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Foreword

In the Preface, Professors Masud Chaichian and Anca Tureanu describe in vivid
detail how the English version of this book on quantum field theory by the great
Japanese physicist Kazuhiko Nishijma evolved as a labor of love on their parts.
Nishijima enjoyed visiting Helsinki and Finland (Who doesn’t? I certainly do.)
regularly and was often seen consulting a physics book in Japanese, of which
he was actually the author. (I can tell you from personal experience that authors
like to read their own books; I certainly find my books ridiculously clear and
easy to understand.) Chaichian and Tureanu urged Nishijima to have the book
translated into English. After Nishijima’s death in 2009, they found a translator,
had it proofread, improved the English, arranged for a publisher, and invited one of
the most eminent theoretical physicists of our times, Professor Yoichiro Nambu, to
write a Foreword.

After Nambu’s untimely death in 2015, they asked me to step in, perhaps because
I have also written a textbook on quantum field theory. Any reader qualified to read
this book knows full well that I am far from the level of achievements attained
by Yoichiro Nambu, for whom I have the greatest admiration as a person and
as a physicist. Nevertheless, out of respect for Nishijma, Nambu, Chaichian, and
Tureanu, I agreed to do so.

I believe that Dick Feynman said that learning physics is something like painting
a house. (In case you have no experience painting houses, one coat is never
enough. Only the most shoddy house painters would do that.) John Wheeler told
me something similar: one should not imbibe physics like sipping water from a cup,
but more like drinking from a fire hydrant. Anybody who tells you that he or she
could learn quantum field theory by reading a single textbook is not only kidding
you, but also himself or herself. During my four years in graduate school, I attended
Julian Schwinger’s course on quantum field theory four times, not because I was
especially stupid, but because quantum field theory is a profound subject. In this
spirit, I strongly urge students, and also physics professors who claim that they
understand quantum field theory, to read this book in addition to whatever other
books they have read or possibly in parallel with other books they are reading. I
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vi Foreword

also find that this book treats some topics that are not discussed in detail, or omitted
entirely, in more recent books on quantum field theory.

Santa Barbara, CA, USA Anthony Zee
July 2022



Preface to the English Edition

During several years of our collaboration with Prof. Kazuhiko Nishijma, we had
noticed that always he was carrying a book in Japanese, which he consulted from
time to time on different subjects. Prof. Nishijima used to visit us at the University
of Helsinki regularly in the years 1985–2008. During one of his visits, he finally
left a copy of that book with us in Helsinki to keep it for him for his future use.
Not knowing which book it was, we asked about it and he explained that it was a
book on Quantum Field Theory he had written. Upon our question whether it will
be translated into English, Prof. Nishijima said that it was his wish to translate the
book himself.

After Prof. Nishijima passed away in Tokyo on 15 February 2009, the book
and Prof. Nishijima’s wish sadly came to our mind and we reached a wishful
thought of getting the book by all means translated into English as a tribute to Prof.
Nishijima. Prof. Yoichiro Nambu, the 2008 laureate of the Nobel Prize in Physics,
knew Prof. Nishijima very well and in the early 1960’s was nominating him for
the Nobel Prize for the discovery of the strangeness quantum number. Knowing
this, we discussed the plan with Prof. Nambu, and he supported the idea with great
enthusiasm, mentioning that he knew the book well and that he would like to write a
foreword for its English edition. However, he also mentioned about the well-known
difficulty of translating from Japanese to any other language of any group of English
kind, and that it was for this reason that Nishijima wanted to translate his book
himself.

We contacted Springer-Verlag about publishing the translated book and they
consulted Prof. Nambu for a review. Prof. Nambu wrote a very strong evaluation,
mentioning the transparency of the book and, in several parts, the originality of the
presentations of the subject. The next task was to find a person who could translate
the book, being a physicist with a good grasp of English, especially as regards the
terminology used in the book. It was only thanks to the efforts of Prof. Nambu, who
advertised the project in Japan, asking for volunteers, that a translator was found.
Eventually, a young researcher in particle physics at Nagoya University, Dr. Yuki
Sato, wrote to us mentioning that he would like to take the task merely as a sign of
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viii Preface to the English Edition

respect to Prof. Nishijima, one of Japan’s greatest physicists who made significant
contributions to theoretical physics.

The translation of the book by Dr. Yuki Sato, together with us the undersigned
as editors going through it and checking the text and all the formulas again and
again, as well as adding the reference list, took a few years and meanwhile Prof.
Nambu passed away. Instead, Prof. Anthony Zee from University of California,
Santa Barbara, most kindly accepted to write the foreword for the book.

After the translation of the book, another professional native English translator
and a physicist by education, Mr. Stephen Lyle, went through the whole translated
text and performed a more complete polishing of the text into a fine English
language. We express our utmost thanks to Mr. Stephen Lyle for his devotion to
perfection. We would like to thank Dr. Ramon Khanna, executive editor, and Ms.
Christina Fehling, editorial assistant, at Springer Nature for their kind support and
advice during the whole publication process, and also for their unlimited patience
with several delays in our preparing the English edition of the book to send for print,
with the aim that it will become a genuine tribute to Prof. Nishijima.

During the preparation of the English edition of the book we have received the
encouragement of several physicists in Japan, to whom we are most grateful. Our
special gratitude goes to Prof. Misao Sasaki from Kyoto University, and Prof. Kei-
Ichi Kondo from Chiba University, for their constant support and much help during
several years.

Helsinki, Finland Moshe M. Chaichian
July 2022 Anca Tureanu



Preface of the Author

One of the important concepts in quantum mechanics is the dual particle-wave
nature of matter. The same object is treated as a particle in one case and as a wave
in another case, which is not the case in classical physics. This was one of the
launch pads of quantum mechanics. Its typical example is light: in classical physics
it was mainly described by the wave theory, although there existed also Newton’s
particle theory. However, once Einstein’s photon hypothesis was proposed at the
beginning of this century,1 one could no longer claim that light is a wave or a
particle. In this way quantum mechanics made its appearance. In its framework,
the electron, which is thoroughly treated as a particle in the classical theory, is
always described as a wave. With that the following problem comes up: How can
we introduce the particle-wave duality in the same theory? Quantum field theory
answers this question.

Quantum field theory was developed no later than the birth of quantum mechan-
ics. It has experienced many changes up to the present. In the early stage, studies
were entirely restricted to the area of electrodynamics, and turned out to be quite
successful. Nevertheless, early quantum field theory reached a deadlock called the
problem of divergences. However, with the advent of the renormalisation theory
after the war, quantum electrodynamics based on perturbation theory reached com-
pletion. On the other hand, after pions were created by accelerators, the struggles
of field theory started again. The reasons was that the perturbative approach can not
be used for strong interactions, and one encountered the difficulty of extending the
renormalisation theory to an approximation method beyond the perturbation theory.
As a consequence, field theory was stagnant for a while; instead, the S-matrix theory
based on dispersion relations became pre-eminent. In addition, after hundreds of
“elementary” particles were created by accelerators, it became necessary to answer
the question: What on earth are fundamental particles? And this is how the quark

This is the only Preface written by Prof. Nishijima in Japanese to the 1st edition published in 1987
in Tokyo; the 8th edition with extended chapters was published in 1997 in Tokyo.
1 “This century” means the twentieth century.
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x Preface of the Author

model appeared. On the other hand, from the studies of weak interactions, gauge
theories were introduced. This book covers a survey of quantum field theory related
to the developments above.

After the emergence of the gauge theory, there have been quite many devel-
opments toward new directions. For example, the study of monopoles, solitons,
and instantons related to the topological nature of classical gauge theories; lattice
gauge theory, in which gauge invariance is given the leading role to the detriment
of Lorentz invariance; applications of grand unified theories to cosmology; more
recently, supersymmetric theories, supergravity theories and superstring theories,
and so on. These theories are developing; each of them is sufficiently vast already
as to require an independent book. I myself do not yet understand them very well,
so that I have omitted them in this book, considering that more adequate people will
write about them.

Although I published “Fundamental Particles” (1963) [1] and “Fields and Parti-
cles” (1969) [2] with the W.A. Benjamin Corporation as text books for elementary
particle theory and quantum field theory, the contents of those books are by now
outdated, and the topics to be emphasized have also changed in time. However, as
fas as the fundamentally invariable parts are concerned, this book is based on the
two books above. Additionally, since I have had a reluctance to write a book in
the Mathematical Library in ignorance of mathematics, I have decided to write the
book based not on the mathematical logic but on the physical logic, on the advice
of Professor Seizo Ito. It has been long time since the request to write this book, but
Professor Ito has patiently waited, and I would like to express my appreciation for
him.

In the 61 year of the Showa era (1986), at Rakuhoku,

Tokyo, Japan Kazuhiko Nishijima
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Chapter 1
Elementary Particle Theory
and Field Theory

In a broad sense, field theory can be defined as quantum mechanics with infinite
degrees of freedom. This broad definition includes condensed matter physics, which
treats non-relativistic many-body problems. However, in this textbook, we discuss
the formalism of field theory in a narrow sense, namely, in the framework of
relativistic quantum mechanics. The objects of field theory in this narrow sense
are the so-called elementary particles, and the academic discipline that studies
the properties of elementary particles is called elementary particle theory. In a
way, we can thus say that field theory provides a “grammar” for describing the
properties of elementary particles. Since the two theories were developed together,
they cannot be clearly separated. Elementary particle theory is concerned with the
types of elementary particles that can exist and the types of interactions that they
undergo. In each case, there is a phenomenological level and a fundamental level.
For instance, atoms, which had been thought to be indivisible, in fact consist of
atomic nuclei and electrons, while the atomic nuclei themselves consist of protons
and neutrons. Thus, the solution to the problem of what the truly fundamental
particles are has changed over time. Correspondingly, the solution to the problem of
what the fundamental interactions are has also changed. We do not know if there will
ever be an end to the changing viewpoints. However, what has been established so
far is that particles called quarks and leptons seem to be the fundamental particles,
while the fundamental interactions are assumed to be gauge interactions. We will
discuss later how concepts such as quarks and gauge interactions arised. For now,
we shall just give an overview of the developments of elementary particle theory at
the phenomenological level.

The concept of field is a generic one used to refer to dynamical variables
defined at each point in space. Examples of fields in macroscopic physics are the
temperature and the product of the density and the stream velocity of a fluid.
In microphysics, only very few such dynamical variables actually survive at the
classical level, and perhaps the only candidate is the electromagnetic field. After
the birth of quantum mechanics a crucial question was how to apply quantum
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2 1 Elementary Particle Theory and Field Theory

mechanics to the electromagnetic field. As mentioned in the foreword, although
light is described classically as an electromagnetic wave, at the microscopic level,
it also exhibits particle-like features, as expressed in Einstein’s photon hypothesis.
Therefore, it is essential that the quantum mechanical description of the electromag-
netic field should contain such particle-like characteristics. This line of research
was pursued by Dirac in [3]. In 1928, Dirac [4] also rewrote the non-relativistic
Schrödinger equation as a relativistic equation. This led to the development of
quantum electrodynamics. In 1928, Heisenberg and Pauli [5, 6] formulated quantum
electrodynamics in a systematic way, and this provided the starting point for field
theory.

Dirac’s relativistic theory of electrons predicted the existence of a positron, the
antiparticle of the electron. Its existence was confirmed by Anderson in 1932 [7].
Similarly, the existence of the anti-proton, the antiparticle of the proton, was also
expected. However, we had to wait until 1955 for confirmation of its existence
[8]. On the other hand, again in nuclear physics, the discovery of the neutron by
Chadwick in [9, 10] was of fundamental importance, leading to the picture of atomic
nuclei consisting of protons and neutrons. Yet, the birth of elementary particle
theory originated in Yukawa’s meson theory.

1.1 Classification of Interactions and Yukawa’s Theory

Current theories such as grand unified theories or the theory of supergravity start
by recognizing that there exist a variety of interactions with different strengths.
Among these interactions, the best known, apart from gravity, is the electromagnetic
interaction which, as mentioned before, has been studied since the birth of quantum
mechanics. However, from the early days it was known that there were lots of
phenomena that could not be explained by the electromagnetic interaction alone.
Beta-decay is an example. The lifetime of a radioactive atomic nucleus is longer than
that of states excited electromagnetically. This implies that the interaction causing
beta-decay is much weaker than the electromagnetic interaction. In fact, in order
to explain the continuous energy spectrum of electrons emitted in beta-decay, Pauli
introduced the neutrino hypothesis [11, 12]. Pauli had a very convenient excuse
for proposing such a new particle, namely, saving the conservation laws of energy,
momentum, and angular momentum.

Fermi substantiated Pauli’s suggestion by proposing the four-fermion interaction
[13] to describe beta-decay in field theory. This was the second interaction discov-
ered after the electromagnetic interaction. It meant that field theory now had to deal
with electromagnetic and weak interactions.

After the detection of the neutron in 1932 [9, 10], it gradually became clear
that an atomic nucleus consists of protons and neutrons. It was now essential to
understand the nature of the so-called nuclear force binding protons and neutrons to
form atomic nuclei. Since the neutron is electrically neutral, the nuclear force cannot
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Table 1.1 Elementary
particles and their interactions

Elementary particles Interactions

ν Weak

e Weak + electromagnetic

n, p Weak + electromagnetic + strong

γ Electromagnetic (carrier)

be the electromagnetic force. Just after the proposal of Fermi’s theory, Ivanenko and
Tamm calculated the nuclear force by assuming that it was produced by exchange
of an electron–neutrino pair via Fermi’s interaction [14–16]. It turned out that the
calculated force was too weak to be at the origin of the nuclear force.

Consequently, the nuclear force had to be of an entirely different kind from
the electromagnetic and the weak interactions. It was also understood that various
particles have their own roles and take part only in certain interactions. This is
shown in Table 1.1. The symbols for the fundamental particles are ν (neutrino), e
(electron), n (neutron), p (proton), and γ (photon), while “weak”, “electromagnetic”,
and “strong” stand for the weak interaction, the electromagnetic interaction, and the
strong interaction (the nuclear force), respectively. The proton and the neutron are
collectively dubbed nucleons in the sense of elements of an atomic nucleus.

In 1935, Yukawa put forward the meson theory, reflecting the principle that all
forces are mediated by fields [17]. Since the electromagnetic interaction is mediated
by the electromagnetic field, the strong interaction and the weak interaction must be
mediated by fields, too. Hence, Yukawa introduced the meson field as the mediator
of the strong interaction. Just as quantizing the electromagnetic field yields the light
quantum (photon), it turns out that quantizing any field yields corresponding quanta
describing their particle-like aspects. The quantum corresponding to the meson
field is an elementary particle called a meson. One of Yukawa’s most important
contributions is that he clarified the relationship between the mass of a quantum
and the range of action of a force. In general, the range of a force mediated by
some field is given by the Compton wavelength of its quantum. For instance, the
range of the electromagnetic interaction mediated by a massless photon is infinite.
Since the quantum of the meson field mediates the nuclear force with a range of
around 10−13 cm, the meson mass must be about 200 times heavier than the electron
mass. This mass is midway between the nucleon and electron masses, hence the
name meson. Moreover, from a phenomenological standpoint, the quantum of the
field mediating the weak interaction described by Fermi’s model at a single point
must be very massive. Yukawa thought that both the strong nuclear force and the
weak interaction might be mediated by the meson field. Shortly afterwards, Klein
suggested that a different field should be introduced for the weak interaction [18].
In any case, at that time, such ideas were mere hypotheses. In order to prove them,
mesons had to be produced. However, since no accelerator had enough energy to
create them, the only way to detect them was by studying cosmic rays. Historically,
Yukawa’s particle was discovered after some bumps and detours.
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1.2 The Muon as the First Member of the Second Generation

Theorists predict the existence of experimentally unknown particles, while exper-
imentalists detect sometimes particles which theorists have not predicted. The
relation between Yukawa’s particle and the muon can be described in this way. Using
a modern term, we can say that the world surrounding us consists of elementary
particles of the first generation. This is because elementary particles of the second
generation are in general unstable, except for the neutrino. Thus, the discoveries
of elementary particles of the second generation always gave rise to confusion.
Elementary particles such as the muon, the strange quark, and the charm quark are
in the second generation. The muon was discovered first.

In 1937, a particle with mass about 100 MeV, the muon, was detected in cosmic
rays [19]. For almost a decade afterwards, this particle was thought to be Yukawa’s
particle.

In 1945, Conversi, Pancini, and Piccioni found that the interaction between the
muon and an atomic nucleus was almost as strong as the interaction involved in
the muon’s weak decay [20], whence they were of a similar (weak) nature. One
consequence of this discovery was that the muon and Yukawa’s particle, the pion,
had to be different particles. One year later, Powell’s group observed the following
two-step decay process [21] on a photographic plate:

π+ → μ+ + ν , μ+ → e+ + ν+ ν .

Here π, μ, and ν stand for the pion, the muon, and the neutrino, respectively.
Although there are several different neutrinos, we do not distinguish them here.

A two-meson theory which admits the existence of two different mesons, the
pion and the muon, was developed by Sakata, Inoue, and Tanigawa in [22, 23]. One
year later, it was also proposed in the United States by Marshak and Bethe [24].

1.3 Quantum Electrodynamics

After the Second World War, quantum electrodynamics made amazing progress.
Quantum electrodynamics, or QED, is the most typical field theory. By introducing
a new weapon called renormalization, it became possible to calculate, within the
framework of QED, the Lamb shift in a hydrogen atom, i.e., the energy shift
between the 2s and 2p states, and the anomalous magnetic moment of the electron.
The formulation of the covariant perturbative theory by Tomonaga, Schwinger,
Feynman, Dyson, and others was instrumental in this success. At this point, QED
achieved the position of being the most successful discipline in exact science.
Moreover, the notion of renormalizability was closely connected to subsequent
developments in field theory, and in particular to the discovery of gauge theories,
as the most important guiding principle in field theories.
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1.4 The Road from Pions to Hadrons

In 1948, in Berkeley, pions were created artificially for the first time [25]. Further-
more, in 1952, Fermi’s group found a resonance state of the pion–nucleon system,
which they named � [26]. This resonance appears in the reaction

π+ N→ �→ N+ π ,

where N stands for a nucleon. The existence of resonances is characteristic of strong
interactions of the pion–nucleon system at low energies.

It soon became clear that the covariant perturbative theory which was such a
useful tool in QED had almost no utility for understanding strong interactions. This
made theorists suspicious of the usefulness of field theory for strong interactions. In
fact, determinations of the pion’s spin or parity were based on a general invariance
principle, and the covariant perturbative theory was completely useless for this
purpose. Of course, a non-perturbative method was developed in field theory, but
it was not successful because the prescriptions proposed by renormalization were
intimately connected to the perturbation theory.

This situation meant that many preferred to investigate the pion–nucleon system
without considering the details of strong interactions, but considering this system in
its own right. One thing that came up was the idea of isospin. The concept of isospin
invariance was introduced by Kemmer in 1938 to make a connection between the
charge independence of the nuclear force and Yukawa’s theory [27]. The isospin
transformation is a symmetry in a virtual isospin space. It became an active field of
study again when pions could be created in the laboratory. This led to the first two
examples of a modern term, flavour.

Another idea that came up was the dispersion relation, which is deeply con-
nected to causality in field theory. This gives the relation between the absorptive
(imaginary) part of a scattering amplitude and its dispersive (real) part. The form
of the dispersion relation does not depend on the details of the interactions. The
important factors for dispersion relations are just the representations of spacetime
and internal symmetries carried by the particle states, together with the type of mass
spectrum the dynamical system possesses. However, the dispersion relations leave
slight signatures of the original interactions. For instance, although the best known
dispersion relation for the forward scattering of the pion–nucleon system includes
terms with first-order poles with respect to some Lorentz invariant variables,
the poles can be described by the renormalized coupling constant of Yukawa’s
interaction. In addition, the dispersion relation for electromagnetic form factors is
given by the charges of particles adjusted by so-called subtraction constants. In each
case, these constants are renormalized coupling constants in field theory.

Much can be learned from the dispersion relation method. First, comparing with
perturbative calculations in field theory, we can know what type of renormalization
is carried out preturbatively. Considering a given S-matrix element (a scattering
amplitude, for example) at some order in perturbation theory, its absorption part
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can be expressed in terms of lower order S-matrix elements because of the
unitarity of the S-matrix. In this evaluation, integrals have to be carried out in
a finite phase-space, but divergences do not appear here. Next, we obtain the
dispersion part of the S-matrix element from its absorption part using the dispersion
formula. This corresponds to carrying out a Hilbert transformation, and this integral
sometimes diverges. Such a divergence just corresponds to the one in field theory.
If a divergence exists, we can remove it using a dispersion formula in which a
subtraction has been made. These subtractions correspond to the renormalization in
field theory, and the subtraction constant corresponds to the renormalized coupling
constant. Thus in the dispersion theory, the divergence appears only in the dispersion
part, not in the absorption part. Furthermore, the validity of the subtraction is not
restricted to a perturbative approach.

We may ask ourselves whether the dynamics of elementary particles can be
formulated in terms of the S-matrix, that is, whether or not we can determine the
S-matrix by combining the unitarity and the dispersion relations of the S-matrix
as mentioned above. In this case, the renormalization is automatically processed
by introducing the dispersion formula in which subtractions have been made,
thereby realizing a renormalization procedure which is independent of perturbation
theory. In this formalism, stable particles which cause poles to occur in scattering
amplitudes give the same dispersion relations no matter whether they are elementary
particles or composite particles. In other words, what is important in the S-matrix
theory is only the stability of particles, so it does not matter whether the particles are
elementary or composite. This ended up having a great significance on subsequent
developments in the elementary particle theory. The theory proposed by Chew and
Low in 1956 is a typical example of the non-relativistic S-matrix theory [28]. The
idea was developed further by the discovery of the Mandelstam representation in
1958 [29]. In this representation, scattering amplitudes can be written as double
dispersion integrations, and they have crossing symmetries (we shall not touch on
such symmetries here, but they will be explained later).

Note, however, that the dynamical S-matrix theory encounters two difficulties.
The first is the impossibility or extreme difficulty in finding the complete set of
dispersion formulas. The second difficulty is that the solution cannot be determined
unambiguously, even under the approximation where we neglect many-particle
states. This is related to the fact that we cannot tell the difference between
elementary particles and composite particles in the S-matrix theory, as mentioned
before. For example, for a given pair of dispersion formulas we can adopt the
Lagrangian of Yukawa’s theory or the Lagrangian of quantum chromodynamics
(QCD).

The S-matrix theory itself, however, went in a different direction. From the study
of the high-energy behaviour of scattering amplitudes with crossing symmetries,
the Regge pole theory, or Regge trajectory theory, was formulated in 1960s [30]. In
the 1950s, following the discovery of the antiproton, many hadrons were detected
at the Bevatron using bubble chambers, and the Regge trajectory was applied
to classify those hadrons. “Hadron” is the generic name for elementary particles
participating in strong interactions. When we consider a two-body bound state, the
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Regge trajectory is obtained by plotting the relation between the angular momentum
J extended to a continuous variable and the mass squared of the state, M2. In
this method, allowing many hadrons with different quantum numbers except for
their spins to follow the same trajectory clarifies the dynamical family relationships
among them, and this of course can help to classify them. In particular, Chew and
Frautschi succeeded in classifying many hadrons by considering that all the Regge
trajectories are continuous lines with universal tangents [31]. As mentioned before,
the Regge trajectory corresponds to a bound state, so the success of the Chew–
Frautschi plot implied that all hadrons were composite rather than fundamental. The
way we interpret this fact is a problem of fundamental importance for elementary
particle theory, and we will discuss it in great depth later.

1.5 Strange Particles as Members of the Second Generation

Elementary particles which obey Fermi statistics are classified into hadrons, which
engage in strong interactions, and leptons, which do not. The muon, which belongs
to the second generation, is a lepton. We have already mentioned its detection
and the confusion this created. Similarly, when second generation hadrons were
detected, they caused the same confusion. For this reason, hadrons belonging
to the second generation were first called strange particles. In connection with
the detection of the muon, we mentioned that experimentalists sometimes detect
particles that have not been predicted by theorists, and this is indeed what happened
in the case of strange particles.

In 1947, Rochester and Butler detected two V-particles in a cloud chamber
[32]. The V-particle was named after the shape of the track in the cloud chamber,
indicating a particle decay. Although the observations continued for two more years,
no new particle was discovered. In such a case, two things can happen: either
we find nothing when we carry out additional tests or we suddenly detect many
cases by improving experimental methods. In the case of V-particles or strange
particles, the latter happened. The improved method was to detect V-particles from
cosmic rays by climbing high mountains. In the early 1950s, experimental groups in
Pasadena and Manchester observed dozens of V-particles on the White Mountains
[33] and at the Pic du Midi in the Pyrenees [34], respectively. The biggest problem
with the V-particle was to reconcile its frequent detections with its relatively long
lifetime of about 10−10 seconds (long for an elementary particle). This problem
was somewhat similar to the muon problem. With hindsight, this was because both
particles belonged to the second generation. Many new particles were subsequently
detected in cloud chambers and on photographic plates. For example, hyperons like
�0, �±, and �−, which are hadrons satisfying Fermi statistics, heavy K-mesons
(also called θ- or τ-mesons), and so on.

In order to explain the discrepancy between the frequent detections and the long
lifetime, it was suggested that V-particles or strange particles might be created in
pairs. Such theories were proposed in 1951 by Nambu, Yamaguchi, and the author
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[35, 36], by Oneda [37], and by Miyazawa [38], then by Pais in [39]. However,
the pair-production theories were hard to demonstrate from observations of cosmic
rays. What these models had in common was that strange particles were always
produced in pairs through strong interactions, and the isolated strange particles
decayed through weak interactions. This explained both the frequent detections
and the long lifetime. However, some phenomena could not be explained by this
hypothesis alone. For example, it was not understood why the decay processes
�− → �0 + π− and �− → n + π− did not occur through strong interactions.
Nor indeed why the heavy mesons with positive charges were more common then
those with negative charges both on plates and in cloud chambers. These questions
could not be answered using the above hypothesis.

In 1953, the pair production of strange particles that had not been confirmed
by cosmic rays was verified experimentally using an accelerator, the Cosmotron, at
Brookhaven [40]. The concept of strangeness was introduced by Nakano and the
author [41], and independently by Gell-Mann [42]. This concept is closely related
to isospin. All the members of a given isospin multiplet have the same value of the
strangeness. Further, strangeness is an additive quantum number. It is conserved in
strong and electromagnetic interactions, but not in weak interactions. As we shall
see later, parity is a quantum number with the same features. Moreover, the K-meson
came to play an extremely important role in elementary particle theory. In the history
of modern physics, we may say that the K-meson has played the most important role
after the hydrogen atom. The concept of strangeness is closely related to the fact that
the neutral K-meson, denoted by K0, differs from its antiparticle K̄0. Furthermore,
the non-conservation of parity in weak interactions was discovered through the
diversity of K-meson decay patterns. The fact that the CP transformation, where C
stands for charge conjugation and P for parity, is not conserved in weak interactions
was discovered through the observation of certain decay patterns of the neutral K-
mesons. As can be seen from this, the K-meson continued to provide many new
ideas. To introduce a modern term, strangeness is a third example of flavour and it
is carried by hadrons of the second generation. We shall see later that the symmetry
group SU(3) was proposed as a way of combining the isospin symmetry group
SU(2) with strangeness.

1.6 Non-conservation of Parity

The strange K-meson was given different names according to its decay patterns:

θ→ 2π , τ→ 3π . (1.1)

The question was whether θ and τ were the same particle or not. The improvement
in the accuracy of measurements revealed that the masses and lifetimes of θ and τ

coincided. In addition, it became clear that the two production rates were constant,
and quite independent of the production process. This suggested that θ and τ were
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the same type of particle. However, from the analyses by Dalitz [43] and Fabri [44],
this implied the non-conservation of parity in decay processes. The discrepancy
between the identification of the particles and the conservation of parity was called
the θ–τ puzzle. Under the circumstances, given that the non-conservation of parity
might occur, not only in K-meson decays, but in all weak interactions, Lee and Yang
proposed various methods of experimental validation [45]. The 60Co experiment
by Wu’s group was the first to confirm the non-conservation of parity in beta
decays [46]. In particular, it was shown that parity was maximally broken in decay
processes which involved neutrinos. This led to the two-component theory of the
neutrino put forward by Lee and Yang [47]. Since parity is a space-time symmetry,
in contrast to strangeness, many physicists were shocked by the non-conservation
of parity.

After this discovery, theoretical research was very active. Here we mention the
most important development. Assuming that all forces are mediated by fields, we
can determine the characteristics of the fields that mediate the weak interactions by
identifying the specific types of phenomenological Fermi interaction. An important
first step in this direction was the V − A theory proposed in 1958 [48–50]. This
theory treated the fields mediating weak interactions as vector fields. The quanta of
these vector fields were called W bosons, where W here stands for “weak”.

In this connection, in the late 1940s, the conserved vector current (CVC)
hypothesis was put forward [49], based on the universality of the Fermi interaction.
The idea was proposed by Marshak and Sudarshan [48], by Sakurai [50], and by
Gerstein and Zeldovich [51], and further promoted by Gell-Mann and Feynman
[49]. According to experiments, the coupling constants for vector couplings of
Fermi interactions for various processes are the same, irrespective of the processes,
in spite of corrections from strong interactions. This can be explained by assuming
that a four-vector density expressing hadronic parts of the Fermi interaction is
proportional to an isospin four-current density. This is the CVC hypothesis, which
will be explained in more detail in the text. When describing phenomenological
Fermi interactions as products of two Yukawa interactions mediated by W bosons,
each Yukawa interaction is described as the product of the conserved isospin
current density and the W field. It is suggestive to compare with the fact that the
electromagnetic interaction is the product of the conserved current density and the
four-potential of the electromagnetic field.

The idea of including the axial vector current, corresponding to A in V − A,
developed into the current algebra method [52, 53], inspired by the fact that in
quantum mechanics a set of conserved quantities forms an algebra. In Sect. 1.4,
we presented the methods based on the dispersion formulas and on symmetries for
dealing with the strong interactions, although without going into the details. The
current algebra method is an extension of the latter. The three components of isospin
satisfy the same commutation relations as the components of angular momentum,
and they generate the SU(2) algebra. Although this is the algebra formed by just
the spatial integral of the time component of the V part of V − A, i.e., the algebra
satisfied by isospin, if we take V −A itself, we also get the SU(2) algebra. Since the
V −A current corresponds to the left-handed current, which will be explained later,
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we write this algebra as SU(2)L. Introducing the strangeness-changing current, this
algebra is extended to SU(3)L. Furthermore, introducing SU(3)R in the context of
the V − A theory, the current algebra is extended to SU(3)L × SU(3)R. The first
successful application of this algebra was the Adler–Weisberger formula derived in
1965 [54–56]. Then, in 1963, Cabbibo extended the concept of the universal Fermi
interaction to the strangeness-changing interaction [57], and this was an important
step on the path to the quark model.

1.7 Second Generation Neutrinos

The neutrino was first introduced by Pauli in 1933 [11, 12], and immediately used by
Fermi to formulate the field theory of beta-decay [13]. The existence of this neutrino
was demonstrated by Cowan, Reines, et al. in [58]. This was the first generation
neutrino.

Research on several processes involving weak interactions suggested that there
might be a lepton number conservation law and a corresponding selection rule.
However, two different definitions were given for the lepton number. One taking
e−, μ+, and ν as leptons was given by Konopinski and Mahmoud in [59], and
another taking e−, μ−, and the left-handed (anti)neutrino as leptons was given
by Lee and Yang in [47]. It seemed that neither definition was in conflict with
experiment. Then, in 1957, assuming a four-component neutrino and putting the
case that each conservation law holds, the author set out to investigate which theories
were consistent [60]. Combining the above two types of conservation law in the
right way, it turned out that the electron family and the muon family could be
attributed separate conservation laws. In the electron family, the difference between
the numbers of e− and νL and the numbers of e+ and ν̄R was conserved, and likewise
in the muon family for the difference between the numbers of μ− and ν̄L and the
numbers of μ+ and νR.

In short, there were two types of lepton number conservation law: one concerned
the lepton number of the first generation and the other concerned the lepton number
of the second generation. The subscripts L and R stand for left-handed and the right-
handed, respectively, and both are two-component neutrinos. There are thus two
types of two-component neutrino: one belongs to the electron family in the first
generation and the other to the muon family in the second generation. A similar
idea was also introduced by Schwinger [61].

The second generation neutrino hypothesis was confirmed by a group at
Columbia University in 1962 using the AGS accelerator in Brookhaven [62].
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1.8 Democratic and Aristocratic Hadrons—The Quark
Model

In 1948, Fermi and Yang constructed a theory treating the pion as a bound state of a
nucleon and an anti-nucleon [63]. They were motivated by the idea that, since there
were so many so-called elementary particles, it would be better to consider some of
them as composite particles. In 1955, including the strange � particle with a pair
of fundamental particles, the proton and the neutron, Sakata extended the Fermi–
Yang model for hadrons [64]. He put forward the idea that all hadrons were bound
states of protons, neutrons, the � particles, and their antiparticles. Given that there
might exist a symmetry between p, n, and �, Ikeda, Ogawa, and Ohnuki introduced
the symmetry group SU(3), and studied the types of representations the hadrons
belonged to [65]. For mesons and the hadrons satisfying Bose statistics, Sakata’s
model achieved many successful results. The η meson found in 1961 [66] was one
successful example of Sakata’s predictions. However, his model could not give a
good explanation for baryons. In any case, this was just one attempt to interpret
hundreds of hadrons as bound states of the most fundamental particles.

In 1961, Gell-Mann [52, 67] and Ne′eman [68] independently extracted the
concept of SU(3) symmetry from Sakata’s model. In Sakata’s model, p, n, and �

were assigned to the three-dimensional representation of SU(3). On the other hand,
including � and � with the particles in Sakata’s model, they were able to assign
these particles to the eight-dimensional representation. This was subsequently called
the eightfold way. For mesons, there is no qualitative difference between Sakata’s
model and the eightfold way, because mesons constitute the eight-dimensional
representation in both models.

The SU(3) symmetry is not exact, but explicitly broken. This led to the relation
called the Gell-Mann–Okubo formula [69, 70] among the masses of particles in one
irreducible representation. The highlight of this development was the observation of
	− with a mass of 1972 MeV, while the mass predicted by the mass formula was
1983 MeV [71].

Let us return to the question of how to interpret the large number of hadrons
discussed in Sect. 1.4. From the phenomenological point of view, hadrons can be
categorized by the Chew–Frautschi plot [72] and the SU(3) group. The success
of this classification method implied that all the observed hadrons were composite
particles. There were two possible ways to interpret this outcome: one was that
no fundamental particle existed other than the already observed hadrons, and the
other was that more fundamental particles existed, but that they had not yet been
observed. These were referred to as democratic hadrons and aristocratic hadrons,
respectively.

The former idea was put forward in Berkeley around 1960, especially by Chew’s
group [73]. In modern physics, there is a tendency always to seek more fundamental
levels, such as molecules→ atoms→ nucleons→ elementary particles, but Chew’s
group suggested cutting off this sequence. According to this idea, all hadrons should
be treated on an equal footing. In other words, since no hadron is more fundamental
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than the others, each hadron from the lightest pion to the heaviest nucleon should
be thought of as a bound state of other hadrons. In this case, each hadron’s mass
and spin should be determined by a self-consistent method. In this approach, there
is no idea of a most fundamental field, so field theory is not suitable to describe
it. In this sense, it is a pure S-matrix theory. In particular, the dispersion formula
is suitable for this purpose because it holds whether the relevant particles are
elementary or composite. However, a framework describing the complete dynamics
in a mathematically rigorous way was never provided. This was the idea of a
democracy of hadrons.

The other idea is that detectable hadrons are composite particles of more
fundamental particles. We can say that this is the aristocracy of the hadron world,
treating the more fundamental particles as aristocrats. In 1964, Gell-Mann and
Zweig proposed the quark model for hadrons based on the SU(3) group [74, 75]. In
this model, quarks became the most fundamental particles. This can be considered
as a refinement of Sakata’s model. Rather than p, n, and � used in Sakata’s model,
the quark model introduces quarks with three different flavours, namely u, d, and
s. Mesons are considered to be bound states of a quark and an antiquark, which is
similar to the construction in Sakata’s model, while baryons are considered to be
bound states of three quarks. The possible representations are:

mesons 3⊗ 3 = 1⊕ 8 ,

baryons 3⊗ 3⊗ 3 = 1⊕ 8⊕ 8⊕ 10 .

One merit of this model is that all the representations appearing on the right-hand
side are actually realized in nature. Furthermore, this model succeeded in explaining
intrinsic features of hadrons such as the mass and the magnetic moment. However,
Gell-Mann [67, 68] and Han and Nambu [76, 77] showed that, when this model
is applied to the interpretation of real hadrons, in order to avoid a contradiction
with the exclusion principle, an until then unknown degree of freedom had to be
introduced. This degree of freedom was called colour to distinguish it from flavour.

Unlike the democratic theory of hadrons, the quark model can be easily included
in field theory. Quarks and leptons are described by fundamental fields, and
hadrons are considered to be composite particles. Further, the left-handed or right-
handed current densities in the current algebras can be expressed in terms of very
simple bilinear forms using the quark model. In other words, when writing weak
interactions in Yukawa form, the hadron parts can be written as products of bilinear
forms and W fields. This was a great advantage, recalling from above that expressing
the left-handed and right-handed current densities as hadron fields required highly
non-linear representations. Thus the quark model was highly promising from the
standpoint of including weak interactions.

The charges of the three types of quark can be determined through the fact that
the baryon consists of three quarks. The charge of u is 2e/3, and the charges of d
and s are −e/3, where e is the positron charge. It is a feature of the quark model
that quarks must have fractional charges. However, although experimentalists have
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tried to detect such fractional charges, they have not been found yet. Therefore,
the hypothesis was put forward that independent quarks could not be observed in
principle, for some reason. This is the hypothesis known as quark confinement. If
we accept this hypothesis, there is a sense in which Chew’s idea of a democracy
of hadrons can still be realized. This is because the S-matrix theory treats only
observable hadrons. The dispersion relation is given for the S-matrix elements
relevant to the processes involving only hadrons, while the unitarity condition is
also expressed by states consisting only of hadrons, which means that the quark
states do not appear.

However, the dynamics of hadrons is not determined within the framework of
the S-matrix theory. To do this, we need to know the dynamics of gluons mediating
strong interactions and quarks. We can say that such an application of the quark
model to both strong and weak interactions has paved the way for theories of gauge
fields mediating strong, electromagnetic, and weak interactions. We will discuss
the theories of gauge fields in the latter half of this book. In this chapter, we went
through the story of trial and error that eventually led to the theories of gauge
fields. We have used many terms without giving strict definitions, but these will
be explained step by step in the following chapters.



Chapter 2
Canonical Formalism and Quantum
Mechanics

Quantum field theory is the quantum mechanics of systems with an infinite number
of degrees of freedom, and it is constructed as the limit of systems with a
finite number of degrees of freedom. After reviewing general features of quantum
mechanics for systems with a finite number of degrees of freedom, we will attempt
to extend the formalism.

2.1 Schrödinger’s Picture and Heisenberg’s Picture

In general, in quantum mechanics, the equations of motion are either Schrödinger’s
or Heisenberg’s. Given the Hamiltonian of a system as a function of the set of
canonically conjugate variables, q1, q2, . . . , qf and p1, p2, . . . , pf , Schrödinger’s
equation is

i
∂

∂t
Ψ (t) = H

(
qr,

1

i

∂

∂qr

)
Ψ (t) . (2.1)

Ψ (t) is called a probability amplitude or state vector. This equation holds in the so-
called Schrödinger picture, in which an operator O representing a physical quantity
is explicitly independent of time. The expectation value of the dynamical quantity
O at time t is

〈O〉 =
∫

Ψ ∗(t)OΨ (t)dq , dq = ρdq1dq2 . . . dqf , (2.2)

where ρ stands for an appropriate density.
In this book, we use natural units, such that h̄ = c = 1, where h and c stand

for Planck’s constant and the speed of light, respectively. From the point of view of
relativity, it is natural to take the same unit for time and space; the unit of time is
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considered to be the time light takes to travel a unit length, for instance 1 cm. In
addition, although the reduced Planck constant h̄ = h/2π , frequently appearing in
quantum mechanics, is a very small unit from the perspective of the human scale, it
is useful to choose this as unit because it always appears when physical quantities
are expressed in the microscopic world. For example, angular momentum always
appears in units of h̄, and in natural units this is merely an integer or a half-integer.
In the natural system, all the units of physical quantities are given as certain powers
of length.

In Schrödinger’s picture, all the time dependence is assigned to state vectors,
while in Heisenberg’s picture the time dependence is assigned to the operators
corresponding to physical quantities. Since all the physical quantities are functions
of the canonical variables, they can be determined using the equations of motion,
which are Heisenberg’s equations in our case:

dqr(t)

dt
= i[H, qr(t)] , dpr(t)

dt
= i[H,pr(t)] , (2.3)

where the canonical variables must satisfy the canonical commutation relations

[qr(t), ps(t)] = iδrs , [qr(t), qs(t)] = 0 , [pr(t), ps(t)] = 0 . (2.4)

In this case, the expectation value of O at time t , corresponding to (2.2), is given by

〈O〉 =
∫

Ψ ∗O(t)Ψ dq . (2.5)

The two representations are related by the following unitary transformations:

Ψ (t) = e−itHΨ , O(t) = eitHOe−itH , (2.6)

for a state vector and an operator, respectively. Taking appropriate care of the
operator orderings, as a consequence of (2.4), we obtain for a function F of p and
q the equations

∂F

∂pr

= i[F, qr ] , ∂F

∂qr
= −i[F,pr ] . (2.7)

Hence, (2.3) can be written in the canonical form

dqr(t)

dt
= ∂H

∂pr(t)
,

dpr(t)

dt
= − ∂H

∂qr(t)
, (2.8)

where the t-dependence has been made explicit in pr(t) and qr(t), because these
operators are defined in the Heisenberg picture.
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2.2 Hamilton’s Principle

In classical dynamics, the equation of motion, called the Euler–Lagrange equation,
is derived from the variation principle

δ

∫ t1

t0

dtL(qr , q̇r ) = 0 . (2.9)

This is Hamilton’s principle. Considering qr(t0) and qr(t1) as given and imposing
the conditions

δqr(t0) = δqr(t1) = 0 , (2.10)

the Euler–Lagrange equations are derived as

d

dt

(
∂L

∂q̇r

)
− ∂L

∂qr
= 0 , (2.11)

where q̇r is the time derivative of qr . To pass from here to the canonical form, it is
enough to define the canonically conjugate momentum pr as

pr = ∂L

∂q̇r
. (2.12)

When q̇r can be written in terms of q and p, from this equation, we call L a non-
singular Lagrangian. In this case, the Hamiltonian is defined by

H =
f∑

r=1

pr q̇r − L . (2.13)

2.3 Equivalence Between the Canonical Equations
and Lagrange’s Equations

In this section, we derive Lagrange’s equations by combining the canonical
equations and the canonical commutation relations. A combination of the canonical
equations (2.3), the canonical commutation relations (2.4), and the definition of the
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Hamiltonian (2.13) yield

dqr
dt
= i[H, qr ]

= i

⎡
⎣ f∑
j=1

pj q̇j − L, qr

⎤
⎦

= q̇r + i
∑

pj [q̇j , qr ] − i[L, qr ] .

Taking into account the fact that the q’s commute, we use

[L, qr ] =
∑
j

∂L

∂q̇j
[q̇j , qr ] +

∑
j

∂L

∂qj
[qj , qr ] =

∑
j

∂L

∂q̇j
[q̇j , qr ] .

Inserting this in the previous equation, we find

dqr
dt
= q̇r + i

∑
j

(
pj − ∂L

∂q̇j

)
[q̇j , qr ] .

This equation always holds as long as the identity (2.12) does. Starting from the
other canonical equation, we find similarly

dpr

dt
= i[H,pr ]

= ∂L

∂qr
+ i
∑
j

(
pj − ∂L

∂q̇j

)
[q̇j , pr ] .

Thus, if (2.13) holds,

dpr

dt
− ∂L

∂qr
= d

dt

(
∂L

∂q̇r

)
− ∂L

∂qr
= 0 .

As a consequence, we can understand that the canonical equations are equivalent to
Lagrange’s equations as long as the canonical commutation relations hold. This fact
will be used to quantize fields.

2.4 Equal-Time Canonical Commutation Relations

As we have seen in the previous section, the equal-time commutation relations (2.4)
are the basic relations of quantum mechanics. We prove below that these relations
hold at any time if they hold at some time t = t0. First, from the canonical
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equations (2.3) and the Jacobi identity, we get the differential equation

d

dt
[qr(t), ps(t)] = i

[
H, [qr(t), ps(t)]

]
. (2.14)

Solving this equation with the initial condition

[qr(t0), ps(t0)] = iδrs , (2.15)

we obtain the following relation for arbitrary time t :

[qr(t), ps(t)] = iδrs . (2.16)



Chapter 3
Quantization of Free Fields

The dynamical systems described in the previous chapter had a finite number of
degrees of freedom f . How can we extend the theory to the limit f → ∞? To
investigate this problem, we start by implementing an easy extension of the theory
and then generalizing it.

3.1 Field Theory Based on Canonical Formalism

First, we consider N systems with no interaction among them. The total Lagrangian
is given by the sum of Lagrangians corresponding to each system, namely,

L =
N∑
n=1

Ln(qn, q̇n) , (3.1)

and Hamilton’s principle, or the principle of least action, is given by

δ

∫ t1

t0

dt
N∑
n=1

Ln(qn, q̇n) = 0 . (3.2)

Then, treating N as a continuous infinity, we replace the discrete number n by the
continuous parameter x. At the same time, we change the symbol of the dynamical
variable from qn to ϕ(x). We call the dynamical variable, which is a function of
continuous variables, a field. At the same time, designating a domain of integration,
the principle of least action assumes the form

δ

∫
dtL = δ

∫
dt

(∫
dxL [ϕ(x), ϕ̇(x)]

)
= 0 . (3.3)
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L is called a Lagrangian density. In the case when x stands for the spatial
coordinates in three dimensions, dx denotes the volume element d3x = dx dy dz.
At the same time, dt d3x = d4x stands for the four-dimensional volume element
in natural units. In this system, t is sometimes written as x0. Thus, the principle of
least action in three-dimensional space can be written as

δ

∫
Ω

d4xL [ϕ(x), ϕ̇(x)] = 0 , (3.4)

where Ω stands for a certain four-dimensional domain and x denotes the four-
dimensional coordinate. This is the principle of least action for the case when there
are no interactions between fields at different points, but in this case we cannot
describe the waves propagating through space. In relativistic field theory based on
the principle of actions through a medium, a field at some point interacts only with
its infinitesimal neighbours. Put another way, the Lagrangian density is a function
of ϕ(x), ϕ̇(x), and ϕ(x + dx). Then, using

ϕ(x + dx) = ϕ(x)+ ∂ϕ(x)

∂xk
dxk , k = 1, 2, 3 ,

the Lagrangian density becomes a function of ϕ and its time-like and space-like
derivatives. Putting these together, we can write

L = L

[
ϕ(x),

∂ϕ(x)

∂xμ

]
, μ = 1, 2, 3, 4 , (3.5)

where x4 = ix0 = it . In general, there exist several fields, and we distinguish them
by an additional label α as ϕα(x). Thus, the principle of least action can be written
as

δ

∫
d4xL

[
ϕα(x),

∂ϕα(x)

∂xμ

]
= 0 . (3.6)

3.1.1 Canonical Commutation Relations

Let us consider how we can extend the canonical commutation relations for a system
with a finite number of degrees of freedom to those for a system with an infinite
number of degrees of freedom. First, writing the equal-time canonical commutation
relations in a system with finite degrees of freedom as

∑
s

[qr, ps]As = iAr , (3.7)
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whereAr is an arbitrary quantity, we can make a dictionary to translate from discrete
variables to continuous variables:

qs → ϕα(x) ,

ps = ∂L

∂q̇s
→ πα(x) = ∂

∂ϕ̇(x)
L

[
ϕα(x),

∂ϕα(x)

∂xμ

]
,

∑
s

→
∑
α

∫
d3x .

Using these rules, we translate (3.7) to continuous variables. Since the condition is
given at equal times, we assume x0 = x ′0 in the following, and we have

∑
β

∫
d3x ′
[
ϕα(x), πβ(x

′)
]
fβ(x

′) = ifα(x) . (3.8)

Assuming that this holds for arbitrary fβ(x
′), we get the canonical commutation

relation in field theory:

[
ϕα(x), πβ(x

′)
] = iδαβδ

3(x − x ′) , (3.9)

where x0 = x ′0, and

δ3(x − x ′) = δ(x − x ′)δ(y − y ′)δ(z− z′).

As we shall see later, commutation relations like this hold only for fields satisfying
Bose statistics. For fields satisfying Fermi statistics, we need to replace the
commutation relations by anti-commutation relations. We shall discuss this issue
later. In addition, the relations corresponding to

[qr, qs ] = [pr, ps ] = 0 (3.10)

are

[
ϕα(x), ϕβ(x

′)
] = [πα(x), πβ(x

′)
] = 0 , x0 = x ′0 . (3.11)

The canonical quantization of fields as presented above was introduced by Heisen-
berg and Pauli.
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3.1.2 Euler–Lagrange Equations

The equations of motion for fields are derived through the principle of least action

δ

∫
Ω

d4xL = 0 , (3.12)

where ϕα is given in the four-dimensional domain Ω , such that, on the boundary
surface ∂Ω of the domain, the variations of the field vanish, i.e., δϕα = 0. The
variation considered here is δϕα(x) = ϕ′α(x) − ϕα(x), and a variation commutes
with a derivative. In addition, from now on we shall write derivatives as follows:

∂ϕα(x)

∂xμ
= ∂μϕα(x) = ϕα,μ(x) . (3.13)

We start with the following equation:

δ

∫
Ω

d4xL =
∫
Ω

d4x

[
∂L (x)

∂ϕα(x)
δϕα(x)+ ∂L (x)

∂ϕα,μ(x)
δϕα,μ(x)

]
. (3.14)

Using the commutativity of a variation and a derivative, viz.,

δϕα,μ(x) = ∂μδϕα(x) , (3.15)

we perform a partial integral, using Gauss’ theorem:

∫
Ω

d4x∂μAμ =
∫
∂Ω

dσμAμ , (3.16)

where dσμ = d4x/dxμ. Thus,

δ

∫
Ω

d4xL (x) =
∫
Ω

d4x

[
∂L (x)

∂ϕα(x)
− ∂

∂xμ

(
∂L (x)

∂ϕα,μ(x)

)]
δϕα(x)

+
∫
∂Ω

dσμ
∂L (x)

∂ϕα,μ(x)
δϕα(x) . (3.17)

From the assumption that the variations of the field vanish on the boundary surface,
the second term vanishes. Using the fact that the variations δϕα are arbitrary, the
first term leads to

[L ]ϕα =
∂L

∂ϕα
− ∂

∂xμ

(
∂L

∂ϕα,μ

)
= 0 . (3.18)
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These are the Euler–Lagrange equations. We call the left-hand side an Euler
derivative.

Example: Klein–Gordon Equation

The following equation is the Klein–Gordon equation:

(�−m2)ϕ = 0 , (3.19)

where � = ∂2
μ = 
− ∂2

0 . We choose the Lagrangian density

L = −1

2

[
(∂μϕ)

2 +m2ϕ2] . (3.20)

In the following we shall use the Pauli metric. That is to say, we define an inner
product of vectors as

x · y = xy − x0y0 . (3.21)

Thus, the field equation derived from (3.20) becomes

[L ]ϕ = −m2ϕ + ∂2
μϕ = (�−m2)ϕ = 0 ,

and (3.19) is reproduced. The kinetic term in the Lagrangian density is ϕ̇2/2 due
to the overall minus sign, and since this term is positive, the energy in the whole
system is positive-definite, which will be explained below.

3.1.3 Hamiltonian

To obtain the Hamiltonian for fields we again apply the translation from point-
particle systems. We rewrite the defining identity of the Hamiltonian (2.13) using
the rule given before:

H =
∑
α

∫
d3x πα(x)ϕ̇α(x)−

∫
d3xL (x) ≡

∫
d3xH (x) , (3.22)

H (x) =
∑
α

πα(x)ϕ̇α(x)−L (x) , (3.23)

where H is the Hamiltonian and H is the Hamiltonian density.
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Example: Hamiltonian for Real Scalar Field

Rewriting the previous example (3.20),

L = 1

2

[
ϕ̇2 − (∇ϕ)2 −m2ϕ2] . (3.24)

From this, the canonical variable conjugate to ϕ is

π = ∂L

∂ϕ̇
= ϕ̇ . (3.25)

Therefore,

H = πϕ̇ −L = 1

2

[
π2 + (∇ϕ)2 +m2ϕ2] . (3.26)

This is clearly positive-definite.
As we have seen above, the canonical formalism for point-particle systems can

be extended to field theory by using the simple translation rule.

3.2 Relativistic Generalization of the Canonical Equations

The canonical equation in quantum mechanics, viz.,

dO

dt
= i[H,O] , (3.27)

holds directly for field theory. Since P0 is the time component of the energy–
momentum vector, writing P4 = iP0 = iH and considering O(x) as a polynomial
in the field operators, we can write (3.27) in the form

[
P4,O(x)

] = i
∂O(x)

∂x4
. (3.28)

If a theory is relativistically invariant, we can generalize this equation to

[
O(x), Pμ

] = 1

i

∂

∂xμ
O(x) , (3.29)

so there must be spatial components Pk (k = 1, 2, 3) satisfying this equation.
In fact, it can be shown that the proper choice for Pk is

Pk = −
∫

d3x
∑
α

πα(x)∂kϕα(x) . (3.30)
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As an example, taking ϕα or πα as O , we find

[
ϕα(x), Pk

] = −i
∫

d3x ′δ3(x − x ′)∂kϕα(x ′) = 1

i

∂

∂xk
ϕα(x)

and

[
πα(x), Pk

] = i
∫

d3x ′πα(x
′) ∂

∂x ′k
δ3(x − x ′) = 1

i

∂

∂xk
πα(x) .

In this way, we obtain the four-dimensional energy–momentum vector Pμ. These
four components commute with each other:

[Pμ, Pν] = 0 . (3.31)

Now we sandwich a general operator O(x) between the eigenstates |a〉 and |b〉 of
Pμ, which satisfy

Pμ|a〉 = pμ|a〉 , Pμ|b〉 = qμ|b〉. (3.32)

This gives

∂

∂xμ
〈a|O(x)|b〉 = i〈a|[O(x), Pμ]|b〉 = −i(pμ − qμ)〈a|O(x)|b〉 . (3.33)

The solution of this differential equation is

〈a|O(x)|b〉 = 〈a|O(0)|b〉e−i(p−q)·x , (3.34)

and the x-dependence of O(x) can thus be determined. This relation is important
and will be used often later.

3.3 Quantization of the Real Scalar Field

Since the real scalar field has already appeared as an example, we now proceed
to quantize it. First, we consider a non-interacting case. To choose the Lagrangian
density L , we take into account the following conditions:

1. L is invariant under the Lorentz transformations.
2. The Hamiltonian density H calculated from L is positive-definite.
3. In the non-interacting case, the fields satisfy the Klein–Gordon equation.

We now examine condition 1 above in detail. It is enough that L should be invariant
only under the proper Lorentz transformations, i.e., the transformations generated
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by accumulating infinitesimal Lorentz transformations. Regarding condition 3, if we
replace pμ by the operator−i∂/∂xμ in the Einstein relation

p2 +m2 = p2
μ +m2 = 0 (3.35)

and apply the result to a field, we obtain the Klein–Gordon equation. This is the
condition associating a given free field to a particle of given mass.

The Lagrangian density (3.20) is a scalar, i.e., Lorentz invariant. In addition, the
Hamiltonian density (3.26) calculated from it is positive-definite. The field equation
derived using the principle of least action becomes the Klein–Gordon equation
itself. Thus we can say that (3.20) is the correct Lagrangian density. The quantity
canonically conjugate to ϕ is the time derivative of φ, as given by (3.25).

The fields are quantized using the equal-time commutation relations:

[ϕ(x), ϕ(x ′)] = [π(x), π(x ′)] = 0 (3.36)

and

[ϕ(x), π(x ′)] = iδ3(x − x ′) , (3.37)

where x0 = x ′0.
Next, we put the scalar field system inside a cube with volume V = L3 and

impose a periodic condition on it. Then we expand ϕ(x) in a Fourier series. In this
box, the set of functions

{
eipx
}

(3.38)

forms a complete set, where pj = nj (2π/L) and the nj are integers, so we get the
expansion

ϕ(x) = 1√
V

∑
p

eipxc(p, t) . (3.39)

Substituting this expansion into the Klein–Gordon equation, we get the equation for
the coefficient functions c(p, t):

c̈(p, t) = −(p2 +m2)c(p, t) . (3.40)

Then, setting p0 =
√

p2 +m2, the general solution for the equation above is

c(p, t) = c1(p)e−ip0t + c2(p)eip0t . (3.41)
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Therefore,

ϕ(x) = 1√
V

∑
p

eipx
[
c1(p)e−ip0t + c2(p)eip0t

]

= 1√
V

∑
p

[
eipx−ip0t c1(p)+ e−ipx+ip0t c2(−p)

]
. (3.42)

In addition, ϕ is real or Hermitian as an operator, so we have

c2(p) = c
†
1(−p) . (3.43)

From now on we shall simply write c1 as c and use the notation p · x = px − p0t .
Therefore, ϕ and π are

ϕ(x) = 1√
V

∑
p

[
eip·xc(p)+ e−ip·xc†(p)

]
(3.44)

and

π(x) = 1√
V

∑
p

[− ip0eip·xc(p)+ ip0e−ip·xc†(p)
]
. (3.45)

Substituting these expansions into the equal-time commutation relations (3.36), we
find

[c(p), c(q)] = [c†(p), c†(q)
] = 0 , (3.46)

[
c(p), c†(q)

]+ [c†(−p), c(−q)
] = 0 . (3.47)

Next, we rewrite (3.37) as

[ϕ(x), π(x ′)] = i

V

∑
p

eip(x−x′) ,

where x ′0 = x0. Substituting the expansions (3.44) and (3.45) into this equation, we
have

ip0
[
c(p), c†(q)

]− ip0
[
c†(−p), c(−q)

] = iδp,q ,

or

[
c(p), c†(q)

]− [c†(−p), c(−q)
] = 1

p0
δp,q . (3.48)
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Combining this equation and (3.47) yields

[
c(p), c†(q)

] = 1

2p0
δp,q . (3.49)

Then, instead of c(p), we define a(p) by

c(p) = 1√
2p0

a(p) , c†(p) = 1√
2p0

a†(p) . (3.50)

The commutation relations simplify to

[a(p), a(q)] = [a†(p), a†(q)
] = 0 (3.51)

and

[
a(p), a†(q)

] = δp,q . (3.52)

Substituting (3.50) into (3.44), we obtain

ϕ(x) =
∑
p

1√
2p0V

[
eip·xa(p)+ e−ip·xa†(p)

]
. (3.53)

In order to interpret the operators a and a†, we represent the energy and the
momentum in a total system by a and a†:

H =
∫
V

d3xH (x) = 1

2

∑
p

p0
[
a(p)a†(p)+ a†(p)a(p)

]
, (3.54)

Pk = −
∫
V

d3x π(x)∂kϕ(x) = 1

2

∑
p

pk

[
a(p)a†(p)+ a†(p)a(p)

]
. (3.55)

Then we define the following so-called number density operator n(p):

n(p) = a†(p)a(p). (3.56)

Since (3.52) implies a(p)a†(p) = n(p) + 1, (3.54) and (3.55) become

H =
∑
p

p0

[
n(p)+ 1

2

]
, Pk =

∑
p

pk

[
n(p)+ 1

2

]
. (3.57)
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What we would like to emphasize here is that the eigenvalues of n(p) (which can
be written as n by fixing p) become non-negative integers like 0, 1, 2, . . .. To prove
this, we start with [a, a†] = 1. Therefore,

[n, a] = −a , [n, a†] = a† . (3.58)

Here we describe the eigenstate of n as |n′〉. n′ is the eigenvalue of the operator n,
satisfying

n|n′〉 = n′|n′〉 . (3.59)

Then, from (3.58),

〈n′|[n, a†]|n′′〉 = (n′ − n′′)〈n′|a†|n′′〉 = 〈n′|a†|n′′〉 .

Thus, the matrix elements of a† are nonzero only if n′ = n′′ + 1. In other words, a†

is the operator raising the eigenvalues of n by 1. At the same time, a is the operator
lowering the eigenvalues of n by 1. Therefore, the eigenvalues of n for the states
connected by a† or a become

. . . , n1 − 2 , n1 − 1 , n1 , n1 + 1 , n1 + 2 , . . . , (3.60)

if we start with a given eigenvalue n1. According to the definition (3.56), the
eigenvalues of n cannot be negative, so there must be a minimum value for the
series above. Denoting it by n0, (3.60) becomes

n0 , n0 + 1 , n0 + 2 , . . . . (3.61)

We find

〈n′|n|n′〉 =
∑
n′′
〈n′|a†|n′′〉〈n′′|a|n′〉

= 〈n′|a†|n′ − 1〉〈n′ − 1|a|n′〉
= ∣∣〈n′ − 1|a|n′〉∣∣2 = n′ . (3.62)

Therefore, we can choose the undetermined phase factor to be

〈n′ − 1|a|n′〉 = 〈n′|a†|n′ − 1〉 = √n′ . (3.63)

To find n0, we impose the condition

a|n0〉 = 0 . (3.64)
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Comparing it with (3.63), we can immediately find

n0 = 0 . (3.65)

This completely determines the eigenvalues of n. This n is called a particle number
operator.

Going back to (3.57),

H =
∑
p

p0n(p)+ c-number , Pk =
∑
p

pkn(p)+ c-number . (3.66)

We drop the c-numbers for two reasons:

1. The choice of operator orderings when going from classical mechanics to
quantum mechanics is not unique. For instance, in (3.54), if we go to quantum
mechanics after rewriting aa† as a†a within the framework of classical mechan-
ics, then these c-numbers do not appear.

2. Only the differences between the eigenvalues of these operators can actually be
observed.

If we drop the c-numbers, unifying the equations (3.66), we obtain

Pμ =
∑
p

pμn(p) . (3.67)

The interpretation of this is that n(p) stands for the number of particles with
momentum p and energy p0. This interpretation is possible because, as mentioned
before, the eigenvalues of n(p) are non-negative integers. Thus, although we have
considered the scalar field as a wave satisfying the wave equation, its particle-like
features have shown up as a consequence of imposing the canonical commutation
relations to quantize it. This is nothing but an extension of Einstein’s photon
hypothesis to the scalar field. In addition, as is clear from (3.35), m stands for the
mass of the quantum of the scalar field. As we call n the particle number operator,
a and a† are called the annihilation operator and creation operator, respectively.

3.4 Quantization of the Complex Scalar Field

Complex scalar fields are quantized in a similar manner to real scalar fields. The
first method is to quantize a complex scalar field by decomposing it into two real
scalar fields. We choose the Lagrangian density

L = −
(
∂μϕ

† · ∂μϕ +m2ϕ†ϕ
)
, (3.68)
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where ϕ† is the operator Hermitian conjugate to ϕ. In classical theory, ϕ∗ is used as
the complex conjugate of ϕ. However, we use the notation ϕ† because ϕ becomes
an operator through quantization. Then, making the change of variables

ϕ = 1√
2
(ϕ1 − iϕ2) , ϕ† = 1√

2
(ϕ1 + iϕ2) , (3.69)

the Lagrangian density can be rewritten in the form

L = −1

2

[
(∂μϕ1)

2 +m2ϕ2
1

]
− 1

2

[
(∂μϕ2)

2 +m2ϕ2
2

]
. (3.70)

Since these are two real scalar fields, the corresponding quantization method is the
same as in the previous section.

The second method is to quantize complex scalar fields without decomposing
them into real scalar fields. To begin with, we define the canonical conjugate
quantities of ϕ and ϕ† as follows:

π† = ∂L

∂ϕ̇
, π = ∂L

∂ϕ̇† . (3.71)

As a result, we have

π† = ϕ̇† , π = ϕ̇ . (3.72)

The equal-time commutation relations that do not vanish and the Fourier expansions
are given by

[
ϕ(x), π†(x ′)

] = [ϕ†(x), π(x ′)
] = iδ3(x − x ′) , where x0 = x ′0, (3.73)

ϕ(x) =
∑
p

1√
2p0V

[
a(p)eip·x + b†(p)e−ip·x] , (3.74)

and

ϕ†(x) =
∑
p

1√
2p0V

[
b(p)eip·x + a†(p)e−ip·x] . (3.75)

In this way, when quantizing the complex scalar fields, we need two types of
operators, a and b. Expressing the equal-time commutation relations in terms of a
and b and repeating the calculation in the previous section, we obtain the following
equations:

[
a(p), a†(q)

] = [b(p), b†(q)
] = δp,q , (3.76)
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where other commutators such as [a(p), a(q)] all vanish. Therefore, introducing

n+(p) = a†(p)a(p) , n−(p) = b†(p)b(p) , (3.77)

both operators become particle number operators. They both correspond to quanta
with mass m, but there is a quantum number that distinguishes between the two
types of quanta, like the electric charge, for example. π+ and π−, or K0 and K̄0,
are examples of particle–antiparticle pairs. As for the latter, it is convenient to use a
real scalar representation, and the corresponding particles are K0

1 and K0
2 . The two

types of quanta, being complex conjugates, are said to be antiparticles of each other.
This non-interacting theory is invariant under the interchange of the two fields, and
the interchange can be expressed as a unitary transformation. Writing it as C , we
have

C−1ϕ(x)C = eiαϕ†(x) , C−1ϕ†(x)C = e−iαϕ(x) , (3.78)

where α is a real number. We call this transformation charge conjugation. Since it
commutes with Pμ, a particle and its antiparticle have the same mass. By changing
the phase of ϕ in a suitable way in the above equation, we can choose the phase
factor eiα to be ±1.

3.5 Dirac Equation

Many particles with spin 1/2 obey Dirac’s equation. Here we will discuss only the
properties relevant to quantization.1

To translate the non-relativistic Schrödinger equation into the relativistic Dirac
equation, the following conditions are used:

1. The wave function satisfies the Klein–Gordon equation.
2. A probability density ρ and a current density of probability j are defined

as quadratic forms of the wave function, satisfying the following equation of
continuity:

∂ρ

∂t
+ div j = 0 , ρ ≥ 0 . (3.79)

1 The properties of the Dirac equation are discussed in detail in my Japanese book [78].
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To obtain Pauli’s two-component wave function in a non-relativistic approximation,
the wave function must be multicomponent. We write this as follows:

ψ =
⎛
⎜⎝
ψ1

ψ2
...

⎞
⎟⎠ . (3.80)

Therefore, ρ should be written as a quadratic form in ψ or, more precisely, as the
following bilinear form in ψ and ψ†:

ρ =
∑
r,s

ψ∗r arsψs . (3.81)

In order for this to be positive-definite, the coefficients ars should form a positive-
definite Hermitian matrix that can be diagonalized by a suitable unitary transforma-
tion. Furthermore, since we can rewrite it as a unit matrix by a scale transformation,
without loss of generality, we can choose the following form from the beginning:

ρ =
∑
r

ψ∗r ψr = ψ†ψ . (3.82)

Here, ψ† is the Hermitian conjugate of ψ having the form of a 1× n matrix.
In terms of the Hamiltonian H , the equation of motion can be written in the form

i
∂

∂t
ψ = Hψ , or

(
i
∂

∂t
−H

)
ψ = 0 . (3.83)

From this equation we can obtain the second order differential equation with respect
to time:

(
∂2

∂t2 +H 2
)
ψ = 0. (3.84)

This coincides with the Klein–Gordon equation if we set

H 2 = m2 + p2 = m2 − ∇2 . (3.85)

Assuming that H is linear in p, the most general form becomes

H = α ·p +mβ = αxpx + αypy + αzpz +mβ , (3.86)
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where α and β are suitable matrices. Thus, by using the matrix elements of α and
β, the equation of motion becomes

i
∂

∂t
ψr =
∑
s

(
αrs

1

i
· ∇ +mβrs

)
ψs . (3.87)

We now determine the properties of α and β:

1. Since H is Hermitian, α and β are Hermitian matrices.
2. H must satisfy (3.85).

Substituting (3.86) into (3.85), we arrive at the following relations:

α2
x = α2

y = α2
z = β2 = 1 (unit matrix) ,

αxαy + αyαx = . . . = 0 , αxβ + βαx = . . . = 0 .

Combining the above relations, we obtain the alternative form

αkαl + αlαk = 2δkl1 , αkβ + βαk = 0 , β2 = 1 . (3.88)

Next, we derive the equation of continuity. To this end, we set

ρ = ψ†ψ , j = ψ†αψ . (3.89)

Taking the complex conjugate of (3.87) and using the hermiticity of α and β, we
find

i
∂

∂t
ψ∗r =

∑
s

(
1

i
∇ψ∗s · αsr −mψ∗s βsr

)
. (3.90)

Combining (3.87) and (3.90), the equation of continuity can be derived:

i
∂ρ

∂t
= i
∑
r

(
∂ψ∗r
∂t

ψr + ψ∗r
∂ψr

∂t

)

=
∑
s,r

(
1

i
∇ψ∗s · αsrψr −mψ∗s βsrψr

)
+
∑
r,s

(
ψ∗r αrs

1

i
· ∇ψs +mψ∗r βrsψs

)

= −i∇ψ† ·αψ − iψ†α · ∇ψ

= −i div(ψ†αψ)

= −i divj .
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Pauli Representation
To satisfy the commutation relations (3.88), the dimension of the matrices of α and
β must be at least four. In order to derive explicit representations, Pauli introduced
the four-dimensional σ -matrices and the ρ-matrix:

σj =
(

σj 0
0 σj

)
, j = 1, 2, 3 , (3.91)

where σj are the two-dimensional Pauli matrices, 0 is the two-dimensional zero
matrix, and σj are four-dimensional Pauli matrices. It is clear that the relations
among them are

σ1σ2 = −σ2σ1 = iσ3 , and its cyclic permutations , (3.92)

σ 2
1 = σ 2

2 = σ 2
3 = 1 (four-dimensional unit matrix) . (3.93)

Then the ρ-matrix is defined by

ρ1 =
(
0 I

I 0

)
, ρ2 =

(
0 −iI
iI 0

)
, ρ3 =

(
I 0
0 −I

)
, (3.94)

where I is the two-dimensional unit matrix. The properties (3.92) and (3.93) also
hold for ρ:

ρ1ρ2 = −ρ2ρ1 = iρ3 , and its cyclic permutations , (3.95)

ρ2
1 = ρ2

2 = ρ2
3 = 1 . (3.96)

The three σ -matrices and the three ρ-matrices commute with each other. It is easily
shown that [σi, ρj ] = 0 (i, j = 1, 2, 3).

Then, in Pauli’s representation, α and β are given by

αj = ρ1σj =
(
0 σj

σj 0

)
, β = ρ3 . (3.97)

α and β constructed in this way clearly satisfy the conditions (3.88).

Weyl Equation
So far the discussion about the Dirac equation has been based on the assumption
that m �= 0. Although in that case the wave function has four components, when
m = 0 we can make do with two components. In this case, since

H = α · p , (3.98)
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β is not needed and the required commutation relation is only the first equation
in (3.88), i.e., the commutation relations among the α’s. There are two-dimensional
representations satisfying this, namely,

αk = ±σk . (3.99)

Corresponding to this representation, the equation of motion becomes the two-
component equation

i
∂

∂t
ψ = ±σ · pψ . (3.100)

This is called Weyl’s equation. At first, this equation was not taken seriously because
it is not compatible with the law of conservation of parity. However, after the
proposal of the non-conservation of parity by Lee and Yang in [45], it attracted
a lot of attention. Nowadays, it is used as the equation for massless neutrinos. The
connection with the non-conservation of parity will be mentioned in the next section.

3.6 Relativistic Transformations of Dirac’s Wave Function

Field operators generally possess definite properties under the action of the Lorentz
transformations. For example, under the Lorentz transformation

xμ→ x ′μ =
∑
ν

aμνxν , (3.101)

a scalar field transforms in such a way that

ϕ′(x ′) = ϕ(x) . (3.102)

We have changed ϕ to ϕ′ because the functional form of the field changes upon a
transformation of the coordinates. In other words, in the case of the scalar field, the
change of variable and the change of functional form cancel each other, and as a
whole the field is invariant. Whether we write x or x ′, both labels do in fact stand
for the same point. On the other hand, when we consider a vector field Aμ(x), its
transformation property is

Aμ(x)→ A′μ(x ′) =
∑
ν

aμνAν(x) . (3.103)
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Here, the problem is to see how the four-component Dirac field ψ transforms under
Lorentz transformations. We assume the following linear transformation:

ψ → ψ ′ = Sψ . (3.104)

More precisely,

ψr(x)→ ψ ′r (x ′) =
∑
s

Srsψs(x) . (3.105)

We define the matrix S so that this transformation is compatible with the Dirac
equation. Of course, S must be one of the representations of the Lorentz transfor-
mation (3.101). If such a matrix S exists, then the Dirac equation has exactly the
same form in every inertial system, i.e., it is Lorentz covariant.

In order to determine the transformation, we first rewrite Dirac’s equation.
Multiplying

(
−i

∂

∂t
+ 1

i
α · ∇ +mβ

)
ψ = 0

from the left by β, we obtain

(
β

∂

∂x4
+ 1

i
βα · ∇ +m

)
ψ = 0 . (3.106)

Then we define the γ -matrices by

γj = 1

i
βαj , j = 1, 2, 3 , γ4 = β . (3.107)

The four γ -matrices are Hermitian, and the commutation relations (3.88) can be
expressed in the following unified form:

γμγν + γνγμ = 2δμν1 , μ, ν = 1, 2, 3, 4 . (3.108)

Then, the Dirac equation can be written as

(
γμ

∂

∂xμ
+m

)
ψ = 0 . (3.109)

It remains to prove that, if we start with the equation above and determine S

properly, then the equation

(
γμ

∂

∂x ′μ
+m

)
ψ ′ = 0 (3.110)
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will also hold. First, we consider the Lorentz transformation

x ′μ =
∑
ν

aμνxν ,
∑
μ

aμρaμσ = δρσ ,

xν =
∑
μ

aμνx
′
μ ,
∑
μ

aρμaσμ = δρσ . (3.111)

Here, (aμν) is an orthogonal matrix, and aj4 and a4j (j = 1, 2, 3) are pure
imaginary numbers. Substituting

∂

∂x ′μ
=
∑
ν

∂xν

∂x ′μ
∂

∂xν
=
∑
ν

aμν
∂

∂xν

into (3.110) and using (3.104), we obtain

∑
μ

∑
ν

γμSaμν
∂

∂xν
ψ +mSψ = 0 .

Multiplying from the left by S−1, we have

∑
μ

∑
ν

(S−1γμS)aμν
∂

∂xν
ψ +mψ = 0 .

In order for this to coincide with (3.109), we need to require

∑
μ

(S−1γμS)aμν = γν , or S−1γμS =
∑
ν

aμνγν . (3.112)

This is one of the conditions for determining S. This S is a representation of the
Lorentz transformation, as will become clear from the following discussion.

Assuming that, for another Lorentz transformation (bμν), the relation

T −1γμT =
∑
ν

bμνγν

holds as well as the relation between S and (aμν), we immediately obtain

(ST )−1γμ(ST ) =
∑
σ

(∑
ν

aμνbνσ

)
γσ .

Thus, if S and T correspond to a and b, respectively, then ST corresponds to ab. In
this sense, S and T are representations of the Lorentz transformations a and b.
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Next, we derive another condition which S must satisfy. The complex conjugate
of Dirac’s equation is

[
(γμ)

∗
rs

∂

∂x∗μ
+mδrs

]
ψ∗s = 0 , (3.113)

where we sum over the index s. The space-like components of xμ are real numbers,
and the time-like component is a pure imaginary number. In addition, the γ -matrices
are Hermitian. Taking all this into account, we obtain

3∑
j=1

∂ψ∗s
∂xj

(γj )sr − ∂ψ∗s
∂x4

(γ4)sr +mψ∗r = 0 .

Then, multiplying by γ4 from the right and using its anti-commutativity with γ1, γ2,
and γ3, we obtain

− ∂ψ̄

∂xμ
γμ +mψ̄ = 0 , (3.114)

where

ψ̄ = ψ†γ4 . (3.115)

In order for (3.114) to hold in any inertial system, ψ̄ has to transform as

ψ̄ → ψ̄ ′ = ψ̄S−1 . (3.116)

We have considered ψ̄ instead of ψ† because the transformation property is easier
to handle. However, since ψ and ψ̄ are not independent, we have to impose a
restriction on S to make (3.104) and (3.114) compatible. Using the Hermitian
conjugate of (3.104), we find

ψ̄ ′ = ψ ′†γ4 = ψ†S†γ4 = ψ̄γ4S
†γ4 .

Comparing this equation with (3.116), we arrive at the condition

γ4S
†γ4 = S−1 , or S†γ4 = γ4S

−1 . (3.117)

It should be emphasized that S† and S−1 cannot be treated as equal because S is not
necessarily unitary. Then the two conditions determining S are (3.112) and (3.117).
In the following, we shall determine the matrix S for an infinitesimal Lorentz
transformation.
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We write down the infinitesimal Lorentz transformation as

x ′μ = xμ +
∑
ν

εμνxν , εμν = −ενμ infinitesimal . (3.118)

Here εμν is a pure imaginary number if either μ or ν is 4. Corresponding to (3.118),
we assume S to have the form

S = 1+ 1

2

∑
μ

∑
ν

εμνTμν , Tμν = −Tνμ , (3.119)

where Tμν are 4 × 4 matrices produced by γ -matrices. Substituting the equation
above into (3.112), the linear term in ε is

[
γμ,

1

2

∑
λ

∑
ν

ελνTλν

]
=
∑
ν

εμνγν

= 1

2

∑
λ

∑
ν

ελν(δλμγν − δμνγλ) .

Comparing the anti-symmetrized coefficients of the anti-symmetric tensor ελν , we
deduce that

γμTλν − Tλνγμ = δλμγnu − δνμγλ . (3.120)

This is the condition for determining the anti-symmetric tensor Tλν . The tensor
which satisfies this equation is

Tλν = 1

4
(γλγν − γνγλ) . (3.121)

It can be checked that this equation satisfies not only (3.112), but also (3.117).
Substituting (3.119) into (3.117) yields

∑
μ

∑
ν

ε∗μνT †
μν = −

∑
μ

∑
ν

εμνγ4Tμνγ4 . (3.122)

We separate the cases when μ and ν contain 4 or not:

εikT
†
ik = −εikγ4Tikγ4 = −εikTik ,

−ε4kT
†

4k = −ε4kγ4T4kγ4 = ε4kT4k .
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Since both cases turn out to give

T †
μν = −Tμν , (3.123)

we see that the condition can be satisfied. Thus it has been proven that for the
infinitesimal Lorentz transformation, Tμν , i.e., the matrix S, exists. In addition, this
tells us that

Tr(Tμν) = 0 . (3.124)

It also gives the following restriction on S:

detS = 1 . (3.125)

Generalizing, it can be shown that S exists for the proper Lorentz transformations
generated by infinitesimal Lorentz transformations. Actually, (3.125) also holds for
finite transformations.2

Space Inversion
One example of a special Lorentz transformation that does not belong to the proper
Lorentz transformations is space inversion. In this case, S must be determined
separately. Space inversion is defined by

x ′j = −xj , j = 1, 2, 3 , x ′4 = x4 . (3.126)

The corresponding conditions which S must satisfy are

γjS = −Sγj , γ4S = Sγ4 , S†γ4 = γ4S
−1 . (3.127)

Up to an undetermined phase factor, the solution is

S = γ4 . (3.128)

Thus we can say that Dirac’s equation preserves parity. However, this statement does
not hold for the two-component Weyl equation. We shall discuss this below.

Relativistic Covariance of Weyl’s Equation
Although in Sect. 3.5 we used boldface to distinguish Pauli’s matrix in two
dimensions from the one in four dimensions, from now on we shall use boldface
only for three-dimensional vectors and normal characters for their components.
In the following, we shall prove the relativistic covariance of the Weyl equation

2 To derive the explicit form of S corresponding to finite transformations, the reader is referred to
[45].
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similarly to that of the Dirac equation. We start with Weyl’s equation (3.100):

i
∂

∂t
ψ = ±1

i
σ · ∇ψ . (3.129)

The positive sign corresponds to the right-handed neutrino and the negative one to
the left-handed neutrino, as will be explained in the next section. Then we introduce
the matrices Γμ:

Γj = σj , j = 1, 2, 3 , Γ4 = ±i . (3.130)

Using the Γ -matrix, Weyl’s equation can be written in the form

Γμ
∂ψ

∂xμ
= 0 ,

∂ψ†

∂xμ
Γμ = 0 . (3.131)

Thus, the Lorentz transformation of the Weyl spinors becomes

ψ → ψ ′ = Sψ , ψ† → ψ ′† = ψ†S† . (3.132)

The big difference with Dirac’s equation is that in Weyl’s equation there is no mass
term. The covariance of the two equations in (3.131) (in other words, the condition
that they hold in the same form in any inertial system) can be expressed as follows:

S†ΓμS =
∑
ν

aμνΓν . (3.133)

Assuming that S has the form (3.119) for the infinitesimal Lorentz transforma-
tion (3.118),

1

2
ε∗μνT †

μνΓλ + 1

2
ΓλεμνTμν = ελρΓρ = 1

2
εμν(δμλΓν − δνλΓμ) . (3.134)

From this equation, Tμν can be obtained immediately:

T12 = ±T34 = i

2
σ3 , T23 = ±T14 = 1

2
σ1 , T31 = ±T24 = i

2
σ2 . (3.135)

Again we find the condition

Tr(Tμν) = 0 . (3.136)

In this case the matrix S is unimodular, i.e.,

detS = 1 . (3.137)
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For the space inversion (3.126), S must satisfy the following four equations:

S†σjS = −σj , j = 1, 2, 3 , S†S = 1 . (3.138)

However, there exists no two-dimensional matrix satisfying these four equations.
Thus, Weyl’s equation does not maintain its form under space inversion. In other
words, this equation is not defined with respect to space inversion. Hence, parity
is not conserved. For this reason Weyl’s equation was long considered unphysical.
However, once the non-conservation of parity proposed by Lee and Yang [45] had
been confirmed experimentally, Weyl’s equation began to bask in the limelight as
the equation of the massless neutrino. The theory of neutrinos described by this
equation is called the two-component theory of the neutrino.

3.7 Solutions of the Free Dirac Equation

To quantize the Dirac field, we must first derive the complete set of solutions of the
free Dirac equation. In Pauli’s representation, the Hamiltonian is

H = α ·p + βm = ρ1σ · p + ρ3m , (3.139)

with the ρ-matrices defined by (3.94). We begin by deriving the invariant quantities
for the Dirac equation, in other words, the conserved quantities:

[H,H ] = 0 , [p,H ] = 0 . (3.140)

These equations express conservation of energy and momentum. Next, we consider
the angular momentum:

L = r × p . (3.141)

We note that

[L3,α · p + βm] = α · [L3,p] = i(α1p2 − α2p1) = i(α × p)3 .

Generalizing this equation we find that the orbital angular momentum is not a
conserved quantity:

[L,H ] = iα × p = iρ1σ × p. (3.142)

The same happens for spins:

[σ3,α · p + βm] = ρ1[σ3, σ ] ·p = 2iρ1(σ2p1 − σ1p2) = −2iρ1(σ × p)3 ,
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or

[σ ,H ] = −2iρ1σ × p . (3.143)

Combining (3.142) and (3.143), we find that the total angular momentum is a
conserved quantity:

[J ,H ] = 0 , where J = L+ 1

2
σ . (3.144)

In contrast with the non-relativistic theory, even for the free particle, the spin and
angular momentum are not conserved separately. Only their sum is conserved.

The helicity is another important conserved quantity. That is,

h = σ · p/p , or λ = h/2 , (3.145)

is conserved, and the eigenvalues of h are ±1. To be precise, λ is the helicity, but
here we call h helicity as well.

The motion of a free Dirac particle is determined by specifying its momentum
and helicity. The wave function with the given momentum p takes the form

ψ(x) = 1√
V

eip·x−iEtu(p) . (3.146)

Here, V is the volume of the whole system within which the particle is confined,
and u(p) is a four-component spinor.

In contrast with the scalar and the vector, the spinor is a physical quantity obeying
the transformation rule (3.104). Substituting (3.146) into the Dirac equation, we find

Eu(p) = (ρ1σ · p + ρ3m)u(p) ≡ H(p)u(p) . (3.147)

In order to obtain the energy eigenvalue E, we diagonalize H(p) using a unitary
matrix U . We use the formula

exp

(
− i

2
aρ2

)
ρ3exp

(
i

2
aρ2

)
= ρ3 cos a + ρ1 sin a . (3.148)

Then we write H(p) as

ρ1σ · p + ρ3m = A(ρ3 cos a + ρ1 sin a) ,

where

A =
√
(σ ·p)2 +m2 =

√
p2 +m2 , tan a = σ · p/m , (3.149)
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with p standing for the absolute value of the vector p. Then, the matrix U is

U = exp

(
i

2
aρ2

)
= exp

(
i

2
ρ2tan−1 σ · p

m

)
. (3.150)

The diagonal form of H(p) is

UH(p)U−1 =
√
p2 +m2ρ3 . (3.151)

Using the formula

tan−1 σ · p

m
= σ · p

m

tan−1(p/m)

p/m
,

we put U in the form

U = 1√
2A

(√
A+m+ iρ2

σ · p√
A+m

)
. (3.152)

Next, we introduce the spinor v(p) = Uu(p), such that

Ev(p) =
√
p2 +m2ρ3v(p) . (3.153)

Since the eigenvalues of ρ3 are ±1, the eigenvalues E turn out to be

E = ±
√
p2 +m2 . (3.154)

Because each eigenvalue is doubly degenerate, we distinguish the solutions by the
helicity:

1) E = √p2 +m2 , h = 1 2) E = √p2 +m2 , h = −1

v(p) =

⎛
⎜⎜⎝

cos θ/2
eiϕ sin θ/2

0
0

⎞
⎟⎟⎠ , v(p) =

⎛
⎜⎜⎝
−eiϕ sin θ/2

cos θ/2
0
0

⎞
⎟⎟⎠ ,

3) E = −√p2 +m2 , h = 1 4) E = −√p2 +m2 , h = −1

v(p) =

⎛
⎜⎜⎝

0
0

cos θ/2
eiϕ sin θ/2

⎞
⎟⎟⎠ , v(p) =

⎛
⎜⎜⎝

0
0

−eiϕ sin θ/2
cos θ/2

⎞
⎟⎟⎠ .
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This completes the solution of the free Dirac equation. The wave function can be
normalized by requiring

∫
V

d3x ψ†(x)ψ(x) = 1 . (3.155)

Note that there are positive and negative energy eigenvalues. The interpretation of
negative energy solutions can be correctly given only after quantization. In addition,
the Dirac particle does not obey Bose statistics like the spin-0 scalar particle. It
obeys Fermi statistics, being a spin-1/2 particle. What kind of quantization must be
chosen to satisfy the statement above? This is the subject of the next section.

Relation Between Dirac’s Equation and Weyl’s Equation
Weyl’s equation is obtained from Dirac’s equation without the mass term:

Hψ = α · pψ = Eψ . (3.156)

We introduce the following Hermitian matrices:

σμν = 1

2i
(γμγν − γνγμ) = 2

i
Tμν , (3.157)

γ5 = γ1γ2γ3γ4 . (3.158)

The matrices σ23, σ31, and σ12 are equivalent to σ1, σ2, and σ3 in (3.91). Then we
can write

α · p = −γ5σ ·p , (3.159)

where σ stands for the three-dimensional vector given by the three components σ1,
σ2, and σ3. This matrix can be thought of as being either two-dimensional or four-
dimensional, as we choose. We then decompose the wave function in the following
way:

ψ = ψL + ψR = 1+ γ5

2
ψ + 1− γ5

2
ψ . (3.160)

In the case of a massless particle, Dirac’s equation (3.156) reduces to the two
equations

EψL = −σ ·pψL , EψR = σ · pψR . (3.161)

By restricting to the positive energy solution, we find that, since E = p, ψL
corresponds to the case h = −1, called the left-handed wave function, with
spin antiparallel to its momentum, while ψR corresponds to h = 1, called the
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right-handed wave function, with spin parallel to the momentum. In the Weyl
representation, the matrix γ5 is diagonal:

γ5 =

⎛
⎜⎜⎝

1
1
−1
−1

⎞
⎟⎟⎠ . (3.162)

Hence, ψL and ψR become the following two-component spinors:

ψL =

⎛
⎜⎜⎝
×
×
0
0

⎞
⎟⎟⎠ , ψR =

⎛
⎜⎜⎝

0
0
×
×

⎞
⎟⎟⎠ , (3.163)

where × stands for the components which are in general not zero. This completes
the derivation of the two-component Weyl equation. However, as we have seen
above, it can be expressed in a four-component form.

As mentioned before, the neutrino can be considered to obey Weyl’s equation.
If this is true, is the sign of its helicity positive or negative? In other words, is the
neutrino left-handed or right-handed? The helicity of the neutrino was measured by
Goldhaber, Grozins, and Sunyar in [79]. The process they used is an elementary
reaction called K-capture induced by essentially the same interaction as β-decay,
namely

e− + p→ n+ ν . (3.164)

Both p and n are nucleons in an atomic nucleus. The following two-stage process
takes place:

e− + A
J=0

−→ B∗
J=1
+ ν , B∗

J=1
−→ B

J=0
+ γ , (3.165)

where A is a spin-0 nucleus. Absorbing the electron on its K-shell according
to (3.164), it becomes the spin-1 excited atomic nucleus B∗ and simultaneously
emits a neutrino. Then B∗ reaches its ground state B by emitting a γ-ray. B is again
in a spin-0 state. If there exists an atomic nucleus which undergoes such a chain of
reactions, the helicity of the neutrino can be determined in the following way.

First, note that, when they are emitted in opposite directions, the neutrino ν and
the γ particle carry the maximum energy, thus satisfying the resonant scattering
condition. We will check the conservation of angular momentum in this case. The
z-axis is chosen as the direction in which ν is radiated, and we consider Jz before
and after the interaction.
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If ν is left-handed, so that its spin is antiparallel to the z-direction, i.e.,−1/2, we
have the following possibilities for Jz:

e− + A −→ B∗ + ν −→ γ + B + ν

Jz : 1

2
0 1 −1

2
1 0 −1

2

Jz : −1

2
0 0 −1

2
0

forbidden
0 −1

2

In the analysis of the conservation law above, the case where the electron has
Jz = −1/2 is forbidden, because the z component of the spin of the photon emitted
in the−z direction cannot be zero. This is a feature of massless particles, which will
be explained later. Therefore, the only allowed case is when the photon is emitted in
the −z direction with Jz = 1, i.e., when the photon is left-handed (meaning that it
has left-circular polarization). Thus, if ν is left-handed, the photon emitted with the
maximum energy will also be left-handed. Similarly, if ν is right-handed, then the
photon will also be right-handed.

The atomic nuclei used in the actual experiments were

A = 152
63 Eu(0−) , B = 152

62 Sm(0+) , B∗ = 152
62 Sm(1−) , (3.166)

where the numbers 0 or 1 in brackets represent the spins of the nuclei and the plus
and minus signs indicate the parity. By measuring the polarization of the photons
with the highest energies, it was deduced that the neutrino is left-handed.

3.8 Quantization of the Dirac Field

To quantize the Dirac field, we start from the Lagrangian density in the form

L = −ψ̄
(
γμ

∂

∂xμ
+m

)
ψ , (3.167)

and derive the Dirac equation. We must treat ψ and ψ̄ as independent quantities
when deriving the field equation from this Lagrangian density using the variational
principle. As a consequence, the following equations are obtained:

(
γμ

∂

∂xμ
+m

)
ψ = 0 , − ∂ψ̄

∂xμ
γμ +mψ̄ = 0 . (3.168)

In addition, the quantity canonically conjugate to ψr , denoted π
†
r , is

π†
r =

∂L

∂ψ̇r

= i(ψ̄γ4)r = iψ†
r . (3.169)
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The four-dimensional continuity equation related to the law of conservation of
probability, which we have discussed before, is

∂μjμ = 0 , where jμ = iψ̄γμψ . (3.170)

Combining the equations (3.104), (3.116), and (3.112), it is easily shown that jμ
transforms as a four-vector under Lorentz transformations. In addition, it will be
explained later that the canonical algebra for Dirac fields obeying Fermi statistics
must be chosen as the following anti-commutation relation instead of (3.9):

[
ψr(x), π

†
s (x
′)
]
+ = iδrsδ3(x − x ′) , where x0 = x ′0 . (3.171)

Here, [ , ]+ denotes the anti-commutator, sometimes written as { , }, and defined
by

[A,B]+ = {A,B} = AB + BA . (3.172)

Sometimes, the commutator [ , ] is denoted, in turn, by [ , ]−.
For x0 = x ′0, we can write the equal-time anti-commutators in the form

[
ψr(x), ψ

†
s (x
′)
]
+ = δrsδ

3(x − x ′) ,

[
ψr(x), ψs(x

′)
]
+ =
[
ψ†
r (x), ψ

†
s

]
+ = 0 . (3.173)

Then, the Hamiltonian density becomes

H =
∑
r

π†
r ψ̇r −L = iψ̄γ4ψ̇ + ψ̄(γμ∂μ +m)ψ

= ψ†(α ·p + βm)ψ , where p = −i∇ . (3.174)

Note the appearance of the Dirac Hamiltonian sandwiched between ψ and ψ†. The
Hamiltonian itself is given by the space integration:

H =
∫

d3xH (x) =
∫

d3xψ†(x)

(
1

i
α ·∇ + βm

)
ψ(x) . (3.175)

This completes the application of the canonical formalism.
To quantize, we introduce the Fourier expansion

ψr(x) = 1√
V

∑
q

[
eiq·x−iEqx0

∑
h

u(+)r (q, h)a+(q, h) + eiq·x+iEqx0
∑
h

u(−)r (q, h)a−(q, h)
]
,

(3.176)



52 3 Quantization of Free Fields

where Eq =
√
q2 +m2, q = |q|, and u(+) and u(−) are the positive and negative

energy solutions, respectively, satisfying the equations

(α · q + βm)u(±)(q, h) = ±Equ
(±)(q, h) . (3.177)

Substituting the Fourier expansion above into the Hamiltonian (3.175), we obtain

H =
∑
q

Eq

[∑
h

a
†
+(q, h)a+(q, h)−

∑
h

a
†
−(q, h)a−(q, h)

]
. (3.178)

In addition, the following conserved quantity (which is in fact proportional to the
electric charge) is also important:

N =
∫

d3xj0(x) =
∑
q

∑
h

[
a

†
+(q, h)a+(q, h)+ a

†
−(q, h)a−(q, h)

]
. (3.179)

Next, substituting the Fourier expansion (3.176) into (3.173), we find

[
a+(q, h), a†

+(q ′, h′)
]
+ = δh,h′δq,q′ ,[

a−(q, h), a†
−(q ′, h′)

]
+ = δh,h′δq,q′ ,

other anti-commutators = 0 .

(3.180)

Looking at the expression (3.178) for the Hamiltonian, the energy in the system is
apparently not positive-definite.

Although the question regarding the negative energy was originally considered
as a drawback of the theory, Dirac was able to get round it by assuming that the
vacuum is the state filled completely with negative energy states, taking advantage
of the fact that the electron obeys Fermi statistics. However, this idea is unnatural if
we think of, say, the electric field created by the infinite number of electrons in the
negative energy states. A much clearer solution is achieved by quantizing the field.
To explain this, we use the following trick:

−
∑
h

a
†
−(q, h)a−(q, h) =

∑
h

a−(q, h)a†
−(q, h)− 2 . (3.181)

Neglecting the constant 2, as we did in (3.66), the Hamiltonian becomes positive-
definite:

H =
∑
q

Eq

[∑
h

a
†
+(q, h)a+(q, h)+

∑
h

a−(q, h)a†
−(q, h)

]
. (3.182)
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Although the term we neglected is negative infinity, it is still a constant, viz.,

− 2
∑
q

Eq . (3.183)

This corresponds to neglecting the total energy of the electrons in the negative
energy states in Dirac’s hole theory. Let us reconstruct the interpretation in the
hole theory by reinterpreting the operators. a†+ and a+ are the operators creating
and annihilating, respectively, the electron with positive energy (the Dirac particle),
while a

†
− and a− are the operators creating and annihilating, respectively, particles

with negative energy. However, creating the electron with negative energy is
equivalent to annihilating a particle with positive energy. In addition, creating some
particle with an additive quantum number is equivalent to annihilating another with
the opposite quantum number. Here we consider that creating the electron with
negative energy is equivalent to annihilating the positive-energy particle with the
opposite quantum numbers. We make the replacement

a+(q, h)→ a(q, h) , a
†
+(q, h)→ a†(q, h) ,

a−(q, h)→ b†(−q, h) , a
†
−(q, h)→ b(−q, h) .

(3.184)

The helicity is a product of the additive quantum numbers p and σ , so its sign is
unchanged.

Since the particle whose additive quantum numbers all have opposite sign to the
electron has a positive electric charge, it is called a positron. We define the operators

N+(q, h) = a†(q, h)a(q, h) , N−(q, h) = b†(q, h)b(q, h) . (3.185)

Hence, H and N can be written as

H =
∑
q

∑
h

Eq

[
N+(q, h)+ N−(q, h)

]
, (3.186)

N =
∑
q

∑
h

[
N+(q, h)−N−(q, h)

]
, (3.187)

where b and b† are the creation and annihilation operators of the positron,
respectively. N± are the particle number operators and, unlike the case of Bose
statistics, their eigenvalues can only take the values 0 and 1, a feature of Fermi
statistics. This can be shown using the anti-commutation relations (3.180). Fixing q

and h,

N2 = a†aa†a = a†(1− a†a)a = a†a − (a†)2a2 = a†a = N ,
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i.e., from the anti-commutation relations, we find

[
N±(q, h)

]2 = N±(q, h) . (3.188)

This means that the only permissible eigenvalues are 0 and 1, reflecting Pauli’s
exclusion principle, namely that one state can be occupied by at most one particle.
For this reason, the field of particles obeying Fermi statistics must be quantized
using anti-commutation relations.

Using the new operators, the Fourier expansion of the Dirac field can be written
as

ψr(x) = 1√
V

∑
q

∑
h

[
eiq·xur (q, h)a(q, h)+e−iq·xvr (q, h)b†(q, h)

]
, (3.189)

where q ·x = qx−Eqx0 is the four-dimensional scalar product, and we have simply
written q in a or b as q . In addition, we have used the notation

ur(q, h) = u(+)r (q, h) , vr (q, h) = u(−)r (−q, h) . (3.190)

Casimir Operator
When experiments are carried out, very often only the momentum and energy are
measured, and not the spin or the helicity. In such cases, we must sum over the spin
states, and for this purpose, it is useful to define the so-called Casimir operator.
We shall write the electron and the positron, or more generally the particle state
with four-momentum p and the antiparticle state with four-momentum p̄, as |p, h〉
and |p̄, h〉, respectively. Here h denotes the helicity. In this case, from the Fourier
expansion, we obtain

〈0|ψ(x)|p, h〉 = 1√
V

eip·xu(p, h) , (3.191a)

〈p, h|ψ̄(x)|0〉 = 1√
V

e−ip·xū(p, h) , (3.191b)

where |0〉 stands for the vacuum state. For the antiparticle state, we find

〈0|ψ̄(x)|p̄, h〉 = 1√
V

eip̄·xv̄(p̄, h) , (3.192a)

〈p̄, h|ψ(x)|0〉 = 1√
V

e−ip̄·xv(p̄, h) . (3.192b)
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From the orthogonality of the solutions of (3.147) and the normalization of the
solution based on (3.155), we have

∑
s

[∑
h′

u(+)r (p, h′)u(+)∗s (p, h′)
]
u(+)s (p, h′) = u(+)r (p, h) ,

∑
s

[∑
h′

u(+)r (p, h′)u(+)∗s (p, h′)
]
u(−)s (p, h′) = 0 .

(3.193)

These relations tell us that the term in the brackets is equivalent to the projection
operator which selects the positive energy solution. Hence,

∑
h′

u(+)r (p, h′)u(+)∗s (p, h′) =
(
H(p)+ Ep

2Ep

)
rs

=
(

α · p + βm+ Ep

2Ep

)
rs

.

(3.194)

We rewrite the above equation as

∑
h

ur(p, h)ūs (p, h) =
(−ip · γ +m

2Ep

)
rs

. (3.195)

Similarly, for the negative energy solution,

∑
h′

u(−)r (−p, h′)u(−)∗s (−p, h′) =
(−α ·p + βm− Ep

−2Ep

)
rs

, (3.196)

i.e.,

∑
h

vr (p̄, h)v̄s(p̄, h) =
(−ip̄ · γ −m

2Ep

)
rs

. (3.197)

This projection operator is called Casimir operator. Using this operator we can
perform all the calculations without using an explicit representation of the Dirac
spinor.

3.9 Charge Conjugation

In the quantization of the complex scalar field and the Dirac field, the concept
of particle and antiparticle arises. We will now focus on the symmetry between
them. Such a symmetry always exists in the case of free fields. Since exchanging a
particle with an antiparticle means a flip in the sign of the electric charge, such a
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transformation is called charge conjugation and, following (3.78), it is denoted by
C . For the Dirac field, the C -operation interchanges ψ and ψ̄ , i.e., in general,

ψr(x)→ C−1ψr(x)C = Crsψ̄s(x) , (3.198)

where C is a 4× 4 matrix. In addition, we have summed over the spinor index s. In
the following, we will study the properties of the matrix C.

First, we consider that four-momentum and spin or helicity are unchanged when
interchanging a particle and an antiparticle. From this property and (3.187), we
obtain

C−1NC = −N . (3.199)

Thus, the same equation holds for the density as well:

C−1jμC = −jμ . (3.200)

In quantized theories, it is more convenient to define jμ(x) by

jμ(x) = iψ̄(x)γμψ(x)→ i

2

[
ψ̄(x), γμψ(x)

] = i

2
(γμ)rs

[
ψ̄r (x), ψs(x)

]
.

(3.201)

With this redefinition, the vacuum expectation value of jμ vanishes.
Then we write the Dirac equation (3.168) as

(γ · ∂ +m)ψ = 0 , (γ T · ∂ −m)ψ̄T = 0 , (3.202)

where γ T stands for the transpose of the matrix γμ. If Dirac’s equation does not
change form under the charge conjugation operation, then

(γ · ∂ +m)C−1ψC = (γ · ∂ +m)Cψ̄T = 0 .

Consequently,

(C−1γμC · ∂μ +m)ψ̄T = 0 . (3.203)

This equation is equivalent to the second equation in (3.202) if

C−1γμC = −γ T
μ . (3.204)

Clearly, the matrices−γ T
μ satisfy the commutation relations (3.108), just like γμ.

We skip the details, but given an explicit representation of the γ -matrices, the one
obtained by replacing γμ by −γ T

μ is also a representation of the Dirac matrices and
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it is equivalent to the original one. As a result, we can choose the matrix C as a
unitary matrix. In addition, from (3.204), we have

Cγ T
μC
−1 = −γμ . (3.205)

The equations derived by transposing (3.204) are

CTγ T
μ

(
CT)−1 = −γμ ,

(
CT)−1

γμC
T = −γ T

μ . (3.206)

Substituting the right-hand side of the latter relation into the left-hand side
of (3.205), we find

(
CTC−1)γμ(CTC−1)−1 = γμ . (3.207)

All 4× 4 matrices can be expressed as polynomials of the four γ -matrices. The
equation above shows that CTC−1 commutes with all the γ -matrices, whence it
commutes with all the 4× 4 matrices. Such a matrix must therefore be proportional
to the unit matrix:

CTC−1 = a1 . (3.208)

The coefficient a does not depend on which representation we choose. This can be
proved as follows.

Considering a unitary matrix S, we change the representation of γ as follows:

γμ
′ = SγμS

−1 . (3.209)

In this case, solving (3.204) in the new representation, the matrix C′ will be given
by

C′ = SCST . (3.210)

Therefore,

(C′)T(C′)−1 = SCTST(ST)−1C−1S−1 = a1 = CTC−1 .

Since the coefficient a is shared by all the equivalent representations, it is enough to
determine it for one representation, say the Pauli representation. In this representa-
tion,

γ T
μ = γμ , μ = 2, 4 , γ T

μ = −γμ , μ = 1, 3 , (3.211)
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and (3.204) is satisfied by choosing C = γ2γ4. In this case,

CT = (γ2γ4)
T = γ4

Tγ2
T = γ4γ2 = −γ2γ4 = −C ,

CTC−1 = −1 . (3.212)

Thus, we have found that a = −1 and the matrix C is anti-symmetric.
The charge conjugation transformation of ψ̄ can be derived from the

charge conjugation of ψ . Although we skip the intermediate calculations,
using (3.198), (3.204), the unitarity of C, and the hermiticity of γμ, we find

C−1ψ̄rC = (C−1)rsψs(x) . (3.213)

Charge Conjugation of the Bilinear Forms
Since the γ -matrices are four-dimensional matrices, there exist 16 linearly inde-
pendent polynomials that can be created using them. Denoting a four-dimensional
matrix by O , we consider the bilinear form

[
ψ̄(x),Oψ(x)

] = Ors

[
ψ̄r (x), ψs(x)

]
. (3.214)

From the transformation property of this bilinear form under Lorentz transforma-
tions, the matrix O can be categorized into the following five types:

1 (scalar) , γμ (vector) , σμν (anti-symmetric tensor) ,

γμγ5 (axial vector) , γ5 (pseudo scalar) .
(3.215)

The number of matrices in all categories is 1+ 4+ 6+ 4+ 1 = 16, so they exhaust
the linearly independent 4× 4 matrices.

We now examine the transformation properties of the bilinear forms (3.214)
under charge conjugation. Combining (3.198) and (3.213),

C−1[ψ̄(x),Oψ(x)
]
C = [ψ̄(x),O ′ψ(x)

]
, (3.216)

where

O ′ = (C−1OC
)T = COTC−1 ≡ εO . (3.217)

Calculating ε for the various cases using (3.205), we obtain Table 3.1.

Table 3.1 Sign changes
under charge conjugation

O 1 γμ σμν γμγ5 γ5

ε 1 −1 −1 1 1
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3.10 Quantization of the Complex Vector Field

So far we have studied the quantization of the spin-0 scalar field and the spin-1/2
spinor field, and in the following we will examine the quantization of a vector field.
A real vector field and a complex vector field do not differ essentially, so we consider
the latter.

We denote a complex vector field and its conjugate by ϕμ and ϕ†
μ, respectively.

As quantized operators, they are Hermitian conjugates of each other. When using the
Pauli metric convention, as we do now, the i attributed to quantum theory changes its
sign under the Hermitian conjugation operator †, but the one attributed to relativity
theory does not change its sign. Therefore, ϕj and ϕ

†
j are complex conjugates for

j = 1, 2, 3, but when we write

ϕ4 = iϕ0 , ϕ
†
4 = iϕ†

0 , (3.218)

it turns out that ϕ0 and ϕ
†
0 are complex conjugates, and ϕ4 and ϕ

†
4 are not. Bearing

this in mind, we will discuss the conditions that a free vector field must satisfy:

Kϕμ ≡ (�−m2)ϕμ = 0 , (3.219)

∂μϕμ = 0 . (3.220)

The first is the Klein–Gordon equation for each component. The second is called
the irreducibility condition. If this four-divergence does not vanish, it represents a
scalar field, and then ϕμ represents a field describing a mixture of spin-0 and spin-1
particles.

Let us derive the Lagrangian density satisfying the two conditions above. If we
try the form

L = −(∂νϕ†
μ · ∂νϕμ +m2ϕ†

μ · ϕμ
)
,

by analogy with the scalar field Lagrangian, we get into trouble, because
although (3.219) holds, (3.220) does not. In addition, the Hamiltonian density
derived from this Lagrangian density is not positive-definite, as can be seen here:

H = π†
μπμ +∇ϕ†

μ · ∇ϕμ +m2ϕ†
μϕμ

=
3∑

j=1

(
π

†
j πj +∇ϕ

†
j · ∇ϕj +m2ϕ

†
j ϕj

)
−
(
π

†
0π0 +∇ϕ

†
0 · ∇ϕ0 +m2ϕ

†
0ϕ0

)
.

We have to find another form, and we will try the one suggested by the
Lagrangian of the electromagnetic field:

L = −1

2
(∂μϕ

†
ν − ∂νϕ

†
μ)(∂μϕν − ∂νϕμ)−m2ϕ†

μϕμ . (3.221)
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Additionally, we define the field strength Fμν by

Fμν = ∂μϕν − ∂νϕμ . (3.222)

The Euler–Lagrange equation derived from the variational principle is

∂L

∂ϕ
†
ν

− ∂

∂xμ

(
∂L

∂ϕ
†
ν,μ

)
= −m2ϕν + ∂μFμν = 0 ,

whence

∂μFμν = m2ϕν , ∂μF
†
μν = m2ϕ†

ν . (3.223)

In the following, we assume m �= 0. Since Fμν is an anti-symmetric tensor,

m2∂νϕν = ∂ν∂μFμν = 0 .

Thus, from the assumption that m �= 0, we can derive (3.220). Additionally,
using (3.220) in (3.223), we find that (3.219) is also satisfied:

∂μ(∂μϕν − ∂νϕμ) = �ϕν = m2ϕν .

Next, we define π as follows:

π†
ν =

∂L

∂ϕ̇ν
= 1

i
(∂νϕ

†
4 − ∂4ϕ

†
ν ) =

1

i
F

†
ν4 ,

πν = ∂L

∂ϕ̇
†
ν

= 1

i
(∂νϕ4 − ∂4ϕν) = 1

i
Fν4 . (3.224)

Here we encounter a formal difficulty, i.e.,

π4 = π
†
4 = 0 . (3.225)

It turns out that we cannot define the canonically conjugate momentum for the fourth
component. However, noticing that the fourth component is not independent of the
other three components, it becomes clear that this is not a fundamental difficulty.
From the equation of motion (3.223) and the definition of the canonically conjugate
momentum (3.224), we see how the fourth component can be expressed in terms of
the other components:

ϕ4 = i

m2 div π , ϕ
†
4 =

i

m2 div π† . (3.226)
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In addition, the time derivative of ϕj can be written in terms of the three components
πj as follows:

ϕ̇j = πj + i
∂ϕ4

∂xj
, ϕ̇

†
j = π

†
j + i

∂ϕ
†
4

∂xj
. (3.227)

Thus, considering only the three space components as independent quantities, the
Hamiltonian density can be written as

H =
3∑

j=1

(π
†
j ϕ̇j + πj ϕ̇

†
j )−L . (3.228)

However, to construct the Hamiltonian we use

H =
∫

d3xH (x) =
∫

d3xH ′(x) , (3.229)

where H ′ is defined by adding a three-dimensional divergence term to H :

H ′ =H − i div(π†ϕ4 + πϕ
†
4) . (3.230)

The advantage of using H ′ is that it makes manifest the positivity of the Hamilto-
nian:

H ′ = π† ·π + 1

m2
(div π†)(div π)+m2ϕ† · ϕ + (rot ϕ†)·(rot ϕ) . (3.231)

Canonical Quantization and Canonical Equations
Starting from the Lagrangian density (3.221), we introduce the following equal-time
commutation relations:

[
π

†
j (x), ϕk(x

′)
] = [πj (x), ϕ

†
k (x
′)
] = −iδjkδ3(x − x ′) , where x0 = x ′0 .

(3.232)

All other commutators are set to zero. Then we derive the canonical equations:

ϕ̇j (x) = i
∫

d3x ′
[
H (x ′), ϕj (x)

]

=
∫

d3x ′
[
πj (x

′)δ3(x − x ′)+ 1

m2
div π(x ′) ∂

∂x ′j
δ3(x − x ′)

]
,
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whence

ϕ̇(x) = π(x)− 1

m2 grad(div π) . (3.233)

Similarly, we obtain

π̇(x) = −m2ϕ(x)− rot rot ϕ(x) . (3.234)

Combining the two equations above and using (3.226), we can derive the equation of
motion (3.219) for ϕμ. In addition, differentiating (3.226) with respect to time and
combining the result with equation (3.224), we obtain the condition (3.220). Thus,
the canonical equations (3.233) and (3.234) are equivalent to the original equations.

We can also derive the important equal-time commutation relation

[ϕ̇j (x), ϕ†
k (x
′)] =
[
πj (x)− 1

m2

∂

∂xj
div π(x), ϕ

†
k (x
′)
]

(3.235)

= −i

(
δjk − 1

m2

∂2

∂xj∂xk
δ3(x − x ′)

)
.

Fourier Expansion
Similarly to what we have done so far, we introduce the Fourier expansion for vector
fields:

ϕj (x) =
∑
p

1√
2p0V

[
eip·xaj (p)+ e−ip·xb†

j (p)
]
,

ϕ
†
j (x) =

∑
p

1√
2p0V

[
eip·xbj (p)+ e−ip·xa†

j (p)
]
, j = 1, 2, 3 . (3.236)

We can write the Fourier expansions for ϕ4 and ϕ
†
4 in terms of aj and bj above

because they can be expressed in terms of the other components, but here we skip
this.

Following the same method as before, we can determine the commutation
relations between coefficients. Here we only give the result:

[
aj (p), a

†
k (q)
] = [bj (p), b†

k(q)
] = δp,q

(
δjk + pjpk

m2

)
. (3.237)
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All other commutators are zero. Then, including the fourth component, we rewrite
the Fourier expansions:

ϕμ(x) =
∑
p

1√
2p0V

[
eip·xaμ(p)+ e−ip·xb†

μ(p)
]
,

ϕ†
μ(x) =

∑
p

1√
2p0V

[
eip·xbμ(p)+ e−ip·xa†

μ(p)
]
. (3.238)

Using the irreducibility condition (3.220), we find that

pμaμ(p) = pμa
†
μ(p) = pμbμ(p) = pμb

†
μ(p) = 0 . (3.239)

From these relations, it turns out that the zeroth component of a and b can be
expressed in terms of the other three components:

a0(p) = pj

p0
aj (p) , and similar equations. (3.240)

Combining (3.237) with the above equation,

[
aμ(p), a

†
ν (q)
] = [bμ(p), b†

ν(q)
] = δp,q

(
δμν + pμpν

m2

)
. (3.241)

All other commutation relations are again zero.
We choose three unit vectors orthogonal to each other as

e1 = p/p , e2 , e3 = e1 × e2 , (3.242)

and we expand a(p) as

a(p) = e1a
(1)(p)+ e2a

(2)(p)+ e3a
(3)(p) . (3.243)

In this new coordinate system,

[
a(1)(p), a(1)†(p)

] = 1+ p2

m2 =
p2

0

m2 ,

[
a(2)(p), a(2)†(p)

] = [a(3)(p), a(3)†(p)] = 1 , (3.244)

where a(1) corresponds to the longitudinal component and a(2) and a(3) to the
transverse components. Here we change the definition of a(j)(p). Instead of (3.243),
we set

a(p) = e1

(
p0

m

)
a(1)(p)+ e2a

(2)(p)+ e3a
(3)(p) . (3.245)
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Consequently, this new operator satisfies the simple commutation relation

[
a(j)(p), a(k)(p)

] = δjk . (3.246)

Furthermore, using this new operator, the energy and momentum of the field are

H =
∑
p

∑
j

p0

[
n
(j)
+ (p)+ ni−(p)

]
, (3.247)

Pk =
∑
p

∑
j

pk

[
n
(j)
+ (p)+ n

(j)
− (p)
]
, (3.248)

n
(j)
+ (p) = a(j)†(p)a(j)(p) , n

(j)
− (p) = b(j)†(p)b(j)(p) , (3.249)

where we have assumed that the momentum P is given by interpreting α as the
three components of the vector field in (3.30). n+ and n− are the particle number
operators. Their eigenvalues are non-negative integers, 0, 1, 2, . . ., reflecting the
Bose statistics.

In addition, the operation of charge conjugation connects ϕμ(x) and ϕ†
μ(x) by a

relation similar to (3.78).
In this chapter, considering the fields with spin 0, 1/2, and 1 as quantum-

mechanical operators, we have quantized them by using the canonical commutation
relations. A field satisfying the so-called wave equation as equation of motion can
be considered as a classical wave. However, as a consequence of the quantization,
the eigenvalues of its energy and momentum coincide with those for particles of
the same mass, which implies that fields possess particle-like aspects. Intuitively
speaking, in the free state of motion, wave-like aspects described by the wave
equation show up strongly, and when the state of motion is changed via interactions,
the change in the four-momentum has particle-like aspects.

The dual particle–wave nature arising in quantum mechanics can be understood
only after quantizing fields.



Chapter 4
Invariant Functions and Quantization
of Free Fields

In the last chapter, we quantized free fields using the canonical quantization
procedure. However, we did this by fixing a time axis, and we should ask whether
the result is independent of this choice. To answer this question, we need to study
the unequal-time commutation relations. By introducing several kinds of Lorentz-
invariant Green functions, we will show that free fields can be quantized without
fixing a direction of time.

