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Abstract  The sponge is one of the oldest multicellular invertebrates in the world. 
Marine sponges represent one of the extant metazoans of 700–800 million years. 
They are classified in four major classes: Calcarea, Demospongiae, Hexactinellida, 
and Homoscleromorpha. Among them, three genera, namely, Haliclona, Petrosia, 
and Discodemia have been identified to be the richest source of biologically active 
compounds. So far, 15,000 species have been described, and among them, more 
than 6000 species are found in marine and freshwater systems throughout tropical, 
temperate, and polar regions. More than 5000 different compounds have been 
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isolated and structurally characterized to date, contributing to about 30% of all 
marine natural products. The chemical diversity of sponge products is high with 
compounds classified as alkaloids, terpenoids, peptides, polyketides, steroids, and 
macrolides, which integrate a wide range of biological activities, including antibac-
terial, anticancer, antifungal, anti-HIV, anti-inflammatory, and antimalarial. There is 
an open debate whether all natural products isolated from sponges are produced by 
sponges or are in fact derived from microorganisms that are inhaled though filter-
feeding or that live within the sponges. Apart from their origin and chemoecological 
functions, sponge-derived metabolites are also of considerable interest in drug 
development. Therefore, development of recombinant microorganisms engineered 
for efficient production of sponge-derived products is a promising strategy that 
deserves further attention in future investigations in order to address the limitations 
regarding sustainable supply of marine drugs.

Keywords  Sponge · Sponge holobiont · Natural products · Alkaloids · Peptides · 
Polyketides · Macrolides · Terpenoids · Steroids · Bioactivity

15.1  �Introduction

Considering that oceans comprise over 70% of the earth’s surface and harbor a tre-
mendous variety of flora and fauna, marine habitat represents an unexplored source 
of new bioactive molecules. Although still quite young by many standards, since the 
1950s, this field of marine natural products has undergone exponential growth and 
proven to be a productive source for structurally diverse secondary metabolites. Due 
to long evolutionary processes favoring the accumulation of strongly bioactive com-
pounds, sponges (Porifera) and their associated microorganisms have become the 
largest contributors of marine natural products. Seemingly primitive and morpho-
logically defenseless organisms like sponges developed ingenious survival strate-
gies which rely heavily on the accumulation of defensive products protecting them 
from a multitude of stress factors that involve overgrowth by fouling organisms, 
attacking by predators, and invasion by pathogenic microorganisms. Sponges are 
classified in four major classes: Calcarea, Demospongiae, Hexactinellida, and 
Homoscleromorpha. Among them, three genera, namely, Haliclona, Petrosia, and 
Discodemia have been identified to be the richest source of biologically active com-
pounds. The chemical diversity of sponge products is high with compounds classi-
fied as alkaloids, terpenoids, peptides, polyketides, steroids, and macrolides, which 
integrate a wide range of biological activities, including antibacterial, anticancer, 
antifungal, anti-HIV, anti-inflammatory, and antimalarial.
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15.2  �Bioactive Alkaloids from Marine Sponges

Biologically significant alkaloids, as a special and important class of bioactive natu-
ral products, are widely distributed over terrestrial and marine organisms. Recent 
studies have demonstrated that marine invertebrates and microorganisms are abun-
dant sources of these secondary metabolites. Among these natural products, imidaz-
ole-, oxazole-, and thiazole-containing alkaloids are often found to show diverse 
significant biological activities, including antitumor, antibacterial, antiviral, antima-
larial, immunosuppressive activities, etc.

The following review summarizes the latest progress on the isolation, structure 
identification of a diverse 209 alkaloids from 66 marine sponges with potent bio-
logical activities within the literature coverage from 1986 to 2016.

In the year of 1993, xestocyclamine A (1) was isolated from Papua New Guinea 
collections of the sponge Xestospongia sp. Pure xestocyclamine A exhibited an 
IC50 = 4 μg/mL (10.1 μM) against PKC є and also exhibits activity in a whole cell 
IL-1 release assay with an IC50 of 1 μM [1].

In the year of 1994, madangamine A (2) was isolated from the marine sponge 
Xestospongia ingens, which showed in vitro cytotoxicity against murine leukemia 
P388 (ED50 0.93 μg/mL) [2].

In 1996, sceptrine (3) and ageliferine (4) were isolated from Xestospongia sp. 
and Agelas novaecaledoniae collected at Baic de Prony, exhibiting a high affinity 
for somatostatin (IC50  =  0.27  μM and 2.2  μM) [3]. Within the same year, 
4,5-dibromopyrrole-2-carbamide (5) was isolated from the marine sponge Agelas 
mauritiana collected off Hachijo-jima Island, Japan. 4,5-dibromopyrrole- 
2-carbamide (5) promoted larval metamorphosis of the ascidian Ciona savignyi at a 
concentration of 2.5 μg/mL (9.36 μM) [4]. (±)-xestospongin D (6) was isolated 
from the Singapore marine sponge Niphates sp. collected from south of the Beting 
Bemban Besar reef. (6) was found to inhibit growth of certain human cancer cell 
lines comprising the NCI panel (leukemia subpanel, mean GI50 3.62 ± 2.02 μM; 
breast subpanel, mean GI50 4.53 ± 1.98 μM) as well as the murine P388 lymphocytic 
leukemia (ED50 1.7 μg/mL) (3.67 μM) [5].

In the year of 1998, the chemical investigation of Micronesian sponge Oceanapia 
sp. from Truk Lagoon, afforded two active pyridoacridine alkaloids: the known 
compound kuanoniamine D (7) as well as the new N-deacyl derivative of the 
kuanoniamines (8). The IC50 of N-deacyl derivative of the kuanoniamines (8) was 
1.2 μg/mL (3.77 μM) against HeLa cells and 2.0 μg/mL against MONO-MAC 6 
cells. In receptor binding assays, kuanoniamine D (7) showed potent affinity to A1 
adenosine receptors with Ki value of 2.94 μM [6].

In 1999, halitulin (9) was isolated from the sponge Haliclona tulearensis col-
lected in Sodwana Bay, Durban, South Africa. It was found to be cytotoxic against 
several tumor cell lines: P388, A549, HT29, and MEL28  in concentration of 
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12–25 ng/mL [7]. Discorhabdin Q (16, 17-dehydrodiscorhabdin B) (10) was iso-
lated from cytotoxic extracts of the sponge Latrunculia purpurea and numerous 
collections of Zyzzya massalis, Z. fuliginosa, and Z. spp from Australia and Fiji. In 
the NCI 60-cell line antitumor screen, discorhabdin Q (10) exhibited moderate cyto-
toxicity (mean panel GI50 = 0.5 μg/mL) [8]. In the same year, five new steroidal 
alkaloids, plakinamines C and D (11), and three related compounds were isolated 
from the Vanuatu sponge Corticium sp. collected off Porth Havannah, Vanuatu, 
South Pacific. Two new compounds (12 and 13) performed good in vitro cytotoxic-
ity against human bronchopulmonary non-small-cell lung carcinoma cells 
(NSCLC-N6) with IC50 values of 3.3–5.7 μg/mL, while plakinamine D (11) was 
cytotoxic with IC50 < 3.3 μg/mL [9].

In 2000, topsentins B1 (14) was isolated from the marine sponge Rhaphisia laca-
zei, collected in the Mediterranean Sea which showed antiproliferative activity 
against human bronchopulmonary cancer cells with an IC50 of 6.3  μg/mL [10]. 
Dragmacidin F (15), possessing an unprecedented carbon skeleton, was isolated 
from a marine sponge of the genus Halicortex collected off the southern coast of 
Ustica Island (Italy), which showed good in vitro antiviral activity toward HIV-1 
(EC50 = 0.91 μM) [11].

In the year of 2001, makaluvamine P (16) was isolated from the sponge Zyzzya 
cf. fuliginosa collected in the waters off the Vanuatu Islands. Makaluvamine P (16) 
was found to inhibit the growth of KB tumor cells with 64% on at 3.2 μg/mL 
(9.5 μM) [12].

In 2002, the sponge Stylissa massa collected from the shallow waters around 
Helgoland afforded eight known alkaloids, among which 10 E-hymenialdisine (17) 
and 10 Z-hymenialdisine (18) were active in the initial Raf/MEK-1/MAPK signal-
ing cascade assay (IC50 = 3 and 6 nM) [13]. Arenosclerins A–C (19–21) and hali-
clonacyclamine E (22), isolated from the marine sponge Arenosclera brasiliensis, 
exhibited certain cytotoxity against human HL-60 (leukemia), L929 (fibrosarcoma), 
B16 (melanoma), and U138 (colon) cancer cell lines at concentrations between 1.5 
and 7.0 μg/mL [14]. In addition, isonaamidine E (23) was isolated from two sponges, 
Leucetta chagosensis and Leucetta cf. chagosensis, collected from the Great Barrier 
Reef and the Fiji Islands, which was found to be cytotoxic toward several tumor cell 
lines (GI50 values was 1.3 μg/mL) [15].

In 2003, manadomanzamines A (24) and B (25) were isolated from an  
Indonesian sponge Acanthostrongylophora sp. (Haplosclerida: Petrosiidae). 
Manadomanzamines A (24) and B (25) exhibited strong activity against 
Mycobacterium tuberculosis (Mtb) with MIC values of 1.9 and 1.5 μg/M (2.4 μΜ) 
[16].

In 2004, seven pyrrole alkaloids isolated from Agelas sponges were tested for 
interactions with the cellular calcium homeostasis. Among them, brominated pyr-
role alkaloids reduced voltage-dependent calcium elevation in PC12 cells, and 
dibromosceptrin (26) was the most potent alkaloid with a half maximal of 2.8 μM 
[17].
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In 1994, manzamine A (27), 8-hydroxymanzamine A (28), and 
8-methoxymanzamine A (29) were derived from an unidentified sponge, 
Pachypellina sp. All the compounds showed antitumor and anti-HSV-II activities 
[18], and the compounds 27 and 28 also showed potent anti-inflammatory, antifun-
gal, and anti-HIV-1 activities [19]. In 2004, compounds manzamine J (30), 
8-hydroxymanzamine J (31), manzamine A N-oxide (32), manzamine E (33), 
6-hydroxymanzamine E (34), manzamine F (35), and ircinol A (36) isolated from a 
common Indonesian sponge of the genus Acanthostrongylophora showed diverse 
activities against malaria, mycobacterium tuberculosis, leishmania, HIV-1, and 
AIDS opportunistic infections [20]. In 2006, a structurally related compound man-
zamine Y (37) was obtained from the genus Acanthostrongylophora. Compounds 
27, 28, 33, 34, 35, and 37 displayed the cytotoxicity against Plasmodium falciparum 
and Vero cells [21]. Compounds 27, 28, and 33 also showed neuritogenic activity 
against Neuro-2a cells with IC50 values of 3.3, 3.2, and 5.7 μM [22]. In 2009, the 
new analogues zamamidine C (38), 3,4-dihydro-6-hydroxy-10,11-epoxymanzamine 
A (39), and 3,4-dihydromanzamine J N-oxide (40) were purified from an Okinawan 
marine sponge Amphimedon species. All the compounds showed cytotoxicity 
against the three human tumor cell lines P388 murine leukemia L1210, human epi-
dermoid carcinoma KB cells, and murine leukemia, and compounds 38 and 40 also 
possessed inhibitory activities against T.b. brucei (IC50 = 0.27, 4.44, μg/mL, respec-
tively) and P. falciparum (IC50 = 0.58, 7.02, μg/mL, respectively) in vitro [23].
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In the year 2004, three new pyrroloiminoquinone alkaloids, 3-dihydro-7,8-
dehydrodiscorhabdin C (41), 14-bromo-3-dihydro-7,8-dehydrodiscorhabdin C (45), 
discorhabdin V (46), and three known compounds 14-bromodiscorhabdin C (44), 
14-bromo-3-dihydrodiscorhabdin C (42), and 3-dihydrodiscorhabdin C (43) were 
yielded from the sponge Tsitsikamma pedunculata with the cytotoxicity activity 
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against human colon tumor (HCT-116) cancer cell line at IC50 values of 0.197, 
0.222, 1.266, 0.077, 0.645, and 0.323 μM, respectively. Then tsitsikammamine A 
(47) and tsitsikammamine B (48) were isolated from the sponge Tsitsikamma favus 
with cytotoxicity activity inhibiting against HCT-116 cancer cell line at IC50 of 
1.414 and 2.382  μM.  Two new compounds 1-methoxydiscorhabdin D (49) and 
1-aminodiscorhabdin D (50) and five known metabolites, damirone B (51), makalu-
vic acid A (52), makaluvamine C (53), discorhabdin G (54), and discorhabdin N 
(55), obtained from the sponge Latrunculia bellae exhibited cytotoxic activity 
against HCT-116 cell line with IC50 values of 0.232, 0.119, 3.102, 1.089, 0.327, and 
2.249 μM, respectively. Discorhabdin A (56) and discorhabdin D (57) isolated from 
the sponge Strongylodesma algoaensis displayed cytotoxicity activity against HCT-
116 cancer cell line which IC50 values are 0.007 and 0.595 μM, respectively [24].

In 2008, compounds discorhabdin G (54), B (58), L (59), and W (60) isolated 
from Latrunculia species sponges were found cytotoxic toward the P388 murine 
leukemia cell line with IC50 values of 0.1–1.08 μM [25]. In 2012, bispyrroloimino-
quinone alkaloids, tsitsikammamine C (61), and makaluvamines J (62), G (63), and 
L (64) were obtained from the Australian marine sponge Zyzzya sp. Tsitsikammamine 
C displayed potent antimalarial activity with IC50 values of 13 and 18 nM against 
chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falci-
parum, respectively. Compounds 62–64 displayed potent growth inhibitory activity 
(IC50 < 100 nM) against both P. falciparum lines and only moderate cytotoxicity 
against HEK293 cells (IC50 = 1–4 μM) [26].

Fascaplysin (65) isolated from the sponge Thorectandra sp. in 2005 displayed 
inhibitory activity in the Cdc25B assay with an IC50 value of 1.0  μg/mL [27]. 
Compounds (R)-6′′-debromohamacanthin A (66) and cis-3,4-dihydrohamacanthin 
B (67) isolated from the sponge Spongosorites sp. were cytotoxic against A549 
(human lung cancer), SK-OV-3 (human ovarian cancer), SK-MEL-2 (human skin 
cancer), XF498 (human CNS cancer), and HCT 15 (human colon cancer) cell lines 
with IC50 values ranging from 2.83 to 3.85 μg/mL [28]. In 2006, structurally similar 
compounds deoxytopsentin (68), hamacanthin A (69), and hamacanthin B (70) were 
isolated from the sponge Spongosorites sp., all of which showed antimicrobial 
activity against various strains of bacteria and fungi, among which deoxytopsentin 
(68) and hamacanthin A (69) also exhibited significant antibacterial activity against 
methicillin-resistant Staphylococcus aureus and moderate cytotoxicity against can-
cer cell lines [29]. Compounds cortistatins A (71), B (72), C (73), and D (74) from 
the sponge Corticium simplex displayed potent antiproliferative activities against 
HUVECs which IC50 values are from 0.0018 to 1.1 μM. The compound 71 also 
exhibited activities against normal human dermal fibroblast (NHDF), epidermoid 
carcinoma cells (KB3-1), human chronic myelogenous leukemia cells (K562), and 
murine neuroblastoma cells (Neuro-2A) with IC50 values of 6.0, 7.0, 7.0, and 6.0 μM 
[30]. The marine sponge Dactylia sp. yielded one alkaloid ircinamine B (75), which 
was cytotoxic against P388 cell line (IC50 = 0.28 μM) [31].

15  Natural Products from Sponges



338

N

H
NH

N

O

Br
Br

R3

+

R1
R2

41 R1 + R2 = O, R3 = Br
42 R1 = H, R2 = OH, R3 = Br
43 R1 = H, R2 = OH, R3 = H
44 R1 = H, R2 = OH, R3 = H 
45 R1 = H, R2 = OH, R3 = Br 7

7

N

H
NH

N

O

Br+

OH

46 discorhabdin V

N

N

O

+

47 R1 = R2 = H
48 R1 = H, R2 = Me

H
N

OH

R1

R2

N

H
NH

N

O

+

49 R = OMe
50 R = NH2
55 R =

O

S

R

NH COOH

N

H
N

O

+

O

51 damirone B

N

HN
O

COOH

52 makaluvic acid A

N

H
N

O

+

53 makaluvamine C

NH2

N

H
NH

N

O

54 discorhabdin G R = H
58 discorhabdin B R = Br

O

S

R
NH

H
NH

N

O

+

56 discorhabdin A

O

S

Br

N

H
NH

N

O

+

57 discorhabdin D

O

S

H

H

N

H
NH

N

O

+

59 discorhabdin L

O

S

H

H

OH

N

H
NH

N

O

60 discorhabdin W

O
Br

S S

O
Br

H
N

N

H
N

O

N

N
H
N

O

OH

+

61 tsitsikammamine C

N

N
R1

O

R2+

62 R1 = H, R2 = CH3
63 R1 = CH3, R2 = CH3
64 R1 = H, R2 = CH3

H
N

OH

7
7

 

B.-N. Han et al.



