
Chapter 11
Green’s Functions

So far we have talked a lot about the properties of the S-matrix, but there is an
important concept closely related to the S-matrix, namely, the concept of Green’s
functions. We first define Green’s functions in the interaction picture, and then
rewrite them in the Heisenberg picture. This leads to the so-called Gell-Mann–Low
relation [111]. We then discuss Matthews’ theorem [112] for the relation between
the Hamiltonian formalism and the Lagrangian formalism. Finally, we turn our
attention to the reduction formula connecting the S-matrix and Green’s functions.
This formula relates to fundamental conditions called asymptotic conditions in the
Heisenberg picture.

11.1 Gell-Mann–Low Relation

As in Chap. 3, writing the free-field energy–momentum four-vector in the interac-
tion picture as P

(0)
μ , we find that (3.29) holds true for a field operator O(x) without

external fields, i.e.,

[
P (0)

μ ,O(x)
] = i

∂

∂xμ

O(x) . (11.1)

In particular, for μ = 0,

[
P

(0)
0 ,O(x)

] = −i
∂

∂t
O(x) . (11.2)

We now introduce the following transformation function as O :

U(t, t0) = T exp

[
−i

∫ t

t0

dt ′ Hint(t
′)
]

. (11.3)
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228 11 Green’s Functions

We insert this into (11.2), but bearing in mind that

[
P

(0)
0 ,−i

∫ t

t0

dt ′Hint(t
′)
]

= −
∫ t

t0

dt ′
∂

∂t ′
Hint(t

′)

= −[
Hint(t) − Hint(t0)

]
. (11.4)

This immediately yields

[
P

(0)
0 , U(t, t0)

] = −T
[[Hint(t) − Hint(t0)]U(t, t0)

]

= −Hint(t)U(t, t0) + U(t, t0)Hint(t0) . (11.5)

We now set t = 0 and take the limit t0 → −∞. In this case, putting

P
(0)
0 + Hint(0) = Htotal , (11.6)

we obtain

HtotalU(0,−∞) = U(0,−∞)
[
P

(0)
0 + Hint(−∞)

]
.

Assuming that interactions exist only in a finite space-time region, as in Sects. 4.4
and 7.3, we consider the limit as this space-time region extends to infinity. This
corresponds to introducing interactions adiabatically, and a variety of consequences
depend on how the limit is actually taken. With some loss of rigour, we assume that

Hint(−∞) = 0 , (11.7)

whence

HtotalU(0,−∞) = U(0,−∞)P
(0)
0 . (11.8)

Then writing the vacuum in the interaction picture as Φ0,

P
(0)
0 Φ0 = 0 . (11.9)

Hence, writing the vacuum in the Heisenberg picture as Ψ0, we find

HtotalΨ0 = 0 , Ψ0 = U(0,−∞)Φ0 . (11.10)

As shown in Chap. 6, the Heisenberg picture and the interaction picture are related
by (6.30), viz.,

U(t, t0)
−1ϕα(x, t)U(t, t0) = ϕ(H)

α (x, t) . (11.11)
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In this section, we set t0 = 0. Therefore, for t1 > t2,

(
Φ0, T

[
U(∞, −∞)A(x1, t1)B(x2, t2)

]
Φ0

)

= (
Φ0, U(∞, t1)A(x1, t1)U(t1, t2)B(x2, t2)U(t2,−∞)Φ0

)

= (
Φ0, U(∞, 0)A(H)(x1, t1)B

(H)(x2, t2)U(0, −∞)Φ0
)

= (
Φ0, U(∞, −∞)U(0, −∞)−1A(H)(x1, t1)B

(H)(x2, t2)U(0, −∞)Φ0
)

= (
Φ0, U(∞, −∞)Φ0)(Φ0, U(0, −∞)−1A(H)(x1, t1)B

(H)(x2, t2)U(0, −∞)Φ0
)

= (
Φ0, U(∞, −∞)Φ0

)(
Ψ0, A

(H)(x1, t1)B
(H)(x2, t2)Ψ0

)
, (11.12)

where we have used the composition rule (6.27) for the transformation function and
U(∞,−∞), and the fact that the vacuum Φ0 transforms to the vacuum up to a
phase. This can be written in the form

(
Ψ0, T

[
A(H)(x1)B

(H)(x2)
]
Ψ0

) =
(
Φ0, T

[
U(∞,−∞)A(x1)B(x2)

]
Φ0Φ0

)

(
Φ0, U(∞,−∞)Φ0

) .

(11.13)

The presence of the denominator corresponds to neglecting bubble graphs, as
discussed in connection with (8.70). This equation is easily generalized:

(
Ψ0, T

[
A(H)(x1)B

(H)(x2) . . . Z(H)(xn)
]
Ψ0

)
(11.14)

=
(
Φ0, T

[
U(∞,−∞)A(x1)B(x2) . . . Z(xn)

]
Φ0

)

(
Φ0, U(∞,−∞)Φ0

) .

This is called the Gell-Mann–Low relation [111]. It gives the relationship between
the Heisenberg picture and the interaction picture. Additionally, any quantity like
the left-hand side, i.e., a vacuum expectation value of a product of time-ordered
field operators, is called a Green’s function.

11.2 Green’s Functions and Their Generating Functionals

When we discuss properties of a Green’s function, instead of considering them one
by one, it is sometimes useful to discuss their generating function, or more precisely
their generating functional. In this section, we describe the simplest generating
functional, which produces the Green’s functions of a neutral scalar field.

We consider the Lagrangian density

L = −1

2

[
(∂μϕ)2 + m2ϕ2] − g

4!ϕ
4 . (11.15)
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We split this into the free part and the interaction part. In fact, such a separation
is not trivial, and becomes particularly complicated when we take into account
renormalization in the next chapter. However, in this section, we simply choose

Hint(x) = −Lint(x) = g

4!ϕ
4 . (11.16)

In the following, we shall express the vacuum Φ0 simply as |0〉. We introduce a
c-number external field J (x) and define the functional

T (0)[J ] =
〈
0
∣
∣
∣T exp

{
− i

∫
d4x

[
Hint(x) + J (x)ϕ(x)

]}∣
∣
∣0

〉

〈
0
∣∣T exp

[ − i
∫

d4xHint(x)
]∣∣0

〉 . (11.17)

We now derive the equation satisfied by the generating functional of the Green’s
functions T (0)[J ]. To do this, we just have to use the reduction formula (8.57), i.e.,

(�x − m2)T [ϕ(x)AB . . .] = i
δ

δϕ(x)
T [AB . . .] . (11.18)

Writing the denominator of (11.17) as 〈0|U(∞,−∞)|0〉,

(�x − m2)i
δ

δJ (x)
T (0)[J ]

= (�x − m2)
〈
0
∣
∣T

(
ϕ(x) exp

{ − i
∫

d4y
[
Hint(y) + J (y)ϕ(y)

]})∣∣0
〉

〈0|U(∞, −∞)|0〉

=

〈
0
∣∣
∣i

δ

δϕ(x)
T

(
exp

{ − i
∫

d4y
[
Hint(y) + J (y)ϕ(y)

]})∣∣
∣0

〉

〈0|U(∞, −∞)|0〉

=

〈
0
∣
∣
∣T

( [ g

3!ϕ
3(x) + J (x)

]
exp

{−i
∫

d4y
[
Hint(y) + J (y)ϕ(y)

]}
)∣

∣
∣0

〉

〈0|U(∞, −∞)|0〉

=
{

g

3!
[

i
δ

δJ (x)

]3

+ J (x)

}
T (0)[J ] . (11.19)

Integrating this equation, we obtain the functional equation for T (0)[J ]:

i
δ

δJ (x)
T (0)[J ] = −i

∫
d4yΔF(x − y)

{
g

3!
[

i
δ

δJ (y)

]3

+ J (y)

}
T (0)[J ] .

(11.20)
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Differentiating T (0)[J ] n times with respect to J and setting J = 0, we obtain the
n-point Green’s function:

in
δn

δJ (x1) . . . δJ (xn)
T (0)[J ]

∣∣
∣
∣
J=0

=
〈
0
∣
∣T

[
ϕ(x1) . . . ϕ(xn)U(∞,−∞)

]∣∣0
〉

〈0|U(∞,−∞)|0〉 .

(11.21)

We now turn to the Heisenberg picture, defining the generating functional by

T [J ] = 〈
0
∣∣T exp

[
− i

∫
d4x J (x)ϕ(x)

]∣∣0
〉
, (11.22)

where we have written Ψ0 and ϕ(H) in bold face as |0〉 and ϕ, respectively. Therefore,

(�x − m2)i
δ

δJ (x)
T [J ] = (�x − m2)

〈
0
∣
∣T

{
ϕ(x) exp

[
− i

∫
d4y J (y)ϕ(y)

]}∣
∣0

〉
.

