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Casimir Forces: Fundamental Theory,
Computation, and Nanodevice
Applications

Fabrizio Pinto

Abstract Seventy years after submission to the Physical Review of the crucial
quantum electrodynamical treatment of interatomic dispersion forces by Casimir
and Polder, our understanding of such interactions in both the unretarded and
retarded regimes has undergone a dramatic and intricate evolution. In this con-
tribution, we explore the ultimate physical motivations leading to this fascinating
trajectory rich in momentous implications for the goal of both fabrication and oper-
ation of highly integrated micro- and nano-structures. The first and most obvious
development has been the growing appreciation that, far from only representing
a weak, though exotic, effect, Casimir’s “zero point pressure of electromagnetic
waves” between two conducting parallel planes is actually a dominant interaction
on the nanoscale. This resulted in Feynman’s unforgettable caricature – in “There’s
plenty of room at the bottom” – of van der Waals forces between microparts as a
“man with his hands full of molasses,” which led to such forces being understood as
the leading cause of undesirable stiction for several decades. However, commencing
in the 1980s, the realization that such strong dispersion interactions might offer
unique technological opportunities surfaced. The second thrust was connected to
the discovery that, unlike expected from London’s intermolecular force theory and
the naive assumption of additivity, dispersion forces depend quite unpredictably on
topology and on the interplay of dielectric properties of the interacting media. This
may lead to drastic departures from results obtained through perturbative methods
and indeed to the prediction, later verified both in the unretarded and retarded
regimes, that dispersion forces may become repulsive. The challenge of computing
Casimir forces in more general geometries different from that of two parallel
planes has led to substantial progress from the numerical standpoint although open
problems remain. Lastly, in one of the earliest and most significant discoveries in
the history of the field, it was shown that dispersion forces can be modulated in time,
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for instance by illumination in semiconductors. This discovery opened the way to
consideration of thermodynamical engine cycles enabled by Casimir forces and to a
novel, highly effective means for energy transfer on the nanoscale.

Keywords Casimir effect · Fields under the influence of external conditions ·
Computer algebra · History of science · Science pedagogy

8.1 Introduction

In his Treatise on Electricity and Magnetism, James Clerk Maxwell closes the
first section on “Description of Phenomena” (Ch. 1, Experiment I, Art. 27, last
paragraph) by the following two statements [1]: “No force, either of attraction or
of repulsion, can be observed between an electrified body and a body not electrified.
When, in any case, bodies not previously electrified are observed to be acted on
by an electrified body, it is because they have become electrified by induction”1

[italics in the original]. Although the former statement appears so trivial as to rarely
even be explicitly stated in elementary textbooks, its correct interpretation requires
extreme care.

In the following few pages of the Treatise (culminating with Art. 34), Maxwell
recounts the methodology followed by Faraday (see Ref. [4], p. 279) “in his very
admirable demonstration of the laws of electrical phenomena.” After summarizing
experiments conducted by means of a hollow vessel connected to a gold leaf
electrometer, he logically concludes that “the electrification of a body is therefore
a physical quantity capable of measurement” and “we are therefore entitled to
speak of any electrified body as ‘charged with a certain quantity of positive or
negative electricity’.” Finally, the law determining the force between electrified
“bodies of dimensions small compared with the distance between them” is given as
established by means of the torsion balance devised by Mitchell, used by Cavendish
and “successfully applied”(Art. 38) by Coulomb. That is the relationship referred
to today as Coulomb’s law for the electrostatic force, FCoul, between two point-like
charges, q1,2, at a mutual distance r12, that is, FCoul = q1q2 r̂12/r2

12, in appropriate
units. In light of this reasoning, Maxwell’s cornerstone statement that “No force,
either of attraction or of repulsion, can be observed between an electrified body and
a body not electrified” appears irrefutable since, mathematically speaking, the force
between any two point-like charges vanishes if the charge of either is zero, that is,
if either body is electrically neutral (if qi = 0, with i = 1 or 2, then FCoul = 0).

1Notice that ‘induction’ here describes what we presently refer to as polarization (Ref. [2],
p. 164). This quotation is from the 2nd edition (1881) of the Treatise. However, the entire last
paragraph of Art. 27 is identical in both the 1st (1873) and 3rd editions (1892). Both statements
closely paraphrase, with somewhat more familiar language, equivalent principles stated by William
Thomson (Baron Kelvin) in his On the Mathematical Theory of Electricity in Equilibrium, indeed
cited by Maxwell (see the Reprint of Papers on Electrostatics and Magnetism, p. 43, Art. 59) [3].
Also, ‘electricity,’ and related terms, are used where the modern term of charge is meant.
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This might be sufficient, at least classically, if physical reality presented us only
with two point-like particles. However, as Maxwell explains (Art. 28, Experiment
II), charge distribution in extended objects is affected by external charges. If one
finite body is neutral, existing charges within it will be redistributed either by
moving freely on its surface (in the case of conductors), or by locally producing
dipoles (in the case of insulators). Since the size of the objects involved does
not vanish with respect to their mutual distances, this will produce a net force
even if a body was “not previously electrified,” as Maxwell indicates in his latter
statement (Art. 27). These electrostatic forces due to polarization are well known
even to primary and secondary school pupils, who are explained the reason they
can pick up (electrically neutral) pieces of paper by rubbing a comb through their
hair [5, 6]. However, such phenomena occur even on the sub-atomic scale and
indeed recent computations have shown that the neutron-proton2 (and neutron-
neutron) electrodynamical Casimir-Polder interactions are expected to be “quite
relevant” [9]. Despite the existence of electrostatic forces even between one charged
and one neutral object, an apparently inescapable reading of Maxwell’s latter
statement is that, if two bodies separated by empty space are both electrically
neutral, and if an independent means to produce polarization is absent, they should
not interact with each other, that is, no electrical force should exist between them.

The present contribution is motivated by the fact that, in conflict with such an
apparently straightforward conclusion, forces among neutral objects have been well
known to exist for millennia from direct observation of the physical world and they
have also played an early, vital role within atomistic philosophy, which obviously
depends on interatomic forces in order to explain the universe as humans experience
it [10]. During the emergence of modern science, the cohesion of polished marbles
was reported by Boyle, [11] who conducted fascinating experiments by means of the
vacuum pump he had invented [12, 13], and by Newton [14]. In 1840, as polishing
technology developed, strong adhesion was reported by Whitworth also in the case
of metal surfaces [15], and this phenomenon was further investigated by Tyndall,
who ruled out atmospheric pressure as the cause of attraction [16]. The strong
interaction of highly polished metal surfaces eventually led to the invention of the
so-called Johansson gauge blocks, which are mentioned by Richard Feynman as a
“fairly direct” demonstration of intermolecular forces (Ref. [17], p. 12–6) and are
possibly the earliest technology enabled by engineering dispersion forces (for a full
account and significance of these developments, see Ref. [18]). It is important to
stress, therefore, that Casimir’s discovery [19] was not, as often erroneously stated,
that neutral metal plates attract but that there exists a deep physical meaning of that
already well known fact [20].

2Therefore the statement that “neutrons have no charge and are neither attracted nor repelled
by charged particles” (Ref. [6], p. 501) is obviously incorrect as neutrons, as all nucleons, are
polarizable [7] (see the “Naïve picture” in Sect. 8.2.1 therein) and thus they can be “acted on by an
electrified body.” The erroneous statement does not appear in later editions [8].
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Here we shall briefly touch on four different facets of this explosively expanding
research field. Firstly, from the pedagogical standpoint, we intend to provide a
relatively gentle introduction to the standard foundations of dispersion force theory.
However, in order to provide motivated readers with powerful tools needed to
reproduce results from the research literature, we shall pursue a computer algebra
approach. The package adopted herein is Mathematica (v. 9.0.1.0), without any
pretense whatsoever of programming expertise on the side of the author and indeed
used with a fair amount of wilful unsophistication – and no guarantees – so as to
leave ample room for improvement.

Secondly, we shall emphasize several aspects of the Casimir effect that are
amenable to classical or semi-classical treatments. One goal of this approach is to
remind readers that, unlike routinely claimed, the Casimir effect does not provide
direct proof of field quantization such as is given by single photon detection. This
may dissatisfy some purists, who repeat3 that, for instance, since the Casimir
force is proportional to Planck’s constant, �, its existence must necessarily be
proof that the electromagnetic field is quantized. Such conclusion is well known
to be demonstrably incorrect (for this debate, see Sect. 8.4 herein, Ref. [18] and
Ref. [22], Sect. 8.3). The interpretation of the Casimir force in terms of radiation
pressure is derived from Casimir’s own original suggestion, in his foundational
paper, that “This force may be interpreted as a zero point pressure of electromagnetic
waves” [19]. The epistemological and ontological debates as to whether a zero-
point field is compatible with classical electrodynamics are also briefly discussed
below (Sect. 8.4, and References herein). A second goal of this approach, again
pedagogically, is to contribute a working mental image of the physical origin of
dispersion forces for use by educators as they help students at all levels develop their
intuition for a concept that, as clearly shown by intense recent focus by physics and
chemistry education researchers, is notoriously complex to grasp [23–25].

