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Abstract Transmembrane (TM) proteins fulfill many crucial cellular functions
such as substrate transport, biogenesis and signalling, and make up a significant
fraction of any given proteome. Estimates suggest that up to 30% of all human
genes may encode a-helical TM proteins, while b-barrel TM proteins, which are
found in the outer-membrane of gram-negative bacteria, mitochondria and
chloroplast, are encoded by 2–3% of genes. However, relatively few high resolution
TM protein structures are known, making it all the more important to extract as
much structural information as possible from amino acid sequences. In this chapter,
we review the existing methods for the identification, topology prediction and
three-dimensional modelling of TM proteins, including a discussion of the recent
advances in identifying residue-residue contacts from large multiple sequence
alignments that have enabled impressive gains to be made in the field of TM protein
structure prediction.
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5.1 Introduction

Transmembrane (TM) proteins are involved in a wide range of essential biological
processes including cell signalling, transport of membrane-impermeable molecules,
cell-cell communication, cell recognition, cell adhesion and biogenesis of the
bacterial outer membrane. Many are also prime drug targets, with approximately
60% of all drugs currently on the market targeting membrane proteins (Hopkins and
Groom 2002). Despite recent progress in TM protein structure determination, the
experimental difficulties associated with obtaining crystals that diffract to high
resolution mean that TM protein are severely under-represented in structural
databases, making up only 1% of known structures in the PDB (White 2004) of
which only about 500 are unique. TM proteins, which have both hydrophobic and
hydrophilic regions on their surfaces, are much more difficult to isolate than
water-soluble proteins as the native membrane surrounding the protein must be
disrupted and replaced with detergent molecules without causing any denaturation.
Given the biological and pharmacological importance of TM proteins, an under-
standing of their structure and topology—the total number of TM helices, their
boundaries and in/out orientation relative to the membrane—is essential for func-
tional analysis and directing further experimental work. In the absence of vital
structural data, bioinformatics strategies thus turn to sequence-based prediction
methods.

5.2 Membrane Protein Structural Classes

TM proteins can be classified into two basic types: a-helical and b-barrel proteins.
a-helical membrane proteins form the major category of TM proteins and are
present in all type of biological membranes, including bacterial outer membranes.
They consist of one or more a-helices, each of which contains a stretch of
hydrophobic amino acids, embedded in the membrane and linked to subsequent
helices by extra-membranous loop regions. It is thought such proteins may have up
to 20 TM helices allowing a diverse range of differing topologies. Loop regions are
known to contain substructures including re-entrant loops—short a-helices that
enter and exit the membrane on the same side—as well as amphipathic helices that
lie parallel to the membrane plane, and globular domains. b-barrel TM proteins
(TMBs) mainly consist of transmembrane b-strands that form a closed barrel in the
membrane. Analysis of solved b-barrel 3D structures show that these proteins can
consist of 8–26 b-strands arranged in an anti-parallel manner in the bacterial
outer-membrane. Some TMBs also have large plug-domains and outer loops that
can interact with the barrel region to control substrate transport.
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5.2.1 a-Helical Bundles

a-helical TM proteins can be further divided into a number of subtypes based on
their topology. Type I and II membrane proteins consist of a single TM a helix,
type III have multiple membrane-spanning helices while type IV membrane pro-
teins have multiple domains which form an assembly that spans the membrane
multiple times. Type I membrane proteins are attached to the membrane with an
anchor sequence targeting their amino terminus to the endoplasmic reticulum lumen
and the carboxy terminus exposed to the cytoplasmic side. These proteins are
further divided into two subtypes. Type Ia—which constitutes most eukaryotic
membrane proteins—contain cleavable signal sequences, while type Ib do not.
Type II membrane proteins are similar to type I in that they span the membrane only
once but their orientation is reversed; they have their amino terminus on the
cytoplasmic side of the cell and the carboxy terminus on the exterior. Type III
membrane proteins, which include G protein coupled receptors (e.g. PDB code
1gzm) consist of multiple TM helices and are also divided into two subtypes. Type
IIIa have cleavable signal sequence while type IIIb do not, but do have their amino
terminus exposed to the extracellular side of the membrane. Type IV membrane
proteins have multiple domains which form an assembly that spans the membrane
multiple times. Domains may reside on a single polypeptide chain but are often
composed of more than one. Examples include Photosystem I, which comprises
nine unique chains (1jb0).

5.2.2 Transmembrane b-Barrels

TMBs can be divided into two main categories depending on whether the barrel
pore is formed from a single-chain, or via a homo-oligomeric complex, with each
chain contributing 2–4 strands. All known bacterial transmembrane b-barrels
consist of anti-parallel b-strands that traverse the outer-membrane in a regular
manner (Fig. 5.1). Residues on a transmembrane b-strand follow a strict-dyad
repeat such that alternate side-chain face the lipids and barrel pore, respectively.
The lipid-facing residues are mostly hydrophobic, but the pore-facing residues can
be a mixture of both polar and hydrophobic amino acids. Moreover, transmembrane
b-strands generally have fewer residues than transmembrane a-helices and have a
less prominent hydrophobic profile. Residues on adjacent b-strands are hydrogen
bonded to each other such that alternate residues on strand S1 form a N–O and O–N
bond with residues in-register on strand S2, where S1 and S2 are adjacent strands.
Solved 3D structures of bacterial TMBs have 8 to 26 b-strands, while the only
known Eukaryotic TMB structure - mitochondrial voltage dependent anion channel
(VDAC) has 19 strands, where the first and the last strand are parallel to each other.
TMBs have long extra-cellular loops that generally protrude away from the barrel
pore region but can interact with the barrel domain and short inner loops.
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Additionally, a few TMBs have plug domains (Fig. 5.1) that sit inside the barrel
and participate in gating and signaling (Ferguson et al. 2002). It is generally esti-
mated that TMBs account for 2–3% of the genes in bacteria, but there is scope for
improvement in accurately determining the number of yet unknown TMB families.

