
Chapter 11
3D Motifs

Jerome P. Nilmeier, Elaine C. Meng, Benjamin J. Polacco
and Patricia C. Babbitt

Abstract Three-dimensional (3D) motifs are patterns of local structure associated
with function, typically based on residues in binding or catalytic sites. Protein
structures of unknown function can be annotated by comparing them to known 3D
motifs. Many methods have been developed for identifying 3D motifs and for
searching structures for their occurrence. Approaches vary in the type and amount
of input evidence, how the motifs are described and matched, whether the results
include a measure of statistical significance, and how the motifs relate to function.
Compared to algorithm development, less progress has been made in providing
publicly searchable databases of 3D motifs that are both functionally specific and
cover a broad range of functions. A roadblock has been the difficulty of generating
detailed structure-function classifications; instead, automated, large-scale studies
have relied upon pre-existing classifications of either structure or function.
Complementary to 3D motif methods are approaches focused on molecular surface
descriptions, global structure (fold) comparisons, predicting interactions with other
macromolecules, and identifying physiological substrates by docking databases of
small molecules.
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S-BLEST Structure-Based Local Environment Search Tool
SCOP Structural Classification of Proteins
SOIPPA Sequence Order-Independent Profile-Profile Alignment
SPASM SPatial Arrangements of Sidechains and Mainchains
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11.1 Background: Functional Annotation

The genomic approach to biology has resulted not only in copious amounts of new
sequence and structure data, but also the prospect of obtaining a complete “parts
list” for many organisms. However, a parts list is of little use without some
understanding of what each part does. Even with entire genome sequences in hand,
not all genes have been identified, and among identified genes, significant numbers
have not been annotated with any function. The amount of sequence data far
outweighs the available structures, so to a large extent, the assignment of functions,
or functional annotation, has been performed by large-scale sequence searching. In
many cases, the function of an unknown sequence is inferred, or transferred,
through similarity to a sequence with a known function.

362 J.P. Nilmeier et al.



11.1.1 What Is Function?

Function can be described at many levels and from many perspectives (Radivojac
et al. 2013). Objective classifications of function are needed for training and testing
any method of functional annotation. The Gene Ontology (GO) system (Ashburner
et al. 2000) is a hierarchical set of functional descriptors ranging from broad to specific
in each of three categories: biological process, cellular component, and molecular
function. For the specific molecular functions of enzymes, GO embeds the Enzyme
Commission (EC) system (International Union of Biochemistry and Molecular
Biology: Nomenclature Committee and Webb 1992) which is also hierarchical:
catalysed reactions are described with four integers, where the first number refers to a
broad class of reactions and the last number refers to a specific substrate. GO also
includes molecular function terms for stable binding relationships (where binding is
not functionally associated withmembrane transport or catalytic activity). TheKEGG
annotation (Kanehisa and Goto 2000; Ogata et al. 1999), while used mostly for
studying reaction pathways, can also be used to annotate enzyme function.

Other methods for classifying proteins, while less directly related to function, can
be used to infer relationships related to function. These include Structural
Classification of Proteins (SCOP) (Murzin et al. 1995; Conte et al. 2000; Andreeva
et al. 2004, 2008) and Class, Architecture, Topology, and Homologous superfamily
(CATH) (Orengo et al. 1997, 1999, 2003). Both methods are hierarchical classifi-
cations of protein substructures such as folds (Richardson 1981) or domains (Chothia
and Lesk 1986; Rost 1997), that can be “mixed and matched” evolutionarily (Chothia
et al. 2003). In SCOP, domains are classified into families, superfamilies, folds, and
classes. Folds are, in general, only indirectly related to function (Babbitt and Gerlt
1997; Todd et al. 2001), but they can be very informative for many cases. The use of
fold similarity for annotation transfer is discussed in Chap. 9.

The GO and EC annotations for functional annotation cover nearly all reactions
found in biochemical systems. They do not, however, include details on enzymatic
mechanism, or the role of the protein in the reaction (Babbitt 2003). Two enzymes
that catalyze the same overall reaction would have the same EC number, even if
their structures and catalytic intermediates are very different. Additionally, many
enzymes are evolutionarily related because they share an intermediate step in the
overall reaction, that is, a common partial reaction. The EC and GO naming
systems do not account for such similarities in any practical way, and yet such
similarities are a defining feature for many protein superfamilies, with the enolase
superfamily as the most notable example. Figure 11.1 illustrates the variety of
reactions associated with the enolase superfamily.

11.1.2 Genomics and Functional Annotation

The progress in the genomics community in assigning functional annotations
through sequence-based methods is impressive. Given that function is related
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indirectly to sequence through a protein structure, however, it makes sense to
consider methods that incorporate protein structure more directly in the inference of
function.

Sequence alignment methods such as BLAST (Altschul et al. 1990) and
CLUSTALW (Larkin et al. 2007; Thompson et al. 1994) have enjoyed wide suc-
cess in inferring function when sequence similarity is greater than 40–60% (Tian
and Skolnick 2003; Devos and Valencia 2001; Rost 2002). More sophisticated

Fig. 11.1 Illustration of the common partial reaction in the enolase superfamily. The extraor-
dinary diversity of reactions shown in these enzymes share one step in common, which is the
initial abstraction of a proton (indicated in red). Abbreviations are MR mandelate racemase, GlucD
glucarate dehydratase, MLE muconate lactonizing enzyme, b-MAL b methylaspartate ammonia
lyase, OSBS O-succinylbenzoate synthase
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methods, including Hidden Markov Model (HMM) methods (Krogh et al. 1994;
Sjölander et al. 1996), and ancestry-based methods such as the Evolutionary Trace
(Lichtarge et al. 1996), INTREPID (Sankararaman and Sjölander 2008), Phylofacts
(Glanville et al. 2007; Krishnamurthy et al. 2006), Bayesian Monte Carlo inference
from phylogenetic trees (Tseng and Liang 2006) and EFICAz (Arakaki et al. 2009;
Tian et al. 2004) combine sequence alignment procedures and machine learning
techniques to specifically assign function to a sequence.

11.1.3 The Need for Structure-Based Methods

Protein structures, however, may reveal important similarities or possible evolu-
tionary relationships that are not evident from their sequences alone. The natural
analogue to a global sequence alignment is a global structure alignment. Methods
like LGA (Zemla 2003), PINTS (Stark and Russell 2003) and CE (Shindyalov and
Bourne 1998, 2001) can accomplish this alignment in various ways and sometimes
reveal more significant relationships in the alignments.

Other approaches use combinations of sequence and structural information, such
as SOIPPA (Xie and Bourne 2008, 2009; Ren et al. 2010), DISCERN
(Sankararaman et al. 2010), and PevoSOAR (Tseng et al. 2009), and can provide
improvements to sequence based methods alone. Additionally, methods like the
FFF approach that are essentially structural in nature benefit from addition of
sequence information (Cammer et al. 2003). The success of any of these global
similarity-based techniques depends largely on the ability to distinguish conser-
vation patterns that correspond to the actual functional or catalytic portions of a
protein sequence or structure.

Related proteins may have diverged so far that global sequence or structure
alignments are challenging. Conversely, proteins with highly similar folds can
perform different functions (Babbitt and Gerlt 1997; Todd et al. 2001). This
observation points to the need for a more fundamental definition of a structural unit,
or 3D motif which more specifically defines the functional aspects of a given
protein structure.

Structural genomics efforts have long recognized the fact that structural data is
much more informative than sequence data alone. This data is used not only for
annotation, but for homology modelling and in silico drug design. On principal
driving idea behind this effort is to crystallize structures that are underrepresented in
sequence space, so that more sequences can be more directly represented in
structural forms (Berman et al. 2000; Baker and Sali 2001). The number of
structures in the PDB from these initiatives has continued to grow at an increasing
rate, and many target structures were previously completely unannotated, or
annotated incorrectly using automated sequence-based methods.

Functional assignment to these proteins remains as a frontier challenge for
structural genomics, and 3D motif-based methods are likely to play a prominent
role for proteins where current methods fall short.
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11.2 3D Motif Matching Techniques

11.2.1 What Is a 3D Motif?

3D motifs are spatial patterns of points based on a few residues (generally under a
dozen) associated with some protein function or classification of interest. They are
sometimes called active site templates, since the residues may contribute to a

Fig. 11.2 Example of a catalytic template constructed from a Catalytic Site Atlas (CSA) entry,
which has a corresponding EC number along with a list of residues that comprise the site. Each
residue has a centroid associated with it, which is labelled in parentheses and shown as spheres in
(a) and (b). Cofactors, ions, and residues can often have either a single centroid or many centroids
associated with them (see Fig. 11.3). In this example, Ca coordinates are used as the residue
centroids, but centroids may be computed in other ways. For this templating approach, a graphical
representation of the template is used, with nodes associated with the centroid identity, and edges
defined by the interatomic distances. The template is stored as a distance matrix, shown in (b). The
image was created with UCSF Chimera (Pettersen et al. 2004) (http://www.cgl.ucsf.edu/chimera)
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binding or catalytic pocket, or structural templates. The positions of one or a few
atoms per residue are used, and the points are labelled with additional information,
such as atom and residue type, used in matching. The residues are often strictly
positioned in space but not necessarily in sequence. Figure 11.2 describes a typical
binding site found in the Catalytic Site Atlas (CSA), and one way to represent it in a
reduced form. In this example, the Ca atoms are used as pseudoatoms, but many
approaches use atomic coordinates from the sidechains, or a centroid using clusters
of atoms in the pseudoatom positions as well (Oldfield 2002), as is the case for the
templates in Fig. 11.3.

3D motifs represent highly conserved patterns of local structure. Often the
residues are conserved to sub-angstrom resolution, and the absence of one residue
in the motif can completely eliminate its function. The remainder of the protein,
however, can often vary substantially. Ideally, a 3D motif will describe exactly
these function-critical structural components and serve as a sensitive and specific
signature of the function.

