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Abstract  There is an increasing interest for analytical methods aimed to detect bio-
logical sulfur-containing amines, because of their involvement in human diseases and 
metabolic disorders. This work describes an improved HPLC method for the determi-
nation of sulfur containing amino acids and amines from different biological matrices. 
We optimized a pre-column derivatization procedure using dabsyl chloride, in which 
dabsylated products can be monitored spectrophotometrically at 460 nm. This method 
allows the simultaneous analysis of biogenic amines, amino acids and sulfo-amino 
compounds including carnosine, dopamine, epinephrine, glutathione, cysteine, tau-
rine, lanthionine, and cystathionine in brain specimens, urines, plasma, and cell 
lysates. Moreover, the method is suitable for the study of physiological and non-phys-
iological derivatives of taurine and glutathione such as hypotaurine, homotaurine, 
homocysteic acid and S-acetylglutathione. The present method displays good effi-
ciency of derivatization, having the advantage to give rise to stable products compared 
to other derivatizing agents such as o-phthalaldehyde and dansyl chloride.
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With this method, we provide a tool to study sulfur cycle from a metabolic point of 
view in relation to the pattern of biological amino-compounds, allowing researchers 
to get a complete scenario of organic sulfur and amino metabolism in tissues and cells.

Keywords • High pressure/performance liquid chromatography • Sulfur-containing 
bioactive compounds • Dabsyl chloride

Abbreviations

DABS	 4-N,N-Dimethylaminoazobenzene-4′-sulfonyl chloride
DANS	 5-Dimethylaminonaphthalene-1-sulfonyl chloride
HPLC	 High performance liquid chromatography
OPA	 o-phthalaldehyde
TCA	 Trichloroacetic acid
TDGA	 Thiodiglycolic acid

1  �Introduction

Analysis of biogenic and sulfur-containing amines is becoming increasingly impor-
tant in clinical and biochemical research (Curran et al. 2016). Taurine is a sulfur-
containing β-amino acid present in different human body areas and is one of the 
most important and studied sulfurous organic bioactive molecules involved in 
human health (Jacobsen and Smith 1968). It is one of the end-products of cysteine 
metabolism and is excreted in urines. Taurine concentration in humans ranges from 
high millimolar in plasma, heart and brain, to micromolar amounts in tissue and 
body fluids such as urines (Schuller-Levis and Park 2003). Apart from its important 
physiological role as a neuroactive molecule (Wade et al. 1988), it displays a wide 
range of pharmacological effects including membrane stabilization, cytoprotective 
effects, antioxidant and anti-inflammatory action (Chaturvedi et al. 2015; Abdel-
Moneim et al. 2015). In addition taurine is able to restore muscle function and per-
formance in different pathological conditions (Chan-Palay et  al. 1982a, b, c; De 
Luca et al. 2015). Recently, a number of studies have shown that taurine may have 
a beneficial effect against metabolic syndrome, preventing obesity regulating glu-
cose metabolism and lowering cholesterol plasma concentration (Bai et al. 2016; 
Zhang et al. 2016a, b; Chen et al. 2016).

Moreover, many sulfurous amino compounds and taurine metabolic derivatives 
such as cysteic acid, homocysteic acid, hypotaurine and homotaurine (Fig. 1) have 
important biological roles (Jacobsen and Smith 1968) and researchers are in need of 
analytical methods for their accurate determination. Accumulation of sulfite, tau-
rine, S-sulfocysteine and thiosulfate contributes to the severe neurological impair-
ment in molybdenum cofactor deficiency, a severe autosomal recessive inborn error 
of metabolism (Atwal and Scaglia 2016).
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For this purpose we developed a High Performance Liquid Chromatography 
(HPLC) analytical method for the determination of taurine, sulfur-containing 
molecules and other biogenic amines from different biological matrices. We 
improved a dabsyl chloride (DABS) pre-column derivatization method (Krause 
et al. 1995). DABS (4-N,N-dimethylaminoazobenzene-4′ sulfonyl chloride), is an 
amine derivatizing agent (Fig. 2) able to give rise to stable products that can be 
easily monitored spectrophotometrically at 460 nm (Krause et al. 1995; Lin and 
Wang 1980).
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2  �Materials and Methods