Multi-chain TMBs mainly fall into one of four known superfamilies—(a) the
pore-forming toxins (PDB codes 3w9t, 3o44, 4h56, 3b07, 7ahl) that are secreted by
pathogenic bacteria such as Staphylococcus aureus, Clostridium perfringens and
Vibrio cholerae, (b) outer membrane efflux proteins (PDB codes 4mt4, 4mt0,
2xmn, 3pik, 1wp1, 1yc9, 1ek9) that are used by bacteria to expel a wide range of
molecules including antibacterial drugs thereby increasing multi-drug resistance,
(c) mycobacterial porins (PDB code 1uun) in Mycobacteria that can be used to
transport drugs through an otherwise low-permeability outer membrane environ-
ment that renders them resistant to many antibiotics, and (d) trimeric autotrans-
porters (PDB codes 2lme, 2gr7) such as the Hia autotransporter of Haemophilus

Fig. 5.1 Top and front views of a diffusion porin (PDB code 3prn) and outer membrane iron
transporter FecA (PDB code 1kmp). Both proteins have long outer-loops. The large plug domain
of FecA (orange) sits in the barrel and facilitates substrate transport and allosteric transitions
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influenzae that belongs to the largest family of virulence proteins mediating bac-
terial adhesion, invasion and spread to host cells. Sequence-based analysis methods
to identify protein sequences that belong to those families, and therefore estimate
the number of multi-chain TMB families, are currently lacking. Additionally, better
computational methods for their topology prediction and 3D assembly need to be
developed to increase our understanding of their assembly mechanism and function.

5.3 Databases

There now exist a number of databases that serve as repositories for the sequences
and structures of both a-helical and b-barrel TM proteins (Table 5.1). OPM
(Lomize et al. 2006b, 2011), PDBTM (Tusnady et al. 2004, 2005a; Kozma et al.
2013), CGDB (Chetwynd et al. 2008) and the mpstruc database (http://blanco.
biomol.uci.edu/mpstruc/) all contain TM proteins of known structure determined
using X-ray and electron diffraction, nuclear magnetic resonance and cryo-electron
microscopy. OPM, PDBTM and CGDB additionally contain orientation predictions
of the protein relative to the membrane based on water-lipid transfer energy min-
imisation (Lomize et al. 2006a), hydrophobicity/structural feature analysis
(Tusnady et al. 2005b) and coarse grained molecular dynamic simulations (Sansom
et al. 2008), while MemProtMD (http://sbcb.bioch.ox.ac.uk/memprotmd/) contains
orientations calculated using a knowledge-based statistical potential (Nugent and
Jones 2013). TOPDB (Tusnady et al. 2008; Dobson et al. 2015a) and MPtopo
(Jayasinghe et al. 2001) include topology data that has been experimentally vali-
dated using low-resolution techniques such as gene fusion, antibody and mutage-
nesis studies. Other TM protein databases tend to focus on specific families such as

Table 5.1 Transmembrane protein databases

Method URL Features

OPM http://opm.phar.umich.edu/ Known structures

PDB_TM http://pdbtm.enzim.hu/ Known structures

CGDB http://sbcb.bioch.ox.ac.uk/cgdb/ Coarse grained simulations

MemProtMD http://sbcb.bioch.ox.ac.uk/memprotmd/ Coarse grained simulations

TOPDB http://topdb.enzim.hu/ Experimental validation

Mptopo http://blanco.biomol.uci.edu/mptopo/ Experimental validation

VKCDB http://vkcdb.biology.ualberta.ca/ Potassium channels

KDB http://sbcb.bioch.ox.ac.uk/kdb/ Potassium channels

TCDB http://www.tcdb.org/ Transporters

TMBB-DB http://beta-barrel.tulane.edu/ Predicted TMBs

TMBETA-GENOME http://tmbeta-genome.cbrc.jp/annotation Predicted TMBs

OMPdb http://bioinformatics.biol.uoa.gr/OMPdb Predicted TMB families

HHomp http://toolkit.tuebingen.mpg.de/hhomp TMB remote homology detection
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voltage-gated potassium channels, including VKCDB (Li and Gallin 2004; Gallin
and Boutet 2011) and KDB (http://sbcb.bioch.ox.ac.uk/kdb/), while others such as
the Transporter Classification Database (Saier et al. 2006, 2009, 2014) focus on
particular structural or functional classes.

For TMBs, TMBB-DB (Freeman and Wimley 2012), TMBETA-GENOME
(Gromiha et al. 2007) and OMPdb (Tsirigos et al. 2011) provide an exhaustive list
of putative TMBs predicted using computational methods. In addition, HHomp
(Remmert et al. 2009) provides a list of putative TMBs found by comprehensive,
transitive homology search. As with all bioinformatics databases, care should be
taken to ensure that a given resource is frequently updated. The rate at which new
sequences and structures are deposited in GenBank and the PDB [and occasionally
retracted e.g. (Chang et al. 2006)] results in significant manual annotation for
database administrators, and much evidence suggests that this workload often
exceeds the amount of time an administrator is willing to commit.

5.4 Multiple Sequence Alignments

As with globular proteins, multiple sequence alignments play an important role in
TM protein structure prediction. Homologous sequences identified via database
searches can be used to construct sequence profiles which can significantly enhance
TM topology prediction accuracy (Henricson et al. 2005; Jones 2007), while recent
co-evolution-based approaches (Jones et al. 2012, 2015) are dependent on
high-quality alignments to infer residue-residue contacts which can be used for de
novo modelling (Nugent and Jones 2012).

Conventional pair-wise alignment methods return possible matches based on a
scoring function that relies on amino acid substitutionmatrices such as PAM (Dayhoff
and Schwartz 1978) or BLOSUM (Henikoff and Henikoff 1992). Such matrices are
derived from globular protein alignments, and as amino acid composition,
hydrophobicity and conservation patterns differ between globular and TM proteins
(Jones et al. 1994a), they are in principle unsuitable for TM protein alignment.
A number of TM-specific substitution matrices have therefore been developed, which
take into account such differences. For example, the JTT TM matrix (Jones et al.
1994b) was based on the observation that polar residues in TM proteins are highly
conserved, while hydrophobic residues are more interchangeable. Other matrices
such as SLIM (Muller et al. 2001), were reported to have the highest accuracy for
detecting remote homologues in a manually curated GPCR dataset, while PHAT (Ng
et al. 2000) has been shown to outperform JTT, especially on database searching.

