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Chapter 5
Immune Cell Metabolism in Tumor 
Microenvironment

Yongsheng Li, Yisong Y. Wan, and Bo Zhu

Abstract Tumor microenvironment (TME) is composed of tumor cells, immune 
cells, cytokines, extracellular matrix, etc. The immune system and the metabolisms 
of glucose, lipids, amino acids, and nucleotides are integrated in the tumorigenesis 
and development. Cancer cells and immune cells show metabolic reprogramming in 
the TME, which intimately links immune cell functions and edits tumor immunol-
ogy. Recent findings in immune cell metabolism hold the promising possibilities 
toward clinical therapeutics for treating cancer. This chapter introduces the updated 
understandings of metabolic reprogramming of immune cells in the TME and sug-
gests new directions in manipulation of immune responses for cancer diagnosis and 
therapy.

Keywords Immune cell metabolism • Tumor microenvironment • Cancer stem 
cells • Clinical diagnosis • Drug repositioning

5.1  Introduction

The tumor microenvironment (TME), first proposed by Lord in 1979, is a complex 
integrated system for tumor cell growth [1]. This environment is composed of tumor 
cells, endothelial cells, immune cells, fibroblasts, and extracellular matrix. The 
immune cells in the TME including macrophages, neutrophils, and lymphocytes 
play important roles in tumor immune escape, tolerance, and suppression. Traditional 
theory states that the incidence of cancer is due to failure of immune surveillance [2]. 
However, this theory was unable to fully explain the interplay between immunity and 
tumorigenesis. The immunoediting theory, proposed by Schreiber and Dunn, 
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elucidated the role of the immune system in cancer development from a new per-
spective [3]. Depending on the cellular and environmental context, the immune cells 
may kill tumor cells but also promote tumor development. This theory divides the 
carcinogenesis into three stages: immune clearance, immune balance, and immune 
escape. Immune clearance is similar to the immune surveillance. Immune balance is 
a stalemate stage that the tumor is not completely removed by the immune system, 
in which the tumor characteristics are reshaped by the immune system. Immune 
escape refers to the stage that the tumor escapes immune surveillance after tumor 
cells are edited by the immune system and progress to clinical tumor stage [4].

During the development of cancer, tumor cells and immune cells interact in a 
dynamic microenvironment that determines the outcome of tumorigenesis [5]. In 
the immune clearance phase, the immune system removes tumor cells through 
antigen- specific and nonspecific mechanisms, wherein lymphocytes are the main 
effector cells. If the immune surveillance stage functions effectively and the tumor 
cells are cleared, the immunoediting stage will not ensue. However, the immune 
system is not always effective in removing every tumor cells, especially the ones 
with low immunogenicity. These tumor cells often escape temporarily from the 
immune cell-mediated destruction. The immune balance stage then follows [6]. At 
this stage, the immune system constantly kills high immunogenic tumor cells, 
whereas it is “blind” to the tumor cells with low immunogenicity, resulting in the 
gradual emergence of the tumors with low immunogenic and high malignant pheno-
types. The immune system continues to impose pressure to select for the tumor cells 
with accommodating immunological phenotypes. This Darwin’s natural selection- 
like process is referred to as immune remodeling. The surviving tumor cells with 
low immunogenicity repeatedly stimulate the immune system and eventually induce 
the immune tolerance [5–7]. Tumor cells remodeled by the immune system can 
aberrantly produce inhibitory cytokines including interleukin-10 (IL-10), trans-
forming growth factor-β (TGFβ), and vascular endothelial growth factor (VEGF) 
and induce immunosuppressive cells including regulatory T cells (Tregs) and 
myeloid-derived suppressor cells (MDSCs), fostering an immunosuppressive 
TME. In the TME, T cells are tolerant to tumor-associated antigen and functionally 
suppressive; the professional antigen presentation cells (APCs) are functionally 
defective, leading to hindered antitumor immune response and the systemic immu-
nosuppression [8]. Consequently, establishing the immune-tolerant TME not only 
reduces the ability of the immune system to reject tumors but also promotes the 
immune escape of tumors that should have been rejected.

The metabolomics is an emerging direction of immune and cancer research [9, 
10]. The metabolism of carbohydrates, lipids, and amino acids is the material 
basis of all biological processes. For the development of malignancy, the tumor 
cells must face two challenges: first, obtaining the nutrients needed for the rapid 
growth; second, evading the surveillance and attack from the host immune system. 
Tumor cell’s unique metabolic program can be used to meet these challenges. 
Glycolysis is the major metabolic process used by malignant tumors, even when 
oxygen supply is adequate, which is termed as “Warburg effect” [11]. Glycolysis 
decreases the pH value of the TME; therefore, tumor cells can inhibit the activities 
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of antigen- presenting cells (APCs) and cytotoxic T lymphocytes (CTLs) by con-
trolling the acidity of the microenvironment, eventually leading to tumor cell 
immune escape [12].

Recent studies indicate that tumor-associated immune cells show altered metab-
olism to affect their differentiation, survival, and function [10]. Since the TME 
heavily influences carcinogenesis, the metabolic programming and reprogramming 
of immune cells in the TME and how immune metabolism affects the tumor initia-
tion, development, and metastasis are of great interest and significance [10, 12]. In 
this chapter, we review the current knowledge on the metabolism of the cell types in 
the TME, discuss the emerging concept of the metabolic reprogramming in tumor- 
associated immune cells, and propose the impact of immune metabolism on carci-
nogenesis and clinical applications.

5.2  Metabolism of Cancer Cells and Cancer  
Stem Cells in TME

Aberrant proliferation of cancer cells is fueled by altered metabolism (Fig. 5.1). 
Oncogenic mutations trigger a switch from oxidative phosphorylation (OXPHOS) 
to glycolysis in tumor cells, and hypoxia further enhances this reprogramming [13, 
14]. OXPHOS generates 36 mol ATP from 1 mol glucose, while glycolysis pro-
duces only 4 mol ATP [15]. This seeming inefficient metabolic feature relies on 
abnormal upregulation of the glucose transporters such as GLUT1 [16]. Moreover, 
mutations in tricarboxylic acid (TCA) cycle enzymes such as succinate dehydroge-
nase (SDH) or fumarate hydratase (FH) also promote glycolysis and inhibit 
OXPHOS [14, 17, 18]. Lactic acid is the end product of glycolysis. Lactic acid 
production can be used as a biomarker of tumor metastasis and overall survival [14, 
15]. The secretion of lactic acid by monocarboxylate transporter 4 (MCT4) by can-
cer cells depends on the intracellular and extracellular concentrations of lactic acid 
[19, 20]. The extracellular lactate effects include restricting monocyte conversion to 
dendritic cells (DCs), suppressing cytokine release from DC and CTL, and inhibit-
ing monocyte migration and CTL function. In addition, the release of lactic acid by 
tumor cells to the extracellular space can block the lactic acid secretion from 
immune cells to trigger cell death due to excessive intracellular lactic acid [21, 22].

