
Chapter 15
Novel Aspects of the Fabry-Pérot
Resonator

Markus Pollnau and Nur Ismail

Abstract We systematically characterize the Fabry-Pérot resonator. We derive the
generic Airy distribution of a Fabry-Pérot resonator, which equals the internal reso-
nance enhancement factor, and show that all related Airy distributions are obtained
by simple scaling factors. We verify that the sum of the mode profiles of all longitu-
dinal modes generates the Airy distribution. Consequently, the resonator losses are
quantified by the linewidths of the underlying Lorentzian lines and not by the mea-
sured Airy linewidth. We introduce the Lorentzian finesse which provides the spec-
tral resolution of the Lorentzian lines, whereas the usually considered Airy finesse
quantifies the performance of the Fabry-Pérot resonator as a scanning spectrometer.

15.1 Introduction

The Fabry-Pérot resonator which was invented in 1899 [1] has proven very useful
as a high-finesse interferometer in uncountable spectroscopic applications. Since
1960, it has also formed the fundamental basis for a large class of open resonators
that have enabled laser oscillation. The Fabry-Pérot resonator has been extensively
investigated, experimentally as well as theoretically. However, when the losses
become high, discrepancies between the theoretical approaches surface, common
approximations turn invalid, and even the definitions of typical parameters break
down or prove inappropriate.
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We analyze the performance and relevant parameters of the Fabry-Pérot res-
onator, with reference to the book on the Fabry-Pérot resonator by Vaughan [2]
and the standard text books by Siegman [3], Svelto [4, 5], and Saleh and Teich
[6–8]. We demonstrate that the sum of the mode profiles of all longitudinal
modes, which are Lorentzian-shaped in case of frequency-independent losses, is
the fundamental spectral function that characterizes the Fabry-Pérot resonator.
It physically generates the Airy distribution of the Fabry-Pérot resonator. The
resonator losses are quantified by the linewidths of the underlying Lorentzian lines.
We define the Lorentzian finesse which provides the resolution of the Lorentzian
lines, whereas the usually considered Airy finesse describes the performance of the
Fabry-Pérot resonator as a scanning spectrometer.

15.2 Resonator Losses and Outcoupled Light

Throughout this paper, we assume a two-mirror Fabry-Pérot resonator of geomet-
rical length �, homogeneously filled with a medium of refractive index nr. Both, �

and nr are assumed to vary insignificantly over the frequency range of interest. The
round-trip time tRT of light travelling in the resonator with speed c = c0/nr, where
c0 is the speed of light in vacuum, is given by

tRT = 2�

c
. (15.1)

Outcoupling losses occur due to non-perfect reflectivity of the two mirrors,

r2
i = Ri = 1 − t2

out,i = 1 − Tout,i = e−tRT /τout,i ⇐⇒
1

τout,i
= − ln(Ri)

tRT
= − ln(1−Tout,i)

tRT
.

(15.2)

Here, ri(ν) and Ri(ν) are the electric-field and intensity reflectivities, respectively,
tout,i(ν) and Tout,i(ν) are the electric-field and intensity transmissions, respectively,
and τ out,i(ν) is the exponential decay time resulting from the outcoupling loss at
mirror i. All other losses shall be neglected. The photon-decay time τ c(ν) of the
resonator is then given by

1

τc

=
∑

i

1

τout,i

=
∑
i

δout,i

tRT

=
∑
i

− ln (Ri)

tRT

. (15.3)

The number ϕ(t) of photons at frequency ν, present inside the resonator at time
t, is described via the photon-decay time τ c(ν) by the differential rate equation

d

dt
ϕ(t) = −Rdecay(t) = − 1

τc

ϕ(t). (15.4)
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Rdecay(t) is the photon-decay rate per unit time. With a number ϕs of photons present
at the starting time t = 0, integration delivers

ϕ(t) = ϕse
−t/τc . (15.5)

With φ(ν) quantifying the single-pass phase shift between the mirrors, the round-
trip phase shift at frequency ν accumulates to

2φ (ν) = 2πνtRT = 2πν
2�

c
. (15.6)

We have assumed above that the refractive index nr of the medium and, thus, the
speed of light c are independent of frequency. Consequently, also the round-trip
time tRT becomes independent of frequency. Resonances occur at frequencies at
which light exhibits constructive interference after one round trip. The difference in
phase shift per round trip between adjacent resonance frequencies amounts to 2π,
from which the free spectral range 	νFSR then derives as [2].

d

dν
(2φ) = d

dν
(2πνtRT ) = 2πtRT ⇒ 2π

	νFSR

= 2πtRT ⇒ 	νFSR = 1

tRT

.