339

N

N
H O

+
Cl-

65 fascaplysin

N
H

N

H
NO

Br

66 (R)-6''-Debromohamacanthin A

H
N

N
H

N
H

N
H

H
NO

Br Br

67 cis-3,4-Dihydrohamacanthin B

N
H

N
H

68 deoxytopsentin

N

H
N O

N
H

N
H

N

Br

69 hamacanthin A

H
N Br

O
N
H

N
H

70 hamacanthin B

N

H
N O

BrBr

N

R

HO

OH
HO

N

71 R = H
72 R = OH

N

HO

OH
HO

N

73 R = H
74 R = OH

O

R

H3C S N
H

H3CO

75 Ircinamine B  

In 2007, psammaplysenes C (76) and D (77) were identified from the sponge 
Psammoclemma sp. as the P2X7 receptor antagonists both for the treatment of 
inflammatory disease with IC50 value of 7 μM [32]. Three bis-piperidine alkaloids, 
haliclonacyclamine F (78) and arenosclerins D (79) and E (80), were isolated from 
the marine sponge Pachychalina alcaloidifera, which displayed cytotoxic activity 
against SF295 (human CNS), MDA-MB-435 (human breast), and HL-60 (leuke-
mia) cancer cell lines with IC50 values ranging from 1.0 to 4.5 μg/mL [33]. In 2010, 
structurally related compound neopetrosiamine A (81) was isolated from the marine 
sponge Neopetrosia proxima collected off the west coast of Puerto Rico, which 
showed inhibitory activity against MALME-3M melanoma cancer, CCRFCEM 
leukemia, and MCF-7 breast cancer with IC50 values of 1.5, 2.0, and 3.5 μM, respec-
tively, also showing the antiplasmodial activity against Plasmodium falciparum 
(IC50 = 2.3 μM) [34]. The compound haliclonacyclamine A (82) was isolated from 

15  Natural Products from Sponges



340

the Haliclona sponge Haliclona sp. at Solomon Islands. In vitro assay of haliclona-
cyclamine A against the chloroquine-sensitive 3D7 and chloroquine-resistant strain 
P. falciparum FcB1 gave, respectively, IC50 of 0.33 and 0.052 mg/mL. The cytotox-
icity of 82 was measured on breast cancer cells MCF-7 with IC50 value of 2.6 mg/
mL [35].

16b-Hydroxycrambescidin 359 (83), batzelladines L and M (84, 85), ptilomy-
calin A (86), crambescidine 800 (87), batzelladine C (88), and dehydrobatzelladine 
C (89) were isolated from the Jamaican sponge Monanchora unguifera, all of which 
exhibited antimalarial activity against Plasmodium falciparum D6 clone and W2 
clone with IC50 values ranging from 73 to 270 ng/mL. Moreover, their activities of 
antitumor, anti-tuberculosis, HIV-1, antimicrobial and antimalarial were evaluated. 
Among them, batzelladine L (84) showed the most potent activity against 
Mycobacterium tuberculosis with a MIC of 1.68 mg/mL, ptilomycalin A (86), and 
crambescidine 800 (87) exhibited potent activities against human HIV-1 virus with 
EC50/EC90 values of 0.011/0.046 and 0.04/0.12 μM, respectively [36]. In 2009, struc-
turally similar compounds norbatzelladine A (90), dinorbatzelladine A (91), dinorde-
hydrobatzelladine B (92), and dihomodehydrobatzelladine C (93) were obtained 
from marine sponge Monanchora arbuscula (de Laubenfels, 1953) collected in 
Martinique; norbatzelladine L (94) and clathriadic acid (95) were yielded from 
marine sponge Clathria calla (de Laubenfels, 1934) collected in Guadeloupe. 
Compounds 90–94 possessed potent antitumor cytotoxic activities against 
MDA-MB-231, A549, and HT29 with GI50 values ranging from 0.7 to 
7.9 μM. Compounds 90–95 showed antimalarial activity with IC50 values ranging 
from 0.2 to 2.3 μM [37]. Similar compounds, monalidine A (96); batzelladines D 
(97), F (98), and L (84); and norbatzelladine L (99), were yielded from the marine 
sponge Monanchora arbuscula, collected off the southeastern coast of Brazil in 
2015, displaying the activities against Trypanosoma cruzi and Leishmania infantum 
with IC50 values ranging from 2.0 to 8.0 μM [38]. Four brominated pyrrole-imidaz-
ole alkaloids (100–103) from the Caribbean sponges Stylissa caribica and Agelas 
wiedenmayeri were tested for interactions with cellular calcium homeostasis using 
PC12 cells, massadine (100, EC50: 5.32 μM), and stylissadines A (101, 4.48 μM) and 
B (102, 4.67 μM), and tetrabromostyloguanidine (103, 15.6 μM) reduced voltage-
dependent calcium entry in PC12 cells as measured with Fura II as calcium indicato 
[39]. 8,8′-Dienecyclostellettamine (104) isolated from the marine sponge 
Amphimedon compressa showed potent antibacterial activities against six clinic bac-
teria, Candida albicans, Escherichia coli, Pseudomonas aerug, Cryptococcus neo-
formans, MRS, and Aspergillus fumigatus, with IC50 values of 0.4, 1.3, 2.1, 2.5, 0.25, 
and 0.3 μg/mL, respectively [40]. In 2009, an analogue njaoaminiums B (105) iso-
lated from the marine sponge Reniera sp., collected off the coasts of Pemba Island, 
Tanzania, showed cytotoxicity against the three human tumor cell lines MDA-MB-231, 
A549, and HT29 cell lines with GI50 values of 4.8, 4.1, and 4.2 μM [41].
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In 2008, compounds (+)-aplysinillin (106) and dienone (107) yielded from the 
marine sponge Aplysinella sp. collected from the Federated States of Micronesia 
were evaluated for their cancer cell growth inhibition against the MCF-7 cancer cell 
line with IC50 values of 1.19  ±  0.10 and 0.89  ±  0.11  μM, respectively [42]. 
Trachycladindoles A–F (108–113) were yielded from a southern Australian marine 
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sponge, Trachycladus laevispirulifer, and they showed cytotoxicity against lung 
(A549), colorectal (HT29), and breast (MDA-MB-231) cell lines with GI50 values 
ranging from 0.3 to 12.2 μM [43].

In 2009, nagelamides Q (114) and R (115), isolated from Okinawan marine 
sponges of the genus Agelas, showed antimicrobial activity against Trichophyton 
mentagrophytes with MIC values of 6 μg/mL [44]. Benzosceptrin C (116), isolated 
from an Okinawan marine sponge of the genus Agelas, displayed antimicrobial 
activity against Micrococcus luteus and Cryptococcus neoformans with MIC values 
of 6 μg/mL, respectively [45].

In 2010, chemical investigation of the Australian marine sponge Ecionemia geo-
dides found a new pyridoacridine alkaloid, ecionines A (117) along with the previ-
ously isolated marine natural product meridine (118). The compounds exhibited 
moderate cytotoxicity against a panel of human bladder cancer cell lines, including 
the increasingly metastatic TSU-Pr1 series (TSU-Pr1, TSU-Pr1-B1, and TSU-
Pr1-B2) and the superficial bladder cancer cell line 5637, with IC50 values ranging 
from 3 to 7 μM [46]. Bastadin 26 (119) isolated from Australian marine sponge 
Ianthella flabelliformis showed potent affinity for the guinea pig δ-opioid receptors 
with IC50 value of 206 nM and a Ki value of 100 nM [47]. Eleven DOPA-derived 
pyrrole alkaloids, named baculiferins A–C, E–H, and K–N (120–130), were isolated 
from the Chinese marine sponge Iotrochota baculifera and found to be potent inhibi-
tors against the HIV-1 IIIB virus in both MT4 and MAGI cell lines with IC50 values 
ranging from 0.1 to 8.4 μM [48]. Monanchocidin (131), a guanidine alkaloid with an 
unprecedented skeleton system possessing cytotoxicity against human leukemia 
THP-1 with IC50 value of 5.1 μM, was isolated from the sponge Monanhora pulchra 
[49]. Two bromotyrosine alkaloids, ceratinadins A and B (132–133), were isolated 
from an Okinawan marine sponge Pseudoceratina sp., and they showed antifungal 
activity against Cryptococcus neoformans (MIC, 4 and 8 μg/mL, respectively) and 
Candida albicans (MIC, 2 and 4 μg/mL, respectively) [50]. Psammaplysin F (134) 
yielded from the Australian marine sponge Hyattella sp. inhibited the growth of two 
different strains of the parasite Plasmodium falciparum (Dd2 and 3D7) with IC50 
values of 1.4 and 0.87 μM [51]. In 2011, psammaplysin F (134), psammaplysins G 
(135), and psammaplysin H (136) were yielded from marine sponge Pseudoceratina 
sp., all of which inhibited the growth of the 3D7 line of Plasmodium falciparum with 
IC50 values of 1.92, 5.22, and 0.41 μM, respectively. The compound psammaplysin 
F also showed cytotoxicity against HepG2 cell line with IC50 value of 3.7 μM [52].
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In 2011, 8bβ-hydroxyptilocaulin (137) and ptilocaulin (138) isolated from 
Monanchora arbuscula colonies collected off the northeastern Brazilian coast pre-
sented cytotoxicity against HL-60 cell line with IC50 values of 7.89 and 5.77 μM, 
respectively [53]. Polycyclic guanidine alkaloids monanchocidins A–E (139–143) 
isolated from the Far Eastern marine sponge Monanchora pulchra showed potent 
cytotoxic activities against HL-60 human leukemia cells with IC50 values of 540, 
200, 110, 830, and 650 nM, respectively [54]. Monanchomycalins A (144) and B 
(145) isolated from the marine sponge Monanchora pulchra showed cytotoxic 
activities against HL-60 human leukemia cells with IC50 values of 120 and 140 nM, 
respectively [55]. Compounds spermatinamine (146) yielded from the Australian 
marine sponge Pseudoceratina sp. inhibited secretion of the Yersinia outer protein 
YopE and the enzyme activity of YopH with IC50 value of 6 μM [56].

HN NH

NH

OH

137 8bβ-hydroxyptilocaulin

HN NH

NH

138 ptilocaulin

N

H
N

O

O

O

()n

H
N +

N

O

O

H OH
NH2

NH2

OH

140 monanchocidins B n = 9
141 monanchocidins C n = 10

CF3CO2
-

O

N

H
N

O

O

O

()n

H
N +

N

O

O

H OH
NH2

NH2

OH

139 monanchocidins A n = 9 R = CH2CH3
142 monanchocidins D n = 9 R = H
143 monanchocidins E n = 8 R = CH2CH3

CF3CO2
-

O

R

 

15  Natural Products from Sponges



348

N

H
N

O

O

O

H
N +

144 monanchomycalins A R = CH2CH3
145 monanchomycalins B R = H

CF3CO2
-

O

R

N

O

NH2
NH2(CH2)12

N
N
H

O

N
N

H
N

O

N

Br
OMe

Br
Br

MeO
Br

HO

OH

146 spermatinamine  

In 2012, 12-N-methyl stevensine (147), Z-hymenialdisine (148), and 
Z-debromohymenialdisine (149) were obtained from a collection of Indonesian 
marine sponge Stylissa species off Derawan Islands, Berau, NE Kalimantan, which 
showed significant activity against mouse lymphoma cell line L5187Y with EC50 
values of 3.5, 1.8, and 2.1 μg/mL, respectively [57]. Densanins A (150) and B (151) 
were isolated from the sponge Haliclona densaspicula and displayed relatively 
potent inhibitory effects on lipopolysaccharide-induced nitric oxide production in 
BV2 microglial cells with IC50 values of 1.05 and 2.14  μM, respectively [58]. 
Ingamine A (152), 22(S)-hydroxyingamine A (153), and dihydroingenamine D 
(154) were isolated from marine sponge Petrosid Ng5 Sp5 (family Petrosiidae) 
obtained from the open repository of the National Cancer Institute, USA. All com-
pounds showed strong antiplasmodial activity against chloroquine-sensitive (D6) 
and chloroquine-resistant (W2) strains of Plasmodium falciparum with IC50 values 
of 57–220  ng/mL.  Compounds 152–154 also displayed weak antimicrobial and 
moderate antileishmanial activities against Leishmania donovani promastigotes 
[59]. Six halogenated alkaloids named purpuroines A, C–D, and F–H (155–160) 
were isolated from the marine sponge Iotrochota purpurea. Bioassay for the regula-
tion of tyrosine kinases revealed compounds 155–160 possessing inhibitory activi-
ties against the kinase LCK and PLK1 with IC50 values ranging from 0.94 to 
11.88  μg/mL [60]. Nakijinamines A (161) obtained from an Okinawan marine 
sponge Suberites sp. exhibited antimicrobial activity against Candida albicans 
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(IC50 = 0.25 μg/mL), Cryptococcus neoformans (IC50 = 0.5 μg/mL), Trichophyton 
mentagrophytes (IC50 = 0.25 μg/mL), and Micrococcus luteus (MIC 2 μg/mL) [61]. 
Two alkaloids, (−)-ageloxime D (162) and ageloxime B (163), were isolated from 
the marine sponge Agelas mauritiana, and both showed activity against Cryptococcus 
neoformans with IC50 values of 5.94 and 4.96 μg/mL, respectively. Compound 163 
also exhibited antibacterial activity against Staphylococcus aureus (IC50 = 7.21 μg/
mL) and methicillin-resistant S. aureus (IC50 = 9.20 μg/mL) [62].

In 2013, thiaplakortones A−D (164–167) obtained from the Australian marine 
sponge Plakortis lita displayed significant growth inhibition against chloroquine-
sensitive (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum (IC50 val-
ues <651 nM) and only moderate cytotoxicity against HEK293 cells (IC50 values 
>3.9 μM). 164 was the most active natural product, with IC50 values of 51 and 
6.6 nM against 3D7 and Dd2 lines, respectively [63]. Calyculin A (168) was iso-
lated from the marine sponge Discodermia calyx collected off Shikine-jima Island, 
Japan, which exhibited potent cytotoxicity as well as tumor promotion activity, 
attributed to its strong and specific inhibition of Ser/Thr protein phosphatases 1 
(PP1, IC50 = 1.4 nM) and 2A (PP2A, IC50 = 2.6 nM) [64]. Two alkaloids, pyrinode-
mins G and H (169, 170), were isolated from an Okinawan marine sponge 
Amphimedon sp., and they showed cytotoxicity against P388 murine leukemia cells 
(IC50 9.6 and 2.5 μg/mL, respectively) in vitro [65]. Three dimeric bromopyrrole 
alkaloids, nagelamides X–Z (171–173), were isolated from a marine sponge Agelas 
sp., and they exhibited antimicrobial activity with IC50 values ranging from 2.0 to 
8.0 μg/mL [66]. Unique bromopyrrole alkaloids, nagelamides U and W (174, 175), 
were isolated from a marine sponge Agelas sp., exhibiting inhibitory activity against 
Candida albicans (IC50 4 μg/mL, each) [67]. Spongiacidin C (176) isolated from the 
marine sponge Stylissa massa inhibited USP7 most strongly with an IC50 of 3.8 μM 
among several USP family members tested [68]. N-containing metabolites (177, 
178) were isolated from the South China Sea sponge Agelas clathrodes and showed 
moderate cytotoxicity against cancer cell line SGC7901 [69]. 2-Methoxy-3-
oxoaaptamine (179), 2,3-dihydro-2,3-dioxoaaptamine (180), demethyl(oxy)aap-
tamine (181), 3-aminodemethyl(oxy)aaptamine (182), and 3-(methylamino)
demethyl(oxy)aaptamine (183) were isolated from a marine sponge of Aaptos sp., 
among which 179 was presented antimycobacterial activity against Mycobacterium 
smegmatis in both active-growing and dormancy-inducing hypoxic conditions with 
a minimum inhibitory concentration (MIC) of 6.25 μg/ml, and compounds 180–183 
showed antimycobacterial activities under hypoxic condition selectively, with MIC 
values of 1.5–6.25 μg/ml [70].

In 2015, compounds 10-methoxy-2-methylimidazo[4,5,1-ij] pyrido[2,3,4-de]
quinolone (184), 3-(phenethylamino) demethyl(oxy)aaptamine (185), demethyl(oxy)
aaptamine (181), aaptamine (186), and 3-(methylamino)demethyl(oxy)aaptamine 
(183) were isolated from the South China Sea sponge Aaptos aaptos, exhibiting 
cytotoxic activities against HeLa, K562, MCF-7, and U937 cell lines with IC50 val-
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ues in the range of 0.90–12.32  μM [71]. Netamines Q (187) isolated from the 
Madagascar sponge Biemna laboutei exhibited antiplasmodial activities with IC50 
values of 8.37 μM [72]. Indole alkaloids 188, penaresin (189), indolecarbaldehyde 
(190), and plakohypaphorine D (191) were isolated from the sponge Plakortis sp. 
collected from Zampa in Okinawa, all of which showed cytotoxicity against P388 
cells with IC50 values of 0.6, 5, 0.1, and 3.2 μg/mL, respectively [73]. The investiga-
tion of South China Sea nudibranch Jorunna funebris and its sponge-prey 
Xestospongia sp. led to the isolation of fennebricin C (192), fennebricin D (193), 
renieramycin J (194), fennebricin A (195), renierone (196), and N-formyl-1,2-
dihydrorenierone (197). All of the compounds showed the inhibitory activities of 
NF-κB signaling pathway with IC50 values ranging from 1.0 to 9.7 μM, and fenne-
bricin A (195) also exhibited growth inhibition against both A549 and HL-60 cell 
lines with IC50 values of 6.2 and 2.5 μM [74]. Crambescin A2 392 (198), crambescin 
A2 406 (199), crambescin A2 420 (200), and Scheme 575948 (201) were obtained 
from the marine sponge Pseudaxinella reticulata collected off the Bahamas. These 
compounds showed antifungal activity against the human pathogens Cryptococcus 
neoformans var. gattii with MIC50 values of 1.2, 0.85, and 1.1, 2.5  μM [75]. 
Ceratinine H (202), psammaplysin E (203), ceratinophenol A (204) were isolated 
from a new collection of the Red Sea marine sponge Pseudoceratina arabica. 
Compounds 202 and 203 showed potent antiproliferative activities against HeLa 
cells with IC50 values of 2.56 and 2.19 μM; 203 and 204 showed potent antimigra-
tory activity with IC50 values of 0.31 and 10.4 μM, respectively [76]. (10E,12Z)-
Haliclonadiamine (205), halichondriamines A (206) and B (207), haliclonadiamine 
(208), and papuamine (209) were isolated from the Okinawan marine sponge 
Halichondria panicea. These compounds exhibited antimycobacterial activities 
with inhibition zones of 7–16 mm at 10 μg/disc and also showed apparent activity 
against the proliferation of the cancer cell line Huh-7 with IC50 values from 3.6 to 
7.8 μM [77].
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15.3  �Bioactive Peptides

Marine sponges are shown to have a large variety of resources of bioactive peptides. 
From the structure, they possess linear peptides, cyclic peptides, and depsipeptides 
which of them have highly modified structural features of nonproteinogenic amino 
acid or hydroxy acid group, while others have those with minimal differences from 
the common ribosomal peptides.

