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and Disease

Yilin Tai, Shenglian Yang, Yong Liu, and Wei Shao

Abstract

This chapter offers a brief introduction of the functions of TRPC channels 
in non-neuronal systems. We focus on three major organs of which the 
research on TRPC channels have been most focused on: kidney, heart, and 
lung. The chapter highlights on cellular functions and signaling pathways 
mediated by TRPC channels. It also summarizes several inherited diseases 
in humans that are related to or caused by TRPC channel mutations and 
malfunction. A better understanding of TRPC channels functions and the 
importance of TRPC channels in health and disease should lead to new 
insights and discovery of new therapeutic approaches for intractable 
disease.
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With the fact that TRPC channels are universally 
expressed in most of the major organs, it is not 
surprising that they contribute to normal develop-
ment, and their malfunction leads to diseases of 
these organs. We will discuss in depth the physi-
ological and pathological functions of TRPC 
channels in nervous system in the following  

chapters. In this chapter, we will give a general 
introduction of the roles of TRPC channels in the 
kidney, cardiovascular system, and lung, the three 
major organs that the functions of TRPC channels 
have been most extensively studied in the past 
decades.
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4.1	 �TRPCs in Kidney Health 
and Disease

The key function of the kidney is to filter the 
plasma to dispose metabolic end products, excess 
electrolytes, and water. It is accomplished by a 
structure called glomerulus or renal corpuscle. 
The glomerulus is the functional blood filtration 
unit and is the first component involved in regu-
lating the composition of urine. Disruption of the 
glomerular filtration barrier is a common out-
come of many kidney diseases, including focal 
segmental glomerulosclerosis (FSGS), diabetic 
nephropathy, and lupus nephritis [1]. Proteinuria 
is a hallmark of dysfunction of glomerular filtra-
tion barrier [2]. Persistent dysfunction leads to 
progressive renal failure and needs for dialysis or 
kidney transplantation.

The basic unit of the glomerulus tuft is a sin-
gle capillary with the glomerular basement mem-
brane (GBM) as primary structure scaffold. 
Endothelial and mesangial cells providing capil-
lary support are located inside GBM, whereas 
podocytes are attached to the outside the 
GBM. There are thus four major cell types in the 
glomerulus: endothelial cells, mesangial cells, 
parietal epithelial cells of Bowman’s capsule, and 
podocytes. The expression of TRPC channels has 
been found mostly in mesangial cells and podo-
cytes in the glomerulus. Several lines of evidence 
show that TRPC1, TRPC3, TRPC4, TRPC5, and 
TRPC6 were all expressed in the kidney [3–8]. 
TRPC1 is exclusively expressed in mesangial 
cells, whereas TRPC3 and TRPC6 have broader 
expressions. TRPC3 and TRPC6 are confined to 
podocytes and mesangial cells. They are also 
expressed in the collecting duct which connects 
the nephrons to the ureter. In the following part of 
this chapter, we will provide an overview of the 
current knowledge of TRPC channels on mesan-
gial cells and podocytes and functions of TRPC 
channels in the collecting duct which plays an 
important role in reabsorption and excretion.

4.1.1	 �TRPCs in Mesangial Cells

Mesangial cells are specialized cells around 
blood vessels in glomerulus. Major functions of 
mesangial cells are to remove trapped residues 
and aggregated protein from the GBM, thus 
keeping the filter free of debris. They are contrac-
tile cells that regulate filtration rate by altering 
surface area of the capillaries. Ca2+ influx across 
the plasma membrane is critical for mesangial 
cell contraction in response to vasoactive pep-
tides. Altered responses of mesangial cells to 
vasoactive peptides is one of the major causes 
that leads to various renal diseases, such as dia-
betic nephropathy [9]. Several types of Ca2+ 
channels are involved in this physiological pro-
cess. These channels include voltage-gated Ca2+ 
channels, receptor-operated Ca2+ channels, and 
store-operated Ca2+ channels [10–14]. Both 
TRPC1 and TRPC4 are key components of store-
operated Ca2+ channels in mesangial cells [5]. 
TRPC1 contributes to contractile function of 
mesangial cells by mediating vasoconstrictor-
stimulated Ca2+ responses, whereas TRPC4 is 
activated by store depletion. In high glucose-
treated cultured mesangial cells, an in vitro model 
for diabetes, TRPC6 expression is reduced. 
TRPC6 knockdown in high glucose-treated 
mesangial cells shows reduced Ca2+ entry in 
response to angiotensin II, suggesting that defi-
ciency of TRPC6 might contribute to the impaired 
Ca2+ signaling of mesangial cells seen in diabetes 
[7, 15, 16].