(15.7)

Each resonator mode with its mode index q, where q is an integer number in the
interval [−∞, . . . , −1, 0, 1, . . . , ∞], is associated with a resonance frequency νq

and wavenumber kq,

νq = q	νFSR = q/tRT ⇒ kq = 2πq	νFSR

c
. (15.8)

Two modes with opposite values ±q and ±k of modal index and wavenumber,
respectively, physically representing opposite propagation directions, occur at the
same absolute value |νq| of frequency.

According to Eq. (15.5), light at frequency ν oscillating inside the resonator
decays out of the resonator with a time constant of τ c(ν). If the resonator losses are
independent of frequency, the photon-decay time τ c(ν) is the same at all frequencies.
The decaying electric field at frequency νq is represented by a damped harmonic
oscillation with an initial amplitude of Eq,s and a decay-time constant of 2τ c. In
phasor notation, it can be expressed as

Eq(t) =
{

Eq,se
i2πνq t e−t/(2τc) t ≥ 0

0 t < 0
. (15.9)
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Fourier transformation of the electric field in time provides the electric field per unit
frequency interval,

Ẽq (ν) =
+∞∫
−∞

Eq(t)e−i2πνtdt = Eq,s

+∞∫

0
e−[1/(2τc)+i2π(ν−νq)]t dt

= Eq,s
1

(2τc)
−1+i2π(ν−νq)

.

(15.10)

Each mode has a normalized spectral line shape per unit frequency interval given
by [9].

γ̃q (ν) = 1
τc

∣∣∣∣
Ẽq (ν)

Eq,s

∣∣∣∣
2

= 1
τc

∣∣∣∣
1

(2τc)
−1+i2π(ν−νq)

∣∣∣∣
2

= 1
τc

1
(2τc)

−2+4π2(ν−νq)
2

= 1
π

1/(4πτc)

1/(4πτc)
2+(ν−νq)

2 with
∫

γ̃q (ν) dν = 1,

(15.11)

in units of (1/Hz). Introducing the full-width-at-half-maximum (FWHM) linewidth
	νc of the Lorentzian spectral line shape, we obtain

	νc = 1

2πτc

⇒ γ̃q (ν) = 1

π

	νc/2

(	νc/2)2 + (
ν − νq

)2 with
∫

γ̃q (ν) dν = 1.

(15.12)

Calibrated to a peak height of unity, we obtain the Lorentzian lines, in units of (1):

γq,L (ν) = π

2
	νcγ̃q (ν) = (	νc)

2

(	νc)
2 + 4

(
ν − νq

)2 with γq,L

(
νq

) = 1.

(15.13)

When repeating the above Fourier transformation for all the modes with mode
index q in the resonator, one obtains the full mode spectrum of the resonator.

15.3 Airy Distributions of the Fabry–Pérot Resonator

In this Section, we derive the generic Airy distribution, show that it represents
the spectral dependence of the internal resonant enhancement factor, and demon-
strate that all other Airy distributions describing the circulating, back-circulating,
transmitted, and back-transmitted intensity (Fig. 15.1) only include simple scaling
factors, depending on whether the light incident upon mirror 1 or its fraction
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Fig. 15.1 Fabry-Pérot resonator with electric-field mirror reflectivities r1 and r2. Indicated are
the characteristic electric fields produced by an electric field Einc incident upon mirror 1: Erefl,1
initially reflected at mirror 1, Elaun launched through mirror 1, Ecirc and Eb-circ circulating inside
the resonator in forward and backward propagation direction, respectively, ERT propagating inside
the resonator after one round trip, Etrans transmitted through mirror 2, Eback transmitted through
mirror 1, and the total field Erefl propagating backward. Interference occurs at the left- and right-
hand sides of mirror 1 between Erefl,1 and Eback, resulting in Erefl, and between Elaun and ERT ,
resulting in Ecirc, respectively. (Figure taken from Ref. [10])

launched into the resonator is considered as a reference. We verify that the physical
origin of the Airy distribution is the sum of mode profiles of the longitudinal
resonator modes.

15.3.1 Generic Airy Distribution: The Internal Resonance
Enhancement Factor

The response of the Fabry-Pérot resonator is most easily derived by use of the
circulating-field approach [3], as displayed in Fig. 15.1. This approach assumes a
steady state and derives the Airy distributions via the electric field Ecirc circulating
inside the resonator. In fact, Ecirc is the field propagating in the forward direction
from mirror 1 to mirror 2 after interference between the field ERT that is circulating
after one round trip, i.e., after having suffered outcoupling losses at both mirrors,
and the field Elaun launched through the first mirror.