This review summarizes the isolation, structure identification of a diverse 109 
peptides from 27 marine sponges with a variety of potent biological activities within 
the literature coverage from 1991 to 2016.

15.3.1  �Linear Peptides

Nazumamide A (210) was isolated from the marine sponge Theonella sp. in 1991 
and displayed inhibition of thrombin with an IC50 of 4.63 μM [78].
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210  nazumamide A  

In 1995, the known metabolite hemiasterlin (211) and the novel metabolites 
hemiasterlin A (212), hemiasterlin B (213), and criamide B (214) were isolated 
from a specimen of Cymbasrefa sp. at Motupore and Madang in Papua New Guinea. 
Hemiasterlin (211) displayed significant in vitro cytotoxicity against murine leuke-
mia P388, human breast cancer MCF-7, human glioblastoma/astrocytoma U373, 
and human ovarian carcinoma HEY with ED50 values of 0.087, 170, 22.81, and 
2.66 nM, respectively. Interesting, compared to hemiasterlin, hemiasterlin A (212) 
with absence of N-methyl motif attached on the indole ring showed higher activity 
against human glioblastoma/astrocytoma U373 but less active against human ovar-
ian carcinoma HEY with ED50 values of 2.93 and 14.84  nM, respectively. 
Hemiasterlin B (213) closely related to 212 exhibited less cytotoxicity against 
murine leukemia P388, human breast cancer MCF-7, and human ovarian carcinoma 
HEY with ED50 values of 14.06, 0.13, and 0.032 μM, respectively. Similar com-
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pound criamide B (214) was observed to display potent in  vitro activity against 
murine leukemia P388, human breast cancer MCF-7, human glioblastoma/astrocy-
toma U373, human ovarian carcinoma HEY, human colon LOVO, and human lung 
A549 cell lines with ED50 values of 0.011, 9.97, 0.4, 0.28, 0.22, and 0.43  μM, 
respectively [79].
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Halicylindramides D (215), a tridecapeptide, was isolated from the marine 
sponge Halichondria cylindrata in Japan in 1996, which was cytotoxic against 
P388 murine leukemia cells with an IC50 value of 1.25 μM [80].
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Koshikamide A1 (216) isolated from a marine sponge, Theonella sp. collected 
from southwestern Japan in 1999, showed potent cytotoxicity against P388 leuke-
mia cells with an IC50 value of 1.69 μM [81].
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In 1999 six peptides, pseudotheonamides A1 (217), A2 (218), B2 (219), C (220), 
D (221), and dihydrocyclotheonamide A (222), were derived from the marine 
sponge Theonella swinhoei collected off Hachijo-jima Island, which exhibited 
selective serine protease inhibitory activities: inhibition of thrombin with IC50 val-
ues of 1.0, 3.0, 1.3, 0.19, 1.4, and 0.33 μM, respectively, while they inhibited trypsin 
with IC50 values of 4.5, >10, 6.2, 3.8, >10, and 6.7 μM, respectively [82].
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Miraziridine A (223) was isolated from the marine sponge Theonella aff. mirabi-
lis in 2000 during the collection cruise on R/V Toyoshio-maru of Hiroshima 
University to the Amami and Tokara Islands, which was reported as a cathepsin B 
inhibitor with an IC50 value of 2.1 μM [83].
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In 2002, dysinosin A (224) was identified as a novel inhibitor of factor VIIa and 
thrombin, with Ki value of 0.108 and 0.452 μM, respectively, from a new genus and 
species of Australian sponge of the family Dysideidae [84].
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In 2004, dysinosins B–D (225–227) were isolated from the sponge Lamellodysidea 
chlorea collected off Low Isles, Queensland, Australia, which inhibited factor VIIa 
at a Ki of 0.090, 0.124, and 1.320 μM, respectively, and thrombin at a Ki of 0.170, 
0.550, and >5.1 μM, respectively [85].
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Marine sponge Haliclona sp. collected at Sulawesi Island, Indonesia, in 2004, 
led to the isolation of kendarimide A (228), which reversed MDR in KB-C2 cells 
mediated by P-glycoprotein (P-gp) at a concentration of 6 μM [86].
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In 2005, some highly cytotoxic polypeptides with 48 amino acid residues, such 
as polytheonamides A (229), B (230), and C (231) were isolated from the marine 
sponge Theonella swinhoei collected from Hachijo-jima Island. They were tested 
against P388 murine leukemia cells with IC50 values of 15.5 × 10−6, 13.51 × 10−6, 
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and 13.48 × 10−6 μM, respectively [87, 88], and polytheonamide B (230) exhibited 
cytotoxicity against HeLa human uterine cervix carcinoma cells with an IC50 value 
of 0.58 nM [89], L1210 murine lymphocytic leukemia cells with an IC50 < 0.8 nM 
[90], and Neuro-2a mouse neuroblastoma cells with an IC50 < 0.2 nM [91].
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In 2005, the chemical investigation of marine sponge Theonella sp. collected off 
Shimo-koshiki-jima Island, Kagoshima, led to isolation of the koshikamide A2 
(232), which exhibited moderate cytotoxicity against P388 cells with an IC50 value 
of 4.6 μM [92].
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A chlorinated peptide, sintokamide A (233), was isolated from the marine sponge 
Dysidea sp. collected in Indonesia in 2008, which was found to be an inhibitor of 
N-terminus transactivation of the androgen receptor in prostate cancer cells with an 
IC50 at 9.8 μM [93].
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Cl

Cl
Cl
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233 sintokamide A  

Yaku’amides A (234) and B (235) were isolated from the marine sponge 
Ceratopsion sp. collected at Yakushinsone in the East China Sea in 2008, which 
exhibited potent cell growth inhibitory activity against P388 murine leukemia cells 
with IC50 values of 8.54 and 2.42  nM, respectively. Interestingly, the profile of 
growth inhibitory activity of Yaku’amides A (234) was clearly unique and unusual 
compared with other anticancer drugs when against a panel of 39 human cancer cell 
lines [94].
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15.3.2  �Cyclic Peptides

In 1996, aciculitins A–C (236–238) were isolated from the lithistid sponge Aciculites 
orientalis (Negros, Siquijor, Philippines). Aciculitins A–C were cytotoxic to the 
human colon tumor cell line HCT-116 with an IC50 of 0.5 μg/mL and inhibited the 
growth of Candida albicans at a loading of 2.5 μg/disk in the standard disk assay 
[95].
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Through bioassay-guided separation, arenastatin A (239) was isolated from the 
marine sponge Dysidea arenaria (Okinawan, Japan) in 1995, which exhibited 
extremely potent cytotoxicity with IC50 of 5 pg/ml against KB cells [96].
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In 1998, a chlorate cyclic depsipeptide, cyclolithistide A (240), was isolated from 
the marine sponge Theonella swinhoei. It is important to note that cyclolithistide A 
exhibited significant antifungal activity against Candida albicans (ATCC 24433) in 
the agar disk diffusion assay. At a dose of 20 μg/disk, the inhibition activity was 
comparable to 90% of the standard, nystatin at a dose of 100 μg/disk [97].
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Cyclotheonamide A (241), cyclotheonamide E (242), and cyclotheonamides E2 
(243) and E3 (244) were isolated from the marine sponge Theonella swinhoei 
(Tanegashima Island, Tokyo, in July 1993) as a series of potent serine protease 
inhibitors. In the inhibitory assays against thrombin and trypsin, cyclotheonamide 
A, E, E2, and E3 exhibited significant inhibition activities with IC50 values of 23 and 
16 nM, 2.9 and 30 nM, 13 and 55 nM, and 9.5 and 52 nM, respectively [98].
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An anti-HIV cyclodepsipeptide, homophymine A (245), was isolated from the 
marine sponge Homophymia sp. (New Caledonian, in 1992), which effectively 
inhibited the HIV-1 infection with an IC50 of 75  nM.  Direct cytotoxicity of 17 
against the host cells was observed with a TC50 (toxic concentration) of 1.19 μM 
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[99]. Nine cyclodepsipeptides, homophymines B–E (246–249) and A1–E1 (250–
254), were also isolated from the polar extracts of the sponge Homophymia sp. 
(New Caledonian, in 1992). Homophymines displayed very potent antiproliferative 
activity (IC50 in the nM range) against a panel of human cancer cell lines [100].
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In 2009, jaspamide (255) and jaspamides B–P (256–269) were isolated from the 
marine sponge Jaspis splendens. All tested jaspamide derivatives exhibited antipro-
liferative activities with IC50 values ranging from 0.01 to 33 μM against human 
breast adenocarinoma (MCF-7) and colon carcinoma (HT29) cell lines [101]. 
Jaspamides B and C exhibited cytotoxicity against the human NSCLC-N6 cancer 
cell line with IC50 values of 3.3 and 1.1 μg/mL, respectively [102]. Jaspamides Q 
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and R together with jaspamide exhibited potent activities against mouse lymphoma 
(L5178Y) cell lines with IC50 values in the ng/mL range (<0.1 μg/mL, <0.16 μM) 
[103].
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Kapakahines A–C (270–272) were isolated from the sponge Cribrochalina 
olemda (Pohnpei, Federated States of Micronesia, in April 1992, and recollected in 
August 1993). Kapakahines A, B, and C showed moderate cytotoxicity against 
P388 murine leukemia cells at IC50 values of 5.4, 5.0, and 5.0 μg/mL, respectively 
[104].

In 1995, five cyclic peptides, keramamides E (273), F (274), G (275), H (276), 
and J (277), containing an oxazole or a thiazole ring, were isolated from the marine 
sponge Theonella sp. (Okinawan). Keramamide E exhibited cytotoxicity against 
L1210 murine leukemia cells and human epidermoid carcinoma KB cells with IC50 
values of 1.60 and 1.55 μg/mL, respectively, while keramamides G, H, and J showed 
weak cytotoxicity (IC50 ~10  μg/mL) [105]. Keramamide F showed cytotoxicity 
against human epidermoid carcinoma KB cells and murine lymphoma L1210 cells 
with IC50 values of 1.4 and 2.0 μg/mL, respectively [106].
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Four cyclic peptides, microsclerodermins F–I (278–281), were isolated from 
Microscleroderma sp. (Palau, Koror, in 1997). All four microsclerodermins showed 
very similar cytotoxicity against the HCT-116 cell line with IC50’s of 1.0 μg/mL 
(280), 1.1 μg/mL(281), 1.8 μg/mL (278), and 2.4 μg/mL (279) [107].
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Motuporin (282), a cyclic pentapeptide, was isolated from the marine sponge 
Theonella swinhoei (Papua, New Guinea, 1992). Motuporin inhibited protein phos-
phatase-1  in a standard phosphorylase phosphatase assay at a concentration of < 
l nM, making it one of the most potent PPl inhibitors known, and it also displayed 
considerable in vitro cytotoxicity against murine leukemia (P388: IC50 6 μg/mL), 
human lung (A549: IC50 2.4 μg/mL), ovarian (HEY: IC50 2.8 μg/mL), colon (LoVo: 
IC50 2.3  μg/mL), breast (MCF-7: IC50 12.4  μg/mL), and brain (U373MG: IC50 
2.4 μg/mL) cancer cell lines [108].
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Neosiphoniamolide A (283), a potent antifungal cyclodepsipeptide, was isolated 
from the sponge Neosiphonia supertes (New Caledonia, 1989). Neosiphoniamolide 
A inhibited the growth of the fungi Piricularia oryzae and Helminthosprium gra-
mineum with IC90 values of 5 ppm [109].
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In 1991, orbiculamide A (284), a cyclic peptide isolated from themarine ponge 
Theonella sp., exhibited cytotoxic activity against P388 murine leukemia cells (IC50 
4.7 μg/mL) [110].
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The chemical investigation of marine sponge Theonella swinhoei (Malaita 
Island, Solomon Islands, in July 2004) resulted in the isolation of nine cyclopep-
tides, perthamides C–K (285–263). Perthamides were proved to inhibit TNF-α and 
IL-8 release in primary human keratinocytes cells and therefore could represent 
potentially leads for the treatment of psoriasis [111, 112].
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A proline-rich cyclic octapeptide, hymenistatin 1 (295), was isolated from the 
sponge Hymeniacidon sp. (Palau, Western Pacific Ocean, 1985), which was found 
to be active against the P388 leukemia cell line (ED50 3.5 μg/mL) [113].
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Axinastatin 1 (296), a proline-rich cyclic peptide, was isolated from the marine 
sponge Axinella sp. (Palau, Western Pacific, in 1985), with P388 lymphocytic leu-
kemia inhibitory activity (ED50 0.21 μg/mL) [114].
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In 1993, axinastatin 4 (297), another proline-rich cycloheptapeptide, was iso-
lated from marine sponge Axinella cf. (collected in western Indian Ocean, The 
Republic of The Comoros), which showed comparable cell growth inhibitory 
activity against a series of human cancer cell lines (P388 lymphocytic leukemia cell 
line, ED50 = 0.057 μg/mL) [115].
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In 1993, a cyclic heptapeptide, hymenamide B (298), with a prolylproline seg-
ment was isolated from the marine sponge Hymeniacidon sp. (Okinawan, Japan). 
Hymenamide B showed cytotoxicity against murine lymphoma L1210 cells and 
human epidermoid carcinoma KB cells with IC50 value of 3.2 and 6.0  μg/mL 
in vitro, respectively [116].
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A cycloheptapeptide designated phakellistatin 1 (299) was isolated from two 
Indo-Pacific sponges, Phakellia costata (Truk Archipelago, 1985–1987) and 
Stylotella aurantium (Palau Archipelago, in 1985), which appeared moderate anti-
tumor activity (P388 murine leukemia ED50 7.5 μg/ml) [117].

In 1995, cyclic heptapeptide phakellistatin 2 (300) was isolated from the marine 
sponge Phakellia carteri, showed cell growth inhibitory activity of ED50 0.34 μg/
mL against the P388 lymphocytic leukemia cell line [118, 119]. Phakellistatin 4 
(301) isolated from Phakellia costata, showed GI50 values of about 0.6 μM in differ-
ent human cancer cell lines [119]. Phakellistatin 5 (302), a metabolite of marine 
sponge Phakellia costada collected from the Federated States of Micronesia 
(Chuuk), exhibited significant cell growth inhibitory activity to the P388 murine 
lymphocytic leukemia and the human cancer cell lines representing ovarian 
(OVCAR-3), CNS (SF295), lung (NCI-H460), prostate (DU-145), colon (KM20L2), 
and melanoma (SK-MEL-5) cancers, with GI50 values ranging from 0.14 to 0.74 μg/
mL [120].

In 2003, cyclodecapeptide designated phakellistatin 12 (303) was isolated as a 
trace (1.7 × 10−6% yield) constituent of the Western Pacific Ocean (Federated States 
of Micronesia-Chuuk) sponge Phakellia sp. with activity against P388 lymphocytic 
leukemia ED50 2.8 μg/mL [121].

A cyclic heptapeptide phakellistatin 13 (304) isolated from the sponge Phakellia 
fusca Thiele, collected off Yongxing Island of China, in 1998, exhibited potent cyto-
toxicity against the human hepatoma BEL-7404 cell line with an ED50 < 2 μg/mL 
[122].

Phakellistatins 15–18 (305–309), together with five known cyclopeptides, phake-
llistatin 13, hymenistatin 1, and hymenamides G, H, and J, were isolated from the 
South China Sea sponge Phakellia fusca, 2007. The new cyclopeptides 74–78 were 
tested for cytotoxic activity in vitro. Phakellistatin 15 exhibited cytotoxicity against 
cancer cell line P388 with an IC50 value of 8.5 μM. Phakellistatin 16 showed cyto-
toxicity against cancer cell lines P388 and BEL-7402 with IC50 values of 5.4 and 
14.3 μM, respectively. Phakellistatins 17 and 18 showed no cytotoxicity against the 
cancer cell lines P388 and BEL-7402 [123]. The synthetic cyclic peptides of phakel-
listatins were chemically but not biologically identical with the natural products 
[116–119].
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Reniochalistatins A−E (310–314) were isolated and characterized from the 
marine sponge Reniochalina stalagmitis (Yongxing Island, South China Sea, 2009). 
The cyclic octapeptide reniochalistatin E showed biological activity in various cyto-
toxicity assays employing different tumor cell lines (RPMI-8226, MGC-803, 
HL-60, HepG2, and HeLa), against myeloma RPMI-8226 and gastric MGC-803 
cells with IC50 values of 4.9 and 9.7 μM, respectively, but with no activity against 
leukemia HL-60 and hepatoma HepG2 (IC50 > 20.0 μM) and cervical HeLa (IC50 
17.3 μM) cells [124].
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From 2008 to 2015, the chemical investigation of Indonesian sponge 
Callyspongia aerizusa collected from three different locations in Indonesia as 
indicated: Makassar, S.  Sulawesi; Lembeh, N.  Sulawesi; and Ambon, Maluku) 
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afforded 13 cyclic peptides callyaerins A−M; callyaerins A (315) and B (316) 
showed potent anti-TB (Mycobacterium tuberculosis) activity with MIC90 values 
of 2 and 5 μM, respectively. Callyaerin A showed strong anti-TB activity, but not 
cytotoxic to THP-1 (the human monocytic cell line) or MRC-5 (the human fetal 
lung fibroblast cell line) cells (IC50 > 10 μM), which indicated the potential of 
these compounds as promising anti-TB agents. Callyaerins E (317) and H (318) 
exhibited strong activity against the L5178Y cell line with ED50 values of 0.39 
and 0.48 μM, respectively. On the other hand, callyaerin A also showed strong 
antifungal activity toward C. albicans. Callyaerin G (319) was found to be cyto-
toxic toward the mouse lymphoma cell line (L5178Y) and HeLa cells with ED50(s) 
of 0.53 and 5.4 μg/mL, respectively [98].
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15.4  �Bioactive Polyketides

Marine aliphatic polyketides are a class of compounds that present diverse and 
interesting biological properties. Due to the versatility of their biosynthetic produc-
tion mechanism, these compounds exhibit remarkable diversity, both in terms of 
structural complexity and biological activity. Polyketides are constructed as highly 
oxygenated stereo chemically enriched scaffolds, sometimes with the characteristic 
presence of macrocyclic lactones, cyclic five- or six-membered ethers, or polyethers 
that act as a conformational constraint. This review summarizes the isolation, struc-
ture identification of a diverse 104 polyketides from 23 genera of marine sponges 
with a variety of potent biological activities within the literature coverage from 
1968 to 2016.

