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Foreword

This volume completes a monumental task. Lampreys are a remarkable group of
species; however, all but one are little noted and not well known. It is ironic that we
should learn so much from a combination of those attempting to eradicate one
species and others working in relative isolation on what are generally regarded as
peculiar evolutionary remnants.

The one well-known species has given all the lampreys a very bad name.
Lampreys are mostly defined by the combination of negative terms for all the
features they lack: no jaws, no bony skeleton, no paired fins, no scales, no true teeth
and only a single nostril; and by their habits as blood-sucking vampires. Of course,
it is quite inappropriate to categorize, classify or recognize any organism on the
basis of features that it does not possess. It would indeed be odd if we were to
construct a dichotomous identification key based upon the lack of features in each
taxon.

That one species is a textbook example of the negative effects of an invasive,
non-native species on the native fauna. The negative effects associated with inva-
sive sea lamprey Petromyzon marinus in the upper Laurentian Great Lakes are the
classic example in almost every textbook of animal ecology or fisheries manage-
ment. But studies of chemical communication, especially pheromones, are
remarkably well known for lampreys as a result of attempts for integrated control of
sea lamprey in the Laurentian Great Lakes. Furthermore, we have gained remark-
able insights into the life history, growth, sexual development and behavior of
lampreys as a consequence of studies directed to control sea lamprey.

This volume provides a remarkable compilation and combination of conserva-
tion and control. The obvious advantages of lampreys as model species are quite
clear. Life history, sex determination and perhaps even sex reversal for lampreys are
clearly elaborated in this volume. There are no other species where the contrast in
life histories can rival that of parasitic and non-parasitic lampreys. Lampreys are
ideal model species to study the combined effects of genetic and environmental
factors on early development and life history. Whether one accepts the operational
definition of (some) lampreys as true parasites remains an intriguing question for
those interested in community ecology. The question of the evolution of the
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X Foreword

parasitic life history of lampreys is profoundly intriguing, and it would be difficult
to postulate the origin and evolution of a more dramatic life history pattern.

Of course, any significant focus on lampreys must include the extensive body of
information on the control of sea lamprey in North American lakes. This volume
provides what must be close to a definitive compilation of that complex situation.
However, this moves beyond the usual historical summary to a critical evaluation of
control programs, and, most importantly, to an assessment of emerging control
techniques. The contrast with the consideration of attempts to conserve and restore
native lampreys in western North America is at the same time ironic and
informative.

The efforts to manage the recovery of threatened native lampreys in the Pacific
Northwest have particular significance for indigenous peoples in the region.
Typically, lampreys were a first food and they are still recognized for their cultural
significance. That is the basis for some of the most dedicated efforts to propagate
lampreys as part of conservation and restoration programs. The future prospects for
lampreys are laid out in this volume for interests as diverse as taxonomy, conser-
vation, control and restoration.

Corvallis, OR, USA David L. G. Noakes
Editor, Springer Fish and Fisheries Series

Professor of Fisheries & Wildlife
Director, Oregon Hatchery Research Center
Oregon State University
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Chapter 1 ®)
The Lamprey Gonad i

Margaret F. Docker, F. William H. Beamish, Tamanna Yasmin,
Mara B. Bryan and Arfa Khan

Abstract Understanding gonadal development in lampreys is complicated by their
complex life cycle, the long period during which their gonads remain histologically
undifferentiated, and their lack of any close living relatives. This chapter synthesizes
the available information related to lamprey sex determination, sex differentiation,
sexual maturation, and sex steroids, and it identifies key research needs. A detailed
review of lamprey sex ratios shows that: (1) adult lampreys (i.e., during the upstream
migration or at spawning) exhibit a small but consistent excess of males in virtually
all species studied (with significantly female-biased sex ratios noted only in sea lam-
prey in the three upper Great Lakes following initiation of sea lamprey control); (2)
larval sex ratios are generally at parity or with an excess of females; (3) transformers
collected above barriers or following lampricide treatment tend to be male biased
in the earliest age classes to metamorphose; and (4) there is spatial and temporal
variation in sex ratio during the parasitic feeding phase, but overall sex ratio is less
male biased than during the adult phase, suggesting that females suffer higher mor-
tality just prior to or during sexual maturation. The shift in sex ratio observed in the
upper Great Lakes following initiation of control led to suggestions of environmen-
tal sex determination (ESD), specifically density-dependent sex determination, but
evidence for ESD in lampreys is equivocal. Sex ratios did not become female biased
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in the lower Great Lakes, and all five lakes now show a slight excess of males even
though abundance has been low and relatively stable for the past several decades.
Furthermore, although a significant relationship between larval density and sex ratio
has been observed in two non-parasitic species in the southeastern United States,
significant relationships between larval density and sex ratio are not evident among
contemporaneous sea lamprey populations (i.e., before or after the initiation of con-
trol). ESD, usually temperature-dependent sex determination, has been reported in a
number of fish species, but no fish species with exclusively ESD have been identified
to date. Skewed sex ratios may result from environmental influences on genetic sex
determination rather than strict ESD, and the nature of the genotype x environment
interactions can differ among populations and over time. However, apart from ruling
out “the usual suspects” (i.e., genes implicated in sex determination in other verte-
brates), nothing is known regarding the possible genetic basis of sex determination in
lampreys. In contrast, many of the genes involved in the sex differentiation process
(i.e., development of the undifferentiated gonad into an ovary or testis) tend to be
conserved among vertebrates, and initial studies suggest that at least some of the same
genes are involved in gonadal development in lampreys. Understanding the factors
influencing lamprey sex determination and differentiation has been complicated by
lack of knowledge regarding the critical sex differentiation period. Lampreys are
sometimes said to pass through an initial female stage or female intersexual stage,
because mitosis and meiosis appear to occur in most larvae regardless of future sex.
However, meiosis and oocyte growth are more synchronized and extensive in female
larvae, and the extent to which oocytes develop and regress in presumptive males
either varies among individuals and species or reflects differences in the degree to
which these transient processes are detected. Ovarian differentiation is generally
thought to be complete at ~1 and 2—3 years of age in non-parasitic and most parasitic
lamprey species, respectively, and at 4-5 years in the anadromous sea lamprey. Later
and more prolonged mitosis in parasitic species permits elaboration of a larger stock
of oocytes, and persistence of a limited number of undifferentiated germ cells in
some parasitic species may allow further oocyte recruitment in large larvae. In all
species, testicular differentiation occurs at or around the onset of metamorphosis,
at which time resumption of mitosis in the remaining undifferentiated germ cells
produces spermatogonia. In vivo biopsy studies showed that sea lamprey gonads
can remain labile as long as undifferentiated germ cells remain in the gonads (i.e.,
after the apparent completion of ovarian differentiation, but up until differentiation
of the remaining germ cells at the end of the larval stage). The presence of “atyp-
ical” gonads (which often developed into typical males in biopsied larvae) in sea
lamprey from both the Great Lakes and Atlantic drainages is consistent with delayed
gonadal differentiation but requires further study. Despite the apparent lability of the
lamprey gonad, hormonal sex control has not been successful. Non-parasitic lam-
preys begin maturing during the latter stages of metamorphosis; in contrast, parasitic
species remain sexually immature until they approach the end of the juvenile feeding
phase, and sexual maturation proceeds during the non-trophic spawning migration.
Although the rate of maturation varies among species, depending on the duration of
migration, all species and life history types appear to converge again during final
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maturation ~1-2 months before spawning. Oocytes begin to approach their size at
maturity (~1 mm in virtually all species), and, at ovulation, the oocytes (now typi-
cally called eggs) are synchronously released into the body cavity. The mature ovary
constitutes ~25-35% of a female’s total body weight, regardless of species, but the
total number of eggs (fecundity) increases approximately with the cubic power of
body length so that fecundity in the largest anadromous parasitic species (e.g., mean
172,000 in sea lamprey) is almost two orders of magnitude higher than that of the
much smaller non-parasitic species. The mature testis constitutes ~2—10% of a male’s
body weight, with gonadosomatic index (GSI) appearing to be higher in males of non-
parasitic species compared to parasitic species, although absolute testis size is still
much higher in parasitic species. The study of lamprey steroidogenesis and steroid
receptors is contributing to our understanding of the evolution of steroid hormones
as transcriptions factors in vertebrates, but much still needs to be learned regarding
the role of sex steroids in lamprey sex differentiation and sexual maturation.

Keywords Atresia - Egg size + Environmental sex determination + ESD -
Fecundity - Genetic sex determination + Gonadogenesis - Gonadosomatic index *
GSI - Hormonal sex control - Intersex - Life history type - Ovarian differentiation -
Sex differentiation + Sex ratio + Sex reversal - Sex steroids - Sexual maturation *
Spawning - Spermatogenesis - Steroidogenesis  Testicular differentiation -
Upstream migration - Vitellogenesis

1.1 Introduction

As one of only two surviving groups of ancient jawless vertebrates, lampreys are
of enduring evolutionary interest. Study of lamprey biology, for example, continues
to provide invaluable insight into the events that occurred at the dawn of vertebrate
evolution and is helping us understand the degree to which various traits and processes
are conserved across vertebrate lineages (see Docker et al. 2015). Research related to
lamprey biology is also helping to inform efforts directed at controlling sea lamprey
Petromyzon marinus in the Laurentian Great and Lake Champlain (see Chap. 5) and
initiatives to manage or conserve native lampreys (Maitland et al. 2015). In particular,
understanding reproduction is important for effective control and conservation. Sea
lamprey control is primarily achieved through use of the selective lampricide 3-
trifluoromethyl-4-nitrophenol (TFM) and barriers which largely prevent upstream-
migrating adults from reaching their spawning grounds (Chap. 5), but alternative
methods that reduce sea lamprey numbers by interfering with sex determination
(e.g., leading to highly skewed sex ratios) or other aspects of gonadal development
and reproduction could further enhance control. Strategies that disrupt sea lamprey
reproduction are already being developed (e.g., the sterile-male-release technique and
use of pheromones to disrupt upstream migration or mating; see Twohey et al. 2003;
Liet al. 2007; Johnson et al. 2015a; Bravener and Twohey 2016), and there are others
to explore (Sower 2003; Docker et al. 2003; Bergstedt and Twohey 2007). For species
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of conservation concern, efforts are being expended to improve our knowledge of the
reproductive physiology of these lampreys (e.g., Mesa et al. 2010; Farrokhnejad et al.
2014), including studies to optimize artificial fertilization and propagation methods
(see Chap. 2) and to better understand the reproductive ecology of lampreys in their
natural environments (e.g., Jang and Lucas 2005; Johnson et al. 2015b; Whitlock
et al. 2017).

However, despite great interest in the reproduction of lampreys, study of the
many aspects of their reproductive biology is complicated by a number of factors,
one of which is their complex life cycle and long generation times. There are at least
41 recognized species of extant lampreys (Potter et al. 2015); all are semelparous,
dying after a single spawning season (although not necessarily after a single spawning
event), and all spawn in fresh water (Johnson et al. 2015b). All lampreys pass through
a freshwater filter-feeding larval stage that lasts approximately 3-8 years (Fig. 1.1),
although the duration is variable among species and populations (see Dawson et al.
2015) and may also differ between the sexes (Docker 2009; Manzon et al. 2015).
Consistent with a prolonged larval stage, there is also a prolonged period of sexual
indeterminacy, and the gonadal differentiation process is asynchronous in males
and females: ovarian differentiation occurs during the larval stage (at 1-34 years
of age), but testicular differentiation does not occur until metamorphosis, several
years later (Fig. 1.1). Following metamorphosis (see Manzon et al. 2015), 18 species
are parasitic, feeding on the blood or tissue of other fishes in marine or freshwater
systems (see Chaps. 3 and 4). Some of the anadromous species (e.g., sea lamprey
and Pacific lamprey Entosphenus tridentatus) can reach total lengths (TL) in excess
of 600-800 mm (see Chap. 3) and can migrate several hundreds of kilometers to
headwater streams where they spawn (Moser et al. 2015). In contrast, the freshwater-
resident parasitic lampreys (e.g., sea lamprey in the Great Lakes, silver lamprey
Ichthyomyzon unicuspis) are smaller at maturity. The remaining 23 species are non-
parasitic “brook” lampreys that bypass the post-metamorphic feeding phase and
thus reach maturity at even smaller sizes (~100-150 mm TL; see Docker 2009).
Parasitic lampreys remain sexually immature during the feeding phase (and, hence,
are technically considered juveniles rather than adults at this point; see Docker et al.
2015). In contrast, sexual maturation in the non-parasitic brook lampreys begins
during the latter stages of metamorphosis (Fig. 1.1). Brook lampreys remain within
their natal streams and spawn and die the following spring, that is, within 6—10 months
of metamorphosis. In contrast, sexual maturation in parasitic species is delayed for
1-4 years following metamorphosis (Docker 2009; Chap. 4).

Studies of lamprey reproduction have also been hindered by their divergence
from other vertebrates ~500 million years ago (Docker et al. 2015), with no other
extant vertebrates to “bridge the gap.” Lampreys share the general organization of
the hypothalamic-pituitary-gonadal (HPG) axis with all other vertebrates, and much
has been learned about the evolution of the vertebrate HPG axis by studying the lam-
prey HPG axis (Sower 2015, 2018). However, the hormones that coordinate the axis
and regulate reproductive physiology are often different among vertebrate groups.
Similarly, although the study of lamprey steroidogenesis and steroid receptors has
contributed greatly to our understanding of the evolution of steroid hormones as
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Fig. 1.1 The lamprey life cycle, showing the timing of key events in the development of the gonad
relative to the stages in the life cycle in a parasitic and b non-parasitic (brook) lampreys; a detailed
timeline of gonadal processes is shown in Fig. 1.6

transcriptions factors in vertebrates (Thornton 2001; Baker 2004; Baker et al. 2015),
the idiosyncrasies of lamprey steroids have often been perplexing. Lampreys pro-
duce gonadal steroids that differ from those of other vertebrates by possessing an
additional hydryoxyl group at the C15 position (Kime and Rafter 1981; Kime and
Callard 1982; Bryan et al. 2003, 2004; Lowartz et al. 2003), and these novel steroids
have presented many technical challenges. Much of our initial knowledge regarding
steroid synthesis in lampreys was inferred from studies that incubated radiolabeled
precursors with gonadal or other tissue extracts, but results were often inconclu-
sive because several of the products could not be identified through comparison
to known steroid standards (e.g., Weisbart and Youson 1975, 1977; Weisbart et al.
1978). Likewise, the lack of commercially available 15a-hydroxylated radiolabeled
steroids has hindered binding experiments to detect receptors for lamprey-specific
15a-hydroxylated steroids. Elucidating the genetic basis of sex determination and
sex differentiation in lampreys will provide insights into the degree to which the
genes involved in these processes are conserved among vertebrates. However, the
prolonged period of sexual indeterminacy in lampreys and their long divergence from
other vertebrates make it difficult to make extrapolations based on what is known in
other vertebrates, and identification of homologs of key genes in other vertebrates can
be challenging (Spice et al. 2014; Khan 2017). Nevertheless, the publication of the
sea lamprey genome (Smith et al. 2013, 2018) is leading to a wealth of new knowl-
edge of the genes and gene networks that control many aspects of lamprey biology
(McCauley et al. 2015; see Chap. 6) and is expected to contribute substantially to
our understanding of lamprey reproduction as well.

In this chapter, we provide a wide-reaching review of topics related to the lamprey
gonad, ranging from an in-depth discussion of lamprey sex ratios to a synthesis of the
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literature related to lamprey sex determination, sex differentiation, sexual maturation,
and sex steroids. Because one of the main goals of this chapter is to inspire lamprey
biologists and researchers in other disciplines to help fill the many remaining gaps in
our understanding of lamprey gonadal development and function, we hope that this
chapter will provide both the necessary background and the appropriate stimulus for
future research into the many intriguing aspects of lamprey reproductive biology.

1.2 Sex Ratios

A small but variable excess of males has long been observed among upstream
migrants and spawning adult lampreys (e.g., Dean and Sumner 1898; Young and
Cole 1900; Wigley 1959; Zanandrea 1961). Sex ratio data are less readily available
for other stages, when individuals are more disperse and harder to catch and when
males and females can only be distinguished following internal examination (see
Sect. 1.4.1.5), but these other stages generally do not show the same bias toward
males. However, the complex lamprey life cycle makes interpretation of stage-
specific sex ratios difficult, and it is not yet known whether these apparent differences
might be the result of: (1) sex-specific differences in mortality (e.g., higher mortality
of females during the post-larval stages); (2) sampling bias (e.g., due to sex-specific
differences in age at metamorphosis or differences in the temporal or spatial distribu-
tion of the sexes during feeding and migration); or (3) an environmental influence on
the sex differentiation process. In this section, we review the available stage-specific
sex ratio data for lampreys and attempt to determine the extent to which each of these
three factors may be operating. A full discussion of a possible extra-genetic influence
on sex differentiation (i.e., environmental or density-dependent sex determination)
is provided in Sect. 1.3.2.2.

1.2.1 Sex Ratio of Upstream Migrants and Adults

Sex ratio data are available for 10 of the 18 parasitic lamprey species during their
upstream migrations or at spawning. Most species show roughly even sex ratios or
a small excess of males (Table 1.1): 45-52% male in adult Caspian lamprey Cas-
piomyzon wagneri, 68% male in Vancouver lamprey Entosphenus macrostomus,
48-57% male in Pacific lamprey, 61-65% male in pouched lamprey Geotria aus-
tralis, 42% male in chestnut lamprey Ichthyomyzon castaneus, 49-59% male in silver
lamprey, 48—-61% male in anadromous European river lamprey Lampetra fluviatilis,
50-63% male in all but the praecox anadromous form of Arctic lamprey Lethen-
teron camtschaticum, 49-57% male in the short-headed lamprey Mordacia mordax,
44-65% male in anadromous sea lamprey, and 50-68% male in freshwater-resident
sea lamprey prior to the initiation of sea lamprey control.
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Table 1.1 Sex ratio of adult lampreys (i.e., during the upstream migration or at spawning); sig-
nificantly male- and female-biased sex ratios (calculated using the Chi test function in Excel) are
identified with a superscript m and f, respectively. An asterisk indicates that individuals that could
not be identified as either male or female were omitted from the sex ratio; values in bold signify
sex ratios observed following initiation of lampricide (TFM) treatment in the respective basin; rkm

= river km

Species and Year n % Male Reference Comments

location

PARASITIC SPECIES

Caspiomyzon wagneri Caspian lamprey (anadromous)

Shirud R, Iran 2006 211 51.7 Nazari and Abdoli ~ Spring migrants; 59, 42, 49, 55,
(2010) 53% male in weeks 1-5,

respectively

Shirud R, Iran 2008 104 51.0 Ahmadi et al. Fall migrants 47% male; spring
(2011) 52% male

Shirud R, Iran 2009 53 453 Shirood Mirzaie Fall migrants 20% male; spring
etal. (2017) 55% male

Shirud R, Iran 2012 401 46.7 Abdoli et al. (2017) Spring migrants

Entosphenus macrostomus Vancouver (or Cowichan Lake) lamprey (freshwater)

Bear and Cowichan
L tributaries, BC

Entosphenus tridentatus Pacific lamprey (anadromous)

Oregon streams

Chemainus R, BC

North Umpqua R,
OR @ Winchester
Dam (rkm 11.2)
Willamette R, OR
@ Willamette Falls
(rkm 205)

Willamette R, OR
@ Willamette Falls
(rkm 205)

Snake R basin, WA
@ rkm 589 and 635

Geotria australis pouched lamprey (anadromous)

1976-1980

Warren R @ rkm
32 and 61,
Australia
Donnelly R
estuary, Australia

Ichthyomyzon castaneus chestnut lamprey (freshwater)

Muskegon R, MI
(L Michigan)

2017

1978

2009
2010

2007

2008

2016

2006
2007
2008

1981
1982

1981

28

108
113
124

24
45

206

143

269

50
46
50

379

71
125

38

67.9

574
54.9
48.4

33.3%
38.2%

49.0

56.6

50.6

39.9%
45.9%
46.0*

65.4™

60.6
63.2™

42.1

Wade et al. (2018)

Kan (1975)

R.J. Beamish
(1980)

Lampman (2011)

Clemens et al.
(2016), Clemens
(pers. comm.)

Porter et al. (2017)

Mcllraith et al.
(2015)

Potter et al. (1983)

Potter et al. (1983)

Schuldt et al.
(1987)

Late June

Pre-spawners

Spawners

Early migrants; males and
females roughly equal
throughout sampling period

% male + % unknown = 65%
(2009) and 59% (2010)

50, 56, 61, 44, 50% male in
Apr, May, June, July, Sept,
respectively

33, 39, 56, 53, 71% male in
Apr, May, June, July, Aug
51,51, 50% male in June, July,
Aug

July—Oct; sex unidentifiable in
4,20, and 14% lamprey in
2006, 2007, 2008

First 4 months of spawning run
(mid-July to mid-Nov)

Estuary at onset of spawning
migration (July, Aug)

Upstream migration (May)

(continued)
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Species and Year n % Male Reference Comments

location

Ichthyomyzon unicuspis silver lamprey (freshwater)

Peshtigo R, WI 1978 - 59.0 Schuldt et al. Upstream migration (May)

Menominee R, 1980 51 58.8 (1987)

MI/WI

Oconto R, WI(L 1980 47 48.9

Michigan)

Lampetra fluviatilis European river lamprey (anadromous)

Severn Estuary, 1972-1976 621 48.6 Abou-Seedo and 52,47, 71% male in early, mid,

UK Potter (1979) late run

Firth of Forth, UK 1980 206 60.7™ Maitland et al. Upstream migrants Sept—Oct
1981 430 56.7™ (1984) Upstream migrants Aug—Nov

R Teith @ 1984 53 56.6 Morris (1989) Spawning adults (Apr, May)

Deanston, UK

R Derwent @ 2003 76 72.4™m Jang and Lucas Upstream migrants Mar—Apr

Stamford Bridge 1,284 48.4 (2005) On spawning grounds; 23%

‘Weir, UK

Lampetra fluviatilis European river lamprey (anadromous praecox form)

Severn Estuary, 1972-1976

UK

Lampetra fluviatilis European river lamprey (dwarf freshwater form)

Endrick Water (L.~ 1983
Lomond), UK 1984

Lethenteron camtschaticum Arctic lamprey (anadromous)

Utkholak R, 2005
Russia

Lethenteron camtschaticum Arctic lamprey (anadromous praecox form)

Utkholak R, 2005
Russia

Lethenteron camtschaticum Arctic lamprey (freshwater non-parasitic form)

Utkholak R, 2005
Russia

621

38
16

142

38

632

48.6

81.6™
31.3

63™

gpm

50

Lethenteron camtschaticum Arctic lamprey (freshwater form)

Slave R @ Fort 1967
Smith and Hay R,
NWT

Mordacia mordax short-headed lamprey (anadromous)

Dandenong Cr, 1963
near Melbourne, 1964
Australia

1965
Derwent R, 1967
Tasmania,
Australia

37

57
63
81

60

59.5

49.1
47.6
53.1

56.7

Abou-Seedo and
Potter (1979)

Morris (1989)

Kucheryavyi et al.

(2007)

Kucheryavyi et al.
(2007)

Kucheryavyi et al.
(2007)

Nursall and

Buchwald (1972)

Potter et al. (1968)

Potter et al. (1968)

male during nest building, 73%
during spawning, 21%
post-spawning

42,52, 45% male in early, mid,
late run

Upstream migrants (Nov)

Spawning adults (Apr, May)

Upstream migrants and mature
adults

Upstream migrants and mature
adults

Mature adults

Upstream migrants (June—Aug)

Upstream migrants (Nov 1963
and 1964, Sept 1965)

Upstream migrants (Jan)

(continued)
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Table 1.1 (continued)

Species and Year n % Male Reference Comments
location
Petromyzon marinus sea lamprey (anadromous)
Sheepscot R, ME 1949 52 44.1 Applegate (1950) Upstream migrants
Barrows Stream,  1960-1964 64 65™ Davis (1967) Upstream migrants
ME
StJohnR,NB @ 1974 285 54.1 Beamish and Upstream migrants (June—July)
Mactaquac Dam Potter (1975)
(rkm 120)
StJohnR,NB @ 1974-1977 393 57.5™m Beamish et al. Upstream migrants; 73% male
Mactaquac Dam (1979) in early May, 55% in late June
(rkm 120)
Keswick R, NB 1974-1977 63 65.1™m Beamish et al. Spawning and spent adults (late
(1979) June-early July)
Connecticut R @ 1981 484 s56™ Stier and Kynard ~ Upstream migrants
Holyoke Dam 1982 404 6om (1986) (May-June); 55-59% male
(rkm 135), MA early in run, 59-67% late in run
ConnecticutR @ 2013 97 45.4 Castro-Santos Upstream migrants (May—June)
Holyoke Dam etal. (2017)
(rkm 135), MA
Dordogne R, 2003 101 47.5 Beaulaton etal.  Upstream migrants; 56% male
France 2004 124 492 (2008) in Jan—Feb, 43% in Mar-May
Garonne R, 2003 149 49.0 Beaulatonetal. ~ Upstream migrants
France 2004 49 450 (2008)
Ulla R Estuary, 2010 133 60.9™ Silva et al. (2016) Upstream migrants; 83, 60,
Spain 41% male in Jan, Feb, Mar
Petromyzon marinus sea lamprey (freshwater)
Cayuga Inlet, NY 1886 745 64.4™ Meek (1889) Upstream migrants (May, June)
Cayuga Inlet, NY 1898 1,140 51.7 Surface (1899) Upstream migrants
Cayuga Inlet, NY 1950 372 61.0m Wigley (1959) Upstream migrants; % male
1951 1.820 60.8™ reasonably consistent over run
1952 1,306 53.8™
Ocqueoc R, MI 1947 679 53.6 Applegate (1950) Upstream migrants
(L Huron) 1949 24,643 68.2m
Carp R, MI (L 1947 1,600 62.3m Applegate (1950) Upstream migrants; 75% male
Superior) 1948 2931 62.9m at end of run (early July) in
’ 1947
1949 2,763 67.5™
L Superior 1954-1978 1,911-50,975 28f-71m Heinrich et al. Upstream migrants; % males
tributaries (1980) peaked 1961-1964, declined
thereafter (see Fig. 1.2)
L Michigan 1954-1978 774-18,043 21f-68m Heinrich et al. Upstream migrants; % males
tributaries (1980) peaked 1963 (see Fig. 1.2)
L Huron 1947-1978 197-24,643 31f-7 ™ Smith (1971), Upstream migrants; % males
tributaries Heinrich et al. peaked 1950-1955 (see

(1980)

Fig. 1.2)

(continued)
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Species and Year n % Male Reference Comments

location

Humber R (L 1968-1978 1,191-6,848 42f_58m Heinrich et al. Upstream migrants (see

Ontario) (1980) Fig. 1.2)

Humber R (L 1968-1972 1,223-4,387 50-56m Potter et al. (1974)  Upstream migrants

Ontario)

L Superior 1995-2016 45-1,880 33f—66m GLFC Upstream migrants (see
(1996-2017)* Fig. 1.2)

L Michigan 1995-2016 228-2,225 38f_55m GLFC Upstream migrants (see
(1996-2017)* Fig. 1.2)

L Huron 1995-2016 136-12,231 49-67™m GLFC Upstream migrants (see
(1996-2017)* Fig. 1.2)

L Ontario 1995-2016 397-5,154 48-62m GLFC Upstream migrants (see
(1996-2017)* Fig. 1.2)

L Erie 1995-2016 20-1,982 51-73m GLFC Upstream migrants (see
(1996-2017)* Fig. 1.2)

BROOK LAMPREYS

Ichthyomyzon fossor northern brook lamprey

Brule R, WI (L 1945 17 58.8 Churchill (1945) Prior to spawning (June)

Superior)

Sturgeon R, MI (L 1960 24 75m Purvis (1970) Spawners (June)

Superior)

Little Cedar R, MI 1980 24 542 Schuldt et al. Pre-spawners (April, May)

Walla Walla Cr, WI 1980 16 56.3 (1987)

Little Wolf R, WI 1980 31 64.5

(L Michigan)

Ichthyomyzon gagei southern brook lamprey

10 river systems in  1930-1951 98 59.1 Dendy and Scott Adults; pooled sex ratio from

AL, FL, GA, LA, (1953) 18 collections

OK, TX

Little and 1980-1981 110 60.9™ F. W. H. Beamish  Pre-spawners (early March,

Choclafaula Cr, AL (1982) 1-2 km downstream from

spawning site); earliest
migrants 80% male

Hodnett and 1980-1982 567 45.1° Beamish and Transformers and adults; no

Choclafaula Cr, AL Thomas (1984) differential migration

19 streams in AL,  1988-1992 5-87 25-65™ Beamish et al. Transformers and adults (see

AR, LA, MS, TX (1994) Table 1.2)

Lampetra aepyptera least brook lamprey

7 streams in MD, 1980, 1988 20-38 46.2-79.2m Docker and Transformers and adults

DE, KY, TN, AL Beamish (1994) (Oct-Feb; see Fig. 1.3)

Lampetra lanceolata Turkish brook lamprey

Iyidere Stream, 2005-2006 54 53.7 Gozler et al. (2011) Pre-spawning and mature

Turkey adults

Lampetra planeri European brook lamprey

R Yeo, UK 1947-1960 57-240 54.4-77.0™ Hardisty (1961a) Spawning season; 78, 68, 66,

and 62% male in weeks 1-4,
respectively

(continued)
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Table 1.1 (continued)

Species and Year n % Male Reference Comments

location

R Stensén, 1976 120 51.5 Malmgqyvist Spawning season

Sweden (1978)

Rorum South R, 1976 52 63.3 Malmqvist Spawning season

Sweden (1978)

Stampen Stream, 1976 44 61.3 Malmqyvist Spawning season

Sweden (1978)

Liansmansbicken, 1977 163 60.1™ Malmgqyvist Spawning season (Mar—June);

Sweden 1978 192 60.9™ (1980) % males highest (65-76%) in
early May

Endrick Water (L 1984 39 56.4 Morris (1989) Adults (Apr, May)

Lomond), UK

River Teith, UK 1984 28 64.3 Morris (1989) Adults (Apr, May)

Lampetra richardsoni western brook lamprey

Morrison Cr, BC 1987 22 50.0 Beamish et al. Mature or spent adults

(2016) (May—July); 100% male after

mid-June

Lampetra richardsoni western brook lamprey (var. marifuga)

Morrison Cr, BC 1984 24 79.2m Beamish (1985)
Morrison Cr, BC 1987 42 88.1m Beamish et al. Mature or spent adults
(2016) (May-July)

Lampetra zanandreai Po brook lamprey

Italy <1951 1,314 59.1m Zanandrea (1961) ~50% male during maturation;
>50% during spawning

Lethenteron appendix American brook lamprey

Huron R 1899 259 78.4™ Young and Cole ~ Spawners (Apr)

tributaries (L (1900)

Erie)

‘Wednesday Br, 1959 13 69.2 Sawyer (1960) Near end of spawning (May)

NH

Big Cr, ON (L 1970 85 67.1™m Kott (1971) Pre-spawners (Apr—May); no

Erie) differential migration

Buffalo Cr, TN 1973 126 54.8 Seagle and Nagel Transformers and adults
(1982)

Fox R, WI 1980 30 66.7 Schuldt et al. Pre-spawners (April and May)

Betsie R, MI (L 1980 139 79.1m (1987

Michigan)

Tetrapleurodon geminis Mexican brook lamprey and/or 7. spadiceus Mexican lamprey

Michoacan, 1961-1962 76 539 Alvarez del Villar Spawning adults

Mexico (1966)

#Annual reports to the GLFC for previous calendar year; authors as follows (for publication year): Schleen LP, Young RJ, Klar
GT (1996, 1998); Klar GT, Schleen LP, Young RJ (1997); Klar GT, Schleen LP (1999, 2001, 2003); Schleen LP, Klar GT (2000,
2002); Young RJ, Klar GT (2004, 2006); Klar GT, Young RJ (2005); Adair RA, Young RJ (2007, 2009); Young RJ, Adair R
(2008); Sullivan P, Adair R (2010, 2012, 2014); Adair R, Sullivan P (2011, 2013, 2015); Sullivan P, Adair R, Woldt A (2016);
Mullett K, Sullivan P (2017); see http://www.glfc.org/annual-reports.php
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Extreme male-biased sex ratios (>80% male) were observed only in the freshwater
form of European river lamprey (Morris 1989) and the praecox form of Arctic lam-
prey (i.e., an anadromous form with a reduced marine feeding phase; Kucheryavyi
et al. 2007) (see Chap. 4). A similarly male-biased sex ratio has been observed in
the rare parasitic form of the western brook lamprey Lampetra richardsoni (i.e., the
“marifuga” variety; Beamish 1985; Beamish et al. 2016). Docker (2009) suggested
that alternative life history types such as these might be dominated by males because
transitions related to feeding and migratory type may occur more readily in males.
Because the trajectories associated with ovarian development diverge in different life
history types years before the paths associated with testicular development diverge,
female life history type may be less flexible (see Sect. 1.4.1).

Significantly female-biased adult sex ratios have been reported only in the Great
Lakes sea lamprey following initiation of sea lamprey control and only in the three
upper Great Lakes (Superior, Michigan, and Huron; Fig. 1.2). The observed shift to
female-biased sex ratios after the onset of sea lamprey control suggested that lamprey
sex ratio was correlated with abundance (see Sect. 1.2.6). However, in the two lower
Great Lakes, a significant excess of females was observed in only a single year (1978)
in Lake Ontario, despite similar (albeit somewhat later) declines in abundance, and
Lake Erie exhibited only even or male-biased sex ratios. Furthermore, sex ratio in
all three upper Great Lakes returned to parity or an excess of males by the mid- to
late 1990s.

No significantly female-biased sex ratios have been observed among any of the
nine non-parasitic lamprey species for which adult sex ratio data are available. Again,
most species show an excess of males (Table 1.1): northern brook lamprey Ichthy-
omyzon fossor 54-75% male, least brook lamprey Lampetra aepyptera 46-79%
male, Turkish brook lamprey L. lanceolata 54% male, European brook lamprey L.
planeri 54-73% male, the typical parasitic form of western brook lamprey 50% male,
Po brook lamprey L. zanandreai 59% male, American brook lamprey Lethenteron
appendix 55-79% male, and Mexican brook lamprey Tetrapleurodon geminis (or
Mexican lamprey 1. spadiceus) 54% male. Sex ratio of adult and metamorphosing
southern brook lamprey 1. gagei in 19 populations ranged from 25 to 65% male, but
none were significantly female biased (Table 1.2).

It is unknown if sex-specific differences in capture efficiency, particularly with
different gear types, produce biased sex ratio data. Preliminary data from mark-
recapture studies show no evidence of sex-specific differences in trapping efficiency
in upstream-migrating sea lamprey in the Great Lakes (Sean Lewandoski, U.S. Fish
and Wildlife Service, Marquette, MI, personal communication, 2018). In contrast,
Beaulaton et al. (2008) suggested that anadromous sea lamprey trapped in pots
showed a slight excess of females relative to those collected in nets. However, it
is well known that sex ratios measured only during a restricted part of the spawn-
ing run can be biased, presumably as the result of behavioral differences between
male and female lampreys (see Sect. 1.2.5). Furthermore, external sex determination
may be vulnerable to observational error in early season trap captures when sexu-
ally dimorphic characteristics are not as readily identifiable (Johnson et al. 2015b).
Nevertheless, many of the studies performed to date have monitored sex ratio over
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Fig. 1.2 Sex ratio (percent males; solid line) of sea lamprey Petromyzon marinus in the three upper
Great Lakes (Superior, Michigan, and Huron) and lower Great Lakes (Ontario and Erie) prior to and
following initiation of sea lamprey control compared to adult (spawner) abundance (gray broken
line). Parity (50:50 sex ratio) is indicated by a horizontal dashed line, and vertical arrows show year
of first lampricide (TFM) treatment in each basin. Sex ratio data for 1947—-1987 were collected from
Smith (1971), Heinrich et al. (1980), and Houston and Kelso (1991); sex ratio data for 1995-2016
were collected from annual reports to the Great Lakes Fishery Commission (GLFC 1996-2017;
see Table 1.1 for list of report authors); in Lake Erie, data were excluded if n < 20. Recent adult
abundance estimates (gray triangles) are based on standardized sea lamprey index values that
have been scaled to the lake-wide level (Jess Barber, U.S. Fish and Wildlife Service, Marquette,
MI, personal communication, 2018); Lake Erie values represent 3-year averages (see Chap. 5).
Historical lake-wide abundance estimates (gray squares) were obtained from Sullivan et al. (2003;
Erie) or were approximated by scaling abundance in index streams (Smith 1971; Heinrich et al.
1980) to peak historical values estimated in GLFC (2015): 780,000 (Superior), 600,000 (Michigan),
700,000 (Huron), and 450,000 (Ontario)
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Table 1.2 Sex ratio of larval and post-larval (metamorphosing and adult) southern brook lamprey
Ichthyomyzon gagei in 20 streams in the southeastern U.S., and the excess of males in the post-larval
stages relative to the larval stage; significantly male- and female-biased sex ratios are identified with
a superscript m and f, respectively. Larval data are from Beamish (1993); post-larval data are from

Beamish et al. (1994)

Stream Larval Post-larval Post-
Years n % Male  Density Years n % Male larval %
sampled (larvae sampled male -
(total) per m?) larval %

male

Beaver Cr, LA 1989 60 20f 0.26 1991 40 38 18

Big Cr, AL 1989 119 30f 1.52 1989, 33 64 34

1992

Binion Cr, AL 1987-1990 120 37t 0.17 1988 14 57 20
(€]

Choclafaula Cr, AL 1980-1991 1707 41f 0.68 1980, 5 40 -1
[€8)) 1981,

1991
Clear Cr, LA 1989 185 39f 1.2 1989, 49 65m 26
1992

Dry Prong Cr, LA 1989 80 36" 0.99 1989 4 25 -11

Dyson Cr, LA 1989 95 of 0.5 1992 24 42 33

Eden Cr, AL 1989-1990 121 19f 0.29 1991 20 60 41
@)

Hell Hole Cr, AL 1987-1991 219 49 1.75 1988, 80 46 -3
“) 1991

Keisler Cr, AR 1989 119 40f 0.04 1992 21 62 22

Legg Cr, TX 1989 117 20f 0.24 1989 9 33 4

Little Cypress Cr, TX 1989 157 41f 0.23 1989 25 48 7

South Fork Saline R, 1989 51 20f 1.9

AR

Spring Cr, LA 1989 91 40 1989, 22 45 5

1991
Teel Cr, AL 1989-1990 170 27t 0.13 1991 17 41 14
@)
Ten Mile Cr, AR 1989 148 26f 1.55 1992 17 47 21
Terry’s Cr, LA 1989 137 28f 0.5 1989, 87 45 17
1991,
1992

Thomas Cr, AR 1989 127 46 0.18 1989, 45 58 12
1992

Uspohoa Cr, MS 1989 40 38 1991, 63 63m 25
1992

Water Prong Cr, MS ~ 1987-1990 219 45 1.13 1988 48 56 11

“
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most, or all, of the spawning run, confirming that there are very few “exceptions to
the rule” that adult lamprey populations are male biased. That there appears to be a
fairly consistent excess of males in the adult stage relative to the larval stage among
both parasitic and non-parasitic lampreys (see Sect. 1.2.2) suggests that females may
experience higher mortality in the post-larval stages. Limited data from feeding-
phase sea lamprey also show a higher proportion of females during this stage relative
to upstream migrants (see Sect. 1.2.4) which would suggest that females are dispro-
portionately lost from the population during or after the feeding phase. However,
nothing is known regarding sex-specific differences in mortality, and this requires
further study.

1.2.2 Larval Sex Ratios

Sex ratio data for larval lampreys are more limited than during the adult stage, because
sex identification in larvae generally requires lethal sampling and histological prepa-
ration prior to examination under a light microscope or, for larger larvae, internal
examination under a dissecting microscope (see Sect. 1.4.1.5). Nevertheless, sex ratio
data are available for at least four parasitic and four brook lamprey species (Table 1.3).
Larval sex ratios appear to be more variable among populations and species than adult
sex ratios but, in general, they are at parity or with an excess of females. For example,
among brook lampreys, significantly female-biased larval sex ratios were observed
in European brook lamprey from the River Yeo (Hardisty 1960a), in 15 of the 20
southern brook lamprey populations examined by Beamish (1993), and in three of the
12 least brook lamprey populations examined by Docker and Beamish (1994). Only
one significantly male-biased larval brook lamprey population has been observed
(in the least brook lamprey; Fig. 1.3), despite even or male-biased sex ratios among
adults in these three species (Hardisty 1961a, b; Beamish et al. 1994; Docker and
Beamish 1994; Table 1.2; Fig. 1.3).

Likewise, among parasitic species, few streams have been found with a significant
excess of males during the larval stage, even in Great Lakes sea lamprey when adult
sex ratios were significantly male biased. In sea lamprey larvae collected prior to
or during initial lampricide treatments in 28 tributaries to Lakes Huron, Superior,
and Ontario, a significant excess of males was observed in only four rivers: two
on the north shore of Lake Huron (Echo and Garden) and two on the east shore
of Lake Superior (Batchawana and Michipicoten; Fig. 1.4). Larval sex ratios were
significantly female biased in 15 of the 28 rivers and at parity in nine. Most notably,
significantly female-biased sex ratios (9—30% male) were observed among sea lam-
prey collected during initial treatments on all five tributaries surveyed on the north
shore of Lake Superior, in four of the five tributaries examined in the Georgian Bay
region of Lake Huron (8—41% male), and in five of the nine Lake Ontario tributaries
surveyed (13-39% male; Torblaa and Westman 1980; Fig. 1.4). There was no evi-
dence of a sex-specific bias in the larvae collected during lampricide treatment, based
on comparison with the sex ratio of samples collected by other survey means (Purvis
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Table 1.3 Sex ratio of larval lampreys; significantly male- and female-biased sex ratios are iden-
tified with a superscript m and f, respectively. An asterisk indicates that individuals that could not
be identified as either male or female were omitted from the sex ratio; values in bold signify sex
ratios observed following initiation of lampricide (TFM) treatment in that stream; italics signify
populations isolated above barriers

Species and location Year n % Male Reference Comments

PARASITIC SPECIES

Entosphenus tridentatus Pacific lamprey (anadromous)
Oregon drainages 24-101 28.6-41.7  Kan (1975) Larvae >90 mm
Lethenteron camtschaticum Arctic lamprey (all forms)

Utkholak R, Russia 2005 63 52 Kucheryavyi
etal. (2007)

Mordacia mordax short-headed lamprey (anadromous)

Bunyip R, Diamond Cr, 1986-1987 303 40-45 Hardisty etal.  Larvae >90 mm
and Plenty R, Australia (1992)

Petromyzon marinus sea lamprey (anadromous)

Petitcodiac R, NB 1998 55 52.7* Barker and Larvae >120 mm; 49%
Beamish (2000) atypical (see Sect. 1.4.1.4)

Petromyzon marinus sea lamprey (freshwater)

Big Garlic R, MI (L 1959 141 19f Manion and Collected during first TFM
Superior) Smith (1978) treatment
Big Garlic R, MI (L 1966 289 27t Manion and 1960 year class above
Superior) 1967 407 19f Smith (1978) barrier dam

1969 672 15F

1970 924 18f

1971 298 22f

1972 357 22f
Little Garlic R, MI (L 1965 644 23f Purvis (1979) TFM treatment 1960
Superior)
Potato R, MI (L Superior) 1966-1969 363 21.5f Purvis (1979) TFM treatment 1965
Sturgeon R, MI (L 1970 394 29f Purvis (1979) TFM treatment 1967
Superior)
Ocqueoc R, MI (L Huron) <1965 267 47.6 Hardisty

(1965b)

Ocqueoc R, MI (L Huron):
Below falls 1968 525 453t Purvis (1979) TFM treatment 1968

1973 162 22f

(continued)
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Table 1.3 (continued)
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Species and location Year n % Male Reference Comments
Above falls 1968 120 24.0f
Silver Cr (L Huron), 1969 - 17 Purvis (1979)  Larvae >9 years old
above dam
L Superior (9 streams):
First TFM treatment 1958-1964 996 of _7om Torblaa and See Fig. 1.4
Subsequent treatments 1962-1978 1,811 11f-57 Westman

(1980)
L Huron (10 streams):
First TEM treatment 1960-1967 3,207 gf_70m Torblaa and See Fig. 1.4
Subsequent treatments 1966-1975 4,425 7t-44 Westman

(1980)
L Ontario (9 streams):
First TEM treatment 1971-1972 2,474 13f-54 Torblaa and See Fig. 1.4
Subsequent treatments 1973-1978 1,551 19f-56 Westman

(1980)
Brown’s Cr, ON (L 1998 49 55.1% Barker and 56% atypical
Huron) Beamish (2000)
12 streams: L Superior 1995, 1996 1,149 9.0-81.7* Wicks et al. 8-100% atypical (see
(2), L Michigan (1), L (1998a) Sect. 1.4.1.4)
Huron (4), L Ontario (5)
BROOK LAMPREYS
Ichthyomyzon fossor northern brook lamprey
Sturgeon R, MI 1960 261 48.7 Purvis (1970) TFM treatments 1960,

1966 366 492 1963, 1966

Ichthyomyzon gagei southern brook lamprey
Little and Choclafaula Cr, 1980-1981 486 49.5 F. W.H.
AL Beamish (1982)
20 streams in AL, AR, 1980-1991 40-1,707 of_49 Beamish (1993)
LA, MS, TX
Lampetra aepyptera least brook lamprey
12 streams in MD, DE, 1987, 1988 66-297 28.7-70.9M  Docker and See Fig. 1.3
KY, TN, AL Beamish (1994)
Lampetra planeri European brook lamprey and/or L. fluviatilis European river lamprey
R Yeo, UK 281 42.3f Hardisty

(1960a)
R Usk, UK 61 443 Hardisty European brook and river
R Teifi, UK 49 49.0 (1960a) lampreys
R Stensan, Sweden 1976 978 45.0f Malmqvist

(1978)
Rorum South R, Sweden 1976 912 44.0f Malmqvist

(1978)
Stampen Stream, Sweden 1976 564 46.7 Malmqvist

(1978)
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Fig. 1.3 Sex ratio (percent males) of least brook lamprey Lampetra aepyptera in length-frequency
derived larval age classes II-V (solid bars) and post-larval individuals (transformers and adults;
hatched bars); parity is indicated by a horizontal dashed line. Sex ratios that are significantly
different from parity are identified with an asterisk; sample size for each age class is given above
the bar. Overall sex ratios and estimates of relative larval density (1 lowest to 5 highest) are given
for each of the 12 streams. Data are from Docker and Beamish (1994) and Margaret F. Docker
(unpublished data)
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1979; Torblaa and Westman 1980). After initiation of lampricide treatments, no sig-
nificantly male-biased sex ratios were observed (Purvis 1979; Torblaa and Westman
1980), although a wide range of values was still observed among tributaries (7-57%
male; Table 1.3). A general trend toward increased femaleness following initiation
of lampricide treatments was observed when averaged across all streams (Fig. 1.5),
but the relationship between abundance and larval sex ratio is far from clear (see
Sect. 1.2.6).

Interpretation of larval sex ratios is complicated by potential sex-specific differ-
ences in age of metamorphosis and technical difficulties associated with determining
sex in smaller larvae. There is evidence that males, at least in some species or popula-
tions, metamorphose at younger ages (and smaller sizes) than females. In European
brook lamprey from three Swedish streams, for example, Malmqvist (1978) esti-
mated 7-9 year classes in females versus 5—7 year classes in males, and he suggested
that female-biased larval sex ratios are the result of more year classes of females
being present. In least brook lamprey, Docker and Beamish (1994) found that, with
only two exceptions (Cod Creek and Butler Mill Branch), sex ratio was consistent
among age classes II-IV, but the relatively small number of age class V individuals
were disproportionately female (Fig. 1.3). These authors concluded that males were
likely under-represented in larval age class V due to their earlier recruitment to the
adult population. Earlier metamorphosis in male northern brook lamprey was demon-
strated by Purvis (1970) when he found that the earliest-metamorphosing age class of
a cohort re-established following lampricide treatment was almost exclusively male
(see Sect. 1.2.3). Delayed metamorphosis in females is a relatively well-understood
phenomenon in non-parasitic species. In these species, because individuals cease
feeding at the onset of metamorphosis, increased body size and thus fecundity (see
Sect. 1.6.3) can only be achieved by larger size at metamorphosis (see Docker 2009;
Manzon et al. 2015). However, this phenomenon is less well understood in parasitic
species which continue to feed and grow following metamorphosis. Nevertheless,
there is evidence that Great Lakes sea lamprey also may show sex-specific differences
in age at metamorphosis. For example, larval sea lamprey populations isolated for
years above barriers (i.e., after most individuals are thought to have transformed and
left the population) typically show female-biased sex ratios. Purvis (1979) reported
that a population of larval sea lamprey isolated for 9 years above a lamprey-proof
dam in Silver Creek, a tributary to Lake Huron, was only 17% male. Similarly, lar-
val sex ratio in the Ocqueoc River was 24% male above falls which limited annual
recruitment but 45% male below the falls. That these isolated populations represent
older residual females is borne out by the observation that the earliest transformers
were disproportionately male (see Sect. 1.2.3). Malmqvist (1978) predicted that post-
poned metamorphosis in non-parasitic species would provide a selective advantage
for females if the mortality rate during the final larval years is low. Clearly, however,
a scenario of low larval mortality rates would not apply in Great Lakes tributaries
subject to regular lampricide treatments. There is evidence for selection of younger
age at metamorphosis in Great Lakes sea lamprey following initiation of sea lamprey
control (e.g., Morkert et al. 1998), but whether there has been selection against later
metamorphosis in females relative to males is unknown.
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Fig. 1.4 Sex ratio (percent males) of larval (solid bars) and transformed (hatched bars) sea lamprey
Petromyzon marinus collected during initial and subsequent lampricide treatments in 28 tributaries
to Lakes Superior, Huron, and Ontario. Vertical arrows show timing of TFM treatments within each
tributary; gray diamonds represent qualitative estimates of larval abundance (1 lowest to 5 highest)
prior to each treatment. Sample sizes per collection averaged 188 and 220 (ranges 16-906 and
10-1,173) for larvae and transformers, respectively. Sex ratio data are from Torblaa and Westman
(1980); relative abundance estimates and treatment dates were collected from Great Lakes Fishery
Commission annual reports (GLFC 1960-1978)
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lamprey Petromyzon marinus prior to and after initiation of lampricide treatments in tributaries to
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Therefore, a disproportionate number of females among older and larger larvae
(and therefore female-biased larval sex ratios overall as the result of more year classes
of females being present) may result from features of lamprey biology. However, an
excess of females in the older and larger age classes, in turn, may produce obser-
vational biases in studies when, for ease of sex identification, only large larvae are
included in the analyses. For example, sex in Great Lakes sea lamprey can gener-
ally be distinguished histologically by ~90 mm TL (see Sect. 1.4.1.5), but studies
evaluating sea lamprey sex ratios before and after initiation of sea lamprey control
typically sampled only the very largest larvae (e.g., >119 mm; Purvis 1979). Docker
and Beamish (1994) found that a small female-biased age class V did not greatly
influence overall sex ratio in least brook lamprey, given the much larger number of
individuals sexed from age classes II-1V, but the degree to which bias will be intro-
duced will increase when only the largest age classes are sampled. Further study is
also required to determine the extent to which lampricide treatment schedules bias
larval sex ratios. If male lampreys are, on average, metamorphosing and leaving the
streams earlier than females and prior to the next round of lampricide treatment, the
large larvae that are killed and recovered during treatment will be disproportionately
female relative to the sex ratio of the younger (largely unsampled) age classes and
the larval population as a whole. However, if lampricide is applied at intervals short
enough to kill both males and females prior to metamorphosis or long enough to
allow both sexes to recruit to the parasite population with equal frequency, less bias
is expected.

Nevertheless, it should be noted that sexing individuals when they are too small
or too young may also be problematic. In lampreys, ovarian differentiation occurs
during the larval stage, but testicular differentiation is delayed until the onset of meta-
morphosis (see Sect. 1.4.1). Male larvae are thus identified as those individuals that
are not yet female by the stage at which females are expected to be clearly identifiable.
As a result, “slow” differentiating females might be misdiagnosed as presumptive
males. Moreover, at least a few small oocytes are present in most presumptive testes,
particularly in smaller larvae at the onset of sex differentiation, resulting in some
future males being misdiagnosed as females. Although the size at which sex appears
to be confidently identifiable has been established for many species, and reversal
past this point is understood to be rare, Lowartz and Beamish (2000) used a gonadal
biopsy technique to monitor the gonad of individual larvae over time and demon-
strated that sex reversal did occasionally occur following primary differentiation (see
Sect. 1.4.1.4). Other exceptions to normal sex differentiation include the occurrence
of “intersex” or otherwise atypical gonads, and this also may prevent accurate eval-
uation of larval sex ratios. Among 12 Great Lakes streams, Wicks et al. (1998a)
classified 8-100% of larvae >90 mm TL as intersexes. Omitting these individuals,
sex ratios were 9—82% male, but it is impossible to know whether some of these indi-
viduals would subsequently develop as normal males or females. Similarly, Barker
and Beamish (2000) reported that 56 and 49% of larvae in one sea lamprey popula-
tion from the Great Lakes and one anadromous population, respectively, had atypical
gonads, although equal sex ratios were detected among those identifiable as defini-
tive males or females (Table 1.3). Greater study is required to understand whether
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these atypical individuals would eventually develop as functional males or females
and how larval sex ratio in general is related to adult sex ratio.

1.2.3 Sex Ratio of Transformers and Downstream Migrants

Sex ratio data for metamorphosing and downstream-migrating lampreys are available
for five parasitic species and four non-parasitic species (Table 1.4), and sex ratio
during this stage appears to be highly variable. Significantly skewed sex ratios were
observed in three of the non-parasitic species studied: a female-biased sex ratio was
reported in the southern brook lamprey during the early stages of metamorphosis
(F. W. H. Beamish 1982), and male-biased sex ratios were reported in the northern
brook lamprey and mountain brook lamprey Ichthyomyzon greeleyi (Purvis 1970
and Beamish and Medland 1988, respectively). However, the highly male-biased
sex ratio observed in northern brook lamprey transformers appears to have been a
consequence of sea lamprey control practices (see below).

In parasitic species, significantly skewed transformer sex ratios have been reported
in only the Great Lakes sea lamprey, where both male- and female-biased sex ratios
have been observed. Among sea lamprey populations in several tributaries to the
upper Great Lakes surveyed prior to or during initial lampricide treatments, Purvis
(1979) found that the sex ratio of transformers was generally at parity or male-biased.
However, exceptions were observed. Most notably, males comprised only 4% of all
transformers collected in Rock River, a tributary on the south shore of Lake Superior.
Applegate and Thomas (1965) reported a slight but significant excess of females in
transformers collected during initial lampricide treatment in the Ogontz River in 1960
and in downstream migrants in the Pere Marquette and Ocqueoc rivers in 1962—-1963
(Table 1.4). The only significantly male-biased sex ratio observed by Applegate and
Thomas (1965) was in metamorphosed sea lamprey outmigrating from the Carp Lake
River in 1960-1961. However, the male-biased sex ratio of this transformer cohort
might be an artifact of the barrier constructed in 1955 that prevented subsequent
recruitment (see below). Purvis (1979) found that sex ratios of transformers collected
following initiation of sea lamprey control were generally female-biased or equal,
but there was still considerable variation (12-54% male). Torblaa and Westman
(1980) also reported highly variable sex ratios (20-85% male) in transformed sea
lamprey collected during initial treatments (Fig. 1.4). After initiation of control, there
was an overall shift toward fewer males (Fig. 1.5), but there was still considerable
among-stream variation (13—68%). In Lewis Creek, a tributary to Lake Champlain,
where lampricide treatments were not initiated until 1990 (see Chap. 5), the sex ratio
of transformers collected during the initial treatment was not significantly different
from parity; a female-biased sex ratio (35% male) was observed in the first collection
following initial treatment, but sex ratio returned to parity thereafter (Zerrenner and
Marsden 2005). Sex ratio may vary temporally during downstream migration (see
Sect. 1.2.5), biasing collections made during a restricted part of the run. However,
many of the studies above either collected transformers within the stream prior to
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Table 1.4 Sex ratio of metamorphosing and downstream-migrating lampreys; significantly male-
and female-biased sex ratios are identified with a superscript m and f, respectively. Values in bold
signify sex ratios observed following initiation of lampricide (TFM) treatment in that stream; italics

signify populations isolated above barriers

Species and Year n % Male Reference Comments
location

PARASITIC SPECIES

Geotria australis pouched lamprey (anadromous)

Tributaries of the 1976-1979 218 54.1 Potter et al. Transformers and

Donnelly and
Warren R, Australia

Entosphenus tridentatus Pacific lamprey (anadromous)

Oregon drainages

57.6-58.7

Lampetra fluviatilis European river lamprey (anadromous)

Teme R, UK

Firth of Forth, UK

Mordacia mordax short-headed lamprey

1980
1981

Bunyip R, Diamond 1986-1987 89

Cr, and Plenty R,
Australia

Petromyzon marinus sea lamprey (freshwater)

Ocqueoc R, MI (L
Huron)

Ocqueoc R, MI:
Below falls
Above falls
Ogontz R, MI (L
Michigan)

Sturgeon R, MI (L
Michigan)

Ford R, MI (L
Michigan)

Cedar R, MI (L
Michigan)

Whitefish R, MI (L
Michigan)

Bark R, MI (L
Michigan)

<1965

1968
1968

1960

1961
1962
1963

1961
1962
1963

1961
1962

1961
1962
1963
1966

1961

12-46
142 549
93 473
4 57.1
50.6
76 52,6
995 52
84 18f
527 44.2f
266 61m
382 66M
30 70m
476 76m
56 75m
13 69
343 52
86 55
56 50
174 67m
685 54m
22 of
511 39f

(1980)

Kan (1975)

Bird and Potter
(1979)

Maitland et al.
(1984)

Hardisty et al.
(1992)

Hardisty

(1965b)

Purvis (1979)

Applegate and
Thomas (1965)

Purvis (1979)

Purvis (1979)

Purvis (1979)

Purvis (1979)

Purvis (1979)

downstream migrants

Stage 6 metamorphosis

Downstream migrants

Transformers

Transformers

Collected during first TFM
treatment

Collected during first TFM
treatment

Mean TL 137-140 mm
(males) and 140-142 mm
(females); first TFM
treatment 1963

Mean TL 133-135 mm
(male) and 141-149 mm
(female); first TEM treatment
1964

Mean TL 138-145 mm
(male) and 150-155 mm
(female); first TFM treatment
1964

TFM treatments 1962, 1965

(continued)
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Species and Year n % Male Reference Comments
location
Huron R, MI (L 1958 25 64 Purvis (1979) First TFM treatment 1958
Superior) 1961 42 48
1965 38 16
Middle R, MI (L 1958 56 73m Purvis (1979)  First TFM treatment 1958
Superior) 1962 22 18f
Chocolay R, MI (L 1961 34 29f Purvis (1979) First TFM treatment 1958
Superior)
Rock R, MI (L 1958 24 4f Purvis (1979) First TEM treatment 1958
Superior) 1961 52 12f
Ontonagon R, MI 1960 32 69™ Purvis (1979)  Collected during first TFM
(L Superior) treatment
Sturgeon R, MI (L 1970 32 53 Purvis (1979) TFM treatment 1966
Superior)
Potato R, MI (L 1969 190 28.9f Purvis (1979) TFM treatment 1965
Superior)
Little Garlic R, MI 1965 209 44 Purvis (1979) TFM treatment 1960
(L Superior)
Big Garlic R, MI (L 1966 46 54 Manion and Isolated 1960 year class;
Superior) 1967 172 31f Smith (1978) downstream migrants
1969 314 23f 24-33% male Sept-Dec,
1970 541 21f 14% male Jan-May
1971 313 21f
1972 298 15f
L Superior (9
streams):
First TFM treatment 1959-1963 20-45 33f_65 Torblaa and See Figs. 1.4, 1.5
Subsequent 1962-1975  10-64 13f_ggm  Westman
treatments (1980)
L Huron (10 Torblaa and
streams): Westman
First TFM treatment 1960-1967  43-1,173 20f_gsm  (1980) See Figs. 1.4, 1.5
Subsequent 1966-1975 26-1,060 26f—7m
treatments
Lewis Cr, VT (L Champlain):
Below falls 1990 127 47 Zerrenner and  First TFM treatment 1990
1994 71 35f Marsden (2005)
1999 18 56
2000 23 48
Above falls 1990 150 25t
Carp Lake R, MI (L 1956-1957 370 46.2 Applegate and  Downstream migrants; 50%

Michigan)

Thomas (1965)

male Nov—Dec, 40% male
Mar-Apr

(continued)
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Table 1.4 (continued)

Species and Year n % Male Reference Comments

location

Carp Lake R, MI (L  1960-1961 8,780 76.4m Applegate and  Isolated since 1955;

Michigan) Thomas (1965) downstream migrants 82%
male Oct, 64% male Apr

Pere Marquette R,  1962-1963 1,862 41.2f Applegate and  Downstream migrants; 40%

MI (L Michigan) Thomas (1965) male Nov, 45% male
Feb-Apr

Ocqueoc R, MI (L 1962-1963 408 4.6 Applegate and  Downstream migrants; 45%

Huron) Thomas (1965) male Dec, 42% male
Mar—Apr

BROOK

LAMPREYS

Ichthyomyzon fossor northern brook lamprey

Brule R, WI (L 1944 68 54.4 Churchill Transformers; mean TL 110

Superior) (1945) mm (males) and 125 mm
(females)

Sturgeon R, MI (L 1966 31 97m Purvis (1970) TFM treatment 1963

Superior)

Ichthyomyzon gagei southern brook lamprey

Little and 1980-1981 45 311t F. W. H. Early stages of

Choclafaula Cr, AL Beamish (1982) metamorphosis

Ichthyomyzon greeleyi mountain brook lamprey

Bent Cr, NC 1980-1986 86 64.0m Beamish and Stages 1-7 metamorphosis
Medland (1988)

Lampetra aepyptera least brook lamprey

7 streams in MD, 1980, 1988 20-38 46.2-79.2™  Docker and Transformers and adults

DE, KY, TN, AL Beamish (1994) (Oct-—Feb; see Fig. 1.3)

Lampetra planeri European brook lamprey

R Honddu, UK 55 52.7 Bird and Potter  Stage 6 metamorphosis
(1979)

outmigration (Purvis 1979; Torblaa and Westman 1980) or collected virtually all
individuals throughout the period of downstream migration (e.g., Applegate and
Thomas 1965).

However, the observed differences in transformer sex ratios might be, in part,
an artifact of sea lamprey control (i.e., dependent on time since isolation above
barrier dams and on lampricide treatment frequency). Nevertheless, these “manipu-
lations” (and populations isolated above natural barriers) also have provided much
of the evidence for sex-specific differences in age at metamorphosis. Applegate
and Thomas (1965), observing a heavily male-biased (76% male) sex ratio among
8,870 sea lamprey outmigrating from Carp Lake River in 1960-1961, concluded that
females metamorphosed at a younger age than males (Table 1.4). Because virtually
no recruitment had occurred in this river since construction of a barrier in 1955 (i.e.,
no individuals younger than age V-VI were present), these authors concluded that
the majority of females had already metamorphosed and outmigrated prior to moni-
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toring in 1960-1961. However, other studies suggest the opposite (i.e., that females
metamorphose at an older age). Manion and Smith (1978) monitored (over the course
of multiple years, 1966—1972) the 1960 sea lamprey year class in the Big Garlic River
after it was isolated above a barrier dam. In this study, the sex ratio of downstream
migrants was 54% male in 1966 (age class V), but progressively decreased to 15%
male by 1972. This is strong evidence that female sea lamprey metamorphose at
an older age than males and that they can remain in the larval stage for 12 years
or more. Metamorphosing sea lamprey collected above natural barriers also appear
to be female-biased if sampled after they have been isolated without recruitment
for some time (Zerrenner and Marsden 2005). Later metamorphosis in females is
consistent with the observation by Purvis (1979) that metamorphosing female sea
lamprey are, on average, larger than males (although the size difference varied among
streams; Table 1.4), and Applegate and Thomas (1965) likewise found that female
downstream migrants in the Carp Lake River were slightly larger than the males
(148 vs. 145 mm TL). Clearly, duration since isolation (i.e., whether the leading or
trailing edge of metamorphosis is being surveyed) will influence whether, and in
which direction, the sex ratio will be skewed. Similarly, sex ratio of metamorphosing
lampreys may also be influenced by the frequency of lampricide treatment. Purvis
(1970) monitored the 1963 year class of northern brook lamprey in the Sturgeon
River following re-establishment after lampricide treatment. He found that only 6%
of the individuals captured in 1966 (age class III) had metamorphosed, but 31 out
of 32 of these transformers (i.e., representing the leading edge of metamorphosis)
were male. Churchill (1945) found that male northern brook lamprey transformers
were smaller than female transformers, likewise suggesting that males metamor-
phose at a younger age and smaller size. However, in the absence of lampricide
treatments (i.e., where survival to metamorphosis was not prevented in all but the
earliest-transforming individuals), the sex ratio was not significantly different from
parity (Churchill 1945).

1.2.4 Sex Ratio During the Parasitic Feeding Phase

Given the difficulty sampling lampreys during the parasitic feeding phase at sea
or in large lakes, relatively little information is available regarding sex ratios dur-
ing this stage. Nevertheless, sex ratio data during this stage are available for four
species (Table 1.5). Sex ratios were not significantly different from parity in the
limited collections available for Pacific lamprey, western river lamprey Lampetra
ayresii, and freshwater-resident Arctic lamprey; in anadromous sea lamprey, sex
ratios were equal or male-biased. In contrast, in the Great Lakes, everything from an
equal sex ratio to highly female- or highly male-biased sex ratios has been reported.
In Lakes Superior, Michigan, and Huron, when collections were pooled over mul-
tiple years in the 1970s, the percentage of males in catches of parasitic-phase sea
lamprey (23-35%) was consistently 8% lower than in adults (31-43; Johnson and
Anderson 1980). Recent data from Lake Huron (2000-2015) show an identical 8%
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under-representation of males during the parasitic feeding stage relative to upstream
migrants (Gale Bravener, Fisheries and Oceans Canada, Sea Lamprey Control Cen-
tre, Sault Ste. Marie, ON, personal communication, 2018). Across all years, sex
ratio during the parasitic feeding phase averaged 53% male but upstream migrant
sex ratios averaged 61%, and males were under-represented during the feeding phase
in 13 of the 16 years monitored. Nevertheless, despite these consistent differences
between stages, the same general return to “normal” sex ratios was observed by the
mid-1990s. Sex ratio of parasitic-phase sea lamprey collected by commercial fishers
in Lake Huron (n = 18,352) averaged 41% male in 1983—1995 but 54% in 19962014
(n = 21,357; Gale Bravener, personal communication, 2018).

However, available data suggest considerable potential for sampling bias intro-
duced by spatial and temporal differences in the distribution of the sexes. In general,
males appear over-represented in collections made earlier in the season and under-
represented later in the season and in deeper offshore waters versus surface or inshore
areas (see Sect. 1.2.5). Also, in Great Lakes sea lamprey, it appears that females are
over-represented in larger size classes; this was most noticeable in Lake Superior
where males made up 31-35% of individuals <300 mm TL but only 14% of those
>500 mm TL (Johnson and Anderson 1980). A consistent over-representation of
females during the feeding stage (and the larval stage) relative to the adult stage
would suggest increased mortality of females after the feeding phase, but spatial and
temporal variations in sex ratio could be confounding observations.

1.2.5 Spatial and Temporal Variation in Sex Ratio

As mentioned above, there appear to be sex-specific behavioral (e.g., timing of
upstream and downstream migration) and life history (e.g., older average age at
metamorphosis in females) differences in lampreys that result in spatial and tempo-
ral variation in sex ratio. These differences can result in biased sex ratio estimates
in lampreys, but biased sex ratios can, in turn, help inform our understanding of
lamprey biology.