Since such a motif can often be the only evolutionary constraint, many different
structures can be present with the same motif, and there is no restriction on the

Fig. 11.3 Active site residues from members of the enolase superfamily, illustrating aspects of
motif representation and specificity. The superimposed side chains of two basic and three acidic
residues are shown from each of the following: mandelate racemase (yellow, PDB 2mnr), enolase
(salmon, PDB 4enl), and methylaspartate ammonia lyase (blue, PDB 1kcz). Balls indicate
alpha-carbon (Ca) and side chain centroid locations. Single-letter codes near the alpha-carbons
indicate residue types: H for histidine, K for lysine, D for aspartic acid, and E for glutamic acid.
While the acidic residues at the two lower left positions are highly conserved in type and
conformation, variations in the sites include: 1 differing (albeit similar) residue types at the other
three positions; 2 different side chain conformations, exemplified by the two lysines on the right; 3
different locations in primary sequence, where the basic residue on the upper left is C-terminal to
the others in enolase but N-terminal in the sequences of the other two proteins. Using side chain
centroids rather than the positions of functional atoms generally allows for more variety in
backbone conformations, assuming the sidechain positions are well conserved across templates
(Todd et al. 2002). The image was created with UCSF Chimera (Pettersen et al. 2004) (http://
www.cgl.ucsf.edu/chimera)
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location or relative order of residues in the sequence. Figure 11.4 shows a case of
convergent evolution in the serine protease Asp-His-Ser catalytic triad. While the
catalytic triad is highly conserved structurally, the remaining structural elements
display noticeable variations. This particular catalytic triad was, historically, the
first to be thought of as a ‘motif’ based on these observations. Variations in
structure relative to a motif are even more pronounced in other more recent
examples, including the disulfide oxidoreductase site shown in Fig. 11.5, which is
taken from an example of a Fuzzy Functional Form (FFF) template (Fetrow and
Skolnick 1998; Di Gennaro et al. 2001).

Fig. 11.4 Two serine proteases superimposed at their catalytic triads reveals the close similarity
of residues in the active sites despite different overall folds. a Ribbon diagrams of trypsin (blue/
light blue, PDB 1sgt) and proteinase K, a homolog of subtilisin, (red/salmon, PDB 2pkc) show that
the two proteins have different folds with no corresponding secondary structure elements, yet their
catalytic triads (displayed in stick representation) overlap. They are considered to have no common
ancestor. b The sidechains of the catalytic triads are shown enlarged to display the similar
orientations of the catalytic triad residues (1sgt: Asp102, His57, Ser195; and 2pkc: Asp39, His69,
Ser224). The similarity of the catalytic triad in these non-homologous structures demonstrates the
ability of 3D motifs to detect similar functions in a pair of proteins where homology-based
methods will fail. The image was created with UCSF Chimera (Pettersen et al. 2004) (http://www.
cgl.ucsf.edu/chimera)

368 J.P. Nilmeier et al.

http://www.cgl.ucsf.edu/chimera
http://www.cgl.ucsf.edu/chimera


11.2.2 Historical Development of Motif Matching Methods

Early ideas about catalytic motifs were based on observation, and were not algo-
rithmic in nature. The most widely studied motif is the Ser-His-Asp catalytic triad
mentioned above, first recognized in serine proteases (Blow et al. 1969; Wright
et al. 1969) and later in other hydrolases such as esterases and lipases. The catalytic
triad occurs in different folds, and thus it encompasses cases of both divergent and
convergent evolution (Fig. 11.4). Early discoveries of the catalytic triad found it
present in entirely different folds of subtilisins, (Fischer et al. 1994). The Thornton
group, studying triads in detail, formulated a more careful description of the site,
based on the observation that only the relative positions of serine and aspartate

Fig. 11.5 The FFF motif for the disulfide oxidoreductase active site is found in many proteins.
Illustrated are T4 glutaredoxin, 1aaz, chain A (left), human thioredoxin, 4trx (middle) and proline
disulfide isomerase, 1dsb, chain A. The three key residues which define this FFF are two cysteines
(red side chains) and a proline (cyan side chain). The active site structure of these proteins is
conserved, although the rest of the protein structures exhibit some differences. Using these three
key residues, the active site signature for each protein was identified (fragments shown as blue
ribbons in each protein). Global sequence alignment, produced using ClustalW, of these three
proteins shows the location of the key residues (red and cyan, underlined) and the active site
signature fragments (blue) within the whole sequence. The alignment illustrates the lack of overall
sequence similarity between the three proteins, even though the active site structure itself is highly
conserved
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oxygens and the histidine ring were preserved across many examples (Wallace et al.
1996).

During this time, the concept of a 3D motif began to emerge in an algorithmic
context, which is generally described as template matching or motif matching.

Artymiuk et al. (1994) appear to be the first to apply such a procedure, which
they called ASSAM, to enzymatic site detection. Their work used the subgraph
isomorphism procedure, which is a graph theoretic method for finding a motif
graph in a larger structure graph. The method, originally proposed by Ullmann
(1976), is described in Sect. 11.2.1. Later work by Artymiuk et al. expanded the
approach beyond catalytic sites to other structural applications, such as the iden-
tification of tertiary structures (Mitchell et al. 1990; Spriggs et al. 2003). In this
work, many careful choices were made with regard to which atoms to use as part of
the template, and particular attention was paid to reliable detection of residue triads,
given the importance of catalytic triads as an archetypal motif.

During this period, Kleywegt also developed a site-matching procedure origi-
nally designed to identify patterns in distance matrices determined by Nuclear
Overhauser Effect (Radivojac et al.) measurements (Kleywegt et al. 1989). Later
Kleywegt introduced a program called DEJAVU that detects protein motifs
(Kleywegt and Jones 1997). A technique based on DEJAVU was later generalized
to identify enzymatic sites with a method called SPASM, along with a comple-
mentary approach, known as RIGOR (Kleywegt 1999), used to search a list of
motifs for similarity to a given structure. Early work with this method focused on
triad motifs as well. A notable example from the Kleywegt study (Kleywegt 1999)
was the discovery of a family of glucanases.

A related set of approaches to the template matching problem uses a procedure
known as geometric hashing (Wolfson and Rigoutsos 1997; Brakoulias and
Jackson 2004). The main difference between the geometric hashing procedure and
graph-based procedures is that geometric hashing uses a Cartesian grid (with a
suitable coordinate system) to bin similar coordinates. It is used widely in image
processing, and has been successfully adapted to structural approaches. It is
dependent on the frame of reference, however, and additional overhead is required
to accomplish optimal translations and rotations for comparison. The Thornton
group proposed a template-matching procedure, named TESS (Wallace et al. 1997),
built on such an approach. A later iteration, known as JESS (Barker and Thornton
2003), incorporated recursive ideas and threshold constraints to improve searching
procedures. More recently, the Kavraki group developed a series of procedures built
on a match augmentation method, MASH, that iteratively grows a template match
from pairwise matches obtained through geometric hashing (Chen et al. 2007a).
Later developments from this group include the addition of residue hash matching,
the LabelHash algorithm (Moll et al. 2010; Moll and Kavraki 2008), along with
impressive optimizations at the hardware and software level to improve perfor-
mance. Other geometric hashing approaches include SitesBase (Gold and Jackson
2006a, b), and GIRAF (Kinjo and Nakamura 2007).
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Success of template-matching methods, within the Thornton group and else-
where, led to the important recognition that a high quality curated database of
enzymatic sites was needed. This recognition led directly to the development of the
Catalytic Site Atlas (CSA) (Porter et al. 2004), which is a manually curated table of
enzymes and binding site residues, as well as tabulated Enzyme Commission
(EC) numbers (Bairoch 1994). The CSA is somewhat limited in coverage, however,
and the scale of such a database will always be strictly limited by the capacity of
expert manual curators. As a result, many approaches have been developed which
attempt to automatically locate structural features that may be used as templates.
These approaches include physics-based approaches (Halgren 2007, 2009) and
statistical modelling of measures (Liang et al. 2003; Brylinski and Skolnick 2008;
Skolnick and Brylinski 2009). Methods that consider protein dynamics (Yang and
Bahar 2005; Glazer et al. 2008) represent a promising direction as computational
capabilities improve (see also Chap. 12).

Other valuable resources related to this effort, including the MACiE database
(Holliday et al. 2007), and the ProFunc server (Laskowski et al. 2005), as well as
metaservers like ProKnow (Whisstock and Lesk 2003), resulted from the success
and utility of structure-based approaches to understanding function. Table 11.1 lists
some of the database resources that have resulted from efforts in this field.