2.1  �Chemicals

Amino acid standards were obtained from Sigma-Aldrich (St. Louis, MO, USA). 
Gradient grade solvents used for chromatographic analyses were purchased from 
Carlo Erba Reagents (Milan, Italy). DABS was purchased from Supelco (595 North 
Harrison Road, Bellefonte, PA). All other reagents were analytical grade products 
from Sigma-Aldrich. S-Acetylglutathione (SAG) was purchased from GNOSIS 
S.p.A. (Desio, MB, Italy).

2.2  �Derivatization Procedure

The amino acid standards were dissolved in 0.1 M HCl containing 0.2% thiodigly-
colic acid (TDGA) to prevent—SH oxidation. One microliter of amino acid stan-
dards at different concentrations were added to 14  μL of reaction buffer (1  M 
NaHCO3, pH 8.6) and then to 25 μL of 15 mM DABS in acetone. After vigorous 
vortexing, the standards were incubated at 40 °C for 30 min, vortexing at the first 
minute, twelfth minute and twenty-eighth minute. The resultant Dabsyl derivatives 
were put in an ice bath for 5  min and then centrifuged at 14000  g for 20  min. 
Supernatants were diluted 1:10  in mobile phase, filtered onto 0.2 μm filters, and 
then 50 μL were injected onto the column.

2.2.1  �Treatment of Plasma and Urine Samples

Hundred microliter of fresh human plasma or urines were deproteinized by treat-
ment with 100 μL of 10% TCA for 30 min at 4 °C and centrifuged at 14000 g for 
30 min at room temperature. The supernatant was then lyophilized. Dry material 
was resuspended in 15 μL of reaction buffer and 25 μL of 15 mM DABS and deriva-
tized as described above.

2.2.2  �Treatment of Brain Tissues and Cultured Cell Samples

Selected mouse brain samples from either cortical or striatal regions (100 mg wet 
weight) and neuroblastoma cells (SH-SY5Y) pellet derived from 25 cm2 flask were 
treated with 500 μL of 0.1 M HCl containing 0.2% TDGA, sonicated for 10 min 
(only for brain tissue), and then centrifuged at 14000 g for 30 min. The supernatant 
was freeze-dried. 50 μL of reaction buffer and 100 μL of 15 mM DABS were added 
to the tube and derivatized as described above.
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2.3  �High-Performance Liquid Chromatography (HPLC)

The apparatus consisted of a Waters HPLC 600 pump equipped with a controller, a 
Waters autosampler mod. Seven hundred and seventeen and a UV-Vis photodiode 
array detector mod. 2996. The chromatographic column was a reverse phase 
X-Bridge C18 column, 4.6 mm × 150 mm, 5 μm particle size, with a 10 mm guard 
column of the same material. Data analysis was performed using a dedicated appli-
cation (Millennium32). Elution was performed with a binary gradient system with 
sodium acetate (30 mM, pH 6.5) and acetonitrile in a ratio of 80:20 (v/v) (solvent A) 
and propan-2-ol with acetonitrile 50:50 (v/v) (solvent B). The gradient was: 
0–4 min, 5% B; 4–8 min, 20% B; 8–15 min, 25% B; 15–27 min, 60% B; 27–28 min, 
100% B; 28–32 min, 100% B; 32–33 min, 5% B; 33–60 min, 5% B. The column 
was equilibrated for 20  min with 5% B at 1  mL/min and was maintained at 
40 °C. Dabsylated products were monitored spectrophotometrically at 460 nm.

3  �Results and Discussion

A variety of pre-column amine derivatizing methods are reported in the literature, 
among them o-phthalaldehyde (OPA) and dansyl chloride (DANS) are the main 
derivatizing agents (Fig. 3) (Kang et al. 2006; Bertollini et al. 2012; Mou 1997).