Cancer cells also obtain energy from high levels of glutamine to support the 
proliferation [23]. Glutaminolysis is the main metabolic pathway regulated in mito-
chondria, through which glutamate is catabolized into alpha-ketoglutarate (α-KG) 
and glutamate. α-KG is then converted to pyruvate via TCA cycle and then to lactate 
[24]. Although combined activation of c-Myc and HIF-1 can induce lactate dehy-
drogenase A (LDHA) and pyruvate dehydrogenase kinase 1 (PDK1) that contribute 
to glycolysis [25, 26], mTOR-SIRT4-glutamate dehydrogenase (GDH) axis and 
c-Myc orchestrate glutaminolysis. Moreover, c-Myc can induce glutamine 
 transporters (SLC5A1) and glutaminase 1 (GLS1) [27, 28]. Glutaminolysis enables 
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Fig. 5.1 Overview of cancer cell metabolism. This diagram depicts the cellular metabolic path-
ways in cancer cells. Abbreviations: 3DG 3-deoxyglucosone, 3PG 3-phosphoglycerate, 6PGD 
6-phosphogluconate dehydrogenase, AGE advanced glycation end product, AR aldose reductase, 
ARG arginase, ATP adenosine triphosphate, CPT carnitine palmitoyltransferase, DHAP dihy-
droxyacetone phosphate, eNOS endothelial nitric oxide synthase, ETC electron transport chain, 
F6P fructose 6-phosphate, F1,6P2 fructose 1,6-bisphosphate, F2,6P2 fructose 2,6 bisphosphate, 
FA fatty acid, G6P glucose 6-phosphate, G6PD glucose 6-phosphate dehydrogenase, GAPDH 
glyceraldehyde 3-phosphate dehydrogenase, GFAT glutamine-6-phosphate amidotransferase, 
GlucN6P glucosamine-6-phosphate, GLS glutaminase, GLUT glucose transporter, GS glutamine 
synthetase, GSH glutathione, hCYS homocysteine, HMG-CoA hydroxymethylglutaryl coenzyme 
A, IDH isocitrate dehydrogenase, LDH lactate dehydrogenase, MCT monocarboxylate transporter, 
ME malic enzyme, MET methionine, meTHF 5.10-methylene-tetrahydrofolate, mTHF 
5- methyltetrahydrofolate, MS methionine synthetase, NAD nicotinamide adenine dinucleotide, 
NADPH nicotinamide adenine dinucleotide phosphate, NO nitric oxide, ODC ornithine decarbox-
ylase, PFK1 phosphofructokinase-1, PFKFB3 6-phosphofructo-2-kinase/fructose-2,6- 
bisphosphatase- 3, PGK phosphoglycerate kinase, ROS reactive oxygen species, RPI 
ribose-5-phosphate isomerase, SAH S-adenosylhomocysteine, SAM S-adenosylmethionine, TCA 
cycle tricarboxylic acid cycle, THF tetrahydrofolate, TKT transketolase, UDP-GlcNAc uridine 
diphosphate N-acetylglucosamine
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cancer cells to reduce NADP+ to NADPH which is an electron donor for reductive 
steps in lipid synthesis and nucleotide metabolism and the maintenance of reduced 
glutathione (GSH); thus, glutaminolysis is essential for cancer cells to regulate 
redox state [29].

In the presence of extracellular nutrients and enough oxygen, cancer cells syn-
thesize fatty acids. However, under metabolic stress, cancer cells scavenge extracel-
lular lipids to maintain viability and growth. Mechanistically, hypoxia, oncogenic 
RAS, and mTORC1 stimulate cancer cells to uptake lysophospholipids and desatu-
rated fatty acids [30–32]. Also, fatty acid oxidation is enhanced in cancer cells to 
enable survival and proliferation [33]. Cancer cells express high levels of monoac-
ylglycerolipase (MAGL), an enzyme that hydrolyze endocannabinoid 
2- arachidonoylglycerol (2-AG) and convert monoacylglycerols to free fatty acid 
and glycerol that are essential for supplying energy for cancer cells [34].

Cancer stem cells (CSCs) are a small group of tumor cells with stem cell charac-
teristics that initiate and maintain tumor growth and correlate with tumor metasta-
sis. CSCs possess unlimited self-renewal, capacity to propagate tumors through 
asymmetric cell division, and therapeutic resistance [35, 36]. Tumor cells compete 
with CSCs for the space and energy generating macromolecules in the TME to limit 
CSC division and to drive tumor dormancy. The death of tumor cells therefore will 
relieve the CSCs from such competition and lead to the self-renewal and prolifera-
tion of CSCs [37]. Accumulating evidence indicates that the metabolic reprogram-
ming is essential for CSCs to maintain stemness [38, 39]. Activated mitochondrial 
metabolism by genotoxic stress or hypoxia can lead to increased ROS and prosta-
glandin E2 that awaken dominant G0-phased CSCs to proliferative state [40]. The 
monocarboxylate transporter 1 (MCT1) is highly expressed in cancer stem-like 
cells to promote lactate uptake for the self-renewal and invasion [19, 20]. A recent 
study showed that CSCs express CD36, a scavenger receptor, which uptake oxida-
tive low-density lipoproteins (ox-LDL) to maintain stemness [41]. Redox stress is a 
hallmark of cancer tissues that mediates robust metabolism in adjacent MCT1- 
positive proliferating CSCs which utilize lactate derived from glycolytic cancer 
cells to fuel mitochondrial metabolism. According to the distinct metabolic changes, 
cancer cells and CSCs dynamically regulate tumor progression.

5.3  Metabolism of Immune Cells in TME

The immune cells infiltrated in TME include cell subsets belong to both innate and 
adaptive immune systems. The current findings suggest that metabolic reprogram-
ming is a common feature of both cancer cells and immune cells in the TME. The 
adjustment of the metabolic program regulates the differentiation and functions of 
tumor-associated immune cells and thus the progression of tumors [9, 10, 12]. 
Understanding how the immune metabolism changes and how the altered metabo-
lism regulates immune cells in TME is of great interest and vital for developing 
effective therapies to treat cancer.
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5.3.1  Macrophages

Macrophages have both anti- and pro-tumor functions by regulating tumor growth, 
angiogenesis, invasion, and metastasis [42, 43]. Based on the phenotypes, tumor- 
associated macrophages were divided arguably into two types, M1 and M2. M1 
cells can be induced by interferon (IFN) γ and lipopolysaccharide (LPS), secrete 
pro-inflammatory cytokines including TNFα and IL-12, and express high levels of 
MHC molecules and nitric oxide synthase (NOS). M1 cells play crucial roles in 
pathogen clearance and tumor antigen presentation. M2 cells can be induced by 
IL-4 and IL-10, express moderate levels of MHC molecules and IL-12, but produce 
abundant anti-inflammatory cytokine such as IL-10, mannose receptor, and argi-
nases to promote immunosuppression, tumor cell extravasations, and metastasis 
[44]. Most tumor-promoting tumor-associating macrophages (TAMs) are M2 type, 
while both M1 and M2 cells do coexist in the TME. The function of TAMs appears 
plastic as they have been found to display an inflammatory phenotype in the early 
phase of tumor initiation but exhibit immunosuppressive characteristics during 
tumor progression and metastasis [42]. These observations are consistent with the 
immunoediting theory that TME is a dynamically changing system.

Distinct polarization leads to different metabolic modes of macrophages 
(Fig.  5.2). M1 macrophages undergo glycolysis, while M2 macrophages exhibit 
increased oxygen consumption rate and show increased OXPHOS and decreased 
lactate release [45, 46]. TME is heterogeneous and dynamic during carcinogenesis. 
The glucose metabolism of TAMs varies in distinct phases. Indeed, at the early 
inflammatory stage of cancer initiation, TAMs favor glycolysis; in contrast, TAMs 
show OXPHOS at the later stage of tumor progression [47, 48]. This shift is medi-
ated by cytokines and lactic acid. The lactate released from tumor cells promotes 
hypoxia and induces TAMs by enhancing the expression of arginase 1 (ARG1) to 
catalyze the metabolism of arginine to ornithine and polymines to promote collagen 
synthesis and tumor growth [49]. The activation of PI3K-Akt pathway may also 
contribute to the glucose uptake and glycolysis since it upregulates the expression 
of glucose transporters (e.g., GLUT1) and key enzymes (e.g., hexokinase and phos-
phofructokinase- 1); promotes acetyl-CoA synthesis to link the metabolism of fatty 
acids, glucose, cholesterol, and amino acids; and facilitates the diversion of citrate 
from TCA cycle to acetyl-CoA by phosphorylating and activating ATP citrate lyase 
[46, 50, 51]. The switch to glycolysis in TAMs is controlled by Akt-mTOR-HIF-1 
axis, resulting in the abundant TCA cycle intermediates and succinate accumulation 
[52, 53]. Factors in TME such as HMGB1 and DAMPs can stimulate Toll-like 
receptors (TLRs) that activate PI3K-Akt in myeloid cells like TAMs resulting in 
glycolysis and enhanced inflammation in TME [54]. PI3K-Akt activation in myeloid 
cells is also involved in resistance to anti-angiogenic therapy [55]. The activation of 
mTOR, a downstream molecule of PI3K-Akt, counterintuitively promotes M2 cells 
[52]. Of interest, this activation feedback negatively regulates PI3K [56]. The acti-
vation of c-Myc skews macrophage to M2 polarization and promotes tumor- 
promoting function of TAMs by increasing CCL18, TGFβ, VEGF, and MMPs [57]. 
However, whether and how c-Myc controls the metabolic reprogramming of TAMs 
remains unclear.
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Moreover, inflammatory TAMs also express PKM2 which in its inactive dimeric 
form binds to HIF-1 to promote glycolysis in M1 macrophages, while in its active 
tetrameric form switches macrophages into M2 phenotype [58]. TAMs enhance 
cancer-related inflammation via HIF-1 which transcribes several key enzymes in 
glucose metabolism, such as GLUT1, HK2, and PGK1 [59, 60]. HIF-1 can also 
induce ROS and RNI production which contributes to the genetic mutation and 
transformation [61]. Moreover, hypoxic TME-increased glycolysis leads to lactic 
acid accumulation in the TME and skews TAMs to an M2 phenotype with high 
expression of ARG1, VEGF-A, Tie-2, and IL-10. These immunosuppressive and 
pro-angiogenic factors promote TAM-related tumorigenesis [49, 62, 63]. The dis-
tinct modes of arginine metabolism in TAMs lead to different functions, with M1 
macrophages producing NO showing antitumor effect, while polyamine-producing 