The third aspect, mainly left to Suggested Exercises, is concerned with applica-
tion of dispersion forces to fundamental science and to technology on various scales
including, of course, in nanotechnology, with an emphasis on processes leading to
energy exchange by dispersion force manipulation.

Finally, as our fourth perspective, throughout this presentation we shall endeavor
to provide insight into and further references regarding some historical develop-
ments surrounding the field, which is well known to be mired in multiple, hotly
debated controversies.

It will become quickly apparent that dispersion force research has undergone a
tremendous expansion in the last few decades. This is clearly neither the place for
a technical review of the subject nor, indeed, of a review of the several reviews
now available. Readers interested in becoming familiar with such reviews and
the many subfields now developing may refer, for instance, to a past analysis

3The fact that “repetition of a plausible statement increases a person’s belief in the referential
validity or truth of that statement,” popularly referred to as the ‘truth effect,’ was demonstrated
decades ago by means of psychology experimentation [21].
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by this author written within a space propulsion technology context [26]. Two
reviews by the present author are also to appear, again considering the aerospace
marketplace, especially focused on historical and future developments in the process
of technology transfer of dispersion force enabled technologies – including the
effect of controversies on their economic and industrial implications – with several
hundred relevant references [18]. A non-mathematical introduction aimed at the
level of a well-educated audience is also available [27].

8.2 Intermolecular Forces: Fundamental Results

In this section, we proceed by building a chain of arguments leading to an
intuitive understanding of the physical forces between molecules as well as between
macroscopic boundaries. Notice that here we follow a typesetting style similar
to that used by Dubin [28], with input information (Mathematica [In] prompt)
given within the LATEX \verbatim environment whereas the output (Mathematica
[Out] prompt) is reproduced by exporting the Mathematica result to LATEX and
displaying it within the {equation} environment. In some cases, typographical
need mandated departures from such work flow without altering any results and
notice also that the appearance of some characters may be different in this document
than within the notebook (i.e. \[Omega]→ ω).

8.2.1 London Expression of the van der Waals Force

Let us commence with a standard non-relativistic treatment [29, 30] of the unre-
tarded interaction of two polarizable one-electron atoms4 as originally given by
London [32] with the further restriction to one-dimension (1D) [33, 34]. Consider
two atoms arranged along, for instance, the x-axis at a mutual distance R with
their electrons at a distance z1 and z2 from their respective nuclei. The atomic
electrostatic interaction potential, Vint, expanded to 1st order in (z1, z2), is:

Clear["Global‘*"];

Vint[z1_, z2_, R_] =
e^2 ((1/R) + (1/(R + z2 - z1)) - (1/(R - z1)) - (1/(R + z2)))
VintExpanded[z1_, z2_, R_] =
Normal[Series[Vint[z1, z2, R], {z1, 0, 1}, {z2, 0, 1}]]

− 2e2z1 z2

R3 (8.1)

4This calculation was first attempted by S. C. Wang in 1927 [31].
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so that the total electrostatic potential to the same order, Vtot, becomes:

VtotExpanded[z1_, z2_, R_]
= (1/2) kz1^2 + (1/2) kz2^2 + VintExpanded[z1, z2, R]

− 2e2 z1 z2

R3 + k (z1)2

2
+ k (z2)2

2
(8.2)

This result allows us to extract the secular (or characteristic) equation [35, 36] as
follows:

Az1z2 = {{2 SeriesCoefficient[VtotExpanded[z1, z2, R],
{z1, 0, 2}],
SeriesCoefficient[VtotExpanded[z1, z2, R],
{z1 z2, 0, 1}]},

{ SeriesCoefficient[VtotExpanded[z1, z2, R],
{z1 z2, 0, 1}],

2 SeriesCoefficient[VtotExpanded[z1, z2, R],
{z2, 0, 2}]}};

Az1z2 // MatrixForm
SecularEquation[z1_, z2_, R_] = -\[Omega]^2 m IdentityMatrix[2]

+ Az1z2 ;
SecularEquation[z1, z2, R] // MatrixForm

⎛
⎜⎝

k − mω2 −2e2

R3

−2e2

R3 k − mω2

⎞
⎟⎠ (8.3)

The (positive) normal mode frequencies, (ω1, ω2), are found from the determinant
of the secular equation:

\[Omega]1[z1_, z2_, R_] =
Solve[Det[SecularEquation[z1, z2, R]] ==0,\[Omega]][[2, 1, 2]]
\[Omega]2[z1_, z2_, R_] =
Solve[Det[SecularEquation[z1, z2, R]] ==0,\[Omega]][[4, 1, 2]]

√
kR3 − 2e2
√

mR3/2
(8.4)

√
2e2 + kR3
√

mR3/2
(8.5)

In order to extract the standard expression, it is necessary expand this result to 2nd
order in the dimensionless parameter β ≡ e2/(k R3) near β = 0 (the expansions to
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1st order cancel each other out). For instance, for the first frequency, ω1, we find,
upon remultiplying by the natural (unperturbed) frequency ω0 = √

k/m:

\[Omega]1exp[z1_, z2_, R_] = Expand[(k/m)^(1/2) (Normal[
Series[Sqrt[Apart[((\[Omega]1[z1, z2, R])^2/(k/m))]
/. (e^2/(k R^3)) -> \[Beta]], {\[Beta], 0, 2}]]
/. \[Beta] -> (e^2/(k R^3)))]

+
√

k

m
−

e2

√
k

m

kR3 −
e4

√
k

m

2k2R6 (8.6)

and analogously for ω2, which yields a positive sign in the second term. Finally,
by writing to the total energy for the two oscillators in their ground states and by
introducing the classical static polarizability, α = e2/k, we find, for the unretarded
van der Waals interaction energy, VvdW:

Eosc[z1_, z2_, R_] =
Expand[(1/
2) \[HBar] (\[Omega]1exp[z1, z2, R] + \[Omega]2exp[z1, z2,

R])] /. Sqrt[k/m] -> \[Omega]0 ;

DeltaE[z1_, z2_, R_] =
Eosc[z1, z2, R] - \[HBar] \[Omega]0 /. e^4/k^2 -> \[Alpha]^2

− α2 ω0 �

2 R6 (8.7)

Orientational averaging in the case of three dimensions replaces our numerical
constant 1

2 by 3
4 , which is the result by London [32].

8.2.1.1 Suggested Exercise 1

By building upon the above syntax (or by developing your own), generalize the
above approach to three atoms. This case is treated in a pedagogical manner by
Farina, Santos, and Tort [37] who, in the process, recover a very important result by
Axilrod and Teller [38]. Show that, for some particular configurations of the three
atoms, the mutual force is repulsive. This result, obtained before Casimir’s papers
and several years earlier than the development of the Lifshitz theory, demonstrated
that unretarded, van der Waals forces are not always attractive – a finding with
important technological applications [18].
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8.2.2 Van der Waals Forces Between Half-Infinite Semispaces

In the assumption of pair-wise additivity, we shall now consider the van der Waals
force between two parallel-plane, semi-infinite slabs separated by an empty gap of
width s, as done by de Boer [39, 40]. The standard approach consists of choosing,
for instance, the (x, y)-plane parallel to the two facing surfaces and of proceeding
by multiple integrations. For generality and later use, we shall assume that an
interatomic potential of the form:

U[x_, y_, z_] = -B/(x^2 + y^2 + z^2)^(\[Gamma]/2)

With this definition, and by identifying s → R, the potential of Eq. (8.7),
corresponds to γ = 6. Let us first consider one single atom at a distance s from
one semi-infinite slab of atom number density N1. A triple integration over the
entire (x, y)-plane and for z ∈ [s,+∞) yields the atom-slab potential, V (s), as:

V[s_] = N1 Integrate[
Integrate[
U[x, y, z], {x, -\[Infinity], +\[Infinity]}, {y, -\[Infinity],

+\[Infinity]}, Assumptions -> Re[\[Gamma]] > 2 &&
Re[z^2] > 0], {z,s, +\[Infinity]},