4.1 Unequal-Time Commutation Relations for Real Scalar
Fields

Using the previously obtained Fourier expansion for the real scalar field, one
can derive the commutation relations among two fields at unequal times.
Using (3.51), (3.52), and (3.53),

[ϕ(x), ϕ(y)] =
∑
p

∑
q

1√
2p0V

1√
2q0V

(
eip·x−iq·y[a(p), a†(q)]

+ e−ip·x+iq·y[a†(p), a(q)]
)

= 1

2p0V

[
eip·(x−y) − e−ip·(x−y)] . (4.1)
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It is clear from (3.38) that the possible values of the momentum in a cube with fixed
volume V are quantized by periodic conditions. Then, when V or L is large, the
sum over momenta is replaced by an integral, i.e.,

∑
p

→ V

(2π)3

∫
d3p . (4.2)

Making this replacement in (4.1), the right-hand side becomes

1

(2π)3

∫
d3p

2p0

[
eip·(x−y) − e−ip·(x−y)] ≡ iΔ(x − y) . (4.3)

This function was introduced by Pauli and Jordan [80], but the sign is different from
the original, i.e.,

Δ(x) = − i

(2π)3

∫
d3p

2p0

(
eip·x − e−ip·x) . (4.4)

In the following, we list some properties of this function.

1. Δ(x) is a Lorentz-invariant function, i.e., for the proper Lorentz transformation,

xμ→ x ′μ =
∑
ν

aμνxν ,

the following equality holds:

Δ(x ′) = Δ(x) . (4.5)

Proof δ(p2 +m2) is clearly Lorentz invariant, and using the formula

δ(ab) = |b|−1δ(a)+ |a|−1δ(b) ,

one finds

δ(p2 +m2) = 1

2
√

p2 +m2

[
δ

(
p0 −
√

p2 +m2

)
+ δ

(
p0 +
√

p2 +m2

)]
.

(4.6)
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The first term is nonzero in the region p0 ≥ m and the second in the region p0 ≤
−m. Since these two regions do not overlap, each term is invariant under the proper
Lorentz transformation. We now introduce the following discontinuous functions:

θ(p0) =
{

1 for p0 > 0 ,

0 for p0 < 0 ,
(4.7)

ε(p0) = θ(p0)− θ(−p0) = p0/|p0| . (4.8)

From the above, we note that both θ(p0)δ(p
2 + m2) and ε(p0)δ(p

2 + m2) are
Lorentz invariant, whence the following function is also Lorentz invariant:

∫
d4pε(p0)δ(p

2 +m2)eip·x

= 1

2

∫
dp0d3p√
p2 +m2

[
δ

(
p0 −
√

p2 +m2
)
− δ

(
p0 +
√

p2 +m2
)]

eipx−ip0x0 .

Integrating this equation over p0 and inverting the integration variable according to
p→ −p in the second term, the above equation becomes

∫
d4pε(p0)δ(p

2 +m2)eip·x =
∫

d3p

2p0

(
eip·x − e−ip·x) .

In this equation, p0 stands for
√

p2 +m2, and so is positive-definite. This equation
coincides with (4.4) up to the coefficient. Therefore, Δ(x) is Lorentz invariant.

2. Δ(x) is an odd function, i.e.,

Δ(−x) = −Δ(x) . (4.9)

3. If x is a space-like vector, i.e., x2 > x2
0 , then one has

Δ(x) = 0 . (4.10)

Proof If x is a space-like vector, then there exists a coordinate system with x ′0 = 0.
However, the four-vector x ′ = (x′, 0) can be transformed into (−x′, 0) by a spatial
rotation. This rotation is, of course, a Lorentz transformation. Thus, from properties
(1) and (2),

Δ(x) = Δ(x ′) = Δ(−x ′) = −Δ(x ′) = 0 .

This tells us that ϕ(x) and ϕ(y) commute if x and y are spatially separated.
According to Einstein, no action can ever be transmitted faster than the speed of
light, whence observations at two spatially separated points can never interfere with
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each other. According to quantum mechanics, two physical quantities that can be
observed without interfering with each other or getting in each other’s way are
said to be commutative. This consequence is thus a quantum mechanical expression
of Einstein causality. It is called local commutativity or microscopic causality. In
addition, the Lorentz invariance of Δ(x) means that the canonical quantization with
a fixed choice of time axis is in fact independent of this choice of time axis. Thus,
the commutation relation

[ϕ(x), ϕ(y)] = iΔ(x − y) (4.11)

does not in effect depend on the way we choose the time axis.

4. Δ(x) satisfies the Klein–Gordon equation:

KxΔ(x) = (�x −m2)Δ(x) = 0. (4.12)

Proof We have

(�x −m2)[ϕ(x), ϕ(0)] = [(�x −m2)ϕ(x), ϕ(0)] = 0 .

5. For x0 = 0,

Δ(x) = 0 ,
∂

∂x0
Δ(x) = −δ3(x) . (4.13)

Proof The first equation is a special case of property (3). The second can be
obtained from the canonical commutation relation:

[ϕ̇(x), ϕ(0)] = −δ3(x) , where x0 = 0 .

It can be also derived from the Fourier representation of Δ(x).

These are the properties of the Jordan–Pauli invariant Δ-function. When the mass
m vanishes, we write Δ(x) as D(x).

4.2 Various Invariant Functions

In the previous section, we defined the invariant Δ-function using the commutation
relation. Next, we introduce several kinds of Lorentz-invariant function that are
closely associated with it.
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Fig. 4.1 Regions where the Δ-function is nonzero

First, since Δ(x) vanishes for space-like x, it is nonzero only in the future and
past light cones. We define the retardedΔ-functionΔR and the advancedΔ-function
ΔA as follows:

ΔR(x) = −θ(x0)Δ(x) =
{−Δ(x) when x0 > 0 ,

0 when x0 < 0 ,
(4.14)

ΔA(x) = θ(−x0)Δ(x) =
{

0 when x0 > 0 ,

Δ(x) when x0 < 0 .
(4.15)

The regions where these functions are not zero are the shaded areas in Fig. 4.1.
Clearly, we have

Δ(x) = ΔA(x)−ΔR(x) , ΔA(x) = ΔR(−x) . (4.16)

Next, we define the even function Δ̄ by summing ΔA and ΔR(x):

Δ̄(x) = 1

2

[
ΔA(x)+ΔR(x)

] = −1

2
ε(x0)Δ(x) . (4.17)

The above functions have been derived by decomposing space-time into the
appropriate regions. Furthermore, we can also decompose the function Δ in the
momentum space in terms of positive and negative frequency modes:

Δ(x) = Δ(+)(x)+Δ(−)(x) , (4.18)

iΔ(+)(x) = 1

(2π)3

∫
d3p

2p0
eip·x = 1

(2π)3

∫
d4pθ(p0)δ(p

2 +m2)eip·x , (4.19)
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−iΔ(−)(x) = 1

(2π)3

∫
d3p

2p0
e−ip·x

= 1

(2π)3

∫
d4pθ(−p0)δ(p

2 +m2)eip·x . (4.20)

Therefore,

Δ(+)(−x) = −Δ(−)(x) , Δ(−)(−x) = −Δ(+)(x) . (4.21)

Next, we introduce the even function Δ(1):

Δ(1)(x) = i
[
Δ(+)(x)−Δ(−)(x)

] = 1

(2π)3

∫
d4pδ(p2 +m2)eip·x . (4.22)

From these, we obtain the following equations:

Δ(+)(x) = 1

2

[
Δ(x)− iΔ(1)(x)

]
, Δ(−)(x) = 1

2

[
Δ(x)+ iΔ(1)(x)

]
. (4.23)

We observe that Δ(+) and Δ(−) satisfy the Klein–Gordon equation since Δ(x) and
Δ(1)(x) do. Furthermore,

KxΔ
R(x) = KxΔ

A(x) = KxΔ̄(x) = −δ4(x) . (4.24)

To prove these equations, we can use

ΔR(x) = Δ̄(x)− 1

2
Δ(x) , ΔA(x) = Δ̄(x)+ 1

2
Δ(x) , (4.25)

and then we only need to prove the last equation in (4.24). For this purpose, we
derive the Fourier expression of Δ̄(x). Denoting Cauchy’s principal value by P, we
can write

ε(x0) = x0

|x0| =
2

π

∫ ∞
0

dτ

τ
sin(τx0) = 1

iπ
P
∫ ∞
−∞

dτ

τ
eiτx0 . (4.26)

Therefore,

Δ̄(x) = i

2π
P
∫

dτ

τ
eiτx0

(−i)

(2π)3

∫
d4kε(k0)δ(k

2 +m2)eik·x

= 1

(2π)4

∫
d4p eip·xP

∫
dτ

τ
δ
[
p2 − (p0 + τ )2 +m2] p0 + τ

|p0 + τ |

= 1

(2π)4 P
∫

d4p

p2 +m2 eip·x , (4.27)
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where we have taken p = k and p0 = k0 − τ . Thus,

KxΔ̄(x) = − 1

(2π)4

∫
d4p eip·x = −δ4(x) , (4.28)

which proves (4.24).
Finally, we introduce Feynman’s function ΔF, also known as Stueckelberg’s

causal function. This is defined by

ΔF = 1

2
Δ(1)(x)− iΔ̄(x) ,

= iθ(x0)Δ
(+)(x)+ iθ(−x0)δ

(+)(−x) ,

= −i

(2π)4

∫
d4p eip·x

[
P

p2 +m2 + iπδ(p2 +m2)

]
,

= −i

(2π)4 lim
ε→+0

∫
d4p eip·x 1

p2 +m2 − iε
. (4.29)

From now on, we will omit the limit symbol, taking it as understood. Clearly, this
function satisfies

KxΔF(x) = iδ4(x) . (4.30)

4.3 Unequal-Time Commutation Relations of Free Fields

Up to now, we have investigated the equal-time commutation relations associated
with the canonical quantization. In fact, using the invariant function we can obtain
the unequal-time commutation relation directly.

For the real scalar field, as mentioned in Sect. 4.1, we have

[ϕ(x), ϕ(y)] = iΔ(x − y) . (4.31)

Similarly, for the complex scalar field,

[ϕ(x), ϕ†(y)] = [ϕ†(x), ϕ(y)] = iΔ(x − y) , (4.32)

[ϕ(x), ϕ(y)] = [ϕ†(x), ϕ†(y)] = 0 . (4.33)

Next, we derive the unequal-time anti-commutation relation for spinor fields. We
solve this as an initial value problem of a differential equation, i.e., we start with the
equation

(
γμ

∂

∂xμ
+m

){
ψ(x), ψ̄(y)

} = 0 . (4.34)
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As an initial condition, we use the equal-time anti-commutation relation

{
ψr(x), ψ̄s(y)

} = (γ4)rsδ
3(x − y) , when x0 = y0 . (4.35)

The solution of (4.34) is given uniquely by

{
ψr(x), ψ̄s(y)

} = −i

(
γμ

∂

∂xμ
−m

)
rs

Δ(x − y) = iSrs(x − y) . (4.36)

Setting x0 = y0 in this equation, the right-hand side becomes

−iγ4
∂

∂x4
Δ(x − y) = γ4δ

3(x − y) ,

which gives (4.35). Thus, in this case the anti-commutation relations are

{
ψr(x), ψ̄s(y)

} = iSrs(x − y) ,{
ψr(x), ψs(y)

} = {ψ̄r (x), ψ̄s(y)
} = 0 .

(4.37)

Next, we consider the complex vector field. In this case, the commutator satisfies
the equations

Kx

[
ϕμ(x), ϕ

†
ν (y)
] = 0 , (4.38)

∂

∂xμ

[
ϕμ(x), ϕ

†
ν (y)
] = 0 . (4.39)

To begin with, we consider only the space components. The time component will be
analyzed using the second equation. The initial condition is given by the equal-time
commutation relations:

[
ϕj (x), ϕ

†
k (y)
] = 0 ,

[
ϕ̇j (x), ϕ

†
k (y)
] = −i

(
δjk − 1

m2

∂2

∂xj∂xk

)
δ3(x − y) ,

(4.40)

where x0 = y0. The solution which satisfies (4.38), (4.39), and (4.40) is

[
ϕμ(x), ϕ

†
ν (y)
] = i

(
δμν − i

1

m2

∂2

∂xμ∂xν

)
Δ(x − y) ,

[
ϕμ(x), ϕν(y)

] = [ϕ†
μ(x), ϕ

†
ν (y)
] = 0 .

(4.41)

This implies that, although canonical quantization gives an initial condition to the
above differential equation by fixing a time axis, the commutators obtained in the
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end are independent of the way we choose a specific inertial system. Thus, the
method of canonical quantization yields a Lorentz-invariant quantization, at least
for free fields.

In Sect. 2.3, we showed that the canonical equation and the Euler–Lagrange
equation coincide as long as the canonical commutation relations hold. Conversely,
if we assume that the canonical equation coincides with the Euler–Lagrange
equation, does this restrict the commutation relations? Furthermore, can we derive
the commutation relations without specifying a time axis as we did in the method of
canonical quantization? Using these ideas, we shall now quantize free fields.

4.4 Generalities of the Quantization of Free Fields

As we mentioned in the previous section, from the requirement that the canonical
equation and Euler’s equation must coincide, we can derive the commutation
relations for free fields. In this case, an important assumption is that all free fields
satisfy the Klein–Gordon equation as a consequence of the field equation.

Assume that the Lagrangian density has the form

L = L
[
ϕα, ϕ

†
α, ϕα,μ, ϕ

†
α,μ

]
, (4.42)

where ϕα is a complex field. We will deal with the changes needed to handle a real
field whenever necessary. In the case of free fields, L is a bilinear form in ϕ, ϕ†,
and their derivatives. The Euler–Lagrange equation can therefore be written in the
form

[L ]
ϕ

†
α
= Dαβ(∂)ϕβ = 0 , (4.43)

where D is a matrix which includes differential operators. In the case of the complex
scalar field, we have

[L ]ϕ† = Kϕ = (�−m2)ϕ = 0 , (4.44)

so in this case the one-dimensional matrix D is given by

D(∂) = K = �−m2 . (4.45)

As a perturbation, we add to the Lagrangian density of the above free field an
interaction term between ϕα(x) and an external complex field Q(x), and assume
equivalence of the canonical equation and the Euler–Lagrange equation:

L (x)→ L (x)−Q(x)ϕ†
α(x)ϕα(x) , (4.46)
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Fig. 4.2 Relation between
T1, T2, and Ω

where we sum over α. From the variational principle,

Dαβ(∂)ϕβ −Qϕα = 0 . (4.47)

If ϕ is a real scalar field, then Q can be replaced by 2Q in the above equation. We
will return to this difference later.

Next, we assume that Q is nonzero only in a certain finite space-time region Ω ,
while

Q = 0 when t > T2 or t < T1 . (4.48)

We denote ϕα before T1 by ϕin
α , and ϕα after T2 by ϕout

α . This anteroposterior relation
is illustrated in Fig. 4.2. Since the external field vanishes before T1 and after T2, we
obtain

Dαβ(∂)ϕ
in
β = 0 for t < T1 , (4.49)

Dαβ(∂)ϕ
out
β = 0 for t > T2 . (4.50)

If Q is zero in the whole of space-time, then of course we obtain

ϕα = ϕin
α = ϕout

α .

We next try to solve for ϕα in terms of ϕin
α , and set

ϕα = ϕin
α + ϕ′α . (4.51)

It is clear that ϕ′α = 0 for t < T1. Applying Dαβ to the above equation, we find

Dαβ(∂)ϕβ = Dαβ(∂)ϕ
in
β +Dαβ(∂)ϕ

′
β = Qϕα .

Therefore, from (4.49),

Dαβ(∂)ϕ
′
β = Qϕα . (4.52)
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Since we have the boundary condition that ϕ′ is 0 in the region t < T1, we can
integrate the above equation using the retarded Δ-function, i.e., defining ΔR by

Dαβ(∂)Δ
R
βγ (x) = −δαγ δ4(x) , ΔR

αβ = 0 when x0 < 0 , (4.53)

the quantity ϕ′α can be written in the form

ϕ′α(x) = −
∫
Ω

d4x ′ΔR
αβ(x − x ′)Q(x ′)ϕβ(x ′) . (4.54)

Thus, we find that ϕ′α vanishes in the region x0 < T1 thanks to the properties of ΔR

and Ω .
Rewriting (4.51) for ϕ, we obtain the integral equation

ϕα(x) = ϕin
α −
∫
Ω

d4x ′ΔR
αβ(x − x ′)Q(x ′)ϕβ(x ′) . (4.55)

In addition, using ϕout
α and ΔA defined by changing the boundary condition

in (4.53), we have

ϕα(x) = ϕout
α (x)−

∫
Ω

d4x ′ΔA
αβ(x − x ′)Q(x ′)ϕβ(x ′) . (4.56)

The above are consequences of the Euler–Lagrange equation.
We now discuss the canonical equation. To begin with, the Hamiltonian density

is

H =
∑
α

(
∂L

∂ϕ̇α
ϕ̇α + ∂L

∂ϕ̇
†
α

ϕ̇†
α

)
−L . (4.57)

Introducing Q, the modification corresponding to (4.46) leads to

H (x)→H (x)+Q(x)ϕ†
α(x)ϕα(x) ≡H (x)+H ′(x) . (4.58)

The Hamiltonian of this system is

H =
∫
x0=t

d3x
[
H (x)+H ′(x)

] ≡H (x)+H ′(x) . (4.59)

When Q(x) is nonzero, H depends explicitly on t . When a physical quantity F

depends on t both implicitly via canonical variables and explicitly through some
external field, its total derivative is given by

dF

dt
= ∂F

∂(t)
+ i[H(t), F ] , (4.60)
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where the first term on the right-hand side is the derivative with respect to the
explicit t-dependence through the external field.

In particular, for a field, we have

∂ϕα(x)

∂x0
= i
[
H(x0), ϕα(x)

]
. (4.61)

Since Q = 0 for x0 < T , we obtain

∂ϕin
α (x)

∂x0
= i
[
H0[ϕin

α (x), . . .], ϕin
α (x)
]
, (4.62)

where H0[· · · ] stands for a functional of ϕin
α (x). When Q is nonzero, we take ϕα as

follows (by analogy with the super multi-time theory to be discussed later):

ϕα(x) = U(x0)
−1ϕin

α (x)U(x0) . (4.63)

The reason why we adopt this form is that ϕα and ϕin
α satisfy the same equal-time

commutation relation. Since ϕα is equal to ϕin
α for x0 < T1,

U = 1 when x0 < T1 . (4.64)

Substituting (4.63) into (4.61), the right-hand side becomes

iU(x0)
−1[H0[ϕin

α , . . .], ϕin
α (x)
]
U(x0)+ iU(x0)

−1[H ′[ϕin
α , . . .], ϕin

α (x)
]
U(x0) (4.65)

= U(x0)
−1 ∂ϕ

in
α (x)

∂x0
U(x0)+ iU(x0)

−1[H ′[ϕin
α (x), . . .], ϕin

α (x)
]
U(x0) .

On the other hand, the left-hand side becomes

∂

∂x0

[
U(x0)

−1ϕin
α (x)U(x0)

] = U(x0)
−1 ∂ϕ

in
α (x)

∂x0
U(x0)+ U(x0)

−1ϕin
α (x)

∂U(x0)

∂x0

= −U(x0)
−1 ∂U(x0)

∂x0
U(x0)

−1ϕin
α (x)U(x0) . (4.66)

In deriving this equation, we have used the following formula:

∂

∂x0
U(x0)

−1 = −U(x0)
−1 ∂U(x0)

∂x0
U(x0)

−1 .

Equating (4.65) and (4.66), we obtain

[
iH ′
[
ϕin
α (x), . . .

]+ ∂U(x0)

∂x0
U(x0)

−1, ϕin
α (x)

]
= 0 . (4.67)
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This equation can be satisfied by setting the first factor in the commutator equal to
zero, viz.,

i
∂U(x0)

∂x0
= H ′
[
ϕin
α (x), . . .

]
U(x0) , (4.68)

where

H ′
[
ϕin
α (x), . . .

] =
∫

d3xQ(x)ϕ†in
α (x)ϕin

α (x) . (4.69)

As a consequence, we have shown that, if U(x0) satisfies (4.68), ϕα(x) can be
written in the form (4.63). The boundary condition which U(x0) must satisfy
is (4.64). Then, taking into account (4.64) and integrating (4.68), we obtain the
integral equation

U(x0) = 1− i
∫ x0

−∞
d4x ′Q(x ′)ϕ†in

β (x ′)ϕin
β (x

′)U(x ′0) . (4.70)

We now compare the two integral equations (4.55) and (4.70). Assuming that Q
is small, we consider the power series expansion with respect to Q, keeping terms
up to the second order in Q. The solutions of the two integral equations are

ϕα(x) = ϕin
α (x)−

∫
Ω

d4x ′ΔR
αβ(x − x ′)Q(x ′)ϕin

β (x
′)+ second order terms in Q ,

(4.71)

U(x0) = 1− i
∫ x0

−∞
d4x ′Q(x ′)ϕ†in

β (x ′)ϕin
β (x

′)+ second order terms in Q .

(4.72)

In the same approximation,

ϕα(x) = U(x0)
−1ϕin

α (x)U(x0) (4.73)

= ϕin
α (x)− i

∫ ∞
−∞

d4x ′θ(x0 − x ′0)
[
ϕin
α (x), ϕ

†in
β (x ′)ϕin

β (x
′)
]
Q(x ′)+ · · · .

Requiring that (4.71) coincide with (4.73),

θ(x0 − x ′0)
[
ϕin
α (x), ϕ

†in
β (x ′)ϕin

β (x
′)
] = −iΔR

αβ(x − x ′)ϕin
β (x

′) . (4.74)

Taking Q→ 0, ϕin
α becomes ϕα, and we obtain for the free field

θ(x0 − x ′0)
[
ϕα(x), ϕ

†
β(x
′)ϕβ(x ′)

] = −iΔR
αβ(x − x ′)ϕβ(x ′) . (4.75)
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In a similar manner, we obtain

θ(x ′0 − x0)
[
ϕα(x), ϕ

†
β(x
′)ϕβ(x ′)

] = iΔA
αβ(x − x ′)ϕβ(x ′) . (4.76)

We define the Δ-function:

Δαβ(x) = ΔA
αβ(x)−ΔR

αβ(x) . (4.77)

Adding (4.75) and (4.76), we find the following commutation relation:

[ϕα(x), ϕ†
β(x
′)ϕβ(x ′)] = iΔαβ(x − x ′)ϕβ(x ′) . (4.78)

In the above, we considered a complex field. For real fields, a factor of 2 appears,
as mentioned earlier:

[
ϕα(x), ϕβ(x

′)ϕβ(x ′)
] = 2iΔαβ(x − x ′)ϕβ(x ′) . (4.79)

From the two equations above, we can derive the commutators among two fields. In
the case of the complex field, the results are as follows:

1. Solution for Bose statistics:

[
ϕα(x), ϕβ(x

′)
] = [ϕ†

α(x), ϕ
†
β(x
′)
] = 0 ,[

ϕα(x), ϕ
†
β(x
′)
] = iΔαβ(x − x ′) .

(4.80)

2. Solution for Fermi statistics:

{
ϕα(x), ϕβ(x

′)
} = {ϕ†

α(x), ϕ
†
β(x
′)
} = 0 ,{

ϕα(x), ϕ
†
β(x)

′} = iΔαβ(x − x ′) .
(4.81)

Assuming Bose statistics for the real field,

[
ϕα(x), ϕβ(x

′)
] = iΔαβ(x − x ′) . (4.82)

Regarding the applicability of Bose or Fermi statistics, we have the spin–statistics
theorem due to Pauli [81, 82], which establishes a connection between spin and
statistics. If we assume the Lorentz invariance of the theory, microscopic causality,
and a positive-definite metric, particles with integer spin must obey Bose statistics,
while particles with half-integer spin must obey Fermi statistics. We will discuss the
notion of a positive-definite metric in the next chapter.
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At the beginning of this section, we assumed that the fields satisfy the Klein–
Gordon equation as a consequence of the field equation (4.43). This means that
mathematically there exists a matrix of differential operators C satisfying

Dαβ(∂)Cβγ (∂) = Cαβ(∂)Dβγ (∂) = δαγ (�−m2) . (4.83)

Therefore, (4.53) and the corresponding solution for the equation of ΔA are given
by

ΔR
αβ(x) = Cαβ(∂)Δ

R(x) , ΔA
αβ(x) = Cαβ(∂)Δ

A(x) . (4.84)

Thus,

Δαβ(x) = Cαβ(∂)Δ(x) . (4.85)

Using this formula, free fields can be quantized directly.

One-Component Real Scalar Field In this case, it is clear that

C(∂) = 1 ,
[
ϕ(x), ϕ(x ′)

] = iΔ(x − x ′) . (4.86)

Faddeev–Popov Ghost Field Suppose two real scalar fields c and c̄ obey Fermi
statistics and are described by the Lagrangian density

L = i∂μc̄ · ∂μc . (4.87)

In this case,

D(∂) = −i� , C(∂) = i . (4.88)

The commutation relations are therefore

{
c(x), c(x ′)

} = {c̄(x), c̄(x ′)} = 0 ,
{
c(x), c̄(x ′)

} = −D(x − x ′) . (4.89)

This case violates Pauli’s theorem for spin and statistics, so at least one of the
assumptions leading to that theorem must be relaxed. In fact, in this case we drop the
assumption of a positive-definite metric and introduce an indefinite metric. This field
is then referred to as a ghost field. As will be discussed later, it plays an important
role in non-Abelian gauge field theory. In general, indefinite metrics arise in gauge
field theories, as will be discussed in detail in the next chapter.

Complex Vector Field From the Lagrangian density (3.221),

[L ]
ϕ

†
α
= ∂β(∂βϕα − ∂αϕβ)−m2ϕα = Dαβ(∂)ϕβ . (4.90)
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Therefore,

Dαβ(∂) = δαβ(�−m2)− ∂α∂β . (4.91)

From this, we obtain C as follows:

Cαβ(∂) = δαβ − 1

m2
∂α∂β . (4.92)

This is the well-known form, reproducing the equation (4.41).
Compared to the method of canonical quantization, it is clear from the example of
the vector field that, using this approach, the unequal-time commutation relations
can be obtained rather easily.



Chapter 5
Indefinite Metric and the
Electromagnetic Field

One may say that the history of quantum field theory began with the quantization of
the electromagnetic field. However, the electromagnetic field cannot be treated as a
simple field because one feature of this vector field, which is in fact a gauge field,
is an indefinite metric. We thus begin by discussing this metric. For more detail, the
reader is referred to the book Quantum Field Theory by Noboru Nakanishi, written
in Japanese [83].

5.1 Indefinite Metric

A key tool for formulating quantum mechanics is Hilbert space, which is a vector
space. We start with a brief review of finite-dimensional vector spaces V , which
will be intuitive rather than mathematically rigorous:

1. Vectors form a group under addition.
2. Vectors can be multiplied by complex numbers and the distributive property

holds.
3. The number of linearly independent vectors defines the dimension of the vector

space.

In quantum physics, vectors are written in the form “bra” 〈x| or “ket” |x〉. We define
an inner product which is used to introduce a metric.

The inner product has the following properties:

〈y|x〉 = 〈x|y〉∗ , (5.1)

〈y|ax + bx ′〉 = a〈y|x〉 + b〈y|x ′〉 , (5.2)

〈ay + by ′|x〉 = a∗〈y|x〉 + b∗〈y ′|x〉 , (5.3)
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where a and b stand for complex numbers. The third equation follows from the
first two. In mathematics, (5.2) and (5.3) are often the other way round, i.e., a∗ and
b∗ appear in (5.2), while a and b appear in (5.3). The inner product is said to be
positive-definite if

〈x|x〉 ≥ 0 . (5.4)

Then, 〈x|x〉 = 0 and |0〉 = 0 are equivalent. In this case, the space is Euclidean.
An indefinite-metric space is one in which we relax the condition (5.4). Then, (5.1)
implies that 〈x|x〉 is real but not necessarily positive.

Linear Operators
If T is such that, for an arbitrary |x〉 ∈ V , T |x〉 ∈ V , then we call T an operator on
V . If T satisfies the linearity condition

T |ax + by〉 = aT |x〉 + bT |y〉 , (5.5)

it is called a linear operator.
Given a set of linearly independent vectors, i.e., a basis {ej }, we can construct a

representation of T . An arbitrary |x〉 ∈ V can be uniquely expressed in the form

|x〉 =
∑
j

xj |ej 〉 . (5.6)

We can then write T |ej 〉 in the form

T |ej 〉 =
∑
k

|ek〉tkj . (5.7)

The matrix t with components tkj is called a representation of T . Denoting the
corresponding representation of S by s,

ST |ej 〉 =
∑
k

S|ek〉tkj

=
∑
k

∑
l

|el〉slk tkj

=
∑
l

|el〉
(∑

k

slktkj

)
, (5.8)

whence the matrix st represents the operator ST .
A matrix u such that detu �= 0 can be used to transform to another basis:

|e′j 〉 =
∑
k

|ek〉ukj . (5.9)
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Denoting the representation of T in the new basis by t̃ , we have

T |e′j 〉 =
∑
k

|e′k〉t̃kj . (5.10)

The transformation law for the representation t is then given by the similarity
transformation

t̃ = u−1tu . (5.11)

Metric Matrix
Given a basis {ej }, we define the metric matrix by

ηmn = 〈em|en〉 . (5.12)

From the property (5.1) of the inner product, we then have ηnm = η∗mn, i.e., η† = η,
which shows that η is a Hermitian matrix. Under the change of basis (5.9), this
matrix transforms by

η̃ = u†ηu . (5.13)

Note the difference with (5.11).

Degeneracy
If there exists a vector |k〉 satisfying 〈l|k〉 = 0 for any vector |l〉 in V , the vector
space is said to be degenerate.

Hermitian Conjugate
For a given linear operator T and arbitrary vectors |k〉 and |l〉, the relation

〈k|T †|l〉 = 〈l|T |k〉∗ (5.14)

defines the Hermitian conjugate T † of T . If the matrices representing T and T † are
s and t , respectively, then

ηs = t†η . (5.15)

If in particular V is non-degenerate and det η �= 0, then we obtain

s = η−1t†η . (5.16)
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Thus, in general, the matrix representing a Hermitian operator, i.e., one with T † =
T , will not be a Hermitian matrix. In an indefinite-metric space, we use the following
terminology for operators:

U† = U−1 unitary matrix ,

P 2 = P projection operator ,

Kn = 0 (Kn−1 �= 0) nilpotent operator .

In a non-degenerate vector space, the eigenvalues of η can be normalized to ±1 by
a suitable transformation of the basis.

5.2 Generalized Eigenstates

When the metric is indefinite, things happen that would not be expected with a
positive-definite metric. In the Lorentz-invariant formulation of gauge field theories,
which include the electromagnetic field as a typical case, the indefinite metric is
inevitable, so we discuss its properties here.

If we have

T |k〉 = λ|k〉 , (5.17)

then, as in the case of the positive-definite metric, |k〉 is called an eigenstate of T
and λ its eigenvalue. In addition, if W is a subspace of V with the property

|k〉 ∈ W �⇒ T |k〉 ∈ W , (5.18)

then W is called an invariant subspace of T . For any matrix t representing T , we
can define

f (x) = det(xI − t) , (5.19)

where I is the unit matrix in the space of the representation t . This polynomial in x

is called the eigen polynomial or characteristic polynomial of T and is independent
of the choice of basis.

Cayley–Hamilton Theorem This states that T satisfies its own characteristic
polynomial, i.e.,

f (T ) = 0 . (5.20)
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Proof We define the adjugate matrix s̃ of the matrix s by

s̃mn = ∂

∂snm
det s . (5.21)

Clearly,

∑
m

snms̃ml = δnl det s . (5.22)

We define the primary expression snm(x) by

snm(x) = xδnm − tnm . (5.23)

Therefore,

∑
m

snm(T )s̃ml(T ) = δnlf (T ) , (5.24)

T |m〉 =
∑
n

|n〉tnm . (5.25)

Rewriting (5.25),

∑
n

(δnmT − tnm)|n〉 =
∑
n

snm(T )|n〉 = 0 .

Thus,

∑
n,m

s̃ml(T )snm(T )|n〉 =
∑
n,m

snm(T )s̃ml(T )|n〉

=
∑
n

δlnf (T )|n〉

= f (T )|l〉
= 0 . (5.26)

Here |l〉 is an arbitrary basis vector. Since this equation holds for every element of
the basis, this proves (5.20). �
Next, we factorize f (x). Considering λi �= λj for i �= j , we obtain

f (x) =
r∏

j=1

(x − λj )
Nj ,

r∑
j=1

Nj = N , (5.27)
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whereN is the dimension of the vector space. We know that f (T ) = 0, and consider
the polynomial with the lowest degree satisfying g(T ) = 0:

g(x) =
r∏

j=1

(x − λj )
nj , 0 < nj ≤ Nj . (5.28)

Decomposition Theorem The vector space V can be decomposed as

V =
r∑

j=1

⊕
V (λj ) , (5.29)

where |k〉 ∈ V (λj ) means that (T − λj )
nj |k〉 = 0.

Proof First, we define g1(x), g2(x), . . . , gr(x) by

gj (x) = g(x)

(x − λj )
nj
=
∏
i �=j

(x − λi)
ni . (5.30)

Since g1(x), g2(x), . . . , gr(x) are disjoint, there exist polynomials hj (x) satisfying

r∑
j=1

hj (x)gj (x) = 1 . (5.31)

We now set

Pj (T ) = hj (T )gj (T ) ,

r∑
j=1

Pj (T ) = 1 . (5.32)

Additionally, if i �= j , gi(x)gj (x) can be divided by g(x), so

gi(T )gj (T ) = 0 .

Hence, if i �= j , Pi(T )Pj (T ) = 0. Multiplying (5.32) by Pj (T ),

P 2
j (T ) = Pj (T ) . (5.33)

This shows that Pj (T ) is a projection operator, and V (λj ) can be defined by
Pj (T )V = V (λj ), which proves the decomposition theorem. �
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The orthogonality condition for eigenvectors is complicated in the case of an
indefinite metric. Even if H is a Hermitian operator, it is not always true that its
eigenvalues are real. If h is the matrix representation of H , (5.15) implies

ηh = h†η = (ηh)† . (5.34)

Thus, the product ηh is a Hermitian matrix. Here we can choose η to satisfy η2 =
1 and (5.13) allows us to select a proper basis when V is not degenerate. As a
consequence,

det(xI − h) = detη · det(xη− ηh) , (5.35)

which shows that the characteristic polynomial of H is then a real polynomial.
Note again that the characteristic polynomial is independent of the choice of basis.
The eigenvalues of H are thus either real numbers or complex conjugate pairs of
complex numbers. In the following, we take H to be a Hermitian operator and
consider the subspace V (λ) defined above.

First, considering the two vectors which belong to V (λj ) and V (λk), i.e., the ket
vectors |ej 〉 and |ek〉, we have

(H − λj )
nj |ej 〉 = 0 , 〈ek|(H − λ∗k)nk = 0 . (5.36)

If λj �= λ∗k , then (x − λj )
nj and (x − λ∗k)nk are disjoint, so there exist polynomials

f (x) and g(x) satisfying

f (x)(x − λj )
nj + g(x)(x − λ∗k)nk = 1 . (5.37)

We thus obtain the orthogonality relation

〈ek |ej 〉 = 〈ek|f (H)(H − λj )
nj |ej 〉 + 〈ek|(H − λ∗k)nk g(H)|ej 〉 = 0 . (5.38)

For complex eigenvalues λj �= λ∗j , we then have

〈ej |ej 〉 = 0 , (5.39)

so the norm of this vector is zero.
If λj is a real number, there must exist a vector |xj 〉 in V (λj ) such that

〈xj |(H − λj )
nj−1|xj 〉 �= 0 . (5.40)

Otherwise, we would always have (H − λj )
nj−1 = 0 on V (λj ), and this

would contradict the condition that nj is the smallest such number. Therefore, the
following ket vectors are linearly independent:

|xj 〉 , (H − λj )|xj 〉 , . . . , (H − λj )
nj−1|xj 〉 . (5.41)
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Multipole State
For a real eigenvalue λ, when there is no |x ′〉 such that |x〉 = (H − λ)|x ′〉 and

(H − λ)m|x〉 = 0 , 〈x|(H − λ)m−1|x〉 �= 0 (m ≥ 2) , (5.42)

we call |x〉 an m th order multipole state, where “state” refers to the quantum-
mechanical state.

Here we normalize |x〉 so that

〈x|(H − λ)m−1|x〉 = ε , ε = ±1 , (5.43)

and then consider a linear combination of the linearly independent vectors in (5.41):

|z〉 = |x〉 +
m−1∑
k=1

ck(H − λ)k|x〉 . (5.44)

Choosing ck suitably, we can arrange for the following equation to hold:

〈z|(H − λ)k|z〉 = 0 , k = 0, 1, . . . ,m− 2 . (5.45)

Combining (5.43) and (5.45), we have

〈z|(H − λ)k |z〉 = εδk,m−1 . (5.46)

We now construct the m linearly independent vectors in (5.41). Here we choose the
set starting from |z〉 instead of |x〉, i.e.,

|z〉 , (H − λ)|z〉 , . . . , (H − λ)m−1|z〉 . (5.47)

For this basis, η and the representation h of H are given by

η =
⎛
⎝ 0 ε

. .
.

ε 0

⎞
⎠ , η2 = 1 , (5.48)

h =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 0
1 λ

1
. . .

. . . λ

0 1 λ

⎞
⎟⎟⎟⎟⎟⎟⎠

, h† = ηhη . (5.49)
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In addition, the projection operator for such a subspace V is given by

P(V ) = ε

m−1∑
k=0

(H − λ)k |z〉〈z|(H − λ)m−k−1 . (5.50)

The above works when λ is real.
When λ is complex, we consider V (λ)

⊕
V (λ∗). Using η and h in (5.48)

and (5.49), the metric matrix and the matrix representation of H become

(
0 η

η 0

)
and

(
h 0
0 h∗
)

, (5.51)

respectively.

Subspace Describing Physical States
In various kinds of physical theories, especially those involving gauge fields, the
indefinite metric is a necessary feature of the mathematical formulation. However,
our observable world can be described by a positive-definite metric. The norm of
the state vector corresponding to the probability is always positive. We thus pick out
a subspace Vphys from the state-vector space V , viz.,

Vphys ⊂ V , (5.52)

and interpret only the former as observable. An arbitrary vector |x〉 in this subspace
has the property

〈x|x〉 ≥ 0 . (5.53)

The difference with (5.4) is that the equation 〈x|x〉 = 0 does not necessarily require
|x〉 = 0, i.e., we accept that there can be a nonzero state vector with zero norm.
Setting aside the issue of defining this subspace, what we can say is that, even if the
parent space V is non-degenerate, this subspace is degenerate.

To begin with, consider a vector |y〉 with zero norm which belongs to this
subspace, and another, arbitrary vector |x〉 in this subspace, i.e.,

|x〉, |y〉 ∈ Vphys , 〈y|y〉 = 0 . (5.54)

Since |x〉 + a|y〉 also belongs to this subspace, its norm satisfies

〈x|x〉 + 2Re(a〈x|y〉)+ |a|2〈y|y〉 = 〈x|x〉 + 2Re(a〈x|y〉) ≥ 0 .

In order for this inequality to hold for an arbitrary complex number a, we must have

〈x|y〉 = 0 . (5.55)
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It turns out that the subspace generated by |x〉 and |y〉 is degenerate. Indeed, the
vector |y〉 with zero norm is orthogonal to all the vectors in this subspace.

We thus consider the following direct-product decomposition:

Vphys = V+ ⊕ V0 , (5.56)

where all the vectors belonging to V+ have positive norm and the vectors belonging
to V0 have zero norm. Note that this decomposition is not unique. Although V0 can
be determined uniquely, V+ cannot. This is because if |x〉 has positive norm under
the condition (5.54), then |x〉 + a|y〉 has the same positive norm, so the part of the
vectors in V0 becomes indeterminate. Consider |x ′i〉 = |xi〉 + |yi〉, where |xi〉 is a
positive-norm vector, |yi〉 is a zero-norm vector, and both belong to Vphys. Then,
〈x ′1|x ′2〉 = 〈x1|x2〉, so if the metric is given, V+ cannot be determined uniquely. This
is because Vphys is degenerate.

We now consider an operator T having Vphys as an invariant subspace:

T Vphys ⊂ Vphys . (5.57)

It is easy to show that

〈x ′1|T |x ′2〉 = 〈x1|T |x2〉 . (5.58)

Therefore, with respect to such an operator, |x ′i〉 and |xi〉 are equivalent, so, formally,
we can write

|x ′i〉 ≡ |xi〉 (modV0) . (5.59)

An operator satisfying (5.57) is said to be an observable. Then we consider the
following quotient space:

Hphys = Vphys/V0 . (5.60)

If we now express a vector belonging to an equivalence class as a ket vector |x〉〉,
we have

〈〈x|x〉〉 ≥ 0 , (5.61)

where equality holds only for

|x〉〉 ≡ 0 (mod V0) .
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In this sense, the quotient space Hphys has a positive-definite metric, which allows
a physical interpretation. Regarding the observable T , the matrix element can be
defined by

〈〈x1|T |x2〉〉 = 〈x1 + y1|T |x2 + y2〉 , |y1〉, |y2〉 ∈ V0 . (5.62)

T is then viewed as an operator in Hphys. Introducing a suitable operator Q, Vphys
can be defined for practical purposes by

Vphys =
{|x〉 ∣∣ Q|x〉 = 0 , |x〉 ∈ V

}
. (5.63)

5.3 Free Electromagnetic Field in the Fermi Gauge

In order to quantize the electromagnetic field, we consider the Lagrangian density
constructed by rewriting (3.221) in terms of a real vector field, setting the mass m

to zero:

L = −1

4
FμνFμν , where Fμν = ∂μAν − ∂νAμ . (5.64)

In this case, the electric and magnetic fields are defined by

F4k = −Fk4 = iEk , Fij = −Fji = εijkHk , (5.65)

where εijk is 1, −1, or 0 depending on whether (ijk) is an even permutation of
(123), an odd permutation of (123), or neither. Then (5.64) can be written in the
form

L = 1

2
(E2 −H 2) . (5.66)

Using the variational principle to derive the equation of motion from this Lagrangian
density, we obtain the source-free Maxwell equation:

∂μFμν = �Aν − ∂μ∂νAμ = 0 . (5.67)

Given any solution Aμ, other solutions can be obtained by the gauge transformation

Aμ→ A′μ = Aμ + ∂μΛ , (5.68)

where Λ is an arbitrary real function of xμ. The fact that the solution allows such
a gauge transformation comes from the fact that the operator Dμν(∂) appearing
previously has no inverse. Although we quantized the massive gauge field by
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expressing the fourth component in terms of the other components, we cannot do
this when the mass is zero. That is, if m �= 0, we obtain the field equation

∂μAμ = 0 , (5.69)

but if m = 0, then we cannot derive this.
Moreover, the quantity πj canonically conjugate to Aj is

πj = ∂L

∂Ȧj

= iF4j = −Ej , (5.70)

but there is clearly no way to define a quantity canonically conjugate to A4. Here
we have a novel situation, not encountered previously. One way to deal with it is
to remove the fourth component via a gauge transformation and quantize only the
remaining three components. However, with such a quantization method, Lorentz
invariance is unclear, and it is better to find other ways where invariance is manifest.
One such method is due to Fermi.

Fermi’s Method
Fermi introduced the Lagrangian density

L = −1

4
FμνFμν − 1

2
(∂μAμ)

2 . (5.71)

Because of the additional term, the canonical conjugate quantity can be defined even
for the fourth component. In fact, instead of (5.70), we have

πj = iF4j , π4 = i(∂μAμ) . (5.72)

In addition, taking the Euler derivative, the field equation becomes

[L ]Aμ =
∂L

∂Aμ

− ∂

∂xν

(
∂L

∂Aμ,ν

)
= Dμν(∂)Aν = 0 , (5.73)

where

Dμν(∂) = δμν� . (5.74)

Therefore, (5.73) turns out to be the massless Klein–Gordon equation, i.e.,

�Aμ = 0 . (5.75)

Next, we define the inverse C of the operator D such that

DαβCβγ = δαγ� . (5.76)
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Clearly,

Cβγ = δβγ . (5.77)

The four-dimensional commutation relation is

[
Aα(x),Aβ(y)

] = iCαβD(x − y) = iδαβD(x − y) , (5.78)

where the Δ-function for m = 0 is denoted by D. In this case,

D(x) = − 1

2π
ε(x0)δ(x

2) , D(1)(x) = 1

2π2 P
1

x2 . (5.79)

From this commutation relation, we obtain the following equal-time canonical
commutator:

[
Aμ(x), πν(y)

] = iδμνδ
3(x − y) , where x0 = y0 . (5.80)

To derive this, we used the definition of πν in (5.72) and the following property of
the D-function (4.13):

∂

∂x0
D(x) = −δ3(x) , where x0 = 0 . (5.81)

Additionally, it is straightforward to show that

[
∂μAμ(x), ∂νAν(y)

] = −i�xD(x − y) = 0 . (5.82)

The field equation here is the Klein–Gordon equation given by (5.75), and we
require (5.69) to get Maxwell’s equation. However, when m �= 0, (5.69) cannot be
derived from the field equation. The method introduced by Fermi involves restricting
the observable physical states by imposing an additional condition. His condition for
an observable state |Ψ 〉 is

〈Ψ |∂μAμ(x)|Ψ 〉 = 0 . (5.83)

The set of such states forms a vector space. Since this condition is bilinear in |Ψ 〉,
we will introduce its linearization later on.

When the state is restricted in this way, Maxwell’s equation holds in terms of
expectation values:

〈Ψ |∂μFμν |Ψ 〉 = 〈Ψ |�Aν(x)|Ψ 〉 − ∂ν〈Ψ |∂μAμ(x)|Ψ 〉 = 0 . (5.84)



94 5 Indefinite Metric and the Electromagnetic Field

The above can be achieved using the following Lagrangian density, which differs
from (5.71) only by a divergence:

L ′ = −1

2
(∂νAμ)(∂νAμ) . (5.85)

The energy and the momentum of this system are given by

H = 1

2

∫
d3x
[
Ȧ2
μ + (∇Aμ)

2] , (5.86)

P = −
∫

d3x Ȧμ∇Aμ . (5.87)

These are common to both Lagrangians.

Fourier Expansion
First, we implement the Fourier expansion of Aμ, although in the following, we
change the variable of the Fourier coefficient from the three-dimensional vector k

to the four-dimensional vector k :

Aμ(x) =
∑
k

1√
2k0V

[
eik·xAμ(k)+ e−ik·xA†

μ(k)
]
. (5.88)

We then expand the Fourier coefficients Aμ(k) in terms of polarization vectors:

Aμ(k) =
∑
λ

e(λ)μ a(k, λ) , A†
μ(k) =

∑
λ

e(λ)μ a†(k, λ) . (5.89)

Here we define four polarization vectors such that

e
(1)
4 = e

(2)
4 = e

(3)
4 = 0 , e

(4)
4 = 1 ,

e(3) = e(1) × e(2) = k

k0
, e(1) · k = e(2) · k = 0 .

(5.90)

Thus, e(1) and e(2) correspond to a transverse wave, e(3) to a longitudinal wave, and
e(4) to a scalar wave. These four vectors form a complete orthogonal system:

e(λ)μ e(λ
′)

μ = δλλ′ , e(λ)μ e(λ)ν = δμν . (5.91)

We can now write the Fourier expansion in the form

Aμ(x) =
∑
k

∑
λ

1√
2k0V

[
e(λ)μ a(k, λ)eik·x + e(λ)μ a†(k, λ)e−ik·x] . (5.92)



5.3 Free Electromagnetic Field in the Fermi Gauge 95

In the Pauli metric, the adjoint operator a†(k, λ) of a(k, λ) is the Hermitian
conjugate for λ = 1, 2, 3, while ia(k, 4) and ia†(k, 4) are Hermitian conjugates
for λ = 4. The commutation relation is

[
a(k, λ), a†(k′, λ′)

] = δλλ′δk,k′ . (5.93)

The a’s commute among themselves and so do the a†’s.
Up to c-numbers, the energy and momentum of the whole system are given by

H =
∑
k

k0

∑
λ

a†(k, λ)a(k, λ) , (5.94)

Pj =
∑
k

kj
∑
λ

a†(k, λ)a(k, λ) . (5.95)

For λ = 1, 2, 3, the particle number operator is

n(k, λ) = a†(k, λ)a(k, λ) . (5.96)

Incidentally, a†(k, 4) is not the Hermitian conjugate of a(k, 4), but a so-called
adjoint operator. Setting

a(k, 4) = ia(k, 0) , a†(k, 4) = ia†(k, 0) , (5.97)

then a†(k, 0) becomes the Hermitian conjugate of a(k, 0). As is clear from the
commutation relation

[
a(k, 0), a†(k, 0)

] = −1 , (5.98)

the scalar wave has indefinite metric. If a(k, 0) and a†(k, 0) are interpreted as an
annihilation operator and a creation operator, respectively, then for the vacuum |0〉,
we obtain

a(k, 0)|0〉 = 0 . (5.99)

We introduce the n-particle state of the scalar wave by

|n〉 = 1√
n!
[
a†(k, 0)

]n|0〉 . (5.100)

Its norm is given by

〈n|n〉 = (−1)n〈0|0〉 = (−1)n .
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This shows why the indefinite metric turns up. The particle number operator of the
scalar wave is now given by

n(k, 0) = a†(k, 0)a(k, 0) . (5.101)

When k is fixed, there are four polarization states and the metric matrix η(k)

corresponding to the four states is

η(k) =

⎛
⎜⎜⎝

1
1

1
−1

⎞
⎟⎟⎠ . (5.102)

It is clear that the indefinite metric of the one-particle state for the scalar wave has
its origin in the Minkowski metric.

5.4 Lorenz Condition and Physical State Space

In the previous section, we imposed the additional condition (5.83) to pick out
physically observable states. It has been written in bilinear form, so we now seek a
way to rewrite it as a linear form.

Since the free field can be decomposed into a positive frequency part A(+)
μ (x)

corresponding to the annihilation operators and a negative frequency part A(−)
μ (x)

corresponding to the creation operators, we can write

Aμ(x) = A(+)
μ (x)+ A(−)

μ (x) . (5.103)

The vacuum |0〉 then satisfies

A(+)
μ (x)|0〉 = 0 . (5.104)

Restricting the system to the free electromagnetic field, it turns out that the state-
vector space V can be created by applying A

(−)
μ (x) to the vacuum |0〉. Since the

space V has indefinite metric, in order to obtain a physical interpretation, we must
introduce the subspace Vphys discussed in Sect. 5.2.

One possibility here is to choose the Coulomb gauge, in which the scalar wave
reproducing the negative term in the metric matrix is dropped at the outset, but
what we would like is rather to eliminate the indefiniteness of the metric while
maintaining the manifest covariance of the theory. This can be done by adopting the
Lorenz condition. In (5.63), we mentioned a suitable operator Q to select Vphys, but
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in the following we shall see that there may exist more than one operator with the
property (5.63). Then we define the subspace Vphys as follows:

Vphys =
{|Φ〉 ∣∣ ∂μA(+)

μ (x)|Φ〉 = 0 , |Φ〉 ∈ V
}
, (5.105)

where x runs over all the points in four-dimensional space-time. The extra condition
appearing here, i.e.,

∂μA
(+)
μ (x)|Φ〉 = 0 , (5.106)

is called the Lorenz condition. It is clear that a state which satisfies this condition
also obeys (5.83), i.e.,

〈Φ|∂μAμ(x)|Φ〉 = 0 .

What we need to prove first is that arbitrary vectors which belong to Vphys have
nonzero norm, i.e.,

〈Φ|Φ〉 ≥ 0 . (5.107)

From the Fourier expansion (5.92),

∂μA
(+)
μ (x) = i

∑
k

1√
2k0V

eik·x∑
λ

kμe
(λ)
μ a(k, λ) . (5.108)

The sum over λ is

∑
λ

kμe
(λ)
μ a(k, λ) = |k|[a(k, 3)− a(k, 0)

]
, (5.109)

where a(k, 3) is the operator annihilating the longitudinal wave. We then introduce
the following operators:

a(k) = 1√
2

[
a(k, 3)− a(k, 0)

]
, b(k) = 1√

2

[
a(k, 3)+ a(k, 0)

]
. (5.110)

Therefore, the Lorenz condition ends up in the form

a(k)|Φ〉 = 0 . (5.111)

For a given k, we obtain the commutation relations

[
a, a†] = [b, b†] = 0 ,

[
a, b†] = [b, a†] = 1 . (5.112)
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These operators commute with a(k, 1), a(k, 2), a†(k, 1), and a†(k, 2). V can be
generated by applying polynomials in a†(k, 1), a†(k, 2), a†(k), and b†(k) to the
vacuum state. On the other hand, it is clear from (5.112) that Vphys can be generated
by applying the operators a†(k, 1), a†(k, 2), and a†(k) to |0〉. We expand the state
|Φj 〉 belonging to Vphys in terms of the number of a† operators:

|Φj 〉 = |Φ0〉 + |Φ1〉 + |Φ2〉 + · · · , (5.113)

where |Φj 〉 denotes the state containing transverse photons and j a-photons. The
inner product of two physical states is

〈Φ ′|Φ〉 = 〈Φ ′0|Φ0〉 , (5.114)

since the norm is zero unless the number of a-photons is zero. For example,
using (5.112), the inner product of states a†(k)|ΦT〉 and a†(k′)|Φ ′T〉 containing
single a-photons, while both |ΦT 〉 and |Φ ′T 〉 contain only transverse photons, is

〈Φ ′T|a(k′)a†(k)|ΦT〉 = 〈Φ ′T|a†(k)a(k′)|ΦT〉 = 0 .

This is because when the annihilation operator a(k′) acts on the state |ΦT〉, it
destroys it. This is the reason why (5.114) holds. If Φ belongs to Vphys, then (5.114)
implies

〈Φ|Φ〉 = 〈Φ0|Φ0〉 ≥ 0 . (5.115)

If this vanishes, it does not mean |Φ〉 = 0, but rather |Φ0〉 = 0. In the
decomposition (5.56), it turns out that V+ consists of state vectors containing
only transverse photons, while V0 consists of state vectors containing a-photons.
However, since a time axis is chosen in the decomposition (5.56), the vector space
V+ is not Lorentz invariant.

Note, however, that the quotient space Hphys defined by (5.60) is Lorentz
invariant. Moreover, (5.114) can also be written

〈Φ ′|Φ〉 = 〈Φ ′|P(V+)|Φ〉 , where |Φ〉, |Φ ′〉 ∈ Vphys . (5.116)

Here P(V+) is the operator projecting onto the subspace V+. Although V+ is not
Lorentz invariant, (5.116) is independent of the choice of V+, so this inner product
is itself Lorentz invariant, and so too is Vphys.

We now give some examples of observables, as defined in Sect. 5.2. For instance,
the following are observables:

Fμν(x) , ∂μAμ(x) . (5.117)
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This is because, as is easily shown, we have

[
Fμν(x), ∂ρA

(+)
ρ (y)
] = 0 ,

[
∂μAμ(x), ∂ρA

(+)
ρ (y)
] = 0 . (5.118)

Thus, if |Φ〉 belongs to Vphys, then both Fμν(x)|Φ〉〉 and ∂μAμ(x)|Φ〉 belong to
Vphys. Therefore, if |Φ〉 and |Φ ′〉 belong to Vphys, we have

〈Φ ′|Fμν(x)Fρσ (y)|Φ〉 = 〈Φ ′|Fμν(x)P (V+)Fρσ (y)|Φ〉 . (5.119)

In the presence of interactions, an S-matrix can be defined. This is also an
observable, satisfying

[
S, ∂ρA

(+)
ρ (x)
] = [S, ∂ρAρ(x)

] = 0 . (5.120)

5.5 Free Electromagnetic Field: Generalization of Gauge
Choices

So far we have discussed the quantization of the electromagnetic field in the Fermi
gauge. It would be easier if the story were self-contained in this gauge, but later,
when we come to consider renormalization for instance, it is useful to have the
gauge choice generalized in advance. Therefore, generalizing (5.71), we introduce
the Lagrangian density

L = −1

4
FμνFμν − 1

2α
(∂μAμ)

2 . (5.121)

The parameter α is called a gauge parameter. The value α = 1 corresponds to the
Fermi gauge. We then consider the Euler derivative:

[L ]Aμ = Dμν(∂)Aν , (5.122)

where

Dμν(∂) = δμν�+ 1− α

α
∂μ∂ν . (5.123)

In order to quantize the field, we define the differential operator C to be such that

CμσDσν = DμσCσν = δμν� . (5.124)

From this, it follows that

Cμν(∂) = δμν − (1− α)
∂μ∂ν

� . (5.125)
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One feature of the general gauge is that � appears in the denominator, and this
yields the dipole state or dipole ghost discussed in Sect. 5.2. The reason it is called a
ghost is that it is related to the indefinite metric, as mentioned at the end of Sect. 4.4.
Using this C, we obtain the commutation relation

[
Aμ(x),Aν(y)

] = iCμν(∂)D(x − y) (5.126)

= iδμνD(x − y)+ i(1− α)∂μ∂νE(x − y) ,

where E is defined by

�E(x) = −D(x) , E(x) = − 1

8π
ε(x0)θ(−x2) . (5.127)

This function can be also written in the form

E(x) = −
[

∂

∂m2Δ(x,m2)

]
m2=0

, (5.128)

where, as for the function Δ(x) defined in Chap. 4, we have written the mass
dependence m2 explicitly as Δ(x,m2). We will use this definition later, too.

Although the field equation is different from both Maxwell’s equation and
the Klein–Gordon equation, the latter can be obtained by imposing the Lorenz
condition, which is the same as the Fermi gauge.

From the field equation Dμν(∂)Aν = 0, we have

∂μDμν(∂)Aν = 1

α
�∂νAν = 0 , �(∂νAν) = 0 . (5.129)

Combining the field equation and (5.129),

�Dμν(∂)Aν = �2Aμ + 1− α

α
∂μ�(∂νAν) = �2Aμ = 0 . (5.130)

Note that �Aμ �= 0. This is clear from the commutation relation

[
�Aμ(x),Aν(y)

] = i�Cμν(∂)D(x − y)

= −i(1− α)∂μ∂νD(x − y) �= 0 , (5.131)

where we have assumed that α is different from 1. Therefore,

�Aμ �= 0 , �2Aμ = 0 . (5.132)

These two equations imply the existence of the dipole ghost, as we shall now show.
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Dipole Ghost
Recall that multipole states with indefinite metric were defined by using a Hermitian
operator. In the following, we choose as Hermitian operator the mass operator:

H = −P 2
μ . (5.133)

Then it can be proven that the state Aα(x)|0〉 includes a dipole state. To show this,
we use (3.29) and Pμ|0〉 = 0 to obtain

PμAα(x)|0〉 =
[
Pμ,Aα(x)

]|0〉 + Aα(x)Pμ|0〉
= i∂μAα(x)|0〉 .

Therefore, repeating the transformation above,

HAα(x)|0〉 = (−P 2
μ)Aα(x)|0〉 = �Aα(x)|0〉 . (5.134)

As is clear from the fact that the vacuum expectation value of (5.131) is nonzero,
this state does not vanish. However, the norm of this state is zero, as we will show
below. From (5.132),

〈0|�Aα(x)�Aβ(y)|0〉 = 〈0|Aα(x)(−P 2
μ)(−P 2

ν )Aβ(y)|0〉
= 〈0|Aα(x)�2Aβ(y)|0〉
= 0 . (5.135)

Consequently,

HAα(x)|0〉 �= 0 , H 2Aα(x)|0〉 = 0 . (5.136)

It is obvious from the definition (5.42) that this implies the existence of the dipole
ghost for the eigenvalue λ = 0 of H .

Lorenz Condition
When a dipole ghost exists, we cannot carry out the Fourier expansion. In fact, the
Fourier expansion cannot be carried out for the solution of (5.132). This makes it
harder to obtain an intuitive understanding of the dipole ghost. In order to investigate
its structure intuitively, we consider

D−1
μν =

Cμν

� = δμν

� − (1− α)
∂μ∂ν

�2 . (5.137)

The main issue is the treatment of the second term. We first write the above equation
in the form

D−1
μν =

δμν

� − (1− α)∂μ∂ν lim
ε→0

1

�(�− ε2)
. (5.138)
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In later discussions, we will treat ε as nonzero, but small, i.e.,

D−1
μν =

δμν

� − (1− α)
1

ε2

(
1

�− ε2
− 1

�

)
∂μ∂ν . (5.139)

For the inverse D(∂, ε) of this expression, we have

Dμν(∂, ε) = δμν�+ �
α� − ε2 (1− α)∂μ∂ν . (5.140)

Then the commutation relation corresponding to (5.137) is

[
Aμ(x),Aν(y)

] = i

(
δμν + 1− α

ε2 ∂μ∂ν

)
D(x − y)− i

1− α

ε2 ∂μ∂ν∇(x − y, ε2) .

(5.141)

We now write Aμ in such a way as to reproduce this commutation relation:

Aμ(x) = aμ(x)+ 1− α

2ε2 ∂μ∂νaν(x)+
√

1− α

ε
∂μb(x) , (5.142)

where

[
aμ(x), aν(y)

] = iδμνD(x − y) , [b(x), b(y)] = iΔ(x − y, ε) . (5.143)

Hence, aμ is the electromagnetic field in the Fermi gauge and b is a real scalar field
with mass ε. Of course, these two fields are independent:

[
aμ(x), b(y)

] = 0 . (5.144)

The field equations are

�aμ = 0 , (�− ε2)b = 0 . (5.145)

From this, we can derive the following equation of motion:

Dμν(∂, ε)Aν = 0 . (5.146)

In the discussion above, we have assumed 1−α > 0, but if 1−α < 0, the coefficient
of ∂μb in (5.142) becomes

√
α − 1/ε. It turns out that b obeys the indefinite metric.

In the following, we discuss the case where 1− α > 0. Now,

∂μAμ = ∂μaμ + ε
√

1− α b . (5.147)
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As long as ε �= 0 in the Fourier expansion, aμ and b are fields of different masses
and the Lorenz condition

∂μA
(+)
μ (x)|Φ〉 = 0 (5.148)

can be decomposed into the following two equations:

∂μa
(+)
μ (x)|Φ〉 = 0 , b(+)(x)|Φ〉 = 0 . (5.149)

As can be seen, the new degree of freedom b appears in the Fermi gauge, but the
second condition above removes it. Thus, in the end, the condition is reduced to the
Lorenz condition in the Fermi gauge expressed by the first relation in (5.149). Due
to the assumption that ε �= 0, we can apply the Fourier expansion in the analysis
above.

From the discussion above, the Fermi gauge with α = 1 is obviously rather
special. The Landau gauge with α = 0 is also special since C then consists only of
the transverse part.

It was Dirac who introduced the indefinite metric for the first time [84], while
Gupta and Bleuler did this when quantizing the electromagnetic field [85, 86].



Chapter 6
Quantization of Interacting Systems

So far, we have considered the quantization of free fields, i.e., fields without
interactions. In this case, the field equation is linear and can easily be solved.
Thanks to this, it can be shown that canonical quantization is a relativistically-
invariant quantization method which does not depend on the way we choose our
coordinates. However, when quantizing interacting fields, we begin with the equal-
time commutation relations and the relativistic invariance is not apparent. In this
case, there is a choice between the Schrödinger picture and the Heisenberg picture.
But whichever is adopted, it is hard to reach a clear conclusion regarding the issue
of relativistic invariance when the canonical quantization method is used. It is the
interaction-picture method introduced by Tomonaga [87] and Schwinger [88] that
provides a precise solution to this problem.

In this picture, the invariance of both the commutation relations and the Schrö-
dinger equation become clear. Using this manifestly Lorentz-covariant picture, we
can then move on to the field theory in terms of Heisenberg’s picture. Here, we will
explain the supermultiple-time formulation in the interaction picture.

6.1 Tomonaga–Schwinger Equation

We begin with Schrödinger’s equation for interacting fields:

i
∂

∂t
Ψ (t) = HΨ(t) . (6.1)

Here H is the Hamiltonian of the total system, consisting of a free part and an
interaction part:

H =
∫

d3xH (x) =
∫

d3xHf(x)+
∫

d3xHint(x) = Hf +Hint , (6.2)
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where f and int indicate the free and interaction parts, respectively. In fact, this
separation is not trivial, as will be explained later when we discuss renormalization.
However, we shall not go into this yet.

Next, we introduce the unitary transformation

U(t) = exp(i tHf) , (6.3)

and define the field operator

ϕα(x) = ϕα(x, t) = U(t)ϕα(x)U(t)−1 . (6.4)

Then, ϕα(x) satisfies the free field equation and the commutation relations of the
free field:

Dαβ(∂)ϕβ(x) = 0 , (6.5)

[
ϕα(x), ϕ

†
β(y)
]
± = iCαβ(∂)Δ(x − y) . (6.6)

It turns out that the free field obeys the methods of relativistically invariant
quantization.

We introduce a new state vector Φ(t) by

Φ(t) = U(t)Ψ (t) , (6.7)

which satisfies

i
∂

∂t
Φ(t) =

[
U(t)

∫
d3xHint(x)U(t)−1

]
Φ(t) . (6.8)

We consider Hint(x) as a polynomial in the field operators ϕα(x):

U(t)Hint
[
ϕα(x), . . .

]
U(t)−1 =Hint

[
U(t)ϕα(x)U(t)−1, . . .

]
=Hint

[
ϕα(x), . . .

]
. (6.9)

Then we can rewrite (6.8) in the form

i
∂

∂t
Φ(t) =

∫
d3xHint

[
ϕα(x), . . .

]
Φ(t) . (6.10)

In this picture, the field operator obeys the free field equation, but the state vector
obeys Schrödinger’s equation with a Hamiltonian which is the interaction part of
the whole Hamiltonian. This is called the interaction picture. Clearly, for free
fields, (6.10) shows that Φ is independent of time, and the interaction picture
coincides with the Heisenberg picture.
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The relativistic invariance of (6.10) is not apparent. This is because we have fixed
the time axis. Tomonaga showed how to rewrite this in a Lorentz invariant form
using the analogy with Dirac’s multi-time formulation [89]. Here we will derive it
directly without explaining Dirac’s multi-time theory.

First, the way the state vectorΦ(t) has been described means that all observations
must be conducted at the same time for the given time axis. This restriction seems
much too strong. It would be good if observations at various points in space did not
have to be carried out at the same time. For instance, it would be good if observations
could be carried out at t1 for the point (x1, y1, z1) and at t2 for the point (x2, y2, z2).
In this case, if the distance between the two points is space-like, these observations
will not interfere with each other, according to Einstein’s causality, i.e.,

(x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 − (t1 − t2)

2 > 0 . (6.11)

We then consider the time which is not necessarily the same at each point in space,
i.e.,

t = f (x, y, z) . (6.12)

This relation specifies a hypersurface in four-dimensional space-time. In addition,
we assume that two points on this hypersurface are spatially separated. We call this
a space-like hypersurface, and denote it by σ . When we introduce the state vector
Φ[σ ], what type of equation does it obey? This will be a generalization of Φ(t)

corresponding to t = const. To study this, we write (6.10) in the form

Φ(t + dt) = Φ(t) − idt
∫

d3xHint
[
ϕα(x), . . .

]
Φ(t) . (6.13)

Then in going from the hypersurface at t to the one at t+dt , we consider that at each
point (x, y, z) in space we only shift the volume element with infinitesimal volume
d3x by dt . However, we change it smoothly enough to maintain the condition of
being space-like. We do this at all points (see Fig. 6.1). We assume that, for a change
dω = d3x dt in the infinitesimal volume, the state vector is multiplied by the factor

1− idωHint(x) . (6.14)

Fig. 6.1 Variation of the hypersurface
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Therefore, multiplying by these factors in such a way as to cover all points in
space and neglecting infinitesimal terms of order greater than or equal to dω2, we
obtain (6.13). Generalization to the hypersurface is clear. If the hypersurface σ is
altered to σ ′ solely through a variation of the infinitesimal volume dω near the
space-time point x, and if both σ and σ ′ are space-like hypersurfaces, then

Φ[σ ′] = [1− idωHint(x)
]
Φ[σ ] , (6.15)

where σ ′ has been taken to be a future hypersurface of σ . Here we have used the
abbreviation

Hint(x) =Hint
[
ϕα(x), . . .

]
. (6.16)

Note that the notion of the space-like hypersurface is independent of the choice
of coordinate system. The four-dimensional infinitesimal volume is also a Lorentz-
invariant quantity and the Hamiltonian density Hint(x) is a scalar for simple cases.
Therefore, (6.15) is independent of the way we choose the coordinate system. In
order to write this equation in a differential form, we define the following functional
derivative:

lim
dω→0

Φ[σ ′] − Φ[σ ]
dω

= δΦ[σ ]
δσ(x)

. (6.17)

Using this symbol, (6.15) can be written in the form

i
δΦ[σ ]
δσ(x)

=Hint(x)Φ[σ ] . (6.18)

This is the Tomonaga–Schwinger equation. Because we choose a different time at
each point in space, this is called the super multiple-time formulation.

This theory was first formulated by Tomonaga [87]. It worked well when applied
to QED, especially for the renormalized theory. In the United States, its usefulness
was also recognized by Schwinger, and it became a central topic in the postwar
period.

In simple cases, the Hamiltonian density depends only on the point x and is
independent of σ . Let us consider the integrability condition in this case. We thus
rewrite the condition

δ

δσ(x)

δ

δσ(y)
Φ[σ ] = δ

δσ(y)

δ

δσ(x)
Φ[σ ] , (6.19)

using (6.18), and find

Hint(y)Hint(x)−Hint(x)Hint(y) = 0 , (6.20)
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where the points x and y are on the space-like hypersurface σ . This says that the
Hamiltonian densities at two space-like separated points commute, and it is called
an integrability condition. It is closely related to the notion of microscopic causality.

Next, let us consider an initial-value problem. The state vector is given on the
space-like hypersurface σ0:

Φ[σ0] = Φ . (6.21)

With this initial condition, the state vector on a general space-like hypersurface is
given by

Φ[σ ] = U [σ, σ0]Φ , (6.22)

and we choose U in such a way as to satisfy the initial condition and the Tomonaga–
Schwinger (TS) equation. First, since (6.22) satisfies the TS equation,

i
δ

δσ(x)
U [σ, σ0] =Hint(x)U [σ, σ0] . (6.23)

Additionally, corresponding to the initial condition (6.21),

U [σ0, σ0] = 1 . (6.24)

When it has this form, U is called a generalized transformation functional. This
becomes unitary if the Hamiltonian density is Hermitian. To show this, we write the
Hermitian conjugate equation of the equation (6.23) as follows:

− i
δ

δσ(x)
U†[σ, σ0] = U†[σ, σ0]Hint(x) . (6.25)

Combining (6.23) and (6.25),

δ

δσ(x)
U†[σ, σ0]U [σ, σ0] = 0 .

Thus, the product U†U does not depend on σ , and we can substitute σ0 for σ and
use (6.24) to obtain

U†[σ, σ0]U [σ, σ0] = 1. (6.26)

Additionally, as is clear from the definition (6.22), the following composition law
holds:

U [σ2, σ0] = U [σ2, σ1]U [σ1, σ0] . (6.27)
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Since this equation implies that the time evolution of the system is independent of its
history, this expresses the causality condition. Moreover, if we set σ2 = σ0 in (6.27),
then taking into account (6.26),

U [σ0, σ1] = (U [σ1, σ0])−1 = U†[σ1, σ0] . (6.28)

Hence, U is a unitary operator.
In particular, if we choose a space-like hypersurface σ and then introduce a time

axis, we can write U as

U(t2, t1) .

In this case, we can write the expectation value of a given operator in the interaction
picture (but not using the bra-ket symbol here):

(
Φ(t), ϕα(x)Φ(t)

) = (Φ,U(t, t0)
−1ϕα(x)U(t, t0)Φ

)
. (6.29)

Due to the time-independence of the state vector Φ, this tells us that

U(t, t0)
−1ϕα(x)U(t, t0) = ϕ(H)

α (x) (6.30)

specifies an operator in the Heisenberg picture. Given the Heisenberg operator
ϕ
(H)
α (x), it turns out that we can define various interaction pictures depending on

the choice of t0. We write the operators in the interaction picture corresponding to
t0 →−∞ and t0 →∞ as ϕin

α and ϕout
α , respectively. Then,

ϕ(H)
α (x) = U(t,−∞)−1ϕin

α (x)U(t,−∞)

= U(t,∞)−1ϕout
α (x)U(t,∞) . (6.31)

Although it is not strictly rigorous, taking t → ∞ and U(∞,∞) = 1 in the
equation above, we obtain

ϕout
α (x) = S−1ϕin

α (x)S , (6.32)

S = U(∞,−∞) . (6.33)

The operator S is called the S-matrix.
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6.2 Retarded Product Expansion of the Heisenberg
Operators

As mentioned in the last section, field operators in the interaction picture can be
quantized in just the same manner as in the free-field case. So, how can we carry
out this quantization in the Heisenberg picture? To do this, we usually express the
Heisenberg operator in terms of operators quantized in the interaction picture. Since
this problem cannot generally be solved, a perturbation method is often used. There
are two such methods: the first is a retarded product expansion and the second is the
Yang–Feldman method [90]. Here, we will discuss the first of these methods.

In this section, the Heisenberg operator is denoted by ϕα. We choose ϕin
α as

an operator in the interaction picture. Since the relation between them is given
by (6.31), we have

ϕα(x) = U(t,−∞)−1ϕin
α (x)U(t,−∞) , t = x0 . (6.34)

We expand this representation perturbatively as a power series in the coupling
constants. The interaction Hamiltonian in the interaction picture is

H(t) =
∫
x0=t

d3xHint(x) . (6.35)

We introduce the quantity

O(t0) = U(t, t0)
−1OU(t, t0) . (6.36)

Therefore, from the TS equation in the single-time theory, we obtain

i
∂

∂t0
O(t0) =

[
H(t0),O(t0)

]
. (6.37)

We convert this equation into the integral form

O(t0) = O − i
∫ t

t0

dt ′0
[
O(t ′0),H(t ′0)

]
. (6.38)

Then iterating by inserting (6.38) back into O(t ′0) in the integrand, we have

O(t0) = O − i
∫ t

t0

dt ′0
[
O, H(t ′0)

]+ (−i)2
∫ t

t0

dt ′0
∫ t

t ′0
dt ′′0
[[O, H(t ′′)], H(t ′0)

]+ · · ·

= O − i
∫ t

t0

dt ′[O, H(t ′)] + (−i)2
∫ t

t0

dt ′
∫ t ′

t0

dt ′′
[[O, H(t ′)], H(t ′′)

]+ · · · .
(6.39)
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We now make the replacement

O(t0)→ ϕα(x) , O → ϕin
α (x) , t0 →−∞ .

This yields the expansion equation

ϕα(x) = U(t,−∞)−1ϕin
α (x, t)U(t,−∞)

= ϕin
α (x, t)− i

∫ t

−∞
dt ′[ϕin

α (x, t),H(t ′)]

+(−i)2
∫ t

−∞
dt ′
∫ t ′

−∞
dt ′′
[[ϕin

α (x, t),H(t ′)],H(t ′′)
]+ · · · . (6.40)

Next, we define the retarded product of operators:

R
[
O(t) : A(t1) , . . . , A(tn)

] = (−i)n
[
. . . [O(t), A(t ′1)] . . .A(t ′n)

]
,

where t > t ′1 > . . . > t ′n and (t ′1, . . . , t ′n) is a permutation of (t1, . . . , tn). If t is
smaller than any of the tj , we define R = 0. From the definition, R is a symmetric
function of t1, . . . , tn. Using R, the general term in (6.40) can be written as

(−i)n
∫ t

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtn
[
. . . [ϕin

α (x, t),H(t1)] . . . H(tn)
]

=
∫ t

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ n−1

−∞
dtn−1dtnR

[
ϕin
α (x, t) : H(t1) . . . H(tn)

]

= 1

n!
∫ t

−∞
dt1

∫ t

−∞
dt2 . . .

∫ t

−∞
dtnR
[
ϕin
α (x, t) : H(t1) . . . H(tn)

]

= 1

n!
∫ ∞
−∞

dt1∞∞−∞dt2 . . .
∫ ∞
−∞

dtnR
[
ϕin
α (x, t) : H(t1) . . . H(tn)

]
.

Combining this with (6.35), we rewrite the expansion of (6.40) as

ϕα(x) = ϕin
α (x)+

∞∑
n=1

1

n!
∫ ∞
−∞

d4x1 . . .

∫ ∞
−∞

d4xnR . . . [ϕin
α (x) :Hint(x1) , . . . ,Hint(xn) . . .] .

(6.41)

This is in fact a generalization of the result in Sect. 4.4.
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6.3 Yang–Feldman Expansion of the Heisenberg Operators

Next, we consider a method for expanding the Heisenberg operator using the field
equation. This method was originally introduced by Yang and Feldman [90]. The
approach used in Sect. 4.4 is in fact based on this.

First, we separate the Lagrangian density into the free part and the interaction
part. As mentioned in the previous section, this separation is not trivial:

L = Lf +Lint . (6.42)

Next, we write down the Euler–Lagrange equation, where we keep the separation
above, i.e.,

[L ]
ϕ

†
α
= [Lf]ϕ†

α
+ [Lint]ϕ†

α

= Dαβ(∂)ϕβ + [Lint]ϕ†
α
= 0 . (6.43)

In order to solve this equation, recall Fig. 4.2 in Sect. 4.4. We assume that interac-
tions exist only in the finite space-time region Ω , i.e., we assume that the coupling
constant g is a function of x, with g �= 0 only in Ω and g = 0 outside Ω . Therefore,
in Fig. 4.2 we assume that g = 0 for t > T2 or t < T1. Thus, in these two regions
the solution of (6.43) becomes

ϕα =
{
ϕin
α , for t < T1

ϕout
α , for t > T2 .

(6.44)

At the end, we take the limits T1 → −∞ and T2 → ∞. In addition, the two free
fields are defined to be connected throughout space-time via the equation

Dαβ(∂)ϕ
in
β (x) = Dαβ(∂)ϕ

out
β (x) = 0 . (6.45)

In general, we take

ϕα(x) = ϕin
α (x)+ ϕ′α(x) . (6.46)

Inserting this in (6.43) and using (6.45),

Dαβ(∂)ϕ
′
β(x) = −[Lint]ϕ†

α
(x) . (6.47)

In order to integrate this equation, we introduce the retarded Δ-function ΔR

by (4.53):

ϕ′α(x) =
∫
Ω

d4x ′ΔR
αβ(x − x ′)[Lint]ϕ†

β
(x ′) . (6.48)
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Extending Ω into the whole space-time and taking g(x)→ g,

ϕα(x) = ϕin
α (x)+

∫
d4x ′ΔR

αβ(x − x ′)[Lint]ϕ†
β
(x ′) . (6.49)

This is a non-linear integral equation for ϕα(x). Similarly, using the advanced
Δ-function,

ϕα(x) = ϕout
α (x)+

∫
d4x ′ΔA

αβ(x − x ′)[Lint]ϕ†
β
(x ′) . (6.50)

The quantized field operator can be obtained by solving this integral equation.
Taking the difference between (6.49) and (6.50),

ϕout
α (x) = ϕin

α (x)−
∫

d4x ′Δαβ(x − x ′)[Lint]ϕ†
β
(x ′) . (6.51)

Alternatively, from (6.32), the S-matrix is determined by

S−1ϕin
α (x)S = ϕin

α (x)−
∫

d4x ′Δαβ(x − x ′)[Lint]ϕ†
β
(x ′) . (6.52)

The equation above is called the Yang–Feldman equation. The commutation
relations are

[
ϕin
α (x), ϕ

†in
β

]
± =
[
ϕout
α (x), ϕ

†out
β (y)

]
± = iCαβ(∂)Δ(x − y) . (6.53)

The sign chosen above depends on the statistics of the field.

6.4 Examples of Interactions

So far we have discussed the general situation without specifying the form of
interaction. We shall now consider some well known examples.

First, let us consider quantum electrodynamics (QED), which describes the
interaction between the electromagnetic field and the electron field. A general theory
of electromagnetic interactions was given by Dirac. When the field ψ corresponds to
a particle with an electric charge e, we only have to make the following replacements
in its free-field Lagrangian density:

∂μψ → (∂μ − ieAμ) , ∂μψ̄ → (∂μ + ieAμ)ψ̄ , (6.54)

where e is the electric charge of the quantum of the field ψ and −e is the electric
charge of its antiparticle. We call the interaction induced by such a replacement
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a minimal electromagnetic coupling. Applying the replacement above for the
Lagrangian density of the Dirac field, the interaction part is given by

Lint = jμAμ , (6.55)

where jμ is a four-current density given by

jμ = ieψ̄γμψ , or
1

2
ie[ψ̄, γμψ] . (6.56)

The meaning of the latter case is discussed in Sect. 3.9. We then write the Lagrangian
density of the whole system as

L = −ψ̄[γμ(∂μ − ieAμ)+m
]
ψ − 1

4
FμνFμν − 1

2α
(∂μAμ)

2 . (6.57)

QED is characterized by what is known as gauge invariance, i.e., making the
following changes:

gauge transformation of the first kind ψ → eieΛψ , ψ̄ → e−ieΛψ̄ ,

gauge transformation of the second kind Aμ→ Aμ + ∂μΛ ,

(6.58)

the Lagrangian (6.57) is invariant, except for the last term. Note that Λ is an arbitrary
function of the space-time coordinate. Dμν(∂) derived from the free part of the
Lagrangian density, i.e., the part that remains when e = 0, has no inverse, so
quantization does not go through. For this reason, we add the last term in (6.57),
which is called, a gauge-fixing term. With this procedure, although it is possible
to quantize, the general gauge invariance is lost. There is only a restricted gauge
invariance, i.e., the Lagrangian density (6.57) is invariant only under the condition

�Λ = 0 . (6.59)

In Chap. 3, we discussed the free Dirac particle. Here we mention a special
feature of the electromagnetic field and its interactions. This concerns the magnetic
moment of the electron. From the Lagrangian density (6.57), we obtain the
following field equations:

[
γμ(∂μ − ieAμ)+m

]
ψ = 0 , ψ̄

[
γμ(
←−
∂ μ + ieAμ)−m

] = 0 . (6.60)

�Aμ + 1− α

α
∂μ∂νAν = −jμ , (6.61)
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where
←−
∂ μ in the second equation of (6.60) is an operator which differentiates ψ̄ on

the left. From this, it is easy to derive the conservation of the current density:

∂μjμ = 0 . (6.62)

Moreover, taking the divergence of (6.61), we have

�∂μAμ = 0 . (6.63)

Combining this with the Yang–Feldman formalism,

∂μAμ = ∂μA
in
μ = ∂μA

out
μ . (6.64)

Since

S−1∂μA
in
μS = ∂μA

out
μ , (6.65)

equation (6.64) shows that the S-matrix and ∂μAμ commute:

[
S, ∂μAμ

] = 0 . (6.66)

This is (5.120). Therefore, the S-matrix is an observable quantity.
Multiplying the first equation in (6.60) by the operator

γλ(∂λ − ieAλ)−m ,

we obtain

[
γλγμ(∂λ − ieAλ)(∂μ − ieAμ)−m2]ψ = 0 . (6.67)

Then we rewrite the product of γ -matrices in the form

γλγμ = δλμ + iσλμ .

Thus, (6.67) can be written in the form

[
(∂λ − ieAλ)

2 −m2 + e

2
σλμFλμ

]
ψ = 0 . (6.68)

In the non-relativistic approximation, we can derive the Schrödinger equation.
Assuming that the electric field is not a quantized field but a static external field, we
replace the differential operators by E and p:

(E − eϕ)2ψ =
[
(p − eA)2 +m2 − e

2
σλμFλμ

]
ψ . (6.69)
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Writing the energy eigenvalue of this system as E = m + W and introducing the
following non-relativistic approximation

∣∣∣∣W − eϕ

2m

∣∣∣∣� 1 , (6.70)

equation (6.69) can be approximated by

Wψ =
[
(p − eA)2

2m
+ eϕ − e

4m
σλμFλμ

]
ψ . (6.71)

If W stands for the energy in the non-relativistic Schrödinger equation, we pick
up only the two large components from the four components of ψ under this
approximation, and the last term in (6.71) becomes

− e

2m
σH . (6.72)

This means that the magnetic moment of the electron is −e/2m. This was an
empirical fact in non-relativistic quantum mechanics, but in the Dirac theory it is
proven from first principles, and this is one of the experimental reasons in favour of
the theory.

For the next example, we consider a system involving nucleons and π-mesons.
This interaction was first introduced by Yukawa [17]. In the light of the current quark
model, it is viewed as a phenomenological theory rather than a fundamental one.
According to Yukawa’s theory, the force among nucleons, i.e., the nuclear force, is
produced by the exchange of π-mesons between nucleons. Empirically, we know
that the nuclear force does not depend on the electric charge of the nucleon in a
given angular-momentum state. This is referred to as charge independence. This
property yields a restriction on the interaction between nucleons and π-mesons. For
instance, assume that two nucleons are in the 1S-state. Here the 1 on the upper left
means that the total spin derived from the composition of the two nucleon spins is 0,
so it belongs to the spin singlet. S indicates that the relativistic angular momentum
is 0. In this state, the potential between two protons, or two neutrons, or a proton
and a neutron satisfies the approximate equality

Vpp(
1S) = Vnn(

1S) = Vnp(
1S) . (6.73)

On the other hand, due to Pauli’s principle, the spin triplet state 3S exists only in
the neutron–proton system. The charge independence reflects a kind of symmetry,
and some kind of conserved quantity corresponds to it. This conserved quantity is
called isospin, because its mathematical properties are similar to those of spin. In
the following, we begin by introducing the isospin.
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We consider the spin in a two-electron system. Denoting the states with spin-up
and spin-down by α and β, respectively, the wave functions of the spin triplet and
the spin singlet are:

triplet

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α(1)α(2) ,

α(1)β(2)+ β(1)α(2)√
2

,

β(1)β(2) ,

singlet
α(1)β(2)− β(1)α(2)√

2
.

(6.74)

States in the same multiplet can be mapped to each other by spin rotations.
We consider the proton state p and the neutron state n to be two different states

of the same nucleon. Then, by analogy with the spin case, isospin states in the two-
nucleon system will belong to either the isospin triplet or the isospin singlet. To be
more precise, we rewrite α and β as p and n, respectively. The charge independence
of the nuclear force means that members of the same multiplet have the same
potential. For example, the spin singlet 1S-state corresponds to the isospin triplet,
while 3S-state corresponds to the isospin singlet:

triplet

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p(1)p(2) ,

p(1)n(2)+ n(1)p(2)√
2

,

n(1)n(2) ,

singlet
p(1)n(2)− n(1)p(2)√

2
. (6.75)

For spin, the Pauli matrices σx , σy , and σz are defined by

σxα = β , σyα = iβ , σzα = α ,

σxβ = α , σyβ = −iα , σzβ = −β .
(6.76)

For isospin, we also introduce three matrices τ1, τ2, and τ3, defining them by the
following equations:

τ1p = n , τ2p = in , τ3p = p ,

τ1n = p , τ2n = −ip , τ3n = −n .
(6.77)

As in the case of ordinary spin, we define the isospin of a system with A nucleons
as

Ia = 1

2

A∑
k=1

τ (k)a , where k is the number of nucleons. (6.78)
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Therefore, as in the case of angular momentum the commutation relation among the
three components is

[Ia, Ib] = iεabcIc . (6.79)

Then the requirement that the potential V between two nucleons be independent of
the charge can be expressed by

[Ia, V ] = 0 . (6.80)

In fact, this holds only approximately.
We can consider I1, I2, and I3 as the three components of an abstract vector

in isospin space, and we denote it by Î . Although this system is invariant under
rotations in the isospin space, due to the Coulomb interaction and the small mass
difference between the proton and the neutron, this invariance is approximate. The
isospin of the nucleon is 1/2, while that of the π-meson with three isospin states
π+, π0, and π− is 1. Hence, if we denote the eigenvalue of Î 2 by I ′(I ′ + 1), it
turns out that this multiplet is degenerate with degree 2I ′ + 1 as in the case of
the angular momentum. However, as in the case including π-mesons, we have to
generalize (6.78).

The spin of the π-meson will be shown later to be zero. According to (3.70), for
a three-component real scalar field, the Lagrangian density is

Lπ = −
3∑

α=1

1

2

[
(∂λϕα)

2 + μ2ϕ2
α

]
, (6.81)

where ϕ1, ϕ2, and ϕ3 are the three components of the vector ϕ̂ in the isospin space.
By (3.69), ϕ1 and ϕ2 correspond to the real and imaginary parts of ϕ and ϕ†,
respectively. ϕ is the operator which annihilates π+ and creates π−, while ϕ† is
its conjugate operator. ϕ3 is the operator which creates and annihilates π0. Since the
nucleon belongs to the two-dimensional irreducible representation of the rotation
group in the isospin space, it becomes mathematically equivalent to the spinor for
ordinary spatial rotations, and is called an isospinor. The π-meson is an isovector.
The Lagrangian density of the nucleon is

LN = −
2∑

α=1

ψ̄α(γμ∂μ +M)ψα , (6.82)

where ψ1 stands for the proton component ψp and ψ2 for the neutron component
ψn. Therefore, referring to (6.77), the τ -matrices have the same representation as
the Pauli matrices:

τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0
0 −1

)
. (6.83)
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Since ψ is an isospinor, ψ̄ταψ becomes an isovector in the isospin space. If we take
the scalar product of the isovector and the meson field ϕ̂, the result is an isoscalar
which is invariant under rotations in the isospin space. In order to ensure the charge
independence of the nuclear force, the interaction in the nucleon–meson system
must be an isoscalar. A similar idea was first introduced by Kemmer [27]. For the
interaction, we thus adopt a term proportional to

ψ̄O τ̂ψ · ϕ̂ . (6.84)

Here τ̂ · ϕ̂ stands for the scalar product of two isovectors. O is a Dirac matrix,
and since the π-meson is in fact a pseudo-scalar, we choose it to be O = iγ5.
Considering ω̂ to be a vector generating an infinitesimal rotation, (6.84) is invariant
under the following infinitesimal transformation in the isospin space:

ψ → ψ + i

2
(ω̂ · τ̂ )ψ , ϕ̂→ ϕ̂ − ω̂ × ϕ̂ , (6.85)

where× denotes the vector product in the isospin space.
The property of charge independence has been observed empirically in many

situations. Here we give an example. From the fact that the deuteron d has isospin
0, we can derive the following relation between two differential cross-sections:

dσ(p+ p→ d+ π+)
dΩ

= 2
dσ(n+ p→ d+ π0)

dΩ
. (6.86)

This equation is consistent with experimental results and thus supports the hypoth-
esis of charge independence.

The spin and the parity of the π-meson or pion has been determined as follows.
According to the principle of detailed balance, assuming that the mechanical law
that governs the nucleon–meson system is time-reversible and comparing with the
reverse process,

π+ + d � p+ p , (6.87)

the following relation holds:

dσ(→)

dΩ

/
dσ(←)

dΩ
= 4

3(2S + 1)

p2

q2 , (6.88)

where p and q are the momenta of the proton and the pion in the centre-of-mass
system and S is the spin of the pion. We assume that in any process the initial
particle is not polarized. In this equation, it has been taken into account that the
spins of the proton and deuteron are 1/2 and 1, respectively. Comparing (6.88) with
experiment, we find

S = 0 , (6.89)
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i.e., the spin of the pion is zero. Moreover, rewriting (6.88) for the total cross-
section, the Pauli principle implies a difference of a factor of two:

σ(→)

σ (←)
= 2

3(2S + 1)

p2

q2 . (6.90)

The spin of π− is also zero because it is the antiparticle of π+. From the charge
invariance, it is easy to understand that the spin of π0 must be zero. π0 decays
mainly into two photons:

π0 → 2γ . (6.91)

Later, we will use this to prove that the spin of π0 cannot be 1.
The low-energy π− loses its energy via electromagnetic interactions when

traversing a material, and falls to the l = 0 Bohr orbit of the nucleon in a time much
shorter than its lifetime. It is subsequently absorbed by the nucleon. In particular,
the following absorption process occurs for the deuteron:

π− + d → n+ n . (6.92)

Let us compare the angular momenta on each side. Since the spin of the pion is
zero and the orbital angular momentum between the pion and the deuteron is zero,
the total angular momentum on the left-hand side can be determined by the angular
momentum state of the deuteron. The deuteron is a bound state of the proton and
the neutron with angular momentum state

3S1 + 3D1 . (6.93)

As mentioned before, the number 3 on the top left indicates that the two spins
comprise a parallel triplet term, while S and D indicate that the orbital angular
momenta are zero and two, respectively. Moreover, the number 1 on the bottom right
indicates that the total angular momentum is unity. Since there are two neutrons,
which have Fermi statistics, on the right-hand side of (6.92), their wave function
must be anti-symmetric. Consequently, the total wave function of the deuteron must
be anti-symmetric as well. Thus, when the spin wave functions are symmetric
triplets, the angular momentum must be odd, and when the spin wave function
is an anti-symmetric singlet, the angular momentum must be even. Writing down
the compositions of spins and orbital angular momenta on the lower right, all the
possible states are

1S0 , 3P0,1,2 , 1D2 , 3F2,3,4 , . . . . (6.94)
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Choosing the one whose orbital angular momentum is unity, the only angular-
momentum state which corresponds to (6.92) is

3S1 + 3D1 → 3P1 . (6.95)

Since the parity of the orbital part is altered from even to odd, it turns out that this
change originates in the intrinsic parity of the pion. That is, the (intrinsic) parity of
the pion is odd. Here we have assumed that the intrinsic parity of the proton and the
neutron is even. Therefore, the pion is a spin-0 and parity-odd particle. In general,
this is expressed as 0−. Equivalently, we say that the pion is a pseudo-scalar.

The interactions in the nucleon–meson system which preserve both parity and
isospin can be written as follows:

Lint = −iGψ̄γ5τ̂ψ · ϕ̂ − λ

4
(ϕ̂2)2 , (6.96)

where the first term is the so-called Yukawa interaction, and the second term
expresses the interaction among mesons, a necessary term for the renormalization
discussed later. The real (pseudo) scalar representation has been used here. If the
complex representation is used,

ψ̄γ5τ̂ψ · ϕ̂ =
√

2(ψ̄nγ5ψpϕ
† + ψ̄pγ5ψnϕ)+ (ψ̄pγ5ψp − ψ̄nγ5ψn)ϕ3 .

The full Lagrangian density is therefore

L = −ψ̄(γμ∂μ +M)ψ − 1

2

[
(∂λϕ̂)

2 + μ2ϕ̂2]− iGψ̄γ5τ̂ψ · ϕ̂ − λ

4
(ϕ̂2)2 .

(6.97)

We end with a remark about the nuclear force, which was the key factor for the
development of Yukawa’s theory. Since it is difficult to discuss this issue from a
completely general point of view, we consider the neutral scalar meson. Assuming
that the nucleon is much heavier than the meson, the nucleon can be considered to
be at rest, so it can be replaced by an external field. This is analogous to replacing
the effects of the proton by a Coulomb potential when we treat the proton as being
at rest in the problem of the hydrogen atom. This is called a static approximation.
In this approximation, for the nucleon–meson interaction, i.e.,

Hint =
∫

d3x gψ̄(x)ψ(x)ϕ(x) , (6.98)
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we consider ψ̄(x)ψ(x) to be the probability density of the nucleon, and replace it
as follows:

ψ̄(x)ψ(x)→
N∑
j=1

δ3(x − xj ) , (6.99)

where xj is the position coordinate of the j th nucleon. Hence, the nucleon is
not quantized here. Considering a two-body problem, choosing N = 2, and
substituting (6.99) into (6.98), we have

H = Hf + g
[
ϕ(x1)+ ϕ(x2)

] ≡ Hf +H ′ , (6.100)

where Hf is the Hamiltonian of the free meson and we are working in the
Schrödinger picture. We now determine the eigenvalues of this Hamiltonian. In
particular, we would like to obtain the energy eigenvalue of the ground state. The
equation is

HΨ = EΨ . (6.101)

To solve this problem, we use the Fourier representation

Hf =
∑
q

q0c
†(q)c(q) , (6.102)

ϕ(x) =
∑
q

1√
2q0V

[
c(q)eiqx + c†(q)e−iqx

]
. (6.103)

Hf is already diagonal with respect to the particle number, but the interaction part is
not. We thus diagonalize H by a suitable unitary transformation. To do this, we take

Ψ = UΦ , U ≡ exp(iS) , (6.104)

where U is unitary and S is Hermitian. Therefore,

U−1HUΦ = EΦ , (6.105)

U−1HU = U−1(Hf +H ′)U

= Hf + i[Hf, S] + i2

2

[[Hf, S], S
] + · · ·

+ H ′ + i[H ′, S] + · · ·
...

...
...

g0 g1 g2

(6.106)
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where, assuming that S is of order of g, we have aligned terms with the same power
of g vertically. We then define S by

H ′ + i[Hf, S] = 0 . (6.107)

Therefore, (6.106) can be assembled into the following form:

U−1HU = Hf +
∞∑
n=1

in
[

1

n! −
1

(n+ 1)!
] n︷ ︸︸ ︷[

. . . [H ′, S] . . . S] commutators .

(6.108)

Since the second term begins with terms of order g2, it turns out that H has been
diagonalized up to order g2. In the case of the neutral meson, since the term with
n = 1 is a c-number, any term with more than two commutators vanishes. To
solve (6.107), we use

[
Hf, c(q)

] = −q0c(q) ,
[
Hf, c

†(q)
] = q0c

†(q) , (6.109)

to show that S is given by

S = −ig
∑
q

1√
2q0V

1

q0

[
c(q)(eiqx1+eiqx2)−c†(q)(e−iqx1+e−iqx2)

]
. (6.110)

Thus,

U−1HU = Hf + i

2
[H ′, S]

= Hf − g2
∑
q

1

2q2
0V

(eiqx1 + eiqx2)(e−iqx1 + e−iqx2) .

Taking the limit V →∞ and making the replacement (4.2),

U−1HU = Hf − g2

(2π)3

∫
d3q

q2
0

[
1+ cos q(x1 − x2)

]
. (6.111)
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The integral splits into the divergent self-energy δM and the potential V (r):

δM = − g2

(2π)3

∫
d3q

2q2
0

, (6.112)

V (r) = − g2

(2π)3

∫
d3q

q2
0

cos q(x1 − x2) = − g2

4π

e−mr

r
, r = |x1 − x2| .

(6.113)

Therefore, the lowest eigenvalue E of H can be written

E = 2δM + V (r) . (6.114)

The function V (r) is called the Yukawa potential.



Chapter 7
Symmetries and Conservation Laws

In this chapter, we study invariance under different types of continuous transfor-
mation in a given system, showing that such symmetries are closely related to the
existence of conservation laws. The key to this is Noether’s theorem. We begin by
formulating this idea in a point-particle system, and then extend it to the field case.

7.1 Noether’s Theorem for Point-Particle Systems

We define an action integral I starting from the Lagrangian L(qj (t), q̇j (t)) for a
given system:

I =
∫ t2

t1

dt L
(
qj (t), q̇j (t)

)
. (7.1)

We consider the infinitesimal variations

t → t ′ = t + δt , qj (t)→ q ′j (t ′) = qj (t)+ δqj . (7.2)

Regarding the dynamical variables qj , we consider two kinds of transformation. The
first does not involve any change in the time variable, while the second does:

δ∗qj (t) = q ′j (t)− qj (t) , δqj (t) = q ′j (t ′)− qj (t) . (7.3)

The variation δ∗ thus commutes with the time derivative and we have the following
relation between these two kinds of variation:

δ∗qj (t) = δqj (t)− δt q̇j (t) . (7.4)
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We now consider a variation of the action integral corresponding to (7.2):

I ′ =
∫ t ′2

t ′1
dt ′L
(
q ′j (t ′), q̇ ′j (t ′)

)
. (7.5)

The change in the t-derivative can be found from

d

dt ′
= dt

dt ′
d

dt
=
(

1− d

dt
δt

)
d

dt
,

and

dt ′ = dt ′

dt
dt =
(

1+ d

dt
δt

)
dt . (7.6)

Transforming the integral variable t ′ of I ′ back to t , we find the difference from I

to be

I ′ − I =
∫ t2

t1

dt

(
1+ d

dt
δt

)
L′ −
∫ t2

t1

dtL

=
∫ t2

t1

dt

(
L′ − L+ d

dt
δt · L
)

. (7.7)

The integrand can be rewritten

L′ − L+ d

dt
δt · L =

∑
j

(
∂L

∂qj
δqj + ∂L

∂q̇j
δq̇j

)
+ d

dt
(δtL)− δt

d

dt
L .

Using (7.4) and taking into account the commutativity of δ∗ and the time derivative,
the left-hand side becomes

∑
j

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)]
δ∗qj + d

dt

⎛
⎝∑

j

∂L

∂q̇j
δ∗qj + δtL

⎞
⎠ . (7.8)

Although the first term must vanish, according to the Euler–Lagrange equation, we
keep it for the moment:

I ′−I =
⎡
⎣∑

j

∂L

∂q̇j
δ∗qj + δtL

⎤
⎦
t2

t1

+
∫ t2

t1

dt
∑
j

[
∂L

∂qj
− d

dt

(
∂L

∂q̇j

)]
δ∗qj . (7.9)
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If we now use the Euler–Lagrange equation, we obtain

I ′ − I = Q(t2)−Q(t1) , (7.10)

where

Q =
∑
j

∂L

∂q̇j
δ∗qj + δtL =

∑
j

pj δqj −H δt . (7.11)

Therefore, if I is invariant under the infinitesimal transformation (7.2), the equation
of motion implies the following conservation law:

d

dt
Q(t) = 0 . (7.12)

This correspondence between the invariance of the action integral under the
infinitesimal transformation and the conservation law is called Noether’s theorem.
For this theorem within a point-particle system, the reader is referred to Introduction
to Analytical Mechanics for Learning Quantum Mechanics, written in Japanese by
Yasushi Takahashi [91].

Time-like Parallel Translation
If we consider

δt = ε , δqj (t) = 0 , (7.13)

where ε is an infinitesimal parameter independent of t , the action integral is invariant
in the case where L has no explicit time dependence. Then,

Q = −εH , (7.14)

whence H is conserved, i.e., we obtain the conservation law of energy.

Spatial Parallel Translation
If we consider

δt = 0 , δxj (t) = ε , (7.15)

the action integral defined by the Lagrangian for a point-particle system interacting
with a two-body central force, viz.,

L =
∑
j

1

2
mj ẋ

2
j −
∑
i>j

V (|xi − xj |) , (7.16)
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is invariant. The corresponding conserved quantity is

Q = ε
∑
j

pj = εP , pj = mj ẋj . (7.17)

We thus obtain the conservation of momentum P .

7.2 Noether’s Theorem in Field Theory

It is easy to extend Noether’s theorem from point-particle systems to fields. We
begin with the action integral

I =
∫
Ω

d4xL
[
ϕα(x), ϕα,μ(x)

]
, (7.18)

where ϕ(x)α is a generic notation for fields in various representations of the
Poincaré algebra, and the subscript α distinguishes between different fields, but also
between the fields and their conjugates. We introduce the infinitesimal variations

xμ→ x ′μ + δxμ , ϕα(x)→ ϕ′α(x ′) = ϕα(x)+ δϕα(x) , (7.19)

where ϕ → ϕ′ stands for the x-dependence of ϕ or the variation of the functional
form. As in the previous section, we introduce two types of variation:

δ∗ϕα(x) = ϕ′α(x)− ϕα(x) , δϕα(x) = ϕ′α(x ′)− ϕα(x) , (7.20)

where δ∗ is the variation used to derive the Euler–Lagrange equation, which was
simply written as δ in Chap. 3. δ∗ commutes with the derivative. Therefore, we can
consider the variation in Chap. 3 to be δ under the restriction δxμ = 0. The relation
between the two variations is

δ∗ϕα(x) = δϕα(x)− ϕα,μ(x)δxμ . (7.21)

Due to the commutativity of δ∗ with the derivative,

δϕα,μ(x) = ∂μδϕα(x)− ϕα,ν(x)∂μδxν . (7.22)

We can now calculate δI :

δI =
∫
Ω ′

d4x ′L
[
ϕ′α(x ′), ϕ′α,μ(x ′)

]−
∫
Ω

d4xL
[
ϕα(x), ϕα,μ(x)

]
. (7.23)
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In order to make the integration regions coincide, we change the variable x ′ back to
x in the first integral. Using

d4x ′ = ∂(x ′0, x ′1, x ′2, x ′3)
∂(x0, x1, x2, x3)

d4x , (7.24)

we obtain

δI =
∫
Ω

d4x

{
L
[
ϕα(x)+ δϕα(x), ϕα,μ(x)+ δϕα,μ(x)

]∂(x ′0, x ′1, x ′2, x ′3)
∂(x0, x1, x2, x3)

−L
[
ϕα(x), ϕα,μ(x)

]}
.

For infinitesimal δxμ, we have

∂(x ′0, x ′1, x ′2, x ′3)
∂(x0, x1, x2, x3)

= 1+ ∂ν(δxν) . (7.25)

Using this and the summation convention for repeated indices,

δI =
∫
Ω

d4x

[
∂L

∂ϕα
δϕα + ∂L

∂ϕα,μ
δϕα,μ +L ∂ν(δxν)

]
. (7.26)

Therefore, if the action integral I is invariant under any choice of Ω ,

δL +L ∂ν(δxν) = 0 , (7.27)

where

δL = ∂L

∂ϕα
δϕα + ∂L

∂ϕα,μ
δϕα,μ . (7.28)

Rewriting this in terms of δ∗ rather than δ,

[L ]ϕαδ∗ϕα +
∂

∂xμ

(
∂L

∂ϕα,μ
δ∗ϕα +L δxμ

)
= 0 . (7.29)

Next, we introduce the canonical energy–momentum tensor

Tμν = − ∂L

∂ϕα,μ
ϕα,ν + δμνL . (7.30)
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We write the second term in (7.29) in terms of δ once again:

[L ]ϕαδ∗ϕα +
∂

∂xμ

(
∂L

∂ϕα,μ
δϕα +Lμνδxν

)
= 0 . (7.31)

This expresses the invariance of the action integral. Using the field equation, we can
drop the first term, and this yields the conservation law

∂

∂xμ

(
∂L

∂ϕα,μ
δϕα +Tμνδxν

)
= 0 . (7.32)

The derivation above is basically the same as the one for a point-particle system. In
field theory, Noether’s theorem expresses the relationship between invariance and
the above conservation law. The conserved four-dimensional current in brackets is
called the Noether current.

7.3 Applications of Noether’s Theorem

Space-Time Translations
If there is no external field, the Lagrangian density will not depend explicitly on
any coordinate. This means that, if the Lagrangian density depends on coordinates
only through fields, then the action integral will be invariant under the following
transformations:

δxμ = εμ , δϕα = 0 . (7.33)

Inserting (7.33) into (7.32), the conservation law is in this case

∂μ(Tμνεν) = 0 , or ∂μTμν = 0 . (7.34)

This is because εν is an arbitrary infinitesimal parameter. From this, we can obtain
the energy–momentum vector as a conserved quantity:

Pν =
∫

d3xT0ν(x) . (7.35)

It is easy to check that this definition coincides with the one given in Sect. 3.2. If the
Lagrangian density includes an external field,

∂μTμν = ∂L

∂(xν)
, (7.36)

where the derivative with respect to (xν) picks up only the coordinate dependence
introduced through the external field, and involves no derivative of the dynamical
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fields under investigation. We can in fact generalize (3.29). If O(x) is written in
terms of fields and does not depend explicitly on any coordinate,

∂

∂xμ
O[ϕα(x)] = i

[
O[ϕα(x)], Pμ

]
. (7.37)

On the other hand, if O(x) depends not only on the field ϕα(x), but also explicitly
on some coordinate, i.e., if O can be written as O[ϕα(x), (xμ)], then (7.37) changes
to

∂

∂xμ
O(x) = i[O(x), Pμ] + ∂

∂(xμ)
O(x) . (7.38)

This equation will be used later.

Phase Transformations
Next, we consider a phase transformation. Assuming that ϕα is a complex field, the
Lagrangian density also includes the complex conjugate ϕ∗α of ϕα. Then writing the
complex conjugate field explicitly, we consider the Lagrangian density

L = L
[
ϕα(x), ϕ

∗
α(x), ϕα,ν(x), ϕ

∗
α,μ(x)

]
. (7.39)

We assume that this L is invariant under the infinitesimal phase transformation

ϕα → eiqαλϕα = ϕα + iqαλϕα ,

ϕ∗α → e−iqαλϕ∗α = ϕ∗α − iqαλϕ∗α , (7.40)

that is,

δϕα = iqαλϕα , δϕ∗α = −iqαλϕ∗α . (7.41)

Therefore, the Noether current is

λ
∑
α

iqα

(
∂L

∂ϕα,μ
ϕα − ∂L

∂ϕ∗α,μ
ϕ∗α

)
. (7.42)

When qα is an electric charge of the quantum of the field ϕα , the conserved current
is in fact

jμ =
∑
α

(−iqα)

(
∂L

∂ϕα,μ
ϕα − ∂L

∂ϕ∗α,μ
ϕ∗α

)
. (7.43)

This yields the conservation law.
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Isospin Transformations
Next, we consider an infinitesimal transformation in isospin space. If when we
introduce an infinitesimal rotation vector ω̂ the action integral is invariant under
the infinitesimal rotation of the field quantity given by (6.85), then, in terms of the
nucleon field and the meson field, Noether’s current can be written in the form

− ω̂ ·
[

i

2
ψ̄γμτ̂ψ − ϕ̂ × ϕ̂,μ

]
. (7.44)

Therefore, the conserved isospin current is

ĵμ = i

2
φ̄γμτ̂ψ − ϕ̂ × ∂μϕ̂ . (7.45)

The isospin L̂ is then given by

Î =
∫

d3x

[
1

2
ψ† τ̂ψ + ϕ̂ × π̂

]
, π̂ = ˙̂ϕ . (7.46)

Various conserved quantities can be derived from the Noether current in this way.

7.4 Poincaré Invariance

Combining the previously mentioned parallel translations in space-time and the
Lorentz transformations, we obtain the group of Poincaré transformations. Here
we first consider the Lorentz transformation. Using an infinitesimal parameter
εμν = −ενμ, the infinitesimal Lorentz transformation can be expressed as

δxμ = εμνxν , δϕα(x) = 1

2
εμν(Tμν)αβϕβ(x) . (7.47)

This is a generalization of (3.119). Tμν is a representation of the generator of the
Lorentz transformation. We have already encountered the following examples:

Spin 0 Tμν = 0 , (7.48a)

Spin 1/2 Tμν = 1

4
(γμγν − γνγμ) , (7.48b)

Spin 1 Tμν = aμν . (7.48c)

However, since the matrix aμν in the spin-1 case can be chosen to be the same as
the matrix of the coordinate transformation, its components can be determined from
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the identity

δxμ = εμνxν = 1

2
ερσ (aρσ )μνxν .

Its specific form is then

(aρσ )μν = δμρδνσ − δμσ δνρ . (7.49)

Tμν given by (7.48a)–(7.48c) satisfies the commutation relation

[Tρσ , Tλτ ] = δσλTρτ − δστ Tρλ + δρλTστ − δρτ Tσλ . (7.50)

The Noether current corresponding to the above transformation is

Mμρσ = xρTμσ − xσTμρ − ∂L

∂ϕα,μ
(Tρσ )β . (7.51)

The conservation law is

∂μMμρσ = 0 , (7.52)

where the generator Mρσ of the Lorentz transformation is defined by

Mρσ =
∫

d3xM0ρσ . (7.53)

The same commutation relations hold among the Mρσ as among the −iTρσ , i.e.,

[Mρσ ,Mλτ ] = −i(δσλMρτ − δστMρλ + δρλMστ − δρτMσλ) . (7.54)

So far we have found the operators generating the Lorentz group. Since the
generator of the parallel translation is Pμ, we have to give the commutation relations
involving Pμ, i.e.,

[Mμν, Pσ ] = i(δμσPν − δνμPμ) , (7.55)

[Pμ, Pν] = 0 . (7.56)

The generators of the Poincaré group form a closed algebra under the commutation
relations. Note that even if the conservation law (7.52) holds, not all the Mρσ

commute with Pμ, e.g., with the Hamiltonian. This is because a coordinate is
included explicitly in (7.51), so we need to use (7.38).
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Next, we introduce the symmetric energy–momentum tensor. We write M as

Mμνσ = xρTμσ − xσTμρ +Sμρσ (7.57)

and apply ∂μ to both sides to obtain

Jσρ −Jρσ = −∂μSμσρ . (7.58)

This implies that the canonical energy–momentum tensor is not generally symmet-
ric. We thus define a new tensor Θμν by

Θρσ = Tρσ + ∂μGμρσ , (7.59)

where

Gμρσ = 1

2
(Sμρσ +Sρσμ +Sσρμ) . (7.60)

Since Sμρσ is anti-symmetric with respect to ρ and σ ,

Gρμσ = 1

2
(Sρμσ +Sμσρ +Sσμρ)

= −1

2
(Sρσμ +Sμρσ +Sσρμ)− Gμρσ . (7.61)

Therefore, G is anti-symmetric with respect to the first two indices, i.e.,

∂μ∂ρGμρσ = 0 , (7.62)

∂ρΘρσ = ∂ρTρσ = 0 . (7.63)

Moreover,

∂μ(Gμρσ − Gμσρ) = 1

2
∂μ(Sμρσ +Sρσμ +Sσρμ −Sμσρ −Sσρμ −Sρσμ)

= ∂μSμρσ . (7.64)

Combining this with (7.58) and (7.59), it is straightforward to see that the tensor
Θρσ is symmetric in ρ and σ , i.e.,

Θρσ = Θσρ . (7.65)

It is thus referred to as the symmetric energy–momentum tensor. Since this tensor
was first introduced by Belinfante and Rosenfeld [92, 93], it is also called the
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Belinfante–Rosenfeld tensor.1 In addition, taking into account the fact thatG00ν = 0,

Pν =
∫

d3xJ0ν(x) =
∫

d3x Θ0ν(x) . (7.66)

Similarly,

Mρσ =
∫

d3xM0ρσ =
∫

d3x(xρΘ0σ − xσΘ0ρ) . (7.67)

To prove this, we have to show that

∫
d3x
(
xρ∂μGμ0σ − xσ ∂μGμ0ρ

) =
∫

d3xS0ρσ .