Mesangial cell proliferation and apoptosis are 
involved in the maintenance of glomerular integ-
rity. Perturbation of glomerular integrity provides 
pathophysiological mechanisms that underlie 
kidney disease. Mesangial cell excessive prolif-
eration and extracellular deposition is a patho-
logical condition commonly found in chronic 
kidney diseases. Mesangial cell apoptosis con-
tributes to the resolution of glomerulosclerosis 
[17]; however, it is associated with proteinuria 
and hypertension in diabetic nephropathy [18]. 
TRPC6 activation has been shown to be involved 
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in inhibiting proliferation and triggering apop-
totic cell death in primary neonatal pig mesangial 
cells. It is achieved by induction of calcineurin/
NFAT, FasL/Fas, and caspase signaling cascade 
[19]. Interestingly, angiotensin II, which can 
stimulate mesangial cell proliferation, affects 
TRPC6 protein level and distribution [20]. 
Nevertheless, whether angiotensin II-stimulated 
mesangial cell proliferation is mediated by Ca2+ 
influx through TRPC6 needs to be further 
validated.

4.1.2	 �TRPCs in Podocyte

Podocytes are pericyte-like cells with a complex 
cellular organization consisting of a cell body, 
major processes, and foot processes. Their foot 
processes elaborate into a characteristic pattern 
with foot processes of neighboring podocytes, 
forming in between the filtration slits. Podocyte 
foot processes play a major role in establishing 
the selective permeability of the glomerular fil-
tration barrier [21]. Therefore, podocyte injury is 
associated with marked albuminuria [22].

Disruption of Ca2+ signaling and homeostasis 
were postulated as early events in podocyte 
injury. Since TRPC6 mutations are found in 
patients with FSGS, the molecular mechanisms 
involving TRPC channels have been studied 
extensively in podocyte biology [13]. Within 
podocytes, TRPC6 appears to localize in both 
major processes and foot processes, and at least 
some TRPC6 colocalizes to the slit diaphragm 
(SD), suggesting that it is the abnormal function 
of TRPC6 within the podocyte that ultimately 
leads to disease in families with FSGS-associated 
TRPC6 mutations [12]. Mounting evidences 
have been shown that proteinuria and podocyte 
foot processes effacement are mediated by rear-
rangement of the actin cytoskeleton [23]. 
Recently, angiotensin receptor-activated TRPC5 
and TRPC6 channels have been shown as antago-
nistic regulators of actin dynamics and cell motil-
ity through the regulation of Rac1 and RhoA, 
respectively [24, 25]. The later study shows that 
inhibition of TRPC6 results in the loss of stress 
fibers, Rac1 activation, and increased mobility. 

On the contrary, inhibition of TRPC5 leads to 
enhanced stress fiber formation, RhoA activation, 
and decreased motility. Thus, there are two dis-
tinct signaling microdomains emerged in podo-
cytes, one with the TRPC5 which specifically 
interacts with and activates Rac1 and the other 
with TRPC6 specifically interacts with and acti-
vates RhoA.  Consistent with previous studies, 
CsA restores synaptopodin expression in TRPC6-
depleted cells, whereas synaptopodin expression 
is preserved in TRPC5-depleted podocytes [6, 
26].