Fig. 5.2 Metabolic reprogramming of TAMs. An overview of the key metabolisms in M1 and M2 
macrophages and their roles in tumor initiation and progression. During tumor initiation, macro-
phages are in M1 phenotype and metabolize through a glycolytic shift, HIF-1 activation, and 
impaired OXPHOS to mediate the expression of NO, ROI, IL-1β, and TNF, to support genetic 
instability and cancer-related inflammation that leads to tumorigenesis. HIF-1 also enhances 
angiogenic molecule VEGF-A.  In TAMs (M2 macrophages) in the tumor progression stage, 
AMPK is activated via nutrient deprivation, Th2-derived IL-4, lactate accumulation, and activated 
PKM2 suppresses glycolysis while upregulating OXPHOS.  This induces immunosuppressive 
macrophages that promote tumor growth. Amino acid, iron, and fat metabolism that contribute to 
this process are also shown
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M2 macrophages induce cancer cell proliferation, remodeling, and growth [64–66]. 
TAMs that express ARG1 also contribute to T cell immunosuppression via inducing 
T cell apoptosis [67].

The lipid metabolism in TME macrophages is altered in response to a variety of 
stimuli. LPS and IFN-γ, the M1 macrophage inducers, suppress fatty acid intake 
and oxidation, while M2 macrophages are prone to increase fatty acid oxidation 
(FAO) [68]. The uptake of lipids, especially triacylglycerol (TAG), is also critical 
for FAO and M2 activation [69]. The underlying mechanism involves peroxisome 
proliferator-activated receptors (PPARs), liver X receptors (LXRs), and signal 
transducer and activator of transcription (STAT) [68, 70–72]. PPARs and LXRs are 
nuclear receptors activated by lipids, such as free fatty acids, eicosanoids, and cho-
lesterol metabolites. PPARγ mediates M2 macrophage polarization to promote 
tumor progression and metastasis. PPARδ activation in macrophages is triggered by 
the clearance of apoptotic cells. The fatty acid synthase and PPAR activation are 
induced in TAMs to contribute to tumor growth. The phagocytosis of apoptotic 
tumor cells containing oxysterols activates LXRs in macrophages, leading to an M2 
immunosuppressive phenotype.

Arachidonic acid metabolism also mediates the switch of macrophage pheno-
types. For example, M1 stimulation leads to increased prostaglandin E2, a cyclo-
oxygenase (COX)-derived eicosanoid, while IL-4 induces the upregulation of 
15-lipoxygenase (15-LOX) in macrophages [73, 74]. The alveolar macrophages 
express high levels of COX-1 and 5-LOX, but TAMs express high levels of COX-2 
[72]. Anti-inflammatory factors including IL-10, IL-4, and TGFβ induce AMPK 
activation which drive TAMs to an immunosuppressive M2 phenotype and induce 
OXPHOS [75]. These findings indicate distinct metabolic modes in TAMs mediate 
both anti- and pro-tumor responses.

Glutamine metabolism is another important pathway for the differentiation and 
functions of TAMs, and macrophages express high levels of glutaminase. Glutamine 
is required for macrophage phagocytosis and antigen presentation. Also, key 
enzymes in glutamine metabolism, such as AKG, GPT2, GLUL, and GATM, are 
enhanced in M2 macrophages [49, 76]. However, the mechanisms by which gluta-
mine metabolism regulates TAMs remain unknown. In addition, M2 macrophages 
can generate indoleamine-2, 3-dioxygenase (IDO), an enzyme degrading trypto-
phan [77]. Since IDO upregulates regulatory T cells via tryptophan catabolite, 
TAMs promotes Treg cell generation to inhibit T cell function and establish an 
immune-tolerant microenvironment [78].

Polarized macrophages show altered iron metabolism. M1 macrophages express 
high level of H-ferritin, a protein for iron storage, but M2 macrophages express 
increased ferroportin, the iron exporter. Thus, M1 macrophages favor iron seques-
tration and inhibit tumor growth, while M2 macrophages exhibit enhanced iron 
release which promotes tumor progression [79, 80]. Hemeoxygenase-1 (HO-1), an 
iron-releasing enzyme metabolizing heme to carbon monoxide (CO), biliverdin, 
and ferrous iron, is inhibited in M2 but not in M1 macrophages [81]. Importantly, 
iron is also involved in regulating HIF-1 stability by activating prolyl hydroxylases 
(PHDs) in TAMs [82, 83]. The evidence suggests the iron metabolism is also crucial 
for TAM-mediated regulation of carcinogenesis.
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5.3.2  Neutrophils

Neutrophils, also known as polymorphonuclear cells (PMNs), account for 50–60 % 
of the peripheral blood leukocytes, with a potent phagocytic function. Neutrophil to 
lymphocyte ratio is a risk predictive index for tumor recurrence [84]. In the TME, 
neutrophils also have two biological phenotypes: antitumor N1 exerts tumor cyto-
toxicity to reject tumor by enhancing antitumor immune memory; pro-tumor N2 
plays the opposing roles, i.e., enhancing tumor growth, invasion, and metastasis, 
promoting tumor angiogenesis, mediating immunosuppression, and producing 
enzymes to damage normal tissue cells to facilitate tumor growth, invasion, and 
metastasis. Such dichotomy of neutrophils is similar to that of macrophages [85, 
86]. Tumor-derived TGFβ can switch N1 neutrophils to N2 which blunts CD8+ T 
cell responses to promote tumor growth [87]. Similar to macrophages, tumor- 
associated neutrophils (TANs) can produce several factors such as ARG1, ROS, 
MMPs, IL-6, and IL-1β to promote cancer progression, angiogenesis, and metasta-
sis [85, 86].

The metabolic reprogramming, aerobic glycolysis and pentose phosphate path-
way (PPP), controls the functions of neutrophils [88, 89]. Very few mitochondria 
are in neutrophils; OXPHOS and ATP production are ineffective in these cells. 
Neutrophils rely on PPP to produce NADPH that is essential for maintaining redox 
balance and cell survival [90]. The chemotaxis, calcium mobilization, and oxidative 
burst are driven by glycolysis since G6P deficiency blunts these functions of neutro-
phils [91]. Glycolysis and PPP are also involved in the formation of neutrophil 
extracellular traps (NETs), a mixture of DNA, histones, and antimicrobial peptides 
that traps and kills bacteria [90, 92]. NETs segregate circulating tumor cells and 
accumulate in the vasculature to promote the inflammatory adherence, contributing 
cancer-induced organ failure and metastasis [93]. Moreover, neutrophil-derived leu-
kotrienes contribute to the colonization of distant tissues via selectively expanding 
the sub-pool of cancer cells to retain high tumorigenic potential. Knocking down of 
5-lipoxygenase (5-LOX), the key enzyme for leukotriene synthesis, blunts the pro- 
metastatic activity of neutrophils [94]. Together, these observations suggest that 
metabolic change regulates the TAN functions and tumor development. Whether 
and how the lipid and amino acid metabolism are reprogrammed and how these 
metabolic changes regulate neutrophil functions await further investigation.