More recently, a number of methods have been developed to improve actual TM
protein alignment. HMAP (Tang et al. 2003) showed that alignment accuracy could
be improved significantly using a profile-profile based approach incorporating
structural information. STAM (Shafrir and Guy 2004) implemented higher penalties
for insertion/deletions in TM segments compared to loop regions, with combinations
of different substitution matrices to produce alignments resulting in more accurate
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homology models. PRALINETM (Pirovano et al. 2008), which integrates
state-of-the-art sequence prediction techniques with membrane-specific substitution
matrices, was shown to outperform standard multiple alignment techniques such as
ClustalW (Thompson et al. 1994) andMUSCLE (Edgar 2004) when tested on the TM
alignment benchmark set within BAliBASE (Bahr et al. 2001). AlignMe (Stamm
et al. 2014, 2013; Khafizov et al. 2010), which uses secondary structure matching
combined with evolutionary information, also demonstrated high quality alignments
when tested on BAliBASE, although it was noted that accuracy was generally lower
when transmembrane topology predictionswere also included, although the inclusion
of this information may still be useful in cases of extremely distantly related proteins
for which sequence information is less informative. PSI-Coffee—a modification of
the T-Coffee method (Chang et al. 2012; Notredame et al. 2000)—employs a
homology extension technique that can be used to reveal and use specific conser-
vation patterns found within transmembrane proteins, such as amphiphilic a-helices,
resulting in significant improvements to the accuracy of alignments. Hill and
co-workers constructed substitution tables for different environments within mem-
brane proteins, demonstrating that, in the 10–25% sequence identity range, align-
ments could be improved by an average of 28 correctly aligned residues compared
with alignmentsmade using default substitution tables, leading to improved structural
models (Hill and Deane 2013; Hill et al. 2011).

For TMBs, Jimenez-Morales and Liang (2011) have estimated the evolutionary
pattern of residue substitutions which can be useful for improved sequence align-
ment of TMBs, while Yan et al. (2011), have shown the utility of secondary
structure element alignment for the identification of putative TMBs. Additionally, a
structure based alignment method for TMBs that uses TMB-specific topology
features has been shown to improve alignment (Wang et al. 2013).

5.5 Transmembrane Protein Topology Prediction

The under-representation of TM proteins in structural databases makes their study
extremely difficult. As a result, tools to analyse TM proteins have historically
focused on sequence-based topology prediction—identifying the total number of
TM helices, their boundaries, and in/out orientation relative to the membrane.
Experimental approaches for determining TM topology include glycosylation
analysis, insertion tags, antibody studies and fusion protein constructs; however,
such studies are time consuming, often conflicting (Mao et al. 2003; Kyttala et al.
2004; Ratajczak et al. 2014), and also risk upsetting the natural topology by altering
the protein sequence. Theoretical prediction methods therefore provide an important
strategy for furthering our understanding of these biological and pharmacological
important proteins.
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5.5.1 Early a-Helical Topology Prediction Approaches

Early topology predictions methods were based on physicochemical observations of
TM proteins. Even before the arrival of the first crystal structures, stretches of
hydrophobic residues long enough to span the lipid bilayer were identified as TM
spanning a-helices. Prediction methods by Kyte and Doolittle (1982) and Engelman
et al. (1986), and later by Wimley and White (1996), relied on experimentally
determined hydropathy indices to create a hydropathy plot for a protein. This
involved taking a sliding window of 19–21 residues and averaging the score with
peaks in the plots (regions of high hydrophobicity) corresponding to the locations
of TM helices. With more sequences came the discovery that aromatic Trp and Tyr
residues tend to cluster near the ends of the transmembrane segments (Wallin et al.
1997), possibly acting as physical buffers to stabilise TM helices within the lipid
bilayer. Later, studies identified the appearance of sequence motifs, such as the
GxxxG motif (Senes et al. 2000), within TM helices and also periodic patterns
implicated in helix-helix packing and 3D structure (Samatey et al. 1995). However,
perhaps the most important realisation was that positively-charged residues tend to
cluster on cytoplasmic loop—the ‘positive-inside’ rule of Gunnar von Heijne (von
Heijne 1992). Combined with hydrophobicity-based prediction of TM helices, this
led to early topology prediction methods such as TopPred (Claros and von Heijne
1994).

5.5.2 Machine Learning Approaches for a-Helical Topology
Prediction

Despite their early success, these methods based on hydrophobicity analysis
combined with the ‘positive-inside’ rule have since been superseded by machine
learning approaches which offer substantially higher prediction accuracy due to
their probabilistic formulation (Table 5.2). Hidden Markov models (HMMs) were
among the first supervised learning algorithms to be applied to TM topology pre-
diction, with both TMHMM (Krogh et al. 2001) and HMMTOP (Tusnady and
Simon 1998) proving highly successful. TMHMM implemented a cyclic model
with seven states for a TM helix, while HMMTOP used HMMs to distinguish
between five structural states [helix core, inside loop, outside loop, helix caps (C
and N) and globular domains]. These states were connected by transition proba-
bilities before dynamic programming was used to match a sequence against a model
with the most probable topology. HMMTOP also allowed constrained predictions
to be made, where specific residues could be fixed to a topological location based
on experimental data, as did other methods such as HMM-TM (Bagos et al. 2006).
Later HMM-based predictors include PRODIV-TMHMM and PolyPhobius, both of
which made use of evolutionary information from homologs resulting in substan-
tially increased performance (Viklund and Elofsson 2004; Kall et al. 2005).
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Neural networks (NNs) were employed by early methods including PHDhtm
(Rost et al. 1996) and MEMSAT3 (Jones 2007). PHDhtm used multiple sequence
alignments to perform a consensus prediction of TM helices by combining two
NNs. The first created a ‘sequence-to-structure’ network, which represented the
structural propensity of the central residue in a window. A ‘structure-to-structure’
network then smoothed these propensities to predict TM helices, before the
‘positive-inside’ rule was applied to produce an overall topology. MEMSAT3 uses
a neural network and dynamic programming in order to predict not only TM
helices, but also to score the topology and to identify possible signal peptides.

Table 5.2 Topology prediction methods for a-helical transmembrane proteins

Method Features URL

TMHMM (Krogh et al.
2001)

HMM http://www.cbs.dtu.dk/
services/TMHMM/

HMMTOP (Tusnady and
Simon 1998)

HMM http://www.enzim.hu/
hmmtop/

HMM-TM (Bagos et al.
2006)

HMM http://bioinformatics.
biol.uoa.gr/HMM-TM/

PRODIV-TMHMM
(Viklund and Elofsson
2004)

HMM + Evolutionary information https://www.pdc.kth.
se/hakanv/prodiv-
tmhmm

Phobius (Kall et al. 2005) HMM + Evolutionary
information + Signal peptide
prediction

http://phobius.sbc.su.
se/

OCTOPUS (Viklund and
Elofsson 2008)

HMM + NN + Evolutionary
information

http://octopus.cbr.su.
se/

SPOCTOPUS (Viklund
and Elofsson 2008)

HMM + NN + Evolutionary
information + Signal peptide
prediction

http://octopus.cbr.su.
se/

PHDhtm (Rost et al. 1996) NN https://www.
predictprotein.org/

MEMSAT3 (Jones 2007) NN + Evolutionary
information + Signal peptide
prediction

http://bioinf.cs.ucl.ac.
uk/psipred/

MEMSAT-SVM (Nugent
and Jones 2009)

SVM + Evolutionary
information + Signal peptide
prediction

http://bioinf.cs.ucl.ac.
uk/psipred/

Philius (Reynolds et al.
2008)

Dynamic Bayesian networks http://noble.gs.
washington.edu/proj/
philius/

WRF-TMH (Hayat and
Khan 2013)

Random forests http://111.68.99.218/
WRF-TMH/

TOPCONS (Tsirigos et al.
2015; Bernsel et al. 2009)

Consensus http://topcons.cbr.su.
se/

CCTOP (Dobson et al.
2015b)

Consensus http://cctop.enzim.ttk.
mta.hu/
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Additional evolutionary information provided by multiple sequence alignments led
to prediction accuracies increasing to as much as 80%. OCTOPUS (Viklund and
Elofsson 2008) used a novel combination of hidden Markov models and artificial
neural networks to further increase performance.