The Babbitt and Gerlt groups have gone beyond matching of catalytic residues
and matched enzymes by their chemical mechanism. They established the concept
of a mechanistically diverse superfamily, where the similarity among members is
governed by the conservation of partial reactions within the protein family, rather
than by sequence or structure conservation alone (Galperin et al. 1998; Gerlt and
Babbitt 2001; Gerlt et al. 2012). This approach is in contrast to a sequence-based
approach, which relies on global sequence similarity with the expectation that
conservation patterns can point to residues of functional interest. It also presents an
alternative to the Enzyme Commission (EC) classification scheme (Webb 1992),
which builds a hierarchy based on the substrate reaction chemistry. This alternative
approach to classification, with its emphasis on binding site architecture and con-
servation of partial reactivity, led to the development of the Structure-Function
Linkage Database SFLD (Pegg et al. 2005, 2006). These ideas led to the larger
Enzyme Function Initiative (Gerlt et al. 2011), which has the goal of large-scale
enzyme characterization and classification based on experimental and computa-
tional work (Gerlt et al. 2012; Kalyanaraman et al. 2008; Song et al. 2007).
Template-matching procedures using superfamily template libraries were applied
(Meng et al. 2004), and led to a procedure known as GASPS and the database
GASPSdb. GASPS is designed to develop new template libraries based on any
classification of structures into those with and without a function (or other property)
of interest (Polacco and Babbitt 2006).
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Table 11.1 Servers and other web resources for 3D motif searching and comparison

Server name and citation Server URL

Description of resource Motif database description

Catalytic site atlas (CSA) (Furnham et al.
2014)

http://www.ebi.ac.uk/thornton-srv/databases/
CSA/

Basic interface to motif database (CSA) Ca and Cb functional atom motifs for 147
well-characterized enzyme families. Database
freely available for download

ProFunc (Laskowski et al. 2005) http://www.ebi.ac.uk/thornton-srv/databases/
profunc/

Multi-search including motif search with
JESS: whole structure query vs. motif
database, fragment query versus whole chains

CSA motifs, 13,057 ligand-binding and 1200
DNA-binding modes from PDB. Motifs
contain both sidechain and backbone atoms

Catalytic site identification (Kirshner et al.
2013)

http://catsid.llnl.gov/

Finds matches to motifs with user defined
target and/or protein databank. Uses subgraph
isomorphism and machine learning

2244 motifs, including modified CSA and
enolase superfamily templates. User can also
search for unannotated structures by EC
number

Uppsala Software Factory (Kleywegt 1999) http://xray.bmc.uu.se/usf/

Software is available for download. SPASM
compares a query motif to a database of
targets. RIGOR compares a query structure to
a database of motifs

RIGOR database contains 73,164 motifs from
PDB. 57,719 motifs have residue type labels.
The remaining are unlabelled (engineerable)

ProKnow (Pal and Eisenberg 2005) http://proknow.mbi.ucla.edu/

Multi-search, including RIGOR motif
searches. GO annotations included in output

10,230 motifs with GO annotations from their
source structures, 7819 if electronic
annotations are excluded

GASPSdb (Polacco and Babbitt 2006) http://gaspsdb.rbvi.ucsf.edu/

Browse database of 3D motifs representing
SCOP families and superfamilies

Motifs have Ca and side chain coordinates.
RIGOR-formatted database files are available
for download

funClust (Ausiello et al. 2008) http://pdbfun.uniroma2.it/funclust/

Uses Query3D to identify motifs shared by
groups of 3–20 structures

User supplied structures for consensus motif

pdbFun (Ausiello et al. 2005b) http://pdbfun.uniroma2.it/

Compares specified probe and target residue
sets using Query3D

>12 M individual residues. Subsets are
defined with Boolean descriptors
combinations

ProBIS (Konc and Janežič 2012) http://probis.cmm.ki.si/

Detects similar binding sites using a clique
detection algorithm (ProBIS)

Database contains pre-calculated matches for
non-redundant (95%) pdb

The LabelHash server (Moll et al. 2011) http://labelhash.kavrakilab.org/

Compares motifs with PDB or user structures
using LabelHash algorithm

17 predefined motifs derived from CSA. User
defined motifs are allowed

WebFEATURE (Liang et al. 2003; Buturovic
et al. 2014)

http://feature.stanford.edu/webfeature/

(continued)
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11.3 Algorithmic Approaches to Motif Matching

The historical development of motif matching methods and current methods sug-
gest the following categorization of these methods.

Table 11.1 (continued)

Server name and citation Server URL

Uses radially symmetric patterns as motifs Motifs are derived from PROSITE v20.81,
and are available for individual download

PAR-3D (Goyal et al. 2007) http://sunserver.cdfd.org.in:8080/protease/
PAR_3D/access.html

Compares query to motifs expressed as
distance and angle ranges

Ca and Cb motifs for 6 protease classes and
10 glycolytic enzymes. Metal chelating sites
have sidechain centroids as well

PDBSiteScan (Ivanisenko et al. 2004) http://wwwmgs.bionet.nsc.ru/mgs/gnw/
pdbsitescan/

Compares query to all or a subset of motifs in
the PDBSite database

36,273 backbone-atom motifs from SITE
annotations. Also includes interfaces with
DNA, RNA, or other proteins

PINTS (Stark and Russell 2003) http://www.russelllab.org/cgi-bin/tools/pints.
pl

Compares query structure to motif database,
query motif to PDB, or two proteins to each
other

Ligand-binding and SITE-annotated motifs
consisting of side chain points from polar
residues

SuMo (Jambon et al. 2005) http://sumo-pbil.ibcp.fr/

Compares query structure, chain, or ligand-
binding site to database

Database contains 34,210 ligand-binding
sites, and also whole structures. Motifs are
built from functional groups

S-BLEST (Schmitt et al.) (Mooney et al.
2005)

http://www.sblest.org/

Queries residue-centred patterns against
nr-PDB. Returns best-matching chains and
annotations

Searches for similarity to uploaded structure
only

SiteEngine (Shulman-Peleg et al. 2005) http://bioinfo3d.cs.tau.ac.il/SiteEngine/

Compares the binding site of a ligand-bound
structure to the entire surface region of
another structure

Linux executable for non-commercial use
only

Nestor3D (Nebel et al. 2007) http://staffnet.kingston.ac.uk/*ku33185/
Nestor3D.html

Generates a consensus motif with input
structures and structure alignments

User supplies input structures for comparison.
Software is available for download
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11.3.1 Methods Using 3D Motifs

Many elements can make up the definition of a motif, but the majority of
approaches consider a motif as a constellation of labelled points derived directly
from an important subset of atomic coordinates of a structure or set of structures.
A side chain centroid, for example, is simply a pseudoatom at the average position
of the atoms in the side chain. Up to a few points are used per residue in the motif,
and the points are labelled with additional information such as atom type, residue
type, or physicochemical characteristics.

Searching can be computationally intensive, especially considering that thou-
sands of structures may be compared to thousands of motifs; 3D motif searching
has relied on the development of efficient algorithms, often involving one or more
of the following:

• Geometric hashing. Hashing is a broad term for reducing complex data to a
simpler form that can be compared more rapidly. In its most basic form, a
geometric hash can be a lookup table of Cartesian coordinate points (Fischer
et al. 1994) and pseudoatom identities as well as many other properties,
including distances, angles, and other residue features (Shulman-Peleg et al.
2004). In general, hash comparisons are very fast, especially compared to the
time required to align the coordinates (Pennec and Ayache 1998). Hashing or
preprocessing the data takes time, but only needs to be done once per structure
and can greatly speed up comparisons.

• Graph Theoretic Methods. A graph consists of vertices (Kaminski et al. 2001)
and edges (lines that connect pairs of vertices). A molecular structure or 3D
motif can be treated as a labelled graph. Figure 11.2 shows how a catalytic site
might be represented as a group of labelled vertices with interatomic distances
used as edges. Subgraph isomorphism algorithms look for the occurrence of a
subgraph (the 3D motif) in a larger graph (the structure). While the subgraph
isomorphism is formally treated as a method for identical matches, many
modifications to this basic approach are used for imperfect matches, including a
variety of distance tolerances, as well as allowances for substitutions (Nilmeier
et al. 2013). Clique detection (Schmitt et al. 2002) is essentially a similar
algorithm, but the graph in this case describes the geometries of both structures
together. A vertex in the graph represents a pair of atoms or pseudoatoms, one
from structure A and one from structure B (where “structure” could be a 3D
motif). Only atoms with matching types are allowed to pair. Two vertices are
connected by an edge if the distance between the two atoms in A matches the
distance between the two atoms in B within a specified tolerance. A clique is a
graph in which every vertex is connected to every other vertex. Thus, clique
detection identifies a set of atoms from A with internal distances completely
consistent with those among a paired set of atoms from B.
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11.3.2 Efficiency Considerations for 3D Motifs

Motif matching algorithms can be very fast for perfect matches. A challenge in the
design of these algorithms, however, is that the extension to imperfect matches can
lead to exponential scaling—sometimes referred to as nonpolynomial (Larkin et al.
2007) scaling—with respect to template and structure size, with concomitant losses
in speed and efficiency.

To address this challenge variations of branch and bound approaches are used.
These approaches leverage combinations of breadth-first and depth-first searches,
and usually build a series of partial templates for comparison. In template matching
algorithms, a breadth-first search typically refers to a method whereby a partially
constructed template with few vertices and a ‘breadth’ of candidate edges are
compared for fitness. The best candidates are then selected for the next iteration.
Alternatively, a depth-first search builds a ‘deeper’ partial template with many
vertices and fewer edges before iterating to the next comparison step. While
described graphically, these ideas can be used in the geometric hashing compar-
isons as well.

During the buildup procedure, the list of candidates in the search is usually
pruned using a heuristic similarity cutoff that can be highly specific to the algo-
rithms and templates that are used. This buildup procedure is discussed in some of
the isomorphism searches (Nilmeier et al. 2013), and in variants of the geometric
hashing technique (Chen et al. 2007b).

Care must be applied in determining these cutoffs, especially in the
time-intensive search portions. If the similarity cutoffs are relaxed, false positives
may be obtained. More importantly, however, the scaling can rapidly become
unmanageable, since each list is carried into the next iteration. On the other hand, if
the cutoffs are too strict, then good matches are discarded. In addition to the pruning
criterion, other measures are applied to restrict the search space. For example, in
graph comparison algorithms the default description of the resulting graph would
contain all distances, resulting in a large, fully connected (clique) structure graph.
Nearly all of these edges are unnecessary when comparing the graphs, so careful
construction of the graphs beforehand will vastly improve performance.