Phormidolide A, first isolated from the cyanobacterium Phormidium sp., which 
is toxic to brine shrimp (LC50 = 1.5 μM) [125], together with two new cytotoxic 
macrolides named phormidolides B (320) and C (321), were identified from a 
sponge of the Petrosiidae family, collected off the coast of Pemba (Tanzania), in 
2014 [126]. Cytotoxic activities tested using three human tumor cell lines, lung 
(A549), colon (HT29), and breast (MDA-MB-231), manifested that phormidolides 
B and C have significant cytotoxic activities against these three cell lines with IC50 
around 0.5–1.4 μM [126]. The fact of original discovery from a cyanobacteria spe-
cies suggested that phormidolide A (322) is actually metabolite synthesized by sym-
biotic cyanobacterium of the sponge, supporting the relevance of symbiotic bacteria 
as sources of bioactive polyketides and peptides in sponges.
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Plakilactones and gracilioethers are oxygenated polyketides of the plakortin 
family isolated from the marine sponge Agelas gracilis, collected in southern Japan, 
in 2009 [127] and Plakinastrella mamillaris, collected at the Fiji Islands, in 2012–
2013 [128–130]. In bioassay-guided fractionation of the lipophilic sponge Agelas 
gracilis extract, Fusetani et al. obtained three new antimalarial compounds against 
Plasmodium falciparum, gracilioethers A–C (323–325), with IC50 values of 0.5–
10 μg/mL, whereas gracilioether B also showed antileishmanial activity [127]. A 
few years later, the Zampella group isolated several plakilactone- and gracilioether-
polyketides, together with the previously known gracilioethers A–C compounds 
from another sponge Plakinastrella mamillaris. Among them, gracilioether B, gra-
cilioether C, and plakilactone C (326) demonstrated activation of PPARγ in a dose-
dependent manner with relative EC50 values of ≈ 5, 10, and 2 μM, respectively, and 

B.-N. Han et al.



377

further mechanism study demonstrated that gracilioether B and plakilactone C 
covalently bind to the PPARγ substrate domain through a Michael addition reaction 
involving a cysteine residue and the α,β-unsaturated ketone group in their side 
chains, whereas gracilioether C is a noncovalent agonist for PPARγ [128]. In addi-
ton, gracilioether H (327) inhibited chloroquine-resistant CR FC29 strain in vitro 
with the antiplasmodial activity of IC50 3.26 μM [129].
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Smenamide A (328) and B (329), hybrid peptide/polyketide compounds consist-
ing of a dolapyrrolidinone unit isolated from a Caribbean sponge Smenospongia 
aurea, are collected by SCUBA along the coast of Little Inagua (Bahamas Islands), 
in 2013 [131]. Structures of smenamides revealed the products of the cyanobacterial 
metabolism, and 16S rRNA metagenomic analysis detected Synechococcus spon-
giarum as the only cyanobacterium present in S. aurea. Smenamides A and B show 
potent cytotoxic activity at nanomolar levels on lung cancer Calu-1 cells with IC50 
values of 48 nM and 49 nM, respectively. The clear pro-apoptotic mechanism of 
action of smenamide A makes smenamides promising results to antitumor drug 
design.
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Plakortide R–U (330–333), endoperoxide polyketides isolated from the marine 
sponge Plakinastrella mamillaris, collected at Fiji Islands, in 2013 [132]. 
Pharmacological analysis demonstrated that plakortide U showed the best antiplas-

15  Natural Products from Sponges



378

modial activity in vitro against chloroquine-resistant FcM29 strain (IC50 0.80 μM), 
while the remaining compounds showed a moderate antiplasmodial activity (IC50 
range: 5–50 μM).
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Manzamenones L–N (334–336), dimeric fatty-acid derivatives, consisting of an 
octahydroindenone with three carboxy groups and two hexadecanyl chains, isolated 
from an Okinawan marine sponge of the genus Plakortis, collected in Okinawan, in 
2012 [133]. Antimicrobial activity tests against several bacteria and fungi showed 
that manzamenone M had moderate antimicrobial activities against Escherichia 
coli, Staphylococcus aureus, Candida albicans, and Cryptococcus neoformans 
(MIC or IC50, 8–32.0 μg/mL), and manzamenone L did not exhibit activity (MIC or 
IC50, >32.0  μg/mL). From the point of view of structure-activity relationships 
between manzamenone L and manzamenone M, a free carboxylic acid at C-5 posi-
tion might be important for the activities. Manzamenone N showed moderate anti-
microbial activities against E. coli, C. albicans, and C. neoformans (MIC or IC50, 
4–32.0 μg/mL).
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Tedanolide macrolides, which includes tedanolide (337) [134] isolated from 
Tedania ignis, collected in Caribbean, in 1984; 13-deoxytedanolide [135] isolated 
from Mycale adhaerens, collected by SCUBA off Hiburi Island (−10 to −15 m) of 
the Uwa Sea, 750 km southwest of Tokyo, in 1991; tedanolide C (338) [136] iso-
lated from Ircinia sp., collected in Milne Bay (S 10°14.278′ E 150°54.782′), Papua 
New Guinea, in 2006; and precandidaspongiolides A (339) and B (340) and candi-
daspongiolides A (341) and B (342) from Candidaspongia sp., collected in Papua 
New Guinea, in 2011(isolated as an inseparable mixture of two isomers in equilib-
rium) [137], exhibited highly cytotoxic in the subnanomolar to nanomolar range 
against various cancer cell lines. Cell-flow cytofluorometry analysis revealed that 
tedanolide caused accumulation of cells in the S phase at concentration as low as 
0.01  μg/mL [134]. 13-Deoxytedanolide (343) showed remarkable cytotoxicity 
against P388 murine leukemia cells with IC50’s of 94 pg/mL. 13-Deoxytedanolide 
also performed highly in vivo antitumor activity against P388: T/C = 189% at a dose 
of 0.125 mg/kg [135]. Tedanolide C exhibited potent cytotoxicity against HCT-116 
cells in vitro with IC50 value of 9.53 × 10−8 M and caused a strong S-phase arrest 
[136]. Precandidaspongiolides A and B showed excellent selectivity against mela-
noma cell lines in the NCI 60-cell line screen, and the LC50 values for precandida-
spongiolides A/B against melanoma cell lines were significantly lower than other 
tumor cell lines (seven of the nine melanoma cell lines in the panel had nanomolar 
LC50 values around 19–174  nM); further, precandidaspongiolides A/B were evi-
denced as P-gp substrates [137]. Studies of SARs of 13-deoxytedanolide [135], 
precandidaspongiolides A and B, and candidaspongiolides A and B [137] reported 
that the southern hemisphere of 13-deoxytedanolide comprised the pharmacophore 
and the epoxide-bearing side chain of 13-deoxytedanolide was essential for the 
activity [138]; the hemiketal of precandidaspongiolide B and candidaspongiolide B 
was not essential for the activity, while potency was affected when the primary 
alcohol of precandidaspongiolides A and candidaspongiolide A was substituted, and 
the C-7 acetylation of candidaspongiolides A and B increased potency [137]. The 
similarities between the myriaporones [139] and the candidaspongiolides [137] 
afforded further evidence in support of microbial symbionts as producers of candi-
daspongiolides, 13-Deoxytedanolide [140] and candidaspongiolide A [141]. 
However, the underlying reasons for the candidaspongiolides’ melanoma selectivity 
have yet to be determined.
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Lehualides are polyketide derivatives isolated from sponge of the genus Plakortis, 
which have a long alkyl chain with varying degrees of saturation and incorporate 
α- or γ-pyrone moieties, coupled with thioacetate or thiol functionalities [142, 143]. 
Lehualide B (344) showed moderate cytotoxicity in vitro against an ovarian cancer 
cell line (IGROV-ET) with a GI50 value of 0.83 μM. Lehualide D (345) exhibited 
moderate cytotoxicity to ovarian (IGROV-ET) and leukemia (K562) cell lines with 
GI50 values of 0.73 and 0.23 μM, respectively (the sample of sponge was collected 
from waters between Lehua Rock and Niihau Island, Hawaii, in July 2003) [143]. 
Lehualides F (346) and G (346) exhibited IC50 values for cytotoxicity against the 
human promyelocytic leukemia (HL-60) cell line of 6.2 and 5.4 μΜ, respectively 
(the Plakortis sponge specimen was collected from a cave off the coast of ‘Eua 
Island, Tonga) [142].
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Franklinolides A–C (348–350) are the first examples of polyketide phosphodies-
ters isolated from an aqueous EtOH extract of a sponge sample CMB-01989, col-
lected during deepwater (−105  m) scientific trawling operations in the Great 
Australian Bight, a massive Geodia sp. thinly encrusted with a Halichondria sp., in 
2010 [144]. SAR studies, using in vitro cytotoxicity and cell proliferation assays 
against stomach (AGS), colon (HT29), and human brain (SH-SY5Y) cancer cell 
lines, and a noncancerous control cell line, demonstrated that franklinolides A was 
the dominant cytotoxic agent (GI50 range from 0.1 to 0.3 μM). SAR analysis defined 
the relative importance of key structural features: (1) a very significant 30- to >300-
fold decrease in cytotoxicity following hydrolysis of franklinolides A to bitungolide 
A [145] (the de-3-O-methyl-2-phosphoglyceric acid derivative of franklinolides A); 
(2) 2- to 7-fold decrease on isomerization of franklinolides A to the 12E,14E isomer 
franklinolides B; and (3) a 30- to 50-fold decrease on isomerization of franklino-
lides A to the 12E,14Z isomer franklinolides C.
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Halenaquinone-type polyketides (351–358) were isolated from marine sponges 
of the genus Xestospongia (collected in the South Pacific [146], in the Benga 
Lagoon, Fiji Islands [147], in Fiji (coll. Nos. 89,109 and 91,007) or Vanuatu (coll. 
no. 90033) [148], in Kerama Islands, Okinawa [149] and in Okinawan [150]) and 
Adocia (collected from the Eten Island area of Truk Lagoon in January 1984 and 
November 1985 at 5–10 m depths [151] and Manado, Indonesia, on May 15, 1993 
[152]), which showed a number of biological activities [146, 147, 151, 152, 148–
150]. In vitro assays and preliminary SAR studies (in 2010) showed that among 
the compounds 1–8, halenaquinone appeared as the most PLA2 inhibitor of the 
series with an IC50 of 3.7 μM. Incorporating a dioxothiazine unit in compounds 2 
and 3 led to a 30- to 40-fold decrease in potency when compared with the most 
active pentacyclic polyketide 1, and among pentacyclic polyketide compounds, 
the presence of a secondary alcohol at C-3 rather than a ketone abolished PLA2 
inhibition (4 and 5). These results highlighted that the C-3 oxidation state and the 
presence of quinone ring E were important for the anti-PLA2 activity [27, 146]. 
Similar conclusions were reported regarding the SAR of protein tyrosine kinase 
inhibition exhibited by halenaquinone (1) [147]. Farnesyltransferase (FTase) 
inhibitory experiments showed that the presence of dioxothiazine substitution 
(IC50 1 1.57 μM vs. 2 1.48 μM and 3 3.75 μM) led to little variation in human (FH) 
FTase inhibitory activity. Interestingly tetrahydrohalenaquinones A (4) and B (5) 
did not show such activity. Furthermore, quinol sulfates 6 (IC50 16.11 μM) and 7 
(IC50 6.71 μM) exhibited modest activity suggesting that the presence of a qui-
none moiety was essential for FTases inhibitory activity. Sub-micromolar inhibi-
tion of farnesyltransferase enzyme of orhalquinone 8 (IC50 0.40 μM), highlighting 
this scaffold as a significant modification for enhancing activity [146]. 
Antiplasmodial activities against FcB1 and 3D7 Plasmodium falciparum strains 
revealed that compound 2, 3, and 8 were the most active of the series with values 
of IC50 1.08, 3.89, and 9.22, respectively.
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Marine sponges from family Plakinidae own a great number of simple endoper-
oxide or peroxyketal polyketides possessing five- or six-membered 1,2-dioxygenated 
rings (1,2-dioxolane or 1,2-dioxane, respectively). Plakortin (359), dihydroplakor-
tin (360), 3-epiplakortin (361), and plakortide Q (362) isolated from marine sponges 
of Plakortis halichondroides (collected at Hookers Reef, Panama) in 1978 [152] 
and P. simplex (collected at the Caribbean Sea) in 1999 [153]. All compounds exhib-
ited a strong in vitro antimalarial activity against D10 (chloroquine-sensitive) and 
W2 (chloroquine-resistant) strains of Plasmodium falciparum, with a more potent 
activity on the W2 strain (IC50 ~ 180  ng/mL), lacking of cytotoxicity [154]. 
Plakortide I is purified from an unidentified sponge of the genus Plakortis and col-
lected at Discovery Bay, Jamaica, in 2002 and represented the first report of an 
endoperoxide with an α,β-unsaturated ketone moiety in the “western” alkyl side 
chain and exhibited significant antimalarial activity against the W2 strain with an 
IC50 value of 570 ng/mL and a selectivity index of >8.4 [155]. Plakortides M (363) 
and N (364) were isolated from the sponge P. halichondroides, collected in Puerto 
Rico, in 2003, which exhibited potent cytotoxic activity against a number of cancer 
cell lines in the NCI human cancer screening program but with less selectivity 
[156]. Peroxyketal polyketides peroxyplakoric A3 (365) and B3 (366) esters isolated 
from Plakortis sp., collected at Zamami Island, Okinawa Prefecture, in 1993, 
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showed IC50 = 50 ng/mL against P. falciparum with a selective toxicity index (about 
200) [157]. SAR studies played crucial roles in both “western” alkyl side chain and 
the conformational behavior of the dioxane ring of these compounds according to 
the interaction with the Fe(II)-heme [158, 159].
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Pederins, incorporating the pederin skeleton, which have now been isolated from 
five genera of the marine sponges: Mycale sp. and Stylinos sp. (order Poecilosclerida), 
Trachycladus sp. (order Axinellida), and Theonella sp. and Discodermia sp. (order 
Lithistida) [44–7 {Clardy, J.; He, H. U. S. Patent 1995, 5,476,953}] [160–171]. It is 
remarkable to note that the first compound of this class of toxic polyketides, pederin, 
was isolated in 1953 from the beetle Paederus fuscipes [161]. The presence of 
pederin class of polyketides in such taxonomically distinct organisms indicated the 
possible microbial origin of these compounds. Pederins exhibited multiple interest-
ing pharmacological activities. Pederin (368), the chemical defense agent of the 
blister beetle, and mycalamides A (369) and B (370) were reported to disrupt pro-
tein synthesis [161, 162, 164]. Furthermore, mycalamides A and B together with 
mycalamides C (371) and D (372) showed potent activity against the P388 murine 
leukemia cell line, giving IC50 values of 3.0, 0.7, 95.0, and 35.0 ng/mL, respectively 
[164, 168]. Theopederins A–L (373–384) were markedly cytotoxic against P388 
murine leukemia cells with the activity of nM level [165, 167, 171]. 13-Des-O-
methyl-onnamide A (385), dihydroonnamide A (386), onnamide B (387), l7-
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oxoonnamide B (388), onnamide C (389), onnamide D (390), and onnamide A 
(391) were highly cytotoxic against the P388 cell line with IC50 values of 0.15, 0.04, 
0.13, 0.10.0.07, 0.02, and 0.01 μg/mL, respectively [166]. Onnamide F (392) was 
active against fungi Saccharomyces cerevisae with a value of LD99 1.4 μg/mL. No 
activity was observed against Bacillus subtilis or Eschericha coli, indicating a selec-
tive toxicity for eukaryotes [170]. Icadamides A (393) and B (394) were reported to 
show in vitro cytotoxicity against HCT-116 human colon carcinoma cell line with 
IC50 value of 63 nM and 0.17 nM, respectively. Among pederin type of compounds, 
only icadamide B (395) was studied for in vivo antitumor activity and exhibited 
activity against intraperitoneally and subcutaneously implanted tumors such as 
P388 mouse leukemia, M109 mouse lung tumors, and asbestos-induced pulmonary 
squamous cell carcinoma. Icadamide C displayed potent cytotoxic activity against a 
small panel of five human solid tumor cell lines (A549, SK-OV-3, SK-MEL-2, 
XF-498, and HCT-15) with ED50 values of less than 0.1 μg/mL [160].
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The marine sponge Discodermia calyx (order Lithistida, family Theonellidae) 
was reported to contain the calyculins (396–413) [172, 173, 78, 174–176], unique 
polyketides bearing nitrogen and phosphorus functions. These macrolides exhibited 
a variety of biological activities including antitumor and smooth muscle contractile, 
which are attributed to inhibition of protein phosphatase 1 and 2A (all these com-
pounds exhibited nM scale of inhibition activity). SAR studies showed that the 
17-phosphate, 13-hydroxyl, and the hydrophobic tetraene moieties were all neces-
sary for binding to the phosphatase 1 and 2A [176].
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The sponge-derived polyketide macrolides fijianolides are an important subset 
of 20-membered ring containing compounds isolated from marine sponge 
Cacospongia mycofijiensis, Hyatella sp., and Fasciospongia rimosa [177–180]. 
Fijianolide B extremely potent (KBa IC50 = 29 nM, MDA-MB-435 IC50 = 5.7 nM), 
while fijianolide A (414) (HT29 IC50 = 21 μM, KB IC50 > 39 μM, MDA-MB-435 
IC50  =  2  μM) was also very active but at a reduced potency [181, 182]. 
Neolaulimalide (415) showed cytotoxicity against P388, A549, HT29, and MEL28 
cell lines at 0.01–0.05 μg/mL [180]. Fijianolide B (416) together with fijianolides 
E (417) and G (418) were also shown to disrupt interphase and mitotic division, 
and fijianolide B was more potent than fijianolides E and G [177]. An in  vivo 
evaluation of fijianolide B using tumor-bearing severe combined immuno-defi-
ciency mice demonstrated significant inhibition of growth of HCT-116 tumor 
cells over 28 days [177].
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Spiculoic acids and zyggomphic acids are indane-type polyketides, which have 
integrated phenylacetic acid, butyrate, and propionate units, isolated from marine 
sponge Plakortis zyggompha and P. angulospiculatus [183–185]. The vast majority 
of polyketides made in nature are assembled from acetate and propionate building 
blocks, whereas these spiculoic acids and zyggomphic acids incorporated the intact 
of butyrate units. Furthermore, the location of the olefin functionality formed by 
reduction of the β ketone and dehydration after condensation of the phenylacetic 
acid starter unit with the first butyrate is unusual. Normally, the dehydration step in 
polyketide biosynthesis would yield an α,β-unsaturated ester. In the biosyntheses of 
these polyketides, dehydration occurs in the opposite direction, leading to conjuga-
tion between the olefin and the phenyl ring [184]. Spiculoic acid A (419) showed 
in vitro cytotoxicities against the breast MCF-7, breast MDA-MB-231, lung carci-
noma A549, and colon carcinoma HT29 cell lines with IC50 values of 8.0, 2.4, 4.6, 
and 8.1 μg/mL, respectively [183, 184]. Zyggomphic acid (420) exhibited in vitro 
antitumor activities against the breast MDA-MB-231, lung carcinoma A549, and 
colon carcinoma HT29 cell lines with IC50 values of 1.2, 3.3, and 3.6 μg/mL, respec-
tively [183].
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Dihalenaquinolides A (421) and B (422), novel pentacyclic polyketide dimers, 
were isolated from marine sponge Petrosia elastica collected in Nan-wan, Taiwan, 
during June 1998 [186]. Dihalenaquinolide A inhibited the growth of PC-3 tumor 
cells at 10 μg/mL, while compound dihalenaquinolide B was inactive [186].
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Callystatin A (423) is a novel polyketide with a terminal α,β-unsaturated 
δ-lactone, isolated from the marine sponge Callyspongia truncata, collected at Goto 
Islands, Nagasaki Prefecture, in 1997 and exhibited potent cytotoxicity against KB 
cells at IC50 0.01 ng/ml. Through analogue, syntheses and the assessment of their 
biological potencies against KB cells manifested the ketonic carbonyl, the 
19-hydroxyl, and the three asymmetric methyl groups located in the β-hydroxyketone 
part of callystatin A contributing to the cytotoxic potency, respectively. Moreover, 
the α,β-unsaturated δ-lactone portion served as a conclusive functional group for the 
cytotoxic activity [187].
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15.5  �Bioactive Macrolides

