
Chapter 6
Simulations in Nanophotonics

Antonino Calà Lesina, Joshua Baxter, Pierre Berini, and Lora Ramunno

Abstract Numerical simulations of nanophotonics systems provide insight into
their physical behaviour and design that provide a critical complement to exper-
imental investigations. The finite-difference time-domain (FDTD) method is the
most widely used, with its success due to its relative simplicity coupled with its
broad applicability to many complex material systems, arbitrary shape configura-
tions, time-domain visualization and, with increased computing resources, its near
linear scalability for parallel computing.

The series of three lectures presented at the Quantum Nano-Photonics summer
school (Erice, Italy, 2017) began with a pedagogical introduction of the fundamen-
tals of the Yee FDTD algorithm, such as discretization of Maxwell’s equations,
numerical dispersion and stability criteria. Following this was a description of other
necessary FDTD ingredients, such as boundary conditions, sources of excitations
and material models. To demonstrate how to apply this knowledge to run an
actual simulation, the lectures had an active component, wherein students received
temporary access to commercial FDTD software, and a simple problem (scattering
from a gold nanosphere) was simulated together in lecture. Finally, the state of
art was reviewed for applications in nanophotonics, including, for example, mod-
elling nonlinear optical processes, tightly focused sources, plasmonic metasurfaces,
nonlocality, as well as some demonstrations of such applications. The role of
high performance computing was also discussed [1]. Finally, the limitations of the
method were described and complementary computational methods were briefly
introduced to overcome some of these limitations.
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We present in this article a summary of some of the topics presented during the
lectures.

6.1 Introduction

Simulations are instrumental in the field of nanophotonics, helping to shed light on
light-matter interaction at the nanoscale, providing a critical complement to experi-
mental investigations of complex systems, e.g., systems involving irregular shapes,
exotic materials, or many interacting devices. Such simulations are important for
many purposes, including for device design and optimization, for understanding
device operation, for explaining experiments, and for discovering and predicting
new phenomena. More cost effective than running multiple experiments, one can
quantitatively investigate the effects of changing materials, geometries, physical
effects, etc, one by one, but also gain insight through powerful visualization and
movies.

Since the seminal paper on FDTD [2], the method has been applied to many areas
of electromagnetism. Over the past decade, the FDTD method has become the most
largely used computational technique in nanophotonics [3, 4]. A Google Scholar
search of “FDTD and nanophotonics” confirms this, with double the number of hits
than the next most used method, FEM (finite element method). FDTD is popular
because it is relatively simple to implement, and it is extremely versatile, capable of
modelling dispersive materials, nonlinearity, nonlocality, and almost any physical
system that can be modeled via a macroscopic polarization field. Due to its near-
linear scaling in parallel processing, it can be applied to ever larger problems, as
larger and larger computational resources become available.

This paper follows the set of three lectures on simulations in nanophotonics,
presented at the Quantum Nano-Photonics summer school in Erice Italy in the
summer of 2017. Focusing on FDTD, the first lecture consisted of a pedagogical
overview (complemented by class exercises) of the basics of the Yee algorithm and
its inherent numerical dispersion and stability condition; these are reviewed for the
novice in Sect. 6.2.

The next lecture focused on putting this into practice, by first discussing other
ingredients needed for a successful simulation, including sources of excitation,
boundary conditions, material models, and data collection/monitors in both the
time and frequency domains. This was followed in the third lecture by a class
exercise, in which students set up and ran an FDTD simulation on the fly, thanks
to Lumerical Solutions Inc [5], which provided each participant with temporary
licenses to their FDTD commercial software. This in-class example (scattering from
a gold nanosphere) will be briefly described below in Sect. 6.3.

Advanced topics were introduced, such as grid limitations and convergence
issues, high performance computing and scalability, advanced radiation sources
such as tightly focused beams, and advanced material models (dispersive and
nonlinear materials, plasmonic materials, nonlocal plasma models); a selection of
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material models is presented in Sect. 6.4. Examples from our own work that illus-
trate why simulations can be so powerful are presented in Section 5. These include
understanding why colour is generated from laser-irradiated metallic surfaces,
where nonlinear emission originates in hybrid dielectric/metallic nanoantennas, and
the design of a plasmonic metasurface for generating structured nonlinear light.