Since μ = 4 does not produce any effects on the left-hand side,

(left-hand side) =
∫

d3x∂μ(xρGμ0σ − xσGμ0ρ)+
∫

d3x(Gσ0ρ − Gρ0σ )

= 1

2

∫
d3x
(
Sσ0ρ +S0ρσ +Sρ0σ −Sρ0σ −S0σρ −Sσ0ρ

)

=
∫

d3xS0ρσ = (right-hand side) ,

which proves (7.67). However, in the above proof we dropped the three-dimensional
integral of the three-dimensional divergence. Moreover, it is not the canoni-
cal energy–momentum tensor but the symmetric energy–momentum tensor that
becomes the source for the gravitational field. Using standard notation, the equation
for the gravitational field is

Rμν − 1

2
gμνR = κΘμν . (7.68)

Next, we consider the spin of a particle. To do so, we introduce the Pauli–
Liubanski operator

Wα = 1

2i
εαβγ δMβγ Pδ , (7.69)

where εαβγ δ takes the values +1 or −1 when (α, β, γ, δ) is an even or odd
permutation of (1, 2, 3, 4), respectively, and zero otherwise. Although this axial

1 In the original Japanese edition, the author referred to this as the Belinfante tensor instead of the
Belinfante–Rosenfeld tensor.
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vector commutes with Pμ, it transforms as a vector under a proper Lorentz
transformation:

[Pμ,Wα] = 0 . (7.70)

The Poincaré algebra has two Casimir operators, i.e., operators which commute
with all components of P and M :

P 2 = PμPμ , W 2 = WαWα . (7.71)

We use these two quantities to define the mass and spin of a particle. First, note that
Wα has the properties

WαPα = 0 (7.72)

and

[Wα,Wβ ] = εαβγ δWγ Pδ . (7.73)

We can diagonalize any set of operators which commute with each other, such as

Pμ , W3 , P 2 , W 2 . (7.74)

Assuming that the eigenvalue of −P 2 is m2, m becomes the mass of this particle.
When m �= 0, we can pick out the rest frame of this particle, choosing the
eigenvalues pμ of Pμ to be

p = 0 , p0 = m . (7.75)

In this case, if we write W = mS, the three components of S satisfy the same
commutation relations as those of the angular momentum. This is clear from (7.73)
and (7.75). Hence, the eigenvalue of W 2 has the form, m2s(s + 1), where s stands
for the spin of this particle. In fact, for the one-particle state in the rest frame, W

has the representation

Wi → m

2i
εijkTjk . (7.76)

When m = 0, things become more difficult. We will discuss this later.
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7.5 Representations of the Lorentz Group

The commutation relations for the six creation operators of the Lorentz group are
given by (7.54). In this section, we will discuss the issue of representations. To do
so, we introduce the notation

M = (M23,M31,M12) , N = (M14,M24,M34) . (7.77)

Then (7.54) can be decomposed into the following three equations:

[Mi,Mj ] = iεijkMk , [Mi,Nj ] = iεijkNk , [Ni,Nj ] = iεijkMk . (7.78)

Next, we introduce two linear combinations of M and N :

J = 1

2
(M +N) , K = 1

2
(M −N) . (7.79)

Note first that J and K commute, i.e.,

[Ji,Kj ] = 0 . (7.80)

In addition, the commutation relations among the J and those among the K are
isomorphic to those of the three components of the angular momentum:

[Ji, Jj ] = iεijkJk , [Ki,Kj ] = iεijkKk . (7.81)

Therefore, the proper Lorentz group can be decomposed into a direct product of two
three-dimensional rotational groups:

SO(3)× SO(3) ∼ SU(2)× SU(2) . (7.82)

The representation of the proper Lorentz group is characterized by the eigenvalues
of the operators

J 2 , J3 , K2 , K3 , (7.83)

i.e., j1(j1 + 1), m1, j2(j2 + 1), and m2, respectively. We denote the corresponding
eigenvector by

|j1,m1; j2,m2〉 . (7.84)

Here, as in the case of the angular momentum, the possible values of m are

m1 = −j1,−j1 + 1, . . . , j1 , m2 = −j2,−j2 + 1, . . . , j2 . (7.85)
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When we use the basis in (7.84) to represent the proper Lorentz transformation Λ,
we denote this representation by

D (j1,j2)(Λ) . (7.86)

The relationship between this representation and the three-dimensional rotation
group is given by

M = J +K . (7.87)

It turns out that, for three-dimensional rotations, j is given by the composition of j1
and j2. The proper Lorentz transformation Λ is expressed by

D(Λ) = exp

(
1

2
iεμνMμν

)
. (7.88)

We use the following notation with six parameters εμν :

θ = (ε23, ε31, ε12) , iω = (ε14, ε24, ε34) , (7.89)

where θ and ω are real three-dimensional vectors. We can now rewrite (7.88) as

D(Λ) = exp (iθ · M − ω ·N) . (7.90)

In order to analyze the meaning of the two j ’s, we compare D (j,0) with D (0,j):

D (j,0) : M = N = J , K = 0 , (7.91a)

D (0,j) : M = −N = K , J = 0 . (7.91b)

Both representations can be written in terms of M as follows:

D (j,0)(Λ) = exp
[
(iθ − ω) · M

]
, (7.92a)

D (0,j)(Λ) = exp
[
(iθ + ω) · M

]
. (7.92b)

These imply

D (0,j)(Λ) = D (j,0)(Λ−1)† . (7.93)

To investigate the physical meaning of the two kinds of indices, we recall Weyl’s
equation. As already mentioned in Sect. 7.3, Mμν can be represented by −iTμν . In
the case of Weyl’s equation, from (3.135), depending on the sign of helicity, we have

M = ±N . (7.94)
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Therefore, j1 and j2 correspond to the positive and negative helicity states,
respectively.

For space inversion, the transformation properties of these operators are

M → M , N → −N , J � K . (7.95)

Space inversion does not belong to the proper Lorentz group, so D (j1,j2) is not
enough here. It turns out that

D (j1,j2) � D (j2,j1) . (7.96)

This is the reason why Weyl’s equation is not invariant under space inversion. The
solution of Dirac’s equation preserving parity is

D (1/2,0) ⊕D (0,1/2) . (7.97)

7.6 Spin of a Massless Particle

In Sect. 7.3, we discussed the spin of a particle with nonzero mass. In this section,
we will study the spin of a massless particle and discuss its properties.

First, we express Wμ using the notation in (7.77):

W0 =M ·P , W = iN × P +MP0 . (7.98)

Moreover, we know that Wμ is orthogonal to Pμ. Considering the irreducible
representation D (j,0) and noting that (7.91a) implies M = N = J and K =
0, (7.98) can be written

W0 = J · P , W = iJ × P + JP0 . (7.99)

As mentioned before, these imply

W 2 = m2j (j + 1) . (7.100)

Considering a massless particle moving in the z-direction, we set

P1 = P2 = 0 , P3 = P0 = P , (7.101)

where P is a c-number eigenvalue. Therefore,

W0 = PJ3 , W1 = P(J1 + iJ2) , W2 = −iW1 , W3 = W0 . (7.102)
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Since the mass is zero,

P 2
μ = W 2

μ = WμPμ = 0 . (7.103)

If Wμ is a real vector, the equation above means that Pμ is parallel to Wμ. We call
this a real condition. Denoting the simultaneous eigenstate of J 2 and j3 by |j,m〉,
this condition implies

Wμ|j,m〉 = λPμ|j,m〉 , (7.104)

where j is the value of the spin. However, since P1 = P2 = 0, the equation above
implies

W1|j,m〉 = W2|j,m〉 = 0 . (7.105)

Referring to (7.102),

(J1 + iJ2)|j,m〉 = 0 . (7.106)

This holds only for m = j . If parity is conserved, D (0,j) is allowed, and in this
case m = −j is also possible. It is a property of the massless case that the only
possible value of |m| is j . If a different value appears, it means that the state does
not belong to an irreducible spin representation. Thus, the form of the equation itself
must ensure |m| = j . Examples of such particles are the neutrino, the photon, and
the graviton. For the neutrino, m is either 1/2 or −1/2, and it breaks parity. On the
other hand, since the photon has interactions which preserve parity, m = ±1 are
both possible, while m = 0 is not. For the photon, this is well-known: the photon
is a transverse wave. We shall now check that both the Weyl equation and Maxwell
equations ensure |m| = j .

Weyl Equation
Weyl’s equation corresponds to representations of the type D (1/2,0), and (3.135)
implies that

H = σ ·P = 2J · P . (7.107)

Therefore, for a neutrino going in the z-direction,

P = 2J3P , or J3 = 1

2
. (7.108)

Hence, we confirm that m = j .
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Maxwell Equations
These equations describe a spin-1 photon. The equations for a free electromagnetic
field are

rot E + ∂H

∂t
= 0 , rot H − ∂E

∂t
= 0 . (7.109)

First, let us check the solution corresponding to D (1,0). In order to obtain the
right-handed circularly-polarized solution corresponding to this representation, we
choose the following linear combinations of the components of the field strength
Fμν :

FR
1 = F23 + F14 , FR

2 = F31 + F24 , FR
3 = F12 + F34 , (7.110)

or in vector form,

F R = H − iE . (7.111)

In the following, we shall drop the superscript R. The Maxwell equation for F is

i
∂

∂t
F = rot F . (7.112)

We introduce the following three components:

F+ = − 1√
2
(F1 − iF2) , F0 = F3 , F− = 1√

2
(F1 + iF2) . (7.113)

Denoting the wave function with these three components by F , (7.112) transforms
to

∂

∂t
F + S ·∇F = 0 , (7.114)

where S has the three components

S1 =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ , S2 = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠ , S3 =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠ . (7.115)

These three components satisfy the same commutation relations as the angular
momentum. For D (1,0), since we have (7.91a),

M = N = J = S , K = 0 . (7.116)
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Here we choose the x-dependence of F corresponding to a traveling wave in the
z-direction:

F (x) = F exp
[
iP(x3 − x0)

]
. (7.117)

Inserting this into (7.114), we obtain

P(1− S3)F = 0 . (7.118)

What we can understand from this is that, as expected, only S3 = 1 can be realized.
To obtain the left-handed solution corresponding to D (0,1), instead of (7.111), we

start with

F L = H + iE . (7.119)

In this case, only S3 = −1 can be realized. There is no solution corresponding to
S3 = 0.

What we see from the above is that, if we start with the correct equation, only the
solution corresponding to |m| = j can exist.

7.7 Pauli–Gürsey Group

In quantum mechanics, an absolute phase of the wave function cannot be observed.
Two wave functions ψ1 and ψ2 related by

ψ2 = eiλψ1 (7.120)

are completely equivalent, in the sense that there can be no difference in their
physical interpretation. Therefore, we can say that a set of wave functions differing
by constant phases is an equivalence class as far as physics is concerned. Just the
same thing happens in field theory.

For an interacting system including complex fields, the Lagrangian density is

L = L
[
ϕα, ϕ

†
α; ϕα,μ, ϕ†

α,μ

]
. (7.121)

This includes physical constants such as a mass m and a coupling constant g. If
we compute observable quantities such as differential cross-sections for various
reactions and the lifetimes of unstable particles, the results will be given as functions
of the physical constants, momenta, and so on. Needless to say, in the final results,
the fields themselves do not appear. Metaphorically speaking, the field is like a
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Japanese nabe2 used for cooking, and the physical constants are like the ingredients
of the dish. Clearly, just as we could use a different nabe to cook, we can use a
different symbol instead of ϕα in (7.121), say ϕ′α , and the final observable result
should be the same. Hence, for the complex field in (7.121), we introduce the
constant phase transformation

ϕα → ϕ′α = eiλαϕα . (7.122)

Denoting the group formed by such phase transformations by G , we assume that the
free part Lf of the Lagrangian density is invariant under G , i.e.,

Lf
[
eiλαϕα, e−iλαϕ†

α ; eiλαϕα,μ, e−iλαϕ†
α,μ

] = Lf
[
ϕα, ϕ

†
α ; ϕα,μ, ϕ†

α,μ

]
.

(7.123)

The problem is to see how the interaction part Lint of the Lagrangian density
behaves under G . If Lint can be kept invariant under G , by choosing G in a suitable
way, a conservation law can be obtained as before. For example, denoting the charge
associated with the field quantity ϕα by eα and choosing the phase λα to be

λα = λeα , (7.124)

the interaction part does indeed remain invariant. We obtain the law of conservation
of electric charge in this way.

But what if the interaction part is not invariant? In this case, the coupling constant
transforms. As an example, consider the fields ψ1, ψ2, and ϕ :

Lint = gψ̄1ψ2ϕ + g∗ψ̄2ψ1ϕ
† , (7.125)

and introduce the phase transformation

ψ1 → ψ1 , ψ2 → ψ2 , ϕ→ eiλϕ . (7.126)

Inserting (7.126) into (7.125), Lint transforms to

Lint → geiλψ̄1ψ2ϕ + g∗e−iλψ̄2ψ1ϕ
† . (7.127)

Comparing this with (7.125), it turns out that the coupling constant must transform
according to

g → geiλ . (7.128)

2 Hot pot.
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Since the transformation above does not change the physical content of the theory,
this means that any observable quantity depending on g must be invariant under this
transformation, i.e.,

O(geiλ) = O(g) . (7.129)

For a simple transformation like this, |g|2 = g∗g is an invariant quantity and
all observables become functions of |g|2 alone. This holds even if the phase
transformation (7.126) is generalized much further.

Indeed, Pauli generalized the above group of phase transformations, which is
commutative, to a non-commutative group [94]. His target was the neutrino field.
Here we write down the Lagrangian density of the massless neutrino:

Lf = −ψ̄γμ∂μψ . (7.130)

Strictly speaking, we ought to write Lf in a symmetric form with respect to ψ

and ψ̄ . Bearing this in mind, Pauli pointed out the invariance of (7.130) under the
transformation

ψ → ψ ′ = aψ + bγ5Cψ̄T , ψ̄ → ψ̄ ′ = a∗ψ̄ − b∗C−1γ5ψ . (7.131)

The inverse transformation is

ψ ′ → ψ = a∗ψ ′ − bγ5Cψ̄ ′T , ψ̄ ′ → ψ̄ = aψ̄ ′ + b∗C−1γ5ψ
′ , (7.132)

where the complex numbers a and b satisfy the condition

|a|2 + |b|2 = 1 . (7.133)

This transformation group is a generalization of the group of phase transformations,
and we denote it by G1.

On the other hand, Gürsey noted that Lf is also invariant under a transformation
group G2 containing transformations of the form [95]

ψ → ψ ′ = eiλγ5ψ , ψ̄ → ψ̄ ′ = ψ̄eiλγ5 . (7.134)

These two groups commute with each other. Using Noether’s theorem to derive the
conservation law for an infinitesimal transformation which leaves Lf invariant, we
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obtain the following conserved quantities. For G1,

M1 = 1

2

∫
d3x(ψ†γ5γ4Cψ† + ψT C−1γ4γ5ψ) , (7.135a)

M2 = 1

2i

∫
d3x(ψ†γ5γ4Cψ† − ψT C−1γ4γ5ψ) , (7.135b)

M3 =
∫

d3xψ†ψ , (7.135c)

where we have summed over the spinor indices. In addition, for G2,

N =
∫

d3xψ†γ5ψ . (7.136)

The generators of this group satisfies the commutation relations

[
Mi

2
,
Mj

2

]
= iεijk

Mk

2
, (7.137)

[Mj,N] = 0 . (7.138)

This shows that the generalization G1 × G2 of the group of phase transformations is
isomorphic to SU(2)× U(1). It was Gürsey who discovered this group structure.

It is entirely because the mass is zero that the Lagrangian density (7.130) permits
such a large invariance group. If there is a mass term, only the constant phase
transformation mentioned at the beginning of this section is allowed, whence M3
is the only conserved quantity. Conversely, if there are conserved quantities apart
from M3 in an interacting case, this shows that the mass of the neutrino is zero. In
the following, we shall seek such quantities.

Generally, this invariance group turns not to be an invariance group when
interactions are introduced, since this induces the transformation among coupling
constants, as explained above. Observable quantities must be invariant under this
transformation among coupling constants. For beta decay, Pauli derived the quantity
that remains invariant under the transformation of the coupling constants.

If the neutrino is massless, the symmetry implemented by the invariance group
G1 × G2 is not completely broken. Some subgroup

Gν ⊂ G1 × G2 (7.139)

may still be an invariance group. We shall now derive the group Gν which leaves the
beta decay interaction invariant.
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We write the Lagrangian density of the beta decay interaction as Lβ and denote
the generator of Gν by M:

[Lβ,M] = 0 . (7.140)

Here, M has the general form

M = cN + c1M1 + c2M2 + c3M3 . (7.141)

By a suitable phase transformation, i.e., a transformation belonging to the invariance
group G1 × G2, we transform this M to the standard form

M = cN + c′3M ′3 , c′23 = c2
1 + c2

2 + c2
3 . (7.142)

From now on, we shall write M ′3 simply as M3. Therefore, from (7.140),

[[Lβ, cN + c3M3], cN − c3M3
] = 0 . (7.143)

Since Lβ is linear in the neutrino fields ψ and ψ† and noting that

[[ψ, cN + c3M3], cN − c3M3
] = (c2 − c2

3)ψ ,

[[ψ†, cN + c3M3], cN − c3M3
] = (c2 − c2

3)ψ
† ,

the invariance requirement (7.143) holds if we have

c2 − c2
3 = 0 . (7.144)

Therefore, we must choose N − M3 or N + M3 as M . The experimental fact
mentioned in Sect. 3.7 requires us to choose

M = N −M3 . (7.145)

The finite transformation generated by this creation operator is a kind of chiral
transformation, and is given by

ψ → ψ ′ = exp
[
i(1− γ5)λ

]
ψ , ψ̄ → ψ̄ ′ = ψ̄ exp

[
i(1+ γ5)λ

]
. (7.146)

To be invariant under this transformation, ψ and ψ̄ must appear in the interaction
terms in the combinations

(1+ γ5)ψ , ψ̄(1− γ5) . (7.147)
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This is nothing but ψL, introduced in Sect. 3.7. Thus, the neutrino can be described
by the two-component Weyl spinor. It turns out that this ensures that the mass of the
neutrino is also zero in the interacting case.



Chapter 8
S-Matrix

Reactions among elementary particles or atomic nuclei can be described by the
S-matrix. In fact, all our knowledge of the various interactions of these particles is
included in the S-matrix. It is the most fundamental quantity in elementary particle
physics. Although the S-matrix can in principle be determined if the Lagrangian
density is known, it is hard to compute in practice. Here we will discuss how
to compute the S-matrix using perturbation theory, which is only valid for small
coupling constants. This method was developed by Feynman and Dyson. Two
different approaches to QED were greatly developed in the postwar era. One was
based on the Tomonaga–Schwinger equation [87, 88], exploiting the traditional
canonical formalism. The other started out with Feynman’s path integral [96]. This
was a rather intuitive approach and its relationship with the traditional method was
not clear. Nevertheless, the consequences of the two theories always coincided.
Dyson developed a way to calculate the S-matrix, starting with the Tomonaga–
Schwinger equation, and finally proved that it was equivalent to Feynman’s theory,
i.e., he established the equivalence of the two theories [97]. The computational
method discussed in the following is based on Dyson’s approach.

8.1 Definition of the S-Matrix

The S-matrix has already been discussed in Sect. 6.1, where it was given by the
two equations (6.32) and (6.33). In this section, we will see how to compute the
expression

S = U(∞,−∞) . (8.1)

The S-matrix has several important general properties. For example, the property
of unitarity which arose as a consequence of (6.26) is related to the law of
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conservation of probability:

S†S = SS† = 1 . (8.2)

This discussion of unitarity was intuitive. A more rigorous discussion must be based
on the asymptotic condition to be introduced later, which concerns the unitarity of
the renormalized S-matrix.

Another property is the Poincaré invariance of the S-matrix, which is confirmed
by computations. This invariance is expressed by

[S, Pμ] = 0 , [S,Mμν ] = 0 . (8.3)

Of course, if there are external (background) fields, this property is lost.

8.2 Dyson’s Formula for the S-Matrix

Although it is possible to start from the Tomonaga–Schwinger equation, we shall
use Schrödinger’s equation in the interaction representation because the result is the
same for both approaches. We rewrite (6.10) in the form

i
∂

∂t
U(t, t0) = Hint(t)U(t, t0) , (8.4)

where

Hint(t) =
∫
x0=t

d3xHint . (8.5)

With the initial condition U(t0, t0) = 1, we integrate (8.4) to obtain

U(t, t0) = 1− i
∫ t

t0

dt ′Hint(t
′)U(t ′, t0) . (8.6)

Then we insert this expression for U iteratively into the right-hand side of (8.6) to
give

U(t, t0) = 1− i
∫ t

t0

dt ′Hint(t
′)+ (−i)2

∫ t

t0

dt ′Hint(t
′)
∫ t ′

t0

dt ′′Hint(t
′′)+ · · · .

(8.7)
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However, since this form is not very useful as it stands, we introduce Dyson’s time-
ordering operator T , where

T
[
Hint(t1)Hint(t2) . . .Hint(tn)

] = Hint(t
′
1)Hint(t

′
2) . . .Hint(t

′
n) , (8.8)

and t ′1, t ′2, . . . , t ′n is a reordering of t1, t2, . . . , tn chosen such that

t ′1 > t ′2 > . . . > t ′n . (8.9)

From this definition, it is clear that the left-hand side of (8.8) becomes a symmetric
function of t1, t2, . . . , tn .

If f (x1, x2, . . . , xn) is a symmetric function of x1, x2, . . . , xn, we may write

∫ b

a

dx1

∫ x1

a

dx2 . . .

∫ xn−1

a

dxn f (x1, x2, . . . , xn) (8.10)

= 1

n!
∫ b

a

dx1

∫ b

a

dx2 . . .

∫ b

a

dxnf (x1, x2, . . . , xn) .

Using this formula, we have

∫ t

t0

dt1

∫ t1

t0

dt2 . . .
∫ tn−1

t0

dtn Hint(t1)Hint(t2) . . . Hint(tn)

=
∫ t

t0

dt1

∫ t1

t0

dt2 . . .
∫ tn−1

t0

dtn T
[
Hint(t1)Hint(t2) . . . Hint(tn)

]

= 1

n!
∫ t

t0

dt1

∫ t

t0

dt2 . . .
∫ t

t0

dtn T
[
Hint(t1)Hint(t2) . . . Hint(tn)

]
. (8.11)

Using the above expression, we can rewrite the general term in the expansion (8.7).
Hence, we obtain Dyson’s formula for U(t, t0) [98]:

U(t, t0) = 1+
∞∑
n=1

(−i)n

n!
∫ t

t0

dt1 . . .
∫ t

t0

dtn T
[
Hint(t1) . . .Hint(tn)

]
. (8.12)

Taking the limits t →∞ and t0 → −∞, and using the fact that Hint(t) is a spatial
integral of Hint(x), we obtain Dyson’s formula for the S-matrix [98]:

S = 1+
∞∑
n=1

(−i)n

n!
∫

d4x1 . . .

∫
d4xn
[
Hint(x1) . . .Hint(xn)

]
, (8.13)

where the integral is taken over the whole of spacetime. It is obvious now that S
commutes with Pμ.
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The next problem is the Lorentz invariance of the S-matrix. We note that d4x

is Lorentz invariant and Hint(x) is a Lorentz scalar. Here, a problem is the time-
ordering operator T . Apparently, the definition of T depends on how we choose the
time axis. So, does the S-matrix itself depend on the choice of time axis?

If the separation between two spacetime points x1 and x2 is time-like, i.e.,

(x1 − x2)
2 = (x1 − x2)

2 − (t1 − t2)
2 < 0 ,

then t1− t2 has the same sign for any Lorentz system, and in this case the time order
does not depend on the choice of time axis. However, if the separation is space-like,
i.e.,

(x1 − x2)
2 = (x1 − x2)

2 − (t1 − t2) > 0 ,

then we may have t1 > t2 or t1 < t2, depending on how we choose the time axis.
On the other hand, in the case where x1 − x2 is space-like, if

Hint(x1)Hint(x2) =Hint(x2)Hint(x1) , (x1 − x2)
2 > 0 , (8.14)

then the ordering is not important. But (8.14) is nothing other than the integrability
condition (6.20) for the Tomonaga–Schwinger equation. Therefore, as long as this
condition is satisfied, S commutes with Mμν , and hence is Lorentz invariant. This
proves (8.3).

In fact, the Hamiltonian density may depend on a hypersurface σ , in which case
the discussion becomes more complicated. This happens, for example, when the
interactions involve derivatives of the fields.

8.3 Wick’s Theorem

The Feynman–Dyson theory tells us how to compute the S-matrix, starting with
Dyson’s formula derived in the last section. It is Wick’s theorem that provides the
foundation for this method.

In the interaction picture, a field operator satisfies a free field equation, i.e., a
linear equation, as mentioned in Sect. 5.4, so it can be decomposed into a positive-
frequency part and a negative-frequency part:

ϕα(x) = ϕ(+)
α (x)+ ϕ(−)

α (x) , (8.15)

where ϕ
(+)
α (x) is an annihilation operator and ϕ

(−)
α (x) is a creation operator. It is

clear that

ϕ(+)
α (x)|0〉 = 0 , 〈0|ϕ(−)

α (x) = 0 . (8.16)
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In the following, we will apply the decomposition (8.15) to field operators in the
interaction picture, and express the product of operators using (8.16). First, for
simplicity, we consider a neutral scalar field:

ϕ(x1)ϕ(x2) . . . ϕ(xn)

= [ϕ(+)(x1)+ ϕ(−)(x1)
][
ϕ(+)(x2)+ ϕ(−)(x2)

]
. . .
[
ϕ(+)(xn)+ ϕ(−)(xn)

]
.

Expanding this product, we would like to change the order of the terms, shifting (−)
to the left and (+) to the right, to give something of the form

ϕ(−)ϕ(−) . . . ϕ(+)ϕ(+) . . . . (8.17)

However, since ϕ(−) and ϕ(+) do not commute, each time we change the order of
two operators, a commutator will show up. For example,

ϕ(x)ϕ(y) = [ϕ(+)(x)+ ϕ(−)(x)
][
ϕ(+)(y)+ ϕ(−)(y)

]
= ϕ(+)(x)ϕ(+)(y)+ϕ(−)(x)ϕ(−)(y)+ϕ(−)(x)ϕ(+)(y)+ϕ(+)(x)ϕ(−)(y) .

Except for the last term, all operators are in the order indicated in (8.17). Here, using

ϕ(+)(x)ϕ(−)(y) = ϕ(−)(y)ϕ(+)(x)+ [ϕ(+)(x), ϕ(−)(y)
]
,

all terms can be set in the standard form, i.e.,

ϕ(x)ϕ(y) = ϕ(+)(x)ϕ(+)(y)+ϕ(−)(x)ϕ(−)(y)+ϕ(−)(x)ϕ(+)(y)+ϕ(−)(y)ϕ(+)(x)

+[ϕ(+)(x), ϕ(−)(y)
]
. (8.18)

The sum of the first four terms, which are in the standard form (8.17), is called
the normal product, expressed briefly as : ϕ(x)ϕ(y) : . The last commutator is a c-
number. It can be calculated as follows (see Sect. 4.1):

[
ϕ(+)(x), ϕ(−)(y)

] =
⎡
⎣∑

p

1√
2p0V

eip·xa(p),
∑
q

1√
2q0V

e−iq·ya†(q)

⎤
⎦

=
∑
p

1

2p0V
eip·(x−y)

= iΔ(+)(x − y) . (8.19)

Therefore,

ϕ(x)ϕ(y) = :ϕ(x)ϕ(y) : +iΔ(+)(x − y) . (8.20)
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The normal product is clearly symmetric, i.e.,

:ϕ(x)ϕ(y) : = :ϕ(y)ϕ(x) : . (8.21)

This symmetry also holds when there are more field operators in the product. How-
ever, if the field obeys Fermi statistics, the normal product becomes anti-symmetric.
For a Dirac field ψ , when x′1, x′2, . . . , x′n is a permutation of x1, x2, . . . , xn,

:ψ(x′1)ψ(x′2) . . . ψ(x′n) : = (−1)P :ψ(x1)ψ(x2) . . . ψ(xn) : , (8.22)

where (−1)P is equal to +1 or −1 for an even permutation or an odd permutation,
respectively. For a field obeying Bose statistics, there is no such change of sign.

From the definition of the normal product and (8.16), any vacuum expectation
value of a normal product vanishes. For example,

〈0| :ϕ(x)ϕ(y) : |0〉 = 0 . (8.23)

Therefore, from (8.20),

〈0|ϕ(x)ϕ(y)|0〉 = iΔ(+)(x − y) . (8.24)

Generalizing this result, we obtain

〈0|ϕ(x1)ϕ(x2) . . . ϕ(xn)|0〉 =
∑

k1<k2,k3<k4,...

iΔ(+)(xk1 − xk2) . . . iΔ
(+)(xkn−1 − xkn) ,

(8.25)

where k1, k2, . . . , kn is a permutation of 1, 2, . . . , n and n is an even number.
Moreover, under the restriction of the inequalities k1 < k2, k3 < k4, . . ., we sum
over all possible combinations. If n is an odd number, then ϕ(x1)ϕ(x2) . . . ϕ(xn)|0〉
is an odd number of quantum states, so it is orthogonal to |0〉 and the expectation
value (8.25) vanishes.

Using the normal product, the current density considered in (6.56) can be written
as

jμ = 1

2
ie[ψ̄, γμψ] = ie : ψ̄γμψ : . (8.26)

Therefore, we can deduce the following equation, which says that the vacuum has
no charge:

〈0|jμ(x)|0〉 = 0 . (8.27)
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We now move on to the problem of evaluating S-matrix elements. From Dyson’s
formula, the matrix element

Sba = 〈b|S|a〉 (8.28)

means

Sba = 〈b|a〉 +
∞∑
n=1

(−i)n

n!
∫

d4x1 . . .

∫
d4xn
〈
b
∣∣T [Hint(x1) . . .Hint(xn)]

∣∣a〉 .
(8.29)

We shall consider here the simplest possible interaction, viz., the Yukawa interaction
between a Fermi particle and a Bose particle:

Hint(x) = j (x)ϕ(x) , j (x) = g : ψ̄(x)ψ(x) : , (8.30)

where ψ and ϕ stand for a Dirac field and a neutral scalar field, respectively. We
then have the following decomposition:

T
[
Hint(x1) . . .Hint(xn)

] = T
[
j (x1) . . . j (xn)

]
. . . T
[
ϕ(x1) . . . ϕ(xn)

]
. (8.31)

The states |a〉 and |b〉 can also be decomposed into the direct product of the states
for the scalar particle and the Dirac particle:

|a〉 = |aS〉 ⊗ |aD〉 , |b〉 = |bS〉 ⊗ |bD〉 . (8.32)

Hence,

〈
b
∣∣T [Hint(x1) . . .Hint(xn)]

∣∣a〉 (8.33)

= 〈bD
∣∣T [j (x1) . . . j (xn)]

∣∣aD〉〈bS
∣∣T [ϕ(x1) . . . ϕ(xn)]

∣∣aS〉 .
We begin with the second factor, which is easier to evaluate. The scalar particle

states are expressed in the form

|aS〉 = a†(k1) . . . a
†(ki)|0S〉 , |b〉 = a†(k′1) . . . a†(k′f )|0S〉 . (8.34)

In the following, we simply denote |0S〉 by |0〉. Then, extracting i annihilation
operators and f creation operators, we obtain

〈
bS
∣∣T [ϕ(x1) . . . ϕ(xn)]

∣∣aS〉
= 〈0∣∣a(k′1) . . . a(k′f )T [ϕ(x1) . . . ϕ(xn)]a†(k1) . . . a

†(ki)
∣∣0〉 .
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In this evaluation, we assume that none of the momenta k1, . . . , ki is equal to any of
the momenta k′1, . . . , k′f . If there are equal momenta, this corresponds to a situation
where particles go straight through without interaction. We begin by eliminating
a†(ki). To do this, we use (8.16) and bring in the commutator with a†(ki):

〈
0|AB . . . a†(ki)|0

〉 = 〈0|[AB . . . , a†(ki)]|0
〉+ 〈0|a†(ki)AB . . . |0〉

= 〈0|[AB . . . , a†(ki)]|0
〉
. (8.35)

To evaluate the commutator, we use

[
a(k′), a†(k)

] = δk′,k (8.36)

and

[
ϕ(x), a†(k)

] = 1√
2k0V

eik·x = 〈0|ϕ(x)|k〉 . (8.37)

Given the assumption of no equal momenta, a and a† commute, whence

〈
0
∣∣a(k′1) . . . a(k′f )T [ϕ(x1) . . . ϕ(xn)

]
a†(k1) . . . a

†(ki)
∣∣0〉

=
n∑

j=1

〈
0
∣∣∣a(k′1) . . . a(k′f )T [ϕ(x1) . . . ϕ(xj−1)ϕ(xj+1) . . . ϕ(xn)

]

×a†(k1) . . . a
†(ki−1)

∣∣∣0〉〈0|ϕ(xj )|0〉 .
Iterating, we eventually obtain

〈
0
∣∣a(k′1) . . . a(k′f )T [ϕ(x1) . . . ϕ(xn)

]
a†(k1) . . . a

†(ki)
∣∣0〉 (8.38)

=
∑
comb

〈k′1|ϕ(x ′1)|0〉 . . . 〈k′f |ϕ(x ′f )|0〉〈0|ϕ(x ′f+1)|k1〉 . . . 〈0|ϕ(x ′f+i )|ki〉

×〈0∣∣T [ϕ(x ′f+i+1) . . . ϕ(x
′
n)]
∣∣0〉 ,

where x ′1, . . . , x ′n is a permutation of x1, . . . , xn, and selecting (f +i) variables from
n variables, we have summed over all the possible combinations that can be written
in the form above. We can also write the above equation in the form

〈
0
∣∣a(k′1) . . . a(k′f )T [ϕ(x1) . . . ϕ(xn)

]
a†(k1) . . . a

†(ki)
∣∣0〉 (8.39)

=
∑
comb

〈
bS
∣∣ :ϕ(x ′1) . . . ϕ(x ′f+i ) : ∣∣aS〉〈0∣∣T [ϕ(x ′f+i+1) . . . ϕ(x

′
n)]
∣∣0〉 ,
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where we have summed over all combinations which separate the n variables into
two groups of (f + i) and (n − f − i) variables. Note also that there is a similar
equation for operators, viz.,

T [ϕ(x1) . . . ϕ(xn)] =
∑
comb

:ϕ(x ′1) . . . ϕ(x ′j ) :
〈
0
∣∣T [ϕ(x ′j+1) . . . ϕ(x

′
n)]
∣∣0〉 , (8.40)

where the sum is over all combinations which separate the n variables into two
groups, with one belonging to the normal product and the other to the expectation
value.

The next problem is to evaluate the expectation value. To begin with,

〈
0
∣∣T [ϕ(x)ϕ(y)]∣∣0〉 = θ(x0 − y0)〈0|ϕ(x)ϕ(y)|0〉 + θ(y0 − x0)〈0|ϕ(y)ϕ(x)|0〉

= iθ(x0 − y0)Δ
(+)(x − y)+ iθ(y0 − x0)Δ

(+)(y − x)

= ΔF(x − y) , (8.41)

where we have used (4.29). Generalizing the equation above,

〈
0
∣∣T [ϕ(x1) . . . ϕ(xn)]

∣∣0〉 =∑
comb

ΔF(x
′
1 − x ′2) . . . ΔF(x

′
n−1 − x ′n) , (8.42)

where if n is even we have summed over all combinations which separate n variables
into n/2 pairs and if n is odd the expression vanishes. To prove this, assuming the
time order

t ′1 > t ′2 > . . . > t ′n , (t = x0) , (8.43)

we obtain

〈
0
∣∣T [ϕ(x1) . . . ϕ(xn)]

∣∣0〉 = 〈0|ϕ(x ′1) . . . ϕ(x ′n)|0〉 . (8.44)

Since k1 < k2 means that t ′k1
> t ′k2

, the definition of ΔF implies in this case that

ΔF(x
′
k1
− x ′k2

) = iΔ(+)(x ′k1
− x ′k2

) . (8.45)

Although the right-hand side of (8.44) can be written in the form (8.25), taking
into account (8.45), it becomes equivalent to (8.42). Since the time order (8.43) is
arbitrary, it turns out that (8.42) holds for any time order.

To summarize so far,

T [ϕ(x1) . . . ϕ(xn)] =
∑
comb

:ϕ(x ′1) . . . ϕ(x ′j ) : ΔF(x
′
j+1 − x ′j+2) . . .ΔF(x

′
n−1 − x ′n) .

(8.46)
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Wick introduced a contraction symbol for ΔF :

ϕ(x)ϕ(y) = ΔF(x − y) . (8.47)

This specifies a pair which appears in a vacuum expectation value. Using this
symbol, (8.46) can be viewed as an expansion in terms of different contractions:

T [ϕ(x1) . . . ϕ(xn)] = :ϕ(x1) . . . ϕ(xn) :

+
∑
j �=k
:ϕ(x1) . . . ϕ(xj ) . . . ϕ(xk) . . . ϕ(xn) :

+
∑
j �=k

∑
l �=m
:ϕ(x1) . . . ϕ(x1) . . . ϕ(xk) . . . ϕ(xl) . . . ϕ(xm) . . . ϕ(xn) :

+ · · · . (8.48)

As discussed in Sect. 8.2, the T-product is symmetric for boson fields, i.e.,

T [ϕ(x ′1) . . . ϕ(x ′n)] = T [ϕ(x1) . . . ϕ(xn)] . (8.49)

For fermionic fields, it is anti-symmetric in the sense of (8.22):

T [ψ(x ′1) . . . ψ(x ′n)] = (−1)P T [ψ(x1) . . . ψ(xn)] . (8.50)

Of course, the above equation also holds if ψ is replaced by ψ̄ . Moreover, the
contraction for fermionic fields is

ψα(x)ψ̄β(y) =
〈
0
∣∣T [ψα(x)ψ̄β(y)]

∣∣0〉 = SFαβ(x − y) , (8.51)

where SF is given by

SF(x) = −(γμ∂μ −m)ΔF(x) . (8.52)

Generally, the contraction functions, also known as Feynman propagators, satisfy
the following equations:

Dαβ(∂)ΔF βγ (x) = iδαγ δ4(x) , (8.53)

ΔF αβ(x) = Cαβ(∂)ΔF(x) . (8.54)

Regarding the contraction for fermionic fields, the following equation is trivial:

ψ(x)ψ(y) = ψ̄(x)ψ̄(y) = 0 . (8.55)
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The general form of Wick’s theorem is

T [AB . . . Z] =:AB . . . Z : +
∑

one cont

:AB . . . Z : +
∑

two cont

:ABCD . . . Z : + · · · ,
(8.56)

where ‘n cont’ instructs to sum over all possible terms with n contractions.
Combining Wick’s theorem with the above property of the contraction function,

we obtain

Dαβ(∂x)T [ϕβ(x) . . .] = i
δ

δϕ
†
α

T [. . .] , (8.57)

for a complex field. For instance,

Dαβ(∂x)T [ϕβ(x), ϕ†
γ (y)] = i

δϕ†
γ (y)

δϕ
†
α(x)

= iδαγ δ
4(x − y) . (8.58)

For a Dirac field,

−
(
γμ

∂

∂xμ
+m

)
T [ψ(x) . . .] = i

δ

δψ̄(x)
T [. . .] . (8.59)

In order to carry out a functional derivative with respect to ψ̄(x), we determine the
sign by first moving the ψ̄ to be differentiated in the T-product to the extreme left
and then carrying out the functional derivative. Since this formula plays an important
role, e.g., it can be used to transform the S-matrix, it is referred to as a reduction
formula. A similar formula in the Heisenberg picture will be mentioned later.

8.4 Feynman Diagrams

To understand the structure of the S-matrix intuitively, it is useful to introduce the
Feynman diagrams. As an example, we explain the idea for QED in the Fermi gauge.

When we expand the S-matrix in perturbation theory as a power series in the
coupling constant, the n th order term is given by

S(n) = (−i)n

n!
∫

d4x1 . . .

∫
d4xn T

[
Hint(x1) . . .H (xn)

]
. (8.60)

In QED,

Hint(x) = −jμ(x)Aμ(x) = −ie : ψ̄(x)γμψ(x) : Aμ(x) . (8.61)
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Fig. 8.1 Representation of
contractions in a Feynman
diagram

Fig. 8.2 Representation of
operators in the normal
product

We expand the T-product in (8.60) as a sum of normal products using Wick’s
theorem. In this case, the operators in the normal product create and annihilate
free particles. The contraction functions describe the propagation of virtual particles
which cannot be observed. In a Feynman diagram, these operators are represented
as lines, providing a way to understand their role visually.

When two operators are contracted, this is represented by a line segment (see
Fig. 8.1). In this case, the propagation of a virtual photon is expressed by an
undirected wavy line and the propagation of an electron by a directed line, in such a
way that the direction coincides with the direction of motion of the electric charge
e. If x0 > y0, this means that a virtual electron created at a point y propagates to a
point x and is annihilated there. If x0 < y0, then a virtual positron created at a point
x propagates to a point y and is annihilated there. Regarding the undirected photon,
a virtual photon is created at a past point, either x or y, and annihilated at a future
point. This interpretation is obvious from (8.41) (Fig. 8.2).

In contrast, operators in the normal product are expressed as undirected and
directed half lines for a photon and an electron, respectively. These lines are called
external lines. In the case of Aλ, the line corresponds to a photon which is either
created or absorbed at a point x. In the case of ψ , the line corresponds to either a
positron which is created or an electron which is absorbed at a point x. In the case
of ψ̄ , the line corresponds to either an electron which is created or a positron which
is absorbed at a point x.

Each term in the expansion of the S-matrix as a sum of normal products
corresponds to one Feynman diagram. In the following, we consider the case n = 2:

S(2) = (−e)2
2

∫
d4x1

∫
d4x2 T

[: ψ̄(x1)γμψ(x1) :, : ψ̄(x2)γνψ(x2) :
]
T
[
Aμ(x1), Aν(x2)

]
.

(8.62)

We use Wick’s theorem to expand this T-product in terms with different numbers
of contractions:

1. When there is no contraction,

: ψ̄(x1)γμψ(x1)ψ̄(x2)γνψ(x2) : :Aμ(x1)Aν(x2) : . (8.63)
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Fig. 8.3 Feynman diagrams for terms in the expansion of the T-product with no contractions

Fig. 8.4 Feynman diagram for the case where only a pair of A’s is contracted in the expansion of
the T-product

Fig. 8.5 Feynman diagrams for the case where a ψ is contracted with a ψ̄ in the expansion of the
T-product

Feynman diagrams corresponding to these terms consist of two disconnected
parts (Fig. 8.3). They do not correspond to physically realizable processes since
they cannot satisfy the energy–momentum conservation law.

2. When only a pair of A’s is contracted,

: ψ̄(x1)γμψ(x1)γνψ̄(x2)γνψ(x2) : δμνDF(x1 − x2) . (8.64)

This term corresponds to electron–electron scattering, proton–proton scattering,
electron–proton scattering, and so on, and the corresponding Feynman diagram
is shown in Fig. 8.4.

3. When a ψ is contracted with a ψ̄ ,

[: ψ̄(x1)γμSF(x1 − x2)γνψ(x2) : + : ψ̄(x2)γνSF(x2 − x1)γμψ(x1) :
]:Aμ(x1)Aν(x2) : .

(8.65)

This term, illustrated in Fig. 8.5, expresses Compton scattering, electron–positron
annihilation into two photons or creation from two photons, and so on.

4. When a ψ is contracted with a ψ̄ and a pair of A’s are contracted,

[: ψ̄(x1)γμSF(x1 − x2)γνψ(x2) : + : ψ̄(x2)γνSF(x2 − x1)γμψ(x1) :
]
δμνDF(x1 − x2) .

(8.66)
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Fig. 8.6 Electron self-energy. Feynman diagrams for the case where a ψ is contracted with a ψ̄

and a pair of A’s is contracted in the expansion of the T-product

Fig. 8.7 Vacuum polarization. Feynman diagram for the case where two pairs of ψ and ψ̄ are
contracted in the expansion of the T-product

These terms correspond to the self-energy of the electron. Corresponding
Feynman diagrams are shown in Fig. 8.6.

5. When two pairs of ψ and ψ̄ are contracted,

− Tr
[
γμSF(x1 − x2)γνSF(x2 − x1)

] :Aμ(x1)Aν(x2) : . (8.67)

This corresponds to the phenomenon called vacuum polarization, which gives the
photon self-energy. The Feynman diagram is shown in Fig. 8.7. Let us see why
the minus sign and the trace have appeared:

ψ̄(x1)γμψ(x1)ψ̄(x2)γνψ(x2) = ψ̄(x1)γμSF(x1 − x2)γνψ(x2)

= ψ̄α(x1)
[
γμSF(x1 − x2)γν

]
αβ
ψβ(x2)

= −[γμSF(x1 − x2)γν
]
αβ
ψβ(x2)ψ̄α(x1)

= −[γμSF(x1 − x2)γν
]
αβ

[
SF(x2 − x1)

]
βα

= −Tr
[
γμSF(x1 − x2)γνSF(x2 − x1)

]
.

This shows that the minus sign necessarily comes in when there is a fermion
loop, and this will turn out to play an important role in the gauge theory.

6. When all operators are contracted,

− Tr
[
γμSF(x1 − x2)γνSF(x1 − x2)

]
δμνDF(x1 − x2) . (8.68)
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Fig. 8.8 Vacuum bubble.
Feynman diagram for the
case where all operators are
contracted in the expansion of
the T-product

This is a process that starts with the vacuum and ends with the vacuum. It is
represented by the bubble graph shown in Fig. 8.8. The transition probability
amplitude for going from the vacuum to the vacuum, viz.,

〈0|S|0〉 (8.69)

is obtained using Dyson’s formula by summing over all contributions from
bubble graphs. By the probability conservation law, the absolute value of
this expression should be unity. However, the phase diverges. Adjusting the
unobservable phase, we thus redefine the S-matrix by

S′ = S/〈0|S|0〉 . (8.70)

To compute S′, it turns out that, dropping all bubble graphs without external lines
at the outset, we can compute the S-matrix using only the remaining graphs.

8.5 Examples of S-Matrix Elements

Let us compute the S-matrix elements for some examples using the method
discussed in the last section. In a real situations, we need to calculate cross-sections
and decay amplitudes, but we shall discuss these in the next chapter.

We begin by writing the S-matrix element in the form

Sf i = δf i − i(2π)4δ4(Pf − Pi)Tf i . (8.71)

The first term corresponds to the case where the incoming particles go past each
other without interaction. The second term corresponds to the situation where there
are interactions. Here we have used the representation which diagonalizes the total
energy–momentum tensor, and this gives rise to the four-dimensional δ-function
which expresses the conservation law.
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8.5.1 Compton Scattering

The normal product corresponding to this process was given in the last section.
We consider a transition from the state |p, k〉 to the state |p′, k′〉, where p and p′
express the four-momenta of the electrons and k and k′ the four-momenta of the
photons. There are two terms in the normal product (8.65), but x1 and x2 and μ and
ν are all dummy variables, and since the whole expression is symmetric under the
replacements x1 ↔ x2 and μ ↔ ν, we keep only one term and drop the factor of
1/2!. This yields

〈p′, k′|S(2)|p, k〉 = e2
∫

d4x1

∫
d4x2〈p′| :ψ̄(x1)γμSF(x1 − x2)γνψ(x2) : |p〉

×〈k′| :Aμ(x1)Aν(x2) : |k〉

= e2
∫

d4x1

∫
d4x2〈p′|ψ̄(x1)|0〉〈0|Aν(x2)|k〉 (8.72)

×[〈k′|Aμ(x1)|0〉〈0|Aν(x2)|k〉 + 〈k′|Aν(x2)|0〉〈0|Aμ(x1)|k〉
]
.

Feynman diagrams in the momentum representation are shown in Fig. 8.9.
In order to evaluate this expression, we use the following matrix elements and

the Fourier representation:

〈0|Aμ(x)|k〉 = 1√
2k0V

e(λ)μ eik·x , 〈k′|Aμ(x)|0〉 = 1√
2k′0

e(λ
′)

μ e−ik′ ·x ,

〈0|ψ(x)|p〉 = 1√
V
u(p)eip·x , 〈p′|ψ̄(x)|0〉 = 1√

V
ū(p′)e−ip′ ·x ,

SF(x) = −i

(2π)4

∫
d4p
−ip · γ +m

p2 +m2 − iε
eip·x .

Inserting these expressions into (8.72), we obtain Tf i as defined in (8.71):

T
(2)
f i =

1√
2k0V

1√
2k′0V

1√
V

1√
V

(8.73)

×e2ū(p′)
[
(e′ · γ ′)−i(p + k) · γ +m

(p + k)2 +m2
(e · γ ) + (e · γ )−i(p − k′) · γ +m

(p − k′)2 +m2
(e′ · γ )

]
u(p) ,

Fig. 8.9 Feynman diagrams
for Compton scattering
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where e stands for e(λ) and e′ for e(λ
′). Using the relation for external momenta on

the mass shell, i.e., the Einstein relation (3.35), we have

(p + k)2 +m2 = p2 +m2 + k2 + 2p · k = 2p · k ,

(p′ − k′)2 +m2 = p2 +m2 + k′2 − 2p · k′ = −2p · k′ .

Using the Dirac equation,

(ip · γ +m)u(p) = ū(p′)(ip′ · γ +m) = 0 .

We can now define the invariant amplitude Tf i by

T (2)
f i =

√
2k0V

√
2k′0V
√

2p0V

√
2p′0V
√

2p′0V T
(2)
f i . (8.74)

Equation (8.73) now gives

T (2)
f i = e2

√
2p′0ū(p

′)
[
(e′ · γ )−i(p + k) · γ +m

2p · k (e · γ ) (8.75)

− (e · γ )−i(p − k′) · γ +m

2p · k′ (e′ · γ )
]
u(p)
√

2p0 .

It is clear from (3.195) that the Dirac spinor multiplied by
√

2p0 has the Casimir
operator

∑
n

√
2p0 ur(p, h)ūs (p, h)

√
2p0 = (−ip · γ +m)rs , (8.76)

where we sum over helicities. Therefore, this provides a normalization that does not
depend on how we choose the Lorentz system. We will compute the cross-section
from (8.75) in the next chapter.

8.5.2 Pion Decay to Muons

The π+-meson usually decays according to

π+ → μ+ + ν . (8.77)

We can take the following phenomenological expression for the interaction describ-
ing this decay:

Hint = ig

mπ

ψ̄νγλ(1+ γ5)ψμ∂λϕ + h.c. , (8.78)
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where mπ is the mass of π+, ψν and ψμ are field operators for the neutrino and
the μ-meson, respectively, and h.c. indicates the Hermitian conjugate. If we take
|μ+, ν〉 = a†(μ+)a†(ν)|0〉 as the final state, the lowest order of the decay amplitude
has the form

Tf i =
〈
μ+, ν|Hint(0)|π+

〉
. (8.79)

Hence, denoting the four-momenta of π+, μ+, and ν by P , p, and q , respectively,
we have P = p + q and

Tf i = − ig

mπ

〈
q|ψ̄ν(0)|0

〉
γλ(1+ γ5)

〈
p|ψμ(0)|0

〉〈
0|∂λϕ(0)|π+

〉

= 1√
2P0V

√
V
√
V

g

mπ
ū(q)γλ(1+ γ5)v(p)Pλ . (8.80)

In order to simplify this equation, we use

ū(q)iq · γ = (ip · γ −mμ)v(p) = 0 .

Therefore, the invariant decay amplitude is

Tf i =
√

2P0V
√

2q0V
√

2p0V Tf i

= −ig
mμ

mπ

√
2q0ū(q)(1− γ5)v(p)

√
2p0 . (8.81)

Two-Photon Decay of π0

Although the two examples mentioned above are rather simple, they are complicated
enough to provide a good illustration of this kind of computation. Another good
example is the two-photon decay of the π0-meson, which includes a fermion loop
and no divergences, i.e.,

π0 → 2γ . (8.82)

The interactions involved in this decay process are the Yukawa-type interaction
between the π0 and the proton and the electromagnetic interaction with the proton.
Assuming that the former has the form given in (6.97) and using ψ and ϕ to denote
the field operators of the proton and π0, respectively, we have

Hint = iGψ̄γ5ψϕ − ieψ̄γμψAμ ≡Hπ +Hem . (8.83)
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Fig. 8.10 Feynman diagram
for the two-photon decay of
π0

Fig. 8.11 Feynman diagrams
for the contraction of fermion
operators

The above interactions are sufficient for the lowest order computation. The Feynman
diagram is shown in Fig. 8.10.

Denoting the four-momenta of the π0 and the two photons by q , k′, and q ′′,
respectively, the S-matrix element corresponding to the above graph is given by

〈k′, k′′|S|q〉 = (−i)3

2!
∫

d4x1

∫
d4x2

∫
d4x3
〈
k′, k′′
∣∣T ′[Hem(x1)Hem(x2)Hπ (x3)

]∣∣q〉

= 1

2
e2G

∫
d4x1

∫
d4x2

∫
d4x3

×〈0∣∣T [ψ̄(x1)γμψ(x1), ψ̄(x2)γνψ(x2), ψ̄(x3)γ5ψ(x3)
]∣∣0〉

×〈k′, k′′∣∣ :Aμ(x1)Aν(x2) : |0
〉〈0|ϕ(x3)|q〉 . (8.84)

The reason why the coefficient 1/3! has been replaced by 1/2! is that there are three
ways of choosing the coordinate of Hπ , i.e., x1, x2, or x3, and each of them gives the
same contribution, while we have kept only one, i.e., x3, and multiplied the whole
expression by three. Moreover, similarly to the case with Compton scattering, the
external photon lines give two terms, but since each gives the same contribution, we
keep only one and drop the factor of 1/2. As a consequence,

〈k′, k′′|S|q〉 = e2G

∫
d4x1

∫
d4x2

∫
d4x3

×〈0∣∣T [ψ̄(x1)γμψ(x1), ψ̄(x2)γνψ(x2), ψ̄(x3)γ5ψ(x3)
]∣∣0〉

×〈k′|Aμ(x1)|0〉〈k′′|Aν(x2)|0〉〈0|ϕ(x3)|q〉 . (8.85)

Note also that there are two ways of contracting fermion operators, as shown in
Fig. 8.11. The difference between these two diagrams is that the directions of the
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fermion loops are opposite:

〈0|T [. . .]|0〉 = −Tr
[
γ5SF(x3 − x2)γνSF(x2 − x1)γμSF(x1 − x3)

]
= −Tr

[
γ5SF(x3 − x1)γμSF(x1 − x2)γνSF(x2 − x3)

]
. (8.86)

These two terms are in fact equivalent to each other. In order to show this, we make
use of the relation

C−1SF(x − y)C = SF(y − x)T . (8.87)

This follows because

C−1SF(x − y)C = C−1
(
−γμ ∂

∂xμ
+m

)
CΔF(x − y)

=
(
γ T
μ

∂

∂xμ
+m

)
ΔF(y − x)

=
(
−γ T

μ

∂

∂yμ
+m

)
ΔF(y − x) = SF(y − x)T .

We also use the following relations:

C−1γμC = −γ T
μ , C−1γ5C = γ T

5 , TrAT = TrA .

Therefore,

Tr
[
γ5SF(x3 − x2)γνSF(x2 − x1)γμSF(x1 − x3)

]T
= Tr
[
SF(x1 − x3)

Tγμ
TSF(x2 − x1)

Tγν
TSF(x3 − x2)

Tγ5
T]

= Tr
[
C−1SF(x3 − x1)C · C−1(−γμ)C · C−1SF(x1 − x2)C

× C−1(−γν)C · C−1SF(x2 − x3)C · C−1γ5C
]

= Tr
[
γ5SF(x3 − x1)γμSF(x1 − x2)γνSF(x2 − x3)

]
. (8.88)

i.e., the first trace is equivalent to the second trace. It is clear from the above example
that, if there are an odd number of photons, they will cancel each other by flipping
signs. Now,

〈k′, k′′|S|q〉 = −2e2G

∫
d4x1

∫
d4x2

∫
d4x3〈k′|Aμ(x1)|0〉〈k′′|Aν(x2)|0〉〈0|ϕ(x3)|q〉

×Tr
[
γ5SF(x3 − x1)γμSF(x1 − x2)γνSF(x2 − x3)

]
. (8.89)

In the following, we write the polarization vectors of the two photons as e′ and e′′.
Then, inserting the wave function of one particle and the Fourier representation
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of SF, and integrating over x1, x2, and x3, a factor (2π)4×3 appears. However,
this factor cancels the one arising from the Fourier representation of SF. At the
same time, three δ-functions of the four-momenta appear, along with three four-
dimensional momentum integrals arising from the Fourier representation of SF. Two
of the momentum integrals cancel two of the δ-functions, leaving just one four-
dimensional momentum integral and one δ-function expressing the conservation of
the total energy–momentum. Hence, computing Tf i , except for this δ-function, and
extracting the invariant decay amplitude Tf i , we obtain

Tf i = 2e2G

(2π)4
e′μe′′ν
∫

d4p (8.90)

Tr

[
γ5
−i(p − k′) · γ +m

(p − k′)2 +m2 − iε
γμ
−ip · γ +m

p2 +m2 − iε
γν
−i(p + k′′) · γ +m

(p + k′′)2 +m2 − iε

]
.

First we compute the trace in the numerator. The details of this calculation can be
found in my previous book Relativistic QuantumMechanics [78]. Here we give only
the relevant formulas:

Tr(1) = 4 , Tr(γμγν) = 4δμν . (8.91)

The trace of a product of an odd number of γ -matrices is zero. To find the trace of an
even number of γ -matrices, we just do the same calculation as when we contracted
all the fermion fields in the Wick contraction. For example,

Tr(γσ γλγμγν) −→ (γσ γλγμγν)+ (γσ γλγμγν)+ (γσ γλγμγν)

−→ 4(δσλδμν + δσνδλμ − δσμδλν).

Clearly, we replace contracted pairs by Kronecker deltas. Signs are determined as
though the pairs of γ -matrices to be contracted are next to each other, and when
reordering them, treating them as anti-commutative. Since γ5 = γ1γ2γ3γ4, we have

Tr(γ5γλγμγνγσ ) = 4ελμνσ , (8.92)

which implies

Tr
[
γ5
(− i(p − k′) · γ +m

)
γμ(−ip · γ +m)γν

(− i(p + k′′) · γ +m
)]

= 4mεμναβ
[
pα(p + k′′)β − (p − k′)α(p + k′′)β + (p − k′)αpβ

]
= 4mεμναβk

′
αk
′′
β . (8.93)

The Feynman diagram corresponding to this process is shown in Fig. 8.12 for the
momentum representation. As is clear from this diagram, the conservation of four-
momentum holds at each vertex, just as the conservation of electric current holds in
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Fig. 8.12 Momentum space
Feynman diagram for the
two-photon decay of π0

an electric circuit. This is because, corresponding to each vertex, δ-functions of the
momenta appear as a consequence of the four-dimensional coordinate integrals.

Since the trace above does not depend on p, we take it outside the integral:

Tf i = 8me2G

(2π)4
εμναβe

′
μe
′′
νk
′
αk
′′
β (8.94)

∫
d4p[

(p − k′)2 +m2
][
p2 +m2 − iε

][
(p + k′′)2 +m2 − iε)

] .

To carry out the integral over p, we use Feynman’s formula:

∫
d4p

(p2 +Λ− iε)3 =
iπ2

2(Λ− iε)
. (8.95)

This is a fundamental formula in the Feynman–Dyson theory. We give a proof of
this. First, note that

∫ ∞
0

dx e−iαx = lim
ε→+0

∫ ∞
0

dx e−iαx−εx = lim
ε→+0

−i

α − iε
.

In the following, we omit reference to the limit. From this,

∫ ∞
0

dx exp[−i(p2 +Λ)x] = −i

p2 +Λ− iε
. (8.96)

Differentiating this equation twice with respect to Λ yields

∫ ∞
0

dx x2 exp
[− i(p2 +Λ)x

] = 2i

(p2 +Λ− iε)3
. (8.97)
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Moreover, from the formula for the Gaussian integral, if x > 0, then

∫
d4p exp(−ip2x) =

⎡
⎣ 3∏
j=1

∫
dpj exp(−ipj

2x)

⎤
⎦∫ dp0 exp(ip0

2x)

= − iπ2

x2
.

Thus,

∫
d4p

∫ ∞
0

dx x2 exp
[− i(p2 +Λ)x

] = −iπ2
∫ ∞

0
dx exp(−iΛx)

= − π2

Λ − iε
.

However, since the left-hand side has been obtained by integrating the left-hand side
of (8.97) over p, we can use the latter equation to deduce (8.95).

To apply this formula to (8.94), we need another formula, viz.,

1

A1A2 . . . An

= (n− 1)!
∫ 1

0
dx1 . . .

∫ 1

0
dxnδ
(
1−
∑

xi
) 1

(x1A1 + x2A2 + · · · + xnAn)n
.

(8.98)

A condition for this formula to hold is that the denominator on the right-hand side
should not vanish anywhere within the domain of integration. The following are
variants of the above formula:

1

AB
=
∫ 1

0

dx[
xA+ (1− x)B

]2 ,
1

ABC
= 2
∫ 1

0
dx
∫ 1

0
dy

x[
A(1− x) + Bxy + Cx(1− y)

]3 .

We shall use the last of these with

A = (p − k′)2 +m2 − iε = p2 − 2p · k′ +m2 − iε ,

B = p2 +m2 − iε ,

C = (p + k′′)2 +m2 − iε = p2 + 2p · k′′ +m2 − iε ,

where we have used k′2 = k′′2 = 0. Therefore, the p-integral is

I =
∫

d4p

∫ 1

0
2x dx
∫ 1

0
dy

1[
p2 +m2 + (1− x)(−2p · k′)+ x(1 − y)(2p · k′′)− iε

]3

=
∫

d4p′
∫ 1

0
2x dx
∫ 1

0
dy

1[
p′2 +m2 + 2x(1 − x)(1 − y)k′ · k′′ − iε

]3 , (8.99)
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where we have eliminated the linear terms in p by making the replacement

p′ = p − (1− x)k′ + x(1− y)k′′ . (8.100)

We carry out the p′-integral in (8.99) using Feynman’s formula (8.101):

I = iπ2
∫ 1

0
x dx
∫ 1

0
dy

1

m2 + 2x(1− x)(1− y)k′k′′
. (8.101)

Since q2 = (k′ + k′′)2 = −μ2, it follows that 2k′ · k′′ = −μ2, whence

I = iπ2
∫ 1

0
x dx
∫ 1

0
dy

1

m2 − μ2x(1− x)(1− y)
.

Here m is the proton mass and μ is the mass of π0. Given that the value of 4m2 is
about 200 times the value of μ2,

μ2

m2 x(1− x)(1− y) � μ2

4m2 � 1 .

Therefore,

I = iπ2

m2

∫ 1

0
x dx
∫ 1

0
dy

[
1+O

(
μ2

4m2

)]
≈ iπ2

2m2
. (8.102)

Inserting this result into (8.94),

Tf i = 1

π

(
e2

4π

)
G

m

(
iεμναβe

′
μe
′′
νk
′
αk
′′
β

)
. (8.103)

Note that, since the last factor includes i, this is in fact real. In the next chapter, we
will use it to compute the lifetime of π0.

8.6 Furry’s Theorem

As shown in the loop calculation for π0 → 2γ, if a contribution from a reversed
loop has the opposite sign, the two loops cancel each other out, which tells us that
the process is forbidden. Let us consider how we could derive this rule without using
perturbation theory. QED is invariant under charge conjugation:

C−1Hint(x)C =Hint(x) . (8.104)
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According to the discussion in Sect. 3.9, since the current jμ changes sign under
charge conjugation, (8.104) implies that Aμ also changes its sign:

C−1Aμ(x)C = −Aμ(x) . (8.105)

Now, if (8.104) holds, the S-matrix is also invariant under charge conjugation.
Dyson’s formula for the S-matrix can be written in the form

S = T exp

[
−i
∫

d4xHint(x)

]
. (8.106)

This tells us to time-order the Hamiltonian density produced by expanding the
exponential in a power series, and then carry out the space-time integral. Thus,

C −1SC = T exp

[
−i
∫

d4xC−1Hint(x)C

]
= S . (8.107)

Hence, considering |a〉 and |b〉 as eigenstates of C and setting

C |a〉 = εa|a〉 , C |b〉 = εb|b〉 , (8.108)

the transition a→ b will be forbidden whenever εa �= εb. In the n-photon state,

C |nγ 〉 = (−1)n|nγ 〉 . (8.109)

Therefore, the transition from odd numbers of photon states to even numbers of
photon states is prohibited.

Furthermore, from the charge-conjugation invariance of the Hamiltonian den-
sity (8.83), for π0,

C−1ϕ(x)C = ϕ(x) . (8.110)

Thus, any process whereby π0 decays into odd numbers of photons is forbidden.
This series of selection rules based on charge conjugation is called Furry’s theorem
[98–100].

8.7 Two-Photon Decays of Neutral Mesons

In the last section, we discussed a selection rule based on charge conjugation. Let us
consider other grounds for such rules, e.g., a selection rule based on the conservation
of angular momentum. In the following, we discuss the process whereby a neutral
meson M0 decays into two photons:

M0 → 2γ . (8.111)
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It is clear from the discussion in the last section that the invariant decay amplitude
T can be written in the following ways depending on whether M0 has spin zero or
one:

T (M0 → 2γ) ∝
{
cμν(k, k

′) :Aμ(k)Aν(k
′)ϕ(k + k′) : spin 0 ,

cλμν(k, k
′) :Aμ(k)Aν(k

′)ϕλ(k + k′) : spin 1 .
(8.112)

Normally, the right-hand side consists of operators, but we have taken suitable
matrix elements. Note also that Fourier-transformed field operators are included
in the normal product. By (6.66), the normal product above should commute with
∂μAμ(x). Looking back to the discussion in Sect. 5.4, this implies that, in the normal
product in T , electromagnetic fields only appear in the following combinations:

Fμν(k) , kμAμ(k) . (8.113)

Taking into account the Lorenz condition, we can set the latter to zero. If T includes
only terms of the form in (8.113), then T should be invariant under the replacement

Aμ(k)→ Aμ(k)+ λkμ . (8.114)

This is the requirement of gauge invariance. It turns out to be related to the spin
property of massless particles discussed in depth in Sect. 8.5.

Case with 0+
In this case, cμν must be a tensor built up from k and k′, i.e., it must be a linear
combination of the following:

δμν , kμkν , k′μkν , kμk
′
ν , k′μk′ν .

Using the Lorenz condition in (8.112), any term involving kμ or k′ν in cμν has to
vanish, so the only possible form is

cμν = aδμν + bk′μkν . (8.115)

Hence, taking into account the invariance under (8.114),

cμνkμ = cμνk
′
ν = 0 , i.e., a + b k · k′ = 0 . (8.116)

Therefore, the only possible form of cμν is

cμν = −b
[
(k · k′)δμν − k′μkν

]
, (8.117)
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and the corresponding form of T is

T (M0 → 2γ) ∝ [(k · k′)δμν − k′μkν
] :Aμ(k)Aν(k

′)ϕ(k + k′) :
∝ :Fμν(k)Fμν(k

′)ϕ(k + k′) : (8.118)

This means that the effective interaction of the two-photon decay of the neutral
scalar meson is given by

FμνFμνϕ . (8.119)

Case with 0−
In this case, since cμν is a pseudo-tensor built up from k and k′,

cμν = bεμναβk
′
αkβ . (8.120)

Therefore, the only possible form of T is

T (M0 → 2γ) ∝ :Fμν(k)F̃μν (k
′)ϕ(k + k′) : , (8.121)

and the effective interaction is given by

FμνF̃μνϕ , (8.122)

where

F̃μν = 1

2
εμναβFαβ . (8.123)

Case with 1−
In this case, there is also an irreducibility condition for the spin-1 field, viz.,

(k + k′)λϕλ(k + k′) = 0 . (8.124)

Thus, kλ and k′λ are not independent, and kμ and k′ν cannot be used, so we must take
cλμν to be a linear combination of the following:

(kλ − k′λ)δμν , (kλ − k′λ)k′μkν , k′μδλν , kνδλμ .

However, the first two contradict the boson symmetry, and the last two are excluded
by gauge invariance:

kμcλμν = k′νcλμν = 0 . (8.125)
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Therefore, the 1−-neutral meson cannot decay into two photons. Likewise, the 1+-
neutral meson cannot decay into two photons.

Theorem 8.1 The two-photon decay of a spin-1 neutral meson is forbidden.

By a similar argument, we can also prove the following:

Theorem 8.2 The decay of a spin-0 particle into another spin-0 particle and one
photon is forbidden.

Two-Photon Polarization
For simplicity, if we consider the Coulomb gauge,

A ‖ e , E ‖ e , H ‖ k × e , (8.126)

decay amplitude of 0+ ∝ e1 · e2 , (8.127)

decay amplitude of 0− ∝ (e1 × e2) · k . (8.128)

Hence, choosing the direction of k1 to be the z-axis, since k2 = −k1, the above
amplitudes can be expressed in terms of the right polarization R and the left
polarization L :

e1 · e2 = e1x + ie1y√
2

· e2x − ie2y√
2

+ e1x − ie1y√
2

· e2x + ie2y√
2

∝ ΦRR +ΦLL , (8.129)

(e1 × e2) · k1 ∝ ΦRR −ΦLL . (8.130)

From these, the transformation property under parity P is

P(ΦRR ±ΦLL) = ΦLL ±ΦRR = ±(ΦRR ±ΦLL) . (8.131)

Case with Higher Spin
We consider the case with spin greater than 2. We write a field operator whose spin
is greater than 2 as follows:

ϕλμ... . (8.132)

This should satisfy the following irreducibility conditions:

• Symmetry. The above ϕ is symmetric under the interchange of any two indices:

ϕ...λ...μ... = ϕ...μ...λ... . (8.133)
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• Rule for contractions. The contraction over any pair of indices vanishes:

ϕ...λ...λ... = 0 . (8.134)

• Rule for divergence. The divergence with respect to an arbitrary index vanishes:

∂λϕ...λ... = 0 . (8.135)

We thus construct scalar effective interactions using two Fμν’s and ϕμν.... In this
case, we take into account the following properties:

• Fμν and F̃μν are anti-symmetric under the interchange of μ and ν.
• ∂μFμν = ∂μF̃μν = 0 .

Considering first the spin-2 case, there are two possibilities for forming scalars:

even parity (∂α∂βFμν)Fμνϕαβ , FμαFμβϕαβ , (8.136)

odd parity (∂α∂βFμν)F̃μνϕαβ , FμαF̃μβϕαβ . (8.137)

These can be generalized:

(∂α∂β . . . Fμν)Fμνϕαβ... , (8.138)

(∂α∂β . . . Fμρ)Fνρϕμναβ... . (8.139)

Here, both spin and parity are even or odd. However, when both are odd, carrying
out the integration by parts to construct the S-matrix, this contradicts the boson
symmetry.1 We thus obtain the following:

Theorem 8.3 The two-photon decay of a neutral meson whose spin and parity are
both odd is forbidden.

If the spin is even and the parity is odd,

(∂αβ . . . Fμν)F̃μνϕαβ... . (8.142)

1 Due to (8.118) and (8.121), using the momentum representation, (8.138) and (8.139) can be
written in the form

T (M0 → 2γ) ∝ (k − k′)α(k − k′)β . . . :Fμν(k)Fμν(k
′)ϕαβ...(k + k′) : , (8.140)

T (M0 → 2γ) ∝ (k − k′)α(k − k′)β . . . :Fμρ(k)Fνρ(k
′)ϕαβ...(k + k′) : . (8.141)

It is now straightforward to check the boson symmetry.
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If the spin is odd and the parity is even,

(∂α∂β . . . Fμρ)F̃νρϕμναβ... . (8.143)

If both the spin and the parity are even, then general two-photon states are

ΦRR +ΦLL , ΦRL , ΦLR . (8.144)

If the spin is even and the parity is odd, the system decays into the polarization state

ΦRR −ΦLL . (8.145)

Finally, if the spin is odd and the parity is even, it decays into the polarization states

ΦRL , ΦLR . (8.146)

The above results were derived by Landau and Yang [101, 102] on the basis of
angular momentum considerations.2

2 Nowadays, this selection rule is called the Landau–Yang theorem.



Chapter 9
Cross-Sections and Decay Widths

In the last chapter, we discussed ways to evaluate S-matrix elements. However, in
order to compare theory with experiment, we must also compute cross-sections and
decay widths. We shall now focus on this aspect.

9.1 Møller’s Formulas

We start with the transition probability per unit time:

wf i = lim
t1→−∞
t2→∞

∣∣〈f |U(t2, t1)− 1|i〉∣∣2
t2 − t1

. (9.1)

Although this ratio is in general a complicated function of t1 and t2, it becomes a
simple one in the above limit. Since U(t2, t1) becomes the S-matrix in this limit,
using

〈f |S|i〉 = δfi − i(2π)4δ4(Pf − Pi)〈f |T |i〉 , (9.2)

we have
∣∣〈f |S − 1|i〉∣∣2 = (2π)4δ4(Pf − Pi)

∣∣〈f |T |i〉∣∣2 × (2π)4δ4(0) . (9.3)

If we take V and t to be a quantisation volume and a macroscopic time, respectively,
then

(2π)4δ4(0) =
∫

d4x ei0·x =
∫

d4x ∼ V t ,

t2 − t1 ∼ t .
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Hence, Eq. (9.1) becomes

wf i = (2π)4δ4(Pf − Pi)
∣∣〈f |T |i〉∣∣2V . (9.4)

In addition, the expression for the cross-section is

σf i = V

vrel
wf i = (2π)4

vrel
δ4(Pf − Pi)

∣∣〈f |T |i〉∣∣2V 2 . (9.5)

As for a true cross-section, we must sum over the final states. For instance, if there
are n particles in the final state, summing over momenta is equivalent to introducing
the integral

∑
f

→ V

(2π)3

∫
d3p1 . . .

V

(2π)3

∫
d3pn . (9.6)

If there is only one particle in the initial state, the width (probability) of its decay to
n particles is

w(1→ n) = (2π)4 V

(2π)3

∫
d3p1 . . .

V

(2π)3

∫
d3pn

∣∣〈f |T |i〉∣∣2V δ4(Pf − Pi)

= (2π)4−3n

2P0

∫
d3p1

2p10
. . .

∫
d3pn

2pn0

∣∣〈p1, . . . , pn|T |P 〉
∣∣2δ4(Pf − Pi) ,

(9.7)

where the invariant decay width T has been defined by

〈p1, . . . , pn|T |P 〉 =
√

2p10V . . .
√

2pn0V 〈p1, . . . , pn|T |P 〉
√

2P0V . (9.8)

This is just the same definition as (8.74).
The integral in (9.7) is Lorentz invariant, as is clear from the discussion in

Chap. 4. This can be clearly seen from the relation

∫
d3p

2p0
. . . =
∫

d4pθ(p0)δ(p
2 +m2) . . . . (9.9)

Thus, the decay width in (9.7) is Lorentz invariant except for the appearance of P0
in the denominator. The average lifetime τ of the decaying particle is given by the
reciprocal of the total decay width, i.e.,

1

τ
=
∑
n

w(1→ n) , (9.10)
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and τ transforms as P0. Thus, assuming that the lifetime in the rest frame is τ0, the
lifetime in a moving frame is given by

τ = τ0√
1− β2

, (9.11)

where β is the speed of the particle. Although w is the decay probability per unit
time, it is equivalent to the decay width in natural units. In order to make this point
clear, it can be denoted by Γ (1→ n).

If there are two particles in the initial state, we can speak of a scattering cross-
section. Combining (9.5) with (9.6), the total cross-section for a reaction with n

particles in the final state can be calculated from

σ(2→ n) = (2π)4−3n

4vrelP10P20

∫
d3p1

2p10
. . .

∫
d3pn

2pn0

∣∣〈p1, . . . , pn|J |P1, P2〉
∣∣2δ4(Pf − Pi) .

(9.12)

Then in the center-of-mass frame or the laboratory frame, the relative velocity vrel
can be written as

vrel =
∣∣∣∣ P1

P10
− P2

P20

∣∣∣∣ . (9.13)

We can generalize vrelP10P20 to the Lorentz-invariant form

vrelP10P20 = |P1P20 − P2P10|
→
√
(P1P20 − P2P10)2 − (P1 × P2)2

=
√
(P1 · P2)2 −M2

1M
2
2 ≡ B , (9.14)

where M1 and M2 are the masses of the two incident particles. This B is certainly
a Lorentz-invariant quantity, and it coincides with vrelP10P20 in the center-of-mass
frame or the laboratory frame. Therefore, the following cross-section is a Lorentz-
invariant quantity:

σ(2→ n) = (2π)4−3n

4B

∫
d3p1

2p10
. . .

∫
d3pn

2pn0

∣∣〈p1, . . . , pn|J |P1, P2〉
∣∣2δ4(Pf − Pi) .

(9.15)

We call this Møller’s formula [103]. If the particles in the final state are of the same
kind, then we must of course divide this equation by a suitable factor so as not to
count the same state several times.

Moreover, if the initial wave is not polarized and we do not observe spins in the
final states, then we have to take an average of the spin states of the initial particles,
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and sum over the spin states of the particles in the final states. The same thing also
holds true for the decay width:

|Tf i |2 → 1

2Si + 1

∑
Si

∑
Sf

|Tf i |2 (decay width) (9.16)

|Tf i |2 → 1

(2S1 + 1)(2S2 + 1)

∑
Si

∑
Sf

|Tf i |2 (cross-section) , (9.17)

where Si stands for the spin of the decaying particle in (9.16), S1 and S2 stand for
the spins of the two incident particles in (9.17), and the summations over Si and Sf
are taken over the spin states in the initial and final states, respectively.

We often have a situation where there are two particles in the final state. Let us
consider the integral in that case:

I =
∫

d3p1

2p10

∫
d3p2

2p20
δ4(Pf − Pi) . . .

=
∫

d4p1

∫
d4p2θ(p10)δ(p

2
1 +m2

1)θ(p20)δ(p
2
2 +m2

2)δ
4(Pf − Pi) . . . .

(9.18)

To carry out this integral, we introduce the change of variables

p1 = Pf

2
+Δ , p2 = Pf

2
−Δ , d4p1d4p2 = d4Pf d4Δ . (9.19)

Hence,

I =
∫

d4Δδ

[(
Pi

2
+Δ

)2

+m2
1

]
δ

[(
Pi

2
−Δ

)2

+m2
2

]
. . .

= 1

2

∫
d4Δδ

(
Δ2 + P 2

i

4
+ m2

1 +m2
2

2

)
δ

(
Pi ·Δ+ m2

1 −m2
2

2

)
. . . .

To evaluate this, we first go to the center-of-mass frame, with

Pi0 = W = √s (total energy of the system) . (9.20)

Therefore, since Pi = 0, Δ0 can be obtained as

Δ0 = m2
1 −m2

2

2W
= m2

1 −m2
2

2
√
s

. (9.21)
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From the first δ-function, we obtain

�Δ2 = (m2
1 −m2

2)
2

4s
+ s

4
− m2

1 +m2
2

2
=
[
s − (m1 −m2)

2
][
s − (m1 +m2)

2
]

4s
.

(9.22)

Thus, the integral itself is given by

I = 1

2W

∫
d3Δδ
[
Δ2 + · · · ] . . .

= 1

2
√
s

∫
Δ2 dΔ dΩ δ

[
Δ2 + · · · ] . . .

= Δf

4
√
s

∫
dΩ . . . , (9.23)

where Δf is the absolute value of the momentum of the final state given by (9.22).
Thus,

∫
d3p1

2p10

∫
d3p2

2p20
δ4(Pf − Pi) . . . =

√[
s − (m1 −m2)2

][
s − (m1 +m2)2

]
8s

∫
dΩ . . . .

(9.24)

This yields the differential cross-section in the center-of-mass system:

dσ

dΩ
= 1

(4π)2B

Δf

4
√
s

∣∣〈p1, p2|J |P1, P2〉
∣∣2 . (9.25)

Incidentally, taking Δi to be the absolute value of the relativistic momentum in the
initial state,

B2 = 1

4

(
s −M2

1 −M2
2

)2 −M2
1M

2
2

= 1

4

[
s − (M1 −M2)

2][s − (M1 +M2)
2] = sΔ2

i . (9.26)

Therefore, the differential cross-section in the center-of-mass system becomes

dσ

dΩ
= 1

(8πW)2

Δf

Δi

∣∣〈p1, p2|J |P1, P2〉
∣∣2 . (9.27)

Compton Scattering Cross-Section
Next, we consider Compton scattering in the laboratory frame. Letting P1 and P2
be the four-momenta of the incident photon and the stationary electron, respectively,
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and p1 and p2 the four-momenta of the scattered photon and electron, we denote the
space and time components by

P1 = (P1, E
0
1) , P2 = (0,m) , p1 = (p1, E1) , p2 = (p2, E2) . (9.28)

Thus, the integral in phase space is

I =
∫

d3p1

2E1

∫
d3p2

2E2
δ3(p1 + p2 − P1)δ(E1 + E2 − E0

1 −m) . . . . (9.29)

Integrating over p2 and taking p2 = P1 − p1, we have

I =
∫

d3p1

4E1E2
δ(E1 + E2 − E0

1 −m) . . .

=
∫

p2
1dp1dΩ1

4E1E2
δ(E1 + E2 − E0

1 −m) . . . , (9.30)

where p1 is the absolute value of p1 and dΩ1 is the differential solid angle of the
momentum of the scattered photon. Since

E2
2 = m2 + (P1 − p1)

2 = m2 + P 2
1 + p2

1 − 2p1P1 cos θ , (9.31)

we obtain immediately

∂E1

∂p1
= p1

E1
,

∂E2

∂p1
= p1 − P1 cos θ

E2
. (9.32)

Carrying out the integration over p1,

I =
∫

dΩ1
p2

1

4E1E2

(
p1

E1
+ p1

E2
− P1

E2
cos θ

) . . .

= p2
1

4

∫
dΩ1

1

p1(E1 + E2)− P1E1 cos θ
. . . . (9.33)

Introducing the new notation p1 = E1 = ω′, P1 = E0
1 = ω and E1 +E2 = ω+m,

we can rewrite the denominator of the equation above using the Compton formula,
to give

ω′(ω +m)− ωω′ cos θ = ω′
[
m+ ω(1− cos θ)

] = ωm . (9.34)
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Therefore, the above integral becomes

I = ω′2

4ωm

∫
dΩ1 . . . . (9.35)

Since in this problemB = ωm, the differential cross-section for Compton scattering
in the laboratory system is

dσ

dΩ1
= 1

(8πm)2

(
ω′

ω

)2 ∣∣〈f |J |i〉∣∣2 . (9.36)

Two-Particle Decay Width
Finally, applying (9.24) to the case where a particle with mass M decays into two
particles with masses m1 and m2, the decay width is given by

Γ (1→ 2) = 1

16πM3

√[
M2 − (m1 −m2)2

][
M2 − (m1 +m2)2

]∣∣T (i → 2)
∣∣2 .

(9.37)

In this case, of course, we must make the replacement indicated in (9.17). If the
final state is a two-particle system, the integral in phase space can be carried out as
above.

9.2 Examples of Cross-Sections and Decay Widths

Since we now know how to compute S-matrix elements and the formula for the
cross-section, we can combine the two and derive some concrete consequences.

Compton Scattering
First, we derive an explicit expression for the cross-section in Compton scattering.
We denote the four-momenta of the incident photon and the electron by k and
p, respectively, and denote the scattered momenta by k′ and p′. In the laboratory
system,

p = 0 , p0 = m . (9.38)

Writing the polarization vectors of the photons before and after the scattering as e

and e′, we can assume without loss of generality that

p · e = p · e′ = 0 , (9.39)

because it has been already shown in (5.90) that, for a transverse wave, we can
choose e and e′ such that they have only spatial components. Moreover, since we
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can impose the Lorenz condition on the observed photons, we can assume that

k · e = k′ · e′ = 0 . (9.40)

Using these conditions, both (k ·γ ) and (p ·γ ) anticommute with (e ·γ ) and (e′ ·γ ).
Now we can simplify (8.75) using

ū(p′)(e′ · γ )[− i(p + k) · γ +m
]
(e · γ )u(p)
= ū(p′)(e′ · γ )(e · γ )[i(p + k) · γ +m

]
u(p)

= ū(p′)(e′ · γ )(e · γ )(ik · γ )u(p) (9.41)

and

ū(p′)(e · γ )[− i(p − k′) · γ +m
]
(e′ · γ )U(p) = −ū(p)(e · γ )(e′ · γ )(ik′ · γ )u(p) .

(9.42)

Therefore, the invariant scattering amplitude can be written as

Tf i = e2
√

2p′0ū(p
′)
[
(e′ · γ )(e · γ ) ik · γ

2p · k + (e · γ )(e′ · γ ) ik′ · γ
2p · k′

]
u(p)
√

2p0 .

(9.43)

Using (3.195), we take the average over the electron spins in the initial state and
sum over the electron spins in the final states. Then, by (9.17), we find

|Tf i |2 → 1

2
e4Tr

{[
(e′ · γ )(e · γ ) ik · γ

2p · k + (e · γ )(e′ · γ ) ik′ · γ
2p · k′

]
(−ip · γ +m)

×
[

ik′ · γ
2p · k′ (e

′ · γ )(e · γ )+ ik · γ
2p · k (e · γ )(e

′ · γ )
]
(−ip′ · γ +m)

}
.

(9.44)

Inserting this into (9.36), the differential cross-section in the laboratory system is

dσ

dΩ

∣∣∣∣
lab
= e4

128π2

ω′2

m2ω2 Tr[. . .] . (9.45)

When computing the trace, it is useful to introduce the vector

a = k′

2p · k′ −
k

2p · k , (9.46)
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which is orthogonal to p. Then,

(e′ · γ )(e · γ ) ik · γ
2p · k′ + (e · γ )(e′ · γ ) ik′ · γ

2p · k′ = (e · γ )(e′ · γ )(ia · γ )+ 2(e · e′) ik · γ
2p · k .

The trace now reduces to

Tr[. . .] = 8(e · e′)2 + 2
(ω − ω′)2

ωω′ . (9.47)

Hence,

dσ

dΩ

∣∣∣∣
lab
=
(
e2

4π

)2
1

4m2

(
ω′

ω

)2 [
4(e · e′)2 + (ω − ω′)2

ωω′

]
. (9.48)

This is valid when the polarizations of the incident photon and the scattered photon
are both specified. Then averaging the polarizations of the incident wave and
summing over those of the scattered wave, we obtain

(e · e′)2 → 1

2

∑
λ

∑
λ′

(e, e′)2 = 1

2
(1+ cos2 θ) . (9.49)

The part without polarization vectors is simply doubled.

To derive (9.49), we argue as follows. If we choose the direction of k to be the
z-direction, then we can chose the x- and the y-directions along the polarization
vectors:

∑
λ

(a · e(λ))2 = a2
x + a2

y = a2 − a2
z = a2 − (a · k)2

k2 .

Using this equation twice, we obtain (9.49). Here, θ is the scattering angle of the
photon. The resulting cross-section is given finally by the Klein–Nishina formula
[104]

dσ

dΩ

∣∣∣∣
lab
= 1

2

(
e2

4π

)2
1[

m+ ω(1− cos θ)
]2
{

ω2(1− cos θ)2

m
[
m+ ω(1− cos θ)

] + 1+ cos2 θ

}
,

(9.50)

where we have used (9.34) to express ω′ in terms of ω and cos θ . In particular, if
ω � m, this reduces to the classical Thomson formula

dσ

dΩ

∣∣∣∣
lab
=
(

e2

4πm

)2
1+ cos2 θ

2
= r2

0
1+ cos2 θ

2
, (9.51)
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where r0 is the classical electron radius given by

r0 = e2

4πmc2 =
e2

4πh̄c

h̄

mc
= 2.818× 10−13cm (CGS units) . (9.52)

The total cross-section in this case is called the Thomson cross-section, given by

σ = 8π

3
r2

0 = σThomson = 6.65× 10−25cm2 . (9.53)

Integrating (9.50) over the solid angle, we obtain the total cross-section as

σ = 3

4

{
1+ γ

γ 3

[
2γ (1+ γ )

1+ 2γ
− log(1+ 2γ )

]
+ 1

2γ
log(1+ 2γ )− 1+ 3γ

(1+ 2γ )2

}
σThomson ,

(9.54)

where γ = ω/m. Two approximations can be given:

σ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1− 2γ + 26

5
γ 2 + · · ·

)
σThomson , for γ � 1 ,

3

8γ

[
log(2γ )+ 1

2

]
σThomson , for γ  1 .

(9.55)

Pion Decay
Next, let us apply (9.37) to the decay of pions π into muons μ. We use (8.81) to
compute

|Tf i |2 →
∑
Sf

|Tf i |2 , (9.56)

where we have summed over spins in the final states:

∑
Sf

|Tf i |2 = g2
(
mμ

mπ

)2

Tr
[
(1− γ5)(−ip · γ −mμ)(1+ γ5)(−iq · γ )] . (9.57)

The trace here becomes

Tr[. . .] = −8p · q = 4(m2
π −m2

μ) . (9.58)

Therefore, using (9.37), we obtain the decay width

Γ (π→ μ+ ν) =
(
g2

4π

)
mπ

(
mμ

mπ

)2 [
1−
(
mμ

mπ

)2 ]
. (9.59)
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Since its reciprocal is the lifetime τ = 2.56× 10−8 s of π+, g2 must be given by

g2

4π
= 1.76× 10−15 . (9.60)

We also assume the interaction (8.78) for π+ → e+ + ν, with the same value of g2.
This is called the universality assumption. We obtain the branching ratio

Γ (π+ → e+ + ν)

Γ (π→ μ+ + ν)
=
(
me

mμ

)2
m2

π −m2
e

m2
π −m2

μ

= 1.29× 10−4 . (9.61)

This ratio is confirmed by experiment, and will later provide an important insight
when investigating the structure of the interaction.

Lastly, we shall consider the decay π0 → 2γ. Tf i has been given in (8.103). To
find its absolute value squared, we must sum over the polarization states of the two
photons. Regarding e(λ

′) and e(λ
′′), we use (5.91) to sum over λ′ and λ′′:

∑
λ′

∑
λ′′

(
iεμναβe

′
μe
′′
νk
′
αk
′′
β

)2 = −εμναβεμνα′β ′k′αk′α′k′′βk′′β ′
= 2(δαβ ′δα′β − δαα′δββ ′)k

′
αk
′
α′k
′′
βk
′′
β ′

= 2
[
(k′ · k′′)2 − k′2k′′2

]

= 1

2
μ4 . (9.62)

Here we denote the mass of π0 and the mass of the proton by μ and m, respectively.
We use (9.37) and divide by 2 so as not to count the same state twice, since there
are two identical particles in the final state. Then,

Γ (π0 → 2γ) = 1

2

1

16πμ

(
1

π

)2 ( e2

4π

)2
G2

m2

μ4

2

= α2

64π3G
2
(μ
m

)2
μ , where α = e2

4π
≈ 1

137
. (9.63)

Taking the reciprocal,

τ = 0.7× 10−15
(
G2

4π

)−1

s . (9.64)

If we take G2/4π = 15, we find τ ≈ 0.5 × 10−16 s. However, experiment yields
2 × 10−16 s, so the agreement with theory is not very good. We will discuss this
issue later in relation to the quark model.
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Naturally, when there is no good agreement between theory and experiment, this
leaves us with a problem, i.e., to find out whether perturbation theory is not a good
approximation or the model is not good.

9.3 Inclusive Reactions

The cross-section considered up to now is the one for the exclusive reaction, which
corresponds to observing all particles in the final state. On the other hand, we can
also consider the case where certain particles in the final state are observed and
others are not. We then refer to an inclusive reaction. In this section, we shall discuss
how to compute the cross-section for an inclusive reaction.

We thus consider the inelastic scattering of an electron and a nucleon. As an
example, we study the reaction

e− + p→ e− + · · · , (9.65)

where we only observe the electron in the final state (see Fig. 9.1). We assume that
an electron with four-momentum q exchanges a virtual photon with the proton and
observe the electron whose four-momentum changes to q ′. We assume that the
proton absorbing the virtual photon goes into a state comprising n hadrons. We
denote the four-momentum of the proton in the initial state by p, and denote the
n-hadron state by |n〉. We take the electromagnetic interaction into account up to
second order, splitting the Hamiltonian density as follows:

Hint(x) = −jμ(x)Aμ(x) , (9.66)

jμ = j e
μ(x)+ jh

μ(x) , (9.67)

where j e
μ and jh

μ are the four-current densities of the electron and the hadrons,
respectively. Therefore, to lowest order, the relevant S-matrix element becomes

Sf i = (−i)2
∫

d4x

∫
d4y〈q ′|j e

μ(x)|q〉DF(x − y)〈n|jh
μ(y)|p〉 , (9.68)

which describes elastic scattering. However, for the strong interaction, we must
include higher order corrections. Denoting the Hamiltonian density of the strong

Fig. 9.1 Inclusive reaction.
An electron scatters on a
proton
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interaction by Hs, higher order corrections are taken into account by making the
substitution

〈n|jh
μ(x)|p〉 −→

〈
n
∣∣T {jh

μ(x) exp
[−i
∫

d4yHs(y)
]} ∣∣p〉〈

0
∣∣T exp

[− i
∫

d4yHs(y)
]∣∣0〉 ,

where we have dropped the bubble graphs from (8.70) and we have used the notation
in (8.106). The right-hand side of this is equivalent to

〈n|jh
μ(x)|p〉 , (9.69)

as will be shown in Chap. 11. Here the bold face indicates the Heisenberg picture,
but for the time being we will write (9.69) using the usual typeface, as there is
no risk of confusion. We reinterpret the matrix elements of the hadron parts in
(9.68) as standing for the Heisenberg picture. We rewrite (9.68) in the momentum
representation and set V = 1:

Sf i = −ie
∫

d4x

∫
d4y ū(q ′)γμu(q)ei(q−q′)·x

[
−i

(2π)4

∫
d4k

eik·(x−y)

k2 − iε

]
〈n|jh

μ(0)|p〉ei(p−n)·y

= (−i)2(2π)4e

∫
d4k δ4(q − q ′ + k)δ4(p − n− k)

1

k2 − iε
ū(q ′)γμu(q)〈n|jh

μ(0)|p〉

= ie(2π)4δ4(p − n− q ′ + q)
1

(q ′ − q)2 ū(q
′)iγμu(q)〈n|jh

μ(0)|p〉 , (9.70)

where e stands for the electric charge of the electron, including its sign. The matrix
T is now given by

Tf i = −e 1

(q ′ − q)2 ū(q
′)iγμu(q)〈n|jh

μ(0)|p〉 . (9.71)

Thus, the total cross-section is

σ = (2π)4

vrel

∫
d3q ′

(2π)3

∑
n

δ4(n+ q ′ − q − p)|Tf i |2

= (2π)4

vrel

∫
d3q ′

(2π)3

∑
n

e2

[
(q ′ − q)2

]2 δ4(n+ q ′ − q − p)|ū(q ′)iγμu(q)〈n|jh
μ(0)|p〉|2 .

(9.72)
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We introduce the four-vector Q = q − q ′ and decompose the right-hand side of
(9.72) into the electron part and the hadronic part:

σ = M

2p0q0vrel

1

(2π)3

∫
d3q ′

2q ′0
e2

Q4 4q0q
′
0ū(q

′)iγνu(q) · ū(q)iγμu(q ′) (9.73)

×
∑
n

p0

M
〈p|jh

μ(0)|n〉〈n|jh
ν (0)|p〉(2π)4δ4(n− p −Q) ,

where M is the proton mass. We also set B = p0q0vrel. Averaging the electron spins
over the initial states and summing them over the final states, we obtain

4q0q
′
0ū(q

′)iγνu(q)ū(q)iγμu(q ′)→ 1

2
Tr
[
iγν(−iq · γ +m)iγμ(−iq ′ · γ +m)

]
.

(9.74)

The value of the trace is

1

2
Tr[. . .] = −2

[
δμν(q · q ′ +m2)− qμq

′
ν − q ′μqν

]
. (9.75)

Furthermore, the hadron part transforms as a second-rank tensor:

∑
n

p0

M
〈p|jh

μ(0)|n〉〈n|jh
ν (0)|p〉(2π)4δ4(n− p −Q) (9.76)

=
∫

d4x
p0

M

〈
p|jh

μ(x)j
h
ν (0)|p

〉
e−iQ·x .

The total cross-section is now

σ =M

2B

1

(2π)3

∫
d3q ′

2q ′0
e2

Q4

(
1

2
Tr

)
μν

∫
d4x

p0

M

〈
p|jh

μ(x)j
h
ν (0)|p

〉
e−iQ·x .

(9.77)

In the following, we consider the laboratory system:

B = qM , q = |q| . (9.78)

Then considering a very high energy and setting q ≈ q0 = E and q ′ ≈ q ′0 = E′,

σ = 1

2E

1

(2π)3

∫
E′2dE′dΩ ′

2E′
e2

Q4

(
1

2
Tr

)
μν

(∫ )
μν

. (9.79)
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Inserting (9.75),

d2σ

dΩ ′dE′
= 1

(2π)3

E′

2E

e2

Q4

[
qμq

′
ν + q ′μqν − δμν(q · q ′ +m2)

](∫ )
μν

. (9.80)

The last factor on the right-hand side is a second-rank tensor proportional to e2,
whence we may write

∫
d4x

p0

M

〈
p|jh

μ(x)j
h
ν (0)|p

〉
e−iQ·x = 2πe2Wμν . (9.81)

Here, Wμν is a function of the two four-momenta p and Q with the general form

Wμν = W1

(
δμν − QμQν

Q2

)
+ 1

M2
W2

(
pμ − p ·Q

Q2
Qμ

)(
pν − p ·Q

Q2
Qν

)
.

(9.82)

Equation (9.82) has been chosen in such a way that the following relation holds,
corresponding to the conservation of electric current:

QμWμν = QνWμν = 0 . (9.83)

Note also the following relations, which hold at high energies:

[
qμq

′
ν + q ′μqν − δμν(q · q ′ +m2)

](
δμν − QμQν

Q2

)
≈ Q2 ≈ 4EE′ sin2 θ

2
,

(9.84)

[
qμq

′
ν + q ′μqν − δμν(q · q ′ +m2)

](
pμ− p ·Q

Q2 Qμ

)(
pν− p ·Q

Q2 Qν

)
≈ 2M2EE′ cos2 θ

2
,

(9.85)

Substituting this into (9.80),

d2σ

dΩ ′dE′
= 4α2 E

′2

Q4

(
2W1 sin2 θ

2
+W2 cos2 θ

2

)
. (9.86)

The quantities W1 and W2 are called structure functions. Both are scalar functions
constructed from p and Q. Taking into account the fact that p2 = −M2,

Q2 , p ·Q ≡ Mν , (9.87)
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are independent scalar quantities, where ν is equal to the energy loss of the electron
in the laboratory system:

ν = E − E′ . (9.88)

According to Bjorken, if Q2/2Mν = x is finite in the limit Q2 → ∞ and Mν →
∞, then both become functions of the ratio x alone, i.e.,

MW1 → F1(x) , νW2 → F2(x) . (9.89)

This is Bjorken’s scaling law [105], which would later provide a basis for the gauge
theory of strong interactions.

9.4 Optical Theorem

In quantum mechanics, the scattering amplitude for spin-0 particles passing through
a central force field can be expressed by the following partial wave expansion:

f (θ) = 1

k

∞∑
l=0

(2l + 1)eiδl sin δl Pl(cos θ) . (9.90)

Here k is the modulus of the momentum and Pl is the l th Legendre polynomial.
If the scattering is purely elastic, the phase shift δl is a real number, so the total
cross-section σ satisfies

σ =
∫

dΩ |f (θ)|2 = 4π

k2

∞∑
l=0

(2l + 1) sin2 δl = 4π

k
Imf (0) . (9.91)

This is called the optical theorem. We shall now consider its generalization to field
theory.

Inserting (8.71) into (8.2), we express the unitarity of the S-matrix in terms of T :

ImTf i = − (2π)4

2

∑
j

T
†
fj δ

4(Pf − Pi)Tji . (9.92)

Setting f = i,

ImTii = − (2π)4

2

∑
j

δ4(Pi − Pj )|Tji |2 . (9.93)
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We rewrite this relation in terms of the invariant amplitude T :

ImTii = −
∑
n

(2π)4−3n

2

∫
d3p1

2p10
. . .

∫
d3pn

2pn0
δ4(Pi − Pn)|Tni |2

= −2B
∞∑
n=2

σ(i → n) , (9.94)

where we have assumed that the initial state |i〉 is a two-particle state. Denoting the
total cross-section by σ ,

ImTii = −2Bσ (|i〉 a two-particle state) . (9.95)

This is the optical theorem in field theory. Similarly, for the total decay width Γ , we
obtain

ImTii = −P0Γ (|i〉 a one-particle state) . (9.96)

Note that the optical theorem in field theory holds for inelastic scattering as well as
elastic scattering.

As an example of the optical theorem, let us consider the process where an
electron–positron pair annihilates to produce hadrons:

e− + e+ −→ hadrons . (9.97)

We consider the propagators, including the lowest order for the electromagnetic
interaction and higher order corrections for the strong interaction:

D′Fμν
=
〈
0
∣∣T [Aμ(x)Aν(y) exp[−i

∫
d4zHs(z)]

]∣∣0〉〈
0
∣∣T exp
[− i
∫

d4zHs(z)
]∣∣0〉 . (9.98)

Now corresponding to Tii , we consider the process

e−(p)+ e+(p̄) −→ e−(p′)+ e+(p̄′) , (9.99)

where the four-momenta are indicated in brackets. If only hadrons exist between the
in and out states, the S-matrix is

S(2) = −1

2

∫
d4x

∫
d4y :j e

μ(x)D
′
Fμν

(x − y)j e
μ(y) : . (9.100)

Setting V = 1, the T-matrix element for this process can be written as

Tf i = −e2ū(p′)iγμv(p̄′)D′Fμν
(p + p̄)v̄(p̄)iγνu(p) . (9.101)
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Fig. 9.2 Hadrons produced
by electron–positron
annihilation

Thus, the invariant scattering amplitude for forward scattering is

Tii = −e2D′Fμν
(p + p̄)(2p0)(2p̄0)ū(p)iγμv(p̄)v̄(p̄)iγνu(p) . (9.102)

Averaging over the spins in the initial state,

(2p0)(2p̄0)ū(p)iγμv(p̄)v̄(p̄)iγνu(p) → 1

4
Tr
[
iγμ(−ip̄ · γ −m)iγν(−ip · γ +m)

]

= pμp̄ν + p̄μpν + δμν(m
2 − p · p̄) . (9.103)

Setting

s = −(p + p̄)2 = 2(m2 − p · p̄) , (9.104)

we have

B =
√
(p · p̄ −m4)2 = 1

2

√
s(s − 4m2) . (9.105)

To consider the imaginary part of Tii , we introduce only the contribution of D′Fμν

for hadrons between the in and out states (see the Feynman diagram in Fig. 9.2):

D′Fμν
→ 1

k4 (kμkν − δμνk
2)σ h(−k2) = 1

k4 Π
h
μν(−k2) , k = p + p̄ . (9.106)

This can be written in this form for basically the same reasons as were given to
justify (9.82). As can be read off from the Feynman diagram,Πh

μν(k
2) can be written

in the form

〈
0
∣∣T [jh

μ(x)j
h
ν (y)
]∣∣0〉 = −i

(2π)4

∫
d4k eik·(x−y)Πh

μν(−k2) . (9.107)

In this regard, however, it should be remembered that the left-hand side has been
defined in the Heisenberg picture. Writing

σ h(−k2) = Πh(s) , s = −k2 , (9.108)
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we obtain

−ImTii = e2
(
pμp̄ν + p̄μpν + 1

2
δμνs

)
1

s2 (kμkν − δμνk
2)ImΠh(s)

= e2 s + 2m2

s
ImΠh(s) . (9.109)

Therefore, from the optical theorem the total cross-section of (9.97) is

σ(e−+e+ → hadrons) = 1

2B
(−ImTii ) = e2

s

s + 2m2√
s(s − 4m2)

ImΠh(s) . (9.110)

In particular, assuming s  m2 at high energies,

σ(e− + e+ → hadrons) = e2

s
ImΠh(s) . (9.111)

We shall see later that measurements of this cross-section can tell us how many
types of quarks (flavours) there are.

9.5 Three-Body Decays

In Sect. 9.1, we discussed the integral in phase space when the final state is a two-
particle state. In this section, we consider the integral for the three-particle state.
Although this sort of integral is complicated in many cases, we will discuss several
tractable examples here.

To begin with, we consider the decay of the μ-meson:

μ+ → e+ + ν+ ν̄ . (9.112)

We shall not be concerned whether or not ν̄ appearing here is an antiparticle of
ν because it is not relevant to the following discussion. In this process, the only
quantity observed in the final state is the electron. We will discuss the form of the
electron energy spectrum. The reaction (9.112) can be described by what is known
as the Fermi interaction. The invariant decay width Tf i can be expressed in terms
of four Dirac spinors and suitable γ -matrices. If we average or sum spins, then the
following can be expressed in terms of four Casimir operators and traces of products
of suitable γ -matrices:

∑
Si

∑
Sf

|Tf i |2 . (9.113)
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Therefore, the result must be linear scalar functions of pν, pν̄, and pe, or me, pμ,
and mμ. The possible combinations are:

mμme(pν · pν̄), (pμ · pe)(pν · pν̄), (pμ · pν)(pe · pν̄), (pμ · pν̄)(pe · pν) .

(9.114)

Inserting these into the formula for the decay width, we carry out the integration.
Since the μ-meson is about 200 times more massive than the electron, the speed of
the emerging electron is close to the speed of light, so me can be neglected. Then we
do not need to consider the first term in (9.114). The third and fourth terms will yield
the same results if we integrate over pν and pν̄ without observing the neutrino, so
we cannot tell the difference between them as long as we discuss possible shapes of
the energy spectrum. Hence, in order to determine the form of the energy spectrum,
it is enough to consider only the two terms

(pμ · pe)(pν · pν̄) , (pμ · pν)(pe · pν̄) . (9.115)

The parameter which determines the form of the spectrum is simply a ratio of their
coefficients, and chosen in a suitable way, it is known as the Michel parameter [106].

Up to a multiplicative constant, the decay rate is given by

Γ ∝
∫

d3pe

2pe0

∫
d3pν

2pν0

∫
d3pν̄

2pν̄0
δ4(P − pe − pν − pν̄)〈|Tf i |2〉

=
∫

d3pν

2pe0

∫
d4Qδ4(P − pe −Q)

∫
d3pν

2pν0

d3pν̄

2pν̄0
δ4(Q− pν − pν̄)〈|Tf i |2〉 ,

(9.116)

where 〈|Tf i |2〉 is averaged over the spins. It will be a linear combination of the two
terms in (9.115). In order to integrate over the neutrino momenta, we must evaluate

Iαβ =
∫

d3pν

2pν0

∫
d3pν̄

2pν̄0
δ4(Q− pν − pν̄)(pν)α(pν̄)β

=
∫

d4pν

∫
d4pν̄δ+(p2

ν)δ+(p2
ν̄ )δ

4(Q− pν − pν̄)(pν)α(pν̄)β , (9.117)

where we have used the notation δ+(p2) = θ(p0)δ(p
2). We make the change of

variables

pν = Q′

2
+Δ , pν̄ = Q′

2
−Δ . (9.118)
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Therefore, the integral is now over d4Q′d4Δ. Now integrating over Q′, we can take
Q′ = Q in the remaining integral,

Iαβ =
∫

d4Δδ

[(
Q

2
+Δ

)2 ]
δ

[(
Q

2
−Δ

)2 ](
Q

2
+Δ

)
α

(
Q

2
−Δ

)
β

=
∫

d4Δδ

(
Q2

4
+Δ2
)
δ(2Q ·Δ)

(
Q

2
+Δ

)
α

(
Q

2
−Δ

)
β

, (9.119)

where we have assumed that the integration is carried out only in the region
Q0 > 2|Δ0|. Since Q is a time-like vector, we choose the direction of Q to be
the time axis. Then integrating δ(Q ·Δ) with respect to Δ0, we can take

Δ0 = 0 (9.120)

in the remaining integral and only terms of even order in �Δ survive:

Iαβ = 1

2Q0

∫ �Δ2d| �Δ2|dΩ
2| �Δ| δ

(
Q2

4
+ �Δ2
)(

1

4
QαQβ −ΔαΔβ

)
. (9.121)

By symmetry, the integral in the second term survives only when α = β �= 4, so we
can make the following replacement:

ΔαΔβ → 1

3
δαβ(1− δα4) �Δ2 = 1

3

(
δαβ − QαQβ

Q2

)
�Δ2

= − 1

12
(δαβQ

2 −QαQβ). (9.122)

Integrating the first term and the remaining one,

Iαβ = π

24
(δαβQ

2 + 2QαQβ) . (9.123)

Inserting this result into (9.116), we are left with two integrals:

∫
d3p

2p0

∫
d4Qδ4(P − p −Q)(P · p)(4Q2 + 2Q2) , (9.124)

∫
d3p

2p0

∫
d4Qδ4(P − p −Q)

[
(P · p)Q2 + 2(P ·Q)(p ·Q)

]
, (9.125)

where we have taken p = pe and P = pμ. We consider the rest frame of the
μ-meson, i.e.,

P0 = mμ , P = 0 . (9.126)
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The energy of the electron attains a maximum value of mμ/2 when the neutrinos
are emitted in opposite directions, and since we are assuming me = 0, we can set

p0 = |p| = 1

2
mμx , (9.127)

where the possible values of x lie between 0 and 1, and

d3p

2p0
∝ x dx . (9.128)

Then the x-dependences of the scalar products in the integral are

P · p = −1

2
m2

μx , −Q2 = −P 2 + 2p · P = m2
μ(1− x) ,

P ·Q = P 2 − p · P = m2
μ

(
−1+ x

2

)
, p ·Q = p · P = −1

2
m2

μx .

After a trivial integration over the solid angle, we now obtain

Γ ∝
∫ 1

0
dx x2(a + bx) , (9.129)

whence the spectrum is a linear combination of x2 and x3. Normalizing the integral
to unity and leaving the ratio of two suitable linear combinations of x2 and x3 as a
parameter, the energy spectrum of the electron becomes

dN = 4x2
[

3(1− x)+ 2

3
ρ(4x − 3)

]
dx . (9.130)

This has been chosen so that the first term vanishes when x = 1 and the integral over
x from 0 to 1 is unity. Carrying out the integral over x, the second term vanishes, and
its coefficient ρ is called the Michel parameter. The value of ρ can be determined
from the form of the spectrum when x ∼ 1. The value of ρ depends on the choice
of the γ -matrices in the Fermi four-fermion interaction. For the vector–axial vector
(VA) type, ρ = 0.75 and for the scalar–pseudoscalar (SP) type, ρ = 0. This will be
discussed later.

In association with the three-body decay, another important idea is the Dalitz plot
[43, 107]. Dalitz proposed this to determine the parity and spin of the K+-meson
from the energy distribution of the π-meson in the decay process

K+ → π+ + π+ + π− . (9.131)



9.5 Three-Body Decays 203

The decay width is given by

Γ (K+ → π+ + π+ + π−) (9.132)

= (2π)−5

2M

∫
d3p1

2p10

∫
d3p2

2p20

∫
d3p3

2p30
δ4(Pf − Pi)

∣∣T (K+ → π+ + π+ + π−)
∣∣2 ,

where Pi is the four-momentum of the K+ meson, p1 and p2 are the four-momenta
of the two π+ mesons, and p3 is the four-momentum of the π− meson. These satisfy
the relation Pf = p1+p2+p3. In order not to count the same state twice, we restrict
the integration to the region

p10 < p20 . (9.133)

|T |2 is a function of the scalar products (pi · pj ). Only two of them are
independent so we choose

p1 · Pi , p3 · Pi , (9.134)

as independent variables. In the rest frame of the K-meson, these scalar products can
be written as −Mω1 and −Mω3, respectively. Here, M is the mass of the K-meson
and ω1 and ω3 are the energies of the π-mesons in the rest frame of the K-meson.
From the law of conservation of energy,

ω1 + ω2 + ω3 = M . (9.135)

Since |T |2 can be viewed as a function of ω1 and ω3, the integrals in (9.132) can
be written in the form

I =
∫

d3p1

ω1

∫
d3p2

ω2

∫
d3p3

ω3
δ3(p1 + p2 + p3)δ(ω1 + ω2 + ω3 −M)f (ω1, ω3)

=
∫

dω′1
∫

dω′3 K(ω′1, ω′3)f (ω′1, ω′3) , (9.136)

where

K(ω′1, ω′3)=
∫

p2
1dp1dΩ1

ω1

p2
3dp3dΩ3

ω3

δ(ω1 + ω2 + ω3 −M)

ω2
δ(ω1 − ω′1)δ(ω3 − ω′3) .

(9.137)

Here p1 = |p1| and p3 = |p3|. We begin by integrating with respect to ω3.
Choosing the direction of p1 as the z-direction and taking the angle between p1
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and p3 as θ ,

∫
dΩ1

∫
dΩ3 . . . = 8π2

∫ 1

−1
d(cos θ) . . . . (9.138)

We have left cos θ in the above because, from the law of conservation of momentum,
ω2 is a function of cos θ :

ω2
1 = p2

1 + μ2 , ω2
3 = p2

3 + μ2 ,

ω2
2 = (p1 + p3)

2 + μ2 = p2
1 + p2

3 + 2p1p3 cos θ + μ2 . (9.139)

In order to change the integration variables from p1, p3, and cos θ to ω1, ω2, and
ω3, we use the Jacobian

∂(ω1, ω2, ω3)

∂(p1, p3, cos θ)
= p2

1p
2
3

ω1ω2ω1
. (9.140)

Hence,

K(ω′1, ω′3) = 8π2
∫

dp1dp2d(cos θ)
∂(ω1, ω2, ω3)

∂(p1, p3, cos θ)

× δ(ω1 + ω2 + ω3 −M)δ(ω1 − ω′1)δ(ω3 − ω′3)

= 8π2
∫

dω1dω2dω3δ(ω1 + ω2 + ω3 −M)δ(ω1 − ω′1)δ(ω3 − ω′3) .

(9.141)

If the values of ω′1 and ω′3 are physically realizable, then this integral yields 8π2. If
not, it yields zero. All unnecessary terms can thus be completely dropped. This is
an amazing simplification. The equation (9.132) for the decay width becomes

Γ (K+ → π+ + π+ + π−) = (4π)−3

M

∫
ω1<ω2

dω1dω3
∣∣T (K′ → π+ + π+ + π−)

∣∣2 .

(9.142)

What is important here is the proportionality relation

d2Γ

dω1dω3
∝ |T |2 . (9.143)

Thus, plotting examples of each decay as points in the (ω1,ω3) plane, the density of
the plot turns out to be proportional to the modulus squared of the decay width, so
that |T |2 can be found from experimental results as a function of ω1 and ω3.



9.5 Three-Body Decays 205

Dalitz showed how to produce this plot inside an equilateral triangle as follows.
Defining the kinetic energy of each π-meson as Ti = ωi − μ, energy conservation
implies

T1 + T2 + T3 = M − 3μ ≡ Q . (9.144)

Then, picking one point inside the triangle and drawing perpendiculars from that
point to the three edges, the sum of the perpendiculars will be equal to the height
of the triangle. We choose the height of the triangle as Q in suitable units. Then we
express an example decay observed by experiment as an internal point so that the
lengths of each perpendicular connecting the point with each edge are equal to T1,
T2, and T3, respectively. This gives what is known as the Dalitz plot.

Since the value of Q is about 75 MeV, the pions emitted in the decay process can
be treated as non-relativistic to a good approximation. Let us investigate what kind
of plot we obtain in this case. The laws of conservation of energy and momentum
are

p2
1 + p2

2 + p2
3 = 2μQ , (9.145)

p1 + p2 + p3 = 0 . (9.146)

This means that p1, p2, and p3 must satisfy the triangle inequality

(p1 + p3)
2 ≥ p2

2 ≥ (p1 − p3)
2 , (9.147)

or

2p1p2 ≥
∣∣p2

2 − p2
1 − p2

3

∣∣ .
Writing this in terms of T ,

4T1T3 ≥ (T2 − T1 − T3)
2 = (Q− 2T1 − 2T3)

2 . (9.148)

This describes the interior of an ellipse in an oblique coordinate system. However,
since this diagram is symmetric in T1, T2, and T3, it must remain invariant under
a rotation of 120 degrees around the center of mass of the regular triangle. This
means it has to be a circle. Hence, this is the interior of the circle inscribed inside
an equilateral triangle. In Fig. 9.3, the lengths of the perpendiculars connecting the
point in the interior of the circle with the three edges of the triangle T1, T2 and T3,
respectively. Due to the condition T1 < T2, points are restricted to lie within the
semicircle.

Dalitz’s plot was originally proposed to determine the spin and parity of K+. To
do so, we must determine the spin and parity of the final state. We assume that the
relative orbital angular momentum of the two π+ particles is l, and that the relative
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Fig. 9.3 Dalitz plot

Table 9.1 Smallest
combinations of (l, l ′) for
combinations of spins and
parities in several kinds of 3π

system

Spins and parities in 3π-system Smallest value of (l, l ′)
0+ Nothing

0− (0,0)

1+ (0,1)

1− (2,2)

2+ (2,1)

2− (0,2), (2,0)
...

...

orbital angular momentum of the center of the two π+ particles and π− is l′. Since
the spin of π is zero, denoting the spin of K+ by J , we have

J = l + l′ . (9.149)

1. Spinless K Meson. In this case, since J = 0, we obviously have l = l′. Then the
parity of the system with three π-mesons is (−1)l+l′ = 1 from the orbital part.
The intrinsic parity of π itself is −1, so it will be (−1)3 = −1 for three pions.
The product of these two is thus −1. Therefore, if the K meson is spinless, the
parity is odd and it can be denoted by 0−.

2. General Case. From the Bose symmetry for particles of the same kind, l is even.
Table 9.1 gives the smallest combinations of (l, l′) for combinations of spins and
parities in several kinds of 3π system. It should be obvious that the parity is given
by (−1)l

′+1.

Since the value of Q for this decay is small, viz., 75 MeV, the large decay width
corresponding to (l, l′) becomes small due to the centrifugal force. Denoting the
relative momenta corresponding to l and l′ by p and q ,

T ∼ (pR)l(qR)l
′
, (9.150)

where R is the range of the force among the π mesons. Since the density of the
Dalitz plot is shown experimentally to be homogeneous,

|T |2 ∼ const. (9.151)
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Thus, l = l′ = 0 and we find that the 3π-system is in the 0− state. If K+ is spinless,
the process

K+ → π+ + γ

is forbidden, as discussed in Sect. 8.7. Indeed, this decay pattern has not been
observed in experiments.

Similarly, given the density of the Dalitz plot for the process η0 → π++π−+π0

and the existence of the process η0 → 2γ, the neutral meson η0 turns out to be 0−.
We observe that K+ can also decay into two π mesons, viz.,

K+ → π+ + π0 . (9.152)

Since the spin of K+ is zero, the relative angular momentum between π+ and π0

must be zero. The spin and the parity of this final state with two π mesons can be
written as 0+. This contradicts the result for the 3π decay, which gave 0−. The decay
patterns of (9.152) and (9.131) were originally referred to as θ and τ, respectively,
and this contradiction was known as the θ–τ puzzle. Although θ and τ were
originally considered to be different particles, more accurate detections showed that
their mass and lifetime were actually the same. Furthermore, it gradually transpired
that the ratio of the frequencies of the two reactions (decay to three vs. decay to two
pions) is a constant, independent of the experimental conditions for their creation,
so it was finally accepted that they must be same particles. Then Lee and Yang
suggested that parity might not be conserved in weak interactions. To check this
idea, they proposed several kinds of experiment [45], and in 1956 it was eventually
proven that their idea was correct.



