ(x), ψ̄(y)]∣∣0〉.

We combine (12.191) and this equation with the following equation:

〈
0
∣∣T ∗[ψ(x), ψ̄(y),Aν(z)]

∣∣0〉 (12.199)

= −eobs

∫
d4x ′d4y ′d4z′S′

F(x − x ′)Γμ(x ′, y ′; z′)S′
F(y

′ − y)D′
Fμν

(z′ − z).
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Inserting the right-hand side of (12.199) into the left-hand side of (12.198) and
using (12.191) to cancel D′

F, we obtain the following equation in momentum space:

− i(p − q)νS
′
F(p)Γν(p, q)S′

F(q) = Z1Z
−1
2

[
S′
F(p) − S′

F(q)
]
. (12.200)

Alternatively, differentiating both sides with respect to pμ and setting q = p,

Γμ(p, p) = −iZ1Z
−1
2

∂

∂pμ

S′
F(p)−1 . (12.201)

We sandwiching this between ū(p) and u(p) and use the relations

S′
F(p)−1 = ip · γ + m + O

(
(ip · γ + m)2

)
,

ū(p)(ip · γ + m) = (ip · γ + m)u(p) = 0 .

This leads finally to

ū(p)γμu(p) = Z1Z
−1
2 ū(p)γμu(p) , (12.202)

which yields Ward’s identity

Z1 = Z2 . (12.203)

Thus, in theWard–Takahashi identity (12.189),we can replaceZ1Z
−1
2 by 1 to obtain

the Ward–Takahashi identity given by (12.190). In general, an equation obtained by
subtracting a divergence of the Green’s function is called aWard–Takahashi identity.

Equations (12.201) and (12.203) were found by Ward [118], while (12.200) was
derived by Takahashi [119]. Equation (12.190) for the Green’s function was proved
by the author in the Fermi gauge [120], but it was eventually shown that it can be
extended to an arbitrary gauge.

12.8 Integral Representation of the Propagator

The propagator with higher-order corrections can be expressed by a certain kind of
integral representation as the superposition of free-field propagators with different
masses. This was established by Umezawa et al. in the early 1950s [121–123].
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12.8.1 Integral Representation

We consider a neutral scalar field and make the following general assumptions:

1. There exists a four-vector operator Pμ, which stands for the energy–momentum,
satisfying

[Pμ, Pν ] = 0 , (12.204)

[ϕ(x), Pμ] = 1

i
∂μϕ(x) . (12.205)

2. There exists a set {Φk,α} of eigenstates of Pμ which form a complete system.
Here, kμ is an eigenvalue of Pμ and α is another quantity specifying the states:

PμΦk,α = kμΦk,α . (12.206)

Of course, as {Φ}, we can choose either {Φ in} or {Φout}. In what follows, we
assume the existence of the vacuum and write it as |0〉. Affixing a prime to the
invariant function in the presence of interactions,

〈0|ϕ(x)ϕ(y)|0〉 = iΔ(+)′(x − y) ,

〈0|[ϕ(x),ϕ(y)]|0〉 = iΔ′(x − y) , (12.207)

〈0|T [ϕ(x)ϕ(y)]|0〉 = Δ′
F(x − y) .

Then, to carry the Fourier expansion, we introduce the matrix element

〈0|ϕ(x)|k,α〉 = ak,αe
ik·x . (12.208)

Hence,

〈0|ϕ(x)ϕ(y)|0〉 =
∑
k,α

〈0|ϕ(x)|k,α〉〈k,α|ϕ(y)|0〉

=
∑
k,α

|ak,α|2eik·(x−y) . (12.209)

We now introduce the Lorentz invariant function

ρ(−p2) = (2π)3
∑
k,α

|ak,α|2δ4(p − k) ≥ 0 . (12.210)
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Inserting this into (12.209), for the time-like four-momentum p, we have

iΔ(+)′(x − y) = 1

(2π)3

∫
d4pθ(p0)ρ(−p2)eip·(x−y) (−p2 ≥ 0)

=
∫ ∞

0
dκ2ρ(κ2)

1

(2π)3

∫
d4pθ(p0)δ(p

2 + κ2)eip·(x−y)

=
∫ ∞

0
dκ2ρ(κ2)iΔ(+)(x − y; κ2) . (12.211)

Generalizing this to an arbitrary function, we obtain

Δ(+)′(x) =
∫ ∞

0
dκ2ρ(κ2)Δ(+)(x; κ2) , (12.212)

so in the presence of interactions, the invariant two-point function can be expressed
by the integral representation as a superposition of invariant two-point functions for
free fields with different masses.