Later, Support Vector Machines (SVMs) gained in popularity and were suc-
cessfully applied to TM protein topology prediction (Yuan et al. 2004; Lo et al.
2006, 2008). Particularly using non-linear kernel functions, SVMs are capable of
learning complex relationships among the amino acids within a given window with
which they are trained, particularly when provided with evolutionary information,
and are also more resilient to the problem of over-training compared to other
machine learning methods. MEMSAT-SVM (Nugent and Jones 2009), an exten-
sion of MEMSAT3, used multiple SVM models to classify sequence into one of
four states [TM helix, inside or outside loop, re-entrant helix, or signal peptide]
before calculating the most likely topologies using dynamic programming, while a
further SVM was used to discriminate between globular and TM proteins. Although
multiclass SVMs do exist, their performance is typically poorer than binary SVMs
since in many cases no single mathematical function exists to separate all classes of
data from one another.

More recently, other machine learning algorithms have been applied to TM helix
and topology prediction including dynamic Bayesian networks (Reynolds et al.
2008), random forests (Hayat and Khan 2013), self-organizing maps (Deng 2006)
and deep learning (Qi et al. 2012). A selection of machine learning-based predictors
can be found in Table 5.2.

5.5.3 Signal Peptides and Re-entrant Helices

One significant challenge faced by topology predictors is the discrimination
between TM helices and other highly hydrophobic structural features. These
include targeting motifs such as signal peptides and signal anchors, amphipathic
helices, and re-entrant helices, membrane penetrating helices that enter and exit the
membrane on the same side, common in many ion channel families (Fig. 5.2). The
similarity between such features and the hydrophobic profile of a TM helix fre-
quently leads to crossover between the different types of predictions. Should these
elements be predicted as TM helices, the ensuing topology prediction is likely to be
severely disrupted. Some prediction methods, such as SignalP (Petersen et al. 2011;
Bendtsen et al. 2004) and TargetP (Emanuelsson et al. 2007), are effective in
identifying signal peptides in TM proteins, and may be used as a pre-filter prior to
analysis using a TM topology predictor. Phobius (Kall et al. 2004) used a HMM to
successfully address the problem of signal peptides in TM protein topology pre-
diction, while PolyPhobius (Kall et al. 2005) further increased accuracy by
including homology information. Other methods such as MEMSAT-SVM,
OCTOPUS and SPOCTOPUS (Viklund et al. 2008) have also attempted to
incorporate identification of re-entrant regions and signal peptides into TM

144 T. Nugent et al.



topology prediction but there is significant room for improvement. The problem,
particularly regarding re-entrant helices, is the lack of reliable data with which to
train machine-learning based methods.

5.5.4 Consensus Approaches for a-Helical Topology
Prediction

While a number of methods successfully combine multiple machine learning
approaches, for example ENSEMBLE (Martelli et al. 2003) uses a NN and two
HMMs while OCTOPUS uses two sets of four NNs and one HMM, perhaps the best
overall methods are those which adopt a consensus approach by combining the results
of several predictors to yield more reliable results. Early consensus predictors such as
BPROMPT (Taylor et al. 2003) combined the outputs of five different predictors to
produce an overall topology using a Bayesian belief network, while Nilsson et al.
(2002) used a simple majority-vote approach to return the best topology from their
five predictors. The PONGO server (Amico et al. 2006) returns the results of 5 high
scoring methods in a graphical format for direct comparison. More recently, MetaTM
(Klammer et al. 2009) is based on SVM models and combines the results of six TM
topology predictors and two signal peptide predictors. TOPCONS (Tsirigos et al.
2015; Bernsel et al. 2009) combines a number of topology predictions into one
consensus prediction, while also quantifying the reliability of the prediction based on

Fig. 5.2 Potassium channel KcsA (PDB code 1R3J). Each monomer of the homo-tetrameric
complex consists of two TM helices and one re-entrant helix (orange), which surrounds the central
pore and is involved in channel gating
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the level of agreement between the underlying methods, both at the protein level and
at the level of individual TM regions (Fig. 5.3). Results indicate an overall increase in
performance by 4% compared to the currently available best-scoring methods.
CCTOP (Dobson et al. 2015b) makes use of ten different topology prediction
methods, while also incorporating topology information from existing experimental
and computational resources such as the PDBTM, TOPDB and TOPDOM databases,
using a HMM. In most cases, but particularly proteins whose topology is not
straightforward, using a consensus-based method is highly advisable.

5.5.5 Transmembrane b-Barrel Topology Prediction

Topology prediction of TMBs entails the estimation of the number and the location
of TM b-strands. Traditional methods based on a sliding-window hydrophobicity
profile are not sufficiently accurate, most likely due to the shorter size and less
prominent hydrophobic nature of the TM b-strands. This problem is further com-
plicated by the presence of other b-sheet rich regions in full protein sequences such
as the pre-barrel region (seen, for example, in EstA Autotransporter protein; PDB
code 3kvn) and large plug domains that reside inside the barrel (as seen in FecA

Fig. 5.3 Consensus topology prediction by TOPCONS (Tsirigos et al. 2015; Bernsel et al. 2009).
The results from a number of individual predictors are combined to produce the TOPCONS
prediction
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protein; PDB code 1fep). Additionally, the absence of long stretches of
hydrophobic residues makes it harder to distinguish TM b-strands from b-sheets in
globular proteins. One strategy to predict the topology of TMBs relies on first
predicting if the query sequence is a TMB or not (Table 5.3) and then using
dedicated computational methods to predict the topology of sequences that are
predicted to be TMBs. This can potentially improve the accuracy of computational
methods that are based on learning from data points available from known 3D
structures. Boctopus in combination with PSORTb (Imai et al. 2013), which is a
bacterial subcellular localization tool, can be used to identify putative TMBs. The
idea here is that proteins for which topology predictor methods predict at least 8
strands with predicted subcellular localization as ‘outer-membrane’ can be potential
TMBs. BETAWARE (Savojardo et al. 2013a) is a machine learning based tool that
predicts if a protein is TMB using N-to-1 network encoding and then predicts the
topology using a constrained grammar. Other methods employ a combination of
secondary structure features, hydrophobicity, amino acid composition and empirical
scores to identify putative TMBs. In general, TMB topology prediction methods
can be classified as empirical, machine learning and consensus-based. A few of
these methods are discussed below (Table 5.4).