Natural products possessing a macrocyclic lactone moiety are considered to be 
“macrolides,” and most of them are likely to belong to polyketides from a biogene-
tic viewpoint. Because so many macrolides have been reported in recent years, the 
selection of compounds derived from 36 marine sponges may seem arbitrary and 
depends on the potency of their biological activities reported from year 1984 to year 
2014.

In 1984, tedanolide (424) was isolated from Tedania ignis (Caribbean), which 
exhibited highly cytotoxic with ED50 2.5 × 10−4 μg/mL in KB (human carcinoma of 
the nasopharynx) and 1.6 × 10−5 μg/mL in PS (lymphocytic leukemia) [134]. Eight 
antitumor compounds including norhalichondrins A–C (425–427), homohalichon-
drins A–C (428–430), and halichondrins B (431) and C (432) were found from 
Halichondria okadai Kadota (Miura Peninsula, Tokyo) in 1986, among which hali-
chondrin B exhibited remarkable in vivo antitumor activity [188]. In 1987, hali-
chondramide (433), dihydrohalichondramide (434), and isohalichondramide (435) 
were isolated from the Pacific sponge Halichondria sp. (Kwajelein Island), among 
which halichondramide showed significant activity against Candida albicuns at 
0.01 μg/disk in the standard disk assay [189], and dihydrohalichondramide and iso-
halichondramide had antifungal activity and inhibited cell division in the fertilized 
sea urchin egg assay [190]. In 1989, mycalolides A–C (436–438) were isolated from 
a sponge Mycale sp. (Kii Peninsula, Japan) and demonstrated antifungal activities 
against many pathogenic fungi and cytotoxic against B-16 melanoma cells with 
IC50s of 0.5–1.0  ng/mL [191]. The chemical investigation of Okinawan marine 
sponge Jaspis sp. in 1993 yielded jaspisamides A–C (439–441) which exhibited 
cytotoxicities against L1210 murine leukemia cells in  vitro, with IC50 values of 
<0.001, <0.001, and < 0.001 μg/mL, and against human epidermoid carcinoma KB 
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cells in vitro with IC50 values of 0.015, 0.006, and 0.013 μg/mL, respectively [192]. 
In 1988, an Indonesian sponge Hyattella sp. was collected offshore from Manado 
(northern Sulawesi, Indonesia) yielded laulimalide (442) and isolaulimalide (443), 
and laulimalide displayed potent cytotoxicity, IC50 = 15 ng/mL, against the KB cell 
line [179]. Swinholide A (444) was first isolated from a Red Sea sponge Theonella 
swinhoei (Gulf of Eilat, Israel, in 1985), demonstrating in vitro antifungal activity 
[193]. It was re-isolated from the Okinawan marine sponge Theonella swinhoei in 
1989 and exhibited potent cytotoxic activity (IC50 0.04 μg/mL) for KB cell [194]. Its 
absolute configuration was elucidated by means of the X-ray diffraction method and 
chemical derivations in 1990 [195]. Then, in 1990, swinholide B (445), swinholide 
C (446), and isoswinholide A (447) were also found from the Okinawan marine 
sponge Theonella swinhoei, among which, swinholide B and swinholide C exhib-
ited potent cytotoxicity almost equivalent to that of swinholide A toward KB cell 
lines (IC50 0.041 and 0.052 μg/mL, respectively), while isoswinholide A showed 
weaker cytotoxicity (IC50 1.1 μg/mL) [196].
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In 1993, altohyrtins A–C (448–450) and 5-desacetylaltohyrtin A (451) were 
found in sponge Hyrtios altum, which were of great interest for cytotoxic activities 
against KB cells with IC50 values of 0.01, 0.02, 0.4, and 0.3 ng/mL, respectively [94, 
197, 198]. A highly potent polyether macrolide antimitotic agent designated 
halistatin 1 (452) was isolated from Phakellia carteti (Grand Comore Island, 
Republic of Comoros), which showed strong cytotoxicity to L1210 murine leuke-
mia cells with IC50 values of 0.5 nM. In the further mechanism study, it was shown 
to cause accumulation of cells arrested in mitosis, inhibited tubulin polymerization, 
and inhibits binding of radiolabeled vinblastine and GTP to tubulin [199]. 
Cinachyrolide A (453) was isolated from Cinachyra sp. which was highly cytotoxic 
against L1210 murine leukemia cells with an IC50 of <0.6 ng/mL [200]. In 1994, 
superstolides A (454) and B (455) were obtained from the deepwater marine sponge 
Neosiphonia superstes (New Caledonia) and demonstrated highly cytotoxic against 
human bronchopulmonary non-small-cell lung carcinoma NSCLC-N6-L 16 cells 
(IC50 0.04 and 0.039 μg/mL), murine leukemia P388 cells (IC50 both of 0.003 μg/
mL), and human nasopharyngeal carcinoma KB cells (IC50 0.02 and 0.005 μg/mL) 
[201, 202]. Reidispongiolides A (456) and B (457) were isolated from Rekiivpmgia 
werulea n.gen. n.sp. (South of New Caledonia), which exhibited potent cytotoxicity 
against various human carcinoma cells with IC50 values of 0.01–0.16 μg/mL [203]. 
Lasonolide A (458) was isolated from Forcepia sp. (British Virgin Islands), as a 
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potent cytotoxin against the A549 human lung carcinoma and P388 murine leuke-
mia cell lines with IC50 values of 40 and 2 ng/mL, respectively. Further, it inhibited 
cell adhesion in the EL-4.IL-2 cell line with an IC50 of 19  ng/mL [204]. 
Isohomohalichondrin B (459) was found in New Zealand sponge Lissodendoryx sp. 
and showed significant cytotoxic activity against the P388 cell lines and selective 
cytotoxicity in the NCI’S primary screen [205].
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The chemical investigation of Indian Ocean marine sponge Phorbas sp. (Muiron 
Island, Australia, in 1995) yielded phorboxazoles A (460) and B (461), which 
exhibited in vitro antifungal activity against Candida albicans at 0.1 μg/disk and 
extraordinary cytostatic activity [206]. In 1996, theonezolide A (462), a novel 
polyketide macrolide, isolated from the Okinawan marine sponge Theonella sp. 
(Okinawa, Japan), caused a marked platelet shape change at low concentrations 
(0.2–0.6 μM) [207]. Leucascandrolide A (463), a doubly O-bridged 18-membered 
macrolide of a new type, i.e., possessing little C1-branching vs. extensive 
1,3-dioxygenation and a peculiar side chain, was isolated from a calcareous sponge 
of a new genus, Leucuscundra caveoluta from the Coral Sea. It showed strong cyto-
toxic activity in vitro on KB cells and less marked action on P388 cells, as well as 
very strong inhibition of Candida albicans [208]. Compared with leucascandrolide 
A, leucascandrolide B (464) was found from the same sponge sample which showed 
only marginal cytotoxicity on tumor cell lines, with an IC50 of 5 μg/mL on KB cells 
and > 10 μg/mL on P388 murine leukemia cells and no activity on Candida albicans 
[209]. A marine sponge Fasciospongia rimosa (Okinawa, Japan) yielded zampano-
lide (465) which showed potent cytotoxicity (IC50 1–5 ng/mL) against P388, A549, 
HT29, and MEL28 cell lines [210]. In 1997, study of a deepwater sponge 
Lissodendoryx sp. (Kaikoura Peninsula, New Zealand) yielded neonorhalichondrin 
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B (466), neohomohalichondrin B (467), 55-methoxyisohomohalichondrin B  
(468), 53-methoxyneoisohomohalichondrin B (469), and 53-epi-53-
methoxyneoisohomohalichondrin B (470), and further antitumor assay demon-
strated that they were highly cytotoxic against P388 cells with IC50 values of 0.4, 
0.8, 10, and 0.1  ng/mL except 53-epi-53-methoxyneoisohomohalichondrin B, 
respectively [211]. Two novels, highly potent, cytotoxic macrolides and salicyli-
halamides A (471) and B (472), were isolated from the sponge Haliclona sp. 
(Rottnest Island, Australia). COMPARE pattern-recognition analyses of the NCI 
60-cell mean-graph screening profiles of salicylihalamide A did not reveal any sig-
nificant correlations to the profiles of known antitumor compounds in the NCI’s 
“standard agent database,” thus supporting the conclusion that the salicylihalamides 
represent a potentially important new class for antitumor lead optimization and 
in vivo investigations [212]. In 1998, thiomycalolides A (473) and B (474) were 
obtained from Mycale sp. (Kii Peninsula, Japan), which exhibited highly cytotoxic 
against P388 murine leukemia cells with an IC50 value of 18 ng/mL each [213].
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Chemical investigation of an Okinawan sponge Ircinia sp. resulted in isolation of 
haterumalides NA, NB, NC, ND, and NE (475–479), among which, haterumalides 
NA exhibited cytotoxicity against P388 cells, with an IC50 of 0.32 μg/mL, and mod-
erate acute toxicity against mice, with an LD99 of 0.24 g/kg which was found in 
1999 [214]. In 2000, antiproliferative bioassay-guided fractionation of an aqueous 
extract of the marine sponge Chondropsis sp. (Wollongong, Australia) provided 
chondropsins A (480) and B (481). Testing of chondropsin A in the NCI 60-cell 
screen revealed a mean-graph profile that did not correlate significantly with the 
profile of any compound class represented in the NCI standard agents database 
[215]. In 2001, 73-deoxychondropsin A (482) and chondropsin C (483) were iso-
lated from two different collections of marine sponges belonging to the genus 
Ircinia (Ircinia ramose, Australia; Ircinia sp., Philippines) and exhibited IC50’s of 
approximately 0.8 and 0.2 ng/mL toward the LOX and MOLT-4 cell lines, respec-
tively [216]. Chondropsin D (484) exhibited IC50’s of approximately 10 and 250 ng/
mL toward the LOX and MOLT-4 cell lines, respectively [217]. In 2000, peloruside 
A (485) was found to be cytotoxic to P388 murine leukemia cells at approximately 
10 ng/mL (18 nM) which was found in sponge Mycale sp. [218]. In 2010, peloru-
side B (486), a natural congener of peloruside A, was isolated from the New Zealand 
marine sponge Mycale hentscheli. Peloruside B was found to promote microtubule 
polymerization and arrest cells in the G2/M phase of mitosis similar to paclitaxel, 
and its bioactivity was comparable to that of peloruside A [219].
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In 2001, dactylolide (487) from Dactylospongia sp. showed cytotoxic activity 
against the L1210 and SK-OV-3 tumor cell lines (63% and 40% inhibition at 3.2 μg/
mL) [220]. In 2002, 30,32-dihydroxymycalolide A (488) was obtained from Mycale 
izuensis, with cytotoxic activity against HeLa cells (IC50 value of 2.6 ng/mL) [221]. 
In 2005, 13-deoxytedanolide (489), a highly antitumor macrolide from the marine 
sponge Mycale adhaerens, exhibited cytotoxic activity against P388 murine leuke-
mia cells with IC50 of 0.064 ng/mL [138]. In 2006, tedanolide C (490) isolated from 
Ircinia sp. (Milne Bay, Papua New Guinea) exhibited potent cytotoxicity against 
HCT-116 cells in  vitro with IC50 value of 9.53  ×  10−2 μM and caused a strong 
S-phase arrest [136]. Leiodolides A (491) and B (492) were found in marine sponge 
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Leiodermatium (Palau) from deep water, and leiodolide A showed significant cyto-
toxicity (average GI50 = 2.0 μM) in the National Cancer Institute’s 60 cell line panel 
with enhanced activity against HL-60 leukemia and OVCAR-3 ovarian cancer cell 
lines [222]. The Red Sea sponge Theonella swinhoei (Hurghada, Egypt) yielded 
swinholide I (493) and hurghadolide A (494) which were in vitro cytotoxic against 
human colon adenocarcinoma (HCT-116) with IC50 values of 5.6 and 365  nM, 
respectively. Furthermore, they could disrupt the actin cytoskeleton in the range of 
70 and 7.3 nM, respectively. In addition, they were both active against Candida 
albicans [223].
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In 2007, neopeltolide (495) was isolated from a deepwater sponge of the family 
Neopeltidae (Jamaica), and it showed potent in  vitro anti-proliferation activity 
against A549 human lung adenocarcinoma, the NCI-ADR-RES human ovarian sar-
coma, and the P388 murine leukemia cell lines, with IC50’s of 1.2, 5.1, and 0.56 nM, 
respectively. Neopeltolide also inhibited the growth of the fungal pathogen Candida 
albicans with a minimum inhibitory concentration of 0.62 μg/mL [224]. The study 
of marine sponge Poecillastra sp. (Grand Bahama Island, Bahamas) yielded poecil-
lastrins B (496) and C (497), which were of interest for cytotoxicity against a human 
melanoma tumor cell line (LOX) with an IC50 value of less than 1 μg/mL [225]. In 
2008, mirabilin (498) was isolated from the marine sponge Siliquariaspongia mira-
bilis (Federated States of Micronesia), which prevented the tumor cell line HCT-116 
from growing with an IC50 value of 0.27 ± 0.09 μM [226]. Three nitrogenous mac-
rolides designated salarin A (499), B (500) and tulearin A (501) were isolated from 
the Madagascar Fascaplysinopsis sp. sponge. Both salarins carry an acetylcarba-
mate moiety, and in addition, salarin A contains a triacylamine group and salarin B 
contains a methoxymethylketone lactam. Tulearin A was featured with a naturally 
rare carbamate ester. They were found to be toxic to brine shrimp larvae, and salarin 
A and tulearin A were also cytotoxic to leukemia cells [227].
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In the year of 2009, the deepwater marine sponge Lissodendoryx sp. (Kaikoura 
Peninsula, New Zealand) was found to contain halichondrin B-1140, halichondrin 
B-1092, halichondrin B-1020, and halichondrin B-1076 (502–505), which exhib-
ited highly cytotoxicity against the P388 cell lines with IC50 values of 2.0, 0.76, 1.1, 
and 1.1 ng/mL, respectively [228]. Leiodermatolide (506) isolated from the marine 
sponge Leiodermatium sp. (Fort Lauderdale, Florida,2011) was found to exhibit 
potent and selective antimitotic activity (IC50 < 10 nM) against a range of human 
cancer cell lines by inducing G2/M cell cycle arrest [229]. Kabiramides B–D, G, J, 
and K (507–512) were isolated from the sponge Pachastrissa nux, showed moderate 
to strong antimalarial and cytotoxic activities, except for kabiramide G, which pos-
sessed only potent cytotoxicity [230]. In 2013, kabiramides L (513) and I (514) 
were obtained from the same sponge sample Pachastrissa nux, and both exhibited a 
moderate antiplasmodial activity against Plasmodium falciparum K1 with IC50s of 
2.6 and 4.5 μM, respectively [231]. In 2014, callyspongiolide (515), a structurally 
unique polyketide-derived macrolide, was isolated from the marine sponge 
Callyspongia sp. collected in Indonesia, and it showed strong cytotoxicity against 
human Jurkat J16 T and Ramos B lymphocytes [232].
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15.6  �Bioactive Terpenoids

Marine organisms produce a wide array of fascinating terpenoid structures distin-
guished by characteristic structural features. Since sponges are one of the prime 
resources of sesquiterpenes,diterpenes,sesterterpenes,and triterpenes, we here will 
survey 170 terpenoids from 32 sponges with various biological activities such as 
antitumor, anti-inflammation, antifouling, fungicide, as well as pesticide.

