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Abstract

Transient receptor potential canonical (TRPC) channels mediate the influx 
of different types of cations through the cell membrane and are involved in 
many functions of the organism. Evidences of involvement of TRPC chan-
nels in neuronal development suggest that this family of proteins might 
play a role in certain neurological disorders. As reported, knockout mice 
for different TRPC channels show alterations in neuronal morphological 
and functional parameters, with behavioral abnormalities, such as in 
exploratory and social behaviors. Although mutations in TRPC channels 
could be related to mental/neurological disorders, there are only a few 
cases reported in literature, indicating that this correlation should be fur-
ther explored. Nonetheless, other functional evidences support the impli-
cation of these channels in neurological diseases. In this chapter, we 
summarize the main findings relating TRPC channels to neurological 
 disorders, such as autism spectrum disorders, bipolar disorder, and intel-
lectual disability among others.
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12.1  Introduction

Nervous system development is an intricate pro-
cess that involves a series of steps, including pro-
liferation of progenitor cells, cellular migration, 
neurite development and guidance, and establish-
ment of synapses. All these steps have to be 
strictly regulated in order to enable the correct 
configuration of neuronal networks and adequate 
brain functioning. Disruption in such processes 
can lead to abnormal development or functioning 
of neuronal circuits, contributing to abnormal 
regulation of neuronal plasticity, which ulti-
mately results in psychiatry/neurological 
diseases.

The TRPC channels have important roles in 
different cellular processes in several tissues, 
including nervous system. They are divided in 
three main groups according to their sequence 
similarity: TRPC1/4/5, TRPC3/6/7, and TRPC2 
which, in humans, is actually a pseudogene. 
TRPC channels are highly expressed in the brain, 
and their roles on neuronal development have 
been intensively investigated. Some examples of 
TRPC channels functions are summarized below.

TRPC1 is reported to have an important role 
in neural progenitor cell proliferation [11, 23, 49, 
62]. TRPC3 induces long-term depression in 
Purkinje cells [42] and participates in the regula-
tion of hippocampal neuronal excitability, affect-
ing the memory formation [59]. In conjunction 
with TRPC6, TRPC3 affects axonal path finding 
induced by BDNF [51] and has a protective effect 
in neuronal survival [34]. Moreover, TRPC chan-
nels are also important for synaptogenesis, for 
example, TRPC proteins could interact with post-
synaptic membrane scaffolding proteins [87]. 
TRPC6 has a role in excitatory synapse forma-
tion [90], and both TRPC3 and TRPC6 are neces-
sary for BDNF-induced increase in dendritic 
spine density [2].

Different TRPC channels even have opposite 
roles in the regulation of neurite outgrowth. In 
PC12 cells, TRPC1 induces neurite outgrowth 
through a mechanism that is independent of Ca2+ 
influx, while TRPC5 has an opposite effect [31]. 
Activation of TRPC4 by Gαi2 inhibits neurite 
growth and dendritic arborization of hippocam-
pal neurons [33]. Neurotrophin-3 induces Ca2+ 

influx through TRPC5 and inhibits neurite out-
growth in rat hippocampal neurons, while neuro-
trophin- 4 promotes neurite growth through 
TRPC6 activation [30]. Growth cone collapse 
induced by Semaphorin-3A is reduced in hippo-
campal neurons from TRPC5 knockout mice 
[35]. Finally, TRPC6 promotes dendritic growth 
via a Ca2+-CaMKIV-dependent mechanism in rat 
neurons [79]. It is worthy to highlight that most 
of the function of TRPC in neurons are mediated 
by Ca2+ influx, although they are nonselective 
cation channels. In fact, Ca2+ signaling is a cru-
cial mechanism for brain development (reviewed 
in [73]).

In summary, TRPC channels contribute to the 
regulation of neuronal development and function. 
Malfunction of these channels might have an 
impact on such processes and thus contribute to 
psychiatric/neurological disorders. Here we enu-
merate some human disorders for which there are 
evidences of involvement of TRPC channels in 
their pathophysiology. For some of them, direct 
disruption of the sequence of a -trpc gene was 
found in the patients, while for some other disor-
ders, the relationship between TRPC channels 
and disease is based on indirect evidences.