With the phase shift 2φ of Eq. (15.6) accumulated in one round trip, the field Ecirc

can be related to the field Elaun that is launched into the resonator in the situation of
Fig. 15.1a by

Ecirc = Elaun + ERT = Elaun + r1r2e
−i2φEcirc ⇒ Ecirc

Elaun

= 1

1 − r1r2e−i2φ
.

(15.14)

Exploiting the identities

∣∣e−iφ
∣∣2 = |cos (φ) − i sin (φ)|2 = cos2 (φ) + sin2 (φ) = 1

cos (2φ) = 1 − 2sin2 (φ)
(15.15)
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yields

∣∣1 − r1r2e
−i2φ

∣∣2 = |1 − r1r2 cos (2φ) + ir1r2 sin (2φ)|2
= [1 − r1r2 cos (2φ)]2 + r2

1 r2
2 sin2 (2φ)

= 1 + R1R2 − 2
√

R1R2 cos (2φ) = (
1 − √

R1R2
)2 + 4

√
R1R2sin2 (φ) ,

(15.16)

∣∣r1 − r2e
−i2φ

∣∣2 = |r1 − r2 cos (2φ) + ir2 sin (2φ)|2
= [r1 − r2 cos (2φ)]2 + [r2 sin (2φ)]2

= R1 + R2 − 2
√

R1R2 cos (2φ)

= R1 + R2 − 2
√

R1R2
[
1 − 2sin2 (φ)

]

= (√
R1 − √

R2
)2 + 4

√
R1R2sin2 (φ) .

(15.17)

The generic Airy distribution, which considers solely the physical processes
exhibited by light inside the resonator, then derives as the intensity circulating in
the resonator relative to the intensity launched, which by use of Eqs. (15.15) and
(15.16) yields

Acirc = Icirc

Ilaun
= |Ecirc|2

|Elaun|2 = 1

|1−r1r2e
−i2φ|2

= 1

(1−√
R1R2)

2+4
√

R1R2sin2(φ)
.

(15.18)

Physically, Acirc represents the spectrally dependent internal resonance enhancement
which the resonator provides to the light launched into it. It is displayed for different
mirror reflectivities in Fig. 15.2. At the resonance frequencies νq, where sin(φ)
equals zero, the internal resonance enhancement factor is

Acirc

(
νq

) = 1
(
1 − √

R1R2
)2 . (15.19)

15.3.2 Other Airy Distributions

Once generic Airy distribution of Eq. (15.18), is established, all other Airy
distributions, i.e., the observed light intensities relative to the launched or initial
intensity from the light source (Fig. 15.1) can then be straight-forwardly deduced
by simple scaling factors. Since the intensity launched into the resonator equals the
transmitted fraction of the intensity incident upon mirror 1,

Ilaun = (1 − R1) Iinc, (15.20)
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Fig. 15.2 Generic Airy distribution Acirc, equaling the spectrally dependent internal resonance
enhancement which the resonator provides to light that is launched into it. For the curve with
R1 = R2 = 0.9, the peak value is at Acirc(νq) = 100, outside the scale of the ordinate. (Figure taken
from Ref. [10])

and the intensities transmitted through mirror 2, reflected at mirror 2, and transmit-
ted through mirror 1 are the transmitted and reflected/transmitted fractions of the
intensity circulating inside the resonator,

Itrans = (1 − R2) Icirc, Ib−circ = R2Icirc, Iback = (1 − R1) Ib−circ (15.21)

respectively, one obtains the following Airy distributions:

Ab-circ = Ib-circ
Ilaun

= R2Acirc, (15.22)

Atrans = Itrans

Ilaun

= (1 − R2) Acirc, (15.23)

Aback = Iback

Ilaun

= (1 − R1) R2Acirc, (15.24)

Aemit = Atrans + Aback = Itrans + Iback

Ilaun

= (1 − R1R2) Acirc, (15.25)

A′
circ = Icirc

Iinc

= (1 − R1) Acirc, (15.26)
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A′
b-circ = Ib-circ

Iinc

= (1 − R1) R2Acirc, (15.27)

A′
trans = Itrans

Iinc

= (1 − R1) (1 − R2) Acirc, (15.28)

A′
back = Iback

Iinc

= (1 − R1)
2R2Acirc, (15.29)

A′
emit = A′

trans + A′
back = Itrans+Iback

Iinc

= (1 − R1) (1 − R1R2) Acirc.
(15.30)

The index “emit” denotes Airy distributions that consider the sum of intensities
emitted on both sides of the resonator. The prime denotes Airy distributions with
respect to the incident intensity Iinc.