15.6.1  �Sesquiterpenes

In 1996, chemical investigation of sponge Acanthella eavernosa (Hachijo-jima 
Island, Tokyo), yielded Isocyanate and isothiocyanate derivatives 516 and 517,  
both of which were highly active in antifouling assay with EC50 value of  
0.05  μg/mL [233]. In 2008 year, three new sesquiterpene quinones  
isohyatellaquinone (518), 7, 8-dehydrocyclospongiaquinone-2 (519), and 9-epi-7, 
8-dehydrocyclospongiaquinone-2 (520), along with the known quinones 
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mamanuthaquinone (521) and ilimaquinone (522), were isolated from 
Dactylospongia elegans (Coral Gardens dive site at the Inner Gneerings reef, 
Australia, in 2007). All compounds were active against the breast cancer (BC) and 
small cell lung cancer (NCI-H187) cell lines an IC50 range of 1.50–12.4 μg/mL 
except compound 519 [234].
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In 2011, nakijinol B (523), nakijinol B diacetate (524), smenospongines B (525) 
and C (526) were found in the marine sponge Dactylospongia elegans (Pugh Shoal, 
northeast of Truant Island, in November 1990), along with two known compounds 
[ilimaquinone (527) and 5-epi-ilimaquinone as a 1:1 mixture, dactyloquinone B 
(528)]. All compounds tended out to be active from 1.8 to 46 μM but lacking selec-
tivity for tumor versus normal cell lines (SF-268, H460, MCF-7, HT29, and CHO-
K1). And the 1:1 mixture of ilimaquinone (527) and 5-epi-ilimaquinone was found 
to be the most cytotoxic with GI50 values ranging from 1.8 to 5.4 μM [235].
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In 2011, Halichondria sp. (Unten Port, Okinawa) was the source of three new 
dimeric sesquiterpenoids, halichonadins G–I (529–531), of which Halichonadins G 
(529) and I (531) were active against murine lymphoma L1210 cells and human 
epidermoid carcinoma KB cells with an IC50 range of 3.4–6.9 μg/mL [236].
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In 2012, a chemical study of sponge Dysidea avara (Xisha islands, South China 
Sea) resulted in discovery of dysidavarones A–D (532–535), of which dysidavarone 
A (532) inhibited protein tyrosine phosphatase 1B (PTP1B) with IC50 value of 
9.98 μM. These four compounds are the first example of sesquiterpenes featured 
with the unprecedented “dysidavarane” carbon skeleton [237].
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In 2013, chemical investigation of Euryspongia sp. (Iriomote Island, Okinawa, 
Japan) revealed the discovery of Euryspongins A–C (536–538). The compounds 
536–538 were not active against protein tyrosine phosphatase 1B (PTP1B) while 
compound 539 (the dehydrated product of 536) tended to inhibite PTP1B with IC50 
value of 3.6 μM, highlighting the importance of the absence of an OH group at C-4 
for activity [238].
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15.6.2  �Diterpenes

In 1998, four new norditerpenes (540–543) were isolated from the marine sponge 
Diacarnus cf. spinopoculum (Solomon Islands). Compounds 540 and 541 showed 
moderate activity against the NCI’s 60 cell line [239]. In 2002, an inseparable 
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mixture, sarcotins K (544) and L (545) were reported from the marine sponge 
Sarcotragus sp. (Cheju Island, Korea, in July 1998). The mixture was evaluated for 
cytotoxicity against five human tumor cell lines, but only showed activity against 
SK-MEL-2 cell line with an ED50 value of 6.2 μg/mL [240].
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540 541
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In 2009, seven new spongian-class diterpenes (546–552) were discovered from 
the sponge Dysidea cf. arenaria (Okinawa Island), of which compounds 547, 551, 
and 552 exhibited cytotoxicity against NBT-T2 rat bladder epithelial cells with IC50 
values of 1.9, 1.8, and 4.2 μg/mL, respectively [241]. A new isonitrile diterpene, 
namely 8-isocyanoamphilecta-11(20), 15-diene (553), along with three known iso-
nitriles (554–556), were reported in the same year from the sponge Ciocalapata sp. 
(vicinity of Koh-Tao, Thailand, in April 2002). The four isonitriles extinctively 
supressed Plasmodium falciparum K1 with mean IC50 values from 0.09 
to1.07 μmol/L [242].
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In 2011, four novel 9-N-methyladeninium diterpenoids, agelasine M (557), 
2-oxo-agelasine B (558), gelasineA (559), and gelasine B (560), together with the 
known agelasine B (561) and F (562), were isolated from the marine sponge Agelas 
sp. (Kimbe Bay, Papua New Guinea, in November 2007). Compounds 557 and 562 
exhibited potent cytotoxicity against Jurkat cells with IC50 values of 3.0 and 3.6 μg/
mL while compounds 561 and 562 were strongly active against Trypanosoma bru-
cei with IC50 values of 8.4 and 3.3 μg/mL [243].

15  Natural Products from Sponges



410

 

In 2012, two new spongian-class diterpenes (563, 564), along with two known 
compounds (565, 566), were found in the marine sponge Chromodoris sp. (Okinawa 
Island), and they showed moderate cytotoxity against NBT-T2 rat bladder epithelial 
cells with IC50 values of 5.6, 12, 3.4, and 3.8 μg/mL, respectively [244].

 

In 2015, chemical investigation of the New Zealand marine sponge Hamigera 
tarangaensis (Cavalli Island, New Zealand, in December 2003) resulted in the isola-
tion of nine new nitrogenous hamigeran diterpenoids, namely hamigeran M(567), 
hamigerans N − Q(568–571), 19-epi-hamigeran Q (572), and 18-epi-hamigerans N, 
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P, and Q (573–575). Hamigeran M (567) exhibited potent cytotoxic activity against 
HL-60 promyelocytic leukemic cell line at 6.9 μM. And in this work, the structure 
of hamigeran D (576) was revised [245].
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In 2015, a new meroditerpene, 26-O-ethylstrongylophorine-14 (577), was iso-
lated from the Okinawan marine sponge Strongylophora strongilata (Iriomote 
Island, Okinawa, Japan, in 2010) together with six known strongylophorines (578–
583). Compounds 577, 578, and 580 inhibited the activity of protein tyrosine phos-
phatase 1B (PTP1B) with an IC50 value of 8.7, 8.5, 9.0 μM, respectively [246]. A 
chemical investigation of the marine sponge Petrosia corticata (North Sulawesi, 
Indonesia, in 2007) resulted in the characterization of two new strongylophorine 
derivatives in 2015, 26-O-methylstrongylophorine-16 (584) and 26-O-ethylstrongy-
lophorine-16 (585), along with six known congeners (586–592). Most of these com-
pounds showed potent inhibitory activity against the chymotrypsin-like activity of 
the proteasome in the low concentration (μg/mL) [247].
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15.6.3  �Sesterterpenes

In 1991, three new norsesterterpene peroxides, phyllofenone B (593), phyllofolac-
tone A (594), and phyllofolactone B (595), were isolated from the sponge 
Latrunculia sp. (Jervis Bay, Australia). Among them, phyllofenone B was active 
against the P388 cell line with an IC50 value of 5 μg/mL [248]. In 1991, a study of 
the Adriatic sponge Fasciospongia cavernosa (Yongxing Island, South China Sea, 
in April 1988) yielded 25-Deoxycacospongionolide B (596), which showed a high 
cytotoxicity with an EC50 value of 0.74 μg/mL in the Arremia salina bioassay [249].
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In 1998, chemical analysis of Hyrtios erecta (Amami-Oshima, Japan, in 1993) 
resulted in the discovery of novel scalarane sesterterpenes (597–601), and their ste-
reo structures were characterized by means of spectral analyses, X-ray crystallogra-
phy, and chemical reactions. Compound 597 showed potent in vitro and in vivo 
antitumor activities. In addition, the structure-activity relationship was also dis-
cussed using computer-assisted structure matching of 597 and aragusterols [250].
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In 2002, barangcadoic acid A (602) and rhopaloic acids D-G (603–606) found in 
the marine sponge Hippospongia sp, were reported to possess RCE protease inhibi-
tory activity [251]. In 2010, a chemical investigation of the South China Sea sponge 
Phyllospongia foliascens (Yongxing Island, South China Sea, in June 2007) resulted 
in discovery of a new scalarane sesterterpene, phyllofolactone M (607) [252].
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In 2011, a study of the sponge Coscinoderma sp. (Chuuk Island, Federated States 
of Micronesia, in June 2006) yielded eight new sesterterpenes (607–615), which 
displayed moderate cytotoxicity toward the K562 cell line and inhibitory activities 
of isocitrate lyase, sortase A, and Na+/K+-ATPase [253].
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In 2011, five new sesterterpenes (616–620) were isolated from the sponge 
Hyatella sp. (Soheuksan-do, West Sea, Korea, on June 18, 2007). Compounds 616–
619 contained oxidized furan moieties, while compound 620 possessed a corre-
sponding lactam. Compound 619 exhibited moderate antibacterial activity with 
MIC value of 1.56 μg/mL [254].
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In 2011, hippolides A–H (621–630) were obtained from the sponge Hippospongia 
lachne (Yongxing Island, South China Sea, in June 2007), and their absolute con-
figurations were established by the modified Mosher’s method and CD data. 
Hippolide A exhibited cytotoxicity against A549, HeLa, and HCT-116 cell lines 
with IC50 values of 5.22 × 10−2,4.80 × 10−2 and 9.78 μM, respectively [255].
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In 2011, two new sesterterpenoids, phorbasones A (631) and B (632), were found 
from the Korean marine sponge Phorbas sp., and their complete structures were 
elucidated by spectral data and chemical reactions. Phorbasone A exhibited a posi-
tive effect on the calcium deposition activity in C3H10T1/2 cells [256].
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In 2012, phorone A (633) and isophorbasone A (634) featured with two new 
carbon skeletons were identified, along with ansellone B (635) and phorbasone A 
acetate (636), from a Korean marine sponge, Phorbas sp. Ansellone B (635) and 
phorbasone A acetate (636) exhibited potent inhibitory activity on nitric oxide pro-
duction in RAW 264.7 LPS-activated mouse macrophage cells with IC50 values of 
4.5 and 2.8 μM, respectively [257].
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In 2013, four new sesterterpenoids, ansellone B (637), phorbadione (638), seco-
epoxyansellone A (639), and alotaketal C (640) were isolated from the sponge 
Phorbas sp. (Howe Sound, British Columbia). Ansellone B (637) possessed an 
unprecedented heterocyclic skeleton with an oxocane ring, while secoepoxyansel-
lone A (639) was the first example of the degraded “secoansellane” sesterterpenoid 
carbon skeleton. Alotaketal C (640) activated cAMP signaling in HEK293 cells 
with an EC50 of 6.5 μM [258].

O
O

H

H

O

HO

AcO

O

H

H

O

AcO

H

O

O

O

O
H

OAc
H

H O

O

O

AcO

H
OH

H

H

H

637

640

639638

 

15  Natural Products from Sponges



418

Meanwhile, three novel scalarane sesterterpenes, 12-deacetoxy-23-
hydroxyscalaradial (641), 12-dehydr-oxy-23-hydroxyhyrtiolide (642), and 
12-O-acetyl-16-deacetoxy-23-acetoxyscalarafuran (643), along with four known 
derivatives (644–647), were isolated from Psammocinia sp. (South Sea of Korea). 
They exhibited cytotoxicity against intractable human cancer cell lines A498, 
ACHN, MIA-paca, and PANC-1, with mean IC50 values in the range of 0.4–48 μM 
[259].
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Phorbaketals D–K (648–656) with a spiroketal-modified benzopyran moiety, 
along with phorbins A–C (657–659), were characterized from the sponge 
Monanchora sp. (Gageo Island, southwestern Korea, in July 2009), and the absolute 
configurations of them were established with the modified Mosher’s method and 
CD spectroscopic data analysis. Phorbin A (657) showed potent cytotoxicity against 
MIA-paca and PANC-1 human pancreatic cancer cell lines, similar to or better than 
the positive control [260].
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In 2014, five new scalarane derivatives (660–664) acting as inhibitors of TDP-43 
nuclear factor were discovered from Hyrtios sp. and Petrosaspongia sp. (Fiji 
Islands) [261].
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In 2015, phyllospongins A–E (665–668) were identified from Phyllospongia 
lamellosa (Hurghada, Egypt).These scalarane sesterterpenes exhibited potent cyto-
toxic activity against HCT-116, HePG2, MCF-7 cell lines with an IC50 range of 
0.29–2.14 μM. Phyllospongins D showed cytotoxicity against HCT-116 as potent as 
doxorubicin. Phyllospongins E showed cytotoxicity against MCF-7 comparable to 
doxorubicin [262].
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In 2015, phorone B (669) and ansellone C (670) structurally close related to the 
sesterterpenes of the phorone and ansellone classes were isolated from the marine 
sponge Clathria gombawuiensis (Gageo-do, Korea, on September 9–11, 2006). The 
two compounds showed temperate cytotoxic activity against A549 and K562 cell 
lines with mean IC50 values in the range 3.9–5.4 μM. The cytotoxicity of 1 may be 
related to the presence of a free phenolic −OH group, as the corresponding 
O-methoxy derivative is inactive [263].
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15.6.4  �Triterpenes

In 2010, nine new isomalabaricane derivatives, globostelletins A–I (671–679), were 
isolated from Rhabdastrella globostellata (Hainan Island, South China Sea, in June 
2006), along with five known compounds (680–684). Of which, globostelletins C 
and D (673–674) were a pair of inseparable geometrical isomers with a ratio of 1:1. 
Compounds 673–674 and 678–682 exhibited activity against A2780 cell lines with 
low μM (IC50 < 10 μM) [264].
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15.7  �Bioactive Sterols

The basic role of sterols is the maintenance of optimal fluidity of cell membranes, 
although these compounds also serve as precursors for the production of diverse 
steroid classes such as the polyhydroxylated marine sterols. In recent years, research 
in the marine sterol field has progressed at an impressive pace. Here we intend to 
provide a description of the characteristic features of 107 sterols with potent bio-
logical activities from 29 marine sponges covering literatures from 1993 to 2015.

15.7.1  �Alkaloidal Sterols

In 2014, the chemical study of marine sponge Corticium niger collected from the 
Philippines resulted in the discovery of two new steroidal alkaloids plakinamines N 
(685) and O (686), which were tested for antiproliferative activity and showed 
remarkable inhibitory effects against all of the colon cell lines with mean GI50 val-
ues of 11.5 and 2.4 μM [265].

In 2007, a tropical sponge Phorbas amaranthus (Key Largo, Florida) was found 
to contain a 24-imidazolyl steroidal alkaloid amaranzole A (687). The structure was 
elucidated on the basis of MS, NMR, exciton-coupled CD spectrum, and compari-
son with model compounds [266]. In the same year, steroidal alkaloid 4-acetoxy-
plakinamine B (688) bearing a stigmastane skeleton was found in the Thai sponge 
Corticium sp. The compound inhibited acetylcholinesterase with IC50 value of 
3.75 μM [267]. A series of steroidal alkaloids cortistatins J–L (689–691) were iso-
lated from the Indonesian marine sponge Corticium simplex. Cortistatin J exhibited 
potent cytostatic antiproliferative activity against human umbilical vein endothelial 
cells (HUVECs) at 8 nM [268].

In 2006, four steroidal isoquinoline alkaloids cortistatins A–D (692–695) were 
obtained from the marine sponge Corticium simplex (Flores Is., Indonesia). These 
compounds exhibited highly selective antiproliferative activity against HUVECs 
with IC50 values of 0.0018, 1.1, 0.019, and 0.15 μM, respectively [269].

In 2003, four steroidal alkaloids, plakinamine I–K (696–698) and dihydroplakin-
amine K (699), were obtained from a Philippine sponge Corticium niger. These 
compounds exhibited significant in  vitro cytotoxicity against the human colon 
tumor cell line HCT-116 with IC50 values of 10.6, 6.1, 1.4, and 1.4 μM, respectively 
[270].

In 2002, four plakinamine-type steroidal alkaloids were isolated from a marine 
sponge Vanuatuan Corticium, of which plakinamine G (700) and 
tetrahydroplakinamine A (701) were quite active against rat glioma cells (IC50’s 6.8 
and 1.4 μg/mL, respectively) [271].

In the year of 1999, chemical study of Corticium sp. from Vanuatu yielded 
plakinamines C (702) and D (703) and three other steroidal alkaloids (704–706), all 
of which showed potent cytotoxicity against human bronchopulmonary non-small-
cell lung carcinoma cells with IC50 values of <3.3–5.7 μg/mL [272].
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15.7.2  �Sulfated Sterols

In 2012, two new dimeric sterols manadosterols A (707) and B (708) were found in 
the sponge Lissodendryx fibrosa in Indonesia, which are potent inhibitors of the 
Ubc13-Uev1a complex with IC50 values of 0.09 and 0.13 μM and therefore have 
potential as anticancer agents [273].