Assumptions -> Re[\[Gamma]] > 3 && Re[s] > 0 && Im[s] == 0]

Notice that Mathematica must be told specific information about all quantities
involved although this may be obvious from our specific physical application. One
further integration over all atoms in the second slab, assumed to have atom number
density N2, yields the slab-slab potential, and, finally, the van der Waals force is the
opposite of the derivative with respect to the gap width:

U[s_] = N2 Integrate[V[s + r], {r, 0, +\[Infinity]},
Assumptions -> Re[\[Gamma]] > 4 && Re[s] > 0];

u[s_] = U[s] (Denominator[U[s]])/Factor[Denominator[U[s]]]

Fplaneplane[s_] = -D[u[s], s]

− 2πB N1 N2 s4−γ

(γ − 4)(γ − 3)(γ − 2)
(8.8)

2πB (4 − γ ) N1 N2 s3−γ

(γ − 4)(γ − 3)(γ − 2)
(8.9)

By defining the de Boer-Hamaker constant, AdBH, and by reading out the values
of γ and B from the London potential found in Sect. 8.2.2, we find the standard
expression due to de Boer [39, 40]:

FvdW[s_] = (Fplaneplane[s] /. {\[Gamma] -> 6,
B -> 3 \[HBar] \[Omega]0 \[Alpha]^2 /
4})/(N1 N2 3 \[Pi]^2 \[Alpha]^2 \[HBar] \[Omega]0/4) AdBH
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− AdBH

6πs3 (8.10)

8.2.2.1 Suggested Exercise 2

(a) Extend the previous approach to the case of two macroscopic homogeneous
spherical particle distributions of equal radius R and prove that the particle-
particle analytical solution can be cast in a form proportional to the result given
by Hamaker [41]:

f[x_] = (2/(x^2 - 4) ) + (2/x^2) + Log[((x^2 - 4)/x^2)];

(b) Demonstrate that, in the limit of distances s � R, this solution converges
back to the London potential. Find the next non-vanishing term in the series
expansion.

(c) Demonstrate that, in the limit for x → 2, the solution converges back to the
plate-plate result by de Boer given above. Find the next non-vanishing term in
the series expansion.

(d) Create a plot showing your analytical solution at (a) compared to the two limits
in (b) and (c). It may be helpful to create two plots, one for near range and
one for far range. Due to the power-law nature of these interactions, the natural
choice are log-log diagrams of the absolute value of the force.

8.2.3 The Casimir Effect

Although the first to prove that radiation pressure considerations lead to the correct
expression for the Casimir force was González [42], below we adapt to the 1D
case the full three dimensional (3D) mathematical treatment of Casimir’s suggestion
given by Milonni, Cook, and Goggin [30, 43] (note that the statement attributed to
Debye by these authors in their Ref. 3 is actually due to Casimir; see footnote on
p. 7 of Ref. [22]).

In the radiation pressure interpretation of the Casimir effect, the Casimir force is
deemed to arise from the competing outward and inward radiation pressures acting
on two parallel, ideal reflectors facing each other across a gap of width s. We recall
that the expression for the classical radiation pressure [44] due to light incident
at angle θ from the normal is, for a perfect reflector, Prad = 2u cos2 θ , where u

is the radiation energy density, and the factor 2 corresponds to perfect reflection.
Assuming that the energy per mode is 1

2�ω, and noticing that only 1
2 of such energy

contributes to radiation pressure in either direction, the radiation pressure becomes:

Prad = 2

(
1

2

) (
�ω

2

) (
1

V

) (
kz

k

)2

, (8.11)
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where V is a quantization volume, k is the wave vector k = ω/c, kz is the normal
component of the wave vector, and c is the speed of light.

8.2.3.1 The One-Dimensional (1D) Casimir Effect

In this 1D treatment, [45] however, radiation is assumed only to be incident at θ = 0
so that no angular integrations are necessary and kz ≡ k. The quantization volume
can be expressed as the product of a generic square plate area of side b multiplied by
the gap width, so that V = b2s. The boundary conditions corresponding to a perfect
reflector require that the only modes present within the gap be those for which k =
nπ/s, where n is an integer. In this 1D case, the replacement of sums by integrals
is not apparent but we must still include a dimensional factor, b2, which cancels the
same term in the quantization volume (see Ref. [30], Secs. 2.7 and 3.10). Therefore,
by considering contributions from two independent polarizations, we find:

Pout = π�c

s2

+∞∑
0

n (8.12)

As for the inward pressure, the standard replacement
∑

n(. . . ) → (s/π)
∫
(. . . ) in

Eq. (8.11) yields:

Pin = −π�c

s2

∫ +∞

0
x dx . (8.13)

Therefore the Casimir pressure, PCas, becomes:

PCas = π�c

s2

(+∞∑
0

n −
∫ +∞

0
x dx

)
(8.14)

As is typical in computations of this type [46], extracting physical content requires
the evaluation of the difference of two formally infinite quantities [47]. One such
method is use of the Euler-Maclaurin formula, [48, 49] which we write as:

�N
0 =

N∑
0

n−
∫ N

0
x dx= 1

2 [f (N)+f (0)] +
M(K)∑
m=1

B2m

(2m)!
[
f 2m−1(N)−f 2m−1(0)

]
,

(8.15)
where M(K) = K/2 is K is even and to (K − 1)/2 is K is odd. In order to obtain a
finite result, we follow Casimir and multiply the integrand and summand functions
by an exponential function to introduce a cutoff so that the argument in the sum and
integral becomes:

fcas[x_, \[Lambda]_] = x Exp[-\[Lambda] x]
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where λ is the cutoff parameter to be considered in the limit λ → 0+ and, in our
application, N → +∞. In order to proceed with applying the Euler-Maclaurin
summation formula, we evaluate the following quantity (m = 1), which is the only
one contributing to the final result in the cutoff limit as can be verified directly:

Limit[D[fcas[x, \[Lambda]], {x, 1} ], x -> 0,
Assumptions -> Im[\[Lambda]] == 0 && Re[\[Lambda]] > 0]

1 (8.16)

Hence the final result is:

PCas1D[s_] = -(BernoulliB[2]/(2!)) Pi \[HBar] c/s^2

− πc�

12s2 (8.17)

which is the result given by Kupiszewska and Mostowski [45]. Notice that the result
given by Bordag, Mohideen, and Mostepanenko [50] for this case refers to the
potential energy and pressure per polarization hence accounting for the difference
by a factor of 2 (see footnote (3) on p. 74 of Ellingsen’s thesis [51]).

8.2.3.2 Suggested Exercise 3

Both the above sum and integral can be calculated analytically for the chosen
analytical cutoff function and with N → +∞. Find such functions, study their
difference as a function of λ and take the limit for λ → 0+ noticing whether any
numerical instabilities arise in the numerical limit. Repeat this study considering the
difference between the sum and the integral for finite N with N � 1.

8.2.3.3 Suggested Exercise 4

In the case of one infinitely conducting and one infinitely magnetically permeable
plate [52, 53], the boundary conditions change and the allowed modes within the
gap are defined by k = (n + 1

2 )π/s. Apply the above approach to this case and
discuss your conclusions.

8.2.3.4 Suggested Exercise 5

Generalize the approach of this Section to the full 3D case and recover the result
found by Casimir.
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8.2.4 Electrodynamical Casimir-Lifshitz Force

Here we present a derivation of the important result by Lifshitz [54] for the
force between two semi-infinite, parallel-plane slabs without any assumption of
additivity and including retardation. This calculation has been given many times by
different authors but, in order to provide users with the mathematical tools to extend
the validity of this treatment further, here we present a Mathematica formulation
inspired by the matrix approach of Podgornik, Hansen, and Parsegian [55]. Unlike
done originally by Lifshitz, this will enable one to later very efficiently consider
the algebraically far more complex cases of slabs of finite thickness, multilayers,
and even anisotropic materials [56–62]. In order to limit complications, we shall
restrict ourselves to the vanishing absolute temperature limit (T = 0 K). Extension
to the case of finite temperatures is standard, once the correct dielectric function is
adopted, and it is treated in the References.