OPA reacts in the presence of thiols specifically with primary amines above their 
isoelectric point. One of the limits of this procedure is that not all of the isoindolic 
fluorescent OPA derivatives are stable, moreover the analyses with this method 
could be hampered by interferences of unknown thiol moieties potentially present 
in biological samples. Thiols can displace the organic thiolic additive for the reac-
tion generating different isoindolic adducts for the same investigated molecule 
(Kand’ar et al. 2007; Mopper and Delmas 1984).

DANS derivatization is a good versatile tool in terms of chromatographic separa-
tion and determination but the instability of the products and the need of a fluori-
metric detector, as for OPA derivatization, makes this method inaccessible to a large 
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number of research, commercial and clinical laboratories (Loukou and Zotou 2003). 
By contrast dabsyl chloride, 4-N,N-dimethylaminoazobenzene-4′ sulfonyl chloride 
(DABS), is an amine derivatizating agent that provides a simple derivatization, good 
stability, good reproducibility and good analytical detection limit (Lin and Wang 
1980; Krause et al. 1995). HPLC analyses with DABS show a good separation of a 
large number of amines and amino acids, which are detected in the visible region at 
460 nm (Krause et al. 1995). DABS, like the other amine derivatization agents, can 
give rise to mono-dabsyl and bis-dabsyl derivatives in the presence of multiple 
amino groups. Furthermore with respect to OPA derivatization, DABS can react 
with primary and also with secondary amines.

In our experimental conditions the chromatographic method allows the separa-
tion and the analysis of a wide range of dabsylated amino-derivatives from different 
complex biological matrices such as plasma, brain tissue, urines and cell lysate 
samples. As shown in Fig. 4 the following molecules were analyzed in this elution 
order: Aspartate (Asp), Glutamate (Glut), reduced Glutahione (GSH), Serine (Ser), 
Threonine (Threo), Glycine (Gly), Hypotaurine (HTau), Taurine (Tau), 
ɣ-aminobutirric acid (GABA), Proline (Pro), Oxidized glutathione (GSSG), 
Methionine (Met), Phenylalanine (Phe), Lanthionine (LAN), Cystathionine (CYT), 
Cysteine (Cys), Carnosine (CAR), Dopamine (DPN) and Norepinefrine (NOR).
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Dabsylated amino acids and amphoteric molecules are eluted and separated 
according to their isoelectric point, from lower to higher value. DABS derivatiza-
tion displays a good sensitivity (pmole level), linearity and efficiency of derivatiza-
tion and has the important advantage of giving rise to stable derivatized products 
(24 h at 4 °C and at least 14 days at −20 °C) (Jansen et al. 1991; Kang et al. 2006; 
Krause et al. 1995).

With respect to other similar methods using DABS as a derivatizing agent, we 
introduced some important modifications of the procedure (Krause et  al. 1995; 
Vendrell and Aviles 1986; Drnevich and Vary 1993).

Firstly, the derivatizing procedure was modified and the volumes of reaction 
were reduced to allow a better recovery of all the analytes from biological samples. 
The mobile phase was modified and no organic additives such as triethylamine or 
tetrahydrofuran were added to the hydrophilic phase (Solvent A, 30 mM sodium 
acetate pH  6.5 containing 20% CH3CN). Many published methods in literature 
report the use of organic modifiers in the hydrophilic phase to avoid the interaction 
of the analytes with siloxan and silanol residues in non completely endcapped C18 
stationary phases (Krause et al. 1995; Romero et al. 2000). In our setting the use of 
modifiers was not necessary because of the chemistry of the column. X-bridge col-
umns have replaced a certain number of siloxan groups with ethylene bridges reduc-
ing the hydrophilic interaction of the molecules with the stationary phase and 
improving the stability of the column. The ethylene bridge also reduces the number 
of free silanols, minimizing adverse interactions with the injected sample and 
improving both chromatographic resolution and peaks shape.