(11.23)

In this picture,

(�x − m2)T [ϕ(x)AB . . .] = T
[
(�x − m2)ϕ(x),AB . . .

] + i
δ

δϕ(x)
T [AB . . .] .

(11.24)

Inserting this into (11.23) and using the equation of motion for ϕ, we
recover (11.19). Hence, (11.20) can also be recovered, i.e.,

i
δ

δJ (x)
T [J ] = −i

∫
d4y ΔF(x − y)

{
g

3!
[

i
δ

δJ (y)

]3

+ J (y)

}
T [J ] . (11.25)

This implies that, even if the boundary conditions are the same, we can expect

T [J ] = T (0)[J ] . (11.26)

In fact, differentiating this n times with respect to J and setting J = 0, it becomes

〈
0
∣
∣T [ϕ(x1) . . .ϕ(xn)]|0〉 =

〈
0
∣
∣T

[
ϕ(x1) . . . ϕ(xn)U(∞,−∞)

]∣∣0
〉

〈0|U(∞,−∞)|0〉 , (11.27)

which is nothing other than the Gell-Mann–Low relation. Thus, it turns out
that (11.26) always holds true.

When a Green’s function is expressed by a Feynman diagram, it will generally
give a set of non-connected parts. We focus only on the graphs in which n points are
connected to each other by lines. We write the contribution corresponding to such a
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graph as

〈
0
∣
∣T

[
ϕ(x1) . . . ϕ(xn)

]∣∣0
〉
conn , (11.28)

where conn stands for ‘connected.’ So what is the relationship between the
connected Green’s function and the original Green’s function? To find out, we start
with some point x and separate into the part connected with x and the other parts.
This gives a recursion formula:

〈
0
∣
∣T

[
ϕ(x)ϕ(x1) . . . ϕ(xn)

]∣∣0
〉

(11.29)

=
∑

comb

〈
0
∣∣T

[
ϕ(x)ϕ(x ′

1) . . . ϕ(x ′
k)

]∣∣0
〉
conn

〈
0
∣∣T

[
ϕ(x ′

k+1) . . . ϕ(x ′
n)

]∣∣0
〉
,

where the summation has been taken over all combinations separating x1, . . . , xn

into x ′
1, . . . , x

′
k and x ′

k+1, . . . , x
′
n. In order to express this relation in a closed form,

we introduce a generating functional R[J ] for the connected Green’s functions:

R[J ] =
∞∑

n=1

(−i)n

n!
∫

d4x1 . . .

∫
d4xn

〈
0
∣
∣T [ϕ(x1) . . . ϕ(xn)]

∣
∣0

〉
connJ (x1) . . . J (xn) ,

(11.30)

in
δn

δJ (x1) . . . δJ (xn)
R[J ]

∣
∣
∣
∣
J=0

= 〈
0
∣
∣T [ϕ(x1) . . . ϕ(xn)]

∣
∣0

〉
conn . (11.31)

The recursion formula can now be expressed in closed form:

i
δ

δJ (x)
T [J ] =

(
i

δ

δJ (x)
R[J ]

)
T [J ] . (11.32)

We solve this functional equation with the boundary conditions

R[0] = 0 , T [0] = 1 . (11.33)

The solution is

T [J ] = expR[J ] . (11.34)

Then writing the expectation value of ϕ(x) when there exists an external field J as
〈ϕ(x)〉, we have

〈ϕ(x)〉 =
i

δ

δJ (x)
T [J ]

T [J ] = i
δ

δJ (x)
R[J ] . (11.35)
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In some situations, it is more useful to consider 〈ϕ(x)〉 as an independent external
field instead of J (x), so we introduce the following Legendre transformation:

F = R + i
∫

d4xJ (x)〈ϕ(x)〉 . (11.36)

This yields

δF = δR + i
∫

d4x
[
J (x)δ〈ϕ(x)〉 + δJ (x)〈ϕ(x)〉]

= −i
∫

d4x δJ (x)δ〈ϕ(x)〉 + i
∫

d4x
[
J (x)δ〈ϕ(x)〉 + δJ (x)〈ϕ(x)〉]

= i
∫

d4x J (x)δ〈ϕ(x)〉 , (11.37)

i.e., taking 〈ϕ(x)〉 as an independent variable instead of J (x),

δF

δ〈ϕ(x)〉 = iJ (x) . (11.38)

Variable transformations like this will play an important role in the discussion of
spontaneous symmetry breaking later on. Moreover, differentiating (11.35) again,

i
δ〈ϕ(x)〉
δJ (y)

= − δ2R

δJ (x)δJ (y)
= ΔF(x, y) . (11.39)

This is the two-point Green’s function in the case where an external field exists.
Differentiating (11.38),

δ2F

δ〈ϕ(x)〉δ〈ϕ(y)〉 = i
δJ (y)

δ〈ϕ(x)〉 = −Δ−1
F (x, y) , (11.40)

which is the inverse of the two-point Green’s function.

11.3 Different Time-Orderings in the Lagrangian Formalism

In the previous section, we investigated the relationship between representations of
Green’s functions in the Heisenberg picture and in the interaction picture. In this
section, we shall discuss the difference between time-orderings in the Hamiltonian
formalism and the Lagrangian formalism.
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For simplicity, we start with particle dynamics. Considering a one-dimensional
system, we assume that

p(t) = mq̇(t) . (11.41)

Therefore, under the time-ordering operator T , p(t) is ordered as an operator
corresponding to time t . This is because in the Hamiltonian formalism, the operators
q(t) and p(t) are treated as independent variables, so these are considered to be
quantities that need no further temporal decomposition. However, in the Lagrangian
formalism, only q(t) is an independent quantity, so q̇(t) becomes

q̇(t) = lim
ε→0

q(t + ε) − q(t)

ε
. (11.42)

Assuming that ε is small but finite, it turns out that, in the Lagrangian formalism,
q̇(t) is associated with two clock times in time-orderings. We denote the time-
ordering operator in this treatment by T ∗. It should be noted here that, in the
path-integral method, the same decomposition (11.42) is used. Therefore, the
method using T ∗ is closely related to the path-integral method. So what is the
difference between using T or T ∗?

In the Hamiltonian formalism and hence under T , we assume that q̇(t) can be
treated as a one-clock-time quantity, as in (11.41). Now,

T ∗[q̇(t), q(t ′)] = T ∗
[

lim
ε→0

q(t + ε) − q(t)

ε
, q(t ′)

]

= lim
ε→0

T

[
q(t + ε) − q(t)

ε
, q(t ′)

]

= ∂

∂t
T

[
q(t), q(t ′)

]
. (11.43)

However, if q obeys a second order differential equation, then only q̇ can enter in
T ∗, because q̈ is not independent of q . Another example is

T ∗[q̇(t), q̇(t ′)
] = ∂2

∂t∂t ′
T

[
q(t), q(t ′)

]
. (11.44)

The derivation of this equation is perfectly analogous to the one in the previous
example. However, using T , we find

∂

∂t
T

[
q(t), q(t ′)

] = T [q̇(t), q(t ′)] + ∂

∂t

[
1

2
ε(t − t ′)

]
[
q(t), q(t ′)

]

= T
[
q̇(t), q(t ′)

] + δ(t − t ′)
[
q(t), q(t ′)

]

= T
[
q̇(t), q(t ′)

]
. (11.45)
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Therefore, this is the same as T ∗ in (11.43). However, assuming (11.41),

∂

∂t
T

[
q(t), q̇(t ′)

] = T
[
q̇(t), q̇(t ′)

] + δ(t − t ′)
[
q(t), q̇(t ′)

]

= T
[
q̇(t), q̇(t ′)

] + i

m
δ(t − t ′) . (11.46)

The left-hand side is equal to the right-hand side of (11.44). So setting the left-hand
side of (11.46) equal to the left-hand side of (11.44),

T
[
q̇(t), q̇(t ′)

] = T ∗[q̇(t), q̇(t ′)
] − i

m
δ(t − t ′) . (11.47)

The difference between T and T ∗ becomes clear in this way.
This argument can be extended to field theory. For simplicity, we consider a

neutral scalar field in the interaction picture:

∂

∂xμ

T
[
∂μϕ(x), ϕ(y)

] = T
[
∂μϕ(x), ϕ(y)

] + 1

i
δμ4δ(x0 − y0)

[
ϕ(x), ϕ(y)

]

= T
[
∂μϕ(x), ϕ(y)

]
. (11.48)

In order to differentiate this one more time, we introduce a unit time-like vector nμ.
Here we assume that n1 = n2 = n3 = 0 and n4 = i :

∂

∂yν

T
[
∂μϕ(x), ϕ(y)

] = T
[
∂μϕ(x), ϕ(y)

] + iδν4δ(x0 − y0)
[
∂μϕ(x), ϕ(y)

]
.