Transgenic mice overexpressing wild-type 
TRPC6 and TRPC6 gain-of-function mutants 
develop albuminuria and FSGS-type lesions [27]. 
In keeping with this, TRPC6 knockout mice are 
protected from the proteinuria effects of angio-
tensin II [28]. In the light of the antagonistic 
effects of TRPC5 and TRPC6 on podocyte actin 
dynamics, one would assume that they might 
have opposite effect in the biology of proteinuria 
development. Surprisingly, a recent study has 
shown that depletion of TRPC5 or pharmacologi-
cal inhibition of TRPC5 protects mice from pro-
teinuria [6]. One possible explanation is that the 
motility of the foot processes needs to be 
increased fast enough in response to environmen-
tal changes but also to be stable enough in the 
stationary state. Breaking the balance in either 
direction will lead to leakage of the filter.

4.1.3	 �TRPCs in Collecting Duct

The collecting duct of the kidney connects the 
nephron to the ureter. It plays a role in electrolyte 
and fluid balance through reabsorption and secre-
tion. Both TRPC3 and TRPC6 are expressed in 
the principle cells of the collecting duct [8, 10]. 
TRPC3 is primarily localized to the apical mem-
brane, whereas TRPC6 is found in both apical 
and basolateral domains. Diffuse TRPC3 and 
TRPC6 are also found in cytoplasm, presumably 
localized to intracellular vesicles. Arginine-
vasopressin (AVP), which is an antidiuretic hor-
mone that controls water homeostasis and urine 
concentration by controlling water reabsorption 
in the collecting duct, can selectively translocate 
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TRPC3, but not TRPC6, to the apical membrane 
[29]. Furthermore, AVP-induced increase of 
intracellular Ca2+ is attenuated by expressing a 
dominant-negative TRPC3. These results suggest 
that TRPC3 targeting to the apical membrane in 
collecting duct principle cells can contribute to 
the AVP-induced Ca2+ reabsorption in this region 
of nephron [29].

4.2	 �TRPCs in Heart 
and Vasculature

Like in other tissues, Ca2+ plays an important role 
in maintaining the physiological functions of car-
diovascular system, such as cardiac contractility, 
hemodynamic stretch, dilatation, and repair. 
TRPC channels, which are ubiquitously 
expressed in almost all cell types in heart and 
vasculature, work with other membrane receptors 
and ion channels to regulate intracellular calcium 
concentration spatiotemporally. Dysfunctions of 
TRPC channels are involved in many types of 
cardiovascular diseases; therefore, TRPC chan-
nels have been proposed as therapeutic targets for 
drug development [30, 31].

4.2.1	 �TRPCs in Heart

TRPC channels are localized to the peripheral 
plasma membrane in cardiomyocytes. It is 
reported that the expression and activation of 
TRPC channels are both increased during cardiac 
hypertrophy and heart failure. In cultured cardio-
myocytes and in  vivo models, the hypertrophic 
factors, such as endothelin-1 (ET-1), angiotensin 
II (Ang II), or pressure overload, increase the 
expression of TRPC1 [32, 33] and TRPC3 [34]. 
In animal models, upregulation of TRPC1 and 
TRPC7 is observed in myocardium of Dahl salt-
sensitive hypertensive rats [33, 35]. In human 
patients, the expression of TRPC6 is increased in 
cardiac hypertrophy and heart failure [36], and 
TRPC5 is found to be increased in human failing 
heart samples [34]. Cardiac hypertrophy is a 
thickening of myocardium which results from 
several pathological conditions, such as hyper-

tension, excess neurohormones, valvular abnor-
malities, and myocardial infarction remodeling. 
Dysregulation of Ca2+ is one of the mechanisms 
proposed to be involved in formation of cardiac 
hypertrophy. The substantial and low increased 
of [Ca2+]i elicited by SOCE or ROCE activates 
calcineurin, a calcium and calmodulin-dependent 
serine/threonine protein phosphatase, which 
dephosphorylates nuclear factor of activated T 
cell (NFAT). Subsequently, activated NFAT 
translocates into nucleus and induces the tran-
scription of several hypertrophic genes [37]. 
Recent studies suggest that TRPC channels are 
responsible for the substantial and low increased 
of [Ca2+]i elicited by SOCE or ROCE in cardio-
myocyte and contribute to cardiac hypertrophy 
through Calcineurin-NFAT pathway [38].