Application of similarity thresholds can be a nontrivial effort, and very specific
to the templates under consideration. Consider the residues in the lower right hand
corner of Fig. 11.3. The active site residues are represented as Ca and side chain
centroids (Oldfield 2002). In this case, centroid position is highly conserved, but the
Ca position is not, and the residue identity is also different (Asp ⟶ Glu). The
choice of which constraints to apply and which to relax in this case would require
detailed knowledge about the significant elements involved (in this case, the proton
abstraction residue).
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11.3.3 Methods with Nonstandard Motif Information

It is not always straightforward to differentiate between methods that use ‘standard’
3D motifs from methods that incorporate additional information. For example,
many techniques have multiple stages. In these techniques, a fast template matching
algorithm is used to generate an initial candidate list, followed by a more complex
scoring procedure to refine results (Laskowski et al. 2005; Kirshner et al. 2013;
Nilmeier et al. 2013). While the second stage scoring procedure may incorporate
more complex representations of the catalytic site, the core search algorithm uses
the classic definition of a motif.

Other methods, however, incorporate a fundamentally different definition of a
motif in the primary search machinery. For example, hybrid point-surface and
single-point-centred descriptions of local structure do not fall under our working
definition of a 3D motif approaches, but they do share many similarities. Methods
primarily based on surface descriptions are covered in Chap. 10.

• Single-Point-Centred Descriptions. The program FEATURE (Bagley and
Altman 1995) describes local structure as a set of properties in concentric shells
emanating from a single point. The properties include descriptors of atoms,
functional groups, residues, secondary structure, and simple biophysical char-
acteristics. Because values are summed over spherical shells, however, direc-
tional information is lost. Both the WebFEATURE server (Liang et al. 2003;
Buturovic et al. 2014) and the Structure-Based Local Environment Search Tool
S-BLEST web server (Mooney et al. 2005; Peters et al. 2006) use FEATURE
templates, and each provide their own results, along with enhanced annotations
(Table 11.1).

• Hybrid (Point-Surface) Descriptions. Cavbase (Schmitt et al. 2002; Kuhn
et al. 2006) and SiteEngine (Shulman-Peleg et al. 2004) describe binding sites as
collections of pseudoatoms and their associated surface patches. The pseu-
doatoms represent surface-exposed functional groups of various types, such as a
hydrogen bond donor or acceptor. Comparisons involve finding geometrically
and physicochemically consistent sets of pseudoatoms, superimposing structures
based on those matches, and then scoring based on surface patch overlap and
physicochemical similarity. Surface points typically far outnumber the pseu-
doatoms, so scoring is relatively computationally demanding. The SiteEngine
web server (Shulman-Peleg et al. 2005) performs pairwise comparisons but not
database searches(Table 11.1). Other surface-based methods include eF-site
(Kinoshita and Nakamura 2003), SuMo (Jambon et al. 2003), SiteEngine
(Shulman-Peleg et al. 2004), and Query3D (Ausiello et al. 2005a)
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11.3.4 Interpretation of Results

The previous sections have discussed the technical challenge of finding a given
motif in a structure. However, there are still questions that must be answered when
applying these methods. What can be said about the function of the structure if a
positive match is found? What constitutes a positive match, and how reliable is it?

Several issues must be considered when deciding what a positive match means.
The ideal case is when the motif perfectly defines the residues for a particular
annotated function. In these cases, the interpretation of the match is straightforward:
the structure has the annotated function that the matching motif has. Developing a
motif library with these desirable properties is a challenge in itself, and is discussed
in Sect. 11.3. This simple mapping of function from a motif to the structure is not
always straightforward, as motifs may be only indirectly associated with a specific
function. For example, if a motif is derived from a SCOP superfamily, a match may
only imply some function which is commonly found in the SCOP structure.

Any given motif-to-structure comparison is an NP-hard challenge, and even an
efficient procedure may still yield several different candidate matches. Additionally,
motif libraries can number on the order of thousands, while the PDB has tens of
thousands of structures. A comparison of the full set of possibilities can quickly
lead to an intractable problem unless sensible cutoffs to candidate matches are
applied during the evaluation steps.

It is even more important to be able to report a manageable list of matches that
can be easily interpreted and understood by users. This list will likely contain trivial
matches of nearly exact motifs found in proteins with very similar global structure.
The more interesting matches in the list should include somewhat distant but still
plausible relationships; possibly with residue substitutions, or noticeable differences
in global structures.

Basic measures of structural similarity are usually the starting point for scoring.
The root mean square deviation, or RMSD, is one very common measure. It has
many limitations, however. Most notably, it is not a useful measure when com-
paring matches to motifs of different sizes. Many other nuances begin to become
apparent, including substitution allowances as well as subtle geometric relation-
ships that may not be properly represented by the reduced geometric form of the
motif.

To account for these issues and provide a better ranking of hits, some groups
apply a multistage method. The fast, coarse search method will generate a large
candidate list that is then subjected to a more rigorous scoring procedure.
Sometimes the scoring procedure is intended to have a direct statistical interpre-
tation, much like a p-value or other probabilistic score (Barker and Thornton 2003;
Nilmeier et al. 2013; Kirshner et al. 2013). The determination of the cutoff score,
which indicates whether the candidate is a positive match, can often be heuristic.
There are, however, classic machine learning techniques that can be applied to
determine appropriate cutoffs.
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The ability of a procedure to identify true positives, measured by the true pos-
itive rate (TPR) or sensitivity, while also minimizing the false positive rate (FPR) is
usually the measure of performance of many of these techniques. One technique
that is used frequently is the Receiver Operating Characteristic (Bairoch), which is
simply a plot of these values as the cutoff is adjusted, in which the Area Under the
Curve (AUC) indicates a quality measure of the prediction procedure. This is only
one of many techniques to identify good cutoff values, but is widely used in the
motif matching literature and elsewhere.

Another approach to interpretation is to take the predictions of multiple methods
into consideration. This can often prove to be more useful than relying on any one
particular method. Some servers provide predictions from multiple sources, leaving
the final determination to the user. Notable examples include the ProKnow server
(Pal and Eisenberg 2005) and ProFunc (Laskowski et al. 2005) servers, and are
listed in Table 11.1. These servers are also discussed in detail in Chap. 13.

Finally, common sense must be applied. Many confounding factors will still
present themselves, even in the most carefully constructed procedures. For exam-
ple, a motif may be correctly located in a structure, but there is no actual binding
cavity to accommodate the substrate. It is prudent, if not essential, to inspect
matches visually and to evaluate them using biologically relevant criteria when
inferring the function from a match. Many of the most useful servers and software
have some visualization process as an integral part of the procedure for studying
matches, simply because expert evaluation of the matches is still the best way to
determine if algorithms are working as expected.

11.4 Methods for Deriving Motifs

Most of the effort in motif matching approaches is invested in locating a motif in a
protein structure. This challenge, however, assumes that the motif is available as a
ground truth. Sometimes the methods allow the user to supply a motif, while other
methods use a library of motifs. How, then, are these motifs generated in the first
place?

Ideally, for motif discovery, the set of positive examples should be as diverse as
possible while retaining the common feature, and the negative examples should be
as similar as possible to the positive examples while lacking that feature. In prac-
tice, the positive and negative sets may not be ideal, and part or all of a derived 3D
motif could still reflect common ancestry or coincidence rather than shared
function.

Others treat motif discovery or generation of motif libraries essentially as the
primary goal of their method.
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11.4.1 Literature Search and Manual Curation

Perhaps the most reliable approach to motif discovery is to mine the published
literature for experimental evidence. For 3D motifs, the focus is on residues that
provide a specific binding or catalytic capability.

The Catalytic Site Atlas (CSA) (Table 11.1) contains several hundred families of
enzymes, each comprised of a structure with catalytic residue annotations from the
literature (Barker and Thornton 2003; Porter et al. 2004; Torrance et al. 2005). The
atlas library also includes structures related through sequence homology.
Representative structural templates (3D motifs) are based on side-chain functional
atoms, alpha carbons (Ca) and beta carbons (Cb). In all, more than 2200 unique
motifs were generated, whose function is verified through literature values, which
often include experimental verification of the function.

The generation of this dataset was a fundamental advance in the field. Other
servers rely on this dataset, including multiservers like ProFunc, (Laskowski et al.
2005), and groups who have curated or modified this Atlas and incorporated it in
their own servers (Moll et al. 2011; Kirshner et al. 2013; Nilmeier et al. 2013).

11.4.2 Annotated Sites in PDB Structures

Another approach is to use the annotations given to the crystallographic structures
in the PDB. In practice, this means looking at the SITE records of a given protein
databank file, or at residues around molecules labelled as LIGAND. Sometimes
even the residues around nonspecific heteroatoms (HET) or analysis of the residues
of macromolecular interfaces can give some clue as to what portions of a protein
may be involved in catalysis. This is not always informative, as these annotations
are not guaranteed to point to the catalytic site of the protein of interest. It is often a
very good starting point, however, and can provide new hypothesis for motifs.

Several databases of 3D motifs have been generated using only information from
each source structure individually. For example, binding site motifs can be col-
lected by taking residues within a cutoff distance of ligands, nucleic acids, or even
other protein chains. The PINTS (Patterns in Non-homologous Tertiary Structures)
server (Stark and Russell 2003) derives its database from binding sites defined as
residues within three angstroms of a ligand as well as motifs annotated in the PDB
as a SITE record (Russell 1998), along with careful statistical models (Stark et al.
2003, 2004) that estimate the statistical significance of matches. The PDBSite
database (Ivanisenko et al. 2005) (Table 11.1) includes SITE records, along with
interfacial reaction sites with other proteins, RNA, and DNA. Residues with at least
three atoms within five angstroms of the other chain are included in an interaction
site. The search machinery is called PDBSiteScan (Ivanisenko et al. 2004)
(Table 11.1). The pdbFun web server (Ausiello et al. 2005b) uses sites defined as
residues within 3.5 angstroms of a ligand (Ausiello et al. 2005a).
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11.4.3 Mining for Emergent Properties

When groups of structures are studied, local structural features shared among
proteins may be taken as a 3D motif. The process of identifying these common
features may be described as the mining step. It is helpful to separately identify the
grouping methods as either undirected or directed. In general, undirected (unsu-
pervised) mining methods do not specifically use labels or annotations in the
grouping step, while directed (supervised) mining methods tend to use labelled
structures. Each approach will be discussed in the following sections.