With respect to upstream migration, a number of studies report sex ratio over the
course of the spawning run (Table 1.1), and several studies suggest that males initiate
upstream migration earlier than females, at least in terms of time during the season.
There is no evidence to suggest that females feed for one or more seasons longer than
males (with the exception of the praecox form of Arctic lamprey; Kucheryavyi et al.
2007; see Sect. 1.2.1). In anadromous sea lamprey, most researchers report a greater
proportion of males earlier in the run (Beamish et al. 1979; Beaulaton et al. 2008;
Silva et al. 2016), although Stier and Kynard (1986) report a slight increase in the
proportion of males later in the run. In sea lamprey in the Great Lakes and Cayuga
Lake, Applegate (1950) and Wigley (1959) found that the proportion of males was
reasonably consistent over the duration of the run. Studies in other species also fail
to show a consistent over-representation of males earlier in the run. In the Caspian
lamprey, sex ratio was similar in fall versus spring migrants (Ahmadi et al. 2011)
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Table 1.5  Sex ratio of lampreys during the parasitic feeding phase; significantly male- and female-
biased sex ratios are identified with a superscript m and f, respectively

Species and location Year n % Male Reference ~ Comments
Entosphenus tridentatus Pacific lamprey (anadromous)
Pacific Ocean off Oregon 23 43.5 Kan (1975)
Strait of Georgia, BC 1975-1979 39 58.3 R.J.
Beamish
(1980)
Lampetra ayresii western river lamprey (anadromous)
Strait of Georgia, BC 1975,1976 50 60.0 R.J. 46-50% male in surface
Beamish waters Jul-Aug, 24-36%
(1980) male Aug-Sept
Lethenteron camtschaticum Arctic lamprey (anadromous)
Great Slave Lake, NWT 1966 72 45.8 Nursall and Late Aug—Sept
Buchwald
1972)
Petromyzon marinus sea lamprey (anadromous)
‘Washademoak L, NB 1975 141 72.4M Potter and May (115-155 mm TL)
Beamish
1977)
‘Washademoak L, NB 1974-1977 134 61.2m Beamish May (mean TL 133 mm
etal. (1979) males; 143 mm females)
St John R, NB @ Mactaquac 88 48.9 June—July (mean TL 267 mm
Dam (rkm 120) males; 272 mm females)
Petromyzon marinus sea lamprey (freshwater)
Canadian waters of Great 1967 2,530 ~0f_—80m Johnson Males rare in offshore areas
Lakes, esp. L Huron 1968 3,022 ~of—50m (1969) by Aug—Dec (see Sect. 1.2.5)
L Superior: from US 1970-1978 2,800 2.7t Johnson and  31-35% male <300 mm,
commercial fishermen Anderson 14% male >500 mm TL
(1980)
L Superior: from Canadian 1967-1976  9-73 ~3-22f Johnson and 30% male in Jun—Jul, 5-13%
fishermen Anderson male Aug-Dec
(1980)
L Michigan: from US 1971-1978 7,082 34.5F Johnson and 34-37% male <300 mm,
fishermen Anderson 30-32% male >400 mm TL
(1980)
L Huron: from US fishermen 1971-1978 1,351 30.9¢ Johnson and 29-38% male <300 mm,
Anderson 25% male >500 mm TL
(1980)
L Huron: from Canadian 1967-1976  123-1,900 ~5-40f Johnson and 25-30% male in Mar—June,
fishermen Anderson 4-6% male Aug-Dec; 10%
(1980) male offshore, 20% male
inshore
L Ontario: from Canadian 1967-1976  13-1,815 ~4f _55 Johnson and 25-49% in Jan—Apr, 8-18%
fishermen Anderson May-Dec; 9% male offshore,
(1980) 24% male inshore
L Erie: from Canadian 1969-1972  27-160 ~10-33f Johnson and 32-43% male in Apr-Jun,
fishermen Anderson 7-28% male July-Dec

(1980)
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and relatively stable over the course of the spring run (Nazari and Abdoli 2010;
Table 1.1). In the Pacific lamprey, the proportion of males was either similar over the
course of upstream migration (R. J. Beamish 1980; Porter et al. 2017) or increased or
decreased, depending on the year (Clemens et al. 2016; Benjamin Clemens, Oregon
Department of Fish and Wildlife, Corvallis, OR, personal communication, 2017).
In the European river lamprey, the proportion of males appeared to increase late in
the run in the typical anadromous form but was reasonably consistent throughout
the run in the praecox form (Abou-Seedo and Potter 1979). Brook lampreys exhibit
much more limited spawning migrations (i.e., 1-2 km; Malmqvist 1980; F. W. H.
Beamish 1982), and no consistent differences between the sexes are evident. Studies
report either no evidence of sex-specific differences in migration timing (Kott 1971;
Beamish and Thomas 1984), a higher proportion of males in the early part of the
spawning “run” (Hardisty 1961a; F. W. H. Beamish 1982) or nesting period (Young
and Cole 1900), or a higher proportion of males somewhere in the middle (Malmqvist
1980). Some of the observed differences among species and studies may be related
to the duration of the run that was monitored. Some studies did not include initial
inshore movement in parasitic species, and some may not have monitored the full
spawning period (e.g., nesting, spawning, and post-spawning periods; see Jang and
Lucas 2005). In parasitic species, males may predominate in the earliest part of the
run if they cease feeding and move inshore first (see below), and males in both
parasitic and non-parasitic species may potentially increase again at the end of the
spawning period if males spend longer on the spawning grounds (Malmgqvist 1978) or
survive longer after spawning (Beamish et al. 2016; see Sect. 1.5.2). There also may
be species- or situation-specific differences that have yet to be clarified. Nevertheless,
it is important to be aware that sex ratios obtained over a restricted portion of the
spawning run have the potential to be biased.

With respect to downstream migration, studies that have monitored the entire
cohort of outmigrating Great Lakes sea lamprey have found that the proportion of
male outmigrants was generally higher in the fall than in winter and early spring
(Applegate and Thomas 1965; Manion and Smith 1978; Table 1.4).

During the parasitic feeding phase, both temporal and spatial differences have been
observed in the distribution of the sexes. In anadromous sea lamprey, males were
over-represented (61%) among small sea lamprey captured shortly after initiation of
feeding in May relative to larger individuals captured in June—July (49%), suggesting
that males start feeding earlier than females (Potter and Beamish 1977; Beamish
et al. 1979). In the Great Lakes sea lamprey, data suggest that males may also cease
feeding and move to inshore areas in preparation for upstream migration earlier
than females. Johnson (1969) found that both sexes were captured by commercial
fishermen between April and July, but males virtually disappeared from offshore areas
by August and males encountered in the fall generally came from inshore catches. In
amore detailed follow-up study, Johnson and Anderson (1980) reported that sex ratio
varied temporally and spatially in each of Lakes Superior, Huron, Ontario, and Erie.
Precise timing varied among lakes (e.g., the proportion of males peaked between
January and April in Lake Ontario and between June and July in Lake Superior;
Table 1.5). Nevertheless, in all cases, males were noticeably more prevalent in the
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spring and early summer (25-49%) than in the late summer and fall (4—18% in Lakes
Superior, Huron, and Ontario; 7-28% in Lake Erie). In Lakes Huron and Ontario,
females were more prevalent in gill nets in deeper offshore waters relative to inshore
trap nets or seines (Johnson and Anderson 1980). A similar pattern was observed in
the western river lamprey feeding in the Strait of Georgia: the percentage of males
(46-50%) was higher in surface waters in mid-summer when the species was most
abundant near the surface, but sex ratio decreased to 24-36% male by late summer
(R. J. Beamish 1980). Thus, considering these observations alongside the temporal
variation observed to date in the sex ratio of downstream- and upstream-migrating
lampreys, one could infer that male lampreys generally outmigrate, start feeding, and
cease feeding earlier than females. However, further study is required before broad
generalizations can be made.

With respect to larval sex ratios, temporal and spatial variation that may be related
to an environmental effect (e.g., following initiation of sea lamprey control or varia-
tion among locations within a species) is discussed in Sect. 1.2.6. In addition, there
is limited evidence for some longitudinal segregation of the sexes within a stream.
There is no evidence to suggest that larval male and female lampreys actively select
for specific habitat types. However, the largely passive downstream drift that occurs
during the prolonged larval stage is expected to result in an accumulation of older
larvae as distance from the spawning grounds increases, although the degree to
which this happens may be related to specific features of the stream (e.g., gradient
or frequency and magnitude of flooding; Dawson et al. 2015). If females tend to
metamorphose at older ages than males (see Sect. 1.2.3), older larvae in downstream
reaches should be female biased relative to more upstream reaches. However, few
studies have examined spatial differences in larval sex ratios and the results are con-
flicting. In the Little Garlic River, a tributary on the south shore of Lake Superior,
Purvis (1979) found that the percentage of males collected near the mouth (17%)
was about half that collected 1.6 km upstream (30%), as predicted. In contrast, in
Shelter Valley Creek, a tributary of Lake Ontario, Lowe (1972) found a much higher
proportion of males near the mouth (53%) than in the upper reaches (11%).

1.2.6 Environmental Influences on Sex Ratio

Ithas often been observed that lamprey sex ratio is correlated with relative abundance.
Meek (1889) and Wigley (1959) reported that the proportion of male sea lamprey in
Cayuga Lake was positively correlated with population size, and Hardisty (1961b)
likewise reported a direct relationship between the proportion of male adult European
brook lamprey and relative spawner abundance. Most notably, in the sea lamprey in
the three upper Great Lakes, significantly male-biased adult sex ratios coincided with
the peak of abundance that preceded the initiation of sea lamprey control; sex ratios
then shifted to an excess of females as population abundance dramatically declined
following implementation of control (Smith 1971; Purvis 1979; Torblaa and Westman
1980; Fig. 1.2). However, the relationship between sea lamprey abundance and sex
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ratio is not as clear as generally suggested. First, a similar decline in the proportion
of males following the initiation of sea lamprey control was not observed in either
of the lower Great Lakes, despite a similar rapid decline in abundance following
initiation of lampricide treatments (see below). With one exception, sex ratios of
adult sea lamprey in Lakes Ontario and Erie have not deviated from the variable,
but consistent, excess of males typical of adult lampreys. Secondly, variable, but
comparatively low, abundances have been maintained in the upper Great Lakes since
these initial declines (see Chap. 5); yet the sex ratio in all three lakes returned to
parity or an excess of males by the mid- to late 1990s.

The methods by which sea lamprey abundance is estimated in the Great Lakes
have changed over time, but, given the wealth of data available from the sea lamprey
control program, the trends are clear. A standardized method to assess spawner
abundance was implemented in 1977 in Lakes Michigan and Huron, in 1978 in
Lake Ontario, and in 1980 in Lakes Superior and Erie, and subsequent refinements
have been adopted (Mullett et al. 2003; see Chap. 5). In brief, these more recent
abundance estimates are derived from mark-recapture studies conducted on a subset
of streams with traps, and abundance in non-sampled streams is modeled using
stream drainage area and other factors that allow sea lamprey index values to be
scaled up to lake-wide abundance estimates using a lake-specific correction factor
(Mullett et al. 2003; Jessica Barber, U.S. Fish and Wildlife Service, Marquette,
MI, personal communication, 2018; Fig. 1.2). Abundance estimates prior to, and
immediately following, initiation of sea lamprey control were based on counts of
upstream migrants at selected barriers (Smith 1971; Heinrich et al. 1980) or nest
counts (Sullivan et al. 2003); these estimates permit comparison among years but
do not represent lake-wide estimates. Nevertheless, historical lake-wide abundances
have been estimated; peak values were ~780,000 in Lake Superior; 600,000 in Lake
Michigan; 700,000 in Lake Huron; 450,000 in Lake Ontario; and 40,000 in Lake Erie
(GLFC 2015). Thus, scaling pre-control abundance in the index streams to these peak
lake-wide values allows comparison with recent abundance data. For example, Smith
(1971) reported a peak abundance of 69,584 upstream migrants in 24 index streams
to Lake Superior in 1961. Therefore, we assumed that lake-wide abundance peaked
at 780,000 in 1961, and index values from other years were scaled accordingly (e.g.,
a count of 9,614 adults in 1962, or 14% of the peak value from 1961, was assumed
to represent a lake-wide abundance of 109,758).

Although not precise (particularly where a small number of index streams was
monitored), this approach allows us to compare historical and recent data. It shows
that the decline in the proportion of males strongly paralleled the approximated
declines in spawner abundance in the three upper Great Lakes (Fig. 1.2). However, it
also shows that female-biased sex ratios have failed to persist in the upper Great Lakes
despite lake-wide abundance levels over the past two decades that have remained at
a fraction of their historic peaks (11, 16, and 28% in 1997-2016 in Lakes Superior,
Michigan, and Huron, respectively). Even in Lake Ontario, where sex ratio has varied
little over the past 50 years, the significant shift to female excess coincided with the
most abrupt decline in abundance (1978). Nevertheless, sex ratio remained at parity
or with a slight excess of males despite abundance having been reduced to ~10% of
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peak values (Fig. 1.2). Historic abundance data are sparse for Lake Erie, but they
suggest less dramatic changes in sea lamprey abundance. Sea lamprey were present
in the lake for more than 50 years before becoming sufficiently abundant to cause
noticeable effects on the fish community (Sullivan et al. 2003). Recent estimates
indicate that spawner abundance fell dramatically immediately after initiation of
sea lamprey control in 1986 (e.g., falling from 19,372 in 1988 to 2,633 in 1989),
but abundance started increasing again by 1996 and has remained relatively high
since (Sullivan et al. 2003; Chap. 5). Unfortunately, sex ratio data are not readily
available for Lake Erie prior to and during the initial rapid decline in abundance in
the mid-1980s.

Therefore, it has been challenging to understand the possible mechanisms respon-
sible for these changes (or lack thereof) in adult sex ratios. If abundance affects sex
ratio through a direct effect on the sex differentiation process (i.e., if crowding during
the larval stage favors male differentiation; see Sect. 1.3.2.2), itis not clear why a rela-
tionship between adult sex ratio and abundance was not observed in Lake Ontario
and why sex ratios in the upper Great Lakes returned to parity by the mid-1990s
despite continued low abundances. Furthermore, evidence of a relationship between
abundance and larval sex ratio is even more equivocal. A shift to slightly more female-
biased larval sex ratios was reported following initiation of sea lamprey control, but
only when averaged across streams (Torblaa and Westman 1980; Fig. 1.5). This rela-
tionship was far less evident within individual streams. Significantly female-biased
sex ratios (8—41% male) were observed in 15 of 28 tributaries to Lakes Huron, Supe-
rior, and Ontario even before these streams were treated with lampricide and when
lake-wide spawner abundance was still high. Furthermore, there was no apparent
correlation between qualitative assessment of larval abundance (GLFC 1960-1978)
and sex ratio (Fig. 1.4). Sex ratio within streams having larval abundance ranked 1,
2,4, and 5 (where 1 is lowest and 5 is highest) averaged 33, 41, 46, and 35% male (n
=4,7, 10, 7), respectively. In subsequent treatments, sex ratios averaged 30, 31, and
26% male in streams where larval abundance was ranked at 1, 2, and 4, respectively.
A decline in the proportion of males was also reported in metamorphosing sea lam-
prey following initiation of sea lamprey control, but, as with larvae, even initial sex
ratios were highly variable (20-85% male) so that a pattern was evident only when
averaged across streams (Torblaa and Westman 1980; Fig. 1.5). Transformer sex
ratio was similarly not correlated with qualitative assessments of larval abundance:
during initial treatments, sex ratios averaged 43, 48, 64, and 42% male in streams
where larval abundance was ranked at 1, 2, 4, and 5, respectively, and averaged 17,
57, and 33% male during subsequent treatments at relative abundances of 1, 2, and
4.

Interestingly, however, geographic patterns in larval sex ratio were evident (Tor-
blaa and Westman 1980). Most notably, female-biased sex ratios were observed in all
five tributaries surveyed on the north shore of Lake Superior and in four of five tribu-
taries to Georgian Bay (Fig. 1.4). Given the variable sex ratios present in streams with
divergent physical and chemical characteristics, Torblaa and Westman (1980) sug-
gested that environmental factors play a role in lamprey sex differentiation. Specific
environmental characteristics that might be shared by the streams with female-biased
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sex ratios were not identified by these authors, but the fact that these streams include
most of those on the north shore of Lake Superior and in Georgian Bay (but not those
on the east shore of Lake Superior or the north shore of Lake Huron) is interesting
and deserving of further study.

As was observed with adults, a relationship between sea lamprey larval abundance
and sex ratio has not been observed in recent decades. In 1994 and 1995, Wicks et al.
(1998a) compared larval sex ratios in a total of 12 streams tributary to Lakes Superior,
Michigan, Huron, and Ontario where the highest density was ~35x higher than
the lowest density. Interpretation of sex ratios was complicated by the observation
that 8-100% of the larvae >90 mm TL were classified as intersexes. Nevertheless,
including only individuals that were recognizable as male or female, sex ratios were
significantly female biased (9-37% male) in eight streams where densities ranged
from 0.1 to 4.2 larvae/m? and significantly male biased (82% male) in only one
stream (Gordon’s Creek, tributary to Lake Huron) where larval density was estimated
at 0.3 larvae/m?. Including the intersex individuals, females outnumbered males in
eight streams (mean density 1.1 larvae/m?), and males outnumbered females in three
streams (mean density 0.2 larvae/m?). The predominance of females in the majority of
streams is consistent with a shift toward female-biased sex ratios following initiation
of sea lamprey control, but adult data suggest that spawner sex ratios were returning
to parity by this time (e.g., 56, 41, 53, and 54% male in Lakes Superior, Michigan,
Huron, and Ontario, respectively, in 1995; Fig. 1.2). Female-biased sex ratios in
larval populations and equal or slightly male-biased sex ratios in adult populations
is the general pattern observed in most lamprey species, regardless of abundance
(see Sects. 1.2.1 and 1.2.2). Furthermore, the relationship between sex ratio and
larval density was not significant, although Wicks et al. (1998a) observed a trend
toward an increase in the proportion of females with increasing density (i.e., the
opposite of what has been predicted). These authors suggested that sea lamprey
control measures have lowered larval densities in streams to a point that density no
longer has a significant effect on sex differentiation (i.e., that contemporary densities,
even over the range studied, are all relatively low as the result of frequent lampricide
treatment). Wicks et al. (1998a) also measured or calculated stream pH, alkalinity,
hardness, temperature (as degree days), and larval growth rate, and they did not
detect relationships between any of these characteristics and sex ratio. However, the
high proportion of intersexes in these populations makes it very difficult to interpret
the relationship between sex ratio and environmental factors. Wicks et al. (1998a)
observed that the proportion of intersex larvae in a population increased with larval
growth rate, but the cause and the impact on the population sex ratio is unknown (see
Sect. 1.4.1.4). More recently, Johnson et al. (2017) suggested that larval growth rate,
rather than density per se, influenced sex determination in sea lamprey, but sex ratio
was evaluated only at upstream migration and results may have been confounded by
sex-specific differences in rates of metamorphosis (see Sect. 1.3.2.2). More work is
needed to understand contemporary larval sex ratios in Great Lakes sea lamprey.

Hardisty (1960a), upon finding that larval sex ratios did not correlate with adult
sex ratio or abundance, concluded that the environment did not have a direct influence
on the sex differentiation process, and he concluded instead that sex-specific differ-



36 M. E Docker et al.

ences in rates of metamorphosis or mortality produced the skewed adult sex ratios.
The only evidence that larval lamprey sex ratios are correlated with in-stream abun-
dance comes from two brook lamprey species in the southeastern United States. Sex
ratio variations were observed among least brook lamprey populations in Maryland,
Delaware, Kentucky, Tennessee, and Alabama; the proportion of males ranged from
29 to 71% and was found to increase significantly with relative larval density (Docker
and Beamish 1994). There was no evidence for sex-specific differences in mortal-
ity (i.e., sex ratio differences were established in the earliest age classes in which
sex could be identified and remained relatively consistent thereafter). Furthermore,
although a disproportionate representation of females in the oldest age class sug-
gested that females recruit to the adult population at older ages than males (Fig. 1.3),
this age class was small and had little influence on the overall sex ratio. In this study,
larval sex ratio was not significantly related to water hardness, pH, annual thermal
units, or latitude. In the southern brook lamprey, Beamish (1993) observed a positive
relationship between larval density and the proportion of males when conditions for
larval growth were favorable, but he found that under poor growth conditions, higher
densities were associated with fewer males.

We also considered whether the female-biased sex ratios in these two brook lam-
prey species could be a response to exploitation (i.e., given that female-biased sex
ratios in sea lamprey in the upper Great Lakes followed the population “crash” that
occurred after initiation of control measures). F. W. H. Beamish (1980) suggested that
a slight excess of males is typical of established lamprey populations, and an increase
in the proportion of females has been suggested as a compensatory response to low
abundances or rapid decreases in abundance (Jones et al. 2003). Some of the southern
brook lamprey populations examined by Beamish (1993) have been sampled repeat-
edly over several years. For example, Choclafaula Creek in Alabama was sampled
in 11 successive years by Beamish and coworkers (Beamish 1993; Table 1.2) and
by other researchers in the 1940s and 1950s (see Dendy and Scott 1953). However,
there was no correlation between the frequency of known sampling events and pop-
ulation sex ratio, and the frequently sampled populations still exhibited high larval
densities. Furthermore, overexploitation has been reported in other lamprey species
(see Maitland et al. 2015), but there are no reports of similar compensatory shifts in
sex ratio. Granted, abundance and especially sex ratio data for these species are far
more limited than with the well-studied sea lamprey in the Great Lakes, but there
is no evidence for female biases in any of the more heavily exploited species. For
example, abundance of adult Pacific lamprey in much of the Pacific Northwest has
decreased exponentially following peak returns in the 1950s and 1960s. Counts of
upstream migrants at Winchester Dam in the coastal Umpqua River decreased from
a high of ~46,800 in 1966 to only 34 in 2000; at Ice Harbor Dam in the Snake River,
a tributary to the Columbia River, counts decreased from a peak of 49,450 in 1963
to 203 in 2001 (Close et al. 2002). Likewise, at Bonneville Dam in the mainstem
Columbia River, counts averaged 103,700 during 1939-1969 but only 38,700 in
1997-2010 (Murauskas et al. 2013). Sex ratio data are patchy, but equal or slightly
male-biased sex ratios have been reported during periods of both high and low abun-
dance. Upstream migrants were 55-57% male in two Oregon streams pre-1975 (Kan
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1975) and 49-57% male in the Willamette River in 20072016 (Clemens et al. 2016;
Porter et al. 2017). Potential female-biased sex ratios were reported by Lampman
(2011) and Mcllraith et al. (2015), but the proportion of males was likely underesti-
mated, especially in the early stages of maturity, because many of the unidentifiable
lamprey were likely males (Table 1.1). However, greater study is required, particu-
larly if shifts in sex ratio are transitory following perturbation.

Finally, to try to understand the ultimate cause of sex ratio variations in lam-
preys, it is important to also consider other changes that accompanied the initial
increase in the percentage of males observed following invasion of the upper Great
Lakes and the subsequent shift to female-biased sex ratios in the ensuing population
“crash.” Decreases in the availability of prey (e.g., lake trout Salvelinus namaycush)
and decreases in sea lamprey size at maturity were observed as sea lamprey abun-
dance increased in each lake, and these trends were reversed as sea lamprey numbers
declined again following the initiation of sea lamprey control (see Chap. 5). Houston
and Kelso (1991) found that sea lamprey sex ratio was more closely related to prey
availability in Lake Superior (commercial catch and stocking rates, 1954-1987) and
Lake Huron (stocking rates, 1949-1987) than it was to spawner abundance. The
proportion of males increased in close association with declines in prey availability
and then waned again as prey abundance increased once more. In Lake Superior,
for example, severe sea lamprey predation beginning in the late 1940s, combined
with intensive commercial fishing in the early 1950s, resulted in lake trout stocks
being at an all-time low by 1960 (Heinrich et al. 1980). The proportion of males in
Lake Superior peaked in 1961-1964 (69%). Lake trout numbers began to rebound in
Lake Superior by about 1962, resulting from a combination of sea lamprey control
measures, intensive stocking, and commercial fishing restrictions (Heinrich et al.
1980; Smith and Tibbles 1980), and sea lamprey sex ratios decreased to an average
of 53% male by 1965-1966 (Fig. 1.2). In Lake Huron, commercial catch of lake
trout in U.S. waters declined from 177 t in 1947 to less than 0.5 t in 1959, and
the proportion of sea lamprey males peaked in 1950-1955 (70%). Stocking efforts
began in 1963 (Heinrich et al. 1980; Smith and Tibbles 1980) and sex ratio was 54%
male by 1964. Although not included in the Houston and Kelso (1991) study, the
same pattern was seen in Lake Michigan: lake trout had been almost extirpated by
1950 and the proportion of males first exceeded 60% in 1954 and remained high
(averaging 63%) until 1964. The subsequent decline in the proportion of males (58
and 44% in 1965 and 1966, respectively) corresponded closely with the initiation of
lake trout and Pacific salmon (coho and Chinook salmon, Oncorhynchus kisutch and
O. tshawytscha, respectively) stocking efforts in 1965-1966 (Heinrich et al. 1980;
Smith and Tibbles 1980).

Therefore, as an alternative explanation to density-dependent sex determination
acting during the larval stage, one could speculate that the changes in adult sea
lamprey sex ratio observed during this time period were a response to dramatic
changes in prey availability and were mediated largely during the feeding phase.
There was certainly little lag time between the sharp declines and recoveries noted
in prey abundance and the peaks and valleys observed in the proportion of male sea
lamprey. A short lag time would be more consistent with differential mortality acting
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during the feeding and adult stages rather than density-dependent sex determination
in the larval stage. During the initial population explosion, as prey levels declined
dramatically, it is possible that female mortality rates during the late parasitic and
adult stages were disproportionately higher than in males given the much higher
energetic demands of ovarian maturation (F. W. H. Beamish 1980; see Sects. 1.5.3
and 1.5.4). Resource limitations were certainly apparent as sea lamprey abundance
increased and prey availability decreased, and these changes paralleled the initial
shifts in sex ratio. In Lake Superior, size at maturity declined throughout the 1950s,
from a reported high in 1953-1954 (455 mm, 227 g) to a low (412 mm, 140 g) in the
early 1960s, but it began to increase modestly throughout the 1960s—1980s. By the
late 1980s, it had almost returned to the maximum size recorded pre-control (Houston
and Kelso 1991), and it appears to have more or less stabilized since then (averaging
434 mm and 202 g since 1955; GLFC 1996-2017). In Lakes Huron and Michigan, sea
lamprey remained small until the 1960s (414 mm, 133 gin 1947-1960 in Lake Huron;
433 mm, 164 gin 1954-1962 in Lake Michigan) but showed pronounced increases in
the 1960s—1980s, and TL and weight have averaged 475 mm and 235 g (Huron) and
488 mm and 259 g (Michigan) in the last two decades (Smith 1971; Heinrich et al.
1980; Houston and Kelso 1991; GLFC 1996-2017). The shift to an excess of female
adult sea lamprey, as prey availability rebounded and sea lamprey size increased
again, would then suggest that survival of females subsequently became higher than
that of males during the parasitic and adult phases as the result of improved feeding
conditions. There are no data available to test this conjecture, but it is important
to remain aware of the many population-level changes that occurred during and
following colonization and control of sea lamprey in the Great Lakes.

Furthermore, Lake Ontario showed a similar recovery of the prey base and increase
in sea lamprey size following initiation of sea lamprey control, but, as mentioned,
it did not show the pronounced shift to female-biased sea lamprey sex ratios that
were evident in the three upper Great Lakes. Commercial salmonid catches and
salmonid stocking rates were increasing by the mid-1970s, and sea lamprey size,
which averaged 412 mm and 154 g in 1968-1970 (prior to initiation of sea lamprey
control), increased thereafter; TL and weight reached ~480 mm and 260 g by the
late 1980s (Houston and Kelso 1991) and has remained at this level during the last
two decades (484 mm, 257 g; GLFC 1996-2017). Yet, despite evidence that sea
lamprey in Lake Ontario were no longer resource-limited, a significant excess of
females was detected in 1978 only, and the highest proportion of males (64-65%)
was observed in 1985-1986. One possible difference is the pattern of colonization
in Lake Ontario compared to the upper Great Lakes. Whether sea lamprey invaded
Lake Ontario via manmade canals in historical times (Eshenroder 2014) or whether
they colonized post-glacially but remained rare until ecological changes in the mid-
1800s served as a “release” (Christie and Kolenosky 1980; Waldman et al. 2009)
has long been debated (see Chap. 4). There is also some debate regarding the first
credible report of sea lamprey in Lake Ontario (i.e., as early as 1835 or as late 1888;
see Christie and Kolenosky 1980; Eshenroder 2014), but it is nevertheless evident
that they have been present in Lake Ontario for at least 50-100 years longer than
in Lakes Michigan, Huron, and Superior (where they were first observed in 1936,
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1937, and 1938, respectively), and they have been slower to reach pest proportions in
Lake Ontario (Christie and Kolenosky 1980; Larson et al. 2003; see Chap. 5). These
differences require further exploration to help understand whether the response in the
upper Great Lakes may have been related to rapid population expansion and collapse
(compared, perhaps, to a less dramatic perturbation from equilibrium conditions in
Lake Ontario) or other factors (see Sect. 1.3.2). Our understanding of the mechanisms
responsible for the sex ratio shifts in the upper Great Lakes is still far from complete.

1.3 Sex Determination

Sex determination is the event that predisposes a bipotential gonad to develop as an
ovary or a testis (Sandra and Norma 2010), and these predisposing events can be
genetic or environmental (Sarre et al. 2004; Siegfried 2010; Parma and Radi 2012).
All birds and mammals exhibit genetic sex determination (GSD) where the mas-
ter sex-determining genes are conserved within each taxon (Ellegren 2010; Cutting
et al. 2013). In other vertebrates, mechanisms of sex determination vary, and both
GSD (with a variety of different master sex-determining genes even among closely
related species) and environmental sex determination (ESD) are known (Bulmer
1987; Takada et al. 2005; Heule et al. 2014). The factors that influence sex determi-
nation in lampreys continue to elude biologists, although new genomic technologies
are now being used to try to resolve this previously intractable problem and recent
discoveries related to mechanisms of sex determination in other vertebrates are guid-
ing the way. Therefore, we begin here with an overview of sex determination in other
vertebrates, particularly the variable nature of sex-determining mechanisms in the
so-called “lower vertebrates” and the complicated interplay between genetic and
environmental factors in these taxa. This broader taxonomic overview provides the
background information necessary for understanding the possible sex-determining
mechanisms at play in lampreys. For example, earlier studies suggesting strict ESD
in lampreys (e.g., Docker and Beamish 1994) may have been premature, and future
researchers should be aware of the complexity of vertebrate sex-determining mech-
anisms.

1.3.1 Sex Determination in Other Vertebrates

1.3.1.1 Genetic Sex Determination

In many vertebrates, the “master switch” that activates the sex-specific developmental
cascade directing the undifferentiated gonad to develop into an ovary or testis is
genetic. The master sex-determining genes are highly conserved within birds and
mammals (DMRTI and SRY, respectively), and, in these well-studied vertebrates,
sex chromosomes subsequently evolved from a pair of autosomes after acquisition
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of the master sex-determining gene. This triggered a cascade of neutral and adaptive
processes that caused the once identical chromosomes to diverge from each other in
size, gene content, and structure (Charlesworth et al. 2005; Graves and Peichel 2010;
Wright et al. 2016). Mammals are said to have an XY/XX sex determination system,
wherein the males are the heterogametic sex, inheriting different sex chromosomes
(X and Y) at fertilization, and the females are homogametic. Birds have a ZZ/ZW sex
determination system, wherein the females (inheriting Z and W sex chromosomes)
are the heterogametic sex (Wallis et al. 2008; Cutting et al. 2013). In birds, DMRT is
located on the Z chromosome and is required in a dosage-dependent manner for male
development (Smith et al. 1999; Shetty et al. 2002; Yano et al. 2012; Cutting et al.
2013). In mammals, SRY (the Sex-determining Region Y) initiates development of
the male phenotype; its absence leads to female development (Cutting et al. 2013).
Thus, although the sex-determining genes are conserved within each taxon, different
sex-determining genes have evolved independently in birds and mammals. In fact,
although many of the key genes involved in the subsequent differentiation of the
gonads are conserved among vertebrates (see Sect. 1.3.2), their relative positions
in the ovarian and testicular cascades—including which genes represent the master
switch at the top of the cascade—often differ (Cutting et al. 2013). Turnover of sex
chromosomes can lead to the evolution of novel sex determination mechanisms, and
genes involved in sex determination in the “lower” vertebrates (i.e., reptiles and non-
amniotes) are far less conserved (see Cutting et al. 2013; Graves 2013; Wright et al.
2016; Capel 2017).

Sex determination mechanisms are poorly known in most fishes and can be highly
variable even among closely related species (Siegfried 2010). GSD, or sex deter-
mination with a significant genetic component, has been inferred in many teleost
fish species (Devlin and Nagahama 2002; Ospina-Alvarez and Piferrer 2008; see
Sect. 1.3.2.1). However, many of these species do not have morphologically distinct
sex chromosomes, and the sex-determining genes have been identified in very few
species. As of 2001, of the more than 1,700 fish species that had been cytogenetically
characterized, just over 10% were found to have heteromorphic sex chromosomes
(Devlin and Nagahama 2002). In species with recognizable sex chromosomes (e.g.,
Chen and Reisman 1970; Peichel et al. 2004; Chen et al. 2008), males are the hetero-
morphic sex in some cases (e.g., rainbow trout Oncorhynchus mykiss and medaka
Oryzias latipes; Thorgaard 1977; Matsuda et al. 2002), but females are heteromorphic
in others (e.g., blue tilapia Oreochromis aureus; Mair et al. 1991a).

The master sex-determining genes have been identified in only a limited num-
ber of fish species, and it is clear that these genes are highly variable even among
closely related species. Most dramatically, different species in the genus Oryzias
appear to use a number of different sex-determining genes. DMY, a homolog of the
bird DMRT] gene, acts as the testis-determining gene in the medaka and Malabar
ricefish Oryzias curvinotus (Matsuda et al. 2002; Nanda et al. 2002). In contrast,
the Indian ricefish O. dancena uses SOX3 as the male-determining factor, and the
Luzon ricefish O. luzonensis uses the GsdfY gene (gonadal somatic derived factor
on the Y chromosome; Myosho et al. 2012). In the latter species, Gsdf? is present
in both males and females, but males have 12 silent nucleotide mutations relative to
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females that alter upstream promoter regulation to direct male development (Myosho
et al. 2012). Conversely, sex-determining genes may be shared among taxa that are
not closely related. In the half-smooth tongue sole Cynoglossus semilaevis, DMRT1
appears to be required for male development in the same dosage-dependent manner
as is seen in birds (Chen et al. 2014). In some salmonid fishes, sdY (sexually dimor-
phic on the Y chromosome), a homolog of the mammalian SRY, determines maleness
(Yano et al. 2012, 2013). sdY appears to be male-specific in at least 10 species in the
genera Oncorhynchus, Salmo, Salvelinus, Thymallus, Hucho, and Parahucho. How-
ever, sdY was found in both sexes of the European whitefish Coregonus lavaretus
and the lake whitefish C. clupeaformis (Yano et al. 2012, 2013), suggesting that it
is male specific in subfamilies Salmoninae and Thymallinae, but not in subfamily
Coregoninae. In the tiger pufferfish or fugu Takifugu rubripes, sex is determined
by sex-specific nucleotide differences in the Amhr2 gene (Kamiya et al. 2012). To
date, eight different genes have been implicated in sex determination in teleost fishes
(Table 1.6).

Furthermore, in addition to species that have monogenic sex determination (i.e.,
with a single sex-determining gene), other species are known that have polygenic
sex determination, where sex is determined by the combined effects of multiple loci
(Ohno 1974; Devlin and Nagahama 2002; Vandeputte et al. 2007; Sandra and Norma
2010; Heule et al. 2014; Liew and Orban 2014).

1.3.1.2 Environmental Sex Determination

In addition to more variable mechanisms related to GSD, sex determination in “low-
er” vertebrates can also include ESD. According to evolutionary theory, ESD should
be favored when an environmental factor is more advantageous to one sex or the
other but offspring disperse randomly and are unable to choose their environment.
Under these conditions, for example, ESD could ensure that an individual of a rela-
tively large size will become the sex in which the rewards for being large are greater
(Charnov and Bull 1977; Conover 1984). Thus, the environmental variables to which
sex determination is sensitive may act as cues to indicate conditions of favorable
growth.

ESD, specifically temperature-dependent sex determination (TSD), has been par-
ticularly well studied in reptiles (see Charnov and Bull 1977; Janzen and Phillips
2006; Warner 2011). All crocodiles and alligators and most turtles appear to use
ESD exclusively (Janzen and Krenz 2004; Warner 2011). In the American alliga-
tor Alligator mississippiensis, sex determination is highly sensitive to temperature
changes; offspring are all female when eggs are incubated at <30 °C and all male
when incubated at >34 °C (Ferguson and Joanen 1982). In some species of turtles,
equal sex ratios are produced at intermediate temperatures, with a higher prevalence
of males and females being produced at low and high temperatures, respectively
(Woolgar et al. 2013; Mork et al. 2014). Interestingly, however, although the master
sex-determining switch in these reptiles is temperature, the resulting developmental
cascade appears to use some of the same genes that are at the top of the cascade in
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Table 1.6 Genes implicated in vertebrate species with known genetic mode of sex determination;
the sex-determining genes (DMRT] and SRY, respectively) are conserved in birds and mammals,
but at least eight different genes have been implicated in sex determination in fishes

Gene symbol*

Gene name

Species

Sex specificity

References

Amhr2 Anti-Miillerian hormone Pufferfish Takifugu Gene present in Kamiya et al.
receptor type 11 rubripes both male and (2012)
females; single
nucleotide
polymorphism
determines sex
amhy Y-linked anti-Miillerian Patagonian Found on Y Hattori et al.
hormone gene pejerrey chromosome in (2012)
Odontesthes XY males
hatcheri
DMRTI Doublesex and Birds, half-smooth Male specific, two  Smith et al. (1999),
mab-3-related tongue sole copies needed for  Shetty et al. (2002),
transcription factor 1 Cynoglossus ZZIZW system Chen et al. (2014)
semilaevis
DMY DM-domain gene on the Medaka Oryzias Present on Y Matsuda et al.
Y chromosome latipes, Malabar chromosome of (2002), Nanda
ricefish Oryzias XY males et al. (2002)
curvinotus
GsdfY Gonadal soma derived ~ Luzon ricefish Male-specific Myosho et al.
growth factoronthe Y  Oryzias factor on (2012)
chromosome luzonenesis Y-chromosome
gdf6y TGF-b family growth Turquoise killifish  Male-specific Reichwald et al.
factor Nothobranchius region on the (2015)
Sfurzeri Y-chromosome
SOX3 SRY-box 3 Indian ricefish Male determining  Takehana et al.
Oryzias dancena factor on (2014)
Y-chromosome
sdY Sexually dimorphic on 10 salmonid Male-specific gene Yano et al. (2012,
the Y-chromosome species (genera found on 2014)
Oncorhynchus, Y-chromosome
Salmo, Salvelinus,
Thymallus, Hucho,
and Parahucho)
SRY Sex determination Therian mammals  Male-specific gene Wallis et al. (2008)

region on the Y
chromosome

found on
Y-chromosome

*Formatting conventions for gene names depend on the type of organism; in general, symbols for genes are
italicized, but the proteins they encode are not italicized; gene names written out in full are generally not
italicized (although they are in fishes); capitalization of gene symbols varies considerably among organisms
(e.g., all in upper case in primates, chickens, and domestic species; all in lower case in fishes; with only the first
letter in upper case in mice and rats). In this chapter, to avoid confusion, we use the formatting employed by the
authors cited above (or used most commonly by the authors cited in the text) for each gene in question (i.e., we
use consistent formatting for each gene throughout the chapter, but not consistent formatting among genes
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vertebrates with GSD. For example, temperature-dependent expression of DMRT]
is seen in the developing genital ridge in red-eared slider turtle Trachemys scripta
elegans males (Kettlewell et al. 2000). GSD predominates in most (but not all) lizards
and snakes (Charnov and Bull 1977; Bulmer 1987; Schwanz et al. 2016), and ESD
and GSD are not necessarily mutually exclusive. In the eastern three-lined skink
Bassiana duperreyi, for example, sex is genotypically determined by the inheritance
of heteromorphic sex chromosomes, but extreme incubation temperatures are able
to override the genetic sex (Radder et al. 2009). An interaction of GSD and ESD is
also seen in the central bearded dragon Pogona vitticeps. In this species, GSD oper-
ates under most conditions, but, under extremely high temperatures, the populations
can consist of 100% phenotypic females despite their genotype (Quinn et al. 2007).
Some authors have suggested that ESD is ancestral in amniotes (e.g., Uller et al.
2007; Pokornd and Kratochvil 2016), while others argue that GSD is ancestral (e.g.,
Alam et al. 2018). However, in general, recent studies suggest that sex determination
systems exist across a continuum of genetic and environmental influences and that
the classical dichotomy between GSD and ESD—at least in the lower vertebrates—is
“blurrier” than once thought (e.g., Holleley et al. 2015, 2016).

ESD, usually TSD, has also been reported in a number of fish species. In the
Atlantic silverside Menidia menidia, arguably the best-studied fish species with
respect to TSD, low fluctuating temperatures characteristic of the early breeding
season produce a high proportion of females, while a predominance of males are
produced as a result of higher temperatures experienced later in the season. Females,
having alonger growing season, are consequently the larger sex (Conover and Kynard
1981; Baumann and Conover 2011). Sex determination in the California grunion
Leuresthes tenuis (which, like the silverside, belongs to the order Atheriniformes)
appears to be influenced by both temperature and photoperiod; a higher prevalence
of females is produced at cooler temperatures and longer day lengths (Brown et al.
2014).

However, no fish species with exclusively ESD have been identified to date. In
contrast to the steep 100% change in sex ratio observed in many reptiles over a narrow
temperature range, genotype X environment interactions in teleost fishes produce a
gradual sex ratio shift with temperature (Conover 2004; Duffy et al. 2015). The
Atlantic silverside employs both TSD and GSD; the degree to which TSD or GSD
predominates varies among populations, but no populations display pure TSD or
GSD (Lagomarsino and Conover 1993; Duffy et al. 2015; see Sect. 1.3.2.2). In a
third atheriniform fish species, the pejerrey Odontesthes bonariensis, sex ratios of
100% female or 100% male can be achieved when embryos are reared at low and
high temperatures, respectively (Yamamoto et al. 2014). However, both sexes are
produced at intermediate temperatures, and there is a high, although not complete,
correlation between phenotypic sex and amhy genotype, the master sex-determining
gene in the closely related Patagonian pejerrey Odontesthes hatcheri (Hattori et al.
2012). Similarly, in the European sea bass Dicentrarchus labrax, sex determination
depends both on genetic factors and temperature, and there is no known temperature
regime that produces 100% males or 100% females (Palaiokostas etal. 2015). Ospina-
Alvarez and Piferrer (2008) concluded that many cases of skewed sex ratios observed
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at extreme temperatures might, in fact, be the consequence of thermal effects on GSD
(e.g., growth-dependent sex differentiation; Piferrer et al. 2005) rather than the result
of strict TSD.

1.3.2 Sex Determination in Lampreys

1.3.2.1 Genetic Sex Determination

Sex determination mechanisms in basal vertebrates are poorly understood, and the
factors that influence sex determination in lampreys continue to elude biologists
(Docker 1992; McCauley et al. 2015). At what point in the life cycle sex is determined
is still unknown, and whether there is a genetic component has yet to be resolved.
Karyological studies in lampreys have failed to identify heteromorphic sex chromo-
somes (e.g., Ishijima et al. 2017), although this is not surprising given the difficulty
associated with counting the large number of very small “dot-shaped microchro-
mosomes” found in this group (e.g., 84 pairs in sea lamprey; Potter and Rothwell
1970; McCauley et al. 2015). Furthermore, identification of sex chromosomes (e.g.,
by karyotyping or banding patterns) will depend on the sensitivity of the method
used to search for them (Ospina-Alvarez and Piferrer 2008). A recent study using
reduced-representation genotyping (i.e., Restriction site Associated DNA Sequenc-
ing or RAD-Seq, which sequences ~0.1-10% of the genome) failed to find genomic
differences between male and female European brook lamprey (Mateus et al. 2013).
Although RAD-Seq lacks the power to identify subtle genetic differences between
the sexes, these results suggest that physically extensive genomic differentiation (i.e.,
X- or W-linked loci on sex chromosomes) does not exist between male and female
lampreys. Thus, as is typical of many other fishes, if sex determination in lampreys is
genetically based, the underlying system evolved without major chromosome diver-
gence (Mateus et al. 2013).

Sex-determining systems can be inferred from the sex ratios of large numbers of
progeny from single-pair matings, hormonally sex-reversed individuals, gynogens,
and triploids (e.g., Mair et al. 1991a, b), but these approaches are either not possible or
not practical in lampreys. Hormonal sex control has not been successfully achieved in
lampreys (Docker 1992; see Sect. 1.4.1.6), and, although meiotic gynogens have been
generated in sea lamprey (Rinchard et al. 2006), the length of time until progeny sex
ratios could be determined makes this approach impractical without improvements
to larval rearing protocols (see Chap. 2).

More recently, Khan (2017) used a candidate gene approach to test whether 19
genes implicated in sex determination or sex differentiation in other vertebrates were
present in lampreys in a sex-specific manner. Candidate genes tested included puta-
tive master sex-determining genes identified in birds (DMRT1), mammals (SRY), and
teleost fish species (Amhr2, amh, gsdf, sdY; Table 1.6), as well as key genes involved
elsewhere in the sex differentiation cascade (SOX2, SOXS8, SOX9, SOX10, SOX17,
SF1, TRA-1, RSPO1, WT1, WNT3, WNTS5, FOXL2, and FEM1; see Sect. 1.4.2.1).
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Khan (2017) searched for homologs of these genes in the sea lamprey genome (Smith
etal. 2013) and tried to amplify (using polymerase chain reaction, PCR) fragments of
these genes in male and female sea lamprey and Pacific lamprey. Two lamprey species
from divergent genera of Northern Hemisphere lampreys (Potter et al. 2015) were
included because sex-determining genes in fishes can be highly variable even among
closely related species. Homologs of SRY, amh, Amhr2, GSDF, sdY, and TRA-1 were
not found in the sea lamprey reference genome; SOXI and SOX17 had homologs in
the sea lamprey reference genome, but primers designed for them repeatedly failed
to amplify them from genomic DNA. The remaining 11 genes (SOX2, SOX8, SOX9,
WTI1, FEM-1, SFI1, DMRTI, FOXL2, WNT3, WNT5, and RSPOI) were successfully
amplified from sea lamprey genomic DNA, and seven of these also amplified in
Pacific lamprey (SOXS8, SOX9, FEM-1, DMRTI, FOXL2, WNT3 and WNT5). How-
ever, sex-specific differences (i.e., in terms of presence or absence of the gene or
sex-specific sequence differences) were not apparent in any of them. Given the wide
and unpredictable variation in sex-determining mechanisms seen in other fishes, it
is not surprising that a putative sex-determining gene in lampreys was not found
using this approach. Sex-associated loci in lampreys, if they exist, may be unique
to lampreys. A genome-wide association study (GWAS) using whole-genome rese-
quencing is currently being used to test for the genetic basis of sex determination in
sea lamprey (Margaret F. Docker, unpublished data).

It is also possible that some of the candidate genes not found in the sea lamprey
somatic genome are among the ~20% of the genome that is “jettisoned” during the
programmed genome rearrangement that occurs in lampreys during the very early
stages of development (Smith et al. 2009, 2013; Bryant et al. 2016; see Chap. 6).
Some of these genes might be found in the newly available germline genome (Smith
et al. 2018). Interestingly, programmed DNA elimination has also been reported in
the zebra finch Taeniopygia guttata (Pigozzi and Solari 1998). In this species, the
germline-restricted chromosome (GRC) is eliminated from mature sperm and trans-
mitted only through the oocyte (Pigozzi and Solari 2005), and a recently identified
GRC-limited gene is more highly expressed in the ovary than in the testis (Bieder-
man et al. 2018). In sea lamprey, the germline-specific genes are eliminated from
the somatic genome within the first few days of embryonic development (Bryant
et al. 2016), that is, at least 2 years before histological signs of sex differentiation
(see Sect. 1.4.1). Therefore, it is not clear how somatically eliminated genes could
be involved in lamprey sex differentiation, but it is fascinating to contemplate.

1.3.2.2 Environmental Sex Determination

Environmental sex determination (in particular, density-dependent sex determina-
tion) has been proposed in lampreys to explain the observation that sea lamprey
adult sex ratios in the three upper Great Lakes became highly male biased when their
abundance peaked in each of these lakes and then dramatically shifted to a signifi-
cant excess of females as abundance declined following implementation of control
measures (Smith 1971; Purvis 1979; Torblaa and Westman 1980; see Sects. 1.2.1 and
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1.2.6). However, evidence for ESD in lampreys—or at least an exclusive or dominant
environmental component to sex determination—is equivocal. Similar shifts in adult
sex ratio were not observed in the lower Great Lakes, and sex ratio returned to the
typical slight excess of males in all the lakes by the mid-1990s (Fig. 1.2). Further-
more, there is little evidence that larval sex ratio and abundance are correlated in
these populations (Hardisty 1960a; Torblaa and Westman 1980; Wicks et al. 1998a;
see Sect. 1.2.6).

There is no support for the suggestion that exposure to the lampricide TFM pro-
duced a direct effect on sea lamprey sex ratios. First, there is no evidence that TFM
produced female-biased sex ratios by preferentially killing male sea lamprey lar-
vae (Purvis 1979; Torblaa and Westman 1980). Secondly, it appears unlikely that
TFM caused direct feminization of larval sea lamprey. Interestingly, TFM exposure
in other fishes resulted in changes in the level of plasma sex steroids during labo-
ratory trials (Munkittrick et al. 1994), and TFM (or impurities associated with its
field formulations) was found to act as an estradiol agonist in rainbow trout hepa-
tocytes (i.e., binding to the estrogen receptor and inducing vitellogenin production
in vitro; Hewitt et al. 1998a). However, the effect was less dramatic in live caged rain-
bow trout, white sucker Catostomus commersonii, and longnose dace Rhinichthys
cataractae monitored following exposure to TFM during a normal field treatment
(Hewitt et al. 1998b). Elevated mixed function oxidase (MFO) activity was detected
in livers, particularly in fish held closest to the lampricide application points, but
MFO had declined to low levels within 18 days of treatment, and there was no induc-
tion of vitellogenin in live fish (see Sect. 1.5.5.2). Therefore, the authors concluded
that the weak estrogenic activity of TFM and the transient exposure produced only
slight in vivo effects. TEM treatment periods are short (~12 h; Hubert 2003), as is
its persistence in the water column (e.g., the estimated half-life of TFM is 16-32 h;
McConville et al. 2016). Thus, it is unlikely that feminization of the sea lamprey
gonad occurred during very short exposure to TFM relative to the long period of
sexual lability (see Sect. 1.4.1) and that females so produced would survive treat-
ment. Because Wicks et al. (1998a) observed a high proportion of atypical larvae
in anadromous as well as Great Lakes sea lamprey larvae, their occurrence is not
related to TFM treatment (see Sect. 1.4.1.4).

The most compelling evidence for ESD in lampreys comes from studies on two
non-parasitic species in the southeastern United States, the southern brook lamprey
(Beamish 1993) and least brook lamprey (Docker and Beamish 1994). These species
occur outside of the Great Lakes basin, and thus they have never been exposed
to TFM. In southern brook lamprey, comparison among 20 populations showed a
positive relationship between the proportion of males and larval density when larval
growth was good, but higher densities were associated with fewer males under poor
growth conditions (Beamish 1993). Among 12 least brook lamprey populations, the
proportion of male larvae was significantly correlated with larval density (Docker
and Beamish 1994; see Sect. 1.2.6). Because ESD has been proposed as a mechanism
by which large individuals become the sex benefiting most from large size (or those
developing under growth-limiting conditions become the sex that is penalized least
by small size; see Sect. 1.3.1.2), density-dependent sex determination in lampreys
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would indeed be expected to produce more females at low densities (i.e., under
growth-enhancing conditions). Large females are more fecund than small females
(see Sect. 1.6.3), and larval growth rates are generally higher under conditions of
low density (Murdoch et al. 1992; see Dawson et al. 2015). However, contrary to
this expectation, female least brook lamprey within each age class were not larger
than males from the same cohort, and, in particular, there were no consistent sex-
specific differences in size at the approximate time of sex differentiation. Females
were consistently the larger sex only in the oldest larval age class and in the adult
population, but due to delayed metamorphosis relative to males (see Sect. 1.2.2) rather
than an obvious tendency for large larvae to develop as female. It should be noted that
the Docker and Beamish (1994) study determined larval age using both statoliths and
length-frequency aging methods (see Dawson et al. 2015). Using only length to infer
age classes would prevent unbiased testing for size differences between the sexes at
the approximate time of sex differentiation. It would be interesting to further test this
hypothesis using a single larval age class (e.g., in artificially propagated larvae or
those obtained in the wild from a known parental cohort; Dawson et al. 2015; Hess
et al. 2015; see Chap. 7).

Experimental evidence for density-dependent sex determination is inconclusive
at best. Docker (1992) reared wild-caught sea lamprey larvae at four experimental
densities for >3 years and found no significant relationship between density and sea
lamprey sex ratio, but such long-term laboratory studies are fraught with experimental
difficulties. Sea lamprey larvae were collected from Lewis Creek, Vermont, prior
to any histological signs of sex differentiation (i.e., <60 mm TL), and they were
reared in outside experimental tanks for 39 months (i.e., until sex determination was
complete at TL ~ 90-100 mm). Larvae were fed brewer’s yeast and exposed to natural
photoperiods and water temperatures that approximated natural stream temperatures.
Nominal densities (in duplicate) were 10, 20, 50, and 100 larvae per 0.3-m?2 tank,
although, in anticipation of mortality during the study, more larvae (18, 24, 58, and
137 larvae) were initially stocked into each tank (giving initial densities of 60—457
larvae/m? and 22.5-206 g/mz). At the end of the 39 months, there were 11, 7, 41, and
57 larvae per 0.3-m? tank (23-190 larvae/m? and 38-207 g/m?), excluding one tank
at each of the three lowest densities where all larvae died before the experiment’s
conclusion. Sex ratios at the four densities were 33, 35, 27, and 46% male (i.e.,
hinting at the expected increase in the proportion of males at higher densities), but
the relationship between sex ratio and density was only significant at the 10% level.
Given the relatively low survival rates, it was not possible to exclude differential
mortality between the sexes (i.e., higher female mortality at high densities), although
Murdoch et al. (1992) found no evidence of sex-specific mortality in sea lamprey
larvae reared for 9 months in the laboratory. Growth rates were also low, averaging
only 8.9 mm per year. Unfortunately, all of the experimental densities used in this
study were high (60-470 larvae/m? at the study’s outset) compared to natural densities
(see Dawson et al. 2015). Slade et al. (2003) found an average of 0.01-10.4 larvae/m?
in patches of preferred habitat in tributaries to Lakes Superior and Michigan, and sea
lamprey densities >5 larvae/m? are now considered moderate to high in the Great
Lakes (Steeves et al. 2003). Clearly, considerably larger tanks would be required to
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rear a sufficient number of larvae at realistic densities to achieve sufficient statistical
power, and replication of this study using large-scale propagation methods being
developed for other lamprey species would be valuable (see Chap. 2).

A subsequent laboratory study showed indications of sex reversal (i.e., even after
initial sex differentiation) in sea lamprey held at medium and high larval densities, but
not consistently towards males as would be expected (Beamish and Griffiths 2001;
F. W. H. Beamish, unpublished data). Using the gonadal biopsy technique developed
by Lowartz et al. (1999) (see Sect. 1.4.1.4), larvae >110 mm TL were categorized as
presumptive males, females, or atypical. No changes were seen in larvae reared at
low density (10 larvae/m?) for 22 weeks. In contrast, two of 13 female larvae held
at medium density (30 larvae/m?) showed complete oocyte atresia (i.e., suggesting
complete sex reversal to male), although one of the two intersex lamprey showed an
increase (rather than the expected decrease) in oocyte density, and the gonads of the
other larvae remained unchanged. In the high density tanks (70 larvae/m?), two of
the 16 females showed a complete loss of oocytes (suggesting a reversal to males),
and one masculine female changed to a male; however, one male reversed sex to a
female. Thus, a number of lamprey apparently changed sex during the study, but not
in directions that supported the hypothesis that low larval density shifts development
toward femaleness and high density to maleness. Furthermore, the extent to which sex
is typically reversed following initial differentiation is still unknown (see Sect. 1.4.1).

In an exciting recent study, Johnson et al. (2017) suggested that sex determination
in sea lamprey is directly influenced by larval growth rate rather than density per
se. Tagged sea lamprey larvae stocked into unproductive lentic environments grew
more slowly than those in productive stream environments, and, when recaptured as
upstream migrants 2—7 years later, the sex ratio of sea lamprey from the lentic envi-
ronments showed a higher proportion of males (79% overall) relative to those from
the more productive stream environments (66%). However, larval sex ratios were not
determined, so Johnson et al. (2017) were unable to exclude the possibility that the
differences in adult sex ratio were established after sex differentiation (e.g., as the
result of differential mortality between the sexes or differential rates of metamorpho-
sis). In fact, the changes observed in sex ratios over time—particularly the observation
that the sex ratio from stream environments became progressively less male biased
between Years 2 and 6 (82 and 50% male, respectively)—suggest that sex ratio dif-
ferences are the result of differential rates of metamorphosis (Table 1.7). Capture of
upstream migrants derived from larvae stocked into streams tapered off by Year 5,
but larvae stocked into lentic areas continued to be captured as upstream migrants in
Year 7, and there may have been continued recovery of individuals from lentic areas
in subsequent years (i.e., after the study’s conclusion). Thus, it is conceivable that
delayed metamorphosis in females, particularly under growth-limiting lentic condi-
tions, produced an initial excess of adult males, but that collections in subsequent
years might have revealed more females (see Manion and Smith 1978; Sect. 1.2.3).
It is also possible that females experience higher mortality under growth-limiting
conditions (e.g., because of higher energetic demands during gonadal development;
see Sect. 1.2.6). Nevertheless, this is the only study to date that has monitored the
sex ratio of individuals stocked into different natural environments. Similar studies
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Table 1.7 Sex ratio of sea lamprey Petromyzon marinus that were tagged and stocked as larvae
into stream or lentic environments and recovered 2—7 years later as upstream migrants (data from
Johnson et al. 2017)

Year recovered Stream environments (n = 5) Lentic areas (n = 3)
Number recovered % Male Number recovered % Male

Year 2 11 81.8 4 50.0
Year 3 63 69.8 7 429
Year 4 101 67.3 65 86.1
Year 5 29 51.7 60 85.0
Year 6 4 50.0 27 63.0
Year 7 0 - 8 75.0
Average 66.3 78.9

in more confined areas (i.e., where larvae could be recovered and sexed prior to
metamorphosis) would be very interesting. Sea lamprey residing in lentic habitats
near river mouths have been observed in the Great Lakes basin since at least the
1960s (Hansen and Hayne 1962; Wagner and Stauffer 1962), and recent advances
in sampling methods have also revealed deepwater riverine larval populations (e.g.,
Fodale et al. 2003; Schleen et al. 2003; Arntzen and Mueller 2017; see Chap. 7). Itis
not clear to what extent these habitats contribute to recruitment, but a better under-
standing of the demographics of these larval populations (e.g., sex ratio, growth rate,
age at metamorphosis) is important.

However, it should be kept in mind that a signal of ESD in lampreys may be hard to
detect and interpret. The growing body of knowledge regarding ESD in other fishes
suggests that lamprey sex determination could involve both genetic and environ-
mental components (see Sect. 1.3.1.2). Many purported cases of ESD in other fishes
appear to be the result of environmental influences on GSD rather than strict ESD
(Ospina-Alvarez and Piferrer 2008), and the nature of the genotype x environment
interactions can differ among populations and even over time within populations.
For example, in some northern populations of Atlantic silverside, sex determina-
tion is controlled by major genetic factors that are largely temperature-insensitive
(Lagomarsino and Conover 1993; Duffy et al. 2015). In more southerly popula-
tions, TSD prevails and sex is determined by the interaction of temperature-sensitive
and polygenic factors, although even in these populations, 20-30% of individuals
appear less sensitive or completely insensitive to temperature (Lagomarsino and
Conover 1993; Duffy et al. 2015). Geographically intermediate populations exhibit
sex determination that is a more balanced mixture of TSD and GSD (Lagomarsino
and Conover 1993). Moreover, of potential relevance to lamprey sex determination,
experiments in the Atlantic silverside demonstrate that sex-determining mechanisms
are capable of rapid evolution. Conover et al. (1992) used thermal manipulations
during the sex-determining period to create highly skewed sex ratios over 8—10 gen-
erations in the laboratory, and they found that two of these populations evolved
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GSD from TSD after only 2-3 generations. Under extreme temperatures, selection
for temperature-insensitive sex-determining genes and GSD presumably prevented
production of highly male- or female-biased sex ratios. Thus, the persistence of
temperature-insensitive genotypes would be beneficial in that it permits an adaptive
response to extreme swings in sex ratio that would generate frequency-dependent
selection for the minority sex (Duffy et al. 2015). In the sea lamprey in the upper
Great Lakes, sex ratios of upstream migrants remained within the range 25-75%
male, and more extreme sex ratios were not observed even at the peak of abundance
or following rapid declines in abundance (Fig. 1.2).

Therefore, we hypothesize that the rapid colonization and population explosion of
sea lamprey in the upper Great Lakes initially produced highly skewed sex ratios as
the result of a relatively strong environmental influence on sex determination. Sub-
sequently, by the mid-1990s (after ~4—6 generations), population levels may have
returned to equilibrium conditions followed by a stabilization of the sex-determining
mechanism (e.g., with selection for individuals less sensitive to density). There are
reports of other invasive fish species showing male-biased sex ratios following ini-
tial invasion. For example, Gutowsky and Fox (2011) observed that round goby
Neogobius melanostomus populations in recently invaded areas were male biased,
and male biases were even more evident in the freshly colonized upstream segments
of the river (69% male) compared to the area of first introduction (58% male). Sim-
ilar male-dominated sex ratios were observed in the invaded Gulf of Gdansk in the
Baltic Sea (75% male), in the western basin of Lake Erie and the Detroit River (86%
male; Corkum et al. 2004), and in Hamilton Harbor, Ontario (Young et al. 2010). In
contrast, sex ratios close to parity have been reported in this species’ native range
(Kovtun 1979). Although the mechanism of sex determination is likewise unknown
in this species, like sea lamprey in the upper Great Lakes, round goby invasion was
rapid, and perturbation of the system was dramatic. In the lower Great Lakes, where
sea lamprey reached pest proportions more gradually, a similar perturbation of the
sex-determining system may not have occurred (see Sect. 1.2.6).

Clearly, our understanding of a possible environmental influence on sex deter-
mination in lampreys is still incomplete. Elucidation of the effect of density or
other environmental factors on larval sex ratios (i.e., as established at the time of
sex differentiation) has been complicated by the very long period during which the
gonad is histologically undifferentiated and presumably still labile to influence of
the environment. In most other fishes, the sexually labile period lasts for only a few
weeks to a few months (e.g., Conover and Fleisher 1986), making them much more
amenable to study. More refined larval rearing methods will help (see Chap. 2). Fur-
thermore, should sex-specific loci be identified in lamprey populations (at least loci
that strongly, if not completely, correlate with phenotypic sex at intermediate sex
ratios; see Sect. 1.3.2.1), environmental effects on sex differentiation could be rec-
ognized more readily by identifying conditions that produced significant mismatches
between phenotypic and genotypic sex.
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1.4 Gonadogenesis and Sex Differentiation

Gonadogenesis is the generation and development of the gonad, and sex differentia-
tion is the process by which the undifferentiated gonad develops into a recognizable
ovary or testis (Piferrer and Guiguen 2008; Parma and Radi 2012). Lampreys pos-
sess a single elongated gonad, which remains histologically undifferentiated for up
to several years (Hardisty 1971). Ovarian differentiation occurs during the larval
stage (at ~1-3 years of age in most species), but testicular differentiation (at least
the first production of spermatogonia) does not occur until metamorphosis (Figs. 1.1
and 1.6). Later sexual differentiation in males is characteristic of many fish species
(e.g., Yoshikawa and Oguri 1978; Nakamura et al. 1998; Saito et al. 2007), although,
with few exceptions (e.g., anguillid eels; Beullens et al. 1997a, b), the delay is far
less pronounced than in lampreys and the entire process occurs over the course of
weeks or months rather than years. Presumably, this delay in gonadogenesis is the
result of the evolution of metamorphosis and prolongation of the larval phase in lam-
preys (Evans et al. 2018; see Chap. 4). Eye development in larval lampreys likewise
appears to “pause” after reaching a very immature stage and is only resumed at later
larval stages and metamorphosis (Suzuki and Grillner 2018).

The histological process of gonadogenesis and sex differentiation in different
lamprey species has been described in detail by previous authors (e.g., Okkelberg
1921; Hardisty 1965a, b, 1971; Hughes and Potter 1969; Fukayama and Takahashi
1982, 1983; Hardisty et al. 1986, 1992; see Table 1.8). Here, we present an overview
of the process, with an emphasis on: (1) aspects of the process that differ between
future males and females, particularly those in the early stages of differentiation that
might presage subsequent differentiation; (2) features that differ among species and
life history types; and (3) facets that continue to elude researchers (e.g., the extent
to which the gonad remains labile during the larval stage). Trying to interpret the
dynamic process of gonadal differentiation from a number of static observations has
long been a challenge in such studies, although a gonadal biopsy technique has been
developed to monitor gonadal development in individuals over time (Lowartz and
Beamish 2000; Beamish and Barker 2002). We also review what is known to date
regarding the genes involved in sex differentiation in lampreys which, compared
to sex determination (see Sect. 1.3.1.1), are relatively conserved among vertebrates
(Siegfried 2010; Cutting et al. 2013). Elucidating the genetic basis of sex differ-
entiation in lampreys will show how deeply conserved these genes are across all
vertebrates and could provide early molecular markers predictive of a lamprey’s
future sex.

1.4.1 Sex Differentiation

Lampreys have been described as possessing a long period of sexual indeterminacy
or sexual lability (e.g., Hardisty 1965a, b; Fukayama and Takahashi 1982; Docker
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«Fig. 1.6 Timing of key events during lamprey gonadal development in a representative parasitic
lamprey (Great Lakes sea lamprey Petromyzon marinus) and in non-parasitic lampreys. Later (i.e.,
at a larger size) and more prolonged mitosis in parasitic species produces more oocytes during the
larval stage relative to non-parasitic lampreys. Ovarian differentiation (pink) begins when the germ
cells synchronously enter meiosis (e.g., Fig. 1.7b, c), after which the resulting oocytes gradually
increase in diameter (see Fig. 1.9). Non-parasitic females, with the elimination of the juvenile
feeding phase, initiate sexual maturation during metamorphosis; parasitic lampreys remain sexually
immature during the post-metamorphic feeding phase. In future males, limited oogenesis may occur
during the larval stage (e.g., Fig. 1.7a), but these small oocytes are generally eliminated by atresia,
leaving only a few residual undifferentiated germ cells until shortly before or during metamorphosis
(e.g.,Fig. 1.7e). Testicular differentiation (blue) is characterized by renewed mitotic divisions, which
produce nests of spermatogonia (e.g., Fig. 1.7f)

1992). However, what is generally meant is that the gonad remains histologically
undifferentiated for a prolonged period. The terms “sexual indeterminacy” and “sex-
ual lability” imply that individuals, prior to histological differentiation, are not yet
committed to develop as males or females, but we do not know yet if this is the
case (see Sect. 1.3.2). Undifferentiated germ cells appear to be bipotential (Hardisty
1965b), thus retaining the ability to become oocytes or spermatocytes, but when the
fate of these cells is determined and when the gonad itself is irreversibly committed
to develop as an ovary or testis is unresolved. It has generally been thought that the
fate of the gonad is set once the majority of undifferentiated germ cells have become
oocytes (Hardisty 1965a; Docker 1992), but there is evidence that sex may remain
labile—in at least some individuals and some species—as long as undifferentiated
germ cells (i.e., reserve “stem” cells) remain (Lowartz and Beamish 2000; Beamish
and Barker 2002).

Different sex differentiation strategies have been described for gonochoristic
teleost species (i.e., where individuals develop only as males or females and remain
the same sex throughout life; Yamamoto 1969; Devlin and Nagahama 2002). In those
species referred to as differentiated gonochoristic species, ovaries and testes develop
directly from the undifferentiated gonad; examples include coho salmon, muskel-
lunge Esox masquinongy, common carp Cyprinus carpio, and European sea bass (see
Devlin and Nagahama 2002). In contrast, in undifferentiated gonochoristic species
(e.g., zebrafish Danio rerio, tiger barb Puntigrus tetrazona), all gonads initially
develop as ovaries, but, in approximately half of the population, the ovarian tissue
degenerates and the gonad is invaded by somatic cells, producing an intersexual
gonad that ultimately resolves into a testis (Devlin and Nagahama 2002). In other
species, all gonads appear to be intersexual prior to differentiation into either ovaries
or testes (Devlin and Nagahama 2002). In the Nassau grouper Epinephelus stria-
tus, all or most males appear to develop from an intersexual or bisexual gonad (i.e.,
possessing both oocytes and spermatocytes; Sadovy and Colin 1995). The juvenile
gonad of the European eel Anguilla anguilla is sometimes referred to as an inter-
sexual “Syrski organ,” but it is not clear that all individuals go through a transitory
intersexual stage (e.g., Colombo and Grandi 1996; Beullens et al. 1997a, b). Recent
studies suggest that female European eel develop directly from the undifferentiated
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gonad, but there appear to be two routes to produce males: direct male differenti-
ation from the undifferentiated gonad or delayed indirect male development via an
intersexual stage (Geffroy et al. 2013, 2016).

Similar differences in the pattern of sex differentiation may exist among and even
within lamprey species. However, because the early stages of oogenesis are seasonal
and relatively transitory (Hardisty 1965a, 1969), some apparent differences may
be the result of observational biases. Furthermore, inconsistent terminology used
by different authors to describe the early stages of sex differentiation sometimes
confounds comparisons. Some authors refer to the early stage of gonadogenesis in
lampreys as “intersexual” or “bisexual” or “hermaphroditic” because oocytes appear
to develop in some or all presumptive male larvae during the early stages of differ-
entiation (e.g., Okkelberg 1921; Lewis and McMillan 1965; Hardisty et al. 1986).
However, in other fishes, the term intersexual generally refers to the simultaneous
presence of male and female gonadal tissue in gonochoristic species (Bahamonde
et al. 2013), and the undifferentiated cell nests observed in larval lamprey gonads
(which are not homologous with the cysts of germ cells in the mature testis) should
not be viewed as male elements in an intersexual or hermaphroditic larval gonad
(Hardisty 1965a). Other studies refer to lampreys passing through an initial female
stage or female intersexual stage (Hardisty 1965b, 1971). In most cases, this initial
stage is short-lived in future males, requiring atresia of only a modest number of early
stage oocytes (Hardisty 1965b; Hardisty et al. 1992). However, in some cases, initial
female differentiation proceeds further, and future males are thought to result from
atresia of the entire stock of oocytes beyond the typical age of ovarian differentiation
(Hardisty 1965a; Fukayama and Takahashi 1982, 1983). To avoid confusion, we use
the term “intersexual” sparingly, using it only to refer to gonads that are more obvi-
ously intermediate between male and female (see Sect. 1.4.1.4). In the initial stages
of gonadogenesis, cells undergoing meiosis are considered oocytes only following
the onset of cytoplasmic growth (Hardisty 1971), and we consider the “mixed” larval
gonads that possess both cell nests and oocytes a transitional stage of differentiation
and not as an expression of intersexuality (Hardisty 1965b). Individuals or gonads
that appear to be developing as males are referred to as “presumptive” or “putative”
males or testes prior to differentiation of male germ cells at or following the onset
of metamorphosis. We use the term “indirect” male differentiation to refer to pre-
sumptive males that appear to develop following large-scale oocyte atresia prior to
testicular differentiation (Fukayama and Takahashi 1982, 1983) and “direct” male
differentiation where there is little evidence that oocytes develop en masse or to rel-
atively large sizes in future males (Hardisty et al. 1986). However, we recognize that
there are likely different degrees to which oocytes develop and regress in presump-
tive males (or different degrees to which they are detected) rather than two discrete
strategies.

Hardisty et al. (1992) theorized that indirect development is more prominent in
species with low fecundity (i.e., non-parasitic lampreys) than in those with greater
fecundity. However, fecundity appears to be determined largely by the phasing of
mitosis and meiosis. The onset of meiotic prophase usually marks the end of the
proliferative (mitotic) phase, after which point additional oocytes generally are not
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created. Thus, earlier (i.e., at a smaller body size) and less extensive mitosis prior
to meiosis limits the number of oocytes produced in non-parasitic species (Hardisty
1965b). In contrast, delayed onset and more prolonged mitotic division of germ cells
in parasitic species permit elaboration of a large stock of oocytes (Hardisty 1960b,
1964, 1965b, 1970; see Sect. 1.6.2). To some extent, however, persistence of a limited
number of undifferentiated germ cells in some species may allow further oocytes to
be added following completion of ovarian differentiation (Hardisty et al. 1986).