Chapter 10
Discrete Symmetries

In Chap. 7, we discussed Noether’s theorem, which shows how a conservation law
can be derived from the invariance of a theory under a continuous transformation
group. These conservation laws hold in both classical and quantum theories. In
contrast, discrete symmetries such as space inversion and charge conjugation
are specific to quantum theory, where there are several kinds of conservation
law that do not arise classically. Since physically observable quantities always
vary continuously in classical theory, discrete symmetries are not connected to
conservation laws. However, given one classical solution, this kind of symmetry
leads us to another classical solution.

10.1 Symmetries and Unitary Transformations

When we discussed the invariance of a theory under a group of continuous
transformations in Chap. 7, we worked from the invariance under an infinitesimal
transformation group. In quantum theory, for a transformation like this, the state
vector transforms under a unitary transformation generated as a product of infinites-
imal transformations:

Φ → UΦ = exp(iλQ)Φ , (10.1)

where Q is a conserved quantity derived by Noether’s theorem and represented by
a Hermitian operator, and λ is an arbitrary real number. Therefore, U is a unitary
operator.

A discrete unitary transformation can be expressed by a unitary operator that does
not have a generator like this. Charge conjugation, discussed in Sects. 3.9 and 8.6,
can be represented by the discrete unitary transformation C . This transformation
does not change the Lagrangian density, nor the form of the equation of motion,
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and it commutes with the S-matrix. Thus, C is a conserved quantity. In QED, for
example, the field operators transform according to

C−1ψC = Cψ̄ , C−1ψ̄C = C−1ψ , C−1AμC = −Aμ , (10.2)

under this transformation. As already discussed in Sect. 3.9, the Dirac matrix C for
charge conjugation is uniquely determined up to a complex phase. Denoting C for
the spinor field ψa by Ca and using a standard matrix C, we may write

Ca = ηaC , |ηa| = 1 . (10.3)

When a system possesses charge conjugation invariance, the phase ηa is chosen in
such a way that the Lagrangian density is invariant under the charge conjugation
transformation. In a system which is not invariant under any choice of the phase,
charge conjugation is not a symmetry. Incidentally, the relations in (10.2) imply

C−2ψC 2 = ψ , C−2ψ̄C 2 = ψ̄ , C−2AμC
2 = Aμ , (10.4)

that is, C 2 commutes with all field operators. Thus, we can deduce that C 2 is a
c-number. By a suitable choice of phase for C itself, we can thus arrange for

C 2 = 1 . (10.5)

In general, charge conjugation is conserved under strong and weak interactions.
In a similar way, space inversion P is also conserved in all the fundamental

interactions except the weak interaction, i.e., the form of the Lagrangian density and
the equation of motion remain invariant, and P also commutes with the S-matrix.
As already stated in (3.128), for the spinor field ψa ,

P−2ψa(x, t)P = εaγ4ψa(−x, t) , |εa | = 1 . (10.6)

Implementing the space inversion twice, this just becomes a phase transformation:

P−1ψ(x, t)P2 = ε2
aψ(x, t) . (10.7)

If a theory is invariant under a phase transformation like this, then redefining a
suitable combination of the original P in (10.6) and this phase transformation to
give a new P , we have

P−2ψ(x, t)P2 = ψ(x, t) . (10.8)

In this case, the following restriction is imposed on εa :

ε2
a = 1 , εa = ±1 . (10.9)
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This εa is called the intrinsic parity of the spinor field labeled by a. We chose the
intrinsic parity of both the proton and the neutron to be +1 in Sect. 6.4. In addition,
since P2 itself commutes with all field operators, we can adjust the overall phase
so that

P2 = 1 . (10.10)

If the square of a unitary operator is unity, as in (10.5) and (10.10), this operator
is also Hermitian. The intrinsic parity of one spinor field can be fixed freely if the
system is invariant under a group of continuous phase transformations, in which case
the phase of parity can be absorbed by the continuous transformations. If the system
is invariant under a number of phase transformations, then we can correspondingly
fix the intrinsic parities of an equal number of spinor fields. A useful convention is

εn = εp = ε� = 1 . (10.11)

This convention is a slight extension of the one mentioned above and is associated
with the Sakata model. In the quark model, this convention comes down to the
convention that all quarks have intrinsic parity+1.

Generalizing the above discussion, we introduce a unitary transformation U
corresponding to one of the discrete symmetries. This must commute with the S-
matrix:

U −1SU = S . (10.12)

Now consider two eigenstates of U :

U |a〉 = εa|a〉 , U |b〉 = εb|b〉 . (10.13)

If εa �= εb, the transition a→ b is prohibited, i.e.,

〈b|S|a〉 = 0 , if εa �= εb . (10.14)

This is a generalization of Furry’s theorem. As a property of the unitary transforma-
tion, taking

|a′〉 = U |a〉 , |b′〉 = U |b〉 , (10.15)

we obtain

〈b′|a′〉 = 〈b|a〉 . (10.16)
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10.2 Parity of Antiparticles

When discussing charge conjugation and space inversion, an important issue is the
commutation relation. We assume that the vacuum is simultaneously an eigenstate
of both operators with eigenvalue 1. This is a consequence of the assumption that
the vacuum is not degenerate:

P|0〉 = C |0〉 = |0〉 . (10.17)

In the following, we adopt the convention

P2 = C 2 = 1 . (10.18)

We now carry out these two transformations in two different orders on a Dirac field,
and compare the results:

P−1C−1ψ(x, t)CP =P−1[ηCψ̄T(x, t)
]
P

= ηεC
[
ψ̄(−x, t)γ4

]T
= ηεCγ T

4 ψ̄T(−x, t)

= −ηεγ4Cψ̄T(−x, t)

and

C−1P−1ψ(x, t)PC = C−1[εγ4ψ(−x, t)
]
C

= ηεγ4Cψ̄T(−x, t)

= −P−1C−1ψ(x, t)CP . (10.19)

Note that, since ψ̄ is a 1×4 matrix, the transpose ψ̄T is a 4×1 matrix. Generalizing
(10.19),

C−1P−1ψ(x1) . . . ψ(xn)PC = (−1)nP−1C−1ψ(x1) . . .ψ(xn)CP .

(10.20)

It is possible for ψ̄ to appear in the product of these n operators. Multiplying the
vacuum state by (10.20) and denoting the state containing n Dirac particles by |n〉,

CP|n〉 = (−1)nPC |n〉 . (10.21)
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We assume that the eigenstate of P and its eigenvalue are |n〉 and ε(n), respectively.
Moreover, taking C |n〉 = |n̄〉, we have

P|n̄〉 = (−1)nε(n)|n̄〉 . (10.22)

Thus, considering the state with one Dirac particle (n = 1), we observe that the
intrinsic parities of |1〉 and |1̄〉 have opposite signs. Assuming that a Bose particle
can transit to a state with an even number of Fermi particles, it must have the same
intrinsic parity as its antiparticle. Therefore, we obtain the following theorem:

Theorem 10.1 A Bose particle and its antiparticle have the same intrinsic parity,
while a Fermi particle and its antiparticle have opposite intrinsic parities.

If N is the number of Fermi particles, (10.21) implies the commutation relation

CP =PC (−1)N = (−1)NPC . (10.23)

Since (−1)N commutes with both C and P , considering the group generated by C ,
P , and (−1)N , we note that all raised to the second power are equal to 1 and that
(−1)N thus belongs to the center of the group.

π+–π− System
Next, we consider a two-particle system in the center-of-mass frame so that it is in
an eigenstate of P . We express this state in terms of the creation operator and act
on it with C and P:

Φ = ϕ(p)ϕ†(−p)|0〉 , (10.24)

CΦ = ϕ†(p)ϕ(−p)|0〉 , (10.25)

PΦ = ϕ(−p)ϕ†(p)|0〉 = ϕ†(p)ϕ(−p)|0〉 , (10.26)

where C−1 = C and we have used the following:

C−1ϕ(x)C = ϕ†(x) , C−1ϕ†(x)C = ϕ(x) . (10.27)

From these, we immediately obtain

C−1Φ =PΦ , CPΦ = Φ , (10.28)

i.e., the π+–π− system is in an eigenstate of CP with eigenvalue 1. Assuming
that a neutral K meson is an eigenstate of CP , it has two components, one
corresponding to the eigenvalue +1 and one corresponding to the eigenvalue −1.
These are denoted by K0

S or K0
L, respectively. The former has a short lifetime

(∼ 10−10 s), and the latter has a long lifetime (∼ 5 × 10−8 s), as indicated by
the subscripts S and L, respectively. Thus, if CP is conserved, the component with
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a long lifetime cannot decay into two π mesons. However, in 1964 Christenson,
Cronin, Fitch, and Turlay observed this process, and thereby demonstrated that CP
is not conserved [108]:

K0
L −→ π+ + π− . (10.29)

1S and 3S Positronium States
An electron and positron can form a bound state called positronium, which is
unstable and decays into a number of photons. Writing this state as Φ, the parity
is determined by the quantum L of their relative orbital angular momentum, i.e.,

PΦ = (−1)Lε(e−)ε(e+)Φ = (−1)L+1Φ , (10.30)

where we have used Theorem 10.1. Therefore, in the S-state (L = 0), the parity is
odd (−1). In order to investigate the eigenvalues of the charge conjugation, we write
Φ in the form

Φ = a†(p, σz, e)a
†(−p, σ ′z,−e)|0〉 , (10.31)

where a† is the creation operator for a particle whose momentum, spin, and electric
charge are specified. Therefore,

C a†(p, σz, e)a
†(−p, σ ′z,−e)|0〉 = a†(p, σz,−e)a†(−p, σ ′z, e)|0〉

= −a†(−p, σ ′z, e)a†(p, σz,−e)|0〉
= −PxPσΦ , (10.32)

where Px and Pσ are operators that swap the coordinates and spins, respectively, of
the two particles. The two-particle system can be in a spin triplet state S = 1 or a
spin singlet state S = 0. Since these correspond to a symmetric spin state and an
anti-symmetric spin state, respectively, we have

PxΦ = (−1)LΦ , PσΦ = (−1)S+1Φ . (10.33)

Therefore, inserting (10.33) into (10.32),

CΦ = (−1)L+SΦ . (10.34)

Of course, the positronium state is only ever realized as a sum over states like (10.31)
with a variety of different values of p. Thus, for positronium states 3S and 1S,

CΦ(3S) = −Φ(3S) , CΦ(1S) = Φ(1S) . (10.35)
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The former is a vector and the latter is a pseudoscalar. The decay pattern predicted
from Furry’s theorem is

3S→ 3γ , 1S→ 2γ . (10.36)

10.3 Isospin Parity and G-Conjugation

We define the isospin parity T as a rotation in isospin space:

T = exp(iπI2) . (10.37)

Clearly,

T −1I3T = −I3 . (10.38)

Since I3 is half of the difference between the number of protons and the number
of neutrons in a nucleus, it is diagonalized. Thus, T can only be simultaneously
diagonalized when the eigenvalue of I3 for a certain state is zero. In this case, the
quantum number I is an integer, so all eigenvalues of I2 become integers. Thus, it
turns out that we can make the replacement

T 2 = exp(2π iI2) −→ 1 . (10.39)

In this case, the eigenvalues of T are

T = ±1 , (10.40)

which is the isospin parity of the given nucleus. This quantity can be defined only
for a nucleus in which the numbers of protons and neutrons are the same.

For a system with one nucleus, T has the representation

T = exp

(
1

2
iπτ2

)
= iτ2 =

(
0 1
−1 0

)
. (10.41)

Using this matrix, we can swap the proton and the neutron.

Theorem 10.2 The Kroll–Foldy theorem. The isospin parity of the state with I3 = 0
is given by

T = (−1)I . (10.42)
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Proof Considering the isospin eigenstate |I ′, I ′3〉, the theorem states that

T |I ′, 0〉 = (−1)I
′ |I ′, 0〉 . (10.43)

To prove this, it is enough to prove the algebraically equivalent equation

eiπLyYl,0 = (−1)lYl,0 , (10.44)

where Yl,0 are spherical harmonics, i.e., common eigenstates of I 2 and I3. However,
the operator corresponding to T is a rotation through π radians about the y axis, so

x → −x , y → y , z→−z . (10.45)

Thus,

cos θ →− cos θ . (10.46)

Replacing Yl,0 by the Legendre polynomials Pl(cos θ), we obtain the same equation
as (10.44):

eiπLyPl(cos θ) = Pl(− cos θ) = (−1)lPl(cos θ) . (10.47)

�
According to (10.45), the three components of the isospin transform under T as

T −1I1T = −I1 , T −1I2T = I2 , T −1I3T = −I3 . (10.48)

Transforming the field theoretical expression (7.46) for the isospin of nucleons
under charge conjugation, we obtain

C−1ÎC = C−1
(

1

2

∫
d3x ψ† τ̂ψ

)
C = −1

2

∫
d3x ψ† τ̂Tψ . (10.49)

Now, using the Pauli representation for τ̂ ,

C−1I1C = −I1 , C−1I2C = I2 , C−1I3C = −I3 . (10.50)

This result also holds for the isospin of the meson. Comparing this with (10.48), the
productC T commutes with the three isospin components. Combining C and T into
G, we define G-conjugation by

G = C T = C eiπI2 . (10.51)
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Table 10.1 Transformation properties of quantities specifying particle states

Angular momentum Momentum Coordinate Charge

Charge conjugation + − − +
Space inversion + − − +
Time reversal − − + +

Therefore,

G−1ÎG = Î . (10.52)

For the meson field,

G−1ϕ̂G = −ϕ̂ . (10.53)

As just described, all isospin states of the π meson are eigenstates of G with
eigenvalue −1. This is useful, since in contrast with the charge conjugation case
it can be used not only for the neutral case but also for the charged states. In this
regard, however, the law of conservation of isospin is true only for the nuclear force.
It is broken by electromagnetic interactions, and the same goes for G-invariance.

On the other hand, in the case of strong interactions, Furry’s theorem holds for
G-invariance:

ρ → π + π , ρ � η + π ,

G + − − + + − .

The former reaction is realized and the latter is forbidden. This is thus another
example of Furry’s theorem.

Although the transformations discussed above, namely, space inversion, charge
conjugation, and G-conjugation, are unitary transformations, time reversal is an
antiunitary transformation. This is the subject of the next section. For later
convenience, Table 10.1 shows how several quantities used to specify elementary
particle states are affected by the various transformations. This table will be useful
in the next section.

10.4 Antiunitary Transformations

Charge conjugation and space inversion discussed in the previous section are unitary
transformations, but time reversal is an antiunitary transformation. Denoting charge
conjugation, space inversion, and time reversal by C, P , and T , respectively, several
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kinds of product transformation can be defined and categorized as follows:

unitary transformations C , P , CP ,

antiunitary transformations T , CT , PT , CPT .

We first discuss the general characteristics of unitary and antiunitary transforma-
tions:

1. Unitary transformation. This is defined by

Φ → Φ ′ = U Φ , (10.54)

where U is a unitary operator. The inner product of two state vectors is invariant,
i.e., expressing the inner product by a bracket, we have

(Φ ′, Ψ ′) = (Φ,Ψ ) . (10.55)

2. Antiunitary transformation. This is defined by

Φ → Φ ′ = U TΦ∗ ≡ Φ" , (10.56)

which is clearly a generalization of complex conjugation and has thus been
indicated by the notation ". In this case,

(Φ ′, Ψ ′) = (Φ", Ψ ") = (Ψ,Φ) . (10.57)

This equation clearly holds true because " is a generalization of complex
conjugation. This transformation clearly converts a ket vector into a bra vector.

We can also define the transformation of an operator by

(Φ",QΨ ") = (Ψ,Q"Ψ ) . (10.58)

We can thus choose to apply the antiunitary transformation to the state vector or to
the operator, which corresponds to the difference between the Schrödinger picture
and the Heisenberg picture, where we choose to put the time dependence on the state
vector or on the operator. Since in the Heisenberg picture the form of the equation
of motion is the same for both the quantum and classical theories, the latter choice
is useful in the sense that knowledge of classical theory can be used. Moreover, it is
straightforward to show that

Q" = UQTU −1 . (10.59)
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Hence, for operator transformations, we have

(aA+ bB)" = aA" + bB" (linearity) (10.60)

and

(AB)" = B"A" , (10.61)

where a and b are c-numbers. This linearity does not hold for transformations of
state vectors, where coefficients are replaced by their complex conjugates. This is
another advantage of considering operator transformations.

Theorem 10.3 If an operator Q corresponding to a physical quantity satisfies
Q" = ±Q and if Φ is an eigenstate of Q with eigenvalue q , then Φ" is also an
eigenstate of Q and its eigenvalues are ±q .
Proof We have

(QΦ",Ψ ") = (Φ",QΨ ") = (Ψ,Q"Φ) = ±(Ψ,QΦ) = ±q(Ψ,Φ) = ±q(Φ",Ψ ") .

Therefore, since Ψ " is an arbitrary state,

QΦ" = ±qΦ" .

�
If a system is invariant under an antiunitary transformation ", then we have

S" = S . (10.62)

In the Schrödinger picture, we decompose the Hamiltonian into the free part and the
interacting part:

H = Hf +Hint . (10.63)

The condition for invariance (10.62) is satisfied if

H"
f = Hf , H "

int = Hint . (10.64)

In order to prove this, we change to the interaction picture. In this picture, the
interaction Hamiltonian is

Hint(t) = eitHfHinte−itHf . (10.65)
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Thus,

Hint(t)
" = e−itH"

f H"
inte

itH"
f

= e−itHfHinte
itHf

= Hint(−t) . (10.66)

This will be our starting point. We write Dyson’s formula in the form

S = Tt exp

[
−i
∫

dt Hint(t)

]
, (10.67)

where Tt indicates that we take into account the ordering with respect to the
parameter t . Since the ordering is reversed when we apply ", we introduce the
operator T̃t :

S" = T̃t exp

[
−i
∫

dt Hint(t)
"

]

= T̃t exp

[
−i
∫

dt Hint(−t)
]

= Tt ′ exp

[
−i
∫

dt ′Hint(t
′)
]
= S , (10.68)

where we have used t ′ = −t and T̃t = T−t .
Although invariance under the antiunitary transformation does not imply the

selection rule, the principle of detailed balance can be derived, as discussed in
Sect. 6.4. Equation (10.68) implies that

(Φ", SΨ ") = (Ψ, SΦ) , (10.69)

so summing over spin states,

∑
Si

∑
Sf

∣∣T (i → f )
∣∣2 =∑

Si

∑
Sf

∣∣T (f "→ i")
∣∣2 . (10.70)

Combining this with (9.27), we obtain a relation between differential cross-sections
for inverse processes:

1. Invariance under T and T P :

d

dΩ
σ(a + b→ c + d)

d

dΩ
σ(c + d → a + b)

= (2Sc + 1)(2Sd + 1)

(2Sa + 1)(2Sb + 1)

(
pcd

pab

)2

, (10.71)
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where Sa stands for the spin of particle a, etc., and pab (pcd) are the moduli of
the relative momenta between particles a and b (c and d) in the center-of-mass
systems. Equation (6.88) used to determine the spin of the π meson or pion is a
special case of (10.71), derived on the assumption of invariance under the time
reversal of strong interactions.

2. Invariance under CT and CPT :

d

dΩ
σ(a + b→ c+ d)

d

dΩ
σ(c̄ + d̄ → ā + b̄)

= (2Sc + 1)(2Sd + 1)

(2Sa + 1)(2Sb + 1)

(
pcd

pab

)2

. (10.72)

10.5 CPT Theorem

We now discuss the CPT theorem or Pauli–Lüders theorem, a theorem about
antiunitary transformations which always holds true in a local field theory. This
theorem was given by Lüders in [109] and by Pauli in [110]. It attracted a lot of
attention in 1956, when it was discovered that parity is not always conserved.

In this section, " stands for theCPT transformation. It is defined by the following
equations:

ψ(x)" = iγ5ψ(−x) , ψ̄(x)" = iψ̄(−x)γ5 (spinor) , (10.73)

ϕλ1...λn(x)
" = (−1)nϕλ1...λn(−x) (tensor) . (10.74)

Here the field operators are in time-dependent representations, such as the Heisen-
berg picture or the interaction picture.

Theorem 10.4 CPT theorem. Any local field theory is invariant under the CPT

transformation.

The content of this theorem can be expressed by

L (x)" = L (−x) , (10.75)

or more specifically by

Lf(x)
" = Lint(−x) , Lint(x)

" = Lint(−x) . (10.76)

To prove this, we consider a simple Lagrangian density:

Lint(x) = gψ̄α1 (x) . . . ψ̄αn(x)O
λ1...λn
α1...αnβ1...βn

ψβ1(x) . . . ψβn(x)ϕλ1...λm(x) ,

(10.77)
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where we have assumed that there are as many occurrences of ψ̄ as of ψ , and O is
a product of the Dirac matrices, e.g., if m = n,

(γλ1)α1β1 . . . (γλn)αnβn(1+ γ5) . (10.78)

Furthermore, ϕλ1...λm is a bosonic part and if λ1, . . . , λm are vector indices, it can
be a product of multi-operators, e.g.,

ϕαβγ = ϕα(x)ϕβ(x)
∂ϕ(x)

∂xγ
. (10.79)

Clearly, however, we always have

ϕλ1...λm(x)
" = (−1)mϕλ1...λm(−x) . (10.80)

The order of spinor operators is reversed under CPT . Assuming that the bosonic
part is defined by the normal product, the ordering makes no difference under CPT .
Restoring the order of the spinor part introduces a sign factor (−1)n. Thus, in order
to prove (10.75), we must prove that

(−1)m+n(iγ5)α1α
′
1
. . . (iγ5)αnα′nO

λ1...λm
α′1...α′nβ ′1...β ′n

(iγ5)β ′1β1
. . . (iγ5)β ′nβn = O

λ1...λm
α′1...α′nβ ′1...β ′n

.

(10.81)

To do this, we use the following:

iγ5(1 or γ5)iγ5 = −(1 or γ5) (n−m) combinations ,

iγ5(γμ or γμγ5)iγ5 = γμ or γμγ5 m combinations .

Therefore, the change in the overall sign is (−1)n−m = (−1)n+m, which proves
(10.81).

Next, we consider the case where the number of occurrences of ψ and ψ̄ in the
interaction Lagrangian are different. For example,

Lint(x) = gψ̄(x)iγ5Cψ̄T(x)ϕ(x)+ h.c. (10.82)

It is clear from the discussion about charge conjugation that Cψ̄T transforms in the
same way as ψ under a proper Lorentz transformation. Hence, (10.82) is invariant
under a proper Lorentz transformation. Then, taking

ψ ′(x) = Cψ̄T(x) , (10.83)
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the fields ψ ′ and ψ transform in the same way under the CPT transformation. This
can be proven as follows:

ψ ′(x)" = [Cψ̄T(x)
]" = iC

[
ψ̄(−x)γ5

]T = iCγ T
5 ψ̄T(−x)

= iγ5Cψ̄T(−x) = iγ5ψ
′(−x) . (10.84)

Thus, the assumption that the numbers of ψ and ψ̄ are the same is not necessary
if one rewrites ψ̄ as ψ ′. Let us examine what we have said above regarding the
transformation properties of Cψ̄T.

Transformation Properties of Cψ̄T

In Sect. 3.6, we looked carefully at the way ψ transforms under proper Lorentz
transformations. Now we investigate the transformation of Cψ̄T. From (3.116),

Cψ̄T → C
(
ψ̄S−1)T = C(ST)−1ψ̄T . (10.85)

We consider first an infinitesimal transformation (3.119), whence

ST = 1+ 1

2
εμνT

T
μν . (10.86)

Using (3.121),

CSTC−1 = 1+ 1

2
εμνCT T

μνC
−1 = 1− 1

2
εμνTμν = S−1 . (10.87)

Thus, since this relation should also hold true for a finite proper Lorentz transfor-
mation, we have

C(ST)−1ψ̄T = C(ST)−1C−1Cψ̄T = S
(
Cψ̄T) , (10.88)

i.e., for a proper Lorentz transformation,

Cψ̄T → S
(
Cψ̄T) . (10.89)

This shows that it obeys the same transformation law as ψ .
In contrast, for space inversion, (10.6) implies

Cψ̄T → εC(ψ̄γ4)
T = εCγ T

4 ψ̄T = −εγ4
(
Cψ̄T) . (10.90)

The sign is different compared with the transformation of ψ under space inversion.
This confirms Theorem 10.1 in Sect. 10.2.
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Origin of the Name ‘CPT Transformation’
We now prove that the combination of the three transformations C, P , and T

yields ". Since for each transformation the phase is not necessarily determined, we
apply the simplest one. Since time reversal swaps the creation and annihilation of a
particle, it turns out that ψ � ψ̄ and t → −t . Furthermore, the sign of the spatial
components of the four-current iψ̄γμψ is reversed. Thus, the time reversal of the
spinor becomes

T : ψ(x, t)→ ψ̄(x,−t)γ4γ5C , ψ̄(x, t)→ C−1γ5γ4ψ(x,−t) ,
(10.91)

up to a phase. Next, consecutively carrying out space inversion and then charge
conjugation,

PT : ψ(x, t)→ ψ̄(−x,−t)γ5C , ψ̄(x, t)→ C−1γ5ψ(−x,−t) ,
(10.92)

and

CPT : ψ(x, t)→ (γ5C)TC−1ψ(−x,−t) = −γ5ψ(−x,−t) . (10.93)

Similarly,

CPT : ψ̄(x, t)→ ψ̄(−x,−t)γ5 . (10.94)

Apart from the undetermined factor, this coincides with " in (10.73). This is the
reason why " is called the CPT transformation. Although the CPT transformation in
(10.73) is uniquely determined, the phase of each transformation is not necessarily
uniquely determined.

From the fact that the product of these three transformations is always invariant,
it follows that, if one of them does not make the theory invariant, at least one more
must also break the invariance. The non-conservation of parity was discovered in
1956, implying the violation of invariance under space inversion. It then turned out
that charge conjugation invariance was also broken. At the time, it was expected
that invariance under CP would hold. But as already mentioned when discussing
the decay pattern in (10.29), this too turned out to be incorrect.

Transformation Properties of the Hamiltonian
The energy–momentum four-vector is

Pν =
∫

d3xT0ν(x) . (10.95)
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Under the CPT transformation,

Tμν(x)
" = Tμν(−x) . (10.96)

Thus,

P"
ν = Pν . (10.97)

At t = 0 or in the Schrödinger picture, this implies

H"
f = Hf , H "

int = Hint . (10.98)

Since (10.58) can be derived from (10.64), this equation ensures that the S-matrix
is invariant under the CPT transformation.

Equality of Particle and Antiparticle Masses
We use Theorem 10.2 in Sect. 10.3. Assuming that Φ is a state containing a particle
of mass m, Φ" is a state containing its antiparticle, i.e.,

(P 2
ν +m2)Φ = 0 . (10.99)

Therefore, from (10.97),

(P 2
ν +m2)Φ" = 0 . (10.100)

These equations imply that the masses of a particle and its antiparticle are the same.

Equality of Particle and Antiparticle Lifetimes
We have

T (a → a) = T (a"→ a") , (10.101)

due to the invariance of S. Taking the imaginary part as an application of the optical
theorem to the decay process, it turns out that the total decay widths of a particle
and its antiparticle are the same, whence their lifetimes are also the same.
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Green’s Functions

So far we have talked a lot about the properties of the S-matrix, but there is an
important concept closely related to the S-matrix, namely, the concept of Green’s
functions. We first define Green’s functions in the interaction picture, and then
rewrite them in the Heisenberg picture. This leads to the so-called Gell-Mann–Low
relation [111]. We then discuss Matthews’ theorem [112] for the relation between
the Hamiltonian formalism and the Lagrangian formalism. Finally, we turn our
attention to the reduction formula connecting the S-matrix and Green’s functions.
This formula relates to fundamental conditions called asymptotic conditions in the
Heisenberg picture.

11.1 Gell-Mann–Low Relation

As in Chap. 3, writing the free-field energy–momentum four-vector in the interac-
tion picture as P (0)

μ , we find that (3.29) holds true for a field operator O(x) without
external fields, i.e.,

[
P (0)
μ ,O(x)

] = i
∂

∂xμ
O(x) . (11.1)

In particular, for μ = 0,

[
P

(0)
0 ,O(x)

] = −i
∂

∂t
O(x) . (11.2)

We now introduce the following transformation function as O :

U(t, t0) = T exp

[
−i
∫ t

t0

dt ′Hint(t
′)
]

. (11.3)
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We insert this into (11.2), but bearing in mind that

[
P

(0)
0 ,−i

∫ t

t0

dt ′Hint(t
′)
]
= −
∫ t

t0

dt ′
∂

∂t ′
Hint(t

′)

= −[Hint(t)−Hint(t0)
]
. (11.4)

This immediately yields

[
P

(0)
0 , U(t, t0)

] = −T [[Hint(t)−Hint(t0)]U(t, t0)
]

= −Hint(t)U(t, t0)+ U(t, t0)Hint(t0) . (11.5)

We now set t = 0 and take the limit t0 →−∞. In this case, putting

P
(0)
0 +Hint(0) = Htotal , (11.6)

we obtain

HtotalU(0,−∞) = U(0,−∞)
[
P

(0)
0 +Hint(−∞)

]
.

Assuming that interactions exist only in a finite space-time region, as in Sects. 4.4
and 7.3, we consider the limit as this space-time region extends to infinity. This
corresponds to introducing interactions adiabatically, and a variety of consequences
depend on how the limit is actually taken. With some loss of rigour, we assume that

Hint(−∞) = 0 , (11.7)

whence

HtotalU(0,−∞) = U(0,−∞)P
(0)
0 . (11.8)

Then writing the vacuum in the interaction picture as Φ0,

P
(0)
0 Φ0 = 0 . (11.9)

Hence, writing the vacuum in the Heisenberg picture as Ψ0, we find

HtotalΨ0 = 0 , Ψ0 = U(0,−∞)Φ0 . (11.10)

As shown in Chap. 6, the Heisenberg picture and the interaction picture are related
by (6.30), viz.,

U(t, t0)
−1ϕα(x, t)U(t, t0) = ϕ(H)

α (x, t) . (11.11)
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In this section, we set t0 = 0. Therefore, for t1 > t2,

(
Φ0, T
[
U(∞,−∞)A(x1, t1)B(x2, t2)

]
Φ0
)

= (Φ0, U(∞, t1)A(x1, t1)U(t1, t2)B(x2, t2)U(t2,−∞)Φ0
)

= (Φ0, U(∞, 0)A(H)(x1, t1)B
(H)(x2, t2)U(0,−∞)Φ0

)
= (Φ0, U(∞,−∞)U(0,−∞)−1A(H)(x1, t1)B

(H)(x2, t2)U(0,−∞)Φ0
)

= (Φ0, U(∞,−∞)Φ0)(Φ0, U(0,−∞)−1A(H)(x1, t1)B
(H)(x2, t2)U(0,−∞)Φ0

)
= (Φ0, U(∞,−∞)Φ0

)(
Ψ0, A

(H)(x1, t1)B
(H)(x2, t2)Ψ0

)
, (11.12)

where we have used the composition rule (6.27) for the transformation function and
U(∞,−∞), and the fact that the vacuum Φ0 transforms to the vacuum up to a
phase. This can be written in the form

(
Ψ0, T
[
A(H)(x1)B

(H)(x2)
]
Ψ0
) =
(
Φ0, T
[
U(∞,−∞)A(x1)B(x2)

]
Φ0Φ0
)

(
Φ0, U(∞,−∞)Φ0

) .

(11.13)

The presence of the denominator corresponds to neglecting bubble graphs, as
discussed in connection with (8.70). This equation is easily generalized:

(
Ψ0, T
[
A(H)(x1)B

(H)(x2) . . . Z
(H)(xn)

]
Ψ0
)

(11.14)

=
(
Φ0, T
[
U(∞,−∞)A(x1)B(x2) . . . Z(xn)

]
Φ0
)

(
Φ0, U(∞,−∞)Φ0

) .

This is called the Gell-Mann–Low relation [111]. It gives the relationship between
the Heisenberg picture and the interaction picture. Additionally, any quantity like
the left-hand side, i.e., a vacuum expectation value of a product of time-ordered
field operators, is called a Green’s function.

11.2 Green’s Functions and Their Generating Functionals

When we discuss properties of a Green’s function, instead of considering them one
by one, it is sometimes useful to discuss their generating function, or more precisely
their generating functional. In this section, we describe the simplest generating
functional, which produces the Green’s functions of a neutral scalar field.

We consider the Lagrangian density

L = −1

2

[
(∂μϕ)

2 +m2ϕ2]− g

4!ϕ
4 . (11.15)
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We split this into the free part and the interaction part. In fact, such a separation
is not trivial, and becomes particularly complicated when we take into account
renormalization in the next chapter. However, in this section, we simply choose

Hint(x) = −Lint(x) = g

4!ϕ
4 . (11.16)

In the following, we shall express the vacuum Φ0 simply as |0〉. We introduce a
c-number external field J (x) and define the functional

T (0)[J ] =
〈
0
∣∣∣T exp

{
− i
∫

d4x
[
Hint(x)+ J (x)ϕ(x)

]}∣∣∣0〉〈
0
∣∣T exp

[− i
∫

d4xHint(x)
]∣∣0〉 . (11.17)

We now derive the equation satisfied by the generating functional of the Green’s
functions T (0)[J ]. To do this, we just have to use the reduction formula (8.57), i.e.,

(�x −m2)T [ϕ(x)AB . . .] = i
δ

δϕ(x)
T [AB . . .] . (11.18)

Writing the denominator of (11.17) as 〈0|U(∞,−∞)|0〉,

(�x −m2)i
δ

δJ (x)
T (0)[J ]

= (�x −m2)
〈
0
∣∣T (ϕ(x) exp

{− i
∫

d4y
[
Hint(y) + J (y)ϕ(y)

]})∣∣0〉
〈0|U(∞,−∞)|0〉

=

〈
0
∣∣∣i δ

δϕ(x)
T
(

exp
{− i
∫

d4y
[
Hint(y)+ J (y)ϕ(y)

]})∣∣∣0〉

〈0|U(∞,−∞)|0〉

=

〈
0
∣∣∣T
([ g

3!ϕ
3(x) + J (x)

]
exp
{−i
∫

d4y
[
Hint(y)+ J (y)ϕ(y)

]} )∣∣∣0〉

〈0|U(∞,−∞)|0〉

=
{
g

3!
[

i
δ

δJ (x)

]3
+ J (x)

}
T (0)[J ] . (11.19)

Integrating this equation, we obtain the functional equation for T (0)[J ]:

i
δ

δJ (x)
T (0)[J ] = −i

∫
d4yΔF(x − y)

{
g

3!
[

i
δ

δJ (y)

]3
+ J (y)

}
T (0)[J ] .

(11.20)
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Differentiating T (0)[J ] n times with respect to J and setting J = 0, we obtain the
n-point Green’s function:

in
δn

δJ (x1) . . . δJ (xn)
T (0)[J ]

∣∣∣∣
J=0
=
〈
0
∣∣T [ϕ(x1) . . . ϕ(xn)U(∞,−∞)

]∣∣0〉
〈0|U(∞,−∞)|0〉 .

(11.21)

We now turn to the Heisenberg picture, defining the generating functional by

T [J ] = 〈0∣∣T exp
[
− i
∫

d4x J (x)ϕ(x)
]∣∣0〉 , (11.22)

where we have writtenΨ0 and ϕ(H) in bold face as |0〉 and ϕ, respectively. Therefore,

(�x −m2)i
δ

δJ (x)
T [J ] = (�x −m2)

〈
0
∣∣T {ϕ(x) exp

[
− i
∫

d4y J (y)ϕ(y)
]}∣∣0〉 .
(11.23)

In this picture,

(�x −m2)T [ϕ(x)AB . . .] = T
[
(�x −m2)ϕ(x),AB . . .

]+ i
δ

δϕ(x)
T [AB . . .] .

(11.24)

Inserting this into (11.23) and using the equation of motion for ϕ, we
recover (11.19). Hence, (11.20) can also be recovered, i.e.,

i
δ

δJ (x)
T [J ] = −i

∫
d4y ΔF(x − y)

{
g

3!
[

i
δ

δJ (y)

]3
+ J (y)

}
T [J ] . (11.25)

This implies that, even if the boundary conditions are the same, we can expect

T [J ] = T (0)[J ] . (11.26)

In fact, differentiating this n times with respect to J and setting J = 0, it becomes

〈
0
∣∣T [ϕ(x1) . . .ϕ(xn)]|0〉 =

〈
0
∣∣T [ϕ(x1) . . . ϕ(xn)U(∞,−∞)

]∣∣0〉
〈0|U(∞,−∞)|0〉 , (11.27)

which is nothing other than the Gell-Mann–Low relation. Thus, it turns out
that (11.26) always holds true.

When a Green’s function is expressed by a Feynman diagram, it will generally
give a set of non-connected parts. We focus only on the graphs in which n points are
connected to each other by lines. We write the contribution corresponding to such a
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graph as

〈
0
∣∣T [ϕ(x1) . . . ϕ(xn)

]∣∣0〉conn , (11.28)

where conn stands for ‘connected.’ So what is the relationship between the
connected Green’s function and the original Green’s function? To find out, we start
with some point x and separate into the part connected with x and the other parts.
This gives a recursion formula:

〈
0
∣∣T [ϕ(x)ϕ(x1) . . . ϕ(xn)

]∣∣0〉 (11.29)

=
∑
comb

〈
0
∣∣T [ϕ(x)ϕ(x ′1) . . . ϕ(x ′k)

]∣∣0〉conn

〈
0
∣∣T [ϕ(x ′k+1) . . . ϕ(x ′n)

]∣∣0〉 ,

where the summation has been taken over all combinations separating x1, . . . , xn
into x ′1, . . . , x ′k and x ′k+1, . . . , x

′
n. In order to express this relation in a closed form,

we introduce a generating functional R[J ] for the connected Green’s functions:

R[J ] =
∞∑
n=1

(−i)n

n!
∫

d4x1 . . .

∫
d4xn
〈
0
∣∣T [ϕ(x1) . . . ϕ(xn)]

∣∣0〉connJ (x1) . . . J (xn) ,

(11.30)

in
δn

δJ (x1) . . . δJ (xn)
R[J ]
∣∣∣∣
J=0
= 〈0∣∣T [ϕ(x1) . . . ϕ(xn)]

∣∣0〉conn . (11.31)

The recursion formula can now be expressed in closed form:

i
δ

δJ (x)
T [J ] =

(
i

δ

δJ (x)
R[J ]
)
T [J ] . (11.32)

We solve this functional equation with the boundary conditions

R[0] = 0 , T [0] = 1 . (11.33)

The solution is

T [J ] = expR[J ] . (11.34)

Then writing the expectation value of ϕ(x) when there exists an external field J as
〈ϕ(x)〉, we have

〈ϕ(x)〉 =
i

δ

δJ (x)
T [J ]

T [J ] = i
δ

δJ (x)
R[J ] . (11.35)
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In some situations, it is more useful to consider 〈ϕ(x)〉 as an independent external
field instead of J (x), so we introduce the following Legendre transformation:

F = R + i
∫

d4xJ (x)〈ϕ(x)〉 . (11.36)

This yields

δF = δR + i
∫

d4x
[
J (x)δ〈ϕ(x)〉 + δJ (x)〈ϕ(x)〉]

= −i
∫

d4x δJ (x)δ〈ϕ(x)〉 + i
∫

d4x
[
J (x)δ〈ϕ(x)〉 + δJ (x)〈ϕ(x)〉]

= i
∫

d4x J (x)δ〈ϕ(x)〉 , (11.37)

i.e., taking 〈ϕ(x)〉 as an independent variable instead of J (x),

δF

δ〈ϕ(x)〉 = iJ (x) . (11.38)

Variable transformations like this will play an important role in the discussion of
spontaneous symmetry breaking later on. Moreover, differentiating (11.35) again,

i
δ〈ϕ(x)〉
δJ (y)

= − δ2R

δJ (x)δJ (y)
= ΔF(x, y) . (11.39)

This is the two-point Green’s function in the case where an external field exists.
Differentiating (11.38),

δ2F

δ〈ϕ(x)〉δ〈ϕ(y)〉 = i
δJ (y)

δ〈ϕ(x)〉 = −Δ
−1
F (x, y) , (11.40)

which is the inverse of the two-point Green’s function.

11.3 Different Time-Orderings in the Lagrangian Formalism

In the previous section, we investigated the relationship between representations of
Green’s functions in the Heisenberg picture and in the interaction picture. In this
section, we shall discuss the difference between time-orderings in the Hamiltonian
formalism and the Lagrangian formalism.
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For simplicity, we start with particle dynamics. Considering a one-dimensional
system, we assume that

p(t) = mq̇(t) . (11.41)

Therefore, under the time-ordering operator T , p(t) is ordered as an operator
corresponding to time t . This is because in the Hamiltonian formalism, the operators
q(t) and p(t) are treated as independent variables, so these are considered to be
quantities that need no further temporal decomposition. However, in the Lagrangian
formalism, only q(t) is an independent quantity, so q̇(t) becomes

q̇(t) = lim
ε→0

q(t + ε)− q(t)

ε
. (11.42)

Assuming that ε is small but finite, it turns out that, in the Lagrangian formalism,
q̇(t) is associated with two clock times in time-orderings. We denote the time-
ordering operator in this treatment by T ∗. It should be noted here that, in the
path-integral method, the same decomposition (11.42) is used. Therefore, the
method using T ∗ is closely related to the path-integral method. So what is the
difference between using T or T ∗?

In the Hamiltonian formalism and hence under T , we assume that q̇(t) can be
treated as a one-clock-time quantity, as in (11.41). Now,

T ∗[q̇(t), q(t ′)] = T ∗
[

lim
ε→0

q(t + ε)− q(t)

ε
, q(t ′)
]

= lim
ε→0

T

[
q(t + ε)− q(t)

ε
, q(t ′)
]

= ∂

∂t
T
[
q(t), q(t ′)

]
. (11.43)

However, if q obeys a second order differential equation, then only q̇ can enter in
T ∗, because q̈ is not independent of q . Another example is

T ∗
[
q̇(t), q̇(t ′)

] = ∂2

∂t∂t ′
T
[
q(t), q(t ′)

]
. (11.44)

The derivation of this equation is perfectly analogous to the one in the previous
example. However, using T , we find

∂

∂t
T
[
q(t), q(t ′)

] = T [q̇(t), q(t ′)] + ∂

∂t

[
1

2
ε(t − t ′)

] [
q(t), q(t ′)

]

= T
[
q̇(t), q(t ′)

]+ δ(t − t ′)
[
q(t), q(t ′)

]
= T
[
q̇(t), q(t ′)

]
. (11.45)



11.3 Different Time-Orderings in the Lagrangian Formalism 235

Therefore, this is the same as T ∗ in (11.43). However, assuming (11.41),

∂

∂t
T
[
q(t), q̇(t ′)

] = T
[
q̇(t), q̇(t ′)

]+ δ(t − t ′)
[
q(t), q̇(t ′)

]

= T
[
q̇(t), q̇(t ′)

]+ i

m
δ(t − t ′) . (11.46)

The left-hand side is equal to the right-hand side of (11.44). So setting the left-hand
side of (11.46) equal to the left-hand side of (11.44),

T
[
q̇(t), q̇(t ′)

] = T ∗
[
q̇(t), q̇(t ′)

]− i

m
δ(t − t ′) . (11.47)

The difference between T and T ∗ becomes clear in this way.
This argument can be extended to field theory. For simplicity, we consider a

neutral scalar field in the interaction picture:

∂

∂xμ
T
[
∂μϕ(x), ϕ(y)

] = T
[
∂μϕ(x), ϕ(y)

]+ 1

i
δμ4δ(x0 − y0)

[
ϕ(x), ϕ(y)

]

= T
[
∂μϕ(x), ϕ(y)

]
. (11.48)

In order to differentiate this one more time, we introduce a unit time-like vector nμ.
Here we assume that n1 = n2 = n3 = 0 and n4 = i :

∂

∂yν
T
[
∂μϕ(x), ϕ(y)

] = T
[
∂μϕ(x), ϕ(y)

]+ iδν4δ(x0 − y0)
[
∂μϕ(x), ϕ(y)

]
.

The second term becomes

δμ4δν4δ(x0 − y0)
[
ϕ̇(x), ϕ(y)

] = −iδμ4δν4δ
4(x − y)

= inμnνδ
4(x − y) .

Taking the vacuum expectation value,

〈
0
∣∣T [∂μϕ(x), ∂νϕ(y)]∣∣0〉 = ∂2

∂xμ∂yν
ΔF(x − y)− inμnνδ4(x − y) . (11.49)

On the other hand,

〈
0
∣∣T ∗[∂μϕ(x), ∂νϕ(y)]∣∣0〉 = ∂2

∂xμ∂yν
ΔF(x − y) . (11.50)

This difference corresponds to (11.47). Comparing the two equations above, we see
that T ∗ is covariant and simpler. When there are derivatives of field operators in
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the interaction term, the Hamiltonian density is not a scalar, but a tensor involving
the time-like vector n. Although in this case both the Hamiltonian density and the
contraction function depend on n, when we compute the S-matrix, the two types
of n-dependence cancel out, so the final result does not depend on n. This is called
Matthew’s theorem [112].

11.4 Matthews’ Theorem

If interactions do not include derivatives of the field operators, we have

Hint(x) = −Lint(x) . (11.51)

Clearly, in this case,

S = T exp

[
−i
∫

d4xHint(x)

]
= T ∗ exp

[
i
∫

d4xLint(x)

]
. (11.52)

This is because the difference between T and T ∗ does not appear anywhere here.
When derivatives are included in the interactions, the situation becomes more

complicated. For example, when a charged scalar field and the electromagnetic field
interact with each other,

L = −[(∂μ + ieAμ)ϕ
† · (∂μ − ieAμ)ϕ +m2ϕ†ϕ

]+Lem , (11.53)

Lint = −ieAμ(ϕ
† · ∂μϕ − ∂μϕ

† · ϕ)− e2A2
μϕ

†ϕ . (11.54)

Thus, when derivatives of field operators are included, Hint differs from −Lint.
First, we decompose the Lagrangian density:

L (x) = Lf(x)+Lint(x) . (11.55)

If ϕα is a real scalar field, the quantity canonically conjugate to ϕα in the free field
case is

πα(x) = ∂Lf(x)

∂ϕ̇α(x)
= ϕ̇α(x) . (11.56)

If we now consider interactions, the canonically conjugate field is

π ′α(x) =
∂L (x)

∂ϕ̇α(x)
= ϕ̇α(x)+ ∂Lint(x)

∂ϕ̇α(x)
. (11.57)
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By the Yang–Feldman equation (6.34), the relation between the Heisenberg picture
and the interaction picture is

ϕα(x) = U(x0,−∞)−1ϕin
α (x)U(x0,−∞) , (11.58)

π ′α(x) = U(x0,−∞)−1π in
α (x)U(x0,−∞) . (11.59)

The reason why π transforms into π ′ is that the transformation by U should not
change the canonical commutation relation. In the following, we shall drop the
superscript ‘in’ on operators in the interaction picture, and express Heisenberg
operators in bold face. Therefore, the Hamiltonian density is

HHH (x) =
∑
α

π ′
α(x)φ̇α(x)−L

(
ϕα(x), ϕ̇α(x)

)
, (11.60)

where we have assumed that a spatial derivative is a linear combination of the ϕα(x).
Then,

H (x) = U(x0,−∞)HHH (x)U(x0,−∞)−1 . (11.61)

In this computation we use the inverse transformations of (11.58) and (11.59).
Therefore,

U(x0,−∞)ϕ̇α(x)U(x0,−∞)−1 = U(x0,−∞)
[
π ′
α(x)− σα(x)

]
U(x0,−∞)−1

= πα(x)− σα(x)

= ϕ̇α(x)− σα(x) , (11.62)

where σα is defined by

σα(x) = ∂Lint(x)

∂ϕ̇α(x)
= −nμ ∂Lint(x)

∂ϕα,μ(x)
. (11.63)

Thus,

H (x) =
∑
α

πα(x)
[
πα(x)− σα(x)

]−L
(
ϕα(x), ϕ̇α(x)− σα(x)

)
. (11.64)

We use a Taylor expansion for the second term. In this case, since L includes at
most second order terms in ϕ̇α(x) and using

∂2

∂ϕ̇α∂ϕ̇β
L = δαβ ,

∂

∂ϕ̇α
L = πα + σα , (11.65)
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we obtain the following power series expansion in σ :

L (ϕα, ϕ̇α − σα) = L (ϕα, ϕ̇α)−
∑
α

σαπα − 1

2

∑
α

σ 2
α (x) . (11.66)

Inserting this into (11.64),

H (x) =
∑
α

π2
α(x)−L

(
ϕα(x), ϕ̇α(x)

)+ 1

2

∑
α

σ 2
α(x) . (11.67)

Therefore,

Hint(x) = −Lint(x)+ 1

2

∑
α

nμnν
∂Lint(x)

∂ϕα,μ(x)

∂Lint(x)

∂ϕα,ν(x)
. (11.68)

It turns out that the second term on the right-hand side expresses a shift from (11.51).
We now prove the equality (11.52) in this case, i.e., Matthews’ theorem. To do so,
we first specify the relation between the T-product and the normal product for the
simple neutral scalar field theory.

We expand the T-product T [AB . . . Z] into normal products in the neutral scalar
theory. In this case, we write the contraction function ΔF, replaced by λΔF, as
Tλ[AB . . . Z]. Since differentiating this with respect to λ is equivalent to contracting
ϕ(x) and ϕ(y) and multiplying by ΔF, we have

∂

∂λ
Tλ[AB . . . Z] = 1

2

∫
d4x

∫
d4y

δ

δϕ(x)
ΔF(x − y)

δ

δϕ(y)
Tλ[AB . . . Z] ,

(11.69)

where we have treated ϕ’s in the normal product as c-numbers and differentiated
with respect to them. Moreover, if we take λ = 0, then since this is exactly the same
as that with no contraction, we have

T0[AB . . . Z] = :AB . . . Z : . (11.70)

Solving the differential equation (11.69) under the initial condition (11.70) and
taking λ = 1, we find

T [AB . . . Z] = exp

[
1

2

∫
d4x

∫
d4y

δ

δϕ(x)
ΔF(x − y)

δ

δϕ(y)

]
:AB . . . Z : .

(11.71)

Next we take the vacuum expectation value of this equation. Since the expectation
value of the normal product vanishes, the right-hand side survives only if all
field operators are contracted. Thus, setting to zero the operators ϕ which are not
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contracted on the right-hand side, this gives only those contributions which appear
when all operators are contracted:

〈
0
∣∣T [AB . . . Z]∣∣0〉 = exp

[
1

2

∫
d4x

∫
d4y

δ

δϕ(x)
ΔF(x − y)

δ

δϕ(y)

]
:AB . . . Z :

∣∣∣∣
ϕ=0

.

(11.72)

In fact, (11.52) is only true if no derivative of ϕ is included in AB . . . Z. This
operator appearing in the argument of the exponential function is related to the field
quantization. It tells us how to contract operators. Denoting this by D, the operation
which converts the normal product including ϕ and its derivative to the T-product is

T [AB . . . Z] = eD :AB . . . Z : . (11.73)

When the normal product includes ϕ, its derivative, and fermionic fields ψ and ψ̄ ,
we have

D = 1

2

∫
d4x

∫
d4y

{
δ

δϕ(x)
ΔF(x − y)

δ

δϕ(y)

+ 2
δ

δϕ,μ(x)

[
∂

∂xμ
ΔF(x − y)

]
δ

δϕ(y)

+ δ

δϕ,μ(x)

[
∂2

∂xμ∂yν
ΔF(x − y)− inμnνδ

4(x − y)

]
δ

δϕ,ν(y)

}

+
∫

d4x

∫
d4y

δ

δψ̄β(y)
SF(x − y)αβ

δ

δψα(x)
, (11.74)

where we have used (11.49) as a contraction function. Regarding the functional
derivatives with respect to the Dirac field, the reader is referred to the caution
after (8.59). Likewise for the T∗-product,

T ∗[AB . . . Z] = eD
∗ :AB . . . Z : , (11.75)

where D∗ is defined so that (11.50) applies to contractions of the ϕ derivatives
in (11.74), whence

D = D∗ + 1

2

∫
d4x

∫
d4y

δ

δϕ,μ(x)

[− inμnνδ4(x − y)
] δ

δϕ,ν(y)
. (11.76)

In both cases, we have treated ϕ and its derivative as independent when taking
functional derivatives.

We now choose the interaction Lagrangian density to have the form

Lint(x) = −jμ(x)∂μϕ(x)+L (0)
int (x) , (11.77)
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where L (0)
int is a term which includes no derivatives. Therefore, from (11.68),

Hint(x) = −Lint(x)+ 1

2

[
nμjμ(x)

]2
. (11.78)

In order to compute the S-matrix, we consider

T exp

[
−i
∫

d4xHint(x)

]
= eD :exp

[
−i
∫

d4xHint(x)

]
:

= eD
∗
eD−D∗ :exp

[
−i
∫

d4xHint(x)

]
: (11.79)

where D − D∗ is the second term on the right-hand side of (11.76). This is a
functional derivative with respect to the derivative of ϕ. Hence, this acts only on
the term jμ∂μϕ in Hint(x) which includes the derivative of ϕ. We must therefore
compute

eD−D∗ :exp

[
−i
∫

d4xjμ(x)∂μϕ(x)

]
: . (11.80)

To carry out this computation, we use

exp

(
λ

d2

dx2

)
eax = eax+a2λ . (11.81)

Generalizing this formula and using it to calculate (11.80), we find that (11.80) is
equivalent to something of the form

:exp

[
− i
∫

d4x

(
jμ(x)∂μϕ(x)− 1

2

[
nμjν(x)

]2)] : . (11.82)

Therefore, (11.79) can be written in the form

T exp

[
−i
∫

d4xHint(x)

]
= eD

∗ :exp

[
− i
∫

d4x

(
Hint(x)− 1

2

[
nμjν(x)

]2)] :

= eD
∗ :exp

[
i
∫

d4xLint(x)

]
:

= T ∗ exp

[
i
∫

d4xLint(x)

]
. (11.83)
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Dividing both sides of this by the vacuum expectation value yields the S-matrix:

S = T ∗ exp
[
i
∫

d4xLint(x)
]

〈
0
∣∣T ∗ exp

[
i
∫

d4xLint(x)
]∣∣0〉 . (11.84)

This is known as Matthews’ theorem. Note that this holds only if derivatives of the
field operator are included linearly in (11.77).

11.5 Example of Matthews’ Theorem with Modification

In the last section, we considered a situation where Matthews’ theorem holds true
and T and Hint can be replaced by T ∗ and −Lint, respectively. In general, we
have to replace Hint by something slightly different from−Lint. We thus generalize
Matthews’ theorem to

T exp

[
−i
∫

d4xHint(x)

]
= T ∗ exp

[
i
∫

d4xLeff(x)

]
, (11.85)

whereLeff is an effective interaction Lagrangian density, which is equivalent to Lint
only when Matthews’ theorem holds true. As an example of a situation where the
theorem does not hold true, we consider the Lagrangian density

L = −1

2
Dab(ϕ)∂λϕa∂λϕb − V (ϕ) , (11.86)

where ϕa (a = 1, 2, . . . , N) are real scalar fields and Dab is a real positive-definite
matrix which is a function of ϕ. In addition, we assume that D and V do not include
derivatives of ϕ. We shall now derive the effective interaction Lagrangian density
for this theory.

When x0 = y0, the canonical commutation relations read

[
ϕa(x),ϕb(y)

] = 0 , (11.87)

[
ϕa(x), ϕ̇b(y)

] = iCab(ϕ)δ
3(x − y) , (11.88)

where C is the inverse matrix of D, i.e.,

∑
b

CabDbc =
∑
b

DabCbc = δac . (11.89)



242 11 Green’s Functions

With summing over repeated indices, the Euler–Lagrange equation gives

[L ]ϕa = Dab(�ϕb − jb) = 0 , (11.90)

ja = Cab

(
1

2

∂

∂ϕb

Dcd − ∂

∂ϕd

Dbc

)
∂λϕc∂λϕd + Cab

∂

∂ϕb

V . (11.91)

We now introduce a generating functional for the Green’s functions:

T [J ] =
〈
0
∣∣∣T exp

[
−i
∫

d4x Ja(x)ϕa(x)

] ∣∣∣0〉 . (11.92)

Therefore, combining (11.90) and the equal-time commutation relation (11.88),

�x

〈
0
∣∣T [ϕa(x),A, B, . . .

]∣∣0〉 = 〈0∣∣T [ja(x),A, B, . . .
]∣∣0〉 (11.93)

+i
〈
0
∣∣∣T
[
Cac(ϕ(x))

δ

δϕb(x)
,A,B, . . .

]∣∣∣0〉+ · · · .

Expressing this in terms of the generating functional,

�x i
δ

δJa(x)
T [J ] = �x

〈
0
∣∣∣T
[
ϕa(x), exp

(
−i
∫

d4yJc(y)ϕc(y)

)]∣∣∣0〉

=
〈
0
∣∣∣T
[
ja(x), exp

(
−i
∫

d4yJc(y)ϕc(y)

)]∣∣∣0〉

+Jb(x)
〈
0
∣∣∣T
[
Cab

(
ϕ(x)
)
, exp

(
−i
∫

d4yJc(y)ϕc(y)

)]∣∣∣0〉 .
(11.94)

Using T [J ], the second term on the right-hand side can be expressed as

Jb(x)Cab

(
i

δ

δJ (x)

)
T [J ] . (11.95)

In the interaction picture, considering the T-product which includes only two
derivatives of ϕ,

T
[
∂μϕ(x), ∂νϕ(y), ϕ(z), . . .

] = T ∗
[
∂μϕ(x), ∂νϕ(y), ϕ(z), . . .

]
(11.96)

−inμnνδ4(x − y)T
[
ϕ(z), . . .

]
.

Noting that, in this derivation, we have only used the equal-time commutation
relations and we have not used the field equation, we can easily make the extension
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to the Heisenberg picture:

T
[
∂μϕa(x), ∂νϕb(y),ϕc(z), . . .

] = T ∗
[
∂μϕa(x), ∂νϕb(y),ϕc(z), . . .

]
(11.97)

−inμnνδ4(x − y)T
[
Cab(ϕ(x)),ϕc(z), . . .

]
.

In particular, if we take y → x and μ = ν = λ, then since nλnλ = −1,

T
[
∂λϕa(x), ∂λϕb(y),ϕc(z), . . .

] = T ∗
[
∂λϕa(x), ∂λϕb(y),ϕc(z), . . .

]
(11.98)

+iδ4(0)T
[
Cab(ϕ(x)),ϕc(z), . . .

]
.

Using this result, the first term on the right-hand side of (11.94) can be written

〈
0
∣∣∣T ∗
[
ja(x), exp

(
−i
∫

d4yJc(y)ϕc(y)

)]∣∣∣0〉 (11.99)

+iδ4(0)
〈
0
∣∣∣T
[
Cab(x)

(
1

2

∂Dcd(x)

∂ϕb(x)
− ∂Dbc(x)

∂ϕd(x)

)
Ccd(x)

× exp

(
−i
∫

d4yJc(y)ϕc(y)

)]∣∣∣0〉 ,
where Cab(x) is an abbreviation for Cab(ϕ(x)), and the same goes for Dcd(x).

Thus, T [J ] satisfies

�x i
δ

δJa(x)
T [J ] =

[
ja

(
i

δ

δJ (x)

)
+ iδ4(0)Fa

(
i

δ

δJ (x)

)
+ Jb(x)Cab

(
i

δ

δJ (x)

)]
T [J ] ,
(11.100)

where

Fa

(
ϕ(x)
) = Cab

(
1

2

∂Dcd(x)

∂ϕb(x)
− ∂Dbc(x)

∂ϕd(x)

)
Ccd(x) . (11.101)

Note that we can factorize the functional derivative ja using the T∗-product.
Rewriting the third term on the right-hand side of (11.100), we have

Jb(x)Cab

(
i

δ

δJ (x)

)
= Cab

(
i

δ

δJ (x)

)
Jb(x)− iδ4(0)

∂Cab(x)

∂ϕb(x)

∣∣∣∣
ϕ→iδ/δJ

.

(11.102)
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Then the coefficients of iδ4(0) in (11.100) are

Fa − ∂Cab

∂ϕb

= 1

2
Cab

∂Dcd

∂ϕb

Ccd − Cab

(
∂Dbc

∂ϕd

Ccd +Dbc
∂Ccd

∂ϕd

)

= 1

2
Cab

∂

∂ϕb

ln(detD)− Cab
∂

∂ϕd

δbd

= 1

2
Cab

∂

∂ϕb

ln(detD)

= 1

2
Ga . (11.103)

Consequently, (11.100) can be written as

�x i
δ

δJa(x)
T [J ]=

[
ja

(
i

δ

δJ (x)

)
+ 1

2
iδ4(0)Ga

(
i

δ

δJ (x)

)
+ Cab

(
i

δ

δJ (x)

)
Jb(x)

]
T [J ] .
(11.104)

Multiplying this on the left by D, we obtain

Dab

(
i

δ

δJ (x)

)
�x i

δ

δJb(x)
T [J ] (11.105)

=
[
Dabjb

(
i

δ

δJ (x)

)
+ Ja(x)+ 1

2
iδ4(0)

∂

∂ϕa(x)
ln
(

detD(x)
)∣∣∣∣
ϕ→iδ/δJ

]
T [J ] .

This is the equation satisfied by the generating functional T [J ].
In order to derive a Feynman–Dyson-like formula in a theory like this, we must

express the solution of the equation forT [J ] in terms of ϕ in the interaction picture.
We thus test the following quantity:

“T [J ]” =
〈
0
∣∣∣T ∗ exp

[
i
∫

d4x
[
Lint(x)− Ja(x)ϕa(x)

]]∣∣∣0〉 , (11.106)

where

Lint = L + 1

2
(∂λϕa)

2 . (11.107)

To obtain the functional equation satisfied by this “T [J ]”, we begin with

“T [J ]” = exp

[
i
∫

d4xLint

(
i

δ

δJ (x)

)]〈
0
∣∣∣ exp

[
−i
∫

d4xJb(x)ϕb(x)

] ∣∣∣0〉

= exp

[
i
∫

d4xLint

(
i

δ

δJ (x)

)]
exp

[
−1

2

∫
d4x

∫
d4yJb(x)ΔF(x − y)Jb(y)

]
,

(11.108)
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where we replace ϕ by iδ/δJ in Lint. For the transformation on the right-hand side,
we have used (11.72). Hence,

�x i
δ

δJa(x)
“T [J ]” = exp

[
i
∫

d4xLint

(
i

δ

δJ (x)

)]
Ja(x)

× exp

[
−1

2

∫
d4x

∫
d4yJb(x)ΔF(x − y)Jb(y)

]

= Ja(x)“T [J ]”+
[

i
∫

d4x ′Lint

(
i

δ

δJ (x ′)

)
, Ja(x)

]
“T [J ]”

= Ja(x)“T [J ]”− [Lint]ϕa
(

i
δ

δJ (x)

)
“T [J ]”

=
{
Ja(x)−Dab

(
i

δ

δJ (x)

)[
�x i

δ

δJb(x)
− jb

(
i

δ

δJ (x)

)]

+�x i
δ

δJa(x)

}
“T [J ]” . (11.109)

Since the last term on the right-hand side is the same as the left-hand side, these
terms cancel out:

Dab

(
i

δ

δJ (x)

)
�x i

δ

δJb(x)
“T [J ]” = Dabjb

(
i

δ

δJ (x)

)
“T [J ]”+ Ja(x)“T [J ]” .

(11.110)

If we replace V in this equation by

V ′ = V + i

2
δ4(0) ln(detD) , (11.111)

it coincides with (11.105). Hence, T [J ] can be obtained by replacing V by V ′ in
“T [J ]” and normalizing in such a way that it is equal to unity when J = 0. Thus,

T [J ] =
〈
0
∣∣T ∗ exp

{
i
∫

d4x
[
Leff(ϕ(x))− Ja(x)ϕa(x)

]}∣∣0〉〈
0
∣∣T ∗ exp

[
i
∫

d4xLeff(ϕ(x))
]∣∣0〉 , (11.112)

where

Leff = Lint − i

2
δ4(0) ln(detD) . (11.113)

It thus turns out that, in this example, Matthews’ theorem has been modified.
The next question concerns properties of the additional term. First of all, this term

is an imaginary number and includes the divergence δ4(0). We have the following
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representation of the δ-function in the space-time coordinates:

δ4(x) = 1

(2π)4

∫
d4k eik·x → δ4(0) = 1

(2π)4

∫
d4k . (11.114)

This therefore gives a fourth-order divergence in momentum space. The imaginary
coefficient is connected with the fourth-order divergence. If we compute the closed
loop without the additional term, a fourth-order divergence comes about in this
theory. Introducing the cutoff Λ in momentum space, we obtain

∫
d4k

k2

k2 +m2 − iε
∼ π2

2
Λ4 − iπ2m2Λ2 . (11.115)

This implies that the divergences up to second order will give divergent contribu-
tions to the mass and coupling constants, as will be discussed later, but those are real
numbers. On the other hand, the fourth-order divergence implied by the equation
above, compared to the divergences up to second order, is an imaginary number.
Such a contribution cannot be removed by renormalization and breaks the unitarity.
Fortunately, the additional term mentioned above automatically cancels this fourth-
order divergence, and in this sense a safety mechanism is automatically introduced
into the theory.

Although the result mentioned above can also be derived by the path-integral
method, this gives the additional term a different interpretation. The path-integral
method produces the above result more easily than the method used here. This
implies that, since the path-integral method is based on the Lagrangian, we can
say that it is more suitable to derive the result including the Lagrangian and the
T∗-product.

11.6 Reduction Formula in the Interaction Picture

So far we have discussed the S-matrix computational method in the interaction
picture. Combining the reduction formula given in Sect. 8.3 and the Gell-Mann–
Low relation, we can also express the S-matrix elements in terms of the Green’s
function in the Heisenberg picture.

In Dyson’s formula, the interaction Hamiltonian density or Lagrangian density
appear when we express the S-matrix. We can ask ourselves whether it is possible to
derive an equation which does not depend explicitly on the form of the interaction.

For simplicity, we consider the charged scalar field and analyze the S-matrix
elements for the scattering process

a + b→ b + a . (11.116)
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To do so, we expand U(∞,−∞) in normal products using Wick’s theorem and
determine the coefficient of the term

:ϕ†
aϕ

†
bϕaϕb : . (11.117)

Since this requires us to read off the normal product from U(∞,−∞) and contract
the rest, we need to calculate

〈
0
∣∣∣ δ

δϕ
†
a(x
′
1)

δ

δϕ
†
b(x
′
2)

δ

δϕa(x1)

δ

δϕb(x2)
U(∞,−∞)

∣∣∣0〉 . (11.118)

Writing the final state as |a′, b′〉, the S-matrix element is given by

〈a′, b′|S − 1|a, b〉 =
∫

d4x ′1d4x ′2d4x1d4x2
〈
a′
∣∣ϕ†

a(x
′
1)
∣∣0〉〈b′∣∣ϕ†

b(x
′
2)
∣∣0〉

×
〈
0
∣∣∣ δ

δϕ
†
a(x
′
1)

δ

δϕ
†
b(x
′
2)

δ

δϕa(x1)

δ

δϕb(x2)
U(∞,−∞)

∣∣∣0〉

×〈0|ϕa(x1)|a〉〈0|ϕb(x2)|b〉
〈0|U(∞,−∞)|0〉 . (11.119)

From the reduction formula, the functional derivative is given by

(�2
x −m2

a)T [ϕa(x) . . .] = i
δ

δϕ
†
a(x)

T [. . .] . (11.120)

Denoting the Klein–Gordon operator on the left-hand side by Ka
x and

using (11.120), equation (11.119) becomes

〈a′, b′|S − 1|a, b〉 = 〈0|U(∞,−∞)|0〉−1

×
∫

d4x′1d4x′2d4x1d4x2
〈
a′
∣∣ϕ†

a(x
′
1)
∣∣0〉〈b′∣∣ϕ†

b (x
′
2)
∣∣0〉

×(−i)4Ka
x′1
Kb

x′2
Ka

x1
Kb

x2

〈
0
∣∣T [ϕa(x′1)ϕb(x′2)ϕ†

a(x1)ϕ
†
b(x2)U(∞,−∞)

]∣∣0〉
×〈0|ϕa(x1)|a〉〈0|ϕb(x2)|b〉 . (11.121)

Here 〈0|ϕa(x)|a〉, which we should call a one-body wave function, has the same
structure in both the interaction picture and the Heisenberg picture. The only
difference would be a proportionality coefficient. Although it is not trivial to
separate the whole Lagrangian density into the free part and the interaction part,
the expressions are equal if we use the renormalized interaction picture discussed in



248 11 Green’s Functions

the next chapter:

〈0|ϕa(x)|a〉 = 〈0|ϕa(x)|a〉 = 1√
2p0V

eip·x . (11.122)

If we use the Gell-Mann–Low relation in this case, (11.121) can be expressed solely
in terms of quantities in the Heisenberg picture:

〈a′, b′|S − 1|a, b〉 =
∫

d4x ′1d4x ′2d4x1d4x2
〈
a′∣∣ϕ†

a(x
′
1)
∣∣0〉〈b′∣∣ϕ†

b(x
′
2)
∣∣0〉

×Ka
x ′1
Kb

x ′2
Ka

x1
Kb

x2

〈
0
∣∣T [ϕa(x

′
1)ϕb(x

′
2)ϕ

†
a(x1)ϕ

†
b(x2)
]∣∣0〉

×〈0|ϕa(x1)|a〉〈0|ϕb(x2)|b〉 . (11.123)

Unlike Dyson’s formula, in the above expression of the S-matrix element, the
explicit form of the interaction does not appear. The problem in the interaction
picture of separating the Lagrangian into the free part and the interaction part does
not arise. However, in the process of deriving this formula, we have made the
assumption (11.7), which is hard to justify. In fact, this result is justified only when
we start with the renormalized interaction picture discussed above. Thus, we have to
discuss the asymptotic conditions which lead to the above formula in the framework
of the Heisenberg picture.

11.7 Asymptotic Conditions

The derivation of the S-matrix element in the Heisenberg picture in the previous
section has been based on several assumptions. The question is whether or not
we can derive the same result from clearer assumptions. In fact, this was done
by Lehmann, Symanzik, and Zimmermann. The assumptions they made are called
asymptotic conditions [113].

In Sect. 6.3, we introduced two kinds of asymptotic field in connection with the
Yang–Feldman formalism. The asymptotic fields ϕint and ϕout for the real scalar
field ϕ satisfy

(�−m2)ϕin(x) = 0 = (�−m2)ϕout(x) , (11.124)

[
ϕin(x), ϕin(y)

] = iΔ(x − y) = [ϕout(x), ϕout(y)
]
. (11.125)

Since these two types of scalar field are engendered by the same scalar field ϕ,
we know that ϕint and ϕout are not independent of one another. This implies that
they will not commute. Intuitively speaking, as in the case of the Yang–Feldman
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formalism,

ϕ(x) −→
{
ϕint(x) , t →−∞ ,

ϕout(x) , t →∞ .
(11.126)

As just described, the reason why the field asymptotes to the free field when t →
±∞ is that since the particles are then far away from each other and there is no
effect from other particles, so they behave like free particles. This fact is closely
related to the issue of renormalization discussed in the next chapter, and to make
this idea more rigorous we have to express the wave function of a particle, not by a
plane wave, but by a wave packet.

We assume that some function f (x) satisfies the conditions

(�−m2)f (x) = 0 , (11.127)

− i
∫

d3x

(
f
∂f ∗

∂x0
− f ∗ ∂f

∂x0

)
= 1 . (11.128)

Then corresponding to this f , we introduce the operators

ϕf (t) = −i
∫

d3x

[
ϕ(x)

∂f ∗(x)
∂x0

− f ∗(x)∂ϕ(x)

∂x0

]
, (11.129)

ϕ
†
f (t) = i

∫
d3x

[
ϕ(x)

∂f (x)

∂x0
− f (x)

∂ϕ(x)

∂x0

]
, (11.130)

where t = x0. We then define the corresponding asymptotic fields ϕin
f and ϕout

f by

lim
τ→−∞

(
Φ,ϕf (τ )Ψ

) = (Φ,ϕin
f Ψ
)
, (11.131)

lim
τ→∞
(
Φ,ϕf (τ )Ψ

) = (Φ,ϕout
f Ψ
)
. (11.132)

For both states Φ and Ψ , we can define the same asymptotic field if we start
with the normalized state vector ϕ†

f (τ ). Note that the right-hand sides of (11.131)
and (11.132) no longer depend on the time variable. Such a limit of an operator in
the sense of the matrix element is called weak convergence, in contrast to strong
convergence defined in the sense of the norm.

Next we consider an orthogonal system of wave functions. A wave function here
is the matrix element with the vacuum of a field operator in a one-particle state. We
consider the set of functions {fα(x)} satisfying (11.127), (11.128), and the condition

− i
∫

d3x

(
fα

∂f ∗β
∂x0
− f ∗β

∂fα

∂x0

)
= δαβ . (11.133)
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The completeness condition for this system of orthogonal functions is

∑
α

fα(x)f
∗
α (y) = iΔ(+)(x − y) . (11.134)

We now introduce the complete system of state vectors {Φ in}. Assuming that Φ0 is
the vacuum,

Φ0 ,

Φ in
α = ϕ†in

α Φ0 ,
...

Φ in
α1...αk

= (pα1...αk )
−1/2ϕ†in

α1
. . . ϕ†in

αk
Φ0 ,

(11.135)

where pα1...αk = n1!n2! . . . nr ! and n stands for the number of particles in the same
one-particle state in (α1, . . . , αk). Replacing ϕ†int by ϕ†out, we can also construct the
complete system {Φout}. The S-matrix can be defined as the unitary transformation
between these two pairs of complete orthonormal systems. It will be shown later
that this definition reproduces the S-matrix elements given in the previous section.
In the next chapter, it will be shown that it also coincides with the definition of the
S-matrix in the Lippmann–Schwinger theory, viz.,

Sβα = (Φout
β ,Φ in

α ) . (11.136)

An equivalent definition is

Φ in
α = SΦout

α . (11.137)

It is clear from the definition that, for the two asymptotic fields,

(Φ in
β , ϕin

f Φ
in
α ) = (Φout

β , ϕout
f Φout

α ) . (11.138)

Combining (11.137) and (11.138),

ϕout
f = S−1ϕin

f S . (11.139)

Similarly,

ϕ
†out
f = S−1ϕ

†in
f S . (11.140)

We introduce ϕin(x) by

ϕin(x) =
∑
α

[
f ∗α (x)ϕ†in

α + fα(x)ϕ
in
α

]
, (11.141)
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and define ϕout by the same equation, viz.,

ϕout(x) = S−1ϕin(x)S . (11.142)

Since the latter coincides with (6.32), we see that this is the same as the S-matrix
given previously. In relation to (11.122) in the previous section, we mentioned that
we have not distinguished whether we take the in-state or the out-state for the one-
particle state in the Heisenberg picture. This implies that, for the stable one-particle
state α, we must have

Φ in
α = Φout

α . (11.143)

Combining this with (11.122) in the previous section,

(�−m2)
(
Φ0,ϕ0Φ

in
α

) = (�−m2)
(
Φ0,ϕ0Φ

out
α

)
, (11.144)

(
Φ0,ϕ0Φ

in
α

) = (Φ0,ϕ0Φ
out
α

) = fα(x) . (11.145)

We will discuss this requirement in the context of renormalization in the next
chapter.

Equations (11.131) and (11.132), together with the assumption of the existence
of the asymptotic field, are called asymptotic conditions. Starting from these
conditions, we will derive the LSZ reduction formula in the Heisenberg picture,
or as they called it, the magic formula (Zauberformel) [113]. We introduce a more
concise notation:

T (x1, . . . , xn) = T [ϕ(x1) . . .ϕ(xn)] , (11.146)

τ (x1, . . . , xn) =
(
Φ0, T [ϕ(x1) . . .ϕ(xn)]Φ0

)
, (11.147)

Ky = �y −m2 , f

←→
∂

∂x
g = f

∂g

∂x
− ∂f

∂x
g . (11.148)

To begin with, we prove the following equation:

(
Φ0, T (x1, . . . , xn)Φ

in
α

) = −i
∫

d4yfα(y)Kyτ(x1, . . . , xn, y) . (11.149)

The left-hand side is

LHS = lim
y0→−∞

i
∫

d3y
(
Φ0, T (x1, . . . , xn, y)Φ0

)←→∂
∂y0

fα(y)

= i lim
y0→−∞

∫
d3y τ(x1, . . . , xn, y)

←→
∂

∂y0
fα(y) . (11.150)
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Noting that ϕout
α is an annihilation operator, in the limit y0 →∞, we have

i lim
y0→∞

∫
d3y τ(x1, . . . , xn, y)

←→
∂

∂y0
fα(y) =

(
Φ0, ϕ

†out
α T (x1, . . . , xn)Φ0

)

= (ϕout
α Φ0, T (x1, . . . , xn)Φ0

) = 0 .

(11.151)

Taking the difference between the two equations above,

(
Φ0, T (x1, . . . , xn)Φ

in
0
)

= i( lim
y0→−∞

− lim
y0→∞)

∫
d3y τ(x1, . . . , xn, y)

←→
∂

∂y0
fα(y)

= −i
∫

d4y
∂

∂y0

[
τ(x1, . . . , xn, y)

←→
∂

∂y0
fα(y)

]

= −i
∫

d4y

[
τ(x1, . . . , xn, y)

∂2fα(y)

∂y2
0

− ∂2τ(x1, . . . , xn, y)

∂y2
0

fα(y)

]
.

(11.152)

We combine this with Green’s theorem:
∫
V

d3y
[
τ(x1, . . . , xn, y) ·Δyfα(y)−Δyτ(x1, . . . , xn, y) · fα(y)

]

=
∫
S=∂V

dS

[
τ(x1, . . . , xn, y) · ∂

∂yn
fα(y) − ∂

∂yn
τ(x1, . . . , xn, y) · fα(y)

]

→ 0 , ∂V →∞ . (11.153)

Here, we use the fact that, since fα(y) is a wave packet and corresponds to a local
wave, it vanishes at a long range. Therefore, combining (11.152) with (11.153),

(
Φ0, T (x1, . . . , xn)Φ

in
α

)

= i
∫

d4y
[
τ(x1, . . . , xn, y) ·�yfα(y)−�yτ(x1, . . . , xn, y) · fα(y)

]

= −i
∫

d4y fα(y)Kyτ(x1, . . . , xn, y) , (11.154)

where we have used Kyfα(y) = 0. The generalization of this equation is

(
Φ0, T (x1, . . . , xn)Φ

in
α1 ...αk

) = (−i)k
∫

d4y1 . . . d
4ykfα1 (y1) . . . fαk (yk)Ky1 . . . Kyk

× τ(x1, . . . , xn, y1, . . . , yk)
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Generalizing further, we obtain

(
Φout

α , T (x1, . . . , xn)Φ
in
β

) = −i
∫

d4ηfβl (η)Kη

(
Φout

α , T (x1, . . . , xn, η)Φ
in
β1...βl−1

)

= −i
∫

d4ζf ∗αk (ζ )Kζ

(
Φout

α1...αk−1
, T (x1, . . . , xn, ζ )Φ

in
β

)
,

(11.155)

where α = α1 . . . αk , β = β1 . . . βl . We have assumed that there is no common one-
particle state between α and β. Under a similar assumption, the S-matrix element
becomes

Sαβ = (Φout
α ,Φ in

β )

= (−1)k+l
∫

d4ζ1 . . . d4ζkd4η1 . . . d4ηlf
∗
α1
(ζ1) . . . f

∗
αk
(ζk)

× fβ1(η1) . . . fβl (ηl)Kζ1 . . .KζkKη1 . . .Kηl τ (ζ1 . . . ζkη1 . . . ηl) .

(11.156)

What we understand from this is that, when k = l = 2, the above expression is
basically the same as (11.123).

Although we considered the matrix element in the above derivation, it also holds
true for the operator, i.e.,

−i
∫

d4y fα(y)KyT (x1, . . . , xn, y) = T (x1, . . . , xn)ϕ
†in
α − ϕ†out

α T (x1, . . . , xn) ,

(11.157)

and

i
∫

d4y f ∗α (y)KyT (x1, . . . , xn, y) = T (x1, . . . , xn)ϕ
in
α − ϕout

α T (x1, . . . , xn) .

(11.158)

Combining (11.134) and (4.18),

∫
d4y Δ(y − x)KyT (x1, . . . , xn, y) = T (x1, . . . , xn)ϕ

in(x) − ϕout(x)T (x1, . . . , xn) .

(11.159)

This is the operator form of the LSZ reduction formula, which corresponds
to (11.120). Putting together

Sϕout(x) = ϕin(x)S (11.160)
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and (11.159),

∫
d4yΔ(y − x)KyST (x1, . . . , xn, y) =

[
ST (x1, . . . , xn), ϕ

in(x)
]
, (11.161)

∫
d4yΔ(x − y)KyST (x1, . . . , xn, y) =

[
ϕin(x), ST (x1, . . . , xn)

]
. (11.161′)

Using the above recursively,

∫
d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)Ky1 . . . Kyl ST (x1, . . . , xn, y1, . . . , yl)

= [ϕin(z1), [ϕin(z2), [. . . [ϕin(zl), ST (x1, . . . , xn)] . . .] .
(11.162)

Taking the vacuum expectation value of this and using one of the renormalization
conditions mentioned in the next chapter, viz.,

SΦ0 = Φ0 , (11.163)

we obtain
∫

d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)Ky1 . . . Kyl τ (x1, . . . , xn, y1, . . . , yl )

= (Φ0, [ϕint(z1), [ϕin(z2), [. . . [ϕin(zl), ST (x1, . . . , xn)] . . .]Φ0
)
.

(11.164)

For n = 0,

∫
d4y1 . . . d

4ylΔ(z1 − y1) . . .Δ(zl − yl)Ky1 . . .Kyl τ (y1, . . . , yl) (11.165)

= (Φ0, [ϕint(z1), [ϕin(z2), [. . . [ϕin(zl), S] . . .]Φ0
)
.

The operator form of the S-matrix is determined by (11.165). Expanding the S-
matrix in the normal product form based on Wick’s theorem, we have

S =
∞∑
l=0

1

l!
∫

d4y1 . . . d4ylc(y1, . . . , yl) :ϕin(y1) . . . ϕ
in(yl) : , (11.166)

where we have assumed that c is symmetric with respect to y1, y2, . . . , yl . When
we insert (11.166) into (11.165), what is left on the right-hand side is only the term



11.8 Unitarity Condition on the Green’s Function 255

including the normal ordered product of l operators, whence

(Φ0, [ϕin(z1), [. . . [ϕin(zl), S] . . .]Φ0)

= il
∫

d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)c(y1, . . . , yl)

=
∫

d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)Ky1 . . . Kyl τ (y1, . . . , yl) .

(11.167)

Then c can be determined uniquely from (11.167), at least on the mass shell, i.e.,
for the Fourier components satisfying the Einstein energy–momentum dispersion
relation. Moreover, since only the value of c on the mass shell contributes
to (11.166),

c(y1, . . . , yl) = (−i)lKy1 . . .Kyl τ (y1, . . . , yl) . (11.168)

Substituting this into (11.166),

S =
∞∑
l=0

∫
d4y1 . . . d

4ylKy1 . . .Kyl τ (y1, . . . , yl) :ϕin(y1) . . . ϕ
in(yl) : ,

(11.169)

where we have assumed that the term corresponding to l = 0 is equal to unity. This
is the operator form of the S-matrix. In addition, going back to (11.164), we have

ST (x1, . . . , xn) =
∞∑
l=0

(−i)l

l!
∫

d4y1 . . . d4ylKy1 . . .Kyl τ (x1, . . . , xn, y1, . . . , yl )

× :ϕin(y1) . . . ϕ
in(yl ) : . (11.170)

As just described, many reduction formulae can be obtained from the asymptotic
conditions. Indeed, the last formula effectively defines the quantization method for
fields.

11.8 Unitarity Condition on the Green’s Function

The unitarity of the S-matrix is obvious as long as the S-matrix element is defined
by (11.136) as a transition matrix between two complete orthonormal systems {Φ in}
and {Φout}. When the asymptotic states form complete systems like this, we speak
of asymptotic completeness. In this section, we extend the unitarity of the S-matrix
from unitarity on the mass shell to unitarity off the mass shell. This can be expressed
by the unitarity condition for the Green’s functions.
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To begin with, we consider the operator

T exp

[
− i exp

∫
d4xJ (x)ϕ(x)

]
. (11.171)

This operator is unitary, and denoting the operator for inverse time-ordering by T̃ ,

T exp

[
− i
∫

d4x J (x)ϕ(x)

]
T̃ exp

[
i
∫

d4yJ (y)ϕ(y)

]
= 1 . (11.172)

Functionally differentiating this equation n times with respect to J and subsequently
setting J = 0,

∑
comb

(−i)kin−kT (x ′1, . . . , x ′k)T̃ (x ′k+1, . . . , x
′
n) = 0 , (11.173)

where (x ′1, . . . , x ′n) is a permutation of (x1, . . . , xn) and we sum over all ways of
dividing a set of n variables into two complementary subsets. We take the vacuum
expectation value of this equation. Inserting the complete system {Φ in} between T

and T̃ , we use the equation

(
Φ0, T (x1, . . . , xk)Φ

in
α1...αl

) = (−i)l
∫

d4u1 . . . d
4ulfα1(u1) . . . fαl (ul)

×Ku1 . . .Kul τ (x1, . . . , xk, u1, . . . , ul)

(11.174)

and its complex conjugate

(
Φ in

α1...αl
, T̃ (x1, . . . , xk)Φ0

) = il
∫

d4v1 . . . d4vlf
∗
α1
(v1) . . . f

∗
αl
(vl )

×Kv1 . . . Kvl τ (xk+1, . . . , xn, v1, . . . , vl).

(11.175)

Then using (11.134), we sum over intermediate states. We use the notation

τ̄ (x1, . . . , xn) = (−i)nKx1 . . .Kxnτ (x1, . . . , xn) . (11.176)
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The Fourier transformation is the S-matrix element itself if all momenta are on the
mass shell. Rewriting the expectation value of (11.173),

0 = τ̄ (x1, . . . , xn)+ τ̄ ∗(x1, . . . , xn) (11.177)

+
∑
comb

′ ∞∑
l=0

il

l!
∫

d4u1 . . . d4uld4v1 . . . d4vl τ̄ (x
′
1, . . . , x

′
k, u1, . . . , ul)

×Δ(+)(u1 − v1) . . .Δ
(+)(ul − vl)τ̄

∗(x ′k+1, . . . , x
′
n, v1, . . . , vl ) ,

where l! in the denominator is a factor introduced to ensure that we do not count the
same state more than once, and the prime on

∑′ indicates that we neglect k = 0 and
k = n. Restricting all momenta to the mass shell in the Fourier transformation of
this equation, it becomes the condition for unitarity. Hence, when the momenta lie
outside the mass shell, the Fourier transformation can be taken as its generalization.
We call (11.177) the generalized unitarity condition. In fact, it should be obvious
from the following discussion that (11.177) yields the unitarity condition for the
S-matrix on the mass shell. Using

S = 1+
∞∑
l=1

1

l!
∫

d4x1 . . . d4xlτ̄ (x1, . . . , xl) :ϕin(x1) . . . ϕ
in(xl) : , (11.178)

S† = 1+
∞∑
l=1

1

l!
∫

d4x1 . . . d4xlτ̄
∗(x1, . . . , xl) :ϕin(x1) . . . ϕ

in(xl) : , (11.179)

we expand SS† as a sum of normal products:

:ϕin(x1) . . . ϕ
in(xl) : :ϕin(y1) . . . ϕ

in(ym) :
= :ϕin(x1) . . . ϕ

in(xl)ϕ
in(y1) . . . ϕ

in(ym) :
+
∑
comb

iΔ(+)(x ′1 − y ′1) :ϕin(x ′2) . . . ϕin(x ′l )ϕin(y ′2) . . . ϕin(y ′m) :

+ (terms with two or more contractions). (11.180)

Therefore, looking at the coefficients of each of the normal products, we see that

:ϕin(x1) . . . ϕ
in(xn) :

is equal to the right-hand side of (11.177). Thus,

SS† = 1 . (11.181)
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Similarly,

S†S = 1 , (11.182)

using (11.177) with τ replaced by τ ∗. As claimed, the unitarity for the S-matrix and
for Green’s function are consequences of asymptotic completeness.

In the above, we considered the T-product of the Heisenberg operator. Next,
we introduce the Green’s functions based on the retarded product, introduced in
Sect. 6.2.

11.9 Retarded Green’s Functions

If A(x) is a local field, its retarded product is defined by

R[A(x) : ϕ(x1) . . .ϕ(xn)] (11.183)

= (−i)n
∑
p

θ(x − x ′1) . . . θ(x ′n−1 − x ′n)
[
. . . [A(x),ϕ(x ′1)] . . .ϕ(x ′n)

]
,

where θ(x) stands for θ(x0), with x ′1, . . . , x ′n a permutation of x1, . . . , xn and
summation over all permutations. The only permutations to contribute are those
satisfying x ′1 > x ′2 > . . . > x ′n for the time variables. We introduce the unitary
operator (11.171), denoting it by U :

U = T exp

[
−i
∫

d4x J (x)ϕ(x)

]
. (11.184)

Therefore,

U−1 = U† = T̃ exp

[
i
∫

d4x J (x)ϕ(x)

]
. (11.185)

We now introduce the generating functional

AR[x, J ] = U†T [UA(x)] . (11.186)

Therefore, it is easy to check that the R-product above can be expressed by

R[A(x) : ϕ(x1) . . .ϕ(xn)] = δnAR[x, J ]
δJ (x1) . . . δJ (xn)

∣∣∣∣
J=0

. (11.187)
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Directly from the definition,

δ

δJ (y)
AR[x, J ] = −iθ(x − y)

[
AR[x, J ], ϕR[y, J ]

]
. (11.188)

In particular, taking A = ϕ, we have

δ

δJ (y)
ϕR[x, J ] − δ

δJ (x)
ϕR[y, J ] + i

[
ϕR[x, J ], ϕR[y, J ]

] = 0 . (11.189)

This is called a unitarity condition. It corresponds to (11.173) in the case of the T-
product. In addition, functionally differentiating AR a total of n times with respect
to J ,

R[A(x) : ϕ(x1) . . . ϕ(xn)] (11.190)

=
∑
comb

ikT̃
[
ϕ(x ′1) . . . ϕ(x ′k)

]
(−i)n−kT

[
ϕ(x ′k+1) . . . ϕ(x ′n)A(x)

]
.

Then taking the Hermitian conjugate of the reduction formula for the T-product,
viz.,

∫
d4yΔ(x − y)KyST (x1, . . . , xn, y) =

[
ϕint(x), ST (x1, . . . , xn)

]
, (11.191)

we obtain
∫

d4yΔ(x − y)KyT̃ (x1, . . . , xn, y)S
† = −[ϕint(x), T̃ (x1, . . . , xn)S

†] .
(11.192)

Combining the three equations above,

∫
d4yΔ(x − y)KyR(w : x1, . . . , xn, y) = −i

[
ϕint(x), R(w : x1, . . . , xn)

]
,

(11.193)

where

R(w : x1, . . . , xn, y) = R
[
A(w) : ϕ(x1) . . . ϕ(xn)

]
. (11.194)
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Then using (11.193) iteratively,

∫
d4y1 . . . d4ylΔ(z1 − y1) . . .Δ(zl − yl)Ky1 . . .KylR(w : x1, . . . , xn, y1, . . . , yl)

= (−i)l[ϕin(z1),
[
. . . [ϕin(zl), R(w : x1, . . . , xn)] . . .

]
.

(11.195)

We now expand R as a sum of normal products:

R(w : x1, . . . , xn) =
∞∑
l=0

1

l!
∫

d4y1 . . . d4ylf (w : x1, . . . , xn, y1, . . . , yl) :ϕin(y1) . . . ϕ
in(yl ) : ,

(11.196)

where we have assumed that f is a symmetric function with respect to y1, . . . , yl .
Inserting this into (11.195) and taking the vacuum expectation value,

(−i)l
(
Φ0, [ϕin(z1), [. . . [ϕin(zl), R(w : x1, . . . , xn)] . . .]Φ0

)
(11.197)

=
∫

d4y1 . . . d4ylΔ(z1 − y1) . . . Δ(zl − yl)f (w : x1, . . . , xn, y1, . . . , yl) .

However, from (11.195), the right-hand side is equivalent to

∫
d4y1 . . . d4ylΔ(z1 − y1) . . .Δ(zl − yl)r(w : x1, . . . , xn, y1, . . . , yl) ,

(11.198)

where

r(w : x1, . . . , xn, y1, . . . , yl) = Kx1 . . .Kxn(Φ0, R(w : x1, . . . , xn)Φ0) .

(11.199)

Thus, if the momenta corresponding to y1, . . . , yl are on the mass shell,

f (w : x1, . . . , xn, y1, . . . , yl) = r(w : x1, . . . , xn, y1, . . . , yl) . (11.200)

Since only those on the mass shell exert any influence,

R(w : x1, . . . , xn) (11.201)

=
∞∑
l=0

1

l!
∫

d4y1 . . . d4ylr(w : x1, . . . , xn, y1, . . . , yl ) :ϕin(y1) . . . ϕ
in(yl) : .
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In particular, for n = 0,

A(w) =
∞∑
l=0

1

l!
∫

d4y1 . . . d4ylr(w : y1, . . . , yl) :ϕin(y1) . . . ϕ
in(yl) : .

(11.202)

Moreover, if we take A = ϕ, then when (Φ0,ϕ(x)Φ0) = 0, we have

ϕ(x) = ϕin(x)+
∞∑
l=2

1

l!
∫

d4y1 . . . d4ylr(x : y1, . . . , yl) :ϕin(y1) . . . ϕ(yl) : .
(11.203)

This gives the formal solution to the Yang–Feldman equation introduced in Sect. 6.3.
In addition, from (11.189),

R(x : y, x1, . . . , xn)− R(y : x, x1, . . . , xn) (11.204)

+ i
∑
comb

[
R(x : x′1, . . . , x′k), R(y : x′k+1, . . . , x

′
n)
] = 0 .

Taking the vacuum expectation value of this equation and using the reduction
formula obtained by inserting the complete system {Φ in}, we obtain a non-linear
equation for the system (Φ0, R(x : x1, . . . , xn)Φ0). This is also one of the
generalized unitarity conditions.

Both the in- and the out-states appear in the reduction formula for the T-product,
while only the in-states appear in the R-products.



Chapter 12
Renormalization Theory

So far we have shown only the lowest order calculations, but when computing
higher order corrections, divergences must show up. A method for deducing finite
consequences by a suitable interpretation is called a renormalization theory. As
mentioned once or twice before, the basic idea of such a formalism is to specify
a way of separating the Lagrangian density into the free part and the interaction
part. This grouping is related to the definition of the interaction picture. We call
the interaction picture defined by the correct grouping a renormalized interaction
picture. Several properties of the Green’s functions discussed in the previous chapter
hold true in the renormalized interaction picture, while they may not hold true in
other pictures.

In this chapter, in order to show that such a separation of the Lagrangian or
the Hamiltonian is not necessarily trivial, we first review the scattering theory in
non-relativistic quantum mechanics. The formal system discussed here has many
similarities with the S-matrix theory based on the reduction formula given in the
last chapter.

12.1 Lippmann–Schwinger Equation

In this section, we introduce the formal logic for the standard quantum mechanical
system. This theory has a lot in common with the theory of Green’s functions.
What is important in the scattering problem is the way we formulate the boundary
conditions. This issue is discussed in detail in my book, “Relativistic Quantum
Mechanics” [78], but here we shall present it in a slightly different order.

In this section, we formulate the scattering problem using the notion of Stueck-
elberg causality:

Assuming that the potential V (t) is a function of time, if V (t) = 0 in the region t < T ,
then there exists no scattered wave for t < T .
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The principle above has already been used for the quantization of free fields in
Sect. 4.3 and for the derivation of the Yang–Feldman equation in Sect. 6.3. Here we
apply it to the non-relativistic formulation. We consider the Schrödinger equation

i
∂

∂t
ψ(t) = [H0 + V (t)]ψ(t) , (12.1)

where we have omitted the spatial coordinate for simplicity, and V (t) is defined by

V (t) =
{
V , t > T ,

0 , t < T .
(12.2)

For t < T ,

i
∂

∂t
ψ(t) = H0ψ(t) . (12.3)

Since this is the equation for the incident wave, we write its solution as

ψ(t) = ψin(t) , H0ψin(t) = Eψin(t) . (12.4)

Therefore, the scattered wave appears at a generic time t and its equation is

ψ(t) = ψin(t)+ ψscatt(t) , (12.5)
(

i
∂

∂t
−H0

)
ψscatt(t) = V (t)ψ(t) . (12.6)

To solve this equation, we introduce the Green’s function, which is the solution of
the equation

(
i
∂

∂t
−H0

)
Kret(t, x : t ′, x ′) = δ(t − t ′)δ3(x − x′) , (12.7)

Kret(t, x : t ′, x′) = 0 , t < t ′ . (12.8)

Therefore, the solution of (12.6) satisfying the causality condition is

ψscatt(t, x) =
∫

dt ′d3x ′Kret(t, x : t ′, x′)V (t ′, x′)ψ(t ′, x ′) . (12.9)

Here, taking the limit T → −∞, the t-dependence of the potential disappears,
whence

ψscatt(t, x) =
∫

dt ′d3x ′Kret(t, x : t ′, x′)V (x′)ψ(t ′, x ′) . (12.10)
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Then, if H0 does not depend on the space-time coordinate,

Kret(t, x : t ′, x′) = Kret(t − t ′, x − x′) . (12.11)

Thus,

ψ(t, x) = ψin(t, x)+
∫

dt ′d3x ′Kret(t − t ′, x − x′)V (x′)ψ(t ′, x′) . (12.12)

This is the integral equation governing the scattering, and corresponds to the Yang–
Feldman equation. To remove the time variable, we take

ψin(t, x) = e−iEtψin(x) , ψ(t, x) = e−iEtψ(x) , (12.13)

leading to

ψ(x) = ψin(x)+
∫

d3x ′G(x − x′ : E)V (x′)ψ(x′) , (12.14)

where

G(x − x′ : E) =
∫

dt ′eiE(t−t ′)Kret(t − t ′, x − x′) . (12.15)

We now introduce the Fourier representation of the retarded Green’s function:

Kret(t, x) = 1

(2π)4

∫
dE d3p eipx−iEtK(E,p) . (12.16)

Furthermore, we restrict H0 to the form

H0 = p2

2m
. (12.17)

Thus, the equation for K(E,p) obtained from (12.7) can be written in the form

(
E − p2

2m

)
K(E,p) = 1 . (12.18)

As will be shown later, the solution of this equation satisfying the boundary
condition (12.8) is

K(E − p) =
(
E − p2

2m
+ iε

)−1

, (12.19)
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Fig. 12.1 Path of
E-integration in (12.22)

where ε is a positive infinitesimal. Taking E = k2/2m, Eqs. (12.15) and (12.16)
imply

G(x − x′ : E) = − m

2π

eik|x−x′|

|x − x′| . (12.20)

Thus, (12.14) can be written in the form

ψ(x) = ψin(x)− m

2π

∫
d3x ′ e

ik|x−x′|

|x − x′|V (x′)ψ(x′) . (12.21)

This equation indicates that the scattered wave becomes an outward-directed
spherical wave as a consequence of causality. When t − t ′ < 0,

Kret(t − t ′, x − x′) = 1

(2π)4

∫
d3p eip(x−x′)

∫
dE

e−iE(t−t ′)

E − p2

2m + iε
. (12.22)

Then, since −iE(t − t ′) = iE|t − t ′|, if ImE > 0, this exponential decreases
exponentially with ImE. Hence, selecting the integration path as in Fig. 12.1 and
taking into account the fact that the pole is located outside the semicircle, it vanishes
by Cauchy’s theorem. Thus, if t − t ′ < 0, then Kret = 0 and we see that (12.8) is
satisfied.

Clearly, using (12.22) and taking Ψ = ψ and Φ = ψin, Eq. (12.21) can be written
formally as

Ψ = Φ + 1

E −H0 + iε
VΨ (E > 0) , (12.23)

In fact, looking at the Fourier representation of the retarded Green’s func-
tion (12.22), we see that this corresponds to the operator which gives the energy
denominator in the equation above. From (12.23) and (12.3),

(E −H0)Ψ = VΨ , (E −H0)Φ = 0 . (12.24)
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Moreover, for the bound state (E < 0), the inverse of (E−H0) is uniquely defined,
so we obtain the homogenous equation

Ψ = 1

E −H0
VΦ (E < 0) . (12.25)

The pair of Eqs. (12.23) and (12.25) is known collectively as the Lippmann–
Schwinger equation [114]. The solution of (12.23) consists of the incident wave
and the outward-going spherical wave, and it can be written as

Ψ (+)
a = Φa + 1

Ea −H0 + iε
V Ψ (+)

a . (12.26)

Mathematically, it is useful to consider the solution which consists of the incident
wave and the inward-going spherical wave. The equation for such a state can be
obtained by replacing iε with −iε :

Ψ (−)
a = Φa + 1

Ea −H0 − iε
V Ψ (−)

a . (12.27)

The two cases are solutions of the same Schrödinger equation under different
boundary conditions:

(Ea −H0)Ψ
(±)
a = VΨ (±)

a . (12.28)

Thus,
{
Ψ

(+)
a

}
and
{
Ψ

(−)
a

}
form complete systems separately. Solving (12.26)

sequentially,

Ψ (+)
a = Φa + 1

Ea −H0 + iε

(
1+ V

1

Ea −H0 + iε
+ . . .

)
VΦa

= Φa + 1

Ea −H0 + iε

(
1− V

1

Ea −H0 + iε

)−1

VΦa . (12.29)

Then using A−1B−1 = (BA)−1,

Ψ (+)
a = Φa + 1

Ea −H + iε
VΦa (H = H0 + V ) . (12.30)

We call this the Chew–Goldberger formal solution [115]. Another solution is

Ψ (−)
a = Φa + 1

Ea −H − iε
VΦa . (12.31)

Although this formal solution is in fact not useful for solving the problem, it is very
useful for deriving the general properties of the S-matrix, and we will show this
application below.
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We assume that the state of the incident wave is suitably normalized, i.e.,

(Φb,Φa) = δba . (12.32)

Therefore, combining the LS equation with the CG formal solution,

(
Ψ

(+)
b , Ψ (+)

a

) =
(
Φb + 1

Eb −H + iε
VΦb,Ψ

(+)
a

)

= (Φb,Ψ
(+)
a

)+
(
Φb, V

1

Eb −H − iε
Ψ (+)
a

)

=
(
Φb,Φa + 1

Ea −H0 + iε
V Ψ (+)

a

)
+
(
Φb, V

1

Eb −H − iε
Ψ (+)
a

)

= (Φb,Φa)+
(

1

Ea − Eb + iε
+ 1

Eb − Ea − iε

)
(Φb, VΨ (+)

a )

= (Φb,Φa) , (12.33)

so we see that
{
Ψ (+)} forms an orthonormal system just as {Φ} does. The same is

true of
{
Ψ (−)}. Thus, the transformation matrix between these two pairs of complete

orthonormal systems, viz.,

Sab =
(
Ψ

(−)
b , Ψ (+)

a

)
, (12.34)

is unitary. Comparing with (11.136), Ψ (+) and Ψ− correspond to Φ in and Φout,
respectively. The unitarity condition is

S†S = SS† = 1 . (12.35)

Starting with the definition and modifying it suitably, the S-matrix above can be
written as

Sba =
(
Φb + 1

Eb −H − iε
VΦb,Ψ

(+)a
)

= (Φb,Ψ
(+)
a

)+
(
Φb, V

1

Eb −H + iε
Ψ (+)
a

)

= (Φb,Φa)+
(
Φb,

1

Ea −H0 + iε
V Ψ (+)

a

)
+
(
Φb, V

1

Eb −H + iε
Ψ (+)
a

)

= δba +
(

1

Ea − Eb + iε
+ 1

Eb − Ea + iε

) (
Φb, V Ψ (+)

a

)

= δba − 2π iδ(Eb − Ea)
(
Φb, V Ψ (+)

a

)
. (12.36)
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Although in the transformation above we have expressed Ψ (−) in terms of Φ,
expressing Ψ (+) in terms of Φ, we obtain

Sba = δba − 2π iδ(Eb − Ea)
(
Ψ

(−)
b , VΦa

)
. (12.37)

Therefore, if Eb = Ea , the transition amplitude Tba can be written in a symmetric
form:

Tba =
(
Φb, V Ψ (+)

a

) = (Ψ (−)
b , VΦa

)
. (12.38)

We now express the unitarity of the S-matrix in terms of T . Using T as above,

T
†
ba = T ∗ab =

(
Φa, V Ψ

(+)
b

)∗ = (Ψ (+)
b , VΦa

)
,

T
†
ba − Tba = (Ψ

(+)
b , VΦa)− (Φb, V Ψ (+)

a )

= (Φb, VΦa)+
(

1

Eb −H + iε
VΦb, VΦa

)

−(Φb, VΦa)−
(
Φb, V

1

Ea −H + iε
VΦa

)

=
(
VΦb,

(
1

Eb −H − iε
− 1

Eb −H + iε

)
VΦa

)

= 2π i(VΦb, δ(Eb −H)VΦa) , (12.39)

then inserting the complete system {Ψ (−)}, we obtain

T
†
ba − Tba = 2π i

∑
n

(VΦb,Ψ
(−)
n )δ(Eb − En)

(
Ψ (−)
n , VΦa

)

= 2π i
∑
n

T
†
bnδ(Eb − En)Tna , (12.40)

where

T
†
bn = T ∗nb =

(
Ψ (−)
n , VΦb

)∗ = (VΦb,Ψ
(−)
n

)
.

If we inserted the other complete system {Ψ (+)} instead of {Ψ (−)}, then instead
of (12.40) we would get

2π i
∑
n

Tbnδ(Eb − En)T
†
na . (12.41)
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Thus, the unitarity condition can be written as

T
†
ba − Tba = 2π i

∑
n

T
†
bnδ(Eb − En)Tna

= 2π i
∑
n

Tbnδ(Eb − En)T
†
na . (12.42)

Using this unitarity condition, we can reproduce the optical theorem already
discussed in Sect. 9.4. Although the content is exactly the same, let us express it
in terms of the notation used in this section.

The probability per unit time for the transition a→ b is

wba = 2πδ(Eb − Ea)|Tba|2 . (12.43)

If we take the sum over all probable final states, then from (12.42),

wa =
∑
b

wba = 2π
∑
b

δ(Eb − Ea)|Tba|2 = 1

i
(T †

aa − Taa) = −2ImTaa .

(12.44)

Starting with the two-particle state a, the total cross-section can be obtained as

σa = Ω

vrel
wa , (12.45)

where Ω is the volume of quantization and vrel is the relative speed of the two
particles. Therefore, from (12.44),

σa = −2Ω

vrel
ImTaa . (12.46)

Then, since the final result does not depend on Ω , we take Ω = 1. The scattering
amplitude f (θ) in the scattering potential is given by

f (θ) = − m

2π

∫
d3x e−ikf xV (x)ψ(x)

= − m

2π

(
Φf , V Ψ

(+)
i

)
. (12.47)
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Computing wf i/vrel for scattering into a constant solid angle, the cross-section
becomes

dσ

dΩ
= 2π

v

1

(2π)3

∫
k2
f dkf δ

(
k2
f

2m
− k2

i

2m

)
|Tf i |2

(
v = k

m

)

=
( m

2π

)2 |Tf i |2
= |f (θ)|2 , (12.48)

which reproduces the well known result. In this regard, however, Tf i =(
Φf , V Ψ

(+)
i

)
. In addition, from (12.46), the total cross-section becomes

σ = −2

v
ImTaa = −2

v

(
−2π

m

)
Imf (0) = 4π

k
Imf (0) , (12.49)

which also reproduces the optical theorem in its well-known form.
Although in the scattering potential the asymptotic form of the wave function has

been obtained easily, it turns out that the asymptotic form of the abstract Lippmann–
Schwinger state vector Ψ (+) is given by

Ψ (+)
a ∼ SΦa = Φa − 2πiδ(Ea −H0)V Ψ (+)

a . (12.50)

Let us compare this asymptotic form with Ψ
(+)
a itself:

Ψ (+)
a = Φa + 1

Ea −H0 + iε
V Ψ (+)

a .

From this we understand that the asymptotic form can be derived if we make the
following replacement for the scattered wave:

1

Ea −H0 + iε
→−2π iδ(Ea −H0) , (12.51)

or

Ψ (+)
a ∼ Φa − 2π iδ(Ea −H0)

[
(Ea −H0)Ψ

(+)
a

]
, (12.52)

where we multiply by δ(Ea − H0) after multiplying by (Ea −H0). This operation
reminds us of the Lehmann–Symanzik–Zimmermann (LSZ) asymptotic condition
in Sect. 11.7. In (11.159), Ky corresponds to (Ea −H0), and Δ(y − x) corresponds
to δ(Ea − H0). Moreover, the asymptotic form satisfies the equation for the free
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particle, viz.,

(Ea −H0)SΦa = 0 . (12.53)

This corresponds to (11.124).
Equation (12.52) is the reduction formula. It plays an important role in the dis-

cussion about recombination reactions. So far we have assumed that the separation
of the Hamiltonian into the free part and the interaction part is unique, but in general,
if a bound state appears, this uniqueness is lost. It is due to recombination reactions
that this grouping in the initial state differs from that in the final state. For instance,
consider a reaction such as

n+ d→ n+ n′ + p , (12.54)

where d stands for the deuteron and n′ has been labeled by the prime in order to
distinguish it from the other meson n. The total Hamiltonian is

H = Tp + Tn + Tn′ + Vnp + Vn′p + Vnn′ , (12.55)

where T and V denote the kinetic energies and the potentials for the two-body
forces, respectively. The decomposition of the Hamiltonian corresponding to the
initial state is

H0 = Tp + Tn + Tn′ + Vn′p , V = Vnp + Vnn′ . (12.56)

This is because, if we do not insert Vn′p into H0, there is no way to make d. On the
other hand, the decomposition in the final state is

H ′0 = Tp + Tn + Tn′ , V ′ = Vnp + Vn′p + Vnn′ . (12.57)

In general, we introduce two decompositions, one for the initial state and one for
the final state:

H = Ha + Va = Hb + Vb . (12.58)

The free state vectors corresponding to each decomposition are Φa and Φb

satisfying

(Ea −Ha)Φa = 0 , (Eb −Hb)Φb = 0 . (12.59)

Of course, in order for the transition a → b to occur, we must have Eb = Ea . Let
us derive the transition amplitude Tba in this case. Corresponding to the initial state,
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we have

Ψ (+)
a = Φa + 1

Ea −H + iε
VaΦa . (12.60)

Then, to construct the asymptotic form corresponding to the final state, we use the
formula

1

A
− 1

B
= 1

B
(B − A)

1

A
. (12.61)

Therefore,

1

Ea −H + iε
− 1

Ea −Hb + iε
= 1

Ea −Hb + iε
Vb

1

Ea −H + iε
, (12.62)

which yields

Ψ (+)
a = Φa + 1

Ea −Hb + iε

(
1+ Vb

1

Ea −H + iε

)
VaΦa . (12.63)

In the following, we write Ea = Eb = E and make the replacement

1

E −Hb + iε
−→ −2π iδ(E −Hb) , (12.64)

corresponding to (12.51). Then the asymptotic form corresponding to the final state
is

Ψ (+)
a ∼ −2π i

(
1+ Vb

1

E −H + iε

)
VaΦa . (12.65)

Thus, Tba can be given by the inner product of this asymptotic form and Φb :

Tba =
(
Φb,

(
1+ Vb

1

E −H + iε

)
VaΦa

)

=
((

1+ 1

E −H − iε
Vb

)
Φb, VaΦa

)

= (Ψ (−)
b , VaΦa

)
. (12.66)

Note also that, corresponding to (12.38), there are also two ways to represent Tba .
Using Ψ

(+)
a instead of Ψ (−)

b ,

Tba =
(
Ψ

(−)
b , VaΦa

) = (Φb, VbΨ
(+)
a

)
. (12.67)
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This is because, subtracting one from the other,

(
Ψ

(−)
b , VaΦa

)− (Φb, VbΨ
(+)
a

) = (Φb, VaΦa)− (Φb, VbΦa)

+ (Φb, VaΦa)−
(
Φb, Vb

1

E −H + iε
VaΦa

)

= (Φb, (Va − Vb)Φa)

= (Φb, (Hb −Ha)Φa)

= (Eb − Ea)(Φb,Φa) = 0 .

This shows that the two expressions in (12.67) are equal.

12.2 Renormalized Interaction Picture

In Chap. 8, we described the computational method for obtaining the S-matrix in the
interaction picture based on a covariant perturbation theory. To define the interaction
picture, we have to decompose the Hamiltonian or the Lagrangian into the free part
and the interaction part. We took this decomposition to be trivial, but it is clear
from the discussion about the recombination reaction in the previous section that
this decomposition is not unique. Although at the lowest level of the perturbation
it has not posed serious problems, it will turn out that this difference between
decomposition methods has an important implication when computing higher order
corrections.

We thus set down several conditions to determine the decomposition method.
These conditions are called renormalization conditions. The interaction picture
defined by the decomposition satisfying these conditions is called the renormalized
interaction picture. In fact, it is in the renormalized interaction picture that the Gell-
Mann–Low relation derived in Chap. 11, the related asymptotic conditions, and so
on, all hold true, although we have not stated this clearly up to now. Another aspect
of renormalization, and in general only this aspect is emphasized, is that it can
remove the divergences appearing in higher order corrections. Indeed, it was through
this that, in the period after World War II, there was a major development of QED. A
theory in which divergences can be removed in this way is said to be renormalizable,
and renormalizablity has been promoted as one of the guiding principles. It was also
an important motivation for the more recent development of gauge theories.

Let us now go back to the problem of the decomposition of the Hamiltonian:

1. We have two complete orthonormal systems of eigenstates of the Hamiltonian:

{
Ψ (+)
a

}
and
{
Ψ (−)
a

}
. (12.68)
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Furthermore, in relativistic quantum mechanics, these are eigenstates of the four-
momentum:

PμΨ
(±)
a = (pμ)aΨ

(±)
a . (12.69)

The S-matrix element is given by

Sab =
(
Ψ

(−)
b , Ψ (+)

a

)
. (12.70)

It is clear from this expression for the S-matrix element that these two complete
systems can be considered to be the same as

{Φ in
a } and {Φout

a } . (12.71)

2. In field theory, the vacuum state Φ0 and the stable one-particle state Φα satisfy
the conditions

Φ in
0 = Φout

0 , Φ in
α = Φout

α . (12.72)

If we express these conditions in terms of the S-matrix, then

SΦ0 = Φ0 , SΦα = Φα , (12.73)

where (12.72) implies that Φ0 and Φα have been written without distinguishing
between the in-state and the out-state. Equations (12.72) and (12.73) are called
renormalization conditions.

Then, since the condition on the vacuum is satisfied by (8.70), this means that the
S-matrix is defined by dropping all bubble diagrams. It turns out that we define the
interaction picture in such a way as to satisfy these conditions. This requires as a
consequence reintroducing several kinds of physical observable using the following
two kinds of renormalization

• Mass Renormalization. In field theory, no elementary particles are in the
bare state, because they have self-interactions. For example, even within the
framework of classical theory, a charged particle carries the Coulomb field. Thus,
considering an electron, the conditions (12.73) should hold true for the electron
carrying its own field and not for the bare electron. Due to the existence of the
self-interaction, the mass of an electron increases by what we call the self-energy
δm. Thus, the observable mass of an electron is not just the originally given mass
m, but changes to m + δm. We call m and m + δm = mobs the bare mass and
the observed mass, respectively. We interpret this by saying that the one-electron
state is the state with mass mobs. We determine the self-energy δm from (12.73),
i.e., we consider mobs as the given mass rather than m. In the sense of absorbing
δm into the mass, we call this reinterpretation a renormalization of the mass.
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• Charge Renormalization. As discussed in Chap. 8, due to the phenomena of
vacuum polarization, the vacuum behaves like a dielectric medium in field theory.
Thus, taking the permittivity of the vacuum as ε, when the distance r between
two charges e1 and e2 is large enough, the Coulomb potential between them is

V = e1e2

ε

1

4πr
. (12.74)

However, since the permittivity of the vacuum is normalized to unity,

V = (e1)obs(e2)obs
1

4πr
. (12.75)

Comparing (12.74) and (12.75),

(e1)obs = e1√
ε
, (e2)obs = e2√

ε
, (12.76)

where (e)obs is the experimental value. Thus, we must reinterpret (e)obs as the
given charge, and not the bare charge e. Since the permittivity of the vacuum ε is
absorbed into the definition of the electric charge, this is called a renormalization
of the electric charge.

Renormalization can thus be additive, as for the mass, or multiplicative, as for the
electric charge. Moreover, when we compute the self-energy δm or the permittivity
ε using QED, we find that they diverge.