In 2011, shishicrellastatin A and B (709 and 710), two dimeric steroid deriva-
tives, were reported from the marine sponge Crella (Yvesia) spinulata. Both of 
them exhibited bioactivity against cathepsin B with an IC50 value of 6.9 μM each 
[274].

In 2009, three sulfated sterol dimers, fibrosterol sulfates A–C (711–713), were 
isolated from Lissodendoryx (Acanthodoryx) fibrosa collected in the Philippines. 
Fibrosterol sulfate B inhibited protein kinase Cζ with IC50 value of 5.6 μM [275].

In the year of 2008, a species of Spheciospongia sp. (Cagayan de Oro, Philippines) 
was the source of sterol sulfates, spheciosterol sulfates A–C (714–716), all of which 
potent inhibited protein kinase Cζ with IC50 values of 1.59, 0.53, 0.11, and 1.21 μM, 
respectively [276].

15  Natural Products from Sponges



424

NaO3SO
H

H
NaO3SO

NaO3SO H
OSO3Na

H H

H

H

HH
HO

H
OSO3Na

NaO3SO
H

H

NaO3SO H
OSO3Na

H H

H

H

HH
HO

H
OSO3Na

OH

707 708

NaO3SO

NaO3SO

O

O

H

H

H

H

H

H

OSO3Na
H

O

HO

NaO3SO

NaO 3SO

O

O

H H

H

H

H

OSO3Na
H

O

HO

709
710

NaO3SO

HO

H

H
OSO 3Na

H H
H

OSO3Na
H

OR
H

H

OSO3NaOH

711 R = H
712 R = SO3Na

O

H

H

H

NaO 3SO

HO
H

H
NaO3SO

H
H

H

OSO 3Na
H

OH
H

H OSO 3Na

713

NaO 3SO

OH

H

R

NaO 3SO
H

OSO3Na

714 R =

715 R =

716 R =
 

B.-N. Han et al.



425

In 2008, three new marine polar steroids, chlorotopsentiasterol sulfate D (717), 
topsentiasterol sulfate F (718), and iodotopsentiasterol D (719), were isolated from 
the marine sponge Topsentia sp. (Vang Fong Bay, Vietnam). Chlorotopsentiasterol 
sulfate D proved to be an effective inhibitor of endo-1,3-β-D-glucanase [277].

In 2007, sulfated sterol 24ξ,25-dimethyl-3α-hydroxyl-cholest-5-ene-2β-ol 
sodium sulfate (720) which showed cytotoxicity to four human cancer cell lines was 
obtained from Halichondria rugosa [278].

In 2007, an undescribed marine sponge Euryspongia was the source of euryster-
ols A (721) and B (722), with the former being cytotoxicity against human colon 
carcinoma (HCT-116) cells with IC50 value of 2.9  μg/mL, also antifungal to 
amphotericin-B-resistant Candida albicans [279].

In 2003, a sterol sulfate Scheme 572423 (723), along with the known halistanol 
sulfate, was isolated from a Topsentia species collected in the Bahamas. The com-
pounds were found as P2Y12 inhibitors with IC50 of 0.48 and 2.2 μM, respectively 
[280].

In 2001, a Philippine sponge of the genus Xestospongia yielded two sulfated 
sterols, ibisterol B (724) and C (725) and an epoxysteroid (726) that were found to 
be inhibitors of HIV-1 integrase [281].

In 1998, marine sponge Crella sp. from Vanuatu Island yielded crellastatin A 
(727), a new nonsymmetric dimeric steroid, which exhibited cytotoxic activity 
against NSCLC-N6 cells with the IC50 value of 1.5 μg/mL [282].

In 1996, halistanol disulfate B (728), a sterol sulfate, was isolated from the 
MeOH extract of a South African sponge Pachastrella sp. The compound had an 
IC50 of 2.1 μM for inhibition of endothelin converting enzyme [283].
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15.7.3  �Glycoside Sterols

In 2010, steroidal glycosides, namely, pandarosides E–J, and their methyl esters 
were isolated from a Caribbean sponge Pandaros acanthifolium, with all except 
pandaroside H exhibiting antiprotozoal activity. Methyl ester of pandaroside G 
(730) potently inhibited the growth of Trypanosoma brucei rhodesiense 
(IC50 = 0.038 μM) and Leishmania donovani (IC50 = 0.051 μM) especially [284].

In 2000, a potent penasterol disaccharide eryloside F (731) inhibited human 
platelet aggregation in vitro as a thrombin receptor antagonist, which was obtained 
from the sponge Erylus formosus. The IC50 values of the compound inhibited 
SFLLRN and U-46619-induced platelet aggregation were at 0.3 and 1.7 μg/mL, 
respectively [285].
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15.7.4  �Others

In 2014, cinanthrenol A (732), an estrogenic steroid containing phenanthrene 
nucleus, was isolated from the marine sponge Cinachyrella sp. Absolute configura-
tion of the compound was established as 16S, 17S, and 19S by the modified Mosher’s 
method. Cinanthrenol A bound to estrogen receptor in a competitive manner against 
estradiol with an IC50 value of 10 nM. Moreover, it has cytotoxicity against P388 
and HeLa cells as well, with IC50 4.5 and 0.4 μg/mL, respectively [286].

Also in this year, extracts of the sponge Theonella swinhoei, which collected at 
the Xisha island, yielded two novel sterols swinhoeisterols A and B (733 and 734) 
with an unprecedented 6/6/5/7 tetracyclic systems. The absolute configurations of 
the compounds were assigned by X-ray diffraction, TDDFT/ECD calculations, and 
modified Mosher’s method. Swinhoeisterols A exhibit a potent inhibitory activity 
(IC50 = 2.9 μM) against the histone acetyltransferase (h)p300 [287].
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In 2013, aragusterol I (735), 21-O-octadecanoyl-xestokerol A (736), and 
7β-hydroxypetrosterol (737), three cyclopropanated sterols, were isolated from the 
Vietnamese marine sponge Xestospongia testudinaria [288]. The compound 
21-O-octadecanoyl-xestokerol A showed antifouling activity with EC50 values simi-
lar to that of the antifoulant marine pollutant tributyltin oxide.

In 2008, aminosteroids clionamine D (738) which has an unprecedented spiro 
bislactone side chain were isolated from South African specimens of the sponge 
Cliona celata [289].

In 2004, the Okinawan sponge Terpios hoshinota yielded nakiterpiosin (739) and 
nakiterpiosinone (740), both exhibiting cytotoxicity potentially against mouse lym-
phocytic leukemia cells (P388) with IC50 values of 0.01 mg/mL, respectively [290].

In 2001, Stelletta hiwasaensis from Japan was found to produce orostanal (741), 
abeo-sterol derivative, which induced apoptosis in human acute promyelotic leuke-
mia cell with IC50 value of 1.7 μM [291].

In 1999, glaciasterol B 3-monoacetate (742), a new 9,11-secosterol which exhib-
ited potent toxic activity (LC50 = 0.54 μg/ml) to brine shrimp, was isolated from the 
Tyrrhenian sponge Fasciospongiu cavernosa [292].

In 1996, an Okinawan marine sponge Xestospongia sp. was found to contain 
aragusteroketals A (743) and C (744); both of them exhibited potent cytotoxic activ-
ity with the same IC50 value of 4 ng/ml against KB cells [293].

In 1995, pentacyclic steroid xestobergsterol C (745), possessing a cis C/D ring 
junction, which exhibited cytotoxicity against L-1210 murine leukemia cells with 
IC50 values of 4.1 μg/mL, was obtained from the Okinawan marine sponge Ircinia 
sp. [294].

In 1993, an Okinawan marine sponge of the genus Xestospongia was the source 
of aragusterol A–D (746–749) [295–297], all of which except aragusterol C strongly 
inhibited the proliferation of KB cells at IC50 values of 0.042, 3.3, and 0.041 μg/mL, 
respectively.
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In 2015, a steroidal ketone (750), bearing an ergosta-22,25-diene side chain, was 
isolated from the South China Sea marine sponge Xestospongia testudinaria. The 
compound exhibited potent activity against protein tyrosine phosphatase 1B 
(PTP1B) with an IC50 value of 4.27 μM [298].
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In the same year, antibacterial compound gelliusterol E (751) was obtained from 
the Red Sea sponge Callyspongia aff. implexa [299]. Gelliusterol E inhibited the 
formation and growth of gram-negative bacterium Chlamydia trachomatis in a 
dose-dependent manner with an IC50 value of 2.3 μM.

In 2012, Okinawan sponge Dysidea sp. was the source of dysideasterols F–H 
(752–754), all of which inhibited human epidermoid carcinoma cells strongly with 
a similar cytotoxic effect with IC50 values of 0.15–0.3 μM [300].

In 2010, an undescribed species of Topsentia was the source of three isopropyl 
steroids, topsentinols K (755), L (756) and K trisulfate (757); the latter was an 
inhibitor of BACE1 dose-dependently with an IC50 value of 1.2 μM [301].
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In 2009, five norselic acids A–E (758–762) were obtained from the sponge Crella 
sp. collected in Antarctica, all of which inhibited the growth of the Leishmania para-
site at low micromolar levels [302].
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Also in 2009, Australian marine sponge Psammoclema sp. contained a series of 
trihydroxysterols (763–766), of which 4 were cytotoxic against a panel of cancer 
cell lines [303].

In 2008, Ircinia aruensis collected in Naozhou Island yielded six epoxysterols. 
Compound 767 exhibited cytotoxicity against four cancer cell lines (7402, H-460, 
LOVO, and MCF) with IC50 values of 4.3, 2.8, 5.1, and 3.5 μg/mL, respectively 
[304].

In 2005, Homaxinella sp. (Korea) contained a series of highly degraded sterols 
demethylincisterols A1–A4 (768–771) and butoxyderivatised sterols homaxisterols 
A1–A4 (772–775), all of which but homaxisterols A4 inhibited a panel of five human 
solid tumor cell lines, and especially 770 displayed significant cytotoxicity [305].

In 2004, Italian sponge Cliona nigricans provided two polychlorinated steroids 
clionastatins A (776) and B (777), which exhibited potential antitumor activity in 
three cell lines with IC50 values ranging from 0.8 to 2.0 μg/mL [306].
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In 2004, four sterols (778–781) were isolated from the marine sponge Axinella 
cf. bidderi (Yemen, Indian Ocean), which possess, respectively, the cholestene and 
the cholestane skeleton with a cyclic enol ether linkage between C-18 and C-22. 
These sterols showed cytotoxic activity against prostate, ovary, pancreas, colon, and 
lung cell lines with GI50 values ranging from 0.6 to 8.3 μg/mL [307].

In 2002, three new sterols (782–784), isolated from the marine sponge Polymastia 
tenax, were found to have potent antiproliferative activity toward A549, HT29, 
H-116, MS-1, and PC-3 tumor cells in the range 0.5–10 μg/mL [308].

In 2001, an undescribed species of Gellius collected in the Caribbean coast of 
Panama was the source of four acetylenic sterols, gelliusterols A–D (785–788); 785, 
786, and 787 were found to be cytotoxic to a panel of cancer cell lines [309].

In 2000, northern Australia Dysidea sp. yielded three polyoxygenated sterols 
(789–791) that inhibited the binding of IL-8 to the human recombinant IL-8 
receptor-type A with the IC50 values of 20, 5.5, and 4.5 μM, respectively [310].

A deepwater marine sponge Scleritoderma sp. cf. paccardi which collected from 
Turneffe Islands (Belize) in 1985 yielded a sterol ether (792) named 24(R)-methyl-
5α-cholest-7-enyl 3β-methoxymethyl ether. IC50 of the compound inhibited the 
murine P388 tumor cell line was 2.3 μg/mL [311].
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15.8  �Bioactive Potentials from Diverse Sponges Derived 
Natural Products

For the past decades, marine sponges have been considered as a very fertile field for 
the discovery of bioactive natural chemical substances with respect to the diversity 
of their primary and secondary chemical components and metabolites [312]. It was 
proved that marine sponges produce an enormous array of antitumor, antiviral, anti-
inflammatory, antibiotic, and other bioactive molecules that have the potential for 
therapeutic use. Studies showed that different components affect the targeted dis-
ease by different mechanisms. Natural chemical products that can act as inhibitors 
of transcription factors may be effective against both malignant neoplasms and viral 
diseases. Most bioactive metabolites from sponges proved to be inhibitors of certain 
enzymes, which often mediate or produce mediators of intracellular or intercellular 
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messengers involved in the pathogenesis of a disease [313]. Here, we introduce 
several kinds of recently confirmed bioactive lead compounds isolated from marine 
sponge which pharmacological mechanisms were studied.

Cytarabine (Fig. 15.1) is derived from the related marine natural products spon-
gothymidine and spongouridine, nucleosides with a modified sugar moiety. These 
nucleosides were isolated from the Caribbean sponge Crypotethia crypta by 
Bergmann and Feeney in 1951 [314]. Cytarabine is mainly used in the treatment of 
acute myeloid leukemia and acute lymphocytic leukemia (ALL), where it is the 
backbone of induction chemotherapy [315]. Cytosine arabinoside interferes with 
the synthesis of DNA. Its mode of action is due to its rapid conversion into cytosine 
arabinoside triphosphate, which damages DNA when the cell cycle holds in the S 
phase (synthesis of DNA). The cells requiring DNA replication for mitosis are 
therefore most affected [315]. Cytosine arabinoside was also considered as inhibitor 
of both DNA and RNA polymerases and nucleotide reductases needed for DNA 
synthesis. As an antiviral agent, cytarabine was often used to inhibit deoxycytidine 
utilization. Due to the rapid deamination in the body into the inactive uracil deriva-
tive, cytarabine therefore is often given by continuous intravenous infusion [316].

Renieramycin G (Fig. 15.2) was isolated from marine sponges Xestospongia and 
Cribrochalina [317]. A recent study demonstrated that Renieramycin G induced 
apoptosis via the p53-dependent pathway and inhibited the progression and metas-
tasis of non-small cell lung cancer [318]. Renieramycin G possesses an amide car-
bonyl group at the C-21 position demonstrated minimal antiproliferative activity in 
human colorectal cancer (HCT-116) and human lung adenocarcinoma (A549) cells 
owing to both compounds possessing an amide carbonyl group at the C-21 position. 
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The minimal antiproliferative activity for members of the tetrahydroisoquinoline 
family possessing an amide carbonyl group at the C-21 position seems consistent 
compared to their C-21 cyano- or carbinolamine-containing relatives.

The brominated alkaloid Isofistularin-3 (Iso-3), a new DNA methyltransferase 
(DNMT)1 inhibitor, was from the marine sponge Aplysina aerophoba [319] 
(Fig. 15.3). Docking analysis confirmed DNMT inhibition data in vitro and revealed 
binding of Iso-3 within the DNA binding site of DNMT1 [320]. Subsequent 
increased expression of tumor suppressor gene aryl hydrocarbon receptor (AHR) 
could be correlated to decreased methylation of CpG sites within the essential Sp1 
regulatory region of its promoter. Iso-3 induced growth arrest of cancer cells in G0/
G1 with increasing p21 and p27 expression and reducing cyclin E1, PCNA and 
c-myc levels. Fluorescent and transmission electron microscopy revealed that the 
reduced proliferation was accompanied by morphological changes as autophagy. 
Furthermore, Iso-3 strongly synergized with tumor necrosis factor-related apoptosis-
inducing ligand (TRAIL) in RAJI [combination index (CI) = 0.22] and U937 cells 
(CI  =  0.21) and increased TRAIL-induced apoptosis via a mechanism involving 
reduction of survivin expression but not of Bcl-2 family proteins nor X-linked 
inhibitor of apoptosis protein (XIAP) [321]. Treatment of Iso-3 decreased FLIPL 
expression and triggered activation of endoplasmic reticulum (ER) stress with 
increased GRP78 expression, which eventually induced TRAIL receptor death 
receptor (DR)5 surface expression. Importantly, as a potential candidate for further 
anticancer drug development, Iso-3 reduced the viability, colony, and in vivo tumor 
forming potential without affecting the viability of PBMCs from healthy donors or 
zebrafish development [321].

Ageladine A (Fig. 15.4) was derived from the sponge Agelas nakamurai [322], 
exhibiting in vitro and in vivo antiangiogenic activity associated with its MMP inhi-
bition. However, subsequent study confirmed that it is resulted from the selective 
inhibition of kinases such as yeast Sps1/Ste20-related kinase 4, dual specificity 
tyrosine-phosphorylation-regulated kinase 1A, and tyrosine kinase 2 [323]. 
Ageladine A and its synthetic analogues feature highly selective angiogenesis inhi-
bition, at concentrations of which no cytotoxicity are shown in the National Cancer 
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Institute (NCI) panel of 60 human cancer cell lines. Moreover, ageladine A is a fluo-
rescent dye that is pH-sensitive and is of interest for imaging [324].

Naamidine A (Fig.  15.5) was found in marine sponge Leucetta chagosensis. 
Bioactivity study showed that this compound inhibits the EGF signaling pathway 
and is more specific for the EGF-mediated mitogenic activity than for the insulin-
mediated mitogenic activity [325]. In 2009, LaBarbera et al. illustrated that naami-
dine A triggers biomarkers of apoptosis like externalization of phosphatidylserine, 
cleavage and activation of caspases-3, −8, and − 9, and disruption of the mitochon-
drial membrane potential indicating that the cell death caused by naamidine A in 
epidermoid carcinoma cells (A-431) is a consequence of apoptosis instead of cyto-
toxicity. It is also reported that naamidine A inhibits the growth of tumor xenograft 
by activating caspase-3 manifesting apoptosis activity in vivo. Besides, naamidine 
A-caused apoptosis does not depend on functional p53 and is independent of extra-
cellular signal-regulated kinase 1/2 [326].