1.4.1.1 [Initial Stages of Gonadogenesis

In lampreys, primordial germ cells first appear during embryonic development and
migrate to the genital ridge to form the gonadal primordium (Lewis and McMil-
lan 1965; Hardisty 1965a, 1971). In European brook lamprey prolarvae measuring
~7 mm TL, Hardisty (1965a) counted a total of 10-94 primordial germ cells measur-
ing 18-30 pwm in diameter. In freshwater-resident (“landlocked’) sea lamprey larvae
measuring 18-35 mm TL, Lewis and McMillan (1965) and Hardisty (1965b) found
5-15 and 0-3 germ cells per cross-section, respectively, and each germ cell was
surrounded by its own envelope of follicle cells. Pouched lamprey larvae measuring
15-20 mm TL did not yet possess a distinct genital ridge (i.e., they possessed only
isolated primordial germ cells along the mid-dorsal surface of the body cavity), but
a distinct gonad was visible by 20-39 mm TL, generally with <10 germ cells per
cross-section (Hardisty et al. 1986). At this stage of development, the germ cells are
typically referred to as protogonia (primary gonia) if they occur singly. The proto-
gonia are smaller (~10-16 pm in diameter) and more numerous than the primordial
germ cells, suggesting that some mitosis has already occurred (Hardisty 1965a, b).
Subsequent division of the protogonia produces groups of 2—4 deuterogonia (sec-
ondary gonia) measuring ~10-11 pm in diameter (Hardisty 1965b, 1971). Although
gonia (i.e., germ cells during the mitotic phase) that give rise to primary oocytes and
primary spermatocytes are typically called oogonia and spermatogonia, respectively,
the terms gonia, protogonia, and deuterogonia are often used instead in the lamprey
literature before the future sex of the gonad is clear (e.g., Hardisty 1965a, b, 1971).
Besides the occasional mitosis of protogonia to produce deuterogonia, there is little
subsequent development of the gonad for several months to several years, depending
on the species and life history type.

In non-parasitic lampreys, mitosis is initiated within the first 6 months of larval
life. For example, in the European brook lamprey, germ cell proliferation begins in
the late summer or autumn when larvae measure ~15-25 mm TL, and it reaches
its peak in the early spring (February—March) when larvae are almost 1 year old
and measure ~25-40 mm TL (Hardisty 1965a). These mitotic proliferations start
to produce cell nests or cysts, although isolated protogonia and small groups of
deuterogonia may still persist. However, the mitotic stage is relatively short-lived in
this species, with meiosis being initiated almost simultaneously in both the cysts and
isolated gonia. In five European brook lamprey larvae 31-40 mm TL that were just
over 1 year old, a maximum of 19 germ cells were evident per cross-section, and all
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were already in meiotic prophase and arranged in small groups of up to 5 germ cells
per cyst (Hardisty 1965a). Similarly, in the Far Eastern brook lamprey Lethenteron
reissneri, mitosis was first apparent in larvae >30 mm TL and was relatively limited
prior to the onset of meiosis (Fukayama and Takahashi 1983). In this species, cysts
were evident in only 18% of individuals 30—50 mm TL.

In contrast, in most parasitic species, mitosis is delayed until larvae are larger and
older, and it is more extensive prior to the onset of meiosis. In the gonads of landlocked
sea lamprey, mitotic proliferation was not evident until larvae were 51-65 mm TL
(during September of presumably their second year of larval life; Hardisty 1965b).
The dividing germ cells remained together to form cysts (e.g., Fig. 1.7a), and ~20% of
all individuals 51-60 mm TL possessed cystic gonads, although some isolated gonia
and small groups of 2—4 cells were still evident. Mitotic activity peaked at 61-70 mm
TL (between their second and third years), producing 4—13 cysts per cross-section,
with an average of 20-50 germ cells per cyst. By 71-80 mm TL, ~70% of the gonads
were in the cystic stage, and the number of germ cells per cross-section averaged 322
(Hardisty 1965b, 1969). By 81-90 mm TL, the proportion of individuals with cystic
gonads had decreased to ~20%, and cysts were seen only rarely in landlocked sea
lamprey >90 mm TL, indicating that these nests of undifferentiated germ cells are a
transitory developmental feature of the early stages of differentiation (Hardisty 1969).
The observation that well over 50% of sea lamprey larvae developed cystic gonads
(in a population where sex ratio was close to parity; Table 1.3) indicates that germinal
proliferation at this stage does not just occur in future females (i.e., it appears to be
more indicative of the stage of differentiation than the sex orientation of the gonad;
Hardisty 1965b), but it is worth noting that it appears not to occur in all future males
either (see Sect. 1.4.1.3). There is no obvious bimodality at this stage pointing to
future female and future male development, although subtle sex-specific differences
in the onset or extent of germ cell proliferation cannot be ruled out (Hardisty 1969).
In the Arctic lamprey, mitosis produced cystic gonads by the time larvae reached
~55 mm TL (Fukayama and Takahashi 1982). In larvae 60-90 mm TL, 75% of the
gonads were in the cystic stage, again suggesting that mitotic proliferation occurs
during the early larval stage in many—but not all—presumptive males. Only a few
solitary gonia were present, and gonads often exhibited at least 8—10 cysts per cross-
section. It was estimated that each cyst contained 8-512 germ cells, suggesting that
mitosis had occurred at least nine times (Fukayama and Takahashi 1982). Germ cell
proliferation in the anadromous sea lamprey, the largest and most fecund lamprey
(see Sect. 1.6.3), appears to be even more delayed and more prolonged. In sea lamprey
larvae collected in the U.K., mitosis was rarely observed in individuals <70 mm TL,
and peak mitotic activity was observed at 81-90 mm TL (Hardisty 1969). In this size
class, >50% of all gonads were in the cystic stage and cystic gonads continued to be
found in larvae measuring 120-130 mm TL (Hardisty 1969).

The pouched and short-headed lampreys from the Southern Hemisphere (which
belong to separate families distinct from each other and from the Northern Hemi-
sphere lampreys; Potter et al. 2015) show somewhat different patterns of mitosis
during the initial stages of gonadogenesis. In the pouched lamprey, mitotic divisions
are initiated at the size expected in a relatively fecund parasitic lamprey (i.e., com-
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«Fig. 1.7 Representative stages of sex differentiation and development in lampreys: a undifferen-
tiated gonad (sea lamprey Petromyzon marinus, 70 mm TL) containing both well-defined cysts
(WC) and loose clusters (LC) of undifferentiated germ cells as well as the occasional small oocyte
(0); difterentiated ovary in b least brook lamprey Lampetra aepyptera larva (118 mm TL) and
¢ chestnut lamprey Ichthyomyzon castaneus larva (58 mm TL), where the only germ cells are
oocytes (O) undergoing gradual cytoplasmic growth; d oocytes of upstream-migrating Pacific lam-
prey Entosphenus tridentatus (~595 mm TL) during mid-vitellogenesis; e gonad of future male least
brook lamprey larva (104 mm TL) showing persistence of only undifferentiated germ cells (WC)
amid stromal tissue (S?); f differentiating testis of early metamorphosing sea lamprey (123 mm TL)
showing appearance of spermatogonial cysts (SC); g testis of sea lamprey in late metamorphosis
(127 mm TL) showing rapid increase in size of testis and development of lobular structure; and
h mature spermatozoa (SP) in pre-spermiating sea lamprey (454 mm TL). The photomicrographs
a, b and e were originally published in Docker (1992); ¢ was originally published in Spice (2013);
and f, g and h were originally published in Khan (2017); they are reproduced with permission of M.
F. Docker, E. K. Spice and A. Khan, respectively. The photomicrograph d was originally published
in Clemens et al. (2013) and is reproduced with permission of the Canadian Journal of Zoology

parable to landlocked sea lamprey and Arctic lamprey), but germinal proliferation
during the larval stage only appears to occur in presumptive females. Hardisty et al.
(1986) found that mitosis in pouched lamprey produced nests of germs cells in just
over 30% of all gonads by 50-59 mm TL. The proportion of cystic gonads increased
to 42% by 60—69 mm and nearly 50% in larvae >80 mm TL, but it never exceeded
50%. Moreover, compared to sea and Arctic lampreys, mitosis appeared more limited,
and mean germ cell count per cross-section was only ~15-30 when larvae measured
50-70 mm TL. However, much like the anadromous sea lamprey, these mitotic cysts
appeared to persist throughout the remainder of the larval stage. Mean germ cell
count in both mitotic and meiotic phase gonads continued to increase throughout
larval life, reaching ~100 and 300 germ cells, respectively, by 100 mm TL. Hardisty
et al. (1986) suggested that oogenesis in this species may occur in seasonal waves of
mitosis and meiosis, thereby adding oocytes to the ovary throughout the larval stage
(see Sect. 1.4.1.2). The short-headed lamprey also shows onset of mitosis at ~50 mm
TL, as expected, but mitosis appears much more limited throughout the larval stage
(Hardisty et al. 1992). Only small cell nests were evident, and germ cells averaged
only 7.1 cells per section by 60-69 mm TL and 10-11.4 cells in larvae measuring
>75 mm TL. The limited mitotic proliferation in this species may account for its
relatively low fecundity compared to other anadromous lampreys (see Sect. 1.6.3).
Meiosis and germ cell degeneration also appear to be initiated in most larval lam-
preys regardless of future sex. Thus, to avoid confusion, the term auxocyte (i.e., any
cell undergoing meiosis) is often used rather than oocyte for the earliest stages of
meiosis (e.g., Hardisty 1965a, b, 1971; Fukayama and Takahashi 1982, 1983), and
auxocytes are considered oocytes only at the first phase of cytoplasmic growth (e.g.,
Hardisty 1971) or at meiotic prophase (Lewis and McMillan 1965). We will use the
definition employed by Hardisty (1971) because it is the most obvious to discern his-
tologically (see Sect. 1.4.1.2). As mentioned above, meiosis is initiated almost simul-
taneously with mitosis in the non-parasitic species that have been studied, occurring
in the spring as larvae approach the end of their first full year of larval life (Hardisty
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1965a; Fukayama and Takahashi 1983). In European brook lamprey, auxocytes were
observed in >80% of the gonads in larvae 50-60 mm TL, at which point, meiotic
cysts numbered ~3-8, with no evidence of bimodality (Hardisty 1965a). The first
sign of divergence between future male and female European brook lamprey is the
more synchronized oogenesis and oocyte growth that occurs in presumptive females
later that summer (Sect. 1.4.1.2) and the appearance of morphological changes that
are thought to “betray” the future male character of the gonad (Hardisty 1965a;
Sect. 1.4.1.3).

In parasitic species, meiosis is generally initiated after a longer period of mitotic
proliferation. In the landlocked sea lamprey, meiosis was first evident in the
51-60 mm size class and was at its peak in May (Hardisty 1969). By 71-80 mm TL,
auxocytes were observed in 85% of all larvae and even growing oocytes were appar-
ent in most of these (e.g., Fig. 1.7a). More synchronized meiosis and oocyte growth
peaked in June and August in presumptive females, and the proportion of mixed
gonads (i.e., with auxocytes and cysts) began to decrease and mixed gonads were
rarely found in larvae >100 mm TL (Hardisty 1969). Cysts began to break up follow-
ing invasion of follicle cells, and germ cell degeneration was evident by 61-70 mm
TL; at this point, degenerating germ cells averaged 50-280 per section and repre-
sented 50-90% of the total germ cell count. By September, the majority of cysts
contained degenerating germ cells, presumably representing regression of auxocytes
or oocytes in the gonads of future males and degeneration of undifferentiated germ
cells in future females. By 71-80 mm TL, Hardisty (1965b) found two distinct groups
beginning to emerge based on the cross-sectional area of the gonad, but there was
substantial overlap between presumptive males and females until 91-100 mm TL
so that reliable identification of future males and females based on the presence
of small and large gonads, respectively, would not be possible (see Sects. 1.4.1.2,
1.4.1.3 and 1.4.1.5). In anadromous sea lamprey, the smallest larva with auxocytes
was 70 mm TL; meiosis was evident in 10% of larvae 71-80 mm TL and in >50%
of larvae by 91-100 mm TL, and mixed gonads persisted into the 121-130 mm
size class (Hardisty 1969). Meiosis was evident in Arctic lamprey at 70-90 mm TL,
and gonads could be divided into three groups based on the degree to which the
process appeared synchronous: (1) in 50% of the 14 larvae examined, germ cells in
almost all the cysts had synchronously entered into meiotic prophase; (2) in 21%
of the larvae, germ cells in a given cyst were seen to enter into meiotic prophase
simultaneously, but, overall, cysts of mitotic germ cells were more numerous than
those of meiotic germ cells; and (3) in 29% of the larvae, onset of meiosis was not
synchronous even in the same cysts (Fukayama and Takahashi 1982). Whether these
different patterns are an early indication of the future sex of the larvae is unknown. In
the short-headed lamprey, onset of meiosis was first seen in ~10% of larvae <50 mm
TL, and meiosis was evident in ~25 and 60% of the larvae by 50-59 and 60-69 mm
TL, respectively (Hardisty et al. 1992). By 70-79 mm TL, these authors concluded
that 96% of short-headed lamprey exhibited at least some germs cells that appeared
to have differentiated in a “female direction.” In contrast, in the pouched lamprey,
the proportion of cystic gonads showing meiosis never exceeded 23% (at 70-79 mm
TL) and declined thereafter to only 5% at 90-99 mm TL (Hardisty et al. 1986). Even
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in future females, the early meiotic changes in cystic gonads appeared to be transient
(proceeding rapidly to the cytoplasmic growth phase in oocytes) and meiotic gonia
were seen in only 17% of future males.

1.4.1.2 Opvarian Differentiation

Oogenesis (i.e., the process by which eggs are produced) starts with transformation of
oogonia into primary oocytes with the onset of meiosis I (Fig. 1.6). Because the onset
of meiosis also occurs in at least some future males (see Sect. 1.4.1.1), lamprey gonads
with auxocytes or oocytes are usually not immediately characterized as ovaries.
Rather, the differentiation of the ovary is typically recognized by the synchronous
transition of germ cells into meiotic prophase (Fukayama and Takahashi 1982), and
ovarian differentiation is generally considered complete after the rapid growth of
oocytes ceases (Hardisty 1971). Ovarian differentiation is generally complete at 1
and 2-3 years of age in non-parasitic and most parasitic lamprey species, respectively,
and at 4-5 years in the anadromous sea lamprey (Hardisty 1969, 1971; Table 1.8).
However, intraspecific variation likely exists in many species. First, although age is
often inferred from TL, it is not yet clear whether the onset of ovarian differentiation is
triggered by size or age or a combination of the two. For example, in the landlocked
sea lamprey, ovarian differentiation is generally complete at 90-100 mm TL and
3 years of age, but Docker (1992) observed that a 73-mm female estimated to be
~5.5 years old had a fully differentiated ovary; this individual had been maintained
for 39 months at high density in the laboratory and grew only 6 mm during this
time. Conversely, in fast-growing sea lamprey populations, completion of ovarian
differentiation may be delayed well past 90—100 mm TL (Wicks etal. 1998a, b; Barker
and Beamish 2000; see Sect. 1.4.1.4). Furthermore, because mitosis and meiosis are
highly seasonal processes, their onset will presumably depend on larvae reaching the
appropriate (“threshold”) size or age by key times of the year. Intraspecific variation
in the presumed age at ovarian differentiation has been reported in chestnut and
northern brook lampreys also (Spice and Docker 2014; Table 1.8).

In presumptive ovaries, synchronous and extensive meiosis leads to the rapid
replacement of cell nests by growing oocytes (Hardisty 1965a, b, 1971; Fig. 1.8a).
The cysts are invaded and broken up by follicle cells that stretch to enclose each
germ cell (Lewis and McMillan 1965), and cytoplasmic growth (i.e., during the first
oocyte growth stage) is quite rapid while the cysts are breaking up (Hardisty 1965a).
It is estimated that 25-30% of germ cells survive the cystic and early meiotic stages
to progress to the cytoplasmic growth phase (Hardisty 1971; Hardisty et al. 1986).
Early stage oocytes can be distinguished from other cells by their greater amounts of
basophilic cytoplasm and larger size surrounded by follicle cells and a large space
or nuclear vesicle within the oocyte (Hardisty 1965a, b; Lewis and McMillan 1965;
e.g., Fig. 1.7b). The oocytes remain arrested in meiotic prophase throughout the rest
of the larval stage, and, during the second stage of oocyte growth, the cytoplasm
becomes basophilic and continues growing at a more gradual rate (Hardisty 1971).
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The third phase of oocyte growth does not occur until the onset of vitellogenesis and
sexual maturation (see Sect. 1.5.1).

The process of ovarian differentiation is similar in all species, although the timing
of the process and the resulting number and size of oocytes varies dramatically
(Table 1.8). The earlier onset and “curtailment” of mitosis prior to oogenesis in non-
parasitic species results in fewer oocytes compared to parasitic species (Fig. 1.7b, c).
The size of oocytes at the end of the larval stage (with means ranging from 32 pm
in the pouched lamprey to 100-120 pm in most non-parasitic species) is directly
related to the time between initiation of oogenesis and the onset of metamorphosis
and inversely related to the duration and extent of somatic growth during the post-
larval phase (Fig. 1.9). Egg size at maturity is remarkably consistent among all
lamprey species (see Sect. 1.6.1).

In the well-studied European brook lamprey, although some growing oocytes were
evident in the majority of gonads, more and larger oocytes developed in presumptive
females, and the nests of undifferentiated germ cells were generally eliminated by the
end of the summer (Hardisty 1965a). In larvae measuring 50—100 mm TL, the number
of oocytes per cross-section was bimodally distributed, with 0—4 and 15-60 oocytes
per section in presumptive males and females, respectively (Hardisty 1965a). In
the rapid phase of cytoplasmic growth, oocyte diameter increased from a mean of
13.3 wmto 61 wm the following June when TL averaged 65 mm (Hardisty 1970). The
mean number of oocytes per cross-section at the completion of ovarian differentiation
was estimated to be 31-34, and they measured ~100 pwm in diameter (Hardisty 1961c,
1964, 1965a; Fig. 1.9b). Other brook lamprey species show very similar patterns.

In parasitic species, ovarian differentiation has been studied most extensively
in the landlocked sea lamprey (Hardisty 1965b, 1969; Lewis and McMillan 1965;
Docker 1992; Wicks et al. 1998b; Barker and Beamish 2000). As detailed above,
meiosis is generally initiated when larvae reach ~51-60 mm TL, and auxocytes and
even growing oocytes are observed in most larvae during the initial stages of sex
differentiation (e.g., Fig. 1.7a). In presumptive females, cysts begin to break up and
germ cell degeneration begins at ~61-70 mm TL, and growing oocytes first appear
in appreciable numbers at 71-80 mm (Hardisty 1965b). In an 80-mm presumptive
female, Hardisty (1965b) counted 60 oocytes with cytoplasmic growth, 450 cells in
early meiosis, 50 degenerating cells of various kinds, and 120 undifferentiated germ
cells. The first stage of cytoplasmic growth occurred at 80—100 mm, at which point,
oocytes increased from ~12 to 40 pm in diameter (Hardisty 1965b, 1971; Barker and
Beamish 2000; Fig. 1.10a). Definitive ovaries could be recognized in 20 and 45%
of all larvae by 81-90 and 91-100 mm TL, respectively. Thereafter, the number of
undifferentiated germ cells continued to decrease with TL and the number of oocytes
increased, so that ovaries contained only oocytes and virtually no remaining undiffer-
entiated germ cells by 100 mm TL (Hardisty 1969; Docker 1992; Fig. 1.8a). There
was a clear bimodality in oocyte numbers in larvae 71-100 mm TL, with modes
of 21-40 oocytes in presumptive males and 121-140 (with a maximum of 200) in
females (Hardisty 1965b). By 100-119 and 120-139 mm TL, mean oocyte count had
increased further (to 153 and 250, respectively), suggesting that further germ cell pro-
liferation produced some additional oocytes; this would imply that a few remaining
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«Fig. 1.8 Identification of female and male larval Great Lakes sea lamprey Petromyzon marinus:
a following histological preparation (stained with hematoxylin and eosin) and viewed under a
compound microscope; b under a dissecting microscope; and ¢ using acoustic microscopy (see
Maeva et al. 2004). In a and b, larvae were cross-sectioned at the midpoint of their TL; in ¢, live
larvae were anaesthetized and placed on their side. Sex can be reliably identified histologically in
most Great Lakes sea lamprey by 90-100 mm TL: ovaries are recognized by their finger-like lobes
and a large number of developing oocytes (O) despite the possible persistence of well-defined cysts
of undifferentiated germ cells (WC); in contrast, at this size, presumptive testes are small with at
most a few small oocytes. The ovary is sufficiently large by ~120 mm TL (with few or no remaining
undifferentiated germ cells) that it is recognizable even under a dissecting microscope, but the future
testis is still small, with a few undifferentiated germ cells (often no longer organized into distinct
cysts) amid reticulate stromal tissue (S¢). In ¢, females are recognizable by the prominent ovary
(arrow) which, because it is considerably less reflective to the acoustic signal than the surrounding
kidney tissue (k), appears dark; males are recognizable by the absence of this large dark region.
The location of the intestine, posterior cardinal veins, and notochord are indicated by i, v, and
n, respectively. The photomicrographs in a were originally published in Docker (1992) and are
reproduced with permission of M. F. Docker; the photographs in b and ¢ were originally published
in Maeva et al. (2004) and are reproduced with permission of The Fisheries Society of the British
Isles

undifferentiated germ cells persisted beyond 100 mm TL (Hardisty 1965b). Barker
and Beamish (2000) likewise reported increases in the number of oocytes with TL
well past the size at which ovarian differentiation is thought to be complete (i.e.,
with means of 141 and 170 oocytes per section at 120-139 and >140 mm TL,
respectively). During the second stage of oocyte growth, the mean oocyte diame-
ter increases with female TL to ~53-65 wm by 120-139 mm and 61-75 wm by
>140 mm (Hardisty 1965b, 1971; Barker and Beamish 2000; Figs. 1.8a, 1.9b and
1.10a). As a result of the increase in the number and size of oocytes, ovary size
began to increase rapidly by the time larvae measured 90-100 mm TL, so that the
subtle bimodality observed by Hardisty (1965b) in gonadal cross-sectional area at
71-80 mm TL became increasingly more pronounced, and there was little or no
overlap in larvae >100 mm TL (Hardisty 1965b). In large larvae, the cross-sectional
area of the ovary can be in excess of 1.0 mm?, and the ovaries are characterized by
finger-like lobes containing double rows of oocytes separated by a central vascular
core (Hardisty 1965b; Docker 1992; Barker et al. 1998; Barker and Beamish 2000;
Fig. 1.8a, b).

In anadromous sea lamprey, initiation of ovarian differentiation is even more
delayed than in the landlocked form, but an even greater number of oocytes are pro-
duced. In sea lamprey larvae from the U.K., the earliest stages of oogenesis were not
evident until presumptive females reached 81-90 mm TL (Hardisty 1969). In this
size class, 56% of the gonads were observed to be in the initial stages of oogenesis in
June—August, but oogenesis progressed rapidly and in synchrony, and it was rarely
observed before or after the summer. Breakdown of the cysts and replacement by
oocytes took place more gradually than in the landlocked form, and ovarian dif-
ferentiation was generally not complete until 120-130 mm TL at ~5 years of age
(Hardisty 1969). The number of oocytes per section averaged 322 and 396 at 120-139
and >140 mm TL, respectively, in sea lamprey larvae from the U.K. (Hardisty 1969)
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«Fig. 1.9 Oocyte diameter (um) during development in: a non-parasitic lampreys; b parasitic
lampreys from the Northern Hemisphere; and ¢ parasitic lampreys from the Southern Hemisphere.
Ina, solid circles represent mean oocyte diameter in Far Eastern brook lamprey Lethenteron reissneri
for 10-mm larval size classes ranging from 50-60 to 150-160 mm TL, metamorphosing stages 1-7,
and young adults (data from Fukayama and Takahashi 1983) and mature adults from Lethenteron
sp. N (Yamazaki et al. 2001); solid squares represent southern brook lamprey Ichthyomyzon gagei
from larval age groups I, II, and III, metamorphosing stages 2, 3 and 6, and adults (Beamish and
Thomas 1983); and solid triangles represent mean oocyte diameter in larvae and adults of European
brook lamprey Lampetra planeri (Hardisty 1961c and 1964, respectively). In b, solid circles and
open circles represent Great Lakes and anadromous sea lamprey Petromyzon marinus, respectively
(Applegate 1949; Lewis and McMillan 1965; Hardisty 1969; Barker and Beamish 2000); solid
squares represent European river lamprey Lampetra fluviatilis (Hardisty 1961c, 1970; Witkowski
and Jesior 2000; Dziewulska and Domagata 2009); and solid triangles represent Arctic lamprey
Lethenteron camtschaticum (Fukayama and Takahashi 1982; Yamazaki et al. 2001). In ¢, solid
circles and open circles represent larval (>95 mm TL) and post-larval, respectively, short-headed
lamprey Mordacia mordax (Hughes and Potter 1969; Hardisty et al. 1992); and solid squares and
open squares represent larval (75-99 mm TL) and post-larval pouched lamprey Geotria australis
(Potter et al. 1983; Hardisty et al. 1986). For ease of comparison of larval oocyte diameter among
panels, a dotted line is drawn at 100 pm

and 159, 189, and 200 oocytes per section at 100-119, 120-139, and >140 mm
TL, respectively, in sea lamprey larvae from New Brunswick, Canada (Barker and
Beamish 2000). Reasons for the apparently higher number of oocytes per section in
the European population relative to the North American population have not been
explored, but the increase in oocyte number with TL in both populations suggests
again that recruitment of additional oocytes can continue after ovarian differentiation
is considered complete. As expected, given the later onset of oogenesis, oocytes in the
anadromous form are smaller at a given female larval size relative to lampreys which
initiate oogenesis earlier; mean oocyte diameter was measured to be 24 and 44 pm
at 120-139 mm and >140 mm TL, respectively, in the U.K. population (Hardisty
1969) and 51 and 56 pm at the same sizes in anadromous sea lamprey females from
North America (Barker and Beamish 2000; Fig. 1.9a).

In other parasitic species from the Northern Hemisphere, ovarian differentiation
generally occurs at 2—3 years of age (at ~70-90 mm) and results in a moderate number
of oocytes (~50-100 per cross-section) that are moderately sized by the onset of
metamorphosis (~60-75 pm; Figs. 1.7c and 1.9b). However, ovarian differentiation
in the short-headed and pouched lampreys shows some significant differences from
these other parasitic species. In the short-headed lamprey, the timing of oogenesis
is very similar to that of other moderately sized lampreys, but far fewer oocytes are
produced. As expected, ovarian differentiation was first observed (in about ~10% of
all larvae) by 60-69 mm TL and appeared to be complete by 80—-89 mm TL when
definitive ovaries made up 50% of larvae (Hardisty et al. 1992). Cysts had mostly
degenerated by 90-109 mm TL, at which point residual undifferentiated germ cells
were evident in only ~20% of females. In contrast to other parasitic species, however,
mean number of oocytes ranged from only 15 per cross-section at 70 mm TL to 20 per
cross-section in larvae >110 mm (Table 1.8). This number is even less than that seen
in most non-parasitic lampreys and is presumably the result of more restricted mitotic
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«Fig. 1.10 Atypical, intersex, and sex-reversed lamprey gonads: a development of a type I atyp-
ical sea lamprey Petromyzon marinus gonad into an ovary 52 weeks later, showing oocytes in
the first (FSO) and second (SSO) stages of oocyte growth and somatic cells (SC) in the atypi-
cal gonad, and showing only large SSO and a few atretic oocytes (inset) with vacuoles in their
cytoplasm (white arrows) in the ovary; the intestine (/n) and opisthonephros (Op) are also shown;
b sex reversal of a typical sea lamprey ovary into a presumptive testis, showing a single cyst of
undifferentiated germ cells (GC), retention of the ovary’s finger-like lobes (black arrows) despite
a complete loss of oocytes, and somatic cells in the stroma (S7); ¢ gonadal biopsy from a male
Pacific lamprey Entosphenus tridentatus during upstream migration (TL 520 mm, Sept) show-
ing both mid-vitellogenic oocytes (fop arrowhead) and spermatogonia and spermatocytes (bottom
arrowhead and inset); and d severe inhibition of oocytes in a female sea lamprey larva follow-
ing treatment with 0.01 mg/L estradiol (E>) for 21 weeks and subsequent rearing for 39 months.
The photomicrographs a and b were originally published in Lowartz and Beamish (2000) and are
reproduced with permission of The Fisheries Society of the British Isles; ¢ was originally published
in Clemens et al. (2012) and is reproduced with permission of the National Research Council of
Canada; d was originally published in Docker (1992) and is reproduced with permission of M. F.
Docker

proliferation prior to the onset of meiosis (see Sect. 1.4.1.1), although the increase
in oocyte number with TL suggests some limited additional oocyte recruitment even
after ovarian differentiation is complete (Hardisty et al. 1992). Oocyte size was
comparable to that of most other parasitic lampreys during the larval stage (e.g.,
25-50 pm in larvae measuring >95 mm TL) and had increased to 63-90 pm by
stage 1 of metamorphosis (Hardisty et al. 1992; Fig. 1.9¢). In contrast, the pouched
lamprey is characterized by its “exceptional state of immaturity” relative to other
larval lampreys, but the number of oocytes is what would be expected based on
body size at maturity (Hardisty et al. 1986). Growing oocytes were first evident in a
small proportion (6%) of larvae at 50—59 mm, and those showing a putative female
orientation (i.e., premeiotic cysts and auxocytes or growing oocytes) increased slowly
over the larval period up to a maximum of 39%. This suggests that at least some
future females possessed only cystic gonads even as large larvae. Moreover, ovarian
differentiation (i.e., with only growing oocytes in the gonad) was rarely complete,
and oocyte diameter in even the largest larvae (mean TL 88 mm) was only 32 um
(Hardisty et al. 1986). In metamorphosing females, gonads possessing only cysts
were no longer apparent (and mean oocyte diameter had increased to 43 and 52 pm
by early and late metamorphosis, respectively), but 8% of females still exhibited
premeiotic cysts and auxocytes or growing oocytes rather than fully differentiated
ovaries. Hardisty et al. (1986) estimated that ~75% of germ cells underwent atresia
between the cystic stage and metamorphosis (i.e., based on a mean of 285 germ cells
per section in gonads with cysts or cysts and auxocytes and 60-80 oocytes in the
largest larvae and metamorphosing pouched lamprey), but he suggested that retention
of some undifferentiated germ cells may be an important mechanism for additional
recruitment of oocytes even after the onset of meiosis and oogenesis. This suggestion
was supported by the observation that mean oocyte count was substantially higher
(>160 per section) in larvae and metamorphosing individuals that were >70 mm TL
compared to the number of oocytes in larvae <70 mm TL (<80 oocytes per section).
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Additional recruitment of oocytes after the onset of oogenesis and perhaps even after
the onset of metamorphosis (coupled with the exceptionally small size of the oocytes
in larvae) could be particularly important in pouched lamprey, because, despite its
large size at maturity, this species’ small size at metamorphosis might otherwise
limit the number of oocytes it could elaborate (see Sect. 1.6.3). Therefore, based on
the degree of variation in the stage of ovarian maturity at metamorphosis observed
among lamprey species, Hardisty et al. (1986) concluded that metamorphosis must
not be dependent on larvae attaining a specific stage of gonadal development.

It has long been thought that sex in lampreys is irreversible following completion
of ovarian differentiation (e.g., Hardisty 1965a), although a few cases of reversal
of fully differentiated ovaries to presumptive testes have been shown using gonadal
biopsy (see Sect. 1.4.1.4). Such cases of sex reversal presumably also depend on
retention of residual undifferentiated germ cells.

1.4.1.3 Testicular Differentiation

Although mitosis and the early stages of meiosis appear to be initiated in the gonads
of most lampreys regardless of future sex (see Sect. 1.4.1.1), these processes are
halted in presumptive males, and the majority of cysts and auxocytes or occasional
oocytes degenerate (Hardisty 1965a, b). As a result of this atresia, there is generally
areduction in the size of presumptive testes at this point, and only small numbers of
undifferentiated germ cells that have not entered meiotic prophase remain (Fig. 1.7e).
These remaining stem cells proliferate to produce spermatogonia only at the end of
the larval stage or the onset of metamorphosis (Hardisty 1965a, b, 1971; Fig. 1.7, g).
Because the undifferentiated germ cells appear to remain bipotential throughout the
larval stage, testicular differentiation is generally not considered complete until pro-
duction of spermatogonia. The primary gonial cysts formed during the early stages of
differentiation are not homologous to these secondary cysts produced on resumption
of mitosis at metamorphosis. When mitosis resumes, the outline of the testis starts to
become lobed as groups of germ cells are pinched apart by follicle cells; with further
increases in mitotic activity, the testis starts to gain finger-like extensions that con-
tain maturing cysts of spermatogonia (Hardisty 1971; Fig. 1.7g). The rate at which
the subsequent stages of spermatogenesis occurs differs among life history types
(i.e., it is accelerated in non-parasitic lampreys toward the end of metamorphosis,
but parasitic species remain sexually immature until the end of the parasitic feeding
phase; see Sect. 1.5.2). However, during the larval stage (given the relative inactivity
of the presumptive testis at this point), there is less interspecific variation related to
testicular development than there is with respect to ovarian development. Variation
among species tends to be related mostly to the extent to which mitosis and the early
stages of meiosis are initiated in future males (i.e., whether male development is
direct or indirect) and the degree to which morphological differentiation of the testis
might precede cytological differentiation.

Several lamprey species appear to show both direct and indirect male develop-
ment. With the exception of the pouched lamprey, auxocytosis is generally observed
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in the gonads of 70-80% of all larvae (i.e., in all females and some, but not all, future
males) during the initial phase of gonadal differentiation (see Sect. 1.4.1.1). This
suggests that, even within a species, male differentiation may occur either directly
(i.e., without passing through an initial but abortive “female” stage) or indirectly
following extensive oocyte atresia. However, a closer examination suggests that the
“pathway to male development” may be more of a continuum than two discrete cat-
egories. For example, in European brook lamprey, Hardisty (1965a) suggested that
male differentiation proceeds via three routes: (1) testes that develop from gonads
which, at an early stage, possess some of the somatic characteristics associated with
the definitive male gonads (presumably the ~20% of larvae observed without aux-
ocytes; i.e., those showing direct male development); (2) those that are composed
almost or entirely of premeiotic cysts and auxocytes beyond the second summer of
larval life, the subsequent degeneration of which leaves a few potentially male germ
cells amid fibrous connective tissue (i.e., individuals that appear to show a “some-
what indirect” path of male development); and (3) those that differentiate, generally
beyond the typical size of ovarian differentiation at a later stage, from predominantly
ovarian-type structures, following atresia of all oocytes (i.e., individuals showing
even more indirect male development appearing almost as sex reversals). Hardisty
(1965a) observed evidence of this third route of male development in 17% of all
European brook lamprey larvae 51-60 mm TL up to maximum of 21% at 61-70 mm
TL. Initial meiotic activity and oocyte growth were more extensive and synchronous
than in the second category, and oocyte numbers (4—46) were similar to those of
the definitive ovaries. Indirect male differentiation appeared to involve infiltration
of somatic cells and fibrous tissue into a primarily ovarian-type structure, and iso-
lated germ cells sometimes resembling protogonia were seen in the cortical somatic
region immediately below the peritoneal epithelium. Hardisty (1965a) concluded
that the male germ cell line would subsequently be derived from these residual germ
cells. He indicated that the higher oocyte numbers observed in these putative males
likely represented those that would degenerate early in development and the lower
numbers those that would degenerate later. Therefore, there were rarely numerous
large oocytes past the usual point of ovarian differentiation, and the number and
proportion of degenerating oocytes decreased with TL. Further, he noted that even
the apparent reversals were not “sharply marked off”” from the two other types, and
he considered these cases extreme examples of delayed differentiation rather than
sex reversal. However, in one severe case, the gonad of an §1-mm larva contained
60-70 oocytes, many of them in an advanced state of degeneration, but the shape of
the gonad lobes and width of the mesogonial area were characteristic of a testis (see
below). Busson-Mabillot (1967) also suggested two pathways for male differenti-
ation in this species, observing that ~20% of all larvae (~40% of males, assuming
a 50:50 sex ratio) developed directly into presumptive testes. She concluded that
the remaining 80% of larvae developed an ovary-like structure and only secondarily
produced presumptive males following oocyte atresia.

Direct and indirect male differentiation appears to occur, to different degrees, in
other lamprey species as well. In Arctic and Far Eastern brook lampreys, Fukayama
and Takahashi (1982, 1983) reported that development of future testes appeared to
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occur through degeneration of cysts and auxocytes in most larvae, particularly in
10-20% of the individuals that exhibited signs of widespread oocyte atresia during
or after the cytoplasmic growth phase. However, in the Arctic lamprey, oocytes in the
presumptive testes were often smaller than those in presumptive ovaries, suggesting
that male development in this species is somewhat less indirect than in European
and Far Eastern brook lampreys. In the short-headed lamprey, Hardisty et al. (1992)
reported that >90% of larval gonads developed some meiotic cells and growing
oocytes in the initial stages of sex differentiation, but extensive atresia of oocytes in
an ovarian-type gonad was evident in only four of 303 larvae examined. Hardisty
(1965b) considered differentiation in sea lamprey to be more direct than in the Euro-
pean brook lamprey, although growing oocytes were observed in 63% of landlocked
sea lamprey larvae measuring 71-80 mm TL. This suggests that oocytes developed
in at least some future males, although Hardisty (1965b) did not observe second stage
oocytes undergoing degeneration. He indicated that the apparent absence of atretic
oocytes was almost certainly due to a lack of histological observations throughout the
entire year, because degeneration in the early meiotic prophase is extensive only in
the spring and late autumn and usually affects all the elements of the cyst. Atresia is
also thought to occur rapidly, so that static observations are less likely to capture this
transitory process. For example, in the fetal and neonatal rat ovary, most degenerat-
ing germ cells were eliminated within 24 h of the onset of degeneration (Beaumont
and Mandl 1962). Extensive atresia has been demonstrated in at least some future
male sea lamprey using a gonadal biopsy technique that showed that presumptive
testes can develop belatedly (i.e., TL > 118 mm) following atresia of both first and
second stage oocytes (Lowartz and Beamish 2000; Beamish and Barker 2002; see
Sect. 1.4.1.4). The pouched lamprey is the only species known to date that may show
only direct male differentiation (Hardisty et al. 1986). Follow-up work is required to
determine if there are distinctly different routes of male differentiation in lampreys
(among and within species), or whether individual variation or observational biases
are at play. Interestingly, almost 100 years ago, Okkelberg (1921) viewed sex dif-
ferentiation in lampreys as consisting of a continuum ranging from pure females to
pure males and including various intersexual forms.

Despite the possible differences seen among species during the early stages of
male differentiation, further development of the presumptive testis appears to be more
consistent. There is a general decrease in the number of cell nests and the number
of germ cells within each nest, although considerable individual variation is often
observed. In the European brook lamprey, for example, by 70-90 mm TL, a high
proportion of the testes contain only single isolated germ cells or small groups of
germ cells per section (Hardisty 1965a). At this point, there remains little evidence
of previous meiotic stages or growing oocytes, although they are occasionally found
even in large larvae (i.e., at 130 mm TL). Resumption of mitosis can be observed
in some larvae >90 mm (i.e., prior to the onset of metamorphosis), although this
“pro-spermatogonial” proliferation occurs only slowly in the later periods of larval
life. Nevertheless, Hardisty (1965a) noted distinct differences in the size and cyto-
logical characteristics in the germ cells of the pre-metamorphic testis compared to
the undifferentiated deuterogonia of earlier stages, especially the presence of a sin-
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gle nucleolus in the pro-spermatogonia compared with the double nucleolus in the
deuterogonia. He also noted that cytological changes occurring in the presumptive
testis are accompanied by morphological differentiation. A wave of increased activ-
ity in the peritoneal epithelium covering the surface of the testis forms indentations
where the epithelial cells insinuate themselves between the gonia (Hardisty 1965a).
As a result, the larger cell nests are continually broken up into smaller groups or
separate cells, each invested by its own follicle cells.

Interestingly, Hardisty (1965a) observed that these morphological differences in
European brook lamprey, unlike in most other species, often preceded the more
dramatic cytological differences, and he thought that the male character of the gonad
is “betrayed” at an early stage by these features. He suggested that “morphologically
differentiated testes” could often be distinguished from early stage undifferentiated
gonads and differentiating ovaries, even if “female development” was occurring in
the germ cells, by four characteristics: (1) the shape and character of the gonad, where
vertical clefts in the peritoneal epithelium often separate the presumptive testis into
a number of relatively low lobes that have a flattened rectangular appearance rather
than the rounded outline of ovarian lobes; (2) a broader area of attachment between
the presumed testis and the dorsal wall of the body cavity (i.e., a wider mesogonial
stalk) compared to the slender mesogonium of the ovary; (3) more crowded nuclei
in the peritoneal epithelium covering the testis compared to the relatively sparser
epithelial cells on the surface of the ovaries (presumably because the rapid growth of
the oocytes outpaces proliferation of the ovarian epithelium); and (4) more developed
fibrous connective tissue in the testis, particularly in the hilar region where the blood
vessels and nerves enter the gonad (e.g., Fig. 1.7e), although this latter character
tended to be more variable. Hardisty (1965a) suggested that the somatic elements
of the gonad might, in fact, induce male development (e.g., by inhibiting further
meiosis).

In sea lamprey, cysts and auxocytes similarly degenerate in presumptive males, so
that the future testes are often smaller than the undifferentiated gonad. Following ini-
tiation of ovarian differentiation in future females, Hardisty (1965b) considered those
gonads that still possessed a high number of germ cells (316 and 248 at 81-90 mm
and 91-100 mm TL, respectively) to be undifferentiated and those that possessed
much lower numbers (mean of 68 at 91-100 mm) to be presumptive testes. Docker
(1992) counted 3-31 cysts per section and 1-103 cells per cyst in presumptive male
sea lamprey >90 mm TL; cyst number was unrelated to TL, but number of cells per
cyst decreased with TL. In the largest male larvae, isolated germ cells were common
amid extensive connective stromal tissue (Fig. 1.8a). Occasional small basophilic
oocytes (~12—14 pm) were evident in presumptive males, but the number per section
decreased with TL and diameter did not increase with TL (Docker 1992). Hardisty
(1965b) found that the proportion of presumptive males with oocytes decreased from
88% (with an average of 21 oocytes per section) at 71-90 mm TL to 50% (15 per
section) at 91-100 mm, 28% (7 per section) at 111-130 mm, and 27% (6 per section)
in larvae >130 mm TL. Docker (1992) reported very similar proportions of presump-
tive males with oocytes (48, 27, and 27% at 99-109, 110-129, and >130 mm TL,
respectively), but she rarely observed >6 oocytes per section.
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Nevertheless, germ cell number and organization in presumptive male sea lam-
prey were highly variable even after ovarian differentiation appeared complete in
females, and presumptive testes were often indistinguishable from early undifferen-
tiated gonads. The somatic characters that distinguished the early presumptive testes
in European brook lamprey (Hardisty 1965a) appear to be less developed in sea lam-
prey (Hardisty 1965b), and they appear to emerge after (not before) the extensive
germ cell regression and reduction in gonad size. Hardisty (1965b) reported a hint
of bimodality in gonad cross-sectional area by the time sea lamprey larvae reached
71-90 mm TL, but differences between the sexes appeared diagnostic only once
larvae reached ~100 mm TL (see Sect. 1.4.1.2). In large presumptive male larvae
(110-130 mm TL), gonad cross-sectional area was ~0.003-0.08 mm?, once again
approaching the small size of the early undifferentiated gonad.

Slow germ cell proliferation may resume in the latter part of the larval period,
and both the size of the gonad and germ cell count tend to increase slightly in pre-
metamorphic males. For example, Hardisty (1965a) observed a few large male Euro-
pean brook lamprey larvae (141-150 mm TL) showing a noticeable increase in the
cross-sectional area of the gonad (~0.16-0.45 mm?), which is almost certainly indica-
tive of a resumption of mitosis prior to metamorphosis. In most lamprey species, a
marked increase in the rate of cell division occurs at the onset of metamorphosis.
Cysts of spermatogonia become evident (Fig. 1.7f), and, as mitotic proliferation of
spermatogonia continues, the entire gonad becomes occupied by closely packed nests
of germs cells. It is at this point that the clefts and lobes described in European brook
lamprey testes become well developed in male sea lamprey (Fig. 1.7g).

Unlike other lampreys, future male pouched lamprey undergo little mitosis in the
initial stages of differentiation (see Sect. 1.4.1.1). As a result, the presumptive testes
retain the low germ cell numbers and morphological appearance of smaller larvae
throughout the larval stage (Hardisty et al. 1986). Unlike the Northern Hemisphere
species, there also is no evidence that mitotic activity in future testes accelerates in
the period preceding or even during metamorphosis. Undifferentiated gonads with
only isolated germ cells were found to persist in a small proportion of large lar-
vae (13 and 3% in the 80-89 and 90-99 mm size classes, respectively). In cystic
gonads, a linear relationship between the number of germ cells and TL indicated a
constant rate of proliferation, and germ cell numbers per cross-section were similar
in metamorphosing and larval males at the same TL. In fact, mean cell counts actu-
ally decreased during metamorphosis, from 132 and 106 germ cells per section in
stages 1-2 and 3—4 of metamorphosis, respectively, to 72 per section in stages 5 and
above (Hardisty et al. 1986; see Manzon et al. 2015 re: stages of metamorphosis). In
downstream-migrating pouched lamprey, 40—60 gonial cells were found per section,
and there was still no evidence of mitosis (Potter and Robinson 1991). It appears that,
in this species, spermatogonial proliferation is not initiated until the marine feeding
phase (see Sect. 1.5.2).

In the short-headed lamprey, the future testis is even less well developed at down-
stream migration (Hughes and Potter 1969; Hardisty et al. 1992). During the larval
stage, presumptive testes remain small and difficult or impossible to distinguish
from earlier undifferentiated stages (Hardisty et al. 1992). These authors found that
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germ cell proliferation resumed at metamorphosis, but, even then, the future testes
averaged only 38-73 pwm in diameter during stages 1-3 of metamorphosis (area
~0.004-0.005 mm?). There were generally only a few sporadic gonia located in the
cortical zone of the rounded, oval, or fusiform gonad (Hardisty et al. 1992). Even in
late metamorphosing stages and young adults, gonad diameter in presumptive males
measured only 38-83 wm. A few individuals had gonads measuring up to 181 pm
in diameter (~0.03 mm?), but there was no correlation between gonad size and germ
cell number; the two largest gonads had only 8 and 9 germ cells per section and were
almost entirely composed of connective tissue.

1.4.1.4 Atypical or Intersex Gonads and Sex Reversal

The gonad in larval lampreys is frequently referred to as being hermaphroditic (e.g.,
Okkelberg 1921; Lewis and McMillan 1965) or intersexual (Hardisty 1971; Hardisty
et al. 1992), because, in most species, some or all future males appear to pass
through an initial but brief “female” stage as part of normal male development. Even
more dramatically, a small proportion of presumptive male testes may differentiate
from an ovarian-like structure following atresia of the entire stock of oocytes (see
Sect. 1.4.1.3). In general, however, it has typically been thought that sex is definitive
in most individuals once ovarian differentiation is complete (e.g., Hardisty 1965a).
In this section, we review more recent reports suggesting that intersexual or highly
atypical gonads can persist far beyond the length at which ovarian differentiation
is normally complete (e.g., Barker and Beamish 2000) and, even more surprisingly,
that complete sex reversal is possible after primary sex differentiation (e.g., Lowartz
and Beamish 2000). However, because testicular differentiation (i.e., development
of spermatogonia) does not occur until the onset of metamorphosis, it is important to
note that intersex larvae do not possess the sex cells of both males and females. Inter-
sex (or “atypical”) gonads in larval lampreys refer to those where the morphological
characteristics of the gonad (e.g., area, shape) are intermediate between females and
presumptive males or where the morphological characters do not match the cytolog-
ical characters (e.g., type, number, or size of the germ cells). True intersex gonads
(i.e., in post-metamorphic lampreys) have been reported (Beard 1893; Okkelberg
1921; Hardisty 1965a; Clemens et al. 2012), but they are much rarer.

Atypical or intersexual gonads have been reported in a number of sea lamprey
larvae from several rivers tributary to the Great Lakes (Wicks et al. 1998a, b; Barker
and Beamish 2000) and in anadromous sea lamprey larvae collected from the Petit-
codiac River in New Brunswick (Barker and Beamish 2000). In sea lamprey from
12 streams in the Great Lakes basin, Wicks et al. (1998a) found that sex could
be identified in at least some individuals measuring 90—-100 mm TL, but 8-100%
of larvae measuring 90-160 mm TL were categorized as intersexes. Growth rates
varied among streams, but, overall, 2- and 3-year-old larvae were estimated to be
54-93 and 72—-128 mm TL, respectively, when aged using statoliths, or 58—-109 and
86-163 mm TL, respectively, when larval age was estimated using length-frequency
histograms. Wicks et al. (1998a) observed that the proportion of intersex larvae in a
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population increased with larval growth rate, and they suggested that, as a response
to TFM treatments, sea lamprey may allocate a disproportionate amount of energy
to somatic growth (at the expense of gonadal development) in order to shorten the
larval period. In these situations, gonadal development would presumably resume
following metamorphosis. Wicks et al. (1998b) conducted more detailed histological
analysis on larvae from three Great Lakes streams. Using larvae from one stream,
they first established statistical tolerance limits for various morphological criteria
(gonad perimeter, which indicates the degree to which the margin is either smooth
or crenulated, and cross-sectional area) and cytological criteria (germ cell number,
oocyte number, and oocyte diameter) for typical male and female larvae from four
size classes (90-105, 106-120, 121-135, and >136 mm TL). Atypical gonads were
then identified as those where one or more characteristic fell outside these tolerance
limits or where some gonadal characteristics fell within male tolerance limits and
some fell within the typical female range. Atypical larvae comprised 52 and 33%
of the larvae in Cobourg Brook and Farewell Creek (Lake Ontario), respectively,
in collections from May, June, and September, and they made up 80% of the lar-
vae collected from Little Gravel River (Lake Superior) in July. Atypical larvae were
atypical in different ways, but such gonads usually included a high number of undif-
ferentiated germ cells (4—1,372 per section versus 4-598 in typical males and 0-159
in typical females), 0—167 oocytes per section measuring 1679 pm in diameter (vs.
0-8 oocytes measuring 13—-22 pm in males and 75-90 oocytes measuring 46—77 pm
in females), and up to 84 atretic oocytes per section (when none were evident in
typical males or females).

This same pattern of atypical gonads was found in other Great Lakes tributaries
by Barker et al. (1998): 9-82% of the gonads of sea lamprey larvae >90 mm TL were
deemed atypical, and these authors suggested that there might be annual variation
in the proportion of atypical larvae. In Gordon’s Creek (Lake Huron), 82% of the
gonads appeared atypical in June 1995, but only 14% of the gonads were atypical in
October 1996. However, these differences could also represent seasonal differences:
43% of the larvae collected in June 1995 from Cobourg Brook (Lake Ontario) had
atypical ovaries, but only 9 and 19% of those collected in September 1995 from
Cannon Creek (Lake Huron) and Lynde Creek (Lake Ontario), respectively, had
atypical gonads. It could be that more gonads appear atypical in the spring as the
result of intense mitotic or meiotic activity, and that these processes then “settle
down” or are followed by rapid atresia in late summer and early fall. However, vir-
tually all other studies examining lamprey gonadal histology include larvae sampled
in the spring and summer without reporting a large proportion of atypical larvae.
Hardisty (1965b, 1971), for example, did not observe first-stage oocytes in female
sea lamprey larvae after the larvae reached 90-100 mm TL, regardless of season (see
Sect. 1.4.1.2). As was observed by Wicks et al. (1998b), however, atypical larvae
were atypical in different ways, and Barker et al. (1998) classified them into four
categories based on morphological and cytological characteristics. Typical ovaries
(in larvae 115-165 mm TL) were horseshoe-shaped, with prominent lobes, no atre-
sia, and second-stage oocytes (56—-88 pm in diameter) arranged in pairs. In contrast,
category 1 atypical gonads (120-129 mm) were small, angular in shape and without
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lobes, and they possessed only first-stage oocytes (15—18 pwm) around the gonad’s
perimeter with no evidence of atresia. Category 2 atypical gonads (116—-137 mm
TL) were horseshoe-shaped and without lobes, and they had second-stage oocytes
(33-46 pm) scattered individually throughout the gonad, many germ cell clusters,
and 2,000-10,000 atretic oocytes. Category 3 gonads (122—-146 mm TL) were also
horseshoe-shaped but with lobes, no atresia, excess stromal tissue, and only a few
oocytes (52-58 pm diameter) in some lobes. Category 4 gonads (119-141 mm TL)
were also horseshoe-shaped with lobes, but with many germ cell clusters, first- and
second-stage oocytes (39-56 pwm), and 5,000—40,000 atretic oocytes. Oocyte diam-
eter and ovarian cross-sectional area in typical female larvae increased with TL (see
Sect. 1.4.1.2), but neither feature was correlated with TL in atypical larvae. The
estimated potential fecundity of atypical gonad categories 2 and 4 was well above
those for typical gonads, but this was predominantly the result of large numbers of
undifferentiated germ cells in these gonads (up to 5.3 and 4.1 million in category 2
and 4, respectively). In contrast, the total number of oocytes and the total number of
undifferentiated germ cells in typical gonads was 19,000-65,000 and 500-80,000,
respectively (see Sect. 1.6.2). Potential fecundity for atypical gonad types 1 and 3 was
consistent with those for typical gonads, but these values likewise included undiffer-
entiated germ cells and small oocytes. Wicks et al. (1998a) suggested that atypical
gonads observed in Great Lakes sea lamprey >90 mm TL may result from a slow-
ing of gonadogenesis as a result of selection for rapid somatic growth. Histological
observations made in the early years of sea lamprey control may not have detected
this phenomenon. Wicks et al. (1998b) and Barker et al. (1998) further suggested
that the unusually high number of undifferentiated germ cells per section in these
Great Lakes sea lamprey may extend the period of sex differentiation, during which
time the gonad may remain labile and be susceptible to influence from abiotic or
biotic factors (see Sect. 1.3.2.2). Alternatively, the atypical gonads may represent a
transition in sex, perhaps induced by cyclic changes in larval density or growth rate
resulting from periodic TFM treatments (Wicks et al. 1998b).

However, atypical gonads were also common in larvae from the anadromous
sea lamprey population examined by Barker and Beamish (2000), indicating that
their occurrence is not related to chemical treatment of streams or a population
response to TFM treatment (see Sect. 1.2.6). Atypical gonads were reported in sea
lamprey larvae collected from the Petitcodiac River in New Brunswick at the end of
June (120-140 mm TL), and they were histologically similar to those collected from
Brown’s Creek (Lake Huron) in May (100-140 mm TL). Although many larvae from
both the anadromous and Great Lakes populations could be easily distinguished as
male or female (see Sect. 1.4.1.5), gonads were atypical in 49 and 56% of the larvae,
respectively. As observed previously (see above), the atypical gonads were charac-
terized by intermediate or inconsistent morphological characters, an unusually high
number of undifferentiated germ cells (0703 and 0-988 per section in anadromous
and landlocked sea lamprey, respectively), a variable number of oocytes (0-222 and
0-197 per section), oocytes of variable sizes (049 wm and 11-92 pm in diame-
ter), and often the occurrence of atretic oocytes (0—40 and 0-35, respectively) where
none were found in typical males or females. The reason why such a high propor-
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tion of atypical sea lamprey larval gonads were observed in these studies but not
previously—from both Great Lakes and anadromous populations—remains elusive.

An in vivo biopsy technique developed by Lowartz et al. (1999) and Lowartz
and Beamish (2000) permitted a non-lethal means of examining lamprey gonadal
histology in a single individual over time, allowing these researchers to learn the fate
(at least during the larval stage) of atypical gonads. Results indicated that atypical
gonads often developed into typical males (albeit at a larger size than is usually
associated with sexual differentiation), but a few cases of full sex reversal (i.e., from
a typical female to a typical male) were also observed. Gonads from sea lamprey
larvae (TL >118 mm) collected from a tributary to Lake Huron in May and June
were biopsied, and larvae were then reared for another 1, 2, 4, 8, 16, and 52 weeks,
at which point they were sacrificed for histological analysis. Because the biopsied
tissues were inconsistent in size and orientation (i.e., full gonadal cross sections
could not be taken), the criteria previously developed for typical males and females
and atypical gonads (Wicks et al. 1998b) were modified. Tolerance limits for typical
males and females in two size categories (121-135 mm and >136 mm TL) were
based on the number of oocytes and undifferentiated germ cells per unit area and
oocyte diameter.

At the time of biopsy, 17% of the 87 examined larvae possessed atypical gonads
that were divided into two basic types (Lowartz and Beamish 2000): 33% were type I
atypical gonads showing asynchronous oocyte development (i.e., with both first- and
second-stage oocytes averaging 20.4 and 40.8 pwm, respectively; Fig. 1.10a), and 67%
were type II atypical gonads that, despite the large size of the larvae, resembled an
indifferent gonad with both undifferentiated germ cells and predominantly first-stage
oocytes, although second-stage oocytes were occasionally present (overall mean
diameter 16.4 pm). The exciting aspect of this study was the ability to follow the fate
of these atypical gonads over the next 1-52 weeks. Gonadal composition remained
relatively stable over the first 4 weeks, but significant changes were observed by
week 8. Of the 15 initially atypical gonads, only one remained atypical or indifferent
after week 8. One of the type I atypical gonads (from a larva 128 mm TL at biopsy)
developed into a presumptive testis by 8 weeks, but the remaining four became ovaries
with atretic oocytes by week 52 (Fig. 1.10a). Of the 10 type II atypical gonads, two
remained indifferent (at 1 and 52 weeks), one developed into an ovary with atretic
oocytes, and seven became presumptive testes after 8 or 52 weeks. This observation
is consistent with delayed sex differentiation (through delayed atresia of first-stage
oocytes) in these individuals (e.g., Wicks et al. 1998b; see above).

Nevertheless, it appeared that gonadal differentiation was not delayed or atypical
in all individuals because, at the time of the biopsy, 63% of individuals had typical
ovarian tissue and 20% had gonads resembling typical presumptive testes (Lowartz
and Beamish 2000). However, over time, the proportion of typical ovaries declined,
and the proportion of presumptive testes increased due to oocyte atresia in 16 pre-
viously typical ovaries, development of presumptive testes from atypical gonads
in eight individuals (see above), and complete sex reversal in three typical ovaries
(Fig. 1.10b). These observations thus provide experimental support for previous sug-
gestions by Hardisty (1971) and Fukayama and Takahashi (1982, 1983). Based on
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interpretation of the histological appearance of the gonads at one point in time, these
authors suggested that presumptive testes can develop through atresia of an ovary’s
entire oocyte stock even after ovarian differentiation appears to be complete. The
biopsy results also provide insights into how quickly such transitions can occur. The
only change noted in typical ovaries during the first 4 weeks was very modest atresia
(of <7% of the total oocyte stock) in three individuals. By week 8, four of six typ-
ical ovaries showed oocytes undergoing more significant atresia: on average, 41%
of oocytes were atretic, and the number of oocytes per unit area had decreased. By
week 16, remarkable changes to gross gonadal morphology were observed in three
of the five previously typical ovaries: 18% of the oocytes of one female were atretic,
and complete sex reversal was seen in the other two females. These sex-reversed
individuals showed 100% oocyte atresia and occurrence of undifferentiated germ
cells, but the finger-like lobes characteristic of ovaries were retained. By week 52,
complete sex reversal from a typical ovary had been demonstrated in a third individ-
ual (Fig. 1.10b), and nine other ovaries (of the initial 22) displayed oocyte atresia.
Nevertheless, Lowartz and Beamish (2000) did not observe any sex reversals from
presumptive testes to ovaries, suggesting that ovarian development is precluded once
oocytes fail to develop or are entirely lost to atresia. In the female-to-male sex rever-
sals, germ cells would occasionally appear in gonads which previously exhibited only
oocytes. In these cases, it is likely that a few germ cells were initially present but
not included in the biopsied tissue, because there is no evidence that oocytes would
“revert” to undifferentiated germ cells. These transitions were considered female-to-
male sex reversals (as opposed to transition of the ovary to a sterile gonad), because
it was assumed that the remaining few undifferentiated germ cells would undergo
mitotic proliferation at the onset of metamorphosis (see Sect. 1.4.1.3). By the end of
the study, typical ovaries and presumptive testes made up 46 and 23% of all individ-
uals, respectively, with ovaries with atretic oocytes and atypical gonads making up
the remaining 29 and 3%, respectively (Lowartz and Beamish 2000). If individuals
in the latter two categories became presumptive males, the sex ratio would be 54%
male, which is very much in line with the adult sex ratio observed in Lake Huron
and the other Great Lakes since the mid-1990s (Fig. 1.2). However, the ultimate fate
of the atretic ovaries and atypical gonads is unknown.

The Lowartz and Beamish (2000) study was groundbreaking in demonstrating
that sex differentiation in a substantial proportion of sea lamprey larvae is labile for
most or all of the larval stage and that primary sex differentiation is not definitive
in all lampreys. However, Lowartz and Beamish (2000) expressed some concern
that manipulation of the gonad during surgery could have been responsible for the
observed oocyte atresia and sex reversal, because mechanical manipulation of the
ovary of Siamese fighting fish Betta splendens resulted in the generation of testicular
tissue (Becker et al. 1975). In the Becker et al. (1975) study, however, the ovary
was removed, squashed, and replaced into the abdominal cavity. In comparison, the
method employed by Lowartz and Beamish (2000) seemed far less invasive, and
development proceeded normally in many of the ovaries (e.g., oocytes continued to
increase in diameter at rates seen in wild populations; see Sect. 1.4.1.2). Nevertheless,
the concern was addressed in a follow-up study by Beamish and Barker (2002).
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This latter study included a sham control (i.e., where the larvae underwent the same
operation as the biopsy group but without the removal of gonad tissue). Furthermore,
in the biopsy group, only ~3% of the total gonad length was removed and it was gently
dissected from the dorsal wall of the coelom. At the time of sacrifice, cross-sections
for histological examination were taken from three regions along the length of the
ovary to ensure that any observed changes were not confined just to the biopsy area.
Another important advance in the study by Beamish and Barker (2002) was the
inclusion of metamorphosing sea lamprey (in addition to larvae 92—-156 mm TL). At
the time of sacrifice 32-49 weeks later, gonad cytology did not differ between the
three regions examined and sex ratios did not differ significantly among the three
groups (e.g., atypical gonads were found in 3, 11, and 4% of individuals subjected to
the biopsy, sham, and control treatments, respectively), suggesting that biopsy and
surgery did not affect subsequent development. Nevertheless, significant changes in
gonadal morphology and composition were still observed in 27% of the 30 biopsied
individuals: two atypical ones became presumptive males; one female experienced
extensive oocyte atresia; four females reversed to males; and one male reversed to
female. This is the first (and, to date, only) report of male-to-female reversal. In
contrast to the larvae, all metamorphosing and juvenile lamprey examined at both
the beginning and end of the study were classified as typical males or females, and
none underwent sex reversal. Significant increases in cross-sectional area of the testes
and ovaries during and after metamorphosis suggested normal testicular and ovarian
growth despite surgery. Therefore, lability of the sea lamprey gonad may extend in at
least some individuals until the end of the larval stage, but sex differentiation appears
to be complete and fixed by the time metamorphosis has begun. Retention of even
small numbers of undifferentiated germ cells may permit sex reversal, but sex is
no longer labile once undifferentiated germ cells begin spermatogonial proliferation
(see Sect. 1.4.1.3).

There are a few reports of intersexuality in post-metamorphic lampreys (e.g.,
Beard 1893; Okkelberg 1921). In addition, Hol¢ik and Deli¢ (2000) mention two
Ukrainian brook lamprey Eudontomyzon mariae that appear to be hermaphrodites,
but it seems that this conclusion was based on the presence of intermediate sec-
ondary sex characteristics rather than internal examination. More recently, Clemens
et al. (2012) described the simultaneous presence of both oocytes and spermatogo-
nia or spermatocytes in adult Pacific lamprey. During their 2007 and 2008 sampling
seasons, Clemens et al. (2012) classified two of the 427 Pacific lamprey that were
sampled during their upstream migration in the Willamette River in Oregon as male
intersexes. Their gonads resembled normal testes macroscopically, but histological
examination of a biopsy sample showed the presence of a small number of dis-
tinct oocytes. One individual collected from Willamette Falls in August possessed
only pre-vitellogenic oocytes (~20-30 pm diameter) interspersed throughout the
spermatogonia-filled testis (see Sect. 1.5.2). In the second individual collected in
September, at least six mid-vitellogenic oocytes (~600 wm diameter) were evident,
and they were separate from the testicular tissue which contained both spermato-
gonia and early stage spermatocytes (Fig. 1.10c). Clemens et al. (2012) concluded
that these two males would be unlikely to self-fertilize or spawn viable eggs, but it
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is unknown if they would be able to produce viable sperm at maturity (~10 months
hence). Intersexuality in post-metamorphic lampreys is thought to be rare. However,
because detection of the two intersexes by Clemens et al. (2012) required histological
examination, it is possible that a “touch of intersexuality” in adult lampreys is more
common than currently thought.

1.4.1.5 Sex Identification in Larval Lampreys

As detailed above, the age and size at which larval lampreys can be “sexed” (i.e., when
females can be reliably identified) will depend on the species, and, to some extent,
on the population or individual (Table 1.8). Because male lampreys remain undif-
ferentiated throughout the larval stage, they are generally identified as presumptive
males when they are not yet female at the point when female differentiation should
be complete (i.e., males are inferred by default). However, it should be noted that sex
reversal has been suggested (Fukayama and Takahashi 1983) or reported (Lowartz
and Beamish 2000) in some individuals even after the point at which ovarian differ-
entiation has occurred (see Sect. 1.4.1.4).

In brief, non-parasitic species can generally be sexed histologically following the
summer of their first full year of larval life (i.e., in age class I or at ~14—16 months
of age) or at ~50-70 mm TL (Table 1.8). After this point, females should be clearly
identifiable when distinct oocytes (diameter >40 jwm) make up most or all of the
germ cells (numbering ~15-35 in cross-section; Fig. 1.7b). Presumptive males are
identified by the absence of these features; the future testis remains small and still
retains undifferentiated germ cells (Fig. 1.7e).

Parasitic species generally cannot be sexed until they are at least 2 years old, but
the age and size at which individual species can be sexed is more variable than in
brook lampreys. In Northern Hemisphere species, ovarian differentiation is typically
complete at smaller sizes and younger ages in lampreys with smaller adults (e.g.,
chestnut and European river lampreys; Fig. 1.7¢) and at progressively larger sizes
and older ages in large-bodied species (Table 1.8). Landlocked sea lamprey can
generally be sexed histologically by 90-100 mm TL (Fig. 1.8a), but anadromous
sea lamprey usually cannot be sexed until they are 120—130 mm TL. At these sizes,
females should be clearly identifiable by their large ovary, consisting of finger-like
lobes containing a large number (~25-200+) of large (diameter >40 wm) oocytes.
In contrast, males are identified by the absence of these features, even if a few small
oocytes persist (Fig. 1.8a). For example, the gonad of presumptive male sea lamprey
is much smaller in cross-sectional area than the developing ovary. It generally has
a smooth or shallowly cleft, angular shape and is comprised of stromal tissue and
undifferentiated germ cells occurring either singly or clustered in cell nests. If oocytes
are present, they are generally few (<6 per section) and small (<20 pwm; Docker 1992;
Wicks et al. 1998a).

However, given apparent variability even within species, the appropriate “cut-oft”
point (i.e., the size at which female differentiation is deemed complete and presum-
ably irreversible) should be verified for each population. If individuals are sexed
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prior to completion of ovarian differentiation, they may be erroneously called male
when they are not yet obviously female, or, conversely, they may be prematurely
diagnosed as female if the oocytes have yet to undergo atresia. In European brook
lamprey, for example, Hardisty (1965a) reported an excess of females (35% male)
at 41-60 mm TL, but sex ratios approached parity when individuals were sexed
at 61-80 mm (45% male) and 81-100 mm (48% male). Alternatively, individuals
with delayed differentiation may appear atypical or intersexual. In fast-growing sea
lamprey populations, for example, ovarian differentiation may not be complete until
individuals are well past 90—100 mm (Wicks et al. 1998a). In contrast, ovarian differ-
entiation might be complete at 70-80 mm TL in slow-growing individuals (Docker
1992; see Sect. 1.4.1.2).

In addition to using histological examination, large larval lampreys can often be
sexed under a dissecting microscope, because, near the end of the larval stage, there
is a considerable difference in the size, shape, and texture of the ovary compared to
the testis (Fig. 1.8b). Differences in the size and composition of the ovary and testis
also allow for live larvae to be sexed using acoustic microscopy. Conventional low-
frequency ultrasound (3.5—15 MHz) has long been used to non-lethally determine sex
and stage of maturity in adult fishes (e.g., Martin et al. 1983; Colombo et al. 2004),
but the high-resolution ultrasound technique developed by Maeva et al. (2004) was
sufficiently sensitive to determine sex in live larval lampreys >110 mm TL. By using
a focusing lens to concentrate high-frequency ultrasound (15-100 MHz), female
sea lamprey larvae could be identified in ~30 s per animal by the presence of a
relatively large (1-1.5 mm diameter) ovary which was considerably less reflective
to the acoustic signals than the surrounding kidney tissue (Fig. 1.8c). Males could
sometimes be recognized by the appearance of a small (0.2-0.3 mm) testis with
slightly stronger reflective properties than the kidney, and they could always be
identified by the absence of an ovary. The only other non-lethal method currently
known for identifying sex in larval lampreys is the gonadal biopsy method developed
by Lowartz and Beamish (2000). Non-lethal sexing techniques are important for
studies that need to monitor the gonad over time (e.g., for evidence of sex reversal;
Lowartz and Beamish 2000; see Sect. 1.4.1.4) or that require live larvae of known
sex for subsequent studies (e.g., to examine sex-specific differences in mortality
or sex-specific differences in endocrine profiles or gene expression patterns; see
Sect. 1.4.2.2).