The second point is the separation of some strictly related compounds and acidic 
molecules that is strongly dependent on the pH of the mobile phase. In our setting it 
is important to maintain mobile phase at pH 6.5. Higher pH values lead to loss of 
chromatographic resolution for taurine and GABA, with concomitant improvement 
in aspartate and glutamate peak separation. Conversely, with lower pH values a 
more suitable separation of taurine and GABA is obtained, at the expenses of aspar-
tate and glutamate peaks resolution. This could be explained by the increase of the 
total protonated forms of acidic compounds at lower pH values.

The third important factor that we want to underline is the condition of derivatiza-
tion reaction with DABS. We set up our method on the basis of some considerations 
with respect to the basicity of the reaction environment and the temperature. We 
chose values of pH 8.6 and 40 °C for 30 min after a series of tests. Many papers 
report a reaction temperature of 70 °C with different reaction times. We tested the 
efficiency of different derivatizing reaction conditions by modifying reagents con-
centration, pH, temperature and reaction times, based on the chemical stability of 
the molecules of interests, and we found that some conditions are more appropriate 
than others for the detection of specific compounds. For example, our results indi-
cated that for plasma samples it is necessary to increase the ionic strength of reac-
tion buffer to guarantee the same pH value for all the samples. For the analysis of 
such biological samples (Figs. 5 and 6) after deproteinization with acid precipitants 
such as TCA, the use of a concentrated reaction buffer (0.5–1 M) is strongly recom-
mended to ensure the buffering of the acidity.

Chemical Structures of Taurine and Related Sulfur-Containing Bioactive Compounds
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As regards the pH of derivatization, we tested different reaction buffers (pH 8.0, 
8.6 or 9.0). In our conditions the best derivatization efficiency of brain tissue sam-
ples is obtained with a reaction buffer at pH 9.0, with a reaction time of 15 min at 
70 °C (Fig. 7).

Same results can be obtained by lowering the pH of the buffer and increasing the 
time of derivatization at lower temperatures. It should be underlined that for some 
molecules such as catecholamines, pH 8.0 is more convenient because of the lability 
of these molecules and their tendency to be oxidized to form quinones with subse-
quent degradation or loss of derivatization. At variance, some authors reported the 
derivatization of this molecules on the –OH moiety at pH 11.5 by forming phenolate 
which acts as nucleophile (Cai et  al. 2010). In our conditions, the derivatization 
efficiency of dopamine is strictly dependent on the pH value of the reaction buffer; 
indeed, at pH values higher than 9.0 the derivatization is not efficient probably 
because of the oxidation of dopamine to the o-quinonic form. For this reason in our 
final protocol we adopted a pH 8.6 for the reaction buffer.

The last parameters that we adjusted in the procedure of derivatization were tem-
perature and time. We tested the efficiency and the effect of different reaction condi-
tions on the deacetylation of an S-acetylated sulfo-amino derivative, the 
S-acetylglutathione (SAG) (Fig. 8). SAG is the thioester of GSH and its detection in 
biological specimens could be very important as regards the study of thioesters 
(Fig. 9).
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We tested different reaction conditions by analyzing the deacetylation of the 
molecule at different temperatures, pH and time of reaction. Dabsylation reaction 
carried out at pH 9 for 15 min at 70 °C gives a deacetylation of the thioester moi-
ety of about 45%. Conversely, reaction conditions of 40 °C, 30 min and pH 8.6 
reduces the extent of the deacetylation to about 8%. It is important to emphasize 
that reaction at pH values lower than 8.6 gives heterogeneous efficiencies of 
derivatization due to the fact that some amines have pKa values around 8.0. 
Hence, pH 8.6 is the best compromise that can ensure the homogeneous derivatiza-
tion of all the studied amines and can minimize the degradation and the oxidation 
of labile molecules.