5.3.3  Basophils and Eosinophils

Basophils, a cell population derived from myeloid cells, respond to IgE-dependent 
and IgE-independent stimuli and crosstalk with other immune cells such as lympho-
cytes, macrophages, and DCs [95]. These cells are involved in Th2 responses 
through producing cytokines including IL-4, IL-13, and IL-25 and also contribute to 
immunoglobulin synthesis, tumor angiogenesis, and hematopoiesis by secreting 
IL-6, GM-CSF, and VEGF and arguably present antigens to T cells. Hence, 
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basophils regulate both innate and adaptive immunity. However, the metabolic 
reprogramming in tumor-associated basophils remains unknown.

Eosinophils are granulocytic leukocytes derived from hematopoietic progenitors. 
They interact with both innate and adaptive immune cells. IL-3, IL-5, and GM-CSF 
are crucial for eosinophil development, while CCL11, CCL24, and CCL26 contrib-
ute to eosinophil chemotaxis [96, 97]. Eosinophils express MHC-II and costimula-
tory molecules such as CD40 and CD80/86 to promote T cell activation and 
proliferation [98]. Eosinophils also produce IDO and TGFβ to mediate Treg and 
Th2 polarization [99]. Interestingly, the infiltration of eosinophils in TME associ-
ates with improved prognosis in various types of solid tumors [96] but with poor 
outcome in Hodgkin lymphoma [100]. The antitumor activity of eosinophils is 
through their degranulation in the tumor. Consistently, eosinophils with CCL11 
deficiency exhibit impaired antitumor potential [101]. Also, the necrosis and che-
mokines in cancer tissues induce the differentiation and migration of eosinophils 
[102]. Systemic IL-2 and IL-25 therapy promotes eosinophil degranulation [103, 
104]. The recruitment of eosinophils in TME is mainly mediated by high-mobility 
group box 1 (HMGB1), a factor in damage-associated molecular patterns, which 
elicits eosinophil degranulation by binding to the receptor for advanced glycation 
end products (RAGE) [105]. Some receptors normally expressed in NK cells such 
as NKG2D and 2B4 are also expressed in eosinophils to mediate tumor cytotoxicity 
[106, 107]. These observations suggest that reprogramming the metabolism in 
eosinophils may trigger the degranulation and improve antitumor immunity.

5.3.4  Mast Cells

Mast cells are derived from bone marrow hematopoietic stem cell-differentiated 
precursor cells. These precursor cells enter the cavity or mucosa from blood and 
then mature. As an important class of innate immune cells, mast cells play a key role 
in allergic diseases such as asthma. After activation, mast cells not only produce and 
release a variety of cytokines and chemokines, including histamine, serotonin, inter-
leukins, leukotrienes, prostaglandins, and proteases to promote inflammation, but 
regulate the functional activity of DC, T cells, CD4+ CD25+ regulatory T cells, B 
cells, and other immune cells in TME [108]. Similar to that in TAMs, PI3K-Akt 
activation in mast cells correlates with enhanced glycolysis [109]. The metabolic 
reprogramming of the tumor-associated mast cells is yet unknown.

5.3.5  CAFs

Fibroblasts are a large proportion of cells in the TME. These cells synthesize col-
lagen, laminin, fibronectin, and other matrix components to establish a structural 
framework in the matrix. Fibroblasts can be activated during wound healing, 
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inflammation, and stress. The TME-activated fibroblasts called cancer-associated 
fibroblasts (CAF) or myofibroblasts specifically express α-smooth muscle actin 
(αSMA) [110]. Apart from the local fibroblasts, CAFs can be derived from vascular 
smooth muscle cells, pericytes, marrow-derived mesenchymal cells, and through 
epithelial- mesenchymal transformation (EMT) [111]. CAF can reshape the extra-
cellular matrix by secreting matrix-degrading enzymes, particularly metalloprotein-
ases and derivatives to contribute to tumor drug resistance [112]. CAFs promote 
tumor growth, angiogenesis, and metastasis by secreting several factors, including 
insulin- like growth factor, hepatocyte growth factor, basic fibroblast growth factor, 
Wnt ligands and MMPs, as well as cytokines and chemokines such as CCL7, 
CXCL12, and VEGF-A [110, 111].

It has been observed that CAFs engage in aerobic glycolysis. Mechanistically, 
IDH3α reduced by TGFβ or platelet-derived growth factor (PDGF) breaks the equi-
librium between α-KG and fumarate/succinate that are allosteric regulators of 
PHDs, thereby in turn increasing HIF-1 transactivation and enhancing glycolysis 
[113]. CAFs also display increased glutamine metabolism and decreased OXPHOS 
[114, 115]. They provide lactic acid, amino acids, and ketone bodies to cancer cells, 
while cancer cells produce ROS to activate HIF-1 in CAFs to maintain the glycoly-
sis [110, 111]. The metabolic change of CAFs impacts the secretion of cytokines 
and chemokines. For example, α-KG and fumarate/succinate are allosteric regula-
tors of lysine-specific demethylase, PHDs, and methylcytosine demethylase that are 
epigenetic regulators [116]. Also, glycolysis and glutamine metabolism in CAFs are 
regulated by p62-mTORC1-c-Myc pathway that promotes ROS and IL-6 produc-
tion and enhance tumor progression [114, 117].

Distinct from cancer cells, although CAFs favor glycolysis, the proliferation is 
much slower when compared with normal fibroblasts, suggesting that the biosyn-
thesis of CAFs is not dependent on glycolysis [118]. However, cancer cells uptake 
the CAF-secreted lactate for tumor anabolic metabolism, growth, and metastasis 
[117]. GLUT4 is overexpressed on CAFs to release lactic acid, while GLUT1 is 
upregulated in cancer cells to import glucose and metabolites. The lactate released 
from CAFs further acidifies the TME to facilitate tumor progression and drug resis-
tance [119]. Hence, CAFs not only secrete growth factors but also fuel cancer cells 
by providing lactate and other glucose metabolites. The cooperation of metabolites 
shuttling between CAFs and cancer cells aggregates the TME that facilitate tumor 
development.

5.3.6  NK and NKT Cells

Natural killer cells (NK cells) are a subtype of lymphocytes in innate immune sys-
tem. They express Ly49, NCR, and CD16 and play antitumor action by secreting 
IFN-γ and cytotoxic molecules such as perforin and granzyme or by antibody- 
dependent cell-mediated cytotoxicity (ADCC) and T cell activation [120, 121]. 
Under resting state and short-term activation, they favor OXPHOS, while upon 
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prolonged activation by high-dose IL-15, NK cells switch to glycolysis [122]. In the 
TME, both IL-15 and hypoxia can lead to enhanced glycolysis in NK cells [123]. 
However, the mechanism by which TME affects the metabolic reprogramming and 
how the altered metabolism modulates the activity of NK cells remain to be 
elucidated.

NKT cells are a heterogeneous group of T cells that share properties of both NK 
cells and T cells. They recognize non-polymorphic CD1d (an APC molecule) that 
binds self and foreign lipids and glycolipids [124]. Upon activation, these cells pro-
duce abundant IL-2, IL-4, IFN-γ, GM-CSF, and IL-21 so that they play antitumor 
functions in TME [125]. However, the metabolic reprogramming in tumor- 
associated NKT cells is yet unknown.

5.3.7  Endothelial Cells

In the TME, vasculatures deliver nutrients and oxygen to the tumor, which is the 
basis of tumor survival and development. Tumor cells release pro-angiogenic sig-
nals to drive the metabolic reprogramming of endothelial cells (ECs) [126]. 
Inhibition of VEGF signaling is a clinically approved strategy, although the ben-
efits are limited since tumors acquire drug resistance within months after treat-
ment [127].