The most general geometry of the system is therefore that of two multilayer
stacks described by layers of dielectric and magnetic permeability (εi , μi) constant
within each layer separated by a gap of width s and with a semi-infinite space
bounding the system to each side of the multilayers opposite to the gap. Upon
choosing the (x, y) plane as parallel to the multilayer surfaces and the z-axis as
perpendicular to those surfaces and oriented to the right, the Maxwell equations
provide the general solutions for the bound state fields, which are assumed to
exponentially decay for z → ±∞. With this geometry, the solutions for the
harmonic components of the electric field within the i-th layer can be written as
(we shall assume non-magnetic media, or μi = 1) [30, 50]:

Ei(r) =
[
ex,i(z) î + ey,i(z) ĵ + ez,i(z) k̂

]
ei(kxx+kyy) , (8.18)

where

d2ez,i

dz2
− Kiez,i + 0 , (8.19)

and analogously for ex,i and ey,i , so that the general solution is:

ez,i(z) = Aie
Kiz + Bie

−Kiz (8.20)

where

K2
i = k2‖ − εi

ω2

c2 (8.21)

with k2‖ = k2
x + k2

y and ω a real quantity (clearly i = √−1 must not be confused
either with the layer number index or with the x-axis versor); also notice that various
layer numbering conventions exist in the literature and here we shall number all
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layers in the left multistack by negative integers increasing in magnitude towards
the left and by positive integers to the right, that is, i = · · · − 2,−1 · · · + 1,+2 . . .

Also, from Eq. (8.20), the field to the left (right) of the leftmost (rightmost) boundary
must vanish, that is, BLL = 0 and ARR = 0:

ez,LL(z) = ALLeKLL z (8.22)

ez,RR(z) = BRRe−KRR z (8.23)

8.2.4.1 Boundary Transition Matrix: Electrical Field Continuity

We can now write the electric field in two adjacent layers, generically referred as as
left (L) and right (R):

ezL[kparal_, \[Omega]_, z_] =
AL Exp[KL[kparal, \[Omega]] z] + BL Exp[-KL[kparal,
\[Omega]] z] ;

ezR[kparal_, \[Omega]_, z_] =
AR Exp[KR[kparal, \[Omega]] z] + BR Exp[-KR[kparal,
\[Omega]] z] ;

with obvious definitions, such as KL,R = Ki−1,i > 0 and similarly for εL,R , and
kparal← k‖. Let us now apply the continuity condition to the normal component
of the D field, which is guaranteed by imposing the continuity of εez and dez/dz at
the boundary.

(
AR

BR

)
=

(DE11 DE12

DE21 DE22

) (
AL

BL

)
= DE

LR

(
AL

BL

)
(8.24)

Requesting such continuity yields the coefficients on the right (R) of the left-most
boundary, assumed conveniently placed at z = 0, in terms of the coefficients on the
left (L), or in matrix form:

Solve[ \[Epsilon]L[\[Omega]] ezL[kparal, \[Omega], z] ==
\[Epsilon]R[\[Omega]] ezR[kparal, \[Omega], z] &&
D[ezL[kparal, \[Omega], z], z] == D[ezR[kparal,
\[Omega], z], z] ,
{AR, BR}][[1]] /. z -> 0

With these solutions, it is possible to build the boundary transition matrix, DE
LR ,

which yields the (AR , BR) coefficients on the right of the boundary by extracting
the coefficients of the (AL, BL) constants, and we finally find:

\[ScriptCapitalD]E11[kparal_, \[Omega]_] =
Expand[Coefficient[
Solve[ \[Epsilon]L[\[Omega]] ezL[kparal, \[Omega],

z] == \[Epsilon]R[\[Omega]] ezR[kparal,
\[Omega], z] &&
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D[ezL[kparal, \[Omega], z], z] ==
D[ezR[kparal, \[Omega], z], z] , {AR, BR}][[1, 1, 2]] /.

z -> 0 , AL]];

\[ScriptCapitalD]E12[kparal_, \[Omega]_] =
Expand[Coefficient[
Solve[ \[Epsilon]L [\[Omega]] ezL[kparal, \[Omega],

z] == \[Epsilon]R[\[Omega]] ezR[kparal,
\[Omega], z] &&

D[ezL[kparal, \[Omega], z], z] ==
D[ezR[kparal, \[Omega], z], z] , {AR, BR}][[1, 1, 2]] /.

z -> 0 , BL]];

\[ScriptCapitalD]E21[kparal_, \[Omega]_] =
Expand[Coefficient[
Solve[ \[Epsilon]L [\[Omega]] ezL[kparal, \[Omega],

z] == \[Epsilon]R[\[Omega]] ezR[kparal,
\[Omega], z] &&

D[ezL[kparal, \[Omega], z], z] ==
D[ezR[kparal, \[Omega], z], z] , {AR, BR}][[1, 2, 2]] /.

z -> 0 , AL]];

\[ScriptCapitalD]E22[kparal_, \[Omega]_] =
Expand[Coefficient[
Solve[ \[Epsilon]L[\[Omega]] ezL[kparal, \[Omega],

z] == \[Epsilon]R[\[Omega]] ezR[kparal,
\[Omega], z] &&

D[ezL[kparal, \[Omega], z], z] ==
D[ezR[kparal, \[Omega], z], z] , {AR, BR}][[1, 2, 2]] /.

z -> 0 , BL]];

\[ScriptCapitalD]ELR [
kparal_, \[Omega]_] = {{\[ScriptCapitalD]E11[
kparal, \[Omega]], \[ScriptCapitalD]E12[
kparal, \[Omega]]}, {\[ScriptCapitalD]E21[
kparal, \[Omega]], \[ScriptCapitalD]E22[
kparal, \[Omega]]}}; MatrixForm[\[ScriptCapitalD]ELR [

kparal, \[Omega]]]

(
KL(kparal,ω)

2KR(kparal,ω)
+ εL(ω)

2εR(ω)
εL(ω)

2εR(ω)
− KL(kparal,ω)

2KR(kparal,ω)
εL(ω)

2εR(ω)
− KL(kparal,ω)

2KR(kparal,ω)
KL(kparal,ω)

2KR(kparal,ω)
+ εL(ω)

2εR(ω)

)
(8.25)

8.2.4.2 Translation Matrix

The next transformation matrix needed is a translation within a homogeneous (H)
medium by a length equal to the thickness T of the generic layer so as to shift the
next discontinuity placed at a generic location to the right to the origin z = 0:
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(
Az+T

Bz+T

)
=

(
�11 �12

�21 �22

)(
Az

Bz

)
=

(
�11 0

0 �22

) (
Az

Bz

)
= �z,z+T

(
Az

Bz

)

(8.26)
Let us consider the solutions within such a homogeneous medium at generic

coordinates z and at z + T :

ezH[kparal_, \[Omega]_, z_] =
AH Exp[KH [kparal, \[Omega]] z] + BH Exp[-KH[kparal,
\[Omega]] z] ezH[kparal, \[Omega], z + T]

where KH is equal to Ki within the layer. Therefore the translation matrix, which
yields the solution at z + T in terms of that at z, is, straightforwardly:

\[CapitalPi]11[kparal_, \[Omega]_, T_] =
Simplify[Coefficient[ezH[kparal, \[Omega], z + T], AH]/
Exp[KH [kparal, \[Omega]] z]] ;

\[CapitalPi]12[kparal_, \[Omega]_, T_] = 0. ;
\[CapitalPi]21[kparal_, \[Omega]_, T_] = 0. ;
\[CapitalPi]22[kparal_, \[Omega]_, T_] =
Simplify[Coefficient[ezH[kparal, \[Omega], z + T], BH]/
Exp[-KH [kparal, \[Omega]] z]] ;

\[CapitalPi][kparal_, \[Omega]_,
T_] = {{\[CapitalPi]11[kparal, \[Omega], T], \[CapitalPi]12[
kparal, \[Omega], T]}, {\[CapitalPi]21[kparal, \[Omega],
T], \[CapitalPi]22[kparal, \[Omega],
T]}}; MatrixForm[\[CapitalPi][kparal, \[Omega], T]]

(
eT KH(kparal,ω) 0.