The spectral function ρ(κ2) for a free field with the mass m is

ρ(κ2) = δ(κ2 − m2) . (12.213)

If interactions are introduced, we can decompose into contributions from the one-
particle intermediate states and the multi-particle intermediate states:

ρ(κ2) = cδ(κ2 − m2) + σ(κ2) . (12.214)

We note, however, that σ vanishes below the lowest invariant mass 2m in the two-
particle system, i.e.,

σ(κ2) = θ(κ2 − 4m2)σ (κ2) . (12.215)

If we apply the renormalization condition, namely that the normalization of the wave
function becomes the same as that of the free field in the one-particle state, then c

in (12.214) becomes unity, i.e.,

ρ(κ2) = δ(κ2 − m2) + σ(κ2) . (12.216)

We now introduce the Fourier representation of the propagator:

Δ′
F(x) = −i

(2π)4

∫
d4k eik·xΔ′

F(−k2) . (12.217)
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Hence,

Δ′
F(−k2) = 1

k2 + m2 − iε
+

∫ ∞

4m2
dκ2 σ(κ2)

k2 + κ2 − iε
. (12.218)

We introduce the renormalization constant Zϕ , noting that, for the electron field
Zψ = Z2 and for the electromagnetic field ZA = Z3 :

ϕ(0)(x) = Z1/2
ϕ ϕ(x) , (12.219)

where the superscript (0) denotes unrenormalized quantities. Therefore,

〈
0
∣∣[ϕ(0)(x),ϕ(0)(y)]∣∣0〉 = Zϕ

∫
dκ2ρ(κ2)iΔ(x − y; κ2) . (12.220)

Differentiating both sides of this equation with respect to x0 and then setting x0 =
y0, the left-hand side becomes−iδ3(x−y) from the canonical commutation relation.
In addition, on the right-hand side, using (4.13),

∂

∂x0
Δ(x − y; κ2)

∣∣∣∣
x0=y0

= −δ3(x − y) , (12.221)

whence

− iδ3(x − y) = −iδ3(x − y)Zϕ

∫
dκ2ρ(κ2) . (12.222)

The integral representation of the renormalization constant can now be obtained
immediately as

Z−1
ϕ =

∫
dκ2ρ(κ2) = 1 +

∫
dκ2σ(κ2) ≥ 1 . (12.223)

This inequality originates from the positive-definite metric assumed for the scalar
field. Thus,

1 ≥ Zϕ ≥ 0 . (12.224)

12.8.2 Self-Energy

As shown above, the renormalization constant is written in terms of the integral
representation via the spectral function. But what about the self-energy? To discuss
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this problem, we consider the following simple model:

L = −(
∂λΦ

†∂λΦ + M2
0Φ†Φ

) − 1

2

[
(∂λϕ)2 + m2

0ϕ
2] − g0Φ

†Φϕ . (12.225)

Here ϕ stands for a neutral scalar field, Φ and Φ† for charged scalars, and m0 and
M0 for the bare masses associated with each field, which are related to the observed
masses m and M via

M2 = M2
0 + δM2 , m2 = m2

0 + δm2 . (12.226)

We introduce multiplicative renormalizations via the relations

Φ(0) = Z
1/2
2 Φ , ϕ(0) = Z

1/2
3 ϕ , g0 = Z1Z

−1
2 Z

−1/2
3 g . (12.227)

The renormalized field equations are

(� − m2)ϕ = Z1Z
−1
3 gΦ†Φ − δm2ϕ , (12.228)

(� − M2)Φ = Z1Z
−1
2 gΦϕ − δM2Φ . (12.229)

Using (12.228), we can derive an integral representation of δm2. Likewise, we can
use (12.229) to derive an integral representation of δM2. Expressing (12.228) in
terms of m0,

(�x − m2
0)