It has been found that the structure and function of vessels in TME and in normal 
tissues are significantly different. They are dilated, tortuous, and hyperpermeable. 
The ECs are poorly connected and lack a regular pattern. The basement membrane 
has nonuniform thickness and composition [128]. These cause deprived oxygen and 
nutrients. Hypoxia switches cancer cell metabolism away from OXPHOS to gly-
colysis, from glucose to glutamine as the major substrate for fatty acid synthesis 
(FAS). Tumor-associated ECs resemble cancer cells to undergo a shifting from qui-
escence to rapid growth during vessel sprouting. These ECs are highly plastic [126, 
129]. They require a baseline glycolysis flux to function as an endothelium and 
maintain vascular barrier homeostasis. ECs preserve high concentration of oxygen 
in the blood. Also, ECs protect themselves from oxidative stress using glycolysis. 
They can also move from normoxic to hypoxic areas [130]. Glycolysis can produce 
ATP faster than OXPHOS. Hence, similar to cancer cells, glycolysis contributes to 
vascular sprouting and the survival and proliferation of ECs (Table 5.1) [131, 132]. 
Lactate dehydrogenase B, GLUT1, and glycolytic enzyme  6-phosphofructo-2- kinase/
fructose-2,6-bisphosphatase-3 (PFKFB3) are increased in tumor-associated ECs. 
PFKFB3 promotes the synthesis of fructose-2,6-bisphosphate(F2,6P2) and the acti-
vation of 6-phosphofructo-1-kinase (PFK1) which converts fructose-6- phosphate 
(F6P) to fructose-1,6-bisphosphate (F1,6P2) [133]. Indeed, interfering with glycol-
ysis by inhibiting PFKFB3 (by 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen- 1- one 
(3PO)) or other key enzymes blunts angiogenesis-associated tumor growth [134]. 
However, the systemic complete and permanent inhibition of glycolysis may also 
induce undesired effects. Fortunately, Partial and transient reduction of glycolysis 
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renders ECs more quiescent without overt detrimental side effects [134]. Glycolytic 
metabolites such as lactate can be uptaken by ECs through MCT1. Instead of being 
metabolized, lactate induces HIF-1 activation and competes with α-KG to bind to 
prolyl hydroxylase 2 (PHD2), thereby enhancing the expression of angiogenesis-
related genes [135, 136]. Therefore, the partial and transient reduction of glycolysis 
may be sufficient to inhibit pathological angiogenesis in the TME. These results 
indicate that targeting glycolysis in ECs inhibits angiogenesis, but the viability 
should be concerned.

The decreased supply of glucose in ECs can also be compensated by glycogeno-
lytic production of glucose-1-phosphate (G1P), which can be converted into 
glucose- 6-phosphate (G6P). The glycogenolysis-derived G6P only minimally con-
tributes to energy production in normal or low glucose conditions. G6P catabolism 
might be important in the oxidative PPP (oxPPP) process to generate energy [137, 
138]. PPP also produce ribose-5-phosphate (Rb-5-P) which can feedback into gly-
colysis through the biogenesis of F6P [139, 140]. Moreover, NADPH produced by 
PPP protects ECs against ROS, enhances NO synthesis, and contributes to ATP 
production [141]. Therefore, PPP may promote angiogenesis and regulates redox 
homeostasis.

ECs have a high level of glutaminolysis to support ATP synthesis and fuel cell 
proliferation in the conditions of decreased glucose supply (Table 5.1) [142]. ECs 
can uptake glutamine from extracellular milieu and also produce glutamine from 
glutamate. Inhibition of glutaminolysis induces EC senescence [143]. Glutamine 
metabolism also promotes ornithine synthesis, a precursor of mitogenic polyamines 
[144]. In addition, glutamine metabolite glucosamine can inhibit oxPPP and NO 

Cancer Cell Endothelial Cell

Glycolysis Warburg effect
Upregulated through oncogenes and tumor 
hypoxia
Switch PKM1 to PKM2

Compartmentalized
Activated by growth factors

OXPHOS Reduced TCA activity Few mitochondria, low respiration
Upregulated in low glucose and stress

Glycogen 
Metabolism

Glycogen metabolized under hypoxic stress Glycogen synthesis
Stores depleted in low glucose, not in hypoxia

FAO Source of NADPH
Response to oxidative stress

Possibly used for energy
Might promote angiogenesis
Energy source in low glucose

PPP Redox homeostasis
Regulate cell death via ROS

Redox homeostasis
Might promote angiogenesis
G6PD regulates ROS signaling
High PPP for proliferation

AA Metabolism Glutamine as nitrogen source for polyamine 
synthesis and anaplerosis
Energy and biosynthesis

Glutamine as alternative energy source under 
stress
GLS blockade reduces proliferation
Glutamine inhibits NO production

Table 5.1 Cancer cell versus endothelial cell metabolism
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production by reducing NADPH [145]. How glutaminolysis mediate angiogenesis 
has not been described.

Most ECs contain mitochondria that compose less than 5 % of the cell volume. 
The mitochondria-derived ROS activates HIFs by inhibiting PHDs, which in turn 
enhances glycolytic metabolism and angiogenesis [146]. Glycolysis-derived ATP 
also in part contributes to maintaining EC mitochondrial network. However, the role 
of mitochondria in tumorigenesis is yet unknown. FAO is induced in ECs upon 
glucose deprivation, in which process AMPK is activated [147]. Whether and how 
FAO influences angiogenesis is also unclear.

5.3.8  Dendritic Cells

DCs are divided into immature (imDCs), semi-mature (smDCs), and mature 
(mDCs). imDCs show low expression of MHC class I molecules, lack of B7 costim-
ulatory molecules, etc. These cells induce immune tolerance since they cannot 
effectively activate T cells [148]. Recent studies showed that semi-mature and 
mDCs can also induce immune tolerance. smDCs have a unique feature which can 
be induced by granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-4, 
and TNF with bone marrow cells in vitro. smDCs obtain a significantly different 
molecular phenotype, as compared with mDCs and imDCs, showing high expres-
sion of MHC class I molecules and moderate expression of costimulatory mole-
cules, but they do not secrete inflammatory cytokines such as IL-1, IL-6, and IL-12 
[149, 150]. These cells produce inflammation-inhibiting factors including IL-10 and 
can enhance the activation of CD4+CD25+ Tregs [151].

As a major population of professional antigen-presenting cells, DCs are acti-
vated and mature by sensing pathogen-associated or damage-related stimuli, dis-
playing upregulation of MHC molecules and costimulatory molecules (e.g., 
CD80/86, CD40), cytokines (e.g., IL-12), and chemokine receptors (e.g., CCR7). 
Then DCs migrate to lymphoid organs to present antigens and activate T cells. 
However, tumor-associated DCs are immunosuppressive [152–154]. Moreover, 
increased imDC numbers and decreased mDC and DC numbers with impaired func-
tions were observed in cancer microenvironment [149, 152].

The differentiation and function of DCs also rely on the metabolic reprogram-
ming. Under resting state, DCs favor OXPHOS, while they switch to glycolysis 
after activation [155]. Also, glycolysis is essential for upregulated costimulatory 
molecules (CD80/86, CD40) and cytokines (IL-12) and DC survival [50]. Indeed, 
the activated DCs show increased NO production, enhanced PI3K-Akt activation, 
and impaired OXPHOS [50, 155].

In the hypoxic TME, HIF-1 drives the transcription of mTOR and glycolysis- 
associated genes, thereby promoting DC glycolysis, maturation, and activation 
[156]. However, hypoxia also inhibits the recruitment of monocyte-derived DCs 
from peripheral blood [157]. Hypoxia upregulates adenosine receptor (A2b), and 
adenosine can bind this receptor to blunt DC differentiation and switch them to a 
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Th2-promoting profile, i.e., express IL-10, TGFβ, and COX-2 that lead to abnormal 
differentiation of myeloid cells thereby causing Treg activation and DC defection 
[158]. Mechanistically, adenosine can induce AMP-activated protein kinase 
(AMPK) that promotes OXPHOS and inhibits glycolysis [50]. The lactic acid also 
contributes to inhibit DCs by inhibiting glycolysis [159]. These impaired DCs also 
secrete VEGF-A to promote angiogenesis and tumor growth [160].