In hypertrophied myocytes, the expression of 
TRPC1 and [Ca2+]i induced by SOCE are both 
significantly increased compared to normal myo-
cytes [33]. Overexpression of TRPC1 in cultured 
cardiomyocytes elevates [Ca2+]i elicited by SOCE 
and activates calcineurin/NFAT pathway [33]. 
Trpc1 gene silencing inhibits NFAT activation 
and 5-HT2A receptor-mediated hypertrophic 
response induced by ET-1 and Ang II [39]. 
Moreover, TRPC1−/− mice was protected from 
cardiac hypertrophy and maintained preserved 
cardiac function after hemodynamic stress and 
excess neurohormone insults [32]. In contrast, 
transgenic mice with cardiomyocyte-specific 
expression of TRPC3 or TRPC6 show enhanced 
calcineurin/NFAT signaling and are more sensi-
tive to pressure overload or agonist-induced car-
diac hypertrophy [36, 40]. Additionally, the 
hypertrophic phenotype in TRPC3 transgenic 
mice was abolished by deletion of the calcineurin 
A gene, which further supports the idea that the 
hypertrophic effect of TRPC channels is associ-
ated with enhanced calcineurin/NFAT signaling 
[41]. Interestingly, it is found that NFAT also 
increases the expression of TRPC1, TRPC3, and 
TRPC6 to form a positive feedback loop, which 
is proposed to be involved in the development of 
cardiac hypertrophy [33, 34, 36]. Transgenic 
mice with a dominant-negative form of TRPC3 
or TRPC6 show attenuated hypertrophic response 
after pressure overload or neurohormone stimu-
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lations [38]. Consistently, a new report shows 
that phenylephrine (PE) that caused pathologic 
cardiac hypertrophy in wild-type mice was 
prevented by deletion of TPRC3 gene [42]. In 
addition, deletion of trpc6gene prevents stress-
induced exaggerated cardiac remodeling in 
Klotho-deficient mice [43]. Moreover, TRPC3/
TRPC6 antagonists (GSK2332255B and 
GSK2833503A) block cell hypertrophy in neo-
natal and adult cardiac myocytes following ET-1 
or Ang II stimulation in a dose-dependent man-
ner [44], and TRPC3-selective inhibitor Ryr3 
attenuates cardiac hypertrophy in mice subjected 
to pressure overload [45]. The N-terminal frag-
ment of TRPC4, which disturbs the functions of 
TRPC4 homomeric and TRPC4/TRPC5 hetero-
meric channels, protects the mice from hypertro-
phic stimulations [38, 46]. All these findings 
raise the possibility that TRPC channels might 
serve as therapeutic targets to prevent cardiac 
hypertrophy.

Over time, hypertrophic heart eventually ends 
up with heart failure. Though the transition from 
cardiac hypertrophy to heart failure is not clear, 
myocardial apoptosis is proposed to be an impor-
tant step in between. Intracellular Ca2+ overload 
induces apoptosis in many cell types. It is 
reported that overexpression of TRPC3 increases 
apoptosis in adult mouse cardiomyocytes sub-
jected to ischemia-reperfusion [47], which sug-
gests that TRPC3 may be involved in heart 
failure. Besides TRPC3, TRPC7 acts as a G 
protein-activated Ca2+ channel mediating Ang 
II-induced myocardial apoptosis [35]. The 
expression level of TRPC7 and cell apoptosis 
increased simultaneously in the failing myocar-
dium of Dahl salt-sensitive hypertension rats, and 
temocapril, an angiotensin-converting enzyme 
inhibitor, suppressed both [35]. Inconsistent with 
previous reports, TRPC7, unlike its close homo-
logues TRPC3 and TRPC6, undergoes remark-
able downregulation during the establishment of 
cardiac hypertrophy [48]. Furthermore, TRPC6 
activation might suppress heart failure via inhibi-
tion of myofibroblast differentiation [49]. Thus, 
how TRPC channels involved in the transition 
from cardiac hypertrophy to heart failure still 
need to be further investigated.

