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Abstract  Lack of sufficient pure natural compounds hinders further drug develop-
ments. The optimization of fermentation conditions is essential to enhance the yield 
of metabolites. Microbial genome analysis reveals the presence of a large number of 
cryptic biosynthetic gene clusters, and different strategies are there to trigger these 
gene pathways for the extensive study of natural product chemistry. Hence, the 
advanced technologies play a crucial role to achieve efficient discovery and produc-
tivity of novel microbial bioactive compounds. This chapter provides an outline on 
the mass production of microbial natural products derived from marine sponges and 
corals.
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17.1  �Introduction

Natural products are unique bioactive compounds, which led to the initiation of 
drug discovery [1]. Marine invertebrates are unexploited and significant resources 
in the marine environment to discover novel bioactive compounds. Marine sponges 
and corals harbor diverse microbial communities, such as actinobacteria, fungi, 
archaea, and viruses [2, 3]; their bioactive natural products are substantial in the 
pharmaceutical industries as antimicrobial, anticancer, and immunosuppressants 
[4]. The developments of innovative technologies have overcomed the hurdles for 
the discovery and characterization of microbial bioactive natural products. The 
mass production of microbial bioactive compounds is a significant aspect of achiev-
ing effective yield for structural elucidation, bioactivity studies, and pharmaceutical 
applications.

17.2  �Cultured Microbes Derived from Sponges and Corals

17.2.1  �Sponges

Sponges inhabit a range of marine and freshwater systems [5], which form a close 
association with phylogenetically diverse microorganisms [2, 3]. Moreover, the 
sponges have acquired symbiotic microbial flora through parental sponges, sur-
rounding water, or from other sources [6–8]. Microorganisms derived from the 
marine sponges are best sources for bioactive natural products [4, 9]. Extensive 
research of the past two decades on sponge symbiotic microbial communities 
revealed their phylogenetic diversity and biogeography [10–12] and their vital role 
in host metabolism and health [13–15].

The cultured actinomycetes derived from the marine sponges are Dietzia, 
Rhodococcus, Streptomyces, Salinispora, Marinophilus, Solwaraspora, 
Salinibacterium, Aeromicrobium marinum, Williamsia maris, and Verrucosispora 
[12, 16]. Morphological variants of actinobacteria were isolated from the marine 
sponge Haliclona sp., in the South China Sea, e.g., Streptomyces, Nocardiopsis, 
Micromonospora, and Verrucosispora [17]. Moreover, the marine sponge-associated 
actinomycetes, like Rhodococcus sp. RV157 (Dysidea avara) and Micromonospora 
sp. RV43 (Aplysina aerophoba), were isolated from Mediterranean sponges, and 
Actinokineospora sp. EG49 (Spheciospongia vagabunda) were isolated from the 
Red Sea sponge, as well as Nocardiopsis sp. SBT366 (Chondrilla nucula), 
Streptomyces sp. SBT343 (Petrosia ficiformis), Geodermatophilus sp. SBT350 
(Chondrilla nucula), Streptomyces sp. SBT345 (Agelas oroides), Streptomyces sp. 
SBT346 (Petrosia ficiformis), and Micromonospora sp. SBT373 (Chondrilla 
nucula) [18]. Diversity analysis of cultural actinomycetes associated with 8 species 
of marine sponges reported the 13 genera, including 5 genera as the first records 
belong to the 10 families and order Actinomycetales from the South China Sea and 
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the Yellow Sea [16]. 180 actinomycete strains including at least 14 new  
phylotypes within the genera Micromonospora, Verrucosispora, Streptomyces, 
Salinispora, Solwaraspora, Microbacterium, and Cellulosimicrobium were isolated 
from the Caribbean sponge and sediment samples [19]. The actinomycetes isolated 
from 15 species of sponges in the South China Sea consisted of 20 genera of 12 
families, including the 3 rare genera, such as Marihabitans, Polymorphospora,  
and Streptomonospora [12]. The marine sponge Mycale sp. derived bacterial  
strains isolation reported from the genera Actinobacteria, Bacteroidetes, 
Gammaproteobacteria, Alphaproteobacteria, and Firmicutes [20]. Particularly, 14 
new actinobacterial strains were isolated from 3 Mediterranean sponges [21].