The second term becomes

δμ4δν4δ(x0 − y0)
[
ϕ̇(x), ϕ(y)

] = −iδμ4δν4δ
4(x − y)

= inμnνδ
4(x − y) .

Taking the vacuum expectation value,

〈
0
∣∣T

[
∂μϕ(x), ∂νϕ(y)

]∣∣0
〉 = ∂2

∂xμ∂yν

ΔF(x − y) − inμnνδ
4(x − y) . (11.49)

On the other hand,

〈
0
∣
∣T ∗[∂μϕ(x), ∂νϕ(y)

]∣∣0
〉 = ∂2

∂xμ∂yν

ΔF(x − y) . (11.50)

This difference corresponds to (11.47). Comparing the two equations above, we see
that T ∗ is covariant and simpler. When there are derivatives of field operators in
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the interaction term, the Hamiltonian density is not a scalar, but a tensor involving
the time-like vector n. Although in this case both the Hamiltonian density and the
contraction function depend on n, when we compute the S-matrix, the two types
of n-dependence cancel out, so the final result does not depend on n. This is called
Matthew’s theorem [112].

11.4 Matthews’ Theorem

If interactions do not include derivatives of the field operators, we have

Hint(x) = −Lint(x) . (11.51)

Clearly, in this case,

S = T exp

[
−i

∫
d4xHint(x)

]
= T ∗ exp

[
i
∫

d4xLint(x)

]
. (11.52)

This is because the difference between T and T ∗ does not appear anywhere here.
When derivatives are included in the interactions, the situation becomes more

complicated. For example, when a charged scalar field and the electromagnetic field
interact with each other,

L = −[
(∂μ + ieAμ)ϕ† · (∂μ − ieAμ)ϕ + m2ϕ†ϕ

] + Lem , (11.53)

Lint = −ieAμ(ϕ† · ∂μϕ − ∂μϕ† · ϕ) − e2A2
μϕ†ϕ . (11.54)

Thus, when derivatives of field operators are included, Hint differs from −Lint.
First, we decompose the Lagrangian density:

L (x) = Lf(x) + Lint(x) . (11.55)

If ϕα is a real scalar field, the quantity canonically conjugate to ϕα in the free field
case is

πα(x) = ∂Lf(x)

∂ϕ̇α(x)
= ϕ̇α(x) . (11.56)

If we now consider interactions, the canonically conjugate field is

π ′
α(x) = ∂L (x)

∂ϕ̇α(x)
= ϕ̇α(x) + ∂Lint(x)

∂ϕ̇α(x)
. (11.57)
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By the Yang–Feldman equation (6.34), the relation between the Heisenberg picture
and the interaction picture is

ϕα(x) = U(x0,−∞)−1ϕin
α (x)U(x0,−∞) , (11.58)

π ′
α(x) = U(x0,−∞)−1π in

α (x)U(x0,−∞) . (11.59)

The reason why π transforms into π ′ is that the transformation by U should not
change the canonical commutation relation. In the following, we shall drop the
superscript ‘in’ on operators in the interaction picture, and express Heisenberg
operators in bold face. Therefore, the Hamiltonian density is

HHH (x) =
∑

α

π ′
α(x)φ̇α(x) − L

(
ϕα(x), ϕ̇α(x)

)
, (11.60)

where we have assumed that a spatial derivative is a linear combination of the ϕα(x).
Then,

H (x) = U(x0,−∞)HHH (x)U(x0,−∞)−1 . (11.61)

In this computation we use the inverse transformations of (11.58) and (11.59).
Therefore,

U(x0,−∞)ϕ̇α(x)U(x0,−∞)−1 = U(x0,−∞)
[
π ′

α(x) − σα(x)
]
U(x0,−∞)−1

= πα(x) − σα(x)

= ϕ̇α(x) − σα(x) , (11.62)

where σα is defined by

σα(x) = ∂Lint(x)

∂ϕ̇α(x)
= −nμ

∂Lint(x)

∂ϕα,μ(x)
. (11.63)

Thus,

H (x) =
∑

α

πα(x)
[
πα(x) − σα(x)

] − L
(
ϕα(x), ϕ̇α(x) − σα(x)

)
. (11.64)

We use a Taylor expansion for the second term. In this case, since L includes at
most second order terms in ϕ̇α(x) and using

∂2

∂ϕ̇α∂ϕ̇β

L = δαβ ,
∂

∂ϕ̇α

L = πα + σα , (11.65)
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we obtain the following power series expansion in σ :

L (ϕα, ϕ̇α − σα) = L (ϕα, ϕ̇α) −
∑

α

σαπα − 1

2

∑

α

σ 2
α (x) . (11.66)

Inserting this into (11.64),

H (x) =
∑

α

π2
α(x) − L

(
ϕα(x), ϕ̇α(x)

) + 1

2

∑

α

σ 2
α(x) . (11.67)

Therefore,

Hint(x) = −Lint(x) + 1

2

∑

α

nμnν
∂Lint(x)

∂ϕα,μ(x)

∂Lint(x)

∂ϕα,ν(x)
. (11.68)

It turns out that the second term on the right-hand side expresses a shift from (11.51).
We now prove the equality (11.52) in this case, i.e., Matthews’ theorem. To do so,
we first specify the relation between the T-product and the normal product for the
simple neutral scalar field theory.

We expand the T-product T [AB . . . Z] into normal products in the neutral scalar
theory. In this case, we write the contraction function ΔF, replaced by λΔF, as
Tλ[AB . . . Z]. Since differentiating this with respect to λ is equivalent to contracting
ϕ(x) and ϕ(y) and multiplying by ΔF, we have

∂

∂λ
Tλ[AB . . . Z] = 1

2

∫
d4x

∫
d4y

δ

δϕ(x)
ΔF(x − y)

δ

δϕ(y)
Tλ[AB . . . Z] ,

(11.69)

where we have treated ϕ’s in the normal product as c-numbers and differentiated
with respect to them. Moreover, if we take λ = 0, then since this is exactly the same
as that with no contraction, we have

T0[AB . . . Z] = :AB . . . Z : . (11.70)

Solving the differential equation (11.69) under the initial condition (11.70) and
taking λ = 1, we find

T [AB . . . Z] = exp

[
1

2

∫
d4x

∫
d4y

δ

δϕ(x)
ΔF(x − y)

δ

δϕ(y)

]
:AB . . . Z : .

(11.71)

Next we take the vacuum expectation value of this equation. Since the expectation
value of the normal product vanishes, the right-hand side survives only if all
field operators are contracted. Thus, setting to zero the operators ϕ which are not
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contracted on the right-hand side, this gives only those contributions which appear
when all operators are contracted:

〈
0
∣
∣T [AB . . . Z]∣∣0〉 = exp

[
1

2

∫
d4x

∫
d4y

δ

δϕ(x)
ΔF(x − y)

δ

δϕ(y)

]
:AB . . . Z :

∣
∣
∣∣
ϕ=0

.

(11.72)

In fact, (11.52) is only true if no derivative of ϕ is included in AB . . . Z. This
operator appearing in the argument of the exponential function is related to the field
quantization. It tells us how to contract operators. Denoting this by D, the operation
which converts the normal product including ϕ and its derivative to the T-product is

T [AB . . . Z] = eD :AB . . . Z : . (11.73)

When the normal product includes ϕ, its derivative, and fermionic fields ψ and ψ̄ ,
we have

D = 1

2

∫
d4x

∫
d4y

{
δ

δϕ(x)
ΔF(x − y)

δ

δϕ(y)

+ 2
δ

δϕ,μ(x)

[
∂

∂xμ
ΔF(x − y)

]
δ

δϕ(y)

+ δ

δϕ,μ(x)

[
∂2

∂xμ∂yν
ΔF(x − y) − inμnνδ4(x − y)

]
δ

δϕ,ν(y)

}

+
∫

d4x

∫
d4y

δ

δψ̄β(y)
SF(x − y)αβ

δ

δψα(x)
, (11.74)

where we have used (11.49) as a contraction function. Regarding the functional
derivatives with respect to the Dirac field, the reader is referred to the caution
after (8.59). Likewise for the T∗-product,

T ∗[AB . . . Z] = eD∗ :AB . . . Z : , (11.75)

where D∗ is defined so that (11.50) applies to contractions of the ϕ derivatives
in (11.74), whence

D = D∗ + 1

2

∫
d4x

∫
d4y

δ

δϕ,μ(x)

[ − inμnνδ
4(x − y)

] δ

δϕ,ν(y)
. (11.76)

In both cases, we have treated ϕ and its derivative as independent when taking
functional derivatives.