12.2  TRPC6 and Autism

Autism spectrum disorders (ASD) are defined as 
a group of neurodevelopmental disorders charac-
terized by repetitive behaviors as well as impair-
ments in communicative and social interaction 
skills. Although environmental factors might 
play a role in ASD etiology, evidences support a 
major contribution of genetic factors to these dis-
orders. However, these genetic factors are hetero-
geneous across autistic individuals, and in fact, 
dozens of genes have already been implicated in 
ASD.

trpc6 is one of the genes that have been 
recently implicated in ASD etiology. The relation 
between trpc6 and ASD is originally based on the 
work of Griesi-Oliveira et al. [28] that has identi-
fied an autistic patient with a chromosomal trans-
location between chromosomes 3 and 11. 
Translocation mapping indicated that the 
sequence of genes vprbp on chromosome 3 and 
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trpc6 on chromosome 11 are disrupted, leading 
to haploinsufficiency. Previous studies have 
shown that TRPC6 overexpression in rat neurons 
leads to an enhancement on dendritic growth, 
dendritic spine density, and excitatory synapse 
formation, both in vitro and in vivo [79, 90]. 
Based on these evidences, the authors invested in 
the analysis of the consequences of such disrup-
tion in the function of TRPC6 and its downstream 
signaling pathway in the cells of the reported 
patient. The role of TRPC6 on neuronal develop-
ment is mainly related to the calcium influx 
through the channel, leading to CREB phosphor-
ylation [79], which in turn mediates the regula-
tion of expression of many genes. Promoting the 
activation of the channel using hyperforin, a spe-
cific activator of TRPC6, will be discussed later, 
and authors demonstrated that CREB phosphory-
lation is reduced in patient’s dental pulp cells 
compared to control cells. Accordingly, a global 
expression analysis suggests that a significant 
number of putative CREB target genes are dys-
regulated in patient’s dental pulp cells.

Griesi-Oliveira et al. generated induced plu-
ripotent stem cells (iPSC) from the patients and 
healthy controls through cell reprogramming to 
investigate trpc6 disruption consequences on tar-
geted cortical neuronal cells derived from the 
iPSC. Again, after inducing TRPC6 activation 
with hyperforin, the authors showed that calcium 
influx through neuronal progenitor cells is 
reduced in the patient’s sample. In addition, 
patient’s cortical neurons are found to have a 
reduced dendritic arborization, shorter neurites, 
and reduced density of dendritic spines and glu-
tamatergic vesicles compared to controls (corti-
cal neurons derived from non-ASD, healthy 
individuals). All these abnormalities are in accor-
dance to previous findings on rat neurons overex-
pressing TRPC6, which have the opposite 
characteristics [79]. Moreover, the authors per-
form gain and loss of function experiments in 
neurons. Reducing TRPC6 expression in control 
cells leads to the same neuronal alterations seen 
in the patient’s neurons. On the contrary, comple-
mentation of TRPC6 expression in patient’s cells 
rescues the neuronal phenotypes. These results 
corroborate that the alterations in patient’s neu-
rons are related to trpc6 disruption and conse-

quent haploinsufficiency. Behavioral studies with 
TRPC6 knockout mice, although they do not 
indicate any alteration in social or repetitive 
behavior, have a reduced exploratory behavior, 
which is associated to clinical signs of ASD, 
including the autistic patients used by Griesi and 
colleagues [8, 28]. Finally, the patient’s neuronal 
abnormalities is rescued by treating the neurons 
with hyperforin, raising the hypothesis that autis-
tic patients with trpc6 mutations, or other genes 
mutated in this pathway, could benefit from this 
chemical. However, the number of patients with 
truncating mutations in trpc6 is only around 
0.2%. Thus, an effective clinical trial would ben-
efit from a previous stratification of the ASD 
individuals based on the genetic alterations in 
trpc6 or its downstream genes. The idea to use 
genome sequencing and functional tests using 
cell reprogramming to stratify a heterogeneous 
population for clinical trials is recently proposed 
for ASDs [54].