6.2 FDTD Basics

6.2.1 Algorithm

FDTD uses finite differencing to solve the macroscopic Maxwell’s equations in the
time domain. They are (in SI units):

∂D(r, t)
∂t

= ∇ × H(r, t) − Jf ree(r, t), (6.1)

∂B(r, t)
∂t

= −∇ × E(r, t), (6.2)

∇ · D(r, t) = ρf ree(r, t), (6.3)

∇ · B(r, t) = 0, (6.4)

where E is the electric field, B the magnetic field, D the displacement field, H
the magnetizing fields, Jf ree is the free current density, and ρf ree the free charge
density, with constitutive relations to relate E and B to D, H and Jf ree

D(r, t) = ε0E(r, t) + P(r, t), (6.5)

H(r, t) = 1

μ0
B(r, t) + M(r, t), (6.6)

where M and P are the magnetization and polarization, defined by microscopic
bound charges and currents, respectively. For example, linear optical response can
be written in its most general form as

P(r, t) =
∫ ←→χ (1)(r − r′, t − t ′)E(r′, t ′)dr′dt ′, (6.7)

where ←→χ (1) is the linear susceptibility tensor.
These relations are not necessarily simple, depending on the system under study.

FDTD advances the electric and magnetic fields in time by finite differencing all the
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derivatives in Eqs. (6.1) and (6.2) via a central difference, in order to keep second-
order numerical accuracy, i.e.,

df

dx
= f (x + h/2) − f (x − h/2)

h
+ O(h2). (6.8)

From Eqs. (6.1) and (6.2), we see that central differencing forces the electric
and magnetic fields to be evaluated at different times (i.e., leap frog in time). For
example, considering Eq. (6.2) evaluated at time t and discretized in time with time
step Δt , for the LHS we have

∂B(r, t)
∂t

≈ Bt+Δt/2 − Bt−Δt/2

Δt
. (6.9)

The RHS must also be evaluated at time t , which means that all the E fields are
needed at time t , unlike the B fields which are at t ± Δt/2, then we get an update
equation for B from quantities at earlier times, i.e.,

Bt+Δt/2 = Bt−Δt/2 − Δt(∇ × E)t . (6.10)

If we now evaluate Eq. (6.1) at time t + Δt/2 in a similar way, we then get

Dt+Δt = Dt + Δt(∇ × H)t+Δt/2 − ΔtJt+Δt/2, (6.11)

thus again, D at t +Δt is updated using previous values of time. The algorithm thus
proceeds as a leap frog in time, as depicted in Fig. 6.1.

Thus far we have considered the time derivatives, what about the spatial
derivatives contained within the curl operator? We start with the update equation
for Bx in continuous spatial coordinates

B
t+Δt/2
x = B

t−Δt/2
x − Δt

(
∂Et

z

∂y
− ∂Et

y

∂z

)
, (6.12)

Fig. 6.1 Leap frog scheme for the temporal update of the fields
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Fig. 6.2 Curl scheme for the update of one field component

and by applying the central differencing to both spatial derivatives we obtain:

B
x,y,z,t+Δt/2
x = B

x,y,z,t−Δt/2
x − Δt

Δy

(
E

x,y+Δy/2,z,t
z − E

x,y−Δy/2,z,t
z

)
+

+Δt

Δz

(
E

x,y,z+Δz/2,t
y − E

x,y,z−Δz/2,t
y

)
.

(6.13)
We see that Ez and Ey need to be evaluated in “leapfrogged” spatial positions with
respect to each other, and to Bx . This is depicted in Fig. 6.2, where we see that all
field components are at the same x, however they are displaced from each other in
y and z. This absence of colocation in space is a direct consequence of requiring the
algorithm to be of 2nd order accuracy.

The computational grid cell with these field components staggered from each
other was first introduced by Yee in the 1960s [2], and it is called the Yee cell. Only
locally known fields are required for updating the field values on the Yee cell via the
FDTD algorithm, which makes the algorithm suitable for parallelization via domain
decomposition [1].