4.2.2	 �TRPCs in Vasculature

The extracellular Ca2+ entrance in vascular 
smooth muscle cells (VSMC) and endothelial 
cells regulates various functions in pulmonary 
and systematic circulation, such as artery remod-
eling, vasoconstriction, and vasodilatation. All 
subunits of TRPCs are expressed in VSMC and 
vascular endothelial cells to form functional 
channels that are permeable to Ca2+, which sug-
gests that TRPC channels may also play impor-
tant roles in vascular system [50–52].

Abnormal VSMC proliferation in vascular 
remodeling is associated with development of 
hypertension and atherosclerosis [53]. It is shown 
that the elevation of [Ca2+]i is critical for VSMC 
growth. Chelating extracellular or intracellular 
Ca2+ both inhibit the cell proliferation [54]. 
Upregulation of TRPC1and TRPC4 has been 
reported in VSMC and contributes to cell growth 
subjected to various stimulation, such as Ang II, 
ATP or pressure load insults, by phosphorylation 
of cyclic AMP response element-binding protein 
(CREB) through elevation of [Ca2+]i [55, 56]. 
Excessive proliferation of pulmonary artery 
smooth muscle cell (PASMC) has been observed 
in patients with idiopathic pulmonary arterial 
hypertension (IPAH). The expression of TRPC3 
and TRPC6 is increased in PASMC in the pulmo-
nary artery tissue from IPAH patients. 
Downregulating the expression of TRPC6 by 
siRNA attenuates cultured PASMC proliferation 
from IPAH patients [57]. However, deletion of 
TRPC6 does not protect mice from chronic pul-
monary hypertension and vascular remodeling 
[58]. Besides, TRPC1 is thought to be critical for 
cell proliferation in human PASMC from non-
pulmonary hypertension [55, 59].

VSMC contraction caused by Ca2+ entry 
through Ca2+ permeable channels is important for 
regulation of blood pressure. Attenuating the 
function of TRPC1 by anti-TRPC1 antibody 
inhibits the SOCE-induced cell contraction. 
Consistently, overexpression of TRPC1 in rat pul-
monary artery increases [Ca2+]i elicited by SOCE 
and promotes contraction [60]. It’s also reported 
that TRPC6 is the essential component of vascu-
lar α1-adrenoceptor-activated Ca2+-permeable  
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cation channel in rabbit portal vein smooth mus-
cle cell (SMC). SMC contraction induced by α1-
adrenergic agonists can be blocked by suppress-
ing TRPC6 expression [61]. In addition, activation 
of TRPC6 has been found in vasopressin, a vaso-
constrictor, stimulated A7r5 aortic SMC [62]. 
Unexpectedly, TRPC6−/− mice show elevated 
blood pressure, hyperactivity of airway smooth 
muscle cells, and increased contractility in iso-
lated tracheal and aortic rings [63, 64]. 
Furthermore, SMC from TRPC6−/− aorta or cere-
bral arteries are more depolarized with enhanced 
spontaneous and agonist-induced Ca2+ entry [63]. 
These phenomena can be explained by compensa-
tory expression of constitutive active TRPC3 
channels in TRPC6−/− mice. It is reported that 
UTP-induced depolarization of rat cerebral arter-
ies and subsequent contraction of SMC can be 
blocked by suppressing the expression of TRPC3, 
not TRPC6, in these cells [65]. In spontaneous 
hypertension rats, the expression of TRPC3 is 
abnormally high compare with normotensive 
Wistar-Kyoto rats [66]. ET-1, which also works as 
potent vasoconstrictor in controlling blood pres-
sure, activates aCa2+-permeable cation channel 
with TRPC7 and TRPC3 in rabbit coronary artery 
myocytes [67]. Regional alveolar hypoxia induces 
constriction of pulmonary arteries and redirects 
blood flow to alveoli with higher oxygen content 
to ensure maximal oxygenation of the venous 
blood [68]. The phenomenon is called hypoxic 
pulmonary vasoconstriction, and [Ca2+]i elevation 
is suggested to play a key role in this process [69]. 
TRPC6−/− mice completely lost acute hypoxic 
pulmonary vasoconstriction, and hypoxia-
induced [Ca2+]i elevation is absent in PASMC of 
TRPC6−/− mice [58]. Upregulation of TRPC1 and 
TRPC6 has been reported in hypoxic pulmonary 
arteries accompanied with increased [Ca2+]i ele-
vation induced by SOCE or ROCE as well as the 
basal level of [Ca2+]I [70]. The increased expres-
sion level of TRPC1 and TRPC6  in PASMC is 
mediated by the activation of oxygen-sensitive 
transcription factor hypoxia-inducible factor 1 
(HIF1) [71].