In some cases investigators provide a mining toolset for the user. The technology
is focused on mining the pattern or motif from a group, rather than in how the
groups are defined. The applications of these methods are, in general, directed
mining approaches. At the heart of these techniques is a search for a clique that is
common to the grouping that can be interpreted as a functionally important motif.
Methods such as the common structural cliques method (Milik et al. 2003), the
maximum common clique (ProBIS) algorithm (Konc and Janežič 2010), as well as
the Detection of REcurring Sidechain PATterns (DRESPAT), (Kar et al. 2012) are
all designed to locate maximal cliques among sets of structures.

In other cases, the approaches for determining a motif are more dependent on the
nature of the groupings: these are discussed in the next sections.

11.4.3.1 Undirected Mining

Undirected mining refers to finding common patterns in unannotated, or unlabelled
structures. The undirected mining approaches have elements of what is usually
considered unsupervised learning. For example, many of these approaches make
all-to-all similarity comparisons (Russell 1998), which has some analogy to the
notion of a distance matrix as seen in traditional clustering methods. Structures
with sufficiently similar measures are grouped as a cluster. Other methods count
motifs that appear with relatively high frequency (Oldfield 2002), and consider the
structures having those motifs as a grouping.

Mining techniques apply to both unlabelled and labelled groupings, as well as
cases where the distinction between unlabelled and labelled is not always
straightforward. For example, a study that used groups of structures with similarity
to sites with hypothesized function (Ausiello et al. 2007) was able to detect and
propose new motifs. The reference structures were based on sequence similarity,
proximity to a co-crystallized ligand, or contact with a cavity, but did not have a
specific functional annotation.
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11.4.3.2 Directed Mining

In directed mining, the focus is on the use of labelled examples to suggest geo-
metric features (residues) that are common, both within the labelled dataset and
other structures that may be deemed similar to the labelled dataset. Directed mining
may also be considered to be more of a targeted search for motifs and themes within
a given group.

In general, only positive examples are used for motif discovery. Positive
examples are those structures whose labels indicate a positive membership in the
functional set. The motif discovery process is then to find what essential features
define that set. The use of negative examples is not as frequent in the motif
discovery process. It does, however, appear in the validation of the models. One
notable exception to this approach is the GASPS method (Polacco and Babbitt
2006), which uses both positive and negative examples in the motif discovery
process, and is discussed in the next section.

It is often more practical to develop motifs from crystallographic structures
where the ligand is present. Studies of this sort tend to be more specific to the ligand
types of interest. For example, one of the early approaches was developed for
adenine mononucleotide sites, based on the fact that there were over 100 structures
available for comparison at the time (Kobayashi and Go 1997). A high similarity
was found between structures of different folds, which is a hallmark of a good
motif. Later, after many more structures had become available, a similar approach
was used to generate consensus binding-site motifs (Nebel et al. 2007), and the
study was expanded to study mono-, di-, and tri-phosphate complexes as well,
resulting in 13 high quality motifs. The same group developed motifs specifically
for porphyrin-binding sites (Nebel 2006). Another study used phosphate groups as
the ligand in protein-nucleotide complexes, and applied a clique detection algorithm
to discover motifs (Brakoulias and Jackson 2004).

Other methods use more standard template-matching programs, but on smaller
motifs, with emergent motifs built from the smaller ones. The funClust server
(Ausiello et al. 2008) (Table 11.1) identifies 3D motifs shared by up to 20 input
structures. The structures are then filtered by sequence identity and other geometric
filters, and the comparison is made with Query3D (Ausiello et al. 2005a). Another
method, the PAR-3D (Protein Active site Residues using 3-Dimensional structural
motifs) server (Goyal et al. 2007) (Table 11.1) compares a structure to motifs for
proteases, glycolysis enzymes, and metalloenzyme sites with only three or four
residues (Goyal and Mande 2008) that are common to the broadly defined func-
tions. The motifs returned are given as allowed ranges of interatomic distances to
the library of motifs. Another approach, termed Geometric Sieving, starts with an
existing motif or list of putatively important residues (Chen et al. 2007b), and
develops candidate motifs by comparing them to a representative sample of
structures. It is assumed that the low-RMSD tail in a distribution represents true
positives.
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11.4.3.3 Directed Mining with Positive and Negative Examples

In most of the approaches listed above, only sets with known positives are used to
discover the emergent features of a binding-site. Sometimes, however, it is
important to know not just consensus features of a catalytic site, but the essential
features. For this more subtle delineation, negative examples are needed to more
precisely define what is an outlier.

For example, a simple mutation from Asp to Glu in a set of binding site residues
may still preserve function, while a mutation from Asp to Asn may remove function
completely if the residue needs to be protonated at some point in the catalysis. If,
however, the residue only needs to be polar, then the Asp to Asn mutation might
still be allowable.

These types of differences may not be easily seen by consensus methods, but
some very carefully chosen negative examples can reveal these more subtle dif-
ferences. The use of negative training examples is well understood in machine
learning approaches with linear models. Here, the goal is to discover geometric
features, rather than to apply a fitting procedure to determine parameters for a linear
model. This presents a fundamentally different optimization problem.

One very successful approach to this problem is GASPS (Genetic Algorithm
Search for Patterns in Structures), which finds patterns of residues that best separate
the two groups (Polacco and Babbitt 2006). No prior residues list is required, and
how the positive/negative groups are defined is independent of the method. The
underlying search tool is SPASM (Kleywegt 1999), with residues represented by
alpha-carbons and side chain centroids and only identical residue types allowed to
match. To limit the search space, GASPS considers only the 100 most conserved
residues in a structure chain, based on an automatically constructed sequence
alignment. An initial candidate motif is constructed by picking one residue ran-
domly and then choosing four more, also randomly except in the vicinity of the
first. Each of 50 initial candidates is scored on how well it separates the positive and
negative structures in terms of best match RMSD values. In each round of the
genetic algorithm, the 16 highest-scoring motifs are used as the parents of 36 new
motifs, and the top-scoring motif after 50 rounds is declared the winner. Motifs are
allowed to contain from three to ten residues. Sensitive and specific motifs were
obtained for diverse superfamilies (Babbitt and Gerlt 2000) and serine proteases.
Most of the residues in the motifs were functionally important, but in some cases,
residues with no known functional role were found to be equally predictive
(Polacco and Babbitt 2006).

The GASPSdb database (Table 11.1) allows browsing and downloading 3D
motifs previously generated by GASPS for SCOP families and superfamilies.
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11.5 Molecular Docking for Functional Annotation

Ultimately, the ligand specificity and catalytic capabilities of a protein depend on
the arrangement of atoms in its binding or active site(s). The use of 3D motifs can
be seen as informatics approaches that are informed by the chemistry of the protein.
These methods are limited in that they can only associate function to known motifs.
There are many cases, however, where a high resolution target structure is available
(either experimentally or through homology modelling), but there is no identifiable
motif in the structure. For these cases, a more fundamental physical approach can
fill in gaps in knowledge that the informatics approaches do not provide.

A computational method known as ligand docking can provide a different
perspective on the problem of functional annotation (Jacobson et al. 2014). This
technique (also mentioned in Chap. 10) uses molecular mechanics forcefields to
directly estimate ligand protein energetics and complementarities. The field of
docking is vast, and we list only a few examples for reference (Meng et al. 1992;
Wang et al. 2003). As the name suggests, the molecule is ‘docked’ into the target
protein, and the quality of the resulting pose is evaluated for fitness. Figure 11.6
illustrates a typical workflow that uses docking as a method for functional
assignments. In general, the target is held rigid, but more recent approaches also
allow for sidechain flexibility (Sherman et al. 2006). Since it is based on molecular
interaction energies, this technique can conceivably predict molecular binding
modes that are novel, but still physically reasonable.

Traditionally, database docking, or in silico screening has been applied to the
lead discovery phase of drug design pipelines. As such, the technique is highly
automated, and designed to dock large libraries of small molecules to selected
targets (on the order of a million of compounds or more in some cases). While most
ligand docking studies are focused on finding inhibitors to the target, the functional
annotation effort seeks to find the native metabolite that is catalysed in the target.
Many of the technical challenges in ligand docking are common to both goals,
however, such as the need to distinguish true positives from false positives, or
decoys (Huang et al. 2006). These studies highlight the need not only for high
quality poses, but also for scoring procedures that will properly rank ligand
affinities. Metabolite docking can be distinct from inhibitor docking, most notably
due to the fact that most metabolites are highly charged (Song et al. 2007).

Despite these challenges, this approach has received considerable attention
(Favia et al. 2008; Kalyanaraman et al. 2005; Macchiarulo et al. 2004; Paul et al.
2004; Tyagi and Pleiss 2006; Jacobson et al. 2014) In particular, studies of
alpha-beta barrel enzymes (Song et al. 2007) and amidohydrolases (Hermann et al.
2007) have firmly established the capabilities of docking approaches as a supple-
ment to approaches using sequence- and motif-based comparative approaches.

As these approaches have progressed, an emergent challenge for functional
annotation is to not only generate comparative affinities for a particular target, but
also to be able to compare affinities across targets. While inhibitor design is usually
focused on a single target, the goal of functional annotation is to characterize entire
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synthetic pathways or proteomes in an automated fashion. Studying target groups
for entire synthetic pathways provides a much larger perspective, as the molecules
are related by a chain of incremental modifications, and the targets are often
expressed from the same ‘genome neighborhood’. Applying these additional
guidelines for self consistency, while also using homology modelling to construct
missing targets, can allow for elucidation of complete pathways that were

Fig. 11.6 Structure-based virtual metabolite docking protocol for enzyme activity prediction.
When no structure has been experimentally determined for a protein sequence, a model can be
built using a variety of comparative modelling methods, if sequence identity is approximately 30%
or more. Whether using a structure of a model, it is critical that active site metal ions and cofactors
are present, and that catalytic residues are positioned appropriately for catalysis. Virtual
metabolites libraries can be constructed and ‘docked’ against the putative active sites of structures
or models using computational tools more commonly used in structure-based drug design (e.g.,
Glide or DOCK). The docking scoring functions can be used to rank the ligands according to their
estimated relative binding affinities. Top-scoring metabolites are typically inspected for plausibility
and then selected for in vitro testing. (This Figure was reprinted from Jacobson et al. (2014) with
permission from Elsevier License #3624901501981)
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previously unknown (Zhao et al. 2013), with potential applications to synthetic
biology and other efforts that have not traditionally relied on structure-based
techniques (Jacobson et al. 2014).