1.4.1.6 Effect of Hormone Treatments on Sex Differentiation

Hormonal sex control is the manipulation of an individual’s gonadal sex by the admin-
istration of hormones (e.g., androgens or estrogens) before or during sex differenti-
ation. In this manner, sex differentiation has been partially or completely redirected
(i.e., where the inherent sex differentiation process is overridden so that the gonads
develop as testes or ovaries regardless of genetic sex) in a number of teleost fishes
(e.g., Donaldson and Hunter 1982; Yamazaki 1983; Piferrer 2001). Both 100% males
and 100% females have been produced, and several studies have shown hormonal
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sex reversal to be both permanent and functional (Hunter et al. 1982). The relative
ease with which gonadal steroids control sex in previously undifferentiated embryos
led Yamamoto (1969) to conclude that androgens and estrogens were the respective
male and female sex inducers in fishes. However, there is debate whether steroido-
genesis precedes (e.g., Feist et al. 1990) or follows (e.g., van den Hurk et al. 1982;
Rothbard et al. 1987) gonadal differentiation, and whether the high doses sometimes
used are within the physiological capabilities of the animal. Nevertheless, the ease
with which hormonal sex control can be achieved in fishes is thought to indicate
labile sex determination (i.e., that sex differentiation can be influenced by environ-
mental factors even in species with a genetic component to sex determination; see
Sect. 1.3.1).

Despite the apparent lability of the larval lamprey gonad (see Sect. 1.4.1.4), hor-
monal sex control in lampreys has been unsuccessful to date. Knowles (1939) found
that the gonads of larval European river lamprey were not noticeably affected by
injections of the androgen testosterone (T) propionate or the estrogen estrone (see
Sect. 1.7.2). Likewise, sex reversal was not achieved in previously undifferentiated
European brook lamprey larvae immersed in T propionate or estradiol (E;) benzoate
for 6 months (Hardisty and Taylor 1965). However, in the latter study, more larvae
immersed in T propionate contained cysts of undifferentiated germ cells relative to
the controls, and fewer larvae possessed oocytes. Nevertheless, because T propionate
impaired growth, treated larvae were also smaller than the control larvae, and it is
possible that presumptive females simply had not yet completed ovarian differen-
tiation (Hardisty and Taylor 1965). Immersion in E, benzoate caused an apparent
degeneration of oocytes, rather than the expected feminization. In this case, how-
ever, the treated larvae were larger than the controls. It is possible that degeneration
of oocytes occurred as part of the normal progression toward testicular differentia-
tion in future males (Hardisty and Taylor 1965; see Sect. 1.4.1.3) or represented a
paradoxical or pharmacological effect (see below).

Similar results have been observed in sea lamprey: gonadal steroids were shown to
be generally ineffective in altering larval sex ratios, but they often produced gonadal
abnormalities (Docker 1992). However, the precise results differed depending on the
initial size of the larvae. Larvae were divided into three size classes that reflected their
presumed stage of gonadal development at the onset of treatment: 1) undifferenti-
ated (i.e., initial TL <60 mm); 2) in the process of ovarian differentiation (60-89 mm
TL); and 3) following completion of ovarian differentiation (=90 mm TL). Larvae
were immersed twice weekly in T, E;, and 17a-methyltestosterone (MT) at con-
centrations of 0.01, 0.1, or 1.0 mg/L for 21 weeks, and they were then maintained
without further treatment for another 25 months until most were large enough for
identification of sex. Gonads of the initially undifferentiated larvae (<60 mm TL)
were the least affected, which is counter to the assumption that they would be the
most susceptible to hormonal influence. Sex ratios were not significantly different
from the controls, and few histological differences were noted. Intersex gonads (see
Sect. 1.4.1.4) were observed in 13 and 27% of the larvae treated with the lowest
doses of MT and T, respectively, and in 11 and 17% of the larvae treated with the two
higher doses of E,, but as many as 12% of the control larvae were also intersexual.
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However, growth was significantly impaired in the T-treated larvae, and virtually
all small larvae died at the medium and high MT doses. Hormone treatments also
failed to alter sex ratios in larvae that were in the process of ovarian differentiation
(60-89 mm TL), but these treatments often resulted in histological abnormalities
that were suggestive of incomplete sex reversal. For example, E, treatment appeared
to cause slight “feminization” of males; relative to the controls, presumptive testes
showed increased cross-sectional area and finger-like lobes (i.e., showing superfi-
cial morphological resemblance to ovaries), but with an increase in the amount of
stromal tissue rather than in the number or size of oocytes (i.e., without correspond-
ing cytological changes). Following treatment with T, females had more and larger
well-defined cysts than control females, and intersexes were observed with larger
gonads and larger oocytes than comparable control larvae. Docker (1992) suggested
that these individuals might represent incompletely masculinized females. A sig-
nificant effect on sex ratio was observed only in larvae that were >90 mm TL at
the initiation of treatment, but the gonads were often abnormal in appearance. The
medium dose of E, and the lower two doses of MT produced more females than
were evident in the control tanks, but individuals mostly showed evidence of inhibi-
tion of germ cell growth rather than masculinization or feminization per se, and the
survival rate of MT-treated larvae was low. In females treated with T after comple-
tion of ovarian differentiation, there was a decrease in the size and abundance of the
remaining cysts of undifferentiated germ cells and an increase in oocyte diameter
and ovarian cross-sectional area. Paradoxical feminization following treatment with
androgens has been reported in other fishes (e.g., Hackmann and Reinboth 1974;
Goudie et al. 1983; Davis et al. 1990) and may be the result of aromatization of T
and MT to compounds with estrogenic properties (Davis et al. 1990; see Sect. 1.7.1).
Most notable was the drastic reduction in oocyte number and size in large females
treated with E,, often producing near-sterile gonads (Fig. 1.10d). Oocyte inhibition
in already-differentiated females suggests a pharmacological effect caused by direct
toxic action on the gonad (Tsuneki 1976) or by inhibition of pituitary gonadotropin
secretion (Gorbman 1983), although it should be noted that the inhibitory effects
were least pronounced at the highest E, dose (Docker 1992).

The lack of success to date in producing normal sex-reversed lampreys does not
necessarily mean that hormonal sex control is not possible in lampreys. Successful
hormonal sex control in different teleost fish species is the result of considerable
experimentation to refine treatment protocols (e.g., Donaldson and Hunter 1982;
Hunter et al. 1982; Yamazaki 1983; Piferrer 2001). Developing the right protocols
for lampreys is complicated by our current lack of understanding of the extent to
which lamprey gonads can be “atypical” even without treatment with exogenous
hormones (see Sect. 1.4.1.3), uncertainties regarding the physiologically relevant sex
steroids in lampreys (see Sect. 1.7.2), the extraordinarily long period during which
the gonad remains indifferent, and a clear understanding of the “window of lability.”
So far, the effect of hormone treatments has been evaluated only by comparing the
sex ratio and gonadal histology of treated and control lamprey larvae. This allows us
to only infer the changes that were produced in the treated individuals. Therefore, one
improvement would be to use the gonadal biopsy method developed by Lowartz and
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Beamish (2000) so that “before and after” comparisons of each individual could be
made, and individuals could potentially be followed over time. This method would
allow researchers to better determine if atypical gonads (e.g., with the cytological
features of one sex and the morphological features of the other sex) had been typical
prior to treatment, suggesting that treatment caused partial sex reversal, and to detect
complete sex reversal in a small number of individuals. Identification of the “true”
sex steroids is not necessary for successful sex control, and synthetic hormones are
often effective (e.g., Piferrer 2001). Nevertheless, some steroids are not as effective as
others, and some may produce toxicological rather than physiological effects (Hunter
et al. 1983; Piferrer 2001). Considerable trial and error is also required to determine
appropriate doses (e.g., Yamazaki 1983; Piferrer 2001).

With respect to determining the window of lability, fishes are generally suscepti-
ble to exogenous hormones prior to phenotypic sex differentiation (Yamazaki 1983).
In most teleost fishes, this generally occurs within a few weeks to months of hatch-
ing, and testicular and ovarian differentiation occur at the same time or very close
together (Patifio and Takashima 1995; Wang et al. 2007; Sandra and Norma 2010).
In lampreys, however, the differentiation process is delayed, prolonged, and asyn-
chronous in males and females (see Sects. 1.4.1.2 and 1.4.1.3), and we do not know
if the lamprey gonad is open to exogenous influence as long as undifferentiated germ
cells persist (see Sect. 1.4.1.4), or whether sex-specific differences not yet visible by
light microscopy are established even prior to initiation of ovarian differentiation. An
apparent lack of histological differentiation does not necessarily indicate that the ger-
minal and somatic elements are not differentiated at a molecular level (Hardisty et al.
1992). In the Docker (1992) study where observed histological changes suggested
incomplete sex reversal, hormone treatments may have been initiated too late or ter-
minated too soon. In the larvae that were presumed to be initially undifferentiated,
average TL was still only 66 mm by the time hormone treatments ceased; ovarian dif-
ferentiation would not have been complete yet. Hormone treatment during only the
early stages of sex differentiation might have resulted in transitory changes that were
completely or partially reversed by the time of histological examination. Although
successful sex control has been achieved in coho salmon by a single 2-h treatment
(Piferrer and Donaldson 1989), the timing is critical, and treatments of insufficient
duration either have little or no effect on sex differentiation (e.g., Hackmann and
Reinboth 1974; Takahashi 1975) or produce intersexual or sterile fish (e.g., Boney
etal. 1984; Komen et al. 1989). However, longer treatments are not necessarily more
effective, because they can also result in intersexuality and sterility, impaired growth,
or high mortality (e.g., Hunter et al. 1983; Sower et al. 1984).

In lampreys, hormonal treatment throughout the entire undifferentiated stage does
not guarantee success. In an unpublished study by L. H. Hanson at the Hammond Bay
Biological Station in Michigan (cited in Docker 1992), several hundred sea lamprey
larvae were immersed twice-weekly in estrone, E,, diethylstilbestrol, progesterone,
or methyltestosterone for 3-5 years following hatch. Gonadal differentiation was
complete prior to cessation of treatment, and the lampreys were sexed as large larvae
(>120 mm TL) or during metamorphosis. Mortality was high throughout the study,
and all the treated larvae exhibited very thin gonads classified either as aberrant
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testes or sterile gonads. However, 80% of the surviving control larvae were also
male or sterile, and the cause of such abnormalities in untreated larvae is unknown
(see Sect. 1.4.1.4).

Hormonal sex control in other fishes has had a profound impact on aquaculture.
For example, producing monosex stocks (e.g., favoring the sex that shows the greatest
growth) can have significant economic advantages (Solar et al. 1991; Piferrer 2001).
It can also have important applications for the control of invasive fish species (e.g.,
Gutierrez and Teem 2006; Thresher et al. 2014). For example, sex-ratio distortion
systems that induce an extreme male bias can be particularly effective for the control
of pest species (Senior et al. 2015). Extreme male bias can be achieved using “Trojan
sex chromosomes” in species with predominantly genetic, but hormonally reversible,
sex determination (Gutierrez and Teem 2006; Thresher et al. 2014). In fish species
with an XY sex-determining system, viable females carrying two Y chromosomes can
be created over two generations using estrogen treatments during early development,
and then they can be released into the wild population. Mating of these YY females
with normal XY males produces only males (XY and YY), and the male bias increases
in subsequent generations. Therefore, fewer individuals need to be released compared
to the sterile-male-release technique (see Chap. 6), because the effects of this method
extend beyond the life of the released individuals (Cotton and Wedekind 2007; Schill
et al. 2016). A similar sex-ratio distortion approach could be an effective and highly
species-specific alternative to lampricides (Thresher et al. 2019), but considerably
more work would be required to develop such a system in lampreys (see Sect. 1.3.2.1).
Nevertheless, the Trojan Y approach could represent a “friendlier” alternative to
sex-ratio distortion gene drives, because it does not require the release of genetically
modified organisms into the environment (Senior et al. 2015). The consequences
of YY female additions are non-permanent (as long as XX females still exist), so
undesirable effects can be reversed by cessation of Y'Y input (Cotton and Wedekind
2007).

1.4.2 Genes Involved in Sex Differentiation

Although sex-determining genes are highly variable in reptiles and non-amniotes
(see Sect. 1.3.1), many of the genes involved in the sex differentiation process tend
to be conserved among vertebrates (Piferrer and Guiguen 2008; Sandra and Norma
2010; Siegfried 2010; Piferrer et al. 2012; Cutting et al. 2013; Forconi et al. 2013).
Many studies have examined whether genes known to be involved in mammalian sex
differentiation are expressed during gonadal differentiation in model and commer-
cially valuable fish species (see Piferrer et al. 2012). Although such a candidate gene
approach has been less useful for identifying the sex-determining genes in fishes,
often doing little more than ruling out “the usual suspects” (see Sects. 1.3.1.1 and
1.3.2.1), this approach has generally worked well to identify at least some of the
genes involved in sex differentiation in different taxa.
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Genes involved in gonadal differentiation tend to be present in both sexes during
the early stages of development, but the expression becomes sex-biased during the
critical period of gonadal differentiation. Bimodal expression patterns in the devel-
oping gonads can therefore be indicators of a gene’s role in sex differentiation. Even
better, in species where the genetic basis of sex determination has been identified
or where monosex populations can be produced, gene expression can be studied in
individuals of known sex even before the earliest signs of histological differentia-
tion (e.g., Baron et al. 2005; Tong et al. 2010; Tao et al. 2013). Once sex-specific
gene expression patterns are identified—with or without a known genetic basis of
sex determination—they can be used as early molecular markers for identification of
future sex (e.g., Geffroy et al. 2016; Ribas et al. 2016). Study of the genes involved in
sex differentiation in lampreys is still in its infancy. It is complicated by their evolu-
tionary divergence from other vertebrates (e.g., making it more difficult to recognize
homologs of the genes of interest), their anatomical differences (e.g., the lack of
Miillerian ducts and Sertoli cells; see Sects. 1.5.1 and 1.5.2), and uncertainty regard-
ing when—during the long period during which their gonads remain histologically
undifferentiated—the critical gonadal differentiation period is (see Sects. 1.4.1.5 and
1.4.1.6). Nevertheless, initial studies implicate at least some of the same genes as
other vertebrates in ovarian and testicular development in lampreys.

1.4.2.1 Genes Involved in Sex Differentiation in Other Vertebrates

We briefly review a few of the key sex differentiation genes that have been well stud-
ied in other vertebrates, because they provide the list of candidates for study in lam-
preys. Genes involved in the sex differentiation process include those which encode
steroidogenic enzymes, hormone receptors and their ligands, and transcription fac-
tors (or sequence-specific DNA-binding factors) that control the rate of transcription
of key genes to ensure that they are expressed in the right amount at the right time.
One of the key steroidogenic enzyme genes involved in gonadal differentiation
appears to be aromatase CYP19al (see Table 1.6 for guidelines regarding the for-
matting of gene names). CYP19A1 is the enzyme responsible for the conversion of
androgens to estrogens (see Sect. 1.7.1), and it appears to be essential for ovarian
differentiation in virtually all vertebrate species examined (Piferrer and Guiguen
2008). In rainbow trout, for example, although sex is not histologically identifiable
until ~67 days post-fertilization (dpf) at 10 °C, CYP19ala expression was 10x higher
in developing ovaries relative to developing testes by 35 dpf, and expression levels
were 60—100x higher at 45 dpf (Vizziano et al. 2007). Early expression of CYP19al
before ovarian morphological differentiation has also been demonstrated in the Nile
tilapia Oreochromis niloticus (Nakamura et al. 1998; D’Cotta et al. 2001; Tao et al.
2013) and turbot Scophthalmus maximus (Ribas et al. 2016), although some studies
have paradoxically shown higher CYPI9ala expression during testicular differen-
tiation (e.g., in Siberian sturgeon Acipenser baerii; Berbejillo et al. 2012). Other
steroidogenic enzyme genes showing sex differences in expression during gonadal
differentiation in fishes are 38-hydroxysteroid dehydrogenase (HSD3b1), which was
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found to be overexpressed in female rainbow trout at ~40 dpf; and 11-hydroxylase
(CYP11b2.1), which showed up to 60x higher expression in males compared to
females at 45 dpf (Vizziano et al. 2007). Later expression of CYP11b2.1 is consistent
with the observation in many fishes that testicular differentiation is delayed relative
to ovarian differentiation (see Sect. 1.4.1). In Nile tilapia, Tao et al. (2013) measured
gene expression in XX (female) and XY (male) gonads at 5, 30, 90, and 180 days
after hatching (dah). They found several steroidogenic enzyme genes, including
CYP19ala, to be upregulated in XX gonads at 5 dah, the critical time for sex deter-
mination and differentiation. In contrast, in XY gonads, the steroidogenic enzyme
genes (including CYP11b2, which encodes the aldosterone synthase enzyme) were
not significantly upregulated until 90 dah. These results suggest that, at the time
critical to sex determination, the XX tilapia produced estrogen, but the XY fish did
not produce androgens. Consistent with this finding, genes encoding both estrogen
and androgen receptors were expressed in XX gonads at 5 dah, but only estrogen
receptors were expressed in XY gonads. Expression of steroidogenic enzyme genes
was most pronounced at 30 and 90 dah for XX and XY gonads, respectively, which
corresponded to the initiation of meiosis and oogenesis in females and meiosis or
spermatogenesis in males (Tao et al. 2013). In some species, male development
involves inhibition of aromatase production (Devlin and Nagahama 2002). In the
European sea bass, males have twice the amount of methylation in the aromatase
promoter region as females (i.e., repressing gene expression) to decrease the produc-
tion of estrogen and promote testis rather than ovary development (Navarro-Martin
et al. 2011). In tilapia, significant reduction of estrogens as a result of a decrease in
aromatase can lead to oocyte atresia and eventual sex reversal (Li et al. 2013).

Two well-studied genes encoding hormones and their receptors are the Anti-
Miillerian hormone and the Anti-Miillerian hormone receptor 2 genes (amh and
Amhr2, respectively). Amh exerts its male-specific action by causing the regression
of the Miillerian ducts that would otherwise develop into the female reproductive
organs and tract (Josso et al. 2001). Teleost fishes (but not cartilaginous and other
bony fishes) lack Miillerian ducts (Adolfi et al. 2019), but, interestingly, in Nile tilapia,
amh expression was localized to the testes and it was detected sooner than other male-
specific genes (Ijiri et al. 2008). Amhr2 plays a role in sex determination in the tiger
pufferfish (see Sect. 1.3.1.1). It also appears to play arole in sex differentiation; in XY
(male) tilapia, mutations within Amhr2 can lead to drastic sex reversals (Morinaga
et al. 2007).

Transcription factor genes known to be important in sex differentiation include
FOXL2 (forkhead box L2), which is involved in ovarian development, and DMRTI,
SOX9, and SFI (doublesex and mab-3 related transcription factor 1, sex-determining
region Y-related high mobility group containing box 9, and steroidogenic factor 1,
respectively), which are involved in testicular development (Bulun et al. 2003; Wil-
helm et al. 2007; Sandra and Norma 2010). FOXL2 is the activator of aromatase, and
it is an antagonist of DMRT1 in mice and various fish species (Nakamoto et al. 2006;
Ijiri et al. 2008; Barrionuevo et al. 2016). In rainbow trout, FOXL2a and CYP19al
show the same temporal expression patterns in presumptive females (Baron et al.
2004; Vizziano et al. 2007), and, in the medaka, FOXL2 expression is localized in
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all the somatic cells also expressing CYP19al (Nakamoto et al. 2006). Deficiencies
in FOXL2 have been associated with a decrease in aromatase activity and ovary-
to-testis sex reversal (Li et al. 2013; Barrionuevo et al 2016). DMRT1, a transcrip-
tion factor belonging to the DMRT family of genes, is largely known as the master
sex-determining gene in birds (Smith et al. 1999; Kikuchi and Hamaguchi 2013;
see Sect. 1.3.1). During testicular differentiation, it also plays the important role of
inhibiting genes essential for female gonadal development (Graves 2013). In several
fish species, DMRT is upregulated during testicular differentiation, and its expression
is localized to somatic cells surrounding the testis (Matsuda et al. 2002; Kikuchi and
Hamaguchi 2013; Adolfi et al. 2015). Even in turtle species that show TSD, DMRT]
is detected in the developing genital ridge at low (i.e., male-producing) tempera-
tures (Kettlewell et al. 2000; Woolgar et al. 2013; Mork et al. 2014). In mammals,
SOX9 is one of the earliest genes to be upregulated in pre-Sertoli cells following
the expression of SRY, and SOX9 is known to then activate downstream genes such
as amh (Bowles and Koopman 2001; Brennan and Capel 2004). In birds and some
fish species, SOX9 is largely associated with initial development in both sexes but
becomes exclusive to males during testis development (Takada et al. 2005; Vizziano
et al. 2007). In mammals, birds, and fishes, SOX9 also appears to be required for
subsequent testicular maintenance and spermatogenesis (Morais da Silva et al. 1996;
Barrionuevo et al. 2016). Mutations in SOX9 can lead to ovary-to-testis sex reversals
(Wagner et al. 1994; Vidal et al. 2001; Takada et al. 2005). SF'/ is a transcription factor
found in Leydig and Sertoli cells that is required for the activation and upregulation
of amh in the developing male by promoting the regression of the Miillerian ducts
(Josso et al. 2001; Kato et al. 2012). Its role in fishes is not well known. Howeyver, in
mammals, SF'/ works synergistically with SRY and amh to activate SOX9, and it is
essential for spermatogenesis (Schepers et al. 2003; Takada et al. 2005; Sekido and
Lovell-Badge 2008).

Sex differentiation involves multiple genes, acting in concert or in sequence,
and this is becoming particularly evident with studies that use a transcriptomics
approach to sequence and quantify the complete set of genes that are expressed
during gonadal differentiation (see Sandra and Norma 2010; Siegfried 2010; Piferrer
etal. 2012; Cutting et al. 2013; Ribas et al. 2016). Using this approach to identify all
the genes that are differentially expressed in the gonads of male and female turbot
prior to, during, and after histological differentiation, Ribas et al. (2016) were able
to measure the simultaneous expression patterns of 18 candidate genes implicated
in sex differentiation in other vertebrates, and they also identified 56 other genes
that had not been previously related to sex differentiation in fish but that were found
to have sex-specific expression patterns at 3 months of age (i.e., ~1.5 months prior
to histological identification). Of these 56 genes, 44 were associated with ovarian
differentiation and 12 were associated with testicular differentiation. Despite this
complexity, Ribas et al. (2016) found that expression levels of CYP19ala alone at
3 months of age allowed early accurate identification of sex.

CYP19al expression is likewise an effective early molecular marker for ovarian
differentiation in the Nile tilapia (Nakamura et al. 1998; D’Cotta et al. 2001; Tao et al.
2013), and upregulation of DMY (DM-domain gene on the Y chromosome) has been
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found to be an early indicator of testicular differentiation in medaka (Kobayashi
et al. 2004; see Sect. 1.3.1). In some species, a small set of genes can be used
together to predict whether an individual’s gonads are in the early stages of ovarian
or testicular differentiation. In the European eel, four genes—DMRT1, amh, Gsdf
(gonadal soma derived factor), and pre-miR202 (pre-microRNA 202)—showed a
testis-specific expression pattern, and three genes—zar! (zygotic arrest 1), zp3 (zona
pellucida 3), and foxn5 (forkhead box N5)—were specific to ovarian differentiation.
Interestingly, gene expression in the gonad of intersexual eels was similar to that
of males, supporting previous suggestions that the intersexual gonad represents a
transitional stage in the indirect development of males (Geffroy et al. 2016; see
Sect. 1.4.1).

1.4.2.2 Genes Involved in Sex Differentiation in Lampreys

Little is known regarding genes involved in sex differentiation in lampreys, although
a few recent studies have used a candidate gene approach to test whether genes
implicated in gonadal differentiation in other vertebrates show sex-specific patterns
of expression in lampreys as well (Spice et al. 2014; Khan 2017; Mawaribuchi et al.
2017). Efforts are also being made to use a transcriptomics approach to examine the
expression of these and other genes during sex differentiation and sexual maturation
in lampreys (Ajmani 2017). Identification of early molecular markers for ovarian
or testicular differentiation in lampreys would prove very useful. In other fishes,
CYP19al expression is one of the most common early molecular markers for ovarian
differentiation (see Sect. 1.4.2.1). CYP19 activity has been demonstrated in lampreys
(Callard et al. 1980; see Sect. 1.7.1), but expression of CYP19 has not yet been studied
in lampreys.

Spice et al. (2014) examined the expression of eight other candidate genes
during ovarian differentiation in the chestnut and northern brook lampreys: 178-
hydroxysteroid dehydrogenase (HSD17b); dehydrocholesterol reductase 7 (dhcr7);
estrogen receptor p (erf); Wilm’s tumor suppressor protein 1 (WT'1); germ cell-less
(gcl); deleted in azoospermia associated protein 1 (dazapl); insulin-like growth fac-
tor 1 receptor (igfrl); and cytochrome c oxidase subunit III (colll). The target genes
were identified and primers for quantitative reverse-transcriptase PCR (qQRT-PCR)
were designed using sequence data from the sea lamprey genome (Smith et al. 2013)
or transcriptome data from chestnut and northern brook lamprey ovaries (Spice 2013).
These eight genes were chosen because they were known to be involved in sex differ-
entiation and related processes in other vertebrates (Hsu et al. 2008; Labrie et al. 1997,
Maekawa et al. 2004; Li et al. 2006; Hale et al. 2011; see Sect. 1.4.2.1) or because
they were found to be differentially expressed during ovarian development in a small
sample of chestnut and northern brook lampreys using transcriptome sequencing
(dhcr7, colll; Spice 2013). Primers for other target genes were designed from the sea
lamprey genome (e.g., DMRT1, DMR1Ta2, SF1, and gonadotropin releasing hormone
receptor 1, GnRH1) or northern brook lamprey transcriptome (e.g., FOXL2, GnRH2,
progestin receptor 1, SOX9, and HSD3b; Spice 2013), but these genes amplified
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poorly. Spice et al. (2014) tested for differential expression of the eight candidate
genes among four stages of histological gonadal development: (1) undifferentiated
or presumptive male stage with few undifferentiated germ cells; (2) cystic stage dur-
ing or following initial mitotic proliferation; (3) first stage of oocyte growth; and (4)
differentiated females in the second stage of oocyte growth (see Sect. 1.4.1). They
also tested for differences in gene expression between the two species, because the
chestnut lamprey has delayed ovarian differentiation and higher potential fecundity
relative to the northern brook lamprey, and for differences related to intraspecific
variation in fecundity (i.e., number of oocytes per cross-section).

Spice et al. (2014) found that HSD178 expression was higher in differentiated
ovaries in the second stage of oocyte growth than in undifferentiated gonads, and
expression of this gene was directly correlated with fecundity. Along with CYP19,
178-hydroxysteroid dehydrogenase helps regulate the levels of active androgens and
estrogens (Labrie et al. 1997; see Sect. 1.7.1). Igflr expression was almost 100x
higher in chestnut lamprey relative to northern brook lamprey during the first phase
of oocyte growth, and expression level was directly related to number of oocytes per
section (Spice et al. 2014). Insulin-like growth factor 1 is associated with increased
growth and fecundity (but reduced lifespan), and it also stimulates the production of
sex steroids (Dantzer and Swanson 2012). Therefore, increased expression of igfir
in chestnut lamprey may be related to their greater size and fecundity as adults. Colll
expression was 54—70x higher in northern brook lamprey compared to chestnut
lamprey during all stages of development, inversely related to oocyte number within
species, and highest during the cystic stage of gonadal development in both species
(Spice etal. 2014). Therefore, because there is evidence to suggest that this gene plays
a role in regulating apoptosis in other vertebrates (Wu et al. 2009), it is tempting to
speculate that colll upregulation is correlated with germ cell degeneration during
ovarian differentiation and reduced fecundity in non-parasitic lampreys. However,
far more research is required.

With respect to genes implicated in testicular differentiation, Mawaribuchi et al.
(2017) examined DMRT] expression patterns in larval and post-metamorphic Far
Eastern brook lamprey, and they found that DMRT] expression was significantly
greater in post-metamorphic testes than in ovaries. Further investigation using in situ
hybridization with DMRTI showed a significant level of detection in spermatogo-
nial cysts of post-metamorphic males, but no detection in females (Mawaribuchi
et al. 2017). Khan (2017) compared expression of seven candidate genes (DMRTA2,
SF1, SOXS8, SOX9, WTI, dazapl, and gcl) in ovaries and presumptive testes from
larval, metamorphosing, and adult sea lamprey (i.e., between males and females
and among stages of gonadal development in males), and she found that upregula-
tion of DMRTA2, SOX9, WT1, and dazapl corresponded with an increase in germ
cells in the testes during spermatogenesis and spermiogenesis. The increase in SOX9
expression in males preceded the increase in DMRTA2 expression. DMRTA2 and
SOX9 expression was consistent with expression patterns in many other vertebrate
species (see Sect. 1.4.2.1), and WT1 is likewise upregulated in male rainbow trout
embryos shortly prior to sex differentiation (Hale et al. 2011). Similarly, upregulation
of dazap1 expression is consistent with observations that the deleted in azoospermia
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(DAZ) family of genes is involved in male fertility in humans and that these genes
are required for germ cell formation, differentiation, and maturation in other species
(Yen 2004). However, their role in fish development is uncertain, and they tend to be
expressed in the gonads of both sexes in other fish species (Xu et al. 2007; Peng et al.
2009; Li et al. 2011). In sea lamprey, SF1 was expressed at all stages in both males
and females (Khan 2017), although it is not certain what role it plays because lam-
preys have neither Sertoli cells nor Miillerian ducts (see Sect. 1.4.2.1). Homologs of
amh and amhr2 have not been found in the sea lamprey and Arctic lamprey genomes
(Khan 2017; Adolfi et al. 2019). In teleost fishes, amh and amhr2 appear to have been
retained as genes associated with male differentiation, but teleosts have secondarily
lost their Miillerian ducts; in contrast, agnathans never had Miillerian ducts (Adolfi
etal. 2019). Therefore, with some exceptions, many of the genes involved in testicular
differentiation appear to be conserved across vertebrates. Nevertheless, until wider
transcriptomic analysis is conducted, the involvement of additional lamprey-specific
genes cannot be ruled out.

1.5 Sexual Maturation

Reproduction in lampreys is a seasonal and highly synchronized process (see Johnson
etal. 2015b). Because all lampreys are semelparous, sexual maturation represents the
culmination of their life cycle, and resources are put into maximizing reproductive
effort without regard for future survival. At maturity, the single elongate gonad
constitutes ~25-35% of a female’s total body weight and ~2—-10% of a male’s body
weight. Sexual maturation in parasitic lampreys is generally initiated near the end
of the juvenile feeding phase, and it is completed during the non-trophic spawning
migration (Fig. 1.6). Because parasitic lampreys differ in the duration of the spawning
migration (ranging from a few months to >1 year; Moser et al. 2015), the stage
of maturity observed at the start of migration and the rate of maturation during
migration vary among and within species. In non-parasitic lampreys, these same
processes are greatly accelerated: sexual maturation is initiated immediately after
metamorphosis and occurs over a period of ~3—4 months (Docker 2009). In non-
parasitic lampreys, the non-trophic period of metamorphosis coalesces with the non-
trophic period of sexual maturation, so that both processes are entirely “financed”
using energy reserves accumulated during the larval stage (Hardisty 2006; Docker
2009).

In this section, we present an overview of the maturational changes observed in
the gonads of lampreys during sexual maturation and a brief discussion of the most
conspicuous extra-gonadal change observed during this process, that is, the body
shrinkage required to fuel maturation and migration. Histological details of gonadal
maturation are reviewed elsewhere (e.g., Lewis and McMillan 1965; Afzelius et al.
1968; Nicander et al. 1968; Larsen 1970; Hardisty 1971; Hughes and Potter 1969;
Dziewulska and Dogmata 2009). The spawning migration and reproductive behavior
of lampreys are reviewed by Moser et al. (2015) and Johnson et al. (2015b), respec-
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tively; the role of the hypothalamic-pituitary axis and gonadal steroids in lamprey
reproduction are reviewed by Sower (2015) and in Sect. 1.7, respectively.

1.5.1 Vitellogenesis and Oocyte Maturation

In all lamprey species, oocytes that arrested in meiotic prophase I during ovarian
differentiation undergo slow cytoplasmic growth for the duration of the larval stage
(Hardisty 1971; Fig. 1.6). At metamorphosis, there are no undifferentiated germ
cell nests remaining in the ovary, and all oocytes are deeply basophilic and show the
same degree of development (Lewis and McMillan 1965; see Sect. 1.4.1.2). However,
among species and life history types, oocyte size at metamorphosis varies. In non-
parasitic species, given the long period between their earlier oogenesis and their
delayed metamorphosis relative to most parasitic species, oocyte diameter measures
up to 150 wm at the onset of metamorphosis (e.g., Beamish and Thomas 1983;
Fukayama and Takahashi 1983; Fig. 1.9a). At the other extreme, in the pouched
lamprey, oocytes undergo only limited cytoplasmic growth between the relatively
late onset of oogenesis and early metamorphosis. Pouched lamprey oocytes average
32 um in the largest larvae and 43 pwm in downstream migrants (Potter et al. 1983;
Fig. 1.9¢). In the landlocked sea lamprey and most other moderately sized parasitic
species, oocyte diameter measures ~80—100 pm at metamorphosis (e.g., Hardisty
1961c, 1969; Lewis and McMillan 1965; Fukayama and Takahashi 1982; Fig. 1.9b).

Cytoplasmic (pre-vitellogenic) growth of the primary oocyte continues after meta-
morphosis, gradually in parasitic species but more rapidly in non-parasitic species.
At metamorphosis, parasitic and non-parasitic lampreys experience a dramatic “part-
ing of the ways” in terms of the phasing of oocyte growth and development (Hardisty
1971, 2006). In the southern brook lamprey, for example, oocytes measure almost
300 pm in diameter by stage 3 of metamorphosis (i.e., ~1 month after its onset;
Beamish and Thomas 1983; Fig. 1.9a), but sea lamprey (290400 mm TL) captured
in Lake Huron between mid-May and mid-January (i.e., ~1.5 years after metamorpho-
sis) still had oocytes measuring only 150-250 wm in diameter. Cytoplasmic growth
results from accumulation of substrates secreted by the follicular cells and by the
incorporation of nurse cells into the oocytes (Lewis and McMillan 1965). As growth
of the oocyte continues (whether rapidly or slowly), basophilic granules continue to
fill the amorphous cytoplasm, but, because these granules are now widely dispersed,
the overall degree to which the cytoplasm appears basophilic decreases (Lewis and
McMillan 1965). Some of the follicular cells also acquire basophilic granules in their
cytoplasm, and they increase in size until the cell membrane between the oocyte and
the nurse cell appears to break down and the cells merge (Lewis and McMillan 1965).

The vitellogenic stage of primary oocyte growth is also accelerated in non-
parasitic species, both in terms of its onset relative to metamorphosis and the rate at
which it proceeds (Hardisty 1971). Vitellogenins (precursors of the major egg yolk
proteins) are synthesized in the liver, delivered via the bloodstream to the growing
oocyte, taken up into the oocyte by receptor-mediated endocytosis, and processed
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into derivative yolk proteins which are then stored as granules, globules, or platelets
(Wiegand 1982; Reading et al. 2017). Hepatic synthesis of vitellogenins is induced
in females by estrogen (Mewes et al. 2002; Reading et al. 2017; see Sect. 1.5.5.2). In
Far Eastern brook lamprey females, vitellogenesis was evident by stage 4 of meta-
morphosis: extensive structural alterations of hepatocytes indicative of vitellogenin
synthesis were observed, and a female-specific protein (presumably vitellogenin)
was detected in the blood serum (Fukayama and Takahashi 1985; Fukayama et al.
1986). This evidence of vitellogenin synthesis and transport preceded the first dra-
matic increase in oocyte diameter which was observed at the end of metamorphosis
(~220-620 pm by stage 7; Fukayama and Takahashi 1983). In the southern brook
lamprey, oocyte diameter increased dramatically between stage 3 (~295 pwm, in late
September) and stage 6 (~710 pwm, in early December; Beamish and Thomas 1983),
and intense vitellogenesis and oocyte growth in both species has been shown to
continue until shortly before spawning (Fig. 1.9a).

In most parasitic species, vitellogenesis is initiated near the end of the par-
asitic feeding phase and continues during upstream migration, proceeding much
more slowly than in non-parasitic lampreys (Hardisty 1971). In landlocked sea lam-
prey, for example, Lewis and McMillan (1965) reported that yolk granules begin to
appear in the peripheral regions of the oocyte in feeding-phase individuals measur-
ing ~200-400 mm TL. At this point, oocyte diameter is 390-480 pm (Fig. 1.9b). As
the eosinophilic yolk granules increase in number, the basophilic granules observed
during pre-vitellogenic growth begin to withdraw toward the nucleus and eventu-
ally dissolve, after which a thin eosinophilic, hyaline vitelline membrane appears
around the periphery of the oocyte (Lewis and McMillan 1965). Radial striations
corresponding to the zona radiata may be seen just inside the thickened vitelline
membrane, and immediately inside it is a thin, non-granular layer adjacent to the
yolk. These two layers constitute the cortical zone, although the non-granular layer
will disappear as the yolk granules grow larger and the oocytes increase in size (Lewis
and McMillan 1965). In the Arctic lamprey, Fukayama et al. (1986) found that two
females (mean 477 mm TL) captured at sea in July showed histological evidence of
vitellogenesis and appreciable levels of the female-specific serum protein presumed
to be vitellogenin. Vitellogenesis in European river lamprey also begins during the
marine feeding phase (Zanandrea 1959; Larsen 1970), and mean oocyte diameter is
already ~600 pm at freshwater entry (~6 months year prior to spawning; Fig. 1.9b).

Vitellogenesis also begins during the marine feeding phase in Pacific lamprey,
although this species typically enters fresh water ~1 year prior to spawning, and
its oocytes are less well developed at the onset of the spawning migration than in
species with more condensed migrations. Pacific lamprey captured at the mouth of
the Klamath River in California (i.e., at freshwater entry) possessed oocytes that
were mostly in early and mid-vitellogenesis and measured only ~400 pm diameter
(Fig. 1.7d; Clemens et al. 2013). In the Willamette River in Oregon, by the time
upstream migrants reached Willamette Falls 205 km from the ocean, oocytes in late
vitellogenic and early maturational stages were also observed; by April and May, all
oocytes were in the late stages of vitellogenesis or in the early stages of maturation and
measured ~700 pm in diameter (Clemens et al. 2013). Interestingly, in addition to this
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river-maturing type, Clemens et al. (2013) also noted a few “ocean-maturing” Pacific
lamprey. At freshwater entry, these individuals were already in late vitellogenesis
and possessed larger gonads, with gonadosomatic index (GSI) averaging 5.5% rather
than 1.2-2.8% in the river-maturing form (see Sect. 1.5.3). These ocean-maturing
individuals (which are relatively rare and known to date only from the Klamath River)
generally enter fresh water in late winter and likely spawn only weeks or months
after freshwater entry (Clemens et al. 2013; Parker 2018). Parker (2018) found that
there was a genetic basis for maturation timing in this population (see Chap. 4).

The pouched lamprey and short-headed lamprey from the Southern Hemisphere
appear to represent extreme examples of “river-maturing” lampreys. Although the
initial stages of testicular maturation appear to occur at sea in these two species (see
Sect. 1.5.2), vitellogenesis does not occur until after freshwater entry. The pouched
lamprey enters fresh water 15—16 months before spawning, at which point the oocytes
are still very small (mean diameter 190 pm; Fig. 1.9c) and without evidence of yolk
platelets (Potter et al. 1983). Likewise, the short-headed lamprey has small oocytes
without conspicuous yolk granules at the onset of its long spawning run (Hughes and
Potter 1969).

Despite differences in the timing of vitellogenesis relative to metamorphosis or
upstream migration and the rate at which it proceeds, all species and life history
types appear to converge again during final ovarian maturation. Vitellogenesis has
produced oocytes that are approaching their size at maturity (~1,000 pm; Fig. 1.9;
see Sect. 1.6.1), and final maturation happens rapidly, usually within a few weeks
before spawning (Wigley 1959; Lewis and McMillan 1965; Hardisty 1971; Larsen
1970; Farrokhnejad et al. 2014). The oocytes, which have remained in the diplotene
stage of meiotic prophase I for years, resume meiosis, as is evidenced by the migra-
tion of the nuclear envelope or germinal vesicle (GV) and its subsequent breakdown
(Yaron and Sivan 2005). In Caspian lamprey from the Shirud River in Iran, Ahmadi
et al. (2011) found evidence that meiosis I had resumed in >85% of female spring
migrants captured between late March and mid-May. Spawning in this river usu-
ally occurs in May and June (Nazari et al. 2010; Ahmadi et al. 2011). Interestingly,
75% of the autumn migrants (captured between late September and early Novem-
ber) also exhibited oocytes with migrating and peripheral GVs. Relatively high GSI
values (compared to spring migrants; Table 1.9) are also consistent with unusually
early maturation in these autumn migrants, although presumably they still overwin-
ter before spawning in the spring (Ahmadi et al. 2011; see Sect. 1.5.3). In European
river lamprey, Larsen (1973) reported that the GV was in the peripheral position
a few months before spawning, around the time that secondary sex characteristics
started to develop (see Sect. 1.5.5.3). In all species, following completion of meiosis
I, the resulting haploid secondary oocytes immediately initiate meiosis II (Fig. 1.6).
The secondary oocytes arrest in meiosis II (at the metaphase stage) until fertiliza-
tion. An ootid (i.e., an immature ovum) is formed shortly after fertilization, and it
rapidly (within minutes) matures into the mature ovum (Gilbert 2000). This short-
lived ootid stage is the female counterpart of the male spermatid (see Sect. 1.5.2).
Hardisty (1971) used the term “egg” to refer to oocytes following ovulation, although
this distinction is not universally made; in most cases, the oocytes, ootids, and ova are
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all referred to as eggs or egg cells regardless of their stage of maturity. Nevertheless,
for convenience, we adopt Hardisty’s terminology and use egg to refer to oocytes in
the final stages of maturation and fertilization.

Other changes involved in final ovarian maturation also appear similar among
lamprey species. We will briefly describe them here in a few well-studied represen-
tative species. In European river lamprey, the follicle cells surrounding the oocyte
begin to form a thin granular layer covering its vegetal pole (i.e., the hemisphere
with large yolky cells) by about January, and a slight elevation of the thecal interna
is observed at the animal (non-yolky) pole (Larsen 1970). The follicle cells grow in
height and become separated from each other, reaching a maximum height and sep-
aration by about March. The elevation of the theca also becomes more pronounced
with time, and, in the mature oocyte, it forms a conical projection (Hardisty 1971).
Ovulation, which is the release of the oocyte from the theca when the follicular layer
ruptures, occurs rapidly. Larsen (1970) concluded that all the oocytes are released
into the body cavity synchronously (within a few hours), because she never observed
partially ovulated ovaries, and she observed that the process appeared to start in the
posterior of the ovary (like spermiation; see Sect. 1.5.2). The follicle cells appear
to contain neutral and acid mucopolysaccharides, and Larsen (1970) speculated that
the enzymatic breakdown of the acid mucopolysaccharides might help rupture the
follicle at ovulation (i.e., by increasing the colloid osmotic pressure in the follicle,
thus causing an uptake of water and increase in hydrostatic pressure). Remnants of
follicle cells that remain on the ovulated egg appear to be identical to the adhesive
layer which, after spawning, attaches the egg to the gravel in the nest (Larsen 1970;
see Johnson et al. 2015b; Chap. 2). Little is known about when spermiation and
ovulation occur relative to the time active spawning begins (Johnson et al. 2015b),
but Larsen (1970) found that palpation of the abdomen of European river lamprey in
February and March (when the secondary sex characteristics had developed) revealed
softness in the ovary corresponding to a gradual loosening of the connective tissue,
and ovulated eggs could be pressed out in March or April. Ovulated eggs have a
small tuft of fibrous jelly at the animal pole (Larsen 1970; Hardisty 1971). A large
amount of fluid accumulates in the body cavity; the eggs are suspended in it, and it
likely facilitates their expulsion during spawning (Lewis and McMillan 1965; Larsen
1970).

During mating, the eggs are forced to the exterior through a pair of genital pores,
first into the urogenital sinus and then out through the pore on the urogenital papilla.
No Miillerian ducts (nor vasa efferentia in males) are present (Applegate 1949; Adolfi
et al. 2019). Kille (1960) and Kobayashi and Yamamoto (1994) described the fer-
tilization process in European river and brook lampreys and in Arctic lampreys,
respectively. In brief, lamprey eggs do not possess a micropile; the spermatozoa pen-
etrate the chorion of the egg in the region of the tuft of fibrous jelly at the animal pole.
The function of the tuft seems to be to orient the spermatozoan head so that it strikes
the chorion at about 90°. Spermatozoa that strike the chorion at a smaller angle are
unsuccessful at penetrating the chorion, and eggs are more difficult to fertilize if the
tuft has been destroyed. Lamprey eggs retain their capacity for fertilization for only
a few minutes after contact with fresh water, although they may remain fertilizable
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for up to several days in lamprey Ringer solution or lamprey peritoneal fluid at tem-
peratures of about 4 °C (Hardisty 1971; see Chap. 2). Female lampreys generally die
within a week of spawning (Applegate 1950; Hagelin and Steffner 1958; Pletcher
1963), although Baker et al. (2017) documented both male and female pouched
lamprey in New Zealand surviving for more than 3.5 months after spawning.

Studies to date suggest that female lampreys generally release most or all of their
mature eggs. Applegate (1949), Manion and McLain (1971), and Manion and Hanson
(1980) concluded that the percentage of unspawned eggs in sea lamprey from the
upper Great Lakes is generally <5%. Similarly, in sea lamprey from Cayuga Lake in
New York, Wigley (1959) estimated that only 1% of the ovary (by weight) remains
after spawning, and Maitland et al. (1994) reported that GSI in female European
brook lamprey was only ~1% following spawning (Fig. 1.11c). However, GSI in
spent European river lamprey was still ~14% (Fig. 1.11b). Applegate (1949) found
that some sea lamprey females, largely those collected near the end of the spawning
season, retained up to 37% of their eggs, and O’Connor (2001) reported egg retention
rates up to 70% (see Sect. 1.6.3).

However, there is still a great deal of uncertainty regarding the extent to which
oocytes may be “lost” prior to maturation. Hughes and Potter (1969) and Hardisty
(1971) have suggested that atresia occurring immediately before or at the onset of
vitellogenesis may be significant in non-parasitic lamprey species (see Sect. 1.6.2).
Intensely basophilic cytoplasm (at a time when normal oocytes tend to become less
basophilic), followed by initial hypertrophy of the cell and degeneration of the gran-
ulosa cells so that the follicle becomes a mass of hyaline globules surrounded by
a contracted basal membrane, was taken by these authors as histological evidence
of impending atresia. In addition, atretic oocytes often have irregular margins and
non-ovoid shapes and exhibit hypertrophy of the nucleus and nucleolus (Hardisty
1971). Lewis and McMillan (1965) likewise observed atresia following initiation of
vitellogenesis in the landlocked sea lamprey. The first signs of atresia during this
stage included concentration of yolk particles that resulted in more intense staining
and phagocytes derived from follicular cells that began to congregate at the periphery
of the oocyte and ingest the yolk. The result was an irregular mass of inward-moving
phagocytes surrounding a diminishing ball of yolk, eventually leaving only a ball
of cuboidal and ovoid follicular and stromal cells. Applegate (1949) reported the
occurrence of small undeveloped or partially developed ova in some sea lamprey
(particularly smaller-bodied individuals) that appeared consistent with atresia dur-
ing vitellogenesis or a cessation of vitellogenesis in some oocytes, but he saw no
indication that oocyte atresia occurred during the final stages of maturation. In Euro-
pean river lamprey, Dziewulska and Domagata (2009) likewise found that atretic
oocytes occupied, on average, <1% of the ovary during the upstream migration and
final maturation (October—May).
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Fig. 1.11 Gonadosomatic
index (GSI) as percentage of
total body weight in males
(solid circles) and females
(open circles) in: a southern
brook lamprey Ichthyomyzon
gagei during the late larval
(Lv) stage, metamorphosis
(stages 1-7), sexual
maturation, and after
spawning (vertical arrow)
(data from F. W. H. Beamish
1982); b European river
lamprey Lampetra fluviatilis
during its upstream
migration (Maitland et al.
1994); and ¢ Pacific lamprey
Entosphenus tridentatus
during its prolonged
upstream migration
(Robinson et al. 2009)

1.5.2 Spermatogenesis

% GSI

105
30 ¢ (a) Southern brook lamprey s
25 _,-Q
2F

35 ¢ (c) Pacific lamprey

Q
30 3
25
20 ?..0.
15 :
10 S $
©., ©*°
5 g ... g ... ﬂ:"g.. 'Q _ e
0 1 1 1 1 1 nvn 1 1 1 1 1 1 )
M J J A S ONDJ F MAMJ
Months

Spermatogenesis in lampreys (as in other non-amniote vertebrates) progresses in
cysts, in contrast to the acystic form of spermatogenesis that occurs in the seminif-
erous tubules of amniote testes (Yoshida 2016). Lampreys also lack Sertoli cells, the
somatic cells in the testes of jawed vertebrates that are essential for the progression
of germ cells to spermatozoa and for nourishment of the developing sperm (Schulz
etal. 2010; Yoshida 2016), although similar functions appear to be performed in lam-
preys by lobule cells (Hardisty 1971). Despite these structural differences, the gen-
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eral pattern of spermatogenesis is conserved among vertebrates and can be divided
into three general steps: (1) mitotic division of the undifferentiated germ cells to
produce spermatogonia; (2) meiosis, which first yields primary (diploid) and then
secondary (haploid) spermatocytes, and then spermatids; and (3) spermiogenesis,
during which spermatids undergo rapid morphological transformation to produce
motile, flagellated spermatozoa (de Kretser et al. 1998; Papaioannou and Nef 2010).
Mitosis produces both type A and type B spermatogonia; type A spermatogonia
(recognizable by their lack of heterochromatin) are responsible for the proliferation
and renewal of spermatogonia, and type B spermatogonia (whose nuclei contain het-
erochromatin) ultimately undergo meiosis to produce spermatocytes (de Rooij and
Russell 2000). The number of mitotic divisions may vary among lamprey species.
Spermiation, equivalent to ovulation in females, is the process by which mature sper-
matids are released. In lampreys, this does not occur via ducts or tubules as it does in
jawed vertebrates. Rather, when the cysts have completed formation of sperm, they
simultaneously rupture and release sperm into the body cavity (Hughes and Potter
1969; Hardisty 1971).

In lampreys, production of spermatogonia is initiated at the onset of (or, in some
species, just before or after) metamorphosis (see Sect. 1.4.1.3). Mitotic divisions
increase the size of the testis; there is an increase in both the diameter of the cysts
(as each begins to contain large numbers of spermatogonia) and the number of cysts
(as perilobular connective tissue invades and divides existing cysts) (Hardisty et al.
1970; Hardisty 1971). As with ovarian development and maturation, the onset and
rate of progression of the remaining stages depend on the species and life history type
(Fig. 1.6). In non-parasitic species, spermatogenesis progresses rapidly following the
initiation of metamorphosis. Hardisty etal. (1970) reported that the testes of European
river and brook lampreys could not be distinguished from each other in the early stages
of metamorphosis on the basis of size alone, but that, even in these early stages, the
lobular structure in the testis of the European brook lamprey was better developed
and contained a larger number of spermatogonia than those found in the European
river lamprey. The “parting of the ways” between the life history types becomes very
evident during the latter stages of metamorphosis. By late autumn or early winter,
the European brook lamprey testis is a large lobular structure occupying most of
the body cavity. Mitosis is complete and spermatogonia enter meiosis I, yielding
primary (diploid) and then secondary (haploid) spermatocytes (Hardisty et al. 1970).
Meiosis is generally complete by late February or March, at which time spermatids
and spermatozoa first appear (Hardisty 1971). Up until the primary spermatocyte
stage, development is usually synchronous throughout the entire testis. In contrast,
in the later stages of spermatogenesis, spermatocytes, spermatids, and sometimes
spermatozoa are all commonly found within the same testis, although development
in individual lobules is usually synchronized (Hardisty 1971).

Similarly, in the Australian brook lamprey Mordacia praecox, the testis contains
only a few presumptive spermatogonia at the onset of metamorphosis in late Octo-
ber to November, but mitotic activity is evident by December, and the cysts contain
large numbers of spermatogonia by February and March (Hughes and Potter 1969).
A few meiotic divisions have started to occur by this point, and increased meiotic
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activity during the next month produces all remaining stages of spermatogenesis with
the exception of fully mature sperm. Hughes and Potter (1969) reported that cysts
located centrally in the testis mature before lateral cysts and those in the middle of the
testis mature before cysts in the anterior and posterior regions. By May, meiosis had
progressed to the point that there was a greater incidence of primary spermatocytes
and spermatids. By June and July, only a few remaining tracts of premeiotic sper-
matogonia were found in the dorsolateral part of the testis, and the majority of cysts
had become elongated and contained spermatids and immature sperm. Spermiogen-
esis, characterized by an elongation and condensation of nuclear chromatin and the
shedding of cytoplasmic material from the head region of the sperm, was first evident
in June and July. At this point, mitochondria and extensive vacuoles are located in the
cytoplasm of the sperm, a small acrosome cap is found under the plasma membrane
at the proximal extremity of the sperm head, and a flagellum arises from a centriole
situated deep within the nuclear chromatin (Hughes and Potter 1969). Spawning is
thought to occur around July.

In parasitic species, mitotic proliferation and renewal of spermatogonia continues
throughout the juvenile phase, and the onset of meiosis generally does not occur
until the end of the parasitic feeding phase or the start of the upstream migration.
Therefore, the onset of meiosis in males occurs at approximately the same time as
the onset of vitellogenesis in females, although the two processes are not precisely
aligned within species, and spermatogenesis appears to be less synchronous among
and within individuals than is vitellogenesis (see Sect. 1.5.1). For example, in anadro-
mous Arctic lamprey in Japan, vitellogenesis is initiated at the end of the parasitic
feeding phase, but production of spermatocytes from meiosis occurs only after the
onset of the spawning migration. Fukayama and Takahashi (1985) found only sper-
matogonia undergoing mitotic proliferation in male Arctic lamprey captured at sea
and those captured in October on their upstream migration; spermatocytes were not
observed until February. In contrast and somewhat surprisingly, spermatocytes are
evident in the testes of pouched lamprey at the start of their upstream migration,
even though they enter fresh water 15—16 months in advance of spawning and vitel-
logenesis has not yet been initiated in females (Potter and Robinson 1991). This
relatively early onset of meiosis in male pouched lamprey is also surprising because
the onset of mitosis seems relatively late; no spermatogonia were evident by the end
of metamorphosis and downstream migration in this species (see Sect. 1.4.1.3). Dur-
ing the marine feeding phase, the pouched lamprey testis increased in size ~20-fold,
and, by the end of this phase, spermatogonia were organized into distinct cysts. By
freshwater entry, at least some spermatocytes were evident in all males examined
(Potter and Robinson 1991). Some spermatids and early spermatozoa were evident
shortly thereafter, showing completion of meiosis in at least some cysts. An average
of 2—-12% of the testicular area was made up of these stages by 0-3 months following
freshwater entry, and GSI was still very low (see Sect. 1.5.3). However, by 9 and
15-16 months following freshwater entry, post-meiotic cysts made up an average of
31 and 38% of the testicular area, respectively. These cysts were often more distended
than previously, but GSI was still relatively low (0.5%) and mature sperm were still
not evident, which is unusual relative to other lamprey species approaching spawn-
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ing. Spermiogenesis was also not observed in pouched lamprey held in the laboratory
for the last 6 months of the spawning run. The proportion of spermatocytes and sper-
matids increased during this time, but mature sperm were not observed, even when
held for 2-3 months past their normal spawning time (Potter and Robinson 1991). In
the short-headed lamprey, spermatids have also been reported shortly after the start
of the upstream migration (Hughes and Potter 1969), indicating that meiosis in males
of this other Southern Hemisphere species is likewise initiated prior to vitellogenesis
in females and long before spawning.

In other parasitic species, stage of maturity at the start of the upstream migra-
tion is as expected based on time until spawning (i.e., it is more advanced in those
that spawn shortly after river entry). Anadromous sea lamprey that enter fresh water
only 1-2 months before spawning in late June—early July already possess testes with
primary and secondary spermatocytes and spermatids at the start of the upstream
migration in mid-May (Fahien and Sower 1990). Spermiogenesis is in progress by
late May and early June, producing spermatids, immature sperm, and even some
mature sperm. By early July, the majority of testes contain only mature sperm. In
European river lamprey that enter fresh water in early autumn (~7-8 months before
spawning), males are either still at the spermatogonial (mitotic) stage or just starting
meiosis. Zanandrea (1959) observed only spermatogonia in males captured dur-
ing the marine feeding phase in the Gulf of Gaeta, and Evennett and Dodd (1963)
likewise found only spermatogonia in males captured in the River Severn at the
start of their upstream migration in late September. Meiosis was evident in most
testes by October, when the majority of migrants had primary spermatocytes, and
the remaining stages progressed rapidly. Timing of the final stages of sexual matu-
ration converged with that of the European brook lamprey. By late winter or early
spring, secondary spermatocytes, spermatids, and spermatozoa were evident, and,
as with all the species discussed above, development was asynchronous among and
within individuals (Evennett and Dodd 1963; Hardisty 1971). Abou-Seedo and Potter
(1979) reported a slightly earlier onset of meiosis in typical European river lamprey
males captured in the Severn Estuary, with spermatocytes already evident in most
(but not all) males captured just prior to freshwater entry in September. The praecox
form of this species was even more mature on freshwater entry: spermatids were
already evident in one male examined, although primary spermatocytes were also
evident (Abou-Seedo and Potter 1979). The praeccox European river lamprey in this
region appears to reduce its post-metamorphic period by 1 year relative to the typical
anadromous form, but it reduces the duration of the parasitic feeding phase by only
6 months by delaying its upstream migration until the winter or spring prior to spawn-
ing (see Chap. 4). Meiosis also appears to start before freshwater entry in the Caspian
lamprey, which generally enters fresh water 2—8 months prior to spawning. In this
species, the testes of early migrants are characterized by the presence of spermato-
cytes, which are replaced with spermatozoa closer to the spawning period (Ahmadi
et al. 2011). In the Shirud River in Iran, autumn migrants showed an advanced stage
of maturity relative to the spring migrants. The testes of all autumn migrants were full
of spermatozoa by late September to early November, compared to only one-third
of spring migrants even by late March to mid-May; GSI was likewise higher in the
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fall (see Sect. 1.5.3). Although it has been suggested that the autumn migrants may
spawn in the fall, they likely represent an initial period of migratory activity that is
halted by low winter temperatures (Ahmadi et al. 2011). If so, however, both male
and female autumn migrants appear to start maturing unusually early relative to other
lampreys, although they likely undergo final gonadal growth and maturation in the
spring.

At spermiation, sperm are shed directly into the body cavity when the cysts simul-
taneously rupture and release sperm into the body cavity (Hardisty 1971). Mature
spermatozoa have a cylindrical head ~14 pm in length and 0.5-1 pm in diameter,
with a tail that may extend up to 140 wm (Hardisty 1971). Kille (1960) reported
that the swimming life of sperm on a glass slide may be <1 min after activation in
fresh water. However, Kobayashi (1993) and Ciereszko et al. (2002) found that Arc-
tic and sea lamprey sperm were still motile for up to 4-5 min following activation,
particularly in the presence of female coelomic fluid. This is quite long compared
to other freshwater fishes (average 2.5 min; Browne et al. 2015) and may permit
relatively high fertilization rates in lampreys. In the laboratory, prior to contact with
fresh water, lamprey sperm can be stored for up to 1 day (Ciereszko et al. 2000;
see Chap. 2). The fertilization process is described in Sect. 1.5.1. Although female
lampreys generally die within 1 week of spawning, males have been observed to live
for 1-2 months (Pletcher 1963; see Sect. 1.5.1).

1.5.3 Gonadosomatic Index

The gonadosomatic index (GSI), which is the gonad mass as a proportion of the total
body mass, is useful as a tool for estimating stage of sexual maturity and for compar-
ing reproductive output among individuals, populations, or species (deVlaming et al.
1982; Lowerre-Barbieri et al. 2011; Zeyl et al. 2014). In lampreys, GSI in females
is generally higher than GSI in males, particularly as oocyte size and consequently
ovary weight increase rapidly during the final stages of maturation, but interesting
differences appear to exist among life history types (Table 1.9; Fig. 1.11).

1.5.3.1 Temporal Changes in GSI During Sexual Maturation

Because the rate at which the ovary and testis mature varies among species (see
Sects. 1.5.1 and 1.5.2), change in GSI is a useful indicator of the onset and progression
of these processes. This is especially true in females. For example, the initiation of
vitellogenesis corresponds with a dramatic increase in both oocyte diameter and
GSI. In the southern brook lamprey, F. W. H. Beamish (1982) observed a 10-fold
increase in GSI (from 1.3 to 14%) between stage 2 of metamorphosis in October and
stage 7 in mid-February (Fig. 1.11a); during this time, oocyte diameter increased
from 270 to >710 wm (Fig. 1.9a). More gradual increases in both oocyte diameter
(Fig. 1.9b, c) and GSI (Table 1.9; Fig. 1.11b, c) are observed following the onset
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of vitellogenesis in parasitic species. In anadromous Arctic lamprey, GSI averaged
only 2% in early vitellogenic females captured at sea in July, increased to 6-8% after
river entry in October—November, and reached 14% near the end of vitellogenesis
the following April (Fukayama and Takahashi 1985). The increase in GSI is even
more protracted in Pacific and pouched lampreys (Potter et al. 1983; Robinson et al.
2009; Fig. 1.11c). However, all life history types appear to converge again in the final
stages of maturation, with rapid increases in oocyte size and GSI occurring during
the final few months and even weeks before spawning. GSI in female southern brook
lamprey doubled in the final 6 weeks prior to spawning (F. W. H. Beamish 1982). GSI
in female European river lamprey likewise rose sharply from ~10 to 20% between
early December and late January (Maitland et al. 1994; Fig. 1.11b) and from ~8 to
23% between December and April (Mewes et al. 2002). In sea lamprey from Lake
Superior, Manion (1972) found that female GSI increased from only 10% in late
May to 20% just 3 weeks later. A sharp increase in GSI just prior to the spawning
period was also reported in sea lamprey from Cayuga Lake (Wigley 1959) and in
anadromous sea lamprey females (Beamish et al. 1979).

Thus, GSI values for female lampreys “nearing” maturity will generally be lower
than values at maturity, so it should be noted that the GSI values presented in Table 1.9
will likely be underestimates in most cases. This appears to be particularly true in pop-
ulations or individuals that undergo rapid maturation following river entry. European
river lamprey entering the Severn River consist of two forms: the typical form with
its more protracted upstream migration (~September—March, with a peak in Novem-
ber) and the praecox form, which delays upstream migration until January—March
(Abou-Seedo and Potter 1979). However, GSI of both typical and praecox females
just entering the estuary in March (~1 month before spawning) was still only ~7 and
8%, respectively. This suggests that oocyte growth in these later-entering migrants
will be very rapid in the final month before spawning and that temporal proximity
to the spawning period is not always a good indicator of stage of maturity.

Conversely, an increase in GSI well in advance of expected spawning could indi-
cate an earlier or more protracted spawning period than previously thought. GSI in
female Macedonia brook lamprey Eudontomyzon hellenicus in October (28%) and
May (12%) is consistent with either two discrete spawning periods (one at the end
of January, one at the end of May) as proposed by Renaud (1982, 1986) or a single
protracted spawning period. Caspian lamprey autumn migrants in the Shirud River
in Iran showed GSI values slightly higher or comparable to that of spring migrants
(Ahmadi et al. 2011; Shirood Mirzaie et al. 2017), although they were still consider-
ably lower than spring values (30%) recorded from females in spawning condition
(Farrokhnejad et al. 2014; Table 1.9). Further study is required to confirm when the
autumn migrants spawn, but timing of maximum GSI can help deduce the spawning
period. Likewise, the exact spawning period has not been reported for the Kern brook
lamprey Lampetra hubbsi, but, judging from the condition of females collected in
February—March (GSI >30%), spawning was likely imminent (Lapierre and Renaud
2015). Because metamorphosing and recently metamorphosed Kern brook lamprey
have been collected in mid-February (Vladykov and Kott 1976), this suggests sexual
maturation proceeds extremely rapidly in this species (Lapierre and Renaud 2015).
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Male lampreys also show an increase in GSI with maturity, but with far more vari-
ation among species and without the dramatic rise seen in females during the final
stages of sexual maturation (Fig. 1.11; see Sect. 1.5.3.2). Male GSI largely increases
as the result of spermatogonial proliferation during and after metamorphosis, and it
may actually decrease in the final stages of maturation when the spermatids undergo
morphological transformation to produce spermatozoa but without the cell growth
observed in females. In anadromous Arctic lamprey, for example, GSI in males rose
from ~1 to 4% between July and October when the number and size of spermato-
gonial cysts were increasing, and it peaked in February (at 7%) when spermatocytes
first appeared in the testis (Fukayama and Takahashi 1985). GSI in male southern
brook lamprey likewise increased rapidly (to ~10-15%) during spermatogonial pro-
liferation and meiosis during metamorphosis (F. W. H. Beamish 1982; Fig. 1.11a),
and maximum GSI in male pouched lamprey (although only 1.2%) was also observed
during the peak of spermatogonial proliferation and meiosis (Potter and Robinson
1991). GSI decreased in all three species when the testes were undergoing active
spermiogenesis.

Not surprisingly, there is a dramatic decrease in GSI following spawning in both
females and males. In tagged sea lamprey from Cayuga Lake, Wigley (1959) found
that only 1% of the ovary remained after spawning (i.e., females were completely
spent with few unspawned eggs; see Sects. 1.5.1 and 1.6.3), although 26% of the testis
remained after spawning. GSI in spent female and male European brook lamprey
was ~1 and 3%, respectively (Maitland et al. 1994), and GSI in spent male southern
brook lamprey was 3% (F. W. H. Beamish 1982).

1.5.3.2 Interspecific Differences in GSI at Sexual Maturation

In female lampreys, GSI at maturity appears to be reasonably consistent among
species. Using the data in Table 1.9, the overall mean GSI for females at or
approaching maturity (excluding European river lamprey from the Severn Estuary;
see Sect. 1.5.3.1) was 20%. Means in each study ranged from 10% in spring-migrating
Caspian lamprey to 34% in Pacific lamprey; GSI values >30% were recorded in
seven species and values >40% were recorded in two species. Given that egg and
ovary weight increase markedly until maturation, lower means likely indicate that
the females sampled were not yet fully mature. Wide ranges observed within samples
suggest that there is some asynchrony in the timing of maturation (i.e., with some
individuals not fully mature) and/or variable relative reproductive effort among indi-
viduals. In the Caspian lamprey, GSI (in both females and males) was highest in the
first individuals to mature and decreased gradually thereafter (i.e., 35 and 25% in
the first and last female, respectively, to mature; Farrokhnejad et al. 2014). There-
fore, lower mean GSI values after mid-April appeared to result from inclusion of
slower-maturing females (Nazari and Abdoli 2010).

Thus, the overall mean GSI of 20% is almost certainly an underestimate for most
individual females at maturity. Based on available information, a GSI of ~25-35%
for female lampreys at maturity seems more reasonable. It is well accepted that finite
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resources or body space constraints limit egg production and ovary size in female
lampreys to this level, but how much variation exists among species, populations, and
individuals is not known. With respect to fecundity, Hardisty (1964) suggested that
marked differences among species in the relationship between egg number and body
length would not be expected, because all lampreys exhibit similar body forms, and
there is relatively little variation in egg size among species (see Sect. 1.6.1). However,
it is worth noting that mean GSI values were different among females of the three life
history types: 13% for anadromous parasitic species, 19% for freshwater parasitic
species, and 22% for non-parasitic species. This suggests that brook lamprey females
devote a greater proportion of their energy reserves to ovarian development than do
parasitic species, especially anadromous species with more arduous migrations. A
similar trend was “hinted at” with respect to fecundity. Although absolute fecundity
increased approximately with the cubic power of TL regardless of species, anadro-
mous lampreys have slightly lower fecundities than would be predicted based on the
general power relationship with TL (see Sect. 1.6.3). Nevertheless, the seven species
noted with maximum GSI >30% represented all life history types: three anadromous
species (Caspian, Pacific, and Arctic lampreys), two freshwater parasitic species (sil-
ver and sea lampreys), and two non-parasitic species (northern brook and American
brook lampreys). Therefore, additional study is needed to determine whether there
are subtle but consistent differences among species, populations, or individuals in
the relative size of the ovary at maturity and whether such differences are related to
allocation of energy resources among competing demands or other factors.

GSIin male lampreys at or near maturity was lower than in females and much more
variable (Table 1.9). Mean values were as low as 0.5% in pouched lamprey (~1 month
before spawning) and as high as 12 and 13% in male European brook and river lam-
preys, respectively (Maitland et al. 1994; Fig. 1.11b, c). A peak of 17% was recorded
in southern brook lamprey males ~1 month before spawning, but GSI was only 8%
at maturity (F. W. H. Beamish 1982). Males of parasitic species had an overall lower
GSI (mean 4.2 and 3.5% in anadromous and freshwater species, respectively) com-
pared to non-parasitic species (10%), but, given the pronounced differences in body
size, absolute testis size is still much greater in the larger-bodied parasitic species.
Absolute testis mass averaged 14.0 g in anadromous sea lamprey (Beamish and Pot-
ter 1975), 2.6-6.2 g in anadromous Caspian lamprey (Ahmadi et al. 2011; Shirood
Mirzaie et al. 2017), 1.3 g in freshwater-resident European river lamprey (Maitland
etal. 1994), and only 0.2 and 0.5 g in southern and European brook lampreys, respec-
tively (F. W. H. Beamish 1982; Maitland et al. 1994). Presumably, the large absolute
size of the testis in larger-bodied parasitic species produces more sperm to fertilize
the much larger number of eggs from their large-bodied conspecifics.