5.5.6 Empirical Approaches for b-Barrel Topology
Prediction

Traditionally, features based on knowledge gained from 3D structures, such as the
hydrophobicity analyses over a sliding window, amino acid distribution, length of

Table 5.3 Computational methods for identifying transmembrane b-barrels

Method Features URL

boctopus + PSORTb (Imai
et al. 2013)

Predicted
topology + Subcellular
localization

http://boctopus.cbr.su.se/

BETAWARE (Savojardo
et al. 2013a)

N-to-1 Extreme Learning
Machine

http://betaware.biocomp.
unibo.it/BetAware

SSEA-OMP (Yan et al. 2011) Secondary structure
element alignment

http://protein.cau.edu.cn/
SSEA-OMP/index.html

TMB-Hunt (Garrow et al.
2005)

K-nearest neighbor http://bioinformatics.leeds.
ac.uk/betaBarrel/

TMBETA-NET (Gromiha
et al. 2005)

Amino acid
composition + NN

http://psfs.cbrc.jp/tmbeta-
net/

BOMP (Berven et al. 2004) C-terminal
pattern + Integral b-score

http://services.cbu.uib.no/
tools/bomp

F-W barrel analyzer (Freeman
and Wimley 2010)

Empirical Score http://www.tulane.edu/
biochem/WW/apps.html
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TM b-strands and outer/inner loops, have been used for the topology prediction of
TMBs (Schirmer and Cowan 1993; Gromiha et al. 1997; Gromiha and
Ponnuswamy 1993; Diederichs et al. 1998). Wimley et al. (2002) combined fea-
tures such as hydrophobicity profile, amino acid composition, known variation in
the length of inner loops and the abundance of proteins facing the lipids of the
barrel pore to formulate a computational score to predict TM stretches and also
identify putative TMBs. The distribution of amino acids on a transmembrane
b-strand along the membrane normal and the occurrence of the dyad-repeat pattern
were employed by Jackups and Liang (2005) to improve the location of predicted
strands and estimate the strand-registration such that the maximum number of
hydrogen-bonds were satisfied between two adjacent b-strands.

5.5.7 Machine Learning Approaches for b-Barrel Topology
Prediction

Machine learning-based methods for the topology prediction of TMBs are typically
trained on a dataset of labeled data points extracted from known 3D structures. Rost
and Sander (1993) showed early on that the use of information obtained from

Table 5.4 Topology prediction methods for transmembrane b-barrels

Method Features URL

BETAWARE (Savojardo et al.
2013a)

Conditional Random
Fields

http://www.biocomp.unibo.it/

boctopus (Hayat and Elofsson
2012a)

HMM + SVM http://boctopus.cbr.su.se/

tobmodel (Hayat and Elofsson
2012b)

HMM + SVM http://tmbmodel.cbr.su.se/

TMBHMM (Singh et al. 2011) HMM http://www.zbi.uni-saarland.de/
en

partiFold (Waldispühl et al. 2008) http://partifold.csail.
mit.edu/

Inter-strand residue interaction
probabilities

PROFtmb (Bigelow and Rost 2006) HMM https://www.predictprotein.org/

transFold (Waldispühl et al.
Waldispühl et al. 2006)

Multi-tape S-attribute
grammars

http://bioinformatics.bc.edu/
clotelab/transFold/

PRED-TMBB (Bagos et al. 2004) HMM http://bioinformatics.biol.uoa.
gr/PRED-TMBB/

tbbpred (Natt et al. 2004) SVM + NN http://www.imtech.res.in/
raghava/tbbpred/

TMBETAPRED-RBF (Ou et al.
2010)

SVM http://rbf.bioinfo.tw/

TMBETA-NET (Gromiha et al.
2005)

NN http://psfs.cbrc.jp/tmbeta-net/
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multiple sequence alignments yields higher prediction accuracy as compared to
using features from a single-sequence alone. SVMs, neural networks and hidden
Markov models have all been used for TMB topology prediction (Table 5.4). The
use of a sequence profile-based HMM for the identification and topology prediction
of TMBs was first introduced by Martelli et al. (2002). PROFtmb (Bigelow and
Rost 2006) and PRED-TMBB (Bagos et al. 2004) used a similar approach, where
an HMM is used to predict strands, inner-loop and outer-loop states using a
sequence profile. The HMM architecture employed in these methods was chosen
such that it resembled a pair of strands (up and down), a self-loop representing long
outer-loops that connect the two strands on the extracellular side and a self-loop of
the inner-membrane side. The number of states representing the b-strand region was
chosen to account for the variation in the length of these elements that form TMBs.

Recently, two-stage predictors such as BOCTOPUS (Hayat and Elofsson 2012a)
and tobmodel (Hayat and Elofsson 2012b) have been implemented. These methods
employ SVMs in the first stage to predict the local preference of each residue to
form an outer-loop, inner-loop or membrane strand region. The output of this stage
is then fed to an HMM that predicts the overall topology. Another approach called
BETAWARE (Savojardo et al. 2013a) consists of two methods, first an N-to-1
Extreme Learning Machine algorithm is used for the identification of TMBs, fol-
lowed by a Grammatical-Restrained Hidden Conditional Random Field approach to
predict the topology. In contrast to other methods, transFold (Waldispühl et al.
2006) does not require a training set but uses a grammar to predict the b-strands and
inter-strand residue contacts. Most of these topology prediction methods can also be
used for distinguishing TMBs from non-TMBs.

5.5.8 Consensus Approaches for b-Barrel Topology
Prediction

To our knowledge, conBBPRED (Bagos et al. 2005) is the only consensus method
available for TMB topology prediction. conBBPRED assigns a per-residue score by
averaging over contributions of each individual predictor followed by a dynamic
programming step to obtain the overall topology. On a dataset of 20 proteins,
conBBPRED increases the accuracy of predicted topologies by 15% (Bagos et al.
2005). With larger datasets and more topology predictors becoming available, it
will be interesting to see if consensus topology prediction methods for TMBs show
improved accuracy over single methods.
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5.6 3D Structure Prediction

As with globular proteins, 3D structure prediction of TM proteins can be dealt with
via two main approaches, homology modelling and de novo modelling, covered in
Chaps. 1 and 4 of this book.