While molecular recognition techniques are significantly more computationally
demanding than 3D motif matching, docking has the potential to extrapolate to
functions not associated with previously characterized structures, and represents a
frontier direction in the field for the most challenging of catalytic sites.

11.6 Discussion and Conclusions

The question of how best to describe the function of a protein with a meaningful
language remains. While fold-based methods and ligand-based methods have been
shown to be very useful, the use of a 3D motif as a signature for protein function
has offered new perspectives on catalytic sites, and could ultimately form the
foundation of a functional annotation language. Challenges remain on how to
identify these motifs, and even with knowledge of the substrate and many exam-
ples, it can be nontrivial to identify the ideal 3D motif that uniquely and completely
defines function for a given enzyme.

What, then, is the most natural classification of protein function, if we choose 3D
motifs as a basis for classification? In enzymes, individual residues or functional
groups play different roles in the course of a reaction: substrate recognition,
catalysis of a particular step in the reaction, stabilization of an intermediate, or some
combination of these. As proteins evolve to perform new functions, they can make
use of existing pieces of catalytic machinery that carry out a common partial
reaction (Babbitt and Gerlt 2000; Bartlett et al. 2003). This explains in part why
members of a homologous but diverse group of enzymes often make use of the
same configuration of a small number of amino acids, despite catalysing different
overall reactions. It may well be that these subunits (which are 3D motifs) will form
the basic building blocks of all enzymes, and a functional classification scheme
should include these basic units in its language.

Acknowledgements We acknowledge support from NIH GM60595 and NSF DBI-0234768.
Molecular graphics were produced with the UCSF Chimera package from the Resource for
Biocomputing, Visualization, and Informatics at the University of California, San Francisco
(supported by NIH P41-GM103311). We thank Jacquelyn Fetrow and Stacy Knutson (Wake
Forest University) for providing Fig. 11.5 as an example of a result from their FFF/DASP/PASS
motif analysis software. We gratefully acknowledge Dan Kirshner for enlightening discussions
and a critical reading of the manuscript.

11 3D Motifs 385



References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool.
J Mol Biol 215(3):403–410

Andreeva A, Howorth D, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2004) SCOP database
in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 32(suppl
1):D226–D229

Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2008)
Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36
(suppl 1):D419–D425

Arakaki A, Huang Y, Skolnick J (2009) EFICAz2: enzyme function inference by a combined
approach enhanced by machine learning. BMC Bioinform 10(1):107

Artymiuk PJ, Poirrette AR, Grindley HM, Rice DW, Willett P (1994) A graph-theoretic approach
to the identification of three-dimensional patterns of amino acid side-chains in protein
structures. J Mol Biol 243(2):327–344

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K,
Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC,
Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the
unification of biology. The gene ontology consortium. Nat Genet 25(1):25–29

Ausiello G, Gherardini PF, Marcatili P, Tramontano A, Via A, Helmer-Citterich M (2008)
FunClust: a web server for the identification of structural motifs in a set of non-homologous
protein structures. BMC Bioinform 9(Suppl 2):S2

Ausiello G, Peluso D, Via A, Helmer-Citterich M (2007) Local comparison of protein structures
highlights cases of convergent evolution in analogous functional sites. BMC Bioinform 8
(Suppl 1):S24

Ausiello G, Via A, Helmer-Citterich M (2005a) Query3D: a new method for high-throughput
analysis of functional residues in protein structures. BMC Bioinform 6(Suppl 4):S5

Ausiello G, Zanzoni A, Peluso D, Via A, Helmer-Citterich M (2005b) pdbFun: mass selection and
fast comparison of annotated PDB residues. NucleicAcids Res 33 (Web Server issue):W133–137

Babbitt PC (2003) Definitions of enzyme function for the structural genomics era. Curr Opin
Chem Biol 7(2):230–237

Babbitt PC, Gerlt JA (1997) Understanding enzyme superfamilies. Chemistry As the fundamental
determinant in the evolution of new catalytic activities. J Biol Chem 272(49):30591–30594

Babbitt PC, Gerlt JA (2000) New functions from old scaffolds: how nature reengineers enzymes
for new functions. Adv Protein Chem 55:1–28

Bagley SC, Altman RB (1995) Characterizing the microenvironment surrounding protein sites.
Protein Sci 4(4):622–635

Bairoch A (1994) The ENZYME data bank. Nucleic Acids Res 22(17):3626–3627
Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294

(5540):93–96
Barker JA, Thornton JM (2003) An algorithm for constraint-based structural template matching:

application to 3D templates with statistical analysis. Bioinformatics 19(13):1644–1649
Bartlett GJ, Borkakoti N, Thornton JM (2003) Catalysing new reactions during evolution:

economy of residues and mechanism. J Mol Biol 331(4):829–860
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE

(2000) The protein data bank. Nucleic Acids Res 28(1):235–242
Blow DM, Birktoft JJ, Hartley BS (1969) Role of a buried acid group in the mechanism of action

of chymotrypsin. Nature 221(5178):337–340
Brakoulias A, Jackson RM (2004) Towards a structural classification of phosphate binding sites in

protein–nucleotide complexes: an automated all-against-all structural comparison using
geometric matching. Proteins Struct Funct Bioinf 56(2):250–260

Brylinski M, Skolnick J (2008) A threading-based method (FINDSITE) for ligand-binding site
prediction and functional annotation. Proc Natl Acad Sci 105(1):129

386 J.P. Nilmeier et al.



Buturovic L, Wong M, Tang GW, Altman RB, Petkovic D (2014) High precision prediction of
functional sites in protein structures. Publ Libr Sci One 9(3):e91240

Cammer SA, Hoffman BT, Speir JA, Canady MA, Nelson MR, Knutson S, Gallina M, Baxter SM,
Fetrow JS (2003) Structure-based active site profiles for genome analysis and functional family
subclassification. J Mol Biol 334(3):387–401

Chen BY, Bryant DH, Cruess AE, Bylund JH, Fofanov VY, Kristensen DM, Kimmel M,
Lichtarge O, Kavraki LE (2007a) Composite motifs integrating multiple protein structures
increase sensitivity for function prediction. Comput Syst Bioinform Conf 6:343–355

Chen BY, Fofanov VY, Bryant DH, Dodson BD, Kristensen DM, Lisewski AM, Kimmel M,
Lichtarge O, Kavraki LE (2007b) The MASH pipeline for protein function prediction and an
algorithm for the geometric refinement of 3D motifs. J Comput Biol 14(6):791–816

Chothia C, Gough J, Vogel C, Teichmann SA (2003) Evolution of the protein repertoire. Science
300(5626):1701–1703

Chothia C, Lesk AM (1986) The relation between the divergence of sequence and structure in
proteins. EMBO J 5(4):823–826

Conte LL, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C (2000) SCOP: a structural
classification of proteins database. Nucleic Acids Res 28(1):257–259

Devos D, Valencia A (2001) Intrinsic errors in genome annotation. Trends Genet 17(8):429–431
Di Gennaro JA, Siew N, Hoffman BT, Zhang L, Skolnick J, Neilson LI, Fetrow JS (2001)

Enhanced functional annotation of protein sequences via the use of structural descriptors.
J Struct Biol 134(2–3):232–245

Favia AD, Nobeli I, Glaser F, Thornton JM (2008) Molecular docking for substrate identification:
the short-chain dehydrogenases/reductases. J Mol Biol 375(3):855–874

Fetrow JS, Skolnick J (1998) Method for prediction of protein function from sequence using the
sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and
T1 ribonucleases. J Mol Biol 281(5):949–968

Fischer D, Wolfson H, Lin SL, Nussinov R (1994) Three-dimensional, sequence
order-independent structural comparison of a serine protease against the crystallographic
database reveals active site similarities: potential implications to evolution and to protein
folding. Protein Sci 3(5):769–778

Furnham N, Holliday GL, de Beer TA, Jacobsen JO, Pearson WR, Thornton JM (2014) The
catalytic site atlas 2.0: cataloging catalytic sites and residues identified in enzymes. Nucleic
Acids Res 42 (D1):D485–D489

Galperin MY, Walker DR, Koonin EV (1998) Analogous enzymes: independent inventions in
enzyme evolution. Genome Res 8(8):779–790

Gerlt JA, Allen KN, Almo SC, Armstrong RN, Babbitt PC, Cronan JE, Dunaway-Mariano D,
Imker HJ, Jacobson MP, Minor W (2011) The enzyme function initiative. Biochem

Gerlt JA, Babbitt PC (2001) Divergent evolution of enzymatic function: mechanistically diverse
superfamilies and functionally distinct suprafamilies. Annu Rev Biochem 70(1):209–246

Gerlt JA, Babbitt PC, Jacobson MP, Almo SC (2012) Divergent evolution in enolase superfamily:
strategies for assigning functions. J Biol Chem 287(1):29–34

Glanville JG, Kirshner D, Krishnamurthy N, Sjölander K (2007) Berkeley phylogenomics group
web servers: resources for structural phylogenomic analysis. Nucleic Acids Res 35(suppl 2):
W27–W32