The back-transmitted intensity Iback cannot be measured, because also the ini-
tially back-reflected light adds to the backward-propagating signal. The measurable
case of the intensity resulting from the interference of both backward-propagating
electric fields is derived as follows. The back-transmitted electric field is

Eback = it1r2Ecirce
−i2φ ⇒ Eback

Einc

= −t2
1 r2e

−i2φ

1 − r1r2e−i2φ
. (15.31)

Including the initially back-reflected electric field, Erefl,1 = r1Einc, the total electric
field propagating backward from mirror 1 is

Eref l

Einc

= Eref l,1 + Eback

Einc

= r1 + −t2
1 r2e

−i2φ

1 − r1r2e−i2φ
= r1 − r2e

−i2φ

1 − r1r2e−i2φ
. (15.32)

Exploiting Eqs. (15.15, 15.16, and 15.17), the total relative intensity propagating
backward from mirror 1 amounts to

A′
ref l = Iref l

Iinc
= |Eref l|2

|Einc|2 =
∣∣r1−r2e

−i2φ
∣∣2

|1−r1r2e
−i2φ|2 = (

√
R1−√

R2)
2+4

√
R1R2sin2(φ)

(1−√
R1R2)

2+4
√

R1R2sin2(φ)

⇒ A′
trans + A′

ref l = Itrans+Iref l

Iinc
= 1,

(15.33)

as expected for a resonator that exhibits only outcoupling losses. At the resonance
frequencies, the back-emitted electric field Eback destructively interferes with the
electric field Erefl,1 initially back-reflected.
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A′
circ of Eq. (15.26) represents the external resonance enhancement factor

with respect to Iinc. The external resonance enhancement factor at the resonance
frequencies is

A′
circ

(
νq

) = (1 − R1)
(
1 − √

R1R2
)2 = (1 − R1) Acirc

(
νq

)
. (15.34)

In experimental situations, often light is transmitted through a Fabry-Pérot res-
onator in order to characterize the resonator or to use it as a scanning interferometer
(see later in Sect. 15.4). Therefore, an often applied Airy distribution is A′

trans of Eq.
(15.28). It describes the fraction Itrans of the intensity Iinc of a light source incident
upon mirror 1 that is transmitted through mirror 2, see Fig. 15.1. A′

trans is displayed
in Fig. 15.3 (solid lines) for different values of the reflectivities R1 = R2. Its peak
value at the resonance frequencies νq is

A′
trans

(
νq

) = (1 − R1) (1 − R2)
(
1 − √

R1R2
)2

R1=R2= 1. (15.35)

Fig. 15.3 Airy distribution A′
trans (solid lines), corresponding to light transmitted through a

Fabry-Pérot resonator, calculated from Eq. (15.28) for different values of the reflectivities R1 = R2,
and comparison with a single Lorentzian line (dashed lines) calculated from Eq. (15.13) for
the same R1 = R2. At half maximum (black line), with decreasing reflectivities the FWHM
linewidth 	νAiry of the Airy distribution broadens compared to the FWHM linewidth 	νc of its
corresponding Lorentzian line: R1 = R2 = 0.9, 0.6, 0.32, 0.172 results in 	νAiry/	νc = 1.001,
1.022, 1.132, 1.717, respectively. (Figure taken from Ref. [10])
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15.3.3 Airy Distribution As a Sum of Mode Profiles

In Fig. 15.3 one observes that, at high reflectivity, there is almost perfect agreement
between the spectral shape of the Airy distribution (solid purple line) and its
underlying Lorentzian lines (dashed purple line), i.e., the former is rather well
represented by the latter. This fact has prompted Saleh and Teich [6] to propose
that in this case the Airy linewidth 	νAiry of a Fabry-Pérot resonator is similar
to the linewidth 	νc = 1/(2πτ c) of its underlying Lorentzian lines, both defined
as FWHM (black line). However, as is generally well known, with decreasing
reflectivity the linewidth of the Airy distribution (solid lines) broadens faster than
that of the underlying Lorentzian lines (dashed lines).