12.3  TRPC Channels, BDNF, 
and Rett Syndrome

Rett syndrome is an X-linked neurodevelopmen-
tal disorder caused mostly by loss-of-function 
mutations in mecp2 (methyl-CpG-binding pro-
tein) gene and affects primarily females. Male 
patients usually die early in development. The 
disease is characterized by a period of apparently 
normal development until 6–18 months of age 
followed by a progressive regression of develop-
mental and motor skills, seizures, and hypotonia, 
and the majority of the patients can also present 
autistic features. MeCP2 protein influences neu-
ronal development in several ways. MeCP2 pres-
ents a wide range of actions on transcriptional 
regulation, through its binding to CpG-methylated 
islands, where it recruits other transcriptional 
repressors and histones acetylases. In addition, 
MeCP2 has been shown to regulate TRPC chan-
nels expression in mouse brain, and Ca2+ signals 
elicited by TRPC3/6 activation are impaired in 
neurons of male mecp2 mutant mice [10, 50]. 
Furthermore, MeCP2 is found in association with 
trpc6 promoter region in human neurons, and in 
accordance, neurons expressing a loss-  of- function 
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allele of mecp2 presented deregulation of trpc6 
expression [28]. Interestingly, neurons from RTT 
patients present a series of abnormalities, such as 
shorter neurites, reduced dendritic arborization, 
and lower spine density, which is also found in 
trpc6 mutant autistic patient’s neurons described 
in the previous section [53, 54]. In accordance, 
Nageshappa et al. [58] show opposite effects in 
neuronal cells from patients with mecp2 duplica-
tion. MeCP2 also seems to exert an indirect action 
in regulating TRPC channels, through the control 
of the expression of another target, the bdnf gene 
[12, 55]. Involvement of BDNF on pathophysiol-
ogy of Rett syndrome is widely documented 
(reviewed by Katz [36]). This gene codes for a 
neurotrophin that acts as a chemoattractant mole-
cule for neuronal growing process and supports 
neuronal survival and maturation. Studies suggest 
that these roles of BDNF on synapse formation 
are mediated, at least in part, by TRPC channels. 
The first evidence comes from the observation 
that exogenous BDNF triggers membrane cation 
currents resembling those that occur through 
TRPC channels [48]. Later, it is demonstrated that 
Ca2+ currents induced by BDNF are in fact abol-
ished by inhibition of TRPC channels via pharma-
cological inhibition or downregulation of their 
expression [51]. Such inhibition also blocks 
BDNF-induced cone growth. The protective 
effect of BDNF on neuronal survival as well as its 
induction of dendritic spine formation is also 
dependent on TRPC channel expression [2, 34]. 
Finally, Fortin et al. [24] show that pharmacologi-
cal blocking of TRPC channel activity prevents 
BDNF-induced translation and incorporation of 
GluA1-containing AMPA receptors in synaptic 
membrane. Thus, it would be of interest to inves-
tigate whether Rett syndrome patients could also 
benefit from chemicals that can modulate TRPC 
channels activity.

12.4  TRPC5 and X-Linked 
Intellectual Disability

Intellectual disability (ID) is a clinical pheno-
type characterized by significant limitations in 
cognitive function and in adaptive behavior, i.e., 