Ascomycetous fungi, such as Sordariomycetes, Dothideomycetes, and 
Eurotiomycetes, are highly dominated in marine sponges [22]. Most of the marine 
sponges harbored some quite common fungal genera, such as Acremonium, 
Aspergillus, Fusarium, Penicillium, Phoma, and Trichoderma [23, 24], and few rare 
genera, such as Botryosphaeria, Epicoccum, Paraphaeosphaeria, and Tritirachium 
[25]. Besides, fungal strains belonging to Bartalinia and Volutella from Tethya 
aurantium and Schizophyllum, Sporidiobolus, Bjerkandera (Basidiomycota), and 
Yarrowia (Ascomycota) were isolated from marine sponges [24, 26]. Cultured fun-
gal strains from 10 species of marine sponges in the South China Sea belonged to 
the predominant genera, viz., Aspergillus, Penicillium, and Volutella and the others, 
such as Ascomycete, Fusarium, Isaria, Plectosphaerella, Pseudonectria, 
Simplicillum, and Trichoderma [27].

17.2.2  �Corals

Corals are sessile marine invertebrates belonging to the phylum Cnidaria, living in 
the compact colonies of many identical individual polyps. Corals are categorized 
into stony and soft corals. Stony corals are mainly reef-building scleractinian corals, 
and soft corals include a range of species, like gorgonians and sea pens in the sub-
class of Alcyonaria or Octocorallia [28]. Corals involve a mutually beneficial sym-
biosis with photosynthetic dinoflagellate algae Symbiodinium. The dynamic 
relationship between the corals and microorganisms plays a significant role in the 
coral health [29–34]. Microorganisms associated with corals influence the coral 
host physiology as well as coral reef ecosystem, like pathogen resistance and bio-
geochemical cycling of critical nutrients [28, 31]. Fewer reports are available on the 
isolation of coral-associated microorganisms through the culture-dependent meth-
ods [35], whereas the culture-independent studies have revealed the diverse micro-
flora associated with corals [36–44].

Green sulfur bacteria, such as Alphaproteobacteria, Firmicutes and 
Planctomycetales (Montastraea annularis), and Gammaproteobacteria and 
Betaproteobacteria (M. cavernosa), have been detected in corals [34], and 
Alphaproteobacteria and Bacteroidetes were found in the soft coral Dendronephthya 
sp. [36]. Predominant bacterial strains belonging to Gamma-, Alpha-, and 
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Betaproteobacteria, Bacteroidetes, Firmicutes, Actinomycetales, Planctomycetes, 
and Chlorobi were found to be associated with soft coral Alcyonium antarcticum 
[37]. Five new actinobacterial genera of Cellulomonas, Dermacoccus, Gordonia, 
Serinicoccus, and Candidatus Microthrix along with 19 common actinobacterial 
genera were reported from soft coral Alcyonium gracllimum and stony coral 
Tubastraea coccinea in the East China Sea [38].

Culture enrichment aided in the isolation of higher ascomycetes and basidiomy-
cetes fungal taxa from the coral skeletons [39]. Cultured fungi belonging to genera 
of Aspergillus, Penicillium, Cladosporium, Fusarium, Microsphaeropsis, 
Paecilomyces, Phoma, Tilletiopsis, Gibberella, Isaria, Acremonium, Debaryomyces, 
Myrmecridium, and Nigrospora were isolated from six species of gorgonians from 
the South China Sea [45]. Fungi associated with coral Porites pukoensis have been 
isolated, with Aspergillus being predominant, and the others consisted of Penicillium, 
Cochliobolus, Acremonium, Rigidoporus, Gibberella, Eutypella, Didymellaceae, 
and Curvularia [46]. To date, fungal spatial and functional relationship with corals 
is still poorly understood, and very few researchers have broadly explored the fungi 
associated with soft corals to isolate novel biologically active compounds [47].

17.3  �Natural Products from Microbes Derived from Sponges 
and Corals

The discovery of microbes associated with marine sponges and corals has led to 
their intense exploitation for an untapped resource of the novel bioactive com-
pounds, for example, polyketides, terpenoids, alkaloids, and non-ribosomal pep-
tides [48–50], which might be ample candidates for the invention of new drug leads 
for cancer, infectious diseases, and lipid metabolic disorders or as immunosuppres-
sants. Marine Actinobacteria, e.g., Streptomyces, Micromonospora, Microthrix par-
vicella, and Acidimicrobium, and particularly obligate marine actinomycetes, 
Salinispora tropica and Salinispora arenicola, are the producers of bioactive micro-
bial metabolites [51–53]. Marine sponge-derived fungi, especially endophytic, pro-
duce the most of marine natural products among the marine fungi [54]. Some 
metabolites isolated from microorganisms associated with sponges and corals are 
summarized in Table 17.1.