The effect of testis size on fertility has been (and continues to be) studied in a
range of animal species, particularly those showing sperm competition, and testis
size is often used as a proxy for reproductive investment (Pintus et al. 2015). Larger
testes are considered “the quintessential adaptation to sperm competition,” although
focusing predominantly on testis size ignores other potentially adaptive features such
as sperm density and sperm quality (Ramm and Schérer 2014). The GSI of Atlantic
salmon Salmo salar males that mature as very small-bodied parr is about twice that
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of anadromous males (Fleming 1998), although absolute gonad size is a limiting
factor in mature male parr, and they are capable of only 1-2 successful spawnings
(Thomaz et al. 1997). However, mature male parr have higher sperm concentra-
tions and motility and a longer spermatozoa life span (Daye and Glebe 1984; Gage
et al. 1995). Whether male lampreys are sperm limited and whether fertility depends
merely on testis size or other traits deserves further study, particularly with respect
to life history evolution (see Chap. 4).

1.5.4 Body Shrinkage During Sexual Maturation

Because reproduction in lampreys is followed by senescence and death, lampreys
devote considerable resources during sexual maturation to maximizing their single
reproductive effort (Larsen 1980). Furthermore, lampreys do not feed during mat-
uration and upstream migration. In parasitic species, the intestine of the juvenile
parasite atrophies during the upstream migration (e.g., Vladykov and Mukerji 1961;
Battle and Hayashida 1965; Dockray and Pickering 1972; Potter et al. 1983; see
Sect. 1.5.5.4). Non-parasitic species cease to feed at metamorphosis (like all lam-
preys), and the poorly developed juvenile intestine atrophies before ever becoming
patent (Battle and Hayashida 1965). Thus, in addition to being semelparous, lampreys
are “capital breeders,” financing their considerable reproductive efforts using stored
(rather than incoming) resources (Tammaru and Haukioja 1996; Hardisty 2006). In
parasitic species, this terminal period of natural starvation lasts from a few months
to >1 year. The upstream migration (ranging from a few kilometers to >1,000 km;
Moser et al. 2015) and sexual maturation are fueled largely with lipid and pro-
tein reserves accumulated during the parasitic feeding phase (Kott 1971; Beamish
et al. 1979; Larsen 1980; Hardisty 2006) and mobilized primarily from the body
wall (Larsen 1980; Beamish et al. 1979; O’Connor 2001; Aratgjo et al. 2013). Non-
parasitic species, which initiate sexual maturation “on an empty stomach” imme-
diately after metamorphosis, are non-trophic for 6-10 months prior to spawning,
and they must fuel the sexual maturation process and their shorter upstream migra-
tion with resources accumulated during the filter-feeding larval stage (Docker 2009;
Chap. 4). Therefore, all lampreys experience body shrinkage during sexual matura-
tion, although the degree to which this happens varies among species and between
females and males.

Female and male anadromous pouched lamprey decreased 20% and 11%, respec-
tively, in mean TL between freshwater entry in July—August and maturity the fol-
lowing October, and mean weight decreased 13% and 23% in females and males
during this period (Potter et al. 1983; Fig. 1.12a). In Pacific lamprey, which simi-
larly enter fresh water ~1 year before spawning, females and males shrunk in TL
by ~23 and 15%, respectively (R. J. Beamish 1980). In anadromous sea lamprey
from the St. John River in New Brunswick, TL of females and males decreased by
an average of 16 and 12%, respectively, between entry into fresh water in May and
completion of spawning in late June (Potter and Beamish 1977). F. W. H. Beamish



114 M. E Docker et al.

(a) Pouched lamprey o (b) European river lamprey (c) Southern brook lamprey
0 125

TL (mm)

450 260 100
290 60 4

Weight (g)

150 30 15

JASONDIJFMAMIJ JASO o N D J F M o N D J F M A M
Months

Fig. 1.12 Total length (TL) and weight in males (solid circles), females (open circles), and both
sexes combined (solid squares) over the course of the spawning migration in two representative
parasitic lamprey species: a pouched lamprey Geotria australis (data from Potter et al. 1983) and
b European river lamprey Lampetra fluviatilis (Abou-Seedo and Potter 1979); and ¢ one represen-
tative non-parasitic species, southern brook lamprey Ichthyomyzon gagei (F. W. H. Beamish 1982).
Vertical arrows indicate the time of spawning

(1980) subsequently suggested that values based on TL at first capture in fresh water
are underestimates and calculated total shrinkage to be 24% in females and 19% in
males. In anadromous sea lamprey from the Minho River in Spain, there was little or
no change in TL between river entry in January—April and capture near the spawning
grounds (65 km upstream) in early May, but weight decreased by an average of 23
and 20% in females and males, respectively (Aradjo et al. 2013). In anadromous
European river lamprey from the River Severn, TL either did not change or was
found to increase between October and March, but weight decreased by 13 and 11%
in females and males, respectively (Abou-Seedo and Potter 1979; Fig. 1.12b). Arctic
and Caspian lampreys shrunk in TL by ~25% and 22%, respectively (Hol¢ik 1986a,
b), with females showing greater shrinkage than males (Hol¢ik 1986a).

Parasitic species that remain in fresh water typically have shorter spawning migra-
tions, in terms of both duration (2-3 months) and distance (<100 km; Moser et al.
2015). Therefore, we would expect that shrinkage would be less than in anadromous
species with long migrations, but whether this is the case is not clear. Comparing
TL and weight of 27 males and 37 females tagged at the start of their upstream
migration and recaptured after spawning, Wigley (1959) reported a decline in TL
of 18 and 11% for females and males, respectively, and, after accounting for the
proportion of weight loss due to shed gametes, he estimated that weight loss “from
other causes” (predominantly shrinkage) was 17 and 6% for females and males,
respectively. However, using data from Applegate (1949), we estimated that female
sea lamprey in Carp Creek, a tributary to Lake Huron, decreased in TL and weight
by only 6 and 9%, respectively, between mid-April to mid-May and mid- to late
June. In contrast, female sea lamprey captured in mid-June during their upstream
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migration in the Chocolay River, a tributary to Lake Superior, were 16% shorter and
weighed 41% less than females captured a mere 3 weeks earlier (Manion 1972). The
Vancouver lamprey, which spawns in nearshore lake habitat or in the lower portions
of tributaries, is estimated to shrink in TL by only ~6% (R. J. Beamish 1982).

In the non-parasitic northern brook lamprey, Leach (1940) monitored TL and
weight of a single female and single male between early September (i.e., in the
early stages of metamorphosis) and late March or April. He found that TL decreased
by 8.1 and 6.8% in females and males, respectively, in the ~7.5 months between
measurements. Weight loss, measured over 6.5 months, was 16 and 12% in females
and males, respectively. Because the last measurements were taken a few months
prior to spawning (which occurred in late May or early June), total shrinkage during
metamorphosis and maturation would be even greater. In a larger sample size, Leach
(1940) estimated the total reduction in TL to be ~10%. One particularly small female,
which was 92 mm at sexual maturity, died in mid-May as “little more than a swollen
bag of eggs” (Leach 1940). Southern brook lamprey held in the laboratory at sea-
sonally adjusted temperatures decreased in TL and weight (sexes combined) by an
average of ~8 and 25%, respectively, in the 7 months between early metamorphosis
in mid-October and attainment of sexual maturity in mid-April (F. W. H. Beamish
1982; Fig. 1.12c). Rate of shrinkage was greatest in the final 1-2 months prior to
spawning, especially in females. Females decreased in TL and weight by 2.9 and
3.1%, respectively, between just February and mid-April. Not surprisingly, given
the higher relative weight of the mature ovary compared to the mature testis (see
Sect. 1.5.3), females “lost weight” much more precipitously than males following
spawning, and spent females weighed only 63% of that of ripe females (F. W. H.
Beamish 1982; Fig. 1.12c).

1.5.5 Effect of Hormone Treatments on Sexual Maturation

Recent advances in the study of neuroendocrine hormones (Sower 2015, 2018) and
sex steroids (see Sect. 1.7) in lampreys have allowed many inferences to be made
regarding the role of these hormones in lamprey reproduction (e.g., by measuring
hormone levels in males and females during different stages of maturation). Here,
we review some of the early experiments that used hypophysectomy (i.e., surgical
removal of the pituitary), gonadectomy (i.e., castration), and hormone replacement
therapy to experimentally examine the role of pituitary and gonadal hormones in the
sexual maturation in lampreys.

1.5.5.1 Spermatogenesis and Qogenesis
Evennett and Dodd (1963) performed hypophysectomy on upstream-migrating male

European river lamprey between early October (when only spermatogonia were
present or the germ cells were just entering meiotic prophase) and early March (when
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the testis contained an increasing number of spermatozoa), and they examined the
testes by biopsy in April and June. The results indicated that spermatogenesis in
lampreys (unlike in other vertebrates) is catalyzed by, but not entirely dependent on,
the pituitary and that the degree to which spermatogenesis is disrupted depends on
the timing of hypophysectomy. When the pituitary was removed in early October,
maturation was delayed by ~2 months; hypophysectomy in November and Decem-
ber resulted in a shorter delay in sperm maturation, and little, if any, disturbance was
observed when hypophysectomy was delayed until January or later. Replacement
therapy (using lamprey pituitary extracts, pregnant mares’ serum, and mammalian
chorionic gonadotropin) appeared to restore normal spermatogenesis (Evennett and
Dodd 1963). Delay in sperm formation following hypophysectomy is presumably due
to aloss of pituitary stimulation of gonadal steroid production (Gorbman 1983; Sower
2015), and T implants appear to slightly accelerate spermatogenesis in hypophysec-
tomized males (Evennett and Dodd 1963; Dodd and Weibe 1968). Knowles (1939)
reported an acceleration of spermatogenesis in intact males injected with T propi-
onate. Larsen (1974) found that spermiation was normal in intact males exposed
to E, in the water, but implantation of males with E, pellets inhibited or delayed
spermiation.

In contrast to spermatogenesis, oogenesis in lampreys is severely affected by
hypophysectomy. In female European river lamprey, Evennett and Dodd (1963)
found that hypophysectomy performed at any point during the spawning migra-
tion inhibited the normal increase in size and dry weight of the eggs and prevented
ovulation. Loss of pituitary stimulation of gonadal estrogen production presumably
impaired vitellogenesis (Sower and Larsen 1991; Mewes et al. 2002; Reading et al.
2017; see Sect. 1.5.5.2). Ovulation was restored in hypophysectomized females that
were subsequently treated with lamprey pituitary extracts, pregnant mares’ serum, or
mammalian chorionic gonadotropin (Evennett and Dodd 1963). Interestingly, there
were no signs of oocyte atresia in the hypophysectomized females, even though atre-
sia of yolk-containing eggs “invariably” follows hypophysectomy in other female
vertebrates (Evennett and Dodd 1963). Replacement therapy using sex steroids has
not been performed on hypophysectomized females. However, in intact European
river lamprey females, ovulation was incomplete and sometimes delayed following
implantation with or immersion in E;, and it was incomplete or completely inhibited
in females implanted with T (Larsen 1974). It is not yet known what roles pituitary
hormones and sex steroids play in the earlier stages of spermatogenesis and oogenesis
(see Sect. 1.4.1).

1.5.5.2 Vitellogenesis

During maturation in oviparous vertebrates, estrogen induces the liver of females
to synthesize vitellogenins (calcium-rich yolk precursors), which are subsequently
released into the blood and deposited in the ovary (see Sect. 1.5.1). As in other
vertebrates, the liver of female lampreys becomes significantly hypertrophied at
the onset of vitellogenesis, and there is a marked elevation in serum calcium that
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is correlated with an increase in oocyte dry weight (Pickering and Dockray 1972;
Pickering 1976a). In lampreys, however, plasma E, levels are generally as high
or higher in maturing males compared to females (e.g., Mewes et al. 2002), and
E, appears to be the major reproductive hormone in both sexes (see Sect. 1.7.2).
Thus, studies examining the effect of E, administration on intact male lampreys
and ovariectomized females have been critical in demonstrating that, despite the
apparent lack of sex-specificity in serum E, levels, vitellogenesis in lampreys is
nevertheless stimulated by the direct effect of estrogen on the liver. In the upstream-
migrating European river lamprey, Pickering (1976a) showed that E, implantation
in intact males resulted in hypertrophy of the liver and marked elevations in serum
calcium, protein, and organic phosphorus levels. In contrast, in intact females, E,
stimulated a small but insignificant rise in serum calcium and a barely significant ele-
vation of organic phosphorus. However, pronounced increases in ovarian size and
oocyte dry weight in these E;-implanted females indicated that vitellogenin levels
were not elevated in the plasma because these proteins were being deposited in the
ovary (Pickering 1976a). This was further supported by results from ovariectomized
females: when vitellogenin deposition in the ovary was prevented, serum calcium
levels were elevated, and implantation with E, further increased levels of protein,
calcium, and phosphorus in the blood. Implantation of intact and gonadectomized
males and females with T produced no effect on any of the parameters measured
(Pickering 1976a).

Mewes et al. (2002) isolated lamprey vitellogenin from the blood of maturing
female European river lamprey, and they showed vitellogenin to be stimulated in
males following injection of high doses of E, into the coelom. Thus, although the
regulation of hepatic vitellogenesis by E, appears to be a universal phenomenon in
oviparous vertebrates, with the livers of both sexes being capable of synthesizing
vitellogenin when stimulated with E, (Reading et al. 2017), the female-specificity
of vitellogenin synthesis in lampreys (in spite of the presence of E; in the blood of
both sexes) is somewhat paradoxical. Mewes et al. (2002) have suggested that com-
plex regulatory mechanisms prevent the hepatocytes of male lampreys from synthe-
sizing vitellogenin at physiological E, levels. In the African clawed frog Xenopus
laevis, vitellogenin synthesis appears to be regulated through sex-specific interac-
tion between E,, the E; receptor (ER), and the vitellogenin and ER genes. Low E,
doses are sufficient to induce transcription of the ER, but a 1,000-fold higher dose is
required for activation of vitellogenin gene transcription (Barton and Shapiro 1988).
Unless male clawed frogs are treated with high doses of exogenous E,, the amount
of functional ER is too low to induce transcription of the vitellogenin gene.

1.5.5.3 Secondary Sex Characteristics

The secondary sex characteristics of lampreys do not appear until the onset of sexual
maturation (Johnson et al. 2015a, b). The external characteristics include swollen
cloacal lips in both sexes, enlarged dorsal fins which differ in shape between the
sexes, and the appearance of a urogenital papilla which is much more developed in
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males than in females. Some authors refer to the presence of an anal fin (e.g., Larsen
1974) or post-anal fin (e.g., Evennett and Dodd 1963) in sexually mature female
lampreys. However, this is not a true fin because it lacks supporting fin rays; thus, it
is more appropriately referred to as an anal fin-like fold (Vladykov 1973; Lapierre and
Renaud 2015) or a post-cloacal finfold (Renaud 2011). Internal changes at maturity
include the appearance of a pore at the base of each urinary duct for the release of
gametes (Dodd et al. 1960; see Sects. 1.5.1 and 1.5.2).

In mammals and birds, the role of the sex hormones in the development of sec-
ondary sex characteristics has been established through classic experiments involv-
ing castration and hormone replacement (Goldstein and Wilson 1975; Owens and
Short 1995). Such a role has been similarly demonstrated in lampreys. Hypophy-
sectomy, whether performed early or late in the spawning migration, completely
inhibited secondary sex characteristic development in both male and female Euro-
pean river lamprey (Evennett and Dodd 1963). Replacement therapy, using lamprey
pituitary extracts, pregnant mares’ serum, and mammalian chorionic gonadotropin,
restored development of secondary sex characteristics in both sexes. Secondary sex
characteristics were also restored following sex steroid treatment: intraperitoneal
implantation with T pellets induced male characteristics in hypophysectomized males
(Evennett and Dodd 1963; Larsen 1987), and T implantation in intact and hypophy-
sectomized females produced an enlarged urogenital papilla similar to that of mature
males (Evennett and Dodd 1963). Gonadectomy also prevented the appearance of
the secondary sex characteristics, and their development was restored following sex
steroid treatment (Evennett and Dodd 1963; Larsen 1974). T implants induced male
characteristics in gonadectomized males and intact females, and E; induced female
characteristics in gonadectomized females and intact males (Larsen 1974). In no
instance did T stimulate female characteristics or E, induce male characteristics.
However, different sex characteristics appeared to vary in their sensitivity to these
hormones. Changes in the dorsal fins were difficult to induce, but the urogenital
papilla and anal fin-like fold characteristic of males and females, respectively, were
readily affected by exogenous hormones. In fact, untreated males kept in the same
tank as E;-implanted males received enough E, through the water to inhibit growth
of the urogenital papilla and stimulate enlargement of the anal fin-like fold (Larsen
1974).

Nevertheless, all studies to date show that exogenous sex hormones are unable to
prematurely induce secondary sexual characteristics. Knowles (1939) demonstrated
that T propionate and estrone (E;) were effective in inducing the cloacal swelling
and pore development characteristic of maturation in both sexes as European river
lamprey approached sexual maturity, but the same treatment elicited only a weak
response at best in larvae. Evennett and Dodd (1963) similarly showed that pitu-
itary extract and other injections given in November did not induce secondary sex
characteristics in hypophysectomized upstream migrants until February. Sex steroid
implants performed in November—February likewise did not accelerate the appear-
ance of the secondary sex characteristics, except for a slightly precocious growth of
the urogenital papilla in males (Evennett and Dodd 1963; Larsen 1974). Increased
sensitivity of the relevant tissues to hormonal stimulation at the time of maturation
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is presumably important for normal development of these characteristics (Evennett
and Dodd 1963), although the mechanism of this action is, as yet, unknown.

1.5.5.4 Intestinal Atrophy

Sexual maturation in lampreys is accompanied by a marked degeneration of the intes-
tine (Larsen 1969a; Dockray and Pickering 1972; Pickering 1976b), but removal of
the gonad reduces the rate at which atrophy occurs (Larsen 1969b; Dockray and Pick-
ering 1972; Pickering 1976b). Vasil’eva (1961) equated the histological changes in
the intestine of migrating lampreys to those that occur in the hibernating frog, and
she attributed these changes to the effects of starvation. That gonadectomy can pre-
vent normal intestinal degeneration does not necessarily exclude this possibility,
because gonadal development during the spawning migration is accomplished at the
expense of other body tissues. However, a direct or indirect effect of sex steroids
has also been suggested by hormone replacement studies: both E, and T promoted
intestinal degeneration in gonadectomized (as well as intact) European river lamprey
during the early stages of their spawning migration (Pickering 1976a). Hypophysec-
tomy can also reduce the atrophy of the intestine (Larsen 1972), presumably by
preventing a pituitary influence on the secretory activity of the gonads. Furthermore,
when gonadectomy was delayed until after the gut had already atrophied, castra-
tion resulted in re-differentiation and growth of the intestine (Larsen 1972, 1974,
Pickering 1976b).

Therefore, it is tempting to conclude that normal intestinal degeneration in para-
sitic lampreys is triggered by sex steroids produced by the maturing gonads (Larsen
1980). Nevertheless, this hypothesis is probably too simple. For example, the effect of
these steroids appears to be dependent upon the time of administration. Sex steroids
administered to early upstream migrating European river lamprey (in September) pro-
moted intestinal atrophy, but they were ineffective in January in counteracting the
intestinal hypertrophy observed after gonadectomy (Larsen 1974; Pickering 1976b).
Furthermore, initiation of sexual maturation and onset of intestinal degeneration do
not appear to be well-coordinated in all species. In the pouched lamprey, Potter et al.
(1983) found that the intestine underwent rapid atrophy immediately after freshwa-
ter entry, even though the gonads were still very immature. In contrast, Youson and
Beamish (1991) reported that the parasitic form of western brook lamprey found
in Morrison Creek on Vancouver Island retained a functional intestine even while
possessing well-developed gonads. The factors that trigger cessation of the parasitic
feeding phase and the onset of sexual maturation are as yet unknown in lampreys,
but they are of considerable interest in terms of life history evolution (see Chap. 4).
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1.6 Egg Size and Fecundity

Potential fecundity is the finite number of oocytes produced during larval devel-
opment, and actual or absolute fecundity is the number of oocytes that survive to
maturity (Beamish and Thomas 1983). All (or almost all) the eggs that survive to
maturity are released during the semelparous lamprey’s single spawning season, mak-
ing lifetime reproductive output in female lampreys easily quantifiable. The trade-off
between number of offspring and resource allocation per offspring (e.g., egg size)
is one of the central tenets of life-history theory (Lack 1954; Smith and Fretwell
1974; Stearns 1989). In lampreys, however, a relationship between egg size and egg
number or between egg size and female body size has not emerged.

In contrast, fecundity and its relationship with female body size has been well
studied in lampreys. This is not surprising, given its importance in understanding
the selective pressures involved in the evolution of different life history traits (see
Docker 2009; Chap. 4) and in predicting the reproductive potential of species of
conservation and management concern.

1.6.1 Egg Size

Following Hardisty (1971), we use the term “egg” to refer to an oocyte following
ovulation. Prior to ovulation, different lamprey species show different rates of oocyte
growth (Fig. 1.9; see Sect. 1.5.1), but final egg size appears to be reasonably consis-
tent among species. The average egg diameter across species from all the means in
Table 1.11 was 955 wm. Assuming this is a slight underestimate because it includes
eggs “nearing maturity” (see below), a good rule of thumb appears to be that egg
diameter at maturity is ~1,000 wm (1.0 mm).

Malmgvist (1986) suggested that lamprey egg size increases with adult body
length so that eggs are largest in the largest parasitic species, but this does not
appear to be a consistent pattern. Although large eggs have been reported in the
large-bodied pouched lamprey (mean diameter 1,120 and 1,180 pwm; Potter et al.
1983; Baker et al. 2017), mean egg diameter in other large anadromous species
appears to be more modest: 940 pm in anadromous sea lamprey, 700-800 pwm in
Pacific lamprey, and 770-1,040 pm in Arctic lamprey (Vladykov 1951; Kan 1975;
Clemens et al. 2013; Yamazaki et al. 2001; Kucheryavyi et al. 2007). Conversely,
mean egg diameters in excess of 1,000 wm have been reported in at least six brook
lamprey species (Table 1.11). Within species, Witkowski and Jegsior (2000) found a
positive relationship between egg diameter and TL in both spring and fall European
river lamprey migrants, but Manion (1972) and Kopp (2017) found no relationship
between egg size and female size in Great Lakes sea lamprey.

However, methodological differences likely confound comparisons among
species and studies. At maturity, the lamprey egg is slightly ovoid, with the long axis
being ~1.1-1.2x the length of the short axis (Witkowski and Jegsior 2000; Yamazaki
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et al. 2001). Some studies measure and report both the long and short axes (e.g.,
F. W. H. Beamish 1982; Beamish and Thomas 1983; Witkowski and Jesior 2000;
Yamazaki et al. 2001; Dzeiwulska and Domagata 2009); some report only the max-
imum diameter (i.e., only the long axis; Lapierre and Renaud 2015); some report
the mean of the long and short axes (Kopp 2017); and some do not explicitly state
which axis was measured but presumably measure and report the maximum diameter
(e.g., Applegate 1949; Clemens et al. 2013; Baker et al. 2017). In Table 1.11, we
tried to include only the maximum diameter. Furthermore, some studies measure egg
size using fresh material (e.g., Manion 1972), but most others use eggs preserved in
10% formalin (e.g., Yamazaki et al. 2001; Nazari and Abdoli 2010; Clemens et al.
2013), 4% formalin (Witkowski and Jgsior 2000), or a solution of formalin, acetic
acid, and alcohol (Applegate 1949). An average of 17% shrinkage in diameter has
been observed in formalin-preserved fish eggs relative to fresh eggs (Frimpong and
Henebry (2012). At least egg diameter appears to be the same among various parts
of the ovary (Applegate 1949).

Malmgqvist (1986) cautioned that differences in degree of maturity will also make
egg size difficult to compare among studies. Table 1.11 excluded samples where
oocytes were clearly described as being immature, but rapid maturation in the final
weeks before maturity suggests that even small differences in timing can produce
substantial differences in egg size (see Sect. 1.5.1). For example, Manion (1972)
found a 10% increase in egg diameter in sea lamprey sampled on 16 June compared
to just 3 weeks earlier. In some cases, diameter has been reported for eggs free in the
coelom just prior to being released (mean 1,000—1,100 wm; Applegate 1949; Piavis
1971), but most studies measured egg diameter in intact ovaries prior to ovulation.
Studies measuring fertilized eggs (although not included here) would further con-
found comparisons, because the egg swells and the volume increases by 20-25%
after fertilization (Hardisty 1986).

There are some suggestions that egg weight (mass) in lampreys is more variable
among individuals or populations than egg diameter, although fewer studies report
egg weight. Furthermore, as with egg diameter, even minor differences in stage
of maturity and differences in preservation methods will complicate comparisons.
Manion (1972) found a 17% increase in egg weight in sea lamprey between 26 May
and 16 June, and Gambicki and Steinhart (2017) found that egg weight decreased by
6—12% after freezing and thawing relative to fresh weight. Overall, mean egg weight
at maturity appears to be ~400-580 j1g. Average egg weight was 424 g in European
river lamprey in late February (i.e., still 1-2 months prior to spawning) (Witkowski
and Jesior 2000) and 470 and 610 g in sexually mature Kern brook lamprey and
Macedonia brook lamprey, respectively (Lapierre and Renaud 2015). Egg weight in
sea lamprey in the Chocolay River in Michigan (a tributary to Lake Superior) was
225-672 pg (mean 390 pg) in mid-June, a few weeks prior to spawning (Manion
1972). There was a positive relationship between egg diameter and egg weight (R?
= 0.624), but no relationship between egg weight and female TL (Manion 1972).
In other studies, average egg weight in sea lamprey from Lakes Superior, Huron,
Michigan, and Ontario ranged from 470 to 580 pg, with no relationship among
populations between mean egg weight and female TL (Johnson 1982; O’Connor
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2001; Gambicki and Steinhart 2017). Gambicki and Steinhart (2017), comparing
egg weight from Lake Superior in 2011 to the 1960 values from Manion (1972),
concluded that sea lamprey egg weight increased 43% since 1960, corresponding
with increases of ~13 and 45% in mean TL and body weight, respectively (see
Sect. 1.6.5). These authors caution that the observed differences in egg weight might
be the result of methodological differences, but the relationship between female size
or body condition and egg weight deserves further study. For example, it would be
interesting to examine if the decreases in sea lamprey growth rates that accompanied
their high abundance relative to prey abundance in the early 1960s (see Sect. 1.2.6)
meant that female sea lamprey in 1960 were less able to develop well-provisioned
eggs.

Even fewer studies measure egg dry weight (e.g., dried at 60 °C to a constant
weight), although this is likely a more meaningful indicator of nutrient provisioning
in the egg. Docker and Beamish (1991) used egg dry weight to investigate intraspe-
cific differences in egg size in least brook lamprey. Within three of the eight pop-
ulations examined, these authors found that egg dry weight was positively related
to female body length. However, among populations, mean egg dry weight was
inversely related to size at maturity: in populations where females matured at small
sizes (mean ~100-110 mm TL), females produced comparatively fewer but heavier
eggs than larger-bodied populations (size at maturity ~130-150 mm TL). Docker and
Beamish (1991) concluded that the heavier eggs, which presumably contained more
yolk, provided for higher embryonic and larval survival in an unproductive environ-
ment. Marsh (1984, 1986) similarly suggested that large eggs of the orangethroat
darter Etheostoma spectabile are advantageous where food is scarce. It is not known
if this pattern is observed in other lamprey species. In widely dispersed parasitic lam-
prey species that do not home (see Moser et al. 2015), variation in egg size to “match”
environmental conditions in rearing streams would not be expected. However, feed-
ing conditions during the parasitic feeding phase might affect egg dry weight, and
investigation of inter- and intraspecific variation in the yolk caloric value and bio-
chemical composition of lamprey eggs is also needed. Bird et al. (1993) found marked
differences in the fatty acid composition of the ovary of European brook and river
lampreys, reflecting differences in their diets during the preceding microphagous and
parasitic feeding phases, respectively. Further study is needed to determine if such
pronounced differences between non-parasitic and parasitic species (or more subtle
differences among parasitic species) affect egg quality and embryo survival.

The effect of maternal attributes on egg properties has been extensively studied in
teleost fishes, and a positive relationship between egg size and fish size appears to be
nearly universal (see Quinn et al. 1995; Chambers 1997; Kamler 2005). In lampreys,
however, the only clear relationship between attributes of females and the properties
of their eggs is that egg number increases with body size (Sect. 1.6.3). Given the
potentially high embryo mortality rates from sources apparently unrelated to egg
size or quality (Cochran 2009; Smith and Marsden 2009; see Dawson et al. 2015),
it may be that the lamprey reproductive strategy relies more on devoting resources
to increasing fecundity while keeping egg size relatively constant at a “generalized”
optimal size. However, better assessments of egg quality are required.
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1.6.2 Potential Fecundity

Lampreys produce a finite number of oocytes during the larval stage (see
Sect. 1.4.1.2), and these represent their total reproductive potential. Among species,
the relative number of oocytes elaborated during the larval stage is often compared
by using the number of oocytes per cross-section (Table 1.8), but few estimates have
been made of the total number of oocytes in the larvae. This is likely related to
both the effort required and concern over the reliability of such estimates. Hardisty
(1961c) was among the first, if not the first, to estimate potential fecundity of lamprey
larvae. He counted oocyte numbers and measured their diameters from transverse
histological sections taken at 1- to 2-mm intervals to extrapolate the total number
of oocytes along the length of the ovary. Using this method, he estimated that total
oocyte number in 11 European brook lamprey larvae ranged from 4,900 to 10,600
and averaged 7,100 (Hardisty 1961c). Comparing these values to adult fecundity esti-
mates, he concluded that a high proportion of the larval oocytes in this species (up to
90%) must fail to reach maturity (Hardisty 1964; Table 1.10). Hardisty (1971) sug-
gested that atresia in brook lampreys may help provide nourishment to the remaining
oocytes during their non-trophic post-metamorphic period. Kuznetsov et al. (2016)
counted a subsample of the oocytes under a binocular microscope, and they also
suggested that potential fecundity in two Russian populations of this species (mean
6,955) far exceeded absolute fecundity (mean 1,877). In contrast, Hardisty (1961c,
1964) estimated potential fecundity in European river lamprey in the U.K. to be
14,000-26,000 oocytes (mean 19,000; Hardisty 1961c, 1964), suggesting that only
~16% of larval oocytes undergo atresia. Kuznetsov et al. (2016) estimated potential
fecundity in larvae of anadromous and freshwater-resident European river lamprey
in Russia to be 20,155 and 10,174, respectively, which is unexpectedly lower than
mean absolute fecundity from these same populations (21,080 and 12,103, respec-
tively). Either the potential fecundity estimates made by Kuznetsov et al. (2016) are
underestimates or these populations gain rather than lose oocytes during the final
larval stage (see below). Hardisty estimated potential fecundity in Great Lakes and
anadromous sea lamprey at 110,000-165,000 and 182,000-328,000, respectively
(Hardisty 1964, 1969, 1971), suggesting that ~45 and 21% of oocytes, respectively,
are lost through atresia (Table 1.10).

Beamish and colleagues, using a method designed to count each oocyte in serial
transverse sections once, concluded that potential fecundity (and hence atresia) was
lower than reported by Hardisty (1961c, 1964) and less variable among life history
types. Beamish and Thomas (1983) used measures of maximum oocyte diameter
to categorize oocytes in each serial section as representing 25, 50, 75 or 100% of
the maximum oocyte diameter. The number of oocytes was then counted in every
tenth slide, and cumulative oocyte volume for each category was calculated. Potential
fecundity in chestnut and southern brook lampreys was estimated at 8,289-20,64 1
and 1,035-2,800 oocytes, respectively, suggesting that ~3 and 12% of oocytes,
respectively, were lost between the larval and adult stages. Using a similar method
in Great Lakes sea lamprey, Barker et al. (1998) estimated potential fecundity to be
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Table 1.10 Potential fecundity (mean = one standard deviation, SD, and range) estimated in six
lamprey species; different populations are listed separately. Percentage of oocytes lost to atresia
for each species is estimated by comparing mean potential and absolute fecundities from the same
geographic regions; absolute fecundity is given in Table 1.11

Species Potential fecundity Estimated
n Larval TL Oocyte number References atresia (%)
(mm)
Range Mean £ SD  Range
PARASITIC SPECIES
Eudontomyzon 3 105-125 10,533 7,200-16,000 Renaud and 15.5
danfordi Hol¢ik (1986)
Carpathian
lamprey
(freshwater)
Ichthyomyzon 10 ~94-150 14,542 + 8,289-20,641 Beamish and 32
castaneus 2,732% Thomas
chestnut (1983)
lamprey
(freshwater)
Lampetra 3 61-88 17,567 + 11,7002-26,000 Hardisty 15.8
Sfluviatilis 7,488 (1961c)
European 4 79-99 19,225 + 14,600-21,500 Hardisty
river lamprey 3,690 (1961¢)
(anadromous)
UK. 6 89-110 14,000 8,000-20,000P Hardisty et al.
(1970)
Lampetra 12 63-130 19,480 + 12,138-31,164 Kuznetsov -4.6
Sfuviatilis 2,196 etal. (2016)
European 23 85-105 20,830 + 14,781425,962  Kuznetsov
river lamprey 2,125 etal. (2016)
(anadromous)
Gulf of
Finland,
Russia
Lampetra 50 62-167 10,036 + 5,434-20,577 Kuznetsov —-19.0
Sfluviatilis 2,998 et al. (2016)
European 29 63-104 9,283 + 2,816 3,595-20,602 Kuznetsov
river lamprey etal. (2016)
(freshwater)
Lake Ladoga, 25 72-117 11,203 + 3,015-21,449 Kuznetsov
Russia 3,530 et al. (2016)
Petromyzon 5 117-143 289,000 + 255,000-328,000  Hardisty 21.3
marinus sea 29,992 (1969)
lamprey 4 132-152 196,000 182,000-213,000  Hardisty
(anadromous) (1969)
Petromyzon 6 103-114 134,000 114,000-165,000  Hardisty 44.9
marinus sea (1964, 1971)
lamprey 8 115-165 ~81,000 33,000-129,000°  Barker et al. 8.9
(freshwater) (1998)
Great Lakes

(continued)
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Table 1.10 (continued)

Species Potential fecundity Estimated
atresia (%)

n Larval TL Oocyte number References

(mm)

Range Mean +=SD  Range
BROOK LAMPREYS
Lampetra 7 53-125 7,243 £+ 1,754 5,500-10,600 Hardisty 89.2
planeri (1961c¢)
European 4 48-54 5,999 2,530 4,900-9,300 Hardisty
brook lamprey (1961¢)
UK.
Lampetra 14 94-154 6,574 £ 1,994 2,962-10,549 Kuznetsov 73.0
planeri etal. (2016)
European 25 115-165 7,335 £2,110 3,468-14,580 Kuznetsov
brook lamprey et al. (2016)
Russia
Ichthyomyzon 21 45-150 ~1,870 1,035-2,800 Beamish and 11.8
gagei Thomas
southern (1983)

brook lamprey

*95% confidence limit

20ocyte numbers as low as 6,351 were observed in this population, but Hardisty assumed that counts lower than 14,000
oocytes were European brook lamprey

b Transformers and early macrophthalmia

“Including undifferentiated germ cells; oocytes alone numbered 19,000-65,000, which is lower than mean absolute
fecundity (~70,000 eggs)

33,000-129,000, again suggesting that a smaller proportion of oocytes are lost to
atresia (~9%) than previously suggested (Table 1.10). Barker et al. (1998) consid-
ered Hardisty’s potential fecundities to be overestimates, because Hardisty’s method
did not consider that an oocyte might be sectioned and counted more than once. It
should be further noted that Barker et al. (1998) included undifferentiated germ cells
in their estimates of potential fecundity. Counting only oocytes, Barker et al. (1998)
estimated potential fecundity to be 19,000-65,000, which is less than mean absolute
fecundity in Great Lakes sea lamprey (~70,000). As discussed in Sect. 1.4.1.2, there
is evidence in some parasitic species that, during the late larval stage, small numbers
of residual undifferentiated germ cells may develop into oocytes following com-
pletion of ovarian differentiation, potentially compensating for, or even exceeding,
oocyte atresia.

Histological evidence for oocyte atresia is likewise inconsistent, and there is some
debate regarding the timing of atresia. Barker et al. (1998) saw no atretic oocytes in
typical larvae (see Sect. 1.4.1.4). Hardisty (1964) indicated that degenerating oocytes
are often seen in European brook lamprey ovaries at all stages of the larval period, but
he acknowledged that the proportion undergoing atresia is far too small to account
for the inferred reduction in oocyte numbers between larval and adult stages. Some
authors suggest that, where atresia does occur, it is complete or largely complete
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by the onset of metamorphosis (Hardisty 1971; Beamish and Thomas 1983; Docker
and Beamish 1991). In contrast, Weissenberg (1927) reported extensive degeneration
of oocytes in European brook lamprey ovaries during metamorphosis, and Hughes
and Potter (1969) and Hardisty (1971) suggested that atresia occurring immediately
before or at the onset of vitellogenesis may be significant in non-parasitic species.

Granted, it is possible that there is simply considerable variation in the extent
and timing of atresia among species. For example, it has been suggested that a high
degree of atresia should be evident in brook lampreys that have recently diverged from
their parasitic ancestor (see Docker 2009; Spice and Docker 2014). That is, recently
derived brook lampreys may still elaborate a large number of oocytes during the larval
stage and then adjust (through atresia) the final number of oocytes to correspond
with their reduced adult body size relative to the parasitic ancestor. Beamish and
Thomas (1983) hypothesized that the lack of atresia in southern brook lamprey
suggests that it diverged from the parasitic chestnut lamprey some time ago, thus
giving natural selection sufficient time in which to reduce the number of oocytes
elaborated in the larvae to better match body size at maturity. However, based on
genetic evidence, it is not likely that southern brook lamprey is long separated from
the chestnut lamprey; both southern and European brook lampreys appear to be
recently diverged from their parasitic ancestors (Docker 2009; Chap. 4). Furthermore,
when comparing the similar number of oocytes observed per cross-section in southern
and European brook lampreys (Table 1.8), it seems unlikely that potential fecundity
is so different in the two species. Hardisty (1971) likewise suggested that a high
degree of atresia in the Great Lakes sea lamprey is indicative of its recent derivation
from an anadromous ancestor. He argued that the ~40% decline in oocyte numbers
by maturity is the result of post-metamorphic “adjustment,” because the smaller-
bodied adult landlocked sea lamprey lacks sufficient energy resources to support
all the developing oocytes. It was Hardisty’s view that the greater imbalance in
oocyte numbers between larval and adult landlocked sea lamprey relative to the
anadromous sea lamprey represents an incomplete transition from an anadromous
to a fully landlocked form. However, Barker et al. (1998)’s estimate of potential
fecundity in the Great Lakes sea lamprey suggests no such imbalance. Uncertainty
regarding the reliability of different potential fecundity estimates makes it difficult
to correlate time of divergence between life history types and extent of atresia in the
derived form.

Nevertheless, it should be noted that potential fecundity is still smaller in land-
locked versus anadromous sea lamprey and in non-parasitic versus parasitic species.
This means that, even if there is post-larval “tinkering” of oocyte numbers to corre-
spond with adult size, there has still been some reduction in the number of oocytes
elaborated during the larval stage (i.e., in anticipation of the smaller adult size) in the
derived forms. Lower potential fecundity in these smaller-bodied lampreys appears
to be mediated by the earlier onset of oogenesis (see Sect. 1.4.1.2). Thus, as sug-
gested by Hardisty (1964) and Beamish and Thomas (1983), fecundity differences
among species are very likely genetically based and largely determined at or before
sex differentiation (although there is some evidence of intraspecific variation; see
Spice and Docker 2014; Sect. 1.4.1.2). Within each species, individual variations in
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absolute fecundity may then be related to individual growth or body condition. By
this view, final oocyte numbers would be dependent on the resources available to
support the developing oocytes and mediated through differences in the extent of
atresia. This would provide a mechanism by which the maximum number of oocytes
that theoretically could be brought to maturity is produced in the larval stage, and
then the final number can be adjusted downward (but not upward) prior to matu-
rity. For lampreys producing more oocytes than they generally mature, the energetic
inefficiencies associated with this strategy may be offset by the potential to enhance
fitness under conditions that favor growth and the accumulation of energy reserves.
However, the extent to which atresia is influenced by energy expenditures related to
other demands (e.g., long versus short spawning migrations) and the availability and
quality of food remains unknown. Further examination of atresia in multiple large
populations, using standardized methods, is required.

1.6.3 Absolute Fecundity

Absolute or actual fecundity of lampreys varies considerably among and within
species. It increases with body size, varying at least two orders of magnitude
between the large anadromous parasitic species and the much smaller brook lam-
preys (Table 1.11; Fig. 1.13). For example, fecundity of anadromous sea lamprey
(mean TL 743 mm, range 666—841 mm) in the St. Lawrence River and its tributaries
ranged from 123,873 to 258,874, with a mean of almost 172,000 (Vladykov 1951).
Fecundity of upstream migrants in the St. John River in New Brunswick (mean
729 mm TL) ranged from 151,836 to 304,832 and averaged 210,228 eggs (Beamish
and Potter 1975). Pacific lamprey, another large anadromous species, is also highly
fecund: mean fecundities of 127,178 and 140,312 eggs have been reported (Clemens
et al. 2013 and Kan 1975, respectively), and maximum reported fecundity is close
to 240,000 eggs in females measuring ~400-500 mm TL (Kan 1975). In compari-
son, females of the pouched lamprey (mean TL >500 mm TL) have relatively low
fecundity (mean 57,942; Potter et al. 1983). Hardisty et al. (1986) suggested that the
number of eggs in this species is limited by its slender trunk. Pouched lamprey is also
known to undergo a very prolonged upstream migration (i.e., spending ~16 months
in fresh water; Potter et al. 1983), which may limit the energy that can be allocated for
egg maturation. In contrast, duration of the spawning migration is typically shorter
in anadromous sea lamprey (~3—4 months; see Moser et al. 2015). However, the
highly fecund Pacific lamprey also spends >1 year in fresh water prior to spawning
(Clemens et al. 2009).

Other anadromous lamprey species are smaller at maturity than the three species
above, and they have correspondingly lower fecundities. However, there is consider-
able variation within and among species. For example, average fecundity of anadro-
mous European river lamprey ranges from 15,900 in small-bodied populations (mean
TL 285 mm: Hardisty 1964) to >36,000 in larger-bodied river lamprey from Poland
(mean TL 405-432 mm; Witkowski and Jesior 2000). Fecundity in anadromous Arc-
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Fig. 1.13 Relationship between mean absolute fecundity (total number of eggs in adults) and
total body length (TL) in 11 parasitic and 13 non-parasitic lamprey species; values are taken from
Table 1.11 where both mean fecundity and mean TL were available (n = 64). Solid circles represent
non-parasitic species; solid squares represent freshwater parasitic species or populations; open
squares represent anadromous parasitic lampreys. A power function (/ine) describes the relationship
between fecundity (y) and TL (x) asy = 0.0014x288% (R2 = 0.9375, p <0.0001)

tic lamprey is similarly variable, given the wide range of adult body sizes seen among
and within populations (Table 1.11). However, it appears that some interspecific dif-
ferences in fecundity are not strictly due to size differences. Short-headed lamprey
display low fecundities (5,992-9,794) for their body length (mean TL 326366 mm)
relative to their Northern Hemisphere counterparts (Hughes and Potter 1969). Even
the relatively small-bodied western river lamprey (mean TL 203) has higher fecun-
dity (mean 24,343, albeit measured in only two specimens; Vladykov and Follett
1958).

Freshwater-resident parasitic lampreys are also smaller at maturity than the largest
anadromous species and have correspondingly lower fecundities, although the land-
locked sea lamprey in the Great Lakes, Cayuga Lake, and Lake Champlain are larger
and more fecund than many of the smaller-bodied anadromous lampreys (Table 1.11).
At maturity, female landlocked sea lamprey range in size from ~300 to 550 mm TL
and have fecundities less than half those of their anadromous counterpart. The low-
est mean fecundity reported (45,598 eggs) was for sea lamprey from Cayuga Lake
(mean TL 395 mm; Wigley 1959), and the highest mean (97,016 eggs) was reported
in sea lamprey from the Green Bay region of Lake Michigan (mean TL 485 mm;
Johnson et al. 1982). Individual variation is high, ranging from about 14,000 to over
146,000, with an overall average of ~70,000 eggs per female. Fecundities of other
freshwater parasitic species are well below those for sea lamprey, in accord with
their smaller sizes (Table 1.11). For example, Nursall and Buchwald (1972) reported
an average of 21,415 eggs for a freshwater-resident population of Arctic lamprey
in Great Slave Lake in the Northwest Territories (~170-300 mm TL). Fecundity in



136 M. F. Docker et al.

chestnut and silver lampreys averages ~14,000 (mean TL 246 mm; Schuldt et al.
1987) and ~19,000 (mean TL 253-313 mm; Vladykov 1951; Schuldt et al. 1987),
respectively, and the smallest freshwater-resident parasitic lamprey, the Miller Lake
lamprey (~70-95 mm TL), has a mean fecundity of only ~600 eggs (Kan and Bond
1981).

Fecundity (and body size) is less variable in the non-parasitic brook lampreys.
Of the 16 species listed in Table 1.11 (i.e., where both fecundity and TL were pro-
vided or could be approximated), TL at maturity typically ranges from ~100 to
150 mm, although individuals as small as 89 mm (Kern brook lamprey; Lapierre and
Renaud 2015) and as large as 230 mm (Siberian brook lamprey Lethenteron kessleri,
Yamazaki et al. 2001) have been reported. Mean fecundity in brook lampreys ranges
from 474 in the Australian brook lamprey (Hughes and Potter 1969) to 3,787 in the
American brook lamprey (Kott 1971). Interestingly, the Australian brook lamprey
is not particularly small (mean TL 124 mm). Therefore, in general, it appears that
all three Southern Hemisphere species examined to date have lower fecundities than
Northern Hemisphere species of the same size. Although egg counts in a few individ-
uals of other brook lamprey species are within the range observed in the Australian
brook lamprey (326-675), fecundity for most brook lamprey species ranges from
~1,400 to 2,500, and the overall mean from the 28 studies included in Table 1.11 was
1,773.

Despite the exceptions noted above, there is a clear relationship between fecundity
and female body size across all species. Using all studies for which mean TL and
fecundity were available (Table 1.11), the relationship is described by the equation:

Fp, = 0.0014 TL:*¥(n =64, R* = 0.9375, p < 0.001), or (1.1)
Log F,, = 2.8896 log TL,, —2.867(n = 64, R = 0.9375, p < 0.001) (1.2)

where Fy, is the mean fecundity for each species in each reported investigation and
TL,, is the corresponding mean total length (mm). The number of individuals rep-
resenting each species ranged from 1 to 310 and averaged 22.6. Each record of
mean fecundity was entered separately and not combined with other records for the
same species. Therefore, across populations and species, the total number of eggs in
lampreys increases approximately with the cubic power of TL (Fig. 1.13). In broad
terms, with the doubling of TL, fecundity increases by almost an order of magnitude
regardless of species. Hardisty (1964) reasoned that the relationship between egg
number and TL should be similar regardless of species, because all lampreys exhibit
essentially similar body forms and there is relatively little variation in egg size among
species (see Sect. 1.6.1).

This general relationship between fecundity and TL also appears to apply within
most species (Table 1.12). Fecundity was related to the cubic power (2.77,2.82, 3.10,
3.21, 3.46) of TL in five brook lamprey species, although the relationship was less
consistent in the parasitic species. In five sea lamprey populations (one anadromous
and four landlocked populations), the exponent was found to be 2.11-3.21, but it
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was only 0.69—-1.71 in European river lamprey and two other landlocked sea lamprey
populations. The nature of the relationship between fecundity and TL may differ in
some of these studies because of small size ranges or measurement and sample size
limitations. Alternatively, there may be subtle differences in the relationship between
fecundity and TL between non-parasitic and parasitic species (see below).

Although TL is generally a more convenient measure of body size than weight
(particularly in the field), Smith and Marsden (2007) found body weight to be a better
descriptor of size for estimating fecundity of sea lamprey from Lake Champlain and
other freshwater-resident populations. They examined a number of morphometric
indices including weight, TL, GSI, and other morphological measures (i.e., to test if
one body segment is a more consistent predictor of fecundity than TL if loss of length
during the spawning run occurs disproportionately over different segments). The best
model combined both female wet weight and GSI, but support was also strong for
a model based on wet weight alone. In the Lake Champlain population, wet weight
alone explained 68% of the variation in fecundity, and wet weight and GSI combined
explained 72% of the variability. Therefore, in situations where collection of GSI
data is not convenient or possible (e.g., when non-lethal sampling is desirable), wet
weight was sufficient. A model based on TL alone was not well supported.

Across all species, where mean fecundity (F;,,) and mean weight (W, in g) were
available (Table 1.11), the relationship was described by the equation:

Log F,, = 0.9637 log W,, +2.6509(n =40, R> = 0.9572, p < 0.0001)
(1.3)

Thus, there is an almost 1:1 increase in egg number with increases in female body
weight (e.g., 2,111 eggs in a 5-g American brook lamprey and 19,418 eggs in a 50-g
silver lamprey). Given the large range in body weight observed across all species
(e.g., from 3.8 g in northern brook lamprey to 842 g in anadromous sea lamprey),
log transformation of the data was required. Within species, a linear relationship
using untransformed data was the best descriptor (Table 1.12), although there was
little difference in the fit quality with log-transformed data, and the same general
relationship between fecundity and weight appears to apply within most species.
Details of the relationship (i.e., slope and intercept) varied among species, but there
was still an approximate doubling of fecundity with doubling of female body weight.
For the nine data sets where both TL and weight were available, R? values were higher
in six cases using weight data.

That female weight is, in general, a better predictor of fecundity is not surprising,
given that the eggs can constitute ~25-35% of the female’s weight at maturity (see
Sect. 1.5.3). Thus, it is not merely a matter of expecting heavier females to be able
to produce or mature more eggs, but more fecund females will generally be heavier
as a result of these eggs. Using the eight data sets that provided ovary (or total
egg) weight, we found that R? values were consistently (although only marginally)
higher when fecundity was regressed on total body weight (0.188-0.817) rather
than ovary-free body weight (0.124-0.771). Thus, although total body weight is a
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good predictor of an individual female’s fecundity, ovary-free body weight (or other
independent measures of size or nutritional status) may be better metrics when trying
to explain the factors that determine the number of eggs that survive to maturity. The
presumption is that individuals with a high nutritional status are better able to provide
sufficient nourishment for developing oocytes and, conversely, that individuals with
low nutritional levels are forced to provide this nourishment from the catabolism of
a portion of their oocytes and other reserves. While such statements seem implicitly
obvious, they lack explicit or supportive evidence. Further, there is currently no
standard by which to appropriately evaluate “nutritional status.” Condition factor
(W/TL3 x 10°, where W is weight in g and TL is total length in mm) is often
used to infer a fish’s nutritional condition (Ricker 1975) and is frequently used to
measure “plumpness” of lampreys (e.g., Manzon et al. 2015). However, body weight
of lampreys consists mostly of water (Lowe et al. 1973); as lipids and proteins are
catabolized during the non-trophic spawning migration, they are replaced by water,
thus further increasing its large contribution to body weight (Beamish etal. 1979; Bird
and Potter 1983; Araijo et al. 2013). Proximate body composition of anadromous
lampreys has been assessed at different stages of their life cycle (e.g., Beamish et al.
1979; Bird and Potter 1983; Aradjo et al. 2013), but no comparisons have been made
among individuals to determine if fecundity is correlated with these measures of
nutritional status.

Nevertheless, deviations from the predictable relationship between body size and
fecundity will help provide some initial insights into the factors that might “fine
tune” this relationship, both among and within species. For example, all five species
of brook lampreys studied to date showed that the total number of eggs increased
with the cubic power of TL, leading us to conclude that the number of eggs brought
to maturity in non-parasitic species approaches the physiological or anatomical lim-
its imposed by body size. In contrast, the more pronounced variation seen among
parasitic lampreys suggests species- or population-specific differences in the pro-
portion of energy allocated to eggs. It is interesting that many of the anadromous
lampreys have slightly lower fecundities than would be predicted based on the gen-
eral power relationship with TL (Fig. 1.13). This appears not to be a function of
their larger size alone, because the same pattern is not seen among the larger-bodied
freshwater-resident lampreys, and it instead may be related to how much of a female
lamprey’s finite energy reserves are devoted to elaboration of the eggs relative to
energy expended during the upstream spawning migration or other demands. Phy-
logenetic differences should also be explored; as pointed out above, the three of the
Southern Hemisphere lamprey species examined to date have lower fecundities than
their Northern Hemisphere counterparts at the same TL. Hardisty et al. (1986) sug-
gested that the number of eggs in the pouched lamprey might be limited by its slender
trunk, although its relatively long trunk (which, as a proportion of TL, increases dur-
ing the spawning migration in females but not in males) appears to help compensate
for the small body depth. The very different spawning behavior shown by pouched
lamprey may also help explain its disproportionately low fecundity relative to its TL.
Pouched lamprey eggs and embryos may suffer less mortality compared to Northern
Hemisphere lampreys, because pouched lamprey eggs are attached to the underside
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of large boulders in cryptic nests, and the extended survival of the spawning adults
may provide further protection (Baker et al. 2017). If early mortality rates are lower,
selection may have favored lower fecundity but with more resources apportioned to
the long upstream migration and post-spawning survival. Spawning behavior in the
other Southern Hemisphere lamprey species has not been described to date.

Exploring intra-specific differences in the relationship between body size and
fecundity will also be informative. For example, Manion (1972) found that fecun-
dity ranged from 45,285 to 89,565 eggs in three females of identical TL (394 mm)
that were all collected on the same day; understanding the factors that contribute to
such individual differences would be valuable. Comparisons among sea lamprey pop-
ulations (e.g., before and after initiation of sea lamprey control or among locations)
would also be informative. Determining whether spatial and temporal differences in
fecundity are merely reflective of differences in body size or whether they represent
a proportionately greater or smaller allocation of resources to gonadal development
will help us understand the effect of sea lamprey control measures on the reproductive
potential of different populations (see Sect. 1.6.5).

As a final note in this section, because methodological differences employed
when estimating potential fecundity appear to have resulted in large discrepancies
among studies, it should be pointed out that methodological differences also exist
among the various studies cited here. However, given the ease of counting mature
eggs compared to larval oocytes, differences related to methodology are likely to be
much smaller than when estimating potential fecundity. For the less fecund brook
lampreys, many studies counted the total number of eggs per female (e.g., Docker
and Beamish 1991; Lapierre and Renaud 2015), although others estimated the total
number from subsamples and then extrapolated to estimate total fecundity by mul-
tiplying by the total weight of the ovary. For example, Vladykov (1951) compared
fecundity estimated from a 1-g subsample of the ovary and total egg counts in nine
American brook lamprey and nine northern brook lamprey, and he found that the
values differed by an average of 0.4 and 1.1%, respectively, and never exceeded 5%.
In Beamish et al. (1994), the eggs from each southern brook lamprey female were
spread over a grid marked in 25-mm? squares, and the total number of eggs was esti-
mated by multiplying the number of squares covered by the mean count per square.
The proportion of eggs counted ranged from 20 to 50% of the total. Estimated num-
bers were compared against total numbers in 12 individuals, and the two values were
never significantly different. Studies estimating fecundity in parasitic species like-
wise used various subsampling approaches: manually counting the number of eggs in
known weight or known volume subsamples (e.g., Applegate 1949; Vladykov 1951;
Potter et al. 1983; Schuldt et al. 1987), or using the “photocopy method” whereby
individual eggs were spread along the bottom of a petri dish and copied and enlarged
(200%) for ease of counting (Smith and Marsden 2007; Clemens et al. 2013). As with
the above studies, the accuracy of the estimates was often assessed by performing
total counts on a small number of individuals (e.g., Applegate 1949; Schuldt et al.
1987).

Virtually all the studies cited here counted eggs within the ovaries, although it is
interesting to note that egg numbers recorded by Yamazaki and Koizumi (2017) are
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from eggs that were released by the Siberian brook lamprey during mating exper-
iments in the laboratory. The number of eggs shed (mean 1,895) is similar to total
egg counts for other brook lampreys and for this species in particular, suggesting
that the majority of eggs within the ovary are likely released, at least under normal
conditions. This is consistent with studies on other species (Applegate 1949; Man-
ion and McLain 1971; Manion and Hanson 1980) that likewise concluded that the
proportion of unspawned eggs is generally low (see Sect. 1.5.1).

Although methodological differences related to the way in which eggs were
counted are thought to introduce only minor biases (if any), variation in the stage of
sexual maturation examined in the different studies may be more significant. Stage of
maturation likely had little effect on total egg counts, because studies to date suggest
that atresia is not significant during the final stages of maturation (e.g., Applegate
1949; Docker and Beamish 1991; see Sect. 1.5.1). However, because lampreys can
experience considerable shrinkage even during the final stages of maturation (see
Sect. 1.5.4), differences among (and within) studies in the timing of collection will
affect the relationship between fecundity and TL. All else being equal, the number of
eggs per unit length would be lower in individuals caught earlier in the spawning run.
Different preservation methods can also affect the relationship between fecundity and
TL. Because preservation in 5 and 10% formalin has been shown to cause ~2.8-3.0%
and 3.3-3.7% shrinkage, respectively, in larval TL (F. W. H. Beamish 1982; Neave
et al. 2007), studies that have used formalin-preserved specimens (e.g., Vladykov
1951; Vladykov and Follett 1958; Schuldt et al. 1987; Lapierre and Renaud 2015)
will have overestimated the number of eggs per unit fresh length if measurements
have not been corrected to those of live animals. Some studies correct for shrinkage
during maturation and as the result of preservation (e.g., F. W. H. Beamish 1982;
Docker and Beamish 1991; Beamish et al. 1994), but most do not. These differ-
ences should be kept in mind when comparing relationships between body size and
fecundity.

1.6.4 Relative Fecundity

Because absolute fecundity is positively associated with female body size, showing
an almost 1:1 increase in egg number with increases in body weight, relative fecun-
dity—the number of eggs per gram of body weight—is a useful comparator among
and within species. In the 10 parasitic and seven non-parasitic species for which
relative fecundity was provided or could be estimated, mean relative fecundity typ-
ically falls between ~250 and 500 eggs/g, although considerable variation has been
reported and the precise stage of maturity is seldom provided (Table 1.11). However,
despite the attempt to use relative fecundity to standardize comparison across lam-
preys of different sizes, relative fecundity itself is significantly related to lamprey
body size, being negatively associated with both TL and weight. The lowest rela-
tive fecundity values reported are those for the anadromous sea lamprey, averaging
205-236 eggs/g (Vladykov 1951; Beamish and Potter 1975), and mean values <300
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eggs/g have also been reported in pouched lamprey, European river lamprey, and one
population of Arctic lamprey (Potter et al. 1983; Witkowski and Jesior 2000; Kuch-
eryavyi et al. 2007). However, higher mean relative fecundities (397-486 eggs/g)
have been reported in Caspian and Pacific lampreys (Kan 1975; Nazari and Abdoli
2010; Clemens et al. 2013) and in Arctic lamprey (610-943 eggs/g) collected in the
Amur River in Russia (Morozova 1956). Among the freshwater-resident parasitic
species, mean relative fecundity values <300 eggs/g have been reported only in the
silver lamprey (Schuldtetal. 1987); other mean values range from ~320 to 550 eggs/g,
and this full range is evident within the landlocked sea lamprey (Table 1.11). Simi-
larly, in the non-parasitic brook lampreys, relative fecundity generally ranges from
300 to 500 eggs/g. Across species, the relationship between mean relative fecundity
(RFy,, eggs/g) and mean TL (TLy,) is described by the equation:

Log RF,, = —0.157 log TL,, + 2.9374(n = 46, R> = 0.1739, p = 0.0039)
(1.4)

Equation 1.4 excludes western river lamprey (n = 2), but the relationship was still
significantly negative when western river lamprey was included (b = -0.543, R> =
0.1751, p = 0.0039).

Within species (or at least within populations), there likewise appears to be a neg-
ative relationship between relative fecundity and TL (Table 1.12). In most cases, the
relationship has been shown to be significant (e.g., Applegate 1949; Wigley 1959;
Kott 1971; Manion 1972; Nazari and Abdoli 2010), although in some studies, signif-
icance was demonstrated only intermittently (e.g., Vladykov 1951, where n = 9-10
per species). Docker and Beamish (1991) similarly found a significant negative rela-
tionship between relative fecundity and TL in only two of eight populations of the
least brook lamprey (n = 5—-14 per population). Surprisingly, however, when all 75
least brook lamprey from these eight populations were pooled, there was a significant
positive relationship between relative fecundity and TL. Furthermore, even studies
showing that relative fecundity decreased significantly with increased female body
size showed considerable differences in the nature of the relationship (Table 1.12).
Relative fecundity in Cayuga Lake sea lamprey (Wigley 1959) decreased only mod-
estly with increases in size (e.g., from 305 to 291 eggs/g in 400- and 500-mm females,
respectively), while relative fecundity in sea lamprey from the Manion (1972) study
decreased much more dramatically (from 457 to 281 eggs/g at 400 and 500 mm,
respectively).

Therefore, the relationship in lampreys between relative fecundity and size is not
yet clear. This uncertainty brings into question the idea that conversion from actual
to relative fecundity removes the effect of lamprey size, and body size should still
be kept in mind when comparing among species, populations, and individuals.
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1.6.5 Temporal and Spatial Differences in Sea Lamprey
Fecundity

Large variations in fecundity and body size have been reported in freshwater-resident
sea lamprey, among locations and over the course of the population expansion and
collapse seen in the Great Lakes prior to and following initiation of sea lamprey
control (see Sect. 1.2.6; Chap. 5). For example, mean fecundity was only 45,602 in
Cayuga Lake sealamprey in 1951 where mean TL was 395 mm (Wigley 1959) but was
more than double that in Lake Michigan (97,016) in 1980 and Lake Ontario (95,212)
in 1998/1999 when mean TL was 485 and 468 mm, respectively (Johnson 1982;
O’Connor 2001). Gambicki and Steinhart (2017) compared recent and historical
data within lake basins and found that mean fecundity in Lake Superior increased by
17% between 1960 and 2011, over which time mean TL and weight increased by ~13
and 45%, respectively. In this section, we examine if these differences are merely
a function of the effect of female body size on egg numbers or whether fecundity
has varied spatially or temporally in a manner disproportionate to changes in size.
Being able to predict the extent to which changes in female body size and condition
affect sea lamprey fecundity is necessary to determine if gains achieved through sea
lamprey control might be offset by increases in fecundity.

In brief, there were relatively few deviations from the general relationship between
body size and fecundity, although the most notable exception was the Cayuga Lake
sample (Fig. 1.14). Wigley (1959) suggested that the small body size of Cayuga Lake
sea lamprey, relative to those from Seneca Lake, was related to the high sea lamprey-
to-lake trout ratio in Cayuga Lake at this time. Nevertheless, absolute and relative
fecundity in Cayuga Lake sea lamprey were still considerably lower than expected
based on TL. Smith and Marsden (2007), examining historical fecundity data for
sea lamprey in Lake Champlain and other landlocked populations, suggested that
the availability of food resources might affect fecundity independently of size. They
argued that the highest historical fecundity estimates in the upper Great Lakes were
recorded where lake trout were still available or had just disappeared, and the lowest
values were recorded in the North Channel of Lake Huron (in 1948) where lake
trout had been absent for 5 years. However, most differences in fecundity in Great
Lakes sea lamprey were largely attributable to differences in body size (Fig. 1.14).
Likewise, lake trout stocks in Lake Superior were at an all-time low in 1960 (Heinrich
et al. 1980), but absolute and relative fecundity in 1960 were, if anything, slightly
higher than predicted based on TL alone. The increases in fecundity observed in
Lakes Michigan and Huron between 1948 and 1980/1981 likewise paralleled that
expected based on the observed increase in TL. In terms of spatial differences, sea
lamprey in Lake Ontario and those from the Green Bay region of Lake Michigan
produce a greater number of eggs per female relative to other areas. However, sea
lamprey from these two regions tend to be larger than sea lamprey from the rest of
the Great Lakes (Smith 1971; Johnson 1982), and, as with the temporal differences
noted, the increase in fecundity is in proportion to their body size.
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Fig. 1.14 Relationship
between: a log mean
fecundity (F, total number of
eggs) and log total body
length (TL in mm); and b log
mean relative fecundity (RF,
eggs/g) and TL in
freshwater-resident sea
lamprey Petromyzon
marinus. Solid circles
represent sea lamprey from
Lake Superior, open circles
Lake Michigan, closed
squares Lake Huron, open
squares Lake Ontario, closed
triangles Lake Erie, open
triangles Lake Champlain,
and open diamonds Cayuga
Lake. The linear
relationships shown are
represented by the equations:
alogF=10985Log TL —
0.368 (n = 15, R? = 0.645, p
=0.0003) and b Log RF =
—0.968 Log RF + 5.128 (n =
15,R? = 0.375, p = 0.0152).
Data sources are given in
Table 1.11
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Therefore, factors that result in increases in sea lamprey body size (e.g., related
to altered thermal regimes or density- and prey-dependent effects on growth; Cline
et al. 2014: Gambicki and Steinhart 2017) are expected to increase the reproductive
potential of individual sea lamprey. In this respect, the sea lamprey control program
may be a “victim of its own success” to some extent, but larger females do not
appear to be disproportionately more fecund. Likewise, although there are spatial
differences among sea lamprey populations with respect to body size and fecundity,
changes in fecundity are largely in proportion to changes in size. Thus, temporal and
spatial differences in sea lamprey fecundity are largely predictable, and it does not
appear that different fecundity estimators would be needed for different lake systems

at different times.
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1.7 Gonadal Steroids

All vertebrates have been shown to regulate reproduction through the hypothalamic-
pituitary-gonadal (HPG) axis: the hypothalamus produces gonadotropin-releasing
hormones (GnRHs), which stimulate the pituitary to produce one or more
gonadotropins (GTHs), which in turn stimulate the gonads to produce steroid hor-
mones' (see Sower 2015). The gonadal hormones in turn have myriad effects, which
include controlling sex differentiation, maturation, reproductive behavior, and devel-
opment of secondary sex characteristics (Norris and Carr 2013). The general orga-
nization of the HPG axis is common to all vertebrates, and much has been learned
about the evolution of the vertebrate HPG axis by studying the lamprey HPG axis
(Sower 2015, 2018). However, the hormones that coordinate the axis and regulate
reproductive physiology are often different among vertebrate groups: lampreys have
three unique GnRHs that have been characterized and a single GTH (or gonadotropic
pituitary glycoprotein hormone, GpH) in comparison to most other vertebrates that
have two GTHs (follicle stimulating hormone and luteinizing hormone, FSH and
LH, respectively; Sower 2015, 2018). Likewise, the steroids produced by vertebrates
are variable in structure and effect, and fishes in particular use a variety of “classical”
steroids seen in later-evolving vertebrates and “non-classical” steroids observed only
in fish (Kime 1993). Lampreys appear to use a mix of classical and non-classical
steroids (Bryan et al. 2008), and the study of lamprey steroidogenesis and steroid
receptors has helped contribute to our understanding of the evolution of steroid hor-
mones as transcriptions factors in vertebrates (Thornton 2001; Baker 2004).

Furthermore, a better understanding of the gonadal steroids and their function
in lampreys will have important management and conservation applications. Many
of the non-pesticide control techniques aimed at the Great Lakes sea lamprey are
designed to disrupt reproduction (Christie and Goddard 2003; Li et al. 2003), and a
better understanding of lamprey reproductive physiology may make these techniques
more effective or open the way to new techniques (Docker et al. 2003; Sower 2003).
Similarly, a better understanding of the proximal controls on lamprey reproduction
may aid in developing better conservation measures aimed at reproductive-stage lam-
preys and may also lead to better tools (such as better hormone assays) to understand
the effect that conservation measures have on lamprey reproductive physiology (e.g.,
Mesa et al. 2010; Abedi et al. 2017).

In this section, we review the current state of research on the steroid synthetic
pathways in lampreys, the classical and non-classical gonadal steroids detected in
lampreys and their putative roles, and what is known to date regarding steroid recep-
tors in lampreys. As in previous sections (e.g., Sects. 1.3.1 and 1.4.2.1) where future
research in lampreys will be guided by knowledge gained to date in other vertebrates,
we hope that this section will also serve as a primer for lamprey biologists not pre-
viously familiar with these topics. The hypothalamic and pituitary components of

'Where steroid refers to a molecular structure and hormone refers to a function; not all steroids are
hormones (e.g., some are parts of synthetic pathways but do not function as hormones), and not all
molecules that function as hormones (e.g., GnRH) are steroids.
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Fig. 1.15 Steroid biosynthesis pathway indicating enzymes involved in the synthesis of classical
sex and adrenal steroids in vertebrates; non-classical steroids (e.g., the 15-hydroxylated steroids
found in lampreys) are not included. The sex steroids include the progestagens (yellow), estrogens
(pink), and androgens (blue); steroid abbreviations are the same as those in Table 1.13. The enzymes
catalyzing each reaction are shown, where the CYP enzymes belong to the cytochrome P450 family
(e.g., CYP11A]I refers to CYP450 Family 11 Subfamily A Member 1); alternative names are also
given (P450scc P450 cholesterol side chain cleavage; P450c17 steroid 17-a hydroxylase; P450arom
aromatase). 3B-HSD and 178-HSD are hydroxysteroid dehydrogenases. Asterisks represent the
steroidogenic enzymes that have been identified or inferred to date in lampreys (Adapted from
Baker 2004.)

the lamprey HPG axis have been reviewed recently and thoroughly by Sower (2015,
2018).