social and practical skills needed for everyday 
life activities, such as communication, self-care, 
and socialization. ID is associated with many 
different genetic syndromes and genetic altera-
tions and can also be caused by pre- or postnatal 
environmental factors, such as alcohol abuse by 
the mother, exposure to pathogens during preg-
nancy, problems at the time of birth, or diseases 
in early childhood such as meningitis. It is esti-
mated that ID affects about 3% of the popula-
tion [56]. Prevalence of ID is biased toward 
males, indicating that X-linked genes have an 
important contribution to cognitive develop-
ment. In fact, many different X-linked genes 
were already identified as being the causative 
gene for ID, especially in pedigrees in which 
this phenotype segregates in an X-linked pattern 
[14, 65, 72]. Recently, Mignon-Ravix et al. [57] 
use a custom high- resolution CGH array to 
investigate the presence of copy number varia-
tions (CNV) in the X chromosome, in a cohort 
of 54 male individuals presenting ID. In this 
study, the group finds a patient with a 47 kb 
deletion in Xq23 region involving the first exon 
of trpc5 gene. A CNV that is considered to be 
probably pathogenic since it has not been previ-
ously identified in any control sample and since 
trpc5 is highly expressed in the brain. The dele-
tion is also found in the mother, who is unaf-
fected and presented a 50:50 ratio of X 
chromosome inactivation in her lymphocytes. 
The individual is reported to present autistic 
features such as repetitive and stereotyped 
behavior. TRPC5 is shown to be important for 
the control of neurite extension and growth cone 
morphology [27, 30, 31, 35]. Downregulation of 
TRPC5 in rat neuronal progenitor cells reduced 
the Ca2+ currents through the cells and blocked 
the neuronal differentiation [76]. Finally, 
TRPC5 knockout mice present abnormally high 
branched dendrites in cerebellar neurons and 
reduced LTP [64, 67]. These animals present 
motor deficits and diminished innate fear levels 
in response to aversive stimuli [67, 68]. These 
data support a role of TRPC5 in nervous system 
development and a possible involvement in 
intellectual disability.
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12.5  TRPC3, TRPC7, and Bipolar 
Disorder

Bipolar disorder (BD), also known as maniac- 
depressive disorder, is a mental illness character-
ized by unusual shifts in mood, swinging from 
periods of maniac episodes, when the individual 
experiences an overexcited state, being abnor-
mally happy, energetic or irritable, and periods of 
depressive mood, in which the individual presents 
sadness and poor interest and pleasure in most 
activities. As with most of the neurological disor-
ders previously discussed, BD is a disorder with 
heterogeneous etiology, in which genetic and 
environmental factors play a role [40]. Many 
genes have already been associated with BD 
based on exome studies, case-control cohorts, or 
genetic studies of families in which BD segre-
gates throughout generations [39, 77]. Evidences 
from functional studies have also brought support 
for involvement of some genes in BD, as are the 
cases of trpc3 and trpc7. Reports of abnormalities 
in basal and agonist-stimulated Ca2+ concentra-
tions in different cell types of BD individuals sug-
gest that Ca2+ homeostasis plays a significant role 
in BD pathophysiology [18, 20], especially con-
sidering the importance of Ca2+ signaling for neu-
roplasticity [26]. Moreover, a series of studies 
using lithium treatment (one of the most widely 
used drug treatment for BD) show that this chemi-
cal affects Ca2+ signaling in neurons and in non- 
excitable cells such as platelets, lymphocytes, and 
glial cells, providing another line of evidence sup-
ported for the involvement of Ca2+ signaling in 
BD [13, 17, 81, 85]. The evidences that Ca2+ sig-
naling abnormalities in non-excitable cells from 
BD individuals prompt scientists to investigate 
mechanisms involved in Ca2+ influx in these types 
of cells, particularly in the glial cells [82]. Among 
the molecular mechanisms responsible for Ca2+ 
dynamics regulation in non-excitable cells, store-
operated calcium entry is proposed to be involved 
in BD pathogenesis [32, 84], which directs the 
attention to channels from TRP family. TRPC7 
expression was reduced in a subgroup of BD 
patients [86]. Interestingly, this reduction was 
inversely correlated to Ca2+ basal levels in B lym-
phoblasts cell lines (BLCLs) from BD subjects. 