PI3K-Akt activation also contributes to enhanced expression of GLUT1, the glu-
cose transporter key for glycolysis, and disabled-2 adaptor (DAB2) on DCs which 
suppresses T cell response against tumors [161]. The mTOR inhibition by rapamy-
cin in BMDCs promotes their antitumor activity, while mTOR inhibition in human 
monocyte-derived and plasmacytoid DCs blunts the immunostimulatory actions 
and T cell response [155].

Similar to macrophages, tumor-associated DCs (TADCs) can express enhanced 
ARG1, IDO, and iNOS that deplete arginine and tryptophan in the TME so that sup-
pression of CD8+ T cell function and survival is mediated [162]. Moreover, the reti-
noic acid metabolism in TADCs can promote Treg-mediated immunosuppression 
[163]. These amino acid metabolism pathways suggest potential targets for cancer 
immunotherapy. Recently, it was found that vaccines can trigger GCN2, a nutrient 
sensor, in DCs that in turn activate the antigen-presenting function of DCs and CTL 
response [164].

TADCs are also regulated by lipid metabolism. During DC activation, the FAS 
can promote the antigen presentation by increasing ER and Golgi expansion [165, 
166]. The scavenging receptors such as CD36 and MSR1 upregulated in TADCs 
contribute to the uptake of lipids [167]. The lipid accumulation subsequently attenu-
ates DC function and T cell activation. Hence, it has been proposed that the switch 
of glucose metabolism from glycolysis to OXPHOS in the TADCs may turn on the 
FAS and lipid uptake, therefore impairing DCs in TME and inducing an immuno-
tolerogenic condition [155, 165, 168]. Furthermore, the limited nutrients in TME 
can induce ER stress that will induce excessive lipid accumulation via TCA cycle in 
TADCs and further inhibit CTL priming [169].

Abovementioned finding suggests that the altered metabolic programming in 
TADCs impairs their activation and antitumor function. Rectifying the abnormal 
metabolism may restore DCs’ ability to reject tumor in the TME.

5.3.9  Myeloid-Derived Suppressor Cells (MDSCs)

MDSCs, originally discovered in the 1970s, are a group of myeloid immature cells 
in tumor-bearing mice [170, 171]. The morphology of these cells is similar to the 
granulocyte-monocyte progenitor cells that are yet to differentiate into macro-
phages, DCs, or granulocytes. These cells are CD11b+Gr1+ and can be subcatego-
rized into monocytic (Ly6ChighLy6G−) and granulocytic (Ly6ClowLy6G+) based on 
the expression of Ly6C and Ly6G. In humans, MDSCs also express hematopoietic 
stem cell surface markers CD34 and immature marker CD31, hardly expressing 
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MHC class I molecules and maturation markers [172, 173]. MDSCs can secrete 
MMP9 and undergo endothelialization to induce angiogenesis and promote tumor 
survival and invasion [174]. With the development and progression of tumor, large 
amounts of cytokines, such as VEGF, IL-10, and TGFβ, can be released in the 
TME. These cytokines not only recruit MDSCs to tumor but also promote their dif-
ferentiation into immunosuppressive cells [175]. On the other hand, MDSCs are 
immunosuppressive through multiple means: MDSCs can suppress the maturation 
and antigen presentation function of DCs directly or indirectly [176]. By direct 
interaction, MDSCs suppress IFN-γ production by CD8 T cells [177]. MDSCs 
secrete TGFβ, arginine enzymes, and reactive oxygen and nitrogen species to inhibit 
T cell activation and proliferation [177] and to promote Treg cell generation [178].

Glycolysis, glutaminolysis, and TCA cycle metabolism and arginine metabolism 
are upregulated during MDSC maturation. Fatty acid uptake and FAO mediate the 
immunosuppressive function of MDSCs in TME [179]. Amino acid metabolism and 
oxidative stress also mediate MDSC immunosuppressive functions. By expressing 
IDO, MDSCs metabolize tryptophan to kynurenine, induce Treg expansion, and 
inhibit T cell functions [180]. L-arginine and L-cysteine can be depleted by MDSCs, 
leading to the downregulation of CD3ζ and the inhibition of T cell activation [181, 
182]. MDSCs express high levels of ARG and iNOS. ROS such as peroxynitrites 
are produced under the conditions of limited L-arginine availability. ROS induces T 
cell apoptosis by nitrotyrosylating and preventing tyrosine phosphorylation of key 
signaling proteins for T cell activation [183]. Peroxynitrites also nitrate TCR, IL-2R, 
and CD8 molecules, leading to T cell signaling disruption [184, 185]. Recent stud-
ies indicated that a lipid mediator derived from arachidonic acid via cyclooxygenase 
2 (COX-2), i.e., prostaglandin E2 (PGE2), can be secreted by tumor cells and MDSCs 
[186, 187]. PGE2 enhances MDSC development by inducing ARG, iNOS, and IDO 
and promotes MDSC recruitment to the TME by inducing CXCL12 [188]. Taken 
together, the metabolic reprogramming of MDSCs provided a potential target for 
regulating the immunosuppressive network in the TME.

5.3.10  T Cells

The infiltration and activation of T cells in TME control tumor progression. CD8+ T 
cells are the major effector cells in tumor immunity. Upon activation by APCs, 
CD8+ T cells migrate to the tumor tissue to kill target cells through perforin (to dam-
age cell membranes), granzymes (to enter target cells and degrade DNA), and 
FasL. In addition, CD8 T cells secrete cytokines such as IFN-γ and TNFα to pro-
mote antitumor immune response [189]. CD4+ T cells differentiate into distinct sub-
types to promote or repress tumorigenesis. CD4+ Th1 T cells produce IFN-γ to 
promote tumor immune rejection. Th1 cell infiltration in TME is associated with 
good clinical prognosis. In contrast, Th2 cells and Tregs temper tumor rejection and 
facilitate tumor immune escape. Th17 cells may both promote and inhibit tumor 
progression in a tumor-type and stage-dependent manner [190].
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For activated T cells to proliferate and release cytotoxic factors and cytokines, 
they switch the metabolism to aerobic glycolysis to increase the uptake of glucose 
and glutamine [191, 192]. However, the activation of PD-1 can inhibit the uptake 
and utilization of these nutrients and promote FAO, thereby inducing T cell anergy, 
exhaustion, and autophagy [193–195]. Since H+ secretion increases when tumor 
cells release lactic acid, TME becomes acidic, leading to reduced T cell function 
[196].

In the TME, tumor cells compete for nutrients to hinder antitumor functions of T 
cells and lead to the metabolic reprogramming of T cells (Table 5.2). The efficiency 
in tumor cell uptake of glucose is ten times of that in activated T cells. Because 
glucose is the sole source of the energy required for effector T cells [192]. The lack 
of glucose severely affects IFN-γ production and the cytolytic activity of CTLs. 
Moreover, the accumulation of metabolic wastes in TME, such as lactate and kyn-
urenine, can also inhibit T cell function [197]. Acidification and hypoxia of TME 
also impairs the proliferation and function of CTL [192, 196]. De novo FAS is criti-
cal for the development of effector T cells, while the generation and survival of 
memory T cells need FAO and OXPHOS [198].