We now choose the interaction Lagrangian density to have the form

Lint(x) = −jμ(x)∂μϕ(x) + L (0)
int (x) , (11.77)
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where L (0)
int is a term which includes no derivatives. Therefore, from (11.68),

Hint(x) = −Lint(x) + 1

2

[
nμjμ(x)

]2
. (11.78)

In order to compute the S-matrix, we consider

T exp

[
−i

∫
d4xHint(x)

]
= eD :exp

[
−i

∫
d4xHint(x)

]
:

= eD∗
eD−D∗ :exp

[
−i

∫
d4xHint(x)

]
: (11.79)

where D − D∗ is the second term on the right-hand side of (11.76). This is a
functional derivative with respect to the derivative of ϕ. Hence, this acts only on
the term jμ∂μϕ in Hint(x) which includes the derivative of ϕ. We must therefore
compute

eD−D∗ :exp

[
−i

∫
d4xjμ(x)∂μϕ(x)

]
: . (11.80)

To carry out this computation, we use

exp

(
λ

d2

dx2

)
eax = eax+a2λ . (11.81)

Generalizing this formula and using it to calculate (11.80), we find that (11.80) is
equivalent to something of the form

:exp

[
− i

∫
d4x

(
jμ(x)∂μϕ(x) − 1

2

[
nμjν(x)

]2
) ]

: . (11.82)

Therefore, (11.79) can be written in the form

T exp

[
−i

∫
d4xHint(x)

]
= eD∗ :exp

[
− i

∫
d4x

(
Hint(x) − 1

2

[
nμjν(x)

]2
)]

:

= eD∗ :exp

[
i
∫

d4xLint(x)

]
:

= T ∗ exp

[
i
∫

d4xLint(x)

]
. (11.83)
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Dividing both sides of this by the vacuum expectation value yields the S-matrix:

S = T ∗ exp
[
i
∫

d4xLint(x)
]

〈
0
∣
∣T ∗ exp

[
i
∫

d4xLint(x)
]∣∣0

〉 . (11.84)

This is known as Matthews’ theorem. Note that this holds only if derivatives of the
field operator are included linearly in (11.77).

11.5 Example of Matthews’ Theorem with Modification

In the last section, we considered a situation where Matthews’ theorem holds true
and T and Hint can be replaced by T ∗ and −Lint, respectively. In general, we
have to replace Hint by something slightly different from −Lint. We thus generalize
Matthews’ theorem to

T exp

[
−i

∫
d4xHint(x)

]
= T ∗ exp

[
i
∫

d4xLeff(x)

]
, (11.85)

whereLeff is an effective interaction Lagrangian density, which is equivalent to Lint
only when Matthews’ theorem holds true. As an example of a situation where the
theorem does not hold true, we consider the Lagrangian density

L = −1

2
Dab(ϕ)∂λϕa∂λϕb − V (ϕ) , (11.86)

where ϕa (a = 1, 2, . . . , N) are real scalar fields and Dab is a real positive-definite
matrix which is a function of ϕ. In addition, we assume that D and V do not include
derivatives of ϕ. We shall now derive the effective interaction Lagrangian density
for this theory.

When x0 = y0, the canonical commutation relations read

[
ϕa(x),ϕb(y)

] = 0 , (11.87)

[
ϕa(x), ϕ̇b(y)

] = iCab(ϕ)δ3(x − y) , (11.88)

where C is the inverse matrix of D, i.e.,

∑

b

CabDbc =
∑

b

DabCbc = δac . (11.89)
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With summing over repeated indices, the Euler–Lagrange equation gives

[L ]ϕa = Dab(�ϕb − jb) = 0 , (11.90)

ja = Cab

(
1

2

∂

∂ϕb

Dcd − ∂

∂ϕd

Dbc

)
∂λϕc∂λϕd + Cab

∂

∂ϕb

V . (11.91)

We now introduce a generating functional for the Green’s functions:

T [J ] =
〈
0
∣∣
∣T exp

[
−i

∫
d4x Ja(x)ϕa(x)

] ∣∣
∣0

〉
. (11.92)

Therefore, combining (11.90) and the equal-time commutation relation (11.88),

�x

〈
0
∣
∣T

[
ϕa(x), A, B, . . .

]∣∣0
〉 = 〈

0
∣
∣T

[
ja(x),A, B, . . .

]∣∣0
〉

(11.93)

+i
〈
0
∣
∣
∣T

[
Cac(ϕ(x))

δ

δϕb(x)
, A,B, . . .

]∣
∣
∣0

〉
+ · · · .

Expressing this in terms of the generating functional,

�x i
δ

δJa(x)
T [J ] = �x

〈
0
∣
∣∣T

[
ϕa(x), exp

(
−i

∫
d4yJc(y)ϕc(y)

)]∣
∣∣0

〉

=
〈
0
∣
∣
∣T

[
ja(x), exp

(
−i

∫
d4yJc(y)ϕc(y)

)]∣
∣
∣0

〉

+Jb(x)
〈
0
∣∣
∣T

[
Cab

(
ϕ(x)

)
, exp

(
−i

∫
d4yJc(y)ϕc(y)

)]∣∣
∣0

〉
.

(11.94)

Using T [J ], the second term on the right-hand side can be expressed as

Jb(x)Cab

(
i

δ

δJ (x)

)
T [J ] . (11.95)

In the interaction picture, considering the T-product which includes only two
derivatives of ϕ,

T
[
∂μϕ(x), ∂νϕ(y), ϕ(z), . . .

] = T ∗[∂μϕ(x), ∂νϕ(y), ϕ(z), . . .
]

(11.96)

−inμnνδ
4(x − y)T

[
ϕ(z), . . .

]
.

Noting that, in this derivation, we have only used the equal-time commutation
relations and we have not used the field equation, we can easily make the extension
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to the Heisenberg picture:

T
[
∂μϕa(x), ∂νϕb(y),ϕc(z), . . .

] = T ∗[
∂μϕa(x), ∂νϕb(y), ϕc(z), . . .

]
(11.97)

−inμnνδ4(x − y)T
[
Cab(ϕ(x)),ϕc(z), . . .

]
.

In particular, if we take y → x and μ = ν = λ, then since nλnλ = −1,

T
[
∂λϕa(x), ∂λϕb(y),ϕc(z), . . .

] = T ∗[∂λϕa(x), ∂λϕb(y),ϕc(z), . . .
]

(11.98)

+iδ4(0)T
[
Cab(ϕ(x)),ϕc(z), . . .

]
.

Using this result, the first term on the right-hand side of (11.94) can be written

〈
0
∣
∣
∣T ∗

[
ja(x), exp

(
−i

∫
d4yJc(y)ϕc(y)

) ]∣
∣
∣0

〉
(11.99)

+iδ4(0)
〈
0
∣
∣
∣T

[
Cab(x)

(
1

2

∂Dcd(x)

∂ϕb(x)
− ∂Dbc(x)

∂ϕd(x)

)
Ccd(x)

× exp

(
−i

∫
d4yJc(y)ϕc(y)

) ]∣
∣∣0

〉
,

where Cab(x) is an abbreviation for Cab(ϕ(x)), and the same goes for Dcd(x).
Thus, T [J ] satisfies

�x i
δ

δJa(x)
T [J ] =

[
ja

(
i

δ

δJ (x)

)
+ iδ4(0)Fa

(
i

δ

δJ (x)

)
+ Jb(x)Cab

(
i

δ

δJ (x)

)]
T [J ] ,

(11.100)

where

Fa

(
ϕ(x)

) = Cab

(
1

2

∂Dcd(x)

∂ϕb(x)
− ∂Dbc(x)

∂ϕd(x)

)
Ccd(x) . (11.101)

Note that we can factorize the functional derivative ja using the T∗-product.
Rewriting the third term on the right-hand side of (11.100), we have

Jb(x)Cab

(
i

δ

δJ (x)

)
= Cab

(
i

δ

δJ (x)

)
Jb(x) − iδ4(0)

∂Cab(x)

∂ϕb(x)

∣
∣
∣∣
ϕ→iδ/δJ

.

(11.102)
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Then the coefficients of iδ4(0) in (11.100) are

Fa − ∂Cab

∂ϕb

= 1

2
Cab

∂Dcd

∂ϕb

Ccd − Cab

(
∂Dbc

∂ϕd

Ccd + Dbc
∂Ccd

∂ϕd

)

= 1

2
Cab

∂

∂ϕb

ln(det D) − Cab
∂

∂ϕd

δbd

= 1

2
Cab

∂

∂ϕb

ln(det D)

= 1

2
Ga . (11.103)

Consequently, (11.100) can be written as

�x i
δ

δJa(x)
T [J ]=

[
ja

(
i

δ

δJ (x)

)
+ 1

2
iδ4(0)Ga

(
i

δ

δJ (x)

)
+ Cab

(
i

δ

δJ (x)

)
Jb(x)

]
T [J ] .