0. e−T KH(kparal,ω)

)
(8.27)

8.2.4.3 Modes Due to Electric Field Continuity

In the archetypal case of two semi-infinite slabs, described by dielectric functions
ε−1 and ε+1, separated by a gap of medium εGap, moving from left to right, the
zones to consider are fewer than in the full case of stacks of finite thickness (we
do not use the “0” subscript, as in ε0, to avoid confusion with the SI symbol for
the vacuum permittivity). Let us consider the modes associated with electric field
continuity. The first boundary discontinuity is located at z = 0, between the left
slab and the gap medium (assumed by Lifshitz to be the vacuum), described as:

(
A0

B0

)
= DE−1,0

(
A−1

B−1

)
(8.28)

That is:

\[ScriptCapitalD]ELR1 [
kparal_, \[Omega]_] = {{\[ScriptCapitalD]E11[

kparal, \[Omega]], \[ScriptCapitalD]E12[
kparal, \[Omega]]}, {\[ScriptCapitalD]E21[
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kparal, \[Omega]], \[ScriptCapitalD]E22[
kparal, \[Omega]]}} /. {\[Epsilon]L[\[Omega]] ->
\[Epsilon]m1 [\

\[Omega]], \[Epsilon]R[\[Omega]] -> \[Epsilon]Gap[\[Omega]],
KL[kparal, \[Omega]] -> Km1[kparal, \[Omega]],
KR[kparal, \[Omega]] ->
KGap[kparal, \[Omega]]} ; MatrixForm[\[ScriptCapitalD]ELR1 [
kparal, \[Omega]]]

This is followed by translation through the gap assumed to be of width T → s,
that is:

(
As+0

Bs+0

)
= �0,s+0

(
A0

B0

)
= �0,s+0 De

−1,0

(
A−1

B−1

)
(8.29)

and, finally, upon transforming over the boundary to the right of the gap, the overall
transfer matrix is:

ME−1,+1 = DE
0,+1 �0,0+s DE−1,0 (8.30)

The conditions of field decay away from the gap demand that the (1,1) element
of this result must vanish [58]. For reasons of space here we omit obvious steps
and do not reproduce the unwieldy elements of the total matrix product. Standard
manipulations by Mathematica to bring this condition into a familiar form (also
omitted for brevity), yield the condition (see Ref. [30], Eq. (7.27)):

(εGapK−1 + ε−1KGap)(εGapK+1 + ε+1KGap)

(εGapK−1 − ε−1KGap)(εGapK+1 − ε+1KGap)
e2KGaps − 1 = 0 . (8.31)

The modes associated with magnetic field continuity are found in a completely
analogous fashion, leading to (see Ref. [30], Eq. (7.28)):

(K−1 + KGap)(K+1 + KGap)

(K−1 − KGap)(K+1 − KGap)
e2KGaps − 1 = 0 . (8.32)

8.2.4.4 Lifshitz Expression

A reasoning in the complex plane, also due to Lifshitz, leads to consideration of an
integrand for the dispersion force between two semi-infinite slabs separated by an
empty gap (εGap = 1) as a double integral. A few standard changes of variable, also
possible to implement within Mathematica, finally lead to the familiar expression
for the Lifshitz pressure:
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FLif(s) = − �

2π2c3

∫ +∞

1
dp p2

∫ +∞

0
dωI ω3

I

×
([

(s−1 + ε−1p)(s+1 + ε+1p)

(s−1 − ε−1p)(s+1 − ε+1p)
e2ωI ps/c − 1

]−1

+
[
(s−1 + p)(s+1 + p)

(s−1 − p)(s+1 − p)
e2ωI ps/c − 1

]−1
)

(8.33)

where ωI is the imaginary part of the complex frequency, ωC = ωR + iωI , the
following variables were introduced:

s±1 = +
√

p2 − 1 + ε±1 , (8.34)

and, on causality considerations, the dielectric function ε±1(ωI ) is always real.

8.2.4.5 Suggested Exercise 6

Carry out the Mathematica manipulations leading to the results given above at
Eqs. (8.31) and (8.32).

8.2.4.6 Suggested Exercise 7

Extend the above treatment to that of two possibly unequal slabs of finite thick-
nesses, aL and aR (compare your results to those in Ref. [50], Sec. 4.1.1.). Show that
you can recover the above results in the limit of infinite thicknesses, aL, aR → +∞.
What happens if the thickness of both slabs vanishes?

8.2.4.7 Suggested Exercise 8

Consider two bi-layers interacting across a gap. Show that you can recover the
standard Lifshitz expression if the thickness of one layer vanishes while the other
one diverges in each bi-layer.

8.2.4.8 Suggested Exercise 9

Recover the Casimir pressure expression by taking appropriate analytical limits
(ε±1 →= ∞ ) in the integrand at Eq. (8.33) and by using Mathematica to compute
the integral. Show that:

FCas(s) = − �cπ2

240 s4 . (8.35)
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8.2.4.9 Suggested Exercise 10

(a) Investigate the dependence of our results for the Lifshitz pressure and the
unretarded Hamaker constant on the numerical values of the constants in the
analytical expression of the dielectric function.

(b) How would you manipulate the dielectric function?
(c) By building upon the early treatment by Arnold, Hunklinger, and Dransfeld

[63], and the more modern approach by Chen, Klimchitskaya, Mostepanenko,
and Mohideen [64], formulate a model of illumination-dependent dielectric
function (some possibly useful information is provided in Exercise 11).

(d) Calculate the Lifshitz pressure as a function of illumination for realistic values
of parameters of interest, for instance, by using:

LifshitzPressure[s_] :=
NIntegrate[
LifshitzIntegrand[\[Omega]I, p, s], {\[Omega]I, 0,
\[Infinity]}, {p,
1, \[Infinity]},

Method -> {"GlobalAdaptive",
"SingularityHandler" -> "DuffyCoordinates"},

WorkingPrecision -> 14, PrecisionGoal -> 10,
MaxRecursion -> 50]

(e) Comment on the possibility to drive nano-oscillators by dispersion force
manipulation (an example is given in Refs. [65–67]). Under what conditions can
the system be driven into parametric resonance by this approach? Compare your
result to that for a mechanically driven Casimir force parametric amplifier [68].

8.2.4.10 Suggested Exercise 11

Use the following naive model of the dielectric function of amorphous silicon (a:Si)
(or any other Kramers-Kronig consistent one):

\[Epsilon]aSi[\[Omega]_] =
1 + (\[Epsilon]1/(1 - (\[Omega] /\[CapitalOmega]1)^2 -

I (\[Omega] /\[Gamma])));

with the following choices (ω is expressed in s−1):

\[Epsilon]1 = 11.;
\[CapitalOmega]1 = 5.8 10^15;
\[Gamma] = 16.0 10^15;

(a) Using values of the natural constants in the MKS system, calculate the Lifshitz
pressure in the s = 0.01 − 10µm. Identify unretarded and retarded limits and
identify the onset of retardation. Use the unretarded behavior to estimate the
Hamaker constant defined at Sect. 8.2.2.

(b) It has been said that the prediction that the Casimir pressure between two ideal
surfaces at a distance of approximately 10 nm should be approximately equal
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to 1 atmosphere is unphysical. What is the Lifshitz pressure between the two
surfaces considered above across a 10 nm gap, expressed in atmospheres? What
is the ratio of the Lifshitz to Casimir pressures in that case?

(c) What should the length of the side of four square pads be, if all placed within
the same 10 nm distance of a highly polished ceiling, to hold the weight of
one human being against the gravitational force of the earth? (assume a mass
mhuman = 102 kg) [69].

8.3 “Perpetuum Mobile” Considerations

Given the non-trivial nature of the systems typically involved in the study of
Casimir effects, it is not unusual to employ conservation arguments to uncover
theoretical limitations, possible novel applications, or pitfalls leading to paradoxes
connected to incompletely understood energy exchange processes in systems such
as the one at Exercise 10(e) above [27, 70–72]. An additional example is the fierce
debate5 regarding the existence of “quantum friction,” that is, a force expected to
dampen the motion of two plane, parallel slabs moving transversally with respect
to each other [74–78]. This friction can be interpreted as yet another fascinating
manifestation of the electromagnetic vacuum state responsible for the static Casimir
effect emphasized in this contribution. A suggestive description of this process
is that “Qualitatively, with the inclusion of quantum fluctuations, the vacuum
behaves as a complex fluid that hinders and influences the bodies moving through
it” [79]. Although different viewpoints are possible [80], the fundamental origin
of the friction, which requires neither roughness nor contact of any kind, can be
seen to lie in the asymmetric reflection of virtual photons incident from different
directions because of the relative motion of the two slabs [81]. This area of research
continues to attract intense attention [82] with the earliest references cited [83] being
traditionally those to the work by Teodorovich [84] and Levitov [85] along with
important early contributions reported [86] to be due to Mahanti [87] and to Schaich
and Harris [88].

In the most heated phase of the quantum friction debate, an appeal was made to
an elementary mechanical gedanken experiment designed to logically demonstrate
that the very existence of any such force would imply that “an unlimited amount of
useful energy could be extracted from the quantum vacuum” [76].