Andreopoulos et al. [6] report that chronic lithium 
treatment significantly reduces TRPC3 protein 
levels in BLCLs of BD individuals. Decreased 
levels of TRPC3 proteins are also reported in 
cerebral cortex of rats chronically treated with 
lithium [88]. Interestingly, neither of the studies 
detects decreases in TRPC3 mRNA levels. A 
faster Ca2+ influx is observed in BLCLs of BD 
individuals upon lysophosphatidic acid (LPA) 
stimulation [63]. In this model, the authors sug-
gested that LPA-mediated Ca2+ influx is probably 
mediated by TRPC3, since LPA is structurally 
homologue to 1-oleoyl-2-acetyl-sn-glycerol 
(OAG), a known activator of TRPC3/6/7, but 
only TRPC3 is expressed in BLCLs [69], suggest-
ing a role of TRPC3 in BD pathogenesis. 
Oxidative stress has also been implicated in BD 
[5, 60, 83]. Based on the fact that TRPC channels 
can be sensitive to redox state of the cells, 
Roedding and collaborators [70] investigate 
whether TRPC3 expression and function could be 
affected by oxidative stress in BLCLs from BD 
individuals and controls. The authors found that 
chronic mitochondrial-generated oxidative stress 
reduces TRPC3 protein levels as well as the Ca2+ 
influx through these channels, though this reduc-
tion is equally found in controls and BD individu-
als. A similar reduction is detected in primary rat 
cortical neurons exposed to stressor conditions 
[71]. Why no differences between subjects and 
controls were found regarding TRPC3 expression 
and function response to stressor conditions tested 
and why these conditions induced a decrease in 
protein levels (which is an opposite consequence 
expected considering the effects of lithium in sim-
ilar cellular models) are questions that deserve 
further investigation.

12.6  TRPC3 and Williams–Beuren 
Syndrome

Williams–Beuren syndrome (WBS) is a multi-
system disorder caused by a deletion on chromo-
some 7, specifically at 7q11.23 region. WBS 
patients present characteristic facial features 
(such as wide mouth, flattened nasal bridge, and 
widely spaced teeth), connective tissue problems, 
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and cardiovascular malformations. They also 
present neurodevelopmental problems that 
include moderate mental retardation, difficulty 
with visual-spatial tasks, in contrast to strong 
verbal skills and a friendly personality, demon-
strating an extreme interest in other people. 
Patients with WBS can also have hypercalcemia, 
which is most frequently present during child-
hood [4, 43]. The region deleted in WBS harbors 
26–28 genes. Their relative contribution to the 
phenotype is still poorly understood, except for 
elastin gene, which is related to the cardiovascu-
lar problems presented by the patients [21]. One 
of the genes in 7q11.23 is gtf31 (general tran-
scription factor IIi). This gene codes for the tran-
scription factor TFII-I, which is thought to be one 
of the main causative factors for cognitive dys-
functions in WBS based on the definition of a 
shared region always present between patients 
with different sizes of the deletion [7]. Although 
TFII-I is primarily a transcription factor, it may 
also have a role outside the nucleus, as it is evi-
denced by its presence in cytosol, for example, of 
B lymphocytes [61] and in dendritic trees of 
Purkinje cells [16]. In human B lymphocytes, it 
has been described that TFII-I suppresses accu-
mulation of TRPC3 in cell surface, thus, decreas-
ing Ca2+ entry into the cells [9]. Based on this 
observation, Letavernier and colleagues [45] 
investigate whether TRPC3 expression is altered 
in a WBS individual reported to have hypercalce-
mia. By using immunohistochemistry, they found 
an increased protein expression of TRPC3 in 
lymphocytes and epithelial intestinal cells from 
this patient compared to control samples. 
Although TRPC3 mRNA levels seems not to be 
altered in neuronal cells derived from iPSC of 
WBS individuals [1, 41, 44], we cannot disregard 
that TFII-I might be acting at the protein level as 
it is seen in B lymphocytes [9].

12.7  TRPC Channels, Hyperforin, 
and Depression

Depression is a mental disorder which etiology 
and pathology remain largely unknown, but it is 
hypothesized to be associated with reduced func-

tion of monoamine chemicals, such as serotonin 
and norepinephrine (reviewed by Dale et al. [15]). 
In fact, the most successful approaches to treat 
major depressive disorder (MDD) target the 
monoamine system by either the selective sero-
tonin reuptake inhibitors (SSRI) or by serotonin 
and norepinephrine reuptake inhibitors (SNRI) 
increasing monoamine transmission [15]. 
However, only about 50% of patients diagnosed 
with MDD evolve into clinical remission under 
these treatments [74]. In this regard, hyperforin, 
one of the main bioactive compounds of the 
medicinal plant Saint John’s wort (SJW), has 
shown to present unique antidepressant effect and 
to be significantly more effective than those in the 
first line of antidepressant drugs [22, 25, 78]. In 
contrast to conventional drugs, hyperforin acts as 
a nonselective neurotransmitter reuptake inhibi-
tor, blocking the uptake of serotonin, norepineph-
rine, dopamine, and other neurotransmitters [89]. 
Part of hyperforin’s antidepressant effects has 
been attributed to its property to  activate TRPC6 
channel. TRPC6 channels are permeable to 
sodium in the presynaptic membrane and its acti-
vation contributes to decreasing the sodium gradi-
ent that drives the neurotransmitters reuptake 
through the transporters, contributing to increas-
ing the levels of the monoamine neurotransmitters 
in the synaptic cleft [46, 47, 80].