What we have discussed above is the renormalization of specific quantities due to
the self-energy and the permittivity. There exists a procedure called renormalization
of the field operators, which is a slightly abstract renormalization condition. This
has already been required in Chap. 11 and expressed in (11.145). There exists a
condition whereby the wave function of a given body is not varied by introducing
interactions, i.e., the normalization is unchanged. What this condition means will be
explained in detail later.

12.3 Mass Renormalization

We call a Feynman diagram which starts with and ends in a one-electron state a self-
energy diagram. Any diagram which cannot be separated into two disconnected
diagrams by cutting a single electron line is called an irreducible self-energy
diagram (see Fig. 12.2 left). Others are said to be reducible (see Fig. 12.2 right).
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Fig. 12.2 Left: Irreducible self-energy diagram. Right: Reducible self-energy diagram

Considering the S-matrix element for the case where an electron with the four-
momentum p enters and electron in the same state comes out, we have

〈p|S|p〉 = 〈p|p〉 +
∞∑
n=1

(−i)n

n!
∫

d4x1 . . . d4xn〈p|T [Hint(x1) . . .Hint(xn)]|p〉conn.

(12.77)

Here, in order to drop contributions from bubble diagrams, after the second term
we keep only contributions from the connected parts in which bubble diagrams are
omitted. The subscript ‘conn’ stands for dropping bubble diagrams which are not
connected to any points in x1, . . . , xn. The condition (12.73) requires the terms after
the second term on the right-hand side of (12.77) to vanish. Taking mobs as the mass
in the free part, the difference from m, viz., δm, is included in the interaction part,
so that in a first approximation where we consider only the renormalization of the
mass, we can write

Hint = −ieψ̄γμψAμ − δmψ̄ψ . (12.78)

Computing the S-matrix element to order e2, if we consider δm to be of order e2,
then from the Feynman–Dyson rule,

〈p′|S(2)|p〉 =
∫

d4x〈p′|ψ̄(x)|0〉
[

iδm(2) + e2
∫

d4y γμSF(y)γμDF(y)e−ip·y
]
〈0|ψ(x)|p〉 ,

(12.79)

where we have taken into account only the first two irreducible self-energy diagrams
shown above. This is because the third is of order e4. We now introduce

Σ∗(2)(p) = ie2
∫

d4y γμSF(y)γμDF(y)e−ip·y , (12.80)

where the computation above is carried out in the Fermi–Feynman gauge corre-
sponding to α = 1. In general, the sum over contributions from all irreducible
self-energy diagrams is called a proper self-energy operator or a mass operator.
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Fig. 12.3 Self-energy
diagram in momentum space

Hence,

〈p′|S(2)|p〉 = i
∫

d4x〈p′|ψ̄(x)|0〉[δm(2) −Σ∗(2)(p)
]〈0|ψ̄(x)|p〉 . (12.81)

The renormalization condition requires the expression above to vanish. Writing mobs
simply as m, we now have (Fig. 12.3)

Σ∗(2)(p) = ie2

(2π)4

∫
d4kγμ

i(p − k) · γ −m

(p − k)2 +m2 − iε
γμ

1

k2 − iε

= ie2

(2π)4

∫
d4k
−2i(p − k) · γ − 4m

(p − k)2 +m2 − iε

1

k2 − iε

= ie2

(2π)4

∫
d4k

∫
dx

−2i(p − k) · γ − 4m

(k2 + xp2 − 2xp · k + xm2 − iε)2
, (12.82)

where we have used the fact that γμγμ = 4 and γμγλγμ = −2γλ. Making the
change of variable

k → k′ = k − xp , (12.83)

rewriting (12.82), and dropping odd-order terms in k′, we obtain

Σ∗(2)(p) = −ie2

(2π)4

∫ 1

0
dx
∫

d4k′
2i(1− x)p · γ + 4m[

k′2 + x(1− x)p2 + xm2 − iε
]2 . (12.84)

Since p2 = −(ip · γ )2, Σ∗(p) can be identified with a function of ip · γ , and
expanding this as a power series in (ip · γ +m), we have

Σ∗(2)(p) = A+ B(ip · γ +m)+ C(p) , (12.85)

where C(p) is the sum over all terms higher than the second order in (ip · γ +m).
Therefore, A can be obtained if we set ip · γ = −m in Σ∗(2)(p). This yields

A = −ie2

(2π)4

∫ 1

0
dx 2m(1+ x)

∫
d4k′ 1

(k′2 + x2m2 − iε)2 . (12.86)
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To carry out this k′-integral, we use

1

(k′2 + x2m2 − iε)2 = 2 lim
Λ→∞

∫ Λ2

m2

x2dM2

(k′2 + x2M2 − iε)3 . (12.87)

Plugging this into (12.86) and carrying out the k′-integral, we obtain

A = 2π2e2m

(2π)4

∫ 1

0
dx(1+ x)

∫ Λ2

m2

dM2

M2

= 3

2π
αm ln

Λ

m
, where α = e2

4π
. (12.88)

Going back to (12.81) and using the wave functions (3.191a), (3.191b), (3.192a)
and (3.192b),

〈p′|S(2)|p〉 = i(2π)4

V
δ4(p′ − p)ū(p′)

[
δm(2) −Σ∗(2)(p)

]
u(p) . (12.89)

Using Dirac’s equation for u(p), we can replace −p · γ by −m in the equation
above. Thus, the condition that (12.89) should vanish can be written as

δm(2) = A . (12.90)

This stands for the self-energy of the electron up to order e2. It is clear from (12.88)
that this diverges logarithmically in the limit Λ → ∞. However, what we should
emphasize here is that the renormalization condition (12.73) requires a choice of
interaction part of the form (12.78).

12.4 Renormalization of Field Operators

We have used (12.90) to understand the meaning of A in the expansion (12.85), but
what about B? To answer this, we write down the condition for the normalization of
the one-body wave function to remain unchanged when interactions are introduced:

〈
0
∣∣T [ψ(x)U(∞,−∞)]conn

∣∣p〉 = 〈0|ψ(x)|p〉 . (12.91)

The Feynman diagram corresponding to the left-hand side is shown in Fig. 12.4.
Here, Σ∗ is the contribution from all the irreducible self-energy diagrams except

for δm. It should be clear from the diagram above that the contribution from the
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Fig. 12.4 Feynman diagram corresponding to the left-hand side of (12.91)

left-hand side of (12.91) is

ip · γ +m

ip · γ +m+Σ∗(p)− δm
u(p) =

{
1− [Σ∗(p)− δm

] 1

ip · γ +m
(12.92)

+[Σ∗(p)− δm
] 1

ip · γ +m

[
Σ∗(p) − δm

] 1

ip · γ +m
+ · · ·
}
u(p) .

The discussion so far is based on the assumption that the interaction part is given
by (12.78). ExpandingΣ∗ as suggested by (12.78), we can take ip·γ = −m because
u(p) appears in (12.92). This yields

lim
ip·γ+m→ 0

ip · γ +m

ip · γ +m+Σ∗(p)− δm
= 1

1+ B
. (12.93)

This is not equal to unity unless B = 0, so (12.91) cannot be satisfied. Recall the
origin of the condition that the normalization is unchanged. In fact, it originally
arose from the asymptotic condition (11.126) for the operator in the Heisenberg
picture. It was not assumed that the operator used in this case was the same as
the original one. Hence, we may consider that the Heisenberg operator satisfying
the asymptotic condition has a different normalization from the original Heisenberg
operator appearing in the Lagrangian. We call operators satisfying the asymptotic
condition renormalized field operators. They carry the subscript r and we assume
the following multiplicative renormalization:

ψ(x) = Z
1/2
2 ψ(x)r , ψ̄(x) = Z

1/2
2 ψ̄(x)r , Aμ(x) = Z

1/2
3 Aμ(x)r .

(12.94)

The multiplicative renormalization has already appeared in the renormalization
of the electric charge, and we shall see that this is in fact closely related to the
renormalization of operators mentioned above.

Going back to the general gauge, let us express the whole Lagrangian in
terms of renormalized operators. Since in this case the operators are originally the
Heisenberg operators, we should use bold face for them, but there should be no
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confusion if the usual type face is used:

L = −Z2ψ̄r

[
γμ
(
∂μ − ieZ1/2

3 Aμr
)+m− δm

]
ψr − 1

4
Z3FμνrFμνr − 1

2α
Z3(∂μAμr)

2 .

(12.95)

Although m − δm should be written as mobs − δm, as already mentioned, for
simplicity we have written mobs as m. We decompose (12.95) into the free part
and the interaction part as follows:

Lf = −ψ̄r(γμ∂μ +m)ψr − 1

4
FμνrFμνr − 1

2αr
(∂μAμr)

2 , (12.96)

Lint = (1− Z2)ψ̄r(γμ∂μ +m)ψr + (1− Z3)
1

4
FμνrFμνr (12.97)

+ieZ2Z
1/2
3 Aμrψ̄rγμψr + Z2δmψ̄rψr ,

where αr is the renormalized gauge parameter. Hence, the gauge parameter changes
under renormalization. The interaction picture corresponding to the partition above
is called the renormalized interaction picture. The renormalized gauge parameter αr
is defined by

αr = αZ−1
3 . (12.98)

Since we will only use the renormalized interaction picture in the following
discussions, for simplicity we will drop the subscript r. In perturbation theory,
several kinds of renormalization constant can be expanded as power series in e2.
We thus assume the expansions

δm = δm(2) + δm(4) + · · · , (12.99)

Z2 = 1+ Z
(2)
2 + · · · , (12.100)

Z3 = 1+ Z
(2)
3 + · · · . (12.101)

In the interaction picture, the interaction includes derivatives of field operators, so
we use Matthew’s theorem to express the S-matrix in the form

S = 1+
∞∑
n=1

in

n!
∫

d4x1 . . . d
4xnT

∗[Lint(x1) . . .Lint(xn)
]

conn . (12.102)

We now repeat the discussion in the last section in this new interaction picture:

〈p′|S(2)|p〉 =
∫

d4x〈p′|ψ̄(x)|0〉S (p)〈0|ψ(x)|p〉 . (12.103)
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The new quantity S (p) is given by the following equation, corresponding to
i[δm(2) −Σ∗(2)(p)] in (12.81):

S (p) = iZ2δm+ i(1− Z2)(ip · γ +m)− iΣ∗(p) . (12.104)

In the lowest order approximation, Σ∗ is given by

Σ∗(p) = ie2Z2
2Z3

∫
d4y γμSF(y)γμDF(y)e−ip·y . (12.105)

Replacing Z2 and Z3 by 1, this coincides with the expression in the last section.
Then in general, expanding as

Σ∗(p) = A+ B(ip · γ +m)+ C(p) , (12.106)

the expression (12.103) vanishes. Using the fact that the normalization of the one-
particle wave function is unchanged, we have

Z2δm = A , 1− Z2 = B . (12.107)

It turns out that δm and Z2 can be determined from this renormalization condition.
Hence,

S (p) = −iC(p) ≡ −iΣ∗ren(p) . (12.108)

This equation defines the renormalized mass operator Σ∗ren. Although A(2) and B(2)

diverge logarithmically, C(2)(p) is finite.

12.5 Renormalized Propagators

In the renormalized interaction picture, the electron propagator is defined by

SF(x − y) = 〈0∣∣T [ψ(x)ψ̄(y)]∣∣0〉 = −i

(2π)4

∫
d4p eip·(x−y)SF(p) ,

with

SF(p) = 1

ip · γ +m
. (12.109)
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A propagator including higher order corrections can be expressed in the Heisenberg
picture by

S′F =
〈
0
∣∣T [ψ(x)ψ̄(y)]∣∣0〉 =

〈
0
∣∣T ∗[ψ(x), ψ̄(y), U(∞,−∞)]∣∣0〉

〈0|U(∞,−∞)
∣∣0〉 . (12.110)

In in the renormalized interaction picture,

U(∞,−∞) = 1+
∞∑
n=1

in

n!
∫

d4x1 . . . d
4xnT

∗[Lint(x1) . . .Lint(xn)
]
. (12.111)

From the discussion about the Feynman diagram, the Fourier transform of S′F is

S′F(p) = SF(p)− SF(p)Σ
∗
ren(p)SF(p)+ · · ·

= SF(p)− SF(p)Σ
∗
ren(p)S

′
F(p) . (12.112)

This is called Dyson’s equation. Its solution is

S′F(p) = SF(p)
[
1+Σ∗ren(p)SF(p)

]−1 = [ip · γ +m+Σ∗ren(p)
]−1

. (12.113)

Since Σ∗ren(p) is a sum over terms higher than second order in ip · γ +m,

lim
ip·γ+m→ 0

(ip · γ +m)S′F(p) = 1 . (12.114)

This is an important property of the renormalized propagator. Then in the computa-
tion in Sect. 12.3, and in particular in (12.84), we make the change of variables from
the Feynman parameter x to M , where

m2 = (1− x)M2 , (12.115)

whence S′F(p) can be written to order e2 as

S ′F(p) = SF(p)− SF(p)Σ
∗(2)
ren (p)SF(p)

= 1

ip · γ +m
+ e2

16π2

∫ ∞
m

dM

M3(M2 −m2)

[
(M +m)2(M2 +m2 − 4mM)

ip · γ +M − iε

+ (M −m)2(M2 +m2 + 4mM)

ip · γ −M + iε

]
.

(12.116)



284 12 Renormalization Theory

This integral diverges at M = m. In this case, we need to improve the approximation
near the mass shell using some suitable method. We will return to this when
discussing the renormalization group method in Chap. 20. However, what we call
the ultraviolet divergence disappears completely.

Next, let us study the propagator of the electromagnetic field. Here we consider
the renormalized Fermi–Feynman gauge αr = 1. In the interaction picture,

δμνDF(x − y) = 〈0∣∣T [Aμ(x)Aν(y)]
∣∣0〉 = −i

(2π)4 δμν

∫
d4keik·(x−y)DF(k) .

(12.117)

In the renormalized Heisenberg picture including higher order corrections, this is
not proportional to δμν :

D′Fμν
(x − y) = 〈0∣∣T [Aμ(x)Aν(y)]

∣∣0〉 =
〈
0
∣∣T ∗[Aμ(x)Aν(y)U(∞,−∞)]∣∣0〉

〈0|U(∞,−∞)|0〉 .

(12.118)

Let us compute corrections up to order e2. In this case, the diagrams which should
be taken into account are shown in Fig. 12.5.

The terms in the interaction Lagrangian needed for this calculation are

1

4
(1− Z3)FμνFμν + ieZ2Z

1/2
3 Aμψ̄γμψ .

The first term and iterations of the second term correspond to the first diagram and
the second diagram in Fig. 12.5, respectively. However, to order e2, Z2 and Z3 in

Fig. 12.5 Feynman diagrams
for the electromagnetic field
propagator up to order e2
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the second term can be set equal to 1:

D′Fμν
(x − y) = δμνDF(x − y)

−e2
∫

d4x′d4x′′DF(x − x′)DF(x
′′ − y)Tr

[
γμSF(x

′ − x′′)γνSF(x
′′ − x′)

]

+ i

2
(1− Z3)

∫
d4x′
(
δμν

∂

∂x′ρ
− δμρ

∂

∂x′σ

)
DF(x − x′) . (12.119)

Taking the Fourier transform of this equation yields

D′Fμν
(k) = δμν

k2 − iε

− ie2

(2π)4

1

(k2 − iε)2

∫
d4pTr

[
γμ

1

ip · γ +m− iε
γν

1

i(p − k) · γ +m− iε

]

+(1− Z3)
1

k2 − iε

(
δμν − kμkν

k2 − iε

)
. (12.120)

The second term is the Fourier transform of the expression

〈
0
∣∣T ∗[jμ(x), jν(y)]∣∣0〉 .

And formally, this satisfies the condition

∂

∂xμ

〈
0
∣∣T ∗[jμ(x), jν(y)]∣∣0〉 = 0 . (12.121)

In momentum space, this condition becomes

kμ

∫
d4pTr[. . .] = 0 . (12.122)

The integral in the equation above, denoted by fμν(k), has the general form

fμν(k) = δμνf (k
2)− kμkνg(k

2) . (12.123)

From the condition (12.122),

kμfμν(k) = kν
[
f (k2)− k2g(k2)

] = 0 . (12.124)

Thus,

fμν(k) = (k2δμν − kμkν)g(k
2) . (12.125)
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Computing the trace in the integral in (12.122),

Tr = 4
[
δμν(p

2 − p · k +m2)− 2pμpν + pμkν + pνkμ
]

(p2 +m2 − iε)
[
(p − k)2 +m2 − iε

] .

Therefore,

fμν(k) = 4
∫

d4p
δμν(p

2 − p · k +m2)− 2pμpν + pμkν + pνkμ

(p2 +m2 − iε)
[
(p − k)2 +m2 − iε

]

= 4
∫ 1

0
dx
∫

d4p
δμν(p

2 − p · k +m2)− 2pμpν + pμkν + pνkμ[
p2 +m2 + x(k2 − 2p · k)− iε

]2 .

We make the change of variables

p → p′ = p − xk . (12.126)

Thus,

fμν(k) = 4
∫ 1

0
dx
∫

d4p′
N[

p′2 +m2 + x(1− x)k2 − iε
]2 , (12.127)

where

N = δμνp
′2 − 2p′μp′ν + δμν

[
m2 + x(1− x)k2]− 2x(1− x)(δμνk

2 − kμkν) .

(12.128)

All terms except for the last produce terms proportional to δμν . Hence, for this to
coincide with (12.125), only the last term can survive. Thus,

fμν(k) = −8(δμνk2 − kμkν)

∫ 1

0
dx x(1− x)

∫
d4p[

p2 +m2 + x(1− x)k2 − iε
]2 ,

(12.129)

and we can write

1[
p2 +m2 + x(1− x)k2 − iε

]2 = 1

(p2 +m2 − iε)2

+
{

1[
p2 +m2 + x(1− x)k2 − iε

]2 − 1

(p2 +m2 − iε)2

}
.
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Therefore, the expression for D′Fμν
becomes

D′Fμν
(k) = 1

k2 − iε
+ 8ie2

(2π)4

k2δμν − kμkν

(k2 − iε)2

∫ 1

0
x(1− x)dx

×
∫

d4p

{
1

[p2 +m2 + x(1− x)k2 − iε]2 −
1

(p2 +m2 − iε)2

}

+k2δμν − kμkν

(k2 − iε)2

[
1− Z3 + 8ie2

(2π)4

∫ 1

0
x(1− x)dx

∫
d4p

(p2 +m2 − iε)2

]
.

(12.130)

Then to determine Z3, corresponding to (12.114) in the case of the electron, or the
equation

SF(p)Σ
∗
ren(p)u(p) = 0 , (12.131)

we adopt the condition

DF(k)Π
∗
ren(k)μνeν = 0 , (12.132)

where eν is the polarization vector of transverse photons and Π∗ is called the proper
self-energy operator of the photon or the polarization operator, which corresponds
to Σ∗ in the electron case. Thus, similarly to Dyson’s equation (12.112) for Σ∗ in
the electron case, Π∗ is defined by

D′Fμν
= δμνDF(k)−DF(k)Π

∗
ren(k)μνDF(k)+ · · ·

= δμνDF(k)−DF(k)Π
∗
ren(k)μλD

′
Fλν

(k) . (12.133)

To order e2,

Π∗ren(k)μν = −
8ie2

(2π)4
(k2δμν − kμkν)

∫ 1

0
x(1− x)dx

×
∫

d4p

[
1[

p2 +m2 + x(1− x)k2 − iε
]2 − 1

(p2 +m2 − iε)2

]

+ 8ie2

(2π)4 (δμνk
2 − kμkν)

[
1− Z3 + 8ie2

(2π)4

∫ 1

0
x(1− x)dx

∫
d4p

(p2 +m2 − iε)2

]
.

(12.134)

Then, in the one-photon state, taking into account k2 = 0 and k · e = 0, the
condition (12.132) requires the coefficient of δμνk2 − kμkν to vanish when k2 = 0.
Since the first term in (12.134) satisfies this condition, it implies that the second
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term vanishes, i.e.,

Z3 = 1+ 8ie2

(2π)4

∫ 1

0
x(1− x)dx

∫
d4p

(p2 +m2 − iε)2 . (12.135)

Therefore, carrying out the Feynman integral,

Π∗ren(k)μν =
e2

2π2 (k
2δμν − kμkν)

∫ 1

0
x(1− x) ln

m2

m2 + x(1− x)k2 − iε
dx .

(12.136)

In particular, when |k2| � m2,

Π∗ren(k)μν ≈
e2

60π2 (δμνk
2 − kμkν)

(
− k2

m2

)
. (12.137)

We see that, from the renormalization condition (12.132),Z3 is uniquely determined
by (12.135), and it turns out that D′F is divergenceless.

12.6 Renormalization of Vertex Functions

We have seen that the propagator becomes finite in the renormalized interaction pic-
ture. However, there is one thing that does not become finite without multiplicative
renormalization, namely the vertex function. We now consider its renormalization.
Up to now, we have investigated the proper self-energy diagrams, but these are all
related to two-point functions or propagators. We now consider the corrections to
the vertex function γμ shown in Fig. 12.6.

These are diagrams in which the propagator, including the self-energy diagram,
is removed from the Feynman diagrams of the three-point function. They give the
correction to the vertex operator. With this correction, the vertex function γμ is

replaced by the vertex function Γ
(0)
μ . This is the same as replacing SF and DF by S′F

and D′Fμν
.

Fig. 12.6 Corrections to the
vertex function
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Fig. 12.7 Feynman diagram
for the complete three-point
function

Thus, the Feynman diagram corresponding to the complete three-point function
(Fig. 12.7) can be written like the one above, i.e., the general three-point function
can be expressed as a product of three propagators and one vertex function.
Corresponding to this diagram, we have the expression

〈
0
∣∣T ∗[ψ(x), ψ̄(y),Aν (z)]

∣∣0〉 =
〈
0
∣∣T ∗[ψ(x), ψ̄(y),Aν(z), U(∞,−∞)]∣∣0〉

〈0|U(∞,−∞)|0〉
= −eZ2Z

1/2
3

∫
d4x′d4y′d4z′S′F(x − x′)Γ (0)

μ (x′, y′; z′)

×S′F(y′ − y)D′Fμν
(z′ − z) . (12.138)

Here, the Heisenberg operators and the interaction picture are renormalized. In the
renormalized interaction picture, a propagator is automatically renormalized, but the
vertex function is not. To the lowest order,

Γ (0)
μ (x, y, z) = γμδ

4(x − z)δ4(y − z) . (12.139)

Since in general Γ (0)
μ becomes a function of (x−z) and (y−z), we define its Fourier

representation by

Γ (0)
μ (x, y, z) = 1

(2π)8

∫
d4p d4q eip·(x−z)+iq·(z−y)Γ (0)

μ (p, q) . (12.140)

Therefore, according to (12.139), to lowest order,

Γ (0)
μ (p, q) = γμ . (12.141)
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We renormalize the vertex function in which higher-order corrections are included
by the equations

Γμ(p, q) = Z1Γ
(0)
μ (p, q) , (12.142)

ū(p)Γμ(p, p)u(p) = ū(p)γμu(p) . (12.143)

However, in (12.143), we have assumed that p is on the electron mass shell.
Replacing Γ

(0)
μ on the right-hand side of (12.138) by Γ , it turns out that the

coefficient in front of the integral on the right-hand side of that equation is given
by

eobs = eZ−1
1 Z2Z

1/2
3 . (12.144)

In fact, this combination corresponds to the electric charge observed in experiments.
This is manifested by several properties called low-energy theorems. Compar-
ing (12.144) with (12.76), the permittivity of the vacuum is

√
ε = Z1Z

−1
2 Z

−1/2
3 . (12.145)

Although the definition of the renormalized interaction picture is unchanged, it is
more useful to rewrite e as eobs. Then we write

eZ2Z
1/2
3 = eZ−1

1 Z2Z
1/2
3 − (1− Z1)eZ

−1
1 Z2Z

1/2
3

= eobs − (1− Z1)eobs

≡ eobs − δe . (12.146)

Thus, in the interaction part of the Lagrangian density, we rewrite as follows:

ieZ2Z
1/2
3 ψ̄γμψAμ = i(eobs − δe)ψ̄γμψAμ . (12.147)

So from now on, we use powers of eobs rather than powers of e in the perturbation
theory. We have

δe = (1− Z1)eobs = O(e3
obs) . (12.148)

The relation between Γμ and Γ
(0)
μ is

(eobs − δe)Γ (0)
μ (x, y, z) = eobsΓμ(x, y, z) . (12.149)
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Fig. 12.8 Feynman diagram
corresponding to the second
term on the right-hand side
of (12.150) in the x-space
(left) and the p-space ( right)

Computing the left-hand side up to order e3
obs,

eobsΓμ(x, y, z) = (eobs − δe)γμδ
4(x − z)δ4(y − z) (12.150)

+e2
obsγλSF(x − z)γμSF(z− y)γλDF(x − y) .

The Feynman diagram corresponding to the second term on the right-hand side is
shown in the x-space and the p-space in Fig. 12.8.

Taking the Fourier transform of (12.150), we obtain

eobsΓμ(p, q) = (eobs − δe)γμ (12.151)

+ (−i)3

(2π)4 e
3
obs

∫
d4kγλ

1

i(p − k) · γ +m− iε
γμ

1

i(q − k) · γ +m− iε
γλ

1

k2 − iε
.

To determine δe, we use (12.143). Rationalizing the denominator of (12.151), the
numerator becomes

N = γλ
[
i(p − k) · γ +m

]
γμ
[
i(q − k) · γ +m

]
γλ . (12.152)

Summing over λ, we can use the following formulas to calculate products of the
γ -matrices:

(1) γλγaγλ = −2γa ,

(2) γλγaγbγλ = 4δab ,

(3) γλγaγbγcγλ = −2γcγbγa .

The numerator assumes the form

N = −2i(q−k)·γ γμi(p−k)·γ−4im
[
(p−k)μ+(q−k)μ

]−2m2γμ . (12.153)
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Equation (12.151) then becomes

eobsΓμ(p, q) = (eobs − δe)γμ (12.154)

+ (−ieobs)
3

(2π)4

∫
d4k

N[
(p − k)2 +m2 − iε

][
(p − k)2 +m2 − iε

]
(k2 − iε)

.

In order to carry out the k-integral, we use the following formula and change of
variables:

1

abc
= 2
∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3δ(1−Σxi)

1

(x1a + x2b + x3c)3 , (12.155)

P = 1

2
(p + q) , Δ = p − q . (12.156)

Up to a factor of 2, the denominator of the integral in (12.154) can be written

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3δ
(
1−
∑

xi
)
f (x1, x2) =

∫
D

dx1dx2f (x1, x2) ,

(12.157)

where

f (x1, x2) =
[(

P 2 + Δ2

4
+m2
)
(x1 + x2)+ (P − k) ·Δ(x1 − x2) (12.158)

−2k · P(x1 + x2)+ k2 − iε

]−3

.

The domain of integration D is shown in Fig. 12.9 (left). Changing the variables
in (12.157) according to

x1 + x2 = u , x1 − x2 = 2v , (12.159)

the domain of integration for u and v is given by D′, depicted in Fig. 12.9 (right).
We now change the integration variable from k to k′:

k′ = k − uP − vΔ . (12.160)

The part corresponding to (12.155) becomes

2
∫
D′

du dv

[
k′2 +
(
P 2 + Δ2

4
+m2
)
u+ 2P ·Δv − (uP + vΔ)2 − iε

]−3

.

(12.161)
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Fig. 12.9 Domains of integration for evaluating (12.154)

We now express the numerator in terms of k′. We can drop terms linear in k′
because they give zero when we carry out the k′-integral. Since the integral is still
complicated, we assume that p and q are on the mass shell, sandwich it between
ū(p) and u(q), and use the relations

ū(p)(ip · γ +m) = ū(p)

(
iP · γ + 1

2
iΔ · γ +m

)
= 0 ,

(iq · γ +m)u(p) =
(

iP · γ − 1

2
iΔ · γ +m

)
u(q) = 0 .

Moreover, when ū(p)Au(q) = ū(p)Bu(q), we write A ∼ B. From the mass-shell
condition,

p2 +m2 = q2 +m2 = P 2 + Δ2

4
+m2 = 0 , P ·Δ = 0 . (12.162)

Therefore, the term in square brackets in (12.161) simplifies as follows:

k′2 +m2u2 +Δ2
(
u2

4
− v2
)
− iε . (12.163)

Furthermore, assuming that Δ is small, we only keep terms linear in Δ in the
denominator and the numerator, and drop those in Δ2. Using the formula

2iPμ ∼ −σμνΔν − 2mγμ , (12.164)

we obtain

eobsΓμ(p, q) ∼ (eobs − δe)γμ − 4
ie3

obs

(2π)4

∫
D′

du dv
∫

d4k′ N ′

(k′2 +m2u2 − iε)3 + O(Δ2) ,

(12.165)
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where

N ′ = −u(1−u)mσμνΔν+m2γμ
[
(1−u)2−4(1−u)+1

]+ 1

2
γμk

′2 . (12.166)

In the limit Δ→ 0, the right-hand side should be equal to eobsγμ, so

δe = −4ie3
obs

(2π)4

∫
D′

du dv
∫

d4k′m
2(u2 + 2u− 2)+ k′2/2

(k′2 +m2u2 − iε)3 . (12.167)

The right-hand side turns out to diverge logarithmically. Inserting (12.167)
into (12.165),

eobsΓμ(p, q) ∼ eobsγμ + 4
ie3

obs

(2π)4

∫
D′

du dv
∫

d4k′ u(1− u)mσμνΔν

(k′2 +m2u2 − iε)3 +O(Δ2)

= eobsγμ − α

2π

eobs

2m
σμνΔν + O(Δ2) . (12.168)

Here, α is, of course, equal to e2
obs/4π . This equation is the one derived as the third-

order perturbation. The effective Hamiltonian which yields the same result up to the
first order in Δ is

Heff = − α

2π

eobs

4m
ψ̄σμνψFμν . (12.169)

This term, which is gauge invariant, is called the Pauli term. When there is only a
magnetic field, applying the non-relativistic approximation, we have

Heff = − α

2π

eobs

2m
σ ·H . (12.170)

This tells us that the electron acquires a supplementary magnetic moment in addition
to eobs/2m in the Dirac theory. This increase is called the anomalous magnetic
moment. As a result, the magnetic moment of the electron up to this order is given
by

eobs

2m

(
1+ α

2π

)
. (12.171)

This result was obtained by Schwinger and by Tomonaga et al. [116, 117], and it
matches experimental values well. It is considered to be a great achievement of
renormalization theory, which thus succeeded in explaining what we call the Lamb
shift in the hydrogen atom, and has provided a foundation for the development of
field theory.
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So far, we have introduced Z1, Z2, and Z3 as multiplicative renormalization
constants. From (12.148) and (12.167), Z1 is given by

Z1 = 1+ 4ie2
obs

(2π)4

∫
D′

du dv
∫

d4k′m
2(u2 + 2u− 2)+ k′2/2

(k′2 +m2u2 − iε)3 . (12.172)

Although we have not provided an explicit computation of Z2, it is given
by (12.107), and computing to this order, it coincides with Z1. We will discuss
this equality in the next section.

12.7 Ward–Takahashi Identity

We now investigate in detail the relation (12.115) between the bare electric charge e
and the observed electric charge eobs. So far, we have only considered the electron.
Let us consider the case where there is a wide variety of charged particles a, b, . . ..
Then,

(ea)obs = Z−1
1a Z2aZ

1/2
3 ea , (eb)obs = Z−1

1b Z2bZ
1/2
3 eb , . . . . (12.173)

We consider the reaction

a + b −→ c + d . (12.174)

In this case, it is the bare electric charge that is conserved by Noether’s theorem:

ea + eb = ec + ed . (12.175)

However, we know experimentally that charge conservation holds for the renormal-
ized electric charges:

(ea)obs + (eb)obs = (ec)obs + (ed)obs . (12.176)

In order for these two conservation laws to hold simultaneously, Z−1
1 Z2 cannot

depend on the type of charged particle, i.e.,

Z−1
1a Z2a = Z−1

1b Z2b = Z−1
1c Z2c = Z−1

1d Z2d . (12.177)

Ward discovered that these equalities can be replaced by the following, which imply
them [118]:

Z1a = Z2a , . . . . (12.178)

The equation Z1 = Z2 is referred to as the Ward identity. We shall now give its
proof.
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We take ψ(0) and ψ̄(0) to be non-renormalized operators of the electric field.
Setting

Jμ = iψ̄(0)γμψ(0) = iZ2ψ̄γμψ , (12.179)

and using the fact that non-renormalized Heisenberg operators satisfy the canonical
commutation relations for x0 = y0, we have

[J0(x),ψ
(0)(y)] = −ψ(0)(y)δ3(x − y) , [J0(x), ψ̄

(0)(y)] = ψ̄(0)(y)δ3(x − y) .

(12.180)

Thus, if Jμ is included in the T-product, then using ∂μJμ = 0, we obtain

∂μT
[
Jμ(z),ψ

(0)(x), ψ̄(0)(y)
] = T
[[J0(z),ψ

(0)(x)]δ(z0 − x0), ψ̄
(0)(y)
]

+T [ψ(0)(x), [J0(z), ψ̄
(0)(y)]δ(z0 − y0)

]
= [δ4(z− y)− δ4(z− x)

]
T [ψ(0)(x), ψ̄(0)(y)] .

(12.181)

As we have seen before, at the point where the order of two time variables in the
T-product are switched, a delta function in time shows up. Later, we will use a
generalization of (12.181).

The renormalized interaction picture is defined by (12.96) and (12.97). On the
other hand, expressing (12.181) in terms of renormalized operators,

∂μT
[
Jμ(z),ψ(x), ψ̄(y)

] = [δ4(z− y)− δ4(z− x)
]
T [ψ(x), ψ̄(y)] (12.182)

−
[
ψ(z)

δ

δψ(z)
− ψ̄(z)

δ

δψ̄(z)

]
T [ψ(x), ψ̄(y)] .

We will use this formula later by generalizing it to a certain extent.
In order to apply the reduction formula for the electromagnetic field, we

introduce the differential operator

Dμν(∂) = δμν�− ∂μ∂ν + 1

α
∂μ∂ν . (12.183)

Applying the reduction formula to Green’s function in the renormalized interaction
picture, we compute the quantity

Dμν(∂)T
∗[Aν(x) . . . , U(∞,−∞)

] = T ∗
[

i
δ

δAμ(x)
. . . , U(∞,−∞)

]
(12.184)

−T ∗[ . . . [Lint(x)]Aμ
, U(∞,−∞)

]
,
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where an explicit expression for the Euler derivative is

[Lint(x)]Aμ = eZ
1/2
3 Jμ − (1− Z3)(δμσ�− ∂μ∂σ )Aσ (x) . (12.185)

Inserting this into (12.184) and taking the derivative in the second term of (12.185)
outside T ∗, we have

Dμν(∂)T
∗[Aν(x) . . . , U(∞,−∞)] = T ∗

[
i

δ

δAμ(x)
. . . , U(∞,−∞)

]
(12.186)

−eZ1/2
3 T ∗
[
Jμ(x), . . . , U(∞,−∞)

]
+(1− Z3)(δμσΔ− ∂μ∂σ )T

∗[Aσ (x), . . . , U(∞,−∞)
]
.

Here we use the relation

eZ
1/2
3 = e(Z−1

1 Z2Z
1/2
3 )Z1Z

−1
2 = eobsZ1Z

−1
2 . (12.187)

Next, we differentiate (12.186) with respect to xμ and use (12.182). Since the last
term vanishes, we obtain

∂μDμν(∂)T
∗[Aν(x), . . . , U(∞,−∞)

] = ∂μT
∗
[

i
δ

δAμ(x)
. . . , U(∞,−∞)

]

+ eobsZ1Z
−1
2 T ∗
[(

ψ(x)
δ

δψ(x)
− ψ̄(x)

δ

δψ̄(x)

)
. . . , U(∞,−∞)

]
.

(12.188)

Taking the vacuum expectation value of the above equation and using the Gell-
Mann–Low formula, the relation between the Green’s functions involving the
renormalized Heisenberg operators is

∂μDμν(∂)
〈
0
∣∣T ∗[Aν(x) . . .]

∣∣0〉 = ∂μ

〈
0
∣∣∣i δ

δAμ(x)
T ∗[. . .]

∣∣∣0〉 (12.189)

+eobsZ1Z
−1
2

〈
0
∣∣∣T ∗
[(

ψ(x)
δ

δψ(x)
− ψ̄(x)

δ

δψ̄(x)

)
. . .

]∣∣∣0〉 .
In the equation above, dots stand for a suitable product of Heisenberg operators.

One feature of this equation is that only renormalized operators show up. Since
Z1Z

−1
2 = 1, as will be shown later, we can now obtain the Ward–Takahashi identity

[119]:

∂μDμν(∂)
〈
0
∣∣T ∗[Aν(x) . . .]

∣∣0〉 = ∂μ

〈
0
∣∣∣i δ

δAμ(x)
T ∗[. . .]

∣∣∣0〉 (12.190)

+eobs

〈
0
∣∣∣T ∗
[(

ψ(x)
δ

δψ(x)
− ψ̄(x)

δ

δψ̄(x)

)
. . .

]∣∣∣0〉 .
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To understand the relevance of (12.189), we first insert Aσ(y) in place of the dots to
obtain

∂μDμν(∂x)
〈
0
∣∣T ∗[Aν(x),Aσ (y)]

∣∣0〉 = i∂σ δ
4(x − y) . (12.191)

Expressing this in momentum space and taking into account the equation

∂μDμν(∂) = 1

α
�∂ν , (12.192)

we find

1

α
k2kνD

′
Fνσ

(k) = kσ . (12.193)

We now write Dyson’s equation for D′F in an arbitrary gauge, viz.,

D′Fνσ
(k) = DFνσ (k)−DFνλ(k)Π

∗
λμ(k)D

′
Fμσ

(k) , (12.194)

where

DFμσ (k) =
(
δνσ − kνkσ

k2 − iε

)
1

k2 − iε
+ α

kνσ

(k2 − iε)2
(12.195)

and

Π∗λμ(k) = Π∗ren(k)λμ = (kλkμ − δλμk
2)Π∗(−k2) . (12.196)

From this, we obtain the solution of (12.194) in the form

D′Fνσ
(k) =

(
δνσ − kνσ

k2 − iε

)
1

k2 − iε

1

1−Π∗(−k2)
+ α

kνkσ

(k2 − iε)2 . (12.197)

This certainly satisfies (12.193).
Another example is

∂μDμν(∂z)
〈
0
∣∣T ∗[ψ(x), ψ̄(y),Aν(z)]

∣∣0〉 (12.198)

= −eobsZ1Z
−1
2

[
δ4(y − z)− δ4(x − z)

]〈
0
∣∣T ∗[ψ(x), ψ̄(y)]∣∣0〉.

We combine (12.191) and this equation with the following equation:

〈
0
∣∣T ∗[ψ(x), ψ̄(y),Aν(z)]

∣∣0〉 (12.199)

= −eobs

∫
d4x ′d4y ′d4z′S′F(x − x ′)Γμ(x

′, y ′; z′)S′F(y ′ − y)D′Fμν
(z′ − z).
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Inserting the right-hand side of (12.199) into the left-hand side of (12.198) and
using (12.191) to cancel D′F, we obtain the following equation in momentum space:

− i(p − q)νS
′
F(p)Γν(p, q)S

′
F(q) = Z1Z

−1
2

[
S′F(p)− S′F(q)

]
. (12.200)

Alternatively, differentiating both sides with respect to pμ and setting q = p,

Γμ(p, p) = −iZ1Z
−1
2

∂

∂pμ

S′F(p)−1 . (12.201)

We sandwiching this between ū(p) and u(p) and use the relations

S′F(p)−1 = ip · γ +m+ O
(
(ip · γ +m)2) ,

ū(p)(ip · γ +m) = (ip · γ +m)u(p) = 0 .

This leads finally to

ū(p)γμu(p) = Z1Z
−1
2 ū(p)γμu(p) , (12.202)

which yields Ward’s identity

Z1 = Z2 . (12.203)

Thus, in the Ward–Takahashi identity (12.189), we can replaceZ1Z
−1
2 by 1 to obtain

the Ward–Takahashi identity given by (12.190). In general, an equation obtained by
subtracting a divergence of the Green’s function is called a Ward–Takahashi identity.

Equations (12.201) and (12.203) were found by Ward [118], while (12.200) was
derived by Takahashi [119]. Equation (12.190) for the Green’s function was proved
by the author in the Fermi gauge [120], but it was eventually shown that it can be
extended to an arbitrary gauge.

12.8 Integral Representation of the Propagator

The propagator with higher-order corrections can be expressed by a certain kind of
integral representation as the superposition of free-field propagators with different
masses. This was established by Umezawa et al. in the early 1950s [121–123].
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12.8.1 Integral Representation

We consider a neutral scalar field and make the following general assumptions:

1. There exists a four-vector operator Pμ, which stands for the energy–momentum,
satisfying

[Pμ, Pν ] = 0 , (12.204)

[ϕ(x), Pμ] = 1

i
∂μϕ(x) . (12.205)

2. There exists a set {Φk,α} of eigenstates of Pμ which form a complete system.
Here, kμ is an eigenvalue of Pμ and α is another quantity specifying the states:

PμΦk,α = kμΦk,α . (12.206)

Of course, as {Φ}, we can choose either {Φ in} or {Φout}. In what follows, we
assume the existence of the vacuum and write it as |0〉. Affixing a prime to the
invariant function in the presence of interactions,

〈0|ϕ(x)ϕ(y)|0〉 = iΔ(+)′(x − y) ,

〈0|[ϕ(x),ϕ(y)]|0〉 = iΔ′(x − y) , (12.207)

〈0|T [ϕ(x)ϕ(y)]|0〉 = Δ′F(x − y) .

Then, to carry the Fourier expansion, we introduce the matrix element

〈0|ϕ(x)|k,α〉 = ak,αeik·x . (12.208)

Hence,

〈0|ϕ(x)ϕ(y)|0〉 =
∑
k,α

〈0|ϕ(x)|k,α〉〈k,α|ϕ(y)|0〉

=
∑
k,α

|ak,α|2eik·(x−y) . (12.209)

We now introduce the Lorentz invariant function

ρ(−p2) = (2π)3
∑
k,α

|ak,α|2δ4(p − k) ≥ 0 . (12.210)
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Inserting this into (12.209), for the time-like four-momentum p, we have

iΔ(+)′(x − y) = 1

(2π)3

∫
d4pθ(p0)ρ(−p2)eip·(x−y) (−p2 ≥ 0)

=
∫ ∞

0
dκ2ρ(κ2)

1

(2π)3

∫
d4pθ(p0)δ(p

2 + κ2)eip·(x−y)

=
∫ ∞

0
dκ2ρ(κ2)iΔ(+)(x − y; κ2) . (12.211)

Generalizing this to an arbitrary function, we obtain

Δ(+)′(x) =
∫ ∞

0
dκ2ρ(κ2)Δ(+)(x; κ2) , (12.212)

so in the presence of interactions, the invariant two-point function can be expressed
by the integral representation as a superposition of invariant two-point functions for
free fields with different masses.

The spectral function ρ(κ2) for a free field with the mass m is

ρ(κ2) = δ(κ2 −m2) . (12.213)

If interactions are introduced, we can decompose into contributions from the one-
particle intermediate states and the multi-particle intermediate states:

ρ(κ2) = cδ(κ2 −m2)+ σ(κ2) . (12.214)

We note, however, that σ vanishes below the lowest invariant mass 2m in the two-
particle system, i.e.,

σ(κ2) = θ(κ2 − 4m2)σ (κ2) . (12.215)

If we apply the renormalization condition, namely that the normalization of the wave
function becomes the same as that of the free field in the one-particle state, then c

in (12.214) becomes unity, i.e.,

ρ(κ2) = δ(κ2 −m2)+ σ(κ2) . (12.216)

We now introduce the Fourier representation of the propagator:

Δ′F(x) =
−i

(2π)4

∫
d4k eik·xΔ′F(−k2) . (12.217)
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Hence,

Δ′F(−k2) = 1

k2 +m2 − iε
+
∫ ∞

4m2
dκ2 σ(κ2)

k2 + κ2 − iε
. (12.218)

We introduce the renormalization constant Zϕ , noting that, for the electron field
Zψ = Z2 and for the electromagnetic field ZA = Z3 :

ϕ(0)(x) = Z1/2
ϕ ϕ(x) , (12.219)

where the superscript (0) denotes unrenormalized quantities. Therefore,

〈
0
∣∣[ϕ(0)(x),ϕ(0)(y)]∣∣0〉 = Zϕ

∫
dκ2ρ(κ2)iΔ(x − y; κ2) . (12.220)

Differentiating both sides of this equation with respect to x0 and then setting x0 =
y0, the left-hand side becomes−iδ3(x−y) from the canonical commutation relation.
In addition, on the right-hand side, using (4.13),

∂

∂x0
Δ(x − y; κ2)

∣∣∣∣
x0=y0

= −δ3(x − y) , (12.221)

whence

− iδ3(x − y) = −iδ3(x − y)Zϕ

∫
dκ2ρ(κ2) . (12.222)

The integral representation of the renormalization constant can now be obtained
immediately as

Z−1
ϕ =
∫

dκ2ρ(κ2) = 1+
∫

dκ2σ(κ2) ≥ 1 . (12.223)

This inequality originates from the positive-definite metric assumed for the scalar
field. Thus,

1 ≥ Zϕ ≥ 0 . (12.224)

12.8.2 Self-Energy

As shown above, the renormalization constant is written in terms of the integral
representation via the spectral function. But what about the self-energy? To discuss
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this problem, we consider the following simple model:

L = −(∂λΦ†∂λΦ +M2
0Φ

†Φ
)− 1

2

[
(∂λϕ)

2 +m2
0ϕ

2]− g0Φ
†Φϕ . (12.225)

Here ϕ stands for a neutral scalar field, Φ and Φ† for charged scalars, and m0 and
M0 for the bare masses associated with each field, which are related to the observed
masses m and M via

M2 = M2
0 + δM2 , m2 = m2

0 + δm2 . (12.226)

We introduce multiplicative renormalizations via the relations

Φ(0) = Z
1/2
2 Φ , ϕ(0) = Z

1/2
3 ϕ , g0 = Z1Z

−1
2 Z

−1/2
3 g . (12.227)

The renormalized field equations are

(�−m2)ϕ = Z1Z
−1
3 gΦ†Φ − δm2ϕ , (12.228)

(�−M2)Φ = Z1Z
−1
2 gΦϕ − δM2Φ . (12.229)

Using (12.228), we can derive an integral representation of δm2. Likewise, we can
use (12.229) to derive an integral representation of δM2. Expressing (12.228) in
terms of m0,

(�x −m2
0)
〈
0
∣∣[ϕ(x),ϕ(y)]∣∣0〉 = Z1Z

−1
3 g
〈
0
∣∣[Φ†(x)Φ(x),ϕ(y)]∣∣0〉 . (12.230)

Differentiating this equation with respect to y0 and setting y0 = x0, the right-hand
side becomes

〈
0
∣∣[Φ†(x)Φ(x), ϕ̇(y)]∣∣0〉 = 0 (x0 = y0) . (12.231)

It thus turns out that the left-hand side also vanishes. The left-hand side should still
vanish if we carry out the operation discussed above in the integral representation:

(�2 −m2
0)
〈
0
∣∣[ϕ(x),ϕ(y)]∣∣0〉 = i

∫
dκ2ρϕ(κ

2)(κ2 −m2
0)Δ(x − y; κ2) .

Differentiating this with respect to y0 and setting y0 = x0 = 0, Eq. (12.221) implies

iδ3(x − y)

∫
dκ2(κ2 −m2

0)ρϕ(κ
2) = 0 ,
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and hence,

∫
dκ2(κ2 −m2)ρϕ(κ

2) = −δm2
∫

dκ2ρϕ(κ
2) = −Z−1

3 δm2 . (12.232)

Thus,

δm2 = −Z3

∫
dκ2(κ2 −m2)ρϕ(κ

2) = −Z3

∫
dκ2(κ2 −m2)σ (κ2) < 0 .

(12.233)

This equation implies that δm2 is always negative. This is, of course, a predictable
result. If we assume that, in (12.226), m2 is positive and finite and m2

0 is positive
and infinite, then δm2 can only be negative and infinite.

12.8.3 Integral Representation of the Electromagnetic Field
Propagator

We now apply the previous discussion for the scalar field to the electromagnetic
field. We first introduce a propagator for the electromagnetic field:

〈
0
∣∣T ∗[Aμ(x)Aν(y)]

∣∣0〉 = −i

(2π)4

∫
d4k eik·(x−y)D′Fμν

(k) . (12.234)

For the free electromagnetic field, DFμν is given by (12.195). Furthermore, it is clear
from (12.197) that the effects of the interaction appear only in the transverse part of
the wave. Recalling that

Dμν(∂)Aν = −jμ , (12.235)

jμ = −ieobsZ2ψ̄γμψ − (1− Z3)(δμσ� − ∂μ∂σ )Aσ , (12.236)

we introduce the current jμ and define the function

〈
0
∣∣T ∗[jμ(x)jν(y)]∣∣0〉 = −i

(2π)4

∫
d4k eik·(x−y)Πμν(k) . (12.237)

Therefore,

k4ImD′Fμν
(k) = ImΠμν(k) . (12.238)
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We now seek an integral representation of Πμν . From the Lorentz covariance,

〈0|jμ(x)jν(y)|0〉 = iδμν

∫
dκ2σ1(κ

2)Δ(+)(x − y; κ2) (12.239)

+i∂μ∂ν

∫
dκ2σ2(κ

2)Δ(+)(x − y; κ2) .

Note also that, since ∂μjμ = 0,

σ1(κ
2)+ κ2σ2(κ

2) = 0 . (12.240)

We thus have

σ1(κ
2) = κ2σ(κ2) , σ2(κ

2) = −σ(κ2) , (12.241)

〈
0
∣∣jμ(x)jν(y)∣∣0〉 = i

∫
dκ2σ(κ2)(δμν�− ∂μ∂ν)Δ

(+)(x − y; κ2) . (12.242)

Taking μ = ν = 4,

− 〈0∣∣j0(x)j0(y)
∣∣0〉 = i

∫
dκ2σ(κ2)∇2Δ(+)(x − y; κ2) . (12.243)

Because jμ is gauge invariant, the indefinite metric cannot appear on the left-hand
side. Hence,

(2π)3
∑
n

∣∣〈n|j0(0)|0〉
∣∣2δ4(pn − k) = k2σ(−k2) ≥ 0 , (12.244)

i.e., σ(κ2) is positive-definite as in the case of the scalar field:

σ(κ2) ≥ 0 . (12.245)

Using this result, for the integral representation of Πμν , we have

Πμν(k) = (kμkν − δμνk
2)Π(−k2) , (12.246)

Π(−k2) =
∫

dκ2 σ(κ2)

k2 + κ2 − iε
+ const. (12.247)

Since the renormalization condition requires Π(0) to vanish,

Π(−k2) = Π(−k2)−Π(0) = −k2
∫

dκ2

κ2

σ(κ2)

k2 + κ2 − iε
. (12.248)
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At the lowest order in the perturbation theory,

σ(κ2) = e2
obs

12π2

(
1+ 2m2

κ2

)√
1− 4m2

κ2 θ(κ2 − 4m2) . (12.249)

The integral representation of the electromagnetic field propagator is

D′Fμν
(k) =

(
δμν − kμkν

k2 − iε

)[
1

k2 − iε
+
∫

dκ2

κ2

σ(κ2)

k2 + κ2 − iε

]
+ α

kμkν

(k2 − iε)2 .

(12.250)

12.8.4 Goto–Imamura–Schwinger Term

The integral representation of the vacuum expectation value of the commutator of
jμ and jν is

〈
0
∣∣[jμ(x), jν(y)]∣∣0〉 = i

∫
dκ2σ(κ2)(δμν�− ∂μ∂ν)Δ(x − y; κ2) . (12.251)

To obtain this result, we have only used the gauge invariance of ∂μjμ = 0 and j0.
Assuming that μ = 0 and ν = k (1, 2, 3) and setting x0 = y0,

i
〈
0
∣∣[j0(x), jk(y)]

∣∣0〉 = −
∫

dκ2σ(κ2)
[
∂0∂kΔ(x − y; κ2)

]
y0=x0

= ∂

∂xk
δ3(x − y)

∫
dκ2σ(κ2) . (12.252)

Since σ(κ2) ≥ 0, the right-hand side does not vanish. Since jμ = −ieψ̄γμψ at the
lowest order, this contradicts the result obtained from the canonical commutation
relation, i.e., using the commutation relation,

[j0(x), jk(y)] = 0 (x0 = y0) . (12.253)

The term which survives on the right-hand side of (12.252) is called the Goto–
Imamura–Schwinger term [124, 125]. We carry out the following computation in
the interaction picture using ∂μjμ = 0 :

∂μT [jμ(x), jν(y)] = δ(x0 − y0)[j0(x), jν(y)] �= 0 . (12.254)
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The reason why this vanished in (12.121) is that we used the T∗-product instead of
the T-product, i.e.,

〈
0
∣∣T ∗[jμ(x), jν(y)]∣∣0〉 =

∫
dκ2σ(κ2)(δμν�− ∂μ∂ν)ΔF(x − y; κ2). (12.255)

In this case, it turns out that (12.121) obviously holds. As shown above, the
representation which includes a product of field operators at the same point often
has a singularity. A different result is often obtained from the one derived by a
simple computation.

As a similar example, if we consider a neutral vector field and assume that the
mass is zero, then since ∂μϕμ = 0,

[ϕμ(x), ϕν(y)] = i

(
δμν − 1

m2

∂2

∂xμ∂xν

)
Δ(x − y;m2)

= i
∫

dκ2 δ(κ
2 −m2)

m2
(δμν�− ∂μ∂ν)Δ(x − y; κ2) . (12.256)

Therefore,

σ(κ2) = 1

m2 δ(κ
2 −m2) , (12.257)

i
〈
0
∣∣[ϕ0(x), ϕk(y)]

∣∣0〉 = ∂

∂xk
δ3(x − y)

1

m2 . (12.258)

The derivation here is exactly the same as for the Goto–Imamura–Schwinger term.
In this chapter, we have discussed the concept of renormalization by asking how

we can separate the Lagrangian into the free part and the interaction part. We have
shown that, at the next to lowest order, the divergence disappears, or rather that the
renormalization constant can be chosen so as to make the divergence vanish. In the
renormalization theory, the following stance is taken: the observed parameters can
be replaced by finite experimental values, while the bare parameters which are not
observed directly are allowed to be divergent. But if we now compute higher order
corrections, can we be sure there will still be no divergence? Although this issue has
been discussed by many people, we shall not pursue it here. We will discuss this
aspect from a slightly different point of view in the last chapter.



Chapter 13
Classification of Hadrons and Models

Up to and including Chap. 12, we have described the fundamental framework of
quantum field theory, focusing mainly on issues related to QED. However, as
mentioned in Chap. 1, an important part of elementary particle theory concerns the
strong interactions. Hence, we need to consider the classification, structure, and
modelling of hadrons, and in this chapter, we shall turn to a more phenomenological
discussion about such issues, including the group-theoretical classification of
hadrons, the quark model, the parton model, and so on.

13.1 Unitary Groups

We start with a simple review of group theory. In a set G consisting of elements
a, b, . . ., we define a product denoted ab: if a and b are elements of G, then the
product ab is also an element of G. If this product satisfies the following four
axioms, then we call G a group:

1. If a, b ∈ G, then their product ab is uniquely defined and ab ∈ G.
2. There is a unique identity element e in G, such that, for an arbitrary element a

in G,

ae = ea = a .

3. For an arbitrary element a in G, there is a unique inverse element, denoted a−1,
such that

aa−1 = a−1a = e .

© The Author(s), under exclusive license to Springer Nature B.V. 2023
K. Nishijima, Quantum Field Theory,
https://doi.org/10.1007/978-94-024-2190-3_13

309

http://crossmark.crossref.org/dialog/?doi=10.1007/978-94-024-2190-3_13&domain=pdf

 -151 4612 a -151 4612 a
 
https://doi.org/10.1007/978-94-024-2190-3_13


310 13 Classification of Hadrons and Models

4. The product is associative, i.e., for arbitrary elements a, b, c,

a(bc) = (ab)c .

13.1.1 Representations of a Group

If there exists a matrix D(a) for each element a in G such that

D(a)D(b) = D(ab) , (13.1)

D(a−1) = D(a)−1 , (13.2)

D(e) = E (unit matrix) , (13.3)

then we call this set of matrices a representation of the group G. The vector space
on which the matrix operators act is called a representation space and the dimension
of this vector space is called the dimension of the representation.

The transformation of a vector in the n-dimensional representation is described
by

ξa → ξ ′a = Da
bξb , a, b = 1, 2, . . . , n . (13.4)

In addition, the contravariant representation ξ̄ a associated with ξa is specified by the
transformation

ξ̄ a → ξ̄ a′ = ξ̄ b(D−1)b
a . (13.5)

The quantity

ξ̄ aξa (summing over a) (13.6)

is then an invariant.
Two representations D1 and D2 are said to be equivalent if there exists a matrix

U such that, for every element a in G,

D2(a) = UD1(a)U
−1 . (13.7)

If, for an arbitrary element a, the matrix D(a) can be diagonalized to the form

D(a) =
⎛
⎜⎝
D1(a) 0 0

0 D2(a) 0

0 0
. . .

⎞
⎟⎠ , (13.8)
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the representation is said to be reducible and we write

D = D1 ⊕D2 ⊕ · · · ⊕Dk . (13.9)

A representation which does not permit such a decomposition is said to be
irreducible.

13.1.2 Direct Product Representation

Suppose there are two representations Dα and Dβ , with dimensions α and β,
respectively. If we now use the bases ξα(i) and ξβ(j) of the two representation
spaces to define

ξαβ(ij) = ξα(i)ξβ(j) , (13.10)

we can construct an αβ-dimensional representation. This is called a direct product
representation, and we write it as

Dαβ = Dα ⊗Dβ . (13.11)

In general, the direct product representation is reducible.

13.1.3 Lie Groups

We call a transformation group parameterized by n continuous variables a Lie group,
and n is called the order of the group.

13.1.4 Orthogonal Group O(n)

For n real variables x1, . . . , xn, the set of linear transformations O(n) of those
variables which leave the quadratic form

n∑
i=1

x2
i = x2

1 + · · · + x2
n (13.12)

invariant is called the orthogonal group.
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13.1.5 Unitary Group U(n)

Similarly, the set of linear transformations U(n) of the complex variables ξ1, . . . , ξn
which leave the quantity

n∑
i=1

|ξi |2 = |ξ1|2 + · · · + |ξn|2 (13.13)

invariant is called the unitary group. This is the group of n-dimensional unitary
matrices. Assuming that U is one of these matrices,

U†U = UU† = E , U−1 = U† . (13.14)

The order N of this group is n2. Considering the transformation generated by a
composition of infinitesimal transformations in this group, as we did for the proper
Lorentz transformation, a general element of U(n) can be written as

U = exp(iεaFa) , a = 1, 2, . . . , N , (13.15)

where we have summed over a, and Fa is a Hermitian matrix, i.e.,

F †
a = Fa . (13.16)

Moreover, an infinitesimal transformation has the form

U = 1+ iεaFa , (13.17)

where εa is an infinitesimal parameter. The group SU(n) comprises all unitary
matrices with unit determinant, i.e., matrices U such that

detU = 1 . (13.18)

This is called the special unitary group. For the matrix written in the form (13.15),
the condition (13.18) can be expressed by

TrFa = 0 . (13.19)

There are in fact N = n2−1 independent matrices Fa . The Fa are called generators.
The set F of these generators satisfies the commutation relations

[Fi, Fj ] = ifijkFk . (13.20)
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This makes it a Lie algebra. The fijk are called structure constants. The commuta-
tors in (13.20) satisfy the following two conditions:

Antisymmetry: [Fi, Fj ] = −[Fj , Fi ] , (13.21)

Jacobi identity:
[
Fi, [Fj , Fk]

]+ [Fj , [Fk, Fi ]
]+ [Fk, [Fi, Fj ]

] = 0 .

(13.22)

In addition, the maximum number of the F1, F2, . . . , FN which can be simulta-
neously diagonalized, in the quantum mechanical sense, is called the rank of the
algebra. For instance, in SU(2), choosing the three Pauli matrices σi/2 (i = 1, 2, 3)
to be the F ’s, we have

[Ji, Jj ] = iεijkJk , (13.23)

where Ji = σi/2. Since only J3 is in general diagonal, the rank of the algebra is
unity.

We consider a representation of U(n) as in (13.4),

ξ ′a = Ua
bξb . (13.24)

Taking the complex conjugate, since U(n) is unitary,

ξ∗′a = ξ∗b (Ua
b)∗ = ξ∗b (U−1)b

a .

Thus, comparing with (13.5), we can choose the contravariant vector to be

ξ∗a = ξ̄ a . (13.25)

13.1.6 Special Unitary Group SU(2)

A two-dimensional representation of U(2) is given by

U = eiε0eiε̂σ̂ /2 . (13.26)

The first factor is a phase and the second factor rotates in the isospin space. Moving
from U(2) to SU(2), the general form is

U = exp(iε̂σ̂ /2) . (13.27)

This is a representation of the isospin group for the nucleon. In this case, if we take
the three components of the quantized operators which express the isospin to be I1,
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I2, and I3, then they satisfy

[Ii , Ij ] = iεijkIk . (13.28)

The two-dimensional representation of Ii is σi/2. Since this group is isomorphic to
the rotation group in three-dimensional space, the direct product representation has
the decomposition

DI ⊗DI ′ = DI+I ′ ⊕DI+I ′−1 ⊕ · · · ⊕D|I−I ′| . (13.29)

Although SU(2) shows up in many topics in physics and is of fundamental
importance, we will now discuss SU(3), which is an extension of SU(2).

13.2 The Group SU(3)

The group SU(2) was introduced in relation to the isospin, and all its representations
were obtained from the fundamental representation using p and n (the proton and
neutron, respectively) as its basis. If we consider only I3 as a hadron quantum
number, the hadrons can be classified using SU(2) with rank 1, but if we include
strangeness, as discussed in Chap. 1, a group of rank 2 is required. And hence,
SU(3) comes on the scene.

The group SU(3) has 32 − 1 = 8 generators, and we write them as
F1, F2, . . . , F8. Since a traceless three-dimensional diagonal matrix has only two
independent components, the group has rank two. And so, as in the case of p and n,
we consider a three-component basis:

Sakata’s model p , n , � , (13.30)

Gell-Mann’s quark model u , d , s . (13.31)

Although we discussed both Sakata’s model [64] and the quark model [74, 75] in
Chap. 1, in the following we will only describe the quark model. Just like p and n,
u and d correspond to the up-state and the down-state of the isospin, respectively,
while s corresponds to the quark with strangeness. The electric charge Q of the
hadron is connected with the third component of its isospin by the relations

Q = e

(
I3 + Y

2

)
, (13.32)

Y = B + S . (13.33)

Here Y is the hypercharge, an integer specific to each isospin multiplet. B and S are
the baryon number and the strangeness, respectively. The baryon number is +1 for
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Table 13.1 Quantum
numbers of the three different
quarks

B I3 S Q/e

u 1/3 1/2 0 2/3

d 1/3 −1/2 0 −1/3

s 1/3 0 −1 −1/3

Fig. 13.1 Weight diagram for quarks (left) and anti-quarks (right)

the nucleon and−1 for the anti-nucleon. It is also+1 for �0, �+, �0, �−, &0, &−,
and so on, which decay into the nucleon by emitting a π-meson or a photon.

Although I3 and S are conserved for the strong interaction and the electromag-
netic interaction, they are not conserved for the weak interaction and can vary by
1. If we denote quarks such as u, d, and s generically by q, we can consider that,
in the quark model, mesons correspond to bound states of the form qq̄, and baryons
to bound states of the form qqq. In this model, the electric charges and the baryon
numbers of the quarks are not integers but fractions, being integer multiples of 1/3.
Their values are shown in Table 13.1.

Now the quark, anti-quark, and their bound states form multiplets. Each member
of a multiplet is distinguished by the values of I3 and Y . In order to make the
structure of the multiplets clear, we define a so-called weight diagram in the I3–Y
plane (see Fig. 13.1). The isospin distinguishes members in the horizontal direction,
such as u and d. We simply call this I -spin. On the other hand, we sometimes
introduce the U -spin distinguishing d and s and the V -spin distinguishing s and
u. We will return to this when discussing the mass formula.

The weight diagram of the representation created by the direct product of two
representations can be made by superimposing the center of one weight diagram
on each particle point in the other weight diagram. For instance, from the direct
product of q and q̄, we obtain the weight diagram shown in Fig. 13.2. The center of
this diagram is occupied by three particles.

The different states qiq̄j can be expressed in a matrix form:

D = (qi q̄
j ) =
⎛
⎝uū ud̄ us̄

dū dd̄ ds̄
sū sd̄ ss̄

⎞
⎠ . (13.34)
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Fig. 13.2 Weight diagram
for the quark–anti-quark
system

We decompose this direct product as follows:

Di
j = 1

3
δi

jDk
k +
(
Di

j − 1

3
δi

jDk
k

)
. (13.35)

The first term is a scalar singlet and the second term is a traceless tensor octet. The
coefficient of the first term is

1

3
(uū+ dd̄+ ss̄) = 1√

3

(
uū+ dd̄+ ss̄√

3

)
. (13.36)

This belongs to the one-dimensional representation of SU(3). Since this meson is
0−, it corresponds to the particle called η′(958), where 958 indicates the mass in
units of MeV. We thus replace the matrix elements of D by the 0− mesons. For
example,

(13.36) −→ 1√
3
η′ .

We now consider the octet, in which the off-diagonal terms are replaced directly
by suitable mesons without the need for any adjustments. On the other hand, the
diagonal terms are first decomposed in terms of the isospin. For instance, the second
term in (13.35), corresponding to i = j = 1, is

1

3
(2uū− dd̄− ss̄) = 1

6
(uū+ dd̄− 2ss̄)+ 1

2
(uū− dd̄)

→ 1√
6
η0 + 1√

2
π0 . (13.37)

The off-diagonal terms are replaced as follows:

us̄→ K+ , ds̄→ K0 , sū→ K− , sd̄→ K̄0 . (13.38)
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These replacements are useful when discussing only group-theoretic properties,
without any relation to the details of the interactions. Thus, the part of D corre-
sponding to the 0− mesons is

D(0−) = 1√
3
η′ +

⎛
⎜⎜⎜⎜⎜⎜⎝

η0

√
6
+ π0

√
2

π+ K+

π− η0

√
6
− π0

√
2

K0

K− K̄0 − 2√
6
η0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13.39)

The decomposition of the direct product into irreducible representations is

3⊗ 3̄ = 1⊕ 8 , (13.40)

where 3 and 3̄ are the three-dimensional representations to which the quark and the
anti-quark belong, respectively. A similar decomposition can be carried out for the
1− mesons. Thus, the part of D corresponding to the 1− mesons is

D(1−) = 1√
3
ω+

⎛
⎜⎜⎜⎜⎜⎜⎝

φ0√
6
+ ρ0

√
2

ρ+ K∗+

ρ− φ0

√
6
− ρ0

√
2

K∗0

K∗− K̄∗0 − 2√
6
φ0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13.41)

13.2.1 Generators of SU(3)

The generators of SU(2) in the two-dimensional spinor representation are

Ii → 1

2
σi . (13.42)

What about SU(3)? Considering the 2× 2 part of D(0−), the isospin-1 part can be
written as

⎛
⎜⎜⎝

π0

√
2

π+

π− − π0

√
2

⎞
⎟⎟⎠ = 1√

2

(
π3 π1 − iπ2

π1 + iπ2 −π3

)
= 1√

2
τ̂ π̂ . (13.43)
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For a Hermitian field, we write the octet part in the form

1√
2
(λi)a

bMi = 1√
2
λ̂M̂ , (13.44)

where M stands for the eight-component Hermitian meson field.
We use the following numbering for, say, 0− :

⎛
⎜⎜⎜⎜⎜⎜⎝

π0

√
2
+ η0

√
6

π+ K+

π− − π0

√
2
+ η0

√
6

K0

K− K̄0 −2η0

√
6

⎞
⎟⎟⎟⎟⎟⎟⎠
≡ 1√

2

⎛
⎜⎜⎜⎜⎜⎜⎝

M3 + M8

√
3

M1 − iM2 M4 − iM5

M1 + iM2 −M3 + M8

√
3

M6 − iM7

M4 + iM5 M6 + iM7 − 2√
3
M8

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(13.45)

Thus, corresponding to (13.42) in the three-dimensional representation, the genera-
tors λi generalize σi and replace the generators Fi for SU(3):

Fi −→ λi

2
. (13.46)

Following Gell-Mann, these eight matrices λi can be chosen as follows:

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , λ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠ , λ3 =

⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠ ,

λ4 =
⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ , λ5 =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠ , λ6 =

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , (13.47)

λ7 =
⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠ , λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠ .

Using this choice for the λi , the structure constants can be determined from

[
λi

2
,
λj

2

]
= ifijk

λk

2
. (13.48)

The λi are all Hermitian matrices and normalized so that

Tr(λiλj ) = 2δij . (13.49)
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This choice is important. The symmetries of the structure constants can be derived
from this equation. Furthermore, using (13.49), the anti-commutation relations can
be written in the form

{
λi

2
,
λj

2

}
= 1

3
δij + dijk

λk

2
. (13.50)

This introduces another set of structure constants.
The two sets of structure constants fijk and dijk above are completely anti-

symmetric and completely symmetric in the indices i, j , and k, respectively. To
see this, we use (13.49):

4ifijk = Tr([λi, λj ]λk) = Tr(λj [λk, λi ]) = Tr(λi [λj , λk]) . (13.51)

This shows that fijk is completely anti-symmetric. Similarly, the symmetry of dijk
is obvious from the equation

4dijk = Tr({λi, λj }λk) = Tr(λj {λk, λi}) = Tr(λi{λj , λk}) . (13.52)

13.2.2 I -, U -, and V -Spin

The SU(3) algebra has several kinds of SU(2) algebras as subalgebras, and many
useful consequences can be derived from this. Firstly, examining the content of
(13.32), we obtain

F3 = I3 , F8 =
√

3

2
Y . (13.53)

Thus, for the quarks,

Q = e

(
F3 + F8√

3

)
. (13.54)

This relation holds for all hadrons composed of quarks and anti-quarks. We define
the I -, U -, and V -spin as follows:

I± = F1 ± iF2 , U± = F6 ± iF7 , V± = F4 + iF5 ,

I3 = F3 , U3 = −1

2
F3 +

√
3

2
F8 , V3 = −1

2
F3 −

√
3

2
F8 .

(13.55)



320 13 Classification of Hadrons and Models

Hence, I , U , and V generate three SU(2) subalgebras. Moreover, among these three
algebras, the following condition is satisfied:

I3 + U3 + V3 = 0 . (13.56)

It is straightforward to show that the commutation relations among these are

[I3, I±] = ±I± , [I3, U±] = ∓1

2
U± , [I3, V±] = ∓1

2
V± ,

[U3, I±] = ∓1

2
I± , [U3, U±] = ±U± , [U3, V±] = ∓ 1

2V± ,

[[V3, I±] = ∓1

2
I± , [V3, U±] = ∓1

2
U± , [V3, V±] = ±V± ,

[Y, I±] = 0 , [Y,U±] = ±U± , [Y, V±] = ±V± ,

[I+, I−] = 2I3 , [U+, U−] = 2U3 , [V+, V−] = 2V3 ,

[I±, U±] = ±V± , [U±, V±] = ±I∓ , [V±, I±] = ±U∓ .

(13.57)

13.2.3 Three-Body Quark Systems

As we have seen before, a meson is a quark–anti-quark bound state qq̄, whereas a
baryon (or heavy particle) is a three-quark bound state qqq. We thus begin with the
weight diagram for a two-quark state qq.

We can carry out the following direct-product decomposition corresponding to
(13.40):

3⊗ 3 = 3̄⊕ 6 . (13.58)

Since three of the six points appearing in Fig. 13.3 are double points, we have to
make a suitable linear combination of the relevant states. To do this, we have to

Fig. 13.3 Weight diagram
for the two-quark system
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make symmetric and anti-symmetric combinations:

qiqj = Tij = 1

2
(Tij − Tji)+ 1

2
(Tij + Tji) = 1

2
T[ij ] + 1

2
T(ij) . (13.59)

The anti-symmetric one is equal to the contravariant vector

εijkT[ij ] = T k . (13.60)

This is a three-dimensional representation and transforms like q̄k, so it is the
representation 3̄. The symmetric part, on the other hand, has six components and
corresponds to the representation 6. This confirms (13.58).

We now look at the transformation of ε under SU(3):

ε′ijk = Ui
lUj

mUk
nεlmn = εijk detU .

Thus, since detU = 1,

ε′ijk = εijk . (13.61)

Similarly,

ε′ijk = εijk . (13.62)

We can now list the states belonging to the 3̄ representation and the 6 representation:

{3̄}

⎧⎪⎪⎨
⎪⎪⎩
I = 0

1√
2
(ud− du) ,

I = 1

2

1√
2
(us− su) ,

1√
2
(ds− sd) ,

(13.63)

{6}

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I = 0 ss

I = 1

2

1√
2
(us+ su) ,

1√
2
(ds+ sd) ,

I = 1 uu ,
1√
2
(ud+ du) , dd .

(13.64)

We now consider a general tensor:

T
(p)

(q) = T
αβ...γ

ij ...k , such as q̄αq̄β . . . q̄γ qiqj . . . qk , (13.65)
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and an irreducible representation, i.e., one where the tensor cannot be reduced to a
lower-dimensional tensor by contractions with the tensors

δi
j , εijk , εijk . (13.66)

Reducible tensors can be reduced to lower-dimensional tensors by contractions, as
in the following examples:

δα
iT

αβ...δ
ij ...l = B

β...δ
j ...l , εμαβT

αβ...δ
ij ...l = C

γ ...δ
μij ...l , εmij T

αβ...δ
ij ...l = D

mαβ...δ
k...l .

If T is irreducible, it turns out that the right-hand sides of the equations above
vanish. This is the condition that T be symmetric in α, β, . . . and i, j, . . ., and the
trace vanishes, i.e.,

T
iβ...δ

ij ...l = 0 . (13.67)

If T (p)

(q) satisfies the condition above, there is one irreducible representationD(p, q).
Here, p and q are the numbers of superscripts and subscripts, respectively. In this
case, the dimension N of D(p, q) is given by

N = (1+ p)(1 + q)

[
1+ 1

2
(p + q)

]
. (13.68)

Proof First we ask how many tensors there are which are symmetric in p indices.
We consider as indices the case where the numbers 1, 2, and 3 are x, y, and z. We
must therefore count how many choices of x, y, and z there are. This is equivalent
to counting the number of solutions to x + y + z = p. x can take any of the values
x = 0, 1, . . . , p. Once x is fixed, we need to find the number of solutions to

y + z = p − x . (13.69)

This yields p − x + 1. The total will thus be

p∑
x=0

(p − x + 1) = 1

2
(p + 1)(p + 2) . (13.70)

Now, for the p superscripts and the q subscripts, the number of symmetric tensors
is

1

4
(p + 1)(p + 2)(q + 1)(q + 2) . (13.71)

We now take into account the vanishing trace condition. To do this, we reduce the
number of symmetric tensors by changing p into p − 1 and q into q − 1 and
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subtracting the result:

N = 1

4
(p + 1)(p + 2)(q + 1)(q + 2)− 1

4
p(p + 1)q(q + 1)

= (1+ p)(1 + q)

[
1+ 1

2
(p + q)

]
,

which proves (13.68).

We can now specify the following examples of D(p, q):

D(0, 0) = {1} , D(1, 1) = {8} , D(0, 3) = {10} ,
D(0, 1) = {3} , D(0, 2) = {6} , D(3, 0) = {1̄0} , (13.72)

D(1, 0) = {3̄} , D(2, 0) = {6̄} , . . . .

And so we come back to the first issue, i.e., investigating the representation of the
three-quark system:

3⊗ 3⊗ 3 = (3⊕ 6)⊗ 3 = (1⊕ 8)⊕ (8⊕ 10) . (13.73)

Nucleons such as p and n belong to the eight-dimensional representation here.
An excited state of the nucleon known as �, which arises in π-meson–nucleon
scattering, belongs to the ten-dimensional representation.

In the same vein as (13.39) and (13.41), we now express the eight-dimensional
representation which includes the nucleon in the form of a matrix:

B =

⎛
⎜⎜⎜⎜⎜⎜⎝

�0

√
2
+ �0

√
6

�+ p

�− −�0
√

2
+ �0
√

6
n

&− &0 − 2√
6
�0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (13.74)

We can now derive the anti-baryon octet from the baryon octet using the charge
conjugation operator C , whence

C−1BTC = CB̄ , (13.75)

where T stands for the transposition of the 3× 3 matrix. This is a generalization of
(3.198). Finally, imitating (13.74), we denote the matrix representations of D(0−)
and D(1−) by P and V , respectively.

In the treatment above, the idea of using the quark as the fundamental rep-
resentation is a mathematical tool for deriving other representations. Physically,
even if there are no quarks, we can derive all observable representations by
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considering eight-dimensional baryon representations and eight-dimensional meson
representations. We call this the eightfold way [52, 67, 68], in contrast with Sakata’s
model, which starts with the three-dimensional representation of the baryon,

13.2.4 Mass Formulas

SU(3) is not a symmetry group in the strict sense. In the real world, this symmetry
is broken. However, by treating this symmetry-breaking perturbatively, meaningful
consequences can be obtained, both qualitatively and semi-quantitatively. In the fol-
lowing, we investigate the mass difference between hadrons and also the magnetic
moment, using a perturbative computation in the context of the quark model. Later
in this chapter, we will show the corresponding computation based on the full quark
model.

The most important assumption introduced here is that, when we split the
Hamiltonian into the invariant part under SU(3) and the other part, viz.,

H = Hinv +HSB , (13.76)

the symmetry-breaking part HSB has the same transformation property as F8 and
we can treat this term as a perturbation. Now,

√
3

2
F8 = U3 + 1

2
I3 . (13.77)

We introduce the following U -spin triplet:

n , −1

2
�0 +

√
3

2
�0 , &0 . (13.78)

The matrix elements of U3 and I3 in the eight-dimensional representation are

〈n|U3|n〉 = 1 ,

〈
− 1

2
�0 +

√
3

2
�0
∣∣∣U3

∣∣∣− 1

2
�0 +

√
3

2
�0
〉
= 0 ,

〈
&0
∣∣U3
∣∣&0〉 = −1 , (13.79)

〈n|I3|n〉 = −1

2
,

〈
− 1

2
�0 +

√
3

2
�0
∣∣∣I3

∣∣∣− 1

2
�0 +

√
3

2
�0
〉
= 0 ,

〈
&0
∣∣I3
∣∣&0〉 = 1

2
. (13.80)
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If HSB transforms in the same way as (13.77),

〈n|HSB|n〉 +
〈
&0
∣∣HSB
∣∣&0〉 = 2

〈
− 1

2
�0 +

√
3

2
�0
∣∣∣HSB

∣∣∣− 1

2
�0 +

√
3

2
�0
〉

= 1

2

〈
�0
∣∣HSB
∣∣�0〉+ 3

2

〈
�0
∣∣HSB
∣∣�0〉 . (13.81)

Thus, adding the common mass of the invariant part to each diagonal element, which
is taken as a shift in the mass, we deduce the relation

m(n)+m(&) = 1

2
m(�)+ 3

2
m(�) . (13.82)

Additionally, for the 10-dimensional representation, considering the spin quartet,

�− , �∗− , &∗− , 	− , (13.83)

and carrying out a similar computation,

m(�)−m(�∗) = m(�∗)−m(&∗) = m(�∗)−m(	) . (13.84)

These are called the Gell-Mann mass formulas [67]. The weight diagram of the ten-
dimensional representation is shown in Fig. 13.4. It was using these formulas that
	− was found in [71].

Okubo also showed that, using the isospin I and hypercharge Y , the mass of a
particle in one of the SU(3) multiplets can be expressed in the form [70]

m = a + bY + c

[
I (I + 1)− Y 2

4

]
. (13.85)

Fig. 13.4 Weight diagram
for the decuplet
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Although this equation holds for both bosons and fermions, a better agreement with
experiment is obtained for bosons by writing the equation for m2.

13.2.5 Baryon Magnetic Moments

In the example above, we have assumed that the term HSB which breaks the
symmetry transforms in the same way as Y (which is proportional to F8). It may
be assumed that the electromagnetic interaction, which was not considered there,
has the same transformation property as Q. Consequently, the magnetic moment
can be considered to have the same transformation property. Note that Q commutes
with the U -spin:

[U±,Q] = 0 , [U3,Q] = 0 . (13.86)

Moreover, since the electromagnetic interaction is a sum of the isospin singlet and
triplet, we have

μ
(
�+
)+ μ
(
�−
) = 2μ

(
�0
)

, (13.87)

where μ (�) stands for the magnetic moment of �, and �+, �0, and �− belong to
the isospin triplet.

Since the magnetic moments of particles belonging to the same multiplet of the
U -spin are all equal, we can classify the baryon octet by the U -spin:

U − spin singlet U0
0 =

1

2

(√
3�0 +�0

)
,

U − spin doublet �+ , p , and &− , � ,

U − spin triplet &0 , U0
1 =

1

2

(
�0 −√3�0

)
, n .

From these, we immediately obtain the following equalities:

μ(�+) = μ(p) , μ(&−) = μ(�−) , μ(&0) = μ(U0
1 ) = μ(n) . (13.88)

Furthermore, the sum of the eigenvalues of Q over all members of the octet
vanishes:

∑
{8}

μ = 0 . (13.89)
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Since (13.87), (13.88), and (13.89) amount to six conditions, we can express the
eight magnetic moments in terms of just two magnetic moments, say μ(p) and μ(n).
It is more useful to use �0 and �0 as particles, rather than U0

0 and U0
1 , so we

consider the latter as eigenstates of μ and use the condition

〈
U0

0

∣∣μ∣∣U0
1

〉 = 0 . (13.90)

This yields the relations

2μ(�0�0) ≡ 2〈�0|μ|�0〉 = √3
[
μ(�0)− μ(�0)

]
, (13.91)

μ(U0
1 ) =

3

2
μ(�0)− 1

2
μ(�0) . (13.92)

Here, μ(�0�0) is called a transition magnetic moment. It contributes to the decay
�0 → �0 + γ. We can now obtain the magnetic moments of all members of the
octet:

μ(�+) = μ(p) , μ(�0) = −1

2
μ(n) , μ(�−) = −μ(p)− μ(n) ,

μ(�0) = 1

2
μ(n) , μ(&0) = μ(n) , μ(&−) = −μ(p)− μ(n) .

(13.93)

Taking e/2mp as the basic unit, known as the nuclear magneton, and using

μ(p) = 2.79 , μ(n) = −1.91 , (13.94)

we can compute the magnetic moments of all members of the baryon octet and
compare them with experimental data. The results are displayed in Table 13.2.

Although the agreement of theoretical values and experimental values is qual-
itatively good, it is not so good quantitatively. Later, we will return to a more
quantitative discussion using the quark model. In any case, the discussions so far
are group theoretical, and not based directly on the quark model.

Table 13.2 Choosing Cj and Oj

μ(�0) μ(�+) μ(�−) μ(&−) μ(&0)

Theoretical −0.96 2.79 −0.88 −0.88 −1.91
value

Experimental −0.613 ± 0.004 2.38 ± 0.02 −1.10 ± 0.05 −1.85 ± 0.75 −1.250 ± 0.014
value
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13.2.6 SU(3)-Invariant Interactions

So far, we have treated the octets of baryons, pseudo-scalar mesons, and vector
mesons. These are expressed by 3×3 matrices like B, P , and V . We now consider
the transformation under SU(3) (13.24). For this transformation, the matrix D given
by (13.34) transforms by

D→ UDU−1 . (13.95)

Thus, B, P , and V , and so on, all transform in the same way as (13.95). This
means that any trace of the product of these matrices will be invariant under the
SU(3) transformations. Moreover, under charge conjugation,

C−1PTC =P , C−1V TC = −V . (13.96)

These correspond to (13.75) in the case of baryons.
An SU(3)-invariant Yukawa-type interaction is

Hint =
√

2D Tr
(
B̄{M ,B})+√2F Tr

(
B̄[M ,B]) , (13.97)

for M = P or V . The reason why we use the notation D and F is that d and f

appear as the Clebsch–Gordan coefficients connecting different kinds of members
when we compute the trace. In the case of the pseudo-scalar meson, the Yukawa-
type coupling constant G appearing in (6.96) is given by

G = D + F . (13.98)

Note also that, if there are interactions corresponding to

V → P +P , V → V +P , (13.99)

it is easy to see that only type F or type D can occur, respectively.

13.2.7 Casimir Operator

Up to now, we have introduced matrices corresponding to the octets B, P , and V .
Considering a member corresponding to their matrix elements, say the one such that
M in (13.45) is replaced by F , we write it as

F =
8∑

i=1

λi√
2
Fi . (13.100)
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Although the Fi transform under SU(3), their transformation rules are once again
given by (13.95). Hence,

TrF 2 , TrF 3 , (13.101)

are invariant under the SU(3) transformations, and therefore,

[Fi,TrF n] = 0 . (13.102)

An operator which is a polynomial in the generatorsFi and commutes with all the Fi

as just described is called a Casimir operator. It is clear from the definition that the
Casimir operator has the same eigenvalue for all members of the same irreducible
representation. The operator

J 2 = J 2
x + J 2

y + J 2
z , (13.103)

for the rotation group in three-dimensional space is an example of a Casimir
operator, and its eigenvalue J (J + 1) specifies the irreducible representation.

In the case of SU(3), there are only two independent quantities in TrF n. If we
take

Cn = TrF n , (13.104)

then it is straightforward to show that the following recursion equation holds:

Cn+3 = 1

2
C2Cn+1 + 1

3
C3Cn . (13.105)

Using C1 = 0, all the Cn can be expressed in terms of C2 and C3. Thus, we can
choose C2 and C3 as independent Casimir operators. For instance, C4 is expressed
in terms of C2 by

TrF 4 = 1

2

(
TrF 2)2 , C4 = 1

2
C2

2 . (13.106)

We can express C2 and C3 in terms of the Fi :

C2 = TrF 2 =
∑
i

F 2
i , C3 = TrF 3 = 1√

2

∑
i,j,k

dijkFiFjFk . (13.107)

We write the eigenvalue of C2 for a given irreducible representation R as C2(R). In
particular, we denote the eigenvalue for the adjoint representation by C2(G). Now
we know that, for the SU(3) group, the irreducible representations can be expressed
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as D(p, q), and it can be shown that, for R = D(p, q),

C2(R) = 1

3

(
p2 + pq + q2)+ p + q . (13.108)

This result will be used when discussing the gauge theory later on.
In this section we have used quarks as a mathematical tool and discussed how

to apply the SU(3) group to classify hadrons. Later, we will explain why quarks
should be considered as real physical entities.

13.3 Universality of π-Meson Decay Interactions

So far, we have discussed the classification of hadrons. We shall now consider
leptons. As mentioned in Chap. 1, leptons are fermions which are not affected by
the strong interaction. These include those carrying electric charges, such as the
electron and the muon, as well as the neutral neutrino. The latter has several forms,
e.g., the electron neutrino νe, which forms a doublet with the electron, and the muon
neutrino νμ, which forms a doublet with the muon. We call the pairs (e, νe) and
(μ, νμ) the first generation and the second generation, respectively. It seems that
the lepton number in each generation is conserved. M.L. Perl found a third charged
lepton in [126]. This is called the tauon or tau-lepton and denoted by τ. Of course,
there is also a tau neutrino which is paired with the tauon. We thus know of three
generations of leptons:

(e, νe) , (μ, νμ) , (τ, ντ) . (13.109)

The masses of the charged leptons are

me = 0.5110034± 0.0000014 MeV , mμ = 105.65943± 0.00018 MeV ,

mτ = 1776.86± 0.12 MeV .

(13.110)

Since the mass of the π-meson or pion is

mπ = 139.5637± 0.0007 MeV , (13.111)

the pion can decay into lepton pairs of the first and second generations:

π+ → μ+ + νμ , π+ → e+ + νe . (13.112)

However, it is the tau-lepton that can decay into the pion:

τ+ → π+ + ν̄τ . (13.113)
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We assume that the interaction between the lepton l (l = e,μ, τ), the l-neutrino νl ,
and π has the form

Hdecay = ig

mπ

ψ̄νl γλ(1+ γ5)ψl∂λϕ + h.c. (13.114)

In Sect. 9.2, assuming that the coupling constant g has the same value for the first
and second generations, and computing the branching ratio of (13.112), we obtained
(9.61), i.e.,

Γ (π+ → e+ + νe)

Γ (π+ → μ+ + νμ)
= 1.29× 10−4 . (13.115)

This agrees well with the experimental value of (1.266 ± 0.023) × 10−4. Let us
assume that it is the same for the third generation. The decay width for the reaction
(13.113) is

Γ (τ+ → π+ + ν̄τ) = g2

8π
mτ

(
mτ

mπ

)2 [
1−
(
mπ

mτ

)2 ]
. (13.116)

In this case, since we have not summed over the spins for τ+, but averaged over
them because the reaction differs from (13.112) (in the sense that the charged lepton
τ is in the initial, and not the final state), g2/4π has been altered to g2/8π . Then,
taking the ratio with (9.59), g2 drops out. If we compute the ratio, the value expected
theoretically is

Γ (τ+ → π+ + ν̄τ)

Γ (π+ → μ+ + νμ)
≈ 1.0× 104 . (13.117)

In order to investigate this ratio experimentally, we write

Γ (τ+ → π+ + ν̄τ)

Γ (π+ → μ+ + νμ)
= Γ (τ+ → all)

Γ (π+ → all)
r(τ+ → π+ + ντ)

= τ (π+)
τ (τ+)

r(τ+ → π+ + ντ) , (13.118)

where r(τ+ → π+ + ντ) stands for the branching ratio for τ+ to decay as in
(13.113), and τ (π+) and τ (τ+) are the mean lifetimes of π+ and τ+, respectively:

τ (π+) = (2.6030± 0.0023)× 10−8 s ,

τ (μ+) = (2.19714± 0.00007)× 10−6 s , (13.119)

τ (τ+) = (3.4± 0.5)× 10−13 s .
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Inserting these values into (13.118) and equating it with (13.117), we obtain

r(τ+ → π+ + ντ) = (13± 2)% . (13.120)

In the case of π+, we have assumed that they almost all decay into μ+ + νμ.
Equation (13.120) does not contradict the experimental value (10.7 ± 1.6)%. This
confirms that the coupling constant g does not depend on the generation in the
lepton-decay interactions of π.

13.4 Beta-Decay

The interaction term (13.114) given in the previous section is in fact phenomeno-
logical. We may consider that this interaction derives from a more fundamental
one. Before the birth of gauge theory, the fundamental weak interaction theory was
Fermi’s, and the oldest and most typical example of such an interaction was the
beta-decay of an atomic nucleus.

A theory of beta-decay, viz.,

n → p+ e− + ν̄e , (13.121)

was proposed by Fermi in 1934 [13]. The interaction term was considered to be

Hβ =
∑
j

Cj ψ̄pOjψn · ψ̄eOjψν +
∑
j

C′j ψ̄pOjψn · ψ̄eOjγ5ψν + h.c. ,

(13.122)

where the Oj are the Dirac matrices corresponding to the scalar, the vector, the
tensor, the axial vector, and the pseudo-scalar (SVTAP), introduced in Sect. 3.9.
From the point of view of the Pauli–Gürsey group introduced in Sect. 7.7, this is not
general enough. A term with ψν replaced by Cψ̄ν should be added to (13.122).
However, we consider here only the interaction with the restricted form above.
Therefore, we are actually considering only a subgroup of the Pauli–Gürsey group:

G1 × G2 ∈ GF . (13.123)

Phase transformations under GF are

ψ → eiα+iβγ5ψ , ψ̄ → ψ̄e−iα+iβγ5 . (13.124)

These transformations lead to the following transformations of the coupling con-
stants:

Cj → eiα(Cj cosβ+ iC′j sin β) , C′j → eiα(C′j cosβ+ iCj sin β) . (13.125)
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An invariant combination of the coupling constants under these transformations is

C∗i Cj + C′∗i C′j . (13.126)

Experimentally, only this combination is measured. It was Lee and Yang who
introduced a term including C′j into (13.122) and considered the possibility of non-
conservation of parity [45]. That was in 1956. They pointed out that it was only by
making the replacement

C∗i Cj → C∗i Cj + C′∗i C′j (13.127)

in several kinds of calculation in the previous theory without C′j , that agreement
could be obtained with previously obtained experimental data for beta-decay.

Furthermore, restricting to the transformation (13.124), fixed points exist for Ci

and C′j under the transformation (13.125):

when α = −β , Cj = C′j , and when α = β , Cj = −C′j . (13.128)

Fixed points imply that the interaction (13.122) is invariant under this restricted
transformation, and as discussed in Sect. 7.7, this leads to invariance under the
restricted transformation (7.146). As shown in Sect. 3.7, experiment implies that

Cj = C′j . (13.129)

Thus, (13.122) can be written in the form

Hβ =
∑
j

Cj ψ̄pOjψn · ψ̄eOj(1+ γ5)ψν + h.c. (13.130)

As shown above, the neutrino is left-handed. Lee and Yang chose Cj and Oj as in
Table 13.3.

We shall now determine what kinds of coupling constants exist. In beta-decay,
there is one for the emission of e− and one for the emission of e+. We can then
obtain the following equation for the dependence of the helicity σ · p/p of the
emitted e∓ on the coupling constants:

h(e±) = ∓|〈1〉|
2(|CS|2 − |CV|2)+ |〈σ 〉|2(|CT |2 − |CA|2)

|〈1〉|2(|CS|2 + |CV|2)+ |〈σ 〉|2(|CT |2 + |CA|2)
v

c
, (13.131)

Table 13.3 Choice of Cj and Oj made by Lee and Yang

Type Scalar Vector Tensor Axial vector Pseudo-scalar

Cj CS CV CT CA CP

Oj 1 γμ
1√
2
σμν −iγμγ5 γ5
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where 〈1〉 and 〈σ 〉 are the nuclear matrix elements of Fermi type and Gamow–Teller
type. That is, assuming that ψ is a non-relativistic Heisenberg operator,

〈1〉 = 〈B|ψ†
p (0)ψn(0)|A〉 , 〈σ 〉 = 〈B|ψ†

p (0)σψn(0)|A〉 . (13.132)

In deriving (13.131), we have omitted the so-called Fierz interference term between
the VA-type and the ST-type, and we have also omitted the Coulomb correction.
We now prove this formula, assuming for simplicity that there is only a scalar-type
interaction.

We start with the state |i〉 and end up with the state S|i〉. Therefore,

S|i〉 =
∑
n

|n〉Sni . (13.133)

Depending on experimental conditions, we may or may not have to take a sum over
all states |n〉. We write observable states as (n). The expectation value of the physical
quantity A in the final state is given by

〈A〉 =
∑

(m)

∑
(n)〈i|T †|m〉〈m|A|n〉〈n|T |i〉∑

n〈i|T †|n〉〈n|T |i〉 , (13.134)

where S is replaced by T and common factors in the numerator and denominator
have been eliminated. We now choose the eigenstates of A as the partially complete
system (n):

A|n〉 = an|n〉 . (13.135)

If we choose A = p · σ for the electron, then |n〉 can be an eigenstate of the Dirac
Hamiltonian H(p). This is because

[σ ·p,H(p)] = 0 . (13.136)

In order to compute 〈A〉, we only have to make the following replacement for the
Casimir operator of the electron in a molecule:

− ip · γ +m→ (−ip · γ +m)(σ ·p) = (σ · p)(−ip · γ +m) . (13.137)

We thus start with

Tf i ∝ ūe(p)(1 + γ5)vν(q)〈1〉 . (13.138)

Therefore,

〈σ ·p〉 =
∑

Tr
[
(1+ γ5)(−iq · γ )(−ip · γ +m)(σ ·p)] · |〈1〉|2∑
Tr
[
(1+ γ5)(−iq · γ )(−ip · γ +m)

] · |〈1〉|2 , (13.139)
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where the four-momentum p of the electron has been fixed. The sum over the
final states can for all practical purposes be replaced by the following phase space
integral:

∑
−→
∫

d3q

2q0

∫
d3PB

2PB0
δ4(Pf − Pi) . . . . (13.140)

Since an atomic nucleus B is heavy, PB0 can be treated as constant. Then, d3PB

cancels δ3(Pf − Pi) for the momentum. Regarding q , its direction becomes free
only if energy is conserved, as in the case of scattering in a potential:

∑
−→
∫

d3q

2q0
δ(E − p0 − q0) . . . . (13.141)

The energy can be approximated by the mass difference with the atomic nucleus,
i.e., E = PA0 − PB0 ≈ MA −MB .

Regarding the traces,

Tr (numerator) = 4(q0p
2 − p0p · q) , Tr (denominator) = 4(q0p0 − p · q) .

(13.142)

Hence, carrying out the q-integral in polar coordinates, we have

∫
d3q

2q0
δ(E − p0 − q0)(q0p

2 − p0p · q) = 2π
∫

qdqδ(E − p0 − q0)q0p
2,

∫
d3q

2q0
δ(E − p0 − q0)(q0p0 − p · q) = 2π

∫
qdqδ(E − p0 − q0)p0q0 .

Taking into account the fact that q0 = q and carrying out the q-integral, it turns out
that q = q0 is replaced by E − p0. Therefore, the ratio of the two terms yields

〈σ ·p〉 = q0p
2

p0q0
= p

p

p0
= p

v

c
. (13.143)

Thus, the helicity is

〈h〉 = 〈σ · p/p〉 = v

c
. (13.144)

A generalization of this derivation yields (13.131). The helicity of e− was measured
for

60Co → 60Ni+ e− + ν̄e , (13.145)
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by Frauenfelder in [127, 128]. The result was

h(e−) = −
(v
c

)
± 10% . (13.146)

Comparing this with (13.131), we see that beta-decay is a VA combination. Thus,
the interaction term is

Hβ = (CVψ̄pγλψn − CAψ̄pγλγ5ψn)ψ̄eγλ(1+ γ5)ψν + h.c. (13.147)

Taking

CV = G√
2
, CA = G√

2
x , (13.148)

G itself is determined from

14O→ 14N∗ + e+ + νe , (13.149)

corresponding to the transition 0+ → 0+, which is not affected by CA. This is
because 〈1〉 is obtained group-theoretically in this case, using the fact that 14C, 14N∗,
and 14O form an isospin triplet. We will mention an issue regarding this intermediate
process in the next section.

In fact, x can be determined from the beta-decay of a polarized meson, for
example:

G = 1.01

m2
p
× 10−5 , x = −1.254± 0.006 . (13.150)

Since x is negative, we call this the V−A theory. Explicitly, the interaction term is

Hβ = G√
2
ψ̄pγλ(1+ 1.25γ5)ψn · ψ̄eγλ(1+ γ5)ψν + h.c. (13.151)

The factor of 1/
√

2 originates from the replacement in (13.127). For this reason,
when using the old coupling constant G, we need to write it in this form.

13.5 Universality of the Fermi Interaction

We have already mentioned the universality of the lepton decay of the π-meson
with interaction (13.114), since it does not depend on the lepton generation. The
interaction term specified in (13.114) is phenomenological. The Fermi interaction
discussed above can be considered to cover more phenomena and is therefore more
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fundamental. We will discuss this idea step by step. So we begin this section by
interpreting the universality of (13.114) from the point of view of the universality of
the Fermi interaction. Equation (13.151) specifies the interaction between nucleons
and leptons in the first generation, and we assume that the same form holds
universally for leptons in all generations:

HF = G√
2
ψ̄pγλ(1+ 1.25γ5)ψn · ψ̄lγλ(1+ γ5)ψνl + h.c. (13.152)

If we assume that π+ → μ+ + νμ occurs through this interaction, then

〈
μ+, νμ

∣∣HF(x)
∣∣π+〉 (13.153)

= 1.25
G√

2

〈
0
∣∣ψ̄n(x)γλγ5ψp(x)

∣∣π+〉〈μ+, νμ

∣∣ψ̄νμ(x)γλ(1+ γ5)ψμ(x)
∣∣0〉.

From its transformation property, we may write the first factor as

1.25
G√

2

〈
0
∣∣ψ̄n(x)γλγ5ψp(x)

∣∣π+〉 = − g

mπ

pλ
eip·x
√

2p0V
, (13.154)

where p is the four-momentum of π+. Therefore, phenomenologically, as far as this
process is concerned, we can make the following replacement:

1.25
G√

2
ψ̄nγλγ5ψp → ig

mπ

∂λϕ . (13.155)

The fact that g does not depend on the generation in (13.114) can be interpreted
as a consequence of the universality wherein G does not depend on the generation
in (13.152). We can thus consider (13.114) as a phenomenological expression of
(13.152) as far as this process is concerned. Let us go a little further with this
universality.

As far as the lepton part goes, the universal form

ψ̄lγλ(1+ γ5)ψνl (13.156)

appears in the Fermi interaction, but the nucleon part still has a complicated form.
It may thus be better to consider the nucleon part as still being a phenomenological
expression. Let us treat this part slightly more abstractly. From (7.30), we write
down the isospin current density for the nucleon–meson system as

ĵλ = iψ̄γλ
τ̂

2
ψ − ϕ̂ × ∂λϕ̂ , (13.157)

where we have considered nucleons and π-mesons as elementary particles here.
As long as the theory preserves charge independence, the isospin current density
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is always expressed in terms of the fundamental field operators as the Noether
current density. However, the main properties of isospin do not depend on what
field we choose as the fundamental field, being determined by group-theoretical
considerations. This is similar in the scattering theory: the scattering amplitude for
stable particles obeys the scattering formula regardless of whether the particles are
elementary or composite.

The vector part of the nucleon term in the Fermi interaction is

iψ̄pγλψn = i
(
ψ̄γλ

τ

2
ψ + iψ̄γλ

τ2

2
ψ
)

. (13.158)

Note that this is the nucleon part of j1λ+ ij2λ in the isospin current density (13.157).
To give the phenomenological vector part of the nucleon greater generality, we
replace it with the isospin current density, which can be written without specifying
the fundamental fields. Hence, we rewrite the vector part in (13.152) as

HV = −i
G√

2
(j1λ + ij2λ)ψ̄lγλ(1+ γ5)ψνl + h.c. (13.159)

The isospin current density satisfies the conservation law, so Gell-Mann called
this replacement the CVC hypothesis [49], where CVC is an abbreviation for the
conserved vector current. Since this vector current can be used for all hadrons with
fixed isospins, it becomes a truly universal expression. For example, consider the
beta-decay of π+:

π+ → π0 + e+ + νe . (13.160)

If the momentum is conserved, the matrix elements of the isospin are

〈
p
∣∣I1 + iI2

∣∣n〉 = 1 ,
〈
π+
∣∣I1 + iI2

∣∣π0〉 = −√2 . (13.161)

Regarding their densities when the momentum transfer is almost zero,

〈p|j10 + ij20|n〉 = 1

V
〈p|I1 + iI2|n〉 = 1

V
, (13.162)

〈
π+
∣∣j10 + ij20

∣∣π0〉 = 1

V

〈
π+
∣∣I1 + iI2

∣∣π0〉 = −
√

2

V
. (13.163)

This result does not depend on whether nucleons and π-mesons are elementary or
composite particles. Generalizing the above equation,

〈
π+
∣∣j1λ + ij2λ

∣∣π0〉 = −
√

2

V

qλ

q0
, (13.164)
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where we assume that π+ and π0 have almost the same momentum qλ, and neglect
the difference in their momenta. From this, we can immediately compute the decay
width of the beta-decay of π+:

Γ (π+ → π0 + e+ + νe)

Γ (π+ → μ+ + νμ)
= 1.0× 10−8 . (13.165)

This agrees extremely well with the experimental value of (1.033± 0.034)× 10−8.
Assuming that the CVC hypothesis is correct, it thus turns out that the interaction
(13.159) is extremely general and can be used for all hadrons.

So far in the discussion, we have only appealed to the properties of the isospin,
and in particular the commutation relation

[Ii , Ij ] = iεijkIk . (13.166)

This commutation relation therefore characterizes the universality. It is thus tempt-
ing to consider the same thing for the axial-vector part of the interaction. We thus
make the substitution

1.25
G√

2
iψ̄pγλγ5ψn → G√

2

(
j5

1λ + ij5
2λ

)
. (13.167)

The factor of 1.25 can be considered as phenomenological, i.e., it is given by

〈
p
∣∣j5

1λ + ij5
2λ

∣∣n〉 = 1.25
i

V
ū(p)γλγ5u(n) . (13.168)

As will soon be shown, this is a calculable factor. We can now define the pseudo-
scalar isospin by

Î 5 =
∫

d3x ĵ5
0 . (13.169)

Since Î 5 is itself an isospin vector, the commutation relation with Î is given by

[Ii, I 5
j ] = iεijkI

5
k . (13.170)

The remaining problems here are the normalization of Î 5 and, in association with
that, the closure of the commutation relations between Î and Î 5. Gell-Mann assumed
the following equation:

[I 5
i , I

5
j ] = iεijkIk . (13.171)

The algebra closed in the way just described is called a current algebra [52, 53].
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To test this algebra, starting with (13.171), we have to see whether we can prove
that−CA/CV = 1.25. To do this, we use the partially conserved axial-vector current
(PCAC) hypothesis [129], according to which ∂λĵ

5
λ can express the π-meson field

and the dispersion formula. The result is the Adler–Weisberger formula [54–56]:

(
CV

CA

)2

= 1+ 2

π

(mp

G

)2 ∫ ∞
mπ

k dω

ω2

[
σ−(ω)− σ+(ω)

]
, (13.172)

where ω and k are the incident energy and momentum of π in the laboratory frame,
and σ−(ω) and σ+(ω) are the total cross-sections for the following processes:

σ−(ω) : π− + p → all , σ+(ω) : π+ + p → all , (13.173)

G is the coupling constant appearing in the phenomenological interaction between
nucleons and π-mesons given in (6.96). Its approximate value is G2/4π ≈ 15.
Inserting an experimental value into the right-hand side of (13.172), the result
almost coincides with CA/CV = −1.25, and this therefore supports the current
algebra hypothesis. For a proof of (13.172), the reader is referred to my book Fields
and Particles [2].

So far, regarding the Fermi interaction, the following universality has been
established. First, for the lepton part, the interactions are common to all generations.
Next, for the hadron part, it can be expressed by the current density satisfying the
current algebra hypothesis. Moreover, it is easy to check that exactly the same
commutation relations hold for the lepton part as for the hadron part, i.e., taking

iψ̄lγλ(1+ γ5)ψνl → j ′1λ − ij ′2λ , (13.174)

and writing spatial integrals of j ′10 and j ′20 as I ′1 and I ′2, respectively, we find that
I ′1 and I ′2 satisfy the same commutation relations as I1 + I 5

1 and I2 + I 5
2 . Thus,

algebraically, the lepton part and the hadron part have the universal properties.
In order to investigate the Fermi interaction among leptons, such as in the

reaction

μ+ → e+ + νe + ν̄μ , (13.175)

we assume an interaction with the same form:

Hμe = GF√
2

[
ψ̄νeγλ(1+ γ5)ψe

] [
ψ̄μγλ(1+ γ5)ψνμ

]+ h.c. (13.176)

Since it was explained in detail how to compute this decay width in Sect. 9.5, we
only show the result:

Γ (μ+ → e+ + νe + ν̄μ) = 1

192π2
G2

Fm
5
μ . (13.177)
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This coupling constant does not have a correction from the strong interaction, so it
can be determined from the lifetime and the mass of the muon:

GF = 1.03

m2
p
× 10−5 . (13.178)

Similarly, in the beta-decay of the neutron,

Γ (n → p+ e− + ν̄e) = 0.94

60π3

(|CV|2 + 3|CA|2
)
Δ5 , (13.179)

where Δ = mμ−mp. Comparing (13.178) with (13.150), there is a slight difference
between G and GF. Cabibbo provided an interpretation of this difference. The
current algebra is based on the isospin group SU(2), and the weak interaction
wherein a hadron decays into a lepton pair has a small component which changes
the strangeness. This extends the current algebra to SU(3). Cabibbo’s interpretation
was that the hadron part of the Fermi interaction is the isospin density but slightly
altered by an SU(3) rotation [57]. The angle of rotation is known as the Cabibbo
angle. Writing it as θc ,

G = GF cos θc . (13.180)

Cabibbo’s theory will be discussed in detail in the next section. Here we discuss
the quark model. Expressing the commutation relation in terms of field operators at
equal times x0 = y0, we can use the density to write

[
j5
i0(x), j

5
j0(y)
] = iεijkjk0(x)δ

3(x − y)+ GIS term , (13.181)

where the GIS term is the term which vanishes, like the Goto–Imamura–Schwinger
term, when we carry out the spatial integral. Assuming that the fields of the π-
meson and the nucleon are fundamental fields, the first term on the right-hand
side, jkλ(x), or ĵλ(x), is given by (13.157). It remains to express ĵ5

λ . We shall not

give an explicit expression here, as ĵ5
λ satisfying (13.181) is highly non-linear and

hence complicated. The dynamics in a system with the symmetry corresponding
to such a non-linear current expression is called chiral dynamics. This gives
a phenomenological representation of the current algebra, but it would be too
complicated to consider the fundamental theory. It would be utterly impossible to
implement the renormalization. We thus turn to the expression in terms of quarks.

13.6 Quark Model in Weak Interactions

In Sect. 13.2, we introduced three types of quarks, u, d, and s. These quarks were
invented as a mathematical tool and as carriers of the fundamental representation,
rather than as real particles. However, once we recognize that the current which
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satisfies the current algebra exists in the weak interaction as a physical entity, the
way we express the current density in terms of field operators becomes a real
physical problem, i.e., a problem of what the fundamental fields are in real life.

Denoting the quark field with three components u, d, and s as q , and using the
Gell-Mann matrices λi which mix these three components, we introduce the current
density

Fjμ = iq̄γμ
λj

2
q , F 5

jμ = iq̄γμγ5
λj

2
q . (13.182)

We also define the quantities

Fj =
∫

d3xFj0 , F 5
j =
∫

d3xF 5
j0 . (13.183)

These are not necessarily conserved. Their equal-time commutation relations are

[Fi, Fj ] = ifijkFk , [Fi, F
5
j ] = ifijkF 5

k , [F 5
i , F

5
j ] = ifijkFk . (13.184)

Thus, it turns out that, using quarks, it is a straightforward matter to express the
current algebra.

Here we have constructed the SU(3) current algebra, which has SU(2) as a
subalgebra. To understand the algebraic structure of (13.184) in detail, we build
the combination

F
(±)
i = 1

2

(
Fi ± F 5

i

)
, (13.185)

which yields the commutation relations

[
F

(+)
i , F

(−)
j

] = 0 ,
[
F

(+)
i , F

(+)
j

] = ifijkF
(+)
k ,

[
F

(−)
i , F

(−)
j

] = ifijkF
(−)
k .

(13.186)

This algebraic structure is thus a direct product of the algebras SU(3)L and SU(3)R,
generated by F (+) corresponding to the left-handed current and F (−) corresponding
to the right-handed current, respectively:

SU(3)L × SU(3)R . (13.187)

As described above, the quark model is the simplest way to satisfy the current
algebra and the best expression from the point of view of high-energy behaviour
and renormalizability. Here, we no longer consider the quark model as a simple
mathematical tool, but take the quarks to be real physical entities. Cabibbo defined
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the current carrying electric charge which appeared in the Fermi interaction in [57]
by

Jμ =
[
F (μ)

1μ − iF (+)
2μ

]
cos θC +

[
F (+)

4μ − iF (+)
5μ

]
sin θC +

∑
l

iψ̄lγμ(1+ γ5)ψνl ,

(13.188)

and wrote the universal Fermi interaction as

HF = GF√
2
J+μ Jμ . (13.189)

From these, for instance, the beta-decay interaction, which does not change the
strangeness, is

Hβ = GF√
2

cos θC
[
F (+)

1μ + iF (+)
2μ

]
iψ̄eγμ(1+ γ5)ψνe + h.c. (13.190)

Taking into account (13.180), this coincides with (13.152). In addition, it turns
out that the 0-components of Jμ defined by (13.188) and those of its Hermitian
conjugate J †

μ satisfy the algebra SU(2)L.
The interaction (13.189) consists of the charged current, and the neutral current is

missing. However, this will be added later, in the gauge theory. The quantum number
discriminating between the three types of quarks u, d, and s is called flavour. Isospin
and strangeness are examples of flavours. In fact, there is further discrimination
between quarks, known as colour. This will be discussed in the next section.

To explain contributions changing the strangeness in the weak interaction,
Cabibbo suggested that d′ and s′ might differ from d and s as mass eigenstates,
rewriting the hadron part of the Fermi interaction as

ψ̄pγλ(1+ 1.25γ5)ψn → ūγλ(1+ γ5)d
′ . (13.191)

Since both d and s have electric charge−e/3, he proposed the transformation

(
d′
s′
)
=
(

cos θC sin θC

− sin θC cos θC

)(
d
s

)
. (13.192)

This is the origin of the form (13.188). In 1970, Glashow et al. introduced a fourth
quark called charm, denoted by c. Assuming that it carried an electric charge of
+2e/3, this completed a second generation of quarks [130]:

(
u
d

)
,

(
c
s

)
. (13.193)
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Then, in order to explain the violation of CP invariance, Kobayashi and Maskawa
predicted a third generation of quarks, replacing (13.193) by [131]

(
u
d

)
,

(
c
s

)
,

(
t
b

)
. (13.194)

The quarks t and b are called the top quark and the bottom quark, respectively.
Extending (13.192), they introduced the mixing matrix

⎛
⎝d′

s′
b′

⎞
⎠ =
⎛
⎝ c1 s1c2 s1s2

−s1c3 c1c2c3 − s2s3e−iδ c1s2c3 + c2s3e−iδ

−s1s3 c1c2s3 + s2c3e−iδ c1s2s3 − c2c3e−iδ

⎞
⎠
⎛
⎝d

s
b

⎞
⎠ . (13.195)

This is called the Kobayashi–Maskawa matrix. The factor of e−iδ leads to time
reversal or CP violation, and accordingly, the third-generation quarks are needed
here. Moreover,

si = sin θi , ci = cos θi , (13.196)

where θi (i = 1, 2, 3) are three angles, extending the Cabibbo angle.
We have introduced the quark model by considering the weak interactions, but

what about the strong interactions?

13.7 Quark Model in Strong Interactions

In Sect. 13.2, we discussed the classification of hadrons, the mass formula, the
magnetic moment, and so on, based on the SU(3) algebra. In this section, we use
the quark model to show that these results can be further improved.

The most important thing here is that quarks have, besides flavour, another degree
of freedom called colour. Let us see why a new degree of freedom is needed.

The quark model is supported by the following group theoretical considerations.
Since each meson is a bound state qq̄, for flavour SU(3),

3⊗ 3̄ = 1⊕ 8 , (13.197)

which means that a singlet and an octet are possible. There is experimental support
for this, namely, both the singlet and the octet exist, and there is nothing else. Each
baryon has the form qqq and we have

3⊗ 3⊗ 3 = 1⊕ 8⊕ 10 . (13.198)



13.7 Quark Model in Strong Interactions 345

Experimentally, it is precisely these multiplets that have been detected. The quarks
forming the basic triplet have not been detected. The only thing that has been
detected experimentally are states belonging to 8, 8 ⊗ 8, and so on. This is what
the eightfold way means.

Now let us consider a member �++ of the decuplet. This particle is a bound
state of three u quarks, i.e., uuu, and its spin is 3/2. Assuming that the orbital
angular momenta are each in the S-state, it can be considered that the three 1/2-
spins are parallel and the composite spin is 3/2. If so, both the spatial wave function
and the spin wave function are symmetric, which leads to a contradiction, since
the wave function represents three identical fermions. Thus, there must be another,
unknown degree of freedom. The wave function here should be completely anti-
symmetric with respect to this degree of freedom, which we shall call colour for the
time being. We assume the existence of three kinds of colour states 1, 2, and 3. We
note, however, that this colour degree of freedom has never been observed at the
level of hadrons. Assuming that hadrons do have an extra degree of freedom, this
yields several contradictions, unless we consider that hadrons are the singlets for
this new degree of freedom.

In this case, apart from the spatial part, the wave function of �++ may be written
as

εαβγ u
α↑u

β
↑u

γ
↑ , (13.199)

where u stands for the flavour, ↑ indicates spin up, and α, β, and γ indicate the
colour degree of freedom. When we carry out an SU(3) transformation on the three
kinds of colour state, (13.199) is invariant, so this is a colour singlet. All hadrons
will thus be invariant under this colour SU(3) transformation. This means that the
quark model must be a theory which is invariant under the SU(3) group.

13.7.1 Mass Formula

We will show that we can improve the mass formula in Sect. 13.2 by using the quark
model. To do so, we first express the hadrons as quark bound states:

π+ ∼ ud̄ , π− ∼ dū , K+ ∼ us̄ , K0 ∼ ds̄ ,

p ∼ uud , n ∼ udd , � ∼ uds , �+ ∼ uus ,

�++ ∼ uuu , 	− ∼ sss , etc.