We also evaluated the derivatization of GSSG with DABS.  As shown in  
Fig. 10, being GSSG a GSH dimer, its derivatization gives rise to the formation of 
two derivatives, the mono- and bis-dabsylated forms.
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Our data indicate that the dabsylation occurs in the same manner on the two 
amino groups and the rate of mono- and bis-dabsylated derivatives formation is 
constant in our reaction conditions.

As regards GSH and thiols in general, we used TDGA to protect thiol moieties 
from oxidation. The use of TDGA, together with the low temperature and the mild 
reaction conditions, allows the derivatization of GSH peptide to form a stable dabsyl 
derivative that can be monitored concomitantly with its bis-dabsylated oxidized form 
(GSSG) within the same chromatographic analysis. The simultaneous analysis of 
reduced/oxidized GSH forms, whose ratio is a useful index of oxidative stress (Zitka 
et al. 2012; Lakritz et al. 1997) enable the study of the redox state of cells or tissues.

GSH analysis shows the same linearity of derivatization and quantification as all 
the other studied amines, but it is important to underline that, when other thiols and 
sulfur-containing molecules are present in the derivatization process, some unknown 
byproducts are formed with a retention time that is strictly similar to GSH and in 
some cases not completely resolved from DABS peak.

We tested our chromatographic method by analyzing some important sulfur con-
taining organic bioactive compounds. We analyzed simultaneously cysteic acid, 
homocysteic acid, hypotaurine, taurine and homotaurine (Fig. 11). As for GABA, 
taurine and homotaurine, resolution is improved at lower mobile phase pH, i.e. 
pH 6.45. This is due to the strictly related chemical structures and properties that 
homotaurine and GABA have.

As regards detectable sulfur-containing amines in the biological specimens analyzed, 
our data indicate that taurine relative content is higher in brain tissue samples with 
respect to all other biological samples analyzed. As described in the literature, the brain 
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is one of the major body district in which taurine is present. Also in neuroblastoma cells 
the pattern of amino compounds (Fig. 12) reveals a relative content of taurine signifi-
cantly higher with respect to other amines, whereas plasma and urine samples present 
lower relative amounts of taurine (Figs. 5 and 6).

It is well known that taurine is one of the end-products of cysteine metabolism. 
It is noteworthy, in brain tissues and neuroblastoma cells (Figs. 7 and 12) samples, 
we observed a lower amount of cysteine relative content along with higher amounts 
of taurine and hypotaurine, in agreement with cysteine metabolic cycle.

As regards the bioactive peptides carnosine and GSH, it can be noticed that uri-
nary content of these two molecules is higher with respect to the other samples. 
GSH content in brain tissue samples is also relatively higher than in cells and in 
plasma, emphasizing the important role that this thiol tripeptide has at the cerebral 
level as a bioactive molecule.

4  �Conclusion

The revised version of a relatively old analytical procedure, has enabled the improve-
ment of a low-cost chromatographic method with high resolution and high diagnos-
tic potential in order to investigate qualitatively and quantitatively many substances 
which can be implicated in the pathogenesis of several diseases.
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This method represents a good tool to study sulfur biochemical cycle from a 
metabolic point of view in relation to the pattern of biologic amines and provides a 
complete scenario of organic sulfur and amino metabolism. It allows also the study 
of amine level variations in mice and human samples derived from different treat-
ments or environmental conditions (pollutants, drugs, etc.).

The use of spectrophotometric detection makes this method accessible to a large 
number of research, commercial and clinical laboratories that do not have access to 
fluorimetric or mass spectrometric detectors. Apart from the obvious advantages of 
lower costs and larger number of samples that can be analyzed within a working 
day, more importantly, an undoubted advantage from a qualitative and method-
ological point of view is the possibility to simultaneously analyze in each single 
sample a large number of amines, aminoacids and sulfur-amino compounds includ-
ing GSH, GSSG, cysteic acid, cysteine, taurine, hypotaurine, lanthionine and 
cystathionine.

In conclusion, the use of this chromatographic method on different complex  
biological matrices, could pave the way for a new diagnostic tool.
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