6.2.2 Numerical Dispersion and Stability

The Yee algorithm implementation discussed above is on a rectangular grid, which
causes an inherent directionality. Thus the update equations cause a non-physical
dispersion that depends on propagation direction. They also require that strict
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conditions be met to ensure numerical stability. This provides fundamental limits on
how large the discretization can be for a physically and numerically valid solution,
and is the reason that FDTD solutions can require large computational resources to
execute.

To illustrate these points, we consider the simplest case, light propagation in
vacuum. The free-space dispersion relation for a plane wave of frequency ω and
wavevector (kx, ky, kz) is given by

ω2

c2 = k2
x + k2

y + k2
z . (6.14)

Now considering a plane monochromatic wave trial solution for the field
components, and substituting these into the FDTD update equations yields [6]

ω2

c2

(
sin(ωΔt/2)

ωΔt/2

)2

= k2
x

(
sin(kxΔx/2)

kxΔx/2

)2

+

k2
y

(
sin

(
kyΔy/2

)
kyΔy/2

)2

+

k2
z

(
sin(kzΔz/2)

kzΔz/2

)2

,

where in the limit of infinitely small time and space steps, we retrieve the ideal
dispersion relation.

It is illustrative to neglect for the moment the discreteness in time, and consider
only propagation along the x direction, with k = kx . Then we obtain for the phase
velocity

vp = ω

kx

= c
( sin(kxΔx/2)

kxΔx/2

)
. (6.15)

This places restrictions on how large Δx may be for a given propagation constant,
and thus a given wavelength. For example, if one chooses Δx = λ/10, then we
obtain a phase velocity of 0.984c. This value of Δx is often used as the maximum
tolerable spatial discretization.

Now consider a propagation direction that is 45 degrees in the xy plane (assuming
a uniform grid) with a propagation vector of (k/

√
2, k/

√
2, 0). Then the grid

discretization of Δx = Δy = λ/10 yields a phase velocity of 0.992c, which is
not the same as propagation along x only, hence leading to numerical dispersion
that is direction dependent, imposed by the rectangular grid.

To examine numerical stability of the Yee algorithm we extend the dispersion
relation for the update equations above to the complex frequency plane, setting
ω to have a real (ωR) and imaginary (ωI ) component. Whenever there is a non-
zero ωI , there is the possibility for exponentially growing solutions, so we need to
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impose ωI = 0. This provides a condition on the discretization of time, such that
the maximum allowed Δt is given by the Courant stability condition [6]

Δt ≤= 1

c
√

1/(Δx)2 + 1/(Δy)2 + 1/(Δz)2
. (6.16)

While this condition ensures the numerical stability of solutions, it does not
guarantee physical solutions. In lecture, the following question was posed to the
students: using this condition, with what speed does information travel from one
side of a grid cell to the other assuming a uniform 3D grid? The answer is
v = Δx/Δt = √

3c, faster that the speed of light! Taflove and Hagness illustrate the
effects of superluminal propagation of a square pulse in one dimension [6]. While
this is drastically reduced for a smooth pulse, it still does exist, though in practice is
a very small error. In the example presented in lecture, these components were eight
orders of magnitude smaller than the peak of the pulse.

While we discussed here the numerical dispersion and stability conditions for
propagation in free space, in practice one would need the equivalent conditions for
the materials being investigated. One would need to repeat the analysis on the update
equations relevant for that material to obtain the new conditions, and these have been
done by various authors for different materials, including plasmonic materials where
one may choose Δt ≤ Δx/(

√
3c∞) [7], where c∞ = c/

√
ε∞ and ε∞ is the infinite

frequency permittivity.

6.3 In-Class Simulation: Scattering from a Gold Nanosphere

The FDTD algorithm as discussed in the previous section, on its own is not enough
for a useful simulation. One needs to add some kind of material for light to interact
with, boundary conditions to terminate the simulation domain [8], a source of
radiation either internal or external to the simulation, as well as monitors for data
collection [1]. These topics were all touched upon in the lectures, and were put into
practice in an in-class exercise: simulating the scattering of a plane wave by a gold
nanosphere, and calculating its extinction cross section spectrum. Each participant
in the summer school was given access to Lumerical Solutions FDTD software [5],
and together we set up and performed this simulation, step by step.