S. P. Banakar et al.
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17.4  �Mass Production of Natural Products from Cultured 
Microbes Derived from Sponges and Corals

The microorganisms are able to synthesize a vast number of primary and secondary 
metabolites. However the quantities produced are very low for the industrial scale 
in the view of the industrial biotechnologists [107]; hence, the mass production 
efficiency of the microbial bioactive metabolites needs to be improved.

17.4.1  �Fermentation Optimization

The optimization of fermentation condition depends on the type of microbial strain 
and target metabolite [56–58, 62, 82–85, 92], since the standard conditions may not 
favor the expression of a majority of microbial biosynthetic pathways [70, 108, 
109]. The fermentation optimization includes fermentation method and production 
medium (carbon and nitrogen sources), along with the physical-chemical factors 
which include salt concentration, pH, temperature, agitation, aeration, incubation 
time, and competition/interaction between microorganisms [110–114].The solid 
substrates are widely used for mass production of fungal metabolites, but not much 
preferred for actinomycetes and bacteria [92, 115–117].

The traditional method of one parameter each a time for factorial optimization 
might not produce accurate results, so the statistical methods are helpful in this 
aspect. The widely used statistical tools for the optimization of critical factors of 
mass production culture conditions are Plackett-Burman (PB) design and response 
surface methodology [62, 112, 113]. The PB design method is useful to select the 
critical control factors through the evaluation of the relative importance of biopro-
cess culture conditions and nutrients on the biomass and metabolite yield in liquid 
culture. The variables include the medium components, e.g., carbon and nitrogen 
sources, pH, temperature, incubation time, inoculum concentration, agitation, and 
aeration [111–114]. Response surface methodology (RSM) is useful to elucidate the 
interaction of selected critical variables of the bioprocess medium and selection of 
optimized conditions for the enhanced production of biomass and metabolite yield.

Different factors may hinder or induce the rate of biosynthesis of a novel or 
known marine microbial natural product or biomass during the mass production. 
The production medium, physicochemical factors, fermentation conditions, and 
carbon and nitrogen sources influence the efficient mass production and recovery of 
microbial natural products [70, 111–113, 117, 118]. The ideal conditions for growth 
and biosynthesis of secondary metabolites are not indeed the same, and even each 
organism obliges contrarily. The physiological and chemical regulators vary with 
diverse microorganisms and different metabolic pathways. Therefore, the individual 
optimal zones are required to improve the qualitative and quantitative secondary 
metabolite production. For instance, effective yield of antitrypanosomal active 
metabolite was observed from ISP2 medium with calcium alginate beads [70]. The 
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sponge-associated fungus Aspergillus carneus was able to produce 3 new and 14 
known compounds in the rice medium without sea salt than the rice medium with 
sea salt and modified Czapek medium [116]. Higher yield of (+)-terrein was 
achieved from the optimized mass production of Aspergillus terreus strain PF26 
derived from a marine sponge than the un-optimized culture conditions [112]. Two 
new and one known lumazine peptides, along with a new cyclic pentapeptide, were 
isolated from the static, submerged fermentation of gorgonian-derived fungus 
Aspergillus sp. XS-20090B15. Further, L-methionine induced the isolation of new 
penilumamide B in comparison with traditional culture [93].

17.4.2  �Efficient Finding and Preparation

Microorganisms are ubiquitous, and they thrive under different environmental con-
ditions. Diverse habitats will influence different class of bioactive metabolites. 
Moreover, the production of microbial bioactive compounds will be affected by 
microbial strain selection, production mediums, fermentation conditions, microbial 
or chemical elicitors or inducers used, and the balance between biosynthesis and 
biotransformation during the mass production [70, 111–119].