5.6.1 Homology Modelling of a-Helical Transmembrane
Proteins

Homology modelling involves the use of a related template structure in order to
build a 3D model of a target protein. The method is based on the observation that
protein structure is conserved more highly than amino acid sequence, hence even
proteins that have diverged significantly in sequence but still share detectable
similarity may also share common structural properties, and in particular, the
overall fold. When a suitable template is available, predicting TM protein structure
by homology modelling can be highly effective, especially when tools specifically
designed for modelling TM proteins are used. Compared to globular proteins, lower
sequence conservation is required for fold preservation in transmembrane regions,
so it may even be possible to generate useful 3D models with templates that share
as little as 20% sequence identity to the target, although the paucity of high reso-
lution membrane protein structures will still limit the number of families that such
methods are applicable to (Olivella et al. 2013).

A homology modelling protocol can be subdivided into a number of key steps
which can each be performed iteratively to improve the quality of the final model:
template selection, target-template alignment, model construction, and model
quality assessment (Marti-Renom et al. 2000; Sanchez and Sali 1997). Aside from
SWISS-MODEL (Peitsch 1996; Biasini et al. 2014) which has a 7TM/GPCR
interface, few TM protein-specific homology modelling methods exist.
MEDELLER (Kelm et al. 2010) is designed to approach the steps in structure
prediction to take into account the differences between the physical environments of
globular and TM proteins. The method is optimized to build a highly reliable core
structure shared by the template and target proteins by first calculating membrane
insertion using iMembrane (Kelm et al. 2009) which is used to guide
target-template alignment by MP-T (Hill and Deane 2013). The core is gradually
extended using a specialized membrane-specific substitution score, before loops are
completed using the loop modelling protocols FREAD (Choi and Deane 2010) and
Modeller (Marti-Renom et al. 2000). Results show that MEDELLER produces
accurate core models and achieves a core model accuracy of 1.97 Å RMSD versus
2.57 Å for Modeller. The Memoir modeling pipeline now provides a fully auto-
mated web server that applies this protocol to both a-helical and b-barrel TM
proteins (Ebejer et al. 2013).
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Chen and co-workers developed a method specifically to deal with the issue of
building homology models from very distantly related homologues exhibiting
distinct loop and TM helix conformations (Chen et al. 2014). The approach is based
on efficient sampling techniques of alternative TM helix structures, in order to
reconstruct both TM core and loop regions from distant structural homologues,
resulting in high quality models that were top-ranked when stringently validated in
two blind predictions (Kufareva et al. 2011; Michino et al. 2009). Since the method
requires only a single distant homolog, they estimate that around 60% of human
membrane proteins can be reliably modeled using their approach, allowing the
generation of 3D models for a large and diverse fraction of structurally uncharac-
terized TM proteins.

A number of tools also exist to model specific regions of TM proteins. These
include TM loop regions, which have been shown to differ significantly from loop
regions in globular proteins. Kelm and co-workers showed that it is possible to
accurately predict the structure of TM loops using a database of small TM protein
loop fragments (0.8–1.6 Å). Their findings show that while many globular protein
fragments have similar shapes to their TM counterparts, their sequences are often
very different, although they do not appear to differ in their substitution patterns.
Their method is implemented in a modification to FREAD (Kelm et al. 2014).
Modelling of TM kinks has also attracted a lot of attention, as they have been
observed to provide important functional and structural roles in TM proteins
(Yohannan et al. 2004). Tools to model TM kinks include the Monte Carlo method
based algorithm, MC-HELAN, which determines helical axes alongside positions
and angles of helical kinks (Langelaan et al. 2010), HELANAL-Plus (Kumar and
Bansal 2012), a web server for analysis of helix geometry in TM protein structures,
and TMKink, a neural network predictor which identifies over two-thirds of all
bends with high sensitivity and specificity (Meruelo et al. 2011).

5.6.2 Homology Modelling of Transmembrane b-Barrel
Proteins

For transmembrane b-barrel proteins, HHomp (Remmert et al. 2009) can be used to
identify remote homologues with a known 3D structure that can act as template/s
for 3D modelling of these proteins. Standard application of MEDELLER or
MODELLER can then be used to generate all-atom homology models (Kelm et al.
2010; Marti-Renom et al. 2000). The TMBpro method (Randall et al. 2008) uses a
combination of machine-learning to predict the location of b-strands and
inter-strand contacts and then selects templates from TMBs with known 3D
structure by matching the number of b-strands. However, as stated above, a key
limitation of such an approach is that it is only limited to protein sequences for
which a reliable template can be found. Additionally, for transmembrane b-barrels,
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where identification of novel families is still an open issue, such an approach might
miss reliable templates.

5.6.3 De Novo Modelling of a-Helical Transmembrane
Proteins

De novo modelling, or ab initio modelling, involves the construction of a 3D model
in the absence of any tertiary structural data relating to the target protein. As with
homology modelling, most methods address globular proteins although recently a
number of methods have emerged specifically to deal with TM proteins including
FILM (Pellegrini-Calace et al. 2003), RosettaMembrane (Barth et al. 2007, 2009)
and BCL::MP-fold (Weiner et al. 2013) (Table 5.5).

FILM (Folding In Lipid Membranes) is a modification of the globular protein
structure prediction method FRAGFOLD (Jones and McGuffin 2003; Jones 1997).
FRAGFOLD employs simulated annealing in order to perform a conformational
search using high-resolution super-secondary structural fragments to assemble the
tertiary fold, guided by a statistical function that includes pairwise, solvation, steric
and hydrogen bonding energy terms. FILM added a knowledge-based membrane
potential term to the FRAGFOLD energy function, derived from the statistical
analysis of a data set of 640 transmembrane helices whose topologies had been
determined experimentally. The relative frequencies of each amino acid at fixed
distances from the membrane centre were assessed, allowing the membrane
potential term to be calculated by transforming these values using the inverse
Boltzmann equation. Results indicated that it was possible to predict both the
topology and conformation of small proteins at a reasonable level of accuracy,
although attaining the level of compactness observed in larger TM helix bundles
was challenging, since TM helix bundles are usually not optimally compact despite
neighboring helices being closely packed together. Further modification to FILM
allowed progress to be made in the prediction of larger TM helix bundles by
incorporating another term accounting for lipid exposure into the energy function.
This allowed models of seven TM helix bacteriorhodopsin and rhodopsin to be

Table 5.5 3D modelling tools for a-helical transmembrane proteins

Method Features URL

RosettaMembrane (Barth et al. 2009,
2007)

Knowledge-based
potential

https://www.rosettacommons.
org/

Evfold_membrane (Hopf et al. 2012;
Sheridan et al. 2015)

Evolutionary
couplings

http://evfold.org/
transmembrane

FILM3 (Nugent and Jones 2012) Evolutionary
couplings

http://bioinfadmin.cs.ucl.ac.uk/
downloads/FILM3/

BCL::MP-fold (Weiner et al. 2013) Knowledge-based
potential

http://www.meilerlab.org/
index.php/servers
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generated to within 6–7 Å root mean square deviation (rmsd) of the native structure
(Hurwitz et al. 2006).