(11.104)

Multiplying this on the left by D, we obtain

Dab

(
i

δ

δJ (x)

)
�x i

δ

δJb(x)
T [J ] (11.105)

=
[
Dabjb

(
i

δ

δJ (x)

)
+ Ja(x) + 1

2
iδ4(0)

∂

∂ϕa(x)
ln

(
det D(x)

)
∣
∣
∣
∣
ϕ→iδ/δJ

]
T [J ] .

This is the equation satisfied by the generating functional T [J ].
In order to derive a Feynman–Dyson-like formula in a theory like this, we must

express the solution of the equation forT [J ] in terms of ϕ in the interaction picture.
We thus test the following quantity:

“T [J ]” =
〈
0
∣
∣∣T ∗ exp

[
i
∫

d4x
[
Lint(x) − Ja(x)ϕa(x)

]]∣
∣∣0

〉
, (11.106)

where

Lint = L + 1

2
(∂λϕa)

2 . (11.107)

To obtain the functional equation satisfied by this “T [J ]”, we begin with

“T [J ]” = exp

[
i
∫

d4xLint

(
i

δ

δJ (x)

) ]〈
0
∣
∣
∣ exp

[
−i

∫
d4xJb(x)ϕb(x)

] ∣
∣
∣0

〉

= exp

[
i
∫

d4xLint

(
i

δ

δJ (x)

) ]
exp

[
−1

2

∫
d4x

∫
d4yJb(x)ΔF(x − y)Jb(y)

]
,

(11.108)
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where we replace ϕ by iδ/δJ in Lint. For the transformation on the right-hand side,
we have used (11.72). Hence,

�x i
δ

δJa(x)
“T [J ]” = exp

[
i
∫

d4xLint

(
i

δ

δJ (x)

)]
Ja(x)

× exp

[
−1

2

∫
d4x

∫
d4yJb(x)ΔF(x − y)Jb(y)

]

= Ja(x)“T [J ]” +
[

i
∫

d4x ′Lint

(
i

δ

δJ (x ′)

)
, Ja(x)

]
“T [J ]”

= Ja(x)“T [J ]” − [Lint]ϕa

(
i

δ

δJ (x)

)
“T [J ]”

=
{
Ja(x) − Dab

(
i

δ

δJ (x)

) [
�x i

δ

δJb(x)
− jb

(
i

δ

δJ (x)

) ]

+�x i
δ

δJa(x)

}
“T [J ]” . (11.109)

Since the last term on the right-hand side is the same as the left-hand side, these
terms cancel out:

Dab

(
i

δ

δJ (x)

)
�x i

δ

δJb(x)
“T [J ]” = Dabjb

(
i

δ

δJ (x)

)
“T [J ]” + Ja(x)“T [J ]” .

(11.110)

If we replace V in this equation by

V ′ = V + i

2
δ4(0) ln(det D) , (11.111)

it coincides with (11.105). Hence, T [J ] can be obtained by replacing V by V ′ in
“T [J ]” and normalizing in such a way that it is equal to unity when J = 0. Thus,

T [J ] =
〈
0
∣
∣T ∗ exp

{
i
∫

d4x
[
Leff(ϕ(x)) − Ja(x)ϕa(x)

]}∣
∣0

〉

〈
0
∣
∣T ∗ exp

[
i
∫

d4xLeff(ϕ(x))
]∣∣0

〉 , (11.112)

where

Leff = Lint − i

2
δ4(0) ln(det D) . (11.113)

It thus turns out that, in this example, Matthews’ theorem has been modified.
The next question concerns properties of the additional term. First of all, this term

is an imaginary number and includes the divergence δ4(0). We have the following
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representation of the δ-function in the space-time coordinates:

δ4(x) = 1

(2π)4

∫
d4k eik·x → δ4(0) = 1

(2π)4

∫
d4k . (11.114)

This therefore gives a fourth-order divergence in momentum space. The imaginary
coefficient is connected with the fourth-order divergence. If we compute the closed
loop without the additional term, a fourth-order divergence comes about in this
theory. Introducing the cutoff Λ in momentum space, we obtain

∫
d4k

k2

k2 + m2 − iε
∼ π2

2
Λ4 − iπ2m2Λ2 . (11.115)

This implies that the divergences up to second order will give divergent contribu-
tions to the mass and coupling constants, as will be discussed later, but those are real
numbers. On the other hand, the fourth-order divergence implied by the equation
above, compared to the divergences up to second order, is an imaginary number.
Such a contribution cannot be removed by renormalization and breaks the unitarity.
Fortunately, the additional term mentioned above automatically cancels this fourth-
order divergence, and in this sense a safety mechanism is automatically introduced
into the theory.

Although the result mentioned above can also be derived by the path-integral
method, this gives the additional term a different interpretation. The path-integral
method produces the above result more easily than the method used here. This
implies that, since the path-integral method is based on the Lagrangian, we can
say that it is more suitable to derive the result including the Lagrangian and the
T∗-product.

11.6 Reduction Formula in the Interaction Picture

So far we have discussed the S-matrix computational method in the interaction
picture. Combining the reduction formula given in Sect. 8.3 and the Gell-Mann–
Low relation, we can also express the S-matrix elements in terms of the Green’s
function in the Heisenberg picture.

In Dyson’s formula, the interaction Hamiltonian density or Lagrangian density
appear when we express the S-matrix. We can ask ourselves whether it is possible to
derive an equation which does not depend explicitly on the form of the interaction.

For simplicity, we consider the charged scalar field and analyze the S-matrix
elements for the scattering process

a + b → b + a . (11.116)
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To do so, we expand U(∞,−∞) in normal products using Wick’s theorem and
determine the coefficient of the term

:ϕ†
aϕ

†
bϕaϕb : . (11.117)

Since this requires us to read off the normal product from U(∞,−∞) and contract
the rest, we need to calculate

〈
0
∣∣
∣

δ

δϕ
†
a(x ′

1)

δ

δϕ
†
b(x ′

2)

δ

δϕa(x1)

δ

δϕb(x2)
U(∞,−∞)

∣∣
∣0

〉
. (11.118)

Writing the final state as |a′, b′〉, the S-matrix element is given by

〈a′, b′|S − 1|a, b〉 =
∫

d4x ′
1d4x ′

2d4x1d4x2
〈
a′∣∣ϕ†

a(x
′
1)

∣
∣0

〉〈
b′∣∣ϕ†

b(x
′
2)

∣
∣0

〉

×
〈
0
∣
∣
∣

δ

δϕ
†
a(x

′
1)

δ

δϕ
†
b(x ′

2)

δ

δϕa(x1)

δ

δϕb(x2)
U(∞,−∞)

∣
∣
∣0

〉

×〈0|ϕa(x1)|a〉〈0|ϕb(x2)|b〉
〈0|U(∞,−∞)|0〉 . (11.119)

From the reduction formula, the functional derivative is given by

(�2
x − m2

a)T [ϕa(x) . . .] = i
δ

δϕ
†
a(x)

T [. . .] . (11.120)

Denoting the Klein–Gordon operator on the left-hand side by Ka
x and

using (11.120), equation (11.119) becomes

〈a′, b′|S − 1|a, b〉 = 〈0|U(∞, −∞)|0〉−1

×
∫

d4x′
1d4x′

2d4x1d4x2
〈
a′∣∣ϕ†

a(x′
1)

∣
∣0

〉〈
b′∣∣ϕ†

b (x′
2)

∣
∣0

〉

×(−i)4Ka
x′

1
Kb

x′
2
Ka

x1
Kb

x2

〈
0
∣
∣T

[
ϕa(x

′
1)ϕb(x

′
2)ϕ

†
a(x1)ϕ

†
b(x2)U(∞,−∞)

]∣∣0
〉

×〈0|ϕa(x1)|a〉〈0|ϕb(x2)|b〉 . (11.121)

Here 〈0|ϕa(x)|a〉, which we should call a one-body wave function, has the same
structure in both the interaction picture and the Heisenberg picture. The only
difference would be a proportionality coefficient. Although it is not trivial to
separate the whole Lagrangian density into the free part and the interaction part,
the expressions are equal if we use the renormalized interaction picture discussed in
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the next chapter:

〈0|ϕa(x)|a〉 = 〈0|ϕa(x)|a〉 = 1√
2p0V

eip·x . (11.122)

If we use the Gell-Mann–Low relation in this case, (11.121) can be expressed solely
in terms of quantities in the Heisenberg picture:

〈a′, b′|S − 1|a, b〉 =
∫

d4x ′
1d4x ′

2d4x1d4x2
〈
a′∣∣ϕ†

a(x
′
1)

∣
∣0

〉〈
b′∣∣ϕ†

b(x ′
2)

∣
∣0

〉

×Ka
x ′

1
Kb

x ′
2
Ka

x1
Kb

x2

〈
0
∣∣T

[
ϕa(x

′
1)ϕb(x

′
2)ϕ

†
a(x1)ϕ

†
b(x2)

]∣∣0
〉

×〈0|ϕa(x1)|a〉〈0|ϕb(x2)|b〉 . (11.123)

Unlike Dyson’s formula, in the above expression of the S-matrix element, the
explicit form of the interaction does not appear. The problem in the interaction
picture of separating the Lagrangian into the free part and the interaction part does
not arise. However, in the process of deriving this formula, we have made the
assumption (11.7), which is hard to justify. In fact, this result is justified only when
we start with the renormalized interaction picture discussed above. Thus, we have to
discuss the asymptotic conditions which lead to the above formula in the framework
of the Heisenberg picture.