Svelto [5] attributes this discrepancy to Eq. (15.5) being only an approximation,
thereby implicating that also Eq. (15.11) is only an approximation, such that the
Airy linewidth 	νAiry of a Fabry-Pérot resonator can only at high reflectivity be
approximated by the linewidth 	νc of its underlying Lorentzian lines. We will
demonstrate that the discrepancy has a different reason.

According to Koppelmann [11], Bayer-Helms [12] “showed that the Airy
distribution can be represented exactly” by the sum of Lorentzian spectral line
shapes times a calibration factor. Firstly, while being literally correct, this statement
is physically misleading, secondly, the calibration factor used in [11] remains
unexplained, thirdly, the equivalence is shown only for equal reflectivities, R1 = R2,
and finally, the equivalence is not investigated for non-Lorentzian spectral line
shapes.

Here we verify that the Airy distribution is nothing else but the sum of the mode
profiles of the longitudinal resonator modes, thereby revealing the physical origin
of the Airy distribution. Our approach starts from the electric field Ecirc circulating
inside the resonator, considers the exponential decay in time of this field through
both mirrors of the resonator, see Fig. 15.1, Fourier transforms it to frequency space
according to Eq. (15.10) to obtain the normalized spectral line shapes γ̃q (ν) of Eq.
(15.11), divides it by the round-trip time tRT to account for how the total circulating
electric-field intensity is longitudinally distributed in the resonator and coupled out
per unit time, resulting in the emitted mode profiles,

γq,emit (ν) = 1

tRT

γ̃q (ν) , (15.36)

in units of (1), and then sums over the emitted mode profiles of all longitudinal
modes at positive, zero, and negative frequencies. Consequently, the sum of emitted
mode profiles describes an experiment that must result in the Airy distribution Aemit

of Eq. (15.25). Exploiting the derivation given in Appendix C of [10], the sum of
emitted mode profiles of Eq. (15.36) yields

∞∑

q=−∞
γq,emit (ν) = 1 − R1R2

(
1 − √

R1R2
)2 + 4

√
R1R2sin2 (φ)

= Aemit , (15.37)
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which is indeed equal to Eq. (15.25), with Eq. (15.18) inserted. Each spectral line
shape γ̃q (ν) of Eq. (15.11) and mode profile γ q, emit(ν) of Eq. (15.36) is extended
over the infinite frequency range, consequently light at a specific frequency ν

inside the resonator excites all longitudinal modes of the resonator. However, the
contributions from different longitudinal modes to the light at frequency ν do not
interfere with each other, because all optical modes are orthogonal with each other.
For this reason, the sum in Eq. (15.37) is over the intensity mode profiles γ q, emit(ν)
rather than over the electric fields. Because of resonant enhancement of the launched
light the peak value of Aemit at the resonance frequencies νq,

Aemit

(
νq

) = 1 − R1R2
(
1 − √

R1R2
)2

= 1 + √
R1R2

1 − √
R1R2

> 1, (15.38)

becomes larger than unity. Nevertheless, because of Eqs. (15.20) and (15.33) the
energy of the system is conserved.

The observation that with decreasing R1 and R2 the linewidth of the resulting
Airy distribution in Fig. 15.3 is increasingly broader than the linewidth of the
underlying Lorentzian lines simply arises from the fact that one sums up mode
profiles (with the same linewidth as the Lorentzian lines) that resonate at different
frequencies. It does not constitute a discrepancy, as has often been proposed.

The derivation shown here demonstrates that—from a physical point of view—
the spectral line shapes and mode profiles are the fundamental spectral functions
that characterize the Fabry-Pérot resonator and their sum quantifies its spectral
response. As we will see in Sect. 15.4, this fundamental understanding has direct
consequences for the definitions of linewidth and finesse.

The same simple scaling factors of Eqs. (15.20) and (15.21) that provide the
relations between the individual Airy distributions, see Eqs. (15.18) and (15.22,
15.23, 15.24, 15.25, 15.26, 15.27, 15.28, 15.29, 15.30), also provide the relations
among γ q, emit(ν) and the other mode profiles:

γq,circ = 1
R2

γq,b-circ = 1
1−R2

γq,trans = 1
1−R1

γq,back = 1
1−R1R2

γq,emit

γ ′
q,circ = 1

R2
γ ′
q,b-circ = 1

1−R2
γ ′
q,trans = 1

1−R1
γ ′
q,back = 1

1−R1R2
γ ′
q,emit

= (1 − R1) γq,circ.