The quarks have the following charges:

Qu = 2

3
e , Qd = Qs = −1

3
e . (13.200)
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In some cases, we have to consider mixed states in order to distinguish the flavour
singlet from the flavour octet:

η1 ∼ 1√
3
(uū+ dd̄+ ss̄) , η8 ∼ 1√

6
(uū+ dd̄− 2ss̄) . (13.201)

A rough formula for the mass can be obtained by taking a sum over the quark
masses. The following formulas can be derived from both the quark model and the
previous SU(3) method. Particle names stand for masses here:

K
496 MeV

= (π+ 3η)/4
446 MeV

, ρ
776 MeV

= ω
783 MeV

, φ− K∗
127 MeV

= K∗ − ρ
116 MeV

,

�∗ −�
152 MeV

= &∗ −�∗
150 MeV

= 	− −&∗
139 MeV

, (N+&)/2
1129 MeV

= (� + 3�)/4
1135 MeV

.

(13.202)

In the quark model, we can include further corrections from the interaction.
However, to do this, we will have to borrow a result from the gauge theory discussed
later. The short-range potential among qq̄ or qq is given as follows, assuming
that the composite system belongs to the 1-colour representation or the 3̄-colour
representation:

VqNq(1) = −4

3
αs/r , Vqq(3̄) = −2

3
αs/r , (13.203)

where αs is a coupling constant characterizing the interaction among particles
carrying colour. Its expectation value �E is given up to a multiplicative constant
by

�E ∝ σ1 · σ2

m1m2
. (13.204)

We can thus add a correction term to the equation wherein the mass M of the
composite system is considered to be a sum of masses mi of the components:

M(qq̄) = m1 +m2 + a(σ1 · σ2)/m1m2 , (13.205)

M(qqq) =
3∑

i=1

+a′
∑
i<j

(σ1 ·σ2)/mimj . (13.206)

These can be computed if the spin wave functions of the hadrons are known. The
results are shown in Tables 13.4 and 13.5. Here, both the meson case and the baryon
case involve three parameters, but given the simplicity of the formula, it cannot be
helped that the quarks have to be attributed slightly different masses to fit the mesons
and to fit the baryons. Even so, the qualitative agreement is good.
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Table 13.4 Meson masses in MeV. Choice of parameters: mu = md = 310 MeV, ms = 483 MeV,
a/m2

u = 160 MeV

Meson π(138) K(496) η(549) ρ(776) ω(783) K∗(892) φ(1020)

Mass 140 485 559 780 780 896 1032

Table 13.5 Baryon masses in MeV. Choice of parameters: mu = md = 363 MeV, ms = 538 MeV,
a′/m2

u = 50 MeV

Baryon N(939) �(1116) �(1193) &(1318) �(1232) �∗(1384) &∗(1533) 	(1672)

Mass 939 1114 1179 1327 1239 1381 1529 1682

13.7.2 Magnetic Moments

Just as we have done for mass, we can use the spin wave function to express the
magnetic moments of baryons by

μi = Qi

2mi

, i = u, d, s . (13.207)

For instance, the wave function of the proton is

|p ↑〉 =
√

2

3

∣∣uu, Sz = 1
〉× ∣∣d ↓ 〉−

√
1

3

∣∣uu, Sz = 0
〉× ∣∣d ↑ 〉 , (13.208)

where the symbols have the obvious meaning. The magnetic moment can then be
computed from

μ(p) = 2

3
(2μu)+

(
−2

3
+ 1

3

)
μd = 4

3
μu − 1

3
μd . (13.209)

We can express the magnetic moments in units of the nuclear magneton, as in
Sect. 13.2. In baryons, the values of the μi in (13.207) are

μu = 1.863 n.m. , μd = −0.931 n.m. , μs = −0.583 n.m. (13.210)

The magnetic moments of the baryons are shown in Table 13.6. In the table, the
magnetic moments of the quarks in (13.210) are expressed directly by the quark
symbols u, d, and s. Apart from &−, where there is a large error, the agreement with
experiment is much improved over Table 13.2.

So far we have discussed three types of quark. It took much longer for other
kinds of quark to be “detected”. This is because c and b are much more massive
than u, d, and s. As will be discussed later, an isolated quark cannot be observed,
so what is observed is always a hadron. In 1974, Ting and Richter independently
found a vector particle with a mass of about 3100 MeV, which they called J and
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Table 13.6 Baryon magnetic moments

Baryon Expression for magnetic moment Theoretical value Experimental value

p
4

3
u− 1

3
d 2 0.73 2.793

n
4

3
d− 1

3
u −1 0.86 −1.913

�0 s −0 0.58 −0.613 ± 0.004

�0 → �0 1√
3
(d− u) −1 0.61 −

(
1.82
+0.25

−0.18

)

�+
4

3
u− 1

3
s 2 0.68 2.379 ± 0.020

�0 4

3
(u+ d)− 1

3
s 0 0.82

�− 4

3
d− 1

3
s −1 0.05 −1.10 ± 0.50

&0 4

3
s− 1

3
u −1 0.4 −1.250 ± 0.014

&−
4

3
s− 1

3
d −0 0.47 −1.85 ± 0.75

ψ , respectively [132, 133]. This was interpreted as the bound state cc̄, where c was
identified with the c quark introduced by Glashow et al. in 1970. Regarding the
fourth quark, its existence was considered by Maki and Hara from a different point
of view in about 1963 [134, 135]. Then a particle called ϒ with a mass of about
9460 MeV was detected by Lederman and Yamanouchi [136]. It was interpreted as
the bound state bb̄.

Hence, it gradually became clear that there are also three generations of quarks.
The next problem was therefore to find the t quark. The detection of this particle
is (now we should use ‘was’ instead of ‘is’) one of the aims of the accelerator
TRISTAN, constructed in Tsukuba. Moreover, bound states of these heavy quarks
have many excited states, and they have been explained by assuming the potential

V (r) = −4

3

αs

r
+ kr , (13.211)

which has proved extremely successful. It is assumed that, the more massive the
quark, the better the approximation provided by such a non-relativistic computation.

13.8 Parton Model

We have been discussing the quark model, according to which each hadron is a
bound state of quarks. A key issue is the way the strong interaction glues quarks
together. The parton model characterizes this property of the strong interaction. If
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we translate this literally, it should be called the partial-particle model. In 1969,
Feynman assumed that “the nucleon consists of almost free point particles, called
partons.” He dubbed this the parton model [137]. Thus, for instance, if the four-
momentum of a proton is P and the four-momenta of the partons making it up are
pi , then we require

pi ≈ xiP , 1 ≥ xi ≥ 0 , (13.212)

because without such a proportionality relation, almost free partons will fly away on
their own and the proton will fall to pieces.

In order to make this idea more explicit, assuming that the parton is in fact a
quark, the proton has the composition uud. If the probabilities for the u quark and d
quark to exist in the region (x, x +�x) are u(x)�x and d(x)�x, respectively, then
we must have

∫ 1

0
dx u(x) = 2 ,

∫ 1

0
dx d(x) = 1 . (13.213)

We therefore compute the structure function for the inelastic scattering of electrons
discussed in Sect. 9.3 using this model. To ensure consistency with (13.212), if the
proton mass is denoted by M , we take the parton mass to be

mi = xiM . (13.214)

We must then compute contributions corresponding to the structure function for
each parton. If we write a contribution from one parton as wμν , we have

2πe2wμν =
∫

d4x
p0

m

〈
p
∣∣jμ(x)jν(0)∣∣p〉e−iQ·x , (13.215)

where we have dropped the subscript i. Actually, we have to use a matrix element
in the Heisenberg picture, but since we use free quarks here, we compute in the
interaction picture. Averaging over possible spins of the quark, the equation above
becomes

2πe2wμν = −e2
q

∫
d3p′

(2π)3

p0

m

1

2
Tr

(
γμ
−ip′ · γ +m

2p′0
γν
−i · γ +m

2p0

)
(2π)4δ4(p′ − p −Q)

= −2πe2
qδ(p

′2 +m2)
1

4m
Tr
[
γμ
[− i(P +Q) · γ +m

]
γν(−ip · γ +m)

]
,

where we have assumed that the parton absorbs the momentum Q, and as a result it
has the momentum p′ = p +Q. Therefore,

wμν = −
(eq
e

)2
δ
[
(p +Q)2 +m2] 1

m
(2pμpν + pμQν + pνQμ − δμνp ·Q) .

(13.216)
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So, using p2 +m2 = 0,

wμν =
(eq
e

)2
δ(2p ·Q+Q2)

[(
δμν − QμQν

Q2

)
ν (13.217)

+
(
Pμ − P ·Q

Q2 Qμ

)(
Pν − P ·Q

Q2 Qν

)
2xM

M2

]
,

where, as in Chap. 9, ν has been defined by

p ·Q = xP ·Q = −xMν . (13.218)

Using (9.82), we can now obtain the structure functions of the parton:

w1 =
(eq
e

)2
δ(2p ·Q+Q2)ν = ν

(eq
e

)2
δ(Q2 − 2Mνx) , (13.219)

w2 =
(eq
e

)2
2xMδ(2p ·Q+Q2) = 2xM

(eq
e

)2
δ(Q2 − 2Mνx) . (13.220)

To derive the structure functions of the proton from these, we have to multiply by
u(x) and d(x) for q = u and q = d, respectively, and integrate with respect to x. If
we take

P(x) =
(eu

e

)2
u(x)+

(ed

e

)2
d(x) = 4

9
u(x)+ 1

9
d(x) , (13.221)

then

F1 = MW1 =
∫

dx P(x)δ

(
Q2

Mν
− 2x

)
= 1

2
P

(
Q2

2Mν

)
, (13.222)

F2 = νW2 =
∫

dx P(x)xδ

(
Q2

2Mν
− x

)
= Q2

2Mν
P

(
Q2

2Mν

)
. (13.223)

This establishes the Bjorken scaling law [105], according to which, in the limits
Q2 →∞ and Mν →∞, MW1 and νW2 become functions of Q2/2Mν = x alone.
Although in the computation above we have not taken these limits explicitly, in the
free parton picture we are assuming these limits implicitly because we neglect the
binding energy. In this limit, inelastic scattering is called deep-inelastic scattering.
We thus conclude that the parton model satisfies Bjorken’s scaling law for deep
inelastic scattering. Moreover, since we have assumed that the spin of the parton is
1/2 in the computation above, it follows that

F2(x) = 2xF1 . (13.224)
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This relation, which agrees with experiment, is known as the Callan–Gross relation
[138].

If the spin of the parton is zero, we may ask how the relation above changes. So,
assuming that the parton is a scalar, let us compute wμν :

2πe2wμν = 2πe2
p

∫
d3p′

2p′0
1

2m
(p + p′)μ(p + p′)νδ4(p′ − p −Q)

= 2πe2
pδ(2p ·Q+Q2)(2p +Q)μ(2p +Q)ν/m , (13.225)

where ep is the electric charge of the parton. In this case,

F1(x) = 0 , F2(x) = xP(x) . (13.226)

In other words, F1 vanishes. This contradicts the experiment. Hence, it is impossible
to construct the proton using only scalar particles, and the parton must have spin 1/2.
Note that, in the calculation above, the interference term has been dropped, but this
may be justified to some extent because of the large momentum transfer.

To conclude this section, we can assert that “quarks in the hadron are almost
free.” In other words, the interaction among quarks becomes weak at short range.
If this holds for the strong interaction in general, this is a remarkable feature of the
strong interaction which clearly restricts its structure.

If we consider the same thing in momentum space, it turns out that, in the strong
interaction, the probability of a process involving a large momentum transfer is very
small. As will be discussed later, only a non-Abelian gauge interaction can satisfy
this condition.



Chapter 14
What Is Gauge Theory?

So far we have introduced a variety of interactions among elementary particles. If
we arrange them in order of decreasing strength, we find the strong interaction,
the electromagnetic interaction, the weak interaction, and finally the gravitational
interaction. Typical in each category are Yukawa’s nucleon–meson interaction, the
interaction between the electron and the electromagnetic field, the Fermi interaction,
and so on. For elementary particles with their very small masses, gravity is not
generally considered in elementary particle theory, because it is many orders of
magnitude weaker than the others.

These interactions often have various kinds of symmetry. For instance, the
nucleon–meson interaction is invariant under rotations in isospin space, and as a
consequence, there is a conserved quantity, namely isospin. It is thus natural to ask
whether there is a general principle for determining the forms of different interac-
tions and whether there exists a relationship between the form of an interaction and
the symmetries of the theory.

The Coulomb potential and the Newtonian potential, already known to classical
physics, are both inversely proportional to the distance. Their strengths are pro-
portional to the product of the particles’ electric charges and the product of the
bodies’ masses, respectively. Both the electric charge and the mass are conserved
quantities in non-relativistic theories. If we consider that such potentials emerge
from fields, then we can say that the origins of these fields are the current densities
corresponding to conserved quantities. We call these fields and interactions gauge
fields and gauge interactions. It turns out that in this sort of interaction the gauge
field and the conserved quantity, or the symmetry inducing it, are in a one-to-one
correspondence, which gives one solution to the question mentioned above.

The best-known example of a gauge field is the electromagnetic field. The origin
of the electromagnetic field is a four-dimensional electric current. Its representation
can be determined immediately by designating what particles are fundamental. So
far we have written the Lagrangian by treating hadrons and leptons as fundamental
particles, but it is also easy to write down the Lagrangian by considering quarks
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and leptons as fundamental. This involves the same procedure as when we take the
electric current in terms of hadrons and rewrite it in terms of quarks. Moreover,
when two hadrons are far enough apart, the Coulomb potential depends only on
the electric charges of the hadrons and not on whether the hadrons are fundamental
particles or composite particles. This is because the electric charge is an additive
quantum number.

Yang and Mills proposed in 1954 the existence of a gauge field corresponding
to the conserved isospin [139]. Since the isospin symmetry is described by a
non-Abelian algebra, this is called a non-Abelian gauge field. In 1956, Utiyama
introduced the non-Abelian gauge field corresponding to a more general symmetry.
He also described the gravitational field as the gauge field corresponding to the
conservation of energy–momentum [140]. The assumption that all interactions are
of the gauge type, i.e., that there is a one-to-one correspondence between any
conserved quantity and a gauge field, is called the gauge principle. Essentially,
this was proposed by Utiyama. Let us give an example of the kind of result that
can be obtained from this principle. Consider the hypothesis of baryon number
conservation. If this is correct, there should be a gauge field that corresponds to
it. This will be a vector field, and its interaction strength should be proportional
to the baryon number. Since the mass is approximately proportional to the baryon
number in macroscopic matter, this force looks very much like gravity. However, its
effect should have been observed as a deviation from Newton’s law of gravitation.
And since the law of gravitation holds to very good accuracy, it is hard to imagine
the existence of such a force. Therefore, the basis for assuming the conservation
of baryon number is flimsy. This turns out to be connected with the possibility of
proton decay.

In the following, we shall present the formalism needed to treat gauge fields.

14.1 Gauge Transformations of the Electromagnetic Field

As mentioned above, the electromagnetic field was the first known gauge field. In
the mathematical formulation of a gauge field, the gauge transformations have a
fundamental importance, not yet discussed above. We thus begin by studying the
gauge transformations of the electromagnetic gauge field, and extend the concept to
other, non-Abelian gauge fields.

We express a quantum of electric charge of a field ψa as ea = eqa , where e

has units of electric charge and qa is a dimensionless number. If eQ is the electric
charge operator, then

[ψa(x),Q] = qaψa(x) , (14.1)

so qa is one of the eigenvalues of Q. We consider the unitary operator

R(λ) = exp(iλQ) , (14.2)
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where λ is a real parameter, and we introduce a phase transformation for ψa(x):

ψa(x) −→ ψ ′a(x) = R−1(λ)ψa(x)R(λ) = eiλqaψa(x) . (14.3)

In a system where the electric charge is conserved, the Lagrangian density is invari-
ant under this transformation. This is called a global symmetry. The transformation
(14.3) is an example of (14.2), and we write it as

U(λ) = eiλqa . (14.4)

We now replace the parameter λ by a function of the coordinate, viz.,

λ → λ(x) . (14.5)

When we insert this λ(x), we call (14.2), (14.3), and (14.4) a local gauge
transformation, in contrast to the one with constant λ, which is called a global gauge
transformation. Hence, (14.3) becomes

ψa(x) → U
(
λ(x)
)
ψa(x) . (14.6)

Introducing the gauge field Aμ, we define the covariant derivative Dμ by

Dμ = ∂μ − ieaAμ(x) , (14.7)

which is intended to act on ψa(x). To determine how Aμ transforms under the gauge
transformation, we require Dμψa to transform in the same way as (14.6):

D′μψ ′a(x) = U
(
λ(x)
) (
Dμψa(x)

)
. (14.8)

Combining (14.6) with (14.8),

D′μ = U
(
λ(x)
)
DμU
(
λ(x)
)−1

. (14.9)

Inserting (14.7) into this equation, the transformation property of Aμ is determined
to be

Aμ(x) → Aμ(x)+ 1

e
∂μλ(x) . (14.10)

Note that the transformation above no longer depends on how we choose a.
Moreover, from (14.9),

[
D′μ,D′ν

] = U
(
λ(x)
)[Dμ,Dν ]U

(
λ(x)
)−1

. (14.11)
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Since this commutator does not include derivatives, it commutes with U . It therefore
becomes an invariant quantity under the gauge transformation:

[Dμ,Dν] = −iea(∂μAν − ∂νAμ) = −ieaFμν . (14.12)

We can also write down the Jacobi identity for D:

[
Dμ, [Dν,Dσ ]

]+ [Dν, [Dσ ,Dμ]
]+ [Dσ , [Dμ,Dν]

] = 0 . (14.13)

Inserting (14.12) into this equation, we find

∂μFνσ + ∂νFσμ + ∂σFμν = 0 . (14.14)

This is called the Bianchi identity.

14.2 Non-Abelian Gauge Fields

In the previous section, we only considered one conserved quantity, namely Q. Let
us now consider the case where there are N conserved charges Q1,Q2, . . . ,QN ,
which form a Lie algebra, i.e., the commutation relations among them take the form

[Qa,Qb] = ifabcQc . (14.15)

We consider a field ψ(x) that carries an n-dimensional irreducible representation of
this algebra, i.e.,

[ψr(x),Qa] = (ta)rsψs(x) , r, s = 1, 2, . . . , n . (14.16)

The matrices ta form an n-dimensional representation of the charges Qa . Just as
representations of Q for different fields were given by different values of q in the
case of the electromagnetic field, so the ta representing the Qa will also be different
for different fields. By analogy with the last section, we define

R(λ) = exp

(
i

N∑
i=1

λaQa

)
, (14.17)

and specify a phase transformation for ψ(x) by

ψ(x) → ψ ′(x) = R−1(λ)ψ(x)R(λ) = U(λ)ψ(x) , (14.18)
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where

U(λ) = exp

(
i

N∑
a=1

λata

)
. (14.19)

We now make this transformation local, viz.,

λa → λa(x) ,

and define the covariant derivative Dμ of ψ(x) by

Dμ = ∂μ − ig
N∑
a=1

taA
a
μ(x) ≡ ∂μ − igAμ(x) . (14.20)

Of course, Aμ depends explicitly on the representation t . As in the last section, the
gauge transformation of Dμ is

D′μ = U
(
λ(x)
)
DμU
(
λ(x)
)−1

. (14.21)

This determines the form of the gauge transformation of Aμ :

A ′μ(x) = U
(
λ(x)
)
Aμ(x)U

(
λ(x)
)−1 − 1

ig
U
(
λ(x)
)
∂μU
(
λ(x)
)−1

. (14.22)

If we write down this transformation for the component Aa
μ, we see that it does not

in fact depend on how we choose the representation t . For instance, considering an
infinitesimal λ(x),

Aa′
μ (x) = Aa

μ(x)+ fabcA
b
μ(x)λ

c(x)+ 1

g
∂μλ

a(x) , (14.23)

and the representation t drops out completely. Additionally, the commutators of the
components of the covariant derivative are

[Dμ,Dν ] = −ig
(
∂μAμ − ∂μAν − ig[Aμ,Aν]

) ≡ −igFμν , (14.24)

Fμν =
N∑
a=1

ta

(
∂μA

a
ν − ∂νA

a
μ + gfabcA

b
μA

c
ν

)
. (14.25)
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Once again, we see that the components of Fμν do not depend on how we choose
t . The gauge transformation of Fμν is given by

F ′μν(x) = U
(
λ(x)
)
Fμν(x)U

(
λ(x)
)−1

. (14.26)

Since the ta do not commute in this case, Fμν is not gauge invariant. However,

Tr
(
Fμν(x)Fμν(x)

)
(14.27)

is clearly gauge invariant, and can be used as the Lagrangian density of the gauge
field. Aa

μ(x) is called a non-Abelian gauge field. Once again, we can derive the
Bianchi identity from (14.13).

14.3 Gravitational Field as a Gauge Field

Utiyama was the first to note that the gravitational field is a sort of gauge field [140].
Since the symmetry of the gravitational field under a space-time transformation
is different from an internal symmetry that is independent of space-time, many
complications arise. So far we have introduced the gauge field from the condition
that a given field and its covariant derivative should transform in the same way.
However, for a space-time coordinate transformation, it is the rank of the tensor
that determines the irreducible representation, and the covariant derivative alters
this rank, so the given field and its covariant derivative clearly transform in different
ways. For example, for a scalar field φ, if we consider DμDνφ, the first covariant
derivative Dν is the covariant derivative of the scalar field, which is just ∂ν , while
the second covariant derivative Dμ is the covariant derivative of the vector field
φν ≡ ∂νφ, i.e.,

Dμφν = ∂μφν − Γ λ
μνφλ . (14.28)

If we consider Γ λ
μν as a matrix element of the matrix Γμ , viz.,

(
Γμ

)
ν
λ = Γ λ

μν , (14.29)

it turns out that Γμ corresponds to igAμ in the previous section. Γ λ
μν is the

Christoffel symbol of the second kind and is defined by

Γ λ
μν =

1

2
gλσ (∂μgσν + ∂νgσμ − ∂σ gμν) . (14.30)
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For a general coordinate transformation, Γ does not transform as a tensor. An
additional term arises, characteristic of the transformation of a gauge field, involving
a derivative of the transformation matrix.

We now construct a quantity corresponding to Fμν . As mentioned before, the
representation of D depends on what D acts on. For instance, if we consider a scalar
field φ, then

[Dμ,Dν ]φ = φ;ν;μ − φ;μ;ν , (14.31)

where ;μ indicates the covariant derivative. However, for a vector field Aν ,

[Dσ ,Dρ ]Aν = Aν;ρ;σ − Aν;σ ;ρ = Rλ
νρσAλ . (14.32)

Hence, using the matrix Γ , what corresponds to Fμν in the previous section is

Rλ
νμσ =

(
Fρσ

)
ν
λ = (∂ρΓσ − ∂σΓρ − [Γρ, Γσ ]

)
ν
λ

= ∂ρΓ
λ
σν − ∂σΓ

λ
ρν − Γ α

ρνΓ
λ
σα + Γ α

σνΓ
λ
ρα . (14.33)

This has essentially the same form as Fμν in the previous section. Moreover, the
Jacobi identity for the scalar field φ, viz.,

([
Dν, [Dρ,Dσ ]

]+ [Dρ, [Dσ ,Dν]
]+ [Dσ , [Dν,Dρ ]

])
φ = 0 , (14.34)

is equivalent to the following equation (multiplied by ∂λφ):

Rλ
νρσ + Rλ

ρσν + Rλ
σνρ = 0 . (14.35)

Similarly, for the vector field Aμ, the equation

([
Dν, [Dρ,Dσ ]

]+ [Dρ, [Dσ ,Dν ]
]+ [Dσ , [Dν,Dρ ]

])
Aμ = 0 (14.36)

implies

Rλ
μρσ ;ν + Rλ

μσν;ρ + Rλ
μνρ;σ = 0 . (14.37)

Equations (14.35) and (14.37) are the Bianchi identities in this case.



Chapter 15
Spontaneous Symmetry Breaking

In the last chapter we discussed gauge theory. As far as it goes, we remain unable to
eliminate other interactions and replace them by gauge interactions. It may happen
that the symmetry in the Lagrangian is broken for some reason and is not apparent.
This is called a broken or hidden symmetry. In this case, a quantum of the gauge
field corresponding to the broken or hidden symmetry acquires mass, in contrast to
the photon. In this chapter, we will discuss a mechanism whereby the symmetry in
the Lagrangian is broken.

15.1 Nambu–Goldstone Particles

We assume that a given Lagrangian is invariant under the Lie group G. We call the
ground state of this system the vacuum and denote it by |0〉. In this case, there are
two possibilities:

1. |0〉 is invariant under G, whence it belongs to a one-dimensional representation
of G ;

2. |0〉 is not invariant under G, and it belongs to a multi-dimensional representation
of G .

The former case is a manifest symmetry and the latter is a hidden symmetry. In
the latter case, we say that the symmetry is spontaneously broken, and |0〉 is clearly
degenerate. There exist many examples like this outside field theory. A well known
example is the ferromagnet. In the ground state, the electron spins align in one
direction. The direction in which the spins align depends on how the ground state has
been prepared, but originally the system is rotationally symmetric, so this ground
state is degenerate with respect to spin directions.
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Theorem 15.1 Nambu–Goldstone theorem. When the Lagrangian is invariant
under the Lie group G and its invariance is spontaneously broken, there exist
particles whose masses and spins are both zero.

This was first discovered by Nambu and Jona-Lasinio [141, 142], and then a
simpler example was given by Goldstone [143]. The particles in question are called
Nambu–Goldstone particles.

If |0〉 does not belong to the one-dimensional representation, there exist local
scalar operators satisfying

〈0|ρa(x)|0〉 �= 0 . (15.1)

Although the ρa themselves belong to the multi-dimensional representation, how
they are represented depends on the representation of |0〉. The expectation value of
operators with non-zero spins always disappears because of Lorentz invariance. In
the following, we consider the case where we can choose the scalar field operators
themselves as the ρa . The original Nambu–Jona-Lasinio model chose a bilinear
form of the Fermi field as ρ. This is because no scalar field was included in their
model.

We express an infinitesimal transformation of the group G in the form

δϕa = εαT
α
abϕb . (15.2)

If we rewrite this with εα → λa , T α → ita , it coincides with (14.18). The
corresponding Noether current is

J α
μ =

∂L

∂ϕa,μ
T α
abϕb . (15.3)

It satisfies the local conservation law

∂μJ α
μ = 0 . (15.4)

We thus analyze the global conservation law in the two cases mentioned at the
beginning of this section:

1. When a symmetry is manifest, there are global conserved quantities

Qα =
∫

d3x J α
0 (x) , (15.5)

and the following global conservation law holds:

dQα

dt
= 0 . (15.6)
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Moreover, since |0〉 belongs to the one-dimensional representation of G, the
generators Qα of G annihilate the vacuum:

Qα|0〉 = 0 . (15.7)

It is easily shown from the definition of (15.3) that, because the Qα are generators
of the group G, we must have

i[Qα,ϕa] = T α
abϕb . (15.8)

In this case, it is clear from (15.7) that

i
〈
0
∣∣[Qα,ϕa]

∣∣0〉 = T α
ab〈0|ϕb|0〉 = 0 . (15.9)

In addition, the generators Qα are the same both with and without renormaliza-
tion, i.e., (15.8) and (15.9) hold for the field operators both with and without
renormalization, and they have the same form. However, for the discussion
below, it will be more useful to consider the renormalized case.

2. For the broken symmetry, there is a component ϕb satisfying

T α
ab〈ϕb〉 �= 0 , 〈ϕb〉 = 〈0|ϕb|0〉 . (15.10)

In this case, we will prove the Nambu–Goldstone theorem. We first study the
structure of the two-point function

i
〈
0
∣∣[J α

μ (x),ϕα(y)]
∣∣0〉 (15.11)

under the explicit Lorentz covariance. First, from the discussion about the
integral representation in Sect. 12.8, we can write down the following integral
representation as the most general form of (15.11):

i
〈
0
∣∣[J α

μ (x),ϕa(y)]
∣∣0〉 = ∂μ

∫
dm2ρα

a (m
2)Δ(x − y;m2) . (15.12)

In addition, the spectral function ρα
a (m

2) is given by

pμθ(p0)ρ
α
a (−p2) = (2π)3i

∑
n

δ4(p−pn)
〈
0
∣∣J α

μ (0)
∣∣n〉〈n∣∣ϕa(0)

∣∣0〉 . (15.13)

Extracting a divergence in (15.12) and using the local conservation law (15.4),

∫
dm2ρα

a (m
2)m2Δ(x − y;m2) = 0 , (15.14)

m2ρα
a (m

2) = 0 . (15.15)
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A general from of ρ satisfying these equations is

ρα
a (m

2) = Nα
a δ(m

2) . (15.16)

Thus, denoting the Δ-function for m2 = 0 by D,

i
〈
0
∣∣[J α

a (x),ϕa(y)]
∣∣0〉 = Nα

a ∂μD(x − y) . (15.17)

Now, taking μ = 4 and using (15.8),

Nα
a = T α

ab〈ϕb〉 �= 0 . (15.18)

Hence,

i
〈
0
∣∣[J α

μ (x),ϕa(y)]
∣∣0〉 = T α

ab〈ϕb〉∂μD(x − y) . (15.19)

This equation implies that the scalar field ϕa yields a massless one-particle state.
This particle is the Nambu–Goldstone particle. Moreover, in this case the term
proportional to ∂μϕa is included in J α

μ :

∫
d3x∂μϕa ∼ V

1√
V
= √V →∞ , V →∞ . (15.20)

Hence, the integral (15.18) defining Qα diverges, so (15.8) can be rewritten as

i
∫

d3x
[
J α

0 (x),ϕa(y)
] = T α

abϕb(y) , x0 = y0 . (15.21)

Changing the order of taking the commutator and doing the integration makes
no difference. In this case, the global conserved quantities Qα are zero. As a
consequence, this broken symmetry becomes a hidden symmetry.

No particle whose mass and spin are both zero has yet been observed experimentally.
Does this mean that such a broken symmetry cannot be realized in the real world? Or
does the Nambu–Goldstone particle disappear as a result of some other mechanism?
Solving this issue will be the aim of the present chapter.

15.2 Sigma Model

In the last section, we investigated the relationship between the broken symmetry
and the Nambu–Goldstone particle. In this section, we will discuss a simple model
which realizes this. We consider the system consisting of a pseudo-scalar triplet π
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and a scalar singlet σ :

π1 , π2 , π3 , σ . (15.22)

To distinguish between the scalar and the pseudo-scalar, we have to introduce
fermions and interactions such as

iψ̄γ5
τ̂

2
ψϕ̂ , ψ̄ψσ . (15.23)

For simplicity, we will only consider bosons. We introduce the notation

ϕ2
a = ϕ2

1 + ϕ2
2 + ϕ2

3 + σ 2 = ϕ̂2 + σ 2 , (15.24)

where the ϕi are the field operators for the πi and σ is the field operator for σ .
For the Lagrangian density, we take

L = −1

2
(∂μϕa)

2 + 1

4
m2ϕ2

a −
1

8
f 2(ϕ2

a)
2 , (15.25)

which has O(4) symmetry. Note that the mass term has the opposite sign to the
usual one. Minus the sum of the second and third terms is the potential, viz.,

U(ϕ) = −1

4
m2ϕ2

a +
1

8
f 2(ϕ2

a)
2 . (15.26)

Then ϕa = 0 gives an extremum of U(ϕ), but it does not give the minimum. Put
another way, the ordinary symmetric vacuum is not stable. Before introducing non-
symmetric vacua, let us investigate the algebraic structure of this model. In this
system, there are six local conservation laws. We thus introduce the following vector
and axial-vector currents:

V̂μ = −ϕ̂ × ∂μϕ̂ , Âμ = ϕ̂∂μσ − σ∂μϕ̂ . (15.27)

Both these current densities satisfy the local conservation laws

∂μV̂μ = 0 , ∂μÂμ = 0 . (15.28)

If the global conservation laws hold, then taking π̂ = ˆ̇ϕ and π0 = σ̇ , the
conserved quantities are

Î =
∫

d3x
(
ϕ̂ × π̂

)
, Î 5 =

∫
d3x
(
σ π̂ − ϕ̂π0

)
. (15.29)
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Comparing with (13.166), (13.170), and (13.171), the commutation relations among
them are

[Ii , Ij ] = iεijkIk ,
[
Ii , I

5
j

] = iεijkI
5
k ,
[
I 5
i , I

5
j

] = iεijkIk . (15.30)

Even if the global conservation laws do not hold, the commutation relations among
the densities still do. Neglecting the Goto–Imamura–Schwinger term discussed in
Sect. 12.8 and setting x0 = y0,

[
Vi0(x), Vj0(y)

] = iεijkδ3(x − y)Vk0(x) . (15.31)

Taking

F (±)
iμ = 1

2

(
Viμ ± Aiμ

)
(15.32)

for the density, as discussed in Sect. 13.6, we have the current algebra

SU(2)L × SU(2)R . (15.33)

Adding further fermions to this model, a representation of the current algebra
can be made. Indeed, it leads to chiral dynamics and we can construct a simple
representation for the current algebra. However, in the real world there is no
particle corresponding to σ , so representations without σ have been proposed.
Unfortunately, since the representation without σ is a rather non-linear theory, work
eventually shifted to the quark model. In the following, we will consider the model
in which σ survives. Coming back to the topic of broken symmetry, we write the
field equation in the form

�ϕa + 1

2

(
m2 − f 2ϕ2

b

)
ϕa = 0 . (15.34)

Considering this as a classical equation, the requirement of causality cannot be
satisfied unless

1

2

(
m2 − f 2ϕ2

b

) ≤ 0 , (15.35)

whence 〈ϕb〉2 �= 0. Corresponding to the minimum of U(〈ϕ〉), we take

〈ϕ̂〉 = 0 , 〈σ 〉 = η �= 0 , (15.36)

where the parity and the isospin are conserved. Hence, if we take

σ = σ0 + η , (15.37)
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then η is determined by the condition minimizing the potential, viz.,

m2 = f 2η2 . (15.38)

Since we have introduced symmetry breaking, if we investigate what kinds of
equations ϕ̂ and σ0 satisfy, we find

�ϕ̂ = non-linear terms , (�−m2)σ0 = non-linear terms . (15.39)

What we have understood from these is that the mass of π vanishes, σ has a
finite mass, and π is the Nambu–Goldstone particle. Although the discussion about
symmetry breaking has been classical in this section, we will give a more detailed
quantum mechanical discussion in the next.

Interpreting π as the pion, since it actually has a small mass, we add a small term
to introduce a slight symmetry breaking artificially. This term can be considered to
determine the direction of symmetry breaking. If a is a small quantity,

L → L ′ = L + aσ . (15.40)

In this case, η is shifted by order a and becomes η′:

σ = σ0 + η′ . (15.41)

Minimizing the potential classically in this case,

m2 = f 2η′2 − 2a

η′
. (15.42)

Therefore, if a is small, η′ differs from η only by a term of order a. Although the
mass of σ is given once again by m, the mass of π becomes finite, and if we write it
as μ, we have

μ2 = 1

2

(
f 2η′2 −m2

)
= a

η′
. (15.43)

Moreover, in this case, the local conservation law of the axial vector current is no
longer observed. If we write η′ as fπ, then

∂μÂμ = −μ2fπϕ̂ . (15.44)

This is called the partially conserved axial-vector current (PCAC) hypothesis
[129]. Considering π as a composite particle, we define its phenomenological field
operator by this equation.
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Since the above symmetry breaking argument has been classical and phenomeno-
logical, we now formulate this using Green’s functions in order to give a rigorous
quantum mechanical discussion.

15.3 The Mechanism of Spontaneous Symmetry Breaking

As an example of spontaneous symmetry breaking, we previously mentioned the
ferromagnet. When there is no magnetic field, the directions of the electron spins
are random at high temperature because of their thermal motions, whence there is
rotational symmetry. If we turn on a magnetic field, the ferromagnet is magnetized
in the direction of the magnetic field. If we now gradually decrease the temperature
a phase transition occurs. It turns out that even after removing the magnetic field,
it remains magnetized. In order to translate this phenomenon into the case for
spontaneous symmetry breaking in field theory, we use a Green’s function. The
necessary formalism has been given in Sect. 11.2.

The generating function R[J ] for connected Green’s functions is a functional of
the external field J , where J corresponds to the magnetic field imposed from the
outside in the ferromagnet case. The vacuum expectation value of the field ϕ(x)

produced as a consequence corresponds to the magnetization at low temperature.
We wish to investigate whether magnetization occurs even in the case where there
is no external field. Choosing the magnetic field as an independent variable, we ask
whether the magnetization can vanish when the magnetic field takes a suitable value.
This suitable value corresponds to the magnetization of the permanent magnet.

Although in Sect. 11.2, we introduced the functional R[J ] of J (x) and the
functional F [〈ϕ(x)〉] of 〈ϕ(x)〉, since it is useful to slightly change the phases,
we write

R = −iW , F = −iΓ , (15.45)

whence (11.36) becomes

Γ = W −
∫

d4x 〈ϕ(x)〉J (x) . (15.46)

The role of the new variables as generating functionals is expressed by

δW

δJ (x)
= 〈ϕ(x)〉 , δΓ

δ〈ϕ(x)〉 = −J (x) . (15.47)

W and Γ are generating functionals of the connected Green’s function and of the
one-particle irreducible Green’s function, respectively. The former is the Green’s
function corresponding to connected Feynman diagrams and the latter is the Green’s
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function without a pole corresponding to the one-particle state. This is because in
the latter the one-particle propagator is absorbed into 〈ϕ(x)〉.

The connected and one-particle irreducible Green’s functions in the momentum
space are defined by

δnW [J ]
δJ (x1) . . . δJ (xn)

∣∣∣∣
J=0
= (15.48)

1

(2π)4(n−1)

∫
(dp)δ(p1 + · · · + pn)e

ip1·x1+···+ipn·xnG(n)(p1, . . . , pn)

and

δnΓ [〈ϕ〉]
δ〈ϕ(x1)〉 . . . δ〈ϕ(xn)〉

∣∣∣∣〈ϕ(x)〉=ϕ = (15.49)

1

(2π)4(n−1)

∫
(dp)δ(p1 + · · · + pn)e

ip1·x1+···+ipn·xnΓ (n)(p1, . . . , pn) ,

respectively, where (dp) = d4p1 . . . d4pn and ϕ is a constant. In the theory in which
the symmetry is spontaneously broken, it turns out that ϕ takes a value different from
zero. We now define the effective potential V (ϕ) by

V (ϕ) = −Γ [ϕ] . (15.50)

At the lowest order, Γ [ϕ] coincides with the value when the field operator is
replaced by the constant ϕ in the Lagrangian density. Therefore, it coincides with
−U(ϕ) in the previous section, i.e.,

V (0)(ϕ) = −L (ϕ) = U(ϕ) . (15.51)

However, since there are differences when we include higher-order quantum
corrections, this is called an effective potential. In the following, we consider the
case where ϕ is multi-component. We assume that the theory is invariant under a
Lie group G, as considered in Sect. 15.1. Thus, if we have invariance under the
transformation (15.2),

V (ϕa + εαT
α
abϕb) = V (ϕa) , or

∂V

∂ϕa
T α
abϕb = 0 . (15.52)

Corresponding to (11.38) and (11.40), we have

∂V

∂ϕa
= Ja ,

∂2V

∂ϕa∂ϕb
= −Δ−1

F (0)ab , (15.53)
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where Ja is the external field corresponding to ϕa , while Δ−1
F (0) corresponds to

p2 = 0 and expresses the inverse matrix of the multi-component propagator when
the expectation value ϕ does not necessarily vanish. Differentiating (15.52),

∂2V

∂ϕa∂ϕc
T α
abϕb +

∂V

∂ϕa
T α
ac = 0 . (15.54)

Combining this with (15.53),

Δ−1
F (0)caT

α
abϕb = JaT

α
ac . (15.55)

The conditions for ϕ to have finite components even if the external field J

vanishes, i.e., the conditions for the symmetry to be spontaneously broken, are

Ja = ∂V

∂ϕa
= 0 , Δ−1

F (0)caT α
abϕb = 0 . (15.56)

The second equation means that there will be massless Nambu–Goldstone particles.
It is a necessary condition for this equation to have solutions except for ϕ = 0. A
sufficient condition is that V (ϕ) should have a minimum for the value of ϕ.

We consider the SO(n) symmetry as an example, and take

V (ϕ) = F(ϕ2
a) , (15.57)

where ϕ2
a = ϕ2

1 + · · · + ϕ2
n. Assuming that F(x) has a minimum at x = x0 ,

F ′(x0) = 0 , F ′′(x0) > 0 . (15.58)

In this case, Ja vanishes for ϕ2
a = x0 :

Ja = 2ϕaF
′(x0) = 0 . (15.59)

It turns out that the second equation in (15.56) then also holds. The solutions for
ϕ2
a = x0 are now degenerate. Thus, the ground states of this system turn out to be

degenerate. In this case,

Δ−1
F (0)ab = − ∂2V

∂ϕa∂ϕb
= −2δabF ′(ϕ2

a)− 4ϕaϕbF ′′(ϕ2
a) . (15.60)

Taking ϕ2
a = x0 ,

Δ−1
F (0)ab = −4ϕaϕbF ′′(x0) . (15.61)
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The eigenvalues of this matrix are−4x0F
′′(x0) and 0 for all others. The eigenvector

for the first of these eigenvalues is parallel to the n-dimensional vector (ϕ1, . . . , ϕn),
while the eigenvector for the latter eigenvalue is a vector normal to it. Hence, by a
proper rotation in SO(n), we can write Δ−1

F (0) in diagonal form:

Δ−1
F (0) =

⎛
⎜⎜⎜⎝
D

0
. . .

0

⎞
⎟⎟⎟⎠ . (15.62)

It turns out that, in this new coordinate system, the components of ϕ can be written
as (
√
x0, 0, . . . , 0). In this case, if we take c = 1 in (15.56), then from the anti-

symmetry of T , we obtain T α
abϕb = 0. If we take c �= 1, then we obtain Δ−1

F (0)ca =
0, so (15.56) holds in every case. Since the component corresponding to c = 1 has a
finite mass and components corresponding to c �= 1 give massless poles for ΔF(p

2),
Nambu–Goldstone particles turn out to be included. Additionally, since for c �= 1,
T α
cbϕb �= 0 for a proper α, the discussion in Sect. 15.1 also leads to the conclusion

that Nambu–Goldstone particles exist.
The discussion about the sigma model in the previous section shows that the com-

putation above has been carried out explicitly based on the approximation (15.51).
The components for c = 1 and for c �= 1 above correspond to σ and π , respectively.

15.4 Higgs Mechanism

So far we have considered the gauge principle. If the symmetry is not broken, there
must be quanta of massless gauge fields for the number of conserved quantities.
On the other hand, if the symmetry is spontaneously broken, then there must be
massless scalar particles. However, in reality, no massless boson has yet been
observed, except for the photon. So is it possible for massless bosons to be
eliminated by an as-yet-unknown mechanism? It was Englert, Brout, and Higgs
in 1964 who gave the first interesting discussion of this issue [144–146]. In the
following, we will present their approach.

We consider the simplest symmetric group, U(1) or SO(2). We assume that a
given system includes two real scalar fields ϕ1 and ϕ2, and is invariant under the
transformation

(
ϕ1

ϕ2

)
→
(

cosα sin α
− sin α cosα

)(
ϕ1

ϕ2

)
. (15.63)

If the Lagrangian density of this system is invariant under this transformation,
then we can introduce the corresponding Noether current jμ(x). We obtain the
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commutation relations

i
∫

d3x
[
j0(x),ϕ1(y)

] = ϕ2(y) , (15.64)

i
∫

d3x
[
j0(x),ϕ2(y)

] = −ϕ1(y) , (15.65)

where x0 = y0. We assume the following spontaneous symmetry breaking:

〈ϕ2(x)〉 �= 0 . (15.66)

In the proof of the Nambu–Goldstone theorem,

FT i
〈
0
∣∣[jμ(x),ϕ1(y)]

∣∣0〉 ∝ 〈ϕ2〉ε(k0)kμδ(k
2) , (15.67)

where FT indicates the Fourier transform, so we could conclude that there are
massless scalar particles. However, in this proof we assumed explicit Lorentz
covariance. But what happens if this assumption does not hold true, as for example
in non-relativistic theories, where this theorem does not necessarily apply. If we do
not have explicit covariance and a particular unit vector along the time axis appears
in a theory, then the general form of the Fourier transform in (15.67) above becomes

FT ∼ kμρ1(k
2, n · k)+ nμρ2(k

2, n · k)+ Cnμδ
4(k) . (15.68)

The general case within this form which satisfies the conservation law, i.e., the one
whose internal product with kμ vanishes, becomes

FT ∼ kμδ(k
2)ρ4(n · k)+

[
k2nμ − kμ(n · k)

]
ρ5(k

2, n · k)+Cnμδ
4(k) . (15.69)

Thus, a counterexample for the Nambu–Goldstone theorem occurs when

ρ4 = 0 . (15.70)

But even though there exists no explicit covariance, could the theory be Lorentz
covariant? The example given by Higgs is QED in a non-covariant gauge, i.e., with
the gauge condition in the form

nμAμ = 0 . (15.71)

Maxwell’s equations are then

∂μFμν = −jν , Fμν = ∂μAν − ∂νAμ . (15.72)
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We consider the following general form of the Fourier transform:

FT i
〈
0
∣∣[Aμ(x),ϕ1(y)]

∣∣0〉 = kμσ1(k
2, n · k)+ nμσ2(k

2, n · k)+Dnμδ
4(k) .

(15.73)

Therefore, from the gauge condition (15.71), taking n2 = −1, we obtain

σ2 = (n · k)σ1 , D = 0 . (15.74)

Thus, combining this result with (15.72),

FT; i
〈
0
∣∣[jμ(x),ϕ1(y)]

∣∣0〉 = [k2nμ − kμ(n · k)
]
σ2(k

2, n · k) . (15.75)

Comparing this with (15.69), it turns out that (15.70) is satisfied. Choosing a non-
covariant gauge like this, the massless Nambu–Goldstone particle does not appear.
The reason why we could do this is that there is a gauge field. Needless to say,
the transformations (15.64) and (15.65) appearing at the beginning of this section
correspond to global gauge transformations.

Bearing this in mind, we introduce the gauge field corresponding to the U(1)
symmetry and consider what happens when the symmetry is spontaneously broken.
The following discussion was given by Higgs in [147]. Since this gauge field can be
considered to be the same as the electromagnetic field, we introduce the Lagrangian
density

L = −1

4
FμνFμν − 1

2
DμϕaDμϕa + 1

4
m2

0ϕaϕa . (15.76)

The scalar part is the same as that of the sigma model, but ϕa has two components
labelled by a = 1, 2. The covariant derivative Dμ is defined by

Dμϕa = ∂μϕ1 − eAμϕ2 , Dμϕ2 = ∂μϕ2 + eAμϕ1 . (15.77)

In QED, we use complex fields, ϕ and ϕ†, and their covariant derivatives, i.e.,

ϕ = 1√
2
(ϕ1 − iϕ2) , ϕ† = 1√

2
(ϕ1 − iϕ2) , (15.78)

Dμϕ = (∂μ − ieAμ)ϕ , Dμϕ
† = (∂μ + ieAμ)ϕ

† . (15.79)

However, to introduce spontaneous symmetry breaking, it is more useful to use a
representation with real scalar fields. The field equations are

∂νFμν = jμ = e(ϕ2Dμϕ1 − ϕ1Dμϕ2) , (15.80)

D2
μϕa +

1

2
(m2

0 − f 2ϕbϕb)ϕa = 0 . (15.81)
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In this example, as in the case of the sigma model, the Lagrangian density has been
chosen so that the symmetry is spontaneously broken. Regarding solutions which
give an extremum of the effective potential in the lowest order approximation, in
addition to 〈Aμ〉 = 0 and 〈ϕb〉 = 0, there is also

〈Aμ〉 = 0 , 〈ϕb〉2 = m2
0

f 2 ≡ η2 . (15.82)

This corresponds to (15.38).
Note that the Lagrangian density, and therefore the field equations, are invariant

under the gauge transformation

Aμ(x) → Aμ(x)+ 1

e
∂μλ(x) , (15.83)

(
ϕ1(x)

ϕ2(x)

)
→
(

cos λ(x) sin λ(x)
− sinλ(x) cos λ(x)

)(
ϕ1(x)

ϕ2(x)

)
. (15.84)

If the symmetry is spontaneously broken as in (15.82), this solution is degenerate
and its degeneracy is generated by the transformation (15.84), for constant λ, i.e., the
solution to (15.82) has the following form which involves an arbitrary parameter α :

〈ϕ1〉 = η cosα , 〈ϕ2〉 = η sin α . (15.85)

In the following discussion, we fix α = π/2. Therefore, in the chosen ground state,

〈Aμ〉 = 0 , 〈ϕ1〉 = 0 , 〈ϕ2〉 = η . (15.86)

We then expand the field operators around this solution, viz.,

ϕ1 = g , ϕ2 = η + h , (15.87)

and introduce a vector field Bμ with field strength Fμν :

Bμ = Aμ − (eη)−1∂μg , (15.88)

Fμν = ∂μBν − ∂νBμ = ∂μAν − ∂νAμ . (15.89)

Neglecting interactions, we write down the field equations in a linear approximation
with respect to the differences with the classical solution:

(
�−m2

0

)
h = 0 , (15.90)

∂νFμν = −m2
1Bμ , ∂μBμ = 0 , (15.91)
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where m0 and m1 can be expressed using η as

m0 = f η , m1 = eη . (15.92)

Hence, the scalar field has mass m0, the vector field Bμ has mass m1, and the
massless particle disappears. Although the original vector field only has transverse
wave components and its mass is 0, Bμ absorbs the Nambu–Goldstone field g as
a longitudinal wave and it becomes a vector field with finite mass. This is called
the Higgs mechanism. Because of this, the massless Nambu–Goldstone particle
disappears and the gauge quantum obtains mass.

In order to analyze the interactions, we write down the Lagrangian density. The
free part, corresponding to (15.90) and (15.91), is

Lf = −1

4
FμνFμν − 1

2
m2

1BμBμ − 1

2

(
∂μh∂μh+m2

0h
2) . (15.93)

The interaction part is

Lint = eAμ(h∂μg − g∂μh)− em1hAμAμ − 1

2
fm0h(g

2 + h2) (15.94)

−1

2
e2AμAμ(g

2 + h2)− f 2

8
(g2 + h2)2 .

The commutation relations in the interaction picture can be derived from the free
part as

[
Bμ(x), Bν(y)

] = i

(
δμν − ∂μ∂ν

m2
1

)
Δ(x − y;m2

1) , (15.95)

[
h(x), h(y)

] = iΔ(x − y;m2
0) . (15.96)

This finite-mass scalar field h is called the Higgs field and its quantum is called
the Higgs particle. To quantize the gauge field, we need gauge conditions. We thus
need to impose constraints on the gauge field classically or add additional terms in
the Lagrangian to determine the gauge. In this section, we adopt the former approach
and impose the Coulomb gauge condition

∂ · A+ (n · ∂)(n ·A) = 0 . (15.97)

In this gauge, we can obtain the field g from (15.88):

g = −m1
[
�+ (n · ∂)2]−1[

∂ · B + (n · ∂)(n · B)
]
. (15.98)
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Thus, we can also express Aμ in terms of Bμ. Using this,

[
Aμ(x),Aν(y)

] = i
{
δμν −

[
(nμ∂ν + nν∂μ)(n · ∂)+ ∂μ∂ν

][
�+ (n · ∂)2]−1

}
×Δ(x − y;m2

1) ,

[
Aμ(x), g(y)

] = im1nμ(n · ∂)
[
�+ (n · ∂)2]−1

Δ(x − y;m2
1) ,

[
g(x), g(y)

] = i(n · ∂)2[�+ (n · ∂)2]−1
Δ(x − y;m2

1) ,

[
Bμ(x), g(y)

] = im−1
1

[
nμ�− (n · ∂)∂μ

]
(n · ∂)[�+ (n · ∂)2]−1

Δ(x − y;m2
1) .

(15.99)

The local charge conservation law holds true:

∂μjμ = 0 . (15.100)

However, when the U(1) symmetry is broken, it is clear from (15.80) and (15.91)
that

jμ(x) = −m2
1Bμ(x)+ non-linear term . (15.101)

In this case, as discussed in Sect. 15.1, since a term proportional to 1/
√
V is included

in j0(x), its spatial integral Q diverges when V →∞ :

Q =
∫

d3xj0(x) ∼
√
V → ∞ . (15.102)

Moreover, the integral itself is the Fourier transform of B0(x) and corresponds to the
component of p = 0, so it has the time-dependence exp(±im1t). It cannot therefore
be a global conserved quantity. This means that the global conservation law is lost.

We shall now check whether the discussion at the beginning of this section
is valid, i.e., whether the massless boson disappears under the covariant gauge
condition. We compute the following commutator to lowest order:

i
〈
0
∣∣[jμ(x),ϕ1(y)]

∣∣0〉 ≈ −im2
1

〈
0
∣∣[Bμ(x), g(y)]

∣∣0〉
= m1
[
nμ�− (n · ∂)∂μ

]
(n · ∂)[�+ (n · ∂)2]−1

Δ(x − y;m2
1) .

Its Fourier transform is thus proportional to the quantity

[
(n · k)kμ − k2nμ

]
(n · k)[k2 + (n · k)2]−1

ε(k0)δ(k
2 +m2

1) . (15.103)
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Comparing this with the general form (15.69) given at the beginning of this section,
this term corresponds to the case where we only have ρ5, while ρ4 disappears.
This is therefore a counterexample to the Nambu–Goldstone theorem (15.70). If
the symmetry is not broken spontaneously, η → 0 and m1 = eη → 0. In this
case, (15.103) once more has the form

kμε
(
k0δ(k

2)
)
, (15.104)

whence the Nambu–Goldstone theorem is valid again, and g becomes a massless
field.

In the treatment above, the explicit Lorentz covariance of the theory has been lost.
Additionally, an extra field g has come in. We shall now present a formalism which
conserves the Lorentz covariance and does not include any extra field. Higgs applied
a transformation from the Cartesian coordinate system to the polar coordinate
system to the field operators:

ϕ1 = R cosΘ , ϕ2 = R sinΘ , Aμ = Bμ − 1

e
∂μΘ . (15.105)

The gauge transformation is

Θ(x) → Θ(x)− λ(x) . (15.106)

With this transformation, the Lagrangian can be written in the form

L = −1

4
FμνFμν − 1

2
e2B2

μR
2 − 1

2
∂μR∂μR + 1

4
m2

0R
2 − 1

8
f 2R4 . (15.107)

The extra degree of freedom has clearly been eliminated. R is the Higgs field, and
the solution which spontaneously breaks the symmetry is

〈Bμ〉 = 0 , 〈R〉 = η . (15.108)

These show that Bμ once again becomes a vector field with mass m1, while R

becomes a scalar field with mass m0. Obviously, the massless Nambu–Goldstone
particle disappears completely. Although this proof seems to be very clear, it is quite
classical. Quantum-mechanically, the transformation (15.105) is quite non-linear
and has a strong specificity. Additionally, in the form (15.107), we cannot apply
the renormalization theory, and computations of higher-order corrections become
impossible. Thus, although we have lots of gauge choices, every case has both
advantages and disadvantages. Since an indefinite metric does not appear in the
gauge mentioned here, this is called the unitarity gauge.
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15.5 Higgs Mechanism with Covariant Gauge Condition

In the last section, we saw that the Nambu–Goldstone particle does not appear under
a non-covariant gauge condition. If the physical contents of the gauge theory do not
depend on how we choose the gauge, then under the covariant gauge condition,
it turns out that the appearance of this massless particle cannot be observed, even
though it is inevitable, as proven in Sect. 15.1. So, by what kind of mechanism is
this particle concealed? Finding a solution to this problem will be the main theme
of this section.

In order to discuss this issue, we begin with a formal discussion. It sometimes
happens that the problem is simplified in the gauge theory by choosing the Landau
gauge (α = 0). However, the Lagrangian density (5.121) diverges if we take α = 0.
Hence, following Utiyama and Nakanishi, we introduce an auxiliary field B, and
rewrite (5.121) in the form

Lem = −1

4
FμνFμν − ∂μBAμ + α

2
B2 . (15.109)

Varying B, we obtain

∂μAμ = αB , (15.110)

and inserting this into (15.109), we see that it is equivalent to the original (5.121).
Taking this form, there is no confusion if we choose the Landau gauge and set α = 0.

Although in the last section, in order to quantize the vector field, we eliminated
the extra components by imposing the Coulomb gauge condition (15.97) in the
classical theory, in the present section, we shall add a further term called a gauge-
fixing term to (15.109) and quantize in a covariant way. Therefore, the free part of
the Lagrangian density (15.93) is

Lf = L1 +L2 , (15.111)

L1 = −1

4
FμνFμν − 1

2
(m1Aμ − ∂μg)(m1Aμ − ∂μg)+ B∂μAμ , (15.112)

L2 = −1

2
(∂μh∂μh+m2

0h
2) , (15.113)

and the interaction part is again given by (15.94). Hence, quantizing the independent
fields Aμ, B, g, and h appearing in the free part, in the interaction picture, and
expressing each of them in terms of the irreducible fields, we have from (15.112),

Ain
μ = U in

μ −
1

m1
∂μg

in
(−) , B in = m1

[
gin
(+) + gin

(−)
]
, gin = gin

(+) , (15.114)
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where h is already irreducible. These asymptotic fields have the properties

(�−m2
1)H

in
μ = 0 , ∂μU

in
μ = 0 ,

〈
0
∣∣T ∗[U in

μ (x),U in
ν (y)]∣∣0〉 =

(
δμν − ∂μ∂ν

m2
1

)
ΔF(x − y;m2

1) . (15.115)

This means that the asymptotic field U in
μ has mass m1 and is a spin-1 field. Moreover,

it is clear from

�gin
(+) = �gin

(−) = 0 ,

〈
0
∣∣T [gin

(±)(x), gin
(±)(y)]

∣∣0〉 = ±DF(x − y) , (15.116)

that the asymptotic fields gin
(±) are the fields of the Nambu–Goldstone particles,

and are a mixture of the one with the positive-definite metric and the one with the
indefinite metric. Finally, the asymptotic field hin satisfies

(�−m2
0)h

in = 0 ,
〈
0
∣∣T [hin(x), hin(y)]∣∣0〉 = ΔF(x − y;m2

0) . (15.117)

This corresponds to the Higgs particle.
What is important here is that

�B = 0 , (15.118)

as a consequence of the equations of motion, as in the case of QED. Therefore, we
can make the identification

B(x) = B in(x) = Bout(x) . (15.119)

In this case, as in the case of QED, B commutes with the S-matrix:

[S,B(x)] = 0 . (15.120)

Since this theory has an indefinite metric, following the argument in Chap. 5, we
introduce the physical state by the subsidiary condition

B(+)(x)|phys〉 = 0 . (15.121)

At different space-time points, there is no contradiction here because

[B(x),B(y)] = 0 . (15.122)



380 15 Spontaneous Symmetry Breaking

To make a physical state from a different physical state including the vacuum,
we have to act with operators that commute with B, which leaves only

U in
μ , hin , B . (15.123)

If we act with B, a zero norm state is created. After all, considering the first two
operators in (15.123), only the positive-definite and finite-mass particles survive.
This is the Higgs mechanism which conceals the Nambu–Goldstone particle.

Although we have discussed the non-renormalized interaction picture here, the
situation is essentially the same as in the renormalized interaction picture. Such an
argument has been given by Nakanishi [148], but it has been slightly modified by
the author here.

So far in this chapter, we have considered only field operators whose vacuum
expectation values do not disappear, such as (15.1). Basically, if (15.10) holds, the
Nambu–Goldstone theorem holds for ϕ, whether it be the field operator itself or one
of its local polynomials. If (15.1) does not hold for the field operator itself, but holds
for a local polynomial, we call this dynamical symmetry breaking. In this case, there
are some examples where the Higgs mechanism works. It should be noted that, in
1963, Anderson made the same argument as Higgs for plasma oscillations [149].

15.6 Kibble’s Theorem

In the last section, we discussed the gauge theory corresponding to the Abelian
group U(1). We will now present Kibble’s theorem, which is an extension of the
Higgs theorem for the Abelian group to the case of a non-Abelian group.

To investigate the Higgs mechanism, we first considered ways to set the gauge
condition within the classical theory and to apply the unitarity gauge. This is more
like a classical theoretical method. In contrast, in the last section, we quantized the
field in the covariant gauge, and introducing an additional condition, we eliminated
the indefinite metric. From the point of view of quantum field theory, the latter
method is preferable, but it is then very difficult to quantize the non-Abelian
gauge theory in the covariant gauge, something we shall discuss in a later chapter.
Therefore, in this section we apply the former method and accept the limitations of
a quasi-classical treatment. Here we present the demonstration due to Kibble [150],
in which the unitarity gauge is introduced for the non-Abelian gauge field.

15.6.1 Adjoint Representation

An infinitesimal transformation of field operators for a given group G is given
by (15.2). In the following, distinguishing upper indices from lower indices, we
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shall write

δϕA = εaT A
aBϕ

B . (15.124)

We also define the structure constants f c
ab by

[Ta, Tb]AB = f c
abT

A
cB . (15.125)

Thus, from the anti-commutativity of commutators and the Jacobi identity, the
structure constants should satisfy

f c
ab = −f c

ba , (15.126)

fm
abf

l
mc + f m

bcf
l
ma + f m

caf
l
mb = 0 . (15.127)

We introduce the matrix M by

(Mc)
a
b = f a

cb . (15.128)

Therefore, from (15.127)

[Ma,Mb]l c = f m
ab(Mm)

l
c . (15.129)

Hence, M is a representation of the algebra corresponding to the group G, called the
adjoint representation. To prove Kibble’s theorem, we need to know certain things
about this representation, so we list some relevant formulas:

1. Taking λ as infinitesimal and writing λaTa simply as λT ,

(1+ λT )Td(1− λT ) = Tb(1+ λM)bd . (15.130)

This is because the coefficient of λc on the left-hand side is

[Tc, Td ] = f b
cdTb = Tb(Mc)

b
d ,

which is equal to the coefficient of λc on the right-hand side. Thus, if λ is finite,

eλT Tde−λT = Tb(e
λM)bd . (15.131)
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2. Next, using Feynman’s formula (without proof),

∂μeθT =
∫ 1

0
dα e(1−α)θT TdeαθT ∂μθd

= eθT
∫ 1

0
dα e−αθT TdeαθT ∂μθ

d

= eθT Td

(∫ 1

0
dα e−αθM

)b
d∂μθ

d

= eθT TdΛb
d∂μθ

d , (15.132)

where

Λ = 1− e−θM

θM
. (15.133)

We now define the covariant derivative by

Dμ = ∂μ −Aμ = ∂μ − T Aμ = ∂μ − TaA
a
μ . (15.134)

Note that the coupling constant has been included in T , and therefore in the
structure constants and also M , and A is equal to what we wrote as igAμ in our
previous notation. We can now implement the gauge transformation:

Aμ(x) → U
(
λ(x)
)
Aμ(x)U

−1(λ(x))− U
(
λ(x)
)
∂μU

−1(λ(x)) . (15.135)

In the following, replacing exp(θT ) by U
(
λ(x)
)
, the inverse of the transforma-

tion above can be written as

Aμ = eθT TaA′aμ e−θT − eθT ∂μe−θT

= Tb(eθMA′μ)b − Tb

(
1− eθM

θM
∂μθ

)b

= Tb
(
eθMA′μ + eθMΛ∂μθ

)b
. (15.136)

Thus,

AA
μ = (eθM)ABA

′B
μ + (eθMΛ)Ab∂μθ

b . (15.137)

In the equation above, we have distinguished capital letters and small letters, and
we will discuss this difference later.
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15.6.2 Kibble’s Theorem

The Lagrangian of the scalar field which is invariant under a group G is written in
the form

L = 1

2
(ϕμ − ∂μϕ)

2 − 1

2
(∂μϕ)

2 − U(ϕ)

= −ϕμ∂μϕ + 1

2
ϕμϕμ − U(ϕ) , (15.138)

without specifying the components explicitly.1 Writing it in this form, the
Lagrangian is linear in the derivatives, and the quantity canonically conjugate
to ϕ is −ϕ0. Using the effective potential V (ϕ), the formula which determines the
spontaneous symmetry breaking is

∂V (ϕ)

∂ϕ
= 0 . (15.139)

To lowest order, V (ϕ) can be replaced by U(ϕ). We assume that one of the solutions
is

ϕ = η . (15.140)

Therefore, in general, eλT η is also a solution and the solutions are degenerate.
However, λ is a constant. If we write the subgroup of G which keeps η invariant
as Gη, i.e.,

eλT η = η , (15.141)

then it turns out that the symmetry corresponding to Gη is not broken for
this solution. The number of invariants which are algebraically independent and
constructed by η is denoted ν, which we call the canonical number. For instance,
for O(3), the invariant

η2 = η2
1 + η2

2 + η2
3

is the unique invariant for the three-dimensional η and in this case ν = 1. We now
assume that T is an n-dimensional representation and therefore that both ϕ and η

are n-dimensional vectors. In this case, we choose the canonical form such that only
ν components of η are non-zero. That is, we eliminate the other components by
a transformation in G. For instance, in the Higgs model, G = U(1), n = 2, and

1 In this section, the notation φμ means ∂μφ, following the original article by T. Kibble [150].
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ν = 1. We consider the manifold constructed by the set of solutions, viz.,

{
eλT η|eλT ∈ G

}
. (15.142)

We shall now determine its dimension.
Although η is n-dimensional, since the values of the ν invariants made from η

cannot be changed, the number of parameters r which can be chosen freely is given
by r = n − ν. Therefore, the dimension of the above set is r . Note also that the
number of components of λ is equal to the number of the generators T , so that it
becomes the order of g. Since r parameters among them play the role of designating
η, it turns out that g − r do not change η. Thus, this is also the dimension of Gη.

In the following, fixing the form of η, the general form of the vacuum expectation
value that solves (15.139) is

ϕ = eμT
(r)

eνT
(g−r)

= η = eμT , eνT ∈ Gη , (15.143)

where the dimensions are indicated under the two factors. Introducing the angular
variable θ and the radial variable ρ, as a generalization of the unitarity gauge in the
Higgs model, we take

ϕ = eθT ρ = eθT (η + ρ′) , (15.144)

where θ is r-dimensional. For the canonical form, we have

θ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1
...

θr

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0
ρ1
...

ρν

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15.145)

where the total number of components of θ is g and r = n−ν, while ρ has altogether
n components, of which the first r are equal to zero.

For the generators TA , A = 1, 2, . . . , g − r , of Gη, we assume that ρ satisfies

TAρ = 0 , (15.146)

while for the other Ta , a = 1, 2, . . . , r ,

Taρ �= 0 . (15.147)
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In the following, we express the r dimensions of θ by small Roman letters and ν

dimensions of ρ by Greek letters. We define the r-dimensional matrix X by

Xa
b = (Taρ)

b = T b
aαρ

α . (15.148)

This matrix is invertible, because if detX = 0, then there exist ca satisfying

caTaρ = 0 ,

whence caTa becomes a generator of Gη, which contradicts our assumptions.
We now rewrite ϕ in the Lagrangian density in terms of θ and ρ using (15.144).

With (15.132), we obtain

∂μϕ
A = (eθT Tbρ)AΛb

d∂μθ
d + (eθT )Aβ∂μρ

β , (15.149)

ϕμ∂μϕ = (ϕμeθT Tbρ)Λb
d∂μθ

d + ϕμeθT ∂μρ . (15.150)

We denote the coefficients of the derivatives on the right-hand side of (15.150) as
follows:

θμd ≡
(
ϕμeθT Tbρ

)
Λb

d , ρμα ≡ ϕμA
(
eθT
)A

α . (15.151)

Now ϕ has n components, but ρ has only ν components. Thus,

ρμαρμ
α = ϕμAϕμ

A − ϕμA
(
eθT
)A

a

(
e−θT
)A

a

(
e−θT
)a

Bϕμ
B . (15.152)

However,

θμd = ϕμA
(
eθT
)A

αT
α
bβρ

βΛb
d + ϕμA

(
eθT
)A

aT
a
bβρ

βΛb
d

= ρμαT
α
bβρ

βΛb
d + ϕμA

(
eθT
)A

aXb
aΛb

d . (15.153)

Therefore,

θμd
(
Λ−1X−1)d

a =
(
ρμTbρ

)(
X−1)b

a + ϕμA
(
eθT
)A

a . (15.154)

If we express the difference between ρρ and ϕϕ in (15.152) using (15.154),

L = −ρμ∂μρ + 1

2
ρμρμ − U(ρ)− θμ∂μθ (15.155)

+1

2

{[
θμa(Λ

−1)ab − ρμTbρ
]
(X−1)bc

}2
.
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In the Lagrangian density above, θ always appears together with θμ and never alone,
so we see that θ becomes a massless Nambu–Goldstone particle. Now, ρ and ρμ are
gauge invariant, and the gauge transformations of θ and θμ will be derived below.

From (15.144),ϕ and eθT transform in the same way under the gauge transforma-
tion, so considering δ as the gauge transformation corresponding to the infinitesimal
gauge function δλA, we have

δ
(
eθT
) = TAδλAeθT . (15.156)

Therefore, from (15.132),

δ
(
eθT
) = eθT TbΛb

dδθ
d . (15.157)

Combining the two equations above,

TbΛ
b
dδθ

d = e−θT TAeθT δλA = Tb
(
e−θM
)b

AδλA .

Therefore,

δθa = (Λ−1)a
b

(
e−θM
)b

AδλA . (15.158)

Although the gauge transformation for θμa is not necessary for the following
discussion, we shall give it for the record. Because θa and −θ0a are canonical
conjugates,

δ
[
θ0a, θ

b
] = [δθ0a, θ

b
]+ [θ0a, δθ

b
]
.

Alternatively,

i
∂

∂θ0b
δθ0a + i

∂

∂θa
δθb = 0 , δθμa = −θμb ∂

∂θa
δθb . (15.159)

We now introduce a gauge field into the Lagrangian density in polar form. In this
case, the covariant derivative is obtained by the replacement

Dμϕ = ∂μϕ − δϕ(λ→ Aμ) . (15.160)

In other words, we replace the infinitesimal gauge function λ by Aμ to obtain
the second term on the right-hand side. As already noted, the coupling constant
is included in the structure constant. So writing

f A
BC = −gfABC , (15.161)
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the Lagrangian density including the gauge field is

L = −1

2
Fμν,A

(
∂μA

A
ν − ∂νA

A
μ + gfABCA

B
μA

C
ν

)+ 1

4
FμνFμν

−ρμ∂μρ + 1

2
ρμρμ − U(ρ)

+1

2

{[
θμa(Λ

−1)ab − ρμTbρ
]
(X−1)bc

}2

−θμ
(
∂μθ −Λ−1e−θMAμ

)
, (15.162)

where the last term comes from introducing the covariant derivative for θ by the
replacement (15.160).

Now, from the gauge transformation (15.137), we express the gauge field Aμ in
terms of a new gauge field A′μ :

AA
μ =
(
eθM
)A

BA
′B
μ +
(
eθMΛ
)A

b∂μθ
b , F = eθMF ′ . (15.163)

Making this replacement, the last term in (15.162) becomes

∂μθ −Λ−1e−θMAμ = ∂μθ −Λ−1e−θMeθM(A′μ +Λ∂μθ) = −Λ−1A′μ ,

(15.164)

whence the term in ∂μθ vanishes! This is exactly the same as in the Higgs
mechanism. As a result, (15.162) becomes

L = −1

2
F ′μν,A
(
∂μA

′A
ν − ∂νA

′A
μ + gfABCA

′B
μ A′Cν
)+ 1

4
F ′μνF ′μν

−ρμ∂μρ + 1

2
ρμρμ − U(ρ)

+1

2

{[
θμa(Λ

−1)ab − ρμTbρ
]
(X−1)bc

}2 + θμΛ
−1A′μ . (15.165)

Since ∂μθ does not appear here, θμ is expressed algebraically in terms of the other
quantities. If we now set

θμa
(
Λ−1X−1)a

b ≡ hμb , ρμTaρ
(
X−1)a

b ≡ kμb , (15.166)

then only θμa involves hμa , and the sum of the last two terms in (15.165) becomes

1

2

(
hμ − kμ

)2 + hμXA′μ =
1

2

(
hμ − kμ + XA′μ

)2 + kμXA′μ −
1

2

(
XA′μ
)2

.

Hence, considering hμ as an independent variable and using the variation principle,
the first term on the right-hand side in the above equation can be dropped. Thus, the
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final Lagrangian density takes the form

L = −1

2
F ′μν,A
(
∂μA

′A
ν − ∂νA

′A
μ + gfABCA

′B
μ A′Cν
)+ 1

4
F ′μνF ′μν

−ρμ∂μρ + 1

2
ρμρμ − U(ρ)+ (ρμTaρ)A

′a
μ −

1

2

(
Xa

bA
′b
μ

)2
. (15.167)

This means that θ has been completely eliminated and the scalar field is described
solely by ρ. As in the case of the Abelian Higgs model, it turns out that the unitarity
gauge has been realized.

Although the number of θ components corresponding to Nambu–Goldstone
particles was r , they were absorbed into the massless gauge particles as longitudinal
modes and gave finite masses to the gauge particles. Moreover, ρ became ν scalar
particles with finite masses, the so-called Higgs particles. It turns out that massless
gauge particles are left, corresponding to g − r generators for Gη. We summarize
this as follows:

ρ (ν components) Higgs particles with finite masses

θ (r components) gauge particles with finite masses

A (r components) gauge particles with finite masses

A (g − r components) massless gauge particles

The above argument is the proof of Kibble’s theorem, which is an extension
of Higgs’ theorem to non-Abelian gauge fields. As an example, Kibble discussed
the model in which three-component complex scalar fields are introduced for an
SU(2) × U(1) gauge group. In the Weinberg–Salam model, the three-component
fields are replaced by two-component complex scalar fields. This is the subject of
the next chapter.



Chapter 16
Weinberg–Salam Model

As discussed in Chap. 13, the weak interaction is described phenomenologically
by Fermi’s universal four-fermion theory. One property of this interaction is that it
can be expressed as a product of the current densities which form the Lie algebra.
However, since this theory is not renormalizable, the cross-section increases without
limit at high energies and also in higher order corrections, i.e., the higher the
order, the greater the degree of divergence. Thus, we cannot avoid interpreting
Fermi’s theory as purely phenomenological, expressing the S-matrix element only
for low energies and only at the lowest order. Many have tried to interpret Fermi’s
interaction, by introducing intermediate vector fields, as an iteration of Yukawa
interactions. The vector field is necessary in order to reproduce a (V − A)-type
interaction, but the theory is still not renormalizable. This led to the model by
Weinberg and Salam, combining gauge fields with the Higgs–Kibble mechanism
and describing the weak interaction and the electromagnetic interaction in a single
theory. These authors proposed the model in [151] and in [152], just after the
publication of Kibble’s work. In fact, as explained at the end of the last section,
Kibble himself considered almost the same model as this.

16.1 Weinberg–Salam Model

What kind of Lie algebra is needed to describe the weak interaction according
to a gauge principle? As mentioned before, the spatial integrations over time-
components of the currents Jμ and J †

μ carrying charges appeared in the weak
interaction from the algebra SU(2)L. Thus, we need to introduce the gauge group
SU(2). Moreover, we would like to introduce the electromagnetic field as a gauge
field in order to describe the weak interaction and the electromagnetic interaction
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simultaneously, so we need to start with the gauge group

SU(2)× U(1) . (16.1)

Recalling the formula,

Q = e

(
I3 + Y

2

)
, (16.2)

we consider Ii , i = 1, 2, 3, and Y in this equation as the generators for the algebra of
the group (16.1). Here, Ii is the isospin. Originally, the isospin was considered only
for hadrons, but this type of isospin was defined for both hadrons and leptons. This
is obvious from (13.188), which expresses the universality of the weak interaction.
Hence, the quantities Ii are called weak isospin.

The number of generators in (16.1) is g = 3 + 1. If we choose the Higgs field
ϕ to be a two-component complex scalar field, then n = 4, and in this case there is
only one invariant, viz.,

ϕ
†
1ϕ1 + ϕ

†
2ϕ2 , (16.3)

so ν = 1. Therefore, the number of vector particles with finite masses is r = n−ν =
4 − 1 = 3, while g − r = 1, so there is one massless gauge boson, i.e., the photon
field. We write the gauge fields corresponding to SU(2) and U(1) as Ŵμ and Bμ,
respectively. Therefore, considering that the Higgs field ϕ has weak isospin and
weak hypercharge, the Lagrangian density for this system is

L = −1

4

(
∂μŴν − ∂νŴμ + gŴμ × Ŵν

)2 − 1

4

(
∂μBν − ∂νBμ

)2

−1

2
ϕ†
(←−
∂ μ + ig

τ̂

2
Ŵμ − i

g′

2
Bμ

)(−→
∂ μ + ig

τ̂

2
Ŵμ − i

g′

2
Bμ

)
ϕ

−U(ϕ) , (16.4)

where we have assumed that both the transformation property and the electric charge
of ϕ are the same as those of the K-meson doublet (K+,K0). Following Kibble’s
theory, to express the four components of ϕ using θi, i = 1, 2, 3, and ρ, we write

ϕ = eiθ̂ τ̂ /2
(

0
ρ

)
. (16.5)

As mentioned earlier, θ̂ is absorbed to give masses to the intermediate gauge
particles. However, in the approximation which neglects the effects of ρ, we must
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make the replacement

ϕ →
(

0
η

)
. (16.6)

Then, setting ρ = η + ρ′ and rewriting (16.4), in the unitarity gauge,

LU = −1

4

(
∂μŴν − ∂νŴμ + gŴμ × Ŵν

)2 − 1

4
(∂μBν − ∂νBμ)

2

−1

4
g2η2W †

μWμ − 1

8
η2(gW 3

μ + g′Bμ)
2 − U(η)

+ terms containing ρ′ , (16.7)

where Wμ and W †
μ denote the charged intermediate gauge fields, and W 3

μ denotes
a neutral intermediate gauge field. Diagonalizing the mass terms, we define the
combinations

Zμ =
gW 3

μ + g′Bμ√
g2 + g′2

, m2
Z =

1

4
η2(g2 + g′2) , (16.8)

Wμ =
W 1

μ − iW 2
μ√

2
, m2

W =
1

4
η2g2 . (16.9)

Moreover, the combination orthogonal to Zμ is the massless photon field:

Aμ =
−g′W 3

μ + gBμ√
g2 + g′2

. (16.10)

Thus,

W 3
μ =

gZμ − g′Aμ√
g2 + g′2

, Bμ = g′Zμ + gAμ√
g2 + g′2

. (16.11)

Using the expressions for Zμ and Aμ, we rewrite LU in the form

LU = −1

2
W†

μνWμν −m2
WW†

μWμ − 1

4
AμνAμν

−1

4
ZμνZμν − 1

2
m2

ZZμZμ

−ig sin θWAμ(W
†
μνWν −WμνW

†
ν −WμνW

†
ν )

+g2 sin2 θW(AμAνW
†
μWν − AμAνW

†
ν Wν)

⎫⎬
⎭ (Dirac-type EM interaction)

+ig sin θWAμνW
†
μWν (anomalous magnetic moment)



392 16 Weinberg–Salam Model

+ig cos θWZμ(W
†
μνWν −WμνW

†
ν )

+g2 cos2 θW(ZμZνW
†
μWν − ZμZμW

†
ν Wν)

−ig cos θWZμνW
†
μWν

+g2 sin θW cos θW(2AμZμW
†
ν Wν − AμZνW

†
μWν − AνZμW

†
μWν)

+g2

2
(W†

μW
†
μWνWν −W†

μW
†
ν WμWν)

−U(η)+ terms containing ρ′ . (16.12)

We have assumed that the first component of ϕ has an electric charge e, like K+,
and that the second component is neutral. Then it turns out that W has an electric
charge e. From the electromagnetic interaction of W in the equation above,

e = −g sin θW , (16.13)

where θW, defined by

g′√
g2 + g′2

= sin θW ,
g√

g2 + g′2
= cos θW , (16.14)

is called the Weinberg angle. The angle is also called the weak mixing angle,
introduced by S. Glashow in his 1961 paper [153]. A symbol like Aμν means
Aμν = ∂μAν − ∂νAμ. Combining (16.8), (16.9), and (16.14),

mW = mZ cos θW . (16.15)

Experimentally,

sin2 θW = 0.22 . (16.16)

It turns out that Fermi’s weak interaction is produced by relating Jμ to J †
μ via W.

Like the nuclear force, this is a combination of two Yukawa interactions. At energies
much lower than mW, this reduces to the Fermi interaction. Comparing the gauge
theory and the Fermi four-fermion interaction at low energies, we obtain

GF√
2
=
(

g

2
√

2

)2 1

m2
W

= e2

8m2
W sin2 θW

. (16.17)

From this,

m2
W =

√
2

8

g2

GF
>

√
2

8

e2

GF
= (37.3 GeV)2 . (16.18)
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If the Weinberg angle is determined, it turns out that mW and mZ are also deter-
mined. Indeed, approximate values for these masses were predicted theoretically.
In 1983 at CERN, the W and Z bosons were detected and their masses were also
measured [154–157]:

mW = 80.8± 2.7 GeV , mZ = 92.9± 1.6 GeV . (16.19)

These values were quite close to the predictions.
According to the gauge theory, in the weak interaction, there are neutral and

charged intermediate vector bosons, namely, Z0 and W±, respectively. Weak
interactions with neutral particles involve phenomena that cannot be described by
the Fermi interaction, such as neutrino scattering. Such phenomena were confirmed
early on using a large bubble chamber at CERN in [158].

16.2 Introducing Fermions

In the last section, we formulated the electroweak unification using only gauge
fields and a Higgs field. However, a realistic model cannot be constructed without
fermions like quarks and leptons. We thus begin by introducing leptons. According
to the (V−A) theory, what appears in the weak interaction are left-handed leptons.
Hence, what interacts with the gauge fields are three generations of left-handed
leptons:

L1 = 1

2
(1+ γ5)

(
νe

e

)
, L2 = 1

2
(1+ γ5)

(
νμ

μ

)
, L3 = 1

2
(1+ γ5)

(
ντ

τ

)
.

(16.20)

On the other hand, right-handed leptons do not interact with SU(2) gauge fields.
We therefore choose the Lagrangian density for the left-handed leptons to be

−
∑
j

L̄j γμ

(
∂μ − ig

τ̂

2
Ŵμ − i

g′

2
Bμ

)
Lj . (16.21)

Regarding the interaction with Ŵμ, since Li is a doublet like ϕ, we have chosen the
same form. In contrast, Y given by (16.2) is +1 for ϕ carrying the charge (+e, 0),
and −1 for L carrying the charge (0,−1). Thus, as for the interaction with Bμ, we
have chosen the sign opposite to that of ϕ. Regarding the neutrino, there is no right-
handed component because the mass vanishes. Therefore, we write the right-handed
component as

R1 = 1

2
(1− γ5)e , R2 = 1

2
(1− γ5)μ , R3 = 1

2
(1− γ5)τ . (16.22)
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This time, since neutrinos are singlets, they do not interact with Ŵμ. However, since
Y becomes −2, a plausible choice is

−
∑
j

R̄j γμ(∂μ − ig′Bμ)Rj . (16.23)

The sum of (16.21) and (16.23) yields the Lagrangian density for leptons.
We shall now introduce quarks. Note that the quark doublets appearing in

the weak interaction are not necessarily mass eigenstates. They are obtained by
the rotation (13.192), introduced by Cabibbo, of the doublet of mass eigenstates.
Experimentally, the angle θC is given by

sin θC = 0.22 . (16.24)

This value can be derived using (13.178), (13.150), and (13.180), whence the
doublet of SU(2)L is

qL = 1

2
(1+ γ5)

(
u

d ′
)

, (16.25)

and the others are all singlets of SU(2)L, i.e., they are uR, dR, sR, sL and so on.
However, it will be shown in the next section that this choice yields a constellation
of difficulties.

As already mentioned in Sect. 13.6, Glashow, Iliopoulos, and Maiani proposed
what is known as the GIM mechanism [130]. They introduced a fourth quark c, and
formed two doublets of SU(2)L :

1

2
(1+ γ5)

(
u

d ′
)

,
1

2
(1+ γ5)

(
c

s′
)

. (16.26)

One particular merit of this model will be discussed in the next section. In this
model, although the interaction with Ŵμ is the same as that of the leptons, if we
now computeY from (16.2), we obtain 1/3. The Lagrangian density including gauge
interactions of the left-handed quarks for each generation is then

− q̄Lγμ

(
∂μ − ig

τ̂

2
Ŵμ + i

g′

6
Bμ

)
qL . (16.27)

On the other hand, since right-handed quarks are all singlets of SU(2)L, Y/2 = 2/3
for quarks with charge 2e/3 and Y/2 = −1/3 for quarks with charge−e/3. Hence,
if

qR = 1

2
(1− γ5)q , (16.28)
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then the Lagrangian density is given by

− q̄Rγμ

(
∂μ + i

g′

2
YBμ

)
qR . (16.29)

The sum of (16.27) and (16.29) gives the Lagrangian for quarks. Hence, the
interactions of fermions and gauge fields are given by:

LfG = gŴμĵμ − g′Bμ

(
j em
μ − j3

μ

)
, (16.30)

j em
μ = −iēγμe − iμ̄γμμ− iτ̄ γμτ + i

(
2

3
ūγμu− 1

3
d̄γμd + · · ·

)
, (16.31)

ĵμ =
∑
j

iL̄j γμ
τ̂

2
Lj +
∑
q

iq̄Lγμ
τ̂

2
qL . (16.32)

We rewrite these interactions using Aμ and Zμ :

LfG = g√
2

(
Wμj

†
μ +W †

μjμ
)− g sin θWj em

μ Aμ + g

cos θW

(
j3
μ − sin2 θWj em

μ

)
Zμ .

(16.33)

The explicit forms of the various currents are:

jμ = iēγμ
1+ γ5

2
νe + · · · + id̄ ′γμ

1+ γ5

2
u+ · · · , (16.34)

j†
μ = iν̄eγμ

1+ γ5

2
e + · · · + iūγμ

1+ γ5

2
d ′ + · · · , (16.35)

j3
μ =

1

2

(
iν̄eγμ

1+ γ5

2
νe − iēγμ

1+ γ5

2
e

)
+ · · · (16.36)

+1

2

(
iūγμ

1+ γ5

2
u− id̄ ′γμ

1+ γ5

2
d ′
)
+ · · · .

Although we have not included the fermion mass terms, these masses are
generated via the Higgs mechanism. For this purpose, we introduce Yukawa-
type interactions between the Higgs field and fermions. In fact, introducing these
interactions contradicts the general idea that all interactions be gauge interactions,
so we may have to consider some dynamical symmetry breaking in the future.
Considering only the first generation, the interactions invariant under SU(2)L are

Lfϕ = −f (L̄1ϕ)R1 − f↑(q̄Lϕ
G)uR − f↓(q̄Lϕ)d

′
R + h.c. , (16.37)
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where qL is given by (16.25) and ϕG is the G-conjugation of ϕ given by

ϕG =
(

ϕ∗2
−ϕ∗1

)
. (16.38)

So, if we make the replacement (16.6) for ϕ, then

Lfϕ →−f ηēe − f↑ηūu− f↓ηd̄ ′d ′ + · · · . (16.39)

From this, we obtain the following formulas for the masses:

me = f η , mu = f↑η , md ′ = f↓η . (16.40)

In this approximation, d ′ is still a mass eigenstate. A weak point of this method is
that, for each fermion, we need to introduce another parameter f . Thus, this part is
phenomenological, apart from the gauge principle.

16.3 GIMMechanism

In the quark model in which only u, d, and s are taken into account, the hadron
contribution to j3

μ is given by

1

2

(
iūγμ

1+ γ5

2
u− d̄ ′γμ

1+ γ5

2
d ′
)
. (16.41)

This contains a strangeness-changing part, i.e., in the second term there appears

− 1

2
sin θC

(
id̄γμ

1+ γ5

2
s + is̄γμ

1+ γ5

2
d

)
. (16.42)

Such terms can lead to the following decay pattern, where a neutral current changes
the strangeness:

K0
L → μ+ + μ− . (16.43)

Experimentally, the branching ratio is very small, viz., (9.1 ± 1.9) × 10−9. That
means that there must be some mechanism that suppresses the process. The GIM
mechanism is based on the assumption that there is a fourth quark c, and each item
in (16.26) is an SU(2)L doublet. The hadron parts of the charged current are then
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given by

jμ = id̄ ′γμ
1+ γ5

2
u+ is̄′γμ

1+ γ5

2
c + · · · , (16.44)

j†
μ = iūγμ

1+ γ5

2
d ′ + ic̄γμ

1+ γ5

2
s′ + · · · . (16.45)

The hadron part of the neutral current then becomes

j3
μ =

1

2

(
iūγμ

1+ γ5

2
u+ ic̄γμ

1+ γ5

2
c − id̄ ′γμ

1+ γ5

2
d ′ − is̄′γμ

1+ γ5

2
s′
)

= 1

2

(
iūγμ

1+ γ5

2
u+ ic̄γμ

1+ γ5

2
c − id̄γμ

1+ γ5

2
d ′ − is̄γμ

1+ γ5

2
s

)
,

(16.46)

so the flavour is conserved. In the neutral current, strangeness is conserved. In fact,
the reason why (16.43) still occurs is that the flavour is not strictly conserved, since
the flavour symmetry is broken. The above mechanism is called the GIMmechanism
[130]. As already mentioned in Sect. 13.7, the fourth quark c was subsequently
discovered by Ting and Richter et al. in [132, 133].

16.4 Anomalous Terms and Generation of Fermions

So far we have investigated several kinds of symmetries in classical theories or
at the lowest order in perturbation. At first, such symmetries were assumed to hold
true in general if higher order corrections were included. However, during the 1960s,
through research by Adler et al. [159, 160], it gradually became clearer that a certain
kind of symmetry is broken by higher order corrections or quantization of a system.
In other words, a certain kind of symmetry is not consistent with quantization.
Investigating field equations or Green’s functions, it sometimes happens that terms
are produced which break originally (classically) existing symmetries. These are
called anomalous terms. Since the details will be discussed in the last chapter, we
shall only outline the issue very briefly here. If a certain kind of symmetry is lost
by the emergence of anomalous terms, it may happen that renormalizability is also
lost. Hence, the requirement that anomalous terms should not appear is sometimes
used as a restriction on a model. We shall give an example in this section.

We begin with Adler’s anomalous term. In QED, we define the axial vector Aμ,
the pseudoscalar current P , and a pseudoscalar term C by

Aμ = iψ̄γμγ5ψ , P = iψ̄γ5ψ , C = E · H = i

8
εαβγ δFαβFγ δ , (16.47)
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and we assume that they have been renormalized multiplicatively. In the Heisenberg
representation, we have

∂λAλ = 2mP − e2

2π2 C . (16.48)

Since in the classical theory, or at the lowest order in perturbation theory, the second
term on the right-hand side does not exist, this term is the anomaly. In QED, the
axial vector current does not appear in the interaction, so this anomalous term is
harmless, but in theories where the axial vector current appears, as in the Weinberg–
Salam model, the emergence of such an anomalous term is problematic. It breaks
important symmetries, and blocks renormalizability as well. We must therefore
choose models in which the anomalous term does not appear. As will be discussed
later, the anomalous term appearing here is produced by the contribution from
fermion loops, so let us begin by writing down the interaction terms of fermions
and gauge fields.

In the Weinberg–Salam model, the representative terms in the Lagrangian density
can be written as

iL̄γμ

(
g

2
ĈŴμ + g′

2
C0Bμ

)
L+ iR̄γμg′DBμR . (16.49)

For the lepton doublet, (νe, e), and the lepton singlet e, we have

Ĉ = τ̂ , C0 = 1 , D = 1− τ3

2
. (16.50)

For the quark doublet and right-handed singlet, we have

Ĉ = τ̂ , C0 = −1

3
, D = −1

3
+ 1− τ3

2
. (16.51)

The relations with the electric charge Q, in units of e, are

Q = −D = 1

2
(C3 − C0) . (16.52)

If we write the field operator of a quark or a lepton as ψ and we introduce the
notation

L = 1

2
(1+ γ5)ψ , R = 1

2
(1− γ5)ψ , (16.53)

then (16.49) becomes

iψ̄γμVμψ + iψ̄γμγ5Aμψ . (16.54)
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However, corresponding to (16.49),

Vμ = g

4
ĈŴμ − g′

4
C3Bμ + g′

2
C0Bμ ,

Aμ = g

4
ĈŴμ + g′

4
C3Bμ . (16.55)

According to Bardeen [161], the anomalous terms from the fermion loops are

∂λ(ψ̄γλγ5Cjψ) = normal term+ 1

4π2 εμνρσ Tr[Cj {· · · }] , (16.56)

where

{· · · } = 1

4
VμνVρσ + 1

12
AμνAρσ

+2

3
i
(
AμAνVρσ +AμVνρAσ + VμνAρAσ

)

−8

3
AμAνAρAσ , (16.57)

Vμν = ∂μVν − ∂νVμ − i[Vμ,Vν] − i[Aμ,Aν] ,
Aμν = ∂μAν − ∂νAμ − i[Vμ,Aν] − i[Aμ,Vν] .

(16.58)

We now consider the condition for such anomalous terms to disappear. This means
that the trace should vanish. Expressing the products of the matrices by separating
them into commutators and anti-commutators, the trace is eventually described by
a coefficient corresponding to fabc or dabc in the case of SU(3). As discussed by
Georgi and Glashow in [162], the condition for the anomalous terms to vanish is

dabc = 0 . (16.59)

This is because at least one factor in any trace becomes d . So it is required that, for
Ci, i = 1, 2, 3, and C0, the above equation holds true. Firstly, putting C0 aside, for
SU(2),

Tr{Ci,Cj }Ck = 0 . (16.60)

Note that, since Aμ is not included in C0, what matters is

Tr{Ci,Cj }C0 = Tr{Ci,Cj }(C3 − 2Q) . (16.61)
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Since this becomes non-zero only for i = j , and C2
i = 1, the condition for the trace

to disappear turns out to be

TrQ = 0 . (16.62)

Hence, the sum of the electric charges of all elementary particles with spin 1/2
should vanish. The existence of the c quark provides a way to satisfy this condition,
because the sum of the charges of all the leptons and quarks in each generation is
zero. The different generations are:

leptons

(
νe

e−
)

,

(
νμ

μ−
)

, . . . ,

quarks

(
u

d

)
,

(
c

s

)
, . . . .

The sum of the electric charges of the leptons in each generation is 0 − 1 = −1,
while the sum of the electric charges of the quarks in each generation is

3×
(

2

3
− 1

3

)
= 1 ,

assuming that each quark has three possible colours. This would not work without
the c quark. This is why the GIM mechanism is useful for eliminating anomalies.

From the standpoint of cancelling anomalies, it is plausible to consider each
generation to consist of a neutral neutrino, a lepton with a negative electric charge,
three-coloured quarks with an electric charge 2e/3, and three-coloured quarks with
an electric charge −e/3. Moreover, since there is a third generation of leptons,
viz., (ντ, τ ), we need to consider a third generation of quarks as well. Hence, the
quarks t and b were postulated. For the third generation, the reader is referred to the
discussion in Sect. 13.6.

In addition, in the discussion above we see that the colour degrees of freedom
play an important role. There have to be three colour states for each quark for
this to work. In the following, we will give another argument which supports this
conclusion.

As already discussed in Sect. 8.5, the amplitude for the decay process π0 → 2γ

is given by (8.103). The effective Hamiltonian density corresponding to this is

Heff = α

π

G

m
ϕE · H . (16.63)

We now derive the effective Hamiltonian density corresponding to (16.63) by using
the quark model, and analyze hints of the presence of the colour.
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We introduce the electromagnetic interaction to the quark model as a perturbation
and check its effects. To do so, we consider the axial vector current

Aa
λ =
∑
q

iq̄γλγ5
τa

2
q (q is only for the first generation) . (16.64)

In QCD, referring to (15.44), the following PCAC relation [129] holds true:

∂λA
1
a = −fπμ

2ϕa . (16.65)

Note that, introducing the electromagnetic interaction as a perturbation, because of
Adler’s anomalous terms, the equation above transforms to

∂λA
a
λ = −fπμ

2ϕa + bδa3E ·H . (16.66)

We will show how to compute the coefficient b in the last chapter. It turns out to be
the same as that of π0 → 2γ, viz.,

b = −2α

π
NCS , (16.67)

where NC is the number of quark colours and S is given by

S =
∑
u,d

(τ3

2

)
a
Q2

a =
1

2

(
2

3

)2

− 1

2

(
−1

3

)2

= 1

6
. (16.68)

In the sigma model introduced in Sect. 15.2, the term we need to add to the
Lagrangian density to change the PCAC relation from (16.65) to (16.66) is

�L = b

fπ

ϕ3E · H . (16.69)

In fact, in this case, the PCAC relation assumes the form

∂λA
a
λ = −fπμ

2ϕa + bδa3
σ

fπ

E · H . (16.70)

Here, replacing σ → η and fπ → η, we note that (16.70) coincides with (16.66).
Then, using the effective Lagrangian density of π0 → 2γ in (16.69), based on the
quark model, we can compute this decay width and compare it with the experimental
results:

Γ (π0 → 2γ) = μ3

64π3

(
2α

fπ

NCS

)2

= (7.95± 0.55) eV . (16.71)
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This implies that

NC = 3.06± 0.10 . (16.72)

This provides experimental support for the idea that there are three colour states.
Moreover, since π0 is a bound state of the form qq̄, the computation is difficult.
To avoid this, we used the sigma model in the computation above, whence the
computation itself is phenomenological.

16.5 Grand Unified Theory

The Weinberg–Salam theory succeeded in unifying the electromagnetic and weak
interactions by applying the gauge principle, thereby producing the electroweak
interaction. On the other hand, the strong interaction is obtained by applying the
gauge principle to the colour group SU(3). The dynamics of the strong interaction
is called quantum chromodynamics, abbreviated as QCD. Since the gauge particles
are bosons which form hadrons by gluing quarks together, they are called gluons.
This symmetry is not broken, so the gluons are assumed to be massless and the
strong force should be long range.

Therefore, the gauge group governing the strong interaction and the electroweak
interaction is

SU(3)× SU(2)× U(1) . (16.73)

Here we come up with the idea that, if we start with a larger gauge group G,
and consider G to decompose by spontaneous symmetry breaking into (16.73),
then we may obtain a unified description of the strong, weak, and electromagnetic
interactions. Such a theory is called a grand unified theory. If this gauge theory is
to be specified by just one coupling constant, a simple group G is preferred, i.e.,
we assume that G does not have any invariant subgroup except for G itself and the
identity. We thus look for a simple group G satisfying the condition

G ⊃ SU(3)× SU(2)× U(1) ⊃ SU(3)colour × U(1)em . (16.74)

Regarding the group (16.73), due to spontaneous symmetry breaking, the strict
symmetries surviving to the end are only the colour SU(3) and the electromagnetic
U(1). Since the ranks of SU(3), SU(2), and U(1) are 2, 1, and 1, respectively, the
rank of G must be at least 4. Although there have been many proposals for such a
group, we shall consider as an example the group SU(5), suggested by Georgi and
Glashow in [163].
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We note that gravity is not included in this grand unified theory. The energies at
which gravity becomes important are

E �
(
h̄c

G

)1/2

c2 ∼ 1019 GeV , (16.75)

where G is the gravitational constant and (h̄c/G)1/2 is the Planck mass. Thus, the
grand unified theory without gravity, known also as GUT, should be formulated at
energies less than 1019 GeV.

In general, the conditions that the group G must satisfy are:

1. G is simple and only one coupling constant is introduced.
2. Electric charges of quarks and leptons should satisfy the following inequality,

which is established by observation:

∣∣∣∣Qe +Qp

Qp

∣∣∣∣ � O(10−21) . (16.76)

3. The rank of G is greater than or equal to 4:

G ⊃ SU(3)× SU(2)× U(1) . (16.77)

4. To accommodate the Dirac particle, a complex representation should be included.

In the following, we consider G = SU(5). First, we consider three generations of
quarks and leptons:

I .

(
νe

e

)
L

,

(
u

d

)
L

, ēR , uR , dR ,

II .

(
νμ

μ

)
L

,

(
c

s

)
L

, μ̄R , cR , sR ,

III .

(
ντ

τ

)
L

,

(
t

b

)
L

, τ̄R , tR , bR .

All quarks have three possible colours. The first generation is thus

(νe, e, ē, ui , di, ūi , d̄i)L , i = 1, 2, 3, (16.78)
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where ūL = (uR). There are 15 components altogether. We use them to express the
fundamental representation 5̄ and the anti-symmetric part 10 of 5× 5 :

5̄⊕ 10 , (16.79)

5̄ =

⎛
⎜⎜⎜⎜⎜⎝

d̄R

d̄Y

d̄B

e

ν

⎞
⎟⎟⎟⎟⎟⎠

L

, 10 =

⎛
⎜⎜⎜⎜⎜⎝

0 ūB −ūY −uR −dR

−ūB 0 ūR −uY −dY

ūY −ūR 0 −uB −dB

uR uY uB 0 −ē
dR dY dB ē 0

⎞
⎟⎟⎟⎟⎟⎠

L

, (16.80)

where R, Y, and B indicate the three colours, corresponding to red, yellow, and blue.
Expressing them in terms of the transformation properties under SU(3) and SU(2),
for instance,

5̄ = (3̄, 1)+ (1, 2) = d̄ +
(
νe

e

)
L

,

(3, 2) =
(
u

d

)
L

, (1, 1) = ēL = (eR) .

In this theory, since the charge operator Q is one of the generators of SU(5), the
trace vanishes. Hence, the sum of the charges of the members of 5̄ also vanishes:

− 3Qd +Qe = 0 , i.e., Qd = 1

3
Qe = −1

3
. (16.81)

Since the trace of Q is zero, there is no anomalous term.
In addition, there are 24 gauge particles in SU(5). Half of them are accounted for

by 8 gluons and 4 electroweak gauge particles. The rest play the role of connecting
leptons with quarks. Considering this kind of gauge particle as a mediator, a nucleon
can decay into leptons. We call this gauge particle X, and the width of the nucleon
decay becomes the same as the width of the μ decay:

Γ (N → lepton) ∝ a2
G

m5
p

M4
X

. (16.82)

The appearance of the fifth power of the mass of the decaying particle is analogous
to what we see in the μ decay. The fourth power of the mass of the intermediate
gauge particle comes from the squared propagator of this boson. Using the coupling
constant g in the grand unified theory, αG is given by

αG = g2

4π
. (16.83)
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Then the lower bound for the proton lifetime is

τp > 1032 yr . (16.84)

From this, a lower bound for MX is obtained:

MX � 1015 GeV� Planck mass . (16.85)

To evaluate MX, we use the renormalization group. Even if the symmetry is broken
at low energies, we assume that the breaking becomes gradually less important
at high energies, until in the end, at an energy MX, the symmetry is recovered.
This is analogous to the fact that, even if the rotational symmetry is broken in
a ferromagnet at low energies, a phase transition occurs at high energies and
the rotational symmetry is then recovered. In this case, what corresponds to the
temperature is a value of the four-momentum transfer. Writing this as Q2, the
effective coupling constant becomes a function of Q2. This way of thinking is
used in the renormalization group method, discussed in Chap. 20. Thus, writing the
effective coupling constants at low energies corresponding to the groups SU(3),
SU(2), and U(1) as α3(Q

2), α2(Q
2), and α1(Q

2), respectively, if the symmetry is
indeed recovered at high energies, we have

α1(MX
2) = α2(MX

2) = α3(MX
2) ≡ αG(MX

2) . (16.86)

However, at low energies, they differ from each other. With increasing Q2, α2(Q
2)

and α3(Q
2) decrease, while α1(Q

2) increases. Using the renormalization group,
their Q2-dependence is

SU(3)
1

α3(Q2)
− 1

α3(MX
2)
= − 1

4π

(
11− 2

3
nf

)
ln

MX
2

Q2 , (16.87)

SU(2)
1

α2(Q2)
− 1

α2(MX
2)
= − 1

4π

(
22

3
− 2

3
nf

)
ln

MX
2

Q2 , (16.88)

U(1)
1

α1(Q2)
− 1

α1(MX
2)
= 1

4π

2

3
nf ln

MX
2

Q2
, (16.89)

where nf is the number of flavours. It turns out that, if α1, α2, and α3 are determined
experimentally at low energies, then we can find the value of MX. Let us therefore
determine MX from the Weinberg angle.

Using (16.2) in the Weinberg–Salam theory, measuring Q in units of e, and
writing Ii as Ti , we have

Q = T3 + 1

2
Y . (16.90)
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We understand that the coupling constants multiplying T̂ and Y/2 are g and g′,
respectively. Here, T̂ and Y are connected to Ŵμ and Bμ, respectively, but in SU(5),
normalizing Y again,

Tr(TiTj ) = 1

2
δij , i, j = 1, 2, . . . , 24 . (16.91)

Therefore, considering the representation 5̄ and taking

Y = cTY , (16.92)

we can determine c. We thus consider the square of the following equation:

Q = T3 + c

2
TY . (16.93)

Therefore, since there exists no quark but (dR), this does not contribute to T3, and
from (16.91),

∑
5̄

Q2 = 3

(
1

3

)2

+ 1 = 4

3
,
∑
5̄

T 2
3 =
∑
5̄

T 2
Y =

1

2
,
∑
5̄

T3TY = 0 ,

(16.94)

∑
5̄

Q2 =
∑
5̄

(
T3 + c

2
TY

)2 = 1

2
+ c2

8
= 4

3
. (16.95)

Thus, the value of c is determined. We obtain

Y = 2

√
5

3
TY . (16.96)

The coefficient of T3 is g and that of Y is g′/2. Therefore, setting

gTiWμi = g2TiWμi ,
1

2
g′YBμ = g1TYBμ , (16.97)

the coupling constants of SU(2) and U(1) are g2 and g1, respectively. In the limit
where SU(5) is exact, we should have g1 = g2. From the equation above, we obtain

g′ =
√

3

5
g1 . (16.98)
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We assume that these coupling constants have been defined at low energies. Hence,
the Weinberg angle is given by

sin2 θW = g′2

g2 + g′2
=

3

5
g1

2

g2
2 + 3

5
g1

2
. (16.99)

Moreover, e2 is given by

e2 = g2g′2

g2 + g′2
=

3

5
g1

2g2
2

g2
2 + 3

5
g1

2
. (16.100)

This implies

α = 3

5

α1α2

α2 + 3

5
α1

= α2 sin2 θW . (16.101)

If we take the difference between (16.88) and (16.89), we obtain

1

α2
− 1

α1
= − 1

4π

22

3
ln

M2
X

Q2 . (16.102)

Additionally, expressing (16.99) in terms of α1 and α2,

sin2 θW =
3

5
α1

α2 + 3

5
α1

. (16.103)

Now, eliminating α1 and α2 using (16.101), (16.102), and (16.103), we obtain an
equation in which all the constants are known:

sin2 θW = 3

8

(
1− α

4π

110

9
ln

M2
X

Q2

)
, (16.104)

where Q2 is of low energy and is assumed to be of order (GeV)2. Therefore, if we
choose

MX ∼ 1016 GeV , (16.105)
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the experimental value of θW is reproduced:

sin2 θW = 0.21 . (16.106)

However, since the lifetime of the proton is about 1031 years, it is hard to reach the
experimental lower bound of 1032 years. Although this model is simple, it does not
necessarily agree with experiment. However, it is not until we arrive at the grand
unified theory that we recognize that quarks and leptons are originally of the same
species. On this point, it seems that a clear understanding has been obtained of the
problem of the universality of quarks and leptons discussed in Sect. 13.6.



Chapter 17
Path-Integral Quantization Method

Apart from the canonical quantization method, another way to quantize fields is the
path-integral method. In many problems, the two methods give the same results, but
for the quantization of gauge fields the latter is more effective. It was after the path-
integral method had been well understood that the canonical quantization method
came to be used. The path-integral method was invented by Feynman [96], and
applied to the gauge theory by Faddeev and Popov in [164].

17.1 Quantization of a Point-Particle System

We begin with the easiest quantization of a point-particle system. In the Heisenberg
picture, the operators depend on the time variable, and an operator Q is expressed
as

QH(t) . (17.1)

Its eigenstate is expressed as |q, t〉H, whence

QH(t)|q, t〉H = q|q, t〉H , (17.2)

where q is one of the eigenvalues of Q. The relationship with the Schrödinger
picture is

QH(t) = eiHtQSe−iHt , (17.3)

|q〉 = e−iHt |q, t〉H , (17.4)

QS|q〉 = q|q〉 . (17.5)
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We introduce a transformation function:

F(q ′, t ′; q, t) = H〈q ′, t ′|q, t〉H =
〈
q ′
∣∣exp[−iH(t ′ − t)]∣∣q〉 . (17.6)

So far the discussion has been based on the canonical formalism. With this as the
starting point, we shall now introduce the path integral.

We begin by dividing (t − t ′) into (n+ 1) equal intervals:

t ′ = t + (n+ 1)ε , tl = t + lε . (17.7)

Therefore, from the complete set of |ql, tl〉, we obtain

F(q′, t ′; q, t) =
∫

dq1(t1) · · ·
∫

dqn(tn)〈q′, t ′|qn, tn〉〈qn, tn|qn−1, tn−1〉 . . . 〈q1, t1|q, t〉 ,
(17.8)

where we have omitted the indices. If we choose ε small enough, then

〈q ′, ε|q, 0〉 = 〈q ′|e−iεH |q〉 = δ(q ′ − q)− iε〈q ′|H |q〉 +O(ε2) . (17.9)

The first term expresses the orthonormality of the eigenstates. We choose the
following form for H :

H = 1

2
P 2 + V (Q) . (17.10)

Therefore, the second term on the right-hand side of (17.9) becomes

〈
q ′
∣∣H(P,Q)

∣∣q〉 =
∫

dp

2π
exp
[
ip(q ′ − q)

][1

2
p2 + V (q)

]

=
∫

dp

2π
exp
[
ip(q ′ − q)

]
H

(
p,

q + q ′

2

)
. (17.11)

Thus, to first order in ε,

〈ql, tl |ql−1, tl−1〉 =
∫

dp

2π
exp

[
ip(ql − ql−1)− iεH

(
p,

1

2
(ql + ql−1)

)]
.

(17.12)

Setting q0 = q and qn+1 = q ′ and inserting this into (17.8), we obtain

F(q′, t ′; q, t)= lim
n→∞

∫ n∏
j=1

dqj

∫ n+1∏
j=1

dpj
2π

exp

{
i
n+1∑
l=1

[
pl(ql + ql−1) (17.13)

−H

(
pl,

1

2
(ql + ql−1)

)
(tl − tl−1)

]}
.
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We see from this that the number of integration variables pj is one greater than the
number of qj . Moreover, the normalization condition is determined by unitarity:

∫
dq ′F(q ′, t ′; q1, t)F

∗(q ′, t ′; q2, t) =
∫

dq ′〈q ′, t ′|q1, t〉〈q ′, t ′|q2, t〉∗ = δ(q1 − q2) .

(17.14)

Bearing this in mind, without paying too much attention to the normalization, we
write the limit (17.13) as

F(q ′, t ′; q, t) =
∫

DpDq exp

{
i
∫ t ′

t

dt
[
pq̇ −H(p, q)

]}
. (17.15)

Applying this formula to H as given above, the p-integral can be carried out:

∫ ∞
−∞

dp

2π
exp

[
i

(
pq̇ − 1

2
p2
)
ε

]
= 1√

2π iε
exp

(
1

2
iq̇2ε

)
. (17.16)

Therefore,

F(q ′, t ′; q, t) = lim
n→∞

(
1√

2π iε

)n+1∫ n∏
j=1

dqj

× exp

{
i
n+1∑
l=1

ε

[
1

2

(
ql − ql−1

ε

)2

− V

(
ql + ql−1

2

)]}

=
∫

Dq exp
[

i
∫ t ′

t

dtL(q, q̇)
]
, (17.17)

where

L(q, q̇) = 1

2
q̇2 − V (q) . (17.18)

Thus, the argument of the exponential is just the action integral:

S =
∫ t ′

t

dt L(q, q̇) . (17.19)

As shown above, it turns out that the path integral can be expressed by both the
Hamiltonian formalism and the Lagrangian formalism. However, as is clear from
the derivation, the Hamiltonian formalism is more fundamental.
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In the case of the Lagrangian formalism, the formula above is sometimes
deformed to some extent. For example, consider the Lagrangian

L = 1

2
q̇2f (q) , (17.20)

p = ∂L

∂q̇
= q̇f (q) , H(p, q) = pq̇ − L = 1

2
p2[f (q)]−1 . (17.21)

In this case, the transformation function is

F(q ′, t ′; q, t)= lim
n→∞

∫ n∏
j=1

dqj

∫ n+1∏
j=1

dpj

× exp

[
i

{ n+1∑
l=1

pl(ql − ql−1)− 1

2
εp2

l

[
f

(
ql + ql−1

2

)]−1}]

= lim
n→∞

∫ n∏
j=1

dqj

√
1

2π iε
f

(
qj + qj−1

2

)

× exp

{
i
n+1∑
l=1

ε

[
1

2

(
ql − ql−1

ε

)2

f

(
ql + ql−1

2

)]}

= lim
n→∞

(
1√

2π iε

)n+1 ∫ n∏
j=1

dqj

× exp

{
i
n+1∑
l=1

ε

[
1

2

(
ql − ql−1

ε

)2

f

(
ql + ql−1

2

)
− i

2ε
ln f

(
ql + ql−1

2

)]}

=
∫

Dq exp(iSeff) , (17.22)

where

Seff =
∫ t ′

t

dt

[
L(q, q̇)− i

2
δ(0) ln f (q)

]
. (17.23)

To obtain this result, we made the substitution

∑
ε →
∫

dt ,
1

ε
→ dt−1 → δ(0) . (17.24)

As we have seen above, this method can be used to obtain the effective Lagrangian
in the computation of Feynman’s equations. What is important here is that, when
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we go from the Hamiltonian formalism to the Lagrangian formalism, dq is replaced
by

dq → dq
√
f (q) . (17.25)

This form is invariant under the general coordinate transformation. In fact, in
Riemannian geometry, when the line element

ds2 = gij dxidxj (17.26)

is given, the volume element which is invariant under the general coordinate
transformation is

dV = √|g|dx1 . . . dxn . (17.27)

The substitution (17.25) is a special case of this. Here g is the determinant defined
by

g = det(gij ) . (17.28)

The substitution (17.25) corresponds to (17.27) with n = 1. This result will
be extended to the field theory case later and applied to reproduce the result in
Sect. 11.5. Moreover, it is easy to extend the previous result to the system with N

degrees of freedom.
Next, we consider the matrix elements of the operators. We impose the condition

t ′ > t0 > t . (17.29)

In this case, the matrix element of Q(t0) is

〈
q ′, t ′
∣∣Q(t0)

∣∣q, t 〉 =
∫

dq1(t1) . . .

∫
dqn(tn)

〈
q ′, t ′|qn, tn

〉〈
qn, tn|qn−1, tn−1

〉

. . .
〈
qi+1, ti+1|qi, ti

〉〈
qi, ti |Q(ti)|qi−1, ti−1

〉
. . .
〈
q1, t1|q, t

〉
,

(17.30)

where t0 = ti . Therefore,

〈
qi, ti
∣∣Q(ti)
∣∣qi−1, ti−1

〉 = qi
〈
qi, ti |qi−1, ti−1

〉
. (17.31)

Thus,

〈
q ′, t ′
∣∣Q(t0)

∣∣q, t 〉 =
∫

DpDq q(t0)exp

{
i
∫ t ′

t

dt
[
pq̇ −H(p, q)

]}
. (17.32)



414 17 Path-Integral Quantization Method

We now consider two operators Q(t1) and Q(t2), with the condition

t ′ > t1 > t2 > t . (17.33)

Then,
〈
q ′, t ′
∣∣Q(t1)Q(t2)

∣∣q, t 〉 can also be written in a form similar to (17.32). In
general,

〈
q ′, t ′
∣∣T ∗[Q(t1) . . .Q(tN )

]∣∣q, t 〉 (17.34)

=
∫

DpDq q(t1) . . . q(tN) exp

{
i
∫ t ′

t

dt
[
pq̇ −H(p, q)

]}
,

where t1, . . . , tN are between t ′ and t . In this way, if we compute the right-hand
side of (17.34), it naturally becomes a matrix element of the time-ordered operator
product.