RosettaMembrane is also a modification of a globular protein structure predic-
tion method—Rosetta (Rohl et al. 2004; Simons et al. 1999), which, like
FRAGFOLD, assembles folds using fragments of known structures using simulated
annealing or parallel tempering—an effective algorithm to overcome the slow
convergence in low-temperature protein simulation. RosettaMembrane added terms
to the Rosetta energy function that described intra-protein and protein-solvent
interactions in the anisotropic membrane environment, treating hydrogen bonds
explicitly and membrane protein/lipid interactions implicitly. The method describes
interactions between protein residues at atomic detail while applying continuum
solvent models to the water, hydrophobic core, and lipid head group regions of the
membrane. Results suggest that the model captures the essential physical properties
that govern the solvation and stability of membrane proteins, allowing the structures
of 12 small TM protein domain (<150 residues) to be predicted successfully to a
resolution of <2.5 Å (129), comparing favourably with predictions obtained on
small water-soluble protein domains. More recently, the method was extended to
incorporate distance constraints into the predictions to direct helix-helix interac-
tions, the constraints being derived from either experimental data or sequence-based
predictions (Fuchs et al. 2009; Lo et al. 2009; Nugent et al. 2011; Nugent and Jones
2010). This allowed larger (90–300 residues) structures with more complicated
topologies to be successfully modelled to within 4 Å rmsd in the best four cases,
with results indicating that only a single constraint was sometimes sufficient to
enrich the population of near-native models.

A recent method BCL::MP-fold (Weiner et al. 2013), a modification of BCL::
Fold (Karakas et al. 2012), generates models within a static membrane object by
evaluating conformations using a knowledge-based energy potential which takes
into account the unique properties of the apolar membrane in the amino acid
environment potential, as well as an increased radius of gyration along the mem-
brane normal. Three additional terms are introduced first to describe the preferential
orientation of secondary structure elements with respect to the membrane, secondly
to penalise connection of two neighboring TM helices that would require passage
through the membrane, and finally to assess the agreement of residue placement in
TM regions with predictions from sequence. Additionally, a symmetry folding
mode allows for the prediction of obligate homo-multimeric TM complexes.
A benchmark test using 40 TM protein 3D structures demonstrated that the method
is able to accurately predict the correct topology in 34 cases, suggesting the
approach can successfully predict protein topology without the need for large
multiple sequence alignments, homologous template structures, or experimental
restraints.
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5.6.4 De Novo Modelling of Transmembrane b-Barrels

The topological arrangement of b-strands in transmembrane b-barrels is regular and
can be exploited to generate 3D models of TMBs based on an idealized geometry
(Naveed et al. 2012; Hayat and Elofsson 2012b). Existing methods based on ide-
alized geometry approximate the diameter of a TMB, calculated based on its
number of strands. Additionally, 3D coordinates of Ca atoms along b-strands and
their placement with respect to the in-register Ca atom can also be determined using
a theoretical description (Chou et al. 1990; Murzin et al. 1994a, b). Tobmodel uses
these regular structural features to generate idealized Ca atoms of TMBs (Hayat and
Elofsson 2012b). Another method, 3d-SpoT, uses an empirical scoring function
derived from frequencies of lipid-facing and pore-facing residues in known TMB
structures to find the optimal strand-registration and then uses a geometric model of
intertwined coils to generate 3D models (Naveed et al. 2012) (Table 5.6).

5.6.5 Covariation-Based Approaches

Up until recently, using knowledge-based potentials derived from the statistical
analysis of known protein structures has been the standard approach for de novo
structure prediction. Over the last five years, the field has seen dramatic progress as
new methods have emerged that are capable of accurately inferring residue-residue
contacts from large multiple sequence alignments (MSAs), allowing 3D structures
to be computed directly from sequence data. Two key factors have led to this
revolution; firstly, the rapid growth in the size of sequence databases, which has
resulted in the number of sequences available for a typical protein family increasing
by orders of magnitude (Sadowski and Taylor 2013), and secondly, the application
of advanced statistical methods to this sequence data that allows the detection of
true correlated mutations between sites in MSAs. The main idea behind correlated

Table 5.6 3D modelling tools for transmembrane b-barrels

Method Features URL

EVfold_bb (Hayat
et al. 2015)

Evolutionary
couplings + Strand-registration
prediction

http://cbio.mskcc.org/
foldingproteins/transmembrane/
betabarrels/

tobmodel (Hayat
and Elofsson
2012b)

Topology + Strand-registration
prediction

http://tmbmodel.cbr.su.se/

3D-SpoT (Naveed
et al. 2012)

Inter-strand pairing + Idealized
barrel

http://tanto.bioe.uic.edu/TMBB-
Explorer/

TMBpro (Randall
et al. 2008)

Machine learning + Templates http://tmbpro.ics.uci.edu/
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mutations is that residues that are proximal in 3D space are more likely to impose
constraints on each other, which should lead to a correlation in their substitution
patterns in the MSA. Mutation of either residue might disrupt the stability of the
contact, which is likely to have an impact on the stability of the overall fold.
Subsequent mutation of one or both residues to a more physicochemically com-
plementary pairing may increase the likelihood of the contact being maintained;
therefore residue pairs that form contacts are often seen to covary. It is this property
that modern contact prediction methods seek to exploit.