11.7 Asymptotic Conditions

The derivation of the S-matrix element in the Heisenberg picture in the previous
section has been based on several assumptions. The question is whether or not
we can derive the same result from clearer assumptions. In fact, this was done
by Lehmann, Symanzik, and Zimmermann. The assumptions they made are called
asymptotic conditions [113].

In Sect. 6.3, we introduced two kinds of asymptotic field in connection with the
Yang–Feldman formalism. The asymptotic fields ϕint and ϕout for the real scalar
field ϕ satisfy

(� − m2)ϕin(x) = 0 = (� − m2)ϕout(x) , (11.124)

[
ϕin(x), ϕin(y)

] = iΔ(x − y) = [
ϕout(x), ϕout(y)

]
. (11.125)

Since these two types of scalar field are engendered by the same scalar field ϕ,
we know that ϕint and ϕout are not independent of one another. This implies that
they will not commute. Intuitively speaking, as in the case of the Yang–Feldman
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formalism,

ϕ(x) −→
{

ϕint(x) , t → −∞ ,

ϕout(x) , t → ∞ .
(11.126)

As just described, the reason why the field asymptotes to the free field when t →
±∞ is that since the particles are then far away from each other and there is no
effect from other particles, so they behave like free particles. This fact is closely
related to the issue of renormalization discussed in the next chapter, and to make
this idea more rigorous we have to express the wave function of a particle, not by a
plane wave, but by a wave packet.

We assume that some function f (x) satisfies the conditions

(� − m2)f (x) = 0 , (11.127)

− i
∫

d3x

(
f

∂f ∗

∂x0
− f ∗ ∂f

∂x0

)
= 1 . (11.128)

Then corresponding to this f , we introduce the operators

ϕf (t) = −i
∫

d3x

[
ϕ(x)

∂f ∗(x)

∂x0
− f ∗(x)

∂ϕ(x)

∂x0

]
, (11.129)

ϕ
†
f (t) = i

∫
d3x

[
ϕ(x)

∂f (x)

∂x0
− f (x)

∂ϕ(x)

∂x0

]
, (11.130)

where t = x0. We then define the corresponding asymptotic fields ϕin
f and ϕout

f by

lim
τ→−∞

(
Φ,ϕf (τ )Ψ

) = (
Φ,ϕin

f Ψ
)

, (11.131)

lim
τ→∞

(
Φ,ϕf (τ )Ψ

) = (
Φ,ϕout

f Ψ
)

. (11.132)

For both states Φ and Ψ , we can define the same asymptotic field if we start
with the normalized state vector ϕ

†
f (τ ). Note that the right-hand sides of (11.131)

and (11.132) no longer depend on the time variable. Such a limit of an operator in
the sense of the matrix element is called weak convergence, in contrast to strong
convergence defined in the sense of the norm.

Next we consider an orthogonal system of wave functions. A wave function here
is the matrix element with the vacuum of a field operator in a one-particle state. We
consider the set of functions {fα(x)} satisfying (11.127), (11.128), and the condition

− i
∫

d3x

(

fα

∂f ∗
β

∂x0
− f ∗

β

∂fα

∂x0

)

= δαβ . (11.133)



250 11 Green’s Functions

The completeness condition for this system of orthogonal functions is

∑

α

fα(x)f ∗
α (y) = iΔ(+)(x − y) . (11.134)

We now introduce the complete system of state vectors {Φ in}. Assuming that Φ0 is
the vacuum,

Φ0 ,

Φ in
α = ϕ†in

α Φ0 ,
...

Φ in
α1...αk

= (pα1...αk )
−1/2ϕ†in

α1
. . . ϕ†in

αk
Φ0 ,

(11.135)

where pα1...αk = n1!n2! . . . nr ! and n stands for the number of particles in the same
one-particle state in (α1, . . . , αk). Replacing ϕ†int by ϕ†out, we can also construct the
complete system {Φout}. The S-matrix can be defined as the unitary transformation
between these two pairs of complete orthonormal systems. It will be shown later
that this definition reproduces the S-matrix elements given in the previous section.
In the next chapter, it will be shown that it also coincides with the definition of the
S-matrix in the Lippmann–Schwinger theory, viz.,

Sβα = (Φout
β ,Φ in

α ) . (11.136)

An equivalent definition is

Φ in
α = SΦout

α . (11.137)

It is clear from the definition that, for the two asymptotic fields,

(Φ in
β , ϕin

f Φ in
α ) = (Φout

β , ϕout
f Φout

α ) . (11.138)

Combining (11.137) and (11.138),

ϕout
f = S−1ϕin

f S . (11.139)

Similarly,

ϕ
†out
f = S−1ϕ

†in
f S . (11.140)

We introduce ϕin(x) by

ϕin(x) =
∑

α

[
f ∗

α (x)ϕ†in
α + fα(x)ϕin

α

]
, (11.141)



11.7 Asymptotic Conditions 251

and define ϕout by the same equation, viz.,

ϕout(x) = S−1ϕin(x)S . (11.142)

Since the latter coincides with (6.32), we see that this is the same as the S-matrix
given previously. In relation to (11.122) in the previous section, we mentioned that
we have not distinguished whether we take the in-state or the out-state for the one-
particle state in the Heisenberg picture. This implies that, for the stable one-particle
state α, we must have

Φ in
α = Φout

α . (11.143)

Combining this with (11.122) in the previous section,

(� − m2)
(
Φ0,ϕ0Φ

in
α

) = (� − m2)
(
Φ0,ϕ0Φ

out
α

)
, (11.144)

(
Φ0,ϕ0Φ

in
α

) = (
Φ0,ϕ0Φ

out
α

) = fα(x) . (11.145)

We will discuss this requirement in the context of renormalization in the next
chapter.

Equations (11.131) and (11.132), together with the assumption of the existence
of the asymptotic field, are called asymptotic conditions. Starting from these
conditions, we will derive the LSZ reduction formula in the Heisenberg picture,
or as they called it, the magic formula (Zauberformel) [113]. We introduce a more
concise notation:

T (x1, . . . , xn) = T [ϕ(x1) . . .ϕ(xn)] , (11.146)

τ (x1, . . . , xn) = (
Φ0, T [ϕ(x1) . . .ϕ(xn)]Φ0

)
, (11.147)

Ky = �y − m2 , f

←→
∂

∂x
g = f

∂g

∂x
− ∂f

∂x
g . (11.148)

To begin with, we prove the following equation:

(
Φ0, T (x1, . . . , xn)Φ

in
α

) = −i
∫

d4yfα(y)Kyτ(x1, . . . , xn, y) . (11.149)

The left-hand side is

LHS = lim
y0→−∞ i

∫
d3y

(
Φ0, T (x1, . . . , xn, y)Φ0

)←→
∂

∂y0
fα(y)

= i lim
y0→−∞

∫
d3y τ(x1, . . . , xn, y)

←→
∂

∂y0
fα(y) . (11.150)
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Noting that ϕout
α is an annihilation operator, in the limit y0 → ∞, we have

i lim
y0→∞

∫
d3y τ(x1, . . . , xn, y)

←→
∂

∂y0
fα(y) = (

Φ0, ϕ
†out
α T (x1, . . . , xn)Φ0

)

= (
ϕout

α Φ0, T (x1, . . . , xn)Φ0
) = 0 .

(11.151)

Taking the difference between the two equations above,

(
Φ0, T (x1, . . . , xn)Φin

0
)

= i( lim
y0→−∞ − lim

y0→∞)

∫
d3y τ(x1, . . . , xn, y)

←→
∂

∂y0
fα(y)

= −i
∫

d4y
∂

∂y0

[
τ(x1, . . . , xn, y)

←→
∂

∂y0
fα(y)

]

= −i
∫

d4y

[
τ(x1, . . . , xn, y)

∂2fα(y)

∂y2
0

− ∂2τ(x1, . . . , xn, y)

∂y2
0

fα(y)

]
.