We now compute the matrix element for the ground state. Assuming

T ′ > t ′ > t > T , (17.35)

we include an external field between t ′ and t , and add a term J (t)q(t):

〈
Q′, T ′|Q,T

〉
J
=
∫

DpDq exp

{
i
∫ T ′

T

dt
[
pq̇ −H(p, q)− Jq

]}

=
∫

dq ′dq
〈
Q′, T ′|q ′, t ′〉〈q ′, t ′|q, t 〉

J

〈
q, t|Q,T

〉
. (17.36)

We consider |n〉 to be an energy eigenstate such that

H |n〉 = En|n〉 , 〈q|n〉 = ϕn(q) . (17.37)

Therefore,

〈
q, t|Q,T

〉 = 〈q| exp[−iH(t − T )]|Q〉
=
∑
n

ϕn(q)ϕ
∗
n(Q) exp[−iEn(t − T )] . (17.38)

In order to read off the ground state, identified by n = 0, from this sum, when we
set T → i∞, only n = 0 survives, according to the third law of thermodynamics:

lim
T→i∞ exp(−iE0T )

〈
q, t|Q,T

〉 = ϕ0(q, t)ϕ
∗
0 (Q) , (17.39)
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where ϕ0(q, t) = ϕ0(q) exp(−iE0t). Similarly,

lim
T ′→−i∞
T→i∞

〈Q′, T ′|Q,T 〉J
exp
[ − iE0(T ′ − T )

]
ϕ∗0 (Q)ϕ0(Q′)

=
∫

dq
∫

dq ′ϕ∗0 (q ′, t ′)
〈
q ′, t ′|q, t 〉

J
ϕ0(q, t) .

(17.40)

The right-hand side of this equation can be written as 〈0|0〉J . Since this is a
generating functional, we write

T [J ] = 〈0|0〉J . (17.41)

Therefore, from the definition,

δnT [J ]
δJ (t1) . . . δJ (tn)

∣∣∣∣
J=0
= (−i)n

〈
0
∣∣T ∗[Q(t1) . . .Q(tn)]

∣∣0〉

= (−i)n
∫

dq
∫

dq ′ϕ∗0 (q ′, t ′)ϕ0(q, t)

×
∫

DpDq q(t1) . . . q(tn) exp

{
i
∫ t ′

t

dt
[
pq̇ −H(p, q)

]}
.

(17.42)

Moreover, apart from a factor that is independent of J ,

T [J ] ∼ lim
T ′→−i∞
T→i∞

〈
Q′, T ′|Q,T

〉
J
. (17.43)

Therefore, since the generating functional is normalized by T [0] = 〈0|0〉 = 1,

T [J ] = lim〈Q′, T ′|Q,T 〉J
lim〈Q′, T ′|Q,T 〉J=0

=
lim
∫
Dq exp

{
i
∫ T ′
T dt
[
Leff(q, q̇)− J (t)q(t)

]}

lim
∫
Dq exp

[
i
∫ T ′
T dtLeff(q, q̇)

] . (17.44)

where lim means T ′ → −i∞ and T → i∞ as above. Since taking this limit
corresponds to rotating 90 degrees clockwise with respect to the origin, we can also
implement the analytic continuation by replacing t by t (1− iε) and then taking the
limit ε → +0. As an example, we consider the action integral when V = ω2q2/2.
Replacing t by t (1− iε) in

exp

(
− i

2
ω2
∫ T ′

T

dt q2

)
(17.45)
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is equivalent to replacing ω2 as follows:

ω2 → ω2(1− iε) = ω2 − iε . (17.46)

In the limit ε → +0, the generating function then becomes a generating function
which gives a correct analytic continuation.

17.2 Quantization of Fields

In field theory, the field quantity ϕ(x) at each point in space is an independent
dynamical variable. Thus, if we make the replacement

qn(t)→ ϕ(x, t) , (17.47)

then everything is exactly the same as before. In the limit, the generating functional
T [J ] behaves as follows:

T [J ] ∼ lim
∫

DϕDπ exp

{
i
∫

d4x
[
π(x)ϕ̇(x)−H

(
ϕ(x), π(x)

)− J (x)ϕ(x)
]}

,

(17.48)

δnT [J ]
δJ (x1) . . . δJ (xn)

∣∣∣∣
J=0
= (−i)n

〈
0
∣∣T ∗[ϕ(x1) . . .ϕ(xn)]

∣∣0〉. (17.49)

In particular, in a simple linear theory,

T [J ] ∼ lim
∫

Dϕ exp

{
i
∫

d4x
[
L
(
ϕ(x)
)− J (x)ϕ(x)

]}
. (17.50)

In order to implement the analytic continuation, instead of taking the limit, as in the
case of a point-particle system, we make the replacement m2 → m2 − iε. As an
example, we consider a free scalar field:

L = −1

2

[
(∂λϕ)

2 +m2ϕ2] . (17.51)

We start by evaluating the integral

I =
∫ ∏

j

dxj exp

⎡
⎣−i

⎛
⎝∑

j,k

1

2
Ajkxjxk +

∑
j

xjyj

⎞
⎠
⎤
⎦ , (17.52)
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where A is a real symmetric matrix. To carry out this integration, we make the
change of variables

xi = −(A−1)ij yj + zi . (17.53)

Therefore,

1

2

∑
j,k

Aj,kxjxk +
∑
j

xj yj = 1

2

∑
j,k

Ajkzj zk − 1

2

∑
j,k

(A−1)jkyjyk . (17.54)

Thus,

I =
∫ ∏

j

dzj exp

⎡
⎣−i

⎛
⎝1

2

∑
j,k

Ajkzj zk − 1

2

∑
j,k

(A−1)jkyjyk

⎞
⎠
⎤
⎦

∝ exp

⎡
⎣ i

2

∑
j,k

(A−1)jkyjyk

⎤
⎦ . (17.55)

We then make the substitutions

xi → ϕ(x) , yi → J (x) ,
∑
→
∫

d4x , Ajk → A(x − y) . (17.56)

Hence, for the scalar field described by the Lagrangian (17.51),

A(x − y) = −(�x −m2)δ4(x − y) ,

A−1(x − y) = 1

(2π)4

∫
d4p

eip·(x−y)

p2 +m2 − iε
= iΔF(x − y) .

(17.57)

Thus,

T [J ] = exp

[
− 1

2

∫
d4x

∫
d4y J (x)ΔF(x − y)J (y)

]
. (17.58)

In this case, the normalization condition holds true automatically, i.e.,

T [0] = 1 . (17.59)

If there are interactions, we have to expand as a power series in the coupling
constants.
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We now derive the effective Lagrangian discussed in Sect. 11.5 using the path-
integral method. If C is the inverse matrix of D,

L = −1

2
Dab(ϕ)∂λϕa∂λϕb − V (ϕ) , (17.60)

πa = Dabϕ̇b , (17.61)

H = 1

2
Cabπaπb + 1

2
Dab∇ϕa∇ϕb + V . (17.62)

The generating functional T [J ] then has the form

T [J ] =
∫

DϕDπ exp

{
i
∫

d4x
[
πa(x)ϕ̇a(x)−H (x)− Ja(x)ϕa(x)

]}
.

(17.63)

To carry out the integral over π , we make the change of variables

πa = Πa +Dabϕ̇b , (17.64)

πaϕ̇a − 1

2
Cabπaπb = Dabϕ̇aϕ̇b − 1

2
CabΠaΠb . (17.65)

Therefore,

T [J ] =
∫

DϕDΠ exp

{
i
∫

d4x

[
L (x)− 1

2
CabΠa(x)Πb(x)− Ja(x)ϕa(x)

]}
.

(17.66)

Integrating over Π , the following factor shows up:

∏
x

√
detC−1

2π iΔ
∝
∏
x

√
detD , Δ = d4x ,

= exp

[
1

Δ

∑
x

Δ

2
ln(detD)

]

= exp

[
δ4(0)
∫

d4x
1

2
ln(detD)

]
. (17.67)
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This corresponds to replacing L (x) by the effective Lagrangian density

Leff = L − i

2
δ4(0) ln(detD) . (17.68)

This is what we used in (11.113). While the derivation based on the canonical
formalism was complex, the path-integral method has the advantage of being
extremely intuitive and simple.



Chapter 18
Quantization of Gauge Fields Using
the Path-Integral Method

The quantization of the electromagnetic field, which is the simplest gauge field,
was discussed in Chap. 5. The problem arising in that case was that, if we apply
the usual quantization discussed in Chap. 4 using the gauge invariant Lagrangian
density, then the operator D(∂) defined in (4.43) does not have an inverse. A related
difficulty should thus arise in the path-integral method. In this chapter, we shall see
how we can avoid this difficulty.

18.1 Quantization of Gauge Fields

Faddeev and Popov showed for the first time how to quantize gauge fields using
the path-integral method [164]. Given a field A, in order to compute its Green’s
functions, we need to introduce the action integral S[A]:

S[A] =
∫

d4xL (x) . (18.1)

The vacuum expectation value of an arbitrary operator F [A] containing the field A

is given by

〈F [A]〉 =

∫
DAF [A] exp

{
iS[A]}∫

DA exp
{
iS[A]}

. (18.2)

However, the denominator and numerator are both divergent. The reason is that,
if A is a gauge field, then since all configurations of the gauge field which can
be obtained by gauge transformations from any given configuration correspond to
exactly the same state physically, the same physical state will appear infinitely many
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times. This divergence corresponds to the fact that the differential operator D(∂)

does not have an inverse. However, if F [A] is a gauge invariant quantity, then such
divergences will cancel between the denominator and the numerator.

Hence, if we introduce a gauge function Ω and write the corresponding
transformation for the gauge field A as

A(x)→ AΩ(x) , (18.3)

we need to divide each path integral in the denominator and in the numerator
of (18.2) by

∫
DΩ . (18.4)

Faddeev and Popov provided a method to do this. We arrange for one configuration
of the gauge field to correspond to one physical state. The condition for picking one
configuration is called the gauge condition.

18.1.1 A Method to Specify the Gauge Condition

We can specify the gauge condition using a functional f [A] of A and writing

f [A] = 0 . (18.5)

Alternatively, for arbitrary A, we can choose a suitable Ω and require

f
[
AΩ
] = 0 . (18.6)

We can then define the gauge-invariant functional �f [A] by

�f [A]
∫

DΩδ(f [AΩ ]) = const. (18.7)

Therefore,

∫
DA exp

{
iS[A]}∫

DΩ

∼
∫

DA exp
{
iS[A]}�f [A]δ(f [A]) . (18.8)
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If we now introduce an external field, the generating functional of the Green’s
function is

Tf [J ] ∼
∫

DA exp

{
i
∫

d4x
[
L (x)− J (x)A(x)

]}
�f [A]δ(f [A]) . (18.9)

18.1.2 The Additional Term Method

Adding a term to S and setting

ϕ[A]
∫

DΩ exp
{
i�S[AΩ ]} = const. , �S =

∫
d4x�L (x) , (18.10)

as in the case above, the equation corresponding to (18.9) is

T [J ] ∼
∫

DA exp

{
i
∫

d4x
[
L (x)+�L (x)− J (x)A(x)

]}
ϕ[A] . (18.11)

This is the customary way of quantizing gauge fields. We now turn to examples.

18.2 Quantization of the Electromagnetic Field

We apply the above method for quantizing gauge fields to the case of the electromag-
netic field, which is the best known Abelian gauge field. The canonical quantization
of the electromagnetic field is well understood. We shall now check whether the
same result can be obtained using the path-integral method. The Lagrangian is

L = −ψ̄[γμ(∂μ − ieAμ)+m
]
ψ − 1

4
FμνFμν ,

= Lf +Lint , (18.12)

where Fμν = ∂μAν − ∂νAμ and

Lint = ieψ̄γμψAμ = jμAμ . (18.13)

This Lagrangian density is invariant under the gauge transformations

Aμ(x)→ Aμ(x)+ ∂μλ(x) , ψ(x)→ eieλ(x)ψ(x) , ψ̄(x)→ e−ieλ(x)ψ̄(x) .

(18.14)
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18.2.1 Specifying the Gauge Condition

Here we consider the Lorenz gauge and the Coulomb (or radiation) gauge:

fL[A] = ∂μAμ = 0 , fR[A] = div A = 0 . (18.15)

In both cases, if we implement the gauge transformation with the gauge function
−λ, then

�L[A]
∫

Dλδ(∂μAμ −�λ) = const. , (18.16)

�R[A]
∫

Dλδ(div A−Δλ) = const. , (18.17)

noting that � does not depend on A in either case. For this reason, QED remains
simple. We thus consider the generating functional in the Lorenz gauge:

T [J, η, η̄] ∼
∫

DAμDψDψ̄ exp

[
i
∫

d4x(L − η̄ψ − ψ̄η − JμAμ)

]
δ(∂μAμ) .

(18.18)

Setting e = 0, we carry out the path integral for the free field.
For the fermionic field, we take η and η̄ to be anti-commuting c-numbers and

consider

∫
DψDψ̄ exp

{
−i
∫

d4x
[
ψ̄(γμ∂μ +m)ψ + η̄ψ + ψ̄η

]}
. (18.19)

In order to evaluate this integral, we generalize the example in Sect. 17.2. We define
an inner product by

(x,Ax) =
∑
j,k

x∗j Ajkxk . (18.20)

We then write a generalization of the integral (17.52):

I =
∫ ∏

j

dxj
∏
k

dx∗k exp
{
− i
[
(x,Ax)+ (x, y)+ (y, x)

]}
. (18.21)

Introducing the change of variables

xj = −(A−1)jkyk + zj , (18.22)
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we can carry out the integral, viz.,

I =
∫ ∏

j

dzj
∏
k

dz∗k exp
{− i
[
(z,Az)− (y,A−1y)

]} ∝ exp
[
i(y,A−1y)

]
.

(18.23)

Making the same replacement as (17.56),

A−1(x − y) = 1

(2π)4

∫
d4p

eip·(x−y)

ip · γ +m− iε
= iSF(x − y) . (18.24)

The integral (18.19) thus assumes the form

exp

[
−
∫

d4x

∫
d4yη̄(x)SF(x − y)η(y)

]
. (18.25)

Although we should in fact take into account the anti-commutativity of the variables
ψ , ψ̄ , η, and η̄, here we have just given the result by analogy.

Now, for the electromagnetic field, using

δ(∂μAμ) ∼
∫

DB exp

[
i
∫

d4x B(x)∂μAμ(x)

]
(18.26)

and integrating by parts in the exponent above, we obtain

∫
DAμDB exp

[
−i
∫

d4x

{
1

2

[
Aμ(∂μ∂ν − δμν�)Aν + ∂μBAμ − B∂μAμ

]+ JμAμ

}]
.

(18.27)

For a pair (Aμ,B), the operator corresponding to Aij is then expressed by the matrix

(
∂μ∂ν − δμν ∂μ

−∂ν 0

)
. (18.28)

Its inverse matrix appears in the propagator. It can be shown to be

⎛
⎜⎝

1

�

(
∂μ∂ν

� − δμν

)
−∂μ

�
∂ν

� 0

⎞
⎟⎠ . (18.29)

Inserting this, the path integral (18.27) becomes

exp

[
−1

2

∫
d4x

∫
d4yJμ(x)Dμν(x − y)Jν(y)

]
, (18.30)
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where

Dμν(x) = −i

(2π)4

∫
d4k

1

k2 − iε

(
δμν − kμkν

k2 − iε

)
eik·x . (18.31)

The propagator appearing here, corresponding to the gauge condition (18.15), is
written in the Landau gauge. The introduction of the auxiliary field B has already
been discussed in Sect. 15.5.

18.2.2 The Additional Term Method

As an additional term, we choose

�S =
∫

d4x�L , �L = − 1

2α
(∂μAμ)

2 . (18.32)

Since ϕ[A] does not depend on A, the generating functional has the simple form

T [J, η, η̄] ∼
∫

DAμDψDψ̄ exp

[
i
∫

d4x(L +ΔL − JμAμ − η̄ψ − ψ̄η)

]
.

(18.33)

The ψ-part is the same as above, but the propagator of the electromagnetic field is

Dμν = −i

(2π)4

∫
d4k

1

(k2 − iε)2

(
k2δμν − kμkν + αkμkν

)
eik·x , (18.34)

where α is a gauge parameter. This form coincides with the integral expression
already derived in (12.251) with σ = 0.

18.2.3 Ward–Takahashi Identity

The path-integral method gives the same result as the canonical quantization. We
can use this method to derive other properties, such as the Ward–Takahashi identity
[118, 119].

The propagator of the electron in the Landau gauge is

〈
ψ(x)ψ̄(y)

〉
L =

1

NL

∫
DAμDψDψ̄ ψ(x)ψ̄(y)eiS[ψ,ψ̄,A]δ(∂μAμ) , (18.35)
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where NL is a normalization factor given by

NL =
∫

DAμDψDψ̄ eiS[ψ,ψ̄,Aμ]δ(∂μAμ) . (18.36)

We make the change of variables

ψ → ψ ′ = eieλψ , ψ̄ → ψ̄ ′ = e−ieλψ̄ . (18.37)

Changing the integration variables to ψ ′ and ψ̄ ′, and then rewriting them again as
ψ and ψ̄ , the expression (18.35) takes the form

〈
ψ(x)ψ̄(y)

〉
L =

1

NL

∫
DAμDψDψ̄ ψ(x)ψ̄(y)eiS[ψ,ψ̄,A]δ(∂μAμ) (18.38)

× exp

{
ie
[
λ(x)− λ(y)

]− i
∫

d4zjμ(z)∂μλ(z)

}
,

where the last term is originated from the electron part of the Lagrangian density.
Carrying out the functional differentiation of this equation with respect to λ(x), and
then setting that λ = 0,

ie
[
δ4(x−z)−δ4(y−z)]〈ψ(x), ψ̄(y)

〉
L+i∂μ

〈
jμ(z),ψ(x), ψ̄(y)

〉
L = 0 . (18.39)

Taking the Fourier transform of this equation, we obtain the Ward–Takahashi
identity (12.200):

− i(p − q)μS
′
F(p)Γμ(p, q)S

′
F(q) = S′F(p)− S′F(q) . (18.40)

The discussion about the derivation above only refers to the fermionic (electron)
part, and not the electromagnetic field, so it turns out that this result holds true for
any gauge fields.

Next, we discuss the gauge transformations for Green’s functions.

18.2.4 Gauge Transformations for Green’s Functions

We ask ourselves what kind of relations exist among Green’s functions in different
gauges. As an example, we investigate the relation between the Landau gauge and
the radiation gauge, viz.,

〈
ψ(x)ψ̄(y)

〉
R =

1

NR

∫
DAμDψDψ̄ ψ(x)ψ̄(y)eiS[ψ,ψ̄,A]δ(div A) , (18.41)

NR =
∫

DAμDψDψ̄ eiS[ψ,ψ̄,A]δ(div A) . (18.42)
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We insert the following factor into the denominator and the numerator:

∫
Dλδ(�λ− ∂μAμ) = const. (18.43)

If we now carry out a gauge transformation, then S and DAμDψDψ̄ are invariant.
In the integral,

δ(�λ− ∂μAμ)→ δ(∂μAμ) , δ(div A)→ δ(div A+�λ) , (18.44)

and in the numerator, the following factor shows up:

exp
{
ie
[
λ(x)− λ(y)

]}
. (18.45)

From (18.44),

div A+�λ = 0 , (18.46)

so by solving this equation, we can find the constraint on λ :

λ(x) =
∫

d4zφ(x − z) · A(z) , (18.47)

φ(x) = −δ(x0)∇
(

1

4π |x|
)

. (18.48)

When we carry out the functional integration with respect to λ, δ(div A + �λ)

disappears, whence

〈
ψ(x)ψ̄(y)

〉
R =
〈
ψ(x)ψ̄(y) exp

{
ie
∫

d4z
[
φ(x − z)− φ(y − z)

]
A(z)

}〉
L
.

(18.49)

Thus the propagator in the radiation gauge has been expressed in terms of the
propagator in the Landau gauge.

18.3 Quantization of Non-Abelian Gauge Fields

Using the standard path-integral method for quantizing gauge fields, we consider
the non-Abelian gauge fields.
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18.3.1 A Method to Specify the Gauge Condition

We choose the gauge condition

f [A] = ∂μA
a
μ = 0 . (18.50)

Applying an infinitesimal gauge transformation, from (14.23),

δAa
μ =

1

g
∂μλ

a + fabcA
b
μλ

c ≡ 1

g
(Dμλ)

a . (18.51)

Thus, under an infinitesimal gauge transformation,

(
∂μA

a
μ

)Ω = ∂μ
(
Aa
μ + δAa

μ

) = ∂μ

[
Aa
μ +

1

g
(Dμλ)

a

]
. (18.52)

In the usual way, we compute �f [A]. If we use (18.7), we have

∫
DΩδ
[
(∂μA

a
μ)

Ω
] =
∫

Dλδ
[
(∂μA

a
μ)

Ω
]

=
∫

D
[
(∂μA

a
μ)

Ω
] {D[(∂μAa

μ)
Ω
]

Dλ

}−1

δ
[
(∂μA

a
μ)

Ω
]

=
{
D
[
(∂μA

a
μ)

Ω
]

Dλ

}−1

. (18.53)

Thus, �f [A] is the functional Jacobian

�f [A] =
D
[
(∂μA

a
μ)

Ω
]

Dλ
= det

(
−1

g
∂μDμ

)
. (18.54)

Normalizing this determinant to unity when Aa
μ = 0,

�f [A] = det

(
∂μDμ

�

)
. (18.55)

To compute this expression, we use the method due to ’t Hooft in 1971 [165]. The
generating functional for the Green’s functions is

T [J ] =
∫

DAμ exp
{
iS[A, J ]}�f [A]δ(∂μAμ) , (18.56)
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where

S[A, J ] = S[A] −
∫

d4x Aa
μ(x)J

a
μ(x) . (18.57)

The δ-function in the integral is given by

δ(∂μAμ) ∼
∫

DB exp

[
i
∫

d4x B(x)∂μAμ(x)

]
, (18.58)

but note that we do not discuss the normalization here. We use
∫ ∏

j

dxjdyj exp
[
i(x,Ay)

] = (2π)n(detA)−1 . (18.59)

And so we obtain

det

(
∂μDμ

�

)−1

∼
∫

DϕD ϕ̄ exp

[
i
∫

d4x ϕ̄(x)∂μDμϕ(x)

]
. (18.60)

Note also that (18.60) is the inverse of (18.55). Let us therefore consider how to
obtain the inverse.

We treat the expression (18.60) as a sum of loop contributions obtained by
contractions among the scalar fields ϕ and ϕ̄, while the gauge field A appears as
an external line. According to the discussion in Sect. 11.2, this sum is the connected
part, so in order to derive the inverse, we need to invert the sign of the connected
part. However, the connected part consists of single loops obtained by contracting
ϕ and ϕ̄ before A is quantized. Thus, we must reverse the sign of each loop. As
mentioned in Sect. 8.4, this reversal happens when ϕ and ϕ̄ are anti-commutative,
i.e., when they obey Fermi statistics. For a path integral involving these so-called
Grassmann numbers, which anti-commute, we need an additional discussion, but
for the moment we avoid getting further involved and just write down the result:

�f [A] ∼
∫

DϕD ϕ̄ exp

[
i
∫

d4x ϕ̄(x)∂μDμϕ(x)

]
. (18.61)

Although ϕ and ϕ̄ are scalar fields, they obey Fermi statistics. It turns out that this
introduces an indefinite metric. The effective Lagrangian density in this theory is

L [A] + ϕ̄∂μDμϕ + B∂μAμ . (18.62)

Here we have summed indices standing for components, although this has not been
written explicitly. This Lagrangian corresponds to the one in the Landau gauge in
QED. The scalar fields ϕ and ϕ̄ are called Faddeev–Popov ghost fields.
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18.3.2 The Additional Term Method

We take �L to be expressed in terms of ∂μAμ and define ϕ[A] by

ϕ[A]
∫

DΩ exp
{

i�S
[
(∂μAμ)

Ω
]} = const. (18.63)

In order to compute this, we use

exp
{

i�S
[
(∂μAμ)

Ω
]} ∼
∫

DC ei�S[C]δ
[
(∂μAμ)

Ω − C
]
. (18.64)

This computation is the same as the example above, so ϕ[A] can be readily derived.
As a consequence, the effective Lagrangian density, considering the first term as a
gauge-invariant term, is

L [A] + ϕ̄∂μDμϕ +�L . (18.65)

We choose the following form for �L :

�L = − 1

2α
(∂μAμ)

2 . (18.66)

Therefore, the total Lagrangian density is

L [A] + ϕ̄∂μDμϕ − 1

2α
(∂μAμ)

2 . (18.67)

18.3.3 Hermitization of the Lagrangian Density

In the discussion so far, we used the effective Lagrangian density to compute the
S-matrix and Green’s functions. In the operator formalism, the Lagrangian density
should be Hermitian. The Faddeev–Popov ghost term in (18.67) is not Hermitian.
Integrating this term by parts,

LFP ∼ −∂μϕ̄Dμϕ = −∂μϕ̄a
(
∂μϕ

a + gfabcA
b
μϕ

c
)
. (18.68)

If ϕ and ϕ̄ are Hermitian, then (18.67) is obviously not Hermitian. This is because
ϕ and ϕ̄ are anti-commutative scalar fields. We thus change the phase of this part:

LFP → eiαLFP . (18.69)
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Consequently, the phases of the ghost propagator and the coupling constant for the
ghost and the gauge field change according to

〈
ϕ(x)ϕ̄(y)

〉 = DF(x − y)→ e−iαDF(x − y) , (18.70)

g→ geiα . (18.71)

Note that, when ϕ and ϕ̄ only appear in closed loops, the numbers of DF and g

are the same, so the contributions to the S-matrix or Green’s functions are invariant
under the above phase transformation. That is, it turns out that the phase α can
be freely chosen. If we choose eiα = −i, and write c and c̄ instead of ϕ and ϕ̄

[see (4.89)], we have

c† = c , c̄† = c̄ , (18.72)

LFP = i∂μc̄Dμc . (18.73)

This Lagrangian density is then Hermitian.
The Lagrangian density in a general gauge (also called the α-gauge) is

L = Lint +LGF +LFP , (18.74)

where, dropping indices for the gauge field,

Linv = −1

4
FμνFμν, (18.75)

LGF = (∂μB)Aμ + α

2
B · B , or − 1

2α
(∂μAμ)

2, (18.76)

LFP = i∂μc̄Dμc. (18.77)

The first term in (18.74) is gauge invariant, the second is a gauge-fixing term, and
the third is a ghost term. This form was given by Kugo and Ojima in [166].

18.3.4 Gauge Transformations of Green’s Functions

In the last section, we investigated the relations among Green’s functions defined
using different gauge conditions in QED. Here we discuss the different relations
among Green’s functions defined by including an additional term. The gauge-
invariant term is the same, and we thus treat two theories which are physically
equivalent in different gauges. Hence, we introduce two Lagrangian densities and
two action integrals:

LII = LI +�L , SII = SI +�S . (18.78)
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Then considering the field operators A,B,C, . . ., we introduce the Green’s function
in the second gauge:

〈ABC . . .〉II = 1

NII

∫
DAμ . . . ABC . . . exp(iSII ) , (18.79)

NII =
∫

DAμ . . . exp(iSII ) . (18.80)

Then from (18.78), we decompose SII , considering �S as a perturbation and
treating exp(i�S) like A,B,C, . . .. Therefore,

〈ABC . . .〉II = 1

NII

∫
DAμ . . . ABC . . . exp(i�S) exp(iSI )

= NI

NII

1

NI

∫
DAμ . . . ABC . . . exp(i�S) exp(iSI )

= NI

NII

〈
ABC . . . exp(i�S)

〉
I
, (18.81)

NI

NII

= 1

NI

∫
DAμ . . . exp(i�S) exp(iSI ) =

〈
exp(i�S)

〉
I
. (18.82)

We thus obtain

〈
ABC . . .

〉
II
=
〈
ABC . . . exp(i�S)

〉
I〈

exp(i�S)
〉
I

. (18.83)

This gives the relation among Green’s functions in two different gauges. For
example, considering (18.74), we choose the Landau gauge with α = 0 and the
gauge with α �= 0 for LI and LII , respectively, and distinguish the Landau gauge
by the index L . Then,

〈ABC . . .〉α =

〈
ABC . . . exp

[
iα

2

∫
d4x B(x) · B(x)

] 〉
L〈

exp

[
iα

2

∫
d4x B(x) ·B(x)

] 〉
L

. (18.84)

This equation shows the α-dependence of an arbitrary Green’s function. We may
also interpret operators appearing in the discussion above as being unrenormalized.
The subscript L indicates that these Green’s functions should be evaluated in
Heisenberg’s picture in the Landau gauge, while the subscript α indicates that they
should be evaluated in the Heisenberg picture in the gauge α �= 0. This formula
provides a basis for the discussion about the gauge invariance of various kinds of
Green’s functions.
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18.4 Axial Gauge

In the last section, we introduced the effective Lagrangian density in the covariant
gauge, and thereby understood the need for the Faddeev–Popov ghost. However, if
we do not require manifest Lorentz covariance, there is a gauge in which we can
quantize without ghosts. This is the axial gauge.

We replace the gauge condition (18.50) discussed in the last section by

nμA
a
μ = 0 , (18.85)

where nμ is a constant vector. For the infinitesimal gauge transformation (18.51),

δ
(
nμA

a
μ

) = 1

g
nμ∂μλ

a + fabc(nμA
b
μ)λ

c . (18.86)

Under the gauge condition (18.85),

δ
(
nμA

a
μ

) = 1

g
nμ∂μλ

a . (18.87)

This is independent of Aμ. Hence,

∫
DΩδ[(nμAa

μ)
Ω ]

does not involve Aμ and �f [A] is a constant. Therefore, it turns out that the
Faddeev–Popov ghost term is not produced here.

Using the additional term method, if we choose

�S[A] = − 1

2α

∫
d4x
(
nμA

a
μ

)2
, (18.88)

and set

ϕ[A]
∫

DΩ exp
{
iS
[
AΩ
]} = const. , (18.89)

then once again ϕ[A] does not involve Aμ. Hence, we consider the effective
Lagrangian density

L = Linv − 1

2α

(
nμAμ

)2
. (18.90)
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Now quantizing, leaving only terms in quadratic form and applying the variation
principle,

Dμν(∂)A
a
ν = 0 , (18.91)

where

Dμν(∂) = (δμν − ∂μ∂ν)− 1

α
nμnν . (18.92)

Making the substitution ∂μ∂ν →−kμkν in momentum space,

Dμν(k) = −k2δμν + kμkν − 1

α
nμnν , (18.93)

[
δμν − nμkλ + nλkμ

n · k + n2 + αk2

(n · k)2
kμkν

]
Dλν(k) = −k2δμν . (18.94)

Thus, it turns out that the propagator is

1

k2 − iε

[
δμν − nμkν + nνkμ

n · k + n2 + αk2

(n · k)2 kμkν

]
. (18.95)

Problems with this gauge include the question of how to treat the pole n · k = 0,
and showing that computations of various physical quantities do not depend on the
choice of n.

18.5 Feynman Rules in the α-Gauge

We now introduce the Feynman rules for the Lagrangian density (18.74). First, note
that

Fa
μν = ∂μA

a
ν − ∂νA

a
μ + g(Aμ ×Aν)

a , (18.96)

(Dμc)
a = ∂μc

a + g(Aμ × c)a . (18.97)

For the gauge group indices, we use the inner and the outer product symbols:

A · B =
∑
a

AaBa , (A× B)a =
∑
b,c

fabcA
bBc . (18.98)
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We split the Lagrangian density (18.74) into the free part Lf and the interaction part
Lint :

Lf = −1

4
(∂μA

a
ν − ∂νA

a
μ)

2 − 1

2α
(∂μA

a
μ)

2 + i∂μc̄∂μc , (18.99)

Lint = −g∂μAν(Aμ ×Aν)− 1

4
g2(Aμ × Aν)(Aμ ×Aν)+ ig∂μc̄(Aμ × c) .

(18.100)

Expressing the Feynman rule in the Lagrangian formalism, it turns out that we
assign the factors i(2π)4,−i/(2π)4, and (−1) to each vertex, propagator, and closed
ghost loop, respectively. Considering the gauge particle as the gluon, the propagators
are

gluon
δab

k2 − iε

[
δμν − (1− α)

kμkν

k2 − iε

]
, (18.101)

ghost
iδab

k2 − iε
. (18.102)

Moreover, we find the following three types of vertex function:

1. three-gluon vertex , 2. four-gluon vertex , 3. ghost–gluon vertex .

1. Three-gluon vertex (Fig. 18.1). Taking all the momenta of the incoming gluons,
the vertex function is

− igfabc
[
δβγ (r − q)α + δγα(p − r)β + δαβ(q − p)α

]
. (18.103)

2. Four-gluon vertex (Fig. 18.2). In this case, the vertex function is

− g2fgacfgbd(δαβδγ δ − δαδδβγ )− g2fgadfgbc(δαβδγ δ − δαγ δβδ)

− g2fgabfgcd (δαγ δδδ − δαδδβγ ) . (18.104)

Fig. 18.1 Three-gluon vertex
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Fig. 18.2 Four-gluon vertex

Fig. 18.3 Ghost–gluon
vertex

3. Ghost–gluon vertex (Fig. 18.3). Considering the ghost lines to be directed from
c̄ to c and q to be the outgoing momentum, the vertex function is

− gfabcqα . (18.105)

Combining the above propagators and vertex functions, we can compute the S-
matrix elements or Green’s functions. Note that the four-momentum is conserved at
each vertex. For the total amplitude, we then have conservation of four-momentum,
viz., a factor

δ4(Pf − Pi) . (18.106)

Moreover, we have to integrate over all the four-momenta ki in closed loops, which
are not affected by the overall conservation of four-momentum, i.e., we introduce
the integrals

∫
d4k1 . . .

∫
d4kl , (18.107)

where l is the number of closed loops.



Chapter 19
Becchi–Rouet–Stora Transformations

We consider a system in which a gauge field and fundamental fermions interact
with each other. In this case, local gauge transformations are defined for the
gauge field and the fermion field. However, in order to quantize these fields,
we need to introduce the gauge-fixing term and the Faddeev–Popov ghost term.
Consequently, the invariance under the local gauge transformation is broken.
However, a new global invariance shows up in its place. This is invariance under
the BRS transformation found by Becchi et al. in [167]. In this chapter, we discuss
the properties of this transformation.

19.1 BRS Transformations

The Lagrangian density for a system where a gauge field and a fermion field interact
is written as

L = Linv +LGF +LFP , (19.1)

which is the same as the one in (18.74). Regarding the gauge-fixing term and the
ghost term, these are the same as given in (18.76) and (18.77), but the gauge-
invariant term is

Lint = −1

4
FμνFμν − ψ̄(γμDμ +m)ψ , (19.2)

where the covariant derivative for the fermion field is

Dμψ = (∂μ − igt ·Aμ)ψ =
(
∂μ − ig

∑
a

taA
a
μ

)
ψ . (19.3)

© The Author(s), under exclusive license to Springer Nature B.V. 2023
K. Nishijima, Quantum Field Theory,
https://doi.org/10.1007/978-94-024-2190-3_19

439

http://crossmark.crossref.org/dialog/?doi=10.1007/978-94-024-2190-3_19&domain=pdf

 -151 4612 a -151 4612 a
 
https://doi.org/10.1007/978-94-024-2190-3_19


440 19 Becchi–Rouet–Stora Transformations

Local gauge transformations are now defined for the gauge field and the fermion
field, which are called fundamental fields. For a gauge function λ(x), the infinitesi-
mal gauge transformations for the fundamental fields are

δAa
μ(x) =

1

g

(
Dμλ(x)

)a
, δψ(x) = i

[
λ(x) · t]ψ(x) . (19.4)

The transformations obtained by making the following replacement are called the
BRS transformations:

λa(x)→ gca(x) . (19.5)

In the following, we indicate these transformations by the same symbol δ used
in (19.4).

Since ca(x) are anti-commuting fields, these transformations change the statistics
of the field operators. Taking this into account, the BRS transformations for
fundamental fields are

δAμ = Dμc , δψ = ig(c · t)ψ , δψ̄ = −igψ̄(c · t) . (19.6)

From these, the following equations are obtained directly:

δFμν = gFμν × c , (19.7)

δLinv = 0 . (19.8)

Note that the local gauge transformations are not defined for the auxiliary fields B,
c, and c̄, so we cannot define the BRS transformation by the substitution (19.5).
We thus introduce the BRS transformations by requiring the total Lagrangian
density (19.1) to be invariant under the transformations. To do this, we first write
down the field equations derived by the variational principle:

DμFμν + ∂νB − ig∂ν c̄ × c + igψ̄γνtψ = 0 , (19.9)

∂μAμ = αB , (19.10)

∂μDμc = Dμ∂μc̄ = 0 . (19.11)

Assuming that δ and ∂μ commute, Eqs. (19.10) and (19.11) imply

αδB = δ(∂μAμ) = ∂μδAμ = ∂μDμc = 0 .

Thus,

δB = 0 . (19.12)
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Moreover, if we rewrite (19.11), we have

0 = δ(∂μDμc) = ∂μδ(Dμc) = ∂μδ2Aμ .

We can thus set

δ(Dμc) = δ2Aμ = 0 . (19.13)

Finally, taking into account (19.8), we require

δL = δ(LGF +LFP) = 0 . (19.14)

Hence, considering (19.12) and (19.13),

δ(LGF +LFP) = δ
(
∂μB · Aμ + i∂μc̄ ·Dμc

)
= ∂μB ·Dμc + i∂μ(δc̄) ·Dμc

= ∂μ(B + iδc̄) ·Dμc .

In order for this to vanish, we must set

δc̄ = iB . (19.15)

Finally, in order to determine δc, we consider

δ(Dμc) = δ(∂μc)+ g(Dμc)× c + gAμ × δc

= Dμ

(
δc + 1

2
gc × c

)
= 0 .

From this,

δc = −1

2
gc × c . (19.16)

All the BRS transformations for auxiliary fields are thus determined:

δB = 0 , δc̄ = iB , δc = −1

2
gc × c , (19.17)

and the total Lagrangian density is invariant under the BRS transformation.
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19.2 BRS Charge

If a theory is BRS invariant, according to Noether’s theorem, there should exist a
conserved quantity corresponding to this invariance. This is called the BRS charge,
denoted QB. In the following, we shall derive an expression for this quantity. First,
we give the equal-time canonical commutation relations necessary for quantization.
Using Aa

j , j = 1, 2, 3, and Ba as independent variables, the field operators
conjugate to each field operator are

πa
j = iFa

4j , πa
B = Aa

0 = −iAa
4 . (19.18)

Therefore, for x0 = y0,

[
Aa

4(x), B
b(y)
] = δabδ

3(x − y) ,
[
Aa
j (x), F

b
4k(y)
] = δabδjkδ

3(x − y) .

(19.19)

For the ghost fields, if x0 = y0, we have

{
ca(x), ˙̄cb(y)} = −δabδ3(x − y) ,

{
D4c

a(x), c̄b(y)
} = −iδabδ3(x − y) .

(19.20)

We can now construct the Noether current:

JB
μ =
∑
α

δϕα
∂L

∂ϕα,μ
= −Dνc · Fμν − igψ̄γμ(c · t)ψ − B ·Dμc + i

2
g∂μc̄ · (c × c)

= −∂ν(Fμν · c)− B ·Dμc + ∂μB · c − i

2
g∂μc̄ · (c × c) .

(19.21)

This is a conserved quantity. The spatial integral of its time component is QB:

∂μJ
B
μ = 0 , (19.22)

QB =
∫

d3x JB
0 =
∫

d3x

[
B · ċ − Ḃ · c − gB · (A0 × c)+ i

2
g ˙̄c · (c × c)

]
.

(19.23)

Therefore, the BRS transformation can be written

δφ = i[QB, φ]∓ . (19.24)

If φ is even-ordered with respect to c and c̄, we choose (−), and if it is odd-ordered,
we choose (+).
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It is also a straightforward matter to show that

δ

[
−B ·Dμc + ∂μB · c − i

2
g∂μc̄ · (c × c)

]
= 0 . (19.25)

Thus,

δQB =
∫

d3x δJB
0 = 0 , (19.26)

whence

δQB = i
{
QB,QB

} = 2iQ2
B = 0 .

This proves the nilpotency of QB :

Q2
B = 0 . (19.27)

This is the most remarkable property of the BRS charge. The BRS transformation
itself has this property, i.e., using (19.27),

δ2φ =
{−{QB, [QB, φ]

} = 0 , φ is even-ordered w.r.t. c and c̄ ,

−{QB, {QB, φ}} = 0 , φ is odd-ordered w.r.t. c and c̄ .
(19.28)

We thus see that the BRS transformation is nilpotent.
Ghost terms appear now only in the ghost term, which is invariant under the scale

transformation

c→ eλc , c̄→ e−λc̄ . (19.29)

Since both c and c̄ are Hermitian, we cannot introduce a phase transformation. The
Noether current corresponding to the above transformation is

J c
μ =
(
c
∂L

∂c,μ
− c̄

∂L

∂c̄,μ

)
= i(∂μc̄ · c − c̄ ·Dμc) , (19.30)

∂μJ
c
μ = 0 . (19.31)

We thus introduce the conserved quantity Qc :

Qc =
∫

d3xJ c
0 = i
∫

d3x
[
c̄ · ċ − ˙̄c · c− gc̄ · (A0 × c)

]
. (19.32)
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This quantity satisfies the commutation relations

i[Qc, c(x)] = c(x) , i[Qc, c̄(x)] = −c̄(x) , (19.33)

and Qc commutes with all other fields. Therefore, in general,

i[Qc, φ] = Nφ , (19.34)

where N is the number of c̄ minus the number of c included in φ as factors. N is
called the ghost number of φ. In addition, both QB and Qc are Hermitian:

Q
†
B = QB , Q†

c = Qc . (19.35)

From the structure of QB given in (19.23), its ghost number is unity. Therefore,
from (19.34),

i[Qc,QB] = QB . (19.36)

Combining (19.27) and (19.36) results in the BRS algebra. Since commutation
relations and anti-commutation relations coexist in this algebra, it is called a graded
Lie algebra, rather than a Lie algebra.

19.3 Another BRS Transformation

The BRS transformation can be obtained by replacing an infinitesimal gauge
function by the ghost field c, as shown in (19.37). So what happens if we then
replace an infinitesimal gauge function by c̄? This issue was investigated by Curci
and Ferrari in [168], Ojima in [169], Bonora and Tonin in [170], and so on. For the
fundamental fields, denoting such a transformation by the symbol δ̄,

δ̄Aμ = Dμc̄ , δ̄ψ = ig(c̄ · t)ψ , ψ̄ = −igψ̄(c̄ · t) . (19.37)

This transformation also leaves invariant the gauge invariant term, in exactly the
same way as δ. To determine the transformation of the auxiliary field, we note the
identity

i∂μc̄ ·Dμc+ ∂μB ·Aμ = iDμc̄ · ∂μc − ∂μB̄ ·Aμ , (19.38)

where B̄ is defined by

B + B̄ − igc × c̄ = 0 . (19.39)
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It is easily shown that

δ̄B̄ = 0 , δ̄c = iB̄ , δ̄c̄ = −1

2
gc̄ × c̄ . (19.40)

Writing the BRS charge corresponding to this transformation as Q̄B, the BRS
algebra mentioned in the previous section is extended as follows:

Q2
B = Q̄2

B = QBQ̄B + Q̄BQB = 0 , (19.41)

i[Qc,QB] = QB , i[Qc, Q̄B] = −Q̄B . (19.42)

Moreover, from (19.41) we obtain

δ2 = δ̄2 = δ̄δ+ δ̄δ = 0 . (19.43)

In particular, the last equation is obtained from the identities

{
QB, [Q̄B, φ]

}+ {Q̄B, [QB, φ]
} = [{QB, Q̄B}, φ

]
(even ordered) ,{

QB, {Q̄B, φ}
}+ [Q̄B, {QB, φ}

] = [{QB, Q̄B}, φ
]

(odd ordered) ,
(19.44)

depending on whether φ is even-ordered or odd-ordered with respect to c and c̄,
respectively. If, in addition, the symmetry under the global gauge transformation,
i.e., when the gauge function is constant, is not spontaneously broken, the colour
charge Qa given by

Jμ = −Aμ × Fμν − Aμ × B + iψ̄γμtψ + i(c̄ ×Dμc)− i(∂μc̄ × c) , (19.45)

Qa =
∫

d3x J a
0 , (19.46)

is conserved. This Jμ becomes a source for the gauge field in the sense that

∂μFμν = −gJν + iδδ̄Aν . (19.47)

Moreover, Qa satisfies the commutation relations

[ψ(x),Qa ] = taψ(x) , . . . (19.48)

[Qa,Qb] = ifabcQc . (19.49)

Since none of QB, Q̄B, and Qc have colour, they commute with Qa , i.e.,

[Qa,QB] = [Qa, Q̄B] = [Qa,Qc] = 0 . (19.50)
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Put another way, the colour charge is a BRS-invariant quantity:

δQa = δ̄Qa = 0 . (19.51)

19.4 BRS Identity and Slavnov–Taylor Identity

For a system including gauge fields, even where the symmetry is spontaneously
broken, we can consider that the BRS invariance is not broken, i.e., even if some
Qa is not conserved, the conservation law for QB may still hold true. An indication
of this is the fact that the unitarity of the S-matrix is based on the BRS invariance,
as will be shown later. As a consequence, the following equation holds true for the
vacuum |0〉:

QB|0〉 = 0 . (19.52)

Consequently, for arbitrary field operators O1(x1), . . . ,On(xn),

〈
0
∣∣δT [O1(x1) . . .On(xn)]

∣∣0〉 = 0 . (19.53)

This is called the BRS identity. It will be exemplified in the following. From now
on, we shall use the notation

〈
0
∣∣T [O1(x1) . . .On(xn)]

∣∣0〉 = 〈O1(x1) . . .On(xn)
〉
.

If we have

δO1(x1) = . . . = δOn(xn) = 0 , O(x) = δP (x) , (19.54)

for a set of operators O1(x1), . . ., On(xn), and O(x), then from (19.53),

〈
O(x)O1(x1) . . .On(xn)

〉 = 0 . (19.55)

We thus consider (18.84). In the unrenormalized Landau gauge, since

δB(x) = 0 , B(x) = −iδc̄(x) , (19.56)

the Green’s function including arbitrary numbers of B turns out to vanish, so that

〈
exp

[
iα

2

∫
d4x B(x) . . .B(x)

]〉
L
= 1 . (19.57)
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Moreover, if in (18.84) we have

δA = δB = δC = . . . = 0 , (19.58)

then for an unrenormalized Green’s function,

〈ABC . . .〉α = 〈ABC . . .〉L , (19.59)

which means that an unrenormalized Green’s function does not depend on the
unrenormalized gauge parameter α. This result will be further generalized.

As in Sect. 18.3, we consider a class of Lagrangian densities with the same
gauge-invariant term. We assume that the difference between two arbitrary
Lagrangian densities belonging to this class can be written as the BRS
transformation of an operator:

�L = LII −LI = δM , (19.60)

�S = SII − SI = δ

∫
d4xM . (19.61)

If in (18.83) we now have

〈
exp(i�S)

〉
I
= 1 , (19.62)

and (18.91) are satisfied once again, then

〈ABC . . .〉II = 〈ABC . . .〉I , (19.63)

for an unrenormalized Green’s function. This is important. As will be discussed
later, when computing observables such as the S-matrix using the LSZ reduction
formula, we start with the BRS invariant Green’s function. Since its normalization
is determined by a renormalization condition like (11.122), it turns out that, within
the class satisfying the condition (19.61), the S-matrix is independent of the choice
of gauge.

As another application, using

− iδT
[
Aa
μ(x), c̄

b(y)
] = T
[
Aa
μ(x), B

b(y)
]− iT

[
Dμc

a(x), c̄b(y)
]
, (19.64)

we obtain the BRS identity in the form

〈
Aa

μ(x),B
b(y)
〉 = i
〈
Dμca(x), c̄b(y)

〉
. (19.65)

Using the field equation and the canonical commutation relation, we see immedi-
ately that the four-divergence of this equation is equal to −iδabδ4(x−y). Repeating
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the discussion in Sect. 15.1,

〈
Aa

μ(x),B
b(y)
〉 = −δab∂μDF (x − y) . (19.66)

This is important because this equation assumes the same form in both the
renormalized and the unrenormalized formalisms.

A set of relations which hold true among Green’s functions can be derived from
the BRS identity. This corresponds to the Ward–Takahashi identity in QED, and
is called the Slavnov–Taylor identity in QCD [171, 172]. We introduce an external
field:

S = Jμ ·Aμ + J̄α · ψα + Jα · ψ̄α + J̄c · c + Jc̄ · c̄ + JB · B
+Kμ · δAμ + K̄α · δψα +Kα · δψ̄α +Kc · δc . (19.67)

The fact that ic̄ is equal to iB has already been included in (19.67). If S is bosonic,
then Jα , J̄α, Kα , and K̄α are external fields that anti-commute with the fermionic
fields, while J̄c, Jc̄, Kα , and K̄α are external fields that anti-commute with the ghost
fields. These are considered to be anti-commutative external fields. Hence,

exp(−iW) =
〈
0
∣∣∣T exp

[
− i
∫

d4xS (x)
]∣∣∣0〉 . (19.68)

The BRS identity in this case is

〈
0
∣∣∣T
[∫

d4x δS (x), exp
[
− i
∫

d4yS (y)
]]∣∣∣0〉 = 0 . (19.69)

We introduce the notation

〈
O(x)
〉 ≡
〈
0
∣∣T [O(x), exp

[−i
∫

d4yS (y)
] ]∣∣0〉〈

0
∣∣ exp
[−i
∫

d4yS (y)
] ∣∣0〉 . (19.70)

Using the nilpotency of the BRS transformation and the fact that J̄c and Jc̄ anti-
commute with QB,

〈δS 〉 = Jμ〈δAμ〉 + J̄α〈δψα〉 + Jα〈δψ̄α〉 − J̄c〈δc〉 − Jc̄〈δc̄〉 = 0 . (19.71)

Differentiating anti-commuting external fields from the left-hand side,

δW

δJμ
= 〈Aμ〉 , δW

δJ̄α
= 〈ψα〉 , δW

δJα
= 〈ψ̄α〉,

δW

δJB
= 〈B〉 , δW

δJ̄c
= 〈c〉 , δW

δJc̄
= 〈c̄〉 . (19.72)
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We now introduce the Legendre transformation in order to have 〈ϕ〉 and K as
independent variables instead of J and K :

Γ = W −Jμ ·〈Aμ〉− J̄α ·〈ψα〉−Jα ·〈ψ̄α〉− J̄c ·〈c〉−Jc̄ ·〈c̄〉−JB ·〈B〉 . (19.73)

Differentiating this from the left-hand side,

δΓ

δ〈φ〉 =
{−Jφ , φ = Aμ,B

Jφ , φ = c, c̄, ψα, ψ̄α .
(19.74)

Further, the derivative with respect to K is

δΓ

δK
= δW

δK
. (19.75)

From this,

δΓ

δKμ

= 〈δAμ〉 , δΓ

δK̄α

= 〈δψα〉 , δΓ

δKα

= 〈δψ̄α〉 , δΓ

δKc

= 〈δc〉 , (19.76)

while 〈δc̄〉 is given not by the derivative with respect to Γ but by

〈δc̄〉 = i〈B〉 . (19.77)

Expressing (19.71) in terms of derivatives with respect to Γ ,

0 = δΓ

δ〈Aμ〉 〈δAμ〉 − δΓ

δ〈ψα〉 〈δψα〉 − δΓ

δ〈ψ̄α〉 〈δψ̄α〉 + δΓ

δ〈c〉 〈δc〉 +
δΓ

δ〈c̄〉 〈δc̄〉

= 〈δAμ〉 δΓ

δ〈Aμ〉 + 〈δψα〉 δΓ

δ〈ψα〉 + 〈δψ̄α〉 δΓ

δ〈ψ̄α〉
+ 〈δc〉 δΓ

δ〈c〉 + 〈δc̄〉
δΓ

δ〈c̄〉

= δΓ

δKμ

δΓ

δ〈Aμ〉 +
δΓ

δK̄α

δΓ

δ〈ψα〉 +
δΓ

δKα

δΓ

δ〈ψ̄α〉
+ δΓ

δKc

δΓ

δ〈c〉 + i〈B〉 δΓ

δ〈c̄〉 .

(19.78)

This is the Slavnov–Taylor identity [171, 172].
Furthermore, from the field equations with external fields,

− JB = ∂μ〈Aμ〉 − α〈B〉 , Jc̄ = i∂μ〈Dμc〉 . (19.79)

These give the following constraints for Γ with external fields:

δΓ

δ〈B〉 = ∂μ〈Aμ〉 − α〈B〉 , i∂μ

(
δΓ

δKμ

)
= δΓ

δ〈c̄〉 . (19.80)
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If B is not used, 〈B〉 should be replaced by

〈B〉 → 1

α
∂μ〈Aμ〉 . (19.81)

This corresponds to setting JB = 0 at the outset. Differentiating (19.78) with respect
to the external fields and then setting the external fields equal to zero, we obtain
many identities between the Green’s functions.

19.5 Representations of the BRS Algebra

To complete the quantization of gauge theories and understand their structure, it is
important to know the representation of the BRS algebra. We first investigate the
representation of the BRS algebra but excluding Q̄B :

i[Qc,QB] = QB , Q2
B = 0 . (19.82)

However, we restrict the representations to those used in gauge theories, rather than
considering abstract representations. As mentioned before, Qc and QB are both
Hermitian operators, and this turns out to be a key fact in obtaining representations.

We first note that all operators in gauge theories can be decomposed into a sum
of operators satisfying

i[Qc,φ] = Nφ . (19.83)

The state φ|0〉 satisfies

iQcφ|0〉 = Nφ|0〉 , N integer , (19.84)

where we have assumed that the vacuum |0〉 is annihilated by Qc, i.e.,

Qc|0〉 = 0 . (19.85)

Equation (19.84) indicates that all eigenvalues of the Hermitian operators are pure
imaginary. Moreover, the second power of the Hermitian operator QB is zero. All
these facts indicate that we must have an indefinite metric. In the following, we will
use the result in Chap. 5, and the reader is referred to the discussion there for the
above details.

The important point regarding this algebraic representation is to obtain simulta-
neously the metric matrix η and the representation matrices of the operators QB and
Qc. Writing the representation matrices of QB and iQc as q and n, respectively, the
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Hermiticity condition for QB and Qc can be written in the form

ηq = q†η , ηn = −n†η , (19.86)

where we have used (5.34). The representation of the BRS algebra satisfies

[n, q] = q , q2 = 0 . (19.87)

We thus seek a representation which diagonalizes n. This corresponds to choosing
a basis satisfying (19.84) as basis in the state vector space V . Thus,

n† = n . (19.88)

The diagonal elements of the matrix n are integers, as already mentioned. According
to (19.86), n anti-commutes with η. Therefore, we decompose V in terms of the
eigenvalues N of n,

V =
∞∑

N=−∞

⊕
V (N) , (19.89)

V (N) =
{
|x〉/(iQc −N)|x〉 = 0, |x〉 ∈ V

}
. (19.90)

The fact that n anti-commutes with η means that, multiplying a vector by the matrix
η, V (N) turns into V (−N), i.e.,

ηV (N) = V (−N) , (19.91)

where the manipulation of multiplying a vector by a matrix is defined as follows. If
we take

{|ej 〉} as a set of basis vectors, an arbitrary vector |x〉 is expressed as

|x〉 =
∑
j

xj |ej 〉 . (19.92)

Multiplying by η is then defined by

η|x〉 =
∑
j,k

ηjkxk|ej 〉 . (19.93)

Moreover, we choose η to be the standard form mentioned in Chap. 5, whence

η2 = 1 . (19.94)

We must now obtain the matrix representing q . To do this, we first define the BRS
singlet and the BRS doublet, following Kugo and Ojima [173], then refine them.
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1. BRS singlet. If a vector |f 〉 cannot be written in the form |f 〉 = QB|g〉 and it
satisfies

QB|f 〉 = 0 , (19.95)

then |f 〉 is called a BRS singlet.
2. BRS doublet. If there exist vectors |f 〉 and |g〉 satisfying

|f 〉 = QB|g〉 �= 0 , and hence , QB|f 〉 = 0 , (19.96)

we say that |f 〉 and |g〉 form a BRS doublet. Note also that |g〉 is called a parent
vector (parent state) and |f 〉 is called a daughter vector (daughter state).

A weak point of the above definition is the lack of uniqueness. If we consider
a singlet state and parent and daughter states of a doublet as |s〉, |p〉, and |d〉,
respectively, then |s〉 + |d〉 also satisfies the first condition (1), while |p〉 + |s〉 also
satisfies the condition for the parent in (2). In order to define these uniquely within
a given representation, we use the metric matrix η.

We define two subspaces

Vd = qV = {q|x〉 : |x〉 ∈ V
}
, (19.97)

Vp = q†V = {q†|x〉 : |x〉 ∈ V
}
. (19.98)

Firstly, QB|x〉 = q|x〉, and since QB annihilates the singlet and the daughter state,
Vd should include every daughter state, so in this sense, it is a set of daughter states.
Therefore, considering an arbitrary vector |y〉 ∈ Vd, it can always be written in the
form

Vd & |y〉 = QB|x〉 . (19.99)

Setting |ỹ〉 = η|y〉 and using the definition of η,

〈x|QB|ỹ〉 = 〈y|ỹ〉 =
∑
j,k,l

y∗j ηjkηklyl =
∑
j

|yj |2 �= 0 , (19.100)

where we have used (19.94). This implies that

QB|ỹ〉 = q|ỹ〉 �= 0 . (19.101)

Hence, η|y〉 is a parent vector. In fact,

ηVd = ηqV = q†ηV = q†V = Vp , (19.102)
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where we have used the fact that η is non-degenerate, viz.,

ηV = V . (19.103)

We thus see that Vp is a set of parent states. Alternatively, it can be considered
that (19.97) and (19.98) define daughter and parent states, or from (19.102), a parent
state is created from a daughter state by multiplying by η.

Furthermore, if η is the standard form, then (16.93) implies

ηVp = Vd . (19.104)

Next, we decompose V into a direct sum of three subspaces. If VS is the space of
singlets,

V = VS ⊕ Vp ⊕ Vd . (19.105)

Therefore, from (19.102), (19.103), and (19.104),

ηVS = VS . (19.106)

This means that the singlet state is orthogonal to the doublet state. The structure of
η is

0 0

0 0

0 0

S p d

S

p

d

h =

(19.107)

where the shaded regions are non-degenerate matrices. What can be understood
from this is that both the parent vectors belonging to Vp and the daughter vectors
belonging to Vd have zero norm. Non-zero inner products appear only between a
parent vector and a daughter vector or between singlets.

Now,QB annihilates singlets, so if {0} is the set consisting only of the zero vector,

qVS = {0} . (19.108)

Therefore,

q†VS = q†ηVS = ηqVS = {0} . (19.109)
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Thus, singlets turn out to be annihilated by both q and q†. Additionally, since the
second power of either q or q† is zero,

qVd = q†Vp = {0} . (19.110)

Thus,

qVp = qVp ⊕ qVd ⊕ qVS = qV = Vd , (19.111)

q†Vd = q†Vd ⊕ q†Vp ⊕ q†VS = q†V = Vp . (19.112)

These relations will be used to determine the matrix q . Introducing the ghost number
N , we consider the subspace

V (N)
p = Vp ∩ V (N) . (19.113)

From the commutation relation between n and q ,

qV (N)
p = V (N+1)

d . (19.114)

For η, we have

ηV (N)
p = V (−N)

d , ηV (N+1)
d = V (−N−1)

p . (19.115)

Taking into account these relations and the condition (19.86) on q , in the represen-
tation where n is diagonal,

0

0

0

0

0

0

0

h

0

0

0

0

0

h†

0

0

q =

(N ,p) (−N ,d) (−N−1,p)

(N ,p)

(−N ,d)

(−N−1,p)

(N+1,d)

(N+1,d)

(19.116)

where h and h† are non-degenerate matrices. If we choose the basis in each subspace
properly, then at the end of the day the irreducible representation in the doublet space
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has the form

η =

⎛
⎜⎜⎝

0 1
1 0

0 1
1 0

⎞
⎟⎟⎠ , n =

⎛
⎜⎜⎝
N + 1 0

0 N

−N 0
0 −N − 1

⎞
⎟⎟⎠ ,

q =

⎛
⎜⎜⎝

0 a

0 0
0 a

0 0

⎞
⎟⎟⎠ , (19.117)

where a is a real number which cannot be determined by (19.87) alone, and the
blanks are zero matrices. The four states in the basis of this representation form the
quartet found by Kugo and Ojima.

What we have discussed above concerns the representation for the BRS doublet.
For the singlet, two kinds of representation can be obtained:

• N �= 0

n =
(
N

−N
)

, η =
(

0 1
1 0

)
, q =

(
0 0
0 0

)
, (19.118)

• N = 0

n = (0) , η = (±1) , q = (0) . (19.119)

In order to formulate gauge theories, we introduce the following requirement:

A subspace of the BRS singlet VS belongs to the positive-definite metric.

With this assumption, the BRS singlet representation in a gauge theory is restricted
to

n = (0) , η = (1) , q = (0) . (19.120)

19.6 Unitarity of the S-Matrix

Since gauge theories have many fields belonging to the indefinite metric, there
remains the problem of how to eliminate these from the S-matrix. We discuss this
issue using the method suggested by Kugo and Ojima. Kugo and Ojima defined the
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physical state space Vphys by [174]

Vphys =
{
|x〉 : QB|x〉 = 0 , |x〉 = 0 , |x〉 ∈ V

}
. (19.121)

It is therefore clear from the discussion in the last section that

Vphys = VS ⊕ Vd . (19.122)

Hence, given the structure of η, if |f 〉 and |g〉 belong to Vphys, we have

〈f |g〉 = 〈f |P(VS)|g〉 , (19.123)

where P(VS) is the projection operator onto the BRS singlet subspace VS.
Since QB is a conserved quantity, it commutes with the S-matrix, i.e.,

[QB, S] = 0 . (19.124)

Hence, if both |f 〉 and |g〉 belong to VS, we have

QBS|f 〉 = 0 , QBS|g〉 = 0 . (19.125)

Thus,

S|f 〉, S|g〉 ∈ Vphys . (19.126)

So, changing the unitarity condition by using (19.123),

〈f |g〉 = 〈f ∣∣S†S
∣∣g〉 = 〈f ∣∣S†P(VS)S

∣∣g〉 . (19.127)

It thus turns out that the unitarity condition for the S-matrix is expressed only by
states in Vphys, which belongs to the positive-definite metric, and the BRS doublets
are completely eliminated.

The discussion above can be applied to QED. We use the Lagrangian density in
the form (19.1). In this case, since the gauge group is U(1), the structure constant f
is zero. The ghost part is

LFP = i∂μc̄∂μc . (19.128)

The ghost fields are then free fields:

�c = �c̄ = 0 . (19.129)
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To eliminate the ghost fields, which do not exist in standard QED, we restrict the
physical states by

c(+)(x)|phys〉 = c̄(+)|phys〉 = 0 . (19.130)

Further, we define them using QB:

QB|phys〉 = 0 . (19.131)

This means that consistency between (19.130) and (19.131) is an issue. In QED,

{
QB, c

(+)(x)
} = 0 ,

{
QB, c̄

(+)(x)
} = B(+)(x) , (19.132)

so it turns out that (19.131) requires the condition

B(+)(x)|phys〉 = 0 , (19.133)

which is nothing but the Lorenz condition introduced in Sect. 5.4. Since QB
commutes with B(+)(x), it does not give any further condition. Moreover, in this
case QB is given by

QB =
∫

d3x(Bċ − Ḃc) , (19.134)

so if (19.130) and (19.133) are satisfied, then (19.131) is satisfied automatically.
Hence, in QED, it turns out that the Kugo–Ojima condition coincides with the
Lorenz condition for the states with no ghosts.

19.7 Representations of the Extended BRS Algebra

In Sect. 19.5, we investigated representations of the BRS algebra without Q̄B. In
this section, we add comments on representations of the BRS algebra including Q̄B,
as defined by (19.41) and (19.42).

We first decompose the state space into the singlet and the doublet:

V = VS ⊕ VD . (19.135)

This decomposition is common to both QB and Q̄B. The doublet space can be
decomposed as

VD = Vp ⊕ Vd = Vp̄ ⊕ Vd̄ . (19.136)
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However, considering q̄ as a representation of Q̄B, new subspaces are defined by

Vp̄ = q̄†V = q̄†VD , Vd̄ = q̄V = q̄VD . (19.137)

For each of QB and Q̄B, we introduce decompositions into p and d. A subspace

QBQ̄BV = Q̄BQBV = V (d,d) (19.138)

is a set of daughter states for both QB and Q̄B. Thus,

V (d,d) = Vd ∩ Vd̄ . (19.139)

Multiplying this subspace by η, it becomes a set of parent states for both QB and
Q̄B, i.e.,

ηV (d,d) = V (p,p) = Vp ∩ Vp̄ . (19.140)

Starting with this subspace, we introduce the two subspaces

QBV
(p,p) = V (d,p) , Q̄BV

(p,p) = V (p,d) , (19.141)

which are related by

ηV (d,p) = V (p,d) . (19.142)

Therefore, the doublet space decomposes as follows:

VD = V (p,p) ⊕ V (p,d) ⊕ V (d,p) ⊕ V (d,d) . (19.143)

In contrast, the singlet space has the following properties:

QBVS = Q̄BVS = {0} , ηVS = VS . (19.144)

The discussion in this section is descriptive and results are given without proof,
but we shall give the details in the remainder of this chapter. Note that the
decomposition (19.143) shows that there is a one-to-one correspondence between
the four subspaces. In the following, we shall express the elements in VD in the
form (p,d), using the transformation properties for QB and Q̄B. We express relations
such as QB|a〉 ∼ |b〉, Q̄B|c〉 ∼ |d〉, where ∼ stands for equality up to a numerical
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coefficient, in the following graphical way:

(19.145)

Then the graphical representation of the one-to-one correspondence between the
elements of the four subspaces in (19.143) is

(19.146)

These four elements form a quartet.

19.8 Representations of BRS Transformations
for Auxiliary Fields

We have considered BRS singlets and BRS doublets for state vectors, and this can
be extended to operators, i.e., operators can be classified using states obtained by
multiplying the vacuum by operators. However, since Heisenberg operators are not
irreducible, it is simpler to consider asymptotic fields. As already shown in (19.65)
and (19.66), multiplying the vacuum by Aμ, B, Dμc, and c̄ produces massless
scalar states. Since the operators which create these particles should be included,
we consider them as asymptotic fields and write them as follows:

A→ ∂μχ , B → β , Dμc→ ∂μγ , c̄→ γ̄ . (19.147)

Similarly, we introduce the following asymptotic fields:

B̄ → β̄ , Dμc̄→ ∂μΓ̄ , c→ Γ . (19.148)
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It is easily checked in the Landau gauge that these create massless particles.
Therefore, from the BRS transformations for Heisenberg operators,

δχ = γ , δγ̄ = iβ , δγ = 0 , δβ = 0 , (19.149)

δ̄χ = Γ̄ , δ̄Γ = iβ̄ , δ̄Γ̄ = 0 , δ̄β̄ = 0 . (19.150)

From these asymptotic fields, choosing the Landau gauge, we obtain

〈
χa(x), βb(y)

〉 = −〈χa(x), β̄b(y)
〉 = i
〈
γ a(x), γ̄ b(y)

〉 = i
〈
Γ a(x), Γ̄ b(y)

〉
= −δabDF(x − y) . (19.151)

In the following, we consider two cases:

1. Quartet representation. In perturbation theories, the following conditions hold
true:

γ = Γ , Γ̄ = γ̄ . (19.152)

In this case,

δ̄δχ = δ̄γ = δ̄Γ = iβ̄ , δδ̄χ = δΓ̄ = δγ̄ = iβ .

Thus, taking into account the anti-commutativity of δ and δ̄,

β̄ = −β . (19.153)

In this case, the auxiliary fields form a quartet expressed by the following graph:

(19.154)

This quartet was introduced by Kugo and Ojima.
2. Octet representation. Next, we consider what happens if we take γ and Γ̄ to be

different from Γ and γ̄ :

γ �= Γ , Γ̄ �= γ̄ . (19.155)

In this case, if we include β, and taking into account that there are at least five
auxiliary fields, it will be impossible to accommodate all the auxiliary fields
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unless we introduce at least two quartets. In this case too, we have to write
down equations for the BRS transformations twice, as in (19.149) and (19.150).
Hence, in addition to the four asymptotic fields in (19.155), we introduce two
new asymptotic fields β, β̄ and d , d̄ :

δΓ = id , δ̄Γ = iβ , δβ̄ = −γ , δ̄d = γ ,

δγ̄ = iβ , δ̄γ̄ = −id̄ , δd̄ = Γ , δ̄β = Γ . (19.156)

These equations include (19.149) and (19.150). In addition, although χ has
vanished, if we interpret

χ = β − β̄ + (singlet) , (19.157)

then it does not after all contradict (19.149) and (19.150). Now, d and d̄ become
massless asymptotic fields for c×c and c̄× c̄, as will be clear from the discussion
in the next section.

Additionally, for d and d̄, it can be shown immediately that

〈
d̄a(x), db(y)

〉 = δabDF (x − y) . (19.158)

We use this to make a graphical representation for an octet corresponding
to (19.156):

(19.159)

This octet was considered by Kugo.

Now that representations like the quartet and the octet have been obtained, we can
investigate what kinds of representations exist more generally. We will discuss this
in the next section.
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19.9 Representations of BRSNO Algebras

We have discussed the fact that, in general gauge theories, an extended BRS
invariance holds true and the conserved quantities form the BRS algebras. It was
pointed out by Nakanishi and Ojima in [175] that two more conserved charges exist
in the Landau gauge. In this gauge, the sum of the gauge-fixing term and the ghost
term is

LGF +LFP = ∂μB Aμ + i∂μc̄ Dμc . (19.160)

This Lagrangian density is invariant under the following transformations among
auxiliary fields:

B → B − ig(c × c)λ , c̄→ c̄ − 2cλ , c→ c , (19.9.2a)

where λ is a transformation parameter. Another transformation is

B → B + ig(c̄ × c̄)λ , c→ c + 2c̄λ , c̄→ c̄ . (19.9.2b)

Writing the Hermitian generators of these transformations as Q(c, c) and Q(c̄, c̄),
respectively,

i
[
Q(c, c),B

] = −igc × c , i
[
Q(c, c), c̄

] = −2c , i
[
Q(c, c), c

] = 0 ,

(19.9.3a)

i
[
Q(c̄, c̄),B

] = igc̄ × c̄ , i
[
Q(c̄, c̄), c

] = 2c̄ , i
[
Q(c̄, c̄), c̄

] = 0 .

(19.9.3b)

In contrast, the fundamental fields are invariant under these transformations. Hence,
adding Q(c, c) and Q(c̄, c̄) to the extended BRS algebra (19.41) and (19.42), we
obtain the following relations:

i
[
Qc,Q(c, c)

] = 2Q(c, c) , i
[
Qc,Q(c̄, c̄)

] = −2Q(c̄, c̄) ,[
Q(c, c), Q̄B

] = 2iQB ,
[
Q(c̄, c̄),QB

] = −2iQB ,[
Q(c, c),QB

] = 0 ,
[
Q(c̄, c̄), Q̄B

] = 0 ,[
Q(c, c),Q(c̄, c̄)

] = 4iQc .

(19.9.4)

Although it is possible to give explicit forms of Q(c, c) and Q(c̄, c̄), we omit them
here because such expressions will not be necessary. In the Landau gage, both
Q(c, c) and Q(c̄, c̄) can be conserved quantities, but in other gauges they are not
conserved. However, the commutation relations given above still hold true. The
algebra that extends the extended BRS algebra by including (19.9.4) is called the
BRSNO algebra, which we denote by A . Moreover, excluding the anti-commuting
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operators QB and Q̄B, the subspace consisting only of Qc, Q(c, c), and Q(c̄, c̄) is
denoted by B. This can be considered as the bosonic part of the algebra A .

To obtain representations of the algebra A , we introduce the following notation:

iQc → 2Jx , Q(c, c)→ 2J+ , Q(c̄, c̄)→ 2J− ,

iQB → α , Q̄B → β . (19.9.5)

In addition, in the following discussion, we restrict the representations of the
algebra A to those which can be realized in gauge theories, rather than considering
completely abstract representations. First, we obtain a representation of the Lie
algebra B. We write down the commutation relations which characterize B using
the symbols above:

[
Jz, J+

] = J+ ,
[
Jz, J−

] = −J− ,
[
J+, J−

] = 2Jz . (19.9.6)

These coincide with the commutation relations among the three components of the
angular momentum. Hence, in gauge theories and in the Landau gauge, we will
prove that the representation of B coincides with that of the angular momentum. To
do so, we begin with the following requirements:

1. The vacuum state |0〉 must satisfy the condition

J+|0〉 = J−|0〉 = Jz|0〉 . (19.9.7)

2. The vacuum state must be cyclic with respect to the algebra formed by fundamen-
tal fields and auxiliary fields, i.e., combining states constructed by multiplying
the vacuum by products of field operators, we should be able to generate the
entire state vector space V .

Since the fundamental fields and B − B̄ commute with the three elements of B,
these belong to the one-dimensional representation of β. Therefore, to make other
representations, we must use c, c̄, and B + B̄ or c × c̄. We have the following
commutation relations:

[Jz, c] = 1

2
c , [Jz, c̄] = −1

2
c̄ ,

i[J+, c̄] = −c , i[J+, c] = 0 , (19.9.8)

i[J−, c] = c̄ , i[J−, c̄] = 0 .
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We then define a doublet and a triplet by

φ (1/2, 1/2) = ic , φ (1/2,−1/2) = c̄ , (19.9.9)

φ(1, 1) = i√
2
(c × c) , φ(1, 0) = c × c̄ , φ(1,−1) = − i√

2
(c̄ × c̄) .

(19.9.10)

We immediately obtain

[
Jz, φ(j,m)

] = mφ(j,m) ,

[
J+, φ(j,m)

] = √(j −m)(j +m+ 1)φ(j,m+ 1) , (19.9.11)
[
J−, φ(j,m)

] = √(j +m)(j −m+ 1)φ(j,m− 1) .

Since these relations are the same as those for angular momentum, starting with the
doublet and the triplet and using the Clebsch–Gordan coefficients for the angular
momentum, we can make a product representation:

φ(J,M, c) =
∑

m1+m2=M
φ(j1,m1, a)φ(j2,m2, b)

〈
j1, j2,m1,m2|j1, j2, J,M

〉
,

(19.9.12)

where a, b, and c represent other quantum numbers. It is clear that such a product
representation again satisfies (19.9.11). Hence, if we take

J 2 = 1

2
(J+J− + J−J+)+ J 2

z , (19.9.13)

then clearly, from (19.9.7) and (19.9.11), for the polynomial of field operators
φ(j,m, a),

J 2φ(j,m, a)|0〉 = j (j + 1)φ(j,m, a)|0〉 , Jzφ(j,m, a)|0〉 = mφ(j,m, a)|0〉 .
(19.9.14)

We thus see that the representation of B is exactly the same as that of the angular
momentum. Next, we introduce α and β, with commutation relations

[Jz, α] = 1

2
α , [Jz, β] = −1

2
β , [J+, β] = α , [J−, α] = β . (19.9.15)

We consider the product αβ :

[J+, αβ] = [J−, αβ] = [Jz, αβ] = 0 . (19.9.16)



19.9 Representations of BRSNO Algebras 465

The subspace V (d,d) can now be written as αβV , and from (19.9.16),

JV (d,d) ⊂ V (d,d) . (19.9.17)

This means that irreducible representations of B can be constructed within V (d,d).
Next, introducing the metric matrix η and expressing the representation matrices of
J+, J− and Jz using the same letters, we find that

ηJ+η = J
†
+ , ηJ−η = J

†
− , ηJzη = −J †

z . (19.9.18)

We have chosen η to have the standard form, so

ηβη = β† , ηαη = −α† . (19.9.19)

In the angular momentum representation, we have

J †
z = Jz , J

†
+ = J− , J

†
− = J+ , (19.9.20)

so, combining (19.9.18) with (19.9.20), we find

ηJzη = −Jz , ηJ+η = J− , ηJ−η = J+ . (19.9.21)

Thus,

ηJ 2η = J 2 , (19.9.22)

so we see that the metric matrix connects states having the same value of the
quantum number j . It has been shown in (19.140) that η sends V (d,d) to V (p,p),
so from (19.9.17),

JV (p,p) ⊂ V (p,p) . (19.9.23)

Therefore, it turns out that irreducible representations of B can also be constructed
within V (p,p). We thus construct within V (p,p) an irreducible representation of B
corresponding to one value of j , writing its basis as

|j,m, a〉 ∈ V (p,p) , m = −j, . . . , j . (19.9.24)

Therefore,

α|j,m, a〉 ∈ V (d,p) , β|j,m, a〉 ∈ V (p,d). (18.9.25)

Moreover,

αβ|j,m, a〉 ∈ V (d,d) . (19.9.26)
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We thus obtain 4(2j + 1) basis vectors for a representation of the algebra A . This
set of basis vectors is closed under operations by elements of A , i.e.,

|j,m, a〉 , α|j,m, a〉 , β|j,m, a〉 , αβ|j,m, a〉 . (19.9.27)

If we fix m in the above set, they become a BRS quartet. In addition, if we change
m, {|j,m, a〉} and {αβ|j,m, a〉} belong to a representation of the three-dimensional
rotation group Dj . On the other hand, {α|j,m, a〉} and {β|j,m, a〉} become linear
combinations of Dj+1/2 and Dj−1/2 :

∣∣∣j + 1

2
,m+ 1

2
, a
〉
=
√
j +m+ 1

2j + 1
α|j,m, a〉 +

√
j −m

2j + 1
β|j,m, a〉 ,

∣∣∣j − 1

2
,m− 1

2
, a
〉
=
√

j −m

2j + 1
|j,m, a〉 +

√
j +m+ 1

2j + 1
β|j,m, a〉 .

(19.9.28)

We write the resulting representation of A as Dj . All representations of A except
for singlets turn out to be designated by one quantum number j . We can express the
representation Dj graphically (see Fig. 19.1). In this case, since Jz = iQc/2,

m = 1

2
N , (19.9.29)

whence m is one-half of the ghost number.
We now see that the quartet and the octet introduced in the last section belong

to the representations D0 and D1, respectively. In particular, considering auxiliary

Fig. 19.1 Irreducible representations Dj of the algebra A
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fields, depending on whether j is an integer or a half integer, we find the following
difference:

j = integer β + β̄ = 0 , (19.9.30)

j = half integer β + β̄ �= 0 . (19.9.31)

In the latter case, c × c and c̄ × c̄ turn out to possess massless asymptotic fields
from (19.9.3a) and (19.9.3b). Similarly, from (19.39), c × c̄ possesses a massless
asymptotic field as well. From (19.9.9), it belongs to the triplet of B. According to
the discussion in Chap. 21, colour confinement occurs when j is a half integer.

We should also determine the representation of the matrix η of the indefinite
metric. Note that the representation Dj is not necessarily closed under η. One
representation Dj (a) may sometimes be transferred to another representation
Dj (b). In this case, we need the following two irreducible representations:

ηDj (a) = Dj (b) , ηDj (b) = Dj (a) . (19.9.32)

We define a phase by

η|j,m, a〉 = αβ|j,−m, b〉 . (19.9.33)

The following relations are then obtained automatically:

η(α|j,m, a〉) = −β|j,−m, b〉 ,
η(β|j,m, a〉) = −α|j,−m, b〉 , (19.9.34)

η(αβ|j,m, a〉) = |j,−m, b〉 .

In this way, we can show that (19.9.20) is satisfied.
For the irreducible representation Dj , going back to the notation in Sect. 19.5

and writing

α = iq , β = q̄ , (19.9.35)

it can be shown that

q2 = q̄2 = (q†)2 = (q̄†)2 = 0 ,{
q, q̄
} = {q†, q̄†} = {q, q̄†} = {q†, q̄

} = 0 . (18.9.36)

If we choose (19.9.27) as a basis, then for this normalization, we have

Δ = qq† + q†q = q̄ q̄† + q̄†q̄ = 1 . (19.9.37)
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This Δ is in fact a Casimir operator commuting with all elements in A . However,
since Δ vanishes for singlets,

Δ|f 〉 =
{
|f 〉 , |f 〉 ∈ VD ,

0 , |f 〉 ∈ VS .
(19.9.38)

Moreover, it is easily shown that Δ also commutes with η.



Chapter 20
Renormalization Group

The simple term “renormalization group” has a variety of meanings. This is because
various kinds of transformation go by this name. Moreover, it is used in slightly
different ways in several different areas of physics. Indeed, different kinds of
quantity are renormalized under the renormalization transformations: for instance,
free energies in condensed matter physics and Green’s functions in elementary
particle physics. If we ask what feature of the renormalization group is the greatest
common factor, then we can say that it is a dilation transformation for lengths,
momenta, and so on. Note also that the renormalization group really is a group
in the mathematical sense. The qualifier “renormalization” refers to the fact that
this group is related to manipulations, or renormalizations. In elementary particle
theories, two main kinds of renormalization group are considered.

The first kind concerns transformations occurring within one given world. In
order to solve the same equations of motion, we define a fundamental quantity, say
a Green’s function, under different boundary conditions. The boundary conditions
are distinguished by certain parameters. We assume that every Green’s function
essentially includes information about solutions to the equations of motion, and any
observable can be expressed using any Green’s function. Therefore, observables
turn out to be independent of the parameters distinguishing boundary conditions.
They are invariant quantities under variations of such parameters. On the other hand,
Green’s functions with different values of the parameters are related to one another.
We can investigate correspondences between Green’s functions under variations of
the parameters. The set of these parameter transformations forms the first kind of
renormalization group. This group of transformations is closed in any given world.
Observables are invariant quantities under the renormalization group, but quantities
which vary under these transformations are not dynamical parameters, so this does
not correspond to any conservation law.

The second kind of renormalization group differs from the first kind because it is
not restricted to one given world. An example in classical mechanics is Reynolds’
similarity law in fluid dynamics. Even if a viscosity, a density, and other quantities
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which characterize a fluid are different, if the Reynolds’ number is the same, and
if we know the behaviour of one fluid, even a different kind of fluid, then using a
suitable dictionary, the behaviours of other fluids can be understood as well. In the
realm of elementary particles, if we consider changing masses or coupling constants,
this is not restricted to one specific world.

20.1 Renormalization Group for QED

A renormalization group of the first kind described above was introduced for QED,
first by Stueckelberg and Petermann in [176], and then by Gell-Mann and Low in
[177]. There is a pedagogical description in Chap. 8 of the textbook by Bogoliubov
and Shirkov, entitled Introduction to the Theory of Quantized Fields [178].

In the following, we label unrenormalized field operators and physical quantities
with a subscript 0 to distinguish them from renormalized quantities. The Lagrangian
density for QED is

L = −1

4
F (0)
μν F

(0)
μν −

1

2α0

(
∂μA

(0)
μ

)2 − ψ̄(0)(γμDμ +m0)ψ
(0) . (20.1)

The renormalization is defined by the following equations:

A(0)
μ (x) = Z

1/2
3 Aμ(x) , ψ(0)(x) = Z

1/2
2 ψ(x). (20.2)

The renormalized parameters are

e2
0 = Z−1

3 e2 , α0 = Z3α . (20.3)

Here we have used Ward’s identity, viz.,

Z1 = Z2 . (20.4)

Labeling quantities quantized on the mass shell with a subscript C, we introduce the
Green’s function

〈
0
∣∣T [Aμ(x)Aν(y)]

∣∣0〉 = −i

(2π)4

∫
d4k eik·(x−y)DFC(k)μν , (20.5)

DFC(k)μν = 1

k2 − iε

[(
δμν − kμkν

k2 − iε
dC(k

2)+ α
kμkν

k2 − iε

)]
. (20.6)

where dC has the form

dC(k
2) = 1+ k2

∫
dκ2 C(κ2)

k2 + κ2 − iε
. (20.7)
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From (12.249), to lowest order, C(κ2) has the form

C(κ2) = e2

12π2

1

κ2

(
1+ 2m2

κ2

)√
1− 4m2

κ2 θ(κ2 − 4m2) . (20.8)

When we compute a Green’s function, we express contributions corresponding to
the Feynman diagrams in terms of combinations of propagators, vertex functions,
and coupling constants. When we modify the normalizations of SF, DF, Γμ, and so
on, this leads to variations in the coupling constants. However, regarding the Green’s
function as a whole, these variations cannot be absorbed completely, and the overall
normalization turns out to be changed. A special case is the renormalization

S′F(p, e2
0) = Z2SFC(p, e

2) , (20.9)

D′F(k, e2
0) = Z3DFC(k, e

2) , (20.10)

Γ ′μ(p, q, k, e2
0) = Z−1

1 ΓμC(p, q, k, e
2) , (20.11)

where SFC and DFC have been normalized at p · γ = im and k2 = 0, respectively.
We thus take the normalization points to be those for space-like momenta:

p · γ = λ′ , k2 = λ2 . (20.12)

That is, introducing s(λ, λ′, p) and d(λ, λ′, k) by

(ip · γ +m)SF(λ, λ
′, p) ≡ s(λ, λ′, p) , (20.13)

(δμνk
2 − kμkν)DF(λ, λ

′, k)νσ ≡
(
δμσ − kμkν

k2

)
d(λ, λ′, k) , (20.14)

we assume that the following normalization has been taken for (20.12):

s(λ, λ′, p) = 1 , d(λ, λ′, k) = 1 . (20.15)

SF and DF introduced in (20.13) and (20.14) differ from SFC and DFC only
by normalizations. Using (20.9) and (20.10), we can now write the equations
connecting the unrenormalized Green’s functions with the above Green’s functions:

S′F(p, e2
0) = Z2(λ, λ

′; e2
λ)SF(λ, λ

′;p, e2
λ) , (20.16)

D′F(p, e2
0) = Z3(λ, λ

′; k, e2
λ) , (20.17)

e2
λ = Z3(λ, λ

′; e2
λ)e

2
0 , (20.18)
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where e2
λ is the parameter for perturbative expansion. The mass shell is specified by

λ′ = im , λ = 0 . (20.19)

Setting λ′ = im in (20.16) and λ = 0 in (20.17),

S′F(p, e2
0) = Z2(λ, im, e2

λ)SFC(p, e
2) , (20.20)

D′F(k, e2
0) = Z3(0, λ′, e2)DFC(k, e

2) . (20.21)

We then introduce the ratios

z2(λ, λ
′, e2) = Z2(λ, λ

′; e2
λ)/Z2(λ, im; e2

λ) , (20.22)

z3(λ, λ
′, e2) = Z3(λ, λ

′; e2
λ)/Z3(0, λ

′; e2) . (20.23)

Therefore, for propagators with pole factors removed,

z2(λ, λ
′; e2)s(λ, λ′, p, e2

λ) = sC(p, e
2) , (20.24)

z3(λ, λ
′; e2)d(λ, λ′, k, e2

λ) = dC(k, e
2) , (20.25)

where z2 and z3 are finite factors. Now, from (20.15),

z2(λ, λ
′; e2) = sC(λ

′, e2) , z3(λ, λ
′; e2) = dC(λ, e

2) . (20.26)

and

e2
λ = e2dC(λ, e

2) . (20.27)

All the basic renormalization equations are expressed by (20.24)–(20.27).

20.2 Approximate Equations for the Renormalization Group

In the renormalization group equations introduced in the previous section, we can
obtain s and d when m2 is assumed to be small.

20.2.1 Approximation Neglecting Vacuum Polarization

First, an approximation neglecting vacuum polarization is

dC = 1 . (20.28)
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In this case, from (20.24), (20.26), and (20.28), the equation for s is

s(λ′, p, e2) = sC(p, e
2)

sC(λ′, e2)
. (20.29)

We thus set

sC(p, e
2) = sC

(
p2

m2 , e
2
)

, sC(λ
′, e2) = sC

(
λ′2

m2 , e
2
)

. (20.30)

If we assume that s(λ′, p, e2) does not depend on m2,

s(λ′, p, e2) = s

(
p2

λ′2
, e2
)

. (20.31)

This becomes an approximation when λ′ and p are far larger than m :

s

(
p2

λ′2
, e2
)
=

sC

(
p2

m2 , e
2
)

sC

(
λ′2

m2
, e2

) . (20.32)

Solutions to this are

sC

(
p2

m2 , e
2
)
= C(e2)

(
p2

m2

)γ (e2)

,

sC

(
λ′2

m2 , e
2
)
= C(e2)

(
λ′2

m2

)γ (e2)

, (20.33)

where, in perturbation theory, C(e2) includes infrared divergences. However, this
factor is eliminated from

s

(
p2

λ′2
, e2
)
=
(
p2

λ′2

)γ (e2)

. (20.34)

In fact, the exponent γ (e2) depends on how we choose the gauge. Therefore, even
if the mass is zero, if we normalize at a point off the mass shell, then infrared
divergences do not appear. In addition, the reader is referred to (20.102).
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20.2.2 Approximation Taking into Account Vacuum
Polarization

Here we also assume that s does not depend on m2. This is another high-energy
approximation. In this case, we write s in the form

s(λ, λ′, p, e2
λ) ≈ s

(
p2

λ2 ,
p2

λ′2
, e2

λ

)
. (20.35)

Therefore, the renormalization group equation under this approximation is

s

(
p2

λ2 ,
p2

λ′2
, e2

λ

)
=

sC

(
p2

m2 , e
2
)

sC

(
λ′2

m2 , e
2

) . (20.36)

Moreover, assuming that d does not depend on m2, we introduce the approximation

d(λ, k, e2
λ) = d

(
k2

λ2 ,
m2

λ2 , e
2
λ

)
≈ d

(
k2

λ2 , e
2
λ

)
. (20.37)

Thus, an approximate equation for d is

d

(
k2

λ2 , e
2
λ

)
=

dC

(
k2

m2 , e
2
)

dC

(
λ2

m2 , e
2

) , (20.38)

e2
λ = e2dC

(
λ2

m2 , e
2
)

. (20.39)

Since no gauge parameter has been included here, we can assume that this is in the
Landau gauge. In a general gauge, the following parameter is included:

αλe
2
λ = αe2 . (20.40)

Combining (20.38) with (20.39),

e2dC

(
k2

m2 , e
2
)
= e2dC

(
λ2

m2 , e
2
)
d

(
k2

λ2 , e
2dC

(
λ2

m2 , e
2
))

. (20.41)



20.2 Approximate Equations for the Renormalization Group 475

In order to modify this equation, we set

e2dC

(
k2

m2 , e
2
)
= g

(
k2

m2 , e
2
)

, (20.42)

and the above equation takes the form

g

(
k2

m2
, e2
)
= Q

(
k2

λ2
, g

(
λ2

m2
, e2
))

. (20.43)

This functional equation can be solved as we shall now see. We first rewrite (20.43)
in the form

g(x, e2) = Q

(
x

y
, g(y, e2)

)
. (20.44)

Then, using g = g(x, e2) and g′ = g(y, e2), we invert to express x and y in terms
of g and g′ :

x = h(g, e2) , y = h(g′, e2) . (20.45)

Inserting this into (20.44),

g = Q

(
h(g, e2)

h(g′, e2)
, g′
)

. (20.46)

Since this means that the ratio of h(g, e2) and h(g′, e2) does not depend on e2, h
can be written as a product of a function of g and a function of e2, viz.,

h(g, e2) = G(g)

φ
(
e2
) , h(g′, e2) = G(g′)

φ
(
e2
) . (20.47)

This means that

G(e2
λ) =

λ2

m2
φ
(
e2
)

. (20.48)

If F is the inverse function of G, then

e2
λ = e2dC

(
λ2

m2 , e
2
)
= F

(
λ2

m2 φ(e
2)

)
, (20.49)
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or

e2dC

(
λ2

m2 , e
2
)
= g

(
k2

m2 , e
2
)
= F

(
k2

m2φ(e
2)

)
= F

(
k2

λ2

λ2

m2φ(e
2)

)
.

(20.50)

Combining (20.48) with (20.50),

e2dC

(
k2

m2 , e
2
)
= F

(
k2

λ2 G
(
e2
λ

))
. (20.51)

Note that, from (20.39),

e2dC

(
λ2

m2 , e
2
)
d

(
k2

λ2 , e
2dC

(
λ2

m2 , e
2
))
= e2

λd

(
k2

λ2 , e
2
λ

)
. (20.52)

Comparing this with (20.41) and (20.51),

F

(
k2

λ2 G
(
e2
λ

))
= e2

λd

(
k2

λ2 , e
2
λ

)
, (20.53)

k2

λ2 G
(
e2
λ

)
= G

(
e2
λd

(
k2

λ2 , e
2
λ

))
. (20.54)

Thus,

ln
k2

λ2
= lnG

(
e2
λd

(
k2

λ2
, e2

λ

))
− lnG

(
e2
λ

)
. (20.55)

We now define the function ψ(x) introduced by Gell-Mann and Low:

1

ψ(x)
= d

dx
lnG(x) . (20.56)

Therefore,

ln
k2

λ2 =
∫ e2

λd
(
k2

λ2 ,e
2
λ

)

e2
λ

dx

ψ(x)
. (20.57)

Similarly, an equation derived from (20.50), viz.,

k2

m2
φ(e2) = G

(
e2dC

(
k2

m2
, e2
))

, (20.58)
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can also be written in the form

ln
k2

m2 =
∫ e2dC

(
k2

m2 ,e
2
)

F(φ(e2))

dx

ψ(x)
. (20.59)

In perturbation theory,

F
(
φ(e2)
)
= e2dC

(
1, e2
)
= e2 − 5

36π2
e4 + · · · ≡ e′2 . (20.60)

It follows immediately from (20.50) that

[
m

∂

∂m
+ β(e)

∂

∂e

]
e2dC

(
k2

m2 , e
2
)
= 0 , (20.61)

where

eβ(e) = φ(e2)

φ′(e2)
. (20.62)

Additionally, from (20.59),

[
m

∂

∂m
+ ψ
(
e′2
)

e′
∂

∂e′

]
e2dC

(
k2

m2
, e2
)
= 0 . (20.63)

This implies that

ψ
(
e′2
)

e′
∂

∂e′
= β(e)

∂

∂e
. (20.64)

Equation (20.61) is the Callan–Symanzik equation [179–181], but without a mass
term.

If we compute ψ and β in perturbation theory, we find

ψ(x) = 1

12π2

(
x2 + 3

16π2
x3 + · · ·

)
, (20.65)

β(e) ≈ ψ(e2)

e
≈ e3

12π2
. (20.66)

In fact, since the function d does not depend on the gauge parameter α in QED,
the above discussion holds true in arbitrary gauges. However, the function s does
depend on α.
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After the preparation above, we come back to the equation for s. We
rewrite (20.35) using the result for d :

s

(
p2

λ2 ,
p2

λ′2
, e2

λ

)
= s

(
p2

λ2 ,
p2

λ′2
, F

(
λ2

m2φ(e
2)

))
. (20.67)

However, according to (20.36), this function should not depend on λ, so the right-
hand side of this equation should only be a function of

p2

m2
φ(e2) and

p2

λ′2
. (20.68)

Therefore,

s

(
p2

λ2 ,
p2

λ′2
, e2

λ

)
= R

(
p2

λ′2
,
p2

m2φ(e
2)

)
. (20.69)

In every gauge except for the Landau gauge, this depends on the variable αe2 as
well. The reason is that, since this equation does not depend on λ, α should always
be included in the combination αλe

2
λ = αe2. Setting

sC

(
p2

m2 , e
2, αe2
)
= A(e2, αe2)H

(
p2

λ′2
, αe2,

p2

m2φ(e
2)

)
, (20.70)

we see that (20.69) holds true. This H satisfies

DH ≡
[
m

∂

∂m
+ β(e)

∂

∂e
+ δ(e, α)

∂

∂α

]
H = 0 , (20.71)

where

δ(e, α) = −2α

e
β(e) . (20.72)

We now define γel by

D lnA = −2γel(e, α) . (20.73)

Thus,

(D + 2γel) sC

(
p2

m2 , e
2, αe2
)
= 0 . (20.74)

This equation is also called the Callan–Symanzik equation without the mass term.
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In this section, we have treated renormalization groups of the first kind, assuming
that the mass m2 is smaller than the mass corresponding to the four-momentum or
the renormalization point. As a result, a derivative with respect to the mass has
been included. However, if we think of this as a derivative with respect to the four-
momentum, then the story can be considered to be closed in a world with a fixed
mass. In this section we have treated an approximation which holds true only if m2

is small, but what would the renormalization group equations look like if we did not
make this approximation? We will discuss this issue in the next section.

20.3 Ovsianikov’s Equation

We begin with the equation for d in which m is not neglected:

d

(
k2

λ2
,
m2

λ2
, e2

λ

)
=

dC

(
k2

m2
, e2
)

dC

(
λ2

m2 , e
2

) . (20.75)

Eliminating dC from this equation,

d

(
k2

λ2
2

,
m2

λ2
2

, e2
2

)
=

d

(
k2

λ2
1

,
m2

λ2
1

, e2
1

)

d

(
λ2

2

λ2
1

,
m2

λ2
1

, e2
1

) , (20.76)

e2
2 = e2

1d

(
λ2

2

λ2
1

,
m2

λ2
1

, e2
1

)
, (20.77)

where we have used

d

(
1,

m2

λ2
, e2

1

)
= 1 , (20.78)

considering that e1 and e2 express eλ1 and eλ2 , respectively. In addition, the
combination

e2
λd

(
k2

λ2 ,
m2

λ2 , e2
λ

)
= e2dC

(
k2

m2 , e
2
)

(20.79)
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is called an invariant charge because it does not depend on λ. We now introduce the
variables

t = λ2
2

λ2
1

, x = k2

λ2
1

, y = m2

λ2
1

, e2 = e2
1 . (20.80)

Hence, (20.76) becomes a rigorous equation with the form

e2d(x, y, e2) = e2d(t, y, e2)d
(x
t
,
y

t
, e2d
(
t, y, e2

))
. (20.81)

Similar equations can be found for the other functions. In the expression

SF(λ, λ
′, p, e2

λ) =
1

p2 +m2 − iε

[
− i(p · γ )a(λ, λ′, p, e2

λ)+mb(λ, λ′, p, e2
λ)
]
,

(20.82)

we write both a and b as

s
(
x, y, a, e2

)
, (20.83)

where

x = p2

λ2 , y = m2

λ2 , a = m2

λ′2
, e2 = e2

λ. (20.84)

In the following, we do not write a and αe2 explicitly. Therefore, the equation for s
is

s(x, y, e2)

s(t, y, e2)
=

s
(x
t
,
y

t
, e2d
(
t, y, e2

))

s
(

1,
y

t
, e2d
(
t, y, e2

)) . (20.85)

A similar equation holds true for the vertex function as well. Expanding the vertex
function in a covariant polynomial,

Γμ(p, q, k) =
∑
A

cAμ(p, q, γ )ΓA

(
p2, q2, k2

)
, (20.86)

and writing the coefficients as ΓA(x, y, z, u, e
2), we find

ΓA

(
x, y, z, u, e2

)
ΓA

(
t, y, z, u, e2

) = ΓA

(x
t
,
y

t
,
z

t
,
u

t
, e2d
(
t, u, e2

))

ΓA

(
1,

y

t
,
z

t
,
u

t
, e2d
(
t, u, e2

)) , (20.87)
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where the variables are

x = p2

λ2 , y = q2

λ2 , z = k2

λ2 , u = m2

λ2 , e2 = e2
λ . (20.88)

Since a condition like (20.78) cannot be used in these equations, we can not
eliminate expressions like s(1, . . .) and ΓA(1, . . .). We therefore introduce the
following functions:

Φ
(
y, e2
)
= ∂

∂x
d
(
x, y, e2

)∣∣∣∣
x=1

, (20.89)

Ψ
(
y, e2
)
= ∂

∂x
ln s
(
x, y, e2

)∣∣∣∣
x=1

. (20.90)

Now, differentiating the functional equations (20.81) and (20.85) with respect to x

and setting t = x, we obtain

∂

∂x
e2d
(
x, y, e2

)
= e2d

(
x, y, e2

)
x

Φ
(y
x
, e2d
(
x, y, e2

))
, (20.91)

∂

∂x
s
(
x, y, e2

)
= s
(
x, y, e2

)
x

Ψ
(y
x
, e2d
(
x, y, e2

))
. (20.92)

These are Ovsianikov’s equations. Both are highly non-linear, but Φ and Ψ

determine the initial conditions for d and s at x = 1 and they also determine their
differential equations.

If we assume that k2  m2, i.e., x  y, and we neglect any y-dependence, then
they coincide with the results in the previous section.

1. Neglecting y

We now have

∂

∂x
e2d
(
x, e2
)
= e2d

(
x, e2
)

x
Φ
(
e2d
(
x, e2
))

, (20.93)

∂

∂x
s
(
x, e2
)
= s
(
x, e2
)

x
Ψ
(
e2d
(
x, e2
))

. (20.94)

Therefore,

ln x =
∫ e2d

(
x,e2
)

e2

dz

zΦ(z)
. (20.95)
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If we set ψ(z) = zΦ(z), this result coincides with (20.57). Similarly, if we solve the
equation for s, then

ln
s
(
x, e2
)

s
(
x0, e2
) =
∫ e2d

(
x,e2
)

e2d(x0,e
2)

dz
Ψ (z)

zΦ(z)
. (20.96)

In perturbation theory,

d
(
x, e2
)
= 1+ e2

12π2
ln x + e4

16π2

(
1

4π2
ln x + 1

16π
ln2 x

)
+ · · · , (20.97)

Φ(z) = ∂

∂x
d(x, z)

∣∣∣∣
x=1
= z

12π2

(
1+ 3z

16π2 + · · ·
)

(z� 1) . (20.98)

2. Solution Around the Mass Shell
Implementing a perturbative expansion of the function s in the vicinity of the mass
shell, we obtain an infrared divergence. We thus derive a solution that is not based
on perturbation theory, using the renormalization group equations. In the vicinity of
the mass shell, we set

x ≈ 1 , y ≈ −1 , (20.99)

then differentiate (20.85) with respect to x and set t = x ′, whence

ln
s
(
x,−1, e2

)
s
(
x0,−1, e2

) =
∫ x

x0

dx ′

x ′
∂

∂ξ
ln s

(
ξ,− 1

x ′
, e2d
(
x ′,−1, e2

))∣∣∣∣
ξ=1

.

To lowest order in both a and b,

ln
s
(
x,−1, e2

)
s
(
x0,−1, e2

) ≈ − 3e2

8π2 ln
x − 1

x0 − 1
. (20.100)

Therefore,

s
(
x,−1, e2

)
∝ (x − 1)−3e2/8π2

, (20.101)

or

s

(
p2

m2 , e
2
)
∝
(

1+ p2

m2

)−3e2/8π2

. (20.102)

In a general gauge, we replace the factor of 3 in the exponent by (3− α). Each term
of the perturbative expansion in this equation diverges on the mass shell.
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Ovsianikov’s equation is exact but non-linear. However, we can derive a linear
equation. Although in the above we differentiated the renormalization group
functional equation with respect to x and then set t = x, this time we differentiate
it with respect to t and set t = 1 :

[
Φ
(
y, e2
)
−
(
x
∂

∂x
+ y

∂

∂y

)
+ e2Φ

(
y, e2
) ∂

∂e2

]
d
(
x, y, e2

)
= 0 . (20.103)

This is linear. Up to now x = k2/λ2 and y = m2/λ2, but from now on we shall
write λ as μ. Therefore,

− 2

(
x
∂

∂x
+ y

∂

∂y

)
= μ

∂

∂μ
. (20.104)

This yields an equation of the form

[
μ

∂

∂μ
+ β(e, y)

∂

∂e
+ 2γph(e, y)

]
d
(
x, y, e2

)
= 0 , (20.105)

β(e, y) = eΦ
(
y, e2
)

, γph = Φ
(
y, e2
)

. (20.106)

20.4 Linear Equations for the Renormalization Group

We consider a generalization of the linear equation given at the end of the last
section. To do this, we start with the renormalization group equation. As an example,
we choose the φ4-theory:

L = −1

2

[
(∂λϕ)

2 +m2ϕ2]− g
ϕ4

4! . (20.107)

Indicating the unrenormalized Green’s functions with a subscript 0, the renormal-
ized Green’s function is given by

G
(n)
0 (p1, . . . , pn; g0) = Z

n/2
3 (μ)G(n)

(
p1, . . . , pn; g(μ)

)
, (20.108)

where the renormalized coupling constant and four-point vertex function are given
by

g0 = Z1(μ)Z
−2
3 (μ)g(μ) , (20.109)

Γ
(
pi; g(μ)

) = Z1(μ)Γ0(pi; g0) , i = 1, 2, 3, 4 , (20.110)
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and Z1, Z3, and so on have been determined by the renormalization conditions

(p2 +m2)G(2)(p; g(μ))∣∣
p2=μ2 = −1 , (20.111)

Γ
(
pi; g(μ)

) = 1 , with pi · pj = μ2

3
(4δij − 1) . (20.112)

The four-point vertex function Γ0 is defined by the unrenormalized four-point
Green’s function without the propagators and the coupling constant. For the
definition of the n-point Green’s function, the reader is referred to Sect. 15.3.

Since the unrenormalized Green’s function is not related to the renormalization
point μ,

μ
∂

∂μ
G

(n)
0 (p1, . . . , pn; g0) = 0 . (20.113)

Inserting (20.108) into this equation, we obtain

(
μ

∂

∂μ
+ β

∂

∂g
+ nγ

)
G(n)
(
p1, · · · , pn; g(μ)

) = 0 , (20.114)

where

β = μ
∂

∂μ
g(μ) =

(
2μ

∂

∂μ
lnZ3 − μ

∂

∂μ
lnZ1

)
g(μ) , (20.115)

γ = 1

2
μ

∂

∂μ
lnZ3 . (20.116)

Both of these are functions of m2/μ2 and g. From now on, we shall write g(μ)

simply as g. Therefore, writing (20.114) in more detail, we have

[
μ

∂

∂μ
+ β

(
g,

m2

μ2

)
∂

∂g
+ nγ

(
g,

m2

μ2

)]
G(n)(p1, . . . , pn;μ, g) = 0 .

(20.117)

In this equation, g and μ are treated as independent variables.
Similarly, we can write down a linear renormalization equation in QED. If the

numbers of photon legs and electron legs in the Green’s function are n and l,
respectively, we have

G
(n,l)
0 (k1, . . . , kn;p1, . . . , pl; e0) (20.118)

= Z
n/2
3 (μ)Z

l/2
2 (μ)G(n,l)

(
k1, . . . , kn;p1, . . . , pl; e(μ)

)
,
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where

e2
0 = Z−1

3 (μ)e2(μ) . (20.119)

This implies

[
μ

∂

∂μ
+ β

(
e,

m2

μ2

)
∂

∂e
+ nγph

(
e,

m2

μ2

)
+ lγph

(
e,

m2

μ2

)]
G(n,l)(. . . ;μ, e) = 0.

(20.120)

This equation is in the Landau gauge and a generalization of (20.93). In a general
gauge α,

[
μ

∂

∂μ
+ β

(
e,

m2

μ2

)
∂

∂e
+ δ

(
e,

m2

μ2 , α

)
∂

∂α
+ γ (n,l)

]
G(n,l)(. . . ;μ, e, α) = 0 ,

(20.121)

where

γ (n,l) = nγph

(
e,

m2

μ2

)
+ lγel

(
e,

m2

μ2 , α

)
. (20.122)

As stated in the last section,

γph

(
e,

m2

μ2

)
= Φ

(
m2

μ2 , e
2
)

, (20.123)

β

(
e,

m2

μ2

)
= eγph

(
e,

m2

μ2

)
, δ

(
e,

m2

μ2 , α

)
= −2αγph

(
e,

m2

μ2

)
.

(20.124)

The last expression was derived from (12.98). The renormalization equations
derived in this section are linear and homogeneous, but the coefficients are functions
of two variables, so they are hard to deal with. In contrast, the coefficients in
the Callan–Symanzik equation introduced in the next section are single-variable
functions, while the equation itself becomes inhomogeneous.

20.5 Callan–Symanzik Equation

So far we have considered a renormalization group of the first kind. In this section,
we move on to the second kind, i.e., we introduce the idea of changing the particle
mass.
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We first define a Fourier transform of the Green’s function. Using the notation
(dp) = d4p1 . . . d4pn,

〈
0
∣∣T [ϕ(x1) . . .ϕ(xn)]

∣∣0〉conn (20.125)

=
[

i

(2π)4

]n−1∫
(dp)ei(p1·x1+···+pn·xn)δ4(p1 + · · · + pn)G

(n)(p1, . . . , pn) ,

〈
0
∣∣T [A(x)ϕ(x1) . . .ϕ(xn)]

∣∣0〉conn (20.126)

=
[

i

(2π)4

]n∫
d4q(dp)ei(q·x+p1·x1+···+pn·xn)δ4(q + p1 + · · · + pn)A

(n)(q;p1, . . . , pn) .

We start with an unrenormalized theory, then introduce the quantity

T (0)(x) = m2
0

[
ϕ(0)(x)

]2
. (20.127)

To lowest order,

G
(2)
0 (p) = − 1

p2 +m2 − iε
. (20.128)

Therefore,

m0
∂

∂m0

(
− 1

p2 +m2
0 − iε

)
= 1

p2 +m2
0 − iε

2m2
0

1

p2 +m2
0 − iε

. (20.129)

This equation tells us that a derivative with respect to m0 is equivalent to inserting
T (0) in an unrenormalized form, i.e.,

m0
∂

∂m0
G

(n)
0 (p1, . . . , pn) = T

(n)
0 (0;p1, . . . , pn) ≡ ΔG

(n)
0 (p1, . . . , pn) .

(20.130)

Next, we consider a renormalization on the mass shell:

G
(n)
0 (p1, . . . , pn) = Z

n/2
3 G(n)(p1, . . . , pn; g) . (20.131)

From now on, we consider all renormalized quantities like m and g to be functions
of m0, g0, and a cut-off momentum Λ. We think about the derivative with respect to
m0 in the case where g0 and Λ are fixed. First, we define Z by

Zm0
∂m

∂m0
= m . (20.132)
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Therefore, for functions of g and m,

Zm0
∂

∂m0
f =
(
Zm0

∂m

∂m0

∂

∂m
+ Zm0

∂g

∂m0

∂

∂g

)
f ≡ Df , (20.133)

where

D = m
∂

∂m
+ β(g)

∂

∂g
, β(g) = Zm0

∂g

∂m0
. (20.134)

Thus, we redefine T by

T (x) = Zm2
0

[
ϕ(0)(x)

]2
. (20.135)

This yields the Callan–Symanzik equation [179–181]:

[
m

∂

∂m
+ β(g)

∂

∂g
+ nγϕ(g)

]
G(n)(p1, . . . , pn) = T (n)(0;p1, . . . , pn) ,

(20.136)

where γϕ is called the anomalous dimension of the field ϕ, defined by

γϕ(g) = 1

2
Zm0

∂

∂m0
lnZ3 . (20.137)

Denoting the multiplicative renormalization of ϕ2 by S, we rewrite T as

T (x) = m2S(x) . (20.138)

Focusing on the pole at p2 + m2 = 0 when n = 2, multiplying (20.136)
corresponding to n = 2 by (p2 +m2)2, and taking the limit p2 +m2 → 0, the left-
hand side becomes 2m2. Therefore, the right-hand side should be 2m2 as well. Using
the LSZ reduction formula, S turns out to satisfy the following renormalization
condition:

√
2p0
〈
p
∣∣S(x)∣∣p〉√2p0 = 1 . (20.139)

We now define a multiple mass insertion term. Inserting T into G(n) a total of k
times and writing it as δkG(n),

{
D + nγϕ(g)− k

[
2− γS(g)

]}
ΔkG(n) = Δk+1G(n) , (20.140)
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where

γS(g) = Zm0
∂

∂m0
lnZS ,

[
ϕ(0)(x)

]2 = ZSS(x) . (20.141)

On the other hand, an unrenormalized multiple mass insertion term is

ΔkG
(n)
k = (2m2

0)
k

(
∂

∂m2
0

)k
G

(n)
0 , (20.142)

and its renormalization is

ΔkG(n) = ZkZ
−n/2
3 ΔkG

(n)
0 . (20.143)

Inserting this into the Callan–Symanzik equation,

γS(g) = 2(1− Z)−m0
∂

∂m0
Z . (20.144)

According to perturbation theory,

β(g) = 3g2

16π2 , γϕ(g) = g2

12(16π2)2 , γS(g) = − g

16π2 . (20.145)

An advantage compared to the renormalization group of the first kind is that β
and γϕ become functions of g alone. A disadvantage is that the equation becomes
inhomogeneous. However, if p2

i  m2, since the momentum dependence of ΔG(n)

decreases by a factor of momentum squared compared to G(n), we can neglect
ΔG(n) in comparison to G(n). We then obtain a homogeneous equation:

[
D + nγϕ(g)

]
G(n) ≈ 0 . (20.146)

Similarly, if μ2  m2, even in the renormalization group of the first kind, the
m2/μ2-dependence of the coefficient function is dropped, and it becomes a function
of g alone, so the equations coincide.

We now consider QED. The renormalizations are

G
(n,l)
0 = Z

n/2
3 Z

l/2
2 G(n,l) , (20.147)

ΔkG
(n,l)
0 = mk

0

(
∂

∂m0

)k
G

(n,l)
0 = Z−kZn/2

3 Z
l/2
2 ΔkG(n,l) , (20.148)

Zm0
∂

∂m0
m = m . (20.149)
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When we differentiate with respect to m0, we fix e0, α0, and Λ, and we define the
following quantities:

β(e) = Zm0
∂e

∂m0
,

γel(e, α) = 1

2
Zm0

∂

∂m0
lnZ2 ,

γph(e) = 1

2
Zm0

∂

∂m0
lnZ3 ,

δ(e, α) = Zm0
∂

∂m0
α . (20.150)

Combining these with the Ward identities,

e2 = Z3e
2
0 , e2α = e2

0α0 , (20.151)

we obtain the following equations, which correspond to (20.124):

β(e) = eγph(e) , δ(e, α) = −2αγph(e) . (20.152)

We thus introduce the differential operator

D = m
∂

∂m
+ β(e)

∂

∂e
− 2αγph(e)

∂

∂α
. (20.153)

Therefore, the Callan–Symanzik equation in QED becomes

[
D + γ (n,l) − k(1− γS)

]
ΔkG(n,l) = Δk+1G(n,l) . (20.154)

In this case, it turns out that m(ψ̄ψ)R is inserted as T . (ψ̄ψ)R is the quantity
obtained when ψ̄ψ has been properly renormalized in a multiplicative way. The
renormalization condition is

〈
p
∣∣[ψ̄(x)ψ(x)]R

∣∣p〉 = ū(p)u(p) , (20.155)

where u has been normalized so that u†(p)u(p) = 1.
In general, the renormalization may be not only multiplicative, but also a linear

transformation:

O
(0)
i =
∑
j

ZijOj . (20.156)
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For the Green’s function,

O
(n,l)
i(0) =

∑
j

Z
n/2
3 Z

l/2
2 ZijO

(n,l)
j . (20.157)

Therefore,

[
D + γ (n,l) − k(1− γS)

]
ΔkO

(n,l)
i +

∑
j

γijΔ
kO

(n,l)
j = Δk+1O

(n,l)
i , (20.158)

where

γS = 1− Z −m0
∂Z

∂m0
, γij =

∑
k

Z−1
ik

(
Zm0

∂

∂m0
Zkj

)
. (20.159)

To lowest order in QED,

β = e3

12π2 , γph = e2

12π2 , γel = e2

16π2α , γS = − 3e2

8π2 . (20.160)

Next, let us consider renormalizing the electron mass multiplicatively. This is
possible only if the divergence of the self-energy becomes logarithmic:

Zm = m

m0
, γm = Zm0

∂

∂m0
lnZm . (20.161)

Thus, immediately from the definition,

γm = 1− Z . (20.162)

Thus, taking γm as a function of e alone,

γS = 1− Z − Zm0
∂

∂m0
lnZ

= 1− Z − Zm0
∂

∂m0
ln(1− γm)

= γm −D ln(1− γm)

= γm − β(e)
∂

∂e
ln(1− γm) , (20.163)

or

β
dγm
de
= (1− γm)(γS − γm) . (20.164)
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Therefore, the equation for Z is

[
β

d

de
+ (1− γS)

]
Z−1(e) = 1 , Z(0) = 1 . (20.165)

From this, we see that Z is a finite function of e alone.

20.6 Homogeneous Callan–Symanzik Equation

The Callan–Symanzik equation introduced in the previous section is inhomoge-
neous. It is in fact a system of equations for an infinite number of functions
G(n), ΔG(n), and so on. We shall now rewrite them in a homogeneous and closed
form. This is actually possible, but the price to pay for this is that the number of
independent variables increases by one.

In order to write this infinite number of functions collectively, we introduce a
generating function:

G(n)(p1, . . . , pn;m2, g,K) =
∞∑
j=0

Kj

j ! Δ
jG(n)(p1, . . . , pn;m2, g) . (20.166)

D̃ = D −
{

1+ [2− γS(g)
]
K
} ∂

∂K
. (20.167)

Therefore, from (20.140),

[
D̃ + nγϕ(g)

]
G(n)(p1, · · · , pn;m, g,K) = 0 . (20.168)

As for the renormalization group of the first kind, we have thus obtained a
homogeneous form. Note that the number of independent variables also coincides.
In the case of the first kind, those variables are μ, ν, and m, while in the case of the
second kind, they are m, g, and K . Therefore, by a suitable variable transformation,
each can be transformed into the other. This was proven by Higashijima and the
author in [182].