Endothelial cells are involved in many aspects 
of vascular biology such as barrier function, 
angiogenesis, vasoconstriction, and vasodilata-

tion. The endothelium acts as a semi-selective 
barrier between the vessel lumen and surround-
ing tissue. Chronic inflammation in vessels 
changes the shapes of endothelial cells and 
increases the permeability of endothelium which 
may lead to tissue edema or swelling [72]. It’s 
suggested RhoA activation and Ca2+ entry 
through TRPC1, TRPC4, and TRPC6 channels 
both contribute to the thrombin-induced increase 
in endothelial cell contraction, to the cell shape 
change, and consequently to the mechanism of 
increased endothelial permeability [73–75]. 
TRPC1, TRPC3, and TRPC6, together with vas-
cular epithelial growth factor (VEGF) receptor 2, 
mediate VEGF-induced Ca2+ entry and permea-
bility of human microvascular endothelial cells 
[76, 77]. TRPC6 channels mediate VEGF-
induced angiogenesis in human umbilical cord 
vascular endothelial cells (HUVEC) [78, 79], and 
TRPC1 and TRPC4 are required for tubular for-
mation in primary HUVEC in another report 
[80]. Additionally, hypoxia sensed by endothelial 
cells leads to growth factor production and vascu-
lar remodeling. TRPC3/TRPC4 heteromeric 
channels in endothelial cells and HEK293 cells 
are responsible for hypoxia-induced Ca2+ entry 
[81]. Ca2+ entry through TRPC channels plays an 
important role in agonist-induced vasoactivation. 
Endothelial cells in TRPC3−/− mesenteric arteries 
showed attenuated PE-stimulated vasoconstric-
tion, impaired acetylcholine-induced nitro oxy-
gen (NO) production, and increased vasodilatation 
[82, 83]. Similarly, in aortic endothelial cells of 
TRPC4−/− mice, acetylcholine-induced Ca2+ 
entry and vasodilatation are both reduced [74].

4.3	 �TRPCs in Lung Health 
and Disease

The lung is composed of multiple structural cell 
types including epithelial cells, airway smooth 
muscle, pulmonary vascular smooth muscle, and 
endothelial cells. Inflammatory lung diseases, 
such as asthma and chronic obstructive pulmo-
nary disease (COPD), feature alterations in the 
morphology and function of structural cells. For 
example, there is epithelial hyperplasia and 
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development of an epithelial hypersecretory phe-
notype in asthma and chronic bronchitis and air-
way smooth muscle hypertrophy and 
hyperreactivity in asthmatics [84, 85]. Studies of 
expressions of TRPC channels suggest several 
TRPCs are highly expressed in different cell 
types and that their expression pattern levels are 
distinct [86, 87, 88], suggesting their unique 
functions in different cell types.

4.3.1	 �TRPCs in Lung Epithelial Cells

Little is known about TRPC expression in pri-
mary airway epithelial cells. TRPC1, TRPC4, 
and TRPC6 mRNA and TRPC6 protein are 
expressed in human bronchial epithelium and 
submucosal gland epithelium [86]. On the other 
hand, much more is known about the expression 
of TRPC channels in primary lung endothelial 
cells. There are several recent studies showing 
that TRPC1, TRPC3, TRPC4, TRPC6, and 
TRPC7 are expressed in either human or mouse 
pulmonary artery endothelial cells [57, 89].