(15.39)

The various mode profiles γ q(ν) and γ ′
q (ν) are calibrated with respect to the

launched and the incident intensity, respectively, and the sum over one of these mode
profiles at all resonance frequencies generates the corresponding Airy distribution.
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15.4 Lorentzian Linewidth and Finesse Versus Airy
Linewidth and Finesse

A commonly accepted definition of spectral resolution the Taylor criterion [13]. It
proposes that two spectral lines can be resolved if the individual lines cross at half
intensity. In the case of two identical, symmetric spectral lines their peaks would
then be separated by their FWHM. The Taylor criterion is utilized in the following.

15.4.1 Characterizing the Fabry–Pérot Resonator: Lorentzian
Linewidth and Finesse

When launching light into the Fabry-Pérot resonator in a non-scanning experiment,
i.e., at fixed resonator length (and fixed angle of incidence), the Fabry-Pérot
resonator becomes the object of investigation. The spectral line shapes, Lorentzian
lines, and mode profiles are the fundamental functions. By measuring the sum of
mode profiles, the Airy distribution, one can derive the total loss of the Fabry-Pérot
resonator via recalculating the Lorentzian linewidth 	νc of Eq. (15.12), displayed
(blue line) relative to the free spectral range in Fig. 15.4a, c.

The underlying Lorentzian lines can be resolved as long as the Taylor criterion
is obeyed (Fig. 15.5). Consequently, one can define a parameter which we call the
Lorentzian finesse of a Fabry-Pérot resonator:

Fc := 	νFSR

	νc

= 2π

− ln (R1R2)
. (15.40)

It is displayed as the blue line in Fig. 15.4b, d. The Lorentzian finesse Fc

has a fundamental physical meaning: it describes how well the Lorentzian lines
underlying the Airy distribution can be resolved when measuring the Airy distri-
bution. A Fabry-Pérot resonator generating single-longitudinal-mode laser light is
characterized by its Lorentzian linewidth and finesse.

Since 	νc exists for any mirror reflectivity, the definition of the Lorentzian
finesse does not break down at a critical value. However, at the point where

	νc = 	νFSR ⇒ R1R2 = e−2π ≈ 0.001867, (15.41)

equivalent to Fc = 1, the Taylor criterion for the spectral resolution of a single
Airy distribution is reached. For equal mirror reflectivities, this point occurs when
R1 = R2 ≈ 4.32%. Therefore, the linewidth of the Lorentzian lines underlying
the Airy distribution of a Fabry-Pérot resonator can be resolved by measuring the
Airy distribution, hence its resonator losses can be spectroscopically determined,
until this point. Obviously, the Lorentzian finesse according to the definition of
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Fig. 15.4 (a) Relative Lorentzian linewidth 	νc/	νFSR, with 	νc from Eq. (15.12) (blue curve),
relative Airy linewidth 	νAiry/	νFSR, with 	νAiry from Eq. (15.43) (green curve), and its
approximation of Eq. (15.46) (red curve), and (b) Lorentzian finesse Fc of Eq. (15.40) (blue curve),
Airy finesse FAiry of Eq. (15.45) (green curve), and its approximation of Eq. (15.47) (red curve)
as a function of reflectivity value R1R2. (c and d) Zoom into the low-reflectivity region. The exact
solutions of the Airy linewidth and finesse (green lines) correctly break down at 	νAiry = 	νFSR,
equivalent to FAiry = 1, whereas their approximations (red lines) incorrectly do not break down. (e)
Ratio between the Airy linewidth 	νAiry of Eq. (15.43) and the Lorentzian linewidth 	νc of Eq.
(15.12), equaling the ratio between the Lorentzian finesse Fc of Eq. (15.40) and the Airy finesse
FAiry of Eq. (15.45), as a function of reflectivity value R1R2. (Figure taken from Ref. [10])
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Fig. 15.5 Illustration of the physical meaning of the Lorentzian finesse Fc of a Fabry-Pérot
resonator. Displayed is the situation for R1 = R2 ≈ 4.32%, at which 	νc = 	νFSR and Fc = 1,
i.e., two adjacent Lorentzian lines (dashed colored lines, only 5 lines are shown for clarity) cross
at half maximum (solid black line) and the Taylor criterion for spectrally resolving two peaks in
the resulting Airy distribution (solid purple line) is reached. (Figure taken from Ref. [10])

Eq. (15.40) plays an essential role in the characterization of low-reflectivity or
otherwise high-loss Fabry-Pérot resonators.