Similarly in QED, if we take

G(n,l)(pi;m, e,K) =
∞∑
j=0

Kj

j ! Δ
jG(n,l)(pj ;m, e) , (20.169)

D̃ = D −
{

1+ [1− γS(e)
]
K
} ∂

∂K
, (20.170)
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then

[
D̃ + γ (n,l)

]
G(n,l)(pi;m, e,K) = 0 . (20.171)

Now, an infinitesimal renormalization group transformation varies a function Q of
m, g, and K via an infinitesimal parameter δρ (scalar theory):

δQ = (D̃Q)δρ , (20.172)

where

δm = mδρ , δg = β(g)δρ , δK = −
{

1+ [2− γS(g)
]
K
}
δρ . (20.173)

Clearly, m is not fixed, so this is a property of the second kind. From (20.168), the
response of the Green’s function is

δG(n) = −nγϕ(g)G(n)δρ . (20.174)

The operators yielding finite transformations are then

Rρ = exp(ρD̃) . (20.175)

These operators form a group in the sense that

RρRρ′ = Rρ+ρ′ . (20.176)

We thus set

Rρ [g] = ḡ(ρ) , Rρ [K] = K̄(ρ) , Rρ [m] = meρ . (20.177)

This tells us, for instance, that ḡ(ρ) is the solution of (20.173) for the initial
condition ḡ(0) = g. Therefore, from (20.173),

G(n)(pi;m, g,K) = exp

[
n

∫ ρ

0
dρ′γϕ
(
ḡ(ρ′)
)]
G(n)
(
pi;meρ, ḡ(ρ), K̄(ρ)

)
.

(20.178)

Note that, from a dimensional analysis,

G(n)
(
pi;meρ, ḡ(ρ), K̄(ρ)

) = e(4−3n)ρG(n)
(
pie−ρ,m, ḡ(ρ), K̄(ρ)

)
. (20.179)

Combining these two equations, we obtain the response of the Green’s function for
a large momentum.

Since m is not an invariant quantity under the renormalization group, it is not
a physical mass appearing as a pole in the Green’s function. In particular, K is a
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parameter which shifts the mass. We thus eliminate K by a suitable renormalization
group transformation. Hence, we use

K̄(ρ) = 0 (20.180)

to define ρ. For this ρ, m̄(ρ) = meρ becomes a physical mass. In this case, (20.178)
becomes

G(n)(pi;m, g, k) = ZnG(n)(pi; m̄, ḡ, 0) . (20.181)

Multiplying the left-hand side by (D̃ + nγϕ), we obtain zero, so the right-hand side
should also vanish under this operation:

[
(D̃m̄)

∂

∂m̄
+ (D̃ ḡ)

∂

∂ḡ
+ nγ̄ϕ

]
G(n)(pi; m̄, ḡ, 0) = 0 , (20.182)

γ̄ϕ = γϕ + D̃(lnZ) . (20.183)

However, since the homogeneous equation cannot be expressed in terms of just two
variables m̄ and ḡ, we deduce that

D̃m̄ = 0 , D̃ ḡ = 0 , γ̄ϕ = 0 . (20.184)

Hence, in the physical quantity, m̄ becomes invariant under the renormalization
group transformation, and if we take

m̄2 = m2F(g,K) , F (g, 0) = 1 , (20.185)

then
[
β(g)

∂

∂g
−
{

1+ [2− γS(g)
]
K
} ∂

∂K
+ 2

]
F(g,K) = 0 . (20.186)

This equation can be used to determine the dependence of the physical mass on g

and K .
So far we have given the renormalization group equation for G, but it can

sometimes be given for the one-particle irreducible Γ introduced in Sect. 15.3.
We shall thus obtain an equation for Γ . We first introduce a generating functional
including a mass-insertion term:

T [J ] =
〈
0
∣∣∣T exp

{
−i
∫

d4x
[
J (x)ϕ(x)+Km2S(x)

]} ∣∣∣0〉 , (20.187)

T [J ] = exp
(− iW [J ]) , Γ = W −

∫
d4xJ (x)〈ϕ(x)〉 . (20.188)
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Since W [J ] is a generating functional for G, (20.168) can be written in the form

[
D̃ + γϕ(g)

∫
d4x J (x)

δ

δJ (x)

]
W [J ] = 0 . (20.189)

The variation of W is now

δW = ∂W

∂m

∣∣∣∣
J

δm+ ∂W

∂g

∣∣∣∣
J

δg + ∂W

∂K

∣∣∣∣
J

δK +
∫

d4x
δW

δJ (x)
δJ (x) . (20.190)

As we have seen in Sect. 15.3,

δW

δJ (x)
= 〈ϕ(x)〉 , δΓ

δ〈ϕ(x)〉 = −J (x) . (20.191)

Thus, using (20.188), we compute δΓ :

δΓ = ∂W

∂m

∣∣∣∣
J

δm+ ∂W

∂g

∣∣∣∣
J

δg + ∂W

∂K

∣∣∣∣
J

δK +
∫

d4x δ〈ϕ(x)〉 δΓ

δ〈ϕ(x)〉 .
(20.192)

Therefore,

∂Γ

∂m

∣∣∣∣〈ϕ〉 =
∂W

∂m

∣∣∣∣
J

,
∂Γ

∂g

∣∣∣∣〈ϕ〉 =
∂W

∂g

∣∣∣∣
J

,
∂Γ

∂K

∣∣∣∣〈ϕ〉 =
∂W

∂K

∣∣∣∣
J

. (20.193)

Additionally,

∫
d4x J (x)

δW

δJ (x)
= −
∫

d4x〈ϕ(x)〉 δΓ

δ〈ϕ(x)〉 . (20.194)

If we rewrite (20.189) using (20.193) and (20.194), then

[
D̃ − γϕ(g)

∫
d4x〈ϕ(x)〉 δ

δ〈ϕ(x)〉
]
Γ
[〈ϕ(x)〉] = 0 . (20.195)

A renormalization group equation for each function Γ is

[
D̃ − nγϕ(g)

]
Γ (n)(p1, . . . , pn;m, g,K) = 0 . (20.196)

Comparing this equation with (20.168), the coefficient of γϕ has the opposite sign.
So far we have investigated renormalization groups of the first and second kind

for the scalar theory and QED. However, it is for non-Abelian gauge theories
that the renormalization group shows its real worth. The first reason is this: as
mentioned in Chap. 13, it is believed that strong interactions among quarks can
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be described by the non-Abelian gauge theory with the gauge group SU(3). A
second reason is that non-Abelian gauge theories have a crucially different property
which other interactions do not possess: at high energies, effective interactions
become weak, whence perturbation theory can be applied. This property is called
asymptotic freedom. Its renormalization group equation facilitates comparison with
experiments.

It will turn out that a distinguishing feature of quarks mentioned in Chap. 13 can
be explained using the renormalization group equation.

20.7 Renormalization Group for Non-Abelian Gauge
Theories

Combining (19.10) and (19.66),

∂

∂xμ

〈
0
∣∣T [Aa

μ(x),A
b
ν(y)]
∣∣0〉 = aδab

∂

∂xν
DF(x − y) . (20.197)

This equation has the same form for both renormalized quantities and unrenormal-
ized quantities. In particular, the longitudinal part of the gauge field is not affected
by the renormalization. We write the propagators for the transverse and ghost parts
in unrenormalized forms:

Dtr
0 (k)μν =

1

k2 − iε

(
δμν − kμkν

k2 − iε

)
d0(k

2) , (20.198)

〈
0
∣∣T [ca(x), c̄b(y)]∣∣0〉 = δab

1

(2π)4

∫
d4k eik·(x−y)G0(k

2) , (20.199)

and we introduce the renormalization constants

Z3 = d0(μ
2) , Z̃3 = G0(μ

2) . (20.200)

We also introduce the renormalization constants for vertex functions:

gauge field Γ abc
0 (p, q, r)λμν

∣∣
p2=q2=r2=μ2 = Z−1

1 Γ abc
bare(p, q, r)λμν

∣∣
p2=q2=r2=μ2 ,

(20.201)

ghost field Γ abc
0 (p, q, r)λ|p2=q2=r2=μ2 = Z̃−1

1 Γ abc
bare(p; q, r)λ|p2=q2=r2=μ2 .

(20.202)

The subscript “bare” indicates the vertex function in the Born approximation, where
g has been subtracted from the one given in Sect. 18.4. Taking functional derivatives
with respect to 〈c〉, 〈A〉, and 〈B〉 of the Slavnov–Taylor identity [171, 172]
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introduced in Sect. 19.5 and setting the external fields equal to zero, we can show
that

Z3/Z1 = Z̃3/Z̃1 . (20.203)

We skip the details of the proof. This equation is called the Slavnov–Taylor identity.
The renormalizations of the gauge parameter and the coupling constant are

α0 = Z3α , g0 = Z1Z
−3/2
3 g . (20.204)

If we now consider an n-point Green’s function for the gauge field, its renormal-
ization is

G
(n)
0 (p1, . . . , pn) = Z

n/2
3 G(n)(p1, . . . , pn) , (20.205)

where the vector indices have been omitted. The left-hand side is a function of g0,
α0, and Λ, and the right-hand side is a function of g, α, and μ. Since the left-hand
side does not depend on the renormalization point μ, we have

μ
∂

∂μ
G

(n)
0 (p1, . . . , pn) = 0 . (20.206)

Using this and referring to the discussion in Sect. 20.4,

[
μ

∂

∂μ
+β(g, α) ∂

∂g
+δ(g, α) ∂

∂α
+nγV (g, α)

]
G(n)(p1, . . . , pn) = 0 , (20.207)

β(g, α) = μ
∂g

∂μ

∣∣∣∣
g0,α0,Λ

, γV (g, α) = μ
∂

∂μ
lnZ1/2

3

∣∣∣∣
g0,α0,Λ

,

δ(g, α) = μ
∂α

∂μ

∣∣∣∣
g0,α0,Λ

= −2αγV (g, α) .

(20.208)

Among the parameters appearing above, μ and Λ are the only ones with physical
dimensions. Thus, g, Z3, α, and so on must be functions of Λ/μ, whence

μ
∂

∂μ
f (Λ/μ) = − ∂

∂ lnΛ
f (Λ/μ) .

Since the Z factors become unity to lowest order,

β = −g ∂

∂ lnΛ

(
Z

3/2
3

Z1

)
, γV = −1

2

∂

∂ lnΛ
Z3 . (20.209)

Therefore, we need to know the coefficients of lnΛ in Z1 and Z3.
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Fig. 20.1 Feynman diagram for calculating Z3. Gluons are represented by wavy lines and ghosts
by dashed lines

Fig. 20.2 Feynman diagram for calculating Z1

To compute Z3, we consider the Feynman diagram in Fig. 20.1. Note that the
wavy line stands for the gluon and the dashed line with the arrow stands for the
ghost. The result is

Z3 = 1+ g2

16π2

(
13

3
− α

)
C2(G) lnΛ , (20.210)

where

∑
c,d

facdfbcd = δabC2(G) . (20.211)

In particular, for SU(N), C2(G) = N . In order to compute Z1, we consider the
Feynman diagrams in Fig. 20.2. The result is

Z1 = 1+ g2

16π2

(
17

6
− 3

2
α

)
C2(G) lnΛ . (20.212)

Similarly, the Z factors for the ghost are

Z̃3 = 1+ g2

16π2

(
3

2
− 1

2
α

)
C2(G) lnΛ , (20.213)

Z̃1 = 1+ g2

16π2
(−α)C2(G) lnΛ . (20.214)
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Fig. 20.3 Feynman diagrams for �Z1 and �Z3

Thus,

β(g, α) = − g3

16π2

(
11

3

)
C2(G) , (20.215)

γV (g, α) = − g2

32π2

(
13

3
− α

)
C2(G) . (20.216)

If there are fermions, their contributions to Z1 and Z3 are

�Z1 = �Z3 = − g2

8π2

4

3
T (R) lnΛ , (20.217)

where

Tr(tatb) = δabT (R) , rT (R) = d(R)C2(R) , (20.218)

with r the number of creation operators, d(R) the dimension of the representation,
and C2(R) as defined in Sect. 13.2. The corresponding Feynman diagrams are
shown in Fig. 20.3. For the N-dimensional fundamental representation of SU(N),

T (R) = 1

2
, C2(R) = N2 − 1

2N
. (20.219)

Therefore, assuming that all fermions obey the fundamental representation and
denoting the number of their species, i.e., flavours, by nf,

β = − g3

16π2

[
11

3
C2(G)− 4

3
nfT (R)

]
, (20.220)

γV = − g2

32π2

[(
13

3
− α

)
C2(G)− 8

3
nfT (R)

]
. (20.221)

This result was obtained in 1973 by Gross and Wilczek [183] and by Politzer [184].
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20.8 Asymptotic Freedom

In Sect. 13.8, we discussed the parton model, concluding that interactions among
quarks become weak at short range, i.e., the quarks in a hadron are almost free.
In this section, we will prove that QCD based on the colour SU(3) group has this
property.

For both the first kind and the second kind, elements of the renormalization
group can be written as Rρ . If ρ is taken as a transformation parameter, infinitesimal
transformations can be expressed as follows:

δμ = μδρ , δg = β(g)δρ . (20.222)

In the limits ρ →±∞, we then ask whether g approaches a constant limiting value
g±∞. If it approaches constant values, then g∞ and g−∞ are called the ultraviolet
fixed point and the infrared fixed point, respectively. In this case,

β(g∞) = 0 , or β(g−∞) = 0 . (20.223)

In particular, if β(g) = −bg3 (b > 0) when g is small, then g = 0 in the limit
ρ →∞. Such a theory is said to be asymptotically free. Examples are non-Abelian
gauge theories, the gφ4 theory for g < 0, the six-dimensional φ3 theory, and so on.

In a non-Abelian gauge theory, we take g = g0 when ρ = 0 and solve the
equation for small g :

δg = −bg3δρ , b > 0 , (20.224)

then

1

ḡ2(ρ)
= 1

g2
0

+ 2bρ . (20.225)

We can now investigate what can be expected if QCD is asymptotically free.

20.8.1 Electron–Positron Collision

An electron–positron collision provides an opportunity to investigate asymptotic
freedom. We take jμ as the four-momentum current density for hadrons. Then,
based on the computation given in Sect. 9.4, we can use this jμ to define Π(s)

from (20.123) and (20.124). If we consider the lowest order for e and assume that s
is large, we obtain (20.124).
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When Π includes leptons, the function d appearing in the renormalization group
for the electromagnetic field can be written as

d = 1−Π . (20.226)

We note that, in QCD + QED,

(D + 2γph)d = 0 . (20.227)

Applying the Landau gauge for both QCD and QED,

D = μ
∂

∂μ
+ βe

∂

∂e
+ βg

∂

∂g
. (20.228)

Note that both Π and γph are of order e2. If we drop terms of order e4, then
γphΠ and β∂/∂e can be omitted. Then, applying this approximation to (20.227)
and using (20.226),

[
μ

∂

∂μ
+ β(g)

∂

∂g

]
Π = 2γph . (20.229)

In particular, taking the imaginary part, we obtain

[
μ

∂

∂μ
+ β(g)

∂

∂g

]
Im Π

(
s

μ2 ,
m2

μ2 , g

)
= 0 . (20.230)

To lowest order in QED,

Im Π = 1

3

∑
i

Q2
i

4π

(
1+ 2m2

i

s

)√
1− 4m2

i

s

→ 1

3

∑
i

Q2
i

4π
(fors →∞) . (20.231)

We introduce the following quantity, called the Drell ratio:

R(s) = σ(e+ + e− → hadrons)

σ (e+ + e− → μ+ + μ−)
.

To lowest order again, for s →∞, the following scaling law is obtained:

R→
∑
i

Q2
i /e

2 . (20.232)
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Now, at high energies, we set m2/μ2 → 0 for s  μ2  m2. Therefore, since Π

is dimensionless,

[
μ

∂

∂μ
+ β(g)

∂

∂g

]
Im Π

(
s

μ2 , g

)
= 0 . (20.233)

This implies

Im Π

(
s

μ2 , g

)
= Im Π

(
s0

μ2 , ḡ(ρ)

)
, s = s0e2ρ . (20.234)

If ρ is large, then in QCD ḡρ → 0, and

Im Π

(
s0

μ2 , ḡ(ρ)

)
= Im Π

(
s0

μ2 , 0

)[
1+ Bḡ2(ρ)+ · · · ] . (20.235)

We write a solution to (20.225) in the form

ḡ2(ρ) =
(
b ln

s

Λ2

)−1
, Λ2 = s0 exp

(
− 1

bg2
0

)
. (20.236)

Moreover, in SU(3),

C2(G) = 3 , T (R) = 1

2
, C2(R) = 4

3
, (20.237)

such that

b = 1

16π2 (11− 2nf) , B = 3

16π2C2(R) = 1

4π2 . (20.238)

If we assume that s0/μ
2  1, then at high energies,

Im Π

(
s

μ2 , g

)
= 1

12π

∑
i

Q2
i

[
1+ Ci

ln(s/Λ2)
+ · · ·
]

, (20.239)

where

Ci =
⎧⎨
⎩
B

b
= 12

33− 2nf
(quark) ,

0 (lepton) .
(20.240)
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Thus, assuming that δiq is 1 for quarks and 0 for leptons,

R(s) =
∑
i

Q2
i

e2

[
1+ 12

33− 2nf

δiq

ln(s/Λ2)
+ · · ·
]

. (20.241)

Hence, for s →∞, R gets closer to a constant. This is called a scaling relation. In
addition, the total cross-section to hadrons turns out to be inversely proportional to
s. We rewrite the sum over i to take into account the fact that there are three colours
for each flavour:

∑
i

Q2
i = 3
∑
f

Q2
f +
∑
l

Q2
l , (20.242)

where indices f and l range over flavours and leptons, respectively, and we assume
that the correction term in (20.241) applies only to quarks. This scaling relation
agrees well with experiment, supporting the idea that there are three colours.

The branching ratio for τ− decay is quite similar. Taking into account the large
mass of τ, viz., 1784 MeV, the scaling law is considered to apply, so it can decay
into each of the following with the same probability:

τ− → e− + ν̄e + ντ , τ− → μ− + ν̄μ + ντ , τ− → d′ + ū+ ντ (3colours).
(20.243)

Thus, the branching ratio for τ to decay into hadrons is expected to be 3/5. The
experimental value is 0.64.

20.8.2 Bjorken Scaling Law

We shall now interpret the Bjorken scaling law [105] discussed in Sect. 13.8 in
relation to the question of the asymptotic freedom. However, a rigorous argument
requires a complicated procedure involving Wilson’s operator expansion, so here
we shall limit ourselves to a sketch of the basic scenario.

Around x2 = 0, current densities can be expanded in the following way:

jμ

(x
2

)
jν

(
−x

2

)
∼
∑
n

C(n)(x2, g)xμ1 . . . xμnO
(n)
μν:μ1...μn

. (20.244)

This is Wilson’s operator expansion. Taking the expectation value of this equation
in a one-nucleon state and carrying out the Fourier expansion, we obtain a structure
function Fi(x, q

2). Here, O(n) is a local operator that is symmetric with respect to
μ1, . . . , μn, and contractions over arbitrary indices have been chosen so that they
vanish. Writing q2 instead of Q2, we have x = q2/2Mν.
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If we choose a large enough value for q2, the following equation holds:

∫ 1

0
dx Fi(x, q

2)xn−2 ∼ C̄
(n)
i (q2, g)

〈
P
∣∣O(n)
∣∣P 〉 , (20.245)

where C̄(n) is the Fourier transform of C(n).
If we consider that, in a commutation relation such as (12.180), e is a fixed

parameter, the anomalous dimension of jμ becomes zero. Hence, taking the
anomalous dimension of O(n) to γn, the anomalous dimension of C̄(n) becomes
−γn :

[
D − γn(g)

]
C̄
(n)
i

(
q2

μ2
, g

)
= 0 . (20.246)

In order to solve this equation, we set q2/μ2 = exp(2ρ):

C̄
(n)
i

(
q2

μ2 , g

)
= C̄

(n)
i

(
1, ḡ(ρ)

)
exp

[
−
∫ ρ

0
dργn
(
ḡ(ρ)
)]

. (20.247)

In general, γn can be written in the form

γn(g) = γng
2 +O(g4) , (20.248)

whence the above exponential function can be determined:

exp

[
−
∫ ρ

0
dργn
(
ḡ(ρ)
)]=
(

1+ bg2
0 ln

q2

μ2

)−γn/2b

. (20.249)

Thus, when q2 is large,

C̄
(n)
i

(
q2

μ2
, g

)
≈ const.

(
ln

q2

μ2

)−γn/2b

, (20.250)

where we have set ḡ(ρ) to zero in the first factor on the right-hand side of (20.247).
Hence, although the q2-dependence remains, and this therefore differs from the
original Bjorken scaling law, the dependence is at most logarithmic. This is an
interpretation of Bjorken’s scaling law based on the asymptotically free QCD. As
expected, this result gives support for QCD.
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20.9 Gauge Dependence of Green’s Functions

In gauge theories, there are many ways to choose the gauge-fixing term and the
ghost term, and it is important to show that no physical consequence depends on
these choices. For instance, a charge e renormalized in the standard way does not
depend on the way we choose the Lagrangian. This is clear from the fact that there
are ways to measure e experimentally. Since QED is an infrared-stable theory, we
have the so-called low-energy limit theorem. At low energies there are rigorous ways
to express the S-matrix element in terms of e, and this is why e can be determined
experimentally. In contrast, in non-Abelian gauge theories, there is no preferred
renormalization prescription like the one in QED. Therefore, it is unclear whether
the coupling constant g is defined independently of the gauge; and depending on the
renormalization prescription, it may depend on how the gauge is chosen.

In this section, we consider ways to distinguish parameters depending on the
gauge choice from those independent of it. First, we discuss the situation where
renormalization is not involved. We thus consider an unrenormalized Green’s
function:

G
(n)
0 = 〈ϕ(0)(x1), . . . ,ϕ

(0)(xn)
〉
, (20.251)

where we have assumed that ϕ expresses not only a scalar field but also a general
field. Now, considering a gauge theory, we choose the Lagrangian (18.74) in
Chap. 18. In this case, what distinguishes the Lagrangians is an unrenormalized
gauge parameter α0. For the Green’s function (20.251), we can write down two
equations. The first is an equation which has appeared many times up to now and
the second is the equation derived from (18.84) in Chap. 18:

μ
∂

∂μ

〈
ϕ(0)(x1) . . .ϕ

(0)(xn)
〉
α0
= 0 , (20.252)

α0
∂

∂α0

〈
ϕ(0)(x1) . . .ϕ

(0)(xn)
〉
α0

(20.253)

= iα0

2

〈
ϕ(0)(x1) . . .ϕ

(0)(xn)

∫
d4x B(0)(x) ·B(0)(x)

〉
α0

.

In the second equation, the term which should be called a gauge insertion term
or something similar to the mass-insertion term in the Callan–Symanzik equation
appears on the right-hand side. One property of this term is its invariance under the
renormalization, i.e., referring to (19.66), we have

α0 = Z3α , B(0)(x) = Z
−1/2
3 B(x) , (20.254)
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whence

α0B
(0)(x) · B(0)(x) = αB(x) · B(x) . (20.255)

We shall imitate the Callan–Symanzik equation. Setting

F (x) = B(x) · B(x) , (20.256)

and referring to (20.125) and (20.126), we carry out the Fourier transforms

(D + γG)G
(n)(p1, . . . , pn) = 0 , (20.257)

(D̄ + γ̄G)G
(n)(p1, . . . , pn) = −α

2
F (n)(0;p1, . . . , pn) , (20.258)

where G(n) and F (n) are the renormalized Green’s functions:

G
(n)
0 = ZGG

(n) , α0F
(n)
0 = ZGαF

(n) . (20.259)

Furthermore,

D = μ
∂

∂μ
+ β

∂

∂g
+ δ

∂

∂α
, D̄ = β̄

∂

∂g
+ δ̄

∂

∂α
, (20.260)

β = μ
∂

∂μ
g

∣∣∣∣
g0,α0

, β̄ = α0
∂

∂α0
g

∣∣∣∣
g0,μ

, (20.261)

δ = μ
∂

∂μ
α

∣∣∣∣
g0,α0

, δ̄ = α0
∂

∂α0
α

∣∣∣∣
g0,μ

, (20.262)

γG = μ
∂

∂μ
lnZG

∣∣∣∣
g0,α0

, γ̄G = α0
∂

∂α0
lnZG

∣∣∣∣
g0,μ

. (20.263)

We introduce the integrability condition

(
μ

∂

∂μ

)(
α0

∂

∂α0

)
=
(
α0

∂

∂α0

)(
μ

∂

∂μ

)
. (20.264)

Expressing this in terms of renormalized parameters,

DD̄ = D̄D . (20.265)
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In this theory, there are three renormalized parameters m/μ, g, and α. Introducing
three independent functions ρ, σ , and τ , we now implement a variable transforma-
tion, giving the following theorem without proof:

Theorem 20.1 If the commutation condition (20.265) holds true, then we can
choose functions ρ, σ , and τ of the three variables m/μ, g, and α satisfying the
conditions

Dρ = 1 , D̄ρ = 0 , Dσ = 0 , D̄σ = 1 , Dτ = 0 , D̄τ = 0 .

(20.266)

Thus, if m/μ, g, and α can be rewritten in terms of ρ, σ and τ , then (20.257)
and (20.258) become

(
∂

∂ρ
+ γG

)
G(n) = 0 ,

(
∂

∂σ
+ γ̄G

)
G(n) = −α

2
F (n) . (20.267)

The integrability condition (20.264) then implies

∂

∂σ
γG = ∂

∂ρ
γ̄G . (20.268)

Therefore, there is a function Φ satisfying

γG = ∂

∂ρ
Φ , γ̄G = ∂

∂σ
Φ . (20.269)

Hence, setting

G(n) = e−ΦI(n) , F (n) = e−ΦJ (n) , (20.270)

we have

∂

∂ρ
I (n) = 0 ,

∂

∂σ
I (n) = −α

2
J (n) . (20.271)

We are especially interested in the case where ϕ(x1), . . . ,ϕ(xn) are all BRS-
invariant. In this case, F (n) vanishes, and so therefore does J (n), whence In becomes
a function of τ alone.

It is clear from the previous discussion that ρ is related to a scale transformation,
and σ is related to a transformation which changes the gauge. Therefore, we may
say that quantities independent of the unrenormalized gauge parameter α0 do not
depend on σ in a renormalized theory.

In QED, from the early discussion in this section and (20.40),

D̄e = 0 , D(αe2) = 0 . (20.272)
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Therefore, in QED, ρ is expected to become a function of e, and σ a function of
αe2. In QCD, things are more complicated. This is related to the fact that, because
the β-function generally depends on the renormalization prescription, it may be a
function, not only of g, but also of α. If there is a renormalization prescription
satisfying

D̄g = 0 , (20.273)

then it may turn out that g has a significance unrelated to the gauge. One way is
to renormalize all quantities using (18.84) in the Landau gauge. Hence, assuming
that (18.84) also holds true for renormalized quantities, we define Green’s functions
in the general gauge. Therefore, both β and γV turn out not to depend on α.
However, ρ can in general be interpreted as playing a role.



Chapter 21
Theory of Confinement

So far we have given indirect evidence that all hadrons consist of quarks. Moreover,
the long series of successes of this model make other possibilities quite hard to
consider. At the same time, searches for fractional charges have been made, but none
has ever been detected. This has led to the conclusion that isolated quarks cannot be
observed for some reason, an idea known as the quark confinement hypothesis. This
hypothesis has in fact been generalized to the idea that no coloured particle can ever
be observed. This is the colour confinement hypothesis.

Many proposals have been put forward to explain this hypothesis. One idea
endorsed by many is that the quark–anti-quark potential may be proportional to
distance at long ranges. This idea is closely related to the lattice gauge theories
introduced by Wilson [185]. He formulated a condition for quark confinement in
such a way that a quantity, which we call a Wilson loop, satisfies the area law.
He has shown that this condition is satisfied in a strong coupling approximation.
However, within the framework of lattice gauge theories, it is hard to formulate a
confinement condition for gluons. So in order to discuss confinement for general
coloured particles, the author has considered a mechanism for confinement based
on an analogy with QED [186].

Firstly, if we ask whether there are ever particles which are created as a
consequence of quantization but never observed, we immediately recall the photons
corresponding to the longitudinal and scalar waves in QED. If, when we write
down the condition for unitarity of the S-matrix, both the initial and final states
satisfy the Lorenz condition, the contributions of these photons to intermediate
states completely annihilate each other, and so never show up. That is, they cannot
be observed. This was discussed in Chap. 5 and Sect. 6.4. This is confinement based
on the annihilation mechanism for indefinite metrics, the Lorenz condition being
used to eliminate negative norm states.

If we apply this kind of mechanism to confinement for particles with colour, it
turns out to be inevitable to introduce indefinite metrics and additional conditions.
For non-Abelian gauge fields, all the tools are to hand. That is, in non-Abelian
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gauge fields, indefinite metrics are introduced via auxiliary fields, and additional
conditions are defined using the BRS charges. Consequently, if both the initial and
final states belong to the BRS singlet, then contributions from the BRS doublets
completely annihilate each other in the unitarity condition, which was shown in
Sect. 19.6. It thus turns out that colour confinement holds true if all particle states
with colours belong to BRS doublets. We thus investigate under what kind of
conditions such a thing could be realized.

21.1 Gauge Independence of the Confinement Condition

In the following discussion, we shall treat the question of confinement in a special
gauge, and in particular, in the Landau gauge. We shall thus show that the concept
of confinement does not depend on the choice of gauge. So if it holds true in
one gauge, it will hold true in other gauges as well. For this purpose, we first
recall a generalization of the LSZ reduction formula presented in Sect. 11.7. We
write (11.161′) in the form

∫
d4x Δ(x − y)KyST [ϕ(x1) . . .ϕ(xn)ϕ(y)] =

[
ϕin(x), ST [ϕ(x1) . . .ϕ(xn)]

]
.

(21.1)

For each local operator Φ(x), we assume that the following conditions are satis-
fied:

(1) Φ(x) is a polynomial of field operators and for an arbitrary elementary particle
field ϕ(x),

[Φ(x),ϕ(y)] = 0 , (x − y)2 > 0 . (21.2)

(2) Φ(x) has the same quantum number as ϕ(x) and for a one-particle state |p〉 of
the field ϕ,

〈0|Φ(x)|p〉 = 〈0|ϕ(x)|p〉 . (21.3)

In this case, (21.1) extends to

∫
d4y Δ(x − y)KyST [ϕ(x1) . . .ϕ(xn)Φ(y)] = [ϕin(x), ST [ϕ(x1) . . .ϕ(xn)]

]
.

(21.4)
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Here we have considered scalar fields, but this can be extended to arbitrary fields,
noting that, for fields obeying Fermi statistics, we have to replace the commutator
in (21.2) by an anti-commutator.

Since we do not have fundamental fields for composite particles, we change the
second condition as follows:

(2′) For a one-particle state of a composite particle,

〈0|Φ(x)|p〉 = 1√
2p0V

eip·x . (21.5)

However, if the spin is not 0, we multiply by a suitable spin function.

In this case, introducing asymptotic fields Φ in and Φout for a composite particle,

∫
d4y Δ(x − y)KyST [. . .Φ(y)] = [Φ in(x), ST [. . .]] . (21.6)

When we compute the S-matrix element using the LSZ asymptotic condition, field
operators appearing in the Green’s function are not unique but arbitrary, if the
condition above is satisfied. This formulation derives from treatments of composite
particles by Haag [187], Zimmermann [188], and the author [189]. For details, the
reader is referred to my book Fields and Particles [2]. We now return to the question
of confinement.

If all particles with colour are confined, then it turns out that all quanta of
fundamental fields are confined. Thus, observable quanta will be particles without
colours. In QCD, this concerns only hadrons as composite particles. Such hadrons
are described by local composite fields. Moreover, if we consider unrenormalized
composite fields A, B, C, . . ., then as discussed in Sect. 19.4, such fields should
be invariant under the BRS transformation. Hence, (19.58) should hold true. In this
case, (19.63) also turns out to hold true. Note that, in order to use the LSZ reduction
formula for these Green’s functions, we should carry out the renormalization in such
a way that a normalization condition like (21.5) is satisfied. Note also that, in this
case, from (19.63), we have

〈A(x)A†(y)〉II = 〈0|A(x)A†(y)|p〉I , (21.7)

so that the residues at poles corresponding to one-particle states for these two-point
functions are equal. Therefore, for the unrenormalized A,

〈0|A(x)|p〉I = 〈0|A(x)|p〉II , (21.8)



512 21 Theory of Confinement

where |p〉 stands for a one-particle state of a hadron with four-momentum p.
Therefore,

〈
A(x)B(y) . . .

〉
I√

2p0V
〈
0
∣∣A(0)
∣∣p〉

I

√
2q0V
〈
0
∣∣B(0)
∣∣q〉

I
. . .

=
〈
A(x)B(y) . . .

〉
II√

2p0V
〈
0
∣∣A(0)
∣∣p〉

II

√
2q0V
〈
0
∣∣B(0)
∣∣q〉

II
. . .

.

(21.9)

This is the renormalized Green’s function which does not depend on gauge choices.
It turns out that the S-matrix element obtained by applying the LSZ reduction
formula to such a Green’s function has meaning independently of how the gauge
is chosen. Hence, if the S-matrix corresponding to a reaction among hadrons is
unitary in one gauge, it will be unitary in all other gauges. As a consequence, all
particles with colour turn out to be confined in any gauge. Thus, in order to discuss
the confinement of particles with colour, we only need to show this in one specific
gauge.

21.2 Sufficient Condition for Colour Confinement

In Sect. 19.6, we discussed the fact that the unitarity condition for the S-matrix can
be expressed in terms of BRS singlet states alone. We thus assume the asymptotic
completeness discussed in Chap. 11 only for BRS singlet states. The reason is that
it is unclear, due to so-called infrared divergences, whether we can assume the
asymptotic condition for BRS doublet states as well, and for singlet states, the
existence of the unitary S-matrix forms the basis of the theory.

We begin with the Lagrangian density (19.1). Using the field equations and equal-
time commutation relations, we can write down the following Ward–Takahashi
identities:

∂λ
〈
δδ̄Aa

λ(x),ψ
α(y), ψ̄β(z)

〉
(21.10)

= igtaαβ
[
δ4(x − y)SF(y − z, β)− δ4(x − z)SF(y − z, α)

]
,

∂λ
〈
δδ̄Aa

λ(x),A
b
μ(y),A

c
ν(z)
〉

(21.11)

= igMa
bc

[
δ4(x − y)SFμν(y − z, c)− δ4(x − z)DFμν(y − z, b)

]
,

where Ma
bc = −ifabc corresponds to the adjoint representation, and SF and DF are

propagators of a fermion and a gauge field, respectively. It is only in the presence of
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BRS invariance that these identities hold true, even if the symmetry corresponding
to the gauge group is spontaneously broken.

So considering (21.10), we begin by defining the vertex function V a
λ by

〈
δδ̄Aa

λ(x),ψ
α(y), ψ̄β (z)

〉 =
∫

d4y′
∫

d4z′SF(y − y′, α)V a
λ (y

′, z′; x)αβSF(z
′ − z, β) .

(21.12)

We introduce the Fourier transform

SF(x) = −i

(2π)4

∫
d4p eip·xSF(p) ,

V a
λ (yz; x)αβ =

1

(2π)8

∫
d4p

∫
d4q eip·(y−x)+iq·(x−z)V a

λ (p, q)αβ . (21.13)

Then (21.10) can be written in the form

SF(p, α)(p − q)λV
a
λ (p, q)SF(q, β) = igtaαβ

[
SF(p, α) − SF(q, β)

]
. (21.14)

What is important here is the identity

∂λ(δδ̄Aλ) = −δ̄(∂λDλc) = 0 . (21.15)

We now investigate whether Vλ has a pole with respect to the variable (p − q)2.
First, we assume that x is connected to y ′ and z′ via one-particle lines. This particle
can be elementary or composite. In this case, there exists a pole with respect to
(p − q)2. For instance, if a particle is created by a scalar field φb , such a pole will
appear in the Green’s function

〈
δδ̄Aa

λ(x),φ
b(w)
〉
. (21.16)

Applying ∂λ to this expression, since from (21.15) an equal-time commutator
appears, the result is proportional to δ4(x − w). Thus, its Fourier transformation
becomes a constant, which can be written in the form

FT
〈
δδ̄Aa

λ(x),φ
b(w)
〉 = kλ

k2 δabC0 . (21.17)

In contrast, if this one-particle state is created by a vector field φb
μ, we have

FT
〈
δδ̄Aa

λ(x),φ
b
μ(w)
〉 =
(
δλμ − kλkμ

k2

)
δabf (k

2)+ kλkμ

k2
δabC1 . (21.18)
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However, the first term on the right-hand side does not appear in (21.14). This is
because the left-hand side of (21.14) is multiplied by kλ = (p − q)λ. We can thus
replace Vλ in (21.14) by

V̄λ(p, q) = (p − q)λ(p − q)μ

(p − q)2
Vμ(p, q) , (21.19)

which is a projection for a spin 0. With this replacement, the first term on the right-
hand side of (21.18) vanishes. We can then rewrite (21.14) in terms of V̄λ :

SF(p, α)(p − q)λV̄
a
λ (p, q)SF(q, β) = igtaαβ

[
SF(p, α) − SF(q, β)

]
. (21.20)

In V̄ a
λ , there can still be poles of spin 0. In fact, it is clear from (19.65) and (19.66)

that δAλ = Dλc creates a pole of spin 0. If so, we may ask whether δδ̄Aλ creates a
pole of spin 0.

According to (19.147), Dλc includes an asymptotic field ∂λγ of the spin 0 and
massless particle. Hence, the condition that Vλ should not include a pole of spin 0
is

δ̄γ a = 0 . (21.21)

This condition cannot hold true when a symmetry corresponding to the a th
generator of the gauge group is spontaneously broken. So when V̄λ does not include
a pole of spin 0, we set

p − q = εP , P 2 �= 0 , (21.22)

and consider the limit ε → 0. By assumption, V̄λ does not include poles of either
spin 0 or spin 1, and the projection operator is also finite in this limit:

(p − q)λ(p − q)μ

(p − q)2
= PλPμ

P 2
. (21.23)

Thus, we have the following finite limit:

lim
ε→0

V̄λ(p, q) = V̄λ(p, p;P) . (21.24)

From (21.20), we obtain

SF(p, α)PλV̄λ(p, p;P)SF(p, β) = igtaαβ lim
ε→0

1

ε

[
SF(p, α)−SF(q, β)

]
. (21.25)

Although the left-hand side is finite, if the symmetry is broken, we generally have

SF(p, α) − SF(p, β) �= 0 . (21.26)
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Therefore, the right-hand side diverges and we encounter a contradiction. Thus, it
turns out that the condition (21.21) can hold true only if the symmetry is not broken.
In this case, if we write

SF(p, α) = SF(p, β) ≡ SF(p) , (21.27)

for components α and β connected by ta , the right-hand side of (21.25) assumes the
form

igtaαβPλ
∂

∂pλ

SF(p) . (21.28)

If we now assume that quarks belong to BRS singlet states, then (21.25) yields a
contradiction. In this case, if we apply the LSZ reduction formula to quarks, the
left-hand side implies

Pλ

〈
p,α
∣∣δδ̄Āλ(0)

∣∣p,β〉 , (21.29)

where |p,α〉 and |p,β〉 are quark states with four-momentum p. However, δδ̄Āλ

is a (d, d)-type operator. If the quarks belong to BRS singlet states, the matrix
element (21.29) should vanish. On the other hand, from the right-hand side, we
obtain

igtaαβ ū(p)

[
∂

∂pλ

S−1
F (p)

]
u(p) ∝ igtaαβ ū(p)iγλu(p) , (21.30)

up to a trivial numerical coefficient. This is finite and never vanishes, which is a
contradiction.

This means that, if the condition (21.21) is satisfied, SF cannot possess a pole
corresponding to a BRS singlet state. This in turn means that quarks are confined.
Similarly, if we start with (21.11) and assume (21.21), then it can be shown that
gluons are also confined. Generalizing this result further, it can be understood
that (21.21) is a sufficient condition for all particles with colour to be confined.

Since the condition for confinement has been expressed in terms of the asymp-
totic field of the auxiliary field, we now investigate the connection with the
discussion of the representation in Sect. 19.8. From (19.149),

δχ = γ . (21.31)

Therefore, (21.21) can be expressed in the form

δ̄δχa = 0 . (21.32)
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Hence, using (19.152) which is valid in perturbation theory,

δ̄δχa = −iβa , (21.33)

so it is clear that confinement does not hold true in perturbation theory. Hence, the
quartet representation in Sect. 19.8 does not satisfy the condition for confinement.
In contrast, since (21.21) holds in the octet representation given by (19.156), the
condition for confinement is satisfied. In this case, as mentioned before, c × c and
c̄× c̄ turn out to have asymptotic fields. Alternatively, since δc and δc̄ have massless
spin-0 asymptotic fields, the following quantity turns out to have a massless spin-0
pole:

〈
δca(x), δ̄c̄b(y)

〉 = 〈δ̄ca(x), δc̄b(y)〉 = −〈B̄a(x),Bb(y)
〉
. (21.34)

Referring to the representation theory for the asymptotic field of the auxiliary
field in the Landau gauge, as explained in Sect. 19.9, if we take the representation
Dj , with j an integer, the condition for confinement is not satisfied, while if j is a
half integer, the condition is in fact satisfied.

We now apply the above discussion to the grand unified theory (GUT) discussed
in Sect. 16.5. The gauge group G of the grand unified theory, after spontaneous
symmetry breaking, is

G→ SU(3)colour × U(1)em . (21.35)

As already discussed, confinement is caused by a strict symmetry. Since only
singlets for SU(3) can be observed, this means that, among the quanta of gauge
fields, only the colourless γ, W, and Z are observed, and if hadrons are colourless
bound states of quarks, then they can be observed.

21.3 Colour Confinement and Asymptotic Freedom

In the last section, we gave (21.32) as the condition for confinement. This section
has been added to describe subsequent progress [190, 191]. To begin with, according
to (19.66) and (19.147), Aμ and B turn out to have the following asymptotic fields:

Aa
μ(x)

in = αa
μ(x)+ ∂μχ

a(x) , Bb(y)in = βb(y) , (21.36)

where αμ stands for the asymptotic field for a gluon, and χ and β are those for
massless spin-0 fields, which satisfy (19.151). That is,

〈
χa(x), βb(y)

〉 = −δabDF(x − y) . (21.37)
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Next, we check whether the confinement condition (21.32) is satisfied. Since it is
strictly true in QED that

iδδ̄χ = −β , (21.38)

electrical charge can never be confined.
In QCD, since the computation of iδδ̄χa is complicated, we consider the lowest

order in perturbation theory:

iδδ̄χa ≈ −βa . (21.39)

Higher order corrections alter the coefficient of β on the right-hand side. If
this coefficient vanishes in an exact theory, then (21.37) implies that a sufficient
condition for confinement is

〈
iδδ̄χa(x), χb(y)

〉 = 0 . (21.40)

We now express the condition including this asymptotic field in terms of the
Heisenberg operator. We thus consider a two-point function:

〈
iδδ̄Aa

μ(x),A
b
ν(y)
〉
. (21.41)

The first operator includes ∂μ(iδδ̄χa), the second includes ∂νχb , and the left-hand
side of (21.40) gives a massless spin-0 pole. We can write the Fourier expression
of (21.41), using (21.15):

(
δμν − kμkν

k2 − iε

)∫
dm2 σ(m2)

k2 +m2 − iε
+ C

kμkν

k2 − iε
. (21.42)

The second term corresponds to (21.40). The coefficient C appears in

∂μ
〈
iδδ̄Aa

μ(x),A
b
ν(y)
〉 = iδabC∂νδ

4(x − y) . (21.43)

The condition for confinement argued here only concerns the second term in (21.42).
Using only the constant C, the sufficient condition (21.40) for confinement reduces
to

C = 0 . (21.44)

Note also that, given (21.15), Eq. (21.43) yields the following equal-time commuta-
tion relation:

δ(x0 − y0)
〈
0
∣∣iδδ̄Aa

0(x),A
b
j (y)
∣∣0〉 = iδabC∂j δ

4(x − y) , (21.45)
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for j = 1, 2, 3. The left-hand side should be evaluated using renormalized operators.
Fortunately, both operators are multiplicatively renormalized:

A(0)
μ = Z

1/2
3 Aμ , iδδ̄A(0)

μ = Z̃−1
3 Z

−1/2
3 (iδ ¯δAμ) , (21.46)

where we have used the notation in Sect. 20.7. Therefore, the two-point func-
tion (21.41) and the constant C satisfy the renormalization group equation in the
form

(D − 2γFP)C = 0 , (21.47)

where γFP is the anomalous dimension of the ghost field and D is the differential
operator appearing in (20.207).

Now recall (19.47). The Ward–Takahashi identities (21.10) and (21.11) used
in the last section were in fact derived using this equation. Writing this in the
unrenormalized form

iδδ̄A(0)
ν = ∂μA(0)

μν + g∂μ
(
A(0)

μ ×A(0)
ν

)+ gJ (0)
ν (21.48)

and inserting in (21.45), we see that the only term contributing to the equal-time
commutation relation is the first term involving A

(0)
μν = ∂μA

(0)
ν −∂νA(0)

μ . However, if
we use renormalized operators, then it turns out that the contribution from the Goto–
Imamura–Schwinger term [124, 125] appearing in Sect. 12.8 cannot be neglected.
Anyway, inserting the renormalized ∂μAμν , we define a constant a by

δ(x0 − y0)
〈
0
∣∣[∂μAa

μ0(x),A
b
j (y)]
∣∣0〉 = iδaba∂j δ4(x − y) . (21.49)

As is clear from the derivation of (12.223), this a is in fact equal to Z−1
3 .

Additionally, since both sides of (21.49) satisfy the renormalization group equation,
which is the same as that of the gluon propagator, we have

(D + 2γV )a = 0 . (21.50)

Comparing this with (21.47), we see that C cannot be equal to a, whence C − a

survives as the Goto–Imamura–Schwinger term.
In addition, we introduce the gluon propagator in Fourier representation:

DFμν (k) =
(
δμν − kμkν

k2 − iε

)
D(k2)+ α

kμkν

(k2 − iε)2 , (21.51)

D(k2) =
∫

dm2 ρ(m2)

k2 +m2 − iε
. (21.52)
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We thus obtain the following relation corresponding to (12.223):

a = Z−1
3 =
∫

dm2ρ(m2) . (21.53)

Next, we investigate how we can obtain C by solving (21.47). In Sect. 20.6, we
used the integral method for the homogeneous Callan–Symanzik equation. Here,
we can apply exactly the same method to the renormalization group equation above.
Corresponding to (20.175), the renormalization group operator is given by

Rρ = exp(ρD) . (21.54)

Taking Q as a function of g, α, and μ, we define an application of the renormaliza-
tion group to Q by

Q̄(ρ) = exp(ρD )Q , Q̄(0) = Q . (21.55)

In particular, for an infinitesimal transformation,

δQ̄(ρ) = δρDQ̄(ρ) . (21.56)

In particular, for g, α, and μ, we obtain

δḡ = β(ḡ, μ̄)δρ , δᾱ = −2ᾱγV (ḡ, ᾱ, μ̄)δρ , δμ̄ = μ̄δρ , (21.57)

where the variable (ρ) has been omitted. Their asymptotic values are defined by

ḡ(∞) = g∞ , ᾱ(∞) = α∞ , μ̄(∞) = ∞ , (21.58)

and in particular asymptotic freedom is characterized by g∞ = 0.
For a function Q(g, α,μ), we clearly have

Q̄(ρ) = exp (ρD)Q(g, α,μ) = Q
(
ḡ(ρ), ᾱ(ρ), μ̄(ρ)

)
. (21.59)

In particular, choosing a Green’s function G(pi; g, α,μ) as Q and taking its
anomalous dimension to be γ , we have

(D + γ )G = 0 . (21.60)

In order to integrate this equation, we consider

Ḡ(ρ) = exp(ρD)G , Ḡ(0) = G , (21.61)
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whence

∂

∂ρ
Ḡ(ρ) = exp(ρD)DG = − exp(ρD)γG = −γ̄ (ρ)Ḡ(ρ) . (21.62)

Integrating this,

G(pi; g, α,μ) = exp

[∫ ρ

0
dργ̄ (ρ)

]
G
(
pi; ḡ(ρ), ᾱ(ρ), μ̄(ρ)

)
. (21.63)

This corresponds to (20.178) in the case of the Callan–Symanzik equation, so if we
introduce

R(k2) = k2D(k2) , (21.64)

this function satisfies the renormalization condition

R(μ2) = 1 . (21.65)

Since the anomalous dimension of R is 2γV , we can use (21.63) to obtain

R(k2; g, α,μ) = exp

[
2
∫ ρ

0
dργ̄V (ρ)

]
R
(
k2; ḡ(ρ), ᾱ(ρ), μ̄(ρ)) , (21.66)

and if we take k2 = μ̄2(ρ) in this equation, then (21.65) implies

R
(
μ̄2(ρ); g, α,μ) = exp

[
2
∫ ρ

0
dργ̄V (ρ)

]
. (21.67)

If we now take the limits ρ →∞ and μ̄2(ρ)→∞, then (21.52) and (21.64) yield

∫
dm2ρ(m2) = exp

[
2
∫ ∞

0
dργ̄V (ρ)

]
. (21.68)

From (21.53), this turns out to be equal to a. We can thus evaluate a using
this equation. Once a is known, the next problem is to evaluate C. Although C

satisfies (21.47), we should give its boundary condition. Note that, in a theory in
which a cut-off is introduced, taking a renormalization point at a high energy by
considering ρ → ∞ and μ̄(ρ) → ∞, we find that Ḡ(ρ) approaches the Green’s
function for a free field. We may thus consider that the Goto–Imamura–Schwinger
term vanishes in this limit. Hence, we introduce the following boundary condition
for C :

lim
ρ→∞
[
C̄(ρ)− ā(ρ)

] = 0 . (21.69)
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Then, given (21.47) and (21.50) written in the form (21.62), and omitting the
variable (ρ), we obtain

∂

∂ρ
C̄ = 2γ̄FPC̄ ,

∂

∂ρ
ā = −2γ̄V ā . (21.70)

These lead immediately to

(
∂

∂ρ
− 2γ̄FP

)
(C̄ − ā) = 2(γ̄V + γ̄FP)ā . (21.71)

If we solve this equation under the boundary condition (21.69), we find

C̄(ρ) = ā(ρ)−
∫ ∞
ρ

dρ′2
[
γ̄V (ρ

′)+ γ̄FP(ρ
′)
]
ā(ρ′) exp

[
−2
∫ ρ′

ρ

dρ′′γ̄FP(ρ
′′)
]

.

(21.72)

In particular, if we set ρ = 0, then

C = a −
∫ ∞

0
dρ′2
[
γ̄V (ρ

′)+ γ̄FP(ρ
′)
]
ā(ρ′) exp

[
−2
∫ ρ′

0
dρ′′γ̄FP(ρ

′′)
]

.

(21.73)

Since the most important assumption required to obtain this result is (21.69), let us
see whether this assumption actually holds true in QED.

Verification in QED

An easy computation in QED yields the value of C to be exactly given by

C = 1 . (21.74)

Let us therefore check whether this result can be realized using (21.73), obtained
by assuming the Goto–Imamura–Schwinger term (21.69). In QED, we can use the
simplification

γFP = 0 , β(e) = eγV (e) . (21.75)

Therefore,

∫ ∞
0

dργ̄V (ρ) =
∫ e∞

e

dē

β(ē)

β(ē)

e
= ln

e∞
e

. (21.76)
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Then a(e) can be obtained immediately from (21.68):

a(e) = (e∞/e)2 . (21.77)

Inserting this result into (21.73), we see that (21.74) is indeed realized, so from now
on we can also apply (21.69) with confidence in QCD. That is,

C =
(e∞

e

)2 − 2
∫ e∞

e

dē

ē

(e∞
ē

)2 = 1 . (21.78)

For two BRS-invariant Lagrangian densities L1 and L2, if there is M such that

δL1 = δL2 = 0 , L1 −L2 = δM , (21.79)

then we say thatL1 andL2 belong to the same gauge class. In this case, as discussed
in Sect. 19.4, it is obvious from (19.63) that Green’s functions including only BRS-
invariant operators will be equal for both Lagrangians. For instance, since for two
Lagrangians like those given in (19.1) with different values of α,

L2 −L1 = δM , M = − i

2
(α2 − α1)c̄ · B , (21.80)

such Lagrangians will belong to the same gauge class. Hence, Green’s functions
such as those in (19.63) turn out to be independent of α. If we consider the
renormalization group equation (21.60) for such Green’s functions, then γ does not
of course depend on α. Thus, β does not depend on α either, and becomes constant
in the same gauge class. This means that the notion of asymptotic freedom becomes
a common notion over the same gauge class, i.e., it turns out that there exists a
renormalization method such that β does not depend on α. Now integrating (21.57),

ln
α

α∞
= 2
∫ ∞

0
dργ̄V (ρ) . (21.81)

Alternatively, from (21.53), (21.31), and so on,

a =
∫

dm2ρ(m2) = α

α∞
. (21.82)

Thus, the problem of obtaining α reduces to the problem of obtaining α∞. We need
therefore to solve (21.57), but γV and β are known only in perturbation theory, i.e.,
as power series expansions of g :

β(g) = g3(β0 + β1g
2 + · · · ) , γV (g, α) = g2(γ0 + γ1g

2 + · · · ) , (21.83)
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where

γ0 = γ00 + γ01α , γ1 = γ10 + γ11α + γ12α
2 , . . . . (21.84)

In the following, we assume β0 < 0 as the condition for asymptotic freedom, and
as a consequence, g∞ = 0. Moreover, we assume that γ01 > 0, which always holds
true for QCD.

If g2 � 1, then for sufficiently large ρ,

ḡ2(ρ) = g2(1+ bg2ρ)−1 , b = −2β0 > 0 . (21.85)

We now consider the integral (21.81):

1. Convergent case. If the integral (21.81) converges, since the left-hand side is
finite, α∞ is not 0, but finite. In this case, for large ρ, the asymptotic form of the
integrand on the right-hand side is

γ̄V (ρ) = ḡ2(ρ)(γ00 + γ01α∞)+O

(
1
ρ2

)

= 1

bρ
(γ00 + γ01α∞)+O

(
1
ρ2

)
. (21.86)

In order for this integral to converge for large ρ, we must have

γ00 + γ01α∞ = 0 , or α∞ = −γ00/γ01 ≡ α0 . (21.87)

2. Divergent case. If the integral (21.81) diverges, then the left-hand side is
divergent as well, so the possible values of α∞ are

α∞ = 0 or ∞ . (21.88)

As a consequence, there are only three possible values of α∞, viz., α0, 0, or∞.
We now investigate what happens to

(
ᾱ(ρ), ḡ(ρ)

)
for large ρ if we start out with

the initial values (α, g). Since g∞ = 0, for sufficiently large ρ, we have ḡ2(ρ)� 1.
We thus follow this flow by starting with a sufficiently small ḡ2(ρ). Apart from the
case where α∞ = ∞, the lowest order equation for ᾱ can be used, and in this case,

d

dρ
≈ −2ᾱ(γ00 + γ01ᾱ)ḡ

2 = −2γ01ḡ
2ᾱ(ᾱ − α0) , γ01ḡ

2 > 0 . (21.89)

Considering this equation in the limit ρ → ∞, when ᾱ is close to 0 or α0, it will
turn out that α∞ is 0, α0, or neither of them. If it is neither of them, then it turns
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out that α∞ = ∞ or −∞. Since this problem is straightforward, we give only the
results:

1. γ00 < 0 (α0 > 0)

α∞ =
⎧⎨
⎩
α0 , α > 0 ,

0 , α = 0 ,

−∞ , α < 0 .

(21.90)

2. γ00 > 0 (α0 < 0)

α∞ =
⎧⎨
⎩

0 , α > α0 ,

α0 , α = α0 ,

−∞ , α < α0 .

(21.91)

Here, we began by assuming that g2 is sufficiently small at the outset. There exists a
region where α∞ = −∞ regardless of the sign of γ00. According to (21.82), in this
region, α = 0, whence (21.73) implies C = 0 in the same region. Since C = 0 is a
sufficient condition for confinement, if g and α belong to this region, then there is
confinement. In this case, there are other regions where C �= 0, but since C = 0 is
not a necessary condition but a sufficient condition, then there is no contradiction if
there is confinement. After all, going back to the origin of this proof, it is concluded
that colour confinement occurs if there is asymptotic freedom and a spontaneously
unbroken non-Abelian gauge symmetry.



Chapter 22
Anomalous Terms and Dispersion Theory

Field theory has suffered from the problem of divergences since the day of its
birth. At first glance, renormalization theory gives a method for removing these
divergences, but in this method we have to compute quantities of the type∞−∞,
so some indefiniteness is often left in the result. This is typically exemplified by
the self-energy of the photon. Depending on how we compute this quantity, it can
be zero or infinity. This is the problem of indefiniteness: depending on how we
compute, something that should be gauge invariant turns out not to be invariant.
A classic example of this is the problem of vacuum polarization. In Chap. 12, we
obtained (12.127), and in order to reach a gauge invariant result, we had to set

∫ 1

0
dx
∫

d4p

1

2
p2 +m2 + x(1− x)k2

[
p2 +m2 + x(1− x)k2 − iε

]2 = 0 . (22.1)

Fukuda and Miyamoto discovered similar things when they computed the two-
photon decay of the neutral meson including the vacuum polarization [192].
Steinberger also carried out a similar computation in [193].

In fact, it was not noticed that there were in fact two kinds of singularities,
which had become a matter of course around that time: one was the indefiniteness
mentioned above, and the other was the anomalous term. In 1951, although
Schwinger had proposed a computational method that did not spoil the gauge
invariance [194], the problem of anomalous terms had gone unnoticed. So what
exactly is this problem? Since a product of operators located at the same space-time
point is a highly singular quantity in field theory, it is difficult to define it correctly.

The equation for interacting fields is non-linear, so there is no way to get around
this issue. In a classical theory, it is easy to define a product of c-numbers, but in a
quantum theory, as a consequence of the quantization, a new kind of singularity is
generated. Thus, in a quantum theory, a result derived from a classical field equation
does not necessarily hold. Such a term arising from the difference with a classical
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equation is called an anomalous term. The issue of anomalous terms is even now
a central problem in field theory. It is being investigated in detail using modern
mathematical methods such as differential geometry and topology. In this chapter,
we will treat this issue from a more elementary point of view.

It was around the end of the 1960s that the difference between indefiniteness
and anomalous terms was at last clearly acknowledged. This was a consequence of
research by Adler et al. [159, 160]. In this chapter, we will discuss this issue from
the point of view of dispersion theory.

As discussed in Sect. 1.4, in dispersion theory, the computation of the S-matrix
amplitude is separated into two steps. In the first step, we compute the absorption
part of the amplitude from the unitarity condition, and in the second step, we use
the scattering formula to compute the dispersion part from the absorption part. In
the computations of the first step, the integration is always carried out in a finite
phase space, so it converges and there is neither indefiniteness nor divergence.
Hence, if divergence arises, it will appear in the second step. In this case, when
appropriate, we introduce the dispersion formula with a subtraction. This subtraction
corresponds to a renormalization prescription, but since this computation is not of
the form∞−∞, hence different from the Feynman–Dyson theory, no indefiniteness
is left at all. However, a weak point in the dispersion theory of the S-matrix is that
a complete system for the dispersion formula is not known. However, what we can
learn from the above warning is that divergence and indefiniteness in field theory
always arise from the dispersion part alone. Computations of the absorption part
can be determined uniquely no matter what method we adopt.

In this chapter, we thus introduce the dispersion theory, not for the S-matrix, but
for the Green’s functions. The advantage is that a complete system is known for the
dispersion formula. Using this method, we investigate the mechanism leading to the
appearance of anomalous terms.

22.1 Examples of Indefiniteness and Anomalous Terms

As a first example of indefiniteness, we discuss the issue of vacuum polarization.

22.1.1 Vacuum Polarization

The integral representation of the propagator in Sect. 12.8 is an example of
dispersion relation. If we consider a scalar field, then the absorption part, or the
imaginary part, is given by

1

2

〈
0
∣∣{ϕ(x),ϕ(y)}∣∣0〉 = 1

(2π)4

∫
d4p eip·(x−y)ImΔ′F(−p2) . (22.2)
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Similarly,

1

2

〈
0
∣∣{jμ(x), jν(y)}∣∣0〉 = 1

(2π)4

∫
d4k eik·(x−y)ImΠμν(k) . (22.3)

Inserting an electron–positron pair state into the intermediate state on the left-hand
side, we compute to lowest order in perturbation theory:

〈
0
∣∣{jμ(x), jν(y)}∣∣0〉 = e2Tr

[
γμS

(+)(x − y)γνS̃
(+)(x − y)T]+ (x � y,μ � ν) ,

(22.4)

where

S(+)(x) = (γ · ∂ −m)Δ(+)(x) , S̃(+)(x) = (γ T · ∂ +m)Δ(+)(x) . (22.5)

Inserting this and taking the Fourier transform,

Tr[. . .] = − 1

(2π)6

π

3

∫ ∞
4m2

dκ2

√
1− 4m2

κ2

(
2+ 4m2

κ2

)
(22.6)

×
∫

d4k eik·(x−y)(δμνk2 − kμkν)θ(k0)δ(k
2 + κ2) .

Therefore,

ImΠμν(k) = e2

3(2π)2
(kμkν − δμνk

2)

∫ ∞
4m2

dκ2

√
1− 4m2

κ2

(
1+ 2m2

κ2

)
πδ(k2 + κ2) .

(22.7)

If we set

Πμν(k) = (kμkν − δμνk
2)Π(−k2) , ImΠ(−k2) = πσ(−k2) , (22.8)

then

σ(κ2) = e2

12π2

√
1− 4m2

κ2

(
1+ 2m2

κ2

)
θ(κ2 − 4m2) . (22.9)

We now compute Π(−k2) using the dispersion relation. Using the renormalization
condition Π(0) = 0 and the dispersion relation in which one subtraction has been
carried out,

Π(−k2)−Π(0) =
∫

dκ2
(

1

k2 + κ2 −
1

κ2

)
σ(κ2) , (22.10)
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or

Π(−k2) = −k2
∫

dκ2

κ2

σ(κ2)

k2 + κ2 − iε
. (22.11)

As a result, the vacuum polarization has been computed without any indefiniteness.
Inserting (22.11) into (22.8), one obtains the Fourier transform of the following
two-point function:

〈
0
∣∣T ∗[jμ(x), jν(y)]∣∣0〉 . (22.12)

We can consider the covariant product T ∗ to be defined by the dispersion formula.
In the following dispersion theory, we use the T -product in this sense. Then if we
compute (22.1) following Feynman and Dyson, we obtain zero for the absorption
part. If we differentiate (22.1) twice with respect to k2, it vanishes. The expression
in (22.1) does not have branch points for k2, so its absorption part vanishes.
Although the indefiniteness or the divergence appears only in the dispersion part, the
dispersion part can be determined uniquely from the absorption part if we compute
using the dispersion relation (22.11).

22.1.2 Goto–Imamura–Schwinger Term

The Goto–Imamura–Schwinger term [124, 125] discussed in Sect. 12.8 is an
example of something that does not arise when we use equal-time commutation
relations. It is also an example of a singularity of field operators evaluated at a
common space-time point. The Schwinger term also plays an important role in string
theory.

We now go back to the two-photon decay of the neutral meson mentioned in the
introduction to this chapter.

22.1.3 Triangle Anomaly Term

We begin with the Dirac equations in QED:

(γ · ∂ +m)ψ = ieγλAλψ , ψ̄(γ · ←−∂ −m) = −ieψ̄γλAλ . (22.13)

Combining these two equations, we obtain

∂λj
5
λ = 2mj5 , (22.14)
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Fig. 22.1 Feynman diagrams
for the calculation of the
triangle anomaly term

where

j5
λ = iψ̄γλγ5ψ , j5 = iψ̄γ5ψ . (22.15)

This equation is obtained using the classical equations of motion. In order to find
out whether it is also true in quantum theory, we choose a particular matrix element
and compare both sides. Hence, sandwiching this equation between the vacuum |0〉
and the two-photon state |k′, k′′〉, we compare both sides. Figure 22.1 shows the two
triangle diagrams that arise at the lowest order.

We define the form factors F(s) and G(s) by

〈
k′, k′′out

∣∣j5(0)
∣∣0〉 = 1√

2k′0V
√

2k′′0V
iεαβγ δe′αe′′βk′γ k′′δ F (s),

〈
k′, k′′out

∣∣j5
λ (0)
∣∣0〉 = 1√

2k′0V
√

2k′′0V
iεαβγ δe′αe′′βk′γ k′′δ (−i)(k′λ + k′′λ)G(s) ,

(22.16)

where s is the invariant mass squared in the two-photon system, defined by

s = −(k′ + k′′)2 , (22.17)

and e′ and e′′ are the polarization vectors of each photon.
The absorption or imaginary parts of these form factors can be computed

uniquely if we use either the unitarity condition or Feynman and Dyson’s method.
The controversial relation (22.14) is expressed using the form factors:

sG(s) = 2mF(s) . (22.18)

We first compute the imaginary parts. According to Kikukawa, taking α = e2/4π ,

ImF(s) = 2αm

s
ln

∣∣∣∣∣
1+√1− 4m2/s

1−√1− 4m2/s

∣∣∣∣∣ θ(s − 4m2) , (22.19)

ImG(s) = 4αm

s
ln

∣∣∣∣∣
1+√1− 4m2/s

1−√1− 4m2/s

∣∣∣∣∣ θ(s − 4m2) . (22.20)
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This implies

s ImG(s) = 2m ImF(s) , (22.21)

and (22.18) certainly holds true for the imaginary parts. Regarding the dispersion
parts, i.e., the real parts, we compute using the dispersion relations

ReF(s) = P

π

∫ ∞
4m2

ds′ ImF(s′)
s′ − s

, ReG(s) = P

π

∫ ∞
4m2

ds′ ImG(s′)
s′ − s

, (22.22)

where P stands for the Cauchy principal value. Going back to (22.18), we have

s ReG(s) = s

π

∫
ds′

ImG(s′)
s′ − s

= 1

π

∫
ds′ s

′ImG(s′)
s′ − s

− 1

π

∫
ds′ImG(s′)

= 2mReF(s)− 1

π

∫
ds′ImG(s′) . (22.23)

If (22.18) is to hold true, the integral in the second term on the right-hand side must
vanish. In fact, the computation tells us that

∫ ∞
4m2

ds′ImG(s′) = 2α . (22.24)

This is the anomalous term. If we compute the real parts from (22.22), we find

ReF(s) = α

π

m

s

⎡
⎣π2 −

(
ln

∣∣∣∣∣
1+√1− 4m2/s

1−√1− 4m2/s

∣∣∣∣∣
)2
⎤
⎦ , (22.25)

ReG(s) = 2α

π

m2

s

⎧⎨
⎩−

1

m2 +
1

s

⎡
⎣π2 −

(
ln

∣∣∣∣∣
1+√1− 4m2/s

1−√1− 4m2/s

∣∣∣∣∣
)2
⎤
⎦
⎫⎬
⎭ .

(22.26)

Introducing B(x) = E(x) ·H (x), to lowest order,

〈
k′, k′′out

∣∣B(0)
∣∣0〉 = 1√

2k′0V
√

2k′′0V
iεαβγ δe′αe′′βk′γ k′′δ . (22.27)
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Then (22.14) is modified as follows:

∂λj
5
λ = 2mj5 − 2α

π
E · H . (22.28)

22.1.4 Trace Anomaly Term

As we shall see, the derivation of the Callan–Symanzik equation is deeply related
to the trace anomaly term. To investigate this anomalous term, we shall consider a
neutral scalar theory with Lagrangian density

L = −1

2

[
(∂λϕ)

2 +m2ϕ
]− g

4!ϕ
4 . (22.29)

The energy–momentum tensor is

Tμν = − ∂L

∂ϕ,μ
ϕ,ν + δμνL , (22.30)

with trace

Tμμ = − ∂L

∂ϕ,μ

ϕ,μ + 4L

= −(∂μϕ)2 − 2m2ϕ2 − g

6
ϕ4

= −∂μ(ϕ∂μϕ)−m2ϕ2 , (22.31)

where we have used the field equation. Taking T = m2ϕ2,

T
[
Tμμ(x)ϕ(x1) . . . ϕ(xn)

] =− ∂μT
[
ϕ(x)∂μϕ(x),ϕ(x1) . . . ϕ(xn)

]
− T
[
T (x)ϕ(x1) . . . ϕ(xn)

]

+ i
n∑

j=1

δ4(x − xj )T
[
ϕ(x1) . . . ϕ(xn)

]
.

(22.32)
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We now take the Fourier transform:

〈
0
∣∣T [ϕ(x1) . . . ϕ(xn)]

∣∣0〉 (22.33)

= in−1

(2π)4(n−1)

∫
(dp)ei(p1·x1+···+pn·xn)δ4(p1 + · · · + pn)G

(n)(p1, . . . , pn) ,

〈
0
∣∣T [Tμμ(x)ϕ(x1)· · ·ϕ(xn)]

∣∣0〉 (22.34)

= in

(2π)4n

∫
(dp)d4q ei(q·x+p1·x1+···+pn·xn)δ4(q + p1 + · · · + pn)T

(n)
μμ (q;p1, . . . , pn) ,

and so on. Therefore, in the limit q →∞, Eq. (22.32) becomes

T (n)
μμ (0;p1, . . . , pn) = −T (n)(0;p1, . . . , pn)+ nG(n)(p1, . . . , pn) . (22.35)

This is called a trace identity, but in fact this equation is not true. The reason is that
it includes a product of operators at the same space-time point.

We now write down the Ward–Takahashi identity for the energy–momentum
tensor. This equation is always true:

∂

∂xμ
T
[
Tμν(x)ϕ(x1) . . . ϕ(xn)

] = i
n∑

j=1

δ4(x − xj )
∂

∂xjν
T
[
ϕ(x1) . . . ϕ(xn)

]
.

(22.36)

Taking the Fourier transform of the vacuum expectation value, we have

qμT
(n)
μν (q;p1, . . . , pn) =

n∑
j=1

(pj + q)νG
(n)(p1, . . . , pj + q, . . . , pn) . (22.37)

Differentiating this equation with respect to qμ and taking the limit q → 0,

T (n)
μν (0;p1, . . . , pn) =

[
(n− 1)+

n∑
j=1

pjν

∂

∂pjμ

]
G(n)(p1, . . . , pn) . (22.38)

Taking the trace, we obtain

T (n)
μμ (0;p1, . . . , pn) =

[
4(n− 1)+

n∑
j=1

pj · ∂

∂pj

]
G(n)(p1, . . . , pn) . (22.39)
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Since G(n) has the dimension m4−3n and is a homogeneous function of pj and m,

⎛
⎝ n∑

j=1

pj · ∂

∂pj

+m
∂

∂m
+ 3n− 4

⎞
⎠G(n)(p1, . . . , pn) = 0 . (22.40)

Combining (22.39) with (22.40), this yields

T (n)
μμ (0;p1, . . . , pn) =

(
n−m

∂

∂m

)
G(n)(p1, . . . , pn) . (22.41)

This equation will be used to derive the Callan–Symanzik equation later.

22.2 Dispersion Theory for Green’s Functions

To explain the dispersion theory for Green’s functions, we consider a neutral scalar
theory. If we introduce a set of Green’s functions {τ̄} by (11.176), this set turns out to
satisfy a generalized unitarity condition like (11.177). We introduce the dispersion
relation by picking out the part corresponding to connected diagrams in τ̄ :

τ̄ (x1, . . . , xn)conn = ρ̄(x1, . . . , xn). (22.42)

Therefore, a recursion equation similar to (11.29) holds between the sets {τ̄ } and
{ρ̄} :

τ̄ (x, x1, . . . , xn) = ρ̄(x, x1, . . . , xn)+
∑
k �=n

ρ̄(x, x ′1, . . . , x ′k)τ̄ (x ′k+1, . . . , x
′
n) ,

(22.43)

where the sum is taken over all ways to divide (x1, . . . , xn) into two sets,
(x ′1, . . . , x ′k) and (x ′k+1, . . . , x

′
n). We now take the Fourier transform of ρ̄ :

ρ̄(x1, . . . , xn) = −i

(2π)4(n−1)

∫
(dp)δ4(p1 + · · · + pn)G (p1, . . . , pn)e

i(p1·x1+···+pn·xn) .

(22.44)

Since G is a function only of the scalar product pα · pβ , we write it as G (pα · pβ).
Using the generalized unitarity condition, if G is known up to order gn, then we
can compute ImG up to order gn+1. So if there exists a way to find ReG for a
given ImG , then higher orders of G can be determined recursively. Moreover, when
we compute ImG from the generalized unitarity condition, since the phase space
volume is finite, there are no ultraviolet divergences. To compute ReG from ImG ,
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we use the following parameter dispersion relation:

ReG (pα · pβξ) = P

π

∫ ∞
−∞

dξ ′

ξ ′ − ξ
ε(ξ ′)ImG (pα · pβξ

′) , (22.45)

or

G (pα · pβξ) =
∫ ∞
−∞

dξ ′

ξ ′(1− iε)− ξ
ImG (pα · pβξ

′) , (22.46)

where pα · pβξ means that all scalar products between four-momenta should be
multiplied by ξ . Since this dispersion relation holds true for all the G , it turns out
that we have a complete set for the dispersion relation.

In addition, in order to be able to write the dispersion relation when ξ = 0 for all
the G , we must have

ReG (0) = const. , ImG (0) = 0 . (22.47)

On the other hand, a complete set for the dispersion relation for the S-matrix
element is not known. The proof of the dispersion relation (22.45) is straightforward.
Renormalized Green’s functions can be written, at all orders of perturbation theory,
in the form

G (pα · pβ) =
∫

σ(zj )dz1 . . . dzk[∑
cαβ(zj )pα · pβ +M2(zj )− iε

]N , (22.48)

where σ , c, and M are all real numbers and zj is a suitable Feynman parameter.
Using M2 ≥ 0 and setting N = 1 without loss of generality,

∫ ∞
0

dξ ′

ξ ′ − ξ
δ(cξ ′ +M2) = θ(−c) 1

cξ +M2 , (22.49a)

∫ 0

−∞
dξ ′

ξ ′ − ξ
δ(cξ ′ +M2) = −θ(c) 1

cξ +M2 . (22.49b)

Taking the difference between them, the following dispersion relation is obtained:

∫ ∞
−∞

dξ ′

ξ ′ − ξ
ε(ξ ′)δ(cξ ′ +M2) = 1

cξ +M2 . (22.50)

However, this dispersion integral sometimes diverges. This corresponds to diver-
gences in the field theory. In that case, we must implement the subtraction which
corresponds to renormalization. Furthermore, through this subtraction, interactions
are introduced in perturbation theory. Note also that the dispersion formula pre-



22.3 Subtractions in Dispersion Relations 535

sented in Sect. 22.1 can be proven using a method similar to the one above. We will
discuss subtractions in the next section.

22.3 Subtractions in Dispersion Relations

There are dispersion relations with no subtractions, with one subtraction, and with
two subtractions:

Ref (x) = 1

π

∫
dx ′

x ′ − x
Im f (x ′) (zero) , (22.51)

Ref (x) = f (a)+ x − a

π

∫
dx ′

(x ′ − a)(x ′ − x)
Im f (x ′) (one) , (22.52)

Ref (x) = f (a)+ (x − a)f ′(a)+ (x − a)2

π

∫
dx ′

(x ′ − a)2(x ′ − x)
Im f (x ′) (two) ,

(22.53)

where the integrals are Cauchy principal values and a is chosen so that Im f (a) = 0.
If subtractions are necessary, they should be introduced in such a way as to
reproduce the results in standard perturbation theory. We should choose subtraction
constants so as to determine the normalizations for Green’s functions.

In what follows, we start with a two-point function in a neutral scalar theory.
Writing G (2)(p) = G (p,−p), from the integral representation of the two-point
function, we have

G (2)(p) = −(p2 +m2)

[
1+ (p2 +m2)

∫
dκ2 σ(κ2)

p2 + κ2 − iε

]
. (22.54)

If we now replace p2 by p2ξ , the dispersion relation for ξ requires two subtractions.
Note that the subtraction conditions can be obtained immediately from the above
integral representation:

G (2) = 0 ,
∂G (2)

∂p2 = −1 , where p2 +m2 = 0 . (22.55)

In fact, these two subtractions correspond to the renormalizations for the mass and
the factor Z.

We now consider a four-point function. At the lowest order, corresponding
to (20.107),

G (4) = g . (22.56)
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Since ImG (4) = 0 at this order, we see that G (4) requires one subtraction:

ReG (4)(pα · pβξ) = G (4)(0)+ ξ

π

∫
dξ ′

ξ ′(ξ ′ − ξ)
ε(ξ ′)ImG (4)(pα · pβξ

′) .

(22.57)

As the subtraction condition, we equate G (4) at a subtraction point (s.p.) with the
renormalized coupling constant g :

G (4)(s.p.) = g , (22.58)

using (20.112) to choose the s.p. such that

pα · pβ = m2

3
(4δαβ − 1) . (22.59)

This is the same as the subtraction condition in the S-matrix theory.
We now see that a two-point function needs two subtractions regardless of the

details of the interactions. If no further subtractions are required for the other
Green’s functions, we can show that the fields become free, at least in perturbation
theory. To do this, we write the part of G (n) linear in the coupling constant as G (1).
From the unitarity condition, we can show that

ImG (n)
1 = 0 . (22.60)

According to the unitarity condition, ImG (n)
1 is higher than second order with

respect to G and G †, so at least one Green’s function becomes a free Green’s
function G0. The only Green’s function of free fields that does not vanish is a
two-point function. However, the two-point function only appears in the unitarity
condition in the form∫

d4v Δ(+)(u− v)ρ̄(v, x) = −
∫

d4v Δ(+)(u− v)KvKxΔ
′
F(v − x) . (22.61)

The Fourier transform of this expression is

δ(p2 +m2)(p2 +m2)

[
1+ (p2 +m2)

∫
dκ2 σ(κ2)

p2 + κ2 − ε

]
= 0 . (22.62)

We thus see that a two-point function never appears in the non-linear contributions
to the unitarity condition. Hence, if (22.60) holds true and there is no subtraction,
we have

ReG (n)
1 = 0 , n > 2 , (22.63)

and this reduces to a free field.
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In the Feynman–Dyson theory, propagators play a fundamental role, but in
the dispersion theory, the two-point function never appears in the middle of
computations. Other Green’s functions are determined independently of the two-
point function. However, if other Green’s functions are determined, then from the
unitarity condition, a two-point function turns out to be determined through the
spectral function σ(κ2).

22.4 Heisenberg Operators

Here we consider a Heisenberg operator A(x) and, in particular, the problems that
occur when A(x) is a product of operators at a common space-time point. We start
with the Green’s function

τ̄A(x; x1, . . . , xn) = (−i)n+1Kx1 . . .Kxn

〈
0
∣∣T [A(x)ϕ(x1) . . .ϕ(xn)]

∣∣0〉 .
(22.64)

An arbitrary matrix element of A(x) is obtained using the LSZ reduction formula.
We set the n four-momenta on the mass shell and take the Fourier transform of τ̄A,
which yields a matrix element of the form

〈
β, out
∣∣A(x)
∣∣α, in
〉
. (22.65)

If the set {τ̄A} is known, it turns out that the field operator A(x) is determined.
The unitarity condition for τ̄A is obtained along the same lines as the τ̄ case:

0 = τ̄A(x; x1, . . . , xn)+ τ̄ ∗A(x; x1, . . . , xn)

+
∑
comb

∞∑
l=0

il

l!
∫
(du)(dv)τ̄A(x; x1, . . . , xn)

×Δ(+)(u1−v1) . . .Δ
(+)(ul−vl)τ̄

∗(x ′k+1, . . . , x
′
n)

+(τ̄A→ τ̄ , τ̄ ∗ → τ̄ ∗A) . (22.66)

Since this unitarity condition is linear in τ̄A and τ̄ ∗A, we call it a linear unitarity
condition. We now write the connected part of τ̄A as ρ̄A, as in (22.43). This yields
the recursion formula

τ̄A(x; x1, . . . , xn) = ρ̄A(x; x1, . . . , xn)+
∑
comb
k �=n

ρ̄A(x; x ′1, . . . , x ′k)τ̄ (x ′k+1, . . . , x
′
n) .

(22.67)
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Taking the Fourier transform of ρ̄A,

ρ̄A(x; x1, . . . , xn) = −i

(2π)4

∫
(dp)d4qδ(p1 + · · · + pn + q) (22.68)

×ei(q·x+p1·x1+···+pn·xn)A (q;p1, . . . , pn).

The functional system {A } satisfies a dispersion relation similar to {G } :

ReA (pα · pβξ) = P

π

∫ ∞
−∞

dξ ′

ξ ′ − ξ
ε(ξ ′)ImA (pα · pβξ) . (22.69)

It is obvious that, in perturbation theory, all the A will vanish unless we introduce
a subtraction. In this case, if {G } is known, combining the linear unitarity condition
with the dispersion relation, {A } can be determined recursively. In the above
discussion, we started with the operator A and set out to determine the set {A }, but it
sometimes happens that, if we start with two conditions and determine the functional
system, that does not necessarily have a corresponding operator realization. Such a
functional system turns up when we consider the various Ward–Takahashi identities.

22.5 Subtraction Condition

When we evaluate {G } or {A }, we find that the absorption part, i.e., the imag-
inary part, does not include divergences, due to the unitarity condition. Thus, if
divergences appear in field theory, this happens in the dispersion part, i.e., the
real part. We compute higher orders recursively by carrying out subtractions for
an n-point function G (n), the number of these subtractions being determined in
advance. If a dispersion integral always converges at any higher order due to a
previously determined number of subtractions, then that theory is renormalizable.
Otherwise, if the higher the order, the more subtractions must be made, then it is a
non-renormalizable theory.

In the following, we determine the number of subtractions ensuring renormaliz-
ability within the framework of perturbation theory. For this purpose, we make the
following assumption:

Assumption For a large value of |ξ | and for almost all {pj }, we have

G (n)(pα · pβξ) ∼ ξc(n)/2 , (22.70)

where c(n) is an index independent of {pj }.
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This is true in the Feynman–Dyson theory within the perturbative approach. The
meaning of the above equation for an arbitrary positive ε is

lim
ξ→∞

G (n)(pα·pβξ)

ξc(n)/2+ε = 0 , lim
t→∞

G (n)(pα · pβξ)

ξc(n)/2−ε . (22.71)

Furthermore, (22.70) is sometimes written formally as

G (n)(pα · pβ) ∼ pc(n) . (22.72)

To determine c(n), we use the unitarity condition:

0 = ρ̄(x1, . . . , xn)+ ρ̄∗(x1, . . . , xn)

+
∑
comb

′
∞∑
l=1

il

l!
∫

(du)(dv)ρ̄(x ′1, . . . , x ′k, u1, . . . , ul)

×Δ(+)(u1 − v1) . . . Δ
(+)(ul − vl)ρ̄

∗(x ′k+1, . . . , x
′
k, v1, . . . , vl)

+ terms ≥ third order in ρ and ρ∗ . (22.73)

An exponent of ImG (n) never exceeds the order itself. Exponents of the first and
second terms are given by the exponent of ImG (n), while exponents of other terms
are expressed in terms of those of G and G ∗. Therefore,

c(n)+ 4(n− 1) ≥ max
[
c(k+ l)+ c(n− k+ l)+ 4(n+ 2l− 2)− 6l

]
. (22.74)

Inequalities generated by terms higher than the third order hold true automatically
if the above inequality does. Furthermore, terms other than c(n) are generated from
kinematic factors, and since there is no two-point function,

k + l > 2 , n− k + l > 2 . (22.75)

We introduce the notation

d(n) = c(n)+ n− 4 . (22.76)

Then, the above inequality can be written in the form

d(n) ≥ max
[
d(k + l)+ d(n− k + l)

]
. (22.77)

This immediately implies the necessary condition

d(n) ≤ 0 . (22.78)
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Checking the case with non-negative c(n), in the ϕ4-theory, from the lowest order
result,

c(2) ≥ 2 , c(4) ≥ 0 , (22.79)

d(2) ≥ 0 , d(4) ≥ 0 . (22.80)

Combining this with the necessary condition (22.78), for even n,

d(n) = 0 , or c(n) = 4− n . (22.81)

This corresponds to a renormalizable theory. In contrast, in the case of non-
renormalizable theories such as the ϕ6-theory, even at the lowest order, it turns out
that

c(2) ≥ 2 , c(6) ≥ 0 , or d(2) ≥ 0 , d(6) ≥ 2 , (22.82)

so there is no solution consistent with (22.78).
On the other hand, for super-renormalizable theories such as the ϕ3-theory,

d(2) ≥ 0 , d(3) ≥ −1 . (22.83)

Looking more closely, we find that d(n) = 0 does not hold true, but

d(n) = 2− n . (22.84)

In the discussion above, we have considered scalar theories, but extensions are
easy. For instance, in the pion–nucleon system, the function τ̄ is given by

(−i)nKx1 . . .KxnDy1 . . .Dyl D̃z1 . . . D̃zl (22.85)

×〈0∣∣T [ϕ(x1) . . . ϕ(xn)ψ(y1) . . .ψ(yl)ψ̄(z1) . . . ψ̄(zl)]
∣∣0〉,

where

D = γ · ∂ +M , D̃ = γ T · ∂ −M . (22.86)

The contraction functions for the nucleon are

〈
0
∣∣ψ in(x)ψ̄ in(y)

∣∣0〉 = −iS(+)(x − y) = −i(γ · ∂ −M)Δ(+)(x − y) , (22.87)〈
0
∣∣ψ̄ in(x)ψ in(y)

∣∣0〉 = −iS̃(+)(x − y) = −i(γ T · ∂ +M)Δ(+)(x − y) .

(22.88)
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Setting m = 2l, we introduce the exponent of G (n,m):

G (n,m) ∼ pc(n,m) . (22.89)

Using the so-called regular dimensions 1 and 3/2 of ϕ and ψ or ψ̄ , we define

d(n,m) = c(n,m)+ n+ 3

2
m− 4 . (22.90)

The inequality corresponding to (22.77) is then

d(n,m) ≥ max
[
d(k + l, k′ + l′)+ d(n− k + l, m− k′ + l′)

]
. (22.91)

From this inequality, we obtain

d(n,m) ≤ 0 , or c(n,m) ≤ 4− n− 3

2
m . (22.92)

We consider the following two kinds of renormalizable interaction known in the
pion–nucleon system:

iψ̄γ5ψ · ϕ , ϕ4 , (22.93)

where the isospin has been omitted. In addition to the conditions arising from the
two-point function, viz.,

c(2, 0) ≥ 2 , c(0, 2) ≥ 1 , (22.94)

we obtain the conditions

c(1, 2) ≥ 0 , c(4, 0) ≥ 0 . (22.95)

Again, the unique solution is given by

d(n,m) = 0 . (22.96)

As we see above, it can be understood that in typical renormalizable theories, we
always obtain d = 0. For a proof of renormalizability, in addition to this, we have
to prove that the exponents of the real and imaginary parts of G (n) are equal. This
requires detailed analyses which will be omitted here.

In the above, we considered the set {G } of typical Green’s functions. We now
consider {A } :

A (n,m)(pα · pβξ) ∼ ξa(n,m)/2 . (22.97)
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Using the linear unitarity condition (22.66) corresponding to (22.91), we obtain

b(n,m) ≥ max
[
b(k + l, k′ + l′)+ d(n− k + l, m− k′ + l′)

]
, (22.98)

where

b(n,m) = a(n,m)+ n+ 3

2
m− 4 . (22.99)

Therefore, in a renormalizable theory characterized by d = 0, the solution (22.98)
is

b(n,m) = b . (22.100)

This b does not depend on the values of n and m. It is called an index of the set {A },
and is determined by perturbation theory.

For instance, in a scalar theory, if we consider

A(x) = 1

2

[
ϕ(x)
]2

, (22.101)

then at the lowest order,

A (2) = 1 . (22.102)

Hence, it turns out that a(2) = 0 and b = −2. For a polynomial of field operators,
it is given by

b = (dimension ofA)− 4 . (22.103)

Although the dispersion theory is formally elegant, the Feynman–Dyson theory
is more useful for practical purposes. However, since there exist neither divergences
nor indefiniteness, in a delicate issue such as derivation of the anomalous term, it
gives a unique solution, and that is eminently useful. We thus give a theorem which
provides a basis for this idea in the ϕ4-theory:

Theorem 22.1 We assume that four sets of functions {A }, {B}, {C }, and {D} in
ϕ4-theory all satisfy the linear unitarity condition, that the index is 0 or−2, and that
they have a scalar transformation property. Then there exists a linear dependence
relation among these four sets of functions.

To prove this theorem, we introduce the following S (n) :

S (n) = aA (n) + bB(n) + cC (n) + dD (n) . (22.104)
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In general, the index of {A } is 0. It satisfies the linear unitarity relation. If we add
the following three subtraction conditions, then this set is uniquely determined:

S (2)(0;p,−p) , ∂

∂p2 S
(2)(0;p,−p) forp2 +m2 = 0 ,

S (4)(0;p1, . . . p4) for pα · pβ = m2

3
(1− 4δαβ) . (22.105)

Since these subtraction constants are linear in a, b, and c, if we choose their ratio
properly, all three of the above constants can be set to zero. However, the values of
A , . . . at the above subtraction point are assumed to be already known. If all the
subtraction constants are zero, from the linear unitarity condition and the dispersion
formula, all members of {S } must vanish, i.e., if we determine the ratios of a, b, c,
and d , according to the above argument, we must have

S (n) = aA (n) + bB(n) + cC (n) + dD (n) = 0 , (22.106)

which proves the existence of the linear dependence relation.

22.6 Anomalous Trace Identity

We have already presented the Ward–Takahashi identity for the energy–momentum
tensor (22.37) in Sect. 22.1. This can be considered as a defining identity for Tμν . We
now rewrite it for Green’s functions in which the legs of propagators are removed:

qμT
(n)
μν (q;p1, . . . , pn) (22.107)

=
n∑

j=1

pj
2 +m2

(pj + q)2 +m2 − iε
(pj + q)νG

(n)(p1, . . . , pj + q, . . . , pn) ,

where q + p1 + · · · + pn = 0. We may take this to define {Tμν}. If all the pj are
on the mass shell, then for almost all values of q , i.e., when the denominator on the
right-hand side does not vanish, the right-hand side does vanish:

〈
β, out
∣∣∂μTμν(x)

∣∣α, in
〉 = 0 . (22.108)

We thus obtain the conservation law

∂μTμν = 0 . (22.109)
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Moreover, Eq. (22.107) implies that the index of {Tμν} is zero, so

a(n) = c(n) = 4− n , (22.110)

and for n = 2, the quantity T (2)
μν can be determined by solving (22.107):

T (2)
μν (q;p1, p2)= δμν(p1 · p2 −m2)− (p1μ · p1ν+p2μp1ν)+ 1

2
(p1

2+m2)(p2
2+m2)

×
[
δμν

∫
dκ2σ(κ2)

(
1

p1
2 + κ2 − iε

+ 1

p2
2 + κ2 − iε

)

+ kμkν

∫
dκ2 σ(κ2)

(p1
2 + κ2 − iε)(p2

2 + κ2 − iε)

]
+ S(1)

μν F +S(2)
μν G ,

(22.111)

where q = −(p1 + p2) and k = p1 − p2, while S
(1)
μν and S

(2)
μν are defined by

S(1)μν = q2δμν − qμqν ,

S(2)μν = (q · k)2qμqν − (q2)2kμkν − q2(q · k)(qμkν + qνkμ) , (22.112)

and satisfy qμS
(i)
μν = 0. Therefore, for a large value of ξ ,

F(ξ) ∼ ξ0 , G(ξ) ∼ ξ−2 . (22.113)

Thus, in order to determine {Tμν} uniquely, we must give a subtraction condition
for F . However, this arbitrariness does not remain for q = 0.

Since we have T (4)
μν ∼ ξ0 for n = 4, even if a tensor such as Sν appears, its

coefficient does not require subtraction. Now, taking F �= 0, this arbitrariness is
transmitted to a multi-point function via the linear unitarity condition. So in order
to investigate the properties of this term, we consider the operator T = m2ϕ2.
Considering the corresponding set of functions

T (n)(q;p1, . . . , pn) , (22.114)

its index is −2, so the unique subtraction is completely determined by

T (2)(0;p1, . . . , pn) = 2m2 , where p2 +m2 = 0 . (22.115)

Thus, the set starting with T (2) should be proportional to the set starting with F :

F (n)(q;p1, . . . , pn) = aT (n)(q;p1, . . . , pn) . (22.116)
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Therefore, assuming that {Tμν} is one of the solutions satisfying the Ward–
Takahashi identity and the linear unitarity condition, we obtain the following
solution with the same property:

T (n)
μν (q;p1, . . . , pn)+ a(q2δμν − qμqν)T

(n)(q;p1, . . . , pn) . (22.117)

If we express this in terms of operators, it yields the generalization

Tμν(x)→ Tμν(x)+ λ(δμν�− ∂μ∂ν)ϕ
2(x) . (22.118)

This arbitrariness has been used by Callan et al. to introduce the improved energy–
momentum tensor [195].

However, this arbitrariness disappears for q = 0, and (22.38) holds. We have
already introduced two sets of Green’s function systems, viz., {Tμν} and T . We
now introduce a third set:

W (n)(q;p1, . . . , pn) =
∑
f

pj
2 +m2

(pj + q)2 +m2 − iε
G (n)(p1, . . . , pj + q, . . . , pn) .

(22.119)

This set is the Fourier transform of the Green’s function

(−i)nKx1 . . .Kxn

∑
j

δ4(x − xj )
〈
0
∣∣T [ϕ(x1) . . . ϕ(xn)]

∣∣0〉 . (22.120)

It is straightforward to check that this set satisfies the linear unitarity condition.
However, assuming that all the qj are on the mass shell for q �= 0, W (n) vanishes
and hence does not correspond to any operator. This was discussed at the end of
Sect. 22.4. This is a set of functions which appear through the connection with the
Ward–Takahashi identity.

We now investigate what happens if q → 0. Equation (22.119) is a highly
singular function, since the denominator and the numerator cancel. In this case,

W (n)(0;p1, . . . , pn) = nG (n)(p1, . . . , pn) . (22.121)

This function neither vanishes on the mass shell nor satisfies the linear unitarity
condition. Moreover, in this case, similar difficulties arise for other sets. This is
caused by the pole

[
(pj + q)2 +m2 − iε

]−1
. (22.122)

In the case of {Tμν} and {T }, this pole appears in the diagram when a two-point
function is connected to another part by a propagator, as shown in Fig. 22.2. If pj

2+
m2 = 0 for q = 0, then (22.122) diverges. This is the reason why in field theory a
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Fig. 22.2 Diagram involving
the pole (22.122), when a
two-point function is
connected to another part by a
propagator

one-particle irreducible function is often introduced instead of a connected Green’s
function. To ensure that there is no pole of the form (22.122) for q = 0 even on the
mass shell, it turns out that we must take S (n) to be a suitable linear combination
of T (n)

μν , T (n), and W (n), and in the vicinity of p2 +m2 = 0, impose the relation

S (2)(0;p,−p) = O
(
(p2 +m2)2) . (22.123)

We thus take S (n) to have the form

S (n) = T (n)
μμ +T (n) − dϕ(g)W

(n) . (22.124)

We now determine the coefficient dϕ(g) which ensures that the condition (22.123)
is satisfied. In addition, we assume that the above S (n) is defined only for q = 0.
We thus expand T (2)

μμ , T (2), and W (2) as power series in (p2 +m2) when q = 0. If

we use (22.111) for T (2)
μμ , then

T (2)
μμ (0;p,−p) = −2m2 − 2(p2 +m2)+O

(
(p2 +m2)2) ,

G (2)(p,−p) = −(p2 +m2)+O
(
(p2 +m2)2) , (22.125)

T (2)(0;p,−p) = 2m2 − 2γϕ(g)(p2 +m2)+O
(
(p2 +m2)2) ,

where γϕ(g) must be determined by computing higher order terms in perturbation
theory. Therefore, in order to satisfy (22.123), we should choose the coefficient
dϕ(g) as follows:

dϕ(g) = 1+ γϕ(g) . (22.126)

Here, γϕ(g) and 1 are called the anomalous dimension of ϕ and the holomorphic
dimension, respectively. For a general n,

S (n) = T (n)
μμ (0;p1, . . . pn)+ T (n)(0;p1, . . . , pn)− ndϕ(g)G

(n)(p1, . . . , pn) .

(22.127)

It turns out that this set satisfies the linear unitarity condition. Moreover, for n = 2,
the subtraction condition is

S (2)(p,−p) = 0 ,
∂

∂p2 S
(2)(p,−p) = 0 , for p2 +m2 = 0 . (22.128)
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For n = 4, using the subtraction point (22.59), we have to use the result of the
computation

T (4)
μμ (0; s.p.)+T (4)(0; s.p.)− 4dϕ(g)G

(4)(s.p.) ≡ β(g) . (22.129)

This determines the subtraction condition.
To obtain the linear dependence relation, we introduce another set of functions:

{
∂

∂g
G (n)(p1, . . . , pn)

}
. (22.130)

Differentiating the non-linear unitarity condition for G with respect to g, it can be
shown that the above set satisfies the linear unitarity condition as well. Furthermore,
for p2 +m2, the subtraction condition is

∂

∂g
G (2)(p,−p) = 0 ,

∂

∂p2

[
∂

∂g
G (2)(p,−p)

]
= 0 , (22.131)

∂

∂g
G (4)(s.p.) = 1 . (22.132)

Comparing {S } with {∂G /∂g}, we see that they are proportional to each other:

S (2)(p1, . . . , pn) = β(g)
∂

∂g
G (n)(p1, . . . , pn) . (22.133)

This is an example of the linear dependence relation mentioned in the previous
section. The four sets and their indices are

{Tμν} , {T } , {W } ,
{

∂

∂g
G

}

0 −2 0 0

(22.134)

If we express the relation obtained above by a Green’s function without removing
the legs of the propagators, we obtain

T (n)
μμ (0;p1, . . . , pn)+ T (n)(0;p1, . . . , pn)− ndϕ(g)G

(n)(p1, . . . , pn) (22.135)

= β(g)
∂

∂g
G(n)(p1, . . . , pn) .

This is called an anomalous trace identity. Comparing this with the incor-
rect (22.35), it should be clear what kinds of anomalous terms have been generated.



548 22 Anomalous Terms and Dispersion Theory

Furthermore, combining with (22.41),

[
m

∂

∂m
+ β(g)

∂

∂g
+ nγϕ(g)

]
G(n)(p1, . . . , pn) = T (n)(0;p1, . . . , pn) .

(22.136)

This is nothing but the Callan–Symanzik equation given by (20.136). We thus
see that, although this equation has been derived from unrenormalized divergent
quantities, it can be derived solely from finite fixed quantities. Moreover, in this
method, anomalous terms are generated without any ambiguities, so it is a good
approach when discussing more delicate issues.

22.7 Triangle Anomaly Terms

In the last section, we investigated the anomalous trace identity. Another typical
anomalous term is the triangle anomaly term. We shall now investigate this
anomalous term.

We first introduce the unrenormalized operators

A
(0)
λ = iψ̄(0)γλγ5ψ

(0) , P (0) = iψ̄(0)γ5ψ
(0) , S(0) = ψ̄(0)ψ(0) , (22.137)

C
(0)
λ = i

4
ελαβγ φ

(0)
α F

(0)
βγ , B(0) = ∂λC

(0)
λ = E(0) ·H (0) ,

where we have used φ
(0)
λ for the potential of the electromagnetic field since

A
(0)
λ stands for an axial vector current. The triangle anomaly terms appear in the

renormalized equation

∂λ(Aλ − aCλ) = 2mP , (22.138)

a = − e2

2π2 , (22.139)

where (22.139) is the lowest order result. However, assuming that these operators are
renormalized properly, this result becomes strict. This is the Adler–Bardeen theorem
[196]. We shall also prove this theorem.

We first express (22.138) using Green’s functions:

∂λ
[
A
(n,m)
λ − aC

(n,m)
λ

] = 2mP(n,m) +W(n,m) , (22.140)
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where these Green’s functions are defined by

A
(n,m)
λ (w; x . . . y . . . z . . .) = 〈0∣∣T [Aλ(w)φ(x) . . .ψ(y) . . . ψ̄(z) . . .]∣∣0〉 .

(22.141)

Here n is the number of fields φ and m is the number of fields ψ and ψ̄ . Additionally,

W(n,m)(w; x . . . y . . . z . . .) = −
∑
j

δ4(w − yj )(γ5)jG
(n,m)(x . . . y . . . z . . .)

(22.142)

−
∑
j

δ4(w − zj )G
(n,m)(x . . . y . . . z . . .)(γ5)j ,

with

G(n,m)(x . . . y . . . z . . .) = 〈0∣∣T [φ(x) . . .ψ(y) . . . ψ̄(z) . . .]∣∣0〉 . (22.143)

Moreover, in order to chop the legs off the propagators, we multiply K , D, D̃, and
so on. Here, D and D̃ are given by (22.86) and K is given by

Kμν(∂) = (δμν�− ∂μ∂ν)+ 1

α
∂μ∂ν . (22.144)

This defines Green’s functions like the ones in (22.68). For instance,

(−i)nKx . . . Dy . . . D̃z . . .
〈
0
∣∣T [P (w)φ(x) . . .ψ(y) . . . ψ̄(z) . . .]∣∣0〉 (22.145)

= 1

(2π)4(n+m)

∫
(dk)(dp)(dp̄)δ4(q + k + · · · + p + · · · + p̄ + · · · )

× exp
[
i(q ·w + k · x + · · · + p · y + · · · + p̄ · z + · · · )]

×P(n,m)(q; k . . . p . . . p̄ . . .) .

Equation (22.140) then becomes

iqλ
[
A (n,m)

λ − aC (n,m)
λ

] = 2mP(n,m) +W (n,m) . (22.146)

22.7.1 Renormalization Condition

We now investigate several kinds of renormalization condition, i.e., normalization,
for Green’s functions.
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The Set {P}

In this case, it can be shown using perturbation theory that the order of divergence
is given by

d (P) = 3− n− 3

2
m . (22.147)

From the invariance under charge conjugation, we see that d(P) is non-negative
only for the channels (0, 2) and (2, 0). We thus expand P(0,2) as follows:

P(0,2)(q;p, p̄) = (iγ5)P
(0,2)
1

+(ip · γ +m)(iγ5)P
(0,2)
2 + (iγ5)(−ip̄ · γ +m)P̃(0,2)

2

+i(p · γ +m)(iγ5)(−ip̄ · γ +m)P(0,2)
3 . (22.148)

Then P1 and P3 are invariant under charge conjugationp � p̄, while P2 and P̃2
are interchanged by this operation. Since P(0,2) diverges logarithmically overall,
only P1 requires renormalization. We choose the subtraction point such that

q = 0 , p2 +m2 = p̄2 +m2 = 0 , (22.149)

and we choose the subtraction condition

P(0,2)
1 (s.p.)+ 2mP(0,2)

2 (s.p.) = 1 . (22.150)

Usually, we choose P(0,2)
1 (s.p.) = 1, but in that case the Adler–Bardeen theorem

does not hold. Renormalizing as in (22.150), in the vicinity of the mass shell,

P(0,2)(0;p,−p) = iγ5
[
1+O(p2 +m2)

]
. (22.151)

This coincides with the renormalization condition given by Adler and Bardeen.
In the channel (2, 0), a linear divergence is expected. We expand as

P(2,0)
ρσ (q; k1, k2) = iερσαβ(k1)α(k2)βP

(2,0)
1 . (22.152)

Here ρ and σ are vector indices. Written like this, since P(2,0)
1 goes as p−1, there

is no divergence and no renormalization is necessary.
Therefore, only the channel (0, 2)1 requires subtraction for P , and since

this subtraction condition determines its normalization in this case, it becomes a
multiplicative renormalization.
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The Set {W }

This set is typical of the Ward–Takahashi identity and has the property that it
vanishes if all the pj except q are on the mass shell. In this case, for other Green’s
functions, for instance for P , this becomes a matrix element of the operator P , but
vanishes for W . The definition immediately implies the following:

W (0,2)
1 (s.p.) = 0 , (22.153)

W (0,2)
2 (s.p.) = W̃

(0,2)
2 (s.p.) = −1 . (22.154)

These give the subtraction condition. In the channel (2, 0),

W (2,0) = 0 . (22.155)

The Set {Aλ}

Aλ also has the same index as P . In the channel (0, 2),

A (0,2)
λ (q;p, p̄) = (iγλγ5)A

(0,2)
1

+(ip · γ +m)(iγλγ5)A
(0,2)

2 + (iγλγ5)(−p̄ · γ +m) ˜A (0,2)
2

+(ip · γ +m)(iγλγ5)(−ip̄ · γ +m)A (0,2)
3 + qλγ5A

(0,2)
4

+(ip · γ +m)(qλγ5)A
(0,2)

5 + (qλγ5)(−ip̄ · γ +m)Ã
(0,2)
5

+(ip · γ +m)(qλγ5)(−ip̄ · γ +m)A (0,2)
6 . (22.156)

Only {A (0,2)
1 } requires subtractions. The subtraction condition is

A (0,2)
1 (s.p.) =P(0,2)

1 (s.p.) . (22.157)

Taking into account the bosonic symmetry, the expansion in the channel (2, 0) is

A (2,0)
λρσ (q; k1, k2) = ερσαβ(k1)α(k2)β

[
(k1)λA

(2,0)
1 + (k2)λ ˜A (2,0)

1

]
+[ελραβ(k1)σ (k1)α(k2)β + (k1 · k2)ελρσα(k1)α

]
A (2,0)

2

−[ελσαβ(k2)ρ(k1)α(k2)β + (k1 · k2)ελρσα(k2)α
] ˜A (2,0)

2

+[ελραβ(k2)σ (k1)α(k2)β + k2
2ελρσα(k1)α

]
A (2,0)

3

−[ελσαβ(k1)ρ(k1)α(k2)β + k1
2ελρσα(k2)α

] ˜A (2,0)
3

+(k1
2 − k2

2)ελρσα(k1 + k2)αA
(2,0)

4

+ελρσα(k1 − k2)αA
(2,0)

5 . (22.158)
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Note that Aj and ˜Aj are mapped to one another for j = 1, 2, 3, under the
exchange k1 � k2. Here, A (2,0) is expected to diverge linearly. Looking at the
total coefficients, we see that only A5 requires subtractions. For the gauge invariant
Aλ, we have

(k1)ρA
(2,0)
λρσ = (k2)σA

(2,0)
λρσ = 0 . (22.159)

From this, we obtain

A (2,0)
4 = A (2,0)

5 = 0 . (22.160)

Hence, in this channel, subtractions are not required. The only subtraction condition
appears in (2, 0)1, whence it finally becomes a multiplicative renormalization.

The Set {Cλ}

Since {Cλ} is a completely new operator, to determine the renormalization condition,
we choose a perturbation theory at the lowest order as a guide. Because the index
is the same as that of {Aλ}, if we first consider the channel (0, 2), it vanishes at the
lowest order, so we choose the renormalization condition

C (2,0)
1 (s.p.) = 0 . (22.161)

Next, in the channel (2, 0), the lowest order computation is

C (2,0)
λρσ =

1

2
ελρσα(k1 − k2)α . (22.162)

We thus choose (22.149) as the subtraction point and the renormalization condition

C (0,2)
5 (s.p.) = 1

2
. (22.163)

The component above does not disappear, because Cλ is not gauge invariant. After
all, there are two renormalization conditions for Cλ, viz., (22.161) and (22.163),
and the renormalization is not multiplicative. Instead, renormalizations by linear
transformations among operators are required. As given in (20.156), they have the
form

A
(0)
λ = ZAAλ , C

(0)
λ = ZCCλ + zAλ . (22.164)
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The Set {D}

In the Ward–Takahashi identity (22.146) for triangle anomaly terms, Aλ always
appears in the form

D (n,m) = iqλA
(n,m)
λ . (22.165)

Its power is

d(D) = 4− n− 3

2
m . (22.166)

Thus, (2, 0) yields linear divergences, while (0, 2)1 and (0, 2)2 require subtractions.
From the subtraction condition (22.157) for {Aλ},

D (0,2)
1 (s.p.) = 2mP(0,2)

1 (s.p.) , (22.167)

D (0,2)
2 (s.p.) = D̃

(0,2)
2 (s.p.) = −P(0,2)

1 (s.p.) . (22.168)

Similarly,

D (2,0)
1 (s.p.) = 0 . (22.169)

The Set {B}

In this case, Cλ also appears in (22.146) in the form

B(n,m) = iqλC
(n,m)
λ . (22.170)

The subtraction conditions are obtained from (22.161) and (22.163) as

B(0,2)
1 (s.p.) = 0 , B(0,2)

2 (s.p.) = B̃(0,2)
2 (s.p.) = 0 , (22.171)

B(2,0)
1 (s.p.) = 0 . (22.172)

The Set {S }

Although the scalar S does not appear in the Ward–Takahashi identity, it appears in
the Callan–Symanzik equation, so we give its subtraction conditions. In the channel
(0, 2),

S (0,2)(q;p, p̄) = S (0,2)
1 + (ip · γ +m)S (0,2)

2 + (−ip̄ · γ +m)S̃ (0,2)
2

+(ip · γ +m)(−ip̄ · γ +m)S (0,2)
3 . (22.173)
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Thus, taking (22.149) as a subtraction point, the subtraction condition is

S (0,2)
1 (s.p.) = 1 . (22.174)

In the channel (2, 0),

S (2,0)
ρσ (q; k1, k2) =

[
(k1 · k2)δρσ − (k1)ρ(k2)σ

]
S (2,0)

1 , (22.175)

and S (2,0)
1 does not require subtractions.

Since the operators appearing in (22.146) have dimension at most four, their
indices are at most zero. The channels which are expected to require subtractions
are

(0, 2)1 , (0, 2)2 , (2, 0)1 , (4, 0) , (1, 2) .

The first three channels have already been analyzed. Moreover, we see that
subtractions are not in fact necessary in (4, 0) because of the gauge invariance. In
the channel (1, 2), if we introduce the set

V (n,m) = [2mP(n,m) +W (n,m)
]
q=0 , (22.176)

although we have not discussed it here, the Kroll–Ruderman theorem [197] implies
that

ū(p)V (1,2)
λ (k, p, p̄)u(p) = 0 , k = 0 , p2 +m2 = 0 , (22.177)

where λ is an index of the electromagnetic potential. From this, V (n,m) can be
expanded in terms of quantities which vanish for q = 0. The right-hand side
of (22.146) is of course proportional to qλ. If we examine its coefficient, we see
that subtractions are not necessary.

We can therefore apply the theorem given at the end of Sect. 22.5 in this case
as well. We investigate the value at each subtraction point of the following linear
combination:

T (n,m) = D (n,m) − aB(n,m) − 2mP(n,m) −W (n,m) . (22.178)

Hence,

T (0,2)
1 (s.p.) = 2mP(0,2)

1 (s.p.)− 0− 2mP(0,2)
1 (s.p.)− 0 = 0 , (22.179)

T (0,2)
2 (s.p.) = −P(0,2)

1 (s.p.)− 0− 2mP(0,2)
2 (s.p.)− (−1) = 0 , (22.180)

T (2,0)
1 (s.p.) = 0− a − 2mP(2,0)

1 (s.p.)− 0 = 0 , (22.181)
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where (22.181) effectively defines the coefficient a :

a = −2mP(2,0)
1 (s.p.) . (22.182)

In this way, all the subtraction constants vanish, and from the theorem in Sect. 22.5,

T (n,m) = 0 . (22.183)

This is the proof of (22.146). Thus, it turns out that (22.138) also holds.

22.7.2 Ward–Takahashi Identity for Cλ

From (22.164), we obtain

Cλ = −zZ−1
C Aλ + i

4
Z−1
C Z3ελαβγφαFβγ . (22.184)

Combining the Ward–Takahashi identity (12.190) in QED with the equation above,
we find

∂μKμρ(∂x)
〈
0
∣∣T [φρ(x)φσ (y)Cλ(z)]

∣∣0〉 (22.185)

= 1

2
Z−1
C Z3ελαβγ

∂

∂xα
δ4(x − z)

∂

∂yβ
G(2,0)

σγ (y − z) ,

where G(2,0) is the Green’s function for the electromagnetic field. We note that,
using the renormalization condition (22.163),

Z−1
C Z3 = 1 , or ZC = Z3 , (22.186)

and the right-hand side of (22.185) is also simplified using this equation.

22.7.3 Proof of the Adler–Bardeen Theorem Using
the Callan–Symanzik Equation

Recall (20.166) in which the mass-insertion terms are introduced for Green’s
functions. We now do the same thing for QED. For example,

A(n,m)(w; x . . . y . . . z . . . : K) (22.187)

= 〈0∣∣T [A(w)φ(x) . . .ψ(y) . . . ψ̄(z) . . . exp
[
− iKm

∫
d4uS(u)

]]∣∣0〉 .
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The Callan–Symanzik equation is then

[
D̃ + γ (n,m) + γA

]
A(n,m)(. . . : K) = 0 . (22.188)

Here, γA is the anomalous dimension of A :

D̃ = m
∂

∂m
+ β(e)

∂

∂e
− 2αγph(e)

∂

∂α
−
{

1+ [1− γS(e)
]
K
} ∂

∂K
. (22.189)

Here, for A, we use S, P , Aλ, W , and so on. From the definition,

γW = 0 . (22.190)

Moreover, for Cλ, Eq. (20.158) implies

[
D̃ + γ (n,m) + γC

]
C
(n,m)
λ (. . . : K)+ γMA

(n,m)
λ (. . . : K) = 0 . (22.191)

The quantity W(n,m) was originally generated by the equal-time commutation
relations between (A0 − aC0) and ψ , ψ̄ . If there is a mass-insertion term, the
commutator of (A0 − aC0) and S is generated. This is proportional to P , and if
we take its proportionality coefficient as b, then (22.140) generalizes to

∂λ
[
A
(n,m)
λ (. . . : K)− aC

(n,m)
λ (. . . : K)

]
(22.192)

= 2m(1+ bK)P (n,m)(. . . : K)+W(n,m)(. . . : K) .

Similarly, the generalization of (22.185) is

∂μKμρ(∂x)C
(2,0)
λρσ (x, y, z : K) = 1

2
ελαβγ

∂

∂xα
δ4(x − z)

∂

∂yβ
G(2,0)

σγ (y − z : K) .

(22.193)

Multiplying (22.192) by (D̃ + γ (n,m)), a linear combination of {∂λAλ}, {∂λCλ}, and
{P } is obtained once again, and {W } disappears. Without {W }, the remaining three
sets are linearly independent, so all coefficients turn out to disappear. From this, we
obtain

(
β

d

de
− γC

)
a = 0 , (22.194)

γA = aγM , (22.195)

b = 1− γP , (22.196)
(
β

d

de
+ γS − γP

)
b = 0 . (22.197)
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In particular, combining the last two equations, (20.164) is reproduced. Alterna-
tively,

β
d

de
γP = (1− γP )(γS − γP ) . (22.198)

We combine (22.193) with the two equations

(D̃ + 2γph)G
(2,0)
σγ (y − z : K) = 0 (22.199)

and

(D̃ + 2γph + γC)C
(2,0)
λρσ (x, y, z : K)+ γMA

(2,0)
λρσ (x, y, z : K) = 0 . (22.200)

We thus multiply (22.200) by the differential operator

∂μKμρ(∂) = 1

α
�∂ρ . (22.201)

Hence,

(D̃ + γC)∂μKμρ(∂x)C
(2,0)
λρσ (x, y, z : K) = 0 . (22.202)

According to (22.193), since this should be equal to (22.199), we have

γC = 2γph . (22.203)

Hence, by (20.152), we have β = eγph, and (22.194) simplifies to

(
e
d

de
− 2

)
a = 0 . (22.204)

Therefore, the value of a is strictly given by the lowest order in perturbation theory:

a = − e2

2π2 , (22.205)

and all higher order corrections disappear. This is the Adler–Bardeen theorem. This
proof was given by Higashijima et al. [198].

As we saw above, divergences and indefiniteness do not appear explicitly in the
dispersion theory, so it is suitable for treating the delicate issue of anomalous terms.

Regarding these terms, an extremely powerful method using the path integral
method was proposed by Fujikawa [199]. This method determines transformations
of the path integral measure for fermions under various types of transformations
using suitable regularization procedures. The reader is referred to the original work
in [199].



Postface

In this book, we have treated various aspects, focusing on well-established methods
in field theory. However, many issues remain unaddressed. These include the
Nambu–Bethe–Salpeter equation [200, 201] and the dispersion theory for the S-
matrix and form factors, which are rarely used nowadays. For these subjects,
the reader is referred to my book, “Fields and Particles” [2]. Regarding the
renormalisation theory for higher order corrections in the Feynman–Dyson theory
and the issue of infrared divergences, the reader is referred to the book “Quantum
Field Theory” by Noboru Nakanishi [83].
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