1.7.1 Steroid Synthesis

Steroids in vertebrates are all derived from cholesterol, through a synthetic pathway
that relies on enzymes from the cytochrome P450 family (CYP450s) and hydroxys-
teroid dehydrogenase enzymes (HSDs) (Fig. 1.15). CYP450s are ancient enzymes
that evolved through gene duplication and divergence into a diverse protein family
that metabolizes a wide variety of chemicals that function in both the synthesis of
sterols and detoxification of xenobiotics (Baker 2004, 2011; Markov et al. 2009).
HSDs have also undergone gene duplications and divergence, and they provide an
important mechanism for regulating the actions of steroids. For example, 173-HSD
regulates the levels of active androgens and estrogens, and at least ten 178-HSDs
have been identified in mammals (Baker 2004).
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In the first step of steroid synthesis, the C17 side chain is cleaved on cholesterol
by CYP11A (i.e., CYP450 Family 11 Subfamily A, also known as P450 cholesterol
side chain cleavage enzyme or P450scc) to form pregnenolone, which then serves
as the precursor to all other steroids (Fig. 1.15). These other steroids include the sex
steroids that are typically synthesized in the gonads (i.e., progestagens, which are C21
steroids; androgens, which are C19 steroids; and estrogens, which are C18 steroids),
as well as the corticosteroids typically made in the adrenal cortex (i.e., glucocorti-
coids such as cortisol, and mineralocorticoids such as aldosterone). Pregnenolone
can be metabolized by 3B-hydroxysteroid dehydrogenase (33-HSD) to form proges-
terone (P), which can in turn be metabolized by the CYP17 enzyme to form a second
progestagen, 17a-hydroxyprogesterone (17-P). In addition to functioning as sex hor-
mones (see Sect. 1.7.2.1), both of these progestagens serve as precursors for the syn-
thesis of corticosteroid hormones (Fig. 1.15); thus, progestagens are also produced
in non-gonadal tissues (Norris and Carr 2013). Pregnenolone can also be converted
to 17a-hydroxypregnenolone, which then serves as a precursor in the synthesis of
androgens (e.g., testosterone, T) and estrogens (e.g., estrone, E;, and estradiol, E,)
via the metabolic intermediates dehydroepiandrosterone (DHEA) and androstene-
dione (Ad). Ad can be metabolized by 178-hydroxysteroid dehydrogenase-type 1
(178-HSD-1) to T, or by CYP19 (also known as P450arom or aromatase) to E, and
both T and E; can be further metabolized (by CYP19 and 17p-HSD-1, respectively)
to E,. In addition to these classical vertebrate steroids, a number of non-classical
steroids have been observed in fish (Kime 1993; see Sect. 1.7.2).

Much of our initial knowledge regarding steroid synthesis in lampreys was inferred
from studies that incubated radiolabeled precursors with gonadal or other tissue
extracts (Table 1.13). The primary purpose of these studies was to identify the
functional steroids in lampreys, but they also allowed researchers to deduce which
enzymes must be present in lampreys to have converted the radiolabeled precur-
sors into the detected products. Many of the studies were inconclusive because sev-
eral of the products could not be identified through comparison to known steroid
standards, but they did indicate that lampreys have many of the same steroido-
genic enzymes as higher vertebrates, particularly those related to the synthesis of
the sex steroids (Fig. 1.15). For example, production of small amounts of 17-P,
11-deoxycorticosterone (DOC), and 11-deoxycortisol from P provide evidence for
CYP17 and CYP21 activity in lamprey testes and presumptive adrenocortical tissue
(Weisbart and Youson 1975), and Weisbart et al. (1978) found evidence of weak 3p-
HSD activity in lamprey testes. Callard et al. (1980) found that Ad was converted to
E; and E; in sea lamprey ovary and testis, respectively, indicating that lampreys pos-
sess CYP19 (aromatase) and 178-HSD, and recovery of Sa-Ad showed 5a-reductase
activity. Sa-reductase also catalyzes the conversion of T to Sa-dihydrotestosterone
(DHT), which is about 10x more potent than T (Baker et al. 2015), but DHT was
not detected in sea lamprey tissues (Callard et al. 1980). Following incubation of
testicular, ovarian, and presumed adrenocortical sea lamprey tissues with radiola-
beled cholesterol, Weisbart et al. (1978) were unable to detect pregnenolone or any
other identifiable products. However, they concluded that the absence of identifiable
steroids was not due to lack of transformation of the cholesterol (i.e., by CYP11A),
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and recent phylogenetic analysis has shown that the gene encoding CYP11A is
present in lampreys (see below). However, there is no evidence for the presence
of CYP11B1 (or CYP11B2) in lampreys. Based on the presence of DOC and 11-
deoxycortisol in sea lamprey but the absence of corticosterone and cortisol, Close
et al. (2010) suggested that CYP11B1 was not present in early vertebrate evolu-
tion, and their inability to find CYP11B1 in the sea lamprey genome supports this
conclusion.

The inability of researchers to identify the majority of the radiolabeled products
in these precursor studies led them to hypothesize that lampreys used non-classical
steroids as their main gonadal hormones (see Sect. 1.7.2). Subsequent steroid biosyn-
thesis studies supported this hypothesis. In addition to the enzymes they share with
other vertebrates, lamprey gonads (particularly testes) appear to show strong 15-
hydroxylase activity. Kime and Rafter (1981) demonstrated that European river lam-
prey gonadal tissue extracts convert T and P to 15-hydroxylated forms (Table 1.13),
and it was later shown that sea lamprey testis extracts convert Ad and T to 15a-
hydroxytestosterone (150-T; Kime and Callard 1982). These findings have been
confirmed and further explored in sea lamprey by Lowartz et al. (2003, 2004) and
Bryan et al. (2003, 2004), and 15a-hydroxyprogesterone (150-P) was also shown
to be a major steroid product of lamprey gonads. The presence of 15a-hydroxylase
has also been confirmed in silver, chestnut, and American brook lampreys using the
same methods (Bryan et al. 2006).

The steroidogenic enzymes present in lampreys have also been investigated
recently from an evolutionary perspective, either by attempting to clone and sequence
the various steroidogenic enzyme genes in lampreys and other chordates or by search-
ing the genomes of these organisms for their orthologs (i.e., genes in different species
that are evolved from a common ancestor; Baker 2004, 2011; Baker et al. 2015). Stud-
ies related to the origin of these enzymes are providing important insights into the
origin of steroid hormone signaling in vertebrates (Baker 2004, 2011; Markov et al.
2009,2017; Bakeretal. 2007,2015). In brief, orthologs of CYP11A,CYP17,CYP19,
CYP21, 38-HSD, and 17B8-HSD-14 have been found or are inferred to exist in lam-
preys (Close et al. 2010; Baker et al. 2015), which is in agreement with the results
from the precursor experiments. However, no clear ortholog has been found with
close similarity to human 178-HSD-1 in lampreys, which indicates that 178-HSD-
14 or another 178-HSD is involved in lamprey estrogen synthesis (Baker et al. 2015).
An ortholog of CYP27 (which catalyzes the synthesis of 27-hydroxycholesterol, a
novel physiological estrogen in mammals, directly from cholesterol) was also found
in lampreys (Baker et al. 2015). Of the orthologs found in lampreys, all but CYP21
were also found in amphioxus Branchistoma spp. (i.e., a non-vertebrate chordate),
thus suggesting that CYP21, which is descended from a duplicated CYP17 gene,
arose in the ancestor of vertebrates (Baker et al. 2015). As suggested by Close et al.
(2010), a CYP11B ortholog was not found in lampreys, and phylogenetic analysis
suggests that this gene first appeared in the ancestor to the jawed vertebrates (i.e.,
the gnathostomes), coinciding with the evolution of separate mineralocorticoid and
glucocorticoid receptors (Baker et al. 2015; see Sect. 1.7.3).



150

M. E Docker et al.

Table 1.13 Summary of lamprey steroid biosynthesis studies (Reprinted and updated from Bryan

et al. 2008.)
Study Species Tissue Stage Precursor Products  Not
produced
Weisbart and Youson Sea PAT Larval, P S, 17-P, F E,B, T,
(1975) lamprey parasite Ad,UCs DOC
Testis Parasite P DOC, UCs FE,B,S,
T, 17-P,
Ad
Weisbart and Youson Sea Intracardiac Parasite P DOC, UCs FE,B,S,
(1977) lamprey injection T, 17-P,
Ad
Weisbart et al. Sea Testis, Adult Cholesterol UCs F E,B, S,
(1978) lamprey  ovary, PAT T, DOC,
Ad, P, Ps,
17-P,
Ta-Ps
Callard et al. (1980) Sea Ovary, Adult Ad E;, 5a-Ad, DHT
lamprey  kidney UCs
Testis Adult Ad Ej, E, DHT
S5a-Ad,
UCs
Kime and Rafter European  Ovary Adult PT 15a-P, Ad, T, 17-P, E;
(1981) river 158-T
lamprey  pegtis Adult P T 150-P, Ad, T, 17-P, E;
158-T
Kime and Callard Sea Testis Adult Ad 150-T, 158-T
(1982) lamprey 150-Ad
Brain, Adult Ad 15a-Ad
liver,
kidney,
ovary
Bryan et al. (2003)  Sea Testis Adult T 15a-T 158-T
lamprey
Lowartz et al. (2003) Sea Testis Adult Ps, 17-P,  15a-T, T,P
lamprey Ad 150-P,
small
amount of
E>
Ovary Ps, 17-P,  15a- T,P
Ad estrogens,
small
amount of
2]

(continued)
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Table 1.13 (continued)

Study Species Tissue Stage Precursor Products  Not
produced
Bryan et al. (2004)  Sea Testis Adult P 15a-P,
lamprey UCs
Lowartz et al. (2004) Sea Ovary, Larval, Ps,P, Ad 7a-Ps, T, 158-
lamprey  testis metamor- 150-P, steroids
phosis, 15a-Ad,
parasite 15a-T,
150-E3,
small
amount of
E», UCs
Bryan et al. (2006)  Silver Ovary, Adult PT 15a-P,
lamprey testis 15a-T,
Chestnut UCs
lamprey
American
brook
lamprey
Bryan et al. (2007)  Sea Testis Adult P Ad (in
lamprey tissue
extracts
only),
15a-P,
UCs
Bryan et al. European  Testis Adult PT 15a-P,
(unpublished) river 15a-T,
lamprey UCs

PAT presumptive adrenocorticol tissue, P progesterone, Ps pregnenolone, 7«-Ps5 7o-
hydroxypregnenolone, /7-P 17-hydroxyprogesterone, Ad androstenedione, 5a-Ad So-reduced
androstenedione, 5a-Ad 15a-hydroxyandrostenedione, 7T testosterone, S 11-deoxycortisol, DOC
11-deoxycorticosterone, F cortisol, E cortisone, B corticosterone, E; estrone, [5«-T 15a-
hydroxytestosterone, /58-T 158-hydroxytestosterone, /5x-Ad 15a-hydroxyandrostenedione, /5c-
P 15a-hydroxyprogesterone, UCs unidentified compounds

1.7.2 Sex Steroids in Lampreys

Fishes use a variety of both classical steroids and non-classical steroids (Kime 1993).
For example, T, E,, and P are the main steroid hormones in some fish species, but oth-
ers use 11-ketotestosterone (11-KT) or 17a,208-dihydroxyprogesterone (17a,208-
P), and it is not well understood why the steroid hormones of fishes vary so much
among species. Lampreys likewise appear to use a mix of classical and non-classical
steroids, including steroids that are different from those of other vertebrates by pos-
sessing an additional hydroxyl group at the C15 position (Bryan et al. 2008). It is
possible that these 15-hydroxylated steroids evolved as functional hormones in lam-
preys as a response to parasitism (i.e., so that the parasitic lamprey would be less
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susceptible to the influence of the reproductive hormones in its host’s blood), or they
are simply a “primitive” form of steroid hormone (Docker 2006).

1.7.2.1 Progestagens

In other vertebrates, progestagens (also known as progestogens or progestins) have
been shown to regulate key physiological activities for reproduction in both sexes
(Norris and Carr 2013). P, 17a-P, and 170,208-P are the most studied progesta-
gens in other fish species (Kime 1993). In lampreys, P and the non-classical 15a-
hydroxyprogesterone (15a-P) are the most commonly studied (Table 1.14).

Baseline levels of P have been detected in lamprey plasma by immunoassay
(Table 1.14). Levels are generally low (<1 ng/mL), particularly in pre-ovulating and
pre-spermiating lampreys (Sower et al. 1987, 1993; Sower 1989; Sower and Larsen
1991; Bolduc and Sower 1992; Deragon and Sower 1994; Gazourian et al. 2000;
Farrokhnejad et al. 2014; see Sects. 1.5.1 and 1.5.2). Higher levels have been occa-
sionally reported: for example, P levels up to 10, 4, and 3.2 ng/mL have been detected
in European river lamprey, adult Pacific lamprey, and pre-ovulatory Caspian lam-
prey, respectively (Barannikova et al. 1995; Mesa et al. 2010; Ahmadi et al. 2011).
However, plasma P levels often differ between the sexes (e.g., sexually mature males
generally have higher P than females; Linville et al. 1987; Mesa et al. 2010; Far-
rokhnejad et al. 2014), increase with maturity (Mesa et al. 2010; Farrokhnejad et al.
2014), increase after 2—5 injections of GnRH (Sower et al. 1987; Deragon and Sower
1994; Gazourian et al. 2000), and decrease after hypophysectomy (Sower and Larsen
1991). As a result of these changes in P with stage of maturity and in response to
GnRH, Sower (1990) suggested that P is a functional hormone in lampreys.

Studies examining 15a-P levels in lampreys show that baseline levels are simi-
larly low but increase even more dramatically (i.e., up to 36 and 100 ng/L in pre-
spermiating males) in response to GnRH injections (Bryan et al. 2004; Young et al.
2007) or pituitary extracts containing GTH (Young et al. 2007). Furthermore, 15a-P
is also the only steroid that appears to respond to GnRH or pituitary extract in a
dose-dependent fashion (Young et al. 2007). As with P, 15a-P levels are higher in
males than in females, although they are higher in mature females relative to imma-
ture females (Bryan et al. 2004). The plasma concentrations of 15a-P combined with
the response to upstream stimulation makes it likely that 15a-P is an active hormone
in lampreys. In support of this, Bryan et al. (2015) found that pre-spermiating male
sea lamprey given time-release implants of P reached spermiation faster, and they
had higher plasma concentrations of 150-P and the lamprey sex pheromone 3-keto-
petromyzonal sulfate (3kPZS; see Johnson et al. 2015b). Although a high proportion
of P was converted in vivo to 15a-P, it was not possible to determine which of the
two progestagens had a stronger biological activity, but the results indicated that pro-
gestagens likely play a role in both gonadal maturation and pheromone production
in male sea lamprey. However, a receptor for 15a-P (see Sect. 1.7.3) has yet to be
identified, and the specific physiological role of 15u-P is still unknown.
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Table 1.14 Studies using steroid immunoassays in lampreys, showing plasma level of different
steroids in males and females at different stages of maturity and in response to injection with GnRH;
differences between sexes or stages are shown when compared (Reprinted and updated from Bryan

et al. 2008.)
Study Stage and sex ~ Steroid Range or mean Difference Difference Response to
in plasma between between GnRH
(ng/mL) sexes? reproductive (ng/mL)
stages?
Caspiomyzon wagneri Caspian lamprey
Ahmadi etal. POF, PSM E; 0.03-0.04 in M>F Fall M >
(2011) (fall and spring POF spring M
migrants) 0.09-0.11 in
PSM
T 1.5-2.0inPOF M >F No
8.5-9.0in
PSM
P 1.0-3.2in POF F>M in Fall M >
1.5-2.0in spring spring M, but
PSM spring F > fall
F
Farrokhnejad ~ POF, OF, Ey 1.27 in POF POF>PSM, SM>PSM,
etal. (2014) PSM, SM 1.00 in OF but SM>OF  but POF > OF
0.83 in PSM
1.38 in SM
T 0.46 in POF No No
0.54 in OF
0.38 in PSM
0.44 in SM
P 0.18 in POF SM > OF
0.20 in OF
0.15 in PSM
0.23 in SM
Abedi et al. PSM, POF Es 1.25-2.75
(2017) 17a-P 3.0 Upto 11
ng/mL after
HCG injection
Entosphenus tridentatus Pacific lamprey
Mesa et al. Adults P 04 M>F Seasonal
(2010) changes
15a-T 0.25-1 M>F
Eo 0.5-4 M>F
Lampetra fluviatilis European river lamprey
Kime and POF, PSM T 0.1 No Upto1.2
Larsen (1987) ng/mL after
gonadectomy
Eo 1 No Up to 2 ng/mL
after
gonadectomy
Barannikova POF, OF, P 1-10 No
etal. (1995) PSM, SM E; 0.5-3.5 Decreased
near ovulation
Mewes et al. POF, PSM, E; 0.01-3.2 M>F No
(2002) OF, SM
Lampetra planeri European brook lamprey
Seiler et al. Adults Ps 2-3 No
(1985) Ad 0-2.5 No
T 2.5-17 Increased with

maturity

(continued)
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Study Stage and sex  Steroid Range or mean Difference Difference Response to
in plasma between between GnRH
(ng/mL) sexes? reproductive (ng/mL)
stages?
Lethenteron camtschaticum Arctic lamprey
Fukayama and POF, PSM, T 0
Takahashi OF, SM E; 0.4-3.22in M > F near Increased with
(1985) POF spawning maturity in M;
1.0 in OF increased in F
0.8-4.5in with
PSM vitellogenesis,
2.7 in SM decreased at
spawning
Petromyzon marinus sea lamprey
Weisbart et al. POF and PSM  170,208-P 1.6-3.1
(1980) T 41
Katz et al. OF, SM P 0-1.25 No Rose after
(1982) stress
DHT 0 No
T 0 No
Ad 1.05-5.58 No Rose after
stress
E 0.74-7.717
Eo 0.51-3.14 No
Sower et al. POF, OF Ex 3-5 POF > OF Upto 12
(1983)
Sower et al. POF, OF, T 0.1-0.2 No No
(19852) PSM, SM E 05-3.0 SM > OF At spawning,
rose in M,
dropped in F
Sower et al. POF, OF, T 0.10-0.18 No No No effect
(1985b) PSM, SM E 2 No In F, decreased Upto 6.5
with maturity
Linville etal.  POF, OF, T 0.005-0.170 M>F No
(1987) PSM, SM
P 0.1-2.8 M>F
Ey 0.6-2.3 M>F At spawning,
dropped in F
Sower et al. POF, OF P <1 Increased
(1987) Es 15 Upto5.5
Sower (1989) PSM P 0.25 Upto3
Ex 1.5 Upto3
Sower and POF P 0.3 Decreased
Larsen (1991) after hypophy-
sectomy
E; 1.91 Decreased
after hypophy-
sectomy
Bolduc and POF, OF P 0.1-0.6 Fluctuated or
Sower (1992) slowly
increased
E; 0.25-3 Increased
through
spawning
season, then
decreased
suddenly

(continued)
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Table 1.14 (continued)

Study Stage and sex  Steroid Range or mean Difference Difference Response to
in plasma between between GnRH
(ng/mL) sexes? reproductive (ng/mL)
stages?
Sower et al. POF P 0.52 Upto 0.71
(1993) E» 0.64 Up to 2.06
Deragonand ~ PSM P 0.2 Upto2
Sower (1994) Es 12 Upto2.4
Gazourian POF P 2 Upto 12
etal. (1997) E» 02 Upto 0.5
Gazourian PSM E> 2 Upto8
etal. (2000) P 02 Upto2.6
Rinchard etal. SM T 0.03-0.15
(2000) Es 12
P 0.4-1.2
Bryan et al. POF, OF, 150-T <1 M>F POF > OF,
(2003) PSM, SM PSM > SM
Bryan et al. POF, OF, 150-P <1-2.48 M>F Increased with  Up to 36 in
(2004) PSM, SM maturity PSM
Young et al. PSM 150-T <0.5 Upto3
(2004a)
Young et al. PSM 15a-T 0.3 Up to 0.6
(2004b) E 1 Upto3.5
Young et al. POF, PSM 15a-T 0.15 in POF Upto 0.6 Upto 0.7 in
(2007) 0.2-0.4 in ng/mL in PSM  PSM
PSM after injection  Up to 0.3 in
with pituitary ~ POF
extract
15a-P 1.2-2.0in M >F Up to 25 Up to 100 in
PSM ng/mL in PSM  PSM
0.12 in POF after injection ~ Up to 0.44 in
with pituitary ~ POF
extract
Bryan et al. PSM Ad <1 Upto 1.9
(2007)
Sower et al. POF, OF, E, 0.01-0.65 in M>F Increased with
(2011) PSM, SM POF maturity
0.65 in OF
1.4in PSM
0.9 in SM

POF pre-ovulating females, OF ovulating females, PSM pre-spermiating males, SM spermiating males, HCG human chorionic
gonadotropin, P progesterone, Ps pregnenolone, / 7a,208-P 17a,20B-dihydroxyprogesterone, 7' testosterone, Ad androstenedione,
DHT 5a-dihydrotestosterone, E; estrone, E estradiol, /5«-T 15a-hydroxytestosterone, /5¢-P 15a-hydroxyprogesterone

Plasma concentrations of 17a-P and 17a,208-P, two progestagens studied in other
fishes, have been measured in Caspian lamprey (Abedi et al. 2017) and sea lamprey
(Weisbart et al. 1980), respectively. In pre-spermiating and pre-ovulatory Caspian
lamprey, baseline 17a-P levels were 3.0 ng/mL but increased to 11 ng/mL following
injection with human chorionic gonadotropin (Abedi et al. 2017). 17a,208-P has been
detected in pre-spermiating and pre-ovulatory sea lamprey, measuring 1.6-3.1 ng/mL
(Weisbart et al. 1980).
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1.7.2.2 Androgens

Androgens have been linked to the development of male reproductive tissues, male
secondary sex characteristics, and male reproductive behavior in other fishes (Knapp
and Carlisle 2011), but there is relatively little information regarding the functional
androgens in lampreys (Bryan et al. 2008). Classical androgens, most notably T,
have not been produced in radiolabeling experiments (see Sect. 1.7.1; Table 1.13),
and circulating T levels have generally been shown to be undetectable or very low
(<1 ng/mL) (e.g., Fukayama and Takahashi 1985; Kime and Larsen 1987; Sower
et al. 1985a, b; Linville et al. 1987; Farrokhnejad et al. 2014; Table 1.14). Higher
levels of T have been reported (up to 9-17 ng/mL) in European brook lamprey and
Caspian lamprey (Seiler et al. 1985; Ahmadi et al. 2011), but such reports are rare.
Similarly, although some studies reported that T levels were significantly higher in
males than females (Linville et al. 1987; Ahmadi et al. 2011) and increased with
maturity (Seiler et al. 1985), most found no differences between the sexes (e.g., Katz
et al. 1982; Sower et al. 1985a, b; Kime and Larsen 1987; Farrokhnejad et al. 2014)
or reproductive stages (e.g., Sower et al. 1985a, b; Linville et al. 1987; Ahmadi
et al. 2011; Farrokhnejad et al. 2014), and T levels did not change following GnRH
stimulation (Sower et al. 1985b).

Androstenedione, which is the direct precursor to T in the steroid synthesis path-
way, was shown by Bryan et al. (2007) to have androgenic effects in sea lamprey.
Implants of time-release Ad pellets accelerated maturation in male sea lamprey and
caused an increase in size of the dorsal “rope” tissue, a secondary sex characteristic
unique to mature male sea lamprey (see Johnson et al. 2015b). Plasma concentrations
of Ad appear to be low (<1 ng/mL; Bryan et al. 2007), although Katz et al. (1982) and
Seiler et al. (1985) reported levels as high as 5.6 and 2.5 ng/mL in sea and European
brook lampreys, respectively. Bryan et al. (2007) found that concentrations of Ad
(but not of T) in sea lamprey plasma and testis increased (up to 1.9 ng/mL) following
GnRH injection, and they also reported the existence of a receptor for Ad. The capac-
ity and high affinity of this receptor means that much of the Ad is bound in the testis
(rather than circulating in the plasma), which can cause high local concentrations
of Ad in the testis, despite low circulating levels. Thus, Ad does appear to act as an
androgenic hormone in sea lamprey, but the mechanism by which this happens has
yet to be identified.

15a-T is the other androgen that has been identified in lamprey plasma (Bryan
et al. 2003; Young et al. 2004a, b, 2007; Mesa et al. 2010). Plasma concentrations of
15a-T are generally low, but there are differences between the sexes and maturational
states (Bryan et al. 2003; Mesa et al. 2010) and small but significant changes in 15a-T
in response to hypothalamic and pituitary hormones (Young et al. 2004a, b, 2007).
However, no hormonal role or receptor has been found yet for 15a-T.
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1.7.2.3 Estrogens

Estrogens are synthesized in all vertebrates. They are involved in controlling the
function of female reproductive organs and processes, and they play roles in some
male-specific processes such as sperm maturation (Eick and Thornton 2011; Bon-
desson et al. 2015). E; is the most studied classical steroid in lampreys (Table 1.14),
and there is strong evidence that it is a functional hormone in lampreys (Sower
1990). Baseline plasma levels up to ~3-5 ng/mL have been reported (Sower et al.
1983; Fukayama and Takahashi 1985; Barannikova et al. 1995; Mewes et al. 2002;
Mesa et al. 2010; Abedi et al. 2017), and E, levels have been shown to vary with
reproductive stage (Sower et al. 1985a; Linville et al. 1987; Bolduc and Sower 1992)
and in response to heterologous and lamprey GnRH stimulation (Sower et al. 1983,
1985b, 1987, 1993; Sower 1989; Derragon and Sower 1994; Gazourian et al. 1997,
2000). Interestingly, however, circulating E, levels are often higher in males than
in females (e.g., Fukayama and Takahashi 1985; Linville et al. 1987; Mewes et al.
2002; Mesa et al. 2010; Ahmadi et al. 2011), and it appears that E, also plays a
major role in the reproductive physiology of male lampreys (Bryan et al. 2008). In
European river lamprey and Arctic lamprey, plasma E, levels have been associated
with vitellogenesis in females, but they were also shown to increase at spawning
in males (Fukayama and Takahashi 1985; Barannikova 1995; Mewes et al. 2002).
However, the increased concentration of E, in European river lamprey plasma after
gonadectomy suggests that this steroid may be an inactive precursor synthesized in
extra-gonadal endocrine tissues (Kime and Larsen 1987).

Production of 15a-E; in lamprey gonads has been inferred from studies using
radiolabeled precursors (Lowartz et al. 2004; see Sect. 1.7.1), and molecular model-
ing experiments have shown that the lamprey estrogen receptor (ER) may bind to it
(Baker et al. 2009). However, 15a-E, is present in the plasma in levels lower than E,,
and the levels do not change after injection of GnRH (Mara B. Bryan, unpublished
data), suggesting that it is likely not a hormone in lampreys. There is clearly still
much to be learned about the gonadal steroid hormones in lampreys.

1.7.3 Steroid Receptors

To act as a hormone, a steroid must bind to a receptor, and this action must result in a
physiological effect. Vertebrate steroids have been shown to act through two different
types of receptors: (1) nuclear receptors, which act as transcription factors when the
hormone is bound to the receptor, thus up- or down-regulating expression of particular
genes (Baker 1997; Eick and Thornton 2011); and (2) membrane-bound G-protein
coupled receptors (GPCRs), which trigger non-genomic changes in the function of
the cell by the process of transduction (Norman et al. 2004). GPCRs result in a much
quicker response than nuclear receptors (Norman et al. 2004; Freamat and Sower
2013). The interaction between steroids and their receptors thus induces complex
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genomic and non-genomic effects within the cell, triggering direct activation of
transcription and activation of other signaling pathways (Freamat and Sower 2013).

Lampreys are an important model for understanding the evolution of vertebrate
adrenal and sex steroid receptors. Nuclear receptors can be subdivided into estrogen
receptors (ERs) and 3-ketosteroid receptors such as the glucocorticoid receptor (GR),
mineralocorticoid receptor (MR), progesterone receptor (PR), and androgen receptor
(AR) (Bridgham et al. 2010; Baker et al. 2015). Ho et al. (1987) identified an ER in
the testis of sea lamprey, and orthologs of the ER, PR, and corticosteroid receptor
(CR) have been found in sea lamprey and Arctic lamprey. However, there is no
evidence of an AR, GR, or MR in lampreys (Thornton 2001; Baker et al. 2015).
Thornton (2001) established that the ER is the ancestral steroid receptor. An ER
has been cloned from amphioxus, and this non-vertebrate chordate also possesses a
steroid receptor (SR) which shares a common ancestor with the AR, GR, MR, and
PR of jawed vertebrates. Surprisingly, however, amphioxus ER does not bind E,
(Paris et al. 2008), but it appears to be a transcriptional activator of amphioxus SR
which, also surprisingly, does not bind 3-keto-steroids (Katsu et al. 2010). Thornton
and colleagues therefore suggested that the cephalochordate ER lost its response
to ligands while the SR retained the response to E, (Bridgham et al. 2008; Eick
and Thornton 2011). Lampreys (and other vertebrates) therefore inherited the ER
from their non-vertebrate ancestor, and a CR and PR (both present in lampreys and
hagfishes) subsequently evolved in early vertebrates. The remaining sex and adrenal
steroid receptors (i.e., an AR and a separate GR and MR) evolved in the jawed
vertebrates (Baker et al. 2015).

The lamprey ER has been heterologously expressed (i.e., with the lamprey ligand-
binding domain cloned into a vector) so that binding experiments could be performed,
and a reporter assay determined that the ligand for the receptor was indeed E, (Paris
et al. 2008). Binding assays using radiolabeled E; previously found binding activity
in the lamprey testes (Ho et al. 1987). Two distinct ERs (ERa and ERB) have been
identified in amphibians, reptiles, birds, and mammals (Kuiper et al. 1997), and
orthologs of two ERs have also been reported in sea and Arctic lampreys (Baker et al.
2015). However, Katsu et al. (2016) indicated that these two lamprey ERs (Esrla
and Esrlb) are the result of a lineage-specific gene duplication within the jawless
fishes, different from the duplication event in the jawed vertebrates. In the Arctic
lamprey, Esrla showed both constitutive transcription (i.e., at a relatively constant
rate) and estrogen-dependent activation of gene transcription. Esrla displayed strong
expression in the gut and liver in both sexes and stronger expression in the heart and
gonad of females compared to males. In comparison, Esrb1 showed strong expression
in female heart, liver, and gut and in male heart and gut. However, Esrbl did not
bind E, in Arctic lamprey and was not stimulated by other estrogens, androgens, or
corticosteroids (Katsu et al. 2016). Using a 3D model, Katsu et al. (2016) concluded
that, although E, fits into the steroid binding site of Esrbl, the lack of stabilizing
contacts between the ligand and the receptor side chains appears to prevent E; binding
activity. Therefore, Esrla appears to be the functional ER in lampreys.

Binding experiments have not yet been performed with the lamprey PR and CR,
but Bryan et al. (2015) investigated changes in the expression of the PR gene in puta-
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tive target tissues in male sea lamprey at different stages of maturation. Messenger
RNA (mRNA) transcript levels in the testis were significantly higher in spermiating
males than in any other group, next highest in pre-spermiating males, and lowest in
small and large parasitic-phase individuals (i.e., sexually immature juveniles). Lev-
els of PR gene expression increased in spermiating males after injection of lamprey
GnRH-I, but they did not change in pre-spermiating males in response to GnRH
stimulation. In brain, gills, and liver, levels of PR gene expression were likewise
highest in spermiating males. However, injections of GnRH-I and -III resulted in
significantly higher gene expression only in brains of pre-spermiating males and in
livers of spermiating males (although there was a trend toward an increase in the
gills of spermiating males). Therefore, a nuclear PR is present in male sea lamprey,
and the location and gene expression levels are consistent with some of the known
male reproductive functions (e.g., gonadal maturation, reproductive behavior, and
sex pheromone production).

As mentioned above, there is no evidence of an AR in lampreys. Orthologs of the
gnathostome AR have not been found in the sea lamprey genome (Baker et al. 2015),
nor could an AR resembling the gnathostome AR be amplified using PCR (Thornton
2001). This is consistent with suggestions from previous studies that lampreys lack
functional androgens (see Sect. 1.7.2.2). However, Baker et al. (2015) noted that a
novel nuclear receptor may mediate responses to androgens in lampreys, and the
binding assays performed by Bryan et al. (2007) led to the discovery of a binding
moiety in lamprey tissues that appears to function as a steroid receptor. The Ad
binding moiety, which bound Ad with high affinity, was found in nuclear and cytosolic
extracts of various tissues (but was highest in testes), and the Ad-moiety complex
bound to DNA (Bryan et al. 2007). However, the protein that binds Ad has not yet
been purified and identified, so it is unclear how it is related to the nuclear steroid
receptor family.

It should be noted that much of the work to date on steroid receptors has been
done using cytosolic, nuclear, or membrane extracts and radiolabeled ligands (e.g.,
Ho et al. 1987; Close et al. 2010; Bryan et al. 2015). Thus, because commercially
available 15a-hydroxylated radiolabeled steroids are not available, binding experi-
ments to detect receptors for lamprey-specific 15a-hydroxylated steroids have not
been performed. Because all previous work has relied on using the native 15a-
hydroxylase in lamprey testes to make label using tritiated precursors (e.g., Bryan
et al. 2003, 2004), the specific activity of the radiolabeled 15a-hydroxylated steroids
is unknown, and the radiolabeled compounds used in these experiments are likely
contaminated with endogenous steroids of the same type. Based on the patterns of
15a-P plasma concentrations (see Sect. 1.7.2.1), it seems likely that it is a hormone
in lampreys, but a receptor is needed for confirmation. Because binding experiments
would need custom radiolabeled 15a-P, it may be most expedient to do this with a
reporter assay as in the ER research by Paris et al. (2008).

As a final note, steroidal effects in vertebrates can also be mediated by membrane-
bound steroid receptors (Thomas et al. 2006). Two families of such membrane-bound
receptors were identified that have no relationship to each other and no relationship to
the traditional nuclear receptors (Thomas et al. 2007). One of these families, known as
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GPR30, is involved in mediating estrogen responses (Filardo and Thomas 2005), and
the other, known as the membrane progestin receptor (mPR), is involved in mediating
progesterone responses (Thomas et al. 2006, 2007). Bryan et al. (2015) identified
the membrane receptor adaptor protein “progesterone receptor membrane compo-
nent 17 (pgrmcl) gene in male sea lamprey, and they studied mRNA expression
levels between different life stages and tissues and in response to lamprey GnRH-I
and GnRH-III. Expression of pgrmcl in testes was highest in pre-spermiating and
spermiating males (compared to sexually immature individuals in the parasitic feed-
ing phase), and it increased in spermiating males following GnRH stimulation. In
the brain, expression levels were not significantly different among stages, but GnRH
injection resulted in higher expression levels in pre-spermiating (but not spermiating)
males. In gills and liver, pgrmcI expression was highest in spermiating males. After
GnRH injection, gene expression in the gills increased in both groups of maturing
males; in the liver, it increased in spermiating males but decreased in pre-spermiating
males. As with the nuclear PR, the location and expression levels of pgrmcl are con-
sistent with a putative role in known male reproductive functions. However, although
pgrmcl was accepted as a membrane receptor at the time that Bryan et al. (2015)
performed their study, it has since been concluded that this “adaptor” protein has only
moderate specificity for P and may have higher affinity for T and cortisol (Thomas
et al. 2014). Functionality of the estrogen membrane receptor (and probably mem-
brane receptors for many other compounds) is also dependent on the presence of
this protein, and thus increased pgrmcl expression is not proof that this increase is
specifically related to the activity of P (Bryan et al. 2015). The lamprey genome does
contain DNA sequences similar to the “fast-acting” membrane progestin receptor
(mPR), which has five variants in higher vertebrates (Pang and Thomas 2011; Pang
et al. 2013), and these deserve further study. No membrane ERs have been found
so far in lampreys, and the mechanism by which lamprey steroids in general act as
intercellular signals is not understood yet. Whether they compete for nuclear receptor
binding sites with classical steroids or whether they have their own cognate nuclear
or membrane receptors still needs to be determined (Bryan et al. 2008).

1.8 Conclusions

Lamprey gonadal development is intriguing, but it continues to be challenging to
study. Our understanding of many aspects of the reproductive biology of these fasci-
nating jawless vertebrates has been complicated by their phylogenetic distinctiveness
and complex life cycle, the long period during which their gonads remain histolog-
ically undifferentiated, and their unique sex steroids. We hope that the overview
of topics given in this chapter has provided readers with a deeper understanding of
what we know to date about lamprey gonadal development and an appreciation of the
many remaining unanswered questions. We believe that collaboration between lam-
prey biologists and other researchers can now help answer many questions previously
believed to be intractable. Integration of detailed field-based research and observa-
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tions with new advances in laboratory-based techniques (e.g., genomics, molecu-
lar biology, microscopy) will be especially productive. Here, we briefly highlight
some key outstanding research questions introduced in this chapter, with a particular
emphasis on areas where synergies between lamprey biologists and researchers with
expertise in other fields would be especially rewarding.

The complex lamprey life cycle has made stage-specific sex ratios difficult to
interpret, which has made it challenging to confidently ascertain whether sex deter-
mination in lampreys is subject to environmental influence. In particular, there are
many unanswered questions related to the dramatic but transient shift in adult sex
ratios observed in sea lamprey in the three upper Great Lakes following initiation of
the control program. For example, do female sea lamprey experience higher mortality
during the parasitic feeding phase (particularly following the onset of vitellogene-
sis) due to the higher energetic demands of ovarian maturation relative to testicular
maturation? If so, were mortality rates in females during this stage disproportion-
ately higher than in males when sea lamprey were at their peak of abundance and
prey abundance was at its lowest? Do female sea lamprey undergo metamorpho-
sis at older ages than male sea lamprey—or did they prior to sea lamprey control?
Has there been selection in females for earlier metamorphosis as a consequence of
lampricide treatments in the Great Lakes basin? What features of Lakes Erie and
Ontario explain the lack of sex ratio shifts in their sea lamprey populations com-
pared to those in the upper Great Lakes? Answering these questions will require a
deeper understanding of lamprey biology and the stream and lake systems in which
the sea lamprey occur. Incorporating genomics technologies into such studies (e.g.,
identifying sex-determining genes or conclusively ruling out a genetic basis to sex
determination) would be of great benefit. For example, if sex-associated loci can
be identified that are generally, if not always, correlated with phenotypic sex when
sex ratios are at parity, mismatches between genotypic and phenotypic sex under
other circumstances would provide strong evidence for an environmental influence
overriding GSD (e.g., Patil and Hinze 2008; Cavileer et al. 2015). Non-lethal sexing
of lampreys (using genetic markers, acoustic microscopy, or gonadal biopsy meth-
ods) would allow researchers to more effectively test for sex-specific differences in
growth and mortality.

Clear delineation of the critical sex differentiation period in lampreys has further
complicated our understanding of the factors influencing sex determination and dif-
ferentiation. We currently do not know if a histologically undifferentiated gonad is
truly bipotential or if the germinal and somatic elements are already differentiated ata
molecular level. Similarly, different paths of male differentiation have been proposed
(e.g., direct and indirect development), but we do not know if there is an underlying
genetic basis for the difference (e.g., if indirect male differentiation is a form of sex
reversal in genotypic females). Regardless of whether the master switch at the top of
the cascade is genetic or environmental, identification of the genes involved in the
subsequent development of the gonad into an ovary or testis would greatly improve
our ability to study the sex differentiation process. For example, upregulation of the
gene encoding the steroidogenic enzyme aromatase has been observed in the future
ovaries of several teleost fish species (Nakamura et al. 1998; D’Cotta et al. 2001;
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Tao et al. 2013), and other genes often show male-specific expression patterns in
advance of testicular differentiation (Geffroy et al. 2016). Developing similar tools
for lampreys would aid researchers investigating the earliest stages of ovarian and
testicular differentiation, help determine if germ cell differentiation is induced by the
somatic tissue or vice versa, and help highlight some of the earliest developmental
differences between parasitic and non-parasitic lampreys.

Sexual maturation in lampreys is somewhat better understood than sex determi-
nation and differentiation, although there is still much to be learned. For example,
although it is well known that absolute fecundity increases with female body size, the
extent to which other factors such as nutritional status or migratory distance affect
the number of eggs that survive to maturity is not known. Likewise, the relationship
between reproductive fitness and testis size or other male traits (e.g., sperm concen-
tration, motility, life span) is unrecognized and warrants investigation. Furthermore,
there are substantial knowledge gaps regarding the gonadal steroid hormones and
receptors involved in sexual maturation and reproduction in lampreys, as well as fac-
tors that regulate the cessation of feeding and subsequent onset of sexual maturation.
Many of the gonadal steroids thought to act as hormones still have not had functions
clearly defined. This is particularly true of the 15a-hydroxylated steroids which are
different than all other studied vertebrate steroids. In addition, the androstenedione
receptor has not yet been identified, which means that the earliest mechanism of
androgen action in vertebrates remains unresolved. Future research into all aspects
of lamprey gonadal development will be very rewarding.
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Chapter 2

Lamprey Reproduction and Early Life ez
History: Insights from Artificial

Propagation

Mary L. Moser, John B. Hume, Kimmo K. Aronsuu, Ralph T. Lampman
and Aaron D. Jackson

Abstract Artificial propagation of lampreys was first developed to produce spec-
imens for the study of evolutionary development in vertebrates. In recent years,
artificially propagated larvae have been used to improve identification methods for
native lamprey species, to study invasive sea lamprey Petromyzon marinus in the
Laurentian Great Lakes and to provide animals for genomic studies, and for restora-
tion and conservation research. In the course of developing methods for lamprey
cultivation, insights into lamprey behavior, biology, genetics, and early life history
have been gained. Broodstock holding has indicated that adult lampreys can be kept
at extremely high densities when provided with cold, oxygenated water. Sexual mat-
uration is controlled primarily by temperature, but may be affected by photoperiod,
the presence of other lampreys, and suitable substrate. Fertilization and incubation
experiments have revealed that gamete contact times are very short and that embryos
are resilient to low flow, poor water quality, or variable substrates. Early larvae are
also resilient to these factors and can tolerate abrupt changes in temperature and
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extended periods of starvation. However, they cannot survive sudden changes in
water quality, excessive disturbance, and lack of adequate burrowing media. These
observations have resulted in more efficient and effective lamprey propagation and
have yielded important information about the early life stage requirements of lam-
preys in the wild. Further study is needed on a broader array of species to allow
inter specific comparisons of early life history. However, information from lampreys
receiving the most attention to date (European river lamprey Lampetra fluviatilis,
sea lamprey, and Pacific lamprey Entosphenus tridentatus) indicates that culture and
environmental requirements of the early life stages are remarkably similar, allowing
generalization across species.

Keywords Broodstock + Culture + Development - Fertilization + Incubation *
Propagation - Rearing - Spawning

2.1 Introduction

Artificial propagation of lampreys was first developed to produce specimens for
the study of evolutionary development in vertebrates. While this continues to be an
important purpose of artificial propagation (see Chap. 6), other uses have recently
come to the fore. As a result, there has been increased awareness of lampreys as
both model organisms and as critical components of ecological systems. Moreover,
lampreys are of significant cultural importance in many parts of the world (Docker
etal. 2015). Restoring lamprey populations to levels that allow for sustainable harvest
is a goal of fisheries managers in Finland (Vikstrom 2002), Japan (Hokkaido Fish
Hatchery 2008), and in the northwestern United States (Close et al. 2002). At the
same time, the proliferation of invasive sea lamprey Petromyzon marinus populations
in the Laurentian Great Lakes has increased the demand for information on factors
that limit lamprey production.

The increasing need for lamprey propagation tools for research, conservation, and
control has led to a proliferation of studies designed to perfect artificial production
methods. These efforts have increased our knowledge of lamprey genetics, physi-
ology, and behavior. While the focus of this research has typically been to improve
culture technology, many of the lessons learned may be applicable to lamprey biol-
ogy in the wild. In contrast to the many decades of developmental studies using
lampreys, we know comparatively little about the early life history of lampreys in
their natural environments.

Hence, the aim of this chapter is to provide a comprehensive review of research
that has stemmed from artificial propagation of lampreys and to compare this body
of knowledge with what is known regarding lamprey early life history in the wild.
The spawning requirements and mating behavior of lampreys in the wild and the
ecology of larval lampreys are reviewed by Johnson et al. (2015) and Dawson et al.
(2015), respectively; sexual maturation in lampreys is reviewed in Chap. 1. Embryos
of a few model lamprey species have long been generated and studied in the labo-
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ratory to better understand the origin and development of the vertebrate body plan
(see Sects. 2.1.1 and 2.1.3; Chap. 6), but other research and management needs are
now requiring culture of additional species, to later stages and in larger numbers
than attempted previously. The current chapter focuses on these recent advances in
artificial propagation and laboratory or hatchery rearing of lampreys. The transfer
of findings from natural studies to the laboratory has benefitted artificial rearing,
allowing sufficient production for restoration and mitigation programs. Conversely,
artificial rearing studies have and continue to shed light on early lamprey life history
in nature. Reviewing this information has helped to identify critical knowledge gaps
and provide directions for future research that will inform not only lamprey biology,
but also their conservation and control.

2.1.1 Lampreys as Model Organisms

Hagfishes (Myxinidae) and lampreys represent the most ancient vertebrate groups
alive today (see Docker et al. 2015). Their pedigree extends back a minimum of
395 million years (Janvier and Lund 1983; Gess et al. 2006), and they may have
remained functionally unchanged for as long as 125 million years (Chang et al.
2014; see Chap. 4). As cyclostomes, lampreys have a primitive appearance, perhaps
exemplified most clearly by their lack of jaws (Kuratani et al. 2002; Kuratani 2005),
and they have captured the attention of generations of biologists seeking insight into
the evolutionary development of vertebrates (e.g., Richardson et al. 2010; Shimeld
and Donoghue 2012; McCauley et al. 2015; see Docker et al. 2015). Lampreys are
well regarded as model organisms in fields such as embryonic development, organ
differentiation, and phylogenetics. As such, they have provided deep insight into
the evolution of vertebrate nervous, endocrine, and immune systems (Johnels 1956;
Kusakabi and Kuratani 2005; Nikitina et al. 2009; Richardson et al. 2010; Kuratani
2012; Shimeld and Donoghue 2012; Green and Bronner 2014; Sower 2015; Xu et al.
2016). Such lines of inquiry have yielded an astonishing understanding of the origin
and subsequent evolution of the vertebrate lineage (see Chap. 6).

Vertebrates can be loosely characterized by their possession of a complex cra-
nial region bearing paired sensory organs linked to a well-developed brain-neural
network, along with a hinged jaw for processing food (Kuratani 2012). Although
lampreys lack some of these anatomical features, they, along with all other verte-
brates, possess a neural crest during embryonic development, the region of tissue
largely responsible for cranial development (Shimeld and Donoghue 2012; Green
and Bronner 2014; see Chap. 6). A landmark development in the evolution of ver-
tebrates was the acquisition of articulating jaws that enabled more active predatory
foraging strategies (Gans and Northcutt 1983; Kuratani 2012). There is remarkable
similarity between lampreys and gnathostomes (jawed vertebrates) in the expression
of transcription factor genes during pharyngeal patterning (Horigome et al. 1999;
Kuratani et al. 1999; Neidert et al. 2001; Shigetani et al. 2002). A change in the
interaction between the neural crest cells and pharyngeal tissue may have led to the
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development of jaws in the gnathostome ancestor (Shigetani et al. 2002; Kuratani and
Ota 2008). Key differences in transcription factor expression in the first pharyngeal
arch between lampreys and gnathostomes (Cerny et al. 2010; Kuraku et al. 2010)
suggest that the gnathostome lineage focused pharyngeal patterning towards devel-
opment of a joint crucial to the hinged jaw arrangement (Shimeld and Donoghue
2012). However, the precise evolutionary steps leading to the acquisition of jaws in
the gnathostome ancestor remain a subject of debate (Kuratani 2012; see Chap. 6).

Lampreys have a relatively simple nervous system with large neurons, which have
enabled extensive investigations of neural pathways (Khonsari et al. 2009; Murakami
and Watanabe 2009). The lamprey brain comprises five distinct regions, from ante-
rior to posterior: forebrain, diencephalon, midbrain, cerebellum (or cerebellum-like
structure), and medulla (Murakami and Kuratani 2008). Brain development studies
in lampreys may help inform vertebrate developmental pathways in general, such
as the discovery that Sonic Hedgehog/Hedgehog (Shh/Hh) signaling in the lamprey
embryonic midline is responsible for vertebrate forebrain development (Rétaux and
Kano 2010). Our understanding of the lamprey brain-neural network is so com-
plete that it has even enabled the development of model robotic lampreys capable
of complex swimming motions and response to visually detected objects (Kamali
et al. 2013). The eyes of larval lampreys, both in their developmental mechanisms
and neural function, are representative of an evolutionarily primitive state in the
acquisition of “camera-style” eyes (Lamb et al. 2007; Suzuki et al. 2015). As larvae,
lampreys do possess an eye, although it is covered by skin, and the lens is not fully
developed (Kleerekoper 1972), so it functions simply as a light detector (Suzuki et al.
2015). Following metamorphosis, the retinotectal projection—the part of the brain
responsible for visual reflexes—is arranged in a manner similar to that of gnathos-
tomes (Jones et al. 2009), and adult lamprey eyes are considered fully functioning
camera-style eyes (Villar-Cervifio et al. 2006; Collin 2010).

The point at which the adaptive immune system of vertebrates first appeared has
long captured the attention of researchers in the field of immunology (Amemiya
et al. 2007; Shimeld and Donoghue 2012). Early investigators demonstrated that
exposure to antigens such as anthrax resulted in antibody (agglutinin) production
in lampreys (Fujii et al. 1979). However, lampreys lack immune receptors common
to other vertebrates (T-cell receptors, B-cell receptors, and major histocompatibility
complex). Hence, the lamprey adaptive immune system remained obscure for many
more years (Ardavin and Zapata 1988; Cooper and Alder 2006). Lampreys and
hagfishes were found to have a similar but different set of lymphocyte cells relative
to other vertebrates, which provide the same function of adaptive immunity (Shintani
etal. 2000; Pancer et al. 2004; Amemiya et al. 2007). Where exactly lymphocytes are
produced in lampreys, and therefore how immunity is conferred, remains uncertain.
One potential region of production is the typhlosole, an intestinal fold common to
lampreys and several other chordates (Shintani et al. 2000; Bajoghli et al. 2011).
Recognition of an alternative autoimmune system in lampreys has sparked renewed
interest in the group as a model species in immunology, particularly in the age of
genomic investigations (Amemiya et al. 2007; see Chap. 6).
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2.1.2 Anatomy and Developmental Staging

As introduced above, lamprey anatomy exemplifies their primitive condition and
basal positioning among vertebrates. An excellent example of this unique position is
evidenced by the transformation of the lamprey endostyle into a thyroid gland during
metamorphosis. In non-vertebrate chordate groups (tunicates and cephalochordates)
as well as in larval lampreys, the endostyle is an organ that produces mucus for feeding
(Olsson 1963). In contrast, non-lamprey vertebrates directly develop a thyroid gland,
which shares with the endostyle a common embryonic origin and a partial overlap
in enzyme production and gene expression (McCauley and Bronner-Fraser 2002;
Kluge et al. 2005). Lampreys therefore represent a prime example of organ evolution
recapitulated in the ontogeny of a single organism (Wright and Youson 1976).

Initial reports of lamprey artificial propagation can be traced back to university and
hatchery reports from Japan between 1893 and 1951 using Arctic lamprey Lethen-
teron camtschaticum (Hatta 1893, 1907; Isahaya 1934) or Far Eastern brook lamprey
Lethenteron reissneri (Yamada 1951). Investigations of lamprey embryonic develop-
ment also became a focal point resulting from the pressing need to control the spread
of sea lamprey within the Great Lakes basin (Piavis 1961; see Chap. 5). Along with
later work on Far Eastern brook lamprey by Tahara (1988), the work of Piavis (1961,
1971) remains the foundation of developmental staging for all other lamprey species
today (Nikitina et al. 2009; Richardson et al. 2010). Species whose embryology has
been investigated thus far include: chestnut lamprey Ichthyomyzon castaneus and sil-
ver lamprey Ichthyomyzon unicuspis (Smith et al. 1968), sea lamprey (Piavis 1961;
Langille and Hall 1988; Richardson and Wright 2003), Pacific lamprey Entosphenus
tridentatus (Yamazaki et al. 2003; Meeuwig et al. 2006), American brook lamprey
Lethenteron appendix and northern brook lamprey Ichthyomyzon fossor (Smith et al.
1968), western brook lamprey Lampetra richardsoni (Meeuwig et al. 2006), Far
Eastern brook lamprey (Fujimoto and Takaoka 1960; Tahara 1988), European brook
lamprey Lampetra planeri (Damas 1944; Horigome et al. 1999), and most recently
Korean lamprey Eudontomyzon morii (Feng et al. 2018) (Table 2.1). In each of these
species, embryology is similar, with developmental rate largely responsible for any
interspecific differences. A comprehensive review of the embryonic developmental
stages of lampreys can be found in Richardson et al. (2010), but the major pattern of
appearance is briefly summarized here.

We follow nomenclature established by Piavis (1961) and consider an embryo the
developing lamprey that has not yet hatched and a prolarva the stage after hatching
but prior to the onset of exogenous feeding. Once the yolk sac has been consumed
and exogenous feeding begins, the lamprey is termed a larva. At metamorphosis, it
is considered a juvenile until sexual maturation to the adult form. The developmen-
tal process may be subdivided into 18 discrete stages, beginning with the fertilized
ovum or zygote (stage 1) and ending with the larval stage (stage 18) at the onset
of exogenous feeding; stage 14 (i.e., hatching) marks the beginning of the prolarval
stage and stage 17 begins when prolarvae begin burrowing (Piavis 1961). The ear-
liest investigations of embryonic development included observations of the external
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Table 2.1 Summary of studies that describe lamprey in vitro propagation; maximum duration

refers to maximum for all studies

Species

Maximum duration or stage of
rearing

References

Entosphenus tridentatus
Pacific lamprey

Eudontomyzon morii Korean
lamprey

Geotria australis pouched
lamprey

Ichthyomyzon castaneus
chestnut lamprey

Ichthyomyzon fossor northern
brook lamprey

Ichthyomyzon unicuspis silver
lamprey

Lampetra richardsoni western
brook lamprey

Lampetra fluviatilis European
river lamprey

Lampetra planeri European
brook lamprey

Lethenteron appendix
American brook lamprey

5 years (through
metamorphosis)

25 days (larvae)

1 year (larvae)

Stage 17 (burrowing prolarvae)

28 days (larvae)

Stage 17 (burrowing prolarvae)

1 year (larvae)

72 days (larvae)

Stage 17 (burrowing prolarvae)

Stage 17 (burrowing prolarvae)

Close et al. (2002), Yamazaki
et al. (2003), Meeuwig et al.
(2005, 2006), Lampman et al.
(2016), Moser et al. (2016),
Maine et al. (2017, 2018)

Feng et al. (2018)

Cindy F. Baker, National
Institute of Water and
Atmospheric Research,
Hamilton, NZ, personal
communication, 2018

Smith et al. (1968), Piavis
et al. (1970)

Piavis et al. (1970), Neave
et al. (2019)

Smith et al. (1968), Piavis
et al. (1970)

Meeuwig et al. (2005, 2006)

Damas (1944), Kainua et al.
(1983), Kainua and
Ojutkangas (1984), Ojutkangas
and Laukkanen (1985),
Torronen et al. (1988),
Ryapolova and Mitans (1991),
Myllynen et al. (1997),
Vikstrom (2002), Aronsuu and
Virkkala (2014), Rougemont
et al. (2015), Kujawa et al.
(2017), Tsimbalov et al. (2018)

Hume et al. (2013), Tsimbalov
et al. (2018)

Piavis et al. (1970)

(continued)
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Table 2.1 (continued)

Species Maximum duration or stage of References

rearing
Lethenteron camtschaticum 4 years (through Hatta (1893, 1907), Isahaya
Arctic lamprey metamorphosis) (1934), Hosoya et al. (1979),

Kataoka et al. (1980b),
Kobayashi (1993), Yamazaki
and Goto (1997), Fukutomi
et al. (2002), Hokkaido Fish
Hatchery (2008)

Lethenteron reissneri Far 28 days Yamada (1951), Fujimoto and
Eastern brook lamprey Takaoka (1960)

Petromyzon marinus sea 98 days (larvae) Lennon (1955), Piavis (1961),
lamprey Piavis and Howell (1969),

Hanson et al. (1974), Langille
and Hall (1988), Fredricks and
Seelye (1995), Ciereszko et al.
(2000, 2002),
Rodriguez-Muiioz et al.
(2001), Rodriguez-Mufioz and
Ojanguren (2002), Smith and
Marsden (2009)

appearance of the blastopore and neural groove imposed atop the ridge-like neural
plate (Shipley 1887; Hatta 1900) (Fig. 2.1).

Embryonic lampreys then take on a characteristically curved “comma-shape” as
they elongate dorsally, beginning with the definition of the head region from the
mass of yolk and followed by the trunk bending around the yolk itself (Hatta 1923;
Veit 1939; Damas 1944) (Fig. 2.1). The anterior portion expresses some swelling, as
tissues that will later form the oral region and pharyngeal pouch undertake a period of
expansion and migration (Damas 1944; Tahara 1988; Richardson and Wright 2003).
After the embryo hatches, the heart initiates pumping, and the upper lip, mouth, and
nasohypophyseal openings rapidly approach their final positions and appearance
(Scott 1887) (Fig. 2.2). The prolarval stage is complete when the branchiopores
open and the digestive tract connects with the esophagus and anus (Richardson et al.
2010).

2.1.3 Artificial Propagation for Evo-Devo Research

The comparative ease of obtaining and rearing lampreys, compared to hagfishes,
is a primary reason for their attractiveness in studies of evolutionary development
(Nikitina et al. 2009; Lampman et al. 2016; see Chap. 6). Various methodologies
have been used to investigate lamprey development, including embryonic manipu-
lation and a burgeoning number of gene expression studies (Shimeld and Donoghue
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Fig. 2.1 Larval development of Pacific lamprey: a early neurula stage 11; b pre-hatching stage 13;
and c hatching stage 14 (Photo © Mary L. Moser)

Fig. 2.2 Pacific lamprey
prolarva (stage 15; see
Sect. 2.1.2) (Photo © Mary
L. Moser)
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2012; McCauley et al. 2015). Lineage tracing using dye markers and the removal of
embryonic tissue has been used to examine development in a more classical manner
(Langille and Hall 1988; Shigetani et al. 2002; McCauley and Bronner-Fraser 2006).

Lampreys reared in captivity have also been used in more technologically
advanced gene expression studies, such as those using messenger RNA (mRNA)
and microRNA (miRNA) visualization (Ogasawara et al. 2000; Murakami et al.
2001; Neidert et al. 2001; Boorman and Shimeld 2002; Derobert et al. 2002; Ota
et al. 2007; Pierce et al. 2008; Nikitina et al. 2009), gene knockdown (McCauley and
Bronner-Fraser 2006; Sauka-Spengler et al. 2007), and even transgenesis (Kusakabe
et al. 2003). In Arctic lamprey, pharmacological methods have also been used to
investigate the developing lamprey brain by inhibiting signaling of Hedgehog (Hh)
and fibroblast growth factor (FBF) (Murakami et al. 2004; Sugahara et al. 2011).

The ability to obtain lamprey embryos and parental tissues with relative ease has
opened the door for fascinating new investigations of the lamprey genome. Amaz-
ingly, it has been discovered that during embryonic development, a large portion of
the lamprey genome (~20%) is naturally eliminated from cells (Smith et al. 2012).
This process could shed light on the mechanisms responsible for the distribution of
chromosomes into daughter cells and the subsequent maintenance of genomes during
cell division (Timoshevskiy et al. 2016). Such programmed genome rearrangements
likely act to silence genes to prevent their incorrect expression during embryonic
development, and may even protect against the formation of certain cancer cells in
developing embryos (Bryant et al. 2016).

2.1.4 Artificial Production for Identification and Restoration

In recent years, lamprey production for use in field identification and restoration has
increased. The necessity for accurate identification of larvae belonging to lamprey
populations of conservation concern has fueled greater interest in examining early
life stages collected in streams (e.g., Meeuwig et al. 2006; Goodman et al. 2009).
Historically, small larvae were not routinely collected by electrofishing gear and
were overlooked (Churchill 1945; McLain and Dahl 1968). However, advances in
sampling gear and in our understanding of its effectiveness have improved collection
of small larvae, which are difficult to identify (Bowen et al. 2003; Steeves et al.
2003; Moser et al. 2007; Dunham et al. 2013). Although individuals of less than
35 mm have been captured by standard electrofishing techniques (Derosier 2001;
Lasne et al. 2010a; Dunham et al. 2013; Silva et al. 2014a), these techniques do not
typically produce large sample sizes, and may cause an unknown degree of mortality
or sublethal effects. Much smaller larvae (<10 mm), and even fertilized eggs, are
collected by plankton nets set within the water column to intercept downstream drift
after spawning (Manion 1968; Derosier 2001; Laroche et al. 2004; Brumo 2006;
Pavlov et al. 2014; Zvezdin et al. 2016) or by dredging the sediment after settlement
(Derosier 2001; Lasne et al. 2010a; Whitlock et al. 2017).
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Identification of larvae based on the presence of spawning adults is not reliable. It
was previously believed that young-of-the year (YOY, 0+) lampreys remained close
to the nests in which they were deposited (Okkelberg 1922). However, in natural
streams and rivers, prolarvae emerge from interstitial spaces of the substrate and
become displaced downstream (Piavis 1961; Manion and Smith 1978; Malmqvist
1983; Beamish and Lowartz 1996; White and Harvey 2003; Derosier et al. 2007,
Kirillova et al. 2011; Pavlov et al. 2014). The rate and extent to which they are
displaced is a function of the stream gradient and other hydrographic features, such
as velocity, depth, temperature, and substrate particle size (Applegate 1961; Hardisty
1961a; Hardisty and Potter 1971; Manion and McLain 1971; Manion and Smith 1978;
Malmgqvist 1980; Morman et al. 1980; Potter 1980; Kelso and Todd 1993; see Dawson
et al. 2015). Few studies of displacement have been made, but estimates range from
less than 1 km to more than 3 km in sea and American brook lampreys (Thomas
1962; Derosier 2001; Derosier et al. 2007). Furthermore, mixed-species spawning
associations have been observed where two or more species occupy the same nest
(Huggins and Thompson 1970; Manion and Hanson 1980; Brumo 2006; Lasne et al.
2010b; see Johnson et al. 2015). Genetic studies have been used to develop or refine
keys to identification (Goodman et al. 2009; Hess et al. 2015; Docker et al. 2016;
see Chap. 7), although it should be noted that diagnostic genetic markers are not yet
available to distinguish between most “paired” species (i.e., closely related parasitic
and non-parasitic lampreys; see Sect. 2.1.6; Chap. 4) and rearing lampreys in the
laboratory until they reach stages that can be definitively identified remains the best
way to verify species identification (Richards et al. 1982; Meeuwig et al. 2006).

Artificial propagation programs have also been proposed and erected to halt the
decline of species broadly distributed across the Northern Hemisphere. These include
the European river (Kainua et al. 1983; Kainua and Ojutkangas 1984; Ojutkangas
and Laukkanen 1985; Torronen et al. 1988; Aronsuu 2015), Arctic (Hokkaido Fish
Hatchery 2008) and Pacific (Close et al. 2002; Moyle et al. 2009; Luzier et al. 2011;
Lampman et al. 2016) lampreys. Artificial propagation programs provide animals
for research, or as broodstock for refuge sites should populations become extirpated.
This uptick in practical management concern has driven lamprey early life history
biology forwards once again, and there are now well characterized methodologies
for large-scale production of larval lampreys (Lampman et al. 2016). Developments
in this area could also aid research to control invasive sea lamprey in the Great Lakes
region (Sect. 2.1.5).

For species of conservation concern, producing sufficient numbers of embryos to
mitigate population decline requires a more industrial or mass-production approach
compared with experimental studies for research. Standardization of laboratory meth-
ods will allow replication when scaled up. Pacific lamprey has been the subject of
numerous such methodological investigations, and today, millions of its prolarvae can
be produced each year (Lampman et al. 2016). Early trials indicated that McDonald
jars could accommodate thousands of Pacific lamprey eggs in suspension (Meeuwig
et al. 2005). Similar approaches using upwelling jars were used for mass rearing
of European river lamprey; 10-L upwelling jars accommodated 200,000 eggs and
circulated the developing embryos to prevent clumping (Vikstrém 2002).
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For Pacific lamprey, emphasis has recently shifted from embryo production
(Lampman et al. 2016) to larval growth following the onset of exogenous feeding
(Barron et al. 2015). Dietary studies using very small larvae (<15 mm) have shown
promise in developing methods to promote and maintain growth in the laboratory
(see Sects. 2.6.5 and 2.6.7). The goal of this research is to produce healthy larvae of a
size large enough to escape early mortality when outplanted and to provide animals
for fish passage research without the need to mine wild stocks (Lampman et al. 2016;
Barron et al. 2017; Maine et al. 2017; Moser et al. 2017a, b).

2.1.5 Artificial Production in Support of Research Related
to Sea Lamprey Control

Artificial propagation of sea lamprey dates back to the 1950s, where relatively crude
methodologies were employed. Lennon (1955) documents hand-stripping gametes
from mature adults into glass jars containing water from Lake Huron that was
refreshed frequently. Despite the success in development through to hatching, the
authors were unable to induce prolarvae to burrow into sediment, or to feed. Piavis
and Howell (1969), however, were able to induce 50-71% of prolarvae to burrow
into sediment following development in distilled water, but did not report overall
mortality or growth rates.

Other early attempts to rear sea lamprey larvae in the laboratory were equally
underwhelming. In an unpublished study by Hanson and colleagues (cited in Hanson
et al. 1974), only 1.75% of 17,500 prolarvae survived after 4 months in aquaria
supplied with fully exchanged stream water, even when experimenting with various
diatom cultures for food. Hanson et al. (1974) achieved greater success following the
addition of yeast cakes (11.6-36.5% survivorship through year 1), even at extremely
high densities (>600 larvae per m?), and survival averaged 13.7% by the end of year
2. Growth rates during the first year of life when provisioned with this feed were as
high as 0.11 mm/day (Hanson et al. 1974), and average length of 1- and 2-year-old
larvae was 29.7 and 48.7 mm, respectively.

More recently, as a consequence of the success of an integrated program to control
the sea lamprey (see Chap. 5), there is now a limited availability of particular life
stages for research. Given that sea lamprey control aims to kill larvae before they
transform into parasitic juveniles, metamorphosing larvae and outmigrating juveniles
can be hard to collect in large numbers, and parasites and sexually mature males are
also limited. At face value, this appears to be a “good problem” to have, yet this
lack of specimens hinders further progress towards a more efficient and effective
control program. The Great Lakes Fishery Commission developed a rearing facility
for sea lamprey in the 1990s (Mike Steeves, Fisheries and Oceans Canada, Sea Lam-
prey Control Centre, Sault Ste. Marie, ON, personal communication, 2018). It was
initially designed to provide juveniles for mark-recapture studies to estimate over-
all population size, but some animals were also made available for basic research.
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Because of difficulties providing adequate nutrition in the laboratory and potential
density-dependent effects on metamorphosis (Dawson et al. 2015), a retrofitted out-
door raceway facility on a former fish farm was developed. The new rearing facility
allowed for the diversion of stream water to provide both cool fresh water and nutri-
ents to large larvae that could be held until metamorphosis. However, management
of the stream provisioning this rearing facility, coupled with a reduced flow rate
within the raceway, resulted in unsuitably high water temperatures as well as signif-
icant macrophyte growth and subsequent biological oxygen demand from decaying
organic matter. Furthermore, there was some indication that predators were getting
into the raceways and consuming larval sea lamprey. Furthermore, obtaining suf-
ficient numbers of large larvae to stock such facilities is still a major hurdle, and
it is exceedingly difficult to collect several thousand larval sea lamprey each year
as they approach the size (i.e., length >120 mm and weight >3.0 g) at which they
are expected to metamorphose (Manzon et al. 2015). If smaller larvae are collected,
more time is required until they will undergo metamorphosis. The U.S. Geological
Survey’s Hammond Bay Biological Station in Michigan currently maintains sev-
eral thousand larval sea lamprey for the extraction of larval odors used in research
(e.g., Meckley et al. 2014). These animals are maintained in large (1,000 L) outdoor
tanks provisioned with cool (5-10 °C) water drawn from Lake Huron. Therefore, it
is certainly feasible to hold these larvae for many months with minimal mortality,
but growth rates are unlikely to be high given low temperatures and the traditional
artificial diet of brewer’s yeast.

Future strategies to rear larval sea lamprey in significant numbers may include
the use of closed ponds capable of producing their own food supply, requiring little
maintenance until metamorphosis (Nicholas S. Johnson, U.S. Geological Survey,
Hammond Bay Biological Station, MI, personal communication, 2018). This has
previously been suggested as a means to restore Pacific lamprey populations on the
west coast of North America, where larvae have been found to colonize fish farm
abatement ponds in high densities (Nelson and Nelle 2007). Perhaps when it comes
to production of larval lampreys, these nature-like environments may be the most
successful (Kataoka 1985; see Sect. 2.6.8).

2.1.6 Artificial Production for Other Experimental Purposes

Despite the significant problems that must be overcome, the ability to successfully
and consistently rear larval lampreys through metamorphosis will represent a major
breakthrough for researchers. In particular, development of optimal egg fertilization
and rearing methods across a variety of species could help resolve the “paired species
problem” in lampreys (see Docker 2009; Chap. 4). Many sympatrically occurring
paired species can be observed spawning in the same nests (e.g., Manion and Hanson
1980; Lasne et al. 2010b; Rougemont et al. 2015, 2016) and evidence of contem-
porary gene flow (Docker et al. 2012; Rougemont et al. 2015, 2016) suggests that
they are capable of successfully hybridizing at least to some extent. Moderate larval



2 Lamprey Reproduction and Early Life History ... 199

survivorship has been achieved in vitro in a variety of species pairs: European river
and brook lampreys (Staponkus and Kesminas 2014; Hume et al. 2013), silver and
northern brook lampreys (Piavis et al. 1970), and western river and brook lampreys
(Beamish and Neville 1992), but hybrids have rarely been reared beyond the burrow-
ing prolarval stage (Table 2.1). Beamish and Neville (1992) reared the western river
and western brook lamprey hybrid larvae for 2.5 years, but it is still unknown what
happens at metamorphosis (i.e., when the two life history types diverge) or at matu-
rity. Rougemont et al. (2017) used genomic markers to identify first-generation (F1)
European river and brook lamprey hybrids, but a virtual absence of later-generation
hybrids suggests reduced hybrid survival or fertility. Hume et al. (2018) speculated
that the extent of hybrization ebbs and flows with relative abundance on the spawning
grounds. Testing for intrinsic postzygotic barriers in individuals of known parentage
would require robust animal husbandry methods that must be maintained for mul-
tiple years as genetic incompatibilities are generally best revealed in F2 hybrids or
when F1 hybrids backcross with one of the parental species (see Chap. 4). Difficulty
rearing lampreys from fertilization through metamorphosis (but see Sect. 2.6.8) has
also frustrated attempts at determining if feeding type in paired species is heritable
or plastic (i.e., environmentally determined). Neave et al. (2019) attempted common
garden and reciprocal transplant experiments with progeny of silver and northern
brook lampreys to see if the feeding type of offspring was always the same as that
of their parents, but mass mortality of developing larvae resulted in inconclusive
findings.