Glazer DS, Radmer RJ, Altman RB Combining molecular dynamics and machine learning to
improve protein function recognition. In: Pacific Symposium on Biocomputing. Pacific
Symposium on Biocomputing, 2008. NIH Public Access, p 332

Gold ND, Jackson RM (2006a) Fold independent structural comparisons of protein-ligand binding
sites for exploring functional relationships. J Mol Biol 355(5):1112–1124

Gold ND, Jackson RM (2006b) SitesBase: a database for structure-based protein–ligand binding
site comparisons. Nucleic Acids Res 34(suppl 1):D231–D234

Goyal K, Mande SC (2008) Exploiting 3D structural templates for detection of metal-binding sites
in protein structures. Proteins 70(4):1206–1218

11 3D Motifs 387



Goyal K, Mohanty D, Mande SC (2007) PAR-3D: a server to predict protein active site residues.
Nucleic Acids Res 35 (Web Server issue):W503–505

Halgren T (2007) New method for fast and accurate binding-site Identification and analysis. Chem
Biol Drug Des 69(2):146–148

Halgren TA (2009) Identifying and characterizing binding sites and assessing druggability. J Chem
Inf Model 49(2):377–389

Hermann JC, Marti-Arbona R, Fedorov AA, Fedorov E, Almo SC, Shoichet BK, Raushel FM
(2007) Structure-based activity prediction for an enzyme of unknown function. Nature 448
(7155):775–779

Holliday GL, Almonacid DE, Bartlett GJ, O’Boyle NM, Torrance JW, Murray-Rust P,
Mitchell JBO, Thornton JM (2007) MACiE (mechanism, annotation and classification in
enzymes): novel tools for searching catalytic mechanisms. Nucleic Acids Res 35(suppl 1):
D515–D520

Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem
49(23):6789–6801

International Union of Biochemistry and Molecular Biology: Nomenclature Committee, Webb EC
(1992) Enzyme nomenclature 1992: recommendations of the nomenclature committee of the
international union of biochemistry and molecular biology on the nomenclature and
classification of enzymes. Academic Press, San Diego

Ivanisenko VA, Pintus SS, Grigorovich DA, Kolchanov NA (2004) PDBSiteScan: a program for
searching for active, binding and posttranslational modification sites in the 3D structures of
proteins. Nucleic Acids Res 32(Web Server issue):W549–554

Ivanisenko VA, Pintus SS, Grigorovich DA, Kolchanov NA (2005) PDBSite: a database of the 3D
structure of protein functional sites. Nucleic Acids Res 33(Database issue):D183–187

Jacobson MP, Kalyanaraman C, Zhao S, Tian B (2014) Leveraging structure for enzyme function
prediction: methods, opportunities, and challenges. Trends Biochem Sci 39(8):363–371

Jambon M, Andrieu O, Combet C, Deléage G, Delfaud F, Geourjon C (2005) The SuMo server:
3D search for protein functional sites. Bioinformatics 21(20):3929–3930

Jambon M, Imberty A, Deléage G, Geourjon C (2003) A new bioinformatic approach to detect
common 3D sites in protein structures. Proteins Struct Funct Bioinf 52(2):137–145

Kalyanaraman C, Bernacki K, Jacobson MP (2005) Virtual screening against highly charged
active sites: identifying substrates of alpha-beta barrel enzymes. Biochemistry 44(6):2059–
2071

Kalyanaraman C, Imker HJ, Fedorov AA, Fedorov EV, Glasner ME, Babbitt PC, Almo SC,
Gerlt JA, Jacobson MP (2008) Discovery of a dipeptide epimerase enzymatic function guided
by homology modeling and virtual screening. Structure 16(11):1668–1677

Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametriza-
tion of the OPLS-AA force field for proteins via comparison with accurate quantum chemical
calculations on peptides. J Phys Chem B 105(28):6474–6487

Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res
28(1):27–30

Kar S, Vijayakeerthi D, Tendulkar AV, Ravindran B Functional site prediction by exploiting
correlations between labels of interacting residues. In: Proceedings of the ACM conference on
bioinformatics, computational biology and biomedicine, 2012. ACM, pp 76–83

Kinjo AR, Nakamura H (2007) Similarity search for local protein structures at atomic resolution
by exploiting a database management system. Biophysics 3:75–84

Kinoshita K, Nakamura H (2003) Identification of protein biochemical functions by similarity
search using the molecular surface database eF-site. Protein Sci 12(8):1589–1595

Kirshner DA, Nilmeier JP, Lightstone FC (2013) Catalytic site identification—a web server
to identify catalytic site structural matches throughout PDB. Nucleic Acids Res 41
(W1):W256–W265

Kleywegt GJ (1999) Recognition of spatial motifs in protein structures. J Mol Biol 285
(4):1887–1897

388 J.P. Nilmeier et al.



Kleywegt GJ, Jones TA (1997) Detecting folding motifs and similarities in protein structures.
Methods Enzymol 277:525–545

Kleywegt GJ, Lamerichs RMJN, Boelens R, Kaptein R (1989) Toward automatic assignment of
protein 1H NMR spectra. J Magn Reson 85(1):186–197

Kobayashi N, Go N (1997) A method to search for similar protein local structures at ligand
binding sites and its application to adenine recognition. Eur Biophys J 26(2):135–144

Konc J, Janežič D (2010) ProBiS algorithm for detection of structurally similar protein binding
sites by local structural alignment. Bioinformatics 26(9):1160–1168

Konc J, Janežič D (2012) ProBiS-2012: web server and web services for detection of structurally
similar binding sites in proteins. Nucleic Acids Res 40(W1):W214–W221

Krishnamurthy N, Brown DP, Kirshner D, Sjölander K (2006) PhyloFacts: an online
structural phylogenomic encyclopedia for protein functional and structural classification.
Genome Biol 7(9):R83

Krogh A, Brown M, Mian IS, Sjolander K, Haussler D (1994) Hidden Markov models in
computational biology: applications to protein modeling. J Mol Biol 235(5):1501–1531

Kuhn D, Weskamp N, Schmitt S, Hullermeier E, Klebe G (2006) From the similarity analysis of
protein cavities to the functional classification of protein families using cavbase. J Mol Biol
359(4):1023–1044

Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, McWilliam H, Valentin F,
Wallace I, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23
(21):2947–2948

Laskowski RA, Watson JD, Thornton JM (2005) ProFunc: a server for predicting protein function
from 3D structure. Nucleic Acids Res 33(Web Server issue):W89–W93

Liang MP, Banatao DR, Klein TE, Brutlag DL, Altman RB (2003) WebFEATURE: an interactive
web tool for identifying and visualizing functional sites on macromolecular structures. Nucleic
Acids Res 31(13):3324–3327

Lichtarge O, Bourne HR, Cohen FE (1996) An evolutionary trace method defines binding surfaces
common to protein families. J Mol Biol 257(2):342–358

Macchiarulo A, Nobeli I, Thornton JM (2004) Ligand selectivity and competition between
enzymes in silico. Nat Biotechnol 22(8):1039–1045

Meng EC, Polacco BJ, Babbitt PC (2004) Superfamily active site templates. Proteins Struct Funct
Bioinf 55(4):962–976

Meng EC, Shoichet BK, Kuntz ID (1992) Automated docking with grid-based energy evaluation.
J Comput Chem 13(4):505–524

Milik M, Szalma S, Olszewski KA (2003) Common structural cliques: a tool for protein structure
and function analysis. Protein Eng 16(8):543–552

Mitchell EM, Artymiuk PJ, Rice DW, Willett P (1990) Use of techniques derived from graph
theory to compare secondary structure motifs in proteins. J Mol Biol 212(1):151–166

Moll M, Bryant DH, Kavraki LE (2010) The LabelHash algorithm for substructure matching.
BMC Bioinform 11(1):555

Moll M, Bryant DH, Kavraki LE (2011) The LabelHash server and tools for substructure-based
functional annotation. Bioinformatics 27(15):2161–2162

Moll M, Kavraki LE (2008) LabelHash: a flexible and extensible method for matching structural
motifs. Available from Nature Precedings. http://dx.doi.org/10.1038/npre.2008.2199.1

Mooney SD, Liang MH, DeConde R, Altman RB (2005) Structural characterization of proteins
using residue environments. Proteins 61(4):741–747

Murzin AG, Brenner SE, Hubbard T, Chothia C (1995) SCOP: a structural classification of
proteins database for the investigation of sequences and structures. J Mol Biol 247(4):536–540

Nebel JC (2006) Generation of 3D templates of active sites of proteins with rigid prosthetic
groups. Bioinformatics 22(10):1183–1189

Nebel JC, Herzyk P, Gilbert DR (2007) Automatic generation of 3D motifs for classification of
protein binding sites. BMC Bioinformatics 8(1):321

Nilmeier JP, Kirshner DA, Wong SE, Lightstone FC (2013) Rapid catalytic template searching as
an enzyme function prediction procedure. Publ Libr Sci One 8(5):e62535

11 3D Motifs 389

http://dx.doi.org/10.1038/npre.2008.2199.1


Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M (1999) KEGG: Kyoto encyclopedia
of genes and genomes. Nucleic Acids Res 27(1):29–34

Oldfield TJ (2002) Data mining the protein data bank: residue interactions. Proteins 49(4):510–528
Orengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM (1997) CATH–a

hierarchic classification of protein domain structures. Structure 5(8):1093–1108
Orengo CA, Pearl FMG, Bray JE, Todd AE, Martin A, Conte LL, Thornton JM (1999) The CATH

Database provides insights into protein structure/function relationships. Nucleic Acids Res 27
(1):275–279

Orengo CA, Pearl FMG, Thornton JM (2003) The CATH domain structure database. Struct
Bioinform 249–271

Pal D, Eisenberg D (2005) Inference of protein function from protein structure. Structure 13
(1):121–130

Paul N, Kellenberger E, Bret G, Muller P, Rognan D (2004) Recovering the true targets of specific
ligands by virtual screening of the protein data bank. Proteins 54(4):671–680