This particular example was chosen for several reasons. The first is that it is
important when developing and/or testing a numerical technique to begin with a
simple system for verification. In the case of a single isolated sphere irradiated by
a plane wave, an analytical solution exists, derived for the first time by Gustav Mie
in 1908 [9, 10]. Though over a century old, this theory is still of prime importance
in nanophotonics – including for example recent corrections to it for plasmonics
[11] and recent interest in multipolar excitations [12]. By comparing their numerical
results with the analytical model, students were able to ascertain the quality of their
simulation.
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In our in-class simulation, students were able to test the influence of compu-
tational parameters, such as grid size. The simulation of a sphere illustrates one
fundamental drawback of FDTD: its rectangular grid. While such a grid allows
relatively simple algorithms and wide applicability, it is also limiting in that there
can be numerical artifacts arising from the boundaries of non-rectangular shaped
objects, such as spheres. There are several work-arounds that are possible, such as:
larger computational resources for smaller grid sizes [1], graded meshes where the
grid size can vary along each of the three spatial dimensions if there are smaller
areas that require a smaller mesh; and sub-gridding where grid cells can be divided
into daughter grid cells which is much more complex to implement and may have
stability issues for long runs [13].

6.4 Advanced Topics

6.4.1 High Performance Computing

High performance computing is one the best allies of computational nanophotonics
because problems involving plasmonics require a fine discretization to get conver-
gent results and this sets the need for large computational resources [1]. The FDTD
method is straightforward to parallelize because the algorithm only requires the
adjacent field values to run. The overall domain is decomposed into subdomains
which run on different processes, and each subdomain communicates with the
adjacent ones through the message passage interface (MPI) protocol [14]. Nearly
linear scalability has been demonstrated, which is limited only by communication
between processes. Load balancing strategies can also be implemented when some
subdomains have a higher computational load which could represent a bottleneck
for the overall simulation time. All the simulations we present in this paper are
conducted by using an in-house parallel 3D-FDTD software [1].

6.4.2 Advanced Material Models

The FDTD method is well suited to model material properties, such as dispersion.
Our group has also developed and implemented methods for materials containing
nonlinearity and nonlocality which are not standard techniques, particularly the
latter where almost no prior work exists.. We review here a selection of our
computational approaches.
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6.4.2.1 Dispersion

A dispersive material is one that exhibits a frequency dependent susceptibility, i.e.,

P(ω) = ε0χ
(1)(ω)E(ω). (6.17)

Since FDTD is solved in the time domain a convolution is required:

P(t) = ε0

∫ t

0
χ(1)(t − τ)E(τ )dτ. (6.18)

Implementing a χ(1)(ω) model in FDTD is possible by introducing an auxiliary
differential equation (ADE) in the leap frog scheme for the P field [15, 16]. If we
consider Eqs. (6.1) and (6.5) for Jf ree = 0, i.e.,

∇ × H = ε0
∂E
∂t

+ ∂P
∂t

, (6.19)

and we discretize it, we obtain

∇ × Ht+Δt/2 = ε0
Et+Δt − Et

Δt
+ Pt+Δt − Pt

Δt
, (6.20)

from which we can derive Et+Δt as a function of Et , Pt+Δt , Pt and Ht+Δt/2. In the
leap frog scheme, we need to solve for Pt+Δt before we can calculate Et+Δt .

Models for simulating complex permittivities are available, such as the Drude
with two critical points (Drude+2CP) model [17] to account for the optical response
of both bound and free electrons. We report as an example the case of a Drude
material, for which we have

χ(1)(ω) = − ω2
D

ω(ω + iγ )
, (6.21)

where ωD is the plasma frequency and γ is the damping coefficient. Using
Eqs. (6.17) and (6.21), this becomes differential form

∂2P
∂t2

+ γ
∂P
∂t

= ε0ω
2
DE, (6.22)

which can be discretized as

Pt+Δt − 2Pt + Pt−Δt

Δt2 + γ
Pt+Δt − Pt−Δt

2Δt
= ε0ω

2
DEt, (6.23)
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From this we finally obtain Pt+Δt as a function of Et , Pt and Pt−Δt . The scheme for
the FDTD updating algorithm is in sequence

Ht+Δt/2 = f (Ht−Δt/2, Et ),

Pt+Δt = f (Et , Pt , Pt−Δt ),

Et+Δt = f (Et , Pt+Δt , Pt , Ht+Δt/2).