Elucidating the genetic basis of sex determination in lamprey has also been ham-
pered by the challenges associated with maintaining larvae in the laboratory for pro-
longed periods of time while trying to adequately mirror natural conditions. Observed
correlations between sex ratio and larval density or growth rate, for example, have
led to suggestions that lamprey sex determination may be influenced by environmen-
tal conditions (e.g., Docker and Beamish 1994; Johnson et al. 2017; see Chap. 1).
However, attempts to test the effect of density on sex ratio under controlled condi-
tions were inconclusive because survival and growth rates were low, and it was not
possible to exclude differential mortality between the sexes (Docker 1992).

2.2 Artificial Propagation: Broodstock Holding

In parasitic lampreys, there is high intra- and interspecific variation in the duration of
pre-spawning maturation in rivers (Applegate 1950; Clemens 2011; Aronsuu et al.
2015; see Moser et al. 2015). Whereas sea lamprey of both the anadromous and Great
Lakes populations spend only 1-2 months inrivers before spawning (Applegate 1950;
Almeida et al. 2002; Clemens et al. 2010), many populations of European river and
Pacific lampreys overwinter in fresh water prior to reproduction (Masters et al. 2006;
Clemens et al. 2012; Starcevich et al. 2014; Aronsuu et al. 2015; see Chap. 1).
Overwintering individuals cease upstream migration when water temperature drops
following the autumn season; they become passive and hide in refuges from predators
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and light (Robinson and Bayer 2005; Lampman 201 1; Clemens et al. 2012; Starcevich
etal. 2014; Aronsuu et al. 2015). European river lamprey enter into an energy-saving
hypometabolic state during these winter months, resuming higher levels of activity
with increased river discharge in spring (Abou-Seedo and Potter 1979; Gamper and
Savina 2000). Hence, adult lampreys used for artificial propagation (broodstock) need
to be provided with conditions that allow energy conservation during this extended
period, in addition to cues necessary for successful final maturation.

2.2.1 Broodstock Density

When housed in aquaria for artificial propagation purposes, pre-spawning lampreys
can be maintained in high densities, if they have adequately cool, clean, and well-
oxygenated water. In Finland, hatcheries maintain densities as high as 2,000 European
river lamprey adults/1,000 L of water (Vikstrom 2002). These lamprey can also sur-
vive through the winter beneath river ice when held in 200-L barrels provided with
small-diameter holes for water exchange. Under these conditions, densities of up to
20 kg per barrel were successfully held (Jukka Pakkala, Centre for Economic Devel-
opment, Transport and the Environment for South Ostrobothnia, Kokkola, Finland,
personal communication, 2017).

Experience housing adult pre-spawning Pacific lamprey indicates that this species
can also tolerate unnatural conditions (i.e., tanks without substrate) and high den-
sities. For translocation and artificial propagation programs, Pacific lamprey brood-
stock are held at densities up to 60 kg/1,000 L or ~150 individuals/1,000 L. However,
much higher densities are often observed in fishways and at winter aggregation areas
below dams (Fig. 2.3). Winter temperatures during broodstock holding range from
2.8 to 15.5 °C, and mortality and disease incidence is very low under these condi-
tions. However, as Pacific lamprey reach final sexual maturation and temperatures
increase, they become more susceptible to Aeromonas salmonicida infection. Up to
21% of adults sacrificed following use for artificial propagation tested positive for
this bacterium (Moser et al. 2016).

2.2.2 Broodstock Environmental Conditions

Providing adult lampreys with a sufficient flow of clean, oxygenated water is critical
during winter holding. High flow rates of either oxygenated well water (with complete
water turnover in 25-30 min) or natural spring water (19 L/min) have been used to
maintain the high densities of Pacific lamprey described in Sect. 2.2.1. In Finland,
European river lamprey adults were housed at water flows of 100 L/min (~1 L/min/kg
lamprey; Vikstrom 2002).

Low pH and high metal concentration can deteriorate the quality of eggs during the
wintering period of adults (Mienpii et al. 2001). In Finland, European river lamprey
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Fig. 2.3 Dense aggregation
of pre-spawning Pacific
lamprey at a Columbia River
fishway (Photo © Donald
Larsen)

were held overwinter in upriver sites with high water quality (pH >5.5, aluminium
concentration ~3 mg/L) and downriver sites where water quality was degraded (pH
5.2-5.5 and aluminium concentrations up to 4 mg/L). Egg fertilization was 85% in
the upriver sites but only 55% in the downriver sites. Low fertilization rates were
noted even when there were no obvious ill effects on the adults (Mienpéd et al. 2001).

In natural conditions, pre-spawning lampreys overwinter in darkened sites that
are sheltered from direct water flow (Lampman 2011; Clemens et al. 2012; Baker
et al. 2017). At high latitudes, they can overwinter beneath ice covered with snow.
In Finland, European river lamprey housed through winter for artificial propagation
increased their activity and restlessness when exposed to bright light during the
day when no shelter was provided. This was presumed to increase stress levels, as
lamprey housed in uncovered tanks had significantly higher mortality rates than those
in dark, covered tanks (Juha livari, Natural Resource Institute, Keminmaa, Finland,
personal communication, 2016). Langille and Hall (1988) also observed that sea
lamprey exposed to a cycle of 16 h light:8 h dark were more agitated than those
kept in dim light or complete darkness. These authors recommended maintaining
pre-spawning lampreys in low or no-light conditions to reduce motor activity and
decrease associated mortality.

However, lamprey broodstock held without any environmental cues can fail to
mature, lack synchrony, and may even die without releasing eggs (Lampman et al.
2016). Piavis (1961) recommended that sea lamprey broodstock be held in complete
darkness, but did not report on the percentage of fish that achieved full maturation.
Of Pacific lamprey held in dark, coolwater tanks through winter and up to the time
of spawning without provision of rocky substrate, only about half matured, even
when both sexes were held together (Aaron D. Jackson, unpublished data). Hence,
other cues may be required to stimulate final maturation (e.g., presence of substrate,
mates, temperature fluctuation, or appropriate photoperiod; see Johnson et al. 2015).
Johnson et al. (2012) concluded that the presence of male mating pheromones is
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likely an important trigger that synchronizes maturation. Further studies are needed
to investigate the effect of pheromone presence or absence on the timing of final
maturation.

2.3 Artificial Propagation: Broodstock Maturation

Development of species-specific secondary sexual characteristics are signs that mat-
uration in lampreys is complete, including changes to the shape, position, and size
of dorsal fins; shape of abdomen, and extension of the urogenital papilla (Hagelin
and Steffner 1958; Kataoka et al. 1980a; Larsen 1980; Mesa et al. 2010; Johnson
et al. 2015). In pouched lamprey Geotria australis, this includes the elaboration of
the gular pouch in males and a raised dorsal ridge in females (Baker et al. 2017).
In Pacific and European river lampreys, the closing of the gap between the two
previously separated dorsal fins is also a good indicator of reproductive readiness
(Vikstrom 2002; Clemens et al. 2009; Lampman et al. 2016). In artificial propaga-
tion programs, these characteristics are used for monitoring the maturation process
and for segregating by sex or maturity level. This eases operational workflow during
the fertilization process and prevents potential volitional spawning of broodstock in
holding tanks (Vikstrom 2002; Lampman et al. 2016).

2.3.1 Broodstock Substrate

Lampreys rarely spawn in bare holding tanks, even when both sexes are present
(Juha Tivari, Natural Resource Institute, Keminmaa, Finland, personal communica-
tion, 2016). Many studies indicate that unidirectional flow and a gravel substrate are
required for lampreys to spawn in captivity (Hagelin 1959; Fredricks and Seelye
1995; Kusuda 2012; Aronsuu and Tertsunen 2015). Sea lamprey spawning was
induced in static thermal conditions at 18 4 2 °C by providing adults with 3—6 cm
diameter substrate and a circulating water velocity of 0.2-0.3 m/s (Fredricks and
Seelye 1995). Lack of these environmental factors may be one reason why lampreys
do not readily spawn in holding tanks.

All lampreys are semelparous and most die shortly after spawning (Johnson et al.
2015; but see Baker et al. 2017). According to Hagelin (1959), wild lampreys may
fail to spawn if they are unable to locate suitable spawning ground. Vikstrom (2002)
observed that European river lamprey died in captivity within 48 h of completing
maturation if they were not hand-stripped of their gametes. Pacific lamprey also will
die without spawning if suitable substrate is not provided; thus, regular assessment
of maturation state is critical for artificial propagation of this species (Lampman et al.
2016).
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2.3.2 Broodstock Temperature

Rising water temperature in spring apparently triggers final maturation and spawning
in both the laboratory (Vikstrém 2002; Clemens et al. 2009; Moser et al. 2018) and in
the field (Larsen 1980; Binder and McDonald 2008a; Binderetal. 2010; Cochran et al.
2012; see Johnson et al. 2015). In the wild, lampreys often begin final maturation and
spawn when temperatures approach 10-14 °C (Applegate 1950; Hagelin and Steffner
1958; Kan 1975). However, Larsen (1980) reported that European river lamprey
held in the laboratory can mature even when kept at a stable temperature of 6 °C.
At temperatures >7 °C, only 70% of European river lamprey males matured (Cejko
et al. 2016). European brook lamprey typically will not start spawning activities
until water temperature reaches at least 10—11 °C (Hardisty 1961b). For sea lamprey,
the temperature threshold is higher, at ~15 °C, and spawning occurs closer to 20 °C
(Applegate 1950; Gardner et al. 2012). Peak spawning of Pacific lamprey is typically
observed at ~13-15 °C (Brumo 2006; Starcevich et al. 2014) and pouched lamprey
was observed to spawn when stream temperatures were 10-13 °C (Baker et al. 2017).

Under natural conditions, the spawning period of European river lamprey has
been reported to last for several weeks (Jang and Lucas 2005), as has the spawning
period for sea lamprey in the Great Lakes (Applegate 1950). In Pacific lamprey,
the natural spawning period may extend over 2 months (Brumo 2006). There is a
tendency for the spawning season to be shortest at high latitudes and when water
temperatures are steady and high; spawning periods are longer when temperatures
are low and variable (Hardisty and Potter 1971; Johnson et al. 2015). Aquaculture
of European river lamprey demonstrated that when water temperature continues
to rise after exceeding 10 °C in spring, almost all overwintered lamprey mature
within 1-3 days (Vikstrom 2002; Juha [ivari, Natural Resource Institute, Keminmaa,
Finland, personal communication, 2016) and are ready for hand spawning shortly
thereafter (Fig. 2.4). However, if temperature dropped near or below 10 °C, there
was asynchrony in timing of maturation, and maturation could cease completely for
weeks (Vikstrom 2002). For Pacific lamprey held under identical tank conditions,
maturation rate tends to vary considerably among individuals (Lampman et al. 2016).

Temperature regimes that adults experience well before spawning can also influ-
ence maturation. In Finnish rivers, European river lamprey overwinter at close to 0
°C, and temperature during winter fluctuates very little. In contrast, the freshwater
pre-spawning period for Pacific lamprey and pouched lamprey may last more than a
year (Moser et al. 2015; Baker et al. 2017; see Chap. 1). Pacific lamprey broodstock
are typically maintained at higher temperatures (2.8—15.5 °C) than European river
lamprey. Clemens et al. (2009) showed that holding temperature during summer has
a pronounced effect on maturation the following spring. In their experiments, Pacific
lamprey held during summer at 13.6 °C experienced less weight loss and later mat-
uration than those held during summer at 21.8 °C. In addition, all Pacific lamprey
held at higher summer temperatures matured in spring, while only 53% of those held
at lower summer temperatures matured (Clemens et al. 2009).
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Fig. 2.4 Water temperature (°C, blue) and the numbers of degrees-days for female European river
lamprey to reach maturity (pink) in 1997-2001 (This figure was originally published in Vikstrom
(2002) and reproduced with permission of R. Vikstrom.)

2.3.3 Broodstock Photoperiod

Pre-spawning lampreys are best held in low or no-light conditions (see Sect. 2.2.2).
When fully mature, however, lampreys lose their negative phototactic response
(Sjoberg 1977; Binder and McDonald 2008b), which may indicate that photope-
riod has an effect on maturation and therefore spawn timing. European river lam-
prey, when maintained in captivity under low light levels, matured later than those
exposed to brighter lights and an ambient photoperiod (Vikstrom 2002). However,
many studies show that light is not an important factor controlling final maturation,
as lampreys have completed maturation even when maintained in complete darkness



2 Lamprey Reproduction and Early Life History ... 205

Fig. 2.5 Proportion of
sexually mature male (dark
blue), mature female (light
red), and immature

(gray) Pacific lamprey held
under complete darkness,
artificial light (12:12), and
natural lighting (01
March-30 June 2017) (This
figure was originally
published in Moser et al.
(2018) and reproduced with
permission of the authors.)
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(Larsen 1980; Langille and Hall 1988) or have matured early as a consequence of
increased temperatures (Brumo 2006; Cochran et al. 2012).

To assess this further, adult Pacific lamprey broodstock were held under three
light treatments: natural lighting, a 12:12 artificial light regime, and in complete
darkness during final maturation in March—June (Moser et al. 2018). Three replicate
tanks containing 300 individuals were used for each treatment, and maturation state
of each lamprey was assessed monthly. Lamprey held in complete darkness matured
earlier than those exposed to either artificial lighting or natural light cycles (Fig. 2.5).
However, there was no significant difference among treatments in the overall pro-
portion of fish that matured (darkness = 44%, artificial light = 46%, natural light
= 38%). These results suggest that photoperiod mediates the timing of maturation
somewhat, but does not appear to trigger this process.

2.4 Artificial Propagation: Fertilization Methods

In vitro fertilization has been conducted in locations worldwide using a variety of
large-bodied parasitic lampreys: Arctic lamprey in Japan (Kobayashi 1993; Yamazaki
and Goto 1997; Fukutomi et al. 2002; Hokkaido Fish Hatchery 2008), Pacific lam-
prey in Japan and the Pacific Northwest (Yamazaki et al. 2003; Lampman et al.
2016), sea lamprey in the Great Lakes region (Langille and Hall 1988; Fredricks
and Seelye 1995; Ciereszko et al. 2000, 2002) and in Spain (Rodriguez-Muiioz et al.
2001; Rodriguez-Muiioz and Ojanguren 2002), and European river lamprey in Russia
(Ryapolova and Mitans 1991) and Finland (Vikstrom 2002) (Table 2.1). In addition,
in vitro fertilization has also been conducted using several species of non-parasitic
(brook) lampreys: Far Eastern brook lamprey in Japan (Fujimoto and Takaoka 1960),
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western brook lamprey in the Pacific Northwest (Ralph T. Lampman, unpublished
data), and European brook lamprey in Scotland (Hume et al. 2013). The most salient
difference among species is the much greater number of eggs produced by the large-
bodied lampreys since fecundity increases approximately with the cubic power of
length (see Chap. 1). Number of eggs, for example, averages more than 140,000 and
170,000 in Pacific and sea lampreys, respectively (Kan 1975; Beamish and Potter
1975) versus the smaller-bodied parasitic (e.g., ~37,000 in European river lamprey;
Witkowski and Jesior 2000) and non-parasitic species (e.g., ~1,500 in northern brook
lamprey; Vladykov 1951). Otherwise, in vitro fertilization methods have been sim-
ilar across these species, and researchers have been able to build on earlier work
conducted, even if it was with a different species (Lampman et al. 2016).

2.4.1 Number of Parents

Lampreys in the wild visit multiple nests and contribute to multiple clutches (Cochran
et al. 2008; Johnson et al. 2015). This observation has been confirmed by parentage
analysis paired with nest mapping for wild Pacific lamprey (Whitlock et al. 2017) and
Great Lakes sea lamprey (Scribner and Jones 2002). Whitlock et al. (2017) reported
that the same parents contributed to progeny in nests that were up to 8§15 m apart.
For smaller-bodied lamprey species (e.g., chestnut lamprey, Arctic lamprey, and
European river lamprey), communal spawning is typical, and dozens of individuals
have been counted in one spawning excavation (Case 1970; Savvaitova and Mak-
simov 1979; Jang and Lucas 2005; Lasne et al. 2010b). The larger-bodied sea and
Pacific lampreys have been described as monogamous tending toward polygynous,
although they appear to show variation in their mating systems (Johnson et al. 2015;
Baker et al. 2017) and recent genetic evidence indicates that in Pacific lamprey, both
polygyny and polyandry may be more common than previously believed (Whitlock
etal. 2017). Thus, polygynandry (i.e., multiple males mating with multiple females)
appears to be the most prevalent mating system in lampreys (Johnson et al. 2015). For
this reason and to maximize genetic diversity, Pacific lamprey propagation protocols
emphasize use of multiple males to fertilize eggs from multiple females (Lampman
et al. 2016).

There is some limited evidence for lack of sperm dominance in lampreys. Parent-
age analysis in studies with both propagated Pacific lamprey (Hess et al. 2015) and
wild sea lamprey (Scribner and Jones 2002) have successfully assigned progeny to
known parents at very high rates (>95%), with lack of assignment likely owing to
poor DNA preservation quality. In a common garden experiment with propagated
Pacific lamprey, the number of progeny assigned to two females and three males in
the family were roughly in proportion to the quantity of gametes contributed by each
parent (Hess et al. 2015). This result hints that sperm competition may be similar
across males of this species. Moreover, these results indicate that parentage assign-
ment can help elucidate mating systems for lampreys and allow estimation of the
numbers of successful wild spawners (Hess et al. 2015; Whitlock et al. 2017).
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2.4.2 Fertilization Timing

To maximize the quality and quantity of gametes obtained for artificial propagation,
timing of gamete harvest is critical. In sea and Pacific lampreys, forcefully stripping
gametes can result in premature adult mortality, damaged gametes, and unsuccessful
egg development (Langille and Hall 1988; Lampman et al. 2016). For these reasons,
it is important that during gamete harvest the adults are at a high plane of anesthesia
and that the gametes are allowed to flow with minimal pressure (Fig. 2.6). Surgical
removal of Pacific lamprey eggs when females were not quite ready (based on sec-
ondary sexual characteristics) resulted in lower mean fertilization success (63.4%)
than surgical removal of eggs when the female was fully ripe (90%, Moser et al.
2016).

There is only slight interspecific variation in behavior among the Northern Hemi-
sphere lampreys (family Petromyzontidae) during the spawning act (Johnson et al.
2015). Spawning begins when the female attaches to a large rock or stone and orients
her body with the water flow. The male approaches the female from behind, attaches
to the female’s head, and wraps the lower half of his body around the female, form-
ing a loose coil around her trunk. This tail-loop is then tightened and both male and
female raise their branchial region up from their anchor point at an acute angle and
violently vibrate and thrash their tails for several seconds. This results in the expul-
sion of ova and milt into a gravel depression, which is rapidly covered in sand and
small gravel. Eggs typically adhere to the downstream ridge of the nest (Applegate
1950; Hagelin 1959). Only a portion of eggs, if any, is released during a single spawn-
ing (Huggins and Thompson 1970; Yamazaki and Koizumi 2017). Thus, spawning
in the wild can last several days for each individual, and superimposed spawning is
common (Manion and Hanson 1980; Jang and Lucas 2005; Brumo 2006). Pouched
lamprey nests and post-spawning behavior were recently described by Baker et al.
(2017), but spawning behavior has not yet been reported in any of the four Southern
Hemisphere species (families Geotridae and Mordaciidae).

Artificial propagation programs have taken advantage of the fact that reproduc-
tively mature lampreys can be successfully spawned multiple times, over the course
of several days in females to >1 week in males (Hagelin and Steffner 1958; Langille

Fig. 2.6 Expressing eggs
from a fully anesthetized
female Pacific lamprey
(Photo © Ralph T.
Lampman)
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and Hall 1988). This has allowed a greater number of pairings when lamprey brood-
stock are limited (Lampman et al. 2016). Close synchrony between male and female
reproductive readiness is key and is likely mediated by a number of cues: environ-
mental (temperature and photoperiod), physiological (neuroendocrine activity and
pheromone production), and behavioral (presence of mates and nest-building activ-
ity) (see Johnson et al. 2015; Sower 2015).

2.4.3 Gamete Viability and Contact Time

Lamprey gametes are generally viable for much longer than those of other fishes
(Johnson et al. 2015; see Chap. 1) and are resilient to environmental changes, which
allows for flexibility in artificial propagation programs. Eggs from freshly dead lam-
preys can still be viable, and there is good evidence that both eggs and milt are still
viable at environmental temperature after several hours (Lampman et al. 2016; see
Chap. 6). For Pacific lamprey gametes held at 4 °C, fertilization success was lower
after 24 h for eggs and after 3 days for milt (Moser et al. 2016). In these studies,
sperm motility could be extended for another day with provision of oxygen, and there
was some evidence that cryopreservation methods might be successful (Lampman
et al. 2016). Similarly, >95% viability was observed in sea lamprey eggs after 24 h
storage at 15 °C, but viability decreased to <20% after 3 days; >60% fertilization
was achieved with milt stored at 1 °C for 2 days (Ciereszko et al. 2000).

In production of lampreys for conservation purposes, particularly non-parasitic
species that produce only ~1,000-2,000 eggs (see Sect. 2.4; Chap. 1), artificial prop-
agation methods need to yield maximal fertilization success while minimizing egg
loss from damage or adhesion. Lampman et al. (2016) found that a 2-5% solution
of milt from one or more males mixed directly with ova, followed by the immediate
addition of culture water at a volume representing 1-1.5x the egg weight, maximized
fertilization. They recommended very short gamete contact and holding times (30 s
each) before a thorough rinsing of the eggs with culture water before installation in
incubation chambers. Recommendations for European river lamprey fertilization are
quite similar (Jadskd 2002). Sea lamprey eggs could be fertilized for up to 1 h after
contact with fresh water (Ciereszko et al. 2000), but the ability of sperm to fertilize
them was only 27% just 2 min after activation (Ciereszko et al. 2002). Interestingly,
sea lamprey sperm motility could be increased slightly by incubation in water con-
taining 4% female coelomic fluid or water that had contained eggs (Ciereszko et al.
2002). Very short gamete contact times and low levels of egg tumbling after fertil-
ization in the laboratory are consistent with conditions in the wild. Spawning occurs
in flowing streams, so gametes are likely in contact for very short periods of time.
Since eggs are adhesive immediately upon water hardening (see Sect. 2.4.4), both
fertilized and unfertilized eggs can quickly acquire a coating of sand or silt parti-
cles. This may result in retention on or near the nest excavation and protection from
excessive tumbling (Silva et al. 2014b).
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2.4.4 Egg Adhesion

Lamprey eggs are highly adhesive (Yorke and McMillan 1979) and this characteristic
has important implications for survival both in the wild and in the laboratory. In the
wild, lamprey eggs adhere to a small amount of sand that helps to embed them in the
interstices of gravel substrates (Applegate 1950). In addition, small sand particles
may separate eggs from one another, functioning to prevent mortality from fungus
(Smith and Marsden 2009). The lamprey egg coating includes both an amorphous
apical tuft over the animal pole and a heavily textured coating over most of the rest
of the egg (Yorke and McMillan 1979). These coatings allow lamprey eggs to stick
to rocks and help to anchor them in the relatively benign nest environment.

For artificial propagation, egg adhesion can cause loss or clumping of eggs that
leads to increased incidence of fungal infection (Piavis 1961; Vikstrom 2002; Lamp-
man et al. 2016). Yorke and McMillan (1979) found that egg adhesiveness could be
diminished by exposure to various proteins and sulphydryl-blocking agents. Lamp-
man et al. (2016) reported that immersion of newly fertilized eggs in a 1% solution
of fresh pineapple juice for 1-2 min could completely inhibit the adhesive capac-
ity of the egg coating without affecting egg viability. Gentle rinsing of fertilized
eggs in culture water also helps to reduce clumping and spread eggs more evenly in
incubation chambers (Vikstrom 2002; Lampman et al. 2016).

While egg adhesion has important consequences for lamprey culture operations,
investigation of the role of egg adhesion in the wild might have equally important
ramifications for lamprey conservation or control. Lampreys do not always properly
cover the eggs after spawning, and eggs deposited in the excavation are easily flushed
out of the depression by ongoing spawning activity (Huggins and Thompson 1970)
or water flow (Silva et al. 2014b). Consequently, it has been hypothesized that most
fertilized eggs drift downstream from the excavation during the spawning act or
soon thereafter and incubate somewhere below the nest (Manion and Hanson 1980;
Smith and Marsden 2009; Silva et al. 2014b). Silva et al. (2014b) proposed that the
nests of European river lamprey may function as egg dispersal structures rather than
as egg shelter structures. In contrast, pouched lamprey egg masses adhere to the
underside of a boulder and are thereby protected from water currents and predators
(Baker et al. 2017). The male has been observed to “groom” the eggs with his gular
pouch, which may reduce the incidence of fungal infection. The pouched lamprey
larvae have adhesive tails that allow them to remain adhered to the nest boulder for
at least 2 weeks after hatching. Understanding the role of egg/larval adhesion may
provide insights into mechanisms of early embryo mortality such as susceptibility to
predation, protection of incubation habitats, and the role of nest building for various
species.
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2.5 Artificial Propagation: Incubation Methods

Lampreys spawn in fast-flowing parts of rivers, such as pool tailouts, glides, and
deep riffles, where substrate consists of gravel often mixed with sand and cobbles
(Jang and Lucas 2005; Brumo 2006; Gunckel et al. 2009; Nika and Virbickas 2010;
see Johnson et al. 2015). There is a tendency for larger species to spawn in deeper
sites with higher water velocities and coarser substrate than smaller species (e.g.
Applegate 1950; Sokolov et al. 1992; Takayama 2002; Gunckel et al. 2009; Nika
and Virbickas 2010). Such differences in spawning habitats indicate that incubation
conditions for eggs could differ among species. Consequently, there may be variation
among lamprey species in optimal methods of artificial incubation.

Identifying the environmental conditions required for successful egg incubation
is fundamental to any artificial propagation program. For conservation and restora-
tion of lamprey species, incubation success is particularly important. Broodstock of
depleted populations may be difficult to obtain, and production of fertilized eggs
can be limited by both synchrony in adult maturation and gamete viability. Hence,
maximizing incubation success has been a primary objective of many native lamprey
propagation efforts (Rodriguez-Muiioz et al. 2001; Vikstrom 2002; Hokkaido Fish
Hatchery 2008; Lampman et al. 2016).

2.5.1 Incubation Temperature

Lamprey eggs typically hatch in 1-4 weeks, and temperature has a profound effect
on incubation timing and, ultimately, the survival and success of larvae (Potter 1980;
Dawson et al. 2015). In sea lamprey cultured at 18.4 °C, Piavis (1961) observed
hatching at 10-13 days post-fertilization. With increasing temperature, Rodriguez-
Muiioz et al. (2001) found that mean time to 50% hatch decreased from 27 days at
11 °C to 7.5 days at 23 °C, but exposure to temperatures above 19 °C resulted in
mortality of larvae. Field observations of incubation temperature for sea lamprey in
the River Stella in northern Spain indicated that eggs incubate at 11-20 °C in the
wild (Rodriguez-Mufioz et al. 2001). In a similar field study, most Pacific lamprey
egg incubation was found to occur when stream temperature ranged from 9 to 16 °C
(Fig. 2.7; Aaron D. Jackson, unpublished data). However, in the laboratory, Pacific
lamprey eggs were successfully incubated at 20 °C (Alexa N. Maine, Confederated
Tribes of the Umatilla Indian Reservation, Pendleton, OR, personal communication,
2018).

In the laboratory, Pacific lamprey typically require 184-294 cumulative degree-
days for incubation (Yamazaki et al. 2003; Meeuwig et al. 2005; Lampman et al.
2016). Arctic lamprey hatched in 234 degree-days (18 days at 11.8-12.9 °C; Hosoya
et al. 1979). Experience from the artificial propagation of European river lamprey
indicates that egg incubation takes 1-3 weeks, depending on water temperature. Usu-
ally, hatching starts after 190-220 degree-days, and all eggs will have hatched after
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Fig. 2.7 Hourly water temperature (gray line) and moving average of 24 h (black line) in an
Umatilla River tributary (Meacham Creek, OR). The number of new viable Pacific lamprey nests
observed (numbers above arrows) is shown for a 0.9 km reach (Aaron D. Jackson, unpublished
data)

an additional 50 degree-days. However, if temperature rises soon after fertilization
(up to 20 °C), all hatching can occur within just 150 degree-days (Vikstrom 2002).

Fertilized lamprey eggs are very resilient to periods of high temperature and to
abrupt changes in temperature. Upper temperature limits during embryonic devel-
opment appear similar among lamprey species. Both Pacific and western brook lam-
preys suffer highest mortality rates at temperatures >22°C (Meeuwig et al. 2005). Sea
lamprey embryos can survive at temperatures >21.1 °C (Piavis 1961) and perhaps as
high as 23 °C (Piavis 1971; Rodriguez-Mufioz et al. 2001). With respect to tolerance
for rapid temperature changes, Pacific lamprey embryos have been successfully held
at 5 °C for 24 h during transport and returned immediately to the initial incubation
temperature (13 °C) with no appreciable mortality. This is not surprising, as lamprey
eggs in the wild are likely exposed to rapid and substantial changes in temperature
during spring freshets and periods of intense solar radiation. For example, in the
Umatilla River drainage in northeastern Oregon, temperature can vary by more than
6 °C in a day (Fig. 2.7), yet 60—-100% of the eggs in Pacific lamprey nests were
typically viable (Fig. 2.8; Aaron D. Jackson, unpublished data).

2.5.2 Photoperiod and Water Quality

Although temperature is clearly a factor that controls the timing of Pacific lamprey
embryonic development, considerable variation in hatch timing (15-23 d) has been
observed between years or among individuals even when temperature was nearly con-
stant (Fig. 2.9). In 2015, embryos from the same female held in replicate chambers
(n = 15) with no flow in a 14 °C water bath were checked daily for developmental
changes. Three water sources were tested (n = 5 replicates per treatment): natu-
ral creek water; de-chlorinated, UV-irradiated city water; and the city water source
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Fig. 2.8 The percentage of viable Pacific lamprey eggs at stages 12—14 in 11 nests from Meacham
Creek (gray bars), and two nests in the mainstem Umatilla River (white bars); tkm is river kilometers
from the creek or river mouth (Aaron D. Jackson, unpublished data)
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Fig. 2.9 Frequency distribution of individual hatch dates for Pacific lamprey held in static con-
ditions at 14 °C. Eggs from one female in 2015 were incubated in natural creek water (black),
conditioned city water with no conspecifics (gray), or conditioned city water with larval lamprey
(white); eggs from one female in 2016 (hatched) were incubated in conditioned city water with
larval lamprey (This figure was originally published in Maine et al. (2017) and reproduced with
permission of the authors.)

with conspecific larvae present. The three water treatments did not affect survival
to hatching or median incubation period. However, in the following year, median
hatch times were shifted by several days. The only differences between study years
were the parents used and a slight change in natural photoperiod; spawn dates were
21 April 2015 and 05 May 2016 (i.e., 2 weeks earlier in 2015) and day-length on
the spawning dates was 13.9 h in 2015 and 14.6 h in 2016 (Maine et al. 2017).
Piavis (1961) and Kataoka et al. (1980b) recommended incubation of lamprey eggs
in darkness to synchronize hatching.

Piavis and Howell (1969) reported that sea lamprey embryos could be incubated in
distilled water, thereby potentially reducing the potential for fungal infection. Alter-
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Fig. 2.10 Percentage of viable Pacific lamprey eggs from subsamples examined at 1, 4, 6, and
11 days post-fertilization following multiple disinfection treatments at 3-day intervals (i.e., twice
weekly; black triangles), those exposed to a single initial disinfection immediately after fertiliza-
tion (open circles), and for non-disinfected controls (black diamonds) (This figure was originally
published in Moser and Jackson (2013) and reproduced with permission of the authors.)

natively, Pacific lamprey embryos up to 4 days old can be safely disinfected by 10-min
immersion in a 100-parts per million (ppm) buffered iodophor bath (Fig. 2.10). For-
malin was also successfully used to disinfect fertilized Pacific lamprey eggs up to
14 days after fertilization when used at a concentration of 0.8 mg/L (1:1,250) for
continuous exposure (Maine et al. 2017) and at a dilution of 1.7 mg/L (1:600) for
embryos 3—10 days after fertilization (Lampman et al. 2016).

These results indicate that early lamprey embryos are generally resilient to water
quality insults. However, they become more sensitive to water quality as they near
hatching (Lampman et al. 2016). Myllynen et al. (1997) showed that incubation
of European river lamprey embryos in water with low pH (5-6), high aluminum
(0.45-0.6 mg/L), and/or high iron (1.5-3 mg/L) concentrations caused reduced hatch-
ing rates and low larval survival. Controls held in low pH without heavy metals were
unaffected.

2.5.3 Water Flow and Substrate

Lamprey eggs can be incubated successfully in both flowing and static water condi-
tions. In experiments where eggs from the same Pacific lamprey female were held
under flowing (2 L/min) and static conditions with UV-irradiated water, there was no
difference in survival to hatching (Fig. 2.11). This is not a new development, as the
eggs of many lamprey species have been cultured in static conditions for embryolog-
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Fig. 2.11 The percentage of Pacific lamprey embryos that survived to hatching (% developed; stage
14) for each spawn date in flowing (2 L/min, black bars) or static (white bars, photo inset) conditions
(This figure was originally published in Maine et al. (2017) and reproduced with permission of the
authors.)

ical studies (e.g., Damas 1944; Piavis 1961; Kuratani et al. 1997; Yamazaki et al.
2003; Hokkaido Fish Hatchery 2008). However, the experiment was interesting in
light of the fact that, in the wild, adult lampreys typically build nests in flowing water
(Johnson et al. 2015), where the eggs would potentially be exposed to some degree
of turbulence and hyporheic flow (Fixler 2017).

Laboratory observations of spawning activity by both European river and Pacific
lampreys indicate that adults seek out areas of relatively high flow for egg fertilization
and incubation. Aronsuu and Tertsunen (2015) observed that regardless of substrate
provided, European river lamprey constructed nests near tank walls, where current
velocity was lowest. Pacific lamprey also selected areas near water inlets for nest
construction (Alexa N. Maine, Confederated Tribes of the Umatilla Indian Reser-
vation, personal communication, 2017). Yet current velocity measurement of nests
constructed by European river lamprey in the wild indicated that water velocities
near the nest bottom (2 cm from the substrate) can be less than half those at a height
of 10 cm above the substrate (Aronsuu and Tertsunen 2015). For Pacific lamprey
nests measured in the Umatilla River basin (n = 18), water velocity 5 cm above the
substrate inside the nest averaged 15.3 cm/s and ranged from O to 41 cm/s (Aaron
D. Jackson, unpublished data). Therefore, eggs that adhere to the bottom of the nest
or become wedged in substrate may experience very low flows during incubation in
the wild.

Smith and Marsden (2009) incubated sea lamprey eggs on a variety of substrates
and found that they were relatively insensitive to suffocation: survival to at least stage
12 (Piavis 1961; see Sect. 2.1.2) was not significantly different for eggs incubated
in sand and silt treatments. In the laboratory, proliferation of fungus can occur when
lamprey eggs are incubated in low to no-flow conditions (Piavis 1961; Lampman
et al. 2016). This may be the reason that wild lampreys spawn in areas where eggs
will be exposed to enough current velocity to protect them from fungal infestation.



2 Lamprey Reproduction and Early Life History ... 215

Eggs that become covered with a thin layer of particles may be somewhat protected
from fungal infection (Smith and Marsden 2009). Thus, eggs that are inadvertently
flushed from the nest (up to 86% of a clutch; Manion 1968; Manion and Hanson
1980) are susceptible to predation (Applegate 1950; Manion 1968), but may not
suffer from deposition on silty substrate (Smith and Marsden 2009).

2.5.4 Incubation Mortality

Survival of eggs to hatching in the laboratory can be 100% under ideal conditions
(Fig. 2.11), but stage-specific mortality rates of embryos in the wild are difficult to
assess. Kujawa et al. (2017) noted hatching rates of only 10% in wild European river
lamprey. In a study in the Umatilla River drainage, eggs were collected from freshly
constructed nests of Pacific lamprey (n = 16, Fig. 2.8; Aaron D. Jackson, unpublished
data). After eggs had developed to at least stage 12 (Piavis 1961), a sample of 200
eggs was taken from each nest, fixed in 10% formalin, and assessed for viability under
a dissecting microscope. Eggs were classified as unviable if covered with fungus or
deformed. Several nests had 100% viable embryos. Of the dead embryos, 75% were
infested with fungus and 25% had developmental deformities. These conditions have
also been described for eggs incubated under controlled laboratory conditions (Piavis
1961; Lampman et al. 2016). Moreover, 19% of the nests did not contain enough
eggs for an adequate sample. Similarly, Whitlock et al. (2017) reported that over
half of the Pacific lamprey nests they sampled in a western Oregon stream did not
contain any eggs. Whether these empty nests represent test digging, failed spawning
attempts, scouring, or losses from disease or predation is unknown.

2.6 Artificial Propagation: Rearing Early Larvae

Developing methods to rear early stages of fish at the production level is notoriously
difficult (Sifa and Mathias 1987; Kujawa et al. 2017). Many fish species exhibit a
critical period between hatching and first feeding, as hypothesized by Hjort (1914,
1926). As fish switch from endogenous (yolk sac) to exogenous sources of nutrition,
high specific mortality rates often occur (Sifa and Mathias 1987). This is coincident
with profound changes in larval morphology, physiology, and ecology (Dabrowski
1984). Switching to exogenous feeding often involves changes in body function that
must be precisely synchronized, such as sensory organ development for food capture
or collection, muscular elaboration for manipulation of prey, or gut development
for processing of new foods. Imperfect synchrony or underdevelopment of crucial
systems can combine with mechanical constraints to retard efficient feeding and can
ultimately result in larval starvation (China and Holtzman 2014). These problems
occur in lamprey culture and demand a more thorough understanding of both larval
physiology and feeding behavior.
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2.6.1 Timing of Exogenous Feeding

While their feeding morphology is relatively simple, larval lampreys must orchestrate
a complicated switch from yolk-sac feeding in the nest or on the sediment surface
to active burrowing and collection and processing of relatively nutrient-poor food
particles from the environment (Manion 1968; Moore and Beamish 1973; Sutton
and Bowen 1994; Yap and Bowen 2003). The end of endogenous feeding (i.e., the
transition from prolarva to larva) is signaled by completion of the digestive tract and
connection to the anus (Fig. 2.12). At this time, lampreys can begin to supplement
yolk-sac feeding with collection of exogenous food particles. In the wild, these
particles are typically microalgae and detritus (Manion 1967; Sutton and Bowen
1994; Yap and Bowen 2003; see Sect. 2.6.5). Exogenous feeding is accomplished
with a mucus-lined pharynx that delivers particles to the simple, straight gut tract
via peristalsis (Mallatt 1981). Elaboration of the oral hood and completion of the
gut tract accompany a dramatic change in behavior, from resting on the substrate
surface to seeking and actively burrowing into substrate of the appropriate particle
size (Lampman 2016; Lampman et al. 2016).

In a culture situation, facilitating the switch to exogenous feeding in larval lam-
preys requires identification of the appropriate time to start providing appropriate
feed for a given life stage (Barron et al. 2016). Artificial propagation of lampreys
provides a unique opportunity to study the timing of this shift from endogenous to
exogenous feeding, as this stage is rarely encountered in the field (Manion 1968;
Brumo 2006; Schultz et al. 2014). Barron et al. (2016) found that growth of Pacific
lamprey larvae was maximized when feed was provided coincident with the onset of
first feeding or slightly earlier (16—24 days after hatching). Individual hatch times for
a single spawning event can vary over 7 days in Pacific lamprey (Fig. 2.9), so early
initiation of feeding ensures that all larvae are accommodated. There is very little
information on variation in larval development times in wild lampreys. However,
Whitlock et al. (2017) noted that the ages of embryos collected from wild Pacific
lamprey nests were all within 5 days of each other.

For lampreys in culture, the length of time from hatching to first feeding is similar
among species, but varies substantially with temperature (Piavis and Howell 1969;
Langille and Hall 1988; Fredricks and Seelye 1995; Vikstrom 2002; Richardson
and Wright 2003; Hokkaido Fish Hatchery 2008). Completion of gut tract and eye
formation were observed 32 days post-fertilization (14 days post-hatch) in Arctic

Fig. 2.12 Pacific lamprey
larva (stage 17). Note the
completed connection of the
digestive tract to the anus,
signaling the start of
exogenous feeding (Photo ©
Alexa N. Maine)
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lamprey held at 11.8-12.9 °C (Hosoya et al. 1979). Lampman et al. (2016) reported
that burrowing in Pacific lamprey larvae started at 26-33 days after egg fertilization,
and that this corresponded to 369-469 cumulative degree-days. Similar times to first
burrowing (17-33 days after fertilization) were reported for sea lamprey in culture (at
18 °C; Piavis 1961) and Pacific and sea lampreys in the wild (Manion 1968; Brumo
2006). Piavis (1961) observed transition from prolarva to larva (i.e., when the gut
was fully differentiated) at 33—40 days after fertilization at 18 °C, and Richardson
and Wright (2003) observed that gut formation in this species was completed at
23-36 days. Rodriguez-Muifioz et al. (2001) found that burrowing in sea lamprey
can occur before the yolk is fully depleted in embryos held at temperatures >19 °C,
but embryos incubated at 15 °C only started burrowing when their yolk was nearly
exhausted. The body mass at first feeding also increased with incubation temperature
(Rodriguez-Muiioz et al. 2001).

Determination of the optimal time to start feeding larval lampreys is critical to
the success of aquaculture operations and can provide insight into both the timing
of first feeding in the wild and larval capacity for starvation. Experiments were
conducted with first-feeding larvae to assess the consequences to survival of delayed
feed provision. Barron et al. (2016) found that delaying the onset of first feeding by
only a few days could have profound effects on growth in larval Pacific lamprey.
However, these larvae were also surprisingly resilient to starvation and have been
known to survive for up to a month without substantial food inputs (Lampman et al.
2016). It is likely that these larvae were able to subsist on micro-organisms that
persist in culture even when no food is added. Given the low metabolic rate of
larval lampreys (Hill and Potter 1970; Potter and Rogers 1972) and the ability of
metamorphosing and adult lampreys to survive extended periods of fasting during
these non-trophic stages (Clemens et al. 2010; Manzon et al. 2015; Moser et al.
2015), it is not surprising that larval lampreys exhibit high tolerance to starvation
relative to larval teleosts (see Sect. 2.6.5).

2.6.2 Feeding and Sheltering Behavior

Lampreys are thought to passively filter particles from the seston (Yap and Bowen
2003). However, laboratory experiments with Pacific lamprey suggest that they can
also feed on particles from substrate pore water (Alexa N. Maine, Confederated Tribes
of the Umatilla Indian Reservation, personal communication, 2014). In these experi-
ments, 1-L static beakers with 3 cm of either fine (<149 pum) or coarse (149-595 wm)
sand were prepared and placed in a 14.4 °C water bath. Immediately before exper-
imentation, a mixture of commercially prepared (Reed Mariculture) concentrated
(3-8 billion cells/mL) marine algae cells (0.5 mL Nannochloropsis and 0.5 mL
Pavlova) was injected into the sediment. The 85-day-old larvae used in the experi-
ments were not fed for a week prior to experimentation, and were gently introduced
into the chambers individually on the same day (10 larvae/L). After 3 days, larvae
were examined under a dissecting microscope for the presence of algal cells in the
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gut. An average of 96 and 98% of larvae had algal cells in their guts in the coarse and
fine sediment treatments, respectively. These data suggest that lampreys can obtain
food particles from within the sediment pore water as a deposit feeder, and that this
feeding mechanism might contribute to their nutrition. This is consistent with lam-
prey isotope studies (Limm and Power 2011; Evans and Bauer 2015, 2016) which all
point to the importance of substrate and deposited organic matter in nutritional uptake
by larval lampreys. Substrate is also very important in the hatchery environment to
allow for normal feeding and development of cultured larval lampreys (Lampman
et al. 2016; Sect. 2.6.3).

Behavioral observations of cultured larvae indicate that they are mobile at just
a few days after hatching and capable of moving vertically into flowing currents at
night (Moser and Jackson 2013; Lampman et al. 2016). Hence, very small mesh size
(<300 pm) and complete tank seals are necessary to keep very young larvae from
escaping (see Chap. 6). The downstream drift of wild YOY European river lamprey,
Great Lakes sea lamprey, Pacific lamprey, and Arctic lamprey also takes place during
hours of darkness (Manion and McLain 1971; Bennett and Ross 1995; Derosier
2001; White and Harvey 2003; Brumo 2006; Kirillova et al. 2011; Pavlov et al.
2014; Zvezdin et al. 2016, 2017). Derosier (2001) found that sea lamprey prolarvae
(i.e., after hatching but prior to the onset of exogenous feeding) emerge from the nest
during the darkest hours of the night (1200-0300 h), and that the emergence period is
short, with 80% of prolarvae emerging after 8—14 days on average. Such diel timing
is likely a common strategy in other species (Potter 1980; Dawson et al. 2015).

The reliance of larval lampreys on optimal substrate, depth, and flow conditions
in the field has been intensively studied for a broad range of species (e.g., Morman
et al. 1980; Potter et al. 1986; Sugiyama and Goto 2002; Torgersen and Close 2004;
Nazarov et al. 2016; see Sect. 2.6.3). However, settlement mechanisms are poorly
understood. Presumably, wild larval drift slows down in areas of silty substrate,
allowing lampreys to passively settle in areas with appropriate depth, particle size,
and flow (Applegate 1950; Bennett and Ross 1995; Derosier 2001). Thus, settlement
of prolarvae could be entirely passive, occurring when current strength weakens or
when individuals find themselves in a backwater or pool environment. However, it
is also possible that settlement is non-random and that they use olfactory cues from
other larval lampreys to identify and potentially reject rearing habitat (Zielinski
1996). Active substrate selection by subyearling larvae has been studied only in
the laboratory; European river lamprey prolarvae selected sieved gravel in which to
shelter and started to select for fine-grain substrates at just 8 mm in length (Aronsuu
and Virkkala 2014).

2.6.3 Substrate

A key aspect of lamprey culture is the provision of sufficient substrate for functional
burrowing (Kelso 1993), and substrate characteristics must be closely coordinated
with ontogeny. Immediately after hatching, prolarval lampreys are unable to burrow
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(Piavis 1961), but require areas to shelter. They actively select substrate with intersti-
tial spaces available (Aronsuu and Virkkala 2014), a sheltering behavior that likely
evolved to increase survival after they leave the nest. Hence, in situations where lam-
preys are transplanted into the wild shortly after hatch, Aronsuu and Virkkala (2014)
recommended that European river lamprey <8 mm total length should be outplanted
in areas where substrate provides interstitial spaces, and indicated that gravel areas
with low or moderate currents may offer the best option. Shelter is likewise important
when rearing lampreys under laboratory or hatchery conditions, and the switch from
the relatively sterile, clean hatchery tanks used for egg incubation to substrates that
allow prolarvae to shelter and burrow needs to be carefully timed. Provision of a
fiber mat or other material to shade the substrate is recommended to reduce prolarval
activity and stress prior to the burrowing stage (Lampman et al. 2016).

Burrowing capabilities are developed by the last prolarval stage (Piavis 1961), and
wild YOY larvae are typically found in fine silt and sand. Hence, when outplanting
subyearling European river lamprey larvae >8 mm, Aronsuu and Virkkala (2014)
recommended fine sediment with a high proportion of particles <125 pm. As larvae
grow, they start to select slightly coarser material for burrowing. Numerous studies
have shown that smaller substrate particle sizes are selected by the youngest larvae,
while older larvae are able to occupy a broader range of sediment grain sizes (Morman
et al. 1980; Sugiyama and Goto 2002; Quintella et al. 2007; Aronsuu and Virkkala
2014; Dawson et al. 2015; Alexa N. Maine, Confederated Tribes of the Umatilla
Indian Reservation, personal communication, 2017).

Differences in habitat preference with body size may be related to burrowing
abilities. Quintella et al. (2007) found that smaller sea lamprey larvae showed poorer
burrowing performance than larger individuals across all substrate types tested, but
particularly so in coarser substrates where, if particles are too large, they can impair
burrowing. Similarly, in experiments with 85-day-old cultured larval Pacific lam-
prey, time to complete burrowing was significantly faster (66 s) in sand <149 pm
in diameter than in coarser material (146 s) where particle size was 149-595 pm
(Alexa N. Maine, personal communication, 2017). If young larvae are not provided
with adequate substrate, they do not grow and can suffer increased mortality rates
(Lampman et al. 2016). Kujawa et al. (2017) found that the survival rates and growth
of subyearling European river lamprey larvae were much higher in tanks with sand
substrate than without it (see Sect. 2.6.5).

2.6.4 Flow

Food delivery is an essential aspect of lamprey culture. Unlike other fish species,
lampreys probably do not actively intercept food particles (Mallatt 1981; Malmqvist
and Bronmark 1982). Hence, their culture is analogous to rearing of sessile inverte-
brates, such as mussels (Kamermans et al. 2013), abalone (Bouma 2007), or oysters
(Jacob et al. 1993). The density of food particles, flow rate through tanks, and length
of time that lampreys are exposed to food are important considerations. In the wild,
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lampreys likely have nearly continuous exposure to low levels of microalgae and
detritus with occasional spikes in feeding after freshets or spates (Malmgqvist and
Bronmark 1982). Indeed, European brook lamprey respond to low food concentra-
tions by increasing their filtration rate (Malmgqvist and Bronmark 1982). However,
if particle concentrations are too high (85-330 mg/L), the filtration apparatus of sea
lamprey can become clogged (Mallatt 1981).

Larval lampreys have been cultured in completely flow-through systems as well
as in recirculating and static flow systems. In flow-through systems, flow is often
kept at a minimum or shut off during feeding times to give the food time to settle
and to allow lampreys the opportunity to feed before it is swept away (Hanson et al.
1974; Mallatt 1983; Swink 1995; Barron et al. 2015, 2016). This method has resulted
in very rapid growth in Pacific lamprey larvae (e.g., 34 mm at 71 days after hatching,
Lampman 2017; 45 mm at 163 days after hatching, Barron et al. 2016). However,
feeding rates reported for larvae reared in some recirculating and static systems are
slower, perhaps because of the food quality, food delivery system, water quality,
and/or larval lamprey density (Mallatt 1983; Murdoch et al. 1991, 1992; Rodriguez-
Muiioz et al. 2003; see Sects. 2.6.5, 2.6.6 and 2.6.7).

2.6.5 Feed

Larval lampreys feed by trapping small, water-borne particles in mucus within the
pharynx (Mallatt 1983), and the majority of the ingested materials are typically
organic detritus (Mundahl et al. 2005). Lampreys can survive from this seemingly low
quality food source primarily due to their high assimilation efficiency (Bowen 1993;
Yap and Bowen 2003) and extremely low metabolic rates (Moore and Mallatt 1980;
Sutton and Bowen 1994). Although organic matter/detritus is typically abundant in
lamprey-bearing streams, lamprey growth is generally reduced when density is high
(see Sect. 2.6.7). This is also true in the laboratory environment (Murdoch et al.
1992), although higher feeding rates can compensate for density effects to some
extent (MacDonald 1963; Hanson et al. 1974; Moore and Potter 1976; Griffiths et al.
2001; Lampman et al. 2016; Kujawa et al. 2017; Schultz et al. 2017).

The key constituents of the larval lamprey diet has been a topic of interest and
debate for decades (e.g., Applegate 1950; Potter et al. 1986), and a variety of studies
have investigated this question (see reviews by Hardisty 2006; Aronsuu et al. 2015;
Dawson et al. 2015). Many of these studies have described the importance of organic
matter as substratum and habitat (Applegate 1950; Hardisty and Potter 1971; Potter
et al. 1986; Beamish and Lowartz 1996), and some studies have gone further to
describe the importance of organic matter as a food source (Hardisty and Potter
1971; Beamish and Jebbink 1994; Sutton and Bowen 1994; Shirakawa et al. 2009;
Sutton and Bowen 2009; Smith et al. 2011). Others have highlighted the seasonal
importance of other food ingredients, such as algae including diatoms and desmids
(Potter et al. 1986; Quintella 2000) and microbes including biofilm (Bowen 1993;
Yap and Bowen 2003). While some studies suggest that larval lampreys are not
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capable of digesting diatoms and bacteria efficiently enough to make them a primary
food ingredient (Moore and Beamish 1973; Rogers et al. 1980), it is likely that these
ingredients are important when they are available (Yap and Bowen 2003).

Our ability to readily recognize a variety of microorganisms (with diverse decom-
position rates in streams and lamprey guts) are certainly not equal and this affects
our ability to accurately identify key constituents of the larval lamprey diet (Hardisty
2006). In addition, detritus, organic matter, and biofilm can originate from, form
alongside, and/or contain a wide variety of microorganisms simultaneously (e.g.,
bacteria, archaea, protozoa, phytoplankton, and fungi). Organic matter/detritus can
also originate from both autochthonous and allochthonous sources, further compli-
cating the elucidation of the larval lamprey diet.

As detritivores, larval lampreys live off organic matter breakdown, including
the detrital fraction, fungi, and the myriad other microorganisms that exist within
the detritus/biofilm complex (Moore and Beamish 1973; Sutton and Bowen 1994;
Mundahl et al. 2005). A primary dietary criterion appears to be particle size. Particles
in the range 5-340 wm are common in the guts of both small and large wild lamprey
larvae (Moore and Mallatt 1980). Brewer’s yeast and active dry yeast (cells of which
are 5-10 pm in diameter) have been used successfully for feeding larval lampreys
in the laboratory since at least the 1950s (e.g., Schroll 1959), even for prolonged
periods of time (Hanson et al. 1974; Mallatt 1983; Rodriguez-Muifioz et al. 2003).

Development of optimal feeds for early larvae in the laboratory can provide a
wealth of information on early larval feeding in wild lampreys. Larvae of many
other fish species exhibit selection for preferred prey very early in their development
(Robert et al. 2014). Although larval lampreys likely have less control than teleost
fishes over the particles they ingest, laboratory investigations have indicated that there
may be some selection that occurs on the basis of particle size and shape. Pacific
lamprey larvae not yet feeding exogenously were provided with a diet of 80% yeast
and 20% dry larval fish feed (Otohime A1) in static chambers held at 14 °C (Moser
et al. 2017a). As soon as they started to feed, growth (in length) was apparent, and
larvae provided with the smallest particle sizes (<50 wm) showed an early growth
advantage relative to those provided with particles 50—150 pm (Fig. 2.13). In contrast,
wild sea lamprey larvae showed no relationship between particle size and lamprey
length (Moore and Mallatt 1980).

Cultured lampreys exhibited great variation in individual growth rates within
treatment groups (Fig. 2.13), even when chambers were small (1 L) and variation in
food encounter rates was minimized (Moser et al. 2017a). This suggests individual
variation in filtering rates or metabolism. Evidence for high variation in individual
growth has been observed for older dye-marked or PIT-tagged larvae in culture
(Murdoch et al. 1992; Moser et al. 2017b), and in the wide range of larval sizes
resulting from a single spawning event in the wild (Hess et al. 2015). Further study
is needed to evaluate the mechanisms behind such variable growth.

Potential ontogenetic changes in lamprey nutrition has been hypothesized (Evans
2012), and recent artificial propagation research has also indicated that nutritional
requirements of larval lampreys change as lamprey grow. Using Pacific lamprey,
Barron et al. (2015) found that at 51 days post-hatch, artificially propagated larvae
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Fig. 2.13 Mean length 22
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grew fastest and had the highest lipid retention when fed a diet of yeast supplemented
with larval fish food (Otohime A1). In contrast, larvae in these experiments that were
fed microalgae had relatively slow growth, even though algae and detritus are com-
monly found in the gut of wild specimens. Mallatt (1983) reared Pacific lamprey in
the laboratory for >1 year on yeast alone and found that adding vitamins or switching
to a commercial fish food did not improve growth or survival. Jolley et al. (2015)
also experimented with larger wild-caught Pacific lamprey larvae (59-120 mm) and
found that growth was highest under diets of algae wafers or salmon carcass analog
pellets and that growth was lowest for larvae fed allochthonous detritus or yeast.

The contribution of marine-derived nutrients may be important for some lam-
prey populations. Many lamprey populations worldwide have experienced dramatic
declines, often as the result of habitat degradation and the construction of dams
that are barriers to migration (Maitland et al. 2015). In these areas, declines in co-
occurring anadromous salmonids and sturgeons have also been observed (Jolley
etal. 2015). Semelparous Pacific salmon are especially important sources of marine-
derived nutrients (Naiman et al. 2002), and the loss of naturally occurring carcasses
from these species may be further impacting native lampreys by reducing larval
growth rates in these areas (Kucheryavyi et al. 2007; Jolley et al. 2015).

There appear to be interspecific differences in optimal feeds. Stable isotope studies
of wild larval sea lamprey larvae indicated that they depend heavily on autochthonous
sources of nutrition (i.e., algae, nutrition from aquatic sediments), with terrestrial
plants being less important (Evans and Bauer 2016). In contrast, American brook
lamprey larvae subsist almost exclusively on detritus (Mundahl et al. 2005), and
cultured Arctic lamprey YOY similarly grew better (6.8 mm/30 days) on heated and
sifted willow leaves than they did (<1 mm/30 days) on salmon carcass and control



2 Lamprey Reproduction and Early Life History ... 223

diets (Arakawa 2018). However, Pacific lamprey larvae provided with this same
heated and sifted willow leaf feed exhibited negative growth (-1.5 mm/30 days; Ralph
T. Lampman, unpublished data). Kujawa et al. (2017) achieved a very high growth
rate (15 mm/30 days) in European river lamprey fed a mixture of live Artemia salina
nauplii and dry feed (Hikari Plankton). Pacific lamprey YOY fed a mixture of yeast,
wheat flour, and alfalfa pellets also attained a very high growth rate (14 mm/30 days;
Lampman 2018).

Providing a sufficient ration is critical to achieving rapid growth in larval lamprey
culture (Lampman et al. 2016). Encounter rates with food particles are also undoubt-
edly an important factor in wild populations. Perhaps this is best illustrated by the
tight relationship between larval density in the field and very specific flow, depth,
and substrate conditions (Morman et al. 1980; Potter et al. 1986; Sugiyama and Goto
2002; Torgersen and Close 2004; Nazarov et al. 2016). For lamprey culture work,
ration is typically based on larval lamprey weight (Mallatt 1983). Lampman et al.
(2016) demonstrated a strong logarithmic correlation (r = 0.881) between ration and
growth rate. In these experiments, active dry yeast was the primary feed, constitut-
ing ~50% of the overall feed. A mixed feed ration of 10-20 g/week/fish weight (g)
resulted in growth rates of 7-12 mm per month between late July and late Septem-
ber. In this same study, a positive linear relationship (r = 0.706) was also observed
between ration per surface area and growth rate: a mixed feed of 400-700 g/m?
resulted in growth rates ranging from 7.5 to 12 mm/month. Wild larval lamprey den-
sity is typically limited (0—45 g/m?) even in preferred habitats (Silva et al. 2014a;
Dawson et al. 2015; Beals and Lampman 2018); however, rapid growth of cultured
lampreys held at high densities (100-217 g/m?; see Sect. 2.6.7) can often be achieved
by providing a high ration of yeast and supplemental feeds (Barron et al. 2015; Lamp-
man 2017, 2018). These supplemental feeds (e.g., Otohime A1, wheat flour, brown
rice flour, and alfalfa pellets) likely help promote the complex of other nutrients and
microbes available in natural organic matter, detritus, and/or biofilm beyond those
provided by yeast.

Larval lampreys can tolerate near starvation for extended periods. Although
growth rates were negative, McGree et al. (2008) reported a high survival rate (~96%)
in large larval Pacific lamprey (~2 g each) that were not fed anything but unfiltered
creek water over the course of 3.5 months. Using dechlorinated tap water, death
occurred after 7-8 months without food in Pacific lamprey larvae of a similar size
(Mallatt 1983). However, in very young sea lamprey larvae, Hanson et al. (1974)
found that feeding too little or not at all appeared to kill most of the larvae within
2 months. With Pacific lamprey, 5-month-old larvae reared using only well water
without additional feed began dying after 60 days. Overall survival rate after 73 days
was 51% in a tank with sand substrate and 73% in a tank with organic rich, fine
substrate (Lampman et al. 2016). Despite the lack of supplemental feed, total length
and weight still increased slightly (by 2.2-3.7 mm and 0-6 mg) in the surviving
larvae. This was most likely due to organic content and bacteria available within the
fine substrate provided (Nevejan et al. 2017).
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2.6.6 Water Quality

Along with the need for adequate food and optimal physical habitat attributes, lar-
val lampreys in the wild and in the laboratory show survival and growth effects
related to water quality. Understanding these relationships is important for lamprey
conservation in the face of increased human population growth and development,
climate change, and the ever-changing field of environmental contaminants (Holmes
2011; Maitland et al. 2015; Nilsen et al. 2015). This is exemplified by recent studies
to assess the effects of climate change on lamprey habitat, both in light of needs
for lamprey conservation and to avoid unwanted consequences related to control of
invasive sea lamprey (Macey and Potter 1978; reviewed in Griffiths et al. 2001 and
Meeuwig et al. 2005; see Chap. 5). The ability to test growth and survival in prop-
agated lamprey larvae allows assessment of these effects over a broad range of life
history stages (Piavis 1961).

Lamprey larvae appear remarkably tolerant of high water temperatures. Potter and
Beamish (1975) reported that upper incipient lethal temperatures for four lamprey
species (Great Lakes sea lamprey and northern, American, and European brook
lampreys) ranged from 27 to 31.4 °C depending on the season, acclimation state,
and species. Pouched lamprey larvae were shown to survive temperatures up to
28.3 °C (Macey and Potter 1978), and incipient lethal temperature for Arctic lamprey
larvae was estimated to be 29.3 °C (Arakawa 2018). The upper incipient lethal
temperature for wild-caught Pacific lamprey larvae was 28.5 °C, and they were able to
live indefinitely at 27 °C upon immediate transfer from water of 20 °C (Christina Uh,
U.S. Fish and Wildlife Service, Vancouver, WA, personal communication, 2017). In
addition, testing with younger Pacific lamprey larvae (<20 days post-hatch) indicated
that they too were capable of surviving rapid thermal shocks (immediate transfer from
13 to 20 °C) and survived at 20 °C for >24 h (Moser et al. 2018). This has important
implications for hatchery management, as lamprey larvae can survive power outages
and short-term water quality changes better than salmonid hatchery residents.

Larval lampreys are generally also tolerant of degraded water quality, both in the
wild and in laboratory environments (Bettaso and Goodman 2010; Linley et al. 2016;
Moser et al. 2017a). Larval sea and Pacific lampreys, for example, have been reported
in lagoons contaminated with untreated municipal sewage or pollution abatement
ponds (Morman et al. 1980; Nelson and Nelle 2007). Both wild-caught Pacific lam-
prey larvae older than 1 year and artificially propagated larvae younger than 30 days
post-hatch were able to tolerate abrupt, short-term exposures to salinities below 14
parts per thousand (ppt) and disinfectant concentrations of formalin at 15 mg/L (Sil-
ver 2015; Maine et al. 2018). Older larvae were also able to survive for up to 12 h in
full-strength sea water (35 ppt), not entirely surprising in light of the fact that lam-
preys in tidally dominated rivers and streams may be exposed to oscillating salinity
regimes throughout the rearing period (Silver 2015). On the other hand, excessive
eutrophication and other forms of pollution can have negative effects on larval lam-
preys (see Maitland et al. 2015), and water of low pH (<5) combined with high metal
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concentrations has been shown to increase mortality of subyearling European river
lamprey larvae (Myllynen et al. 1997).

Sensitivity to water quality can change dramatically with growth and development
(Rodriguez-Muiioz et al. 2001). For example, Pacific lamprey prolarvae (2, 5, and
11 days post-hatch) transported without aeration for 7- and 24-h periods exhibited
nearly 100% survival if they were maintained in the water supply used for transport.
However, nearly all died when they were transitioned to a new water supply after
transport (Lampman et al. 2016). In contrast, a similar change in the water supply did
not appear to affect younger (developing eggs) or older (>60 days old) stages (Alexa
N. Maine, Confederated Tribes of the Umatilla Indian Reservation, personal com-
munication, 2018). This suggests that prior to and during the transition to exogenous
feeding, lamprey larvae may be sensitive to water quality changes.

However, these same stages of first feeding lampreys are resilient to sta-
ble but low dissolved oxygen (<2 mg/L) and high un-ionized ammonia (Gal-
loway et al. 1987; Barron et al. 2017; Mary L. Moser, unpublished data). Oxy-
gen consumption rates by mountain brook lamprey Ichthyomyzon greeleyi larvae
(Hill and Potter 1970) and Pacific lamprey prolarvae (Mary L. Moser, unpub-
lished data) were lower than those of larval teleosts (Winberg 1956). Potter et al.
(1970) observed that larval lampreys can tolerate oxygen tensions as low as 7-10
mmHg at 5 °C, 12-16 mmHg at 15.5 °C, and 13-21 mmHg at 22.5 °C for up to
4 days. This may be an adaptation needed for proliferation of dense lamprey beds in
low-flow pool habitats and silt banks (Hill and Potter 1970).

2.6.7 Larval Culture Density, Growth, and Survival

There is large variation in larval densities reported during field investigations, rang-
ing from hundreds to thousands of larvae per m? to <1 individual per m? (e.g.,
Churchill 1945; Kainua and Voltanten 1980; Kelso and Todd 1993; Griffiths et al.
2001; Jellyman and Glova 2002; see Dawson et al. 2015). However, this is likely
due to a combination of the spatial scale measured, gear selectivity, environmental
variation, and larval supply and size. Larval lampreys can exploit even very small
patches of suitable habitat (Thomas 1962; Malmqvist 1980; Nazarov et al. 2016)
and, in optimal habitats, particularly as YOY, densities of up to 2,000 larvae/m?> have
been reported (e.g., Churchill 1945; Tuunainen et al. 1980). Evidence for a negative
effect of density on larval growth rate in the wild is inconsistent (e.g., Morman 1987;
Zerrenner 2004), but in the laboratory, lampreys exhibit density-dependence under a
variety of holding conditions. Growth suppression has been observed in sea lamprey
larvae held in the laboratory for 8 months at high densities, and larvae even shrank
in length at the highest density (~345 larvae or 500 g/m?; Murdoch et al. 1992).
Interestingly, Rodriguez-Muiioz et al. (2003) also observed reduced growth rates in
sea lamprey larvae exposed to water from high-density tanks. In re-circulating sys-
tems, Pacific lamprey prolarvae cultured at densities above 800 larvae/m? (~2 g/m?)
exhibited reduced growth and survival (Maine et al. 2017). However, density effects
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have also been observed in flow-through systems where lamprey were held at den-
sities higher than 100~130 g/m? (Lampman et al. 2016; Lampman 2017). Recently,
Bowen and Yap (2018) demonstrated, using field surveys and in situ cage studies,
that food utilization (e.g., feeding rate and assimilation efficiency) of northern brook
lamprey larvae decreased with increasing larval density. These authors suggested
that crowding results in physical disturbance of the sediment, thus interfering with
the larvae’s efficient utilization of available food. This would explain growth depres-
sion observed at high densities even when food is thought not to be limiting (e.g.,
Murdoch et al. 1992); its implications to artificial propagation warrant further study.

Understanding the limits to lamprey growth under high density is important for
production-level culture, but also for assessment of habitat carrying capacity in
lamprey conservation and control (Griffiths et al. 2001; Zerrenner 2004; Johnson
et al. 2014). Where examined, the growth rate of recently hatched larval lampreys in
streams during their first year appears similar across species, ranging from 0.06 to
0.18 mm/day in sea and chestnut lampreys, as well as in American brook and north-
ern brook lampreys (Purvis 1970; Holt and Durkee 1983; Griffiths et al. 2001; Evans
2017), and even in the more distantly related pouched lamprey (Todd and Kelso
1993). In contrast, larval Pacific lamprey in culture can be reared at growth rates
ranging from 0.25 to 0.55 mm/day (Barron et al. 2015; Lampman 2017; Fig. 2.12).
In the wild, specific growth rates of larval lampreys are most rapid during the first
2 years of life and slow when larvae approach ~80 mm in length (Hardisty 1961a;
Kan 1975; Purvis 1979; Potter 1980; Morman 1987; Murdoch et al. 1991; Weise
and Pajos 1998; Griffiths et al. 2001; Quintella et al. 2003; see Dawson et al. 2015).
A similar pattern has been observed with artificially propagated larvae (Lampman
et al. 2016).

In nature, lampreys can suffer high rates of mortality during early development
(see Dawson et al. 2015). Once again, few empirical data are available for compar-
ison among field-based studies, but hatching success rates from natural nests of sea
lamprey in the Great Lakes were found to be as low as 0.4-1.1% (Applegate 1950)
and 5.3-7.8% (Manion 1968). Predation on fertilized eggs and prolarvae by a range
of organisms is also likely to be high (Schultz 1930; Dendy and Scott 1953; Hardisty
1961a, b; Heard 1966; Manion 1968; Potter 1980; Derosier 2001). Kujawa et al.
(2017) noted that only 1% of European river lamprey likely survive to metamorpho-
sis in the wild. In artificially propagated Pacific lamprey, a bottleneck to survival
is observed at first feeding (Lampman et al. 2016). Hence, examination of the fac-
tors affecting early survival has been a top priority in recent Pacific lamprey culture
research (Lampman et al. 2016; Barron et al. 2017; Lampman 2017; Maine et al.
2017).

Despite this early survival bottleneck and their apparent vulnerability to predation,
larval lampreys have exceedingly high survival rates after 2 months of age. Survival
rates of YOY after initiation of exogenous feeding have been estimated at 0.64—0.81
in western brook lamprey (Schultz et al. 2017), 0.44-0.95 in sea lamprey from the
Great Lakes (Jones et al. 2009, 2015; Robinson et al. 2013; Johnson et al. 2014), and
0.81-0.95 in sea lamprey from Lake Champlain (Zerrenner 2004; Howe et al. 2012).
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Similarly high survival rates have been observed for artificially propagated Pacific
lamprey larvae in these age classes (Lampman et al. 2016).