The great apparent strength of this reasoning [76] lies in the fact that, if its
conclusions were correct, hardly any treatment of quantum-electrodynamics would
be necessary to decisively rule out the existence of quantum friction in the face

5The very personal ferocity surrounding Casimir effect controversies is, by itself, a subject worthy
of social science study. For details about this particular exchange see, for instance, “A fraction too
much friction causes physics fisticuffs” by Chris Lee [73]. For further details, and for the effect of
such debates throughout the process of technology transfer, see Ref. [18].
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of such strong energy conservation arguments. In fact, such proof, as presently
formulated, appears to be of such broad applicability as to be able to rule out the
existence of any friction – and even any lateral forces – between parallel moving
plane surfaces in nature, regardless of their origin. However, such implications have
gone completely unchallenged since the rebuttal stated: “There follows a discourse
proving that there is no frictional force between two stationary media. I agree with
this statement” [77].

Here we only consider this objection from an elementary mechanics standpoint
and, while taking no position regarding all well known field theoretic treatments, we
prove that the argument presented to show that quantum friction cannot exist [76]
is logically flawed. As the entire reasoning hinges on simple mechanics and it
is completely accessible to undergraduate students, appreciating this error has
implications not only in our understanding of quantum electro-dynamics but also
from the historical and pedagogical standpoints.

In that proof, the typical problem of a glass plate initially moving at a speed u
with respect to a substratum held at rest in the laboratory frame is treated. A change
in the reference frame is proposed on relativity grounds (Fig. 2, therein) as an artifice
to expose a “paradox.” Therefore it is stated that “a substrate . . . assumed to be
infinitely heavy” moves at a constant velocity u while constrained to be parallel to
and under a glass plate of finite weight, initially at rest in the reference frame of the
observer, and separated from the substratum by an empty gap of constant width (the
author here employs the adjective “heavy” where massive is required).

The proposed proof is a classical Reductio ad Absurdum (Proof by Contra-
diction) [89]. If such a force as quantum friction existed, it is argued, “. . . the
glass would be accelerated until its velocity matches the apparent velocity u of
the substrate.” This fact is employed to prove two statements: (A) “One could put
an arbitrary number of cleverly designed glass pieces . . . and let them become
accelerated by the quantum vacuum.” (B) “Quantum friction thus leads to the
paradox that an unlimited amount of useful energy could be extracted from the
quantum vacuum.” Since (B) contradicts the principle of conservation of energy,
it is concluded that quantum friction may not exist.

In order to explore the veracity of such statements, let us provide a more detailed
and physically realistic description of this gedanken experiment. This can be done
by assuming that the mass Msub of the substratum be finite and possibly, but not
necessarily, much larger than that of the glass plate, Mplate.

In principle, the quantity Msub includes the entire subsystem to which the
substratum is constrained, such as the Earth, or just the mass of a layer of material if
the experiment is conducted in outer space. Since, as is acknowledged in the proof,
Newton’s Third Law applies in this case, the frictional force Ffric acting on the
glass plate must be at all times equal and opposite to that acting on the substratum,
−Ffric, so that the total momentum of the system, absent any other external forces
with non-vanishing horizontal component, will be rigorously conserved throughout
the process.



8 Casimir Forces: Fundamental Theory, Computation, and Nanodevice Applications 169

As is well-known from the elementary mechanics treatment of one-dimensional
inelastic collisions, the final speed of the substratum-glass-bar system in the new ref-
erence frame will eventually approach the asymptotic value, vfin = Msubu/(Msub +
Mplate) and the total energy change, �E, in terms of the total initial energy, Ein,
always negative, will be to �E = −EinMplate/(Msub + Mplate) < 0.

These results show that, as the practically unattainable limit Msub/Mplate →
+∞ is approached, regardless of any quantum-electrodynamical details, the final
velocity of the substratum-glass-bar system will indeed be vfin → u−, consistently
with (A). However, there will be no energy gain as �E → 0− in that limit, unlike
claimed at (B), due to a correspondingly small, but here logically critical, negative
difference in the speed of the final system with respect to the initial speed of the
massive substratum.

The reasoning error may have been caused by the assumption that, in the more
typical reference frame in which the glass plate is moving and the substratum
is at rest, the final state of the system should correspond to a substratum-glass-
bar system at rest after a long interaction. Although this assumption is practically
correct in a ground-based laboratory, the final speed of the substratum-glass-bar
system rigorously speaking does not vanish. In order to eliminate such mistaken
assumptions, it may be helpful to visualize the substratum as a wedge-shaped
“glider” of the type used in some elementary mechanics demonstrations with the
glass plate represented by another glider of finite mass constrained to freely slide on
top of it while they both ride an “airtrack” – a variation on the theme of a well-known
experiment [90].

A different gedanken experiment, which adheres even more strictly to the typical
theoretical treatments of quantum friction, consists of assuming that an external
force Fext be acting directly on the substratum so as to keep it at a constant velocity
u in the laboratory reference frame. In this case, the substratum-glass-bar system, of
total mass Msub + Mplate, will, after a long interaction time, by hypothesis already
be moving with a velocity u. However, in order to maintain the substratum at a
constant velocity, Newton’s Second Law requires that Fext = −Ffric. Therefore,
although after a long interaction the final kinetic energy of the glass plate will indeed
have increased by �Eplate = + 1

2Mplate|u|2 as claimed at (B), the total mechanical
work done by the force Fext on the substratum will equal Wext = − 1

2Mplate|u|2.
Therefore, the net total energy change will be exactly �E = 0.

Historically, powerful gedanken experiments in which requiring that an absurd
state of perpetuum mobile be avoided to obtain the correct solution to a mechanical
problem were made famous by Simon Stevin (1548/49–1620), who even placed one
on the title page of his Hypomnemata Mathematica (1605–1608) [91–93] to the
enthusiastic approval of Ernst Mach (Ref. [94], p. 24). In the present case, however,
it appears that the proposed reasoning fails to allow for any conclusions against, or
in favor of, the existence of frictional forces, whether they be due to quantum fields
or to any other interaction.
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8.4 Conclusions

It is appropriate to end by returning to the two opening statements by Maxwell
quoted in the Introduction. As we have explored in this contribution, the concept that
“No force, either of attraction or of repulsion, can be observed between an electrified
body and a body not electrified” [1] requires a far more sophisticated interpretation.
Although Coulomb’s law – a cornerstone in the edifice of electrodynamics coded
into our minds ever since primary school – predicts that a neutral point-like particle
shall not interact with a charged point-like particle, that needs not clash with the
existence of dispersion forces. In this contribution, we have explored much evidence
to eliminate misconceptions so as to develop the opposite expectation, that is,
that polarizable bodies always electrodynamically interact even if they are neutral
and such interaction may well be dominant. To that end, we had to explore the
profoundest implications of the latter statement by Maxwell, that “When, in any
case, bodies not previously electrified are observed to be acted on by an electrified
body, it is because they have become electrified by induction.” This is the first link in
the long logical chain leading to an operational understanding of the technological
opportunity represented by dispersion force engineering.

An important historical question deserves to be considered at last: “Given
the above statements, could Maxwell contribute to our modern understanding of
intermolecular forces?” And, more explicitly: “If the existence of dispersion forces
can be accommodated, or at least hypothesized, within the structure of classical
electrodynamics, did Maxwell make that logical connection?” In what follows, we
analyze this issue often by directly quoting from the writings of the protagonists of
the period.

Our motivation in exploring this issue is the recurring theme among scientists
and historians of science alike – whether implicitly or explicitly stated – as to
whether Maxwell could have made further progress towards elucidating those
fundamental questions by reaping a fuller harvest of the mathematical physics
machinery of the Treatise. In the opinion of the present author, as regards Maxwell’s
abilities and persistence in probing difficult issues, this line of inquiry should
realistically consider his death from abdominal cancer in 1879 at the relatively
young age of 48 after “bringing to bear on a subject still full of obscurity the
steady light of patient thought and expending upon it all the resources of a never
failing ingenuity.” (Ref. [95], Vol. I, Preface) Indeed, Freeman Dyson, referring
to Maxwell’s Presidential Address to Section A of the British Association in
1870, only points out that “It is difficult to read Maxwell’s address without being
infuriated by his excessive modesty . . . ” and, writing on Missed Opportunities,
he turns the tables on the critics with a scorching criticism of his own: “But the
mathematicians of the nineteenth century failed miserably to grasp the equally great
opportunity offered to them in 1865 by Maxwell. If they had taken Maxwell’s
equations to heart as Euler took Newton’s, they would have discovered, among other
things, Einstein’s theory of special relativity, the theory of topological groups and
their linear representations, and probably large pieces of the theory of hyperbolic



8 Casimir Forces: Fundamental Theory, Computation, and Nanodevice Applications 171

differential equations and functional analysis. A great part of twentieth century
physics and mathematics could have been created in the nineteenth century, simply
by exploring to the end the mathematical concepts to which Maxwell’s equations
naturally lead” [96].