Naive T cells get energy from OXPHOS, fatty acid oxidation (FAO), and low 
levels of glutaminolysis, whereas these cells need much more nutrient for activation 
[191, 192, 198]. Therefore, activated T cells show enhanced glycolysis, PPP, and 
glutaminolysis and decreased FAO (Table 5.2). Glycolysis is required for the func-
tions of effector T cells, while PPP and glutamine metabolism are involved in bio-
synthesis. Upon activation, signaling pathways involving PI3K-Akt, mTOR, HIF-1, 
and c-Myc are triggered in CD8+, Th1, Th2, and Th17 cells to promote the expres-
sion of key factors in nutrient metabolism, such as GLUT1, PDK1, and HK2 [191–
193, 198]. This in turn leads to further enhanced glycolysis and glutaminolysis. In 
addition, the activated T cells exhibit a noncanonical Myc-dependent transcriptome 
coupling glycolysis and glutaminolysis to polyamine biosynthesis to maintain T cell 
proliferation [198, 199]. The mTOR activation regulates the balance between effec-
tor and memory T cells by modulating T-bet, a key transcription factor for Th1 cell 
differentiation [200]. The energy sensor AMPK, activated by increased ratio of 
AMP and ATP, nutrient deprivation, and anti-inflammatory cytokines (e.g., IL-4, 

Naïve 
CD8

EffectorCD8 Memory
CD8

Exhausted 
CD8

Th1 Th2 Treg Th17

Glycolysis +++ +++ +++ ++
OXPHOS +++ + ++ +++
PPP ++ ++ ++
FAS ++ ++
FAO ++ ++ ++ ++
Glutaminolysis + ++ + ++ ++ ++
Tryptophan 
metabolism

++ ++ ++ ++

Table 5.2 T cell metabolism
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IL-10, and TGFβ), suppresses IFN-γ and granzyme B production and induces 
OXPHOS and glutamine-dependent mitochondrial metabolism in T cells to sup-
press T cell-mediated antitumor response [201, 202]. Tumor-derived oxysterol 
induces LXR activation to inhibit neutrophil recruitment and DC migration, 
switches on M2 polarization, and suppresses T cell response to aid tumor immune 
tolerance [70].

The metabolism of amino acids, such as arginine, tryptophan, glutamine, and 
cysteine, is important for TIL functions (Table 5.2). For example, deficiency of argi-
nine impairs protein synthesis in TILs, leading to reduced TIL activation [203, 204]. 
L-arginine metabolism is dependent on the activities of NOS and ARG. NOS con-
verts arginine to NO and citrulline, and ARG hydrolyzes arginine into urea and 
ornithine. Administration of ARG and NOS-specific inhibitors can activate TILs 
[205]. Mechanistically, NO can react with ROS to produce reactive nitrogen species 
(RNS) such as peroxynitrite which induce lymphocyte anergy and apoptosis by 
nitration of tyrosine residues or the mitochondrial permeability transition pore 
(voltage-dependent anion channel) [184, 206]. Moreover, RNS modifies chemo-
kines such as CCL2, by nitration or nitrosylation, to inhibit T cell infiltration into 
the tumor. Indeed, drugs targeting nitration in TME induce T cell infiltration [207]. 
Effector CD8+ T cells can also impair the CAF-mediated chemoresistance by inhib-
iting cysteine and glutathione metabolism in fibroblasts [208], suggesting a novel 
intersection for combined chemotherapy and immunotherapy in cancer treatment.

As mentioned earlier, tryptophan deprivation in TME contributes to tumor pro-
gression. IDO, the rate-limiting enzyme in tryptophan metabolism, inhibits the pro-
liferation of effector T cells by depleting tryptophan in the TME [209, 210]. IDO is 
mainly expressed in mesenchymal cells, such as ECs, macrophages, and DCs. 
Tumor cells also express IDO upon IFN stimulation [211, 212]. By metabolizing 
tryptophan, IDO leads to the release of kynurenine. The reduction of tryptophan and 
the increase of kynurenine synergistically inhibit the activation and proliferation of 
antitumor T cells [209]. Therefore, IDO upregulation in cancer patients correlates 
with impaired T cell accumulation, proliferation, and function and poor prognosis. 
Agents inhibiting IDO, such as INCB024360 and 1MT, can promote the antitumor 
T cell function [209, 213].

A recent study revealed a new mechanism that cholesterol metabolism regulates 
the antitumor responses of CD8+ T cells [214]. Cholesterol is abundant in the plasma 
membrane, which is key for the TCR clustering and immunological synapse forma-
tion. The deficiency of ACAT1, a key cholesterol esterification enzyme, led to 
potentiated effector function and proliferation of CD8+ T cells. However, ACAT1 
knockout in CD8+ T cells could not affect the glycolysis, OXPHOS, and FAO levels. 
Inhibition of PD-1 did not alter the expressions of ACAT1 and other cholesterol 
esterification genes. Combination of anti-PD-1 antibody and ACAT1 inhibition syn-
ergistically blunted the tumor development.

Tregs are generally divided into natural regulatory T cells (nTregs, CD4+CD25+) 
and induced regulatory T cells (iTregs, CD4+CD25−), both of them express Foxp3. 
They express IL-10, TGFβ, and IL-2 receptor α-chain (CD25), but do not produce 
IL-2. Tregs suppress immune response and T cell activation through cell-cell inter-
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action and cytokines [215, 216]. Tregs are present in various tumors and play an 
immunosuppressive role. AhR-enhanced IDO1 and kynurenine mediate Treg gen-
eration [217], while mTOR activation inhibits Treg development [218]. Thus the 
elimination of Tregs in the TME, to some extent and excluding in colorectal cancer, 
inhibits tumor growth. The function of regulatory T cells (Tregs) is not affected by 
lactic acid and acidic environment. Of interest, Tregs favor OXPHOS, FAO, and 
activated AMPK for the nutrient metabolism (Table  5.2) [218–220]. Hence they 
survive well in the nutrient-deprived TME. Moreover, the HIF-1 upregulation in the 
hypoxic TME promotes Treg expansion [221]. Interestingly, HIF-1 shows an impor-
tant metabolic checkpoint for the differentiation of Tregs or Th17 cells [222].

Th17 cells are a newly discovered class of T helper cell subsets. Naive CD4+ T 
cells preferentially differentiate to Th17 under the stimulation of TGFβ and IL-6. In 
addition, IL-23 is a key factor for the maintenance and expansion of Th17 cells 
[223]. Recent studies found that the presence of Th17 in the TME antagonizes the 
IFN-γ-producing Th1 cells to favor tumor growth [224]. Th17 cells also rely on 
glycolysis and FAS for differentiation and activation [225] (Table 5.2).

5.3.11  B Cells

By producing antibodies and immune complexes, B cells can regulate the functions 
of myeloid cells to promote tumor growth. It has been reported that c-Myc, but not 
HIF-1, mediates LPS and antigen-stimulated activation of B cells and triggers the 
glycolysis and mitochondrial metabolic activity. Tumor cells express BAFF which 
can also induce the glycolysis and antibody production of B cells by a GLUT1- 
dependent manner [226]. Therefore, metabolic reprogramming of B cells will be 
also of interest to be investigated to better understand the immunoediting in tumor 
progression.

5.4  Clinical Diagnostic and Therapeutic Applications

5.4.1  PET/CT and PET/MRI

Cancer cells favor glycolysis to metabolize glucose, regardless of oxygen tension, 
which is termed as Warburg effect. Anaerobic glycolysis (fermentation) is more 
rapid but less efficient than OXPHOS to generate ATP. This process produces lac-
tate and contributes to immunosuppression. At present, Warburg effect has offered 
an opportunity to diagnose and monitor therapy response in many clinical cancers. 
Position emission tomography-computed tomography/magnetic resonance imaging 
(PET/CT or PET/MRI) is a clinical imaging technique combining PET and CT/MRI 
[227–230]. PET imaging shows the spatial distribution of metabolic activity 
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(especially the Warburg effect), while CT/MRI precisely aligns the anatomic imag-
ing. PET with distinct radiotracers can evaluate altered metabolisms of glucose, 
fatty acids, amino acids, and other cancer markers. Hence, molecular imaging with 
PET is very precise for detection and directing therapy and has been applied widely 
in several cancer types.