Pegg SC, Brown S, Ojha S, Huang CC, Ferrin TE, Babbitt PC (2005) Representing
structure-function relationships in mechanistically diverse enzyme superfamilies. Pac Symp
Biocomput 358–369

Pegg SCH, Brown SD, Ojha S, Seffernick J, Meng EC, Morris JH, Chang PJ, Huang CC,
Ferrin TE, Babbitt PC (2006) Leveraging enzyme structure-function relationships for
functional inference and experimental design: the structure-function linkage database.
Biochemistry 45(8):2545–2555

Pennec X, Ayache N (1998) A geometric algorithm to find small but highly similar 3D
substructures in proteins. Bioinformatics 14(6):516–522

Peters B, Moad C, Youn E, Buffington K, Heiland R, Mooney S (2006) Identification of similar
regions of protein structures using integrated sequence and structure analysis tools. BMC Struct
Biol 6:4

Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004)
UCSF Chimera–a visualization system for exploratory research and analysis. Journal of
Computaional Chemistry 25(13):1605–1612

Polacco BJ, Babbitt PC (2006) Automated discovery of 3D motifs for protein function annotation.
Bioinformatics 22(6):723–730

Porter CT, Bartlett GJ, Thornton JM (2004) The Catalytic Site Atlas: a resource of catalytic sites
and residues identified in enzymes using structural data. Nucleic Acids Res 32(suppl 1):D129–
D133

Radivojac P, Clark WT, Oron TR, Schnoes AM, Wittkop T, Sokolov A, Graim K, Funk C,
Verspoor K, Ben-Hur A (2013) A large-scale evaluation of computational protein function
prediction. Nat Methods 10(3):221–227

Ren J, Xie L, Li WW, Bourne PE (2010) SMAP-WS: a parallel web service for structural
proteome-wide ligand-binding site comparison. Nucleic Acids Res 38(suppl 2):W441–W444

Richardson JS (1981) The anatomy and taxonomy of protein structure. Adv Protein Chem
34:167–339

Rost B (1997) Protein structures sustain evolutionary drift. Fold Des 2(3):S19–S24
Rost B (2002) Enzyme function less conserved than anticipated. J Mol Biol 318(2):595–608
Russell RB (1998) Detection of protein three-dimensional side-chain patterns: new examples of

convergent evolution. J Mol Biol 279(5):1211–1227
Sankararaman S, Sha F, Kirsch JF, Jordan MI, Sjölander K (2010) Active site prediction using

evolutionary and structural information. Bioinformatics 26(5):617–624
Sankararaman S, Sjölander K (2008) INTREPID—INformation-theoretic TREe traversal for

Protein functional site IDentification. Bioinformatics 24(21):2445–2452
Schmitt S, Kuhn D, Klebe G (2002) A new method to detect related function among proteins

independent of sequence and fold homology. J Mol Biol 323(2):387–406
Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling

ligand/receptor induced fit effects. J Med Chem 49(2):534–553

390 J.P. Nilmeier et al.



Shindyalov IN, Bourne PE (1998) Protein structure alignment by incremental combinatorial
extension (CE) of the optimal path. Protein Eng 11(9):739–747

Shindyalov IN, Bourne PE (2001) A database and tools for 3-D protein structure comparison and
alignment using the Combinatorial Extension (CE) algorithm. Nucleic Acids Res 29(1):228–229

Shulman-Peleg A, Nussinov R, Wolfson HJ (2004) Recognition of functional sites in protein
structures. J Mol Biol 339(3):607–633

Shulman-Peleg A, Nussinov R, Wolfson HJ (2005) SiteEngines: recognition and comparison of
binding sites and protein-protein interfaces. Nucleic Acids Res 33(Web Server issue):W337–
W341

Sjölander K, Karplus K, Brown M, Hughey R, Krogh A, Mian IS, Haussler D (1996) Dirichlet
mixtures: a method for improved detection of weak but significant protein sequence homology.
Comput Appl Biosci CABIOS 12(4):327–345

Skolnick J, Brylinski M (2009) FINDSITE: a combined evolution/structure-based approach to
protein function prediction. Briefings Bioinform 10(4):378–391

Song L, Kalyanaraman C, Fedorov AA, Fedorov EV, Glasner ME, Brown S, Imker HJ,
Babbitt PC, Almo SC, Jacobson MP (2007) Prediction and assignment of function for a
divergent N-succinyl amino acid racemase. Nat Chem Biol 3(8):486–491

Spriggs RV, Artymiuk PJ, Willett P (2003) Searching for patterns of amino acids in 3D protein
structures. J Chem Inf Comput Sci 43(2):412–421

Stark A, Russell RB (2003) Annotation in three dimensions. PINTS: patterns in non-homologous
tertiary structures. Nucleic Acids Res 31(13):3341–3344

Stark A, Shkumatov A, Russell RB (2004) Finding functional sites in structural genomics proteins.
Structure 12(8):1405–1412

Stark A, Sunyaev S, Russell RB (2003) A model for statistical significance of local similarities in
structure. J Mol Biol 326(5):1307–1316

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

Tian W, Arakaki AK, Skolnick J (2004) EFICAz: a comprehensive approach for accurate
genome-scale enzyme function inference. Nucleic Acids Res 32(21):6226–6239

Tian W, Skolnick J (2003) How well is enzyme function conserved as a function of pairwise
sequence identity? J Mol Biol 333(4):863–882

Todd AE, Orengo CA, Thornton JM (2001) Evolution of function in protein superfamilies, from a
structural perspective. J Mol Biol 307(4):1113–1143

Todd AE, Orengo CA, Thornton JM (2002) Plasticity of enzyme active sites. Trends Biochem Sci
27(8):419–426

Torrance JW, Bartlett GJ, Porter CT, Thornton JM (2005) Using a library of structural templates to
recognise catalytic sites and explore their evolution in homologous families. J Mol Biol 347
(3):565–581

Tseng YY, Dundas J, Liang J (2009) Predicting protein function and binding profile via matching
of local evolutionary and geometric surface patterns. J Mol Biol 387(2):451–464

Tseng YY, Liang J (2006) Estimation of amino acid residue substitution rates at local spatial
regions and application in protein function inference: a Bayesian Monte Carlo approach. Mol
Biol Evol 23(2):421–436

Tyagi S, Pleiss J (2006) Biochemical profiling in silico–predicting substrate specificities of large
enzyme families. J Biotechnol 124(1):108–116

Ullmann JR (1976) An algorithm for subgraph isomorphism. J ACM (JACM) 23(1):31–42
Wallace AC, Borkakoti N, Thornton JM (1997) TESS: a geometric hashing algorithm for deriving

3D coordinate templates for searching structural databases. Application to enzyme active sites.
Protein Sci 6:2308–2323

Wallace AC, Laskowski RA, Thornton JM (1996) Derivation of 3D coordinate templates for
searching structural databases: application to Ser-His-Asp catalytic triads in the serine
proteinases and lipases. Protein Sci 5(6):1001–1013

11 3D Motifs 391



Wang R, Lu Y, Wang S (2003) Comparative evaluation of 11 scoring functions for molecular
docking. J Med Chem 46(12):2287–2303

Webb EC (1992) Enzyme nomenclature 1992. In: Recommendations of the nomenclature
committee of the international union of biochemistry and molecular biology on the
nomenclature and classification of enzymes, vol Ed. 6. Academic Press

Whisstock JC, Lesk AM (2003) Prediction of protein function from protein sequence and
structure. Q Rev Biophys 36(03):307–340

WolfsonHJ, Rigoutsos I (1997)Geometric hashing: An overview. Comput Sci Eng IEEE 4(4):10–21
Wright CS, Alden RA, Kraut J (1969) Structure of subtilisin BPN’ at 2.5 angstrom resolution.

Nature 221(5177):235–242
Xie L, Bourne PE (2008) Detecting evolutionary relationships across existing fold space, using

sequence order-independent profile–profile alignments. Proc Natl Acad Sci 105(14):5441
Xie L, Bourne PE (2009) A unified statistical model to support local sequence order independent

similarity searching for ligand-binding sites and its application to genome-based drug
discovery. Bioinformatics 25(12):i305–i312

Yang LW, Bahar I (2005) Coupling between catalytic site and collective dynamics: a requirement
for mechanochemical activity of enzymes. Structure 13(6):893–904

Zemla A (2003) LGA: a method for finding 3D similarities in protein structures. Nucleic Acids
Res 31(13):3370–3374

Zhao S, Kumar R, Sakai A, Vetting MW, Wood BM, Brown S, Bonanno JB, Hillerich BS,
Seidel RD, Babbitt PC (2013) Discovery of new enzymes and metabolic pathways by using
structure and genome context. Nature 502(7473):698–702

392 J.P. Nilmeier et al.


	11 3D Motifs
	Abstract
	11.1 Background: Functional Annotation
	11.1.1 What Is Function?
	11.1.2 Genomics and Functional Annotation
	11.1.3 The Need for Structure-Based Methods

	11.2 3D Motif Matching Techniques
	11.2.1 What Is a 3D Motif?
	11.2.2 Historical Development of Motif Matching Methods

	11.3 Algorithmic Approaches to Motif Matching
	11.3.1 Methods Using 3D Motifs
	11.3.2 Efficiency Considerations for 3D Motifs
	11.3.3 Methods with Nonstandard Motif Information
	11.3.4 Interpretation of Results

	11.4 Methods for Deriving Motifs
	11.4.1 Literature Search and Manual Curation
	11.4.2 Annotated Sites in PDB Structures
	11.4.3 Mining for Emergent Properties
	11.4.3.1 Undirected Mining
	11.4.3.2 Directed Mining
	11.4.3.3 Directed Mining with Positive and Negative Examples


	11.5 Molecular Docking for Functional Annotation
	11.6 Discussion and Conclusions
	Acknowledgements
	References