A number of different methods have been developed for predicting contacts from
sequence data based on the recognition of these residue covariation patterns. Up until
now, they major obstacle in achieving performance useful for structure prediction has
been in dealing with indirect coupling effects: should a direct contact exist at sites A–
B and A–C, an apparent interaction may appear between B-C even though no direct
contact exists. The approach of Lapedes et al. (1999) dealt with this so-called
chaining problem by applying a maximum entropy approach, but at a high compu-
tational cost. The Direct Coupling Analysis (DCA) method reduced the problem to
one of maximum entropy inference, applying a heuristic message passing approach
to determine the solution of the contact weights (Weigt et al. 2009). This allowed the
approach of Lapedes et al. to be put to practical use, with prediction accuracy
achieving sufficient quality to be useful in structure prediction (Taylor and Sadowski
2011). PSICOV is based on sparse inverse covariance estimation (Jones et al. 2012).
It applies the graphical lasso method (Friedman et al. 2008) to estimate the inverse of
the covariance matrix, which is calculated from theMSA, whilst also constraining the
solution to be sparse. The inverse covariance matrix, also known as the precision
matrix, gives the correlation between any two sites in the MSA, conditional on
observations at all other sites. This global statistical model was able to predict
contacts with an accuracy approaching 80%, even for long-range contacts (those
separated by >23 residues in the sequence), which is sufficient to identify to the
native fold for medium sized (<200 residue) globular proteins, where sufficient
numbers of aligned sequences are available. A more recent method, plmDCA
(Ekeberg et al. 2013) uses a pseudo-likelihood approach applied to the Potts models.
This has been shown to significantly outperform existing DCA-based approaches,
while consensus approaches such as PconsC (Skwark et al. 2013) and MetaPSICOV
further improve performance (Jones et al. 2015).

5.6.6 Evolutionary Covariation-Based Methods for De Novo
Modelling of a-Helical Membrane Proteins

The performance of these methods has led to the development of a number of de novo
structure prediction methods capable of generating accurate models for even large
domains, guided primarily by predicted contacts. Evfold_membrane (Hopf et al.
2012) incorporates predicted transmembrane topology into the EVfold protocol
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(Marks et al. 2011), which uses DCA in combination with the CNS molecular
dynamics software suite to generate 3Dmodels. A webserver to de novo fold proteins
using EVfold protocol with DCA and plmDCA has also been implemented (Sheridan
et al. 2015). It was shown to be capable of generating accurate models within the
top-10 ranked structures for fifteen targets ranging in size from 50 to 260 residues to
within 2.7–4.8 Å rmsd of their native structures over at least two-thirds of the protein
length. The latest version of FILM, FILM3, replaces the statistical potential with a
single scoring function based on predicted contacts and their estimated probabilities
(Nugent and Jones 2012). Using contacts predicted by PSICOV, results indicate that
models with TM-scores >0.5 could be generated for 25 out of 28 membrane protein
targets with complex topologies and an average length over 300 residues (Fig. 5.4).
In the most remarkable case, it was possible to build a model for all 514 residues of
cytochrome c oxidase polypeptide I with a TM-score >0.75. As encouraging as these
results are, data suggests that even with perfect distance constraints, folding methods
are unable to generate models less than 2 Å rmsd of the native structure, suggesting
that protein refinement protocols will play an increasingly important role in gener-
ating higher accuracy models.

Fig. 5.4 Model of CASP 11 free modelling target T0836 (right)—a 5-helix TM protein. Predicted
contacts were generated using MetaPSICOV (Jones et al. 2015) enabling a model to be produced
using the FILM3 protocol (Nugent and Jones 2012) resulting in a TM-score of 0.60 (Kosciolek
and Jones 2015). The native structure is on the left
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5.6.7 Evolutionary Covariation-Based Methods
for Transmembrane b-Barrel Structure Prediction

Transmembrane b-barrels have a uniform b-strand topological pattern, where
alternate strands traverse from the inside to the outside and vice versa, and addi-
tionally, anti-parallel b-strands have a unique hydrogen-bonding pattern. These
structural features can be exploited to enhance the accuracy of predicting residues
pairs in contact between two adjacent b-strands. Further, these can also be used to
estimate the registration (relative position of two strands with respect to each other)
of two adjacent b-strands. This has been shown to be useful for 3D modelling of
TMBs (Hayat and Elofsson 2012b; Naveed et al. 2012; Randall et al. 2008).
Additionally, Hayat et al. (2015) have implemented a simple strand-shift algorithm,
where adjacent strands are shifted up/down relative to each other to ascertain the
position that gives the highest sum of evolutionary couplings (ECs) between paired
residues to identify the correct registration of TM b-strands in TMBs. This hybrid
algorithm that combines empirical knowledge about TM b-strands and evolutionary
covariation analysis-based contact prediction improves the prediction accuracy of
inter-strand residue contacts. These predicted inter-strands constraints can then used
to identify the underlying hydrogen-bonding network and the resulting interactions
are used as distance constraints to de novo fold large TMBs using a tool called
EVfold_bb (Hayat et al. 2015). EVfold_bb method can correctly predict the 3D
structure with an average TM-score of 0.54 for the top-ranking models. EVfold_bb
can also identify the correct inter-strand registration with an accuracy of 44% (in
generated models), which is an improvement over tobmodel (18%), which does not
use ECs to guide optimal strand registration search. Moreover, the generated
models are not restricted to idealized geometries and do not require a template.
Most interestingly, EVfold_bb can also identify and model 3D interactions between
the barrel and the large plug domain in FecA protein (TM-score 0.68). The plug
domain sits in the TM barrel domain and participates in gating and signaling
(Noinaj et al. 2012).

Furthermore, methods specifically meant for improving prediction of b-sheet
contacts in both globular and membrane proteins have also been developed. These
methods can be broadly divided into two groups based on the use of ECs. BetaPro
(Cheng and Baldi 2005) and MLN-2S (Lippi and Frasconi 2009) use neural net-
works and Markov logic networks, respectively, to predict b-sheet contacts.
Maximum entropy-based correlated mutation measures (CMM) (Burkoff et al.
2013), Bcov (Savojardo et al. 2013b), bbcontacts (Andreani and Söding 2015) and
MetaPSICOV (Jones et al. 2015) all use evolutionary covariation. In addition, these
methods employ an additional layer of machine-learning techniques such as deep
learning or HMMs on predicted evolutionary couplings to increase the accuracy of
predicted residue-residue contacts in b-sheets. In future, methods that combine the
general principles of anti-parallel b-stands along with machine-learning based
methods that employ predicted contacts should be able to improve the applicability
of these techniques to TMBs.
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5.7 Future Directions

Substantial progress has been made in the field of membrane protein structure
prediction over recent years. Methods for the detection of remote homologues have
drastically improved, making it possible to generate template-based models for a
larger number of protein families. Advances in techniques for predicting pairwise
residue contacts have made it possible to generate de novo 3D models of large
membrane proteins. However, these techniques are only applicable to protein
families with large multiple sequence alignments. It is anticipated that as more
sequencing data becomes available, 3D models of yet unknown TM protein fam-
ilies will become model-able based on predicted contacts. Future challenges lie in
further improving these contact prediction methods by optimizing multiple
sequence alignments, generation of fragment libraries, statistical inference methods
used and the tools employed to predict 3D models.
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