〈
0
∣∣[ϕ(x),ϕ(y)]∣∣0〉 = Z1Z

−1
3 g

〈
0
∣∣[Φ†(x)Φ(x),ϕ(y)]∣∣0〉 . (12.230)

Differentiating this equation with respect to y0 and setting y0 = x0, the right-hand
side becomes

〈
0
∣∣[Φ†(x)Φ(x), ϕ̇(y)]∣∣0〉 = 0 (x0 = y0) . (12.231)

It thus turns out that the left-hand side also vanishes. The left-hand side should still
vanish if we carry out the operation discussed above in the integral representation:

(�2 − m2
0)

〈
0
∣∣[ϕ(x),ϕ(y)]∣∣0〉 = i

∫
dκ2ρϕ(κ2)(κ2 − m2

0)Δ(x − y; κ2) .

Differentiating this with respect to y0 and setting y0 = x0 = 0, Eq. (12.221) implies

iδ3(x − y)

∫
dκ2(κ2 − m2

0)ρϕ(κ2) = 0 ,
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and hence,

∫
dκ2(κ2 − m2)ρϕ(κ2) = −δm2

∫
dκ2ρϕ(κ2) = −Z−1

3 δm2 . (12.232)

Thus,

δm2 = −Z3

∫
dκ2(κ2 − m2)ρϕ(κ2) = −Z3

∫
dκ2(κ2 − m2)σ (κ2) < 0 .

(12.233)

This equation implies that δm2 is always negative. This is, of course, a predictable
result. If we assume that, in (12.226), m2 is positive and finite and m2

0 is positive
and infinite, then δm2 can only be negative and infinite.

12.8.3 Integral Representation of the Electromagnetic Field
Propagator

We now apply the previous discussion for the scalar field to the electromagnetic
field. We first introduce a propagator for the electromagnetic field:

〈
0
∣∣T ∗[Aμ(x)Aν(y)]∣∣0〉 = −i

(2π)4

∫
d4k eik·(x−y)D′

Fμν
(k) . (12.234)

For the free electromagnetic field, DFμν is given by (12.195). Furthermore, it is clear
from (12.197) that the effects of the interaction appear only in the transverse part of
the wave. Recalling that

Dμν(∂)Aν = −jμ , (12.235)

jμ = −ieobsZ2ψ̄γμψ − (1 − Z3)(δμσ� − ∂μ∂σ )Aσ , (12.236)

we introduce the current jμ and define the function

〈
0
∣∣T ∗[jμ(x)jν(y)]∣∣0〉 = −i

(2π)4

∫
d4k eik·(x−y)Πμν(k) . (12.237)

Therefore,

k4ImD′
Fμν

(k) = ImΠμν(k) . (12.238)
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We now seek an integral representation of Πμν . From the Lorentz covariance,

〈0|jμ(x)jν(y)|0〉 = iδμν

∫
dκ2σ1(κ

2)Δ(+)(x − y; κ2) (12.239)

+i∂μ∂ν

∫
dκ2σ2(κ

2)Δ(+)(x − y; κ2) .

Note also that, since ∂μjμ = 0,

σ1(κ
2) + κ2σ2(κ

2) = 0 . (12.240)

We thus have

σ1(κ
2) = κ2σ(κ2) , σ2(κ

2) = −σ(κ2) , (12.241)

〈
0
∣∣jμ(x)jν(y)

∣∣0〉 = i
∫

dκ2σ(κ2)(δμν� − ∂μ∂ν)Δ
(+)(x − y; κ2) . (12.242)

Taking μ = ν = 4,

− 〈
0
∣∣j0(x)j0(y)

∣∣0〉 = i
∫

dκ2σ(κ2)∇2Δ(+)(x − y; κ2) . (12.243)

Because jμ is gauge invariant, the indefinite metric cannot appear on the left-hand
side. Hence,

(2π)3
∑
n

∣∣〈n|j0(0)|0〉
∣∣2δ4(pn − k) = k2σ(−k2) ≥ 0 , (12.244)

i.e., σ(κ2) is positive-definite as in the case of the scalar field:

σ(κ2) ≥ 0 . (12.245)

Using this result, for the integral representation of Πμν , we have

Πμν(k) = (kμkν − δμνk
2)Π(−k2) , (12.246)