However, apart from the temptation to engage in counterfactual history [97]
speculations – what Carr referred to as “parlour games” [98] – about Maxwell’s
alleged omissions, there is merit in investigating classical electrodynamics as
a logical tool to clarify the role of quantization in dispersion force theory, to
strengthen semi-classical arguments and to develop new expository approaches.
The logical pathways presented herein suggestively illustrate that Coulomb’s law
with point-like, non-polarizable neutral particles does not imply that polarizable
neutral particles should not interact. A description of dispersion forces as a natural
consequence of classical electrodynamics can greatly aid to provide much needed
pedagogical devices for use by educators [25], to dispel the widespread concept
of the Casimir effect as a “mystery,” to enhance effective communication with
investors, the media and the public, and to stimulate confidence in the viability of
dispersion force engineering startup and spin-off companies [18].

Chronologically, it is relevant to notice that the first edition of the Treatise dates
to 1873, or thirty-three years after Whitworth’s report at the Glasgow meeting of the
British Association (Ref. [99], p. 4) and only two years before Tyndall’s paper read
at the Royal Institution [16], which means that the contemporary state of the art in
cohesion experimentation had to be well known to Maxwell. As far as atomistic
theory – regarded as the indispensable framework of dispersion force physics –
in the words of Maxwell’s early biographer, “we are indebted for all the modern
developments of the molecular theory of gases, as well as for its establishment on a
sound dynamical basis,” [100] mainly to Clausius, Boltzmann, and Maxwell. More
specifically about molecular interactions, as shown even just by his famous entry
on Capillary Action in the 9th edition of the Encyclopædia Britannica (Ref. [95],
Vol. II, p. 541), Maxwell’s contribution to early explorations in the nature of
molecular forces was nothing short of substantial and is, by itself, the subject of
extensive studies [101]. Coulson, also cited by El’yashevich and Prot’ko [102],
provides a list of related “problems advanced by Maxwell: (1) What is a molecule
and what is the nature of the aggregate of atoms of which it consists? (2) What
is the origin of intermolecular or interatomic forces? And what is their law of
dependence on distance and orientation? (3) Why are molecules so invariable in
character with no evolutionary or continuously varying properties? (4) How does a
molecule form?” [103].

Coulson summarizes the situation by stating that “Maxwell had almost got to the
limit of what he could have done in the discussion of interatomic forces” and he
names a formidable list of items unavailable to Maxwell including “the discovery of
the electron. . . the nuclear atom, . . . electron shells, . . . stationary states, . . . the wave
equation, and . . . the Pauli exclusion principle” [103]. Use of the adverb “almost” is
due to the opinion that “Maxwell could have been expected to make further progress
than he did” only in the latter of items (2), that is, in ascertaining the “form of
the interatomic and intermolecular force . . . by making more use of Clausius’ virial
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theorem.” If so, what can be said about “the origin of intermolecular or interatomic
forces” by means of Maxwell’s equations? Coulson reflects on “how impossible it
was that Maxwell should have been able to describe either the dispersion attractive
forces, or the spin repulsion and attractions.” The assessment is that accounts of
interatomic force physics before and after the development of modern quantum
theory “appear to have almost nothing in common” [103].

This peremptory position is justifiable from the standpoint of modern quantum
electrodynamics but it fails to capture the subtler mathematical implications of
Maxwell’s equations. For instance, shortly after Maxwell’s early death, Lebedev
could already discern such connections with extraordinary clarity and rare intuition
in his doctoral dissertation: “Hidden in Hertz’s research, in the interpretation
of light oscillations as electromagnetic processes, is still another as yet undealt
with question, that of the sources of light emission . . . such a problem leads us
. . . quite unexpectedly as it were, to one of the most complicated problems of
modern physics – the study of molecular forces. Adopting the point of view of the
electromagnetic theory of light, we must state that between two radiating molecules,
just as between two vibrators in which electromagnetic oscillations are excited,
there exist ponderomotive forces: They are due to the electrodynamics interaction
between the alternating electric current in the molecules (according to Ampere’s
laws) or the alternating charges in them (in accord to Coulomb’s laws); we must
therefore state that there exist between the molecules in such a case molecular
forces whose cause is inseparably linked with the radiation processes . . . ”6 The
obvious modern objection to any argument based on the “radiation process” is that
atoms, in their stationary states, are in fact not radiating. This same severe limitation
is mentioned much later by Casimir in his critique of Overbeek’s intuitive, but
“misleading” [107, 108] model – an imperfect model that, as Casimir nevertheless
generously repeats, provided the initial impetus towards the expression for the
Casimir-Polder force. Disregarding this issue of principle, in order to anticipate
the connection to dispersion forces, Maxwell would have had to speculate about
the inner structure of the atom to conclude that their charged constituents, if
driven from their positions of equilibrium, will oscillate, radiate, and interact as
Lebedev suggested. In the present work, we took advantage of Lorentz atomic
models “to go further than Maxwell” (Ref. [109], §122) but, as remarked by
Coulson, [103] Maxwell’s description of polarized matter had to be formulated prior
to the discovery of the electron by J. J. Thomson in 1897 [110, 111]. Although
the historical development of our understanding of molecular structure following
Maxwell is a complex subject [2, 112–114], Yaghjian judges that “the closest he
seems to approach the idea of dielectrics containing dipoles is . . . in explaining the
theory of Mossotti that a dielectric contains small conducting elements insulated
from one another and capable of charge separation (forming dipoles)” [115].

6This is a translation into English quoted in Ref. [104]; see also Ref. [105] (in German) and
Ref. [106] (in Russian).
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Mossotti’s results [116, 117] regarding atomic structure “were based on an ether
concept typical of his epoch, and are hence difficult to follow for the modern
reader” [118]. Remarkably, however, Mossotti “utilised a mathematical method
which had been developed by Poisson for the examination of a similar question in
magnetism.” (Ref. [119], §142–151; see also Ref. [112], pp. 188–189). As explained
much later by Van Vleck, “this concept of the polarization of the molecule as the
cause of the departures of ε and μ from unity is by no means a purely twentieth-
century concept, and was intimated by Faraday” [120]. Indeed, Mossotti’s starting
point had been Faraday’s conclusion that “it is the molecules of the substances that
polarize as wholes . . . and that however complicated the composition of a body
may be, all those particles or atoms which are held together by chemical affinity
to form one molecule of the resulting body, act as one conducting mass or particle
. . . ” (Ref. [121], §1699–1700). Van Vleck continues: “In 1836, Mossotti pictured
the molecule as a conducting sphere of radius a, on which the charge would, of
course, readjust or ‘polarize’ itself under the influence of an applied field, thus
making the molecular moment different from zero. If the electric susceptibility χe

is small compared to unity, he thereby showed that χe = Na3. It seems almost
too hackneyed to mention that the values of a obtained from this simple equation
(together with the observed N and χe) are comparable in magnitude with the
molecular radii in kinetic theory” [120] (N is the number of atoms in the unit
volume; see also Ref. [122], Sec. 10.12).

Maxwell was obviously deeply affected by Mossotti’s work, which he repeatedly
cites and critiques over a period of several years, somewhat appearing to vacillate
between acceptance and doubt but never fully endorsing it. For instance, in 1841,
in a short communication devoted to that subject, Maxwell writes that “although M.
Mossotti’s general view may be correct, I believe it will be found that his analysis
is erroneous” [123]. In 1864, in A dynamical theory of the electromagnetic field,
Maxwell lucidly explains that “in a dielectric under the action of electromotive
force, we may conceive that the electricity in each molecule is so displaced that one
side is rendered positively and the other negatively electrical, but that the electricity
remains entirely connected with the molecule, and does not pass from one molecule
to the other”7 [95] (Vol. I, p. 526). In 1869, in his paper On the Mathematical
Classification of Physical Quantities, he judges rather ungenerously that “Mossotti
. . . was enabled to make use of the mathematical investigation of Poisson relative
to magnetic induction, merely translating it from the magnetic language into the
electric, and from French into Italian” [95] (Vol. II, p. 258). Finally, in the Treatise,
Maxwell comments that “This theory of dielectrics is consistent with the laws of
electricity, and may be actually true.” (Vol. I, §62).