5.4.2  PD-L1, PD-1, CTLA-4, and IDO

Recent breakthrough in cancer immunotherapy based on the clinical application of 
monoclonal antibodies targeting T cell immune checkpoints, including PD-1 and 
CTLA-4, clearly demonstrates the significance of effector T cell activation in anti-
tumor response [231]. PD-L1:PD-1 and CTLA-4 signaling dampens antitumor 
responses. The expression of PD-L1, a key immune checkpoint, can be induced by 
hypoxia in tumor-associated DCs. PD-L1 is a target gene of HIF-1 and NF-κB, two 
central transcriptional factors in hypoxic responses. PD-L1/PD-1 pathway inhibits 
glycolysis and promotes FAO and lipolysis to mediate T cell metabolic reprogram-
ming [232–234]. Of interest, PD-1 is also expressed in cancer cells such as mela-
noma cells. Activation of melanoma-PD-1 promotes tumor progression by mTOR 
pathway [235]. Preclinical data suggested that inhibition of PD-1 and prostaglandin 
E synthases synergistically promotes tumor eradication [236]. Therefore, it has 
been proposed to use PD-1 as a radiolabeled PET imaging tracer to efficiently dis-
tinguish PD-L1-positive and PD-L1-negative tumors.

CTLA-4 is a target gene of Foxp3 and has a major role in enhancing Treg activity 
and suppressing T helper cells [237]. IDO activity can be induced by CTLA-4 in 
plasmacytoid DCs via reversing CD80 signaling [238]. The increase of IDO, PD-L1, 
and CTLA-4  in the peripheral blood of cancer patients correlates with advanced 
disease and poor outcome, independent of the stages of cancer [239, 240]. Therefore, 
combination treatments targeting several of these markers to modulate metabolisms 
in immune cells may have a synergistic effect.

5.4.3  CAR-T

Cancer immunotherapy based on the adoptive transfer of autologous T cells has 
shown promising efficacies. Chimeric antigen receptor (CAR)-T cells have been 
used to exert potent antitumor effect [241, 242]. CARs consist of cytoplasmic 
domain of the Fc receptor γ chain or CD3ζ modules and that of costimulatory cyto-
plasmic domains such as CD28, 4-1BB, and ICOS [243]. Little is known about the 
metabolic reprogramming of CAR-T cells. As described in the above section, naïve 
and memory T cells rely on fatty acid oxidation, while activated effector T cells shift 
to glycolysis and enhanced OXPHOS. A recent report showed that CD28 or 4-1BB 
CD3ζ CAR-T cells exhibited increased survival and proliferation, promoting 
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central memory T cells. CD28-CD3ζ CAR-T cells favored aerobic glycolysis, while 
4-1BB-CD3ζ CAR-T cells preferred FAO [243]. The choice of CAR impacted the 
T cell metabolic reprogramming and differentiation, suggesting that modulating the 
metabolism in T cells may also be important to enhance the antitumor effects of 
CAR-T cells.

5.4.4  Drug Repositioning

Drug repositioning, also known as drug repurposing, re-profiling, re-tasking, or 
therapeutic switching, is the application of known drugs and compounds to new 
indications. It is an emerging and important application in drug development for 
cancer therapy [244]. The computational approaches can enhance the efficiency and 
success rates, particularly in terms of high-throughput shotgun repurposing. For 
example, proton pump inhibitor (PPI) is an acid-activated drug that inhibits H/K- -
ATPase to treat gastric cancer. PPI can synergistically modulate the acidic TME 
with chemotherapy and improve chemoresistance [245, 246]. Terfenadine is a his-
tamine receptor H1 antagonist, which can prevent VEGF secretion from mast cells 
in hypoxic microenvironment and induce ROS-mediated apoptosis and autophagy 
of melanoma cells [247]. Simvastatin specifically inhibits HMG-CoA reductase so 
that it restrains p53 mutation from activating mevalonate pathway for cholesterol 
synthesis in breast and ovarian cancer cells [248]. System xc− cystine/glutamate 
antiporter, a heterodimer composed of the 4F2 heavy chain (SLC3A2) and the light 
chain xCT, is a membrane amino acid transporter that mediates the exchange of 
extracellular cystine and intracellular glutamate [249]. Sulfasalazine is a specific 
inhibitor of xCT cystine transporter. It blocks the reduced GSH synthesis, leading to 
oxidative stress in cancer cells, resulting in the suppression of NSCLC and gastric 
tumor progression and breast cancer metastasis [249–251]. Metformin is an oral 
drug used to treat type 2 diabetes mellitus by suppressing glucose production by the 
liver [252]. Recently, metformin was reported to inhibit tumor progression and ame-
liorate the prognosis [253–255]. By inhibiting ATP-binding cassette subfamily G 
member 1 (ABCG2) and ectonucleotide pyrophosphatase/phosphodiesterase family 
member 1 (ENPP1), metformin suppresses cancer cell chemoresistance to drugs 
[256]. These drugs are being applied in clinical trials and show promising results.

5.4.5  Metabolism-Based Antiangiogenic Therapy

The current paradigm for anti-angiogenic therapy is to block VEGF and VEGFRs 
[257]. However, the tumor cells can rely on other signaling pathways for pro- 
angiogenesis. The hypoxic conditions caused by treatment often lead to the out-
growth of resistant tumor clones [258]. The EC metabolism requirement potentially 
provides novel anti-angiogenesis therapeutic opportunities. Silencing PFKFB3 by 

5 Immune Cell Metabolism in Tumor Microenvironment



184

3PO is capable to reduce EC glycolysis and vessel sprouting, without switching to 
aerobic respiration [134]. More importantly, the effect of 3PO on glycolysis is 
reversible, as normal sprouting was recovered after administration for 6 h in vivo 
The moderate reduction in glycolysis by 3PO is sufficient for increasing the fraction 
of quiescent ECs and reducing EC proliferation and migration [132, 133]. 
Combination of 3PO and VEGFR tyrosine kinase inhibitor SU5416 significantly 
impaired angiogenesis, as compared with the optimal doses of any one of these 
inhibitors alone [134]. In addition, 3PO is a chemotherapeutic agent to block tumor 
proliferation [259]. Together these findings indicate that targeting tumor-associated 
EC metabolism is a potential therapeutic strategy.

5.5  Concluding Remarks

The metabolism of cancer cells and immune cells in TME is instrumental for tumor 
initiation, progression, and metastasis. The deprivation of nutrients from the envi-
ronment suppresses antitumor immune cells, such as CD8+ T cells, M1 macro-
phages, and N1 neutrophils, promoting the differentiation and activation of 
pro-tumor immune cells, including MDSCs, M2 macrophages, and Tregs [260, 
261]. The extent to which metabolism pathways represent true vulnerabilities for 
tumor development remains unclear. Targeting glycolysis, glutaminolysis, and FAO 
has provided clinical benefits; the strategies integrating redox homeostasis and PPP 
may also generate new opportunities [9, 10, 119].

The most serious challenge in reshaping the immune profiles in TME is to under-
stand the metabolic heterogeneity which is extremely complex depending not only 
on tumor and immune cell types but also on tumor stages and etiology (Fig. 5.3). 
Activation of signaling pathways including PI3K-Akt, mTOR, HIF-1, c-Myc, 
etc. in tumor-associated immune cells regulates their metabolism for survival, 
differentiation, and pro- or antitumor functions [10]. For example, HIF-1 activation 
in cancer cells and immune cells may upregulate glycolytic metabolism and 
enhance cancer-related inflammation during the initiation. In the tumor progression 
stage, HIF-1 elevation in TAMs, TADCs, MDSCs, and Tregs contributes to 
 immunosuppression and angiogenesis by PD-L1 expression, lactate release, and 
adenosine- adenosine receptor interaction that facilitate tumor growth [32, 46, 58, 
60, 136, 221, 232, 233]. Other factors and molecules, such as noncoding RNAs, 
complements, and coagulation-related factors, also regulate immune cell survival, 
differentiation, and functions in TME [262–264]. However, whether and how these 
molecules regulate metabolic reprogramming in tumor-associated immune cells 
will be of interest to be investigated.

The metabolite exchange adds an essential dimension of heterogeneity in the 
TME to contribute to tumor growth, metastasis and clinical resistance [12, 260, 261, 
265]. Nonetheless, we posit that targeting the immune cell metabolism in TME in 
addition to the traditional cancer therapies will lead to more precise and efficient 
diagnosis and treatment of these fatal diseases.
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