(11.152)

We combine this with Green’s theorem:
∫

V

d3y
[
τ(x1, . . . , xn, y) · Δyfα(y) − Δyτ(x1, . . . , xn, y) · fα(y)

]

=
∫

S=∂V

dS

[
τ(x1, . . . , xn, y) · ∂

∂yn

fα(y) − ∂

∂yn

τ(x1, . . . , xn, y) · fα(y)

]

→ 0 , ∂V → ∞ . (11.153)

Here, we use the fact that, since fα(y) is a wave packet and corresponds to a local
wave, it vanishes at a long range. Therefore, combining (11.152) with (11.153),

(
Φ0, T (x1, . . . , xn)Φ

in
α

)

= i
∫

d4y
[
τ(x1, . . . , xn, y) · �yfα(y) − �yτ(x1, . . . , xn, y) · fα(y)

]

= −i
∫

d4y fα(y)Kyτ(x1, . . . , xn, y) , (11.154)

where we have used Kyfα(y) = 0. The generalization of this equation is

(
Φ0, T (x1, . . . , xn)Φ in

α1 ...αk

) = (−i)k
∫

d4y1 . . . d4ykfα1 (y1) . . . fαk
(yk)Ky1 . . . Kyk

× τ(x1, . . . , xn, y1, . . . , yk)
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Generalizing further, we obtain

(
Φout

α , T (x1, . . . , xn)Φ
in
β

) = −i
∫

d4ηfβl (η)Kη

(
Φout

α , T (x1, . . . , xn, η)Φ in
β1...βl−1

)

= −i
∫

d4ζf ∗
αk

(ζ )Kζ

(
Φout

α1...αk−1
, T (x1, . . . , xn, ζ )Φ in

β

)
,

(11.155)

where α = α1 . . . αk , β = β1 . . . βl . We have assumed that there is no common one-
particle state between α and β. Under a similar assumption, the S-matrix element
becomes

Sαβ = (Φout
α ,Φ in

β )

= (−1)k+l

∫
d4ζ1 . . . d4ζkd4η1 . . . d4ηlf

∗
α1

(ζ1) . . . f ∗
αk

(ζk)

× fβ1(η1) . . . fβl (ηl)Kζ1 . . .KζkKη1 . . .Kηl τ (ζ1 . . . ζkη1 . . . ηl) .

(11.156)

What we understand from this is that, when k = l = 2, the above expression is
basically the same as (11.123).

Although we considered the matrix element in the above derivation, it also holds
true for the operator, i.e.,

−i
∫

d4y fα(y)KyT (x1, . . . , xn, y) = T (x1, . . . , xn)ϕ
†in
α − ϕ†out

α T (x1, . . . , xn) ,

(11.157)

and

i
∫

d4y f ∗
α (y)KyT (x1, . . . , xn, y) = T (x1, . . . , xn)ϕ

in
α − ϕout

α T (x1, . . . , xn) .

(11.158)

Combining (11.134) and (4.18),

∫
d4y Δ(y − x)KyT (x1, . . . , xn, y) = T (x1, . . . , xn)ϕin(x) − ϕout(x)T (x1, . . . , xn) .

(11.159)

This is the operator form of the LSZ reduction formula, which corresponds
to (11.120). Putting together

Sϕout(x) = ϕin(x)S (11.160)
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and (11.159),

∫
d4yΔ(y − x)KyST (x1, . . . , xn, y) = [

ST (x1, . . . , xn), ϕ
in(x)

]
, (11.161)

∫
d4yΔ(x − y)KyST (x1, . . . , xn, y) = [

ϕin(x), ST (x1, . . . , xn)
]

. (11.161′)

Using the above recursively,

∫
d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)Ky1 . . . Kyl ST (x1, . . . , xn, y1, . . . , yl)

= [ϕin(z1), [ϕin(z2), [. . . [ϕin(zl), ST (x1, . . . , xn)] . . .] .

(11.162)

Taking the vacuum expectation value of this and using one of the renormalization
conditions mentioned in the next chapter, viz.,

SΦ0 = Φ0 , (11.163)

we obtain
∫

d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)Ky1 . . . Kyl τ (x1, . . . , xn, y1, . . . , yl )

= (
Φ0, [ϕint(z1), [ϕin(z2), [. . . [ϕin(zl), ST (x1, . . . , xn)] . . .]Φ0

)
.

(11.164)

For n = 0,

∫
d4y1 . . . d4ylΔ(z1 − y1) . . .Δ(zl − yl)Ky1 . . .Kyl τ (y1, . . . , yl) (11.165)

= (
Φ0, [ϕint(z1), [ϕin(z2), [. . . [ϕin(zl), S] . . .]Φ0

)
.

The operator form of the S-matrix is determined by (11.165). Expanding the S-
matrix in the normal product form based on Wick’s theorem, we have

S =
∞∑

l=0

1

l!
∫

d4y1 . . . d4ylc(y1, . . . , yl) :ϕin(y1) . . . ϕin(yl) : , (11.166)

where we have assumed that c is symmetric with respect to y1, y2, . . . , yl . When
we insert (11.166) into (11.165), what is left on the right-hand side is only the term
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including the normal ordered product of l operators, whence

(Φ0, [ϕin(z1), [. . . [ϕin(zl), S] . . .]Φ0)

= il
∫

d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)c(y1, . . . , yl)

=
∫

d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)Ky1 . . . Kyl τ (y1, . . . , yl) .

(11.167)

Then c can be determined uniquely from (11.167), at least on the mass shell, i.e.,
for the Fourier components satisfying the Einstein energy–momentum dispersion
relation. Moreover, since only the value of c on the mass shell contributes
to (11.166),

c(y1, . . . , yl) = (−i)lKy1 . . .Kyl τ (y1, . . . , yl) . (11.168)

Substituting this into (11.166),

S =
∞∑

l=0

∫
d4y1 . . . d4ylKy1 . . .Kyl τ (y1, . . . , yl) :ϕin(y1) . . . ϕin(yl) : ,

(11.169)

where we have assumed that the term corresponding to l = 0 is equal to unity. This
is the operator form of the S-matrix. In addition, going back to (11.164), we have

ST (x1, . . . , xn) =
∞∑

l=0

(−i)l

l!
∫

d4y1 . . . d4ylKy1 . . .Kyl
τ (x1, . . . , xn, y1, . . . , yl )

× :ϕin(y1) . . . ϕin(yl ) : . (11.170)

As just described, many reduction formulae can be obtained from the asymptotic
conditions. Indeed, the last formula effectively defines the quantization method for
fields.

11.8 Unitarity Condition on the Green’s Function

The unitarity of the S-matrix is obvious as long as the S-matrix element is defined
by (11.136) as a transition matrix between two complete orthonormal systems {Φ in}
and {Φout}. When the asymptotic states form complete systems like this, we speak
of asymptotic completeness. In this section, we extend the unitarity of the S-matrix
from unitarity on the mass shell to unitarity off the mass shell. This can be expressed
by the unitarity condition for the Green’s functions.
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To begin with, we consider the operator

T exp

[
− i exp

∫
d4xJ (x)ϕ(x)

]
. (11.171)

This operator is unitary, and denoting the operator for inverse time-ordering by T̃ ,

T exp

[
− i

∫
d4x J (x)ϕ(x)

]
T̃ exp

[
i
∫

d4yJ (y)ϕ(y)

]
= 1 . (11.172)

Functionally differentiating this equation n times with respect to J and subsequently
setting J = 0,

∑

comb

(−i)kin−kT (x ′
1, . . . , x

′
k)T̃ (x ′

k+1, . . . , x
′
n) = 0 , (11.173)

where (x ′
1, . . . , x

′
n) is a permutation of (x1, . . . , xn) and we sum over all ways of

dividing a set of n variables into two complementary subsets. We take the vacuum
expectation value of this equation. Inserting the complete system {Φ in} between T

and T̃ , we use the equation

(
Φ0, T (x1, . . . , xk)Φ

in
α1...αl

) = (−i)l
∫

d4u1 . . . d4ulfα1(u1) . . . fαl (ul)

× Ku1 . . .Kul τ (x1, . . . , xk, u1, . . . , ul)

(11.174)

and its complex conjugate

(
Φ in

α1...αl
, T̃ (x1, . . . , xk)Φ0

) = il
∫

d4v1 . . . d4vlf
∗
α1

(v1) . . . f ∗
αl

(vl )

× Kv1 . . . Kvl
τ (xk+1, . . . , xn, v1, . . . , vl).