15.4.2 Scanning the Fabry-Pérot Resonator: Airy Linewidth
and Finesse

A different situation occurs when the Fabry-Pérot resonator is used as a scanning
interferometer, i.e., at varying resonator length (or angle of incidence), to spectro-
scopically distinguish spectral lines at different frequencies within one free spectral
range. In this case several Airy distributions, each one created by an individual
spectral line, must be resolved. Therefore, now the Airy distribution becomes the
underlying fundamental function and the measurement delivers a sum of Airy
distributions. The parameters that properly quantify this situation are the Airy
linewidth 	νAiry and the Airy finesse FAiry.

On either side of the peak of Eq. (15.35) located at νq, the transmitted intensity
decreases to A′

trans

(
νq

)
/2 when the phase shift φ changes by the amount 	φ and,

accordingly, sin2(φ) changes from 0, such that in the denominator of Acirc of Eq.
(15.18)
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4
√

R1R2sin2 (	φ) =
(

1 − √
R1R2

)2 ⇒ 	φ = arcsin

(
1 − √

R1R2

2 4
√

R1R2

)
.

(15.42)

Exploiting Eqs. (15.6) and (15.7) to calculate φ = πν/	νFSR, resulting in
	φ = π (	νAiry/2)/	νFSR, then provides the FWHM linewidth 	νAiry of the
Airy distribution [3],

	νAiry = 	νFSR

2

π
arc sin

(
1 − √

R1R2

2 4
√

R1R2

)
. (15.43)

The Airy linewidth 	νAiry is displayed as the green curve in Fig. 15.4a, c in direct
comparison with the Lorentzian linewidth 	νc. The ratio between 	νAiry of Eq.
(15.43) and 	νc of Eq. (15.12) is displayed in Fig. 15.4e.

The concept of defining the linewidth of the Airy peaks as FWHM breaks down at
	νAiry = 	νFSR (solid red line in Fig. 15.3), because at this point the Airy linewidth
instantaneously jumps to an infinite value. For lower reflectivity values R1R2, the
FWHM linewidth of the Airy peaks is undefined and other definitions or concepts
would have to be utilized to describe the situation. The limiting case occurs at

	νAiry = 	νFSR ⇒ 1 − √
R1R2

2 4
√

R1R2
= 1 ⇒ R1R2 = 17 − 12

√
2 ≈ 0.02944.

(15.44)

For equal mirror reflectivities, this point is reached when R1 = R2 ≈ 17.2% (solid
red line in Fig. 15.3).

The finesse of the Airy distribution of a Fabry-Pérot resonator, which is displayed
as the green curve in Fig. 15.4b, d in direct comparison with the Lorentzian finesse
Fc, is properly defined as

FAiry
!:= 	νFSR

	νAiry

= π

2

[
arc sin

(
1 − √

R1R2

2 4
√

R1R2

)]−1

. (15.45)

When scanning the length of the Fabry-Pérot resonator (or alternatively the angle
of incident light), the Airy finesse lucidly quantifies the maximum number of Airy
distributions created by light at individual frequencies νm within the free spectral
range of the Fabry-Pérot resonator, whose adjacent peaks can be unambiguously
distinguished spectroscopically, i.e., they do not overlap at their FWHM (Fig. 15.6).
Consequently, this definition of the Airy finesse is consistent with the Taylor
criterion of the resolution of a spectrometer and is, therefore, denoted by an
exclamation mark in Eq. (15.45). Since the concept of the FWHM linewidth breaks
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Fig. 15.6 Illustration of the physical meaning of the Airy finesse FAiry of a Fabry-Pérot resonator.
When scanning the Fabry-Pérot length (or alternatively the angle of incident light), Airy distribu-
tions (solid lines) are created by signals at individual frequencies. If the signals occur at frequencies
νm = νq + m	νAiry, where m is an integer starting at q, the Airy distributions at adjacent
frequencies are separated from each other by the linewidth 	νAiry, thereby fulfilling the Taylor
criterion for the spectroscopic resolution of two adjacent peaks. The maximum number of signals
that can be resolved is FAiry. Since in this specific example the reflectivities R1 = R2 = 0.59928
have been chosen such that FAiry = 6 is an integer, the signal for m = FAiry at the frequency
νq + FAiry	νAiry = νq + 	νFSR coincides with the signal for m = q at νq. In this example, a
maximum of FAiry = 6 peaks can be resolved when applying the Taylor criterion. However, the sum
of two adjacent “resolvable” peaks (dashed gray line) exhibits a deeper dip between the adjacent
peaks to be resolved, i.e., a better resolution, than the sum of all “resolvable” peaks (dashed black
line), see the difference highlighted in the red circle. (Figure taken from Ref. [10])

down at 	νAiry = 	νFSR, consequently the Airy finesse is defined only until
FAiry = 1, see Fig. 15.4d, because the arcsin function in Eq. (15.45) cannot produce
values above π /2.