(6.24)

6.4.2.2 Nonlinearity

The FDTD method is well suited for nonlinear simulations because it is a time-
domain method. We show here how to implement second harmonic generation
(SHG) for a dispersionless medium (εr is constant). We start from Eqs. (6.1)
and (6.5) adapted for the nonlinear case and for one Cartesian field component

∇ × Ht+Δt/2 = ε0εr

Et+Δt − Et

Δt
+ P t+Δt

NL − P t
NL

Δt
, (6.25)

with the nonlinear polarization PNL = ε0χ
(2)E2. In discretized form we have

Δt

ε0
∇ × Ht+Δt/2 = εr(E

t+Δt − Et) + χ(2)(Et+Δt )2 − χ(2)(Et )2. (6.26)

In order to find Et+Δt we need to solve a second-order equation, and the solution,
for ε2

r + 4χ(2)b > 0, is

Et+Δt = −εr ± √
ε2
r + 4χ(2)b

2χ(2)
, (6.27)

where

b = Δt

ε0
∇ × Ht+Δt/2 + εrE

t + χ(2)(Et )2. (6.28)

The auxiliary differential equation approach is very well suited for nonlinear
simulations because it allows us to add extra terms in the polarization field [18]. We
have implemented it by using a linear dispersive material and adding an extra term
to the polarization field, which we show for one Cartesian component, i.e.,

P t
x = χ(3)Et

x |Et |2, (6.29)

where |Et |2 = (Et
x)

2 + (Et
y)

2 + (Et
z)

2, and we assume isotropic dispersionless
nonlinearity.
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6.4.2.3 Nonlocality

When describing the interaction between light and matter it is common to use the
electric displacement field D(r, ω) which is defined by

D(r, ω) = ε0

∫
dr′ε(r, r′, ω)E(r′, ω). (6.30)

For particles larger than 10 nm it is valid to use the local approximation,
ε(r, r′, ω) = ε(ω)δ(r − r′). This states that the electric displacement field at a
given point in space depends only on the electric field in that location and the
dielectric function. For systems smaller than 10 nm, the local approximation can
no longer be used. We therefore must include the effects of spatial nonlocality. To
do so, we model the interaction between electrons and light using a hydrodynamic
plasma model [19]:

nm
( ∂

∂t
+ (u · ∇) + γ

)
u = ne(E + u × B) − ∇p. (6.31)

This is the Euler Fluid equation with damping where the force is defined by the
Lorentz force. Here u represents the velocity field, γ is the damping, n is the electron
density, m is the electron mass, and p is the electron pressure. To use this equation
for nonlocality, we need to first remove the nonlinear terms which are negligible for
low field intensities [20], leaving us with

nm
∂

∂t
u = −neE − nmγ u − ∇p. (6.32)

For the pressure, we use the electron degeneracy pressure for p, which is

p = p0

( n

n0

)5/3
, (6.33)

where p0 is proportional to the Fermi energy, and n0 is the equilibrium electron
density. Using the continuity equation, ∂n

∂t
= −∇ · (nu), the fact that J = −en0u =

∂P/∂t , and only keeping the only linear terms we end up with our linear nonlocality
model:

∂2P
∂t2 + γ

∂P
∂t

− β2∇(∇ · P) = ε0ω
2
DE, (6.34)

where β is a constant proportional to the Fermi velocity. Notice that this is simply
the aforementioned Drude material model with a spatially nonlocal term which
is negligible everywhere but near the interface between the nanoparticle and the
surrounding media. This is because the pressure gradient is dependent on the
electron density fluctuation which disappears in the bulk [21]. This explains why
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the nonlocal correction term is only required when modelling small particles, as the
surface to volume ratio becomes larger.