Π(−k2) =
∫

dκ2 σ(κ2)

k2 + κ2 − iε
+ const. (12.247)

Since the renormalization condition requires Π(0) to vanish,

Π(−k2) = Π(−k2) − Π(0) = −k2
∫

dκ2

κ2

σ(κ2)

k2 + κ2 − iε
. (12.248)
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At the lowest order in the perturbation theory,

σ(κ2) = e2obs

12π2

(
1 + 2m2

κ2

) √
1 − 4m2

κ2 θ(κ2 − 4m2) . (12.249)

The integral representation of the electromagnetic field propagator is

D′
Fμν

(k) =
(

δμν − kμkν

k2 − iε

) [
1

k2 − iε
+

∫
dκ2

κ2

σ(κ2)

k2 + κ2 − iε

]
+ α

kμkν

(k2 − iε)2
.

(12.250)

12.8.4 Goto–Imamura–Schwinger Term

The integral representation of the vacuum expectation value of the commutator of
jμ and jν is

〈
0
∣∣[jμ(x), jν(y)]∣∣0〉 = i

∫
dκ2σ(κ2)(δμν� − ∂μ∂ν)Δ(x − y; κ2) . (12.251)

To obtain this result, we have only used the gauge invariance of ∂μjμ = 0 and j0.
Assuming that μ = 0 and ν = k (1, 2, 3) and setting x0 = y0,

i
〈
0
∣∣[j0(x), jk(y)]∣∣0〉 = −

∫
dκ2σ(κ2)

[
∂0∂kΔ(x − y; κ2)

]
y0=x0

= ∂

∂xk

δ3(x − y)

∫
dκ2σ(κ2) . (12.252)

Since σ(κ2) ≥ 0, the right-hand side does not vanish. Since jμ = −ieψ̄γμψ at the
lowest order, this contradicts the result obtained from the canonical commutation
relation, i.e., using the commutation relation,

[j0(x), jk(y)] = 0 (x0 = y0) . (12.253)

The term which survives on the right-hand side of (12.252) is called the Goto–
Imamura–Schwinger term [124, 125]. We carry out the following computation in
the interaction picture using ∂μjμ = 0 :

∂μT [jμ(x), jν(y)] = δ(x0 − y0)[j0(x), jν(y)] �= 0 . (12.254)
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The reason why this vanished in (12.121) is that we used the T∗-product instead of
the T-product, i.e.,

〈
0
∣∣T ∗[jμ(x), jν(y)]∣∣0〉 =

∫
dκ2σ(κ2)(δμν� − ∂μ∂ν)ΔF(x − y; κ2). (12.255)

In this case, it turns out that (12.121) obviously holds. As shown above, the
representation which includes a product of field operators at the same point often
has a singularity. A different result is often obtained from the one derived by a
simple computation.

As a similar example, if we consider a neutral vector field and assume that the
mass is zero, then since ∂μϕμ = 0,

[ϕμ(x), ϕν(y)] = i

(
δμν − 1

m2

∂2

∂xμ∂xν

)
Δ(x − y; m2)

= i
∫

dκ2 δ(κ2 − m2)

m2
(δμν� − ∂μ∂ν)Δ(x − y; κ2) . (12.256)

Therefore,

σ(κ2) = 1

m2 δ(κ2 − m2) , (12.257)

i
〈
0
∣∣[ϕ0(x), ϕk(y)]∣∣0〉 = ∂

∂xk

δ3(x − y)
1

m2 . (12.258)

The derivation here is exactly the same as for the Goto–Imamura–Schwinger term.
In this chapter, we have discussed the concept of renormalization by asking how

we can separate the Lagrangian into the free part and the interaction part. We have
shown that, at the next to lowest order, the divergence disappears, or rather that the
renormalization constant can be chosen so as to make the divergence vanish. In the
renormalization theory, the following stance is taken: the observed parameters can
be replaced by finite experimental values, while the bare parameters which are not
observed directly are allowed to be divergent. But if we now compute higher order
corrections, can we be sure there will still be no divergence? Although this issue has
been discussed by many people, we shall not pursue it here. We will discuss this
aspect from a slightly different point of view in the last chapter.
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