(11.175)

Then using (11.134), we sum over intermediate states. We use the notation

τ̄ (x1, . . . , xn) = (−i)nKx1 . . .Kxnτ (x1, . . . , xn) . (11.176)
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The Fourier transformation is the S-matrix element itself if all momenta are on the
mass shell. Rewriting the expectation value of (11.173),

0 = τ̄ (x1, . . . , xn) + τ̄ ∗(x1, . . . , xn) (11.177)

+
∑

comb

′ ∞∑

l=0

il

l!
∫

d4u1 . . . d4uld4v1 . . . d4vl τ̄ (x ′
1, . . . , x

′
k, u1, . . . , ul)

× Δ(+)(u1 − v1) . . .Δ(+)(ul − vl)τ̄
∗(x ′

k+1, . . . , x
′
n, v1, . . . , vl ) ,

where l! in the denominator is a factor introduced to ensure that we do not count the
same state more than once, and the prime on

∑′ indicates that we neglect k = 0 and
k = n. Restricting all momenta to the mass shell in the Fourier transformation of
this equation, it becomes the condition for unitarity. Hence, when the momenta lie
outside the mass shell, the Fourier transformation can be taken as its generalization.
We call (11.177) the generalized unitarity condition. In fact, it should be obvious
from the following discussion that (11.177) yields the unitarity condition for the
S-matrix on the mass shell. Using

S = 1 +
∞∑

l=1

1

l!
∫

d4x1 . . . d4xlτ̄ (x1, . . . , xl) :ϕin(x1) . . . ϕin(xl) : , (11.178)

S† = 1 +
∞∑

l=1

1

l!
∫

d4x1 . . . d4xlτ̄
∗(x1, . . . , xl) :ϕin(x1) . . . ϕin(xl) : , (11.179)

we expand SS† as a sum of normal products:

:ϕin(x1) . . . ϕin(xl) : :ϕin(y1) . . . ϕin(ym) :
= :ϕin(x1) . . . ϕin(xl)ϕ

in(y1) . . . ϕin(ym) :
+

∑

comb

iΔ(+)(x ′
1 − y ′

1) :ϕin(x ′
2) . . . ϕin(x ′

l )ϕ
in(y ′

2) . . . ϕin(y ′
m) :

+ (terms with two or more contractions). (11.180)

Therefore, looking at the coefficients of each of the normal products, we see that

:ϕin(x1) . . . ϕin(xn) :

is equal to the right-hand side of (11.177). Thus,

SS† = 1 . (11.181)
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Similarly,

S†S = 1 , (11.182)

using (11.177) with τ replaced by τ ∗. As claimed, the unitarity for the S-matrix and
for Green’s function are consequences of asymptotic completeness.

In the above, we considered the T-product of the Heisenberg operator. Next,
we introduce the Green’s functions based on the retarded product, introduced in
Sect. 6.2.

11.9 Retarded Green’s Functions

If A(x) is a local field, its retarded product is defined by

R[A(x) : ϕ(x1) . . .ϕ(xn)] (11.183)

= (−i)n
∑

p

θ(x − x ′
1) . . . θ(x ′

n−1 − x ′
n)

[
. . . [A(x),ϕ(x ′

1)] . . .ϕ(x ′
n)

]
,

where θ(x) stands for θ(x0), with x ′
1, . . . , x

′
n a permutation of x1, . . . , xn and

summation over all permutations. The only permutations to contribute are those
satisfying x ′

1 > x ′
2 > . . . > x ′

n for the time variables. We introduce the unitary
operator (11.171), denoting it by U :

U = T exp

[
−i

∫
d4x J (x)ϕ(x)

]
. (11.184)

Therefore,

U−1 = U† = T̃ exp

[
i
∫

d4x J (x)ϕ(x)

]
. (11.185)

We now introduce the generating functional

AR[x, J ] = U†T [UA(x)] . (11.186)

Therefore, it is easy to check that the R-product above can be expressed by

R[A(x) : ϕ(x1) . . .ϕ(xn)] = δnAR[x, J ]
δJ (x1) . . . δJ (xn)

∣
∣∣
∣
J=0

. (11.187)
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Directly from the definition,

δ

δJ (y)
AR[x, J ] = −iθ(x − y)

[
AR[x, J ], ϕR[y, J ]] . (11.188)

In particular, taking A = ϕ, we have

δ

δJ (y)
ϕR[x, J ] − δ

δJ (x)
ϕR[y, J ] + i

[
ϕR[x, J ], ϕR[y, J ]] = 0 . (11.189)

This is called a unitarity condition. It corresponds to (11.173) in the case of the T-
product. In addition, functionally differentiating AR a total of n times with respect
to J ,

R[A(x) : ϕ(x1) . . . ϕ(xn)] (11.190)

=
∑

comb

ikT̃
[
ϕ(x ′

1) . . . ϕ(x ′
k)

]
(−i)n−kT

[
ϕ(x ′

k+1) . . . ϕ(x ′
n)A(x)

]
.

Then taking the Hermitian conjugate of the reduction formula for the T-product,
viz.,

∫
d4yΔ(x − y)KyST (x1, . . . , xn, y) = [

ϕint(x), ST (x1, . . . , xn)
]

, (11.191)

we obtain
∫

d4yΔ(x − y)KyT̃ (x1, . . . , xn, y)S† = −[
ϕint(x), T̃ (x1, . . . , xn)S

†] .

(11.192)

Combining the three equations above,

∫
d4yΔ(x − y)KyR(w : x1, . . . , xn, y) = −i

[
ϕint(x), R(w : x1, . . . , xn)

]
,

(11.193)

where

R(w : x1, . . . , xn, y) = R
[
A(w) : ϕ(x1) . . . ϕ(xn)

]
. (11.194)



260 11 Green’s Functions

Then using (11.193) iteratively,

∫
d4y1 . . . d4ylΔ(z1 − y1) . . .Δ(zl − yl)Ky1 . . .Kyl R(w : x1, . . . , xn, y1, . . . , yl)

= (−i)l[ϕin(z1),
[
. . . [ϕin(zl), R(w : x1, . . . , xn)] . . .

]
.

(11.195)

We now expand R as a sum of normal products:

R(w : x1, . . . , xn) =
∞∑

l=0

1

l!
∫

d4y1 . . . d4ylf (w : x1, . . . , xn, y1, . . . , yl) :ϕin(y1) . . . ϕin(yl ) : ,

(11.196)

where we have assumed that f is a symmetric function with respect to y1, . . . , yl .
Inserting this into (11.195) and taking the vacuum expectation value,

(−i)l
(
Φ0, [ϕin(z1), [. . . [ϕin(zl), R(w : x1, . . . , xn)] . . .]Φ0

)
(11.197)

=
∫

d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)f (w : x1, . . . , xn, y1, . . . , yl) .

However, from (11.195), the right-hand side is equivalent to

∫
d4y1 . . . d4ylΔ(z1 − y1) . . .Δ(zl − yl)r(w : x1, . . . , xn, y1, . . . , yl) ,

(11.198)

where

r(w : x1, . . . , xn, y1, . . . , yl) = Kx1 . . .Kxn(Φ0, R(w : x1, . . . , xn)Φ0) .

(11.199)

Thus, if the momenta corresponding to y1, . . . , yl are on the mass shell,

f (w : x1, . . . , xn, y1, . . . , yl) = r(w : x1, . . . , xn, y1, . . . , yl) . (11.200)

Since only those on the mass shell exert any influence,

R(w : x1, . . . , xn) (11.201)

=
∞∑

l=0

1

l!
∫

d4y1 . . . d4ylr(w : x1, . . . , xn, y1, . . . , yl ) :ϕin(y1) . . . ϕin(yl) : .



11.9 Retarded Green’s Functions 261

In particular, for n = 0,

A(w) =
∞∑

l=0

1

l!
∫

d4y1 . . . d4ylr(w : y1, . . . , yl) :ϕin(y1) . . . ϕin(yl) : .

(11.202)

Moreover, if we take A = ϕ, then when (Φ0,ϕ(x)Φ0) = 0, we have

ϕ(x) = ϕin(x) +
∞∑

l=2

1

l!
∫

d4y1 . . . d4ylr(x : y1, . . . , yl) :ϕin(y1) . . . ϕ(yl) : .

(11.203)

This gives the formal solution to the Yang–Feldman equation introduced in Sect. 6.3.
In addition, from (11.189),

R(x : y, x1, . . . , xn) − R(y : x, x1, . . . , xn) (11.204)

+ i
∑

comb

[
R(x : x′

1, . . . , x
′
k), R(y : x′

k+1, . . . , x′
n)

] = 0 .

Taking the vacuum expectation value of this equation and using the reduction
formula obtained by inserting the complete system {Φ in}, we obtain a non-linear
equation for the system (Φ0, R(x : x1, . . . , xn)Φ0). This is also one of the
generalized unitarity conditions.

Both the in- and the out-states appear in the reduction formula for the T-product,
while only the in-states appear in the R-products.
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