We have devised a method to implement this model in a similar fashion to the
Drude model. We show this spatial discretization of the nonlocal term is shown for
the x-direction where we use the second order central-difference scheme to obtain

∇(∇ · P)
x+Δx/2,y,z,t
x =

(
∂2Px

∂x2 + ∂2Py

∂x∂y
+ ∂2Pz

∂x∂z

)x+Δx/2,y,z,t

= P
t,x+3Δx/2,y,z
x − 2P

t,x+Δx/2,y,z
x + P

t,x−Δx/2,y,z
x

Δx2

+ P
t,x+Δx,y+Δy/2,z
y − P

t,x,y+Δy/2,z
y − P

t,x+Δx,y−Δy/2,z
y + P

t,x,y−Δy/2,z
y

ΔxΔy

+ P
t,x+Δx,y,z+Δz/2
z − P

t,x,y,z+Δz/2
z − P

t,x+Δx,y,z−Δz/2
z + P

t,x,y,z−Δz/2
z

ΔxΔz
.

(6.35)

To test our FDTD implementation we simulated the scattering from a silver
nanosphere and compared our simulation results with those calculated using the
nonlocal Mie theory [22]. To show the agreement between the nonlocal Mie theory
and our nonlocal implementation for FDTD, we plot the extinction spectra for
three silver nanosphere sizes, 1 nm, 2 nm and 5 nm in Fig. 6.3. Here we used the
Drude+2CP model [16] for silver and replaced the Drude term with Eq. (6.34)
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Fig. 6.3 Extinction cross sections for 5 nm (red), 2 nm (blue), and 1 nm (green) silver spheres. The
dots are for the FDTD simulations and the lines for the Mie theory
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for the free electrons. From the figure we see that the FDTD implementation is
in agreement with Mie Theory. Also notice that there is a blue shift between the
5 nm, 2 nm and 1 nm resonances. This is a trend that can be seen experimentally but
is not present in the local approximation [23].

6.5 Application to Plasmonic Metasurfaces

To illustrate the usefulness of simulations in nanophotonics, we describe here a
few examples of our work on plasmonic metasurfaces. The basic element used
to create a metasurface (optical surface) is called meta-atom, and it can be a
nanoparticle or a more complex nanostructure. We describe here two types of optical
surfaces, random and deterministic surfaces, depending on the way the meta-atoms
are arranged.

6.5.1 Plasmonic Coloring

Random surfaces have been exploited for coloring coins at the Royal Canadian Mint.
These surfaces are realized via a laser writing technique which is responsible for the
creation of nanoparticles of different sizes and randomly distributed on an irregular
surface. Understanding the color formation in such a messy configuration could not
be realized without the help of a simulation. Through large-scale electrodynamics
simulations we were able to qualitatively reproduce the palette of colors obtained
via direct laser writing on silver [24]. More details on the simulation approach
are reported in chapter “Modelling of Coloured Metal Surfaces by Plasmonics
Nanoparticles” in this volume.

6.5.2 Nonlinear Plasmonics

Recently, hybrid nanostructures have been proposed to boost the nonlinear signal
production at the third harmonic. These nanostructures consist of a metallic dimer
nanoantenna with a highly nonlinear material in the gap (where the linear field
enhancement takes place). Separating the nonlinear contributions from the metal
and from the gap material in the far-field is experimentally challenging. Simulations
in this case, due to the possibility of turning on and off the nonlinear emission from
each part of the hybrid nanostructure, were able to identify the role each component
plays in the far-field radiation [25].

Simulations also allow optimizing the design of the hybrid nanoantenna to
control the phase and polarization of nonlinear optical signal generation. This led to
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Fig. 6.4 Time frame of the FDTD simulation performed for a full metasurface of butterfly
nanoantennas

the design of the so called “butterfly nanoantenna”, as described in more detail in
chapter “Plasmonic Metasurfaces for Nonlinear Structured Light” in this volume.

In this case, large-scale simulations were key to the design and simulation of an
optical surface containing up to ∼3600 butterfly nanoantennas to generate a third
harmonic far-field beam carrying an orbital angular momentum of 41. This large
metasurface for its complexity could not be conceived in other ways. In Fig. 6.4
we show a snapshot extracted from the FDTD simulation for the full metasurface
excited by left circular polarization.
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