A conventional method of natural product discovery depends on bioassay or che-
motypes. Natural product discovery programs through traditional way are not sup-
portive, time-consuming, laborious, and need more resources. Recent technologic 
advances have simplified the screening and efficient production of microbial bioac-
tive natural products in addition to proposing the unique opportunity for re-
establishment of microbial natural products as a more significant source of drug 
leads. The bacterial and fungal genome sequence information show the link between 
known natural products and the genes encoding their biosynthesis as analyzed by 
various software tools, such as antiSMASH, SMURF, CLUSEAN, ClustScan, and 
so on. Moreover, gene clusters and chemistry of the compounds progressively 
exploit to classify known natural products to discover new ones. Further, biosyn-
thetic pathways responsible for the production of specific natural products enable a 
better understanding of mechanisms or interactions during the metabolite produc-
tion under culture condition [120, 121].

The biosynthetic potential-based strain prioritization may help for natural prod-
uct discovery, through pathway-specific probes [120] and high-throughput real-time 
PCR [121]. Moreover, the optimized mass production methods [94, 95, 112–117] 
and analytical approach of collective LC-MS and UV profile of each active extract 
help the systematic analysis, early de-replication, and screening with an LC-MS 
library to known or novel compounds [63–66, 122–125]. Comparative study has 
showed the utility of standard solvent partitioning (SSP) and accelerated solvent 
extraction methods (ASE) related to overall yields, solvent consumption, process-
ing time, and chemical stability of both fractions [121]. In the past two decades, the 
excellent applications of combinatorial chemistry and high-throughput screening 
(HTS) technologies, genome sequencing, proteomics, metabolomics, and other 
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methods have changed the entire scenario of finding natural products and the ways 
of harnessing its intricacies [126].

17.4.3  �Activating Silent Gene Cluster

There are an increased number of cryptic or orphan pathways discovered; they are 
new sources to mine novel bioactive natural products. The developments in our 
understanding of microbial genome sequence, cluster arrangements, and metabolic 
pathways, and growth conditions, help to improve the natural product yield. 
Complete genome sequencing and mining are an alternate approach for the explora-
tion of known or novel microbial species to analyze their metabolic potential [127]; 
however, these biosynthetic pathways are sometimes silent [128] or rarely expressed 
under standard laboratory conditions [129].

The traditional screening method incudes the selection of indigenous strain, 
followed by strain improvements through a series of mutational selection for the 
enhanced growth and metabolite yield [130]. It was suggested that new environ-
ments led to discover new microbial species to isolate novel bioactive natural 
products [131]. Thus, cryptic biosynthetic gene clusters could be activated by 
changing the cultural conditions. The OSMAC (one strain many compounds) prin-
ciple is to mine and discover the new bioactive compounds through different 
approaches [132, 133].

17.4.3.1  �Microbial Co-culture

Microorganisms show an active interspecies interaction with each other for avail-
able nutrients, space, and other resources for their existence in natural environ-
ments. Besides, the interaction may be beneficial or detrimental; the coexistence 
may incur production of novel bioactive secondary metabolites [134]. Therefore, 
microbial coexistence under laboratory conditions may induce activation of cryptic 
biosynthetic gene clusters which led to the innovative prospects. The co-culture 
strategy helps us to study the interspecies interactions responsible for the produc-
tion of novel compounds with diverse structure and distinct bioactivities, such as 
antimicrobial and anticancer compounds [135]. Besides, this strategy has other ben-
efits in comparison with pure cultures, such as in finding novel compounds or 
enhancing the yield of biological molecule, increase in the growth rate, and better 
utilization of mixed substrates. For example, based on the investigations of interspe-
cies metabolic diversity of sponge-derived S. arenicola and S. pacifica, the S. paci-
fica induced the production of new rifamycins O and W from S. arenicola and 
known rifamycins and saliniketals [136]. Three new and ten known compounds 
isolated from sponge-derived Actinokineospora sp. EG49 and Nocardiopsis sp. 
RV163 were the results of co-culture induced biosynthesis [67, 137]. A novel 
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keyicin, a poly-nitroglycosylated anthracycline, was produced by the co-culture of 
marine ascidian-associated Micromonospora sp. Strain WMMB235 and marine 
sponge-associated Rhodococcus sp. Strain WMMA185. The biosynthetic gene 
cluster analysis of both strains and sequencing results of keyicin BGC confirm that 
the compound is from the Micromonospora sp. [126]. Though many researchers 
have conducted experiments on co-culture and synergistic microbial interactions, 
via coax between two or more than two microorganisms, but in reality, the chal-
lenges and questions related to the methods are still unanswered [138, 139].