2.6.8 Metamorphosis

Arctic lamprey have been successfully reared from embryos to metamorphosis after
only 2—4 years in culture (Kataoka 1985). Researchers in Niigata, Japan, reared
Arctic lamprey to metamorphosis by releasing artificially propagated larvae into a
large concrete rearing pond (Kataoka et al. 1980a, b; Kataoka and Hoshino 1983;
Kataoka 1985) that received ambient river water ranging in temperature from 2 °C
in winter up to 24 °C in summer (Kataoka and Hoshino 1983). Of the 8,400 first-
feeding larvae released in 1980 (density of 518 larvae/m?), 7.2% remained after
315 days (Kataoka et al. 1980b). The first larvae showing early signs of metamor-
phosis (i.e., eyes beginning to appear behind the epidermis) were observed after
25 months, and metamorphosed juveniles were collected in year 3 and 4 as well,
totaling 399 (Kataoka and Hoshino 1983; Kataoka 1985). These researchers esti-
mated that 10-20% of the larvae transformed at ~2.3 years old, 30-40% at 3.3 years
old, and 40-50% at 4.3 years old. Larvae consistently metamorphosed in August and
September each year, in a usually very narrow span of time (Kataoka 1985). This is
consistent with the highly synchronized metamorphosis observed in natural popula-
tions (see Manzon et al. 2015). Newly metamorphosed juveniles were >150 mm in
length and all larvae >180 mm underwent metamorphosis, which is consistent with
size at metamorphosis in natural populations of this species (see Docker 2009). At
the beginning of year 4, all lamprey were transferred to smaller aquaria receiving
well water at 11-13 °C. A high rate of metamorphosis occurred in year 4, indicating
that water temperature fluctuation was not a key factor in triggering metamorphosis
(see Manzon et al. 2015). A modest amount of freshwater eel feed (e.g., containing
fish meal, pregelatinized starch, wheat flour) was fed in this new tank setting due
to the lack of river water. Most of the resulting juveniles successfully parasitized
salmonids and cyprinids introduced into the freshwater tanks.

More recently, artificially propagated Pacific lamprey have been observed to meta-
morphose at the Prosser Fish Hatchery in Prosser, Washington (Ralph T. Lampman,
unpublished data). To date, metamorphosis has been observed in ~25 individuals. The
youngest juvenile recorded (1.3 years old) was 108 mm in length. Size at metamor-
phosis in wild Pacific lamprey is typically slightly larger than this (e.g., 108—136 mm
and 112-135 mm; Pletcher 1963 and Beamish and Levings 1991, respectively), and
wild Pacific lamprey are known to metamorphose in as little as 3.3 years. For exam-
ple, juveniles were collected from Indian Creek in western Washington in summer
2016, after adults first spawned there in spring 2013 following removal of the Elwha
Dam (Moser and Paradis 2017). Genetic parentage analysis indicated that the off-
spring of translocated Pacific lamprey outmigrated 3-9 years after the adults were
released into natural streams (Jon E. Hess, Columbia River Inter-Tribal Fish Com-
mission, Portland, OR, personal communication, 2017). A similar wide range of ages
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at metamorphosis was observed in a single year class of sea lamprey larvae isolated
above a barrier (Manion and Smith 1978), but such individual variation generally
goes unnoticed when known-age populations cannot be examined (see Chap. 7).
Through a combination of field and artificial propagation research and an assortment
of new technologies, we anticipate that our understanding of lamprey metamorphosis
and the juvenile life stage will expand considerably in the near future.

2.7 Conclusions

We have made great strides in understanding lamprey biology as well as early devel-
opment in vertebrates as a result of increased efficiency in artificial fertilization,
observation of embryonic development, and larval rearing of different species in
the laboratory. Substantial contributions to our understanding of early life history
have come from recent studies of lamprey genetic programming (Bryant et al. 2016;
Timoshevskiy et al. 2016) and of anatomical features throughout their ontogeny
(Kusakabe and Kuratani 2005; Amemiya et al. 2007; Khonsari et al. 2009; Richard-
son et al. 2010; Kuratani 2012; Green and Bronner 2014; Suzuki et al. 2015; see
Chap. 6). Thus, it is rightly the case that lampreys are considered a model organism
in biology (Nikitina et al. 2009; Shimeld and Donoghue 2012; Xu et al. 2016; see
Docker et al. 2015).

Knowledge gained from the development of artificial propagation methods has
provided tools for restoration of imperiled lamprey species and potentially for efforts
to control invasive sea lamprey in the Laurentian Great Lakes. In many parts of the
world, lampreys are declining or have been extirpated from their native range (Mait-
land et al. 2015). The ability to produce larvae from viable donor stocks could poten-
tially lead to outplanting of artificially reared lampreys in streams where they have
been extirpated (Ward et al. 2012; Clemens 2017). These efforts are already under-
way in Finland, where production of European river lamprey larvae was initiated
in the 1980s as mitigation for losses in lamprey recruitment due to dam operations
(Aronsuu 2015). However, this decades-long research program indicates that lam-
prey culture is costly and may not return the same benefits as habitat improvements
and/or aids to adult passage (Aronsuu 2015). Control of sea lamprey in the Great
Lakes has traditionally relied on use of pesticides; however, there is increasing pres-
sure to investigate alternative control methods (see Chap. 5). Should development of
lamprey embryos prove manipulable and ethically tolerable (e.g., gene knockdown,
sex ratio distortion), these techniques may become important tools in modern control
efforts (McCauley et al. 2015; see Chap. 7).

While great advances have been made in obtaining reliable methodologies for
gamete collection, incubation, and fertilization, there is still much to learn regarding
the requirements for large-scale rearing of early larvae. One of the most challenging
aspects of lamprey production is the necessity for provision of burrowing substrate
and the attendant problems of space required for long-term lamprey culture. This
two-dimensional aspect makes rearing even a single cohort challenging (Lampman
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et al. 2016). Research is needed to investigate the potential for polyculture, water
re-use and tank stacking, or other methods to make more efficient use of space.

The need for sediment in larval lamprey rearing also brings problems associated
with culture cleanliness and disease prevention. Lampreys can apparently survive
relatively poor water quality, and frequent disturbance from tank cleaning can reduce
growth (Barron et al. 2017). Understanding the interplay among these factors is
critical if lamprey culture operations are to be scaled up. Moreover, very little is
known about the microbial requirements of larval lampreys. This has become an
important area of interest in finfish aquaculture (Ringg and Song 2016), and may be
of even more importance for lampreys. Due to their simple intestinal tract, apparently
passive feeding mode, and continuous contact with sediment, lampreys are likely very
sensitive to the microbial environment both in culture and in the wild. Studies on the
gut microbiome of lampreys may provide important clues to improving growth and
survival of artificially reared larvae (Tetlock et al. 2012; Zuo et al. 2017; Arakawa
2018; Alexa N. Maine, Confederated Tribes of the Umatilla Indian Reservation,
Pendleton, OR, personal communication, 2018).

Very little is known of the disease organisms specific to lampreys (Maitland
et al. 2015; Moser et al. 2016). While lampreys appear relatively insensitive to the
pathogens typically associated with salmonid culture, little is known about their vul-
nerabilities to other pathogens. Widespread disease screening of lampreys has not
been conducted, and methods for assessing lamprey diseases and parasites have not
been standardized or orchestrated (Moser et al. 2016). Those studies that examine
parasites or other pathogens in lampreys generally focus on their potential role in
disease transmission or impact to human health rather than their effect on the lam-
preys themselves (e.g., Gadd et al. 2010; Bao et al. 2013). Greater attention to this
topic will be required as efforts to hold lampreys in dense cultures are undertaken.

Holding lampreys in the laboratory provides a rare opportunity to document many
aspects of basic biology, such as feeding, growth, and survival rates, as well as
to examine fine-scale patterns of larval physiology, behavior, and genetic control.
Insights gained from these observations can be used to inform management of lam-
preys in the wild. For example, a better understanding of the relationship between
food quality and growth or production may help to delineate habitat characteristics
that are most important for lamprey conservation or control. The role of temperature
and potential effects of climate change on lamprey populations can be assessed using
lamprey larvae held under controlled conditions. Comparisons of wild and artificially
produced lamprey performance may afford insight into underlying recruitment mech-
anisms. Such comparisons will also help to elucidate cases where artificially produced
lampreys are suitable surrogates for wild lampreys or where extrapolations to natural
populations must be made cautiously.

Finally, large-scale artificial propagation and long-term rearing methods have been
developed for only a few species, notably in the large-bodied Pacific lamprey, Euro-
pean river lamprey, sea lamprey, and Arctic lamprey. Information gathered thus far
indicates that there is room for broad generalization across species, but increasing
the scope of lamprey propagation to include other species will undoubtedly pro-
vide valuable information on the differences among species and perhaps also on the
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determinants of sex, growth, metamorphosis, and/or feeding and migratory type in
lampreys.
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Chapter 3 ®)
Post-metamorphic Feeding in Lampreys e

Claude B. Renaud and Philip A. Cochran

Abstract Eighteen of 41 lamprey species worldwide feed post metamorphosis; nine
in either marine waters or fresh waters and nine exclusively in fresh waters. Four
feeding modes have been identified: blood feeding, flesh feeding, blood and flesh
feeding, and carrion feeding. Adaptations to these feeding modes are associated
with characteristics of the dentition of the oral disc and tongue-like piston, the oral
papillae and fimbriae, the velar tentacles, and the buccal glands. The duration of
the adult feeding phase varies from a few months to 4 years and during this time
the various species grow either slightly or up to nearly eight times the length that
they reached as larvae. The post-metamorphic diet consists usually of fishes but in
some cases may include marine mammals. Feeding behavior is complex and highly
variable and differs between the two major modes of blood feeding and flesh feeding.
Blood feeders tend to selectively attack larger hosts and tend to attach ventrally to
them in deep water but dorsally in shallower habitats. Flesh feeders tend to attach
dorso-laterally to schooling fishes, and their hosts may be relatively small compared
to those used by blood feeders.

Keywords Feeding behavior - Feeding modes + Hosts + Parasitic phase

3.1 Introduction

Eighteen lamprey species feed following metamorphosis (Potter et al. 2015). The
most noticeable change observed at metamorphosis is the development of the oral
disc and its associated structures that together comprise the post-metamorphic feed-
ing apparatus (see Sect. 3.2). The other important change is the switch from flow-
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through gill ventilation in the larva (Dawson et al. 2015) to tidal ventilation in the
post-metamorphic individual (Manzon et al. 2015). The change of ventilation is crit-
ical because it enables the metamorphosed lamprey to simultaneously carry out the
functions of feeding and breathing while attached to a host.

The mechanisms of attachment and subsequent feeding by parasitic lampreys
have been described previously (e.g., Reynolds 1931; Lanzing 1958; Gradwell 1972;
Farmer 1980; Kawasaki and Rovainen 1988). In brief, parasitic lampreys attach to
the host by their oral disc and penetrate the skin through the action of their toothed
tongue-like piston. Secretions having both cytolytic and anticoagulatory properties
issue from their buccal glands and into the wound to break down tissues and keep the
blood free-flowing. As a result of this parasitic feeding, post-metamorphic lampreys
exceed the maximum lengths reached as larvae, in some cases by a factor of two or
more (Table 3.1).

Previous reviews of post-metamorphic feeding in lampreys by Farmer (1980) and
Swink (2003) have primarily focused on the feeding mechanisms, host selection,
energy uptake, growth rate, and host-lamprey interactions in sea lamprey Petromyzon
marinus from the Laurentian Great Lakes. Much of what has been revealed about
feeding by parasitic lampreys has been spurred by efforts to understand and manage
the sea lamprey in this freshwater ecosystem. When access by this species to the upper
Great Lakes was facilitated by human activity, a scenario was created by which a
non-native lamprey was established in a system with host species with which it had
not recently co-evolved. Moreover, compared to its anadromous populations, sea
lamprey in the Great Lakes had access to relatively extensive, high quality spawning
habitat. It is therefore not surprising that the sea lamprey contributed to dramatic
population declines in several fish species in the Great Lakes (see Chap. 5). Because
of the value of these stocks, some of the most intensive studies of lamprey-host
interactions have involved the sea lamprey and Great Lakes hosts, including lake
trout Salvelinus namaycush (Moore and Lychwick 1980; Pycha 1980; Swanson and
Swedberg 1980; Wells 1980) and lake whitefish Coregonus clupeaformis (Spangler
et al. 1980). However, although some aspects of sea lamprey feeding biology can be
generalized, the sheer volume of published research on resident sea lamprey from
the Great Lakes has contributed to a lack of appreciation for the diversity in feeding
displayed by other lampreys.

In this review, we examine the relationship between structure of the oral apparatus
and diet, the duration of the feeding phase, and growth during the feeding phase, and
we compare various aspects of feeding behavior among lamprey species. We present
the results of both field and laboratory observations and cover, as much as possible,
research published since the reviews of Farmer (1980) and Swink (2003). Theoretical
and quantitative models of lamprey feeding and interactions with hosts at the level
of the individual or population (Bence et al. 2003; Madenjian et al. 2003, 2008) are
beyond the scope of this review. However, these models have provided useful insights
into potential relationships among variables that are relatively easy to measure, such
as lamprey growth or marking rates on hosts, and others more difficult to assess
directly, such as the intake of energy by a lamprey from its host or the impact of a
lamprey population on a host population (see Bence et al. 2003 for a review). They
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may also be used to identify questionable assumptions (Cochran et al. 2003a) or
critical aspects of lamprey behavior that warrant further investigation (Cochran and
Kitchell 1986).

The diversity and complexity of life histories employed by lampreys (see Chap.
4) challenge our ability to neatly categorize them with simple words. We therefore
follow several conventions as a matter of convenience. Thus, we use the terms “para-
sites” and “hosts” to refer respectively to lampreys that feed after metamorphosis and
to the organisms they feed upon (rather than “predators” and “prey”), even though,
in many cases, the latter are quickly killed as a result of the encounter. Furthermore,
although recent molecular studies have revealed that the inter-specific distinction
between parasitic lampreys and their non-parasitic derivatives may be more blurred
than morphological differences suggest (Docker 2009 and references therein), we use
the traditional species designations for parasitic and non-parasitic forms. Finally, we
use the term “adult” to refer to post-metamorphic lampreys, including those that are
actively feeding, although some workers have restricted this term to lampreys that
have reached sexual maturity and use the term “juvenile” to refer to the sexually-
immature feeding phase (e.g., Beamish 1980a, b; Docker et al. 2015).

3.2 Functional Morphology of Feeding

Of the 18 lamprey species that feed following the completion of metamorphosis
(Table 3.1), nine are anadromous (four, possibly five of these also possess perma-
nent freshwater-resident populations) and nine live exclusively in fresh water (Potter
et al. 2015; Chap. 4). Collectively, adult lampreys possess four different modes of
feeding (Renaud et al. 2009), a characteristic reflected at the generic level. There are
blood feeders (Ichthyomyzon, Mordacia, Petromyzon), flesh feeders (Eudontomyzon,
Geotria, Lampetra, Lethenteron), blood and flesh feeders (Entosphenus, Tetrapleu-
rodon), and a presumed carrion feeder (Caspiomyzon). Alternative names for these
feeding types are respectively, parasites, predators, intermediates, and scavengers.
Potter and Hilliard (1987) were the first to propose functional relationships among
the dentition of the oral disc and tongue-like piston, the size of the buccal glands,
and the diets of the various lamprey species that feed as adults. Their landmark
study was expanded on, with the inclusion of more species, by Renaud et al. (2009).
Furthermore, to ensure that the proper assignment of feeding types was made, Renaud
etal. (2009) conducted a microscopic examination of the intestinal contents and tested
these with Hema-Screen, an assay for detecting blood. The Northern Hemisphere
blood feeders (Ichthyomyzon and Petromyzon) have labial teeth entirely covering
all fields of the oral disc, a narrow supraoral lamina, a w-shaped transverse lingual
lamina with uniformly-sized cusps, and large buccal glands. Although the Southern
Hemisphere blood feeders (Mordacia) also have their labial teeth entirely covering all
fields of the oral disc and a w-shaped transverse lingual lamina, they differ from the
Northern Hemisphere blood feeders in having two triangular supraoral laminae, the
transverse lingual lamina having slightly enlarged median and subterminal cusps, and
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their buccal glands being relatively small. The w-shaped transverse lingual lamina
with its uniformly or mostly uniformly-sized cusps in blood feeders is particularly
well suited for rasping a hole in the host’s skin. The larger buccal glands in Northern
Hemisphere blood feeders is related to their need to produce sufficient quantities
of lamphredin, with its anticoagulatory properties, to keep the blood meal flowing.
The smaller size of the three buccal glands in Mordacia is compensated for by
their location at the entrance of the oral aperture, combined with their secretion of a
unique mucus-lamphredin mixture that adheres to the host tissue, making their action
particularly effective. In all other lampreys, there are only two buccal glands and these
are positioned further posteriorly and deeply embedded in the basilaris muscles. The
Northern Hemisphere flesh feeders (Eudontomyzon, Lampetra, Lethenteron) do not
have their labial teeth fully covering the available space on the oral disc, but possess
a wide supraoral lamina, a u-shaped transverse lingual lamina with a prominent
central cusp, and small buccal glands. While the single Southern Hemisphere flesh
feeder Geotria is different from the Northern Hemisphere flesh feeders in having its
labial teeth entirely cover all fields of the oral disc, the other characteristics are the
same. The presence of a stout central cusp on the u-shaped transverse lingual lamina
in the flesh feeders is an adaptation for removing large chunks of flesh from the
prey through gouging. The relatively undigested condition of the tightly-packed and
clearly identifiable muscle chunks found in the intestine of the flesh feeders (Renaud
et al. 2009), would indicate that large quantities of cytolytically-active lamphredin
are not required for effective flesh feeding. Those lampreys that feed on both blood
and flesh show intermediate conditions to those of the above two feeding modes, with
the transverse lingual lamina being slightly w-shaped in Entosphenus and slightly
u-shaped in Tetrapleurodon, and in both genera, with a slightly enlarged central
cusp. Even though Caspiomyzon has remarkably blunt dentition on the oral disc
and tongue-like piston, it is suspected to be a carrion feeder due to the potential
compensatory action of its moderately large buccal glands that presumably secrete
lamphredin. This requires confirmation as no blood or flesh has ever been found in
its intestine.

Khidir and Renaud (2003) examined the number of oral papillae and oral fim-
briae in the different lamprey feeding types. Oral papillae and oral fimbriae are fleshy
appendages that lie very close to each other at the perimeter of the oral disc, with
the papillae arranged in a circle just outside of the fimbriae. Blood feeders have high
numbers of oral papillae and fimbriae (although the Southern Hemisphere Mordacia
lacks oral fimbriae). In contrast, the flesh feeders have fewer oral papillae and fim-
briae. The blood-flesh feeders exhibit a mixture of these characters, with fewer oral
papillae than blood feeders but more oral fimbriae than flesh feeders. Oral papillae
are innervated (Borri 1922) and are believed to have a sensory function (Lethbridge
and Potter 1981; Khidir and Renaud 2003). Their higher number in blood feeders
is presumed to be linked to the greater requirement by these species to find attach-
ment sites on their hosts where adequate sources of blood are available. The higher
number of oral fimbriae in blood feeders is presumed to be linked to the greater
need by these species for a tight seal with the host’s body surface to prevent any
loss of the blood meal. The absence of oral fimbriae in the blood-feeding Mordacia
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may be compensated for by the presence of its dual triangular supraoral laminae,
mentioned above, and numerous elongate and multicuspid circumoral laminae that
would help in securing a strong attachment, in conjunction with a well-developed
marginal membrane that would help in creating a good seal. Since intermediates feed
on a mixture of blood and flesh, the numbers of oral papillae and fimbriae that they
possess represent a compromise between their need to find the most beneficial site
on the host for feeding, and their need to achieve an effective seal at the oral disc-
host surface interface, to prevent the loss of food.

Renaud et al. (2009) studied the role played by the tentacles of the velar
apparatus in the feeding process. The velar apparatus lies at the junction of the
dorsally-positioned esophagus and the ventrally-positioned, blind-ending water tube
(=branchial tube), which connects directly to the seven pairs of gill pouches (Randall
1972). It bears tentacles that project anteriorly into the pharynx. The blood feeders
have short and few velar tentacles. In contrast, the flesh feeders have longer and
more numerous velar tentacles. Velar tentacles guard the entrance to the water tube
and deflect food upwards into the esophagus. The longer and more numerous velar
tentacles in the flesh feeders compared to the blood feeders are linked to the need
of the former to prevent solid material from entering the branchial pouches via the
water tube and potentially clogging the gills, thus interfering with respiration. This
is not as critical a requirement in blood feeders because of the liquid nature of their
diet, as long as the anticoagulant component of lamphredin is secreted in sufficient
quantity to perform its function.

Although the four modes of feeding described broadly explain the feeding adap-
tations exhibited by lampreys, they are not exclusive categories as carrion feeding
has been observed in species that belong to each of the other three modes of feed-
ing. Thus, the blood-feeding chestnut lamprey Ichthyomyzon castaneus [reported as
Petromyzon concolor, re-identified in Hubbs and Trautman (1937: 73)], was attached
to a dead sucker Catostomus sp. in Wilder Creek, Kalamazoo River basin, Michigan
(Bollman 1890). The blood-flesh feeding Miller Lake lamprey Entosphenus min-
imus was observed feeding in the field on dead tui chub Siphateles bicolor, and
even dead conspecifics, until all soft tissue was removed (Kan and Bond 1981). The
flesh-feeding Carpathian lamprey Eudontomyzon danfordi will feed in the field on
recently dead fishes and on the remains of birds and mammals from slaughterhouses
(Grossu et al. 1962; Bandrescu 1969).

Superimposing the mode of feeding onto the morphologically-based cladogram
of parasitic lampreys (Gill et al. 2003) suggests that in the Northern Hemisphere
lampreys (Petromyzontidae), blood feeding is the ancestral condition, flesh feeding
is the derived condition and the blood-flesh feeders represent a transitional stage in
the evolution of feeding adaptations (Renaud et al. 2009). However, the unresolved
trichotomy between the two Southern Hemisphere lamprey families (Geotriidae and
Mordaciidae) and the Petromyzontidae (Potter et al. 2015) does not permit the deter-
mination of the ancestral condition for the order Petromyzontiformes.
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3.3 Duration of and Growth During the Parasitic Phase

Numerous authors make statements regarding the length of the adult period (i.e.,
between the end of metamorphosis and death following spawning), but few give pre-
cise indications of the duration of the parasitic phase within this period. The parasitic
phase follows metamorphosis and begins during or at the end of the downstream or
feeding migration to a larger river, lake or to the sea, and ends near the beginning of
the upstream or spawning migration (Farmer 1980; Larsen 1980; Bird et al. 1994;
Dawson et al. 2015; Moser et al. 2015).

Among the 12 parasitic species for which the duration of the parasitic phase is
either known or has been estimated (Table 3.1), this period varies considerably, rang-
ing from a few months in the Miller Lake lamprey up to 42 months (i.e., 3.5 years) in
anadromous Pacific lamprey Entosphenus tridentatus (Kan and Bond 1981; Beamish
1980) and even 48 months (i.e., 4 years) in anadromous Arctic lamprey Lethenteron
camtschaticum (Orlov et al. 2014). However, the marine feeding phase in Pacific
lamprey may be as short as 20 months (Kan 1975) and in Arctic lamprey as short
as 24 months (Nikolskii 1956). Nikolskii (1956) examined 22 feeding-phase Arctic
lamprey measuring 147-293 mm total length and collected off the northwest shore of
Sakhalin Island, Russia. He suggested that the sample represented three groups, the
shortest (147 mm) having just entered the sea, the intermediate one (170-270 mm)
having spent 1 year at sea, and the longest (280-293 mm) having spent 2 years feed-
ing at sea. Orlov et al. (2014) collected 472 feeding-phase Arctic lamprey widely
distributed between the Sea of Japan and the Bering Sea and determined that four year
classes were involved: 150-320, 330-530, 540-650, and 660—790 mm total length.
The marine trophic phase of the anadromous pouched lamprey Geotria australis has
been estimated to last more than 1 year (Potter et al. 1979). Adults of anadromous
short-headed lamprey Mordacia mordax spend about 5 months feeding in the vari-
ably saline Gippsland Lakes, Victoria, Australia, and another 18 months feeding at
sea (i.e., about 2 years in total) before returning to fresh water to embark on their
spawning run (Potter et al. 1968). On the other hand, in the anadromous western
river lamprey Lampetra ayresii, the length of time spent feeding at sea appears to
be very short, perhaps only 3—4 months, between June and September (Beamish
1980). Similarly, in the European river lamprey Lampetra fluviatilis, the length of
the feeding phase at sea seems to be about 3 months, from the end of July to October
(Bahr 1933). However, the various populations of the European river lamprey exhibit
wide variation in the length of their trophic phase, even within a single river. In their
monitoring study of the early upstream-migrating European river lamprey into the
River Severn estuary in England, Abou-Seedo and Potter (1979) determined that two
anadromous forms of the species occurred; a larger typical form and a smaller prae-
cox form (sensu Berg 1931, 1948). Abou-Seedo and Potter (1979) estimated that the
typical form spent 18 months feeding at sea, whereas the praecox form fed at sea for
12 months only. On the other hand, Berg (1948) suggested that the praecox form of
the European river lamprey that enters the Neva River, Russia, in autumn had spent
only one summer feeding in the sea. Zanandrea (1959) examining European river
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lamprey collected from the Gulf of Gaeta, off the west coast of Italy, estimated that
these spent 12-24 months feeding at sea. A population of European river lamprey in
which most individuals are permanent freshwater residents, but a few may go to sea,
feeds in Loch Lomond, Scotland, only during the months of June to October, based
on the incidence of fresh lamprey-produced wounds on powan Coregonus clupeoides
(=C. lavaretus), being restricted to that period only (Maitland 1980; Maitland et al.
1994), whereas a population in the estuarine waters of the Firth of Forth, Scotland,
feeds on clupeids, and occasionally on gadids, from June to November (Maitland
et al. 1984). Another population of European river lamprey in which few if any indi-
viduals are anadromous is said to actively feed from May to October in Lough Neagh,
Northern Ireland (Goodwin et al. 2006). However, fresh lamprey-produced wounds
on Irish pollan Coregonus pollan (=C. autumnalis) were observed only between 9
April and 27 August, although Goodwin et al. (2006) suggested that later in the year
the lamprey may switch to other uncollected prey or quickly kill Irish pollan, thus
preventing the capture of that host. The first of these possibilities is supported by the
stable isotope carbon ratio study of Inger et al. (2010) which indicated that freshwater
bream Abramis brama was the main diet item of European river lamprey in Lough
Neagh between June and November. In summary, we can conclude from the above
studies that European river lamprey has a feeding phase that ranges widely between
3 and 24 months, whether it feeds in fresh water or at sea. Based on the presence of
fresh wounds on prey throughout the year, Beamish (1982) suggested that the fresh-
water Vancouver lamprey Entosphenus macrostomus feeds for 12 months. Beamish
(1987a) further specified that the Vancouver lamprey begins feeding heavily on 1- and
2-year-old coho salmon Oncorhynchus kisutch in the spring following metamorpho-
sis and that feeding continues uninterrupted into the winter, with spawning believed
to occur the following year. According to Kux (1965), the adult trophic phase of the
freshwater Carpathian lamprey begins in March or April and extends to October or
November of the same year, giving a range of 7-9 months. Very little is known about
the duration of the feeding phase in the parasitic species of the exclusively freshwater
genus Ichthyomyzon. Hall (1963) reported that in the Manistee River, Michigan, the
chestnut lamprey attacked fish hosts during a 7-month period, from April through
October, and was largely inactive from November through April. However, Cochran
et al. (2003b) reported parasitic attachments by chestnut lamprey to host fishes dur-
ing winter in Wisconsin (more data were available for silver lamprey I. unicuspis,
which gained significant mass between October and March). Therefore, the duration
of the feeding phase of the chestnut lamprey is tentatively inferred to extend for the
entire year. Alvarez del Villar (1966) suggested a duration of the feeding phase in
the freshwater Chapala lamprey, Tetrapleurodon spadiceus, of 2 years.

There is an intraspecific difference in the duration of the parasitic phase in the
landlocked versus anadromous forms of sea lamprey. In the former, the duration is
12-20 months (Applegate 1950; Bergstedt and Swink 1995), whereas in the latter
it is 23-28 months (Beamish 1980b; Halliday 1991). This difference is reflected in
the size attained by the two; <650 mm in the landlocked form (Applegate 1950;
Bergstedt and Swink 1995) and >800 mm in the anadromous form (Grinyuk 1970;
Beamish 1980b; Halliday 1991; Hol¢ik et al. 2004; see Chap. 4). However, Silva
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etal. (2013c) reported the case of a young anadromous sea lamprey captured feeding
on a golden grey mullet Liza aurata in the River Ulla estuary in northern Spain that
was tagged and recaptured on its upstream migration only 13.5 months later. Taking
into account that at capture the lamprey may have been feeding for some time and
upon recapture had already ceased feeding for some time, these authors estimated
a marine feeding phase of 10.5-14.5 months. This case notwithstanding, based on
the information on sea lamprey presented above, one could infer that the duration of
the feeding phase in anadromous lampreys is longer than in those species restricted
to fresh water. While this general statement holds true in a number of cases, that
is, in the anadromous Pacific lamprey, pouched lamprey, Arctic lamprey, and short-
headed lamprey versus the freshwater Vancouver lamprey, Miller Lake lamprey,
Carpathian lamprey, and chestnut lamprey, an exception to the rule is the anadromous
western river lamprey versus the freshwater Chapala lamprey (Table 3.1). The case of
European river lamprey is difficult to assess because the duration of its feeding phase
is highly variable (Table 3.1) and the habitat in which the feeding occurs, whether in
marine or fresh waters, is not always clear from the literature.

Growth achieved during the post-metamorphic feeding phase may be roughly
estimated by comparing the maximum total length attained by the feeding adult with
the maximum total length attained by the ammocoete larva and expressing these as
aratio (Table 3.1). Those data are available for 15 species and exhibit wide variation
from 1.03 in Miller Lake lamprey to 7.84 in the anadromous sea lamprey. In the
landlocked sea lamprey, the ratio is only 3.60, a reflection of the shorter duration
of its parasitic phase relative to that of the anadromous form (Table 3.1). Silva
et al. (2013c) provide a unique direct measure of growth rate during the marine
feeding phase in anadromous sea lamprey: a feeding individual tagged at a size of
218 mm total length and 20 g wet weight was recaptured 13.5 months later at a
size of 895 mm and 1,218 g. The authors point out that this growth is probably
underestimated because at the time of recapture the individual was on its upstream
spawning migration and not feeding.

3.4 Trends in Feeding Behavior

Lamprey behavior is quite variable both among and within species. Although they
display several trends or patterns with respect to parasitic feeding, rarely do lampreys
display all-or-none responses with respect to the aspects of behavior discussed below.
Although variability in feeding might be dismissed as random or suboptimal behavior,
it might also be viewed as evidence of adaptive flexibility (sensu Dill 1983). This
variability may also provide challenges to researchers attempting to design powerful
experiments or effective sampling protocols.

For lampreys that feed on blood, a conceptual model of a feeding bout may help
organize consideration of the various aspects of feeding that will be considered in
this review. Note that subsequent to a feeding event, a lamprey may undergo an
interval of non-feeding that may include spending time in a sheltered location as
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well as searching for a new host. Very little is known about this non-feeding interval
in general or the search process in particular, although Cochran (2014) has found
parasitic-phase chestnut lamprey in crevices beneath boulders or other cover objects
in the same areas where other lamprey were attached to fish. After a blood-feeding
lamprey has attached to a host, it typically penetrates the host’s skin and scale layer to
gain access to the greater blood supply beneath. To consider this process analogous to
“food handling” in general ecological models of foraging may be justified by Farmer
et al.’s (1975) estimate that the sea lamprey obtains less than 2% of its food intake
as the result of tissue cytolysis, but some host species may have lipid-rich layers
associated with the skin that might provide considerable energy to a lamprey (see
Sects. 3.4.3, 3.4.4, and 3.4.6). Once a lamprey begins feeding on its host’s blood,
some simplifying assumptions are that the percentage of host blood volume removed
per day is constant and proportional to lamprey mass and inversely proportional to
host mass, that host blood “quality” is maintained in the face of this ongoing removal
for some time (e.g., through mobilization of reserves in the spleen) before declining
over a period that ends with host death or termination of the feeding bout by the
lamprey, and that both the length of time that host blood quality can be maintained
and the length of time that a host can survive an attack are negatively related to the
percentage of host blood volume removed per day (Cochran and Kitchell 1986, 1989;
Cochran 1994).

To measure the consumption of a fluid such as blood is logistically challenging.
However, experiments in which lake trout and rainbow trout Oncorhynchus mykiss
blood was tagged with radioactive chromium (°'Cr) permitted estimation of the
amount of blood removed by sea lamprey (Farmer 1974; Farmer et al. 1975). Their
data have been used to justify the assumptions about lamprey feeding listed above.
For example, the percentage of host blood volume removed daily (V) was negatively
related to the mass of the host (F) and positively related to the mass of the lamprey
(L): V/100 = 2.54(L/F). Assuming that the blood volume of the host is 4.7% of its
wet mass, the mean daily ration of the lamprey in terms of wet mass is a constant
percentage (11.9%) of the lamprey’s mass. However, there was substantial variability
among individual sea lamprey in the rate at which they removed blood from their
hosts, so that the range of individual estimates of daily ration was 3—30% (Farmer et al.
1975). Their data were also used to construct a quantifiable and testable energetics-
based model of sea lamprey feeding and subsequent growth (Kitchell and Breck
1980; Cochran and Kitchell 1986, 1989); a model subsequently refined to include
the effects of water temperature (Cochran et al. 1999) and the change in energy
density of sea lamprey tissue with increasing body size (Cochran et al. 2003a).

There are few measurements available for host blood energy density. Some attempt
has been made to measure the constituents of fish blood in the context of lamprey
attacks (e.g., Kinnunen and Johnson 1985; Edsall 1999; Swink and Fredricks 2000;
Edsall and Swink 2001). By using energy equivalents for the various blood con-
stituents, it might be possible to assess which components contribute most to variation
in overall energy density.

Although the general lamprey feeding model described above has been used to
make theoretical predictions about lamprey feeding behavior (Cochran 1994), it has
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been quantified to date only for sea lamprey feeding on lake trout and rainbow trout.
Nevertheless, the sea lamprey model has been applied to some other situations. For
example, a comparison of observed growth by sea lamprey feeding on burbot Lota
lota during 55 feeding bouts (Swink and Fredricks 2000) to model predictions of
growth by sea lamprey feeding on lake trout and rainbow trout of identical sizes for
identical lengths of time suggested that the two salmonids and burbot were equivalent
as food resources for sea lamprey (Cochran et al. 2003a). As new technologies
are developed to facilitate the analysis of blood and as interest in lamprey-host
interactions broadens from a narrow focus on sea lamprey and salmonids [e.g., studies
on lake sturgeon Acipenser fulvescens by Sepulveda et al. (2012a, b)], it is hoped
that the lamprey feeding model can be quantified for more combinations of lamprey
and host species.

Aspects of lamprey feeding behavior to be covered in this section include the
diel timing of attacks; selectivity by lampreys with respect to host species, host size,
and site of attachment on the host; multiple attachments on hosts and patterns of
distribution of attacks among hosts; and the duration of feeding bouts and lethality
of attacks.

3.4.1 Daily Timing of Attacks

Some parasitic lampreys attack significantly more often at night than by day. Evi-
dence reviewed by Cochran (1986a) was especially strong for chestnut lamprey and
silver lamprey, and included both field and laboratory data. Evidence for the sea lam-
prey was equivocal, but it was based on laboratory studies not specifically designed
to test for differences between nocturnal and diurnal attack rates. Typically these
experiments are monitored at 12-h intervals, at the beginning of each light and each
dark period. One potential bias in this sort of study arises when trials are routinely
started at the same time of day (i.e., in the morning at the beginning of the light
period), because a disproportionate number of lampreys may initiate attachments
during the first time period in which hosts are available. The bias may be exagger-
ated if new hosts are routinely added to tanks (e.g., to replace hosts that have died)
at the same time of day, because addition of new fish to a tank may stimulate attach-
ments. These biases may be especially important when overall sample size is low
(e.g., in studies in which lampreys are allowed to remain attached to hosts until they
voluntarily detach).

Cochran (1986a) suggested an experimental design that would increase sample
size and minimize the effect of the initial exposure of lampreys to new hosts. For
lampreys on a 12 h:12 h light:dark cycle, this would entail gently detaching lampreys
from their hosts at intervals of 1.5 days and allowing them to attack during the
intervening intervals, until a sufficient balanced number of light and dark intervals
had passed. Cochran and Lyons (2004) used this design with 13 silver lamprey
allowed to attack common carp Cyprinus carpio over a 9-day experiment, allowing
for three 36-h periods each to be initiated by light and dark periods. With this design,
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a total of 39 attachments were recorded. Significantly more attachments occurred at
night than during the day (29 vs. 10).

The timing of lamprey attacks during the day is related to the sensory modes
used to detect hosts. Nocturnal foraging is consistent with the documented ability of
lampreys to orient to the sources of host odors (Kleerekoper and Mogensen 1963;
Kleerekoper 1972), and both silver and sea lampreys have been shown to possess
electroreceptors (Bodznick and Preston 1983) that may also contribute to detection
of hosts. Cochran (2014) suspended an all-glass tank containing a common carp in
a larger tank as a way of providing visual cues to chestnut lamprey in the absence of
other sensory information. Eight individual lamprey were sequentially tested. None
showed any apparent response to the visual stimulus provided by the carp, but after
each lamprey was transferred to an identical tank with an unconfined carp, it had
attached to the carp by the next morning. Moreover, when the same eight lamprey
were individually released into a tank with a carp in the absence of light (in a room
originally used as a photographic darkroom), each had attached by the end of a
12-h dark period. It would appear, therefore, that visual cues are not necessary for
successful attack.

3.4.2 Host Species Selectivity

Parasitic lampreys collectively attack a wide range of sizes and diversity of host
species (Table 3.2); from small darters (Cochran and Jenkins 1994) to large whales
(e.g., Pike 1951; Nichols and Tscherter 2011). Hosts for four species, two from
the Northern Hemisphere (Caspian lamprey and Klamath lamprey) and two from
the Southern Hemisphere (pouched lamprey and Chilean lamprey) have yet to be
identified. All of these, except Klamath lamprey, are anadromous and probably feed
exclusively in the marine environment over widely dispersed areas, making the study
of their hosts difficult. There are additional host species not listed in Table 3.2 that
are known to have been parasitized by lampreys, but from the evidence available it
was not possible to assign the lampreys to host species. For example, Hubley (1961)
reported lamprey scars on bowfin Amia calva, river carpsucker Carpiodes carpio,
bigmouth buffalo Ictiobus cyprinellus, yellow bullhead Ameiurus natalis, flathead
catfish Pylodictis olivaris, and black crappie Pomoxis nigromaculatus in the upper
Mississippi River, where it was possible for either chestnut or silver lampreys to have
been responsible. There are also two marine mammals, the pygmy sperm whale Kogia
breviceps and the dwarf sperm whale K. sima reported by McAlpine (2002) to bear
lamprey marks, but given that these whales range worldwide in temperate and tropical
waters of the Atlantic, Pacific and Indian oceans, a number of anadromous lamprey
candidates are possible. An additional report by Heyning (2002) of marks on Cuvier’s
beaked whale Ziphius cavirostris was dismissed because they were attributed either
to lampreys or cookie cutter sharks Isistius spp.

Individual lamprey species are also known to attack a wide range of hosts. For
example, Renaud (2002) provided a list of 20 fish species known to be attacked by the
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silver lamprey. Further evidence of the non-specificity of the lamprey diet is provided
by the ability of the sea lamprey to use the native fish species it encountered after
invading the upper Great Lakes, and in particular, burbot, lake whitefish, the ciscoes
(Coregonus artedi, C. johannae, C. nigripinnis, and C. zenithicus), and lake trout, and
by the apparent readiness of native lamprey species to include non-native species in
their diets (Cochran 1994). Nine of the 14 lamprey species for which hosts have been
identified (Miller Lake lamprey, Ohio lamprey, chestnut lamprey, silver lamprey,
western river lamprey, European river lamprey, short-headed lamprey, sea lamprey,
and Chapala lamprey) are known to have parasitized non-native hosts (Table 3.2). In
one case, reports by commercial fishers indicated that the Chapala lamprey attacked
West Indian manatees Trichechus manatus when the latter were introduced into Lake
Chapala, Mexico, in an attempt to control water hyacinth (Cochran et al. 1996).
Using stable isotope analyses coupled with Bayesian mixing models, as well as
direct observation of lamprey-induced scars, Inger et al. (2010) indicated that, in
addition to feeding on native Irish pollan (see Sect. 3.3), European river lamprey
in Lough Neagh also fed on native brown trout Salmo trutta and European perch
Perca fluviatilis, and on non-native freshwater bream and roach Rutilus rutilus. Hume
et al. (2013) suggested that European river lamprey in Loch Lomond has switched
from feeding on native powan (see Sect. 3.3), which have dramatically declined in
numbers, to feeding on the abundant non-native ruffe Gymnocephalus cernua. The
new non-native host proposed in the last study, however, requires confirmation, as it
is based on indirect evidence.

Even though a lamprey species may be observed feeding on many different host
species throughout its geographic range, it may nevertheless concentrate its attacks
on one or a few species at any particular locality, and it may be more abundant where
certain host species are also in abundance. Multiple lampreys have been observed
attached to single individuals of apparently preferred host species. For example,
Vladykov (1985) reported 61 silver lamprey attached to a lake sturgeon in Quebec,
whereas Wagner (1904, 1908) and Becker (1983) reported as many as 10-27 silver
and chestnut lampreys attached to individual lake sturgeon and paddlefish Polyodon
spathula in Wisconsin. Typically, host species attacked by blood feeders are among
the largest fish species available, but there is a dearth of studies that have assessed
host species selectivity while adequately controlling for the effect of host body size.
Fish species that are reported as hosts for blood-feeding lampreys also tend to have
naked skin (e.g., paddlefish) or small scales (e.g., salmonids) and tend to form schools
or otherwise aggregate. Flesh-feeding lampreys, such as western and European river
lampreys, which typically kill their hosts quickly as compared to blood feeders, tend
to feed on smaller schooling fishes (e.g., clupeids and young salmon), at least in
marine environments (Bahr 1933; Beamish 1980; Beamish and Neville 1995).

Cochran (1994) noted that host species used by lampreys tended to coincide with
the commercially and recreationally important fishes preferred by humans. Fishes
preferred by humans tend to be large and have high muscle mass, and those valued
for their fighting ability have high aerobic capacity. These traits are correlated with
large blood volume, a quality that may provide a lamprey with an extended period
of feeding. The piscivorous fishes often preferred by humans tend to have reduced
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layers of skin and scales, which may be associated with a reduced investment of
energy and handling time for a lamprey that penetrates to underlying blood vessels.
Commercially important fishes tend to be concentrated in shoals, a condition that
would lead to reduced search times for lampreys seeking new hosts.

Selection of hosts may be related to habitat. The majority of lamprey species
feed on both benthic and pelagic hosts, indicating plasticity in the foraging habitat
that they utilize (Table 3.2). In separate cases of European river lamprey feeding
in large lakes, Inger et al. (2010) and Hume et al. (2013) suggested that a switch
from feeding pelagically to feeding benthically occurred as the result of new host
introductions into the system that altered the trophic dynamics between parasite and
host and between the historical host and the new one.

Much remains to be learned about host species selectivity. In particular, it is not
known how a lamprey’s previous feeding experience affects its selection of subse-
quent hosts. Moreover, although diversity among parasitic lampreys with respect to
feeding adaptations has been recognized (Potter and Hilliard 1987; Renaud et al.
2009), diversity among host species with respect to qualities that enhance or inhibit
the lamprey feeding process has not been investigated in depth. Cochran (2009), for
example, noted that silver lamprey feeding on paddlefish may benefit from high con-
centrations of lipids in their skin. Wilkie et al. (2004) noted that sea lamprey feeding
on basking shark Ceforhinus maximus must be able to penetrate the shark’s dermal
denticles and rapidly excrete the high urea content of its body fluids. It would be
of interest to know whether these challenges are outweighed by the advantages of
feeding on a host that is large relative to a host such as Atlantic cod Gadus morhua.

3.4.3 Host Size Selectivity

Perhaps the most consistent aspect of parasitic lamprey feeding behavior is a tendency
to attach selectively to larger hosts (Farmer and Beamish 1973; Cochran 1985; Swink
1991). Evidence used to evaluate size selectivity may result from direct observation of
lampreys attached to hosts in the field or the laboratory or from marking rates derived
from field samples of host populations. We use the term “mark” as a general term
to include any evidence of a prior attachment, including surface abrasions, wounds
(typically, for blood feeders, with a central puncture through the skin/scale layer
to the underlying musculature), and scars (=healed wounds). Attempts have been
made to standardize the classification and reporting of sea lamprey marks (King and
Edsall 1979; King 1980; Ebener et al. 2003, 2006; Patrick et al. 2007), including
stages in their healing, but the various terms have not been consistently applied in
the literature. As will be seen, some marks provide better information about size
selectivity than others.

Field data that resulted in significant correlations between host size and marking
rates or significant differences in marking rates between hosts in different size cat-
egories were reported in many papers cited by Cochran (1985) and Swink (1991).
Additional examples include sea lamprey attacking white sucker Catostomus com-
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mersonii (Henderson 1986), pink salmon Oncorhynchus gorbuscha (Noltie 1987),
and lake trout (Sitar et al. 1997), and silver lamprey attacking muskellunge Esox
masquinongy (Renaud 2002), lake sturgeon (Cochran et al. 2003b), and paddlefish
(Cochran and Lyons 2010). However, field evidence in support of size selectivity
must be interpreted with caution, and in fact it would be surprising if marking rates
were not correlated with host size even if lampreys were attaching to hosts randomly
with respect to host size. To the extent that larger hosts tend to be older, they have had
more time to accumulate lamprey marks. For this reason, some analyses have been
restricted to fresh wounds and have excluded healed scars (e.g., Sitar et al. 1997).
Larger hosts are also more likely to survive lamprey attacks and show up as marked
individuals in field samples. Finally, it is possible that larger hosts swim faster and
farther and are therefore more likely to encounter foraging lampreys.

Two field studies have provided evidence for size selective feeding above and
beyond the typical assessment of marking rates: (1) Nuhfer (1993) caged brown trout
of different size classes in the Upper Manistee River in Michigan, where they were
exposed to attacks by chestnut lamprey. Although he did not analyze the resulting
data in the manner proposed by Cochran (1985), he observed that higher percentages
of large trout (2641 cm) were attacked, that the number of lamprey marks on an
individual host was positively correlated with trout size, and that the probability of a
host being attacked was more accurately predicted with logistic regression by using
trout surface area rather than trout length or mass. (2) Schneider et al. (1996) used
bottom trawls to recover lake trout recently killed by sea lamprey in Lake Ontario.
A comparison of the size distributions of dead fish with those of living fish with
and without lamprey wounds revealed that the majority of recent wounds on living
trout were on large trout (>600 mm), with smaller trout (<400 mm) typically not
wounded when larger individuals were available. The conclusion that the sea lamprey
was size selective was strengthened by the absence of smaller individuals from the
size distribution of trout killed by the lamprey.

Laboratory assessments of size selectivity may allow potentially confounding fac-
tors to be controlled. Even in the laboratory, however, it is important to consider the
appropriate null hypothesis to be tested and the power of the experimental design
to detect frequencies of attack that are significantly different from random. Cochran
(1985) recommended that the “numbers-dependent null hypothesis” (that lamprey
attacking randomly should attach to hosts of different sizes in frequencies propor-
tional to their relative abundances) be replaced by the more conservative “surface
area-dependent null hypothesis” (since a lamprey attacks by attaching to a surface,
then lamprey attacking randomly should attach to hosts of different sizes in frequen-
cies proportional to their relative surface areas). According to the numbers-dependent
null hypothesis, if lamprey are provided with hosts of two size classes that are equally
abundant, then the expected frequencies of attack for those two size classes should be
equal. However, according to the surface area-dependent null hypothesis, expected
attack frequency for the larger size class should be greater because larger hosts pro-
vide greater potential surface area for attachments. Cochran (1985) noted that it is
easier to detect significant departure from the area-dependent null hypothesis when
the numbers of small hosts are increased relative to large hosts, so that their total
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surface areas are more equal than in traditional experimental designs, where equal
numbers of hosts of different sizes are employed.

Size selectivity by parasitic lampreys may depend on the size range of hosts
available. The sea lamprey, for example, displayed evidence for size selectivity in
laboratory trials when all hosts were very small (47-95 g) and individual lamprey
were exposed to host pairs that were closely matched in size (Cochran and Jenkins
1994), but not when all hosts were very large (>615 mm in total length) and not closely
matched in size (Swink 1991). It may be that any host that exceeds a minimum size
threshold provides the maximum possible benefit to a feeding lamprey in terms of net
rate of energy intake. Swink (1991, 2003) suggested that host size selection by Great
Lakes sea lamprey resulted mostly from avoidance of lake trout shorter than 600 mm
in total length when larger hosts were available. Cochran (1985) suggested that,
because the time to death of a host is inversely related to the proportion of its blood
removed daily (Farmer et al. 1975), the most important benefit of size selectivity
may be that a lamprey is assured of a longer period of feeding on a larger host. When
Swink (1990) subjected lake trout of three size classes to single sea lamprey attacks,
he recorded significantly greater mortality in the smallest size class (469—557 mm
in total length) but no difference in mortality between the two largest size classes
(559-643 mm and 660-799 mm).

Swink (1991, 2003) assessed host size selectivity by sea lamprey of three size
classes (<50 g, 50-100 g, and >100 g). Because the relative frequencies of attacks
on hosts of different sizes were similar for the three lamprey size classes, it was
concluded that the pattern of size selection does not change with sea lamprey size.
However, newly transformed sea lamprey have sometimes been reported to feed
on relatively small hosts. In some cases, these represent species encountered as the
lamprey move downstream through rivers and estuaries toward the ocean (Mansueti
1962; Davis 1967; Silva et al. 2013a, b); in addition to being relatively abundant,
these small hosts may have scale and skin layers easier for small lamprey to pene-
trate, and they may pose less risk as potential predators. In the Great Lakes, newly
transformed sea lamprey that enter the lakes in fall, winter, or early spring move into
deep water and feed on ciscoes. This apparent preference for relatively small prey
species may actually represent a temperature preference during a period when the
warmest temperature is available in deep water (Johnson and Anderson 1980).

3.4.4 Site Selectivity on Hosts

Site selectivity by lampreys attaching to hosts was reviewed by Cochran (1986b), who
identified several trends: (1) Flesh-feeders tend to attack dorsally or dorso-laterally
where host muscle mass is greatest. (2) Blood-feeders in deep waters tend to attach
ventrally, often just posterior to the paired fins (especially the pectoral fins). (3)
Blood-feeders in shallow habitats tend to attach dorsally. (4) Catostomids, compared
to other host species, tend to be attacked more often on their relatively large heads
and on the upper surfaces of their relatively large paired fins (although it has not
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been assessed whether attachments in these areas are greater than would be expected
based on relative surface area). (5) Captive lampreys in small tanks tend to attach
dorsally, even if they typically attach ventrally in nature. Subsequent reports were
generally consistent with these trends. Captive sea lamprey attached to lake trout in
151-L tanks in approximately equal numbers above and below the lateral line (Swink
and Hanson 1986, 1989) and to rainbow trout primarily dorsally (Swink and Hanson
1989). Noltie (1987) reported that almost all attacks by sea lamprey on pink salmon
in Lake Superior occurred below the lateral line, and Bergstedt et al. (2001) reported
that most attacks by sea lamprey on lake trout in Lake Ontario were ventral (and they
were especially common behind the pectoral fins). Similarly, Cochran and Lyons
(2004) observed that captive silver lamprey attached to common carp dorsally more
often than ventrally, even though they were collected at a site in the Wisconsin River
where attachments to paddlefish in deep water were significantly more often ventral
rather than dorsal (Cochran and Lyons 2010). Finally, Nuhfer (1993) reported that
chestnut lamprey attached primarily dorsally to brown trout in the Upper Manistee
River in Michigan at depths of 25-50 cm.

Cochran (1986b) discussed a combination of factors that might explain patterns
of site selection by blood-feeding lampreys. Ventral attachments in areas with thin-
ner skin and scale layers (i.e., behind the pectoral fins) may be associated with
reduced handling costs and handling time prior to feeding (Farmer and Beamish
1973; Christie and Kolenosky 1980). It is also possible that lampreys achieve greater
rates of blood removal from blood vessels accessed through ventral attachments.
However, although Farmer (1974) reported slightly greater rates of blood removal
for sea lamprey attached in the pectoral region, differences among sites were not
statistically significant. Attachments to the dorsal surfaces of hosts in shallow lotic
habitats, including to the upper surfaces of the paired fins of catostomids, could
minimize the likelihood of detachment or injury to the lamprey through abrasion
against rough substrate. Aquaria of the sizes typically used in laboratory experi-
ments may elicit behavior similar to that exhibited by lampreys feeding in shallow
streams and rivers. Renaud (2002) suggested that ventral attachments by silver lam-
prey to muskellunge occurred less often than expected because this surface would
be less available when the host was hovering motionless in heavily vegetated habi-
tat. Novikov (1963) and Abakumov (1964) noted that Pacific lamprey marks were
observed almost exclusively on the blind (i.e., ventral) side of Greenland halibut
Reinhardtius hippoglossoides, but it is unknown whether this represents the result of
selective behavior by the lamprey.

Several studies have provided additional commentary with respect to host site
selection by lampreys. Swink and Hanson (1989) speculated that attachments by
captive sea lamprey to the head region of lake trout, including two inside the mouth,
resulted from attempts at predation by the lake trout. Bergstedt et al. (2001) com-
pared locations of healed sea lamprey marks on living lake trout from Lake Ontario
with locations of marks on dead fish. The lack of a significant difference implied
that lamprey-induced mortality did not vary among attachment sites. Bergstedt et al.
(2001) also suggested that a tendency for lamprey attachments to be concentrated
on the anterior half of the host’s body may be related to the lower amplitude of
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lateral swimming undulations relative to the posterior half. A tendency for anterior
attachment was reported by Patrick et al. (2009) in a study of parasitism by captive
sea lamprey on lake sturgeon. Many attachments occurred near the insertion of the
pectoral fins or on the lower part of the head. Cochran (2009) compared skin density
of paddlefish in terms of dry mass (g/cm?) for samples taken from ventral, lateral,
and dorsal locations. Unexpectedly, skin density from ventral locations, where silver
lamprey tend to attach in the field, was significantly greater than in locations higher
on the body, and even though paddlefish skin is scaleless, it was comparable to skin
density of common carp. However, dried samples of paddlefish skin contained a
substantial lipid residue, and skin density in terms of ash weight was much less than
that of carp. It is possible that silver lamprey attaching ventrally may benefit from
easy access to high energy lipids. Cochran and Lyons (2010) compared observed
frequencies of attachment by silver lamprey to paddlefish in various body regions
to frequencies expected on the basis of their relative surface areas. As expected
from previous anecdotal observations, ventral attachments on the body were signifi-
cantly more common than dorsal attachments. In addition, attachments to the rostrum
occurred significantly less often than expected on the basis of its surface area, and,
unlike on the body proper, attachments to its dorsal surface were significantly more
common than to its ventral surface. Previous anecdotal accounts reported paddlefish
collected with lamprey “attached in the gill” region (Thomas Say in Keating 1824;
Becker 1983), and Cochran and Lyons (2010) noted attachments to the isthmus at the
base of the gills within the branchial cavity significantly more often than expected on
the basis of its relatively small surface area. As many as four lamprey were observed
within the branchial cavity of a single paddlefish, and they were sometimes com-
pletely obscured from external view by the gular flap. Attaching within the branchial
cavity may protect silver lamprey from detachment when paddlefish breach, and this
location may also provide easy access to blood under pressure in the ventral aorta.

3.4.5 Multiple Attachments and Distribution of Lampreys
Among Individual Hosts

Individual hosts may sometimes be parasitized by more than one lamprey at a time.
Asnoted previously, paddlefish and lake sturgeon are known for multiple attachments
by silver or chestnut lampreys (e.g., Becker 1983; Vladykov 1985), but individuals
of smaller host species, including stream salmonids, catostomids, and esocids, may
also be subject to multiple attacks by these and other lampreys (Nuhfer 1993; Renaud
2002; Hume et al. 2013; Philip A. Cochran unpublished data). For example, when
Nuhfer (1993) caged groups of brown trout for 20-21 days in a Michigan stream
where they were accessible to chestnut lamprey, 43 of 128 trout sustained multiple
(2-20) wounds, whereas 46 trout received no wounds at all. Multiple attachments
to the same host might occur just by chance. If lampreys attach to individual hosts
independently of each other, then the probability that a particular host will suffer two



3 Post-metamorphic Feeding in Lampreys 271

attacks during a given period is the square of the probability of suffering a single
attack.

Because Lennon (1954) reported that hosts struggling to dislodge sea lamprey
attracted additional lampreys, it might be expected that the distribution of lamprey
among hosts would be clumped rather than random. However, Farmer and Beamish
(1973) reported that relative numbers of white sucker with single and multiple attacks
by captive sea lamprey did not differ from those expected under a binomial distribu-
tion, an indication that an attachment by one lamprey did not attract additional attacks.
Beamish (1980b) reached a similar conclusion based on frequencies of anadromous
sea lamprey scars on Atlantic salmon, Salmo salar. Frequencies of paddlefish in the
Wisconsin River with different numbers of lampreys attached were not significantly
different from those expected if the lampreys were distributed among paddlefish ran-
domly (i.e., according to a Poisson distribution) (Cochran and Lyons 2016). Some
models of sea lamprey wounding have assumed that the number of wounds per fish
of a given length follow a Poisson distribution (Bence et al. 2003; Rutter and Bence
2003).

3.4.6 Duration of Attachments to Individual Hosts
and Lethality of Attacks

How long a lamprey stays attached to a host is of great theoretical and practical
interest (Cochran and Kitchell 1986, 1989; Bence et al. 2003), but it is difficult to
ascertain under natural conditions. In the Namekagon River of Wisconsin, where
it is possible to observe chestnut lamprey attached to hosts from bridge crossings,
Philip A. Cochran (unpublished data) has observed lamprey apparently attached to
the same hosts for minimum periods of 1-12 days. These are minimum estimates
because neither attachments nor detachments were observed.

More accurate measurements of attachment durations are possible in laboratory
experiments, but even under controlled conditions the interpretation of attachment
duration is not straightforward. Whereas lampreys sometimes detach voluntarily
from living hosts, in other cases attachments are terminated when the hosts die. We
consider the latter scenario first. Experiments in which lake and rainbow trout blood
was tagged with radioactive chromium (°' Cr) permitted estimation of the amount of
blood removed by sea lamprey (Farmer 1974). The time in days that it takes a host
to die from a sea lamprey attack (D) is negatively related to the percentage of its
blood volume (V) removed daily (Farmer et al. 1975), as expressed by Cochran and
Kitchell (1989) in the following equation: In(D) = 8.03 — 1.63(InV).

Cochran and Kitchell (1989) recorded attachment times for captive sea lamprey on
rainbow trout in the presence and absence of an alternative host of the same species.
Individual lamprey were exposed to both treatments, with half initially exposed to
one trout and half initially exposed to two. Overall, 15 of 28 attacks resulted in the
death of the host, with deaths almost equally split between treatments. Five lamprey



272 C. B. Renaud and P. A. Cochran

killed their hosts in both treatments, but individual lamprey that killed one host were
not more likely to kill the second. Neither the attachment times nor the latency periods
prior to attack for individual lamprey were correlated between the two experimental
treatments, evidence that variation in feeding behavior was not due to consistent
differences among individuals. Attachment times that resulted in host death aver-
aged 12.7 days (range = 140 days), whereas those that left the host alive averaged
13.1 days (range = 1-70 days). Although it might be expected that attacks interrupted
by the death of the hosts would be shorter, the means were not significantly differ-
ent. Neither were mean attachment times in the presence (10.1 days) and absence
(15.4 days) of an alternative host significantly different, although the difference was
in the direction predicted by optimal foraging theory (Cochran and Kitchell 1989).
However, the first attachment by a lamprey tended to be of longer duration than
its second, regardless of whether an alternative host was present. Also, attachment
duration was significantly and positively correlated with the latency period prior to
attack.

Swink’s (2003) review of extensive laboratory experiments at the Hammond Bay
Biological Station allowed for a regression analysis of attachment times for sea
lamprey confined with single hosts (Bence et al. 2003). Some trends were consistent
with those suggested by Cochran and Kitchell (1989). Attachment time was positively
related to the ratio of host weight to sea lamprey weight, presumably because this ratio
is inversely related to the proportion of the host’s blood volume that can be removed
daily. Attachment time was also positively related to the previous latency to attack.
Swink’s (2003) data also indicated that water temperature was negatively related to
attachment time, that host species affected the relationship between attachment time
and host/sea lamprey weight ratio, and that trends were not qualitatively different
when non-lethal attacks were considered separately.

Cochran and Kitchell (1986) noted that attachment times recorded for captive
lampreys were quite variable. For example, a sea lamprey that did not feed for
62 days subsequently attached to a rainbow trout for 70 days and more than doubled
in weight, but it did notkill its host. Similarly, non-lethal attachment times of >35 days
have been recorded for chestnut lamprey (Cochran and Kitchell 1986). Hall (1960)
determined that chestnut lamprey attachment to hatchery trout, either rainbow trout
or brook trout Salvelinus fontinalis, varied from 0.6 to 18.3 days, and 61% of these
attachments (11 of 18) resulted in the death of the host. The 39% of attachments in
which the trout survived likewise lasted between 0.6 and 18.2 days. Variability in
attachment times presumably reflects variability in rates of blood removal. As noted
previously, variability in feeding rates among feeding bouts can be inferred from the
data collected by Farmer (1974) and Farmer et al. (1975), and Cochran and Kitchell
(1986) considered the potential adaptive benefit of adjusting rate of blood removal
along with attachment time in response to changes in host population density. No
attempt to assess variation in feeding rate within a feeding bout has been reported
(i.e., to determine whether a lamprey feeds discontinuously while it is attached to
a host). However, in a neurophysiological study, Kawasaki and Rovainen (1988)
concluded that feeding behavior of parasitic phase silver lamprey under laboratory
conditions was more labile and more complex than respiratory behavior with respect
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to sensory regulation, motor output, pattern generation, and sensitivity to stress and
higher centers.

It might seem that some attachment durations would be limited by the death of
the host, and it would be typical for a lamprey researcher to remove dead hosts from
aquaria promptly to limit the possibility of fungal or other diseases infecting lampreys
or other hosts. However, lampreys can sometimes be found attached to dead hosts
in the field (see Sect. 3.2), and captive lampreys may sometimes remain attached to
dead hosts (Beamish 1980) for up to several days (Philip A. Cochran unpublished
observations). Whether a lamprey is able to obtain some nutrition from a dead fish,
while perhaps waiting for a subsequent host, or whether this behavior is anomalous
or maladaptive is open to question, but it is likely that feeding on carrion is part of the
evolutionary history of the parasitic phase since it has occasionally been observed
in representatives of all three other recognized feeding modes (see Sect. 3.2). In any
case, the death of the host most often coincides closely with the termination of an
attachment.

Kawasaki and Rovainen (1988) noted that virtually nothing is known of appetite
and satiation in lampreys. An interesting question is whether the high lipid content
of some host species, such as paddlefish in the Wisconsin River (Cochran 2009)
and siscowet, a deepwater, fatty form of lake trout in Lake Superior, leads to more
rapid satiation of parasitic lampreys and shorter durations of attachment. This might
explain the high wounding rates coupled with apparently high survival observed in
both cases (Cochran et al. 2003b; Moody et al. 2011).

Finally, little information is available about the extent to which host behavior
in nature may contribute to the involuntary termination of lamprey attachments.
Anecdotal evidence suggests that lampreys may be dislodged when large hosts breach
(Cochran and Lyons 2010). In addition, it may be easier for hosts to scrape off
lampreys in natural habitats with boulders and other rough surfaces than in aquaria
or raceways with smooth surfaces.

3.5 Facultative Parasitism

There are two, and perhaps, three cases of facultative parasitism among the 23 oth-
erwise non-parasitic species of lampreys (Potter et al. 2015). Eight “giant” adults
of American brook lamprey Lethenteron appendix measuring 260-354 mm in total
length have been reported from Lake Huron and Lake Michigan basins (Manion
and Purvis 1971; Cochran 2008). These adults exceed the maximum total length of
240 mm reported for the larvae of the species (Mundahl et al. 2005) and, hence, must
have fed post-metamorphosis. It has been suggested that the otherwise non-parasitic
American brook lamprey feeds facultatively in the adult stage, either parasitically
(Manion and Purvis 1971) or on fish eggs or organic detritus (Vladykov and Kott
1980). Cochran (2008) found acanthocephalans in the guts of two of the giants, an
indication that these parasites were acquired through predatory feeding or carrion
feeding.
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Balon and Hol¢ik (1964) reported a lamprey-induced wound on the side of a
European chub Squalius cephalus (reported as Leuciscus cephalus) in JeleSna Brook,
Orava Valley Reservoir basin, Slovakia. However, all 590 lamprey specimens, col-
lected from 10 localities throughout the basin (Hol¢ik et al. 1965), belonged to the
non-parasitic Ukrainian brook lamprey Eudontomyzon mariae (reported as Lampe-
tra vladykovi). Such an instance of post-metamorphic feeding is probably rare in
the species as Abakumov (1966) found that Ukrainian brook lamprey adults from
the Kuban’ River basin, Russia, never develop a completely patent foregut, thus
effectively precluding their feeding.

Perhaps, American and Ukrainian brook lampreys have only relatively recently
diverged from their parasitic ancestors and on occasion will exhibit atavistic behavior
(Renaud 1982; Docker 2009; see Chap. 4). An indication of that recent divergence,
at least in American brook lamprey, is the discovery of chloride cells in recently
metamorphosed individuals of this species (Bartels et al. 2011). This adaptation for
dealing with hypertonic marine conditions was apparently inherited from the Arctic
lamprey, its anadromous and parasitic ancestor, but is no longer required. However,
a study of the prevalence of chloride cells among all lampreys in relation to their
taxonomic relationships is needed to properly evaluate this link.

A third case of facultative parasitism may be that of the enigmatic population
of western brook lamprey in Morrison Creek, British Columbia, the taxonomically
unrecognized marifuga variety, in which feeding was observed in adults under labo-
ratory conditions, but not in the field (Beamish and Withler 1986; Beamish 1987b).
Renaud (1997) suggested an alternative hypothesis, that this population is in fact
a permanent freshwater form of the morphologically-similar, parasitic and usually
anadromous western river lamprey. Permanent freshwater forms of other anadro-
mous parasitic species are well known in the Northern Hemisphere Petromyzontidae,
occurring in the congeneric European river lamprey, as well as in Pacific lamprey,
Arctic lamprey, and sea lamprey (Renaud 1997; see Chap. 4). Further research is
needed to conclusively establish whether the Morrison Creek population feeds as an
adult in the natural environment and also whether it possesses chloride cells.

3.6 Conclusions

Post-metamorphic feeding behavior in lampreys is complex and highly variable in
terms of daily timing of attacks, host species, size and site selectivity, the duration
of attachments and the lethality of the attacks. While the functional morphology
and the main behavioral characteristics of the two principal modes of feeding (i.e.,
blood feeding and flesh feeding) are well established, much remains unknown. For
example, the hosts for four out of the 18 parasitic species have yet to be identified
and the duration of the feeding phase in six species has not been determined. Future
studies should seek to clarify these lacunae.
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Chapter 4 ®
Life History Evolution in Lampreys: e
Alternative Migratory and Feeding Types

Margaret F. Docker and Ian C. Potter

Abstract Despite their highly conserved body plan and larval stage, adult life his-
tory type in lampreys diverges on two main axes related to migration and feeding. Of
the 41-45 recognized lamprey species, 18 species feed parasitically after metamor-
phosis and their juvenile (sexually immature) feeding phase lasts from 3—4 months
to 2—4 years. Nine of these species are exclusively freshwater resident; five are
exclusively or almost exclusively anadromous, and four (sea lamprey, European
river lamprey, Arctic lamprey, and, to a lesser extent, Pacific lamprey) are largely
anadromous but with established freshwater populations. The other 23—27 described
species are non-parasitic “brook” lampreys which remain within their natal streams.
They initiate sexual maturation during metamorphosis, and, because the non-trophic
periods of metamorphosis and sexual maturation are superimposed, the parasitic
feeding phase is eliminated; this makes them the only vertebrates known to have
non-trophic adults. Body size at maturity varies dramatically among life history
types, ranging from ~110 to 150 mm total length (TL) in non-parasitic species to
800-900 mm TL in the anadromous sea lamprey. Freshwater forms are typically
intermediate in size, although those that inhabit small systems may be no larger
than non-parasitic lampreys and others (particularly the Great Lakes sea lamprey)
are quite large. Some anadromous species (most notably European river lamprey,
Pacific lamprey, and Arctic lamprey) show considerable intraspecific variation, con-
sisting of typical large-bodied forms and dwarf or “praecox” forms that appear to
feed at sea for a reduced period of time. Establishment in fresh water is more com-
mon in species that are consistently small-bodied or those with praecox forms. The
only exceptions are the very small-bodied western river lamprey (mean TL at matu-
rity ~200 mm), which does not produce freshwater parasitic forms (although it has
given rise to innumerable non-parasitic freshwater populations), and the sea lamprey
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which, despite its very large size, has successfully colonized the Great Lakes. Abun-
dant prey of a suitable size range is critical for establishment of freshwater para-
sitic populations. However, even with abundant prey, abandonment of anadromy is
expected only under circumstances where decreases in mortality and the costs asso-
ciated with migration make the reduction in size at maturity, and the accompanying
reduction in fecundity, worthwhile. Pacific lamprey generally fail to establish when
isolated above recently constructed barriers, likely because the reservoirs in which
they have been isolated are relatively small and because they appear to osmoreg-
ulate poorly in fresh water. However, because colonization of fresh water appears
to select for individuals “pre-adapted” to feed and grow to maturity in fresh water
(i.e., relying on existing genetic variation within the source population), probability
of establishment would likely increase with the number of founders. The existence
of three closely related freshwater parasitic species suggests that Pacific lamprey
successfully colonized fresh water in the past. Whether sea lamprey colonized Lake
Ontario and Lake Champlain post-glacially or in historic times is debated. At present,
the “invasion-by-canal” hypothesis appears to be the most convincing, but definitive
resolution should be possible with genome-level analyses. Given the decimation of
the Great Lakes ecosystem by sea lamprey, it is critical to be able to predict the
potential for anadromous lampreys to become invasive in other freshwater systems.
Migratory type is rarely considered a species-specific character unless it is accompa-
nied by identifiable morphological differences. In contrast, variability in feeding type
has long been considered a species-specific character because size-assortative mating
was thought to result in reproductive isolation between parasitic and non-parasitic
forms. However, not all parasitic and non-parasitic forms appear to be reproduc-
tively isolated, and different species show diff