The early proof by Mossotti [117], recast by Jeans in modern notation
(Ref. [119], §149), remains a standard textbook calculation in the electrostatics
of dielectric media to this day. Of particular interest in our case are the even
simpler model with one central, point-like positive charge surrounded by a cloud

7Here “a molecule is the smallest possible portion of a particular substance.” [123] (Vol. II, p. 46).
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with homogeneous negative charge density [122] and that of two homogeneously,
opposite charged spheres superimposed to each other in the absence of an external
field [124]. In both cases, the polarizability of the system is shown to be α ≈ a3. As
pointed out by Lorentz (Ref. [109], §124), such results are only rigorously valid for
the static polarizability, which was extended to include the dynamic polarizability
by treating the time-dependent case first by Lorenz [125] and, independently, by
Lorentz himself – “certainly a curious case of coincidence” [109].

In the Introduction, we stated that two neutral, polarizable particles will not
interact “if an independent means to produce polarization is absent.” In fact, Spruch
considered the dipole-dipole interaction of two particles of dynamic polarizabilities
α1,2(ω) within a volume V much larger than the size of the particles, and immersed
within a background classical field E0(ω, r), where r is the position vector [126].
On realizing that – consistently with Lebedev’s and Overbeek’s intuitions – only the
“radiation” term proportional to 1/r contributes to the potential, V class

pol pol(r), and by

introducing the energy density u(ω) = |E0(ω, r)|2 of the mode of frequency ω of
the smoothly varying electric field, this treatment leads to the following result:

V class
pol pol(r) = V

c5r

∫ c/r

0
α1(ω)α2(ω) u(ω)ω4 dω . (8.36)

Crucially, Spruch comments that the above is “a result that Maxwell could have
derived, and perhaps did” [126]. The first part of this statement – once again in the
tradition of results Maxwell allegedly missed – is correct but quite bold given the
logical chain we have seen is needed to reach the concept of dynamic polarizability
even if just with a rudimentary model for a “molecule.” The latter part of the
statement, although an effective ‘narrative hook,’ is probably fictional.

The connection between the above equation and quantum electrodynamics takes
place by simply writing the energy density per mode of the zero-point field as
Vu(ω) = 1

2�ω, thus leading to the Casimir-Polder potential, VC−P , only as “the
last step” [126]:

VC−P ∼ −�cα1(0)α2(0)

r7 (8.37)

However, the presence of this random field of intensity proportional to � in
Spruch’s approach does not imply that quantization of the electromagnetic field
is needed to reach the Casimir-Polder expression. In fact, simply the introduction
of a fluctuating classical field of appropriate specific energy density leads to the
same mathematical results obtained by the methods of QED. This was stressed
by Casimir, who, writing one year before his death in 2000, commented on this
approach that “The problem in quantum electrodynamics is then reduced to a
problem in classical electrodynamics” [20].

As Spruch and Kelsey explained: “Why vacuum-fluctuation arguments worked
in the past in the problems to which they were applied is, to our knowledge, not
completely understood, but the simplicity of the approach gives it considerable
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appeal, as a means of providing physical insight into known results and as a
means of suggesting new results” [127]. Consequently, a very extensive literature
reporting dispersion force calculations now exists based not on standard field
quantization but on the injection into the system of an appropriate classical field – an
approach sometimes referred to as ‘random’ or ‘stochastic’ electrodynamics (SED)
[128–132].

A succinct and lucid presentation of the logical premises of SED has been given
by Milonni (Ref. [30], Sec. 8.12; see also Ref. [133], Sec. 5). He explains: “In
QED we cannot arbitrarily set to zero the homogeneous, source-free solution of
the Maxwell operator equations in the Heisenberg picture. This “vacuum” field is
necessary for the formal consistency of QED. . . Classically, however, we generally
assume implicitly that the homogeneous solution of the Maxwell equations is that
in which the electric and magnetic fields vanish identically. That is, we assume
that there are no fields in the absence of any sources. . . This difference between
classical and quantum electrodynamics, together with the evident importance of
the fluctuating vacuum field in QED, suggests the adoption of a different boundary
condition in classical electrodynamics: instead of assuming that the classical field
vanishes in the absence of sources, we can assume that there is a fluctuating
classical field with zero-point energy 1

2�ω per mode. Whether it is a better working
assumption than the standard, “obvious” one is a matter to be ultimately decided
by comparison with experiment” [30]. From this point of view, important parallels
and connections exist with the cosmological constant problem, which has been
speculated to be connected to gravitating zero-point energy affecting the expansion
of the universe [134–136].

Fascinatingly, as first shown by Marshall [128], any classical zero-point field
of spectral energy density ρ0(ω) ∝ ω3 is Lorentz invariant; furthermore, the
specific choice ρ0(ω) = �ω3/2π2c3, well known from QED, causes a mean square
displacement fluctuation in a classical charged harmonic oscillator equal to that of
the corresponding quantum problem. Shortly after these findings, Boyer proposed
to elevate the Lorentz invariance of the zero-point spectrum to the role of an SED
postulate [137, 138]. Therefore, “. . . we require that the spectrum of the radiation
shall look the same to all observers moving at constant relative velocity with respect
to each other” [137] and “. . .� enters our theory, not as any quantum of action, but
solely as the constant setting the scale of the zero-point electromagnetic radiation
spectrum” [139].

As Boyer reported, “Some readers of this classical electromagnetic analysis
are distressed, even indignant at the idea of a “classical” electromagnetic zero-
point radiation. They insist that zero-point radiation is a “quantum” idea which
can not be used as part of classical physics. However, surely this objection is
without merit” [131]. Such strong opinions also transpire from scientific language
usage. For instance, Boyer judges that “The idea of quanta forms a subterfuge for
what is a natural part of a theory of classical statistical thermodynamics including
electromagnetism,” [139] using the noun subterfuge three more times in the course
of the same paper. As though in direct response, Milonni, typically quite impartial,
turns the same terminology against random electrodynamics, which he describes
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as “at best an interesting subterfuge” (Ref. [133], Sec. 5.2) before using the
same term twice more in the same paper (Ref. [133], Sec. 5.5). The sometimes
acrimonious debate as to the reasons non-fully quantum theories of dispersion
forces lead to correct results – only partially within our scope herein – continues
unabated to this day [18, 140] as this approach is now also being tested to probe
spacetime fluctuations in the weak field limit of the gravitational field, for which no
quantization scheme is yet known [22, 141].

The adoption of a classical random field described by � “. . . as a multiplicative
constant chosen by comparison of theoretical predictions with experiment” [30]
changes none of the mathematical findings by Spruch. In the fully retarded regime
in which the only significant contribution to the integral at Eq. (8.36) comes from
the static polarizabilities α1,2(0) – provided by experimental measurements – we
finally recover the quantum electrodynamical Casimir-Polder expression, VC−P,
from completely classical considerations (see Ref. [142], Sec. IV). The classical
picture of dispersion forces to emerge is therefore that of an interaction caused by
a Lorentz invariant stochastic field postulated to fill the universe and driving the
process of mutual atomic polarization.8

On the one hand, from the historical point of view, we can now ask: “Was such a
description within Maxwell’s hypothetical reach?” As we have seen, this would have
required both a model for the dynamical polarizability – or at least its static limit –
and the concept referred to today as the Lorentz covariance of Maxwell’s equations
as the framework to accommodate a classical zero-point field. Strictly speaking,
covariance would not be understood till after Maxwell’s death, that is, at the very
earliest, till the little cited discovery of the “Voigt transformations,” [143–146] in
1887 and the later critical re-elaborations by Lorentz and Poincaré [147, 148].
Even with such machinery, however, the existence of homogeneous solutions of
Maxwell’s equations different than the “true vacuum” (all fields equal to zero) was
not truly appreciated till the use by Lifshitz [54] of Rytov’s “random field” [149] and
the much later work by Marshall cited above. Of course, an appreciation of the fact
that any external field, invariant or not, could “drive” dispersion forces as shown by a
rudimentary model of polarizability was within Maxwell’s potential reach, and that
might have led to further speculations as to the form of the intermolecular potential
even earlier than the discovery of invariance. In fact, as we have explored in this
work, introduction of external fields is a common strategy to engineer dispersion
forces [132]. If the existence of random fields had been speculated and if dynamical
polarization had been at least tentatively modeled, Maxwell could have logically
connected electromagnetism to the existence of dispersion forces and to cohesion.
All such suppositions, however, must deal with the reality of Maxwell’s early
death and one is left speculating the many ways in which he would have further
contributed to physics if, as for Casimir, his life had spanned 90 years, or till 1921.

8This concept might be a provocative solution of ‘double-starred’ Prob. 10.31, “Mutually induced
dipoles” in Electricity and Magnetism by Purcell and Morin [122].
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