Calcium ion influx through plasmalemmal 
calcium channels can impact the integrity of lung 
endothelial barrier and thus its permeability of 
fluid and protein. Store-operated Ca2+ entry 
increases lung endothelial permeability, both 
in vivo and in vitro [90]. It has been reported that 
store-operated calcium channels in culture pul-
monary endothelium and caveolar fractions har-
vested from intact lung epithelium consist of 
TRPC1 and TRPC4 [91]. The interaction of 
TRPC4 and Orai1 is responsible for channel’s 
calcium selectivity. Furthermore, thrombin-
induced store-operated Ca2+ entry is reduced in 
lung endothelial cells isolated from TRPC4−/− 
mice [74]. However, in another study, activation 
of Ca2+ entry by OAG or thrombin in human pul-
monary artery endothelium is reduced by treating 
the cells with siRNA against TRPC6 [75]. In con-
cert with attenuated Ca2+ entry, RhoA activity, 
myosin light chain phosphorylation, actin stress 
fiber formation, and monolayer permeability are 
all decreased [75]. Ischemia-induced intracellu-
lar Ca2+ overload and subsequent increase of 

monolayer permeability are attenuated in endo-
thelial cells isolated from TRPC6−/− mice. Thus, 
TRPC6−/− mice are protected from ischemia-
induced increases in lung permeability and 
edema [92].

4.3.2	 �TRPCs in Airway Smooth 
Muscle Cells

Airway smooth muscles control the passage of 
air in airways. The dysfunction of airway smooth 
muscles is implicated in asthma. Excessive con-
traction of airway smooth muscle will cause air-
way narrowing, which is the primary mechanism 
of morbidity and mortality in asthma [93, 94]. 
Extracellular Ca2+ influx has been shown to play 
a critical role in smooth muscle contraction [95]. 
Multiple TRPC channels are expressed in smooth 
muscle cells, of which TRPC1, TRPC3, and 
TRPC6 have been shown to be expressed consis-
tently across species [87, 96, 97].

TRPC3 is the major component of the native 
constitutively active nonselective cation channels 
in airway smooth muscle cells, of which the 
activity is increased in response to agonists [96]. 
They play an important role in various cellular 
responses including contraction, proliferation, 
migration, and gene expression in airway smooth 
muscle cells. TRPC3-encoded nonselective cat-
ion channels are also important for controlling 
the resting membrane potential and intracellular 
Ca2+ concentration in airway smooth muscle 
cells. Knocking down of TRPC3 results in a pro-
nounced hyperpolarization by ~14 mV [96]. 
Moreover, trpc3 gene silencing inhibits metha-
choline-, acetylcholine-, and tumor necrosis fac-
tor α (TNFα)-evoked [Ca2+]i, suggesting TRPC3 
mediates agonist-induced [Ca2+]i elevation in 
smooth muscle cells [98]. In reminiscent of these 
results, TRPC3 mRNA and protein level are sig-
nificantly increased in airway smooth muscles 
following treatment with TNFα, an important 
asthma mediator [98]. These lines of evidence 
suggest that TRPC3 plays a fundamental role in 
smooth muscle physiology, and it is a prominent 
candidate for treatment of asthma.
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4.4	 �Perspectives

In the past few years, TRPC channels have 
emerged as central players in various physiologi-
cal processes. Mutations in these proteins are fre-
quently associated with human diseases. As more 
information from the in vivo role of TRPC chan-
nels in animal models and clinical data from 
patients carrying mutations become available, 
our knowledge of the role of TRPC channels in 
disease pathogenesis will expand considerably. 
TRPC channels are expressed universally among 
most cell types. Studies from one system can be 
referenced to another. Further progress in mecha-
nistic understanding of TRPC channels may help 
in identification of novel therapeutic targets.
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