Generally, one can argue that the Taylor criterion leaves some ambiguity to the
definition of the limit of spectral resolution, because it does not state whether it
requires the absence or allows for the presence of additional resolvable spectral
lines. In the example of Fig. 15.6, the sum of two adjacent “resolvable” Airy
distributions (dashed gray line) is better resolvable than the sum of all “resolvable”
Airy distributions (dashed black line), because in the latter case additional Airy
distributions contribute, see the dashed lines within the red circle in Fig. 15.6. If
either of the two options defines the limit of spectral resolution, the other cannot.
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15.4.3 Questionable Approximations and Definitions

Often the unnecessary approximation sin(φ) ≈ φ is made when deriving from A′
trans

of Eq. (15.28) the Airy linewidth [2, 4]. In contrast to the exact Eqs. (15.42) and
(15.43), it leads to

4
√

R1R2(	φ)2 ≈ (
1 − √

R1R2
)2 ⇒

	νAiry ≈ 	νFSR
2
π
	φ = 	νFSR

1
π

1−√
R1R2

4√R1R2
.

(15.46)

This approximation of the Airy linewidth, displayed as the red curve in Fig. 15.4a,
c, deviates from the correct curve at low reflectivities and incorrectly does not break
down when 	νAiry > 	νFSR. This approximation is then typically also inserted into
Eq. (15.45) to calculate the Airy finesse [4], resulting in

FAiry
!:= 	νFSR

	νAiry

≈ π
4
√

R1R2

1 − √
R1R2

. (15.47)

Vaughan [2] and Siegman [3] even defined the Airy finesse by its approximation of
Eq. (15.47),

�

FAiry
?:= π

4
√

R1R2

1 − √
R1R2

≈ 	νFSR

	νAiry

, (15.48)

thereby depriving this parameter of its lucid meaning. Since the definition of
Eq. (15.48) does not comply with the Taylor criterion, it is denoted by a question
mark. Saleh and Teich [7, 8] also proposed Eq. (15.48) for the Airy finesse, but from
their derivation it remains unclear whether they consider it as a definition or as an
approximation of Eq. (15.45).

15.4.4 Response to Frequency-Dependent Reflectivity

In the previous Sections we described a Fabry-Pérot resonator whose mirror
reflectivities are independent of frequency. We showed that the Airy distribution is
nothing else but the sum of its underlying mode profiles. Now we consider the mirror
reflectivities as general functions of frequency, Ri(ν), such that the photon-decay
time τ c(ν) of Eq. (15.3) becomes a function of frequency. As a result, the spectral
line shapes γ̃q (ν) of Eq. (15.11), the mode profiles γ q, emit(ν) of Eq. (15.36) and all
other mode profiles, as well as the Airy distribution Aemit(ν) of Eq. (15.37) and all
other Airy distributions, are spectrally modified. In Eqs. (15.12) and (15.13), 	νc

turns into a local function of frequency, thereby losing its meaning as the FWHM
linewidth. Nevertheless, all Airy distributions fundamentally remain the sums of
their corresponding mode profiles. Consequently, even for frequency-dependent
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reflectivities Ri(ν) we can calculate the spectral line shape γ̃q (ν) and mode profile
γ q, emit(ν) of each mode directly from Eqs. (15.11) and (15.36), respectively, and
obtain all other mode profiles via the simple scaling factors of Eq. (15.39).

15.5 Summary

The understanding that the Airy distribution describing the spectral transmission
of a Fabry-Pérot resonator physically originates in the sum of mode profiles of the
longitudinal resonator modes has fundamental consequences. The resonator losses
are related to the linewidth of the Lorentzian lines rather than the linewidth of
the Airy distribution. Hence, a new parameter, the Lorentzian finesse, becomes
important. Once the internal resonance enhancement, equaling the generic Airy
distribution that characterizes the light intensity that is forward circulating inside
the resonator, is known, all other Airy distributions of back-circulating, transmitted,
back-transmitted, and total emitted light intensity can be derived by simple scaling
factors. Furthermore, in the case of frequency-dependent mirror reflectivities, the
deformed spectral line shapes and mode profiles of the underlying modes can be
derived from the same simple equations. Also in this generalized situation, each
sum of mode profiles generates the corresponding Airy distribution.
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