Araguspongine C (Fig. 15.6) is a group of macrocyclic oxaquinolizidine alka-
loids derived from the marine sponge Xestospongia species [327]. Araguspongine C 
prevented the proliferation of varied breast cancer cell lines in  vitro dose-
dependently. Characterized by vacuole formation and upregulation of autophagy 
markers such as Atg3, Atg7, Atg16L, and LC3A/B suppressing c-Met and HER2 
receptor tyrosine kinase activation [328], araguspongine C induces autophagic cell 
death in HER2-overexpressing BT-474 breast cancer cells. What’s more, docking 
research and cell-free Z-LYTE assays revealed that araguspongine C owing the 
direct interaction potentially with the receptor tyrosine kinases c-Met and HER2 at 
their kinase domains. Especially, araguspongine C treatment causes the suppression 
of PI3K/Akt/mTOR signaling cascade in breast cancer cells by autophagy [328].
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Psammaplysene A (Fig. 15.7) is derived from the marine sponge Psammaplysilla 
sp. Schroeder et al. demonstrated that psammaplysene A was an active inhibitor of 
a transcription factor FOXO1 nuclear export, whereas psammaplysene B shows less 
potential [329]. Extensive study illustrated that human endometrial cancer cells 
treated for 24 h with 1 μM psammaplysene A causes cell death leading to morphology 
changes with apoptosis and PARP cleavage, revealing that the cell death aroused 
from psammaplysene A is a result of apoptosis instead of cytotoxicity. 
Psammaplysene A bringing about the doubling of cells in the G2/M phase and 
FOXO1 silencing in ECC-1 cells reduces psammaplysene A-induced apoptosis 
[330].

Agelasines from a marine sponge Agelas clathrodes have structurally unique 
compounds which possess mono or bi-cyclic diterpenoids with a 9-methyladeninium 
chromophore. The cytotoxicity of agelasine B (Fig. 15.8) and its mechanism have 
been extensively studied which are of great interest that its higher toxicity in cancer 
cells (IC50 = 3.22, 2.99, and 6.86 μM MCF-7, SKBr3, and PC-3 cells, respectively) 
than in normal cells (fibroblasts, IC50 = 32.91 μM) where agelasine B upregulated 
the intracellular concentration of Ca2+ and caused fast Ca2+ release via the endoplas-
mic reticulum (ER). This research indicated that sarcoplasmic-ER Ca2+-ATPase 
activity is inhibited by agelasine B. What’s more, intracellular Ca2+ accumulation in 
the mitochondria is tied to apoptosis. In addition, this marine sponge toxin induces 
DNA fragmentation and severely enhances caspase-8 activity in MCF-7 cells [331]. 
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Therefore, agelasine B is potential for treating breast cancer for less toxicity in nor-
mal breast cells.

PM060184 (Fig. 15.9) belongs to a new family of tubulin-binding agents origi-
nally isolated from the marine sponge Lithoplocamia lithistoides [332]. It was pub-
lished that PM060184 presents the highest known affinities among tubulin-binding 
agents and that it targets tubulin dimers at a new binding site. PM060184 has a 
potent antitumor activity in a panel of different tumor xenograft models. Moreover, 
PM060184 is able to overcome P-gp-mediated resistance in  vivo, an effect that 
could be related to its high binding affinity for tubulin. PM060184 is an inhibitor of 
tubulin polymerization that reduces microtubule dynamicity in cells by 59% [333]. 
PM060184 suppresses microtubule shortening and growing at a similar extent. This 
action affects cells in interphase and mitosis. In the first case, the compound induced 
a disorganization and fragmentation of the microtubule network and the inhibition 
of cell migration. In the second case, it induced the appearance of multipolar mitosis 
and lagging chromosomes at the metaphase plate. These effects correlated with a 
nonclassical apoptosis pathway, which caused prometaphase arrest and induction of 
caspase-dependent apoptosis or appearance of cells in a multinucleated interphase-
like state. Taken together, PM060184 represents a new tubulin-binding agent with 
promising potential as an anticancer agent [334].

Eribulin mesylate (E7389) (Fig. 15.10) is a microtubule dynamics inhibitor with 
antitumor activity, which is effective against not only a broad range of human cancer 
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cell lines but also human tumor xenograft models derived from melanoma, colon, 
breast, ovarian, and pancreatic cancer [336]. This non-taxane molecule is a structur-
ally simplified synthetic analogue of halichondrin B derived from the marine sponge 
Halichondria okadai [335]. Different from other tubulin-targeted agents like tax-
anes, epothilones, and vinca alkaloid, which affect both growth and shortening of 
microtubules, eribulin only affects growth by binding to the microtubules and sup-
pressing microtubule polymerization without affecting shortening, thereby seques-
tering tubulin into nonfunctional aggregates [336, 337]. The prohibited formation of 
mitotic spindles leads to G2/M cell cycle arrest and apoptosis as a result of pro-
longed mitotic blockage. Eribulin remains to be active in taxane-resistant cell lines 
with β-tubulin mutations and those which overexpress P-gp according to in vitro 
studies. It’s reported to be manageably safe in a 21-day-cycle administration, neu-
tropenia being the main dose limit among all toxicities, with an MTD of 1.4 mg/m2 
in phase I studies, but seems to be both effective and safe in several phase II studies. 
Therefore, it has been applied to patients with locally advanced or metastatic breast 
cancer previously treated with at least two chemotherapeutic regimens for advanced 
disease [335–337].

10-Acetylirciformonin B (Fig. 15.11) classified as furanoterpenoid which is iso-
lated from marine sponge Ircinia sp. can restrain the growth of leukemia HL-60 
cells, with an IC50 value of 1.7 μg/mL obtained at 48 h of treatment due to its 
unique structure of the linear C22-sesterterpenoid. What’s more, its anticancer 
activity was activated by inducting of DNA damage and apoptosis. To be detailed, 
DNA damage was mediated by the phosphorylation of histone H2AX, p-CHK2 
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(checkpoint kinase), sensitive markers of DNA double-strand breaks (DSBs), and 
apoptosis which was triggered by caspase-8, caspase-9, and caspase-3, resulting to 
PARP cleavage, the downregulation of Bcl-xL and the upregulation of Bax [338].

Hyrtioreticulins A and B (Fig. 15.12) belong to indole alkaloids derived from the 
marine sponge Hyrtios reticulatus. These alkaloids have inhibition of E1-ubiquitin 
intermediate formation from 0.75 to 11 μg/mL in IC50 values [339]. Moreover, the 
structures are approximately the same except for their stereochemistry at C-1, in 
which hyrtioreticulin A is trans-configured and hyrtioreticulin B is cis, respectively, 
demonstrating that the trans configuration reinforces inhibitory activity against E1, 
the ubiquitin-activating enzyme required for ubiquitination in the ubiquitin-
proteasome pathway involving in a large variety of cellular events such as cell cycle 
control, transcription, and development [340]. Deregulation of this pathway, there-
fore, can cause numerous diseases like cancer. Consequently, the ubiquitin pathway 
plays a significant role in anticancer drugs. In that context, hyrtioreticulins A and B 
catch more attention on the bioactivity on new anticancer therapeutics.

Peloruside A (Fig. 15.13) is a microtubule-stabilizing agent isolated from a New 
Zealand marine sponge [341]. Peloruside prevents growth of a panel of cancer cell 
lines at low nanomolar concentrations, including cell lines that are resistant to pacli-
taxel. Three xenograft studies in athymic nu/nu mice were performed to assess the 
efficacy of peloruside compared with standard anticancer agents such as paclitaxel, 
docetaxel, and doxorubicin. In the first study, peloruside A, 5 and 10 mg/kg (QD × 5) 
caused growth inhibition (%TGI of 84% and 95%, respectively), on the growth of 
H460 non-small cell lung cancer xenografts, whereas standard treatments with 
paclitaxel (8 mg/kg, QD × 5) and docetaxel (6.3 mg/kg, Q2D × 3) were much less 
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effective (%TGI of 50% and 18%, respectively). In a second xenograft study using 
A549 lung cancer cells and varied schedules of dosing, activity of peloruside was 
again superior compared with the taxanes with inhibitions ranging from 51% to 
74%, compared with 44% and 50% for the two taxanes [342]. A third xenograft 
study in a P-glycoprotein-overexpressing NCI/ADR-RES breast tumor model 
showed that peloruside was better tolerated than either doxorubicin or paclitaxel. 
Peloruside is highly effective in preventing the growth of lung and P-glycoprotein-
overexpressing breast tumors in vivo and that further therapeutic development is 
necessary [343].

E7974 (Fig.15.14) is a synthetic analogue of the marine sponge natural product 
hemiasterlin. Hemiasterlin, a potent cytotoxic tripeptide, was originally isolated 
from marine sponges [344]. E7974 acts via a tubulin-based antimitotic mechanism. 
E7974 inhibits polymerization of purified tubulin in vitro with IC50 values similar to 
those of vinblastine. In cultured human cancer cells, E7974 induces G2/M arrest and 
marked disruption of mitotic spindle formation. Consistent with this observation, 
E7974 induces caspase-3 activation and PARP cleavage, typical biochemical mark-
ers of apoptosis. Only a short cellular exposure to E7974 is sufficient to induce 
maximum mitotic arrest, suggesting that E7974’s antitumor effects in vivo may per-
sist even after blood levels of the drug decrease after drug administration. 
Investigation of interactions of E7974 with purified tubulin using two synthetic triti-
ated photoaffinity analogues of E7974 indicated that E7974 seems to share a unique, 
predominantly α-tubulin-targeted mechanism with other hemiasterlin-based com-
pounds, suggesting the hemiasterlins evolved to mainly target α-tubulin, not 
β-tubulin subunits unlike many tubulin-targeted natural products [345].

Phorbaketal A (Fig. 15.15) is a metabolite of the marine sponge Phorbas sp. [346]. 
This tricyclic sesterterpenoid has significant inhibitory effect on the production of 
nitric oxide (NO) and inflammatory cytokines such as tumor necrosis factor-alpha, 
interleukin (IL)-1beta, IL-6, and monocyte chemotactic protein-1 which is induced by 
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LPS and the expression of inducible NO synthase in RAW 264.7 cells. Additionaly, it 
inhibited the transcription of a crucial signaling molecule named nuclear factor-kap-
paB (NF-κB) in inflammation, whereas the expression of heme oxygenase-1 (HO-1) 
proved to be upregulated in LPS-stimulated RAW 264.7 cells [347].

Solomonsterol A (Fig. 15.16), a selective pregnane X receptor (PXR) agonist 
found in the marine sponge Theonella swinhoei, shows anti-inflammatory activity 
and immune dysfunction and attenuates systemic inflammation in the rheumatoid 
arthritis mouse model. It is reported that solomonsterol A had an effect on protect-
ing from the development of arthritis according to arthritis score, CRP, and plasma 
cytokines. In addition, anti-collagen antibodies (CAIA) could reduce the expression 
of inflammatory markers including TNFα, IFNγ, and IL-17 and chemokines MIP1α 
and RANTES in draining lymph nodes in the rheumatoid arthritis mouse model 
which are induced by injecting transgenic mice harboring a humanized PXR [348].

Epimuqubilin A (Fig. 15.17), a norsesterterpene peroxide isolated from marine 
sponge Latrunculia sp., inhibits nitric oxide production in LPS-stimulated RAW 
264.7 cells (IC(50) = 7.6 μM). At both the mRNA and protein levels, cyclooxygen-
ase-2 (COX-2) and inducible nitric oxide synthase (iNOS) are suppressed in a dose-
dependent manner. Mitogen-activated protein kinases (MAPKs), one major 
upstream signaling pathway involved in the transcription of both COX-2 and iNOS, 
were not affected by treatment of epimuqubilin A. However, the compound blocked 
the phosphorylation of inhibitor κB (IκB) kinase (IKKβ), resulting in the stabiliza-
tion of IκBα and inhibition of NF-κB p65 nuclear translocation and DNA binding. 
Levels of phosphorylated IKKα were not affected. This is an unique mechanistic 
relationship that suggests epimuqubilin A warrants further exploration as a potential 
therapeutic agent [349].

Ascididemin (ASC) is a marine alkaloid and belongs to the group of pyridoacri-
dine alkaloids, mostly being isolated from sponges and tunicates (Fig.  15.18). 
Ascididemin was isolated in 1988 from the tunicate Didemnum sp. and showed 
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remarkable in vitro cytotoxicity against a variety of cancer cells including multi-
drug resistant cells lines [350, 351]. Similar to other planar pyridoacridine deriva-
tives, ascididemin interacts with DNA and recognizes triplex and quadruplex 
structures especially G-quadruplexes. Different mechanisms of action for this alka-
loid have been proposed including topoisomerase I and II toxins. However, experi-
ments with cell lines resistant to these toxins indicated that topo I and II are not 
potential targets for ascididemin (ASC) in the cell but may be by reactive oxygen 
species (ROS) to cleave DNA. Own work contributes to its action on the apoptotic 
signaling in Jurkat leukemia cells. Interestingly, ACS induces a mitochondrial path-
way that requires the activation of caspase-2 upstream of mitochondria. Caspase-2 
activation was not blocked by the overexpression of Bcl-2 proteins such as Bcl-xL 
and was responsible for caspase-9 activation. As a possible link between caspase-2 
and mitochondrial activation, Bid was found to be cleaved by ASC as a specific 
caspase-2 inhibitor inhibits the ASC-induced cleavage of Bid [351]. In addition, 
JNK was activated by ASC upstream of mitochondria via reactive oxygen species. 
Caspase-2 activation provides a possible link between the DNA damaging activity 
and the induction of apoptosis. To this end, ASC might be a valuable chemical tool 
to induce DNA damage and apoptotic signaling events.

Variolin B (VAR-B) (Fig. 15.19) is a natural product isolated from the sponge 
Kirkpatrickia variolosa, found in Antarctica. VAR-B has been shown potent pro-
apoptotic activity. In different human cancer cell lines, both compounds inhibited 
colony formation, caused cell cycle arrest, and induced apoptosis at concentrations 
ranging from 0.1 to 2 μM. Although variolins induced an increase in the levels of 
p53 with an increase in p21, their cytotoxicities did not appear to be dependent on 
p53 status as their potency was comparable in cells with wild-type p53 or in sub-
lines with inactivated p53. Both VAR-B and dVAR-B prevent the cells from enter-
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ing S phase, blocking cells in G1 and cause an accumulation of cells in G2. The 
apoptosis induced by VAR-B and dVAR-B occurred very rapidly in some cell lines 
(e.g., Jurkat leukemia cells) and was already evident 4 h after the beginning of treat-
ment. Although intercalation of dVAR-B in DNA has been demonstrated, neither 
VAR-B nor dVAR-B produces detectable breaks in DNA, which are consistent with 
the in vitro biochemical assays that also demonstrated that dVAR-B is not topoi-
somerase I or II poison. Instead, each of these variolins appears to inhibit cyclin-
dependent kinases (CDKs) in the lM range. CDK1-cyclin B, CDK2-cyclin A, and 
CDK2/cyclin E complexes were inhibited in a range of concentrations lower than 
those required to inhibit the activity of CDK4/cyclin D or CDK7/cyclin H com-
plexes. Variolins are a new class of CDK inhibitors that activate apoptosis in a 
p53-independent fashion, and thus they may be effective against tumors with p53 
mutations or deletions [352].

Spongistatin is a macrocyclic lactone that has been isolated from the marine 
sponges Spirastrella spinispirulifera and Hyrtios sp. by the group of Pettit. 
Spongistatin 1 (Fig. 15.20) showed interesting apoptotic features in various tumor 
cells. In leukemic cell lines, it triggered caspase-dependent apoptosis through the 
release of cytochrome c, Smac/Diablo, and Omi/HtrA2 from the mitochondria into 
the cytosol. Spongistatin 1 caused degradation of the anti-apoptotic XIAP, which 
suggested it might be a promising drug for the treatment of chemoresistance due to 
overexpression of XIAP.  Moreover spongistatin 1 induces apoptosis more effi-
ciently in human primary leukemic cells of children suffering from acute leukemia 
at low nanomolar concentrations than clinically applied conventional drugs used in 
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micromolar concentrations. In addition normal healthy peripheral blood cells were 
significantly less affected by spongistatin 1 [353]. Besides leukemic cells, spon-
gistatin 1 showed promising apoptotic potential in mammary cancer cells including 
the treatment-resistant cell line MCF-7 lacking caspase-3. Regarding the apoptotic 
signaling pathways of spongistatin 1, two interesting features can be reported. First, 
spongistatin 1-induced cell death involves the pro-apoptotic proteins AIF and endo-
nuclease G. Both proteins translocate from mitochondria to the nucleus and contrib-
ute to spongistatin 1-mediated apoptosis as shown via gene silencing. Second, 
spongistatin 1 acts as a tubulin-depolymerizing agent and is able to free the 
pro-apoptotic Bcl-2 family member Bim from its sequestration both by the micro-
tubular complex and by the anti-apoptotic protein Mcl-1. Silencing of Bim by 
siRNA leads to a diminished translocation of AIF and endonuclease G to the nucleus 
and subsequently reduces rate of apoptosis. By using spongistatin 1 as a chemical 
tool, Bim has been suggested to be an important factor upstream of mitochondria by 
executing a central role in the caspase-independent apoptotic signaling pathway 
induced by spongistatin 1. These different apoptotic features indicate that the apop-
tosis signaling is cell line-specific. Finally, spongistatin 1 affects highly invasive 
pancreatic tumor cells by not only inhibiting their invasion and migration but also 
by inducing anoikis in these cells. Bcl-2 seems to be a major target for spongistatin 
1 in these processes. Besides tumor cells, spongistatin inhibits angiogenic activity 
of endothelial cells via inhibition of PKC-a [354].
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