17.4.3.2  �Epigenetic Regulators

Putative biosynthetic gene regulators for the production of bioactive secondary 
metabolites of particular interest have been proved to be unique in different ways 
from previously understood models of gene regulation. The epigenetic regulators 
act as a signaling molecule by the regulation of putative biosynthetic genes and 
induce a variety of responses in microbes, for example, N-acetyl-D-glucosamine 
(GlcNAc), suberoylanilide hydroxamic acid (SAHA), DNA methyltransferase 
inhibitor (5-AZA), proteasome inhibitor (Bortezomib), and sodium citrate. The 
N-acetyl-D-glucosamine-mediated elicitation toward three sponge-derived actino-
mycetes led to the induced production of 3-formylindole and guaymasol in 
Micromonospora sp. RV43, the siderophore bacillibactin, and surfactin antibiotic in 
Rhodococcus sp. RV157 and improved the production of minor metabolites, actino-
sporins E–H in Actinokineospora sp. EG49 [140].

The influence of SAHA on Aspergillus terreus strain PF26 associated with a 
marine sponge in the biosynthesis of (+)-terrein was investigated. The epigenetic 
modifier shows the higher impact on (+)-terrein production than the control by stim-
ulating the biosynthesis of the precursor, 6-hydroxymellein [141]. Optimized 
precursor-directed mutasynthesis has produced higher yield of BC194, a derivative 
of borrelidin from the Streptomyces rochei MB037 derived from the marine sponge 
Dysidea arenaria [78]. Bortezomib, a protease inhibitor, has induced the production 
of new bergamotene derivatives (xylariterpenoids H–K) from Pestalotiopsis macu-
lans 16F-12 derived from marine sponge [91].

17.4.3.3  �Gene Engineering

Majority of microbial natural product biosynthetic gene clusters (BGCs), relatively 
under standard laboratory conditions, are either transcriptional silent or expressed at 
deficient level, so these are the significant challenges for the discovery of novel 
natural products [142]. Analysis of microbial genes responsible for the biosynthesis 
of secondary metabolites usually depends on gene knockout and heterologous 
expression. Hence, the BGC identification and manipulation are accessible from the 
complete genome sequencing [128, 143]. For this purpose, some sponge- and 
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coral-associated microorganisms are yet to be cultivated to study their true biosyn-
thetic potential for microbial natural product discovery [130, 144].

The actinomycetes, especially the genus Streptomyces, harbor dozens of BGCs 
per genome [145]. Recently, advanced activation of cryptic or silent BGCs was car-
ried out through the genetic approaches, such as either to unlock the suppression of 
BGC gene expression in the native hosts [146] or directly bypass the regulatory 
system by refactoring and reconstructing controlling elements in BGCs in the het-
erologous hosts [147–149]. Heterologous microbial hosts are an unusual choice, to 
bypass the task of removing introns and stitching genes by PCR to ensure the cor-
rect expression in the model hosts, such as E. coli, yeasts, and filamentous fungi 
[150]. Eukaryotic microorganisms have large and complex gene networks. The 
complexity and lack of understanding of the physiology of filamentous fungi, com-
pared to bacteria, have delayed rapid development of these organisms as highly 
efficient hosts for homologous or heterologous gene expression [151].The fungal 
biosynthetic gene clusters mRNA processing will be complicated for heterologous 
gene expression.

17.5  �Summary and Future Perspectives

The microorganisms associated with marine sponges and corals are the primary 
sources of marine bioactive natural products, which are least studied and under 
exploration for the discovery of novel drug leads. Marine microbial bioactive natu-
ral products, which are majorly from Streptomyces and filamentous fungi, include 
terpenoids, polyketides, alkaloids, non-ribosomal peptides, phenazines, indolocar-
bazoles, sterols, butenolides, and cytochalasins. Optimized mass production studies 
are helpful to achieve high yield of microbial bioactive compounds. Lack of suffi-
cient yield of the pure natural compounds hinders the analysis, structural elucida-
tion, biological activity assays, and further drug developments. So, to achieve a 
higher yield of the compounds, further developments are required for mass produc-
tion studies as well as to reduce the labor and other requirements. These aspects are 
helpful for the upcoming researchers to take up further challenges to produce the 
novel bioactive marine microbial natural products with pharmaceutical develop-
ment potentials, such as antimicrobials, antituberculosis, and anticancer 
compounds.
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