Depression is also commonly associated with 
decreased levels of BDNF in the hippocampus 
[38, 75]. As BDNF is a neurotrophic factor fun-
damental to the modulation of dendritic architec-
ture and synapse [37], it is also hypothesized that 
depression is associated with loss of hippocam-
pal synapses and dendritic spines contributing to 
dysfunction of synaptic plasticity [19, 29, 66]. As 
previously mentioned, synaptogenic properties 
of BDNF is thought to be in part mediated by cal-
cium transients evoked by TRPC channels [2, 3]. 
Similarly, the potential effectiveness of hyperfo-
rin in the treatment of depression may also be 
attributed to the calcium influx through TRPC6 
channel, which can contribute to the modulation 
of dendritic spine density and morphology [47].

Although hyperforin has shown to present 
exciting antidepressant properties and now to be 
commonly prescribed for the treatment of mild to 
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moderate depression [52], studies in vivo demon-
strating the potential effectiveness of this com-
pound are still lacking and require further 
investigation. In summary, although there are no 
genetic findings directly correlating TRPC chan-
nels with depression, the studies mentioned 
above show how these channels (in particular, 
TRPC6) modulate etiopathological mechanisms 
involved in this disorder and how these channels 
represent potential therapeutic targets, not only 
for depression but also for other neurological dis-
eases with dysfunction of these channels.

12.8  Conclusions and Future 
Perspectives

Genetic and functional evidences have indicated 
the participation of TRPC channels in the patho-
physiology of several mental disorders (as sum-
marized in Fig. 12.1). Further investigation of 

such relationships would be of great value since 
these proteins are ion channels and, thus, can be 
directly targeted to regulate their activity, which 
may lead to an effective therapeutic effect.

As illustrated by the case of trpc6 disruption 
in an ASD individual, the use of cell reprogram-
ming to obtain neuronal cells derived from plu-
ripotent stem cells from individuals with 
neurological disorders is a powerful tool to 
explore possible roles of TRPC channels in the 
brain. Furthermore, considering that TRPC chan-
nels are one of the major classes of channels 
responsible for ion influx in non-excitable cells, 
their involvement in the pathophysiology of neu-
rological disorders should be explored not only in 
neurons but also neuronal progenitor cells and 
glial cells. For instance, it would be interesting to 
validate the results found by the expression and 
functional studies conducted in BLCLs of 
patients with BD in neuronal cells derived from 
these patients using such approach. If these stud-

Fig. 12.1 TRPC channels are mediators of sensory sig-
nals with marked effects on neuronal functions. TRPC3 
proteins can form heteromeric interactions with TRPC6 
and regulate neuronal survival, axonal growth cone guid-
ance, and dendritic spine formation. Disturbances in the 
functioning of these proteins and in the cation influx 
through the channels they form have been implicated in 
the pathophysiology of several neurological diseases, 

such as ASD, Rett syndrome, and Williams–Beuren syn-
drome. Similarly, X-linked intellectual disability patho-
physiology has been attributed to disturbances in the 
calcium influx elicited through TRPC5 channels and 
altered neurite outgrowth. Finally, altered calcium influx, 
possibly through TRPC3 or TRPC7, has been associated 
with Bipolar disorder
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ies point to a participation of TRPC channels in 
the etiology of the disease, the same system can 
also be used to screen for drugs that can modulate 
TRPC channel activity in target cell types in an 
attempt to rescue cellular function and, possibly, 
contributing